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ABSTRACT
An implementation of the hash functions SHA-256, 384 and
512 is presented, obtaining a high clock rate through a re-
duction of the critical path length, both in the Expander and
in the Compressor of the hash scheme. The critical path is
shown to be the smallest achievable. Synthesis results show
that the new scheme can reach a clock rate well exceeding
1 GHz using a 0.13µm technology.

Categories and Subject Descriptors
B.7.1 [Types and Design Styles]: Algorithms implemented
in hardware; B.5.1 [Design]: Styles (pipeline).

General Terms
Algorithms, Design, Performance.

Keywords
Hash function, Secure Hash Standard, data authentication.

1. INTRODUCTION
The integrity of a message can be controlled by means of

another message usually, but not necessarily, shorter than
the message to be controlled; the latter is obtained from
the former by means of a special function called hash. We
assume here that the reader has a basic knowledge of hash
functions.

A number of algorithms have been proposed so far. We
mention here the SHA (Secure Hash Algorithm) developed
by the National Institute of Standards and Technology who
published in 2002 new versions called SHA-256, SHA-384,
SHA-512, (the SHA-2 family), where the numbers represent
the hash length in bits [1]. The hash algorithms have been
implemented in software or in hardware, the latter offering
a far higher speed [2].
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A direct translation of the Hash algorithms into a hard-
ware ASIC implementation leads to a scheme whose critical
path is rather long, allowing a clock rate not sufficiently high
for many applications. In a scenario where the encryption-
decryption-hashing of messages and in general of multimedia
documents is applied systematically for reason of security,
it becomes necessary to implement the corresponding algo-
rithms in an hardware form fast enough to obtain that those
operations are transparent to the user, i.e. the correspond-
ing delays are not noticeable.

An additional reason is given by the need to match, as
far as possible, the increasing transmission speed obtained
in fiber-optic links, today reaching 40 Gbit/sec with the
road open, through WDM technology, to much higher speed.
This justifies the search of hashing schemes with the smallest
possible critical path delay.

We are showing in this paper a solution characterized by
the fastest clock rate up to now obtained (for a given tech-
nology) for a hardware implementation of the SHA-2 family
in custom silicon. The new scheme is obtained by applying
suitable transformations to a most simple basic, or canoni-

cal, scheme implementing directly the given hash algorithm.
The transformations are called delay balancing and quasi-

pipelining. This work differs substantially from what has
been done in [3]: instead of optimizing only the compressor
part of the hash function, here we have applied transfor-
mations on both the compressor and the expander part, as
described in the following.

This paper is organized as follows: in Sect. 2 we describe
the SHA-2 algorithm and give a canonical hardware scheme;
Sect. 3 presents the optimization of the Expander circuit;
Sect. 4 presents a new scheme for the Compressor circuit;
in Sect. 5 we give synthesis results on an ASIC technology
library; Sect. 6 concludes the paper.

2. THE SHA-2 BASIC SCHEME
The hash algorithm to be implemented is described in [1].

Due to lack of space, we do not discuss explicitly the details
of the algorithm; instead, a basic scheme implementing it is
shown in Fig.1. The scheme is composed by two parts: the
Expander and the Compressor. The first receives as input
the 16 words (of 32 bits each in SHA-256, 64 bits each in
SHA-384 and SHA-512) composing a message block, delivers
them to the Compressor and at the same time inserts them
in a shift register. At the end of the message block and
for the following 48 steps, no more words are input to the
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Figure 1: Canonical scheme for the SHA256 algo-

rithm

Expander, which generates 48 expansion words and sends
them to the Compressor.

In the following we will consider specifically the SHA-256
case. It is straightforward to obtain the schemes for SHA-
384 and SHA-512, since only the width of the connection
buses is changed, from 32 bits to 64 bits.

The whole algorithm includes the preliminary operation of
message partitioning and padding, that we assume as done
at the system level by software. We assume also that the
intermediate hashes are accumulated in a bank of registers
that is not shown in the Figures, focusing our consideration
on the inner part of the algorithm.

The most critical part of the algorithm is the chain of ad-
ditions (modulo 232) which is necessary to obtain two main
functions called α and ε. In order to reduce the complexity
and to reach a higher clock rate, a number of adders modulo
232 are replaced in Fig.1 with a sequence of carry-free adders,
implemented with full adder arrays (FAA’s); this solution
has been applied to the SHA-1 algorithm in [2], and to the
SHA-512 algorithm in [4]. However, these two solutions, to-
gether with [5] and [6], are targeted to reconfigurable devices
and consequently optimize the implementation according to
the peculiarities of the target FPGA platform. We instead
focus our discussion on the case of ASIC implementations.

We refer to the scheme of Fig.1 as the canonical imple-
mentation.

3. INCREASING THE EXPANDER CLOCK
RATE

The first step is to obtain a circuit for an Expander with
a higher clock rate. This circuit is fed:

• For the first 16 clock cycles (0 ≤ j < 16) by the 32-
bits words Wj = Mj which compose a block of the
message.

• For the following 48 clock cycles (16 ≤ j < 64) by the
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circuit

function:

Wj = σ1(Wj−2) � Wj−7 � σ0(Wj−15) � Wj−16

where � represents modulo 232 (or modulo 264) addi-
tion.

Figure 1 and Fig.2a represent a scheme in which:

• The implicit chain of three modular adders has been
replaced by two full-adder-arrays and a single carry
propagating modular adder, implemented, for speed
reason, in the form of a Carry-Look-Ahead adder (CLA).
Note that a FAA accepts three 32-bits words and pro-
duces an output of two, 32-bits words: the carry from
the leftmost position is discarded in order to obtain a
modulo 232 addition.

• The output We,j (note the e subscript) to be input to
the Compressor of the hash circuit is taken from the
output of the first register of the shift-register. This is
done in order to break the long chain of adders that
begins in the Expander and ends in the Compressor
part, and to define precisely the computational paths
starting with We,j . Having labeled this with the tem-
poral index j, the input to the multiplexer must be la-
beled with the timing index j+1, as shown with Mj+1.
Note that the equation for We,j should be re-indexed
accordingly (it is unnecessary to write the correspond-
ing equation).

In Fig.2b we have operated a transformation of the preced-
ing scheme, based on the delay balancing method. This, as
discussed in [3], consists in displacing some functional units
from the critical path to a shorter path, so that the delay
of the critical path is decreased and the delay of the chosen
secondary path is correspondingly increased. The ideal case



would be to make the two delays identical: this, in practice
is not possible, but in any case the two delays will be made
closer. We realize this by displacing the CLA from the input
of the first register and putting it in the connection between
the first and the second register of the shift-register; in the
preceding scheme this connection is just a short-circuit, con-
necting bit-wise the 32 (or 64) adjacent bit registers, but it
can be used for hosting the CLA.

This modification implies that the original first register is
replaced with two registers 1a and 1b in order to store the
two outputs from faa2, whose outputs will feed cla. The
output of the latter will feed register number 2. We will
also need a new multiplexer, connecting two input couples
to one output couple, also shown in Fig.2b. For the first 16
words indicated with Mj+2, only one of the corresponding
inputs will be used (the other one is fed with a vector of
zeros) while the other input couple will be used during the
following 48 clock cycles, where the two outputs from faa2
will feed cla.

3.1 The critical path in the Expander
It can easily be seen by inspection that among the three

paths starting from the shift register in Fig.2b the longest
appears to be:

σ0 ⇒ faa1 ⇒ faa2 ⇒ mux

The corresponding delay is approximately 3*delay(FAA),
since the delays of σ0 and that of a FAA are comparable
and the delay of the multiplexer can be neglected. The only
component in the paths between registers 1a, 1b and register
2 is cla.

The ratio delay(CLA) versus delay(FAA) depends on the
technology being used: for the 0.13µm technology library
being used, a value very close to 3 has been found. In such
a case the two paths are quite well balanced and, correspond-
ingly, the maximum clock rate for Fig.2b scheme is close to
twice the value possible for Fig.2a, if we neglect the setup
and hold times for the registers. As an additional remark,
if the output for the Compressor is taken from the register
2 of the shift-register, and if it is called We,j , the timing
index at the multiplexer input is j + 2: the scheme exhibits
a latency of 2 clock cycles.

4. A NEW COMPRESSOR SCHEME
The scheme of the new Compressor circuit is given in Fig.

5. Its critical path is composed by: a CLA, a FAA and the
one of the following units having the largest delay: Ch, Σ1,
Maj, Σ0. Since these units have a comparable delay, we can
assume that the critical path delay is given by: delay(CLA)
+ 2*delay(FAA). The critical path delay just obtained for
the Expander is: delay(CLA) or 3*delay(FAA), whichever
is the largest (in the 0.13µm technology library adopted for
the hardware synthesis - see Sect.5 - they are roughly equal).

We can then conclude that the Expander maximum clock
rate will be higher that the maximum clock rate obtainable
in the Compressor.

4.1 Obtaining the new Compressor scheme
In order to obtain the final scheme of Fig.5 from the

canonical scheme of Fig.1 we first introduce the function-
ally equivalent schemes shown in Fig.3 and in Fig.4.

The scheme in Fig.3 is a preliminary step toward the def-
inition of a pipeline structure. It differs from a straight-
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forward implementation of the algorithm in the following
points:

• The circuits generating ε and α functions are split in
the bottom section of the circuit (see the dashed lines
in the Figure), where the sub-functions ε1 and α1 are
generated:

α1 = We,j � Kj � H

ε1 = α1 � D

• In the middle section, function ε and the sub-function
α2 are computed:

ε = ε1 � Ch(E, F, G) � Σ1(E)

α2 = α1 � Ch(E, F, G) � Σ1(E)

• In the top section α is computed:

α = α2 � Maj(A, B, C)) � Σ0(A)

Note that in Fig.3 scheme we are certainly requiring more
silicon area: it is what we accept to pay for obtaining more
parallelism, i.e. a smaller critical path delay in the following
schemes.

The sections of the circuit, which are delimited with dashed
lines in the Figure, form an ideal partition that is the ba-
sis for building the pipelined implementation. A further
transformation is shown in Fig.4 scheme, where the pipeline
sections have actually been built. In this scheme:

• Registers M1 and M2 (storing ε1 and α1 respectively)
have the function to separate sections τ and τ − 1.

• Register L (storing α2) serves as a separator for sec-
tions τ − 1 and τ − 2.
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circuit

As a consequence:

• Section τ is affected by variables We,j and Kj

• Section τ − 1 is affected, indirectly through section τ ,
by variables We,j−1 and Kj−1

• Section τ −2 is affected, indirectly through τ and τ −1
sections, by variables We,j−2 and Kj−2

Moreover:

• The output from register H, crossing the border τ÷(τ−
1), must be replaced by its future value, i.e. the output
from G. The underlying motivation is that in Fig.1 all
events are clocked simultaneously over the Compressor
circuit. Instead in Fig. 4, due to the presence of regis-
ters M1 and M2, the events in section τ are ahead by
one clock period with respect to the events in section
τ −1. Since register H is inserted in a shift register, its
future value can be taken from the preceding register
in the shift chain, i.e. register G.

• For the same reason, the output value of register D
must be replaced by the output value of B, since going
from section τ − 2 to section τ the connection has to
cross two section borders.

• The adders (modulo 232) in all sections are replaced by
Full-Adder-Arrays (in which the carry from the most
significant stage is neglected) obtaining the redundant,
two output words sum of three input words. The func-
tions ε1, α1, ε, α2, α are obtained by carry propagating
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64

(modulo 232) adders, usually for speed reason of the
CLA type.

It can be verified in Fig. 4 scheme that all paths, in all
sections, have a value at most equal to delay(CLA) + 2*de-
lay(FAA), assuming that the delays in Ch, Σ1, Maj, Σ0 are
approximately equal to the delay of a CLA.

However, the scheme of Fig.4 is valid only if the pipeline
is full. At the beginning of the computation the pipeline is
empty (i.e. registers M1, M2 and L are cleared and registers
A, . . . , H are assumed to contain their initial values). In the
next Section we will examine step by step the evolution of
their content in the first three clock cycles: during those
cycles the pipe will be filled. We are going to find that
during the first cycle the values of D and H will be used (as
in a non-pipelined system such as the scheme of Fig.3), but
at the end of the first (second, and third) cycle the values
transmitted from sections τ −1 (δ1) and τ −2 (δ0) to section
τ have to change, as shown in the following detailed analysis.
This requires two suitable multiplexers, as shown in Fig. 5.

4.2 The operation of Fig. 5 scheme
In the following, we report the detailed events occurring

in the first three clock cycles for the scheme of Fig.5 (the
value of j acts like a counter of the clock periods).

• j = 0. We assume that registers A, . . . , H are already
loaded with the initial hash values: A(0), B(0), . . . ,
H(0) (these are the standard constants or the hash of
the sub-message composed by the preceding processed
message block(s)). We,0 and K0, which are the first



input values coming from the Expander and the table
of constants, are used in the bottom section of the
pipeline. δ1 = H(0); δ0 = D(0). The registers M1
and M2 are the only registers to be clocked and as a
consequence they take their first new values after the
reset. The register L is still in the reset state.

• j = 1. A, . . . , H are unchanged, but this time E, . . . , H

are clocked while A, . . . , D still remain inactive. We,1

and K1, which are the second input values coming from
the Expander and the table of constants, are used in
the bottom section of the pipeline. δ1 = G(0); δ0 =
C(0). The registers M1 and M2 take their second new
values and register L takes its first new value after the
reset.

• j = 2. A, . . . , D remain unchanged; E, . . . , H get their
first new values. We,2 and K2, which are the third
input values coming from the Expander and the table
of constants, are used in the bottom section of the
pipeline. δ1 = G(1) (= F(0)); δ0 = B(0) (still an initial
value). The registers M1 and M2 take their third new
values and register L takes its second new value.

The states of the two multiplexers remain unchanged until
the final hash value has been computed. After the last cou-
ple We,63, K63 has been input, three more clock cycles are
needed to complete the sequence of operations. The first
for transferring the corresponding new values into M1 and
M2 respectively; the second for generating the final values of
E, . . . , H , the third for the final values of , A . . . , D. During
this last clock cycle , E . . . , H must not be clocked.

The latency of the circuit is therefore equal to 68 clock
periods, considering also the delays inside the Expander.

The final content of A, . . . , H represents the hash of the
message block just processed. It will be added (word-wise,
modulo 232) to the intermediate hash value stored in an
hash register (8*32 bits) to obtain the final (or the next
intermediate) hash value. The latter will also become the
initial value of A, . . . , H registers for the processing of the
following message block.

5. SYNTHESIS RESULTS
The described circuits have been implemented in VHDL

using Mentor HDL Designer Pro and synthesized using Syn-
opsys Design Compiler on a Sun workstation. The technol-
ogy library being used is the STMicroelectronics HCMOS9
library, featuring 0.13µm process and 1.32 V core voltage.

For privacy reasons, related to the use of the technology
library, we do not report the absolute performance values
of the circuit, but we observed that the speed of the Fig.
5 scheme is about 36% higher than that of Fig.1, reaching
operating frequencies well above 1 GHz.

The improvement is important, and it is obtained by pipelin-
ing the circuit without actually increasing the total number
of clock cycles by a significant amount: we pass from the
65 clock cycles needed for a straightforward implementation
of the algorithm to the 69 cycles needed by the proposed
implementation (considering also the accumulation of the
result into the intermediate hash registers). It was possible
to perform these optimizations because the SHA-256 algo-
rithm has some precise characteristics, such as the shift reg-
isters which are implicitly defined by the A,B,C,D and the
E,F,G,H variables in the algorithm description.

We effectively pushed the pipelining approach to the limit,
in the sense that it is not possible to create more pipeline sec-
tions and increase the total amount of clock cycles only by a
small further factor. This can be understood by considering
the presence of the Maj and Ch functions, which access, at
the same time, the values stored in three different positions
in the corresponding shift registers, and whose output value
is immediately inserted back into the shift register.

Of course, the results could change when the target plat-
form is an FPGA; in such cases, the fastest possible imple-
mentation is perhaps obtained only with a careful exploita-
tion of the basic cells of the particular FPGA device that is
being used.

In our case, the increase in speed is partially balanced
by an increase in area requirements: the circuit of Fig.5
occupies 24% more space on silicon than the basic scheme.

There are some commercial implementations of the SHA-
256 algorithm, see [7] for instance. Beside the fact that the
implementation details are not revealed, we note that the
operating frequency is much lower than the presented de-
sign (about 200 MHz in a 0.18µn process) and that pipelin-
ing is not introduced (the circuits require 65 clock cycles to
produce the hash value).

6. CONCLUSIONS
In this paper we presented a high speed ASIC implemen-

tation of the SHA-256 hash algorithm. Starting from a basic
canonical scheme, we applied optimizations on both the Ex-
pander and the Compressor blocks. The proposed circuit is
capable of running at clock frequencies well above 1 GHz,
when it is synthesized in a 0.13µm silicon process; this is
obtained with a small increase in the area requirements.
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