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Who am I?
• Cryptography Engineer 

• Focused on taking cryptographic 
concepts and bringing them to 
the world at scale 

• Apple FairPlay: Protecting keys in 
hostile locations 

• Cryptography team at CloudFlare: 
bringing the security of the 
Internet giants to everyone 

WARNING: 

This is a practical talk about the 
Internet industry.
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CloudFlare Reverse Proxy
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CloudFlare Network Map
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Application Layer
• DNS 

• HTTP(S) 

• 5-7% of web requests go through CloudFlare’s network 

• We see almost every web user daily 

• Low latency is most important feature
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Key contributions
• Keyless SSL: Terminating HTTPS without the private key 

• Universal DNSSEC: Digital signatures in the DNS with ECDSA 

• ChaCha20/Poly1305: djb crypto is not just for Google anymore 

• Deprecation of RC4: First to drop the creaky cipher 

• Origin CA: Free certificates for services behind CloudFlare 

• Universal SSL: Free HTTPS for all sites, ECDSA certificates 

• Global session resumption: One fewer roundtrip even on new servers
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Forward Secrecy in TLS 1.2
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A weak definition
• Compromising a long-term key does not allow an attacker 

compromise previous connections.
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Threat models
This is the Internet, all wires are tapped 

1.Attackers with access to transcript of historical communications 

2.Attackers who can place themselves in a MiTM position 

We explore what happens when attackers gain access to different keys
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TLS 1.2 RSA key exchange
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Client Hello 

Supported cipher suites

Client Server

Server Hello 

Chosen cipher suite 
Certificate

ClientKeyExchange

Finished

Finished

ClientKeyExchange = RSA_encrypt(Certificate_pk, pre_master_secret) 

pre_master_secret > master_secret > traffic keys

Latency: 2 round-trips



Two keys
• RSA private key 

• Session key
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Private Key Compromise



Private Key Compromise

Decryptable by passive 
attacker

Modifiable by active 
attacker 



Session Compromise



Session Compromise

ModifiableDecryptable



TLS 1.2 (EC)DHE key exchange
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Client Hello 

Supported cipher suites

Client Server

Server Hello  
Chosen cipher suite 
ServerKeyExchange 

Signature 
CertificateClientKeyExchange

Finished

Finished

ServerKeyExchange = Sign(Certificate_pk, (EC)DH public key share) 
ClientKeyExchange = (EC)DH public key share 

(EC)DH derivation > pre_master_secret > master_secret > traffic keys

Latency: 2 round-trips



(EC)DHE: the E is for ephemeral
• OpenSSL historically did not always do this 

• SSL_OP_SINGLE_DH_USE (required as of 2016) 

• We assume it is ephemeral
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Two keys
• Certificate private key 

• Session key
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Private Key Compromise



Safe Modifiable
Not decryptable 

by passive attacker

Private Key Compromise



Session Key Compromise



ModifiableDecryptable

Session Key Compromise



Key contributions
• Keyless SSL: Terminating HTTPS without the private key 

• Universal DNSSEC: Digital signatures in the DNS with ECDSA 

• ChaCha20/Poly1305: djb crypto is not just for Google anymore 

• Deprecation of RC4: First to drop the creaky cipher 

• Origin CA: Free certificates for services behind CloudFlare 

• Universal SSL: Free HTTPS for all sites, ECDSA certificates  ✔ 

• Global session resumption: One fewer roundtrip even on new servers 
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History of forward secrecy support
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June 2016October 2013



But wait… 
• What about session resumption? 

• Compromise between performance and secrecy
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TLS 1.2 Session Resumption
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Client Hello 

Session ID

Client Server

Server Hello

Finished

Finished

Session = master_secret 

Sessions are saved server-side, indexed by Session ID.

Latency: 1 round-trip



Session Resumption

Same session

Same session



Session Key Compromise



Session Key Compromise

ModifiableDecryptable



Session Key Compromise



TLS 1.2 Session Tickets RFC5077
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Client Hello 

Session Ticket

Client Server

Server Hello

Finished

Finished

Session Ticket = encrypt(ticket_key, Session) 

The server does not store Sessions, holds the ticket_key.

Latency: 1 round-trip



Three keys
• Certificate private key 

• Session key 

• Session ticket encryption key
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Session Resumption

Same session

Same session



Session Ticket Key Compromise



Session Ticket Key Compromise

ModifiableDecryptable



Session resumption + load balancing
• OpenSSL: session tickets are generated when the server starts 

• Does not let you resume across servers 

• Some servers run for a long time 

• Session resumption 

• How long are sessions cached? Is there a shared cache between machines? 

• Target for measurement
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Session resumption + load balancing
• Distributed session ticket keys 

• Distribute session ticket encryption keys globally 

• CloudFlare: Rotate current session ticket key hourly, resume with old keys for 18 hours 

• Target for measurement
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Session ticket lifetime

Same session

Same session



Session ticket compromise



Key contributions
• Keyless SSL: Terminating HTTPS without the private key 

• Universal DNSSEC: Digital signatures in the DNS with ECDSA 

• ChaCha20/Poly1305: djb crypto is not just for Google anymore 

• Deprecation of RC4: First to drop the creaky cipher 

• Origin CA: Free certificates for services behind CloudFlare 

• Universal SSL: Free HTTPS for all sites, ECDSA certificates  ✔ 

• Global session resumption: One fewer roundtrip even on new servers ???
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Not so “perfect”
• Sessions persist across resumption, compromise of one session 

compromises all 

• Session ticket compromise compromises all session keys encrypted with 
the session ticket key
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TLS 1.3
Locking down the forward secrecy story
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TLS 1.3
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Client Hello 

Supported cipher suites 
Key share

Client Server

Server Hello 

Chosen cipher suite 
Key share

Finished

Certificate & signature 

Finished

NewSessionTicket

Latency: 1 round-trip



Session resumption improvements
• Resumed sessions use new traffic keys derived from previous master 

secret and handshake 

• PSK mode: symmetric key ratchet 

• PSK-(EC)DHE mode: public key ratchet 

• Option to sign resumption handshakes 

• Mandatory maximum session ticket lifetime (7 days)
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TLS 1.3 PSK Resumption
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Client Hello 

Session Ticket (PSK) 

Server Hello

Finished

Finished

Latency: 1 round-trip



Session Resumption PSK



Session Compromise

ModifiableDecryptable



Session Ticket Key Compromise

ModifiableDecryptable



TLS 1.3 PSK-(EC)DHE
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Client Hello 

Session Ticket (PSK) 
Key share

Server Hello 

Key share

Finished

Finished

Latency: 1 round-trip



Session Resumption (EC)DHE-PSK



Session Compromise

ModifiableDecryptable

Not decryptable 
by passive attacker



Session Ticket Key Compromise

Modifiable

Not decryptable 
by passive attacker

Safe



TLS 1.3 PSK-(EC)DHE + Signature

54

Client Hello 

Session Ticket (PSK) 
Key share

Server Hello 

Key share 

Signature

Finished

Finished

Latency: 1 round-trip



Session Resumption (EC)DHE-PSK + Signature



Session Compromise

ModifiableDecryptable



Session Ticket Key Compromise

Safe



Session ticket lifetime

Same session

Same session



Session ticket compromise



Enter 0-RTT
Performance is king
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TLS 1.3 0-RTT
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Client Hello 

Session Ticket (PSK) 
[Key share]

Server Hello
[Key share]

Finished

0-RTT Data

Finished

0-RTT data is encrypted with key derived from PSK/Resumption Secret

Latency: 0 round-trips



Session Resumption 0RTT

0-RTT Data



Session Compromise

Depends on 
handshake

0-RTT Data

0-RTT Data has same properties as previous connection



Session Ticket Key Compromise

Depends on 
handshake

0-RTT Data

0-RTT Data is as safe as the application data from a PSK 
resumption



Key protection
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Three keys
• ECDSA private key 

• Session 

• Session ticket encryption key 

• Client compromise of session has same properties as server compromise
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Physical/Logical attack
• ECDSA private key -> Can be stored in HSM, or soft HSM (Keyless SSL) 

• Session -> In-memory only or server cache for load balancing 

• Session ticket encryption key -> Centrally distributed 

• Only works as long as key is “alive”
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Cryptographic advancement
• ECDSA private key -> Quantum computing 

• Session -> Quantum computing for breaking DH, AES 

• Session ticket encryption key -> Symmetric crypto 

• Key can be stolen from cryptanalysis of transcript
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In conclusion
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Summary
• Forward secrecy in TLS is definitely not perfect 

• Session resumption provides a complicated tradeoff 

• Lifetimes of sessions and session ticket keys are important 

• Measurement needs to be done 

• TLS 1.3 provides more protection at the cost of public key operations 

• 0-RTT is not “forward secret” it’s as secure as the resumption secret
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