
Forward Secrecy in TLS
A Systematic Study

Nick Sullivan (@grittygrease)

Filippo Valsorda (@filosottile)

Who am I?
• Cryptography Engineer

• Focused on taking cryptographic
concepts and bringing them to
the world at scale

• Apple FairPlay: Protecting keys in
hostile locations

• Cryptography team at CloudFlare:
bringing the security of the
Internet giants to everyone

WARNING:

This is a practical talk about the
Internet industry.

2

CloudFlare Reverse Proxy

3

CloudFlare Network Map

4

Application Layer
• DNS

• HTTP(S)

• 5-7% of web requests go through CloudFlare’s network

• We see almost every web user daily

• Low latency is most important feature

5

Key contributions
• Keyless SSL: Terminating HTTPS without the private key

• Universal DNSSEC: Digital signatures in the DNS with ECDSA

• ChaCha20/Poly1305: djb crypto is not just for Google anymore

• Deprecation of RC4: First to drop the creaky cipher

• Origin CA: Free certificates for services behind CloudFlare

• Universal SSL: Free HTTPS for all sites, ECDSA certificates

• Global session resumption: One fewer roundtrip even on new servers

6

Key contributions
• Keyless SSL: Terminating HTTPS without the private key

• Universal DNSSEC: Digital signatures in the DNS with ECDSA

• ChaCha20/Poly1305: djb crypto is not just for Google anymore

• Deprecation of RC4: First to drop the creaky cipher

• Origin CA: Free certificates for services behind CloudFlare

• Universal SSL: Free HTTPS for all sites, ECDSA certificates

• Global session resumption: One fewer roundtrip even on new servers

7

Forward Secrecy in TLS 1.2

8

A weak definition
• Compromising a long-term key does not allow an attacker

compromise previous connections.

9

Threat models
This is the Internet, all wires are tapped

1.Attackers with access to transcript of historical communications

2.Attackers who can place themselves in a MiTM position

We explore what happens when attackers gain access to different keys

10

TLS 1.2 RSA key exchange

11

Client Hello

Supported cipher suites

Client Server

Server Hello

Chosen cipher suite
Certificate

ClientKeyExchange

Finished

Finished

ClientKeyExchange = RSA_encrypt(Certificate_pk, pre_master_secret)

pre_master_secret > master_secret > traffic keys

Latency: 2 round-trips

Two keys
• RSA private key

• Session key

12

Private Key Compromise

Private Key Compromise

Decryptable by passive
attacker

Modifiable by active
attacker

Session Compromise

Session Compromise

ModifiableDecryptable

TLS 1.2 (EC)DHE key exchange

17

Client Hello

Supported cipher suites

Client Server

Server Hello  
Chosen cipher suite 
ServerKeyExchange 

Signature 
CertificateClientKeyExchange

Finished

Finished

ServerKeyExchange = Sign(Certificate_pk, (EC)DH public key share)
ClientKeyExchange = (EC)DH public key share

(EC)DH derivation > pre_master_secret > master_secret > traffic keys

Latency: 2 round-trips

(EC)DHE: the E is for ephemeral
• OpenSSL historically did not always do this

• SSL_OP_SINGLE_DH_USE (required as of 2016)

• We assume it is ephemeral

18

Two keys
• Certificate private key

• Session key

19

Private Key Compromise

Safe Modifiable
Not decryptable

by passive attacker

Private Key Compromise

Session Key Compromise

ModifiableDecryptable

Session Key Compromise

Key contributions
• Keyless SSL: Terminating HTTPS without the private key

• Universal DNSSEC: Digital signatures in the DNS with ECDSA

• ChaCha20/Poly1305: djb crypto is not just for Google anymore

• Deprecation of RC4: First to drop the creaky cipher

• Origin CA: Free certificates for services behind CloudFlare

• Universal SSL: Free HTTPS for all sites, ECDSA certificates ✔

• Global session resumption: One fewer roundtrip even on new servers

24

History of forward secrecy support

25

June 2016October 2013

But wait…
• What about session resumption?

• Compromise between performance and secrecy

26

TLS 1.2 Session Resumption

27

Client Hello

Session ID

Client Server

Server Hello

Finished

Finished

Session = master_secret

Sessions are saved server-side, indexed by Session ID.

Latency: 1 round-trip

Session Resumption

Same session

Same session

Session Key Compromise

Session Key Compromise

ModifiableDecryptable

Session Key Compromise

TLS 1.2 Session Tickets RFC5077

32

Client Hello

Session Ticket

Client Server

Server Hello

Finished

Finished

Session Ticket = encrypt(ticket_key, Session)

The server does not store Sessions, holds the ticket_key.

Latency: 1 round-trip

Three keys
• Certificate private key

• Session key

• Session ticket encryption key

33

Session Resumption

Same session

Same session

Session Ticket Key Compromise

Session Ticket Key Compromise

ModifiableDecryptable

Session resumption + load balancing
• OpenSSL: session tickets are generated when the server starts

• Does not let you resume across servers

• Some servers run for a long time

• Session resumption

• How long are sessions cached? Is there a shared cache between machines?

• Target for measurement

37

Session resumption + load balancing
• Distributed session ticket keys

• Distribute session ticket encryption keys globally

• CloudFlare: Rotate current session ticket key hourly, resume with old keys for 18 hours

• Target for measurement

38

Session ticket lifetime

Same session

Same session

Session ticket compromise

Key contributions
• Keyless SSL: Terminating HTTPS without the private key

• Universal DNSSEC: Digital signatures in the DNS with ECDSA

• ChaCha20/Poly1305: djb crypto is not just for Google anymore

• Deprecation of RC4: First to drop the creaky cipher

• Origin CA: Free certificates for services behind CloudFlare

• Universal SSL: Free HTTPS for all sites, ECDSA certificates ✔

• Global session resumption: One fewer roundtrip even on new servers ???

41

Not so “perfect”
• Sessions persist across resumption, compromise of one session

compromises all

• Session ticket compromise compromises all session keys encrypted with
the session ticket key

42

TLS 1.3
Locking down the forward secrecy story

43

TLS 1.3

44

Client Hello

Supported cipher suites
Key share

Client Server

Server Hello

Chosen cipher suite
Key share

Finished

Certificate & signature

Finished

NewSessionTicket

Latency: 1 round-trip

Session resumption improvements
• Resumed sessions use new traffic keys derived from previous master

secret and handshake

• PSK mode: symmetric key ratchet

• PSK-(EC)DHE mode: public key ratchet

• Option to sign resumption handshakes

• Mandatory maximum session ticket lifetime (7 days)

45

TLS 1.3 PSK Resumption

46

Client Hello

Session Ticket (PSK)

Server Hello

Finished

Finished

Latency: 1 round-trip

Session Resumption PSK

Session Compromise

ModifiableDecryptable

Session Ticket Key Compromise

ModifiableDecryptable

TLS 1.3 PSK-(EC)DHE

50

Client Hello

Session Ticket (PSK)
Key share

Server Hello

Key share

Finished

Finished

Latency: 1 round-trip

Session Resumption (EC)DHE-PSK

Session Compromise

ModifiableDecryptable

Not decryptable
by passive attacker

Session Ticket Key Compromise

Modifiable

Not decryptable
by passive attacker

Safe

TLS 1.3 PSK-(EC)DHE + Signature

54

Client Hello

Session Ticket (PSK)
Key share

Server Hello

Key share

Signature

Finished

Finished

Latency: 1 round-trip

Session Resumption (EC)DHE-PSK + Signature

Session Compromise

ModifiableDecryptable

Session Ticket Key Compromise

Safe

Session ticket lifetime

Same session

Same session

Session ticket compromise

Enter 0-RTT
Performance is king

60

TLS 1.3 0-RTT

61

Client Hello

Session Ticket (PSK)
[Key share]

Server Hello
[Key share]

Finished

0-RTT Data

Finished

0-RTT data is encrypted with key derived from PSK/Resumption Secret

Latency: 0 round-trips

Session Resumption 0RTT

0-RTT Data

Session Compromise

Depends on
handshake

0-RTT Data

0-RTT Data has same properties as previous connection

Session Ticket Key Compromise

Depends on
handshake

0-RTT Data

0-RTT Data is as safe as the application data from a PSK
resumption

Key protection

65

Three keys
• ECDSA private key

• Session

• Session ticket encryption key

• Client compromise of session has same properties as server compromise

66

Physical/Logical attack
• ECDSA private key -> Can be stored in HSM, or soft HSM (Keyless SSL)

• Session -> In-memory only or server cache for load balancing

• Session ticket encryption key -> Centrally distributed

• Only works as long as key is “alive”

67

Cryptographic advancement
• ECDSA private key -> Quantum computing

• Session -> Quantum computing for breaking DH, AES

• Session ticket encryption key -> Symmetric crypto

• Key can be stolen from cryptanalysis of transcript

68

In conclusion

69

Summary
• Forward secrecy in TLS is definitely not perfect

• Session resumption provides a complicated tradeoff

• Lifetimes of sessions and session ticket keys are important

• Measurement needs to be done

• TLS 1.3 provides more protection at the cost of public key operations

• 0-RTT is not “forward secret” it’s as secure as the resumption secret

70

Forward Secrecy in TLS
A Systematic Study

Nick Sullivan (@grittygrease)

Filippo Valsorda (@filosottile)

