TRACING SUMMIT

EUROPE Oct, 2014

@*)\5 From DTrace
535) To Linux:

N

What can Linux learn from DTrace?

Brendan Gregg bgregg@netflix.com

Senior Performance Architect @brendangregg

Brendan Gregg

e DTrace contributions include: T

— Primary author of the DTrace book DTrace

eeBSD

— DTraceToolkit
— dtrace-cloud-tools

— DTrace network providers

* | now work on Linux at Netflix ———
— using: ftrace, perf_events, SystemTap, ktap, eBPF, ...

— created: perf-tools, msr-cloud-tools

* Opinions in this talk are my own

Agenda

1. DTrace
— What is DTrace, really?
— Who is DTrace for, really?
— Why doesn’t Linux have DTrace?
— What worked well?
— What didn’t work well?

2. Linux Tracers
— ftrace, perf_events, eBPF, ...

Topics include adoption, marketing, technical challenges, and
our usage at Netflix.

What is DTrace, really?

Technology
+

Marketing

(Like many other company products)

Prior Technology

Time Histogram Display CFa ra
v

File Actions View

Phage: Current

tthreads #calls/sec
14 "

13

ey

T T T T
L) " gLk 12
Min:sec

calls made to </Code/ufs/ufs freesp> (smoothed)
calls made to </Code/ufs/ufe_itrunc> (smoothed)
concurrency </Code/ufs/ufs freesp> (smoothed)
concurrency </Code/ufs/ufs_itrunc> (smoothed)

PAN

e
Kerninst: kernel dynamic tracing, Solaris 2.5.1, 1999

Prior Technology

NSk ~
y d 5
-
- - R) - " -
. . . > he 4 .
e . SRR
¥ A ¢ ¥ W

Early dynamic tracers weren’t safe

Prior Technology

e Also:
— Sun’s TNF

— DProbes: user + kernel dynamic tracing
— Linux Trace Toolkit (LTT)

— Others, including offline binary instrumentation

e DProbes and LTT were combined in Nov 2000, but not
integrated into the Linux kernel*

* Sun set forth to produce a production-safe tool

L http://lkml.iu.edu/hypermail/linux/kernel/0011.3/0183.html

The A& Register’

Data Center Software Networks Security Business Hardware Science Bootnotes Video Forums

Servers HPC Cloud Storage Data Networking Virtualisation BOFH
DATA CENTER > SERVERS

Sun delivers Unix shocker with DTrace

It slices, it dices, it spins, it whirls
By Ashlee Vance, 8 Jul 2004

Internet Security Threat Report 2014

Analysis Try to imagine a geeky version of famed salesman Ron Popeil. Keep
Popeil's exuberance, keep his pitchman savvy and keep his verbal overflow. Then
El erase his age, sturdy frame and Ronco Food Dehydrator and replace all this with a
young, lanky kernel engineer hawking something called DTrace, and you have Bryan
A Track Cantrill.

0
ME Cantrill is one of three Sun Microsystems Solaris engineers who developed DTrace

Technology

* DTrace:

— Safe for production use
* You might step on your foot (overhead), but you won’t shoot it off

— Dynamic tracing, static tracing, and profiling
— User- and kernel-level, unified

— Programmatic: filters and summaries

— Solved countless issues in dev and prod

e That’'s what DTrace is for me

— An awesome technology, often needed to root cause
kernel & app issues

* But for most people....

A Typical Conversation...

“Does Linux have DTrace yet?”

”NO.”
“That’s a pity”

HW hy?”
“DTrace is awesome!”

“Why, specifically?”
“I’'m not sure”

“Have you used it?”
I/NO, V74

Marketing

Early Marketing

LAJ,

somarls

10

POSITION YOUR BUSINESS
TEN MOVES AHEAD

! SUN.COM/SOLARISTO

Early Marketing

 DTrace had awesome marketing

— People still want it but don’t really know why

* Early marketing: traditional, $SS
— Great marketing product managers

* 10 Moves Ahead campaign: airports, stations, etc.

— Sun sales staff pitched DTrace directly
— Sun technology evangelists

* Benefits
— Not another Sun tech no one knew about
— Compelled people to learn more, try it out

Marketing Evolved

* Sun marketing become innovative
— Engineering blogs, BigAdmin
— Marketing staff who used and understood DTrace
 Who could better articulate its value

— Marketing more directly from the engineers

DTrace for System Administrators, with Brendan Gregg

DTrace for System Administrators, with Brendan Gregg

ORACLE
[TecHNOLOGY NETWORK

4
H

Later Marketing

Later Marketing

 Many initiatives by Deirdré Straughan:
— Social media, blogs, events, the ponycorn mascot, ...
— Video and share everything: all meetups, talks
* Blogs:
— including http://dtrace.org; my own > 1M views
* Books:
— my own > 30k sold
* Videos:
— me shouting while DTracing disks, ~1M views
* Language support exposed new communities to DTrace

?77?

Who is DTrace for, really?

DTrace end-users: Current

Estimated

[DTrace guide users: ~100

[Script end-users: ~5,000

Note: 91.247% of statistics are made up

DTrace end-users: Current

 DTrace guide users: ~100
— Understand the ~400 page Dynamic Tracing Guide
— Develop their own scripts from scratch
— Understand overhead intuitively

e Script end-users: ~5000
— DTraceToolkit, Google
— Run scripts. Some tweaks/customizations.

DTrace end-users: Future

ERUe L EEER - Rainbow Pterodactyl © New Save Clone Close
© Add statistic...

< Disk: IO operations per second of type read broken down by latency o
«»H QAQ QREER AR XF @0

Range average:

7.89ms [a]
7.75ms |
761 ms
746 ms
7.32ms
7A7ms
7.03ms
6.89 ms
6.75ms -
6.60 ms
6.46 ms
6.31ms
6.17 ms
6.03 ms
588 ms
574ms
560 ms
545ms
531 ms
517 ms
5.02ms
73 488 ms =l o

| | | | |
9050 ops per second 17:54:40 17:55 17:55:20 17:55:40 17:56 17:56:20
2009-3-12

=y

toamm-:ncnwmwvv#

ERBREFERRN

eg, Oracle ZFS Storage Appliance Analytics

DTrace end-users: Future

Possible Future

[DTrace guide users: ~100
[Script end-users: ~5,000

B GUI end-users: >50,000

Company Usage

(’\“\3“ PERFORMy "/Qc

SPECIAL OPS

Company Usage

* Practical usage for most companies:

— A) A performance team (or person)
* Acquires useful scripts
* Develops custom scripts

— B) The rest of the company asks (A) for script/help
* They need to know what’s possible, to know to ask

— Or, you buy/develop a GUI that everyone can use
* There are some exceptions

Why doesn’t Linux have DTrace?

Why doesn’t Linux have a DTrace
equivalent?

4 Answers...

1. It does (sort of)

ftrace perf_events

1. It does (sort of)

* Linux has changed

— In 2005, numerous Linux issues were difficult or
impossible to solve. Linux needed a DTrace equivalent.

— By 2014, many of these are now solvable, especially
using ftrace, perf_events, kprobes, uprobes: all part of
the Linux kernel

2. Technical

systemtap

P

ﬁ

=

> |
ok
&

semantic error: missing x86 64
kernel/module debuginfo

2. Technical

e Linuxis a more difficult environment

— Solaris always has symbols, via CTF, which DTrace
uses for dynamic tracing

— Linux doesn’t always have symbols/debuginfo

3. Linux isn’t a Company

“All the wood behind one arrow”
— Scott McNealy, CEO, Sun Microsystems

3. Linux isn’t a Company

Linus can refuse patches, but can’t stop projects
— The tracing wood is split between many arrows
* ftrace, perf_events, eBPF, SystemTap, ktap, LTTng, ...

— And we are a small community: there’s not much
wood to go around!

4. No Trace Race

4. No Trace Race

e Post 2001, Solaris was losing ground to Linux. Sun
desperately needed differentiators to survive

— Three top Sun engineers spent years on DTrace
— Sun marketing gave it their best shot...

* This circumstance will never exist again

— For Linux today, it would be like having Linus, Ingo, and
Steven do tracing full-time for three years, followed by

a major marketing campaign
 There may never be another trace race. Unless...

2 |

Why doesn’t Linux have DTrace
itself?

2 Answers...

1. The CDDL

From: Claire Giordano <claire.giordano@sun.com>

To: license-discuss(@opensource.org [Open Source Initiative]

Subject: For Approval: Common Development and Distribution License (CDDL)
Date: Wed, 01 Dec 2004 19:47:39 -0800

[...]

Like the MPL, the CDDL is not expected to be compatible with the GPL,

since 1t contains requirements that are not in the GPL (for example,

the "patent peace" provision in section 6). Thus, it 1s likely that

files released under the CDDL will not be able to be combined with

files released under the GPL to create a larger program.

[...]
CDDL Team, Sun Microsystems

Source: http://lwn.net/Articles/114840/

1. The CDDL

* Linux traditionally includes the tracer/profiler in
the (GPL) kernel, but the DTrace license is CDDL

— Out-of-tree projects have maintenance difficulties

— Oracle (who own the DTrace copyrights) could
relicense it as GPL, but haven’t, and may never do this

* Note that ZFS on Linux is doing well, despite

being CDDL, and out of tree

ON LINUX

2. DTrace ports

2. DTrace ports

* There are two ports, but both currently incomplete
* A) https://github.com/dtrace4dlinux/linux:

— Mostly one UK developer, Paul Fox, as a hobby since
2008 (when he isn’t developing on the Rasberry Pi)

e B) Oracle Linux DTrace:

— Open source kernel, closed source user-level (S)
* We pay for monitoring tools; why not this too?
— Experienced engineers, test suite focused
— Had been good progress, but no updates for months

What with DTrace worked well?

5 Key items...

1. Production Safety

1. Production Safety

e DTrace architecture

— Restricted probe context: no kernel facility calls,
restricted instructions, no backwards branches,
restricted loads/stores

— Heartbeat: aborted due to systemic unresponsiveness

* DTrace Test Suite
— Hundreds of tests

* Linuxis learning this:

— Oracle Linux DTrace is taking the test suite seriously
— ftracetest

2. All the wood behind one arrow

2. All the wood behind one arrow

e Can Linux learn this?

— Can we vote some off the Linux tracing island?

e At least, no new tracersin 2015, please!

3. In-Kernel Aggregations

valve --—-—-———-—————- Distribution - - ——————————— count
4096 | 0
8192 |QQRERERRRRRRREEEEEREREREREREREREEEEA 1085
16384 |@eeeeeeeeee@ 443
32768 |@@ 98
65536 | 5
131072 | 1
262144 | 1
524288 | 0]
1048576 | 11
2097152 | 0]

3. In-Kernel Aggregations

Changed how investigations are conducted
— rapid, live analysis
Low overhead:

— per-CPU storage, asynchronous kernel->user transfers

Key uses:

— summary statistics: count, avg, min, max

— histograms: quantize, Iquantize

— by-key: execname, kernel stacks, user stacks
Linux can learn:

— Need aggregations (eBPF maps, SystemTap, ktap?)

4. Many Example Scripts

DIrace

Dynamic TRACING IN ORACLE® SoLARIS,
Mac OS X, ano FreeBSD

Brendan Gregg ¢ Jim Mauro

i by Bryan Cantril

4. Many Example Scripts

: : : : hotuser, umutexmax.d, lib*.d
cifs*.d, iscsi*.d :Services . . ! ! .
nfsv3*.d, nfsva*.d Language Providers: nodc:*.d, e:‘lang*.f, J*'d; js*.d*
ssh*.d, httpd*.d php*.d, pl*.d, py*.d, rb*.d, sh*.d
Databases: mysgl*.d, postgres*.d, redis*.d, riak*.d

[[]]]] cpensnoop, statanoop

fswho.d, fssnoop.d
sollife.d
d

. errinfo, dtruss, rwtop
solvfssnoop. Applications vvvy i/ rwsnoop, mmap.d, kill.d
DBs, all server types, ... shellsnoop, zonecalls.d
dnlcsnoop.d System Libraries 4 weblatency.d, fddist
zfsslower.d Kﬁ
ziowait.d \ System Call Interface "4) o
. N priclass.d, pridist.d
ziostacks.d VFS Sockets x| Scheduler_| — cv_wakeup_slow.d
spasync.d \\\\;‘ : \ displat.d, capslat.d
S Volume Managers IP \\ Virtual }——— minfbypid.d
inbypid.d
iosnoop, iotop Block Device Interface Ethernet e PIPGLRbYPL
disklatency.d <«<——— macops.d, ixgbecheck.d
satacmds.d A Device Drivers \ \ \ \ <—___ ngesnoop.d, ngelink.d
satalatency.d \ \ \ \
scsicmds.d soconnect.d, soaccept.d, soclose.d, socketio.d, solstbyte.d
scsilatency.d sotop.d, soerror.d, ipstat.d, ipio.d, ipproto.d, ipfbtsnoop.d
sdretry.d, sdqueue.d ipdropper.d, tcpstat.d, tcpaccept.d, tcpconnect.d, tcpioshort.d
tcpio.d, tcpbytes.d, tcpsize.d, tcpnmap.d, tcpconnlat.d, tcplstbyte.d
ide*.d, mpt*.d tcpfbtwatch.d, tcpsnoop.d, tcpconnregmaxq.d, tcprefused.d

tcpretranshosts.d, tcpretranssnoop.d, tcpsackretrans.d, tcpslowstart.d
tcptimewait.d, udpstat.d, udpio.d, icmpstat.d, icmpsnoop.d

4. Many Example Scripts

brendan: ~/Dev/DIT/DIraceToolkit/Bim> \1s

L] anonpgpid.d iosnoop Tockbyproc. d procsystime rwbypid. d tcl_flowtime. d
. [bitesize.d iotop minfbypid.d putnexts. d rubytype. d tcl_ins.d
crinpts serve manv needs W OO IO 5l
(] cpudists j_calls.d mapfiles.d py_calltime.d | rwtop tclproccal 1s. d
cputimes j_calltime.d modcalls. d py_cpudist.d sampleproc tc1 brdctiiw. d
cputypes.d j_classflow.d || newproc.d py_cputime. d sar-c.d tel stat.d
cpuwalk.d j_cpudist.d nfswizard.d h nseeksize.d tcl_syscalls.d
crash.d j_cputime.d opensnoop L Q setuids. d tcl_syscolors. d
t I ° d t creatbyproc. d vents.d pathopens. d py_flowtime.d WERTEITTETEETE"] tcl who.d
— cswstat. d Bl " pfilestat py_funccalls.d |'sh_calls.d tcpsnoop
OO0lIS: ready to run il 1 V7Y N renil | Sentl] B
d ace j_methodcalls.d pgpainbyproc.d py_mallocstk.d | |sh_cpudist.d tcpsnoop_snv
dexplorer j_objnew.d php_calldist.d py_profile.d sh_cputime. d tepsnoop_snv. d
diskhits j_package. d php_calltime.d py_syscalls.d | [ish_flow.d tepstat.d
diffiey. d j_profile.d php_cpudist.d py_syscolors.d Flowinfo , teptop
. drilcys j_stat.d php_cputime.d py_who.d aheil teptop_snv
— exampbles: learn bv-example vy | | e (SReH]

L] dnlcstat j_syscolors.d ph = lwnod |rb_calls.d sh_pidcolors.d | threaded.d
dtruss j_thread.d php_flowiiie.d |rb_calltime.d ||Nsh_stat.d topsyscall
dvmstat « j_who.d & php_funccalls.d rb_cpudist.d sh_syscalls.d topsysproc
errinfo £ FSZEaTTaTSE™) php_nalloc.d rb_cputime. d sh_syscolors.d || udpstat.d

execsnoop js_calls.d php_syscalls.d rb_flow.d sh_wasted. d uname-a. d

(] [
[} fddist js_calltime.d | php_syscolors.d rb_flowinfo.d | [Fsh_who.d , Vmbypid.d
— Filebyproc. d _cpudist.d php_who. d Towt ige. Shel1snoop vmstat-p.d
. ‘F b shortlived.d vmstat. d
s!

d
fspaging.d av.a pidpersec.d .u
fsrw.d X, pl_calldist.d ! y sigdist.d vopstat
gquess.d s_Flow. d, pl_calltime.d rb_nalloc.d stacksize.d weblatency. d
hotkernel pl_cpudist.d rb_objcpu.d statsnoop whatexec. d
° hotspot. d S_ mpt pl_cputime.d rb_objnew. d swapinfo.d woof. d

hotuser js_objcpu. p1_flow.d rb_stat.d sysbypid.d wpm. d

. httpdstat.d js_objgc.d plpilowinfo, rb_syscalls.d | syscallbypid.d writebytes.d
icmpstat.d js_objnew.d ppgr&. rb_syscolors.d | syscallbyproc.d writedist.d
intbycpu.d js_stat.d piomaTidcld Lb_who. d , syscallbysysc.d xcallsbypid.d
intoncpu. d is-who.d pl_subcalls.d readbytes.d tcl_calldist.d xvmstat
inttimes.d kill.d pl_syscalls.d readdist.d tcl_calls.d zvmstat
iofile.d kstat_types.d pl_syscolors.d = rfileio.d T ifhe. d

iofileb.d lastwords plwho.d rfsio.d tcleplidis:. d

iopattern Toads. d priclass.d runocc. d tcl_cputime. d
— jopending Tockbydist.d pridist.d rwbbypid.d tcl_flow. d

brendan: ~/Dev/DIT/DIraceToolkit/Bin>

. TraceTooI klt DTraceToolkit scripts

— 230 more scripts
— all have man pages, example files, and are tested

— An essential factor in DTrace’s adoption

4. Many Example Scripts

e Linux can learn:

— Many users will just run scripts, not write them
— People want good short examples
— If they aren’t tested, they don’t work

* It’s easy to generate metrics that kind-of work; it’s hard
to make them reliable for different workloads.

— Maintenance of dynamic tracing scripts is painful
* The instrumented code can change
* Need more static tracepoints

5. Marketing

5. Marketing

 DTrace was effectively marketed in many ways
— Traditional, social, blogs, scripts, ponycorn, ...

* Linux has virtually no marketing for its tracers
— ftrace is great, if you ever discover it; etc.
— Marketing spend is on commercial products instead

e Linux can learn to market what it has

— Tracers may also benefit from i)
“a great name and a cute logo”?!

(¢)

— “eBPF” is not catchy, and doesn’t

NN
convey meaning dOCer

L http://thenewstack.io/why-did-docker-catch-on-quickly-and-why-is-it-so-interesting/

Cute Tracing Logos

”7 ”\>

\ C /

Syste mTap

ftrace perf _events

a4

2!) Y
VD %

e 4
ktap LTTng dtrace4linux

Ponies by Deirdré Straughan, using: http://generalzoi.deviantart.com pony creator

Other Things

* Programmable/scriptable
e Built-in stability semantics

What with DTrace didn’t work
well?

What with DTrace didn’t work
well?

5 Key Issues...

1. Adoption

TOpiCS Subscribe <
DTrace Node.js +Add term
Search term Search term
Interest over time - v/ News headlines Forecast

Average 2005 2007 2009 2011 2013

1. Adoption

Few customers ever wrote DTrace scripts

— DTrace should have been used more than it was
— Sun’s “killer” tool just wasn’t

— Better pickup rate with developers, not sysadmins

Many customers just ran my scripts
— Not ideal, but better than nothing
— This wasn’t what many at Sun dreamed

Internal adoption was slow, limited
— Sun could have done much more, but didn’t

The problem was knowing what to do with it
— The syntax was the easy part

1. Adoption

* Linux can learn:
— Adoption is about more than just the technology
 Documentation, marketing, training, community
— Teaching what it does is more important than how

* Everyone needs to know when to ask for it, not
necessarily how to use it

— Needs an adoption curve (not a step function)

* Tools, one-liners, short scripts, ...

2. Training

N\ @ Sun

(/ \ micros ystems
/ \ "\ We're the dot in
\

COURSE COMPLETION CERTIFICATE.

This is to certify that
Brendan Gregg
Has Completed the Sun Educational course
DTrace is a Solaris differentiator

2. Training

e Early training was not very effective

— Sun began including the DTraceToolkit in courses,
with better success

* |t gradually improved

— The last courses | developed and taught (after Sun)
used simulated problems for the students to solve
on their own with DTrace

* Linux can learn:
— Lab-based training is most effective. Online tutorials?

Nl ELEER - Rainbow Pterodactyl ©

New

3. GUIs

Save Clone

© Add statistic...

< Disk: VO operations per second of type read broken down by latency

€ QAQRQREER AR HEF @D

Range average:
789ms
775ms
761ms
7.46ms

P SN T E TIPS
o~
883
EEX]

IEABREIB/RCS
o
2
E]

) I I
17:54:40 17:55 17:55:20 17:55:40

< Disk: VO bytes per second broken down by disk

PN QAQ QQEER AR XY @K

Range average:

Show hierarchy
1.10G per second

—167G

System calls: system calls decomposed by server hostname and subsecond offset predicated by application name == python2.7

server hostname + [Equal 2

SERVER HOSTNAME

» Q& CoLoRBY: [RaNK |LINEAR

==

O v
Wisolate selected

X-axis: Time, in 1 second increments
O Exclude selected

Node.js 0.4.x: HTTP server operations decomposed by latency and zone name
9
LATENCY «lp|» Q@ COLORBY:

(‘server hostname +)((Equal

- v [~ bt 1
~ i

X-axis: Time, in 1 second increments

GRANULARITY

CREATE PREDICATE

Displaying subsecond offset up to 1.00 s

GRANULARITY .

L-

e rw e e e me e s e —

Displaying latency up to 40.0 s

3. GUIs

* Dozens of performance monitoring products, but
almost no meaningful DTrace support

* A couple of exceptions:

— Oracle ZFS Storage Appliance Analytics
* Formally the Sun Storage 7000 Analytics
* Should be generalized. Oracle Solaris 11.37

— Joyent Cloud Analytics

3. GUIs

e Linux can learn:

— Real adoption possible through scripts & GUIs

— Use the GUI to add value to the data
* Heat maps: latency, utilization, offset
* Flame graphs
* Time series thread visualizations (Trace Compass)
* ie, not just line graphs!

— Commercial GUI products have marketing budget
* Application perf monitoring was $2.4B in 20131

Lhttps://www.gartner.com/doc/2752217/market-share-analysis-application-performance

3. GUIs

Heat maps are an example must-have use case for trace data

Latency Heat Map

100ms

Oms

Time

4. Overheads

CPU Utilization

80
60
40
20

0

While the DTrace technology is awesome,
it does have some minor technical challenges as well

4. Overheads

 While optimized, for many targets the DTrace
CPU overheads can still be too high

— Scheduler tracing, memory allocation tracing
— User-level dynamic tracing (fast trap)
— VM probes (eg, Java disables some probes by default)
— 10 GbE Network 1/0, etc...
* |n some cases it doesn’t matter
— Desperation: system already melting down
— Troubleshooting in dev: speed not a concern
* Linux can learn:
— Speed can matter, faster makes more possible

5. Syscall Provider

[

Process

J

v 1

User-Mode

System Call Interfacé

Kernel

System
Call

Kernel-Mode

5. Syscall Provider

e Solaris DTrace instrumented the trap table, and
called it the syscall provider
— Which is actually an unstable interface

— Breaks between Solaris versions
* And really broke in Oracle Solaris 11

— Other weird caveats
e Linux can learn:

— syscalls are the #1 target for users learning system
tracers. The APl should be easy and stable.

Other Issues

* The lack of:

— Bounded loops (like SystemTap)

— Kernel instruction tracing (like perf _events)

— Easy PMC interface (like perf stat)

— Aggregation key/value access (stap, ktap, eBPF)
— Kernel source (issue for Oracle Solaris only)

* 4+ second startup times

— Several Linux tracers start instantly

From DTrace to

Linux Tracers
(2014)

NETFLIX

 Massive AWS EC2 Linux cloud, with FreeBSD
appliances for content delivery

e Performance is critical: >50M subscribers
e Just launched in Europe!

ORIGINAL NETFLIX NETFLIX ORIGINAL

HUUSE_ BOJA@K
ORANGE
; &, BLACK HORSEMAN

System Tracing at Netflix

* Present:

— ftrace can serve many needs

— perf_events some more, esp. with debuginfo
— SystemTap as needed, esp. for Java

— ad hoc other tools

e Future:

— ftrace/perf_events/ktap with eBPF, for a fully
featured and mainline tracer?

— One of the other tracers going mainline?

* Summarizing 4 tracers...

1. ftrace

1. ftrace

Tracing and profiling: /sys/kernel/debug/tracing

— added by Steven Rostedt and others since 2.6.27, and
already enabled on our servers (3.2+)

Experiences:

— very useful capabilities: tracing, counting

— surprising features: graphing (latencies), filters
Front-end tools to ease use

— https://github.com/brendangregg/perf-tools

— WARNING: these are unsupported hacks
— There’s also the trace-cmmd front-end by Steven

4 examples...

perf-tools: iosnoop

* Block I/O (disk) events with latency:

' # ./iosnoop —ts

éTracing block I/0. Ctrl-C to end.

;STARTS ENDs COMM PID TYPE DEV BLOCK BYTES LATmsS
: 5982800.302061 5982800.302679 supervise 1809 W 202,1 17039600 4096 0.62
© 5982800.302423 5982800.302842 supervise 1809 W 202,1 17039608 4096 0.42
: 5982800.304962 5982800.305446 supervise 1801 W 202,1 17039616 4096 0.48
;5982800.305250 5982800.305676 supervise 1801 W 202,1 17039624 4096 0.43

. # ./iosnoop —h
. USAGE: iosnoop [-hQst] [-d device] [-i iotype] [-p PID] [-n name] [duration]

-d device # device string (eg, "202,1)

-i iotype # match type (eg, '*R*' for all reads)
-n name # process name to match on I/O issue
-p PID # PID to match on I/O issue

-0 # include queueing time in LATms

-s # include start time of I/O0 (s)

-t # include completion time of I/0 (s)
-h # this usage message

duration # duration seconds, and use buffers

perf-tools: iolatency

* Block I/O (disk) latency distributions:

é# ./iolatency
. Tracing block I/O. Output every 1 seconds. Ctrl-C to end.

>=(ms) .. <(ms) : I/0 |Distribution |
0o ->1 : 1144 Eizii333333 33338333333 3333 333333332

1 -> 2 : 267 EEI3TEITE: |

2 -> 4 : 10 | # |

4 -> 8 : 5 | # |

8 -> 16 : 248 | 444 |

16 -> 32 : 601 | #4444 44EHEHHSRHEHS |

32 -> 64 : 117 | 4444 |

[..]

* User-level processing sometimes can’t keep up

— Over 50k I0OPS. Could buffer more workaround, but
would prefer in-kernel aggregations

perf-tools: opensnoop

* Trace open() syscalls showing filenames:

. 4 ./opensnoop -t

. Tracing
. TIMEs

. 4345768.
© 4345768.
. 4345768.
- 4345768.
£ 4345768.
. 4345768.
£ 4345768.
. 4345768.
- 4345768.
£ 4345768.
. 4345768.
£ 4345768.
. 4345768.
- 4345768.
£ 4345768.

open()s.

332626
333923
333971
334813
3348717
334891
335821
347911
347921
350340
350372
350460
350526
350981
351182

Ctrl-C to end.

COMM
postgres
postgres
postgres
postgres
postgres
postgres
postgres
svstat
svstat
stat
stat
stat
stat
stat
stat

PID

23886
23886
23886
23886
23886
23886
23886
24649
24649
24651
24651
24651
24651
24651
24651

FD
0x8
0x5
0x5
0x5
0x5
0x5
0x5
0x4
0x4
0x3
0x3
0x3
0x3
0x3
0x3

FILE

/proc/self/oom_adj
global/pg filenode.map
global/pg internal.init
base/16384/PG_VERSION
base/16384/pg _filenode.map
base/16384/pg internal.init
base/16384/11725
supervise/ok
supervise/status
/etc/ld.so.cache

/1ib/x86 64-linux-gnu/libselinux..
/1ib/x86_64-linux-gnu/libc.so.6
/1ib/x86 64-linux-gnu/libdl.so.2
/proc/filesystems
/etc/nsswitch.conf

perf-tools: kprobe

* Just wrapping capabilities eases use. Eg, kprobes:

E# ./kprobe 'p:open do_sys open filename=+0(%si):string' 'filename ~ "*stat"'
. Tracing kprobe myopen. Ctrl-C to end.

; postgres-1172 [000] d... 6594028.787166: open: (do_sys_open

. +0x0/0x220) filename="pg_stat_tmp/pgstat.stat"

: postgres-1172 [001] d... 6594028.797410: open: (do_sys_open
§+Ox0/0x220) filename="pg stat_tmp/pgstat.stat”

: postgres-1172 [001] d... 6594028.797467: open: (do_sys_open
§+0x0/0x220) filename="pg stat_ tmp/pgstat.stat”

. ~C

. Ending tracing...

By some definition of “ease”. Would like easier symbol usage,
instead of +0(%si).

1. ftrace

* Suggestions:
— I'm blogging and so can youl!

— Function profiler:

e Can these in-kernel counts be used for other vars?
Eg, associative array or histogram of %dx

— Function grapher:

* Can the timing be exposed by some vars?
Picture histogram of latency

— Multi-user access possible?

2. perf_events

%7'@1

&

3
v

2. perf_events

* In-kernel, tools/perf, multi-tool, “perf” command
* Experiences:

— Stable, powerful, reliable
— The sub options can feel inconsistent (perf bench?)
— Amazing with kernel debuginfo, when we have it

— We use it for CPU stack profiles all the time

* And turn them into flame graphs, which have solved
numerous issues so far...

perf CPU Flame Graph

perf Flame Graph

.......
[|
- —!
B
-——
R R T __
—=naEn" B .
—
- Wi
T
vl ______
¢

Kernel
TCP/IP

Java stacks
(missing

frame
pointer)

Broken

2. perf_events

* Suggestions:

— Support for function argument symbols without a full
debuginfo

— Rework scripting framework (eg, try porting iosnoop)

» eg, “perf record” may need a tunable timeout to trigger
data writes, for efficient interactive scripts

— Break up the multi-tool a bit (separate perf bench)
— eBPF integration for custom aggregations?

3. SystemTap

Y N

3. SystemTap

The most powerful of the tracers
Used for the deepest custom tracing
— Especially Java hotspot probes

Experiences:

— Undergoing a reset. Switching to the latest SystemTap
version, and a newer kernel. So far, so good.

— Trying out nd_syscall for debuginfo-less tracing

Suggestions:

— More non-debuginfo tapset functionality

4. eBPF

Time

4. eBPF

 Extended BPF: programs on tracepoints
— High performance filtering: JIT
— In-kernel summaries: maps
* eg, in-kernel latency heat map (showing bimodal):

root@bgregg-test-i-b7874e9d: /mnt/src/linux-3.16bpf2/samples/bpf# ./ex3
writing bpf-7 —> /sys/kernel/debug/tracing/events/block/block_rq_issue/filter
writing bpf-9 —> /sys/kernel/debug/tracing/events/block/block_rq_complete/filter
waiting for events to determine average latency...
I0 latency in usec
— many events with this latency
I - few events
@ usec e 17634 usec
. captured=270 missed=0 max_lat=0 usec
thh captured=3694 missed=0 max_lat=0 usec
latency captured=3485 missed=12 max_lat=18902
device captured=3541 missed=19 max_lat=82377
captured=1945 missed=33 max_lat=24441
I/C) captured=1636 missed=0 max_lat=0 usec
captured=3441 missed=18 max_lat=51263
captured=2864 missed=71 max_lat=60497

4. eBPF

* Experiences:
— Can have lower CPU overhead than DTrace
— Very powerful: really custom maps
— Assembly version very hard to use; C is better, but still
not easy
* Suggestions:

— Integrate: custom in-kernel aggregations is the
missing piece

Other Tracers

* Experiences and suggestions:
— ktap
— LTTng
— Oracle Linux DTrace
— dtracedlinux
— sysdig

The Tracing Landscape, Oct 2014

Ease of use (less brutal)

(brutal)

>

sysdig

(alpha)—> (mature)
Stage of
Development

(my opinion)

diracedL.

perf

ftrace

ktap

stap

eBPF

Scope & Capability

Summary

 DTrace is an awesome technology

— Which has also had awesome marketing
* Traditional, social, sales, blogs, ...

— Most people won’t use it directly, and that’s ok
* Drive usage via GUIls and scripts
* Linux Tracers are catching up, and may surpass

— It’s not 2005 anymore

* Now we have ftrace, perf_events, kprobes, uprobes, ...

— Speed and aggregations matter
* |f DTrace is Kitty Hawk, eBPF is a jet engine

Acks

dtrace.conf X-ray pony art by substack

http://www.raspberrypi.org/ rasberry Pl image
http://en.wikipedia.org/wiki/Crash_test dummy photo by Brady Holt
https://findery.com/johnfox/notes/all-the-wood-behind-one-arrow
http://en.wikipedia.org/wiki/Early_flying_machines hang glider image
http://www.beginningwithi.com/2010/09/12/how-the-dtrace-book-got-
done/

http://www.cafepress.com/joyentsmartos.724465338
http://generalzoi.deviantart.com/art/Pony-Creator-v3-397808116

Tux by Larry Ewing; Linux® is the registered trademark of Linus
Torvalds in the U.S. and other countries.

Thanks Dominic Kay and Deirdré Straughan for feedback

Links

https://www.usenix.org/legacy/event/usenix04/tech/general/full_papers/
cantrill/cantrill.pdf

ftrace & perf-tools

* https://github.com/brendangregg/perf-tools

* http://lwn.net/Articles/608497/

eBPF: http://lwn.net/Articles/603983/

ktap: http://www.ktap.org/

SystemTap: https://sourceware.org/systemtap/

sysdig: http://www.sysdig.org/
http://lwn.net/Articles/114840/ CDDL
http://dtrace.org/blogs/ahl/2011/10/05/dtrace-for-linux-2/
ftp://ftp.cs.wisc.edu/paradyn/papers/Tamches99Using.pdf
http://www.brendangregg.com/heatmaps.html

http://lkml.iu.edu/hypermail/linux/kernel/0011.3/0183.htmI LTT +
DProbes

Thanks

e Questions?

nttp://slideshare.net/brendangregg
nttp://www.brendangregg.com

ogregg@netflix.com
@brendangregg

