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Abstract—State-of-the-art password guessing tools, such as
HashCat and John the Ripper, enable users to check billions
of passwords per second against password hashes. In addi-
tion to straightforward dictionary attacks, these tools can ex-
pand dictionaries using password generation rules. These rules
define transformations such as concatenation of words (e.g.,
“password123456”) and leet speak (e.g., “password” becomes
“p4s5w0rd”). Although these rules perform well on current
password datasets, creating new rules that are optimized for new
datasets is a laborious task that requires specialized expertise.

In this paper, we devise how to replace human-generated
password rules with a theory-grounded password generation
approach based on machine learning. The result of this effort is
PassGAN, a novel technique that leverages Generative Adversar-
ial Networks (GANs) to enhance password guessing. PassGAN
generates password guesses by training a GAN on a list of
leaked passwords. Because the output of the GAN is distributed
closely to its training set, the password generated using PassGAN
are likely to match passwords that have not been leaked yet.
PassGAN represents a substantial improvement on rule-based
password generation tools because it infers password distribution
information autonomously from password data rather than via
manual analysis. As a result, it can effortlessly take advantage of
new password leaks to generate richer password distributions.

Our experiments show that this approach is very promising.
When we evaluated PassGAN on two large password datasets,
we were able to outperform John the Ripper’s SpyderLab rules
by a 2x factor, on average, and we were competitive with the
best64 and gen2 rules from HashCat—our results were within
a 2x factor from HashCat’s rules. More importantly, when we
combined the output of PassGAN with the output of HashCat,
we were able to match 18%-24% more passwords than HashCat
alone. This is remarkable because it shows that PassGAN can
generate a considerable number of passwords that are out of
reach for current tools.

I. INTRODUCTION

Passwords are the most popular authentication method,
mainly because they are easy to implement, require no special
hardware or software, and are familiar to users and devel-
opers. Unfortunately, multiple password database leaks have
shown that users tend to choose easy-to-guess passwords [14],
[18], [42], primarily composed of common strings (e.g.,
password, 123456, iloveyou), and variants thereof.

Password guessing tools provide a valuable tool for iden-
tifying weak passwords, especially when they are stored in

hashed form [54], [58]. The effectiveness of password guessing
software relies on the ability to quickly test a large number of
highly likely passwords against each password hash. Instead
of exhaustively trying all possible character combinations,
password guessing tools use words from dictionaries and
previous password leaks as candidate passwords. State-of-the-
art password guessing tools, such as John the Ripper [71] and
HashCat [28], take this approach one step further by defin-
ing heuristics for password transformations, which include
combinations of multiple words (e.g., iloveyou123456),
mixed letter case (e.g., iLoVeyOu), and leet speak (e.g.,
il0v3you). These heuristics, in conjunction with Markov
models, allow John the Ripper and HashCat to generate a large
number of new highly likely passwords.

While these heuristics are reasonably successful in prac-
tice, they are ad-hoc and based on intuitions on how users
choose passwords, rather than constructed from a coherent
and principled analysis of large password datasets. Further,
developing and testing new heuristics is a time-consuming
task that requires specialized expertise. To address these
shortcomings, in this paper we propose PassGAN, a new
approach for generating password guesses based on deep
learning and Generative Adversarial Networks (GANs) [23].
GANs are recently-introduced machine-learning tools designed
to perform density estimation in high-dimensional spaces [23].
A GAN is composed of two deep neural networks: a generative
deep neural network (G), and a discriminative deep neural
network (D). D is designed to distinguish between “real
samples” from a distribution, and “fake samples”, generated
by G. The two deep neural networks interact with each other
over many iterations. In each iteration, fake samples from G
are given to D. The output of D is then provided to G, which
uses it as feedback to generate fake samples that are distributed
closer and closer to the real samples. After a sufficient number
of iterations, the output of G simply becomes the output of
the GAN. PassGAN leverages this technique to generate new
password guesses. Our core idea is to train D using a list of
leaked passwords (real samples). Therefore, at each iteration,
the output of PassGAN (fake samples) becomes closer to the
distribution of passwords in the original leak, and hence more
likely to match real users’ passwords. To the best of our
knowledge, this work is the first to use GANs for this purpose.

PassGAN represents a principled and theory-grounded take
on the generation of password guesses. We explore different
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neural network configurations, parameters, and training pro-
cedures, to identify the appropriate balance between learning
and overfitting, and report our results. Specifically, our contri-
butions are as follows: (1) we show that GANs can generate
high-quality password guesses. In our experiments, we were
able to match 2,774,269 out of 5,919,936 passwords (46.86%)
from a testing set composed of real user passwords from
the RockYou dataset [61], and 4,996,980 out of 43,354,871
passwords (11.53%) from the LinkedIn dataset [40]. Further,
the overwhelming majority of passwords generated by Pass-
GAN that did not match our testing set still “looked like”
human-generated passwords; (2) we show that our technique
is competitive with state-of-the-art password generation rules.
Even though these rules were specifically tuned for the dataset
used in our evaluation, the quality of PassGAN’s output was
comparable to (in the case of HashCat), or better than (in the
case of John the Ripper) that of password rules; (3) our results
also show that PassGAN can be used to complement password
generation rules. In our experiments, we successfully used
PassGAN to generate password matches that were not gener-
ated by any password rule. When we combined the output of
PassGAN with the output of HashCat, we were able to match
between 18% and 24% additional unique passwords compared
to HashCat alone; and (4) in contrast with password generation
rules, PassGAN can generate a practically unbounded number
of password guesses. Our experiments show that the number
of new (unique) password guesses increases steadily with the
overall number of passwords generated by the GAN. This is
important because currently the number of unique passwords
generated using rules is ultimately bounded by the size of the
password dataset used to instantiate these rules.

We consider this work the first step towards a fully au-
tomated generation of high-quality password guesses. Our
results constitute evidence that, when trained with large enough
passwords datasets, and when instantiated with a complex
enough neural network architecture, GANs can outperform
rule-based password guessing. Moreover, PassGAN achieves
this result while requiring none of the user effort commonly
associated with the design of password guessing rules.

We argue that this work is relevant, important, and timely.
Relevant, because despite numerous alternatives [55], [67],
[21], [17], [80], we see little evidence that passwords will
be replaced any time soon. Important, because establishing
the limits of password guessing—and better understanding
how guessable real-world passwords are—will help to make
password-based systems more secure. And timely, because
recent leaks containing hundreds of millions of passwords [20]
provide a formidable source of data for attackers to com-
promise systems, and for system administrators to re-evaluate
password policies.

Organization. The rest of this paper is organized as follows.
In Section II, we briefly overview deep learning, GANs, and
password guessing, and provide a summary of the relevant
state of the art. Section III discusses the architecutral and
training choices for the GAN used to instantiate PassGAN,
and the hyperparameters used in our evaluation. We report on
the evaluation of PassGAN, and on the comparison with state-

of-the-art rule-based techniques, in Section IV. We conclude
in Section V.

II. BACKGROUND AND RELATED WORK

In this section, we present a brief overview of deep learning
and GANs. We then review the state of the art in password
guessing.

A. Deep Learning
In the mid-nineties, machine learning methods such as

support vector machines [64], random forests [7], and Gaussian
processes [60], showed remarkable results in classification and
regression for mostly uncorrelated human engineered (hand-
coded) features. Starting in the mid-2000s, with an increased
availability of storage and data, these methods have been
superseded by deep learning. Research on deep learning has
shown that features can effectively be learned from data, and
that hand-coded features tend to underperform learned features.
These gains are more relevant with correlated features, in
which human-engineered features might only encode low-
dimensional correlations.

Deep learning is being extensively used in solving problems
related to computer vision [39], image processing [70], video
processing [16], [50], speech recognition [26], natural language
processing [2], [12], [79] or gaming [24], [36], [45], [47].
Recently, there have also been significant improvements in
using deep learning in health related problems [13], [19].

Deep learning has raised several privacy implications on
data usage, on what can be learned from trained models, and
on the ability of a model to learn more private information
than necessary for the given task. For this reason, researchers
have proposed privacy-preserving collaborative learning tech-
niques [65], and techniques that rely on differential privacy [1].
However, recent work has shown that these techniques are
not as privacy preserving as originally thought. Specifically, it
was shown that trained models are susceptible to information
leakage [4], model inversion attacks [22], membership at-
tacks [66], [29], and model extraction attacks [74], even when
the models are trained using privacy-preserving collaborative
learning techniques [31].

In addition to attacks that extract information from trained
models, it was recently shown that samples could be subtly
modified so that they look unchanged to the human eye, but
are consistently misclassified by deep learning algorithms [52],
[51], [43], [8], [9], [35], [41], [30]. Several countermeasures
have been proposed [53], [77]. However, this is still an open
research problem.

B. Generative Adversarial Networks
Generative Adversarial Networks (GANs) represent a re-

markable advance in the area of deep learning. A GAN is
composed of two neural networks, a generative deep neural
network G, and a discriminative deep neural network D. Given
an input dataset I = {x1,x2, . . . ,xn}, the goal of G is
to produce “fake” samples from the underlying probability
distribution Pr(x), that are accepted by D. At the same time,
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D’s goal is to learn to distinguish fake samples from G from
the real ones coming from I. More formally, on input a simple
noise distribution z, the optimization problem solved by GANs
can be summarized as follows:

min
θG

max
θD

n∑
i=1

log f(xi; θD) +

n∑
j=1

log(1− f(g(zj ; θG); θD))

where the model attempts to minimize with respect to θG,
and simultaneously maximize with respect to θD. The learning
phase is considered complete when D is unable to distinguish
between the fake samples produced by G, and the real samples
from I.

Since the original work by Goodfellow et al. [23], there
have been several improvements on GANs. Radford et al. [59]
introduce DCGAN, which improves on [23] by using a convo-
lutional neural network instead of a multi-layer perceptron. As
a result, DCGAN can produce more realistic image samples
compared to [23].

Other work on GANs includes BEGAN [5], DiscoGAN
[33], Conditional GAN [46], AdaGAN [73], InfoGAN [11],
Laplacian Pyramid GAN [15], and StackGAN [78]. These
techniques introduce improvements to prior work, such as new
approaches to training and using the GAN.

Arjovsky et al. introduce the Wasserstein GAN
(WGAN) [3]. WGAN improves learning stability of
prior GANs by using gradient clipping. Benefits of this
approach include reduced mode collapse, and meaningful
learning curves, which are helpful in identifying optimal
hyperparameters.

All work above focuses on the generation of realistic images.
To address the problem of text generation, Gulrajani et al. [27]
recently introduced the Improved Wasserstein GAN (IWGAN).
With IWGAN, both G and D are simple convolutional neural
networks (CNNs). G takes as input a latent noise vector, trans-
forms it by forwarding it through its convolutional layers, and
outputs a sequence of 32 one-hot character vectors. A softmax
nonlinearity is applied at the output of G, and then forwarded
to D. Each output character from IWGAN is obtained by
computing the argmax of each output vector produced by G.

C. Password Guessing
In a password guessing attack, the adversary attempts to

identify the password of one or more users by repeatedly test-
ing multiple candidate passwords. Password guessing attacks
are probably as old as password themselves [6], with more
formal studies dating back to 1979 [48].

Two popular modern password guessing tools are John the
Ripper (JTR) [71] and HashCat [28]. Both tools implement
multiple types of password guessing strategies, including:
exhaustive brute-force attacks; dictionary-based attacks; rule-
based attacks, which consist in generating password guesses
from transformations of dictionary words [63], [62]; and
Markov-model-based attacks [72], [56], in which each charac-
ter of a password is selected via a stochastic process that con-
siders one or more preceding character, and which is trained
on dictionaries of plaintext passwords. JTR and HashCat are
notably effective at guessing passwords. Specifically, there

have been several instances in which well over 90% of the
password leaked from online services have been successfully
recovered [57].

Markov models were first used to generate password guesses
by Narayanan et al. [49]. Their approach uses manually
defined password rules, such as which portion of the generated
passwords is composed of letters and numbers. This technique
was subsequently improved by Weir et al. [75], who showed
how to “learn” these rules from password distributions. This
early work has been subsequently extended by Ma et al. [42]
and by Durmuth et al. [18]. Techniques based on Markov
models have also been used to implement real-time password
strength estimators, and to evaluate the strength of passwords
in plaintext databases (see, e.g., [14], [10]).

Probabilistic context-free grammars (PCFGs) [32], [75]
leverage manually-encoded information on passwords structure
to generate new guesses. This information can be implicit
(e.g., a dictionary word followed by the user’s birth date)
or explicit (e.g., passwords are required to contain at least
six characters, one capital letter, and one digit). Appropriate
tokens are then randomly selected to build passwords from the
resulting grammars.

Recently, Melicher et al. [44] introduced a password guess-
ing method based on recurrent neural networks [25], [69]. With
this technique, the neural network is trained using passwords
leaked from several websites. During password generation, the
neural network outputs one password character at a time. Each
new character (including a special end-of-password character)
is selected based on its probability given the current password,
similarly to methods based on Markov models. (This technique
was also used in [44] to perform real-time password strength
estimation.) The evaluation presented in [44] shows that their
technique outperforms PCFGs, Markov models, and password
composition rules commonly used with JTR and HashCat,
when testing a large number of password guesses (in the 1010

to 1025 range).

III. GAN ARCHITECTURE AND HYPERPARAMETERS

To leverage the ability of the GAN to effectively estimate
the probability distribution of passwords from the training
set, we experimented with a variety of parameters. In this
section, we report our choices on specific GAN architecture
and hyperparameters.

We instantiated PassGAN using the Improved training of
Wasserstein GANs (IWGAN) of Gulrajani et al. [27]. The
IWGAN implementation used in this paper relies on the
ADAM optimizer [34] to minimize the training error, i.e., to
reduce the mismatch between the output of the model and its
training data.
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Our model is characterized by the following hyper-
parameters:
• Batch size, which represents the number of passwords

from the training set that propagate through the GAN at
each step of the optimizer.

• Number of iterations, which indicates how many
times the GAN invokes its forward step and its back-
propagation step [38], [37]. In each iteration, the GAN
runs one generator iteration and one or more discrimi-
nator iterations.

• Number of discriminator iterations per generator
iteration, which indicates how many iterations the gen-
erator performs in each GAN iteration.

• Model dimensionality, which represents the number of
dimensions (weights) for each convolutional layer.

• Gradient penalty coefficient (λ), which specifies the
penalty applied to the norm of the gradient of the
discriminator with respect to its input [27]. Increasing
this parameter leads to a more stable training of the
GAN [27].

• Output sequence length, which indicates the maximum
length of the strings generated by the generator (G
henceforth).

• Size of the input noise vector (seed), which determines
how many random bits are fed as input to G for the
purpose of generating samples.

• Maximum number of examples, which represents the
maximum number of training items (passwords, in the
case of PassGAN) to load.

• Adam optimizer’s hyper-parameters:
◦ Learning rate, i.e., how quickly the weights of the

model are adjusted
◦ Coefficient β1, which specifies the decaying rate

of the running average of the gradient.
◦ Coefficient β2, which indicates the decaying rate

of the running average of the square of the gradi-
ent.

We instantiated our model with a batch size of 64. We
trained the GAN using various number of iterations and
eventually settled for 199,000 iterations, as further iterations
provided diminishing returns in the number of matches (see
analysis in Section IV-A). The number of discriminator itera-
tions per generative iteration was set to 10, which is the default
value used by IWGAN. We experimented using 5 residual
layers for both the generator and the discriminator, with each of
the layers in both deep neural network having 128 dimensions.

We set the gradient penalty to 10 and modified the length of
the sequence generated by the GAN from 32 characters (default
length for IWGAN) to 10 characters, to match the maximum
length of passwords used during training (see Section IV-A).
The maximum number of examples loaded by the GAN was
set to the size of the entire training dataset. We set the size of
the noise vector to 128 floating point numbers.

Coefficients β1 and β2 of the Adam optimizer were set to
0.5 and 0.9, respectively, while the learning rate was 10−4.
These parameters are the default values used by Gulrajani et
al. [27].

IV. EVALUATION

In this section, we first present our training and testing
procedure. We then report the results of our experiments
and compare the output of PassGAN with that of password
generation rules commonly used with JTR and HashCat.

Our experiments were run using the TensorFlow imple-
mentation of IWGAN. We used TensorFlow version 1.2.1
for GPUs, with Python version 2.7.12. All experiments were
performed on a workstation running Ubuntu 16.04.2 LTS, with
64GB of RAM, a 12-core 2.0 GHz Intel Xeon CPU, and an
NVIDIA GeForce GTX 1080 Ti GPU.

A. GAN Training and Testing
To evaluate the performance of PassGAN, and to compare it

with state-of-the-art password generation rules, we first trained
the GAN, JTR, and HashCat on a large set of passwords
from the RockYou leak [61]. Entries in this dataset represent
a mixture of common and complex passwords because these
passwords were stored on servers in plaintext, and therefore
all of them were recovered. We then counted how many of
the passwords that each tool generated were present in two
separate testing sets: a subset of RockYou distinct from the
training set, and the LinkedIn password dataset [40].

The RockYou dataset contains 32,603,388 passwords. We
selected all passwords of length 10 characters or less
(29,599,680 passwords, which corresponds to 90.8% of the
dataset), and used 80% of them (23,679,744 total passwords,
9,925,896 unique passwords) to train each tool. For testing, we
used the remaining 20% (5,919,936 total passwords, 3,094,199
unique passwords).

We also tested each tool on all passwords of length 10
characters or less from the LinkedIn dataset. This dataset
consists of 60,065,486 total unique passwords, out of which
43,354,871 unique passwords are of length 10 characters or
less (frequency count was not available for the LinkedIn
dataset). Passwords in the LinkedIn dataset were exfiltrated
as hashes, rather than in plaintext. As such, the LinkedIn
dataset contains only plaintext passwords that tools such as
JTR and HashCat were able to recover. Our results, presented
in Section IV-B, suggest that the rules and the datasets used
to recover the LinkedIn passwords substantially overlap with
the rules and the dataset used in this work.

Our training and testing procedures allowed us to determine:
(1) how well PassGAN predicts passwords when trained and
tested on the same password distribution (i.e., when using the
RockYou dataset for both training and testing); and (2) whether
PassGAN generalizes across password datasets, i.e., how it
performs when trained on the RockYou dataset, and tested on
the LinkedIn dataset.

Effects of the GAN Training Process on Its Output. Training
a GAN is an iterative process that consists of a large number
of iterations. As the number of iterations increases, the GAN
learns more information from the distribution of the data.
However, increasing the number of steps also increases the
probability of overfitting [23], [76]. To evaluate this tradeoff
on password data, we stored intermediate training checkpoints
and generated 108 passwords at each checkpoint.
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Fig. 1: Number of unique passwords generated by the GAN,
and number of passwords matching the RockYou testing set.
The x axis represents the number of iterations (checkpoints)
of PassGAN’s training process. For each checkpoint, PassGAN
generated a total of 108 passwords.

Figure 1 shows the number of unique passwords generated
by the GAN at each checkpoint, and how many of these
passwords match with the content of the RockYou testing set.
The number of unique samples generated by the GAN remains
fairly constant with the number of iterations (checkpoint
number). However, the number of passwords that match the
testing set steadily increases with the number of iterations.
This increase tapers off around 175,000-199,000 iterations,
where the number of unique passwords also decreases slightly.
This indicates that further increasing the number of iterations
will likely lead to overfitting, thus reducing the ability of the
GAN to generate a wide variety of highly likely passwords.
Therefore, we consider this range of iterations adequate for
our RockYou training set.

B. Evaluating the Passwords Generated by PassGAN

We generated up to 1010 passwords using PassGAN, JTR,
and HashCat. For JTR we used the SpiderLabs mangling
rules [68], while for HashCat we used the best64 and gen2
rules [28]. These rules are commonly used in the password
guessing literature [44], and have been optimized over the
years on password datasets including RockYou and LinkedIn.
Because of these dataset-specific optimizations, we consider
these rules a good representation of the best matching perfor-
mance that can be obtained using manually-generated rules.

Both best64 and gen2 were able to generate less than
1010 passwords (roughly 998M and 754M passwords,
respectively—see Table I), given our training dataset. For
the SpiderLabs mangling rules, we generated about 6 · 1010
passwords. From this set, we sampled uniformly 528,834,530
unique passwords. This allowed us to perform a fair compar-
ison between JTR and PassGAN because the latter generated

TABLE I: Comparison of uniqueness and novelty of the pass-
words generated using PassGAN, HashCat, and JTR. Column
(1) shows the total number of passwords generated using each
tool. In our experiments, HashCat was unable to generate
as many passwords as PassGAN and JTR given the training
dataset and the rule sets we used. Column (2) shows how many
of the passwords generated by each tool were unique. Column
(3) indicates how many unique passwords generated by each
tool were already present in the training set.

Password
generation tool

(1) Total
passwords
generated

(2) Unique
passwords

(3) Passwords matched
in the training set
(9,926,278 entries)

PassGAN

106 182,036 27,320 (0.28%)
107 1,357,874 134,647 (1.36%)
108 10,969,748 487,878 (4.92%)
109 80,245,649 1,188,152 (12%)

≈ 109.86 441,357,719 1,825,915 (18.4%)
1010 528,834,530 2,177,423 (21.9%)

Hashcat
best64 rules 754,315,842 441,357,719 9,898,464 (99.7%)

Hashcat
gen2 rules 998,076,164 646,401,854 3,267,236 (32.9%)

JTR SpyderLabs
rules 6 · 1010 528,834,530 2,278,045 (23%)

best64+GAN 10,754,315,842 947,606,924 9,898,807 (99.7%)

106 107 108 109 1010

Total nr. of generated samples

103

104

105

106

107

108

109

N
r.
 o
f 
u
n
iq
u
e
 s
a
m
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s

Fig. 2: Number of unique samples, compared to the total
number of samples generated by PassGAN.

the same number of unique passwords from a set of 1010

samples.
We first determined whether increasing the number of pass-

words generated by PassGAN also increases the number of
unique passwords, as well as the number of matches with
the training and the testing sets. To this end, we generated
various passwords sets of sizes between 106 and 1010. We
observed that, as the number of passwords increased, so did
the number of unique passwords. Results of this evaluation are
reported in Table I, column (2). As shown in Figure 2, when we
increased the number of passwords generated by PassGAN, the
rate at which new unique passwords were generated decreased
only slightly. Similarly, the rate of increase of the number
of matches, shown in Figure 3, diminished as the number
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TABLE II: Comparison of passwords generated using our technique, HashCat, and JTR, on the RockYou testing set. Column (2)
shows how many of generated passwords appear in the testing set, which is composed of 3,094,199 unique entries. Column (3)
shows the number of generated passwords that appear in the testing set, weighting each match by the number of corresponding
entries in the testing set. (The testing set contains 5,919,936 non-unique entries). Columns (4) and (5) report the number of
generated passwords that appear in the testing set, and that were not in the training set (i.e., new passwords). The numbers
in Column (4) count each match as unique, while the numbers in Column (5) weight each password match by the number of
occurrence of the password in the test set. The maximum number of matches is 1,978,367 in Column (4) and 2,032,728 in
Column (5).

Password
generation tool

(1) Unique
passwords
generated

(2) Passwords
matched in testing

set (unique)

(3) Passwords matched
in testing set (with

repetitions)

(4) Passwords matched
in testing, and not

in training set (unique)

(5) Passwords matched
in testing set, and not in

training set (with repetitions)

PassGAN

182,036 17,421 (0.56%) 449,583 (7.59%) 1,850 (0.094%) 2,039 (0.1%)
1,357,874 76,473 (2.47%) 870,126 (14.7%) 11,398 (0.576%) 12,489 (0.6%)

10,969,748 236,375 (7.64%) 1,466,336 (24.8%) 54,325 (2.746%) 58,682 (2.88%)
80,245,649 501,272 (16.2%) 2,133,147 (36%) 162,652 (8.221%) 172,997 (8.51%)
441,357,719 699,798 (22.6%) 2,373,825 (40.1%) 286,736 (14.49%) 301,416 (14.83%)
528,834,530 833,434 (26.9%) 2,774,269 (46.9%) 342,439 (17.31%) 359,980 (17.7%)

Hashcat
best64 rules 441,357,719 1,744,127 (56.4%) 4,545,600 (76.8%) 630,067 (31.85%) 662,215 (32.577%)

Hashcat
gen2 rules 646,401,854 1,288,769 (41.7%) 4,060,366 (68.6%) 448,969 (22.69%) 475,462 (23.39%)

JTR SpyderLabs
rules 528,834,530 472,417 (15.3%) 1,368,106 (23.1%) 161,807 (8.178%) 170,437 (8.38%)

best64+GAN 947,606,924 1,859,765 (60.1%) 4,664,141 (78.8%) 745,680 (37.69%) 780,705 (38.4%)

TABLE III: Comparison of passwords generated using our
technique, HashCat, and JTR, on the LinkedIn testing set,
which contains 43,354,871 unique entries. Column (2) shows
how many of the generated passwords appear in the testing
set, while Column (3) shows how many generated passwords
match the testing set, and were not in the training set (the
maximum number of matches is 40,597,129).

Password
generation

tool

(1) Unique
passwords
generated

(2) Passwords
matched in

testing set (unique)

(3) Passwords matched
in testing set, and not

in training set (unique)

PassGAN

182,036 33,794 (0.08%) 12,946 (0.032%)
1,357,874 185,775 (0.43%) 87,230 (0.215%)
10,969,748 804,326 (1.86%) 474,861 (1.169%)
80,245,649 2,341,529 (5.40%) 1,637,122 (4.032%)
441,357,719 4,185,625 (9.65%) 3,255,417 (8.018%)
528,834,530 4,996,980 (11.5%) 3,890,043 (9.582%)

Hashcat
best64 rules 441,357,719 9,930,005 (22.9%) 7,174,986 (17.67%)

Hashcat
gen2 rules 646,401,854 6,271,492 (14.5%) 4,475,775 (11.02%)

JTR
SpyderLabs

rules
528,834,530 2,763,640 (6.37%) 2,023,113 (4.98%)

best64+GAN 947,606,924 11,702,590 (27%) 8,947,510 (22.039%)

of passwords generated increased. This is to be expected,
as the simpler passwords are matched early on, and the
remaining (more complex) passwords require a substantially
larger number of attempts in order to be matched.

Our experiments also show that PassGAN’s output has
a higher rate of repeated passwords compared to JTR and
HashCat rules. This is since, of the three tools, PassGAN is the
only tool that attempts to generate passwords with the same
distribution as the training set—which is characterized by a
large number of repeated passwords. This allows PassGAN
to output highly likely passwords earlier than less likely
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Fig. 3: Number of passwords generated by the GAN that
appear in the training and in the testing set, as the number
samples in the GAN’s output increases.

passwords, thus potentially reducing the number of guessing
attempts in practice.

For each tool, we report the number of passwords generated
that also appear in the training set. We do not consider these
passwords to be valuable because any match they lead to could
have been trivially obtained via a dictionary attack based on
the training set. Table I, column (3), shows the results for each
tool, and Figure 3 (blue line) provides further details related
to PassGAN’s output. In our experiments, PassGAN generated
considerably fewer passwords that matched its training set,
compared to both JTR and HashCat.

Next, we calculated the number of passwords, generated by
each tool, which matched the RockYou and LinkedIn testing
sets. Our results for RockYou are presented in Table II, while
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TABLE IV: Sample of passwords generated by the GAN that
did not match the testing set.

love42743 ilovey2b93 paolo9630 italyit
sadgross usa2598 s13trumpy trumpart3
ttybaby5 dark1106 vamperiosa ˜dracula
saddracula luvengland albania. bananabake
paleyoung @crepess emily1015 enemy20
goku476 coolarse18 iscoolin serious003
nyc1234 thepotus12 greatrun babybad528
santazone apple8487 1loveyoung bitchin706
toshibaod tweet1997b 103tears 1holys01

results for LinkedIn are shown in Table III. Columns (2) and
(3) of Table II show the number of passwords in the RockYou
testing set that were generated by each tool—without counting
repeated matches and counting repeated matches, respectively.
Columns (4) and (5) of Table II report the number of matches
when we excluded passwords that appear in both the training
set and the testing set (without and with repeated matches,
respectively). In our experiments, the best64 rules were able
to match 54% more passwords than the GAN, with best64
outperforming our technique by roughly a 1.7×-2× factor. In
the same experiments, PassGAN significantly and consistently
outperformed the SpiderLabs rules used with JTR.

Under all metrics, combining the output of the GAN with
the output of best64 led to the best performance, resulting in
115,613 additional passwords being matched in the RockYou
testing set when counting unique passwords (see Table II,
Column (4)), and 118,490 when counting repetitions (See
Table II, Column (5)). In both cases, this corresponds to an
18% improvement over HashCat’s best64. We consider this
is a significant result because it shows that the GAN was
able to successfully model how users choose their passwords
based only on password samples—in some case better than the
experts that wrote HashCat’s password generation rules.

Columns (2) and (3) of Table III show the number of
matches with the LinkedIn testing set. Column (2) includes
all matches, while Column (3) does not include matches for
passwords that also appear in the RockYou training set. In our
experiments, the gap between HashCat’s rules and PassGAN
was smaller than with the RockYou dataset. This shows that
the GAN generalizes better than manually-generated rules.
Further, combining PassGAN with best64 led once again
to the highest number of matches. These results show that
PassGAN provides substantial benefits when no samples from
the target distribution are available, which is often the case with
password guessing. Further, when we combined the output of
PassGAN with that of HashCat’s best64 rules, we were able to
match 1,772,524 more passwords than with best64 alone—an
increase of about 24%.

We inspected a list of passwords generated by PassGAN
that did not match any of the testing sets and determined that
many of these passwords are reasonable candidates for human-
generated passwords. As such, we speculate that a possibly
large number of passwords generated by the GAN, and that
did not match our test sets, might still match user accounts
from services other than RockYou. We list a small sample of
these passwords in Table IV.

V. CONCLUSION

In this paper, we introduced PassGAN, the first password
guessing technique based on GANs. Our results show that
character-level GANs are well suited for generating password
guesses when trained on leaked password data. Further, our
results show that GANs generalize well when trained on
a password dataset, and tested on a differently distributed
dataset.

In our experiments, we were able to match over 46% of
the passwords in a testing set extracted from the RockYou
password dataset, when the GAN was trained on a different
subset of RockYou. Compared to rule-based password gen-
eration techniques, our experiments show that PassGAN is
very competitive. Although HashCat’s best64 and gen2 rules
outperformed PassGAN, our approach was able to match twice
as many passwords as JTR’s SpyderLabs rules. Moreover, by
combining the output of the GAN with the output of the best64
rules, we were able to match more than 78% of the passwords
in the RockYou dataset, and almost 27% of the passwords
from the LinkedIn dataset—an increase of about 18% and 24%,
respectively. This is remarkable because it shows that the GAN
can generate a large number of passwords that are out of reach
for current state-of-the-art password generation tools. Further,
when we evaluated each password guessing tool on a dataset
(LinkedIn) distinct from the training set (RockYou), the drop
in matching rate of the GAN was less pronounced.

We believe that our approach to password guessing is rev-
olutionary because, unlike current rule-based tools, PassGAN
was able to generate passwords with no user intervention—
thus requiring no domain knowledge on passwords, nor manual
analysis of password database leaks. Also, our evaluation of
training performance suggests that, when supplied with a large
enough leaked password set, the performance of PassGAN
could surpass that of the best rule-based password generation
techniques.
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