
A Comparative Analysis of TCP Tahoe, Reno,
New-Reno, SACK and Vegas

Abstract:
The purpose of this paper is to

analyze and compare the different
congestion control and avoidance
mechanisms which have been proposed
for TCP/IP protocols, namely: Tahoe,
Reno, New-Reno, TCP Vegas and
SACK. TCP’s robustness is as a result of
it’s reactive behavior in the face of
congestion, and fact that reliability is
ensured by re-transmissions. All the
above mentioned implementations
suggest mechanisms for determining
when a segment should be re-transmitted
and how should the sender behave when
it encounters congestion and what
pattern of transmissions should it follow
to avoid congestion. In this paper we
shall discuss how the different
mechanism affect the through put and
efficiency of TCP and how they compare
with TCP Vegas in terms of
performance.

Introduction:
TCP is a reliable connection oriented

end-to-end protocol. It contains within
itself, mechanisms for ensuring
reliability by requiring the receiver the
acknowledge the segments that it
receives. The network is not perfect and
a small percentage of packets are lost en
route, either due to network error or due
to the fact that there is congestion in the
network and the routers are dropping
packets. We shall assume that packet

losses due to network loss are

minimal and most of the packet losses
are due to buffer overflows at the
router[1]. Thus it becomes increasingly
important for TCP to react to a packet
loss and take action to reduce
congestion.

TCP ensures reliability by starting a
timer whenever it sends a segment. If it
does not receive an acknowledgement
from the receiver within the ‘time-out’
interval then it retransmits the segment.

We shall start the paper by taking a
breif look at each of the congestion
avoidance algorithms and noting how
they differ from each other. In the end
we shall do a head to head comparison to
further bring into light the differences.

TCP TAHOE:
Tahoe refers to the TCP congestion

control algorithm which was suggested
by Van Jacobson in his paper[1]. TCP is
based on a principle of ‘conservation of
packets’, i.e. if the connection is running
at the available bandwidth capacity then
a packet is not injected into the network
unless a packet is taken out as well.
TCP implements this principle by using
the acknowledgements to clock outgoing
packets because an acknowledgement
means that a packet was taken off the
wire by the receiver. It also maintains a
congestion window CWD to reflect the
network capacity[1]. However there are
certain issues, which need to be resolved
to ensure this equilibrium.

1) Determination of the available

bandwidth.
2) Ensuring that equilibrium is

maintained.
3) How to react to congestion.

Slow Start:

TCP packet transmissions are
clocked by the incoming
acknowledgements. However there is a
problem when a connection first starts
up cause to have acknowledgements you
need to have data in the network and to
put data in the network you need
acknowledgements. To get around this
circularity Tahoe suggests that whenever
a TCP connection starts or re-starts after
a packet loss it should go through a
procedure called ‘slow-start’. The reason
for this procedure is that an initial burst
might overwhelm the network and the
connection might never get started. Slow
starts suggests that the sender set the
congestion window to 1 and then for
each ACK received it increase the CWD
by 1. so in the first round trip time(RTT)
we send 1 packet, in the second we send
2 and in the third we send 4. Thus we
increase exponentially until we lose a
packet which is a sign of congestion.
When we encounter congestion we
decreases our sending rate and we
reduce congestion window to one. And
start over again.

The important thing is that Tahoe
detects packet losses by timeouts. In
usual implementations, repeated
interrupts are expensive so we have
coarse grain time-outs which
occasionally checks for time outs. Thus
it might be some time before we notice a
packet loss and then re-transmit that
packet.

Congestion Avoidance:
For congestion avoidance Tahoe uses

‘Additive Increase Multiplicative
Decrease’. A packet loss is taken as a
sign of congestion and Tahoe saves the
half of the current window as a
threshold. value. It then set CWD to one
and starts slow start until it reaches the
threshold value. After that it increments
linearly until it encounters a packet loss.
Thus it increase it window slowly as it
approaches the bandwidth capacity.

Problems:

The problem with Tahoe is that it
take a complete timeout interval to
detect a packet loss and in fact, in most
implementations it takes even longer
because of the coarse grain timeout.
Also since it doesn’t send immediate
ACK’s, it sends cumulative
acknowledgements, there fore it follows
a ‘go back n ‘ approach. Thus every
time a packet is lost it waits for a
timeout and the pipeline is emptied. This
offers a major cost in high band-width
delay product links.

TCP RENO:
This Reno retains the basic principle

of Tahoe, such as slow starts and the
coarse grain re-transmit timer. However
it adds some intelligence over it so that
lost packets are detected earlier and the
pipeline is not emptied every time a
packet is lost.

Reno requires that we receive
immediate acknowledgement whenever
a segment is received. The logic behind
this is that whenever we receive a
duplicate acknowledgment, then his
duplicate acknowledgment could have
been received if the next segment in

sequence expected, has been delayed in
the network and the segments reached
there out of order or else that the packet
is lost. If we receive a number of
duplicate acknowledgements then that
means that sufficient time has passed
and even if the segment had taken a
longer path, it should have gotten to the
receiver by now. There is a very high
probability that it was lost. So Reno
suggest an algorithm called ‘Fast Re-
Transmit’. Whenever we receive 3
duplicate ACK’s we take it as a sign that
the segment was lost, so we re-transmit
the segment without waiting for timeout.
Thus we manage to re-transmit the
segment with the pipe almost full.

Another modification that RENO
makes is in that after a packet loss, it
does not reduce the congestion window
to 1. Since this empties the pipe. It enters
into a algorithm which we call ‘Fast-Re-
Transmit’[2]. The basic algorithm is
presented as under:

1)Each time we receive 3 duplicate
ACK’s we take that to mean that the
segment was lost and we re-transmit the
segment immediately and enter ‘Fast-
Recovery’
2)Set SSthresh to half the current
window size and also set CWD to the
same value.
3)For each duplicate ACK receive
increase CWD by one. If the increase
CWD is greater than the amount of data
in the pipe then transmit a new segment
else wait. If there are ‘w’ segments in
the window and one is lost, the we will
receive (w-1) duplicate ACK’s. Since
CWD is reduced to W/2, therefore half a
window of data is acknowledged before
we can send a new segment. Once we re-
transmit a segment, we would have to
wait for atlease one RTT before we
would receive a fresh acknowledgement.
Whenever we receive a fresh ACK we

reduce the CWND to SSthresh. If we
had previously received (w-1) duplicate
ACK’s then at this point we should have
exactly w/2 segments in the pipe which
is equal to what we set the CWND to be
at the end of fast recovery. Thus we
don’t empty the pipe, we just reduce the
flow. We continue with congestion
avoidance phase of Tahoe after that.

Problems:

Reno perform very well over TCP
when the packet losses are small. But
when we have multiple packet losses in
one window then RENO doesn’t
perform too well and it’s performance is
almost the same as Tahoe under
conditions of high packet loss. The
reason is that it can only detect a single
packet losses. If there is multiple packet
drop then the first info about the packet
loss comes when we receive the
duplicate ACK’s. But the information
about the second packet which was lost
will come only after the ACK for the re-
transmitted first segment reaches the
sender after one RTT.

Also it is possible that the CWD is
reduced twice for packet losses which
occurred in one window. Suppose we
send packets 1,2,3,4,5,6,7,8,9 in that
order. Suppose packets 1, and 2 are lost.
The ACK’s generated by 2,4,5 will
cause the re-transmission of 1 and the
CWD is reduced to 7. Then when we
receive ACK for 6,7,8,9 our CWD is
sufficiently large to allow to us to send
10,11. When the re-transmitted segment
1 reaches the receiver we get a fresh
ACK and we exit fast-recovery and set
CWD to 4. Then we get two more
ACK’s for 2(due to 10,11) so once again
we enter fast-retransmit and re-transmit
2 and then enter fast recovery. Thus
when we exit fast recovery for the
second time our window size is set to 2.

Thus we reduced our window size twice
for packets lost in one window.

Another problem is that if the widow
is very small when the loss occurs then
we would never receive enough
duplicate acknowledgements for a fast-
retransmit and we would have to wait for
a coarse grained timeout. Thus is cannot
effectively detect multiple packet losses.

NEW-RENO:
New RENO is a slight modification

over TCP-RENO. It is able to detect
multiple packet losses and thus is much
more efficient that RENO in the event of
multiple packet losses.

Like Reno, New-Reno also enters
into fast-retransmit when it receives
multiple duplicate packets, however it
differs from RENO in that it doesn’t exit
fast-recovery until all the data which was
out standing at the time it entered fast-
recovery is acknowledged. Thus it
overcomes the problem faced by Reno of
reducing the CWD multiples times.

The fast-transmit phase is the same
as in Reno. The difference in the fast-
recovery phase which allows for
multiple re-transmissions in new-Reno.
Whenever new-Reno enters fast-
recovery it notes the maximums segment
which is outstanding. The fast-recovery
phase proceeds as in Reno, however
when a fresh ACK is received then there
are two cases:

If it ACK’s all the segments which
were outstanding when we entered fast-
recovery then it exits fast recovery and
sets CWD to ssthresh and continues
congestion avoidance like Tahoe.

If the ACK is a partial ACK then it

deduces that the next segment in line
was lost and it re-transmits that segment

and sets the number of duplicate ACKS
received to zero.

It exits Fast recovery when all the
data in the window is acknowledged[3].

Problems:

New-Reno suffers from the fact that
its take one RTT to detect each packet
loss. When the ACK for the first re-
transmitted segment is received only
then can we deduce which other segment
was lost.

SACK:
TCP with ‘Selective

Acknowledgments’ is an extension of
TCP Reno and it works around the
problems face by TCP RENO and TCP
New-Reno, namely detection of multiple
lost packets, and re-transmission of more
than one lost packet per RTT.

SACK retains the slow-start and fast-
retransmit parts of RENO. It also has the
coarse grained timeout of Tahoe to fall
back on, incase a packet loss is not
detected by the modified algorithm.

SACK TCP requires that segments
not be acknowledged cumulatively but
should be acknowledged selectively.
Thus each ACK has a block which
describes which segments are being
acknowledged. Thus the sender has a
picture of which segments have been
acknowledged and which are still
outstanding. Whenever the sender enters
fast recovery, it initializes a variable
pipe which is an estimate of how much
data is outstanding in the network, and it
also set CWND to half the current size.
Every time it receives an ACK it reduces
the pipe by 1 and every time it re-
transmits a segment it increments it by 1.
Whenever the pipe goes smaller than the
CWD window it checks which segments
are un received and send them. If there

are no such segments outstanding then it
sends a new packet[5]. Thus more than
one lost segment can be sent in one
RTT.

Problems:

The biggest problem with SACK is
that currently selective
acknowledgements are not provided by
the receiver To implement SACK we’ll
need to implement selective
acknowledgment which is not a very
easy task.

VEGAS:
Vegas is a TCP implementation

which is a modification of Reno. It
builds on the fact that proactive measure
to encounter congestion are much more
efficient than reactive ones. It tried to get
around the problem of coarse grain
timeouts by suggesting an algorithm
which checks for timeouts at a very
efficient schedule. Also it overcomes the
problem of requiring enough duplicate
acknowledgements to detect a packet
loss, and it also suggest a modified slow
start algorithm which prevent it from
congesting the network. It does not
depend solely on packet loss as a sign of
congestion. It detects congestion before
the packet losses occur. However it still
retains the other mechanism of Reno and
Tahoe, and a packet loss can still be
detected by the coarse grain timeout of
the other mechanisms fail.

The three major changes induced by
Vegas are:

New Re-Transmission Mechanism:

Vegas extends on the re-transmission
mechanism of Reno. It keeps track of
when each segment was sent and it also
calculates an estimate of the RTT by
keeping track of how long it takes for the

acknowledgment to get back. Whenever
a duplicate acknowledgement is received
it checks to see if the (current time-
segment transmission time)> RTT
estimate; if it is then it immediately re-
transmits the segment without waiting
for 3 duplicate acknowledgements or a
coarse timeout[6]. Thus it gets around
the problem faced by Reno of not being
able to detect lost packets when it had a
small window and it didn’t receive
enough duplicate Ack’s.
 To catch any other segments that
may have been lost prior to the re-
transmission, when a non duplicate
acknowledgment is received, if it is the
first or second one after a fresh
acknowledgement then it again checks
the timeout values and if the segment
time since it was sent exceeds the
timeout value then it re-transmits the
segment without waiting for a duplicate
acknowledgment[6]. Thus in this way
Vegas can detect multipple packet
losses.

 Also it only reduces its window if
the re-transmitted segment was sent after
the last decrease. Thus it also overcome
Reno’s shortcoming of reducing the
congestion window multiple time when
multiple packets are lost.

Congestion avoidance:

TCP Vegas is different from all the
other implementation in its behavior
during congestion avoidance. It does not
use the loss of segment to signal that
there is congestion. It determines
congestion by a decrease in sending rate
as compared to the expected rate, as
result of large queues building up in the
routers. It uses a variation of Wang and
Crowcroft;s Tri-S scheme. The details
can found in [6]. Thus whenever the
calculated rate is too far away from the

expected rate it increases transmissions
to make use of the available bandwidth,
whenever the calculated rate comes too
close to the expected value it decreases
its transmission to prevent over
saturating the bandwidth. Thus Vegas
combats congestion quite effectively and
doesn’t waste bandwidth by transmitting
at too high a data rate and creating
congestion and then cutting back, which
the other algorithms do.

Modified Slow-start:

TCP Vegas differs from the other
algorithms during it’s slow-start phase.
The reason for this modification is that
when a connection first starts it has no
idea of the available bandwidth and it is
possible that during exponential increase
it over shoots the bandwidth by a big
amount and thus induces congestion. To
this end Vegas increases exponentially
only every other RTT, between that it
calculates the actual sending through put
to the expected and when the difference
goes above a certain threshold it exits
slow start and enters the congestion
avoidance phase.

Conclusion:
Thus it is clear that TCP Vegas is

definitely better than
1)Tahoe:
• Cause it is much more robust in

the face of lost packets. It can
detect and retransmit lost packet
much sooner than timeouts in
Tahoe.

• It also has fewer re-transmissions
since it doesn’t empty the whole
pipe whenever it loses packets.

• It is better at congestion
avoidance and its modified

congestion avoidance and slow
start algorithms measure
incipient congestion and very
accurately measure the available
bandwidth available and
therefore use network resources
efficiently and don’t contribute to
congestion.

2)Reno:
• More than half of the coarse-

grained timeouts of Reno are
prevented by Vegas as it detects
and re-transmits more than one
lost packet before timeout
occurs.

• It doesn’t have to always wait for
3 duplicate packets so it can re-
transmit sooner.

• It doesn’t reduce the congestion
window too much prematurely.

• The advantages that it has in
congestion avoidance and
bandwidth utilization over Tahoe
exist here as well.

3)New-Reno:
• It prevents many of the coarse

grained timeouts of New-Reno as
it doesn’t need to wait for
3duplicate ACK’s before it
retransmits a lost packet.

• Its congestion avoidance
mechanisms to detect ‘incipient’
congestion are very efficient and
utilize nework resources much
more efficiently.

• Because of its modified
congestion avoidance and slow
start algorithm there are fewer re-
transmits.

4)SACK:
TCP Vegas doesn’t have a clear cut

advantage over SACK TCP. The only

fields where it apprears to outperform
SACK is:
• In its estimation of incipient

congestion, and its efficient
estimation of congestion by
measuring change in throughput
rather than packet loss. This would
result in a better utilization of
bandwidth and lesser congestion.

• Also it appears more stable than

SACK. The reason for this being that
SACK uses packet losses to denote
congestion. So that the sender
continually increase sending rate
until there is congestion and then
they cur back. This cycle continues
and the system keeps on oscillating..
TCP Vegas flattens out its sending
rate at the optimal bandwidth
utilization point thus inducing
stability.

• Another advantage of TCP Vegas or

rather the disadvantage of SACK is
that it is not very easy to incorporate
SACK in the current TCP. We need
fields to acknowledge the selective
segments and this requires changes
at the receiver as well, whereas all
the other mentioned algorithms only
require changes at the sender side.

References:
[1]V.Jacobson. “Congestion Avoidance

and Control”.SIGCOMM
Symposium no Cummunication
Architecture and protocols.

[2]V.Jacobson “Modified TCp
Congestion Control and Avoidance
Alogrithms”.Technical Report
30,Apr 1990.

[3]S.Floyd, T.Henderson “The New-

Reno Modification to TCP’s Fast
Recovery Algorithm” RFC 2582,
Apr 1999.

[4]O. Ait-Hellal, E.Altman “Analysis of
 TCP Reno and TCP Vegas”.

[5]K.Fall, S.Floyd “Simulation Based

Comparison of Tahoe, Reno and
SACK TCP” .

[6]L.S.Brakmo, L.L. Peterson, “TCP

Vegas: End to End Congestion
Avoidance on a Global Internet”,
IEEE Journal on Selected Areas in
Communication, vol. 13[1995],(1465-
1490).

