Chapter 2, continuation of basic material: sets, functions, sequences, and sums

here:

- 1. brief review of basic set-related concepts
- 2. brief mention of functions
- 3. focus on sequences and sums

1&2 (sets and functions)
if not thoroughly familiar with this
material, carefully read Chapter 2

using un-axiomatic treatment: a **set** is an **unordered collection of distinct objects**

A is the set of primes less than 13:

$$A = \{2,3,5,7,11\}$$

 $= \{3,7,11,5,2\} = \{2,2,3,5,5,5,7,11\}$

2, $5 \in A$: 2 and 5 belong to A, are elements of A

B is the set of non-negative integers at most 100: $B = \{0, 1, 2, ..., 100\}$

note usage of "{", "}" and "..." (*ellipses*) be unambiguous: $A = \{2, 3, ..., 11\}$ is inadequate

Set builder notation:

for propositional function P(x)

" $S = \{x | P(x) \}$ " and " $S = \{x : P(x) \}$ " are both short-hands for

 $\forall x \ (\ x \in S \iff P(x) \)$

 $\Rightarrow S \text{ is the set of$ **all** $} x \text{ such that } P(x) \text{ holds}$ (in some implicit domain that is often omitted)

examples:

$$A = \{p \mid p \text{ prime and } p < 13\}$$

$$B = \{n \mid n \text{ integer and } 0 \le n \le 100\}$$

$$D = \{n \mid n = 2m \text{ for an integer } m\} \text{ (even integers)}$$

again: always be clear and unambiguous

Common sets

- N is the set of natural numbers
 - for some 0 ∈ N, others prefer 0 ∉ N no big deal, as long as you're clear
 - $B = \mathbf{N}_{\leq 100}$
- Z is the set of the integers (D = 2Z)
- **Q** is the set of the rational numbers
- **R** is the set of the real numbers
- C is the set of the complex numbers

Cardinality of a set S, denoted |S| or #S|S| = #S = number of distinct elements of S |A| = #A = 5|B| = #B = 101A and B are examples of *finite* sets examples of *infinite* sets: $\#\mathbf{N} = \#\mathbf{Z} = \#\mathbf{O} = \infty$ $\#\mathbf{R} = \#\mathbf{C} = \infty$ and: $\#N = \#Z = \#Q \neq \#R = \#C$

empty set, the set without elements: \emptyset (={}) **singleton set**, a set with a single element example: $\{\emptyset\}$, set containing the empty set equality between sets A and B: A = B if and only if $\forall x \ (x \in A \leftrightarrow x \in B)$ **subset:** set A is subset of set B if and only if $\forall x \ (x \in A \rightarrow x \in B)$ notation: $A \subseteq B$ (similar: $A \supseteq B \leftrightarrow \forall x \ (x \in B \to x \in A)$) **proper subset**: set A is proper subset of set B if and only if $A \subseteq B$ and $A \neq B$ notation: $A \subset B$ (careful with \subseteq versus \subset) **thm**: for every set $A: \emptyset \subset A$ and $A \subset A$ (prove $\emptyset \subseteq A$ using a vacuous proof)

Power set P(A) of set A: set of all subsets of A for every set A: $\emptyset \subset A$ and $A \subset A$, thus $\emptyset \in P(A)$ and $A \in P(A)$ Let $A = \{1, 2, 3\}$, then P(A) = $\{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$ note: elements of P(A) are (sub)sets, elements of these (sub)sets may again be (sub)sets: Let $B = \emptyset$, then $P(B) = \{\emptyset\}$, so $P(\emptyset) = \{\emptyset\}$ Let $C = P(\emptyset) = \{\emptyset\},\$ $P(C) = \{\emptyset, \{\emptyset\}\}, \text{ so } P(P(\emptyset)) = \{\emptyset, \{\emptyset\}\}\}$ Let $D = P(P(\emptyset)) = \{\emptyset, \{\emptyset\}\}, \text{ so } P(D) =$ $P(P(P(\emptyset))) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$

fye, **power set** of $P(P(P(\emptyset))) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$: $P(P(P(P(\emptyset)))) = \{$

Ø,

 $\left\{ \varnothing, \{\varnothing\}, \{\{\varnothing\}\}, \{\emptyset, \{\varnothing\}\}\right\} \right\}$

Cartesian product $A \times B$ of sets A and B: set of all ordered pairs $(a,b), a \in A$ and $b \in B$: $A \times B = \{(a,b) \mid a \in A \land b \in B\}$

example:

$$A = \{H,L,S\}, B = \{A,B,L',P\}:$$

$$A \times B = \{(H,A),(H,B),(H,L'),(H,P),$$

$$(L,A),(L,B),(L,L'),(L,P),$$

$$(S,A),(S,B),(S,L'),(S,P)\}$$

$$\#(A \times B) = \#A \times \#B = 3 \times 4 = 12,$$

relation from A to B: a subset of $A \times B$

example: {(H,B),(H,L'),(H,P),(L,P)} $\subset A \times B$ for sets A, B, C $A \times B \times C = \{(a,b,c) \mid a \in A \land b \in B \land c \in C\}$ but

 $(A \times B) \times C = \{(d,c) \mid d \in A \times B \land c \in C\}$

Set operations

to create new sets from existing sets (similar to using logical operators to create compound propositions from existing propositions)

complement: $A = \{x | x \notin A\} = \{x | \neg (x \in A)\}$ (always with respect to some universe U) union: $A \cup B = \{x \mid x \in A \lor x \in B\}$ **intersection**: $A \cap B = \{x \mid x \in A \land x \in B\}$ (A and B disjoint if $A \cap B = \emptyset$) difference: $A-B = A \setminus B = \{x \mid x \in A \land \neg (x \in B)\}$ symmetric difference:

$$A \oplus B = A \Delta B = \{x | x \in A \oplus x \in B\}$$

Note: correspondence with logical operations (and " \subseteq " \leftrightarrow " \rightarrow ")

set operations lead to **set identities** (page 132 (124)) such as

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (distributive law)

 $A \cap B = A \cup B$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$ (De

(De Morgan's laws)

which can proved

- 1. with membership tables
- 2. using **both** \subseteq and \supseteq

3. "directly"

example: Prove $\overline{A \cup B} = \overline{A} \cap \overline{B}$

1. with membership table (i.e., truth table for $x \in A$, etc.):

A	В	$A \cup B$	$\overline{A \cup B}$	\overline{A}	\overline{B}	$\overline{A} \cap \overline{B}$
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

2. using both \subseteq and \supseteq , thus proving: $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$ and $\overline{A \cup B} \supseteq \overline{A} \cap \overline{B}$

3. directly

using
$$\subseteq$$
 and \supseteq to prove that $\overline{A \cup B} = \overline{A} \cap \overline{B}$
 \subseteq : let $x \in \overline{A \cup B}$
 $\rightarrow x \notin A \cup B$
 $\rightarrow \neg (x \in A \cup B)$
 $\rightarrow \neg (x \in A \cup x \in B)$
 $\rightarrow \neg (x \in A) \land \neg (x \in B)$
 $\rightarrow (x \notin A) \land (x \notin B)$
 $\rightarrow x \in \overline{A} \land x \in \overline{B}$
 $\rightarrow x \in \overline{A} \cap \overline{B}$
it follows that $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$
all " \rightarrow " can be replaced by " \leftrightarrow " (or " \equiv "),
from which " \supseteq " follows as well

direct proof of $\overline{A \cup B} = \overline{A} \cap \overline{B}$

$$\overline{A \cup B} = \{x \mid x \notin A \cup B\}$$

$$= \{x \mid \neg (x \in (A \cup B))\}$$

$$= \{x \mid \neg (x \in A \lor x \in B)\}$$

$$= \{x \mid \neg (x \in A) \land \neg (x \in B)\}$$

$$= \{x \mid (x \notin A) \land (x \notin B)\}$$

$$= \{x \mid x \in \overline{A} \land x \in \overline{B}\}$$

$$= \{x \mid x \in \overline{A} \cap \overline{B}\}$$

$$= \overline{A \cap B}$$

prove $A \cup (A \cap B) = A$ **by showing** \subseteq **and** \supseteq

- $A \cup (A \cap B) \subseteq A$: if $x \in A \cup (A \cap B)$, then $x \in A$ or $x \in A \cap B$, SO: $x \in A$ or $(x \in A \text{ and } x \in B)$ in either case $x \in A$ it thus follows that $A \cup (A \cap B) \subset A$
- $A \cup (A \cap B) \supseteq A$: if $x \in A$, then $x \in A \cup (A \cap B)$ it thus follows that $A \cup (A \cap B) \supseteq A$

Note on Venn diagrams

- Venn diagrams are pictures of sets, drawn as subsets of some universal set U
- may be used for pictorial purposes but never for proofs
- three sets intersecting in all possible ways:

• four sets:

Note on Venn diagrams

- Venn diagrams are pictures of sets, drawn as subsets of some universal set U
- may be used for pictorial purposes but never for proofs
- 5, 7, and 11 sets intersecting in all possible ways:

Returning to sets, a note on cardinalities given finite sets A and B, what is $|A \cup B|$? |A| is the cardinality of A |B| is the cardinality of B |A| + |B| is the cardinality of the union $A \cup B$ of A and B, where all elements that belong to both A and B are counted twice thus: $|A| + |B| = |A \cup B| + |A \cap B|$ equivalently: $|A \cup B| = |A| + |B| - |A \cap B|$ known as

the principle of inclusion and exclusion (and an example of "proof by intimidation"; how to really prove this?)

Inclusion/exclusion example

$$A = \{n \in \mathbb{Z} : 0 \le n \le 100, n \text{ multiple of 5}\}$$

 $= \{n \in \mathbb{Z} : 0 \le n \le 100, 5|n\}$
 $B = \{n \in \mathbb{Z} : 0 \le n \le 100, 7|n\}$
 $\Rightarrow |A| = 21, |B| = 15$
what is $|A \cup B|$?
 $A \cup B = \{n \in \mathbb{Z} : 0 \le n \le 100, 5|n \text{ or } 7|n\}$
 $|A| + |B| = 21 + 15 = 36$
counts multiples of both 5 and 7 twice:
 $A \cap B = \{n \in \mathbb{Z} : 0 \le n \le 100, 5|n \text{ and } 7|n\}$
 $= \{0, 35, 70\}$
 $|A \cup B| = |A| + |B| - |A \cap B| = 21 + 15 - 3 = 3$

more complicated

 $A = \{n \in \mathbb{Z} : 0 \le n \le 100, 5|n\}, |A| = 21$ $B = \{n \in \mathbb{Z} : 0 \le n \le 100, 7|n\}, |B| = 15$ $C = \{n \in \mathbb{Z} : 0 \le n \le 100, 3|n\}, |C| = 34$

what is $|A \cup B \cup C|$?

$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$

Proof: Let $D = B \cup C$, then $|A \cup B \cup C| = |A \cup D|$ $= |A| + |D| - |A \cap D|$ $= |A| + |B \cup C| - |A \cap (B \cup C)|$ $= |A| + |B| + |C| - |B \cap C| - |(A \cap B) \cup (A \cap C)|$

The result now follows from $|(A \cap B) \cup (A \cap C)| = |A \cap B| + |A \cap C| - |(A \cap B) \cap (A \cap C)|$ $= |A \cap B| + |A \cap C| - |A \cap B \cap C|$

more complicated

 $A = \{n \in \mathbb{Z} : 0 \le n \le 100, 5|n\}, |A| = 21$ $B = \{n \in \mathbb{Z} : 0 \le n \le 100, 7|n\}, |B| = 15$ $C = \{n \in \mathbb{Z} : 0 \le n \le 100, 3|n\}, |C| = 34$ what is $|A \cup B \cup C|$? $A \cap B = \{0, 35, 70\} : |A \cap B| = 3$ $A \cap C = \{n \in \mathbb{Z} : 0 \le n \le 100, 3 | n \text{ and } 5 | n\}$ $= \{0, 15, 30, 45, 60, 75, 90\}: |A \cap C| = 7$ $B \cap C = \{n \in \mathbb{Z} : 0 \le n \le 100, 3 | n \text{ and } 7 | n\}$ $= \{0, 21, 42, 63, 84\}: |B \cap C| = 5$ $A \cap B \cap C = \{0\} : |A \cap B \cap C| = 1$ $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$ = 21 + 15 + 34 - 3 - 7 - 5 + 1 = 56

Questions?

Concludes 2nd section of Chapter 2

Functions

given nonempty sets *A* and *B*, a function *f* from *A* to *B* is an assignment of *exactly one* element of *B* to *each* element of *A*

What does that mean? Can't we do better?

Functions

first an unusually complicated definition

reminder: a relation from A to B is an arbitrary subset of $A \times B$

A and B nonempty sets, function f from A to B is: a relation from A to B such that $\forall a \in A \exists ! b \in B (a,b) \in f$

thus, *for each element of A* there is exactly one ordered pair in *f* whose first element equals that element of *A*

note: no limitation on number of pairs in fin which any $b \in B$ may appear

Functions, more traditionally:

given nonempty sets A and B,

a function *f* from *A* to *B* is an assignment of *exactly one* element of *B* to *each* element of *A*

we say that *f maps A to B* and write:

- f(a) = b (or (a,b)∈f as on previous slide):
 b is the image of a
 a is a preimage of b
- for any element of *B*, there may be any number of elements of *A* mapping to it

function f from A to B

• $f: A \to B$

(note: same arrow as before, different meaning)

- f goes from domain A to codomain B
- *f* has range f(A) = {b∈B| ∃a∈A f(a)=b} ⊆ B
 ⇒ ∀b∈f(A) ∃a∈A f(a)=b,
 a property that does not necessarily hold for B
- for $S \subseteq A$, the *image* of *S* under *f* is defined as $f(S) = \{b \mid b \in B \text{ and } \exists s \in S f(s) = b\}$ $= \{f(s) \mid s \in S\} \subseteq f(A)$

Operations on functions

- sum and product of two functions $f, g: A \to \mathbf{R}$: sum: $f+g: A \to \mathbf{R}$: (f+g)(x) = f(x)+g(x)product: $fg: A \to \mathbf{R}$: (fg)(x) = f(x)g(x)
- in general: $f, g: A \rightarrow B$ inherit operations on B
- composition of $f: A \to B$ and $g: B \to C$:

$$g \circ f : A \to C : (g \circ f)(x) = g(f(x))$$

Example f: set of students $\rightarrow \mathbb{R}^3$, g: $\mathbb{R}^3 \rightarrow \{1, 1.5, 2, 2.5, ..., 5, 5.5, 6\}$ $f(\operatorname{Amy}) = (H, M, F)$ is triple of Amy's average homework grade (H), midterm grade (M), and final grade (F) g(x,y,z) = [[0.3x+0.2y+0.5z]] (with [[.]] rounding to nearest half point) then $(g \circ f)(\operatorname{Amy})$ is Amy's overall grade but $(f \circ g)(\operatorname{Anna})$ is not defined

Simple properties of functions $f: A \rightarrow \mathbf{R}$

- f is increasing: $\forall x \in A \ \forall y \in A \ x > y \rightarrow f(x) \ge f(y)$
- *f* is strictly increasing: $\forall x \in A \ \forall y \in A \ x > y \rightarrow f(x) > f(y)$
- f is decreasing: $\forall x \in A \ \forall y \in A \ x > y \rightarrow f(x) \le f(y)$
- *f* is strictly decreasing: $\forall x \in A \ \forall y \in A \ x > y \rightarrow f(x) < f(y)$

Interesting properties of functions, $f: A \rightarrow B$

- *f* is *one-to-one* or *injective* or an *injection* iff $\forall a_1, a_2 \in A$ $f(a_1) = f(a_2) \rightarrow a_1 = a_2$ iff $\forall a_1, a_2 \in A$ $a_1 \neq a_2 \rightarrow f(a_1) \neq f(a_2)$: no "collisions"
- *f* is *onto* or *surjective* or a *surjection* iff f(A) = Biff $\forall b \in B \exists a \in A f(a) = b$: everything in *B* is reached
- *f* is *one-to-one correspondence* or *bijection* iff *f* is one-to-one and onto iff $\forall b \in B \exists ! a \in A f(a) = b$
- injection $f: A \to B$ is bijection $f: A \to f(A)$

inverse of a function

injection $f: A \to B$, thus bijection $f: A \to f(A)$ $\forall b \in f(A) \exists ! a \in A f(a) = b$

let $g = \{(b,a): b \in f(A), a \in A, f(a) = b\} \subseteq f(A) \times A$ then g is relation $\subseteq f(A) \times A$ such that $\forall b \in f(A) \exists ! a \in A \ (b,a) \in g \quad (i.e., g(b) = a)$ where $(b,a) \in g \leftrightarrow f(a) = b$

thus g is a function from f(A) to A such that g(b) = a if and only if f(a) = b

this g is called the *inverse* f^{-1} of f: function $f^{-1}: f(A) \to A$ such that $f^{-1}(b) = a$ if and only if f(a) = b

remarks on inverse

- injection $f: A \to B$, bijection $f: A \to f(A)$, the latter's inverse $f^{-1}: f(A) \to A$ with $f^{-1}(b) = a$ if and only if f(a) = b
- $\forall a \in A \ f^{-1}(f(a)) = a$ $\Rightarrow f^{-1} \circ f : A \to f(A) \to A$, the *identity* on A
- $\forall b \in f(A) \ f(f^{-1}(b)) = b$ $\Rightarrow f \circ f^{-1} : f(A) \to A \to f(A), \text{ identity on } f(A)$
- it may be the case that *f* can be computed while computing *f*⁻¹ is *intractable*, or vice versa

examples

$f: \mathbf{R} \to \mathbf{R}$ defined by $f(x) = x^2$ $(f: x \mapsto x^2):$

- f not injective: f(1) = f(-1) = 1
- "same" $f: \mathbf{R}_{\geq 0} \to \mathbf{R}$ is injective
- "same" $f: \mathbf{R}_{\leq 0} \to \mathbf{R}$ is injective too
- f not surjective: $\exists y \in \mathbf{R} \ \forall x \in \mathbf{R} \ f(x) \neq y \ (y < 0)$ $\equiv \neg (\forall y \in \mathbf{R} \ \exists x \in \mathbf{R} \ f(x) = y)$
- "same" $f: \mathbf{R} \to \mathbf{R}_{\geq 0}$ is surjective
- "same" $f: \mathbf{R}_{\geq 0} \to \mathbf{R}_{\geq 0}$ is bijection with inverse $f^{-1}: \mathbf{R}_{\geq 0} \to \mathbf{R}_{\geq 0}: f^{-1}(y) = \sqrt{y}$
- or "same" $f: \mathbf{R}_{\leq 0} \to \mathbf{R}_{\geq 0}$ is bijection with inverse $f^{-1}: \mathbf{R}_{\geq 0} \to \mathbf{R}_{\leq 0}: f^{-1}(y) = -\sqrt{y}$

more examples

- g: R → R, g(x) = x^{2k+1} for k∈N (g:x → x^{2k+1}): g is injective and surjective, and thus bijective example of simple non-trivial bijective correspondence between R and R
- $h: \mathbf{R} \{\pi/2 + k\pi : k \in \mathbf{Z}\} \rightarrow \mathbf{R}, h(x) = \tan(x)$ h surjective, not injective: $\forall k \in \mathbb{Z} h(k\pi) = 0$ "same" $h: (-\pi/2, \pi/2) \rightarrow \mathbf{R}$ (open interval notation!) is injective while staying surjective: $h: (-\pi/2, \pi/2) \rightarrow \mathbf{R}, h(x) = \tan(x)$, is bijection implies bijection between $(-\pi/2,\pi/2)$ and **R** \Rightarrow arctan = tan⁻¹ is bijection **R** \rightarrow ($-\pi/2,\pi/2$)

More on cardinalities sets A and B have by definition the **same cardinality** if there is a bijection between A and B a set S is **countable** if S is **finite** or has the same cardinality as N if S countable and infinite: $|S| = \aleph_0$: "aleph null" \Rightarrow countability of S implies that S can be "enumerated": S is finite, or if not there exists a bijection $f: \mathbb{N} \to S$, $S = \{f(i) : i \in \mathbb{N}\} = \{f(0), f(1), f(2), \dots\}$ a set that is not countable is **uncountable**: any enumeration will miss (infinitely many) elements

N, Z, Q are countable

to prove this, establish bijections between

- N and N: the identity map
- Z and N:

define $f: \mathbb{Z} \to \mathbb{N}$: stretch all "non-negatives" to "even": if $z \ge 0$ then f(z) = 2zfill the odd holes with the negatives: if z < 0 then f(z) = -(2z + 1)this f is "obviously" a bijection with $f^{-1}: \mathbb{N} \to \mathbb{Z}, n \mapsto (-1)^n [(n+1)/2]$

• Q and N: next slide

More on cardinalities sets A and B have by definition the **same cardinality** if there is a bijection between A and B a set S is **countable** if S is **finite** or has the same cardinality as N if *S* countable and **infinite**: $|S| = \aleph_0$: "aleph null" \Rightarrow countability of S implies that S can be "enumerated": S is finite, or if not there exists a bijection $f: \mathbb{N} \to S$, $S = \{f(i) : i \in \mathbb{N}\} = \{f(0), f(1), f(2), \dots\}$ a set that is not countable is **uncountable**: any enumeration will miss (infinitely many) elements

N, Z, Q are countable

to prove this, establish bijections between

- N and N: the identity map
- Z and N:

define $f: \mathbb{Z} \to \mathbb{N}$: stretch all "non-negatives" to "even": if $z \ge 0$ then f(z) = 2zfill the odd holes with the negatives: if z < 0 then f(z) = -(2z + 1)this f is "obviously" a bijection with $f^{-1}: \mathbb{N} \to \mathbb{Z}, n \mapsto (-1)^n [(n+1)/2]$

• Q and N: next slide

Q is countable – less hand-waving surjection $N_{>0} \rightarrow Q_{>0}$ suffices (hold breath at duplicate) Let $I_k = \{(k-1)k/2, 1+(k-1)k/2, \dots, k(k+1)/2-1\}$ for k = 1, 2, 3, ...then $|I_k| = k(k+1)/2 - 1 - (k-1)k/2 + 1 = k$ $I_1 = \{0\}, I_2 = \{1,2\}, I_3 = \{3,4,5\}, I_4 = \{6,7,8,9\}, \dots$ $\Rightarrow \bigcup_{k=1}^{\infty} I_k = \mathbb{N}_{\geq 0} \text{ and } k \neq \ell \to I_k \cap I_\ell = \emptyset$ $\Rightarrow \forall n \in \mathbb{N}_{>0} \exists !k \ n \in I_k$; denote this k by $k(n) (=[(1+\sqrt{(1+8n)})/2])$ (k(0)=1, k(1)=k(2)=2, k(3)=k(4)=k(5)=3, k(6)=k(7)=k(8)=k(9)=4)define i(n) = n - (k(n)-1)k(n)/2: $0 \le i(n) \le k(n)$ $g: \mathbf{N}_{\geq 0} \to \mathbf{Q}_{>0} \quad n \mapsto \frac{k(n) - i(n)}{i(n) + 1}$ is surjective

R is uncountable – not too precisely

Proof by contradiction: assume **R** is countable, implying countability of $\mathbf{R}_1 = \{x \in \mathbf{R}: 0 \le x \le 1\}$ $\Rightarrow \exists$ bijection $h : \mathbb{N}_{>0} \rightarrow \mathbb{R}_1$: $h(1) = x_1, h(2) = x_2, \dots, h(i) = x_i, \dots$ and $\{x_1, x_2, ..., x_i, ...\} = \mathbf{R}_1$ $x_i = 0.d_{i1}d_{i2}d_{i3}...d_{ii}...$ is x_i 's decimal expansion for $i = 1, 2, 3, ..., let \delta_i \neq d_{ii}, \delta_i \in \{0, 1, ..., 9\}$ ("Cantor diagonalization argument") and let $y = 0.\delta_1 \delta_2 \delta_3 \dots \delta_i \dots$ $\Rightarrow y \in \mathbf{R}_1$ and $\forall i \ y \neq x_i$ \Rightarrow contradiction with $\{x_1, x_2, \dots, x_i, \dots\} = \mathbf{R}_1$

(un)countability examples

- the set of real numbers with decimal representation consisting of just digits "7" and possibly a single decimal point:
 7, 77, 7.7, 777, 777, 7.77, 7777, 7777, 7777, 7.777, ... first list the single one consisting of a single digit, then the two consisting of two digits, followed by the three consisting of three digits, etc. ⇒ countable
- as above, but allow digits 8 as well: use Cantor's diagonalization to show that for any enumeration an element can be found that will not be enumerated by picking 7 if d_{ii} =8 and 8 if d_{ii} =7 (see previous slide) \Rightarrow uncountable
- the set of all finite length bit strings:
 0,1, 00,01,10,11, 000,001,010,011,100,101,110,111, ...
 for k =1, 2, 3, ... in succession list the 2^k bit strings of length k
 (by counting in binary from 0 to 2^k−1 and using leading zeros) ⇒ countable

Special functions

- rounding: $\mathbf{R} \rightarrow \mathbf{Z}, x \mapsto \lfloor x \rceil$, the integer nearest to x (halves rounded down; $-\lfloor -x \rceil$ goes up)
- floor:

 $\mathbf{R} \rightarrow \mathbf{Z}, x \mapsto \lfloor x \rfloor$, the largest integer $\leq x$

- ceiling: $\mathbf{R} \to \mathbf{Z}, x \mapsto \lceil x \rceil$, the smallest integer $\ge x$
- entier:

 $\mathbf{R}_{\geq 0} \to \mathbf{Z}, x \mapsto [x]$, the integer part of x

• factorial: $\mathbf{N} \rightarrow \mathbf{Z}, n \mapsto n!$, with $n! = \prod_{i=1}^{n} i$; note that 0!=1

example

 $\lfloor 3x \rfloor = \lfloor x \rfloor + \lfloor x + 1/3 \rfloor + \lfloor x + 2/3 \rfloor$

Proof. let $x = n + \varepsilon$, with $n \in \mathbb{Z}$ and $0 \le \varepsilon \le 1$ case analysis:

- if $0 \le \varepsilon < 1/3$, then $3x = 3n + \delta$, $0 \le \delta < 1$, $\lfloor 3x \rfloor = 3n$ and $\lfloor x \rfloor = \lfloor x + 1/3 \rfloor = \lfloor x + 2/3 \rfloor = n$
- if $1/3 \le \varepsilon < 2/3$, then $3x = 3n+1+\delta$, $0 \le \delta < 1$, $\lfloor 3x \rfloor = 3n+1$ and $\lfloor x \rfloor = \lfloor x+1/3 \rfloor = n$, but $\lfloor x+2/3 \rfloor = n+1$
- if $2/3 \le \varepsilon < 1$, then $3x = 3n+2+\delta$, $0 \le \delta < 1$, $\lfloor 3x \rfloor = 3n+2$ and $\lfloor x \rfloor = n$, but $\lfloor x+1/3 \rfloor = \lfloor x+2/3 \rfloor = n+1$

Another example $\begin{bmatrix} 2x \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + \begin{bmatrix} x - \frac{1}{2} \end{bmatrix}$

normally, one takes $x = m - \varepsilon$, with $0 \le \varepsilon < 1$ instead, let $x = n + \varepsilon$, with $n \in \mathbb{Z}$ and $0 < \varepsilon \le 1$, then $\lceil x \rceil = n + 1$

- if $0 < \varepsilon \le \frac{1}{2}$, then $2x = 2n + 2\varepsilon$ with $0 < 2\varepsilon \le 1$, so $\lceil 2x \rceil = 2n + 1$; $\lceil x - \frac{1}{2} \rceil = n$ then implies $\lceil 2x \rceil = \lceil x \rceil + \lceil x - \frac{1}{2} \rceil$
- if $\frac{1}{2} < \varepsilon \le 1$, then $2x = 2n + 2\varepsilon$ with $1 < 2\varepsilon \le 2$, so $\lceil 2x \rceil = 2n + 2$; $\lceil x - \frac{1}{2} \rceil = n + 1$ then implies $\lceil 2x \rceil = \lceil x \rceil + \lceil x - \frac{1}{2} \rceil$

Any questions?

Concludes 3rd section of Chapter 2

Introduction to sequences and summations

informally:

a sequence is a possibly infinite ordered list with a first, a second, a third, a fourth, ... element

slightly more formally:

a sequence is a function *f* from a subset of the set of natural numbers (with or without 0) to some other set *S*:

$$a_1, a_2, a_3, \dots \in S$$

or

$$a_0, a_1, a_2, \dots \in S$$

where $a_i = f(i)$

common sequences

• 0, 1, 2, 3, 4, ...

sequence of natural numbers, $n_i = i$, $i \ge 0$

• 0, 2, 4, 6, 8, ...

sequence of even numbers ≥ 0 , $m_i = 2i$, $i \ge 0$

sequence of factorials, $f_i = i!, i \ge 0$

sequence of primes, p_i is *i*th prime, $i \ge 1$

Fibonacci sequence:

 $F_i = i \text{ for } i = 0, 1, \quad F_i = F_{i-2} + F_{i-1} \text{ for } i \ge 2$

crazy sequences

- 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5, 6, ... b_i = bitlength of p_i , $i \ge 1$
- 4, 3, 3, 5, 4, 4, 3, 5, 5, 4, 3, 6, ...
 (in French: 4, 2, 4, 5, 6, 4, 3, 4, 4, 4, 3, 4, ...)
- 5, 6, 5, 6, 5, 5, 7, 6, 5, 5, 8, 7, ...
 (in French: 7, 8, 9, 9, 9, 7, 8, 8, 8, 7, 7, 8, ...)
- given an integer sequence
 (such as 171, 277, 367, 561, 567, 18881,...),
 how to find *what* it is?

encyclopedia of integer sequences http://oeis.org/

Remarks on sequences

sequences do not necessarily consist of integers:

- $x_i = 1/i \ (i > 0)$
- $y_i = r^i$ for $r \in \mathbf{R}$

sequences are not necessarily infinite:

• $s_i = i$ th SD student (lexicographically or sciper-wise)

sequences are not necessarily well understood

- 3, 5, 17, 257, 65537, ..., primes $2^{2^{i}} + 1$ (are there more than five *Fermat primes*?)
- 3, 5, 7, 11, 13, 17, 19, 29, 31, 41, 43, ... (are there infinitely many twin primes?)
- primes 123456789101112131415...: any?

Common sequences

arithmetic progression: a sequence of the form $a, a+d, a+2d, a+3d, \dots, a+kd, \dots$ for $a, d \in \mathbf{R}$ with *initial term a* and *common difference d*:

*i*th term a_i equals $a+id \quad (\forall i > 0 \ a_i - a_{i-1} = d)$

geometric progression: a sequence of the form $g, gr, gr^2, gr^3, \dots, gr^k, \dots$ for $g, r \in \mathbf{R}$ with *initial term g* and *common ratio r*.

*i*th term g_i equals gr^i ($\forall i > 0 g_i/g_{i-1} = r$)

Often needed: summations of sequences

- sum of elements of arithmetic progression $a, a+d, a+2d, a+3d, \dots, a+kd$
- sum of elements of geometric progression
 g, gr, gr², gr³, ..., gr^k,
- and sums of elements of similar sequences

for
$$a_i = a + id$$
 determine $a_0 + a_1 + ... + a_k = \sum_{i=0}^k a_i$
for $g_i = gr^i$ determine $g_0 + g_1 + ... + g_k = \sum_{i=0}^k g_i$
 \Rightarrow need to be familiar with methods
to calculate such sums

Sum of an arithmetic progression

$$a_{i} = a + id, \text{ then } a_{0} + a_{1} + a_{2} + \dots + a_{k} = \sum_{i=0}^{k} a_{i}$$

$$= \sum_{i=0}^{k} (a + id) = \sum_{i=0}^{k} a_{i} + \sum_{i=0}^{k} id$$

$$= (k+1)a + d \sum_{i=0}^{k} i$$
here we use :
$$= (k+1)a + d \frac{k(k+1)}{2} = (k+1)(a + \frac{dk}{2})$$

$$\sum_{i=1}^{k} i = \left(\sum_{i=1}^{k} i + \sum_{i=1}^{k} i\right)/2$$

let $j=k+1-i$, thus $i=k+1-j$; $j=k$ when $i=1$ and $j=1$ when $i=k$; thus
$$\sum_{i=1}^{k} i = \left(\sum_{i=1}^{k} i + \sum_{j=1}^{k} (k+1-j)\right)/2$$

$$= \left(\sum_{j=1}^{k} j + \sum_{j=1}^{k} (k+1-j)\right)/2 = \left(\sum_{j=1}^{k} (j+(k+1-j))\right)/2$$

$$= \left(\sum_{j=1}^{k} (k+1)\right)/2 = \frac{k(k+1)}{2}$$

Often needed: summations of sequences

- sum of elements of arithmetic progression a, a+d, a+2d, a+3d, ..., a+kd:for $a_i = a+id$ determine $a_0 + a_1 + ... + a_k = \sum_{i=1}^{k} a_i$
- sum of elements of geometric progression $g, gr, gr^2, gr^3, ..., gr^m$: for $g_j = gr^j$ determine $g_0 + g_1 + ... + g_m = \sum_{m=1}^{m} g_j$
- sums of elements of related progression $r, 2r^2, 3r^3, 4r^4, ..., nr^n$:

for $t_{\ell} = \ell r^{\ell}$ determine $t_1 + t_2 + \ldots + t_n = \sum_{\ell=1}^{\ell} t_{\ell}$

⇒ need to be familiar with those sums and with the methods to calculate them

Sum of a geometric progression, I

$$g_{i} = gr^{i}, \text{ then } g_{0} + g_{1} + g_{2} + \dots + g_{k} = \sum_{i=0}^{k} g_{i} = \sum_{i=0}^{k} gr^{i} = g\sum_{i=0}^{k} r^{i}$$

let $S = \sum_{i=0}^{k} r^{i};$ if $r = 0$ then $S = 1$
assume $r \neq 0$, then $S = r\sum_{i=0}^{k} r^{i-1}$, thus $S/r = \sum_{i=0}^{k} r^{i-1} = 1/r + \sum_{i=1}^{k} r^{i-1}$
let $i - 1 = j$, then $j = 0$ if $i = 1$, and $j = k - 1$ if $i = k$, thus
 $S/r = 1/r + \sum_{j=0}^{k-1} r^{j} = 1/r + \left(\sum_{j=0}^{k} r^{j}\right) - r^{k} = 1/r + S - r^{k}$
with $r \neq 0$ it follows that $S = 1 + rS - r^{k+1}$ and thus, if $r \neq 1$, that

$$S = \frac{r^{k+1} - 1}{r-1}$$
 (also valid for $r = 0$; if $r = 1$, then $S = k+1$)

note: for $0 \le r < 1$ it follows that $\sum_{i=0}^{\infty} r^i = \frac{1}{1-r}$

Sum of a geometric progression, II

another way to compute $S = \sum_{i=1}^{n} r^{i}$ let $f(X) = 1 + X + X^2 + ... + X^k$ (then f(r) = S) $Xf(X) = X + X^{2} + ... + X^{k} + X^{k+1}$ thus $Xf(X) - f(X) = X^{k+1} - 1$ and $f(X) = \frac{X^{k+1} - 1}{V - 1}$ (if $X \neq 1$) cleaner (without dots): $f(X) = \sum_{i=1}^{k} X^{i}$, then $(X-1)f(X) = (X-1)\sum^{k} X^{i} = X\sum^{k} X^{i} - \sum^{k} X^{i}$ $=\sum_{k=0}^{k} X^{i+1} - \sum_{k=0}^{k} X^{i} = \sum_{k=1}^{k+1} X^{j} - \sum_{k=0}^{k} X^{i} = \sum_{k=1}^{k+1} X^{i} - \sum_{k=0}^{k} X^{i}$ $= X^{k+1} + \sum_{i=1}^{k} X^{i} - X^{0} - \sum_{i=1}^{k} X^{i} = X^{k+1} - 1$

Sum of an arithmetic progression

$$a_{i} = a + id, \text{ then } a_{0} + a_{1} + a_{2} + \dots + a_{k} = \sum_{i=0}^{k} a_{i}$$

$$= \sum_{i=0}^{k} (a + id) = \sum_{i=0}^{k} a_{i} + \sum_{i=0}^{k} id$$

$$= (k+1)a + d \sum_{i=0}^{k} i$$
here we use :
$$= (k+1)a + d \frac{k(k+1)}{2} = (k+1)(a + \frac{dk}{2})$$

$$\sum_{i=1}^{k} i = \left(\sum_{i=1}^{k} i + \sum_{i=1}^{k} i\right)/2$$

let $j=k+1-i$, thus $i=k+1-j$; $j=k$ when $i=1$ and $j=1$ when $i=k$; thus
$$\sum_{i=1}^{k} i = \left(\sum_{i=1}^{k} i + \sum_{j=1}^{k} (k+1-j)\right)/2$$

$$= \left(\sum_{j=1}^{k} j + \sum_{j=1}^{k} (k+1-j)\right)/2 = \left(\sum_{j=1}^{k} (j+(k+1-j))\right)/2$$

$$= \left(\sum_{j=1}^{k} (k+1)\right)/2 = \frac{k(k+1)}{2}$$

Similar sum $T(r) = \sum_{i=0}^{k} ir^{i-1}$, determined in two ways (for $r \neq 1$)

1 differentiating
$$S(r) = \sum_{i=0}^{k} r^i = \frac{r^{k+1}-1}{r-1}$$
 leads to $T(r) = S'(r)$:

$$T(r) = S'(r) = \frac{(k+1)r^{k}(r-1) - (r^{k+1}-1)}{(r-1)^{2}} = \frac{kr^{k+1} - (k+1)r^{k} + 1}{(r-1)^{2}}$$

2 directly:

$$T(r) = \sum_{i=1}^{k} ir^{i-1} = \sum_{i=1}^{k} r^{i-1} + \sum_{i=1}^{k} (i-1)r^{i-1}$$

$$= \sum_{i=0}^{k-1} r^{i} + r \sum_{i=1}^{k} (i-1)r^{i-2} = \sum_{i=0}^{k-1} r^{i} + r \sum_{i=0}^{k-1} ir^{i-1}$$

$$= \frac{r^{k} - 1}{r - 1} + r(T(r) - kr^{k-1}) \implies T(r) \text{ follows}$$

(page 166/157 : more summations, will be proved later)

Section 2.6/3.8: matrices

- if you're not familiar with matrices: read it
- *k*×*m* rectangles of numbers: *k* rows, *m* columns
- originally to represent linear transformations from R^m to R^k
- wide variety of applications

Matrix product, traditional computation $\forall k, m, n \in \mathbb{Z}_{>0}$: $k \times m$ matrix $A = (a_{ii})_{i=1}^{k, m}$ $m \times n$ matrix $B = (b_{i\ell})_{i=1,\ell=1}^{m, n}$, AB = C is $k \times n$ matrix $C = (c_{i\ell})_{i=1}^{k, n} (c_{i\ell})_{i$ with $c_{i\ell} = \sum_{i=1}^{m} a_{ij} b_{i\ell}$:

 $c_{i\ell}$ is inner product of A's *i*th row and B's ℓ th column

- computation in k×m×n multiplications (disregarding additions)
- not commutative: even if *AB* and *BA* both defined, they are not necessarily equal

fye, matrix multiplication exponent

- traditional: *n×n* matrices A and B, computation of AB in n³ multiplications
- can it be done faster?

yes, but no one knows how fast:

~ $n^{2.3727}$ best so far

(compare to integer multiplication...)

