Chapter 2, continuation of basic material:
sets, functions, sequences, and sums

here:

1. brief review of basic set-related concepts
2. brief mention of functions

3. focus on sequences and sums

1&2 (sets and functions)
if not thoroughly familiar with this
material, carefully read Chapter 2



using un-axiomatic treatment: a set 1s an
unordered collection of distinct objects

A 1s the set of primes less than 13:
A=1{2,3,5,7,11}

2,5 € A: 2 and 5 belong to A, are elements of A

B 1s the set of non-negative integers at most 100:
B=1{0,1,2,...,100}
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note usage of “{”, “}” and “...” (ellipses)

be unambiguous: A = {2, 3, ..., 11} is inadequate



Set builder notation:
for propositional function P(x)
“S={x|Px)}” and “S={x:P(x)}”
are both short-hands for
Vx(xe S & Pkx))
= S 1s the set of all x such that P(x) holds
(in some 1mplicit domain that 1s often omitted)

examples:
A= {p|pprime and p < 13}
B={n|nintegerand 0 <n <100}
D = {n | n = 2m for an integer m} (even integers)

again: always be clear and unambiguous



Common sets

* N i1s the set of natural numbers
* forsome 0 € N, others prefer 0 ¢ N

no big deal, as long as you’re clear

* B= N

* 7 1s the set of the integers (D = 27Z.)

* Q 1s the set of the rational numbers

* R s the set of the real numbers

* C is the set of the complex numbers




Cardinality of a set S, denoted |S| or #S
S| = #S = number of distinct elements of §
A =#A =15
IB|=#B =101
A and B are examples of finite sets

examples of infinite sets:
#N =#Z. = #Q = ©
#R = #C = o0

and: #N = #Z = #Q # #R = #C



empty set, the set without elements: & (={})
singleton set, a set with a single element
example: {J}, set containing the empty set
equality between sets 4 and B:
A=B ifand only if Vx (xed <> xeB)
subset: sct 4 1s subset of set B
if and only 1f Vx (xed — xeB)
notation: 4 C B (similar: AD B> Vx(xeB—> xeA))
proper subset: set A is proper subset of set B
ifandonlyifAc Band 4 # B
notation: A — B (careful with c versus <)
thm: foreverysetA: b cAand A c A
(prove & < A4 using a vacuous proof)



Power set P(A) of set A: set of all subsets of 4

foreveryset A: D cAand A C A4,
thus & € P(A) and 4 € P(A)

Let 4= {123}, then P(4)=
1O {11,425,{3},41,2},{1,3},{2,3},{1,2,3} }

note: elements of P(A4) are (sub)sets, elements
of these (sub)sets may again be (sub)sets:

Let B= O, then P(B) = {J}, so P(J) = {D}
Let C= P(QD) = {D},
P(C) = {9, {0} }, s0 P(P(D)) = {9, {<D}]
Let D = P(P(D)) = {J, {}}, so P(D) =
P(P(P(D))) = {D,{},{10}}.{D.{9}}}



fye, power set of P(P(P(X))) = {,{D},{{D}},{D,{D}}}:

P(P(P(P(D)))) = {
@,
(@Y, {23}, {{{D}}), {12,231,

12,40}, {D.1{D}} ), 1D.AD.{D}} 5,
UL}, (D D.{D1 ],
D} D, {D}

DADLHUDY ), 19.40},{0,{0} 1,
1D,{{2}1,{0,{0}} ), (1D} {D.{D1 ],

1D,{0},{11D}}.{2.{D} }



Cartesian product 4xB of sets 4 and B:
set of all ordered pairs (a,b), a € A and b € B:
AxB={(a,b)|a € AANDb € B}

example:
A={HL,S}, B= {A,B,L’,P}:
AxB={(H,A),(H,B),(H,L"),(H,P),
(L,A),(L,B),(L,L’),(L,P),
(S,A),(5,B),(5,L'),(S,P) ;
HAXB)=#Ax# B = 3 x4=12,

relation from A4 to B: a subset of AxB

example:
{(H,B),(H,L"),(H,P),(L,P)} < AxB



for sets 4, B, C

AxBxC= {(a,b,c)|la e Anbe BAnce (C}
but

(AxB)xC={(d,c) |d € AxB n c € C}



Set operations
to create new sets from existing sets (similar
to using logical operators to create compound
propositions from existing propositions)

complement: A4 = {x|x ¢ A} = {x| =(x € 4)}
(always with respect to some universe U)

union: AUB = {x|xed v xeB}
intersection: ANB = {x| xeA A xeB}

(4 and B disjoint if ANB = )
difference: A-B=A\B= {x|xedA A —(x € B)}
symmetric difference:

APB=AAB= {x| xeA ® xeB}

Note: correspondence with logical operations (and “c” < “—”)



set operations lead to set identities (page 132 (124))

such as
AN(BUC) = (ANB) U (ANC) (distributive law)

ANB=AUB
(De Morgan’s laws)

AUB=ANB

which can proved

1. with membership tables
2. using both  and o

3. “directly”



example: Prove 4UB=4NB

1. with membership table (i.e., truth table for xe4, etc.):

A B AUB AUB A4 B ANB
0 0 0 11 1 1
0 1 1 0 1 0 0
1 0 1 0 0 1 0
11 1 0 0 0 0

2. using both < and DO, thus proving:

AUBc AnB and AUBD ANB
3. directly




using — and O to prove that 4 UB=4NB
c:let xeAUB

> x¢AUB
— —(xe AUB)

—>—(xeAvxeB)

— —(xe A)A—(x € B)

> (xg AAr(xgB)
—>xeAnrxeB

rednB .
it follows that AUBc ANB
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all “—” can be replaced by “<>” (or “="),
from which “>” follows as well




direct proof of 4UB=ANB

AUB = {x|x¢ AUB)
— {x|=(xe(4UB))}
= {x|=(xeAdvxeB)}
= {x|=(xed)Ar—=(xeB)}
— {x|(xg A)A(x ¢ B)}
= {x|xeAAxeB)
= {x|xedNB
= ANB




prove AU(ANB)=A by showing — and O

* AU(ANB) C A:
ifx € AU(ANB),thenx € A orx € ANB,
SO:
xe A
or
(x € A and x € B)

In either case x € 4
it thus follows that AU(ANB) < A4

* AU(ANB) D A:
ifx € 4, thenx € AU(ANDB)
it thus follows that AU(ANB) o 4



Note on Venn diagrams
* Venn diagrams are pictures of sets,
drawn as subsets of some universal set U
* may be used for pictorial purposes
but never for proofs
* three sets intersecting
in all possible ways:

 four sets:




Note on Venn diagrams
* Venn diagrams are pictures of sets,
drawn as subsets of some universal set U
* may be used for pictorial purposes
but never for proofs
* 5,7,and 11 sets intersecting
in all possible ways:




Returning to sets, a note on cardinalities
given finite sets 4 and B, what 1s [AUB| ?

|A] 1s the cardinality of 4

|B| 1s the cardinality of B
|A| + |B| 1s the cardinality of the union
AUB of A and B, where all elements that
belong to both A and B are counted twice

thus: |[A| + |B|=| AUB |+ | ANB |
equivalently: | AUB | =|A| + |B| — | ANB |

known as
the principle of inclusion and exclusion

(and an example of “proof by intimidation’; how to really prove this? )



Inclusion/exclusion example

A=1{n e Z :0<n <100, n multiple of 5}
={nelZ:0<n<100,5n}

B={nelZ:0<n<100,7n}

= |4|=21,|B|=15
what is |4UB| ?

AUB={ne £ :0<n <100, 5nor 7|n }

4] + |B] =21 +15 =36
counts multiples of both 5 and 7 twice:
ANB={ne 2 :0<n <100, 5\nand 7|n }
= {0, 35, 70}
AUB| = |A| + |B| — |[ANB| =21+ 15 -3 =33



more complicated

A={ne Z:0<n<100, S5n}, |4|=21
B={neZ:0<n<100,7n}, |[B|=15
C={neZ:0<n<100,3|n}, |Cl=234

what 1s |[AUBUC]| ?




lAUBUC|=|A|+|B|+|Cl—|ANB|—ANC|—|BNC|HANBNC]

Proof: Let D = BUC, then
lAUBUC|  =]4AUD)|
= |A|+|D|—|AND|
= |A|+|BUC| — |[AN(BUC)|
= |A|+|B|+|C|—|BNC| — [(ANB)(ANCO)|

The result now follows from
((ANB)U(ANC)| = |ANB|+H|ANC|—|[(ANB)N(ANC)|
= |ANB|+|ANC|-|ANBNC(]



more complicated

A={ne Z:0<n<100, 5n}, |4 =21
B={nelZ:0<n<100,7n},|B|=15
C={neZ:0<n<100,3|n}, |C|=34

what 1s |[AUBUC]| ?
ANB = {0, 35, 70}: [AnB| =3
ANC=1{n e Z :0<n <100, 3|n and 5|n}

= {0, 15, 30, 45, 60, 75, 90}: |[ANC| ="
BNC={neZ:0<n<100, 3|n and 7|n}

= {0, 21,42, 63,84}: |[BNC|=5
ANBNC = {0}: [AnNBNC| =1
lAUBUC|=|A|+|B|+|Cl—|ANB|—ANC|—|BNC|HANBNC]

= 21+15+34-3-7-5+1 =56




Questions?

Concludes 2" section of Chapter 2



Functions
given nonempty sets 4 and B,
a function / from A4 to B 1s an assignment of
exactly one element of B to each element of A4

What does that mean? Can t we do better?



Functions
first an unusually complicated definition

reminder: a relation from A4 to B is
an arbitrary subset of AxB

A and B nonempty sets, function f from A4 to B 1s:

a relation from 4 to B
such that VaeA4 3'beB (a,b)ef

thus, for each element of A there 1s
exactly one ordered pair in f whose
first element equals that element of 4

note: no limitation on number of pairs in f
in which any b€ B may appear



Functions, more traditionally:
given nonempty sets 4 and B,
a function / from A4 to B 1s an assignment of
exactly one element of B to each element of A4

we say that f maps A to B and write:
* fla)=>b (or (a,b)ef as on previous slide):
b 1s the image of a
a1s a preimage of b
* for any element of B, there may be
any number of elements of 4 mapping to it



function f from A4 to B

e f1A—> B
(note: same arrow as before, different meaning)

* f goes from domain A to codomain B

* fhasrange (A)= {beB|dacA fla)=b} < B
= Vbef(A) dacA fla)=b,
a property that does not necessarily hold for B

* for § c A, the image of S under f1s defined as
AS)={b|beB and dseS f(s)=b}
= Sls) [ sed;  f4)



Operations on functions

* sum and product of two functions /, g: 4 — R:

sum: f+g: A —> R (ftg)(x)=f(x)tg(x)
product: fg: A — R: (f2)(x) = f(x)g(x)

* 1n general: f, g: A — B inherit operations on B
 compositionof f:4—> B and g: B —> C':

gof:A—>C:(ge f)x)=g(f(x))

Example
f:setof students > R?, g:R3—{1,15,2,2.5,...,5,5.5,6}
AAmy) = (H, M, F) 1s triple of Amy’s average homework grade (H),
midterm grade (M), and final grade (F)
g(x,y,2z) = [[0.3x+0.2y+0.5z]] (with [[.]] rounding to nearest half point)
then (go f)(Amy) is Amy’s overall grade

but (fog)(Anna) is not defined



Simple properties of functions
fiA—>R
* f1s increasing:

VxeAVyed x>y — f(x) = fy)
* fisstrictly increasing:

VxedV yed x>y — f(x)>Ay)
* f1is decreasing:

VxeAVyed x>y — f(x) <Ay)

* fis strictly decreasing:
VxedV yed x>y — f(x) <Ay)



Interesting properties of functions, /: 4 > B

* f1S one-to-one or injective or an injection
it Va,a,€ed fla,)=fa,) > a=a,
ifft Va,a,€eAd a#a, > fla)) #Aa,):
no ““collisions”

* f1s onto or surjective or a surjection
iff (A4)=28B
iff VbeB daeA fla) = b:
everything in B 1s reached

* f1s one-to-one correspondence or bijection
iff f1s one-to-one and onto

ift VbeB dlacA fla)=>b
* 1njection f: A — B 1s byection f: 4 — f(A)



inverse of a function

injection f: A — B, thus byjection f: A — f(A4)
Vbe f(A)dlacA f(a)=b
let g = {(b,a): be f(A),acA, la)=b} C f(A) x A
then g 1s relation — f(4) x 4 such that

Vbef(A) AlacA (b,a)eg (i.e., g(b)=a)
where (b,a)eg <> fla)=>

thus g 1s a function from f(A4) to 4 such that
g(b)=a ifand only 1f fla) =b

this g is called the inverse 1! of f:
function f!: f{4) — A such that
f(b)=a ifand only if fla)="b



remarks on inverse
injection f/: A — B, byjection f: 4 — f(A),
the latter’s inverse f!: (4) —> A
with f1(b) = a if and only if fla)=0b

* YaecAd Y (fla))=a
= o f:4— f(A) > A, the identity on A

* Vbefld) fif'(b))=b
—=fo f: f(4) — A— f(A), identity on f(4)

* 1t may be the case that f can be computed while
computing /! is intractable, or vice versa



examples
£ R > Rdefined by ix) =x2 (f: x> x%):
* f notinjective: (1)=f(-1)=1
* “same” f: R,, = R 1s injective
* “same” f: R, = R 1s injective too
* f notsurjective: 3yeR VxeR f(x) #y (y <0)
=—(VyeRdxeR f(x)=y)
¢ “same” f: R =& R, 1s surjective
¢ “same” f: R,; = R, 1s bijection
with inverse f1: R,; > Ry f1(y) = \y
* or “same” f: R, &> R s bijection
with inverse f1: R,; &> R_,: f1(y) = —y



more examples
« o:R—> R, g(x)=x¥"1forkeN (g:xr x*"):
g 1s Injective and surjective, and thus bijective

example of simple non-trivial bijective
correspondence between R and R

e h:R—{n/2+kn : keZ} — R, h(x) = tan(x)
h surjective, not injective: VkeZ h(kmn)=0
“same” h: (—m/2,m/2) — R ( open interval notation! )
1s injective while staying surjective:
h: (—nt/2,mt/2) = R, h(x) = tan(x), 1s bijection
implies byjection between (—n/2,7/2) and R
—> arctan = tan~! is bijection R — (—m/2,7/2)



More on cardinalities

sets A and B have by definition the
same cardinality 1f thereis a
bijection between 4 and B

a set S 1s countable 1f S 1s finite or has
the same cardinality as N
if § countable and infinite: |S| = X,: “aleph null”

= countability of S implies that S can be
“enumerated’: S 1s finite, or if not
there exists a byjection /: N — §,
S={fi):i € N} = {/(0), (1), A(2), ... }
a set that 1s not countable 1s uncountable:
any enumeration will miss (infinitely many) elements



N, Z, Q are countable

to prove this, establish bijections between
* NandN:

the 1dentity map
 Z and N:
define f: Z — N:
stretch all “non-negatives” to “even”:
if z> 0 then f(z) =2z
fill the odd holes with the negatives:
if z <0 then f(z)=—-(2z+ 1)
this 7 1s “obviously” a bijection
with f~1: N > Z, n— (-1)"[(nt+1)/2]

 ( and N: next slide
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Q is countable — less hand-waving

surjection N, , = Q. suffices (hold breath at duplicate)

Let I, = {(k—1)k/2,1+(k—1)k/2,.. . k(k+1)/2—1}
fork=1,2,3, ...
then |[,| = k(k+1)/2 -1 — (k—1)k/12 +1 =k
[, =10}, ,=1{1,2}, [,={3,4,5},1,= {6,7.,8,9}, ...
= U;]k =Nyo and k=l >, NI, =0
— VnelN,, dlk nel}; denote this k by k(1) (=[(1+(1+8))12])
(k(0)=1, k(1)=k(2)=2, k(3)=k(4)=k(5)=3, k(6)=k(7)=k(8)=k(9)=4)
define i(n) = n — (k(n)—1)k(n)/2: 0 <i(n) < k(n)
k(n)—i(n) .

g:Nyy—>Q, nt—> 1S surjective
B i(n)+1




R is uncountable — not too precisely

Proof by contradiction: assume R 1s countable,
implying countability of R,= {xeR: 0 <x <1}
— d byjection 2 : N., & R, :
h(l)=x,, h(2)=x,, ..., h(i))=x,, ...
and {x;, X5, ..., X;, ... } = R4
x;=0.d,d-d...d,... is x;’s decimal expansion
fori=1,2,3,...,let6.#d,, 0,€{0,1,...,9}
(“Cantor diagonalization argument”)
and lety = 0.0,0,0;...0;...
—>y e R, and Vi y#x,
—> contradiction with {x, x,, ..., x;, ...}

R,



(un)countability examples

the set of real numbers with decimal representation consisting

of just digits ““7” and possibly a single decimal point:

7, 77,77, 777,77.77,7.77, 7777,777.7,77.71,7.777, ...

first list the single one consisting of a single digit, then the two
consisting of two digits, followed by the three consisting of
three digits, etc. = countable

as above, but allow digits 8 as well: use Cantor’s

diagonalization to show that for any enumeration an element

can be found that will not be enumerated by picking 7 if d,=8

and 8 1f d.=7 (see previous slide) = uncountable

the set of all finite length bit strings:

0,1, 00,01,10,11, 000,001,010,011,100,101,110,111, ...

for k=1,2, 3, ... in succession list the 2% bit strings of length k&
(by counting in binary from 0 to 2*—1 and using leading
zeros) = countable



Special functions

* rounding:
R—H>Z,x— Lx_\, the integer nearest to x
(halves rounded down; - —x] goes up)

e floor:
R > Z, x> Lx], the largest integer < x
* ceiling:
R>Z,x— rx_\, the smallest integer > x

* entier:
R., — Z, x — [x], the integer part of x

e factoral: .
N —>Z,n— n!, with n!= Hi ; note that 0!=1
i=1



example
| 3x =]+ x+1/3 ]+ | x+2/3]

Proof.letx=n + g withn e Zand 0<¢g<1
case analysis:

e 1f0<¢e<1/3,then3x=3n+5,0<0<1,
13x]=3nand|x|=|x+1/3]=x+2/3]=n
e 111/3<e<2/3,then3x=3nt+1+6, 0<0<1,
|3x]=3n+1and | x]=|x+1/3]= n,
but | x+2/3 | = n+1
e 1f2/3<e<1,then3x=3n+2+6, 0<0<1,
|3x]=3n+2 and| x| = n,
but [ x+1/3]=[x+2/3 1= n+1




Another example
| 2x =[x+ x=2%]

normally, one takes x =m — g with 0 < < 1
instead, letx=n + g withn € Zand 0<g<1,
then|x|=n+1

e 1f0<eV then2x=2n+2ewith0<2e<1,
so| 2x|=2n+ l;
| x— | = n then implies 2x =[x ]+ x-%]
e 1f%h<eg<L],then2x=2n+2swith 1 <2&<2,
so| 2x|=2n+ 2;
| x| = n+1 then implies | 2x | =[x |+[x=2%]



Any questions?

Concludes 3" section of Chapter 2



Introduction to sequences and summations

informally:
a sequence 1s a possibly infinite ordered list with
a first, a second, a third, a fourth, ... element

slightly more formally:
a sequence 1s a function f from a subset of
the set of natural numbers (with or without 0)
to some other set §:
A, Ay, A3, ... €S
or
Ay, Ay, Ay, ... €O
where a; = f(i)



common sequences

*« 0,1,2,3,4, ...

sequence of natural numbers, n, =i, i > 0
* 0,2,4,6,8, ...

sequence of even numbers > 0, m; = 2i,i > 0
* 1,1,2,6,24, 120, 720,...

sequence of factorials, f/,=1i!,i >0
¢« 2,3,5,7,11,13,17,19, ...

sequence of primes, p; 1s ith prime, i > 1
« 0,1,1,2,3,5,8,13,21,...

Fibonacci sequence:

F.=ifori=0,1, F,=F _,+tF_, fori=>2



crazy sequences

e 2,2,3,3,4,4,5,5,5,5,5,6, ...
b, = bitlengthof p, i > 1

 4,3,3,5,4,4,3,5,5,4,3,6, ...

(in French: 4,2, 4,5,6,4,3,4,4,4,3,4, ...

* 5,6,5,6,5,5,7,6,5,5,8,7, ...

(in French: 7,8,9,9,9,7,8,8,8,7,7,8, ...

* glven an integer sequence

(suchas 171,277,367, 561, 567, 18881,...

how to find what 1t 1s?
encyclopedia of integer sequences
http://oeis.org/



Remarks on sequences

sequences do not necessarily consist of integers:
¢ x;=1/i (>0)
« y.=r'forreR

sequences are not necessarily infinite:
* 5= ith SD student (lexicographically or sciper-wise)

sequences are not necessarily well understood

« 3.5,17,257,65537, ..., primes 2% +1
(are there more than five Fermat primes?)

« 3,5,7,11,13,17,19,29,31,41, 43, ...
(are there infinitely many twin primes?)

* primes 123456789101112131415...: any?



Common sequences

arithmetic progression: a sequence of the form
a,atd, at2d, at3d,... ,atkd, ... for a,d € R
with initial term a and common difference d:

ith term a, equals a+id (Vi>0a,—a;, ,=d)

geometric progression: a sequence of the form
g, gr,gr’, gri, ... grk .. for g, re R
with initial term ¢ and common ratio r.

ith term g, equals gr' (Vi>0g/g. ,=7r)



Often needed: summations of sequences

* sum of elements of arithmetic progression
a, atd, at2d, at3d,... , atkd
* sum of elements of geometric progression

2 543 k
g, ar, gr-, or’, ... , grk,
* and sums of elements of similar sequences

k
for a;= atid determine a,+a,+..+a, =) a,
i=0

k
for g,=gr' determine g, +g, +...+ g, = Zgi
=0

— need to be familiar with methods
to calculate such sums



Sum of an arithmetic progression

a,=a+id,thena,+a,+a,+...+a, = Zai
k k k
= Z(a+id):Za +Zid
i=0
= (k+1)a+le
here we use : = (k+1a+ k(k+1) = (k+1)(a+%)

(5t

i=1
let j=k+1-i, thus i=k+1—j; j=kwheni=1 and ;=1 wheni=k; thus

di = Zk:+2(k+1 J)J/z
- Zk: +Z(k+1 ])j/z (Zk:(j+(k+1—j))]/2

k(k +1)
2

I
™M= T

(k+1)J/2—

I
—_

J



Often needed: summations of sequences

* sum of elements of arithmetic progression
a,atd, at2d, a+3d, ..., atkd: ;

tfor a,= a+id determine a,+a, +...+a, = Zai

. 1=0
* sum of elements of geometric progression

8, 8r, &I, g1, ..., gr":
for g; = gr determme gy T & T--T&, = ng

j=0
* sums of elements of related progressmn

r,2r2, 3r3, 414, .

for, = (r' determme L+t +..+t = E t,
/=1
— need to be familiar with those sums

and with the methods to calculate them



Sum of a geometric progression, I
g =grtheng +g +g,+.+g, =D g=) g =g r
i=0 i=0 i=0
k
letS:Zri; if r=0then S =1

assume:r;tOtherlS—rZ:rl1 thus S/r—Zr’l—l/r+Zr’1
leti—1=j,then j = Olfz—land] k— 11fz—kthus

k-1 k
S/r=1/r+2rj :1/r+£2rj]—rk —1/r+S—-r"
=0

j=0

with » # 0 it follows that S =1+ S —**' and thus, if » # 1, that

k+1
s=" 11 (also valid for 7 = 0;if » =1, then S = k +1)
-
note : for 0 < r < 1it follows that Z r = IL
i=0 —r



Sum of a geometric progression, 11

k
another way to compute § = Z r'
i=0

let f(X)=1+X+X>+.+X" (then f(r)=S)
Xf(X)= X+X+..+X"+x"
thus Xf (X)— f(X)=X"" -1 and f(X)= X;_II (if X #1)

k
cleaner (without dots): /(X) =) X', then

(X -1 7(X) :(X—I)ZXi :XZX" —ZX"

k+1 k+1

—ZX’“ ZXZ 2X'= ZXZ 22X ZX’

:Xk+1 _I_ZXi _XO _ZXi :Xk+1 -1
i=1 =



Sum of an arithmetic progression

a,=a+id,thena,+a,+a,+...+a, = Zai
k k k
= Z(a+id):Za +Zid
i=0
= (k+1)a+le
here we use : = (k+1a+ k(k+1) = (k+1)(a+%)

(5t

i=1
let j=k+1-i, thus i=k+1—j; j=kwheni=1 and ;=1 wheni=k; thus

di = Zk:+2(k+1 J)J/z
- Zk: +Z(k+1 ])j/z (Zk:(j+(k+1—j))]/2

k(k +1)
2

I
™M= T

(k+1)J/2—

I
—_

J



k
Similar sum 7'(7) = Z ir'’”", determined in two ways (for r # 1)
i=0

k+1
rt—1

leadsto T'(r) = S"(r):

k
| differentiating S(r)=) r' =
i=0

r—1

(k+Dr*(r=D) =" =1) _ kr'' —(k+1D)r" +1
(r=1)° (r=1)°

T'(r)y=S'(r)=

2 directly:

Z r 4 Z (i—1r'"

M~
~.
Nhd

L
Il

I'(r) =

~i
I

b
LI

1
1 k

| _ L | o
= r'+ rz (i—1)r r'+r) ir
i=l i=0

~.

bl
|
»N
—_—

1=

)

)

b

. —1 +r(T(r)—kr'™") = T(r)follows

r—1

(page 166/157 : more summations, will be proved later)



Section 2.6/3.8: matrices
* 1f you’re not familiar with matrices: read it

* kxm rectangles of numbers:
k rows, m columns

* originally to represent linear
transformations from R” to R*

* wide variety of applications



Matrix product, traditional computation
VikmnelZ.,

kxm matrix 4=(a, ), J1L i1

mxn matrix B=(b,)"- /|,

AB =C1s kxn matrix C = (Clg)l ~1,¢=1

with ¢, = i laybﬂ

c;, 1s mner product of A's ith row and B's /th column

e computation in kxmxn multiplications
(disregarding additions)

* not commutative: even if 4B and BA both
defined, they are not necessarily equal



fye, matrix multiplication exponent

e traditional: nxn matrices A and B,
computation of AB in n* multiplications
e can 1t be done faster?

yes, but no one |
|
knows how fast: S

~n*3?7best so far |

(compare to INteger = o wmms ™
multiplication...)

L

Il.
Coppersmith, Winegrad 4 Stothers
Williams

Yoar

1950 Gl 1970 [ G [ e 20 201

(picture shamelessly copied from wikipedia)
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