
 

Chapter 2, continuation of basic material: 
      sets, functions, sequences, and sums 
 
here: 
1. brief review of basic set-related concepts 
2. brief mention of functions 
3. focus on sequences and sums 
 
1&2 (sets and functions) 
     if not thoroughly familiar with this 
        material, carefully read Chapter 2 
  



using un-axiomatic treatment: a set is an 
    unordered collection of  distinct objects 
 

A is the set of primes less than 13: 
  A = {2,3,5,7,11} 
     = {3,7,11,5,2} = {2,2,3,5,5,5,7,11} 
  2, 5 � A: 2 and 5 belong to A, are elements of A 
 

B is the set of non-negative integers at most 100: 
  B = {0, 1, 2, …, 100} 
 

note usage of  “{”,  “}”  and  “…”  (ellipses) 
 

be unambiguous: A = {2, 3, …, 11} is inadequate 
 



Set builder notation: 
for propositional function  P(x) 

“S = {x | P(x) }”   and   “S = {x : P(x) }” 
are both short-hands for 

�x ( x � S  l  P(x) ) 
�  S is the set of all x such that P(x) holds 
 (in some implicit domain that is often omitted) 
 

examples: 
A = {p | p prime and p < 13} 
B = {n | n integer and 0 d n d 100} 
D = {n | n = 2m for an integer m} (even integers) 

 

again: always be clear and unambiguous 
 



Common sets 
• N is the set of natural numbers 

• for some 0 � N, others prefer 0 � N 
no big deal, as long as you’re clear 

• B = Nd100  
• Z  is the set of the integers  (D = 2Z) 
• Q is the set of the rational numbers 
• R is the set of the real numbers 
• C is the set of the complex numbers  



Cardinality of a set S, denoted |S|  or  #S  
|S| =  #S = number of distinct elements of S  

|A| = #A = 5 
|B| = #B = 101 

A and B are examples of finite sets 
 

examples of infinite sets: 
#N = #Z = #Q = f 
#R = #C = f 

 

and: #N = #Z = #Q z #R = #C 



empty set, the set without elements: �  (={}) 
singleton set, a set with a single element 

example: {�}, set containing the empty set 
equality between sets A and B: 

A = B  if and only if  �x (x�A l x�B) 
subset: set A is subset of set B 

if and only if  �x (x�A o x�B) 
notation: A � B     (similar: A � B l �x (x�B o x�A))  

proper subset: set A is proper subset of set B 
if and only if A � B and A z B 
notation: A � B  (careful with � versus �) 

thm: for every set A: � � A and A � A 
(prove � � A using a vacuous proof) 



Power set P(A) of set A: set of all subsets of A 
 

for every set A: � � A and A � A, 
   thus � � P(A) and A � P(A) 

 

Let A = {1,2,3}, then  P(A)= 
{�,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}} 
note: elements of P(A) are (sub)sets, elements 

 of these (sub)sets may again be (sub)sets: 
 

Let B = �, then P(B) = {�}, so P(�) = {�} 
 

Let C = P(�) = {�}, 
P(C) = {�, {�}}, so P(P(�)) = {�, {�}} 

 

Let D = P(P(�)) = {�, {�}}, so P(D) =  
P(P(P(�))) = {�,{�},{{�}},{�,{�}}} 



fye, power set of P(P(P(�))) = {�,{�},{{�}},{�,{�}}}: 
 

P(P(P(P(�)))) = { 
 

�, 
 

{�},  {{�}},  {{{�}}},  {{�,{�}}}, 
 

{�,{�}},  {�,{{�}}},  {�,{�,{�}}}, 
{{�},{{�}}},  {{�},{�,{�}}}, 
{{{�}},{�,{�}}}, 
 

{�,{�},{{�}}},   {�,{�},{�,{�}}},  
{�,{{�}},{�,{�}}},  {{�},{{�}},{�,{�}}}, 
 

{�,{�},{{�}},{�,{�}}} 
} 



Cartesian product AuB of sets A and B: 
set of all ordered pairs (a,b), a � A and b � B: 

AuB = {(a,b) | a � A � b � B} 
 

example: 
A = {H,L,S}, B = {A,B,L’,P}: 

AuB = { (H,A),(H,B),(H,L’),(H,P), 
                (L,A),(L,B),(L,L’),(L,P), 
                 (S,A),(S,B),(S,L’),(S,P) } 
#(AuB) = #A u # B  =  3 u 4 = 12, 

 

relation from A to B: a subset of AuB 
 

example: 
{(H,B),(H,L’),(H,P),(L,P)} � AuB 



for sets A, B, C 
AuBuC = {(a,b,c) | a � A � b � B � c � C} 

but 
(AuB)uC = {(d,c) | d � AuB � c � C} 



Set operations 
to create new sets from existing sets (similar 
to using logical operators to create compound 
propositions from existing propositions) 
 

complement:     = {x| x � A} = {x| �(x � A)} 
(always with respect to some universe U)   

union:      A�B = {x| x�A � x�B} 
intersection:  A�B = {x| x�A � x�B} 
        (A and B disjoint if A�B = �) 
difference:     A�B = A\B = {x| x�A � �(x � B)}  
symmetric difference: 
                       A�B = A ' B = {x| x�A � x�B} 
 

Note: correspondence with logical operations (and  “�”   l  “o”) 

A



set operations lead to set identities (page 132 (124)) 
such as 

A�(B�C) = (A�B) � (A�C)   (distributive law) 
 
 

                               (De Morgan’s laws) 
 
… 

 

which can proved 
1. with membership tables 
2. using both � and � 
3. “directly” 

BABA � �

BABA � �



example: Prove                      
 

1. with membership table (i.e., truth table for x�A, etc.): 
 
 
 
 
 
 
 

2.  using both  �  and  �,  thus proving: 
 

                             and                        
 

3. directly 

BABA � �

BABA ��� BABA ���

0000111
0100101
0010110
1111000

BABABABABA ���



using � and �  to prove that 
 �: let   

 
 
 

 
 
 
 
 
   it follows that 
 

all “o” can be replaced by “l” (or “{”), 
from which  “�” follows as well   
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BAx ��o
)( BAx ���o
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)( BxAx ����o

)()( BxAx ���o
BxAx ���o

BAx ��o
BABA ���



direct proof of 
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prove A�(A�B)=A by showing � and � 
 

• A�(A�B) � A: 
if x � A�(A�B), then x � A or x � A�B, 
so: 

x � A 
or 

(x � A and x � B) 
in either case x � A 

it thus follows that A�(A�B) � A 
 

• A�(A�B) � A: 
if x � A, then x � A�(A�B) 

it thus follows that A�(A�B) � A 



Note on Venn diagrams 
• Venn diagrams are pictures of sets, 

drawn as subsets of some universal set U 
• may be used for pictorial purposes 

but never for proofs 
• three sets intersecting 

in all possible ways: 
 
 
 

• four sets: 
 



Note on Venn diagrams 
• Venn diagrams are pictures of sets, 

drawn as subsets of some universal set U 
• may be used for pictorial purposes 

but never for proofs 
• 5, 7, and 11 sets intersecting 

in all possible ways: 
 



Returning to sets, a note on cardinalities 
given finite sets A and B, what is |A�B| ? 
 

|A| is the cardinality of A 
|B| is the cardinality of B 

|A| + |B| is the cardinality of the union 
A�B of A and B, where all elements that 
belong to both A and B are counted twice 

 

thus: |A| + |B| = | A�B | + | A�B | 
 

equivalently: | A�B | = |A| + |B| � | A�B | 
 

known as 
      the principle of inclusion and exclusion 
(and an example of “proof by intimidation”; how to really prove this? ) 



Inclusion/exclusion example 
A = {n � Z : 0 d n d 100, n multiple of 5} 

= {n � Z : 0 d n d 100, 5|n} 
B = {n � Z : 0 d n d 100, 7|n} 
 

� |A| = 21, |B | = 15 
what is |A�B| ? 
 

A�B = {n � Z : 0 d n d 100, 5|n or 7|n } 
 

|A| + |B| = 21 +15 = 36 
counts multiples of both 5 and 7 twice: 

A�B = {n � Z : 0 d n d 100, 5|n and 7|n } 
         = {0, 35, 70} 
|A�B| = |A| + |B| � |A�B| = 21 + 15 � 3 = 33 



more complicated 
A = {n � Z : 0 d n d 100, 5|n},  |A| = 21 
B = {n � Z : 0 d n d 100, 7|n},  |B| = 15 
C = {n � Z : 0 d n d 100, 3|n},  |C| = 34 
 

what is |A�B�C| ? 



 
|A�B�C|=|A|+|B|+|C|�|A�B|�|A�C|�|B�C|+|A�B�C| 
 
Proof: Let D = B�C, then 
|A�B�C| = |A�D| 

  = |A|+|D|�|A�D| 
  = |A|+|B�C| � |A�(B�C)| 
  = |A|+|B|+|C|�|B�C| � |(A�B)�(A�C)| 

 

The result now follows from 
|(A�B)�(A�C)| = |A�B|+|A�C|�|(A�B)�(A�C)| 
    = |A�B|+|A�C|�|A�B�C| 



more complicated 
A = {n � Z : 0 d n d 100, 5|n}, |A| = 21 
B = {n � Z : 0 d n d 100, 7|n}, |B| = 15 
C = {n � Z : 0 d n d 100, 3|n}, |C| = 34 
 

what is |A�B�C| ? 
A�B = {0, 35, 70}: |A�B| = 3 
A�C = {n � Z : 0 d n d 100, 3|n and 5|n} 
         = {0, 15, 30, 45, 60, 75, 90}: |A�C| = 7 
B�C = {n � Z : 0 d n d 100, 3|n and 7|n} 
         = {0, 21, 42, 63, 84}: |B�C| = 5 
A�B�C = {0}: |A�B�C| = 1 
|A�B�C|=|A|+|B|+|C|�|A�B|�|A�C|�|B�C|+|A�B�C| 
               = 21+15+34�3�7�5+1 = 56 



Questions? 
 

Concludes 2nd section of Chapter 2 



Functions 
given nonempty sets A and B, 
a function f  from A to B is an assignment of 
exactly one element of B to each element of A 

 
What does that mean? Can’t we do better? 



Functions 
first an unusually complicated definition 
 

reminder: a relation from A to B is 
   an arbitrary subset of AuB  
 

A and B nonempty sets, function f from A to B is:  
a relation from A to B 

such that �a�A �!b�B (a,b)�f 
 

thus, for each element of A there is 
exactly one ordered pair in f whose  
first element equals that element of A 

 

note: no limitation on number of pairs in f 
  in which any b�B may appear 



Functions, more traditionally: 
given nonempty sets A and B, 
a function f  from A to B is an assignment of 
exactly one element of B to each element of A 

 

we say that f maps A to B and write: 
• f(a) = b  (or (a,b)�f  as on previous slide): 

b is the image of a 
a is  a  preimage of b 

• for any element of B, there may be 
any number of elements of A mapping to it 



function f  from A to B 
 

• f: A o B 
  (note: same arrow as before, different meaning) 
 

• f  goes from domain A to codomain B 
 

• f has range f(A) = {b�B| �a�A f(a)=b}  �  B 
� �b�f(A) �a�A f(a)=b,  
a property that does not necessarily hold for B  

 

• for S � A, the image of S under f is defined as 
     f(S) = {b | b�B and �s�S f(s)=b} 
            = {f(s) | s�S} �  f(A) 



Operations on functions 
 

• sum and product of two functions f, g: A o R: 
 

sum:  f+g: A o R: (f+g)(x) = f(x)+g(x) 
product: fg: A o R:  (fg)(x) = f(x)g(x) 

 

• in general: f, g: A o B inherit operations on B 
 

• composition of  f: A o B  and  g: B o C : 
 

    
 
Example 
f: set of students o R3,    g: R3 o{1, 1.5, 2, 2.5, …, 5, 5.5, 6} 
 f(Amy) = (H, M, F) is triple of Amy’s average homework grade (H),  

    midterm grade (M), and final grade (F) 
g(x,y,z) = [[0.3x+0.2y+0.5z]] (with [[.]] rounding to nearest half point) 

then                           is Amy’s overall grade 
 

but                            is not defined 

))(())((:: xfgxfgCAfg  o $$

)Amy)(( fg $

)Anna)(( gf $



Simple properties of functions 
 

f: A o R 
 
 

• f is increasing: 
� x�A � y�A  x > y o f(x) t f(y) 

 

• f is strictly increasing:  
� x�A � y�A  x > y o f(x) > f(y) 

 

• f is decreasing: 
� x�A � y�A  x > y o f(x) d f(y) 

 

• f is strictly decreasing:  
� x�A � y�A  x > y o f(x) < f(y) 



Interesting properties of functions, f: A o B 
 

• f is  one-to-one  or  injective  or an  injection 
   iff   �a1,a2�A   f(a1) = f(a2) o a1= a2 
   iff   �a1,a2�A  a1z a2 o f(a1) z f(a2): 
                           no “collisions” 

 

• f is  onto  or  surjective  or a  surjection 
   iff   f(A) = B 
   iff   �b�B �a�A f(a) = b: 
      everything in B is reached 

 

• f is  one-to-one correspondence  or  bijection 
   iff   f is one-to-one and onto 
   iff  �b�B �!a�A f(a) = b 

 

• injection f: A o B is bijection f: A o f(A) 



inverse of a function 
 

injection f: A o B, thus bijection f: A o f(A) 
�b� f(A) �!a�A f(a) = b 

 

let g = {(b,a): b� f(A), a�A, f(a)= b} � f(A) u A 
then g is relation � f(A) u A such that 

�b�f(A) �!a�A (b,a)�g   (i.e., g(b) = a) 
where  (b,a)�g l f(a) = b  
 

thus g is a function from f(A) to A such that 
g(b) = a  if and only if  f(a) = b  

 

this g is called the inverse f�1 of f: 
  function f�1: f(A) o A such that  

f�1(b) = a  if and only if  f(a) = b 



remarks on inverse 
 

injection f: A o B, bijection f: A o f(A), 
the latter’s inverse f�1: f(A) o A 

with f�1(b) = a  if and only if  f(a) = b 
 

• �a�A   f�1(f(a)) = a 
�                                         , the identity on A 

 

• �b�f(A)  f(f�1(b)) = b 
�                                             , identity on f(A) 

 

• it may be the case that f can be computed while 
computing f�1 is intractable, or vice versa 

AAfAff oo� )(:1 $

)()(:1 AfAAfff oo�$



examples 
 

f: R o R defined by f(x) = x2                        : 
• f  not injective: f(1) = f (�1) = 1 
• “same” f: Rt0 o R is injective 
• “same” f: Rd0 o R is injective too  
 

• f  not surjective: �y�R �x�R f(x) z y  (y < 0) 
      { � ( �y�R �x�R f(x) = y ) 

• “same” f: R o Rt0 is surjective 
 

• “same” f: Rt0 o Rt0 is bijection 
with inverse f�1: Rt0 o Rt0: f�1(y) = �y 

 

• or “same” f: Rd0 o Rt0is bijection 
with inverse f�1: Rt0 o Rd0 : f�1(y) = ��y 

):( 2xxf �



more examples 
 

• g: R o R, g(x) = x2k+1 for k�N                         : 
 

g is injective and surjective, and thus bijective 
 

example of simple non-trivial bijective 
correspondence between R and R 

 

• h: R �{S/2+kS : k�Z} o R, h(x) = tan(x) 

h surjective, not injective: �k�Z h(kS)=0 
 

“same” h: (�S/2,S/2) o R ( open interval notation! ) 
is injective while staying surjective: 

h: (�S/2,S/2) o R, h(x) = tan(x), is bijection 
 

implies bijection between (�S/2,S/2) and R 
� arctan = tan�1 is bijection R o (�S/2,S/2) 

):( 12 �kxxg �



More on cardinalities 
 

sets A and B have by definition the 
            same cardinality     if there is a  
      bijection between A and B 
 

a set S is countable if S is finite or has  
the same cardinality as N 

if S countable and infinite: |S| = �0: “aleph null” 
 

� countability of S implies that S can be 
“enumerated”: S is finite, or if not 

there exists a bijection f: N o S, 
S = {f(i) : i � N} = {f(0), f(1), f(2), … }   

 

a set that is not countable is uncountable: 
  any enumeration will miss (infinitely many) elements 



N, Z, Q are countable 
 

to prove this, establish bijections between 
• N and N: 

the identity map 
• Z and N: 

define f : Z o N: 
stretch all “non-negatives” to “even”: 

if z t 0 then  f(z) = 2z 
fill the odd holes with the negatives: 

if z < 0 then  f(z) = �(2z + 1) 
this  f  is “obviously” a bijection 
with  f �1 : N o Z,  n      (�1)n[(n+1)/2] 

 

• Q and N: next slide 
�
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      bijection between A and B 
 

a set S is countable if S is finite or has  
the same cardinality as N 

if S countable and infinite: |S| = �0: “aleph null” 
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�



Q is countable – less hand-waving 
 

surjection Nt0 o Q>0 suffices (hold breath at duplicate) 
 

Let Ik = {(k�1)k/2,1+(k�1)k/2,…,k(k+1)/2�1} 
              for k = 1, 2, 3, … 
then |Ik| = k(k+1)/2 �1 � (k�1)k/2 +1 = k 
I1 = {0}, I2 = {1,2}, I3 = {3,4,5}, I4 = {6,7,8,9}, … 
 

�                 Nt0  and 
 

�  �n�Nt0 �!k  n�Ik; denote this k by k(n) (=[(1+�(1+8n))/2]) 
 (k(0)=1, k(1)=k(2)=2, k(3)=k(4)=k(5)=3, k(6)=k(7)=k(8)=k(9)=4)  
define i(n) = n � (k(n)�1)k(n)/2:  0 d i(n) < k(n) 
 

g : Nt0 o Q>0  
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R is uncountable – not too precisely 
 

Proof by contradiction: assume R is countable, 
 

implying countability of R1= {x�R: 0 < x < 1} 
 

� � bijection h : N>0 o R1 : 
 

h(1) = x1, h(2) = x2, …, h(i) = xi, … 
    and {x1, x2, …, xi, … } = R1  

 

xi = 0.di1di2di3…dii…  is  xi’s decimal expansion 
 

for i = 1, 2, 3, …, let Gi z dii, Gi�{0,1,…,9} 
        (“Cantor diagonalization argument”) 

and let y = 0.G1G2G3…Gi… 
� y � R1  and  �i  y z xi 
� contradiction with {x1, x2, …, xi, …}= R1  



(un)countability examples 
 

• the set of real numbers with decimal representation consisting 
of just digits “7” and possibly a single decimal point: 
7,   77, 7.7,    777, 77.7, 7.77,    7777, 777.7, 77.77, 7.777, … 
first list the single one consisting of a single digit, then the two 

consisting of two digits, followed by the three consisting of 
three digits, etc. � countable 

• as above, but allow digits 8 as well: use Cantor’s 
diagonalization to show that for any enumeration an element 
can be found that will not be enumerated by picking 7 if dii=8 
and 8 if dii=7 (see previous slide) � uncountable 

• the set of all finite length bit strings: 
0,1,  00,01,10,11,  000,001,010,011,100,101,110,111, … 
for  k =1, 2, 3, … in succession list the 2k bit strings of length k 

(by counting in binary from 0 to 2k �1 and using leading 
zeros) � countable 



Special functions 
 

• rounding: 
R o Z,         ¬xº, the integer nearest to x 

           (halves rounded down; �¬�xº goes up)   
 

• floor: 
R o Z,         ¬x¼, the largest integer d x  

 

• ceiling: 
R o Z,         ªxº, the smallest integer t x 

 

• entier: 
Rt0 o Z,         [x], the integer part of x  

 

• factorial: 
N o Z, n       n!, with               ; note that 0!=1  

�x

�x

�x

� �
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example 
 

¬3x¼ = ¬x¼ + ¬x+1/3¼ + ¬x+2/3¼ 
 

Proof. let x = n + H, with n � Z and  0 d H < 1 
case analysis: 
 

• if 0 d H < 1/3, then 3x = 3n + G, 0 d G < 1, 
¬3x¼ = 3n and ¬x¼ = ¬x+1/3¼ = ¬x+2/3¼ = n 

• if 1/3 d H < 2/3, then 3x = 3n+1+G, 0 d G < 1, 
¬3x¼ = 3n+1 and ¬x¼ = ¬x+1/3¼ = n, 

                  but ¬x+2/3¼ = n+1 
• if 2/3 d H < 1, then 3x = 3n+2+G, 0 d G < 1, 

¬3x¼ = 3n+2 and ¬x¼ = n,  
             but ¬x+1/3¼ = ¬x+2/3¼ = n+1 



Another example 
 

ª2xº = ªxº + ªx�½º 
 

normally, one takes x = m � H, with 0 d H < 1 
instead, let x = n + H, with n � Z and  0 < H d 1, 

then ªxº = n + 1  
 

• if 0 < H d ½, then 2x = 2n + 2H with 0 < 2H d 1, 
so ª2xº = 2n + 1;  

ªx�½º = n then implies ª2xº = ªxº + ªx�½º 
 

• if ½ < H d 1, then 2x = 2n + 2H with 1 < 2H d 2, 
so ª2xº = 2n + 2; 
ªx�½º = n+1 then implies ª2xº = ªxº + ªx�½º 



Any questions? 
 

Concludes 3rd section of Chapter 2 



Introduction to sequences and summations 
 

informally: 
a sequence is a possibly infinite ordered list with 
a first, a second, a third, a fourth, … element 
 

slightly more formally: 
a sequence is a function f from a subset of 
the set of natural numbers (with or without 0)  
to some other set S: 
 a1, a2, a3, … � S 

or 
a0, a1, a2, … � S  

where ai = f(i) 



common sequences 
 

• 0, 1, 2, 3, 4, … 
sequence of natural numbers, ni = i, i t 0 

• 0, 2, 4, 6, 8, … 
sequence of even numbers t 0, mi = 2i, i t 0 

• 1, 1, 2, 6, 24, 120, 720,… 
sequence of factorials, fi = i!, i t 0 

• 2, 3, 5, 7, 11, 13, 17, 19, … 
sequence of primes, pi is ith prime, i t 1 

• 0, 1, 1, 2, 3, 5, 8, 13, 21,… 
Fibonacci sequence: 

Fi = i for i = 0, 1,   Fi = Fi�2+Fi�1 for i t 2  
 



crazy sequences 
 

• 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5, 6, … 
 bi =  bitlength of pi, i t 1 

• 4, 3, 3, 5, 4, 4, 3, 5, 5, 4, 3, 6, … 
(in French: 4, 2, 4, 5, 6, 4, 3, 4, 4, 4, 3, 4, …) 

• 5, 6, 5, 6, 5, 5, 7, 6, 5, 5, 8, 7, … 
(in French: 7, 8, 9, 9, 9, 7, 8, 8, 8, 7, 7, 8, ...) 

• given an integer sequence 
(such as 171, 277, 367, 561, 567, 18881,…), 
how to find what it is? 

encyclopedia of integer sequences 
http://oeis.org/ 

 
 



Remarks on sequences 
 

sequences do not necessarily consist of integers: 
• xi =1/i (i>0) 
• yi = ri for r�R 
 

sequences are not necessarily infinite: 
• si = ith SD student (lexicographically or sciper-wise) 
 

sequences are not necessarily well understood  
• 3, 5, 17, 257, 65537, …, primes 

(are there more than five Fermat primes?) 
• 3, 5, 7, 11, 13, 17, 19, 29, 31, 41, 43, … 

(are there infinitely many twin primes?) 
• primes 123456789101112131415…: any? 

122 �
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Common sequences 
 

arithmetic progression: a sequence of the form 
a, a+d, a+2d, a+3d,… , a+kd, …  for  a, d � R 

with initial term a and common difference d: 
 

ith term ai equals a+id   (�i>0 ai � ai�1 = d ) 
 

 

geometric progression: a sequence of the form 
g, gr, gr2, gr3,… , grk, … for  g, r� R 

with initial term g and common ratio r. 
 

ith term gi equals gri    (�i>0 gi/gi�1 = r ) 
 



Often needed: summations of sequences 
 

• sum of elements of arithmetic progression 
a, a+d, a+2d, a+3d,… , a+kd 

• sum of elements of geometric progression 
g, gr, gr2, gr3,… , grk, 

• and sums of elements of similar sequences  
 
for ai = a+id  determine 
 
 

for gi = gri  determine 
 

� need to be familiar with methods 
to calculate such sums 
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Sum of an arithmetic progression 
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Often needed: summations of sequences 
 

• sum of elements of arithmetic progression 
a, a+d, a+2d, a+3d, …, a+kd: 

for ai = a+id  determine 
 

• sum of elements of geometric progression 
g, gr, gr2, gr3, …, grm: 

for gj = grj  determine 
 

• sums of elements of related progression 
r, 2r2, 3r3, 4r4, …, nrn: 

 

 
� need to be familiar with those sums 

and with the methods to calculate them 
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Sum of a geometric progression, I 
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Sum of a geometric progression, II 
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Sum of an arithmetic progression 
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Section 2.6/3.8: matrices 
 

• if you’re not familiar with matrices: read it 
 

• kum rectangles of numbers: 
k rows, m columns 

 

• originally to represent linear 
transformations from Rm to Rk  

 

• wide variety of applications 



Matrix product, traditional computation 
 

� k, m, n � Z>0: 
 
 
 
 
 
 
 
 

• computation in kumun multiplications 
(disregarding additions) 

• not commutative: even if AB and BA both 
defined, they are not necessarily equal  

columnth  s' and rowth  s' ofproduct inner  is 

:       with

)(matrix     is 

,)(matrix    

,)(matrix    
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fye, matrix multiplication exponent 
 

• traditional: nun matrices A and B, 
computation of AB in n3 multiplications 

• can it be done faster? 
 
yes, but no one 
knows how fast: 
 
a n2.3727 best so far 
 

(compare to integer 
multiplication...) 
 
 
                                                               (picture shamelessly copied from wikipedia) 
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