Chapter 2, continuation of basic material: sets, functions, sequences, and sums
here:

1. brief review of basic set-related concepts
2. brief mention of functions
3. focus on sequences and sums
$1 \& 2$ (sets and functions)
if not thoroughly familiar with this material, carefully read Chapter 2
using un-axiomatic treatment: a set is an unordered collection of distinct objects
A is the set of primes less than 13:

$$
\begin{aligned}
A & =\{2,3,5,7,11\} \\
& =\{3,7,11,5,2\}=\{2,2,3,5,5,5,7,11\}
\end{aligned}
$$

$$
2,5 \in A: 2 \text { and } 5 \text { belong to } A \text {, are elements of } A
$$

B is the set of non-negative integers at most 100:

$$
B=\{0,1,2, \ldots, 100\}
$$

note usage of " $\{$ ", " $\}$ " and "..." (ellipses) be unambiguous: $A=\{2,3, \ldots, 11\}$ is inadequate

Set builder notation:

for propositional function $P(x)$

$$
" S=\{x \mid P(x)\} " \text { and } " S=\{x: P(x)\} "
$$

are both short-hands for

$$
\forall x(x \in S \leftrightarrow P(x))
$$

$\Rightarrow S$ is the set of all x such that $P(x)$ holds (in some implicit domain that is often omitted)
examples:

$$
\begin{aligned}
& A=\{p \mid p \text { prime and } p<13\} \\
& B=\{n \mid n \text { integer and } 0 \leq n \leq 100\} \\
& D=\{n \mid n=2 m \text { for an integer } m\} \text { (even integers) }
\end{aligned}
$$ again: always be clear and unambiguous

Common sets

- \mathbf{N} is the set of natural numbers
- for some $0 \in \mathbf{N}$, others prefer $0 \notin \mathbf{N}$ no big deal, as long as you're clear
- $B=\mathbf{N}_{\leq 100}$
- \mathbf{Z} is the set of the integers $(D=2 \mathbf{Z})$
- \mathbf{Q} is the set of the rational numbers
- \mathbf{R} is the set of the real numbers
- \mathbf{C} is the set of the complex numbers

Cardinality of a set S, denoted $|S|$ or $\# S$

$|S|=\# S=$ number of distinct elements of S

$$
\begin{aligned}
& |A|=\# A=5 \\
& |B|=\# B=101
\end{aligned}
$$

A and B are examples of finite sets examples of infinite sets:

$$
\begin{aligned}
& \# \mathbf{N}=\# \mathbf{Z}=\# \mathbf{Q}=\infty \\
& \# \mathbf{R}=\# \mathbf{C}=\infty \\
& \text { and: } \# \mathbf{N}=\# \mathbf{Z}=\# \mathbf{Q} \neq \# \mathbf{R}=\# \mathbf{C}
\end{aligned}
$$

empty set, the set without elements: $\varnothing(=\{ \})$ singleton set, a set with a single element example: $\{\varnothing\}$, set containing the empty set equality between sets A and B :
$A=B$ if and only if $\forall x(x \in A \leftrightarrow x \in B)$
subset: $\operatorname{set} A$ is subset of set B
if and only if $\forall x(x \in A \rightarrow x \in B)$
notation: $A \subseteq B \quad($ similar: $A \supseteq B \leftrightarrow \forall x(x \in B \rightarrow x \in A))$
proper subset: set A is proper subset of set B if and only if $A \subseteq B$ and $A \neq B$ notation: $A \subset B$ (careful with \subseteq versus \subset)
thm: for every set $A: \varnothing \subseteq A$ and $A \subseteq A$ (prove $\varnothing \subseteq A$ using a vacuous proof)

Power set $P(A)$ of set A : set of all subsets of A for every set $A: \varnothing \subseteq A$ and $A \subseteq A$, thus $\varnothing \in P(A)$ and $A \in P(A)$
Let $A=\{1,2,3\}$, then $P(A)=$ $\{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$ note: elements of $P(A)$ are (sub)sets, elements of these (sub)sets may again be (sub)sets:
Let $B=\varnothing$, then $P(B)=\{\varnothing\}$, so $P(\varnothing)=\{\varnothing\}$ Let $C=P(\varnothing)=\{\varnothing\}$,

$$
P(C)=\{\varnothing,\{\varnothing\}\}, \text { so } P(P(\varnothing))=\{\varnothing,\{\varnothing\}\}
$$

$$
\text { Let } D=P(P(\varnothing))=\{\varnothing,\{\varnothing\}\} \text {, so } P(D)=
$$

$$
P(P(P(\varnothing)))=\{\varnothing,\{\varnothing\},\{\{\varnothing\}\},\{\varnothing,\{\varnothing\}\}\}
$$

fye, power set of $P(P(P(\varnothing)))=\{\varnothing,\{\varnothing\},\{\{\varnothing\}\},\{\varnothing,\{\varnothing\}\}\}$:

$$
\begin{aligned}
& P(P(P(P(\varnothing))))=\{ \\
& \quad \varnothing, \\
& \quad\{\varnothing\},\{\{\varnothing\}\},\{\{\{\varnothing\}\}\},\{\{\varnothing,\{\varnothing\}\}\}, \\
& \{\varnothing,\{\varnothing\}\},\{\varnothing,\{\{\varnothing\}\}\},\{\varnothing,\{\varnothing,\{\varnothing\}\}\}, \\
& \{\{\varnothing\},\{\varnothing,\}\},\{\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}, \\
& \{\{\{\varnothing\}\},\{\varnothing,\{\varnothing\}\}\}, \\
& \{\varnothing,\{\varnothing\},\{\{\varnothing\}\},\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}, \\
& \{\varnothing,\{\{\varnothing\}\},\{\varnothing,\{\varnothing\}\}\},\{\{\varnothing\},\{\{\varnothing\}\},\{\varnothing,\{\varnothing\}\}\}, \\
& \{\varnothing,\{\varnothing\},\{\{\varnothing\}\},\{\varnothing,\{\varnothing\}\}\}
\end{aligned}
$$

Cartesian product $A \times B$ of sets A and B : set of all ordered pairs $(a, b), a \in A$ and $b \in B$:

$$
A \times B=\{(a, b) \mid a \in A \wedge b \in B\}
$$

example:

$$
\begin{aligned}
& A=\{\mathrm{H}, \mathrm{~L}, \mathrm{~S}\}, B=\left\{\mathrm{A}, \mathrm{~B}, \mathrm{~L}^{\prime}, \mathrm{P}\right\}: \\
& A \times B=\{ (\mathrm{H}, \mathrm{~A}),(\mathrm{H}, \mathrm{~B}),\left(\mathrm{H}, \mathrm{~L}^{\prime}\right),(\mathrm{H}, \mathrm{P}) \\
&(\mathrm{L}, \mathrm{~A}),(\mathrm{L}, \mathrm{~B}),\left(\mathrm{L}, \mathrm{~L}^{\prime}\right),(\mathrm{L}, \mathrm{P}) \\
&\left.(\mathrm{S}, \mathrm{~A}),(\mathrm{S}, \mathrm{~B}),\left(\mathrm{S}, \mathrm{~L}^{\prime}\right),(\mathrm{S}, \mathrm{P})\right\} \\
& \#(A \times B)= \# A \times \# B=3 \times 4=12
\end{aligned}
$$

relation from A to B : a subset of $A \times B$ example:

$$
\left\{(\mathrm{H}, \mathrm{~B}),\left(\mathrm{H}, \mathrm{~L}^{\prime}\right),(\mathrm{H}, \mathrm{P}),(\mathrm{L}, \mathrm{P})\right\} \subset A \times B
$$

for sets A, B, C

$$
A \times B \times C=\{(a, b, c) \mid a \in A \wedge b \in B \wedge c \in C\}
$$

but

$$
(A \times B) \times C=\{(d, c) \mid d \in A \times B \wedge c \in C\}
$$

Set operations

to create new sets from existing sets (similar to using logical operators to create compound propositions from existing propositions)
complement: $\quad \bar{A}=\{x \mid x \notin A\}=\{x \mid \neg(x \in A)\}$
(always with respect to some universe U)
union:

$$
A \cup B=\{x \mid x \in A \vee x \in B\}
$$

intersection: $A \cap B=\{x \mid x \in A \wedge x \in B\}$

$$
(A \text { and } B \text { disjoint if } A \cap B=\varnothing)
$$

difference: $\quad A-B=A \backslash B=\{x \mid x \in A \wedge \neg(x \in B)\}$ symmetric difference:

$$
A \oplus B=A \Delta B=\{x \mid x \in A \oplus x \in B\}
$$

Note: correspondence with logical operations (and " \subseteq " \leftrightarrow " \rightarrow ")
set operations lead to set identities (page 132 (124)) such as

$$
\begin{aligned}
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \quad \text { (distributive law) } \\
& \overline{A \cap B}=\bar{A} \cup \bar{B} \quad \text { (De Morgan's laws) }
\end{aligned}
$$

which can proved

1. with membership tables
2. using both \subseteq and \supseteq
3. "directly"
example: Prove $\overline{A \cup B}=\bar{A} \cap \bar{B}$
4. with membership table (i.e., truth table for $x \in A$, etc.):

A	B	$A \cup B$	$\overline{A \cup B}$	\bar{A}	\bar{B}	$\bar{A} \cap \bar{B}$
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

2. using both \subseteq and \supseteq, thus proving:

$$
\overline{A \cup B} \subseteq \bar{A} \cap \bar{B} \text { and } \overline{A \cup B} \supseteq \bar{A} \cap \bar{B}
$$

3. directly
using \subseteq and \supseteq to prove that $\overline{A \cup B}=\bar{A} \cap \bar{B}$
\subseteq : let $x \in A \cup B$
$\rightarrow x \notin A \cup B$
$\rightarrow \neg(x \in A \cup B)$
$\rightarrow \neg(x \in A \vee x \in B)$
$\rightarrow \neg(x \in A) \wedge \neg(x \in B)$
$\rightarrow(x \notin A) \wedge(x \notin B)$
$\rightarrow x \in \bar{A} \wedge x \in \bar{B}$
$\rightarrow x \in \bar{A} \cap \bar{B}$
it follows that $\overline{A \cup B} \subseteq \bar{A} \cap \bar{B}$
all " \rightarrow " can be replaced by " $\leftrightarrow "$ (or " $\equiv "$),
from which " \supseteq " follows as well

direct proof of $\overline{A \cup B}=\bar{A} \cap \bar{B}$

$$
\begin{aligned}
\overline{A \cup B} & =\{x \mid x \notin A \cup B\} \\
& =\{x \mid \neg(x \in(A \cup B))\} \\
& =\{x \mid \neg(x \in A \vee x \in B)\} \\
& =\{x \mid \neg(x \in A) \wedge \neg(x \in B)\} \\
& =\{x \mid(x \notin A) \wedge(x \notin B)\} \\
& =\{x \mid x \in \bar{A} \wedge x \in \bar{B}\} \\
& =\{x \mid x \in \bar{A} \cap \bar{B}\} \\
& =\bar{A} \cap \bar{B}
\end{aligned}
$$

prove $A \cup(A \cap B)=A$ by showing \subseteq and \supseteq

- $A \cup(A \cap B) \subseteq A$:
if $x \in A \cup(A \cap B)$, then $x \in A$ or $x \in A \cap B$,
so:

$$
x \in A
$$

or

$$
(x \in A \text { and } x \in B)
$$

in either case $x \in A$
it thus follows that $A \cup(A \cap B) \subseteq A$

- $A \cup(A \cap B) \supseteq A$:
if $x \in A$, then $x \in A \cup(A \cap B)$
it thus follows that $A \cup(A \cap B) \supseteq A$

Note on Venn diagrams

- Venn diagrams are pictures of sets, drawn as subsets of some universal set U
- may be used for pictorial purposes but never for proofs
- three sets intersecting in all possible ways:

- four sets:

Note on Venn diagrams

- Venn diagrams are pictures of sets, drawn as subsets of some universal set U
- may be used for pictorial purposes but never for proofs
- 5, 7 , and 11 sets intersecting in all possible ways:

Returning to sets, a note on cardinalities given finite sets A and B, what is $|A \cup B|$?
$|A|$ is the cardinality of A
$|B|$ is the cardinality of B
$|A|+|B|$ is the cardinality of the union $A \cup B$ of A and B, where all elements that belong to both A and B are counted twice thus: $|A|+|B|=|A \cup B|+|A \cap B|$ equivalently: $|A \cup B|=|A|+|B|-|A \cap B|$ known as
the principle of inclusion and exclusion
(and an example of "proof by intimidation"; how to really prove this?)

Inclusion/exclusion example

$A=\{n \in \mathbf{Z}: 0 \leq n \leq 100, n$ multiple of 5$\}$ $=\{n \in \mathbf{Z}: 0 \leq n \leq 100,5 \mid n\}$
$B=\{n \in \mathbf{Z}: 0 \leq n \leq 100,7 \mid n\}$
$\Rightarrow|A|=21,|B|=15$
what is $|A \cup B|$?
$A \cup B=\{n \in \mathbf{Z}: 0 \leq n \leq 100,5 \mid n$ or $7 \mid n\}$
$|A|+|B|=21+15=36$
counts multiples of both 5 and 7 twice:
$A \cap B=\{n \in \mathbf{Z}: 0 \leq n \leq 100,5 \mid n$ and $7 \mid n\}$ $=\{0,35,70\}$
$|A \cup B|=|A|+|B|-|A \cap B|=21+15-3=33$

more complicated

$A=\{n \in \mathbf{Z}: 0 \leq n \leq 100,5 \mid n\},|A|=21$
$B=\{n \in \mathbf{Z}: 0 \leq n \leq 100,7 \mid n\},|B|=15$
$C=\{n \in \mathbf{Z}: 0 \leq n \leq 100,3 \mid n\},|C|=34$
what is $|A \cup B \cup C|$?
$|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|+|A \cap B \cap C|$
Proof: Let $D=B \cup C$, then
$|A \cup B \cup C| \quad=|A \cup D|$
$=|A|+|D|-|A \cap D|$
$=|A|+|B \cup C|-|A \cap(B \cup C)|$
$=|A|+|B|+|C|-|B \cap C|-|(A \cap B) \cup(A \cap C)|$
The result now follows from
$|(A \cap B) \cup(A \cap C)| \quad=|A \cap B|+|A \cap C|-|(A \cap B) \cap(A \cap C)|$

$$
=|A \cap B|+|A \cap C|-|A \cap B \cap C|
$$

more complicated

$$
\begin{aligned}
& A=\{n \in \mathbf{Z}: 0 \leq n \leq 100,5 \mid n\},|A|=21 \\
& B=\{n \in \mathbf{Z}: 0 \leq n \leq 100,7 \mid n\},|B|=15 \\
& C=\{n \in \mathbf{Z}: 0 \leq n \leq 100,3 \mid n\},|C|=34
\end{aligned}
$$

what is $|A \cup B \cup C|$?
$A \cap B=\{0,35,70\}:|A \cap B|=3$
$A \cap C=\{n \in \mathbf{Z}: 0 \leq n \leq 100,3 \mid n$ and $5 \mid n\}$

$$
=\{0,15,30,45,60,75,90\}:|A \cap C|=7
$$

$B \cap C=\{n \in \mathbf{Z}: 0 \leq n \leq 100,3 \mid n$ and $7 \mid n\}$ $=\{0,21,42,63,84\}:|B \cap C|=5$
$A \cap B \cap C=\{0\}:|A \cap B \cap C|=1$
$|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|+|A \cap B \cap C|$

$$
=21+15+34-3-7-5+1=56
$$

Questions?

Concludes $2^{\text {nd }}$ section of Chapter 2

Functions

given nonempty sets A and B, a function f from A to B is an assignment of exactly one element of B to each element of A

What does that mean? Can't we do better?

Functions

first an unusually complicated definition
reminder: a relation from A to B is an arbitrary subset of $A \times B$
A and B nonempty sets, function f from A to B is: a relation from A to B
such that $\forall a \in A \exists!b \in B(a, b) \in f$
thus, for each element of A there is exactly one ordered pair in f whose first element equals that element of A
note: no limitation on number of pairs in f in which any $b \in B$ may appear

Functions, more traditionally:

given nonempty sets A and B,
a function f from A to B is an assignment of exactly one element of B to each element of A
we say that f maps A to B and write:

- $f(a)=b$ (or $(a, b) \in f$ as on previous slide): b is the image of a a is a preimage of b
- for any element of B, there may be any number of elements of A mapping to it
function f from A to B
- $f: A \rightarrow B$
(note: same arrow as before, different meaning)
- f goes from domain A to codomain B
- f has range $f(A)=\{b \in B \mid \exists a \in A f(a)=b\} \subseteq B$ $\Rightarrow \forall b \in f(A) \exists a \in A f(a)=b$, a property that does not necessarily hold for B
- for $S \subseteq A$, the image of S under f is defined as

$$
\begin{aligned}
f(S) & =\{b \mid b \in B \text { and } \exists s \in S f(s)=b\} \\
& =\{f(s) \mid s \in S\} \subseteq f(A)
\end{aligned}
$$

Operations on functions

- sum and product of two functions $f, g: A \rightarrow \mathbf{R}$:

$$
\begin{array}{lll}
\text { sum: } & f+g: A \rightarrow \mathbf{R}: & (f+g)(x)=f(x)+g(x) \\
\text { product: } f g: A \rightarrow \mathbf{R}: & (f g)(x)=f(x) g(x)
\end{array}
$$

- in general: $f, g: A \rightarrow B$ inherit operations on B
- composition of $f: A \rightarrow B$ and $g: B \rightarrow C$:

$$
g \circ f: A \rightarrow C:(g \circ f)(x)=g(f(x))
$$

Example
$f:$ set of students $\rightarrow \mathbf{R}^{3}, \quad g: \mathbf{R}^{3} \rightarrow\{1,1.5,2,2.5, \ldots, 5,5.5,6\}$ $f($ Amy $)=(H, M, F)$ is triple of Amy's average homework grade (H), midterm grade (M), and final grade (F)
$g(x, y, z)=[[0.3 x+0.2 y+0.5 z]]$ (with [[.]] rounding to nearest half point) then $(g \circ f)($ Amy $)$ is Amy's overall grade but $(f \circ g)($ Anna $)$ is not defined

Simple properties of functions
 $f: A \rightarrow \mathbf{R}$

- f is increasing:

$$
\forall x \in A \forall y \in A \quad x>y \rightarrow f(x) \geq f(y)
$$

- f is strictly increasing:

$$
\forall x \in A \forall y \in A \quad x>y \rightarrow f(x)>f(y)
$$

- f is decreasing:

$$
\forall x \in A \forall y \in A \quad x>y \rightarrow f(x) \leq f(y)
$$

- f is strictly decreasing:

$$
\forall x \in A \forall y \in A \quad x>y \rightarrow f(x)<f(y)
$$

Interesting properties of functions, $f: A \rightarrow B$

- f is one-to-one or injective or an injection iff $\forall a_{1}, a_{2} \in A \quad f\left(a_{1}\right)=f\left(a_{2}\right) \rightarrow a_{1}=a_{2}$ iff $\forall a_{1}, a_{2} \in A \quad a_{1} \neq a_{2} \rightarrow f\left(a_{1}\right) \neq f\left(a_{2}\right)$: no "collisions"
- f is onto or surjective or a surjection iff $f(A)=B$ iff $\forall b \in B \exists a \in A f(a)=b$: everything in B is reached
- f is one-to-one correspondence or bijection iff f is one-to-one and onto iff $\forall b \in B \exists!a \in A f(a)=b$
- injection $f: A \rightarrow B$ is bijection $f: A \rightarrow f(A)$

inverse of a function

injection $f: A \rightarrow B$, thus bijection $f: A \rightarrow f(A)$

$$
\forall b \in f(A) \exists!a \in A f(a)=b
$$

let $g=\{(b, a): b \in f(A), a \in A, f(a)=b\} \subseteq f(A) \times A$ then g is relation $\subseteq f(A) \times A$ such that

$$
\begin{aligned}
& \forall b \in f(A) \exists!a \in A(b, a) \in g \quad(\text { i.e., } g(b)=a) \\
& \text { where }(b, a) \in g \leftrightarrow f(a)=b
\end{aligned}
$$

thus g is a function from $f(A)$ to A such that

$$
g(b)=a \text { if and only if } f(a)=b
$$

this g is called the inverse f^{-1} of f :
function $f^{-1}: f(A) \rightarrow A$ such that

$$
f^{-1}(b)=a \text { if and only if } f(a)=b
$$

remarks on inverse

injection $f: A \rightarrow B$, bijection $f: A \rightarrow f(A)$,
the latter's inverse $f^{-1}: f(A) \rightarrow A$
with $f^{-1}(b)=a$ if and only if $f(a)=b$

- $\forall a \in A \quad f^{-1}(f(a))=a$
$\Rightarrow f^{-1} \circ f: A \rightarrow f(A) \rightarrow A$, the identity on A
- $\forall b \in f(A) f\left(f^{-1}(b)\right)=b$
$\Rightarrow f \circ f^{-1}: f(A) \rightarrow A \rightarrow f(A)$, identity on $f(A)$
- it may be the case that f can be computed while computing f^{-1} is intractable, or vice versa

examples

$f: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=x^{2} \quad\left(f: x \mapsto x^{2}\right):$

- f not injective: $f(1)=f(-1)=1$
- "same" $f: \mathbf{R}_{\geq 0} \rightarrow \mathbf{R}$ is injective
- "same" $f: \mathbf{R}_{\leq 0} \rightarrow \mathbf{R}$ is injective too
- f not surjective: $\exists y \in \mathbf{R} \forall x \in \mathbf{R} f(x) \neq y \quad(y<0)$

$$
\equiv \neg(\forall y \in \mathbf{R} \exists x \in \mathbf{R} f(x)=y)
$$

- "same" $f: \mathbf{R} \rightarrow \mathbf{R}_{\geq 0}$ is surjective
- "same" $f: \mathbf{R}_{\geq 0} \rightarrow \mathbf{R}_{\geq 0}$ is bijection with inverse $f^{-1}: \mathbf{R}_{\geq 0} \rightarrow \mathbf{R}_{\geq 0}: f^{-1}(y)=\sqrt{ } y$
- or "same" $f: \mathbf{R}_{\leq 0} \rightarrow \mathbf{R}_{\geq 0}$ is bijection with inverse $f^{-1}: \mathbf{R}_{\geq 0} \rightarrow \mathbf{R}_{\leq 0}: f^{-1}(y)=-\sqrt{ } y$

more examples

- $g: \mathbf{R} \rightarrow \mathbf{R}, g(x)=x^{2 k+1}$ for $k \in \mathbf{N} \quad\left(g: x \mapsto x^{2 k+1}\right)$: g is injective and surjective, and thus bijective example of simple non-trivial bijective correspondence between \mathbf{R} and \mathbf{R}
- $h: \mathbf{R}-\{\pi / 2+k \pi: k \in \mathbf{Z}\} \rightarrow \mathbf{R}, h(x)=\tan (x)$ h surjective, not injective: $\forall k \in \mathbf{Z} h(k \pi)=0$
"same" $h:(-\pi / 2, \pi / 2) \rightarrow \mathbf{R}$ (open interval notation!) is injective while staying surjective:
$h:(-\pi / 2, \pi / 2) \rightarrow \mathbf{R}, h(x)=\tan (x)$, is bijection implies bijection between $(-\pi / 2, \pi / 2)$ and \mathbf{R} $\Rightarrow \arctan =\tan ^{-1}$ is bijection $\mathbf{R} \rightarrow(-\pi / 2, \pi / 2)$

More on cardinalities

sets A and B have by definition the same cardinality if there is a bijection between \boldsymbol{A} and \boldsymbol{B}
a set S is countable if S is finite or has the same cardinality as \mathbf{N}
if S countable and infinite: $|S|=\aleph_{0}$: "aleph null"
\Rightarrow countability of S implies that S can be "enumerated": S is finite, or if not there exists a bijection $f: \mathbf{N} \rightarrow S$,

$$
S=\{f(i): i \in \mathbf{N}\}=\{f(0), f(1), f(2), \ldots\}
$$

a set that is not countable is uncountable: any enumeration will miss (infinitely many) elements
$\mathbf{N}, \mathbf{Z}, \mathbf{Q}$ are countable to prove this, establish bijections between

- \mathbf{N} and \mathbf{N} :
the identity map
- \mathbf{Z} and \mathbf{N} :
define $f: \mathbf{Z} \rightarrow \mathbf{N}$:
stretch all "non-negatives" to "even":

$$
\text { if } z \geq 0 \text { then } f(z)=2 z
$$

fill the odd holes with the negatives:

$$
\text { if } z<0 \text { then } f(z)=-(2 z+1)
$$

this f is "obviously" a bijection
with $f^{-1}: \mathbf{N} \rightarrow \mathbf{Z}, n \mapsto(-1)^{n}[(n+1) / 2]$

- \mathbf{Q} and \mathbf{N} : next slide

More on cardinalities

sets A and B have by definition the same cardinality if there is a bijection between \boldsymbol{A} and \boldsymbol{B}
a set S is countable if S is finite or has the same cardinality as \mathbf{N}
if S countable and infinite: $|S|=\aleph_{0}$: "aleph null"
\Rightarrow countability of S implies that S can be "enumerated": S is finite, or if not there exists a bijection $f: \mathbf{N} \rightarrow S$,

$$
S=\{f(i): i \in \mathbf{N}\}=\{f(0), f(1), f(2), \ldots\}
$$

a set that is not countable is uncountable: any enumeration will miss (infinitely many) elements
$\mathbf{N}, \mathbf{Z}, \mathbf{Q}$ are countable to prove this, establish bijections between

- \mathbf{N} and \mathbf{N} :
the identity map
- \mathbf{Z} and \mathbf{N} :
define $f: \mathbf{Z} \rightarrow \mathbf{N}$:
stretch all "non-negatives" to "even":

$$
\text { if } z \geq 0 \text { then } f(z)=2 z
$$

fill the odd holes with the negatives:

$$
\text { if } z<0 \text { then } f(z)=-(2 z+1)
$$

this f is "obviously" a bijection
with $f^{-1}: \mathbf{N} \rightarrow \mathbf{Z}, n \mapsto(-1)^{n}[(n+1) / 2]$

- \mathbf{Q} and \mathbf{N} : next slide

Q is countable - less hand-waving

surjection $\mathbf{N}_{\geq 0} \rightarrow \mathbf{Q}_{>0}$ suffices (hold breath at duplicate)
Let $I_{k}=\{(k-1) k / 2,1+(k-1) k / 2, \ldots, k(k+1) / 2-1\}$ for $k=1,2,3, \ldots$
then $\left|I_{k}\right|=k(k+1) / 2-1-(k-1) k / 2+1=k$
$I_{1}=\{0\}, I_{2}=\{1,2\}, I_{3}=\{3,4,5\}, I_{4}=\{6,7,8,9\}, \ldots$
$\Rightarrow \bigcup_{k=1}^{\infty} I_{k}=\mathbf{N}_{\geq 0}$ and $k \neq \ell \rightarrow I_{k} \cap I_{\ell}=\varnothing$
$\Rightarrow \forall n \in \mathbf{N}_{\geq 0} \exists!k \quad n \in I_{k} ;$ denote this k by $k(n)(=[(1+\sqrt{ }(1+8 \mathrm{n})) / 2])$
$(k(0)=1, k(1)=k(2)=2, k(3)=k(4)=k(5)=3, k(6)=k(7)=k(8)=k(9)=4)$ define $i(n)=n-(k(n)-1) k(n) / 2: 0 \leq i(n)<k(n)$
$g: \mathbf{N}_{\geq 0} \rightarrow \mathbf{Q}_{>0} \quad n \mapsto \frac{k(n)-i(n)}{i(n)+1}$ is surjective
R is uncountable - not too precisely
Proof by contradiction: assume \mathbf{R} is countable, implying countability of $\mathbf{R}_{1}=\{x \in \mathbf{R}: 0<x<1\}$
$\Rightarrow \exists$ bijection $h: \mathbf{N}_{>0} \rightarrow \mathbf{R}_{1}$:

$$
\begin{aligned}
& h(1)=x_{1}, h(2)=x_{2}, \ldots, h(i)=x_{i}, \ldots \\
& \quad \text { and }\left\{x_{1}, x_{2}, \ldots, x_{i}, \ldots\right\}=\mathbf{R}_{1}
\end{aligned}
$$

$x_{i}=0 . d_{i 1} d_{i 2} d_{i 3} \ldots d_{i i} \ldots$ is x_{i} 's decimal expansion for $i=1,2,3, \ldots$, let $\delta_{i} \neq d_{i i}, \delta_{i} \in\{0,1, \ldots, 9\}$ ("Cantor diagonalization argument") and let $y=0 . \delta_{1} \delta_{2} \delta_{3} \ldots \delta_{i} \ldots$
$\Rightarrow y \in \mathbf{R}_{1}$ and $\forall i \quad y \neq x_{i}$
\Rightarrow contradiction with $\left\{x_{1}, x_{2}, \ldots, x_{i}, \ldots\right\}=\mathbf{R}_{1}$

(un)countability examples

- the set of real numbers with decimal representation consisting of just digits " 7 " and possibly a single decimal point:
$7,77,7.7, \quad 777,77.7,7.77, \quad 7777,777.7,77.77,7.777, \ldots$ first list the single one consisting of a single digit, then the two consisting of two digits, followed by the three consisting of three digits, etc. \Rightarrow countable
- as above, but allow digits 8 as well: use Cantor's diagonalization to show that for any enumeration an element can be found that will not be enumerated by picking 7 if $d_{i i}=8$ and 8 if $d_{i i}=7$ (see previous slide) \Rightarrow uncountable
- the set of all finite length bit strings:
$0,1,00,01,10,11,000,001,010,011,100,101,110,111, \ldots$
for $k=1,2,3, \ldots$ in succession list the 2^{k} bit strings of length k (by counting in binary from 0 to $2^{k}-1$ and using leading zeros) \Rightarrow countable

Special functions

- rounding:
$\mathbf{R} \rightarrow \mathbf{Z}, x \mapsto\lfloor x\rceil$, the integer nearest to x (halves rounded down; $-\lfloor-x\rceil$ goes up)
- floor:
$\mathbf{R} \rightarrow \mathbf{Z}, x \mapsto\lfloor x\rfloor$, the largest integer $\leq x$
- ceiling:
$\mathbf{R} \rightarrow \mathbf{Z}, x \mapsto\lceil x\rceil$, the smallest integer $\geq x$
- entier:
$\mathbf{R}_{\geq 0} \rightarrow \mathbf{Z}, x \mapsto[x]$, the integer part of x
- factorial:
$\mathbf{N} \rightarrow \mathbf{Z}, n \mapsto n!$, with $n!=\prod_{i=1}^{n} i ;$ note that $\mathbf{0}!=\mathbf{1}$

example

$\lfloor 3 x\rfloor=\lfloor x\rfloor+\lfloor x+1 / 3\rfloor+\lfloor x+2 / 3\rfloor$
Proof. let $x=n+\varepsilon$, with $n \in \mathbf{Z}$ and $0 \leq \varepsilon<1$ case analysis:

- if $0 \leq \varepsilon<1 / 3$, then $3 x=3 n+\delta, 0 \leq \delta<1$,

$$
\lfloor 3 x\rfloor=3 n \text { and }\lfloor x\rfloor=\lfloor x+1 / 3\rfloor=\lfloor x+2 / 3\rfloor=n
$$

- if $1 / 3 \leq \varepsilon<2 / 3$, then $3 x=3 n+1+\delta, 0 \leq \delta<1$,

$$
\lfloor 3 x\rfloor=3 n+1 \text { and }\lfloor x\rfloor=\lfloor x+1 / 3\rfloor=n
$$

$$
\text { but }\lfloor x+2 / 3\rfloor=n+1
$$

- if $2 / 3 \leq \varepsilon<1$, then $3 x=3 n+2+\delta, 0 \leq \delta<1$, $\lfloor 3 x\rfloor=3 n+2$ and $\lfloor x\rfloor=n$,
but $\lfloor x+1 / 3\rfloor=\lfloor x+2 / 3\rfloor=n+1$

Another example

$\lceil 2 x\rceil=\lceil x\rceil+\lceil x-1 / 2\rceil$
normally, one takes $x=m-\varepsilon$, with $0 \leq \varepsilon<1$
instead, let $x=n+\varepsilon$, with $n \in \mathbf{Z}$ and $0<\varepsilon \leq 1$,
then $\lceil x\rceil=n+1$

- if $0<\varepsilon \leq 1 / 2$, then $2 x=2 n+2 \varepsilon$ with $0<2 \varepsilon \leq 1$,

$$
\text { so }\lceil 2 x\rceil=2 n+1
$$

$\lceil x-1 / 2\rceil=n$ then implies $\lceil 2 x\rceil=\lceil x\rceil+\lceil x-1 / 2\rceil$

- if $1 / 2<\varepsilon \leq 1$, then $2 x=2 n+2 \varepsilon$ with $1<2 \varepsilon \leq 2$,
so $\lceil 2 x\rceil=2 n+2$;
$\lceil x-1 / 2\rceil=n+1$ then implies $\lceil 2 x\rceil=\lceil x\rceil+\lceil x-1 / 2\rceil$

Any questions?

Concludes $3^{\text {rd }}$ section of Chapter 2

Introduction to sequences and summations

informally:
a sequence is a possibly infinite ordered list with a first, a second, a third, a fourth, ... element slightly more formally: a sequence is a function f from a subset of the set of natural numbers (with or without 0) to some other set S :

$$
a_{1}, a_{2}, a_{3}, \ldots \in S
$$

Or

$$
\begin{aligned}
& \quad a_{0}, a_{1}, a_{2}, \ldots \in S \\
& \text { where } a_{i}=f(i)
\end{aligned}
$$

common sequences

- $0,1,2,3,4, \ldots$
sequence of natural numbers, $n_{i}=i, i \geq 0$
- $0,2,4,6,8, \ldots$
sequence of even numbers $\geq 0, m_{i}=2 i, i \geq 0$
- $1,1,2,6,24,120,720, \ldots$
sequence of factorials, $f_{i}=i!, i \geq 0$
- $2,3,5,7,11,13,17,19, \ldots$
sequence of primes, p_{i} is i th prime, $i \geq 1$
- $0,1,1,2,3,5,8,13,21, \ldots$

Fibonacci sequence:

$$
F_{i}=i \text { for } i=0,1, \quad F_{i}=F_{i-2}+F_{i-1} \text { for } i \geq 2
$$

crazy sequences

- $2,2,3,3,4,4,5,5,5,5,5,6, \ldots$
$b_{i}=$ bitlength of $p_{i}, i \geq 1$
- $4,3,3,5,4,4,3,5,5,4,3,6, \ldots$
(in French: $4,2,4,5,6,4,3,4,4,4,3,4, \ldots$)
- $5,6,5,6,5,5,7,6,5,5,8,7, \ldots$
(in French: $7,8,9,9,9,7,8,8,8,7,7,8, \ldots$)
- given an integer sequence
(such as $171,277,367,561,567,18881, \ldots$),
how to find what it is?
encyclopedia of integer sequences
http://oeis.org/

Remarks on sequences

sequences do not necessarily consist of integers:

- $x_{i}=1 / i(i>0)$
- $y_{i}=r^{i}$ for $r \in \mathbf{R}$
sequences are not necessarily infinite:
- $s_{i}=i$ th SD student (lexicographically or sciper-wise)
sequences are not necessarily well understood
- $3,5,17,257,65537, \ldots$, primes $2^{2^{i}}+1$
(are there more than five Fermat primes?)
- $3,5,7,11,13,17,19,29,31,41,43, \ldots$ (are there infinitely many twin primes?)
- primes $123456789101112131415 \ldots$: any?

Common sequences

arithmetic progression: a sequence of the form
$a, a+d, a+2 d, a+3 d, \ldots, a+k d, \ldots$ for $a, d \in \mathbf{R}$ with initial term a and common difference d :
i th term a_{i} equals $a+i d \quad\left(\forall i>0 a_{i}-a_{i-1}=d\right)$
geometric progression: a sequence of the form
$g, g r, g r^{2}, g r^{3}, \ldots, g r^{k}, \ldots$ for $g, r \in \mathbf{R}$
with initial term g and common ratio r.
i th term g_{i} equals $g r^{i} \quad\left(\forall i>0 g_{i} / g_{i-1}=r\right)$

Often needed: summations of sequences

- sum of elements of arithmetic progression

$$
a, a+d, a+2 d, a+3 d, \ldots, a+k d
$$

- sum of elements of geometric progression

$$
g, g r, g r^{2}, g r^{3}, \ldots, g r^{k}
$$

- and sums of elements of similar sequences
for $a_{i}=a+i d$ determine $a_{0}+a_{1}+\ldots+a_{k}=\sum_{i=0}^{k} a_{i}$
for $g_{i}=g r^{i}$ determine $g_{0}+g_{1}+\ldots+g_{k}=\sum_{i=0}^{k} g_{i}$
\Rightarrow need to be familiar with methods to calculate such sums

Sum of an arithmetic progression

$a_{i}=a+i d$, then $a_{0}+a_{1}+a_{2}+\ldots+a_{k}=\sum_{i=0}^{k} a_{i}$
$=\sum_{i=0}^{k}(a+i d)=\sum_{i=0}^{k} a+\sum_{i=0}^{k} i d$
$=(k+1) a+d \sum_{i=0}^{k} i$
here we use :

$$
=(k+1) a+d \frac{k(k+1)}{2}=(k+1)\left(a+\frac{d k}{2}\right)
$$

$$
\sum_{i=1}^{k} i=\left(\sum_{i=1}^{k} i+\sum_{i=1}^{k} i\right) / 2
$$

let $j=k+1-i$, thus $i=k+1-j ; \quad j=k$ when $i=1$ and $j=1$ when $i=k$; thus

$$
\begin{aligned}
\sum_{i=1}^{k} i & =\left(\sum_{i=1}^{k} i+\sum_{j=1}^{k}(k+1-j)\right) / 2 \\
& =\left(\sum_{j=1}^{k} j+\sum_{j=1}^{k}(k+1-j)\right) / 2=\left(\sum_{j=1}^{k}(j+(k+1-j))\right) / 2 \\
& =\left(\sum_{j=1}^{k}(k+1)\right) / 2=\frac{k(k+1)}{2}
\end{aligned}
$$

Often needed: summations of sequences

- sum of elements of arithmetic progression

$$
a, a+d, a+2 d, a+3 d, \ldots, a+k d:
$$

- sum of elements of geometric progression

$$
g, g r, g r^{2}, g r^{3}, \ldots, g r^{m}
$$

for $g_{j}=g r^{j}$ determine $g_{0}+g_{1}+\ldots+g_{m}=\sum_{j=0}^{m} g_{j}$

- sums of elements of related progression

$$
r, 2 r^{2}, 3 r^{3}, 4 r^{4}, \ldots, n r^{n}:
$$

for $t_{\ell}=\ell r^{\ell}$ determine $t_{1}+t_{2}+\ldots+t_{n}=\sum_{\ell=1}^{n} t_{\ell}$
\Rightarrow need to be familiar with those sums and with the methods to calculate them

Sum of a geometric progression, I

$g_{i}=g r^{i}$, then $g_{0}+g_{1}+g_{2}+\ldots+g_{k}=\sum_{i=0}^{k} g_{i}=\sum_{i=0}^{k} g r^{i}=g \sum_{i=0}^{k} r^{i}$
let $S=\sum_{i=0}^{k} r^{i} ; \quad$ if $r=0$ then $S=1$
assume $r \neq 0$, then $S=r \sum_{i=0}^{k} r^{i-1}$, thus $S / r=\sum_{i=0}^{k} r^{i-1}=1 / r+\sum_{i=1}^{k} r^{i-1}$
let $i-1=j$, then $j=0$ if $i=1$, and $j=k-1$ if $i=k$, thus
$S / r=1 / r+\sum_{j=0}^{k-1} r^{j}=1 / r+\left(\sum_{j=0}^{k} r^{j}\right)-r^{k}=1 / r+S-r^{k}$
with $r \neq 0$ it follows that $S=1+r S-r^{k+1}$ and thus, if $r \neq 1$, that
$S=\frac{r^{k+1}-1}{r-1} \quad$ (also valid for $r=0$; if $r=1$, then $S=k+1$)
note : for $0 \leq r<1$ it follows that $\sum_{i=0}^{\infty} r^{i}=\frac{1}{1-r}$

Sum of a geometric progression, II

another way to compute $S=\sum_{i=0}^{k} r^{i}$
let $f(X)=1+X+X^{2}+\ldots+X^{k}$
(then $f(r)=S$)

$$
X f(X)=\quad X+X^{2}+\ldots+X^{k}+X^{k+1}
$$

thus $X f(X)-f(X)=X^{k+1}-1$ and $f(X)=\frac{X^{k+1}-1}{X-1}($ if $X \neq 1)$ cleaner (without dots): $f(X)=\sum_{i=0}^{k} X^{i}$, then

$$
\begin{aligned}
& (X-1) f(X)=(X-1) \sum_{i=0}^{k} X^{i}=X \sum_{i=0}^{k} X^{i}-\sum_{i=0}^{k} X^{i} \\
& \quad=\sum_{i=0}^{k} X^{i+1}-\sum_{i=0}^{k} X^{i}=\sum_{j=1}^{k+1} X^{j}-\sum_{i=0}^{k} X^{i}=\sum_{i=1}^{k+1} X^{i}-\sum_{i=0}^{k} X^{i} \\
& \quad=X^{k+1}+\sum_{i=1}^{k} X^{i}-X^{0}-\sum_{i=1}^{k} X^{i}=X^{k+1}-1
\end{aligned}
$$

Sum of an arithmetic progression

$a_{i}=a+i d$, then $a_{0}+a_{1}+a_{2}+\ldots+a_{k}=\sum_{i=0}^{k} a_{i}$
$=\sum_{i=0}^{k}(a+i d)=\sum_{i=0}^{k} a+\sum_{i=0}^{k} i d$
$=(k+1) a+d \sum_{i=0}^{k} i$
here we use :

$$
=(k+1) a+d \frac{k(k+1)}{2}=(k+1)\left(a+\frac{d k}{2}\right)
$$

$$
\sum_{i=1}^{k} i=\left(\sum_{i=1}^{k} i+\sum_{i=1}^{k} i\right) / 2
$$

let $j=k+1-i$, thus $i=k+1-j ; \quad j=k$ when $i=1$ and $j=1$ when $i=k$; thus

$$
\begin{aligned}
\sum_{i=1}^{k} i & =\left(\sum_{i=1}^{k} i+\sum_{j=1}^{k}(k+1-j)\right) / 2 \\
& =\left(\sum_{j=1}^{k} j+\sum_{j=1}^{k}(k+1-j)\right) / 2=\left(\sum_{j=1}^{k}(j+(k+1-j))\right) / 2 \\
& =\left(\sum_{j=1}^{k}(k+1)\right) / 2=\frac{k(k+1)}{2}
\end{aligned}
$$

Similar sum $T(r)=\sum_{i=0}^{k} i r^{i-1}$, determined in two ways (for $r \neq 1$)
1 differentiating $S(r)=\sum_{i=0}^{k} r^{i}=\frac{r^{k+1}-1}{r-1}$ leads to $T(r)=S^{\prime}(r)$:

$$
T(r)=S^{\prime}(r)=\frac{(k+1) r^{k}(r-1)-\left(r^{k+1}-1\right)}{(r-1)^{2}}=\frac{k r^{k+1}-(k+1) r^{k}+1}{(r-1)^{2}}
$$

2 directly:

$$
\begin{aligned}
T(r) & =\sum_{i=1}^{k} i r^{i-1} \\
& =\sum_{i=0}^{k-1} r^{i}+r \sum_{i=1}^{k}(i-1) r^{i-2}+\sum_{\substack{i=1 \\
k-1}}^{k}(i-1) r^{i-1} \\
& =\frac{r^{k}-1}{r-1}+r\left(T(r)-k r^{k-1}\right) \Rightarrow r \sum_{i=0}^{k-1} i r^{i-1} \\
& \Rightarrow T(r) \text { follows }
\end{aligned}
$$

(page 166/157 : more summations, will be proved later)

Section 2.6/3.8: matrices

- if you're not familiar with matrices: read it
- $k \times m$ rectangles of numbers: k rows, m columns
- originally to represent linear transformations from \mathbf{R}^{m} to \mathbf{R}^{k}
- wide variety of applications

Matrix product, traditional computation
$\forall k, m, n \in \mathbf{Z}_{>0}$:
$k \times m$ matrix $A=\left(a_{i j}\right)_{i=1, j=1}^{k, \quad m}$,
$m \times n$ matrix $B=\left(b_{j \ell}\right)_{j=1, \ell=1}^{m, n}$,
$A B=C$ is $k \times n$ matrix $C=\left(c_{i \ell}\right)_{i=1, \ell=1}^{k, n}$
with $c_{i \ell}=\sum_{j=1}^{m} a_{i j} b_{j \ell}$:
$c_{i \ell}$ is inner product of $A^{\prime} \mathrm{s} i$ th row and $B^{\prime} \mathrm{s} \ell$ th column

- computation in $k \times m \times n$ multiplications
(disregarding additions)
- not commutative: even if $A B$ and $B A$ both defined, they are not necessarily equal

fye, matrix multiplication exponent

- traditional: $n \times n$ matrices A and B, computation of $A B$ in n^{3} multiplications
- can it be done faster?
yes, but no one knows how fast:
$\sim n^{2.3727}$ best so far
(compare to integer multiplication...)

