
Chapter 3: algorithmic basics 
 

here 
 

•  some very elementary algorithms 
 

•  big-O, other big things, and complexity 



Basic algorithms 
 

consider intuitive algorithm 
that solve simple problems 

 

goal: 
get first grasp of complexity of algorithms: 

algorithm behavior with respect to 
usage of time and space (“memory”) 
depending on the problem “size” 

why? 
to better understand algorithm scalability 
and the “difficulty” of the problems 

 

(like matrix multiplication: how does effort grow?)  
 



What is an “algorithm”? 
 

“finite set of precise (?) instructions 
 to perform a specified task” : 
•  to perform a certain computation 
•  to solve a certain problem 
•  to cook a certain dish 
•  to reach a certain destination 

 

needs to satisfy various obvious requirements: 
•  well-defined input/output behavior 
•  well-defined steps that always work 
•  it terminates (“finite” and “effective”) 
•  must be sufficiently general 

(no attempt at a formal definition)  



First basic problem: finding the maximum 
 

given set A = {a1, a2, a3, …, an} 
the problem: find (index of) “largest” element 

    (largest with respect to some ordering) 
 

“best solution” minimizes the “cost” : 
  number of comparisons between elements of A 
 

set is “unordered collection” 
⇒ as is, all we can do is inspect all elements 
     (see book page 195/169 for “pseudocode”) 
⇒ n - 1 = |A| - 1 comparisons 
 

cost is linear function of |A|: linear algorithm 
 

(size of elements of A not taken into account in cost!) 



Another basic problem: searching 
 

given set A = {a1, a2, a3, …, an} and some x 
the problem: if possible, locate x in A 
(if x ∈ A return i such that ai = x, else return 0) 
 

again, we like to minimize the cost: 
  number of comparisons between a ∈ A and x 
 

set is still an “unordered collection” 
⇒ as is, possibly compare x to all a ∈ A 
     (see book page 196/170 for pseudocode) 
⇒ in the worst case: n = |A| comparisons 
 

cost is linear function of |A|: linear search 
 

(size of elements of A again not taken into account in cost) 



Can we search x in A faster ? 
 

only if more is known about A or x  
 

A = {a1, a2, a3, …, an} could be sorted, 
a1 < a2 < a3 < … < an : 

 

with m = ⎣n/2⎦, compare x and am 
this suffices to remove {a1, a2, a3, …, am-1} or 
{am+1, am+2, am+3, …, an} from consideration 
 

⇒ cost only 1  to divide problem size by two 
⇒ total number of comparisons: about log2(n) 
⇒ logarithmic search 
 

(note: finding maximum in A is now for free) 



Another way to search x in S faster 
 

there may be an “index function” i : A → N≥0 
such that if x ∈ A then ai(x) = x 
 

⇒ cost to locate x is at most one comparison 
(plus evaluation of i(x)) 

 

⇒ constant cost 
 

seen three types of cost functions so far: 
•  constant 
•  logarithmic in problem size 
•  linear in problem size 
all scale well for growing problem sizes 



But what about sorting? 
the problem: 

given a finite sequence of items, “sort” it 
 
intuitively clear what is meant: 

input 
25, 16, 32, 33, 8, 3, 17, 6 

should be transformed into 
3, 6, 8, 16, 17, 25, 32, 33 



Bubble sort 
 

simple iterative solution to sort  a1, a2, a3, …, an 
 

for i = n downto 2: 
put max(a1,a2,a3,…,ai) in ai, at cost i - 1:  
for k = 1 to i - 1: 

if ak > ak+1 then “swap” ak and ak+1 
 

 
overall cost 
 

⇒ cost function quadratic in problem size 
 

but, how does one “swap” elements? 
and, what are we actually counting in our cost? 
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Other naïve iterative approaches to sorting 
 

•  “selection sort” 
for i = 1 to n-1: 

put min(ai, ai+1, …, an) in 
ith position of (a1, a2, a3, …, an)  

 

•  “insertion sort” 
for i = 2 to n: 

insert ai at proper place in 
already sorted list a1, a2, a3, …, ai-1 

 

all these approaches have essentially the  
same cost function as bubble sort: 

i.e., quadratic in problem size 



 

Other naïve iterative approaches to sorting 
 

•  “selection sort” 
for i = 1 to n-1: 

put min(ai, ai+1, …, an) in 
ith position of (a1, a2, a3, …, an)  

 

•  “insertion sort” 
for i = 2 to n: 

insert ai at proper place in 
already sorted list a1, a2, a3, …, ai-1 

 

all these approaches have essentially the  
same cost function as bubble sort: do they? 

i.e., quadratic in problem size 



 

Faster sorting? 
 

•  “bucket sort” 
suppose for each ai its proper location is a 

function of just ai: 
to sort  a1, a2, a3, …, an it suffices 
to call that function n times: 

linear sorting 
 
 

•  in general: 
faster methods use divide and conquer 

and smart data structures 



Questions? 
 

concludes 1st section of Chapter 3 
(with the exception of  “greedy”, 

which we postpone) 



Big-O, Big-Omega, and Big-Theta 
 

motivation: 
want to express how the time 
required by an algorithm depends 
on the size of the problem 

 

two extremes: 
•  precise count of everything involved 

(computer instructions, disk accesses, …) 
as a function of size: 

inconvenient, not always well-defined 
•  “it took a few seconds on my laptop” 

not sufficiently informative: 
what if size doubles? 



Example 
 

assume it took s seconds to find 
the maximum among n unsorted items 

 

how to predict the time required to find the 
maximum among  2n,  3n,  or  m  items?  

  
finding the maximum takes linear time 
⇒ reasonable to predict 

2s,  3s,  and (m/n)s  seconds 



Another example 
 

assume that, for some large n, sorting 
n items using bubble sort took s seconds 

 

how to predict the time required to sort 
2n,  3n,  or  m  items using bubble sort?  

  
sorting using bubble sort is quadratic 
⇒ reasonable to predict 

22s,  32s,  and (m/n)2s  seconds 



Observations on run times 
 

let f(n) estimate time to solve problem of size n 
 

if f(n) = g(n) + h(n) + … + t(n) 
for functions g, h, …, t: N → R 

then the “ultimately largest” of g, h, …, t  
determines f’s behavior when n gets large 

 

example: 
let f(n) = 2n2 + 240n + 9600 
then g(n) = 2n2,  h(n) = 240n,  t(n) = 9600 

 

for small n: t(n) most significant 
then h(n) takes over 

  but ultimately only g(n) is relevant 



Observations on run times 
 

let f(n) estimate time to solve problem of size n 
 

if f(n) = g(n) + h(n) + … + t(n) 
for functions g, h, …, t: N → R 

then the “ultimately largest” of g, h, …, t  
determines f’s behavior when n gets large 

 

let g(n) be f(n)’s “ultimately most relevant part”  
then f(n)’s growth rate is independent 

         of multiplicative constants in g(n): 
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Consequences 
 

When considering a runtime function f(n) 
 

•  Focus on part that grows “fastest” (for n →∞) 
•  Forget about multiplicative constants 
 

Examples: 
•   f(n) = 2n2 + 240n + 9600 

2n2 determines behavior, simplify to just n2 
•   r(n) = 0.0001n2 + 24000n + 96009600 

again, only the n2 is relevant 
•   s(n) = 31(√n)log(n) + nlog10(n) + 167n 

nlog10(n) determines behavior: nlog(n) 
f(n) is O(n2), r(n) is O(n2), s(n) is O(nlog(n)) 



Big-O 
Let f, g R → R 
 

We say that “f(x) is O(g(x))” if  
there are constants C and k such that 

∀ x > k   |f(x)| ≤ C|g(x)| 
 

•  C and k are called the witnesses 
•  “f(x) is big-O of g(x)” 
•  “f is big-O of g” 
 

Note: 
big-O takes “focus” and “forget” into account 
                       “k”               “C” 



Earlier examples 
 

f(n) = 2n2 + 240n + 9600 is O(n2)  
C = 4,  k = 240  are witnesses 
∀ n > 240  |f(n)| ≤ 4|n2| 

 
r(n) = 0.0001n2 + 24000n + 96009600 is O(n2)  

C = 3,  k = 96004800  are witnesses 
∀ n > 96004800 |r(n)| ≤ 3|n2| 

 
s(n) = 31(√n)log(n)+nlog10(n)+167n is O(nlog(n))  

C = 2,  k = 10167  are witnesses 
∀ n > 10167 |s(n)| ≤ 2|nlog(n)| 



Big-O facts 
 

75 is O(1)  and  1 is O(75)  
 

1 is O(n)  but  n is not O(1) 
 

n is O(n2)  but  n2 is not O(n) 
 

n2 is O(n2) and  n2 is O(n3) 
 

n2 is O(6n2+n+3)  and  6n2+n+3 is O(n2) 
 

   O(6n2+n+3) and O(75) are weird&odd, 
  they violate “focus” and “forget” 

 

For constants ai:                  is  O(nd) 
 

            is  O(n2)   
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More big-O facts 
∀u > v,  u, v constant: 

nv  is  O(nu)   but  nu  is not  O(nv) 
 

∀a > 0, b > 0, u > v,  a, b, u, v constant: 
logb(nv)  is  O(loga(nu)) 

loga(nu)  is  O(logb(nv))  
and they are all  O(log(n)) 

 
If f is O(g)  and  g is O(h)  then  f is O(h)  
 
 



Strictly increasing big-O’s 
 

•  log(n) is O(n)  but n is not O(log(n)) 
 

•  important: ∀t>0 ∀ε>0   (log(n))t  is  O(nε) 
(any fixed power of logn loses compared to even the tiniest power of n)  
 

•  n is O(nlog(n))  but nlog(n) is not O(n); 
 

•  Constants b > 1, d > 0:  
nd is O(bn)  but bn  is not O(nd) 

 

bn is O(n!)  but n!  is not O(bn) 
 

•  n! is O(nn)   but nn  is not O(n!) 
 

⇒ strictly increasing complexities: 
O(1), O(log(n)), O(n), O(nlog(n)), 

O(nd) (d > 1), O(bn) (b > 1), O(n!), O(nn) 
 



Sometimes confusing big-O facts 
 

•  although   n! is O(nn)    but    nn  is not O(n!): 
 
 

    log(n!) is O(nlog(n))   and   nlog(n) is O(log(n!) 
 
•  for constants a > b and c > 1: 

⇒ the base of the logarithm matters when the 
logarithm is in the exponent, 

otherwise the base doesn’t matter 
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Proofs of some of the big-O facts 
•  log(n) is O(n) 

As n < 2n (formal proof later), we have log(n) < log(2n) = n, so log(n) is O(n) with witnesses C=k=1. 
 

•  ∀t>0∀ε>0 log(n)t is O(nε) 
Informally: log(nε/t) < nε/t for n large, so log(n) < (t/ε)nε/t and (log(n))t < (t/ε)t nε, so C= (t/ε)t and large k. 

 

•  n is O(nlog(n)) because n < nlog(n) for n > e (so, witnesses C=1, k=e) 
 

•  nlog(n) is not O(n) because nlog(n)/n = log(n) > C for n > eC 
 

•  nk is O(bn): for n large enough klogb(n) < n, thus for n large enough nk < bn  
 

•  bn is not O(nk): for any constant C > 1 and n large enough nlog(b) - klog(n) > log(C), so bn/nk > C 
 

•  bn is O(n!) but n! is not O(bn): (1*2*…*n)/(b*b*…*b) has fixed number of factors < 2 and growing 
(with n) number of factors ≥ 2. 

 

•  n! is O(nn): 
n!=1*2*…*n ≤ n*n*…*n=nn, so n! is O(nn) with witnesses C=1, k=1. 

 

•  nn  is not O(n!) 
 

 

•  log(n!) is O(nlog(n)): 
Because n! ≤ nn, we have log(n!) ≤ log(nn) = nlog(n), so log(n!) is O(nlog(n)) with witnesses C=1, k=1. 

 

•  nlog(n) is O(log(n!)) 
For 0≤i<n we have that (n-i)(i+1) ≥ n, so that (n!)2 ≥ nn and 2log(n!) ≥ nlog(n). It follows that 
nlog(n) is O(log(n!)) with witnesses C=2, k=1 
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Be careful combining big-O’s 
 

f1, f2, g1, g2 R → R, fi(x) is O(gi (x)) for i = 1,2 
 

•  (f1+ f2)(x) is O(max(g1(x),g2(x))) (triangle inequality) 
 

•  (f1f2)(x) is O(g1(x)g2(x)) (trivial) 
 

•  but  f (x) is O(g(x)) does not imply 
              bf (x) is O(bg(x)) (any b>1) 

one example we’ve seen already: 
 

  nlog(n) is O(log(n!)  but  nn  is not O(n!) 
 

an easier example: f(x) = 2x, g(x) = x: 
2x is O(x)  but  22x = (2x)2 is not O(2x) 

  



Big-Omega 
seen that for f, g R → R, “f(x) is O(g(x))” 
if there are constants C and k such that 

∀ x > k   |f(x)| ≤ C|g(x)| 
 

if there are constants C>0, k>0 such that 
∀ x > k   |f(x)| ≥ C|g(x)| 

then “f(x) is Ω(g(x))” 
 

“f(x) is big-Omega of g(x)” 

Page 180 
 
 
 
 
 
 
Page 189 



Big-O and big-Omega 
 

“f(x) is O(g(x))”   ↔  “g(x) is Ω(f(x))” 
 
Not necessarily either 

“f(x) is O(g(x))” or “g(x) is O(f(x))”: 
 

f(x)=sin(x), g(x)=cos(x)  (both O(1)) 

Page 191 
Exerc 26 

 
 

Page 192 
Exerc 41 



Big-Omega versus Big-O 
 
•  Big-O is an upper bound 

“My algorithm runs in O(f)” 
means that it takes at most Cf(n) (n > k)  

•  Big-Omega is a lower bound 
“My algorithm runs in Ω(f)” 
means that it takes at least Cf(n) (n > k) 

•  In literature very often used incorrectly 
 



Big-Theta: both Big-O & Big-Omega 
If  f(x) is O(g(x))  and  f(x) is Ω(g(x))  then 
 

“f(x) is Θ(g(x))” 
 

“f(x) is big-Theta of g(x)” 
 

f(x) is said to be of order g(x) 
 

“f(x) is Θ(g(x))”   ↔    “g(x) is Θ(f(x))” 
 
Example: nlog(n) is of order log(n!) 

(use nn > n! and nn < (n!)2)  

Page 189 
 
 
 
 
 

 
Page 189 
 
 
 
 
 

Page 192 
Exerc 62 



Little-o 
 

“f(x) is o(g(x))” if                     :  
 

 

“f is little-o of g” 
 

⇒ ∀ fixed d, (log(n))d = no(1) for n → ∞ 
 

Find f(n) with (log(n))d = nf(n) and f(n) is o(1): 
 

(log(n))d = edlog(log(n))  and nf(n) = ef(n)log(n)) 
 

thus (log(n))d = nf(n) for                                 ; 
 
                     , so f(n) = o(1)  
 

(any fixed power of logn loses compared to even the tiniest power of n)   

Page 192 
Exerc 50 
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Computational “complexity” 
worst or average case time used by 
algorithms, on input of length n: 
Θ(1)       constant complexity (parity check) 

Θ(log n)  logarithmic complexity (sorted search) 

Θ(n)        linear complexity (search max) 

Θ(n log n)  n log n complexity (fast sorting) 

Θ(n2)      quadratic complexity (bubble sort) 

Θ(n3)      cubic complexity (basic n×n matrix multiply ?? ) 

Θ(nd)      polynomial complexity (d fixed) 
   Θ(?)          sub-exponential complexity (integer factoring) 

Θ(cn)       exponential complexity (c > 1 fixed) 
Θ(n!)      factorial complexity (traveling salesman) 

Θ(nn)      so bad that it does not have a name 

Page 196 
 
 
 
 
 
 
 
 
       Page 
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“Easier” separation of the big-Θ’s 
Fix b > 1, and use  
 

Polynomial 
 

Exponential Θ(bn): 
n strictly bigger than dlogb(n) 

 

Factorial   
 
nlogb(n/e) strictly bigger than n 

 

Even worse                                     : 
strictly bigger than factorial 
because en/√n  is unbounded  

Not in 
Book 
 
 
 
 
 
 
 
 
Stirling’s 
Formula, 
Page 146 
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Sub-exponential complexity 
 

Inputlength n, complexity strictly between 
polynomial=good  and  exponential=bad 
 

Θ(nd) (fixed d > 0)                 Θ(bn) (fixed b > 1) 
 

nd = edlog(n) 

 
⇒ moving from polynomial to exponential 

the exponent pair (0,1) is transformed into (1,0) 
 
 

Example: factoring integer m takes time 
 
 

(inputlength is O(log(m)); all logs natural) 

Not in 
book 
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Concludes 3rd section of Chapter 3 
 

On to sections 3.4-3.7: 
basic number theory 

 

Most already covered in 
Sciences de l’Information 

 
Thus: here we focus on the missing bits 

and a quick reminder of known stuff  



Integer division facts 
 

Integers m ≠ 0, n, a, b, q, s, t ∈ Z: 
 

•  “m divides n”  or  “m|n” 
if there is an integer q with qm=n: 

“m is a factor of n”  
“n is a multiple of m” 
“n is divisible by m” 

 

•  Properties: 
•  if m|a and m|b then m|a+b 
•  if m|a then ∀b ∈ Z  m|ab (also if b=0) 
•  if m|n and n|a (with n≠0) then m|a 
•  if m|a and m|b then ∀s, t ∈ Z m|sa+tb 

 

Pages 
201-202 



More on division 
 

Integers m ≠ 0, n, q, r ∈ Z: 
 

•  “Division algorithm” 
∀n ∈ Z ∀m ∈ Z>0 ∃! q, r ∈ Z 0≤r<m s.t.  

n = mq+r 
•  n is the dividend, m the divisor 
•  q = n div m, the quotient of n and m, 
•  r = n mod m, the remainder 

(upon division of n by m) 
•  m|n ↔ r = n mod m = 0  ↔ m divides n 
•  and         m | n  ↔  n mod m ≠ 0 

    ↔  m does not divide n 
 

Pages 
202-203 
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Modular arithmetic 
 

Let a, b, m∈ Z with m > 0 
•  a is congruent to b modulo m if m | a-b: 

notation: a ≡ b (mod m) (or just a ≡ b mod m) 
•  if m | a-b (i.e., a-b mod m ≠ 0) we write 

a ≡ b (mod m) 
•  Properties: 
•  a and b are congruent modulo m ↔ 

∃ k∈ Z s.t. a = b + km 
•  a ≡ c (mod m), b ≡ d (mod m), then: 

a+b ≡ c+d (mod m),  ab ≡ cd (mod m) 
•  (a+b)mod m=((a mod m)+(b mod m))mod m 
•  ab mod m = ((a mod m)(b mod m))mod m 

Pages 
203-205 

/
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Notational note on modular arithmetic 
 

•  “a mod m”  indicates the calculation  
of the remainder of a upon division by m 

 

•  “a ≡ b (mod m)”  or “a ≡ b mod m” 
indicates that a-b is divisible by m 
(i.e., it says that (a - b) mod m = 0): 

a and b are said to be  
“in the same residue class modulo m” 

 

•  “a ≡ (a mod m) mod m” 
is the (true) proposition that 

a - (a mod m) is divisible by m 
 

•  m is called the modulus   
 

Page 205 



Toy mod application: Caesar’s cipher 
 

•  f: {a,b,c,…,z} → {0,1,2,…,25} bijection 
mapping  a to 0,  b to 1, …,  z to 25 

•  g: {0,1,2,…,25} → {0,1,2,…,25}: 
                                 mod 26 
then g-1(m) = (m-3) mod 26 

 

Caesar’s cipher : 
•  encryption: replace each 

  plaintext character x by f-1(g(f (x))) 
•  Decryption: replace each 

  ciphertext character c by f-1(g-1(f (c))) 
 

(ciphers of this sort are obviously very weak) 

Pages 
207-208 
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Useful mod application: hash functions 
 

Quick data retrieval while avoiding sorting 
(or search for specified item): 

•  Given n items, each item 
identified by unique key k ∈ N 

•  Use m memory locations {0,1,…,m-1}, 
with m quite a bit larger than n 

•  Store all items: item with key k stored 
at location k mod m (“the hash”) 

 

Once stored, quick retrieval of item 
with key s: at location s mod m 

 

⇒ Data retrieval in time O(1) 
(as opposed to O(log n)) 

Pages 
205-206 



Collision problem with hash functions 
 

If keys k1 and k2 of different items have 
same hash: items stored at same location 
 

•  Not good: a “collision” 
 

•  Collisions will occur if  
n approaches √m (“birthday paradox”) 

 

⇒ unavoidable (unless m insanely big) 
 

•  Requires “collision resolution”: 
•  Store at first subsequent free location 

(leads to hopefully brief linear search) 
•  Or use 2nd (3rd, …) hash function 
•  Or … 

Page 206 



Pseudorandom number generation 
 

With   a (multiplier),  c (increment),  
  m (modulus),    x0 (seed) 

 

and   xi+1 = (axi+c) mod m 
 

we get a pseudorandom sequence 
             x0, x1, …, xk, … 
For properly chosen a, c, m, x0 
•  the resulting sequence looks 

“random” enough for many purposes 
•  fast  (though it uses a division) 
•  very bad for cryptography 

(but widely used)  

Pages 
206-207 



Remark 
 

hashing and pseudorandom sequences  
use fact that result of “modding out” by 
large modulus m looks “unpredictable” 
 

Sequences of mods may cover tracks  
of a calculation, are thus useful for 
randomization and data protection 

 

Primes are particularly nice moduli 

Not in 
book 



Concludes 4th section of Chapter 3 



Basic results on primes 
 

Why are we interested in primes? 
 

Because they pop up all over the place: 
•  Hash tables 
•  Random number generation 
•  Information security 
•  Math 
•  Recreational math 

 
 
 
 
 

Pages 
241-244 



Basic results on primes 
Everyone here knows the following: 
•  a prime is an integer > 1 that has 

only 1 and itself as positive factors  
•  non-primes are called composites 
•  n ∈ N>1 is  prime  or can be written  

as unique product (except for order) 
of two or more primes (proof later): 

the prime factorization of n 
(no unsavory mishaps in Z: 2*3 = 6 = (1-√-5)*(1+√-5)) 

 

•  n composite ↔ n has a prime factor ≤ √n 
 

•  |set of primes| = ℵ0  (with an easy proof) 
 

•  given x > 0, how many primes ≤ x? 

Pages 
210-212 



The prime number theorem (PNT) 
Less well known (and non-trivial) fact: 
•  There are plenty of primes: 

•  “prime counting function” π(x) hard to  
calculate exactly; current record: 
π(1024) =?=18,435,599,767,349,200,867,866 

•  Useful consequences of PNT: 
•  random k-bit integer is prime with probability >1/k 
•  random 100-digit m is prime with probability 1/230 
•  different parties probably generate different primes 

 

•  But: how do we recognize if m is prime? 

Page 213 
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Generating primes 
 

all primes up to a small bound can be 
generated using sieve of Eratosthenes  

 
security applications need primes that are 
•  very large (hundreds of digits) 
•  unpredictable by others (“random”) 

 
⇒ sieve of Eratosthenes cannot be used 

to generate those 
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Generating large primes 
to generate a random k-bit prime (k large): 

1.  pick a random k-bit integer m 
2.  if m is composite return to Step 1 
3.  output m as the desired prime 

PNT ⇒ “expect” about k jumps to Step 1 
 

how do we: 
1.  (hard) pick a random number? 
2.  (easy) check if m composite? 
•  try all factors ≤ √m of m: hopeless 
•  use ≈ Fermat’s little theorem: 

p prime → ∀ a ∈ Z ap ≡ a (mod p) 
one a with am ≡ a (mod m) proves m composite 

Pages 
241-244 
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Applying (variation of) Fermat 
to prove that large m is composite 

we need to be able to test if 
am ≡ a (mod m) for a∈ Z:  

 

m does not divide am - a 
↔ (am - a) mod m ≠ 0 
↔ (am mod m - a mod m) mod m ≠ 0 
↔ (use a = a mod m)  

(am mod m - a) mod m ≠ 0 
 

am mod m = (a * a * a * … * a) mod m = 
(…((((a*a)mod m)*a)mod m)*…*a) mod m: 
•  all intermediate products taken modulo m 
•  repeated product infeasible for large m 
 

 

Page 239 
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Modular exponentiation 
 

calculating ae mod m using e-1 modular 
multiplications is infeasible for large e 

(and would defeat the purpose)  
 

use binary representation 
(ei ∈{0,1}, eL =1) of the exponent e 

 
 
 

(while computing everything modulo m) 
this can be used in two ways: 
•  right to left: e0, e1, e2, …, eL-1, eL 
•  left to right: eL, eL-1, eL-2, …, e1, e0  
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Intermezzo on polynomial evaluation 
 

compute 
 
 

how not to do it: let power = 1, result = f0 
for i = 1 to d do:  (“right to left”) 

replace power by power*c    (power = ci) 
replace result by result + fi*power 

now we have result = f(c) 
 

how to do it (Horner): let result = fd 
for i = d-1 downto 0 do:  (“left to right”) 

replace result by result*c + fi  
now we have result = f(c) 

both  Θ(d), but Horner twice faster (and fewer variables) 

Page 199 
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Application of same idea to exponentiation 
we can calculate 
 
 
 
 
 

 
 

as a product of successive squares 
 

but also as squares of successive products: 
 
 
 

•  unlike Horner, speed remains same 
•  like Horner: fewer variables 
•  “*” denotes “modular multiplication”   
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Right to left modular exponentiation 
 

calculate ae mod m with 
processing e0, e1, e2, …, eL-1, eL: 

 

calculate                                        , 
multiplying those for which ei =1:  

 

let result = 1 and power = a mod m  
for i = 0 to L do: 

if ei =1 then 
replace result by (result*power) mod m 

replace power by power2 mod m 
now we have result = ae mod m  
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Right to left exponentiation example 
 

Calculate 323 mod 47 
with 23 = 24 + 22 + 21 + 20 = 10111  we find  
L = 4  and  e0 = 1, e1 = 1, e2 = 1, e3 = 0, e4 = 1  
let result = 1 and power = 3 mod 47 = 31 mod 47  
for i = 0 to 4 do: 
i=0: e0=1: result = 1*3 mod 47 = 3; power = 32 mod 47 = 9;  

now result = 31 mod 47, power = 310 mod 47 
i=1: e1=1: result = 3*9 mod 47 = 27; power = 92 mod 47 = 34;  

now result = 311 mod 47, power = 3100 mod 47 
i=2: e2=1: result = 27*34 mod 47 = 25; power = 342 mod 47 = 28;  

now result = 3111 mod 47, power = 31000 mod 47 
i=3: e3=0: leave result as is; power = 282 mod 47 = 32;  

now result = 30111 mod 47, power = 310000 mod 47 
i=4: e4=1: result = 25*32 mod 47 = 1; power = 322 mod 47 = 37;  

now result = 310111 mod 47, done: result = 1 (347=3 mod 47)  



Left to right modular exponentiation 
 

calculate ae mod m with 
processing eL, eL-1, eL-2, …, e1, e0: 

 

calculate                                                           , 
using squarings, and multiplies when ei =1:  

 

let result = a mod m (since eL =1) 
for i = L-1 downto 0 do: 

replace result by result2 mod m 
if ei =1 then 
  replace result by (result*a mod m) mod m 

now we have result = ae mod m 

Not 
in book 
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Left to right exponentiation example 
 

Calculate 323 mod 47 
23 = 24 + 22 + 21 + 20 = 10111  and we have 
L = 4  and  e0 = 1, e1 = 1, e2 = 1, e3 = 0, e4 = 1  
let result = 3 mod 47 

now result = 31 mod 47 
for i = 3 downto 0 do: 
i=3: result = 32 mod 47 = 9; e3=0: leave result as is;  

now result = 310 mod 47 
i=2: result = 92 mod 47 = 34; e2=1: result = 34*3 mod 47 = 8;  

now result = 3101 mod 47 
i=1: result = 82 mod 47 = 17; e1=1: result = 17*3 mod 47 = 4;  

now result = 31011 mod 47 
i=0: result = 42 mod 47 = 16; e0=1: result = 16*3 mod 47 = 1;  

now result = 310111 mod 47, done: result = 1 (347=3 mod 47)  



Speed of modular exponentiation 
for both “right to left” and “left to right:” 
•  # modular squarings: L+1 or L 
•  # modular multiplications: 

#{i : ei = 1}  or  #{i : ei = 1} - 1 
 

either way: 
total effort Θ(L) modular multiplications 

 

schoolbook modular multiplication: O((log m)2) 
 

overall: 
modular exponentiation effort is O(L(log m)2) 

 

if L = log2(m), then this becomes O((log m)3) 
annoying fact: the Θ(L) is inherently sequential 

Pages 
226-227 



Speed of prime generation 
Generate k-bit primes as follows: 
1.  Pick a random k-bit integer m (making it odd helps…) 
2.  Test if m is composite: pick random a∈ Z, 

check if am ≡ a (mod m) (actually: slight variant)  
If not return to Step 1 

3.  Output m as the desired prime 
 

Silent assumption: for randomly selected a 
   the test am ≡ a (mod m) fails if m composite: 
      incorrect, but in practice okay for large m 
 

Overall effort: on average ≈ k attempts,  
   each attempt O(k3) ⇒ expected overall O(k4) 

(with huge variation;  and faster with fast multiplication) 

Pages 
239-240	
  



Large primes, for what purpose? 
generation of large k-bit primes in (expected) 
O(k≤4) time allows implementation of  
 

•  RSA: security based on the difficulty of  
inverting integer multiplication (factoring), 
need k = 512 or larger 

as of Jan 1, 2011: RSA no longer 
approved for US government use 

 

•  approved methods based on difficulty 
of inverting modular exponentiation 
(discrete logarithm): variants of ElGamal, 
need k = 160 or larger 

(using other groups too, principle same)   
 

 
 
 

Pages 
241-244 
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Skipping 
•  greatest common divisors 
 
•  extended Euclidean algorithm / Bezout 
 
•  Chinese remaindering 
 
(all “covered” by Sciences de l’Information) 
(some slides will be made available describing the 
division-free/easy/constructive methods referred to above: 
looks for gcd_etc_slides_0402)  

 
Concludes 7th section of Chapter 3 

 
division-free  
 
easy 
 
constructive 

 
: make odd & subtract (O((log(n))2) 
 
: maintain uv ≡ d (mod p)  
 
: x = x1+p1[(x2-x1)/p1 mod p2] 



Section 3.8: matrices 
 

•  Read it! 
 

•  n×m rectangles of numbers: 
n rows, m columns 

 

•  Originally to represent linear 
transformations from Rm to Rn  

 

•  Wide variety of applications 

Pages 
247-255 

	
  



Matrix product 
 

∀ m, k, n ∈ Z>0: 
 
 
 
 
 
 
 

•  Computation in m×k×n multiplications 
•  Not commutative: 

even if AB and BA are both defined, 
they are not necessarily equal  

Pages 
248-249 
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Concludes Chapter 3 
 

On to Chapter 4: induction & recursion 



Modular arithmetic 
 

let a, b, m∈ Z with m > 0 
•  a is congruent to b modulo m if m | a-b: 

notation: a ≡ b (mod m) (or just a ≡ b mod m) 
•  if m | a-b (i.e., a-b mod m ≠ 0) we write 

a ≡ b (mod m) 
•  properties: 
•  a and b are congruent modulo m ↔ 

∃ k∈ Z s.t. a = b + km 
•  a ≡ c (mod m), b ≡ d (mod m), then: 

a+b ≡ c+d (mod m),  ab ≡ cd (mod m) 
•  (a+b)mod m=((a mod m)+(b mod m))mod m 
•  ab mod m = ((a mod m)(b mod m))mod m 

pages 
240-244 
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Notational note on modular arithmetic 
 

•  “a mod m”  indicates the calculation  
of the remainder of a upon division by m 

 

•  “a ≡ b (mod m)”  or “a ≡ b mod m” 
indicates that a-b is divisible by m 
(i.e., it says that (a - b) mod m = 0): 

a and b are said to be  
“in the same residue class modulo m” 

 

•  “a ≡ (a mod m) mod m” 
is the (true) proposition that 

a - (a mod m) is divisible by m 
 

•  m is called the modulus   
 

page 242/205 



Toy mod application: Caesar’s cipher 
 

•  f: {a,b,c,…,z} → {0,1,2,…,25} bijection 
mapping  a to 0,  b to 1, …,  z to 25 

•  g: {0,1,2,…,25} → {0,1,2,…,25}: 
                                 mod 26 
then g-1(m) = (m-3) mod 26 

 

Caesar’s cipher : 
•  encryption: replace each 

  plaintext character x by f-1(g(f (x))) 
•  decryption: replace each 

  ciphertext character c by f-1(g-1(f (c))) 
 

(ciphers of this sort are obviously very weak) 

pages 
291-292 
/207-208 
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Useful mod application: hash functions 
 

quick data retrieval while avoiding sorting 
(or search for specified item): 

•  given n items, each item 
identified by unique key k ∈ N 

•  use m memory locations {0,1,…,m-1}, 
with m quite a bit larger than n 

•  store all items: item with key k stored 
at location k mod m (“the hash”) 

 

once stored, quick search for item 
with key s: at location s mod m 

 

⇒ data retrieval in time O(1) 
(as opposed to O(log n)) 

pages 
284-285 
/205-206 



Collision problem with hash functions 
 

if keys k1 and k2 of different items have 
same hash: items stored at same location 
•  this is not good: called a “collision” 
•  for random keys, collisions will occur if  

n approaches √m (“birthday paradox”) 
 

⇒ unavoidable (unless m insanely big) 
 

•  requires “collision resolution”: 
•  store at first subsequent free location 

(leads to hopefully brief linear search) 
•  or use 2nd (3rd, …) hash function 
•  or … 

•  not to be confused with cryptographic hashing 

page 285/206 



Pseudorandom number generation 
 

with   a (multiplier),  c (increment),  
  m (modulus),    x0 (seed) 

 

and   xi+1 = (axi+c) mod m 
 

we get a pseudorandom sequence 
             x0, x1, …, xk, … 
for properly chosen a, c, m, x0 
•  the resulting sequence looks 

“random” enough for many purposes 
•  fast  (though it uses a division) 
•  very bad for information protection 

(but widely used)  

pages 
286-287 
/206-207 



Remark 
 

hashing and pseudorandom sequences  
use fact that result of “modding out” by 
large modulus m looks “unpredictable” 
 

sequences of mods may cover tracks  
of a calculation, are thus useful for 
randomization and data protection 

 

primes are particularly nice moduli 
 

related to one of the hardest practical problems 
in data protection: generating random numbers 
(notable screw-ups: netscape, debian, playstation3, SSL, X509 certs, … 

most recently http://www.theregister.co.uk/2013/03/26/netbsd_crypto_bug/ )  

not in 
book 



Concludes 
first sections of Chapter 4 (7th edition) 
 4th section of Chapter 3 (6th edition) 



Basic results on primes 
 

why are we interested in primes? 
 

because they pop up all over the place: 
•  hash tables 
•  random number generation 
•  information security 
•  math 
•  recreational math 

 
 
 
 
 

pages 
295-300 
/241-244 



Basic results on primes 
everyone here knows the following: 
•  a prime is an integer > 1 that has 

only 1 and itself as positive factors  
•  non-primes are called composites 
•  n ∈ N>1 is  prime  or can be written  

as unique product (except for order) 
of two or more primes (proof later): 

the prime factorization of n 
(no unsavory mishaps in Z: 2*3 = 6 = (1-√-5)*(1+√-5)) 

 

•  n composite ↔ n has a prime factor ≤ √n 
 

•  |set of primes| = ℵ0  (with an easy proof) 
 

•  π(x) is number of primes ≤ x :  what is π(x)? 

pages 
256-258 
/210-212 



The prime number theorem (PNT) 
less well known (and non-trivial) fact: 
•  there are plenty of primes: 

 
•  “prime counting function” π(x) hard to  

calculate exactly; current record: 
π(1024)  = 18,435,599,767,349,200,867,866 

•  useful consequences of PNT: 
•  random k-bit integer is prime with probability >1/k 
•  random 100-digit m is prime with probability 1/230 
•  different parties probably generate different primes 

 

•  but: how do we recognize if m is prime? 

page 261/213 
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Generating primes 
 

all primes up to some small bound can be 
generated using sieve of Eratosthenes  

 
security applications need primes that are 
•  large (hundreds of digits) 
•  unpredictable by others (“random”) 

 
⇒ sieve of Eratosthenes cannot be used 

to generate those 

 
page 258/210 
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Generating large primes 
to generate a random k-bit prime (k large): 

1.  pick a random k-bit integer m 
2.  if m is composite return to Step 1 
3.  output m as the desired prime 

PNT ⇒ “expect” about k jumps to Step 1 
 

how do we: 
1.  pick a random number? hard or easy? 
2.  check if m composite?   hard or easy? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Generating large primes 
to generate a random k-bit prime (k large): 

1.  pick a random k-bit integer m 
2.  if m is composite return to Step 1 
3.  output m as the desired prime 

PNT ⇒ “expect” about k jumps to Step 1 
 

how do we: 
1.  pick a random number? (this is hard) 
2.  check if m composite?   (this is easy) 
•  try all factors ≤ √m of m: hopeless 
•  use ≈ Fermat’s little theorem: 

p prime → ∀ a ∈ Z ap ≡ a (mod p) 
one a with am ≡ a (mod m) proves m composite 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
page 279/239 
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Applying (variation of) Fermat 
proving m’s compositeness requires 

testing if am ≡ a (mod m) for a∈ Z:  
 

m does not divide am - a 
↔ (am - a) mod m ≠ 0 
↔ (am mod m - a mod m) mod m ≠ 0 
↔ (use a = a mod m)  

(am mod m - a) mod m ≠ 0 
 

am mod m = (a * a * a * … * a) mod m = 
(…((((a*a)mod m)*a)mod m)*…*a) mod m: 
•  all products taken modulo m: 

no intermediate result > m2 

•  but repeated product infeasible for large m 
 

 

page 279/239 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

/



Modular exponentiation 
 

calculating ae mod m using e-1 modular 
multiplications is infeasible for large e 

(and defeats purpose of using Fermat) 
 

from the first semester we know that 
“Le	
  calcul	
  d’une	
  puissance	
  en	
  arithmé3que	
  
modulaire	
  est	
  par3culièrement	
  simple,	
  
il	
  suffit	
  de	
  décomposer	
  l’exposant.” 

 

example (modulo 7): 
312 = (32)6 = 96 ≡ 26 = (23)2 = 82 ≡ 12 = 1 
	
  

we also know 
“On	
  pense	
  aujourd’hui	
  que	
  la	
  factorisa3on	
  
de	
  nombres	
  en3ers	
  très	
  grands	
  est	
  un	
  
problème	
  difficile.”  

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Modular exponentiation 
 

still unclear how to calculate 
ae mod m for large e 

 

use binary representation 
(ei ∈{0,1}, eL =1) of the exponent e 

 
 
 

(while computing everything modulo m) 
this can be used in two ways: 
•  right to left: e0, e1, e2, …, eL-1, eL 
•  left to right: eL, eL-1, eL-2, …, e1, e0  
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Intermezzo on polynomial evaluation 
 

compute 
 
 

how not to do it: let power = 1, result = f0 
for i = 1 to d do:  (“right to left”) 

replace power by power*c    (power = ci) 
replace result by result + fi*power 

now we have result = f(c) 
 

how to do it (Horner): let result = fd 
for i = d-1 downto 0 do:  (“left to right”) 

replace result by result*c + fi  
now we have result = f(c) 

both  Θ(d), but Horner twice faster (and fewer variables) 

page 
230/199 
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Application of same idea to exponentiation 
we can calculate 
 
 
 
 
 

 
 

as a product of successive squares 
 

but also as squares of successive products: 
 
 
 

•  unlike Horner, speed remains same 
•  like Horner: fewer variables 
•  “*” denotes “modular multiplication” 

and all squarings are “modular” too   
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Right to left modular exponentiation 
 

calculate ae mod m with 
processing e0, e1, e2, …, eL-1, eL: 

 

calculate                                        , 
multiplying those for which ei =1:  

 

let result = 1 and power = a mod m  
for i = 0 to L do: 

if ei =1 then 
replace result by (result*power) mod m 

replace power by power2 mod m 
now we have result = ae mod m  

page  
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Right to left exponentiation example 
 

calculate 323 mod 47 
with 23 = 24 + 22 + 21 + 20 = 10111  we find  
L = 4  and  e0 = 1, e1 = 1, e2 = 1, e3 = 0, e4 = 1  
let result = 1 and power = 3 mod 47 = 31 mod 47  
for i = 0 to 4 do: 
i=0: e0=1: result = 1*3 mod 47 = 3; power = 32 mod 47 = 9;  

now result = 31 mod 47, power = 310 mod 47 
i=1: e1=1: result = 3*9 mod 47 = 27; power = 92 mod 47 = 34;  

now result = 311 mod 47, power = 3100 mod 47 
i=2: e2=1: result = 27*34 mod 47 = 25; power = 342 mod 47 = 28;  

now result = 3111 mod 47, power = 31000 mod 47 
i=3: e3=0: leave result as is; power = 282 mod 47 = 32;  

now result = 30111 mod 47, power = 310000 mod 47 
i=4: e4=1: result = 25*32 mod 47 = 1; power = 322 mod 47 = 37;  

now result = 310111 mod 47, done: result = 1 (347=3 mod 47)  



Left to right modular exponentiation 
 

calculate ae mod m with 
processing eL, eL-1, eL-2, …, e1, e0: 

 

calculate                                                           , 
using squarings, and multiplies when ei =1:  

 

let result = a mod m (since eL =1) 
for i = L-1 downto 0 do: 

replace result by result2 mod m 
if ei =1 then 
  replace result by (result*a mod m) mod m 

now we have result = ae mod m 

Not 
in book 
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Left to right exponentiation example 
 

calculate 323 mod 47 
23 = 24 + 22 + 21 + 20 = 10111  and we have 
L = 4  and  e0 = 1, e1 = 1, e2 = 1, e3 = 0, e4 = 1  
let result = 3 mod 47 

now result = 31 mod 47 
for i = 3 downto 0 do: 
i=3: result = 32 mod 47 = 9; e3=0: leave result as is;  

now result = 310 mod 47 
i=2: result = 92 mod 47 = 34; e2=1: result = 34*3 mod 47 = 8;  

now result = 3101 mod 47 
i=1: result = 82 mod 47 = 17; e1=1: result = 17*3 mod 47 = 4;  

now result = 31011 mod 47 
i=0: result = 42 mod 47 = 16; e0=1: result = 16*3 mod 47 = 1;  

now result = 310111 mod 47, done: result = 1 (347=3 mod 47)  



Speed of modular exponentiation 
for both “right to left” and “left to right:” 
•  # modular squarings: L+1 or L 
•  # modular multiplications: 

#{i : ei = 1}  or  #{i : ei = 1} - 1 
 

either way: 
total effort Θ(L) modular multiplications 

 

schoolbook modular multiplication: O((log m)2) 
 

overall: 
modular exponentiation effort is O(L(log m)2) 

 

if L = log2(m), then this becomes O((log m)3) 
annoying fact: the Θ(L) is inherently sequential 

pages 
253-254 
/226-227 



Speed of prime generation 
generate k-bit primes as follows: 
1.  pick a random k-bit integer m (making it odd helps…) 
2.  test if m is composite: pick random a∈ Z, 

check if am ≡ a (mod m) (actually: slight variant)  
if not return to Step 1 

3.  output m as the desired prime 
 

silent assumption: for randomly selected a 
   the test am ≡ a (mod m) fails if m composite: 
      incorrect, but in practice okay for large m 
 

overall effort: on average ≈ k attempts,  
   each attempt O(k3) ⇒ expected overall O(k4) 

(with huge variation;  and faster with fast multiplication) 

pages 
279-280 
/239-240	
  



Large primes, for what purpose? 
generation of large k-bit primes in (expected) 
O(k≤4) time allows implementation of  
 

•  RSA: security based on the difficulty of  
inverting integer multiplication (factoring), 
need k = 512 and larger 

as of Jan 1, 2011: RSA no longer 
approved for US government use 

 

•  approved methods based on difficulty 
of inverting modular exponentiation 
(discrete logarithm): variants of ElGamal, 
need k = 160 and larger 

(using other groups too, principle same)   
 

 
 
 

pages 
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Skipping 
•  greatest common divisors 
 
•  extended Euclidean algorithm / Bezout 
 
•  Chinese remaindering 
 
 

•  all “covered” by Sciences de l’Information 
•  description of division-free/easy/constructive methods 
   will be made available on slides 

 
division-free  
 
easy 
 
constructive 

 
: make odd & subtract (O((log(n))2) 
 
: maintain uv ≡ d (mod p)  
 
: x = x1+p1[(x2-x1)/p1 mod p2] 



Concludes Chapter 4 (7th) / 3 (6th) 
 

on to Chapter 5 (7th) / 4 (6th) : 
induction & recursion 



Greatest common divisor 
given two integers a and b, not both zero; 
their greatest common divisor is the largest 
integer d with d|a and d|b: d = gcd(a,b); 
 

conversely, least common multiple: 

smallest s ∈ Z>0 with a|s, b|s: s = lcm(a,b). 
 

•  1|a and 1|b, thus gcd(a,b) ≥ 1; 
also gcd(a,b) ≤ min(|a|,|b|); 

thus gcd(a,b) exists 
•  a|ab and b|ab, thus lcm(a,b) ≤ |ab|; 

also lcm(a,b) ≥ max(|a|,|b|); 
thus lcm(a,b) exists 

•  if gcd(a,b) = 1, then a and b are coprime. 
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Computing the gcd and the lcm 
 

 
 
 
 

 
 
 
this requires factorization (one suffices): slow 
 

much smarter to use the Euclidean algorithm 
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Observation underlying Euclidean algorithm 
 

thm. ∀k ∈ Z: gcd(a,b) = gcd(b, a - kb) 
proof 
•  if d = gcd(a,b) then d|a and d|b,  

and thus ∀s, t ∈ Z d|sa+tb; 
take s = 1, t = -k, then d|a - kb. (universal instantiation) 
thus d|b and d|a - kb, thus d|gcd(b, a - kb) 

•  if d = gcd(b, a - kb) then d|b and d|a - kb,  
and thus ∀s, t ∈ Z d|sb+t(a - kb); 
take s = k, t = 1, then d|kb+(a - kb) = a. 
thus d|b and d|a, thus d|gcd(b,a) = gcd(a,b) 

⇒ gcd(a,b)|gcd(b, a - kb) and 
 gcd(b, a - kb)|gcd(a,b), which implies Thm. 
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Euclidean algorithm 
 

how to best use (with a > 0, b ≥ 0) 
“∀k ∈ Z: gcd(a,b) = gcd(b, a - kb)” 

 

replace problem of computing gcd(a,b) by 
smaller problem of computing gcd(b, a - kb), 

which k to use? 
three approaches: 
standard:  use k = a div b (and gcd(a,0)=a) 

   ( so 0 ≤ a - kb = a mod b <  b ) 
better:  minimize |a - kb| (above k or k+1) 

   ( so 0 ≤ |a - kb| ≤  b/2 ) 
binary:  a, b odd:  use k = 1 and 
(Division-free!)    remove 2s from a - b (“shift”) 
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early 

peek at 
recursion, 
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Example 
 

compute gcd(147,91) 
 

using factorization (bad idea) 
 

147 = 3 * 72,   91 = 7 * 13 
 

so: 147 = 31 * 72 * 130,     91 = 30 * 71 *131 
 

thus  
gcd(147,91) = 3min(1,0) * 7min(2,1) * 13min(0,1) 

                              = 30 * 71 * 130 

                              = 7 

pages 
264-265 
/216-217 

 
 



Euclidean algorithm examples 
 

compute gcd(147,91) 
 

standard Euclidean algorithm 
147=1*91+56:  gcd(147,91) = gcd(91,56) 
91=1*56+35:  gcd(91,56) = gcd(56,35) 
56=1*35+21:  gcd(56,35) = gcd(35,21) 
35=1*21+14:  gcd(35,21) = gcd(21,14) 
21=1*14+7:  gcd(21,14) = gcd(14,7) 
14=2*7+0:  gcd(14,7) = gcd(7,0) = 7 
⇒ gcd(147,91) = 7, 

after 6 standard division steps: 
147, 91, 56, 35, 21, 14, 7, 0 

(bounding number of steps is cumbersome) 
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Euclidean algorithm examples 
 

compute gcd(147,91) 
 

smallest remainder Euclidean algorithm 
147=2*91-35:  gcd(147,91) = gcd(91,35) 
91=3*35 -14:  gcd(91,35) = gcd(35,14) 
35=2*14+7:  gcd(35,14) = gcd(14,7) 
14=2*7+0:  gcd(14,7) = gcd(7,0) = 7 
 

⇒ gcd(147,91) = 7, 
after 4 division steps: 
147, 91, 35, 14, 7, 0 

 

(number of division steps in gcd(n,m) 
is easily bounded by log2(min(n,m)) ) 

not in 
book 

 
 



Euclidean algorithm examples 
 

compute gcd(147,91) 
 

binary Euclidean algorithm  
147 and 91 both odd: 
   gcd(147,91) = gcd(91,147-91)=gcd(91,56) 
                       = gcd(91,7) (removed three 2s) 
   gcd(91,7) = gcd(7,91-7) = gcd(7,84) 

               = gcd(7,21) (removed two 2s) 
   gcd(21,7) = gcd(7, 21-7) = gcd(7,14) 

               = gcd(7,7) (removed one 2) 
⇒ gcd(147,91) = 7, in 3 division-less steps 

(147, 91), (91,7), (21,7), (7,7) 
can you figure out how to deal with non-odd inputs? 

not in 
book 

 
 



Another example 
 

compute gcd(127,91) 
 

using factorization 
 

127 = 1271 is prime 
 

thus 127 coprime to any a with 0 < a < 127 
 

⇒ we find gcd(127,91) = 1 
 

(remember: gcds with primes are easy) 

 
 



Euclidean algorithm examples 
 

compute gcd(127,91) 
 

standard Euclidean algorithm 
127=1*91+36:  gcd(127,91) = gcd(91,36) 
91=2*36+19:  gcd(91,36) = gcd(36,19) 
36=1*19+17:  gcd(36,19) = gcd(19,17) 
19=1*17+2:  gcd(19,17) = gcd(17,2) 
17=8*2+1:  gcd(17,2) = gcd(2,1) 
2=2*1+0:   gcd(2,1) = gcd(1,0) = 1 
⇒ gcd(127,91) = 1, 

after 6 standard division steps: 
127, 91, 36, 19, 17, 2, 1, 0 

 
 



Euclidean algorithm examples 
 

compute gcd(127,91) 
 

smallest remainder Euclidean algorithm 
127=1*91+36:  gcd(127,91) = gcd(91,36) 
91=3*36 -17:  gcd(91,36) = gcd(36,17) 
36=2*17+2:  gcd(36,17) = gcd(17,2) 
17=8*2+1:  gcd(17,2) = gcd(2,1) 
2=2*1+0:   gcd(2,1) = gcd(1,0) = 1 
 

⇒ gcd(127,91) = 1, 
after 5 division steps: 
127, 91, 36, 17, 2, 1, 0 

 
 



Euclidean algorithm examples 
 

compute gcd(127,91) 
binary Euclidean algorithm  
127 and 91 both odd: 
   gcd(127,91) = gcd(91,127-91)=gcd(91,36) 
                       = gcd(91,9) (removed two 2s) 
   gcd(91,9) = gcd(9,91-9) = gcd(9,82) 

               = gcd(9,41) (removed one 2) 
   gcd(41,9) = gcd(9,41-9) = gcd(9,32) 

               = gcd(9,1) (removed five 2s) 
⇒ gcd(127,91) = 1, in 3 division-less steps 

(127, 91), (91,9), (41,9), (9,1) 
note: binary euclid runs in O((max(logn,logm))2) bit operations 



Linear congruences (i.e., modular inversion) 
given modulus m, integers a, b > 0,  

find integer x such that ax ≡ b (mod m) 
 

seen that: 
 b must be a multiple of gcd(a,m) 
i.e.: gcd(a,m)|b is necessary condition 
       for solution to ax ≡ b (mod m) to exist 
i.e.: ax ≡ b (mod m) solvable → gcd(a,m)|b 

 

below constructive proof that gcd(a,m)|b suffices: 
i.e.: gcd(a,m)|b → ax ≡ b (mod m) solvable 

 

conclusion: 
ax ≡ b (mod m) solvable ↔ gcd(a,m)|b 
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Solving ax ≡ gcd(a,m) (mod m) 
(suffices for ax ≡ b (mod m) with gcd(a,m)|b)   
use previous example: a = 91, m = 127 
seen: gcd(91,127)=1, 

 thus try to solve 91x ≡ 1 (mod 127) for x  
combine related identities modulo 127: 
(1)  91 * 0        ≡ 127 (mod 127), trivially true 
(2)  91 * 1        ≡ 91 (mod 127), trivially true 
(3)  91 * (-1)   ≡ 36 (mod 127):  (1) - 1×(2) 
(4)  91 * 3        ≡ 19 (mod 127):  (2) - 2×(3) 
(5)  91 * (-4)   ≡ 17 (mod 127):  (3) - 1×(4) 
(6)  91 * 7        ≡ 2 (mod 127):  (4) - 1×(5) 
(7)  91 * (-60) ≡ 1 (mod 127):  (5) - 8×(6) 
thus 91 * 67 ≡ 1 (mod 127): x = 67 
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Solving ax ≡ gcd(a,m) (mod m) 
(suffices for ax ≡ b (mod m) with gcd(a,m)|b)   
use previous example: a = 91, m = 127 
seen: gcd(91,127)=1, 

 thus try to solve 91x ≡ 1 (mod 127) for x  
combine related identities modulo 127: 
(1)   91 * 0        ≡ 127 (mod 127), trivially true 
(2)   91 * 1        ≡ 91 (mod 127), trivially true 
(3)   91 * (-1)   ≡ 36 (mod 127):  (1) - 1×(2) 
(4)   91 * 3        ≡ 19 (mod 127):  (2) - 2×(3) 
(5)   91 * (-4)   ≡ 17 (mod 127):  (3) - 1×(4) 
(6)   91 * 7        ≡ 2 (mod 127):  (4) - 1×(5) 
(7)   91 * (-60) ≡ 1 (mod 127):  (5) - 8×(6) 
thus 91 * 67 ≡ 1 (mod 127): x = 67 
	
  



Euclidean algorithm examples 
 

compute gcd(127,91) 
 

standard Euclidean algorithm 
127=1*91+36:  gcd(127,91) = gcd(91,36) 
91=2*36+19:  gcd(91,36) = gcd(36,19) 
36=1*19+17:  gcd(36,19) = gcd(19,17) 
19=1*17+2:  gcd(19,17) = gcd(17,2) 
17=8*2+1:   gcd(17,2) = gcd(2,1) 
2=2*1+0:   gcd(2,1) = gcd(1,0) = 1 
⇒ gcd(127,91) = 1, 

after 6 standard division steps: 
127, 91, 36, 19, 17, 2, 1, 0 

 
 

Solving ax ≡ gcd(a,m) (mod m) 
(suffices for ax ≡ b (mod m) with gcd(a,m)|b)   
use previous example: a = 91, m = 127 
seen: gcd(91,127)=1, 

 thus try to solve 91x ≡ 1 (mod 127) for x  
combine related identities modulo 127: 
(1)   91 * 0        ≡ 127 (mod 127), trivially true 
(2)   91 * 1        ≡ 91 (mod 127), trivially true 
(3)   91 * (-1)   ≡ 36 (mod 127):  (1) - 1×(2) 
(4)   91 * 3        ≡ 19 (mod 127):  (2) - 2×(3) 
(5)   91 * (-4)   ≡ 17 (mod 127):  (3) - 1×(4) 
(6)   91 * 7        ≡ 2 (mod 127):  (4) - 1×(5) 
(7)   91 * (-60) ≡ 1 (mod 127):  (5) - 8×(6) 
thus 91 * 67 ≡ 1 (mod 127): x = 67 
	
  

same sequences 



Euclidean algorithm examples 
 

compute gcd(127,91) 
 

standard Euclidean algorithm 
127=1*91+36:  gcd(127,91) = gcd(91,36) 
91=2*36+19:  gcd(91,36) = gcd(36,19) 
36=1*19+17:  gcd(36,19) = gcd(19,17) 
19=1*17+2:  gcd(19,17) = gcd(17,2) 
17=8*2+1:   gcd(17,2) = gcd(2,1) 
2=2*1+0:   gcd(2,1) = gcd(1,0) = 1 
⇒ gcd(127,91) = 1, 

after 6 standard division steps: 
127, 91, 36, 19, 17, 2, 1, 0 

 
 

Solving ax ≡ gcd(a,m) (mod m) 
(suffices for ax ≡ b (mod m) with gcd(a,m)|b)   
use previous example: a = 91, m = 127 
seen: gcd(91,127)=1, 

 thus try to solve 91x ≡ 1 (mod 127) for x  
combine related identities modulo 127: 
(1)   91 * 0        ≡ 127 (mod 127), trivially true 
(2)   91 * 1        ≡ 91 (mod 127), trivially true 
(3)   91 * (-1)   ≡ 36 (mod 127):  (1) - 1×(2) 
(4)   91 * 3        ≡ 19 (mod 127):  (2) - 2×(3) 
(5)   91 * (-4)   ≡ 17 (mod 127):  (3) - 1×(4) 
(6)   91 * 7        ≡ 2 (mod 127):  (4) - 1×(5) 
(7)   91 * (-60) ≡ 1 (mod 127):  (5) - 8×(6) 
thus 91 * 67 ≡ 1 (mod 127): x = 67 
	
  

same sequences 

and same sequences 



Euclidean algorithm examples 
 

compute gcd(127,91) 
 

standard Euclidean algorithm 
127=1*91+36:  gcd(127,91) = gcd(91,36) 
91=2*36+19:  gcd(91,36) = gcd(36,19) 
36=1*19+17:  gcd(36,19) = gcd(19,17) 
19=1*17+2:  gcd(19,17) = gcd(17,2) 
17=8*2+1:   gcd(17,2) = gcd(2,1) 
2=2*1+0:   gcd(2,1) = gcd(1,0) = 1 
⇒ gcd(127,91) = 1, 

after 6 standard division steps: 
127, 91, 36, 19, 17, 2, 1, 0 

 
 

Solving ax ≡ gcd(a,m) (mod m) 
(suffices for ax ≡ b (mod m) with gcd(a,m)|b)   
use previous example: a = 91, m = 127 
seen: gcd(91,127)=1, 

 thus try to solve 91x ≡ 1 (mod 127) for x  
combine related identities modulo 127: 
(1)   91 * 0        ≡ 127 (mod 127), trivially true 
(2)   91 * 1        ≡ 91 (mod 127), trivially true 
(3)   91 * (-1)   ≡ 36 (mod 127):  (1) - 1×(2) 
(4)   91 * 3        ≡ 19 (mod 127):  (2) - 2×(3) 
(5)   91 * (-4)   ≡ 17 (mod 127):  (3) - 1×(4) 
(6)   91 * 7        ≡ 2 (mod 127):  (4) - 1×(5) 
(7)   91 * (-60) ≡ 1 (mod 127):  (5) - 8×(6) 
thus 91 * 67 ≡ 1 (mod 127): x = 67 
	
  in identities ay ≡ t (mod m): 
•    t follows sequence of Euclidean algorithm 
•    Euclidean sequence terminates at t = gcd(a,m) 

with y equal to x s.t. ax ≡ gcd(a,m) (mod m). 
•  this is constructive proof of 

gcd(a,m)|b → ax ≡ b (mod m) solvable 
•    multipliers are quotients in Euclidean algorithm 
 



Example ax ≡ gcd(a,m) (mod m) with gcd ≠ 1   
let a = 91, m = 147 try to find x such that 
91x ≡ gcd(91,147) (mod 147) (known to be 7) 
combine related identities modulo 147 
and use the standard Euclidean algorithm: 
(1)  91 * 0        ≡ 147 (mod 147), trivially true 
(2)  91 * 1        ≡ 91 (mod 147), trivially true 
(3)  91 * (-1)   ≡ 56 (mod 147):  (1) - 1×(2) 
(4)  91 * 2        ≡ 35 (mod 147):  (2) - 1×(3) 
(5)  91 * (-3)   ≡ 21 (mod 147):  (3) - 1×(4) 
(6)  91 * 5        ≡ 14 (mod 147):  (4) - 1×(5) 
(7)  91 * (-8)   ≡ 7 (mod 147):  (5) - 1×(6) 
Thus 91 * 139 ≡ 7 (mod 147): x = 139 



Same example again 
using the smallest remainder variant: 
(1)  91 * 0        ≡ 147 (mod 147) 
(2)  91 * 1        ≡ 91 (mod 147) 
(3)  91 * (-2)   ≡ -35 (mod 147):  (1) - 2×(2) 
(4)  91 * (-5)   ≡ -14 (mod 147):  (2) + 3×(3) 
(5)  91 * 8        ≡ -7 (mod 147):  (3) - 2×(4) 
      thus 91 * 139 ≡ 7 (mod 147): x = 139 
 

(sequence of multipliers as before, up to sign) 



Same example again 
using the binary variant, gets a bit messy: 
(1)  91 * 0        ≡ 147 (mod 147) 
(2)  91 * 1        ≡ 91 (mod 147) 
(3)  91 * (-1)   ≡ 56 (mod 147):  (1) - 1×(2) 

 divide by 2, with -1/2 ≡ (-1+147)/2 = 73: 
 91 * 73      ≡ 28 (mod 147) 
 divide by 2, with 73/2 ≡ (73+147)/2 = 110: 
 91 * 110    ≡ 14 (mod 147) 
 divide by 2: 
 91 * 55      ≡ 7 (mod 147) 

   thus 91 * 55 ≡ 7 (mod 147): x = 55 
 

⇒ other solution than before … (147 not prime) 



Remarks 
for prime p and all a with 0 < a < p: 
•  gcd(a,p) = 1 
•  therefore ∃ x s.t. ax ≡ 1 (mod p), 

the multiplicative inverse of a modulo p 
•  careful runtime analyses of (all) Euclids: 

time O((log p)2) to calculate a-1 modulo p 
•  ap ≡ a (mod p) (Fermat) →  

ap *a-2 ≡ a*a-2 (mod p) → ap-2 ≡ a-1 (mod p) 
⇒ a-1 modulo p in time O((log p)3) using 

modular exponentiation, only for prime p  
given ax ≡ b (mod m), 

k with ax + km = b follows as (ax - b)/m 



Application: Chinese remaindering 
thm. Let p and q be coprime integers and let 
 
 

then:    ∃! x ∈ Z with 0 ≤ x < pq such that 
 
 

proof by unique construction: if x exists, then 
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Applications of Chinese remaindering 
 

•  alternative arithmetic with large integers: 
let pi be ith prime. Represent large n as 
(n mod p1, n mod p2,…, n mod pk) 
for some k such that n < p1*p2*…*pk. 
allows components-wise +, -, *  
(not at all widely used) 

 

•  the RSA public key cryptosystem: 
both in proof that it works 
and to make it fast 

 

•  counting 
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