
Chapter 3: algorithmic basics

here

•  some very elementary algorithms

•  big-O, other big things, and complexity

Basic algorithms

consider intuitive algorithm
that solve simple problems

goal:
get first grasp of complexity of algorithms:

algorithm behavior with respect to
usage of time and space (“memory”)
depending on the problem “size”

why?
to better understand algorithm scalability
and the “difficulty” of the problems

(like matrix multiplication: how does effort grow?)

What is an “algorithm”?

“finite set of precise (?) instructions
 to perform a specified task” :
•  to perform a certain computation
•  to solve a certain problem
•  to cook a certain dish
•  to reach a certain destination

needs to satisfy various obvious requirements:
•  well-defined input/output behavior
•  well-defined steps that always work
•  it terminates (“finite” and “effective”)
•  must be sufficiently general

(no attempt at a formal definition)

First basic problem: finding the maximum

given set A = {a1, a2, a3, …, an}
the problem: find (index of) “largest” element

 (largest with respect to some ordering)

“best solution” minimizes the “cost” :
 number of comparisons between elements of A

set is “unordered collection”
⇒ as is, all we can do is inspect all elements
 (see book page 195/169 for “pseudocode”)
⇒ n - 1 = |A| - 1 comparisons

cost is linear function of |A|: linear algorithm

(size of elements of A not taken into account in cost!)

Another basic problem: searching

given set A = {a1, a2, a3, …, an} and some x
the problem: if possible, locate x in A
(if x ∈ A return i such that ai = x, else return 0)

again, we like to minimize the cost:
 number of comparisons between a ∈ A and x

set is still an “unordered collection”
⇒ as is, possibly compare x to all a ∈ A
 (see book page 196/170 for pseudocode)
⇒ in the worst case: n = |A| comparisons

cost is linear function of |A|: linear search

(size of elements of A again not taken into account in cost)

Can we search x in A faster ?

only if more is known about A or x

A = {a1, a2, a3, …, an} could be sorted,
a1 < a2 < a3 < … < an :

with m = ⎣n/2⎦, compare x and am
this suffices to remove {a1, a2, a3, …, am-1} or
{am+1, am+2, am+3, …, an} from consideration

⇒ cost only 1 to divide problem size by two
⇒ total number of comparisons: about log2(n)
⇒ logarithmic search

(note: finding maximum in A is now for free)

Another way to search x in S faster

there may be an “index function” i : A → N≥0
such that if x ∈ A then ai(x) = x

⇒ cost to locate x is at most one comparison
(plus evaluation of i(x))

⇒ constant cost

seen three types of cost functions so far:
•  constant
•  logarithmic in problem size
•  linear in problem size
all scale well for growing problem sizes

But what about sorting?
the problem:

given a finite sequence of items, “sort” it

intuitively clear what is meant:

input
25, 16, 32, 33, 8, 3, 17, 6

should be transformed into
3, 6, 8, 16, 17, 25, 32, 33

Bubble sort

simple iterative solution to sort a1, a2, a3, …, an

for i = n downto 2:
put max(a1,a2,a3,…,ai) in ai, at cost i - 1:
for k = 1 to i - 1:

if ak > ak+1 then “swap” ak and ak+1

overall cost

⇒ cost function quadratic in problem size

but, how does one “swap” elements?
and, what are we actually counting in our cost?

∑
=

−=−
n

i
nni

2
2/)1()1(

Other naïve iterative approaches to sorting

•  “selection sort”
for i = 1 to n-1:

put min(ai, ai+1, …, an) in
ith position of (a1, a2, a3, …, an)

•  “insertion sort”
for i = 2 to n:

insert ai at proper place in
already sorted list a1, a2, a3, …, ai-1

all these approaches have essentially the
same cost function as bubble sort:

i.e., quadratic in problem size

Other naïve iterative approaches to sorting

•  “selection sort”
for i = 1 to n-1:

put min(ai, ai+1, …, an) in
ith position of (a1, a2, a3, …, an)

•  “insertion sort”
for i = 2 to n:

insert ai at proper place in
already sorted list a1, a2, a3, …, ai-1

all these approaches have essentially the
same cost function as bubble sort: do they?

i.e., quadratic in problem size

Faster sorting?

•  “bucket sort”
suppose for each ai its proper location is a

function of just ai:
to sort a1, a2, a3, …, an it suffices
to call that function n times:

linear sorting

•  in general:
faster methods use divide and conquer

and smart data structures

Questions?

concludes 1st section of Chapter 3
(with the exception of “greedy”,

which we postpone)

Big-O, Big-Omega, and Big-Theta

motivation:
want to express how the time
required by an algorithm depends
on the size of the problem

two extremes:
•  precise count of everything involved

(computer instructions, disk accesses, …)
as a function of size:

inconvenient, not always well-defined
•  “it took a few seconds on my laptop”

not sufficiently informative:
what if size doubles?

Example

assume it took s seconds to find
the maximum among n unsorted items

how to predict the time required to find the
maximum among 2n, 3n, or m items?

finding the maximum takes linear time
⇒ reasonable to predict

2s, 3s, and (m/n)s seconds

Another example

assume that, for some large n, sorting
n items using bubble sort took s seconds

how to predict the time required to sort
2n, 3n, or m items using bubble sort?

sorting using bubble sort is quadratic
⇒ reasonable to predict

22s, 32s, and (m/n)2s seconds

Observations on run times

let f(n) estimate time to solve problem of size n

if f(n) = g(n) + h(n) + … + t(n)
for functions g, h, …, t: N → R

then the “ultimately largest” of g, h, …, t
determines f’s behavior when n gets large

example:
let f(n) = 2n2 + 240n + 9600
then g(n) = 2n2, h(n) = 240n, t(n) = 9600

for small n: t(n) most significant
then h(n) takes over

 but ultimately only g(n) is relevant

Observations on run times

let f(n) estimate time to solve problem of size n

if f(n) = g(n) + h(n) + … + t(n)
for functions g, h, …, t: N → R

then the “ultimately largest” of g, h, …, t
determines f’s behavior when n gets large

let g(n) be f(n)’s “ultimately most relevant part”
then f(n)’s growth rate is independent

 of multiplicative constants in g(n):

)(
)(

)(
)(

ncg
mcg

ng
mg

=

Consequences

When considering a runtime function f(n)

•  Focus on part that grows “fastest” (for n →∞)
•  Forget about multiplicative constants

Examples:
•  f(n) = 2n2 + 240n + 9600

2n2 determines behavior, simplify to just n2
•  r(n) = 0.0001n2 + 24000n + 96009600

again, only the n2 is relevant
•  s(n) = 31(√n)log(n) + nlog10(n) + 167n

nlog10(n) determines behavior: nlog(n)
f(n) is O(n2), r(n) is O(n2), s(n) is O(nlog(n))

Big-O
Let f, g R → R

We say that “f(x) is O(g(x))” if
there are constants C and k such that

∀ x > k |f(x)| ≤ C|g(x)|

•  C and k are called the witnesses
•  “f(x) is big-O of g(x)”
•  “f is big-O of g”

Note:
big-O takes “focus” and “forget” into account
 “k” “C”

Earlier examples

f(n) = 2n2 + 240n + 9600 is O(n2)
C = 4, k = 240 are witnesses
∀ n > 240 |f(n)| ≤ 4|n2|

r(n) = 0.0001n2 + 24000n + 96009600 is O(n2)

C = 3, k = 96004800 are witnesses
∀ n > 96004800 |r(n)| ≤ 3|n2|

s(n) = 31(√n)log(n)+nlog10(n)+167n is O(nlog(n))

C = 2, k = 10167 are witnesses
∀ n > 10167 |s(n)| ≤ 2|nlog(n)|

Big-O facts

75 is O(1) and 1 is O(75)

1 is O(n) but n is not O(1)

n is O(n2) but n2 is not O(n)

n2 is O(n2) and n2 is O(n3)

n2 is O(6n2+n+3) and 6n2+n+3 is O(n2)

 O(6n2+n+3) and O(75) are weird&odd,
 they violate “focus” and “forget”

For constants ai: is O(nd)

 is O(n2)

∑ =

d

i
i

ina0
∑ =

n

i
i
0

()1
0

 is and +

=∑
dn

i
d

i nOia

More big-O facts
∀u > v, u, v constant:

nv is O(nu) but nu is not O(nv)

∀a > 0, b > 0, u > v, a, b, u, v constant:
logb(nv) is O(loga(nu))

loga(nu) is O(logb(nv))
and they are all O(log(n))

If f is O(g) and g is O(h) then f is O(h)

Strictly increasing big-O’s

•  log(n) is O(n) but n is not O(log(n))

•  important: ∀t>0 ∀ε>0 (log(n))t is O(nε)
(any fixed power of logn loses compared to even the tiniest power of n)

•  n is O(nlog(n)) but nlog(n) is not O(n);

•  Constants b > 1, d > 0:
nd is O(bn) but bn is not O(nd)

bn is O(n!) but n! is not O(bn)

•  n! is O(nn) but nn is not O(n!)

⇒ strictly increasing complexities:
O(1), O(log(n)), O(n), O(nlog(n)),

O(nd) (d > 1), O(bn) (b > 1), O(n!), O(nn)

Sometimes confusing big-O facts

•  although n! is O(nn) but nn is not O(n!):

 log(n!) is O(nlog(n)) and nlog(n) is O(log(n!)

•  for constants a > b and c > 1:

⇒ the base of the logarithm matters when the
logarithm is in the exponent,

otherwise the base doesn’t matter

)(not is but
)(is

)(log)(log

)(log)(log

nn

nn

ab

ba

cOc
cOc

Proofs of some of the big-O facts
•  log(n) is O(n)

As n < 2n (formal proof later), we have log(n) < log(2n) = n, so log(n) is O(n) with witnesses C=k=1.

•  ∀t>0∀ε>0 log(n)t is O(nε)
Informally: log(nε/t) < nε/t for n large, so log(n) < (t/ε)nε/t and (log(n))t < (t/ε)t nε, so C= (t/ε)t and large k.

•  n is O(nlog(n)) because n < nlog(n) for n > e (so, witnesses C=1, k=e)

•  nlog(n) is not O(n) because nlog(n)/n = log(n) > C for n > eC

•  nk is O(bn): for n large enough klogb(n) < n, thus for n large enough nk < bn

•  bn is not O(nk): for any constant C > 1 and n large enough nlog(b) - klog(n) > log(C), so bn/nk > C

•  bn is O(n!) but n! is not O(bn): (1*2*…*n)/(b*b*…*b) has fixed number of factors < 2 and growing
(with n) number of factors ≥ 2.

•  n! is O(nn):
n!=1*2*…*n ≤ n*n*…*n=nn, so n! is O(nn) with witnesses C=1, k=1.

•  nn is not O(n!)

•  log(n!) is O(nlog(n)):
Because n! ≤ nn, we have log(n!) ≤ log(nn) = nlog(n), so log(n!) is O(nlog(n)) with witnesses C=1, k=1.

•  nlog(n) is O(log(n!))
For 0≤i<n we have that (n-i)(i+1) ≥ n, so that (n!)2 ≥ nn and 2log(n!) ≥ nlog(n). It follows that
nlog(n) is O(log(n!)) with witnesses C=2, k=1

 nCnnnnnnnnnnn
n

n
n
n

n

nn . large allfor ! becannot that so ! so ,1for
121!

≤∗>>>
−

= 

Be careful combining big-O’s

f1, f2, g1, g2 R → R, fi(x) is O(gi (x)) for i = 1,2

•  (f1+ f2)(x) is O(max(g1(x),g2(x))) (triangle inequality)

•  (f1f2)(x) is O(g1(x)g2(x)) (trivial)

•  but f (x) is O(g(x)) does not imply
 bf (x) is O(bg(x)) (any b>1)

one example we’ve seen already:

 nlog(n) is O(log(n!) but nn is not O(n!)

an easier example: f(x) = 2x, g(x) = x:
2x is O(x) but 22x = (2x)2 is not O(2x)

Big-Omega
seen that for f, g R → R, “f(x) is O(g(x))”
if there are constants C and k such that

∀ x > k |f(x)| ≤ C|g(x)|

if there are constants C>0, k>0 such that
∀ x > k |f(x)| ≥ C|g(x)|

then “f(x) is Ω(g(x))”

“f(x) is big-Omega of g(x)”

Page 180

Page 189

Big-O and big-Omega

“f(x) is O(g(x))” ↔ “g(x) is Ω(f(x))”

Not necessarily either

“f(x) is O(g(x))” or “g(x) is O(f(x))”:

f(x)=sin(x), g(x)=cos(x) (both O(1))

Page 191
Exerc 26

Page 192
Exerc 41

Big-Omega versus Big-O

•  Big-O is an upper bound

“My algorithm runs in O(f)”
means that it takes at most Cf(n) (n > k)

•  Big-Omega is a lower bound
“My algorithm runs in Ω(f)”
means that it takes at least Cf(n) (n > k)

•  In literature very often used incorrectly

Big-Theta: both Big-O & Big-Omega
If f(x) is O(g(x)) and f(x) is Ω(g(x)) then

“f(x) is Θ(g(x))”

“f(x) is big-Theta of g(x)”

f(x) is said to be of order g(x)

“f(x) is Θ(g(x))” ↔ “g(x) is Θ(f(x))”

Example: nlog(n) is of order log(n!)

(use nn > n! and nn < (n!)2)

Page 189

Page 189

Page 192
Exerc 62

Little-o

“f(x) is o(g(x))” if :

“f is little-o of g”

⇒ ∀ fixed d, (log(n))d = no(1) for n → ∞

Find f(n) with (log(n))d = nf(n) and f(n) is o(1):

(log(n))d = edlog(log(n)) and nf(n) = ef(n)log(n))

thus (log(n))d = nf(n) for ;

 , so f(n) = o(1)

(any fixed power of logn loses compared to even the tiniest power of n)

Page 192
Exerc 50

Not in
book

0
)(
)(lim =

∞→ xg
xf

x

)log(
))log(log()(

n
ndnf =

0
1

)(lim =
∞→

nf
n

Computational “complexity”
worst or average case time used by
algorithms, on input of length n:
Θ(1) constant complexity (parity check)

Θ(log n) logarithmic complexity (sorted search)

Θ(n) linear complexity (search max)

Θ(n log n) n log n complexity (fast sorting)

Θ(n2) quadratic complexity (bubble sort)

Θ(n3) cubic complexity (basic n×n matrix multiply ??)

Θ(nd) polynomial complexity (d fixed)
 Θ(?) sub-exponential complexity (integer factoring)

Θ(cn) exponential complexity (c > 1 fixed)
Θ(n!) factorial complexity (traveling salesman)

Θ(nn) so bad that it does not have a name

Page 196

 Page
 249

Not in book

Sc
al

e
w

el
l

 Pa
ge

 1
97

: “
tra

ct
ab

le
”

“Easier” separation of the big-Θ’s
Fix b > 1, and use

Polynomial

Exponential Θ(bn):
n strictly bigger than dlogb(n)

Factorial

nlogb(n/e) strictly bigger than n

Even worse :
strictly bigger than factorial
because en/√n is unbounded

Not in
Book

Stirling’s
Formula,
Page 146

)()()(log ndd bbn Θ=Θ

)(
))/(()!(

)/(log enn

n

bbn
ennn

Θ=

Θ=Θ

)(log xyy bbx =

))/(()(nnn enen Θ=Θ

Sub-exponential complexity

Inputlength n, complexity strictly between
polynomial=good and exponential=bad

Θ(nd) (fixed d > 0) Θ(bn) (fixed b > 1)

nd = edlog(n)

⇒ moving from polynomial to exponential

the exponent pair (0,1) is transformed into (1,0)

Example: factoring integer m takes time

(inputlength is O(log(m)); all logs natural)

Not in
book

Θ(??)
))log((beb nn == δδ

0110)log()log(nnnndnd eben δ==

 10 with ??
1)log(<<=⇒
−

re
rr ndn

)3/1(
3/23/1)))(log(log())))(log(1(92.1(=+ re mmo

Concludes 3rd section of Chapter 3

On to sections 3.4-3.7:
basic number theory

Most already covered in
Sciences de l’Information

Thus: here we focus on the missing bits

and a quick reminder of known stuff

Integer division facts

Integers m ≠ 0, n, a, b, q, s, t ∈ Z:

•  “m divides n” or “m|n”
if there is an integer q with qm=n:

“m is a factor of n”
“n is a multiple of m”
“n is divisible by m”

•  Properties:
•  if m|a and m|b then m|a+b
•  if m|a then ∀b ∈ Z m|ab (also if b=0)
•  if m|n and n|a (with n≠0) then m|a
•  if m|a and m|b then ∀s, t ∈ Z m|sa+tb

Pages
201-202

More on division

Integers m ≠ 0, n, q, r ∈ Z:

•  “Division algorithm”
∀n ∈ Z ∀m ∈ Z>0 ∃! q, r ∈ Z 0≤r<m s.t.

n = mq+r
•  n is the dividend, m the divisor
•  q = n div m, the quotient of n and m,
•  r = n mod m, the remainder

(upon division of n by m)
•  m|n ↔ r = n mod m = 0 ↔ m divides n
•  and m | n ↔ n mod m ≠ 0

 ↔ m does not divide n

Pages
202-203

/

Modular arithmetic

Let a, b, m∈ Z with m > 0
•  a is congruent to b modulo m if m | a-b:

notation: a ≡ b (mod m) (or just a ≡ b mod m)
•  if m | a-b (i.e., a-b mod m ≠ 0) we write

a ≡ b (mod m)
•  Properties:
•  a and b are congruent modulo m ↔

∃ k∈ Z s.t. a = b + km
•  a ≡ c (mod m), b ≡ d (mod m), then:

a+b ≡ c+d (mod m), ab ≡ cd (mod m)
•  (a+b)mod m=((a mod m)+(b mod m))mod m
•  ab mod m = ((a mod m)(b mod m))mod m

Pages
203-205

/
/

Notational note on modular arithmetic

•  “a mod m” indicates the calculation
of the remainder of a upon division by m

•  “a ≡ b (mod m)” or “a ≡ b mod m”
indicates that a-b is divisible by m
(i.e., it says that (a - b) mod m = 0):

a and b are said to be
“in the same residue class modulo m”

•  “a ≡ (a mod m) mod m”
is the (true) proposition that

a - (a mod m) is divisible by m

•  m is called the modulus

Page 205

Toy mod application: Caesar’s cipher

•  f: {a,b,c,…,z} → {0,1,2,…,25} bijection
mapping a to 0, b to 1, …, z to 25

•  g: {0,1,2,…,25} → {0,1,2,…,25}:
 mod 26
then g-1(m) = (m-3) mod 26

Caesar’s cipher :
•  encryption: replace each

 plaintext character x by f-1(g(f (x)))
•  Decryption: replace each

 ciphertext character c by f-1(g-1(f (c)))

(ciphers of this sort are obviously very weak)

Pages
207-208

fgf 1−

)3(+nn

Useful mod application: hash functions

Quick data retrieval while avoiding sorting
(or search for specified item):

•  Given n items, each item
identified by unique key k ∈ N

•  Use m memory locations {0,1,…,m-1},
with m quite a bit larger than n

•  Store all items: item with key k stored
at location k mod m (“the hash”)

Once stored, quick retrieval of item
with key s: at location s mod m

⇒ Data retrieval in time O(1)
(as opposed to O(log n))

Pages
205-206

Collision problem with hash functions

If keys k1 and k2 of different items have
same hash: items stored at same location

•  Not good: a “collision”

•  Collisions will occur if
n approaches √m (“birthday paradox”)

⇒ unavoidable (unless m insanely big)

•  Requires “collision resolution”:
•  Store at first subsequent free location

(leads to hopefully brief linear search)
•  Or use 2nd (3rd, …) hash function
•  Or …

Page 206

Pseudorandom number generation

With a (multiplier), c (increment),
 m (modulus), x0 (seed)

and xi+1 = (axi+c) mod m

we get a pseudorandom sequence
 x0, x1, …, xk, …
For properly chosen a, c, m, x0
•  the resulting sequence looks

“random” enough for many purposes
•  fast (though it uses a division)
•  very bad for cryptography

(but widely used)

Pages
206-207

Remark

hashing and pseudorandom sequences
use fact that result of “modding out” by
large modulus m looks “unpredictable”

Sequences of mods may cover tracks
of a calculation, are thus useful for
randomization and data protection

Primes are particularly nice moduli

Not in
book

Concludes 4th section of Chapter 3

Basic results on primes

Why are we interested in primes?

Because they pop up all over the place:
•  Hash tables
•  Random number generation
•  Information security
•  Math
•  Recreational math

Pages
241-244

Basic results on primes
Everyone here knows the following:
•  a prime is an integer > 1 that has

only 1 and itself as positive factors
•  non-primes are called composites
•  n ∈ N>1 is prime or can be written

as unique product (except for order)
of two or more primes (proof later):

the prime factorization of n
(no unsavory mishaps in Z: 2*3 = 6 = (1-√-5)*(1+√-5))

•  n composite ↔ n has a prime factor ≤ √n

•  |set of primes| = ℵ0 (with an easy proof)

•  given x > 0, how many primes ≤ x?

Pages
210-212

The prime number theorem (PNT)
Less well known (and non-trivial) fact:
•  There are plenty of primes:

•  “prime counting function” π(x) hard to
calculate exactly; current record:
π(1024) =?=18,435,599,767,349,200,867,866

•  Useful consequences of PNT:
•  random k-bit integer is prime with probability >1/k
•  random 100-digit m is prime with probability 1/230
•  different parties probably generate different primes

•  But: how do we recognize if m is prime?

Page 213

)log(
} prime, |{#)(

x
xxpppx ≈≤=π

Generating primes

all primes up to a small bound can be
generated using sieve of Eratosthenes

security applications need primes that are
•  very large (hundreds of digits)
•  unpredictable by others (“random”)

⇒ sieve of Eratosthenes cannot be used

to generate those

Page 210

Pages
241-244

Generating large primes
to generate a random k-bit prime (k large):

1.  pick a random k-bit integer m
2.  if m is composite return to Step 1
3.  output m as the desired prime

PNT ⇒ “expect” about k jumps to Step 1

how do we:
1.  (hard) pick a random number?
2.  (easy) check if m composite?
•  try all factors ≤ √m of m: hopeless
•  use ≈ Fermat’s little theorem:

p prime → ∀ a ∈ Z ap ≡ a (mod p)
one a with am ≡ a (mod m) proves m composite

Pages
241-244

Page 239

/

Applying (variation of) Fermat
to prove that large m is composite

we need to be able to test if
am ≡ a (mod m) for a∈ Z:

m does not divide am - a
↔ (am - a) mod m ≠ 0
↔ (am mod m - a mod m) mod m ≠ 0
↔ (use a = a mod m)

(am mod m - a) mod m ≠ 0

am mod m = (a * a * a * … * a) mod m =
(…((((a*a)mod m)*a)mod m)*…*a) mod m:
•  all intermediate products taken modulo m
•  repeated product infeasible for large m

Page 239

/

Modular exponentiation

calculating ae mod m using e-1 modular
multiplications is infeasible for large e

(and would defeat the purpose)

use binary representation
(ei ∈{0,1}, eL =1) of the exponent e

(while computing everything modulo m)
this can be used in two ways:
•  right to left: e0, e1, e2, …, eL-1, eL
•  left to right: eL, eL-1, eL-2, …, e1, e0

Page 205

Page 226

Not
in book

iL

i iee 2
0∑ =

=

L
L

L
L

L

i
i

i

eeeee

ee

aaaaa
mama

)()()()()(
 mod mod :and

22221

2

1
1

2
2

10

0

∗∗∗∗∗

=∑=
−

−

=

…

Intermezzo on polynomial evaluation

compute

how not to do it: let power = 1, result = f0
for i = 1 to d do: (“right to left”)

replace power by power*c (power = ci)
replace result by result + fi*power

now we have result = f(c)

how to do it (Horner): let result = fd
for i = d-1 downto 0 do: (“left to right”)

replace result by result*c + fi
now we have result = f(c)

both Θ(d), but Horner twice faster (and fewer variables)

Page 199
Exerc 7, 8

0
0

1
10

...)(cfcfcfcfcf d
d

id

i i +++==∑ =

Application of same idea to exponentiation
we can calculate

as a product of successive squares

but also as squares of successive products:

•  unlike Horner, speed remains same
•  like Horner: fewer variables
•  “*” denotes “modular multiplication”

L
L

L
L

L

i
i

i

eeeee

ee

aaaaa
mama

)()()()()(
 mod mod

22222

2

1
1

2
2

1
1

0
0

0

∗∗∗∗∗

=∑=
−

−

=

…

0121 2222))))(...(((eeeee aaaaa LLL ∗∗∗∗∗ −− …

Right to left modular exponentiation

calculate ae mod m with
processing e0, e1, e2, …, eL-1, eL:

calculate ,
multiplying those for which ei =1:

let result = 1 and power = a mod m
for i = 0 to L do:

if ei =1 then
replace result by (result*power) mod m

replace power by power2 mod m
now we have result = ae mod m

Page 226

iL

i iee 2
0∑ =

=

LL

aaaaa 22222 ,,,,,
1210 −

…

Right to left exponentiation example

Calculate 323 mod 47
with 23 = 24 + 22 + 21 + 20 = 10111 we find
L = 4 and e0 = 1, e1 = 1, e2 = 1, e3 = 0, e4 = 1
let result = 1 and power = 3 mod 47 = 31 mod 47
for i = 0 to 4 do:
i=0: e0=1: result = 1*3 mod 47 = 3; power = 32 mod 47 = 9;

now result = 31 mod 47, power = 310 mod 47
i=1: e1=1: result = 3*9 mod 47 = 27; power = 92 mod 47 = 34;

now result = 311 mod 47, power = 3100 mod 47
i=2: e2=1: result = 27*34 mod 47 = 25; power = 342 mod 47 = 28;

now result = 3111 mod 47, power = 31000 mod 47
i=3: e3=0: leave result as is; power = 282 mod 47 = 32;

now result = 30111 mod 47, power = 310000 mod 47
i=4: e4=1: result = 25*32 mod 47 = 1; power = 322 mod 47 = 37;

now result = 310111 mod 47, done: result = 1 (347=3 mod 47)

Left to right modular exponentiation

calculate ae mod m with
processing eL, eL-1, eL-2, …, e1, e0:

calculate ,
using squarings, and multiplies when ei =1:

let result = a mod m (since eL =1)
for i = L-1 downto 0 do:

replace result by result2 mod m
if ei =1 then
 replace result by (result*a mod m) mod m

now we have result = ae mod m

Not
in book

iL

i iee 2
0∑ =

=

…,))((,)(, 211 222 −−− LLLLLL eeeeee aaaaaa

Left to right exponentiation example

Calculate 323 mod 47
23 = 24 + 22 + 21 + 20 = 10111 and we have
L = 4 and e0 = 1, e1 = 1, e2 = 1, e3 = 0, e4 = 1
let result = 3 mod 47

now result = 31 mod 47
for i = 3 downto 0 do:
i=3: result = 32 mod 47 = 9; e3=0: leave result as is;

now result = 310 mod 47
i=2: result = 92 mod 47 = 34; e2=1: result = 34*3 mod 47 = 8;

now result = 3101 mod 47
i=1: result = 82 mod 47 = 17; e1=1: result = 17*3 mod 47 = 4;

now result = 31011 mod 47
i=0: result = 42 mod 47 = 16; e0=1: result = 16*3 mod 47 = 1;

now result = 310111 mod 47, done: result = 1 (347=3 mod 47)

Speed of modular exponentiation
for both “right to left” and “left to right:”
•  # modular squarings: L+1 or L
•  # modular multiplications:

#{i : ei = 1} or #{i : ei = 1} - 1

either way:
total effort Θ(L) modular multiplications

schoolbook modular multiplication: O((log m)2)

overall:
modular exponentiation effort is O(L(log m)2)

if L = log2(m), then this becomes O((log m)3)
annoying fact: the Θ(L) is inherently sequential

Pages
226-227

Speed of prime generation
Generate k-bit primes as follows:
1.  Pick a random k-bit integer m (making it odd helps…)
2.  Test if m is composite: pick random a∈ Z,

check if am ≡ a (mod m) (actually: slight variant)
If not return to Step 1

3.  Output m as the desired prime

Silent assumption: for randomly selected a
 the test am ≡ a (mod m) fails if m composite:
 incorrect, but in practice okay for large m

Overall effort: on average ≈ k attempts,
 each attempt O(k3) ⇒ expected overall O(k4)

(with huge variation; and faster with fast multiplication)

Pages
239-240	

Large primes, for what purpose?
generation of large k-bit primes in (expected)
O(k≤4) time allows implementation of

•  RSA: security based on the difficulty of
inverting integer multiplication (factoring),
need k = 512 or larger

as of Jan 1, 2011: RSA no longer
approved for US government use

•  approved methods based on difficulty
of inverting modular exponentiation
(discrete logarithm): variants of ElGamal,
need k = 160 or larger

(using other groups too, principle same)

Pages
241-244

Not
in book

Skipping
•  greatest common divisors

•  extended Euclidean algorithm / Bezout

•  Chinese remaindering

(all “covered” by Sciences de l’Information)
(some slides will be made available describing the
division-free/easy/constructive methods referred to above:
looks for gcd_etc_slides_0402)

Concludes 7th section of Chapter 3

division-free

easy

constructive

: make odd & subtract (O((log(n))2)

: maintain uv ≡ d (mod p)

: x = x1+p1[(x2-x1)/p1 mod p2]

Section 3.8: matrices

•  Read it!

•  n×m rectangles of numbers:
n rows, m columns

•  Originally to represent linear
transformations from Rm to Rn

•  Wide variety of applications

Pages
247-255

	

Matrix product

∀ m, k, n ∈ Z>0:

•  Computation in m×k×n multiplications
•  Not commutative:

even if AB and BA are both defined,
they are not necessarily equal

Pages
248-249

	

jl
k

j ijil

nm
liil

nk
ljjl

km
jiij

bac

cnmCAB

bBnk

aAkm

∑ =

==

==

==

=

×=

=×

=×

1

,
1,1

,
1,1

,
1,1

 with

)(matrix is

,)(matrix

,)(matrix

Concludes Chapter 3

On to Chapter 4: induction & recursion

Modular arithmetic

let a, b, m∈ Z with m > 0
•  a is congruent to b modulo m if m | a-b:

notation: a ≡ b (mod m) (or just a ≡ b mod m)
•  if m | a-b (i.e., a-b mod m ≠ 0) we write

a ≡ b (mod m)
•  properties:
•  a and b are congruent modulo m ↔

∃ k∈ Z s.t. a = b + km
•  a ≡ c (mod m), b ≡ d (mod m), then:

a+b ≡ c+d (mod m), ab ≡ cd (mod m)
•  (a+b)mod m=((a mod m)+(b mod m))mod m
•  ab mod m = ((a mod m)(b mod m))mod m

pages
240-244
/203-205

/
/

Notational note on modular arithmetic

•  “a mod m” indicates the calculation
of the remainder of a upon division by m

•  “a ≡ b (mod m)” or “a ≡ b mod m”
indicates that a-b is divisible by m
(i.e., it says that (a - b) mod m = 0):

a and b are said to be
“in the same residue class modulo m”

•  “a ≡ (a mod m) mod m”
is the (true) proposition that

a - (a mod m) is divisible by m

•  m is called the modulus

page 242/205

Toy mod application: Caesar’s cipher

•  f: {a,b,c,…,z} → {0,1,2,…,25} bijection
mapping a to 0, b to 1, …, z to 25

•  g: {0,1,2,…,25} → {0,1,2,…,25}:
 mod 26
then g-1(m) = (m-3) mod 26

Caesar’s cipher :
•  encryption: replace each

 plaintext character x by f-1(g(f (x)))
•  decryption: replace each

 ciphertext character c by f-1(g-1(f (c)))

(ciphers of this sort are obviously very weak)

pages
291-292
/207-208

fgf 1−

)3(+nn

Useful mod application: hash functions

quick data retrieval while avoiding sorting
(or search for specified item):

•  given n items, each item
identified by unique key k ∈ N

•  use m memory locations {0,1,…,m-1},
with m quite a bit larger than n

•  store all items: item with key k stored
at location k mod m (“the hash”)

once stored, quick search for item
with key s: at location s mod m

⇒ data retrieval in time O(1)
(as opposed to O(log n))

pages
284-285
/205-206

Collision problem with hash functions

if keys k1 and k2 of different items have
same hash: items stored at same location
•  this is not good: called a “collision”
•  for random keys, collisions will occur if

n approaches √m (“birthday paradox”)

⇒ unavoidable (unless m insanely big)

•  requires “collision resolution”:
•  store at first subsequent free location

(leads to hopefully brief linear search)
•  or use 2nd (3rd, …) hash function
•  or …

•  not to be confused with cryptographic hashing

page 285/206

Pseudorandom number generation

with a (multiplier), c (increment),
 m (modulus), x0 (seed)

and xi+1 = (axi+c) mod m

we get a pseudorandom sequence
 x0, x1, …, xk, …
for properly chosen a, c, m, x0
•  the resulting sequence looks

“random” enough for many purposes
•  fast (though it uses a division)
•  very bad for information protection

(but widely used)

pages
286-287
/206-207

Remark

hashing and pseudorandom sequences
use fact that result of “modding out” by
large modulus m looks “unpredictable”

sequences of mods may cover tracks
of a calculation, are thus useful for
randomization and data protection

primes are particularly nice moduli

related to one of the hardest practical problems
in data protection: generating random numbers
(notable screw-ups: netscape, debian, playstation3, SSL, X509 certs, …

most recently http://www.theregister.co.uk/2013/03/26/netbsd_crypto_bug/)

not in
book

Concludes
first sections of Chapter 4 (7th edition)
 4th section of Chapter 3 (6th edition)

Basic results on primes

why are we interested in primes?

because they pop up all over the place:
•  hash tables
•  random number generation
•  information security
•  math
•  recreational math

pages
295-300
/241-244

Basic results on primes
everyone here knows the following:
•  a prime is an integer > 1 that has

only 1 and itself as positive factors
•  non-primes are called composites
•  n ∈ N>1 is prime or can be written

as unique product (except for order)
of two or more primes (proof later):

the prime factorization of n
(no unsavory mishaps in Z: 2*3 = 6 = (1-√-5)*(1+√-5))

•  n composite ↔ n has a prime factor ≤ √n

•  |set of primes| = ℵ0 (with an easy proof)

•  π(x) is number of primes ≤ x : what is π(x)?

pages
256-258
/210-212

The prime number theorem (PNT)
less well known (and non-trivial) fact:
•  there are plenty of primes:

•  “prime counting function” π(x) hard to

calculate exactly; current record:
π(1024) = 18,435,599,767,349,200,867,866

•  useful consequences of PNT:
•  random k-bit integer is prime with probability >1/k
•  random 100-digit m is prime with probability 1/230
•  different parties probably generate different primes

•  but: how do we recognize if m is prime?

page 261/213

)log(
} prime, |{#)(

x
xxpppx ≈≤=π

Generating primes

all primes up to some small bound can be
generated using sieve of Eratosthenes

security applications need primes that are
•  large (hundreds of digits)
•  unpredictable by others (“random”)

⇒ sieve of Eratosthenes cannot be used

to generate those

page 258/210

pages 295-300
/241-244

Generating large primes
to generate a random k-bit prime (k large):

1.  pick a random k-bit integer m
2.  if m is composite return to Step 1
3.  output m as the desired prime

PNT ⇒ “expect” about k jumps to Step 1

how do we:
1.  pick a random number? hard or easy?
2.  check if m composite? hard or easy?

Generating large primes
to generate a random k-bit prime (k large):

1.  pick a random k-bit integer m
2.  if m is composite return to Step 1
3.  output m as the desired prime

PNT ⇒ “expect” about k jumps to Step 1

how do we:
1.  pick a random number? (this is hard)
2.  check if m composite? (this is easy)
•  try all factors ≤ √m of m: hopeless
•  use ≈ Fermat’s little theorem:

p prime → ∀ a ∈ Z ap ≡ a (mod p)
one a with am ≡ a (mod m) proves m composite

page 279/239

/

Applying (variation of) Fermat
proving m’s compositeness requires

testing if am ≡ a (mod m) for a∈ Z:

m does not divide am - a
↔ (am - a) mod m ≠ 0
↔ (am mod m - a mod m) mod m ≠ 0
↔ (use a = a mod m)

(am mod m - a) mod m ≠ 0

am mod m = (a * a * a * … * a) mod m =
(…((((a*a)mod m)*a)mod m)*…*a) mod m:
•  all products taken modulo m:

no intermediate result > m2

•  but repeated product infeasible for large m

page 279/239

/

Modular exponentiation

calculating ae mod m using e-1 modular
multiplications is infeasible for large e

(and defeats purpose of using Fermat)

from the first semester we know that
“Le	
 calcul	
 d’une	
 puissance	
 en	
 arithmé3que	

modulaire	
 est	
 par3culièrement	
 simple,	

il	
 suffit	
 de	
 décomposer	
 l’exposant.”

example (modulo 7):
312 = (32)6 = 96 ≡ 26 = (23)2 = 82 ≡ 12 = 1
	

we also know
“On	
 pense	
 aujourd’hui	
 que	
 la	
 factorisa3on	

de	
 nombres	
 en3ers	
 très	
 grands	
 est	
 un	

problème	
 difficile.”

Modular exponentiation

still unclear how to calculate
ae mod m for large e

use binary representation
(ei ∈{0,1}, eL =1) of the exponent e

(while computing everything modulo m)
this can be used in two ways:
•  right to left: e0, e1, e2, …, eL-1, eL
•  left to right: eL, eL-1, eL-2, …, e1, e0

page 253/226

not
in book

iL

i iee 2
0∑ =

=

L
L

L
L

L

i
i

i

eeeee

ee

aaaaa
mama

)()()()()(
 mod mod :and

22221

2

1
1

2
2

10

0

∗∗∗∗∗

=∑=
−

−

=

…

Intermezzo on polynomial evaluation

compute

how not to do it: let power = 1, result = f0
for i = 1 to d do: (“right to left”)

replace power by power*c (power = ci)
replace result by result + fi*power

now we have result = f(c)

how to do it (Horner): let result = fd
for i = d-1 downto 0 do: (“left to right”)

replace result by result*c + fi
now we have result = f(c)

both Θ(d), but Horner twice faster (and fewer variables)

page
230/199
exercise

9,10 / 7,8

0
0

1
10

...)(cfcfcfcfcf d
d

id

i i +++==∑ =

Application of same idea to exponentiation
we can calculate

as a product of successive squares

but also as squares of successive products:

•  unlike Horner, speed remains same
•  like Horner: fewer variables
•  “*” denotes “modular multiplication”

and all squarings are “modular” too

L
L

L
L

L

i
i

i

eeeee

ee

aaaaa
mama

)()()()()(
 mod mod

22222

2

1
1

2
2

1
1

0
0

0

∗∗∗∗∗

=∑=
−

−

=

…

0121 2222))))(...(((eeeee aaaaa LLL ∗∗∗∗∗ −− …

Right to left modular exponentiation

calculate ae mod m with
processing e0, e1, e2, …, eL-1, eL:

calculate ,
multiplying those for which ei =1:

let result = 1 and power = a mod m
for i = 0 to L do:

if ei =1 then
replace result by (result*power) mod m

replace power by power2 mod m
now we have result = ae mod m

page
253/226

iL

i iee 2
0∑ =

=

LL

aaaaa 22222 ,,,,,
1210 −

…

Right to left exponentiation example

calculate 323 mod 47
with 23 = 24 + 22 + 21 + 20 = 10111 we find
L = 4 and e0 = 1, e1 = 1, e2 = 1, e3 = 0, e4 = 1
let result = 1 and power = 3 mod 47 = 31 mod 47
for i = 0 to 4 do:
i=0: e0=1: result = 1*3 mod 47 = 3; power = 32 mod 47 = 9;

now result = 31 mod 47, power = 310 mod 47
i=1: e1=1: result = 3*9 mod 47 = 27; power = 92 mod 47 = 34;

now result = 311 mod 47, power = 3100 mod 47
i=2: e2=1: result = 27*34 mod 47 = 25; power = 342 mod 47 = 28;

now result = 3111 mod 47, power = 31000 mod 47
i=3: e3=0: leave result as is; power = 282 mod 47 = 32;

now result = 30111 mod 47, power = 310000 mod 47
i=4: e4=1: result = 25*32 mod 47 = 1; power = 322 mod 47 = 37;

now result = 310111 mod 47, done: result = 1 (347=3 mod 47)

Left to right modular exponentiation

calculate ae mod m with
processing eL, eL-1, eL-2, …, e1, e0:

calculate ,
using squarings, and multiplies when ei =1:

let result = a mod m (since eL =1)
for i = L-1 downto 0 do:

replace result by result2 mod m
if ei =1 then
 replace result by (result*a mod m) mod m

now we have result = ae mod m

Not
in book

iL

i iee 2
0∑ =

=

…,))((,)(, 211 222 −−− LLLLLL eeeeee aaaaaa

Left to right exponentiation example

calculate 323 mod 47
23 = 24 + 22 + 21 + 20 = 10111 and we have
L = 4 and e0 = 1, e1 = 1, e2 = 1, e3 = 0, e4 = 1
let result = 3 mod 47

now result = 31 mod 47
for i = 3 downto 0 do:
i=3: result = 32 mod 47 = 9; e3=0: leave result as is;

now result = 310 mod 47
i=2: result = 92 mod 47 = 34; e2=1: result = 34*3 mod 47 = 8;

now result = 3101 mod 47
i=1: result = 82 mod 47 = 17; e1=1: result = 17*3 mod 47 = 4;

now result = 31011 mod 47
i=0: result = 42 mod 47 = 16; e0=1: result = 16*3 mod 47 = 1;

now result = 310111 mod 47, done: result = 1 (347=3 mod 47)

Speed of modular exponentiation
for both “right to left” and “left to right:”
•  # modular squarings: L+1 or L
•  # modular multiplications:

#{i : ei = 1} or #{i : ei = 1} - 1

either way:
total effort Θ(L) modular multiplications

schoolbook modular multiplication: O((log m)2)

overall:
modular exponentiation effort is O(L(log m)2)

if L = log2(m), then this becomes O((log m)3)
annoying fact: the Θ(L) is inherently sequential

pages
253-254
/226-227

Speed of prime generation
generate k-bit primes as follows:
1.  pick a random k-bit integer m (making it odd helps…)
2.  test if m is composite: pick random a∈ Z,

check if am ≡ a (mod m) (actually: slight variant)
if not return to Step 1

3.  output m as the desired prime

silent assumption: for randomly selected a
 the test am ≡ a (mod m) fails if m composite:
 incorrect, but in practice okay for large m

overall effort: on average ≈ k attempts,
 each attempt O(k3) ⇒ expected overall O(k4)

(with huge variation; and faster with fast multiplication)

pages
279-280
/239-240	

Large primes, for what purpose?
generation of large k-bit primes in (expected)
O(k≤4) time allows implementation of

•  RSA: security based on the difficulty of
inverting integer multiplication (factoring),
need k = 512 and larger

as of Jan 1, 2011: RSA no longer
approved for US government use

•  approved methods based on difficulty
of inverting modular exponentiation
(discrete logarithm): variants of ElGamal,
need k = 160 and larger

(using other groups too, principle same)

pages
295-98

/241-244

Pages
281-282

/not in 6th

Skipping
•  greatest common divisors

•  extended Euclidean algorithm / Bezout

•  Chinese remaindering

•  all “covered” by Sciences de l’Information
•  description of division-free/easy/constructive methods
 will be made available on slides

division-free

easy

constructive

: make odd & subtract (O((log(n))2)

: maintain uv ≡ d (mod p)

: x = x1+p1[(x2-x1)/p1 mod p2]

Concludes Chapter 4 (7th) / 3 (6th)

on to Chapter 5 (7th) / 4 (6th) :
induction & recursion

Greatest common divisor
given two integers a and b, not both zero;
their greatest common divisor is the largest
integer d with d|a and d|b: d = gcd(a,b);

conversely, least common multiple:

smallest s ∈ Z>0 with a|s, b|s: s = lcm(a,b).

•  1|a and 1|b, thus gcd(a,b) ≥ 1;
also gcd(a,b) ≤ min(|a|,|b|);

thus gcd(a,b) exists
•  a|ab and b|ab, thus lcm(a,b) ≤ |ab|;

also lcm(a,b) ≥ max(|a|,|b|);
thus lcm(a,b) exists

•  if gcd(a,b) = 1, then a and b are coprime.

pages
263-265
/215-217

Computing the gcd and the lcm

this requires factorization (one suffices): slow

much smarter to use the Euclidean algorithm

pages
264-265
/216-217

pages
266-268
/227-229

∏ ∏= =
==⇒

n

i

n

i
de

i
de

i
iiii pbapba

1 1
),max(),min(),(lcm ,),gcd(

) primes(distinct , if
11 i

n

i
d
i

n

i
e
i ppbpa ii ∏∏ ==

==

),(lcm),gcd(babaab ∗=⇒

),(gcd from followseasily),(lcm baba⇒

Observation underlying Euclidean algorithm

thm. ∀k ∈ Z: gcd(a,b) = gcd(b, a - kb)
proof
•  if d = gcd(a,b) then d|a and d|b,

and thus ∀s, t ∈ Z d|sa+tb;
take s = 1, t = -k, then d|a - kb. (universal instantiation)
thus d|b and d|a - kb, thus d|gcd(b, a - kb)

•  if d = gcd(b, a - kb) then d|b and d|a - kb,
and thus ∀s, t ∈ Z d|sb+t(a - kb);
take s = k, t = 1, then d|kb+(a - kb) = a.
thus d|b and d|a, thus d|gcd(b,a) = gcd(a,b)

⇒ gcd(a,b)|gcd(b, a - kb) and
 gcd(b, a - kb)|gcd(a,b), which implies Thm.

page
267/228

Euclidean algorithm

how to best use (with a > 0, b ≥ 0)
“∀k ∈ Z: gcd(a,b) = gcd(b, a - kb)”

replace problem of computing gcd(a,b) by
smaller problem of computing gcd(b, a - kb),

which k to use?
three approaches:
standard: use k = a div b (and gcd(a,0)=a)

 (so 0 ≤ a - kb = a mod b < b)
better: minimize |a - kb| (above k or k+1)

 (so 0 ≤ |a - kb| ≤ b/2)
binary: a, b odd: use k = 1 and
(Division-free!) remove 2s from a - b (“shift”)

pages
266-268
/227-229

early

peek at
recursion,

pages
353-356
/311-321

page 267/229

not in
book

Example

compute gcd(147,91)

using factorization (bad idea)

147 = 3 * 72, 91 = 7 * 13

so: 147 = 31 * 72 * 130, 91 = 30 * 71 *131

thus
gcd(147,91) = 3min(1,0) * 7min(2,1) * 13min(0,1)

 = 30 * 71 * 130

 = 7

pages
264-265
/216-217

Euclidean algorithm examples

compute gcd(147,91)

standard Euclidean algorithm
147=1*91+56: gcd(147,91) = gcd(91,56)
91=1*56+35: gcd(91,56) = gcd(56,35)
56=1*35+21: gcd(56,35) = gcd(35,21)
35=1*21+14: gcd(35,21) = gcd(21,14)
21=1*14+7: gcd(21,14) = gcd(14,7)
14=2*7+0: gcd(14,7) = gcd(7,0) = 7
⇒ gcd(147,91) = 7,

after 6 standard division steps:
147, 91, 56, 35, 21, 14, 7, 0

(bounding number of steps is cumbersome)

pages
266-268
/227-229

Euclidean algorithm examples

compute gcd(147,91)

smallest remainder Euclidean algorithm
147=2*91-35: gcd(147,91) = gcd(91,35)
91=3*35 -14: gcd(91,35) = gcd(35,14)
35=2*14+7: gcd(35,14) = gcd(14,7)
14=2*7+0: gcd(14,7) = gcd(7,0) = 7

⇒ gcd(147,91) = 7,
after 4 division steps:
147, 91, 35, 14, 7, 0

(number of division steps in gcd(n,m)
is easily bounded by log2(min(n,m)))

not in
book

Euclidean algorithm examples

compute gcd(147,91)

binary Euclidean algorithm
147 and 91 both odd:
 gcd(147,91) = gcd(91,147-91)=gcd(91,56)
 = gcd(91,7) (removed three 2s)
 gcd(91,7) = gcd(7,91-7) = gcd(7,84)

 = gcd(7,21) (removed two 2s)
 gcd(21,7) = gcd(7, 21-7) = gcd(7,14)

 = gcd(7,7) (removed one 2)
⇒ gcd(147,91) = 7, in 3 division-less steps

(147, 91), (91,7), (21,7), (7,7)
can you figure out how to deal with non-odd inputs?

not in
book

Another example

compute gcd(127,91)

using factorization

127 = 1271 is prime

thus 127 coprime to any a with 0 < a < 127

⇒ we find gcd(127,91) = 1

(remember: gcds with primes are easy)

Euclidean algorithm examples

compute gcd(127,91)

standard Euclidean algorithm
127=1*91+36: gcd(127,91) = gcd(91,36)
91=2*36+19: gcd(91,36) = gcd(36,19)
36=1*19+17: gcd(36,19) = gcd(19,17)
19=1*17+2: gcd(19,17) = gcd(17,2)
17=8*2+1: gcd(17,2) = gcd(2,1)
2=2*1+0: gcd(2,1) = gcd(1,0) = 1
⇒ gcd(127,91) = 1,

after 6 standard division steps:
127, 91, 36, 19, 17, 2, 1, 0

Euclidean algorithm examples

compute gcd(127,91)

smallest remainder Euclidean algorithm
127=1*91+36: gcd(127,91) = gcd(91,36)
91=3*36 -17: gcd(91,36) = gcd(36,17)
36=2*17+2: gcd(36,17) = gcd(17,2)
17=8*2+1: gcd(17,2) = gcd(2,1)
2=2*1+0: gcd(2,1) = gcd(1,0) = 1

⇒ gcd(127,91) = 1,
after 5 division steps:
127, 91, 36, 17, 2, 1, 0

Euclidean algorithm examples

compute gcd(127,91)
binary Euclidean algorithm
127 and 91 both odd:
 gcd(127,91) = gcd(91,127-91)=gcd(91,36)
 = gcd(91,9) (removed two 2s)
 gcd(91,9) = gcd(9,91-9) = gcd(9,82)

 = gcd(9,41) (removed one 2)
 gcd(41,9) = gcd(9,41-9) = gcd(9,32)

 = gcd(9,1) (removed five 2s)
⇒ gcd(127,91) = 1, in 3 division-less steps

(127, 91), (91,9), (41,9), (9,1)
note: binary euclid runs in O((max(logn,logm))2) bit operations

Linear congruences (i.e., modular inversion)
given modulus m, integers a, b > 0,

find integer x such that ax ≡ b (mod m)

seen that:
 b must be a multiple of gcd(a,m)
i.e.: gcd(a,m)|b is necessary condition
 for solution to ax ≡ b (mod m) to exist
i.e.: ax ≡ b (mod m) solvable → gcd(a,m)|b

below constructive proof that gcd(a,m)|b suffices:
i.e.: gcd(a,m)|b → ax ≡ b (mod m) solvable

conclusion:
ax ≡ b (mod m) solvable ↔ gcd(a,m)|b

pages
273-275
/232-235

Solving ax ≡ gcd(a,m) (mod m)
(suffices for ax ≡ b (mod m) with gcd(a,m)|b)
use previous example: a = 91, m = 127
seen: gcd(91,127)=1,

 thus try to solve 91x ≡ 1 (mod 127) for x
combine related identities modulo 127:
(1)  91 * 0 ≡ 127 (mod 127), trivially true
(2)  91 * 1 ≡ 91 (mod 127), trivially true
(3)  91 * (-1) ≡ 36 (mod 127): (1) - 1×(2)
(4)  91 * 3 ≡ 19 (mod 127): (2) - 2×(3)
(5)  91 * (-4) ≡ 17 (mod 127): (3) - 1×(4)
(6)  91 * 7 ≡ 2 (mod 127): (4) - 1×(5)
(7)  91 * (-60) ≡ 1 (mod 127): (5) - 8×(6)
thus 91 * 67 ≡ 1 (mod 127): x = 67

page

272/246
exerc 30/48

Solving ax ≡ gcd(a,m) (mod m)
(suffices for ax ≡ b (mod m) with gcd(a,m)|b)
use previous example: a = 91, m = 127
seen: gcd(91,127)=1,

 thus try to solve 91x ≡ 1 (mod 127) for x
combine related identities modulo 127:
(1)  91 * 0 ≡ 127 (mod 127), trivially true
(2)  91 * 1 ≡ 91 (mod 127), trivially true
(3)  91 * (-1) ≡ 36 (mod 127): (1) - 1×(2)
(4)  91 * 3 ≡ 19 (mod 127): (2) - 2×(3)
(5)  91 * (-4) ≡ 17 (mod 127): (3) - 1×(4)
(6)  91 * 7 ≡ 2 (mod 127): (4) - 1×(5)
(7)  91 * (-60) ≡ 1 (mod 127): (5) - 8×(6)
thus 91 * 67 ≡ 1 (mod 127): x = 67
	

Euclidean algorithm examples

compute gcd(127,91)

standard Euclidean algorithm
127=1*91+36: gcd(127,91) = gcd(91,36)
91=2*36+19: gcd(91,36) = gcd(36,19)
36=1*19+17: gcd(36,19) = gcd(19,17)
19=1*17+2: gcd(19,17) = gcd(17,2)
17=8*2+1: gcd(17,2) = gcd(2,1)
2=2*1+0: gcd(2,1) = gcd(1,0) = 1
⇒ gcd(127,91) = 1,

after 6 standard division steps:
127, 91, 36, 19, 17, 2, 1, 0

Solving ax ≡ gcd(a,m) (mod m)
(suffices for ax ≡ b (mod m) with gcd(a,m)|b)
use previous example: a = 91, m = 127
seen: gcd(91,127)=1,

 thus try to solve 91x ≡ 1 (mod 127) for x
combine related identities modulo 127:
(1)  91 * 0 ≡ 127 (mod 127), trivially true
(2)  91 * 1 ≡ 91 (mod 127), trivially true
(3)  91 * (-1) ≡ 36 (mod 127): (1) - 1×(2)
(4)  91 * 3 ≡ 19 (mod 127): (2) - 2×(3)
(5)  91 * (-4) ≡ 17 (mod 127): (3) - 1×(4)
(6)  91 * 7 ≡ 2 (mod 127): (4) - 1×(5)
(7)  91 * (-60) ≡ 1 (mod 127): (5) - 8×(6)
thus 91 * 67 ≡ 1 (mod 127): x = 67
	

same sequences

Euclidean algorithm examples

compute gcd(127,91)

standard Euclidean algorithm
127=1*91+36: gcd(127,91) = gcd(91,36)
91=2*36+19: gcd(91,36) = gcd(36,19)
36=1*19+17: gcd(36,19) = gcd(19,17)
19=1*17+2: gcd(19,17) = gcd(17,2)
17=8*2+1: gcd(17,2) = gcd(2,1)
2=2*1+0: gcd(2,1) = gcd(1,0) = 1
⇒ gcd(127,91) = 1,

after 6 standard division steps:
127, 91, 36, 19, 17, 2, 1, 0

Solving ax ≡ gcd(a,m) (mod m)
(suffices for ax ≡ b (mod m) with gcd(a,m)|b)
use previous example: a = 91, m = 127
seen: gcd(91,127)=1,

 thus try to solve 91x ≡ 1 (mod 127) for x
combine related identities modulo 127:
(1)  91 * 0 ≡ 127 (mod 127), trivially true
(2)  91 * 1 ≡ 91 (mod 127), trivially true
(3)  91 * (-1) ≡ 36 (mod 127): (1) - 1×(2)
(4)  91 * 3 ≡ 19 (mod 127): (2) - 2×(3)
(5)  91 * (-4) ≡ 17 (mod 127): (3) - 1×(4)
(6)  91 * 7 ≡ 2 (mod 127): (4) - 1×(5)
(7)  91 * (-60) ≡ 1 (mod 127): (5) - 8×(6)
thus 91 * 67 ≡ 1 (mod 127): x = 67
	

same sequences

and same sequences

Euclidean algorithm examples

compute gcd(127,91)

standard Euclidean algorithm
127=1*91+36: gcd(127,91) = gcd(91,36)
91=2*36+19: gcd(91,36) = gcd(36,19)
36=1*19+17: gcd(36,19) = gcd(19,17)
19=1*17+2: gcd(19,17) = gcd(17,2)
17=8*2+1: gcd(17,2) = gcd(2,1)
2=2*1+0: gcd(2,1) = gcd(1,0) = 1
⇒ gcd(127,91) = 1,

after 6 standard division steps:
127, 91, 36, 19, 17, 2, 1, 0

Solving ax ≡ gcd(a,m) (mod m)
(suffices for ax ≡ b (mod m) with gcd(a,m)|b)
use previous example: a = 91, m = 127
seen: gcd(91,127)=1,

 thus try to solve 91x ≡ 1 (mod 127) for x
combine related identities modulo 127:
(1)  91 * 0 ≡ 127 (mod 127), trivially true
(2)  91 * 1 ≡ 91 (mod 127), trivially true
(3)  91 * (-1) ≡ 36 (mod 127): (1) - 1×(2)
(4)  91 * 3 ≡ 19 (mod 127): (2) - 2×(3)
(5)  91 * (-4) ≡ 17 (mod 127): (3) - 1×(4)
(6)  91 * 7 ≡ 2 (mod 127): (4) - 1×(5)
(7)  91 * (-60) ≡ 1 (mod 127): (5) - 8×(6)
thus 91 * 67 ≡ 1 (mod 127): x = 67
	
 in identities ay ≡ t (mod m):
•  t follows sequence of Euclidean algorithm
•  Euclidean sequence terminates at t = gcd(a,m)

with y equal to x s.t. ax ≡ gcd(a,m) (mod m).
•  this is constructive proof of

gcd(a,m)|b → ax ≡ b (mod m) solvable
•  multipliers are quotients in Euclidean algorithm

Example ax ≡ gcd(a,m) (mod m) with gcd ≠ 1
let a = 91, m = 147 try to find x such that
91x ≡ gcd(91,147) (mod 147) (known to be 7)
combine related identities modulo 147
and use the standard Euclidean algorithm:
(1)  91 * 0 ≡ 147 (mod 147), trivially true
(2)  91 * 1 ≡ 91 (mod 147), trivially true
(3)  91 * (-1) ≡ 56 (mod 147): (1) - 1×(2)
(4)  91 * 2 ≡ 35 (mod 147): (2) - 1×(3)
(5)  91 * (-3) ≡ 21 (mod 147): (3) - 1×(4)
(6)  91 * 5 ≡ 14 (mod 147): (4) - 1×(5)
(7)  91 * (-8) ≡ 7 (mod 147): (5) - 1×(6)
Thus 91 * 139 ≡ 7 (mod 147): x = 139

Same example again
using the smallest remainder variant:
(1)  91 * 0 ≡ 147 (mod 147)
(2)  91 * 1 ≡ 91 (mod 147)
(3)  91 * (-2) ≡ -35 (mod 147): (1) - 2×(2)
(4)  91 * (-5) ≡ -14 (mod 147): (2) + 3×(3)
(5)  91 * 8 ≡ -7 (mod 147): (3) - 2×(4)
 thus 91 * 139 ≡ 7 (mod 147): x = 139

(sequence of multipliers as before, up to sign)

Same example again
using the binary variant, gets a bit messy:
(1)  91 * 0 ≡ 147 (mod 147)
(2)  91 * 1 ≡ 91 (mod 147)
(3)  91 * (-1) ≡ 56 (mod 147): (1) - 1×(2)

 divide by 2, with -1/2 ≡ (-1+147)/2 = 73:
 91 * 73 ≡ 28 (mod 147)
 divide by 2, with 73/2 ≡ (73+147)/2 = 110:
 91 * 110 ≡ 14 (mod 147)
 divide by 2:
 91 * 55 ≡ 7 (mod 147)

 thus 91 * 55 ≡ 7 (mod 147): x = 55

⇒ other solution than before … (147 not prime)

Remarks
for prime p and all a with 0 < a < p:
•  gcd(a,p) = 1
•  therefore ∃ x s.t. ax ≡ 1 (mod p),

the multiplicative inverse of a modulo p
•  careful runtime analyses of (all) Euclids:

time O((log p)2) to calculate a-1 modulo p
•  ap ≡ a (mod p) (Fermat) →

ap *a-2 ≡ a*a-2 (mod p) → ap-2 ≡ a-1 (mod p)
⇒ a-1 modulo p in time O((log p)3) using

modular exponentiation, only for prime p
given ax ≡ b (mod m),

k with ax + km = b follows as (ax - b)/m

Application: Chinese remaindering
thm. Let p and q be coprime integers and let

then: ∃! x ∈ Z with 0 ≤ x < pq such that

proof by unique construction: if x exists, then

Page 236
	

.0 and 0 with Z, qxpxxx qpqp <≤<≤∈

) mod(and)(mod qxxpxx qp ≡≡

1)1(10 and

 works This)).(mod)((

)(mod)()1),gcd((since

)(mod))(mod(with

)(mod

1

1

−=−+−≤≤

−+=

→−≡=

→≡+≡

→+=→≡

−

−

pqqppx
xqpxxpxx

qpxxkqp

qxkpxqxx
kpxxpxx

pqp

pq

qpq

pp

Applications of Chinese remaindering

•  alternative arithmetic with large integers:
let pi be ith prime. Represent large n as
(n mod p1, n mod p2,…, n mod pk)
for some k such that n < p1*p2*…*pk.
allows components-wise +, -, *
(not at all widely used)

•  the RSA public key cryptosystem:
both in proof that it works
and to make it fast

•  counting

page 277/236

pages
295-298
/241-244

	

