Chapter 3: algorithmic basics

here

- some very elementary algorithms
- big- \boldsymbol{O}, other big things, and complexity

Basic algorithms

consider intuitive algorithm
that solve simple problems
goal:
get first grasp of complexity of algorithms: algorithm behavior with respect to usage of time and space ("memory") depending on the problem "size"
why?
to better understand algorithm scalability and the "difficulty" of the problems
(like matrix multiplication: how does effort grow?)

What is an "algorithm"?

"finite set of precise (?) instructions
to perform a specified task" :

- to perform a certain computation
- to solve a certain problem
- to cook a certain dish
- to reach a certain destination
needs to satisfy various obvious requirements:
- well-defined input/output behavior
- well-defined steps that always work
- it terminates ("finite" and "effective")
- must be sufficiently general
(no attempt at a formal definition)

First basic problem: finding the maximum given set $A=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\}$ the problem: find (index of) "largest" element (largest with respect to some ordering)
"best solution" minimizes the "cost" : number of comparisons between elements of A set is "unordered collection"
\Rightarrow as is, all we can do is inspect all elements (see book page 195/169 for "pseudocode") $\Rightarrow n-1=|A|-1$ comparisons cost is linear function of $|A|$: linear algorithm (size of elements of A not taken into account in cost!)

Another basic problem: searching

 given set $A=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\}$ and some x the problem: if possible, locate x in A(if $x \in A$ return i such that $a_{i}=x$, else return 0)
again, we like to minimize the cost: number of comparisons between $a \in A$ and x
set is still an "unordered collection"
\Rightarrow as is, possibly compare x to all $a \in A$
(see book page 196/170 for pseudocode)
\Rightarrow in the worst case: $n=|A|$ comparisons
cost is linear function of $|A|$: linear search
(size of elements of A again not taken into account in cost)

Can we search x in A faster?
only if more is known about A or x
$A=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\}$ could be sorted,

$$
a_{1}<a_{2}<a_{3}<\ldots<a_{n}:
$$

with $m=\lfloor n / 2\rfloor$, compare \boldsymbol{x} and $\boldsymbol{a}_{\boldsymbol{m}}$
this suffices to remove $\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{m-1}\right\}$ or
$\left\{a_{m+1}, a_{m+2}, a_{m+3}, \ldots, a_{n}\right\}$ from consideration
\Rightarrow cost only 1 to divide problem size by two
\Rightarrow total number of comparisons: about $\log _{2}(\boldsymbol{n})$
\Rightarrow logarithmic search
(note: finding maximum in A is now for free)

Another way to search \boldsymbol{x} in \boldsymbol{S} faster

there may be an "index function" $i: A \rightarrow \mathbf{N}_{\geq 0}$ such that if $x \in A$ then $a_{i(x)}=x$
\Rightarrow cost to locate x is at most one comparison (plus evaluation of $i(x)$)
\Rightarrow constant cost
seen three types of cost functions so far:

- constant
- logarithmic in problem size
- linear in problem size
all scale well for growing problem sizes

But what about sorting?

 the problem: given a finite sequence of items, "sort" it intuitively clear what is meant: input$$
25,16,32,33,8,3,17,6
$$

should be transformed into

$$
3,6,8,16,17,25,32,33
$$

Bubble sort

simple iterative solution to sort $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$
for $i=n$ downto 2 :
put $\max \left(a_{1}, a_{2}, a_{3}, \ldots, a_{i}\right)$ in a_{i}, at cost i-1: for $k=1$ to i - 1 :
if $a_{k}>a_{k+1}$ then "swap" a_{k} and a_{k+1}
overall cost $\sum_{i=2}^{n}(i-1)=(n-1) n / 2$
\Rightarrow cost function quadratic in problem size
but, how does one "swap" elements? and, what are we actually counting in our cost?

Other naïve iterative approaches to sorting

- "selection sort"

$$
\begin{aligned}
& \text { for } i=1 \text { to } n-1 \text { : } \\
& \quad \text { put } \min \left(a_{i}, a_{i+1}, \ldots, a_{n}\right) \text { in } \\
& \quad i \text { th position of }\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right)
\end{aligned}
$$

- "insertion sort"
for $i=2$ to n :
insert a_{i} at proper place in
already sorted list $a_{1}, a_{2}, a_{3}, \ldots, a_{i-1}$
all these approaches have essentially the same cost function as bubble sort:
i.e., quadratic in problem size

Other naïve iterative approaches to sorting

- "selection sort"

$$
\begin{aligned}
& \text { for } i=1 \text { to } n-1 \text { : } \\
& \quad \text { put } \min \left(a_{i}, a_{i+1}, \ldots, a_{n}\right) \text { in } \\
& i \text { th position of }\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right)
\end{aligned}
$$

- "insertion sort"
for $i=2$ to n :
insert a_{i} at proper place in
already sorted list $a_{1}, a_{2}, a_{3}, \ldots, a_{i-1}$
all these approaches have essentially the same cost function as bubble sort: do they?
i.e., quadratic in problem size

Faster sorting?

- "bucket sort"
suppose for each a_{i} its proper location is a function of just a_{i} :

to sort $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ it suffices to call that function n times: linear sorting

- in general:
faster methods use divide and conquer and smart data structures

Questions?

concludes $1^{\text {st }}$ section of Chapter 3
(with the exception of "greedy",
which we postpone)

Big-O, Big-Omega, and Big-Theta

 motivation:want to express how the time required by an algorithm depends on the size of the problem
two extremes:

- precise count of everything involved (computer instructions, disk accesses, ...) as a function of size: inconvenient, not always well-defined
- "it took a few seconds on my laptop" not sufficiently informative: what if size doubles?

Example

assume it took s seconds to find the maximum among n unsorted items
how to predict the time required to find the maximum among $2 n, 3 n$, or m items?
finding the maximum takes linear time
\Rightarrow reasonable to predict
$2 s, 3 s$, and (m / n)s seconds

Another example

assume that, for some large n, sorting
n items using bubble sort took s seconds
how to predict the time required to sort
$2 n, 3 n$, or m items using bubble sort?
sorting using bubble sort is quadratic
\Rightarrow reasonable to predict $2^{2} s, 3^{2} s$, and $(m / n)^{2} s$ seconds

Observations on run times

let $f(n)$ estimate time to solve problem of size n
if $f(n)=g(n)+h(n)+\ldots+t(n)$
for functions $g, h, \ldots, t: \mathbf{N} \rightarrow \mathbf{R}$
then the "ultimately largest" of g, h, \ldots, t determines f 's behavior when n gets large example:
let $f(n)=2 n^{2}+240 n+9600$
then $g(n)=2 n^{2}, h(n)=240 n, t(n)=9600$
for small n : $t(n)$ most significant then $h(n)$ takes over
but ultimately only $g(n)$ is relevant

Observations on run times

let $f(n)$ estimate time to solve problem of size n
if $f(n)=g(n)+h(n)+\ldots+t(n)$
for functions $g, h, \ldots, t: \mathbf{N} \rightarrow \mathbf{R}$
then the "ultimately largest" of g, h, \ldots, t
determines f 's behavior when n gets large
let $g(n)$ be $f(n)$'s "ultimately most relevant part" then $f(n)$'s growth rate is independent of multiplicative constants in $g(n)$:

$$
\frac{g(m)}{g(n)}=\frac{c g(m)}{c g(n)}
$$

Consequences

When considering a runtime function $f(n)$

- Focus on part that grows "fastest" (for $n \rightarrow \infty$)
- Forget about multiplicative constants

Examples:

- $f(n)=2 n^{2}+240 n+9600$
$2 n^{2}$ determines behavior, simplify to just n^{2}
- $r(n)=0.0001 n^{2}+24000 n+9600^{9600}$
again, only the n^{2} is relevant
- $s(n)=31(\sqrt{ } n) \log (n)+n \log _{10}(n)+167 n$
$n \log _{10}(n)$ determines behavior: $n \log (n)$
$f(n)$ is $O\left(n^{2}\right), r(n)$ is $O\left(n^{2}\right), s(n)$ is $O(n \log (n))$

Big-O
Let $f, g \mathbf{R} \rightarrow \mathbf{R}$
We say that " $f(\boldsymbol{x})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{x}))$ " if
there are constants C and k such that

$$
\forall x>k \quad|f(x)| \leq C|g(x)|
$$

- C and k are called the witnesses
- " $f(x)$ is big- O of $g(x)$ "
- " f is big- O of g "

Note:
big- O takes "focus" and "forget" into account " k " "C"

Earlier examples

$$
\begin{aligned}
& f(n)=2 n^{2}+240 n+9600 \text { is } O\left(n^{2}\right) \\
& C=4, k=240 \text { are witnesses } \\
& \quad \forall n>240|f(n)| \leq 4\left|n^{2}\right| \\
& r(n)=0.0001 n^{2}+24000 n+9600^{9600} \text { is } O\left(n^{2}\right) \\
& C=3, k=9600^{4800} \text { are witnesses } \\
& \forall n>9600^{4800}|r(n)| \leq 3\left|n^{2}\right|
\end{aligned}
$$

$$
\begin{aligned}
& s(n)=31(\sqrt{ } n) \log (n)+n \log _{10}(n)+167 n \text { is } O(n \log (n)) \\
& C=2, k=10^{167} \text { are witnesses } \\
& \quad \forall n>10^{167}|S(n)| \leq 2|n \log (n)|
\end{aligned}
$$

Big- O facts

75 is $O(1)$ and 1 is $O(75)$
1 is $O(n)$ but n is not $O(1)$
n is $O\left(n^{2}\right)$ but n^{2} is not $O(n)$
n^{2} is $O\left(n^{2}\right)$ and n^{2} is $O\left(n^{3}\right)$
n^{2} is $O\left(6 n^{2}+n+3\right)$ and $6 n^{2}+n+3$ is $O\left(n^{2}\right)$
$O\left(6 n^{2}+n+3\right)$ and $O(75)$ are weird\&odd, they violate "focus" and "forget"
For constants $a_{i}: \sum_{i=0}^{d} a_{i} n^{i}$ is $O\left(n^{d}\right)$
$\sum_{i=0}^{n} i$ is $O\left(n^{2}\right)$ and $\sum_{i=0}^{n} a_{i} i^{d}$ is $O\left(n^{d+1}\right)$

More big- \boldsymbol{O} facts
$\forall u>v, u, v$ constant:
n^{v} is $O\left(n^{u}\right)$ but n^{u} is not $O\left(n^{v}\right)$
$\forall a>0, b>0, u>v, a, b, u, v$ constant:

$$
\begin{aligned}
& \log _{b}\left(n^{v}\right) \text { is } O\left(\log _{a}\left(n^{u}\right)\right) \\
& \log _{a}\left(n^{u}\right) \text { is } O\left(\log _{b}\left(n^{v}\right)\right) \\
& \text { and they are all } O(\log (\boldsymbol{n}))
\end{aligned}
$$

If f is $O(g)$ and g is $O(h)$ then f is $O(h)$

Strictly increasing big- O 's

- $\log (n)$ is $O(n) \quad$ but \boldsymbol{n} is not $\boldsymbol{O}(\log (n))$
- important: $\forall t>0 \forall \varepsilon>0 \quad(\log (n))^{t}$ is $O\left(n^{\varepsilon}\right)$
(any fixed power of $\log n$ loses compared to even the tiniest power of n)
- n is $O(n \log (n)) \quad$ but $\boldsymbol{n} \log (\boldsymbol{n})$ is $\operatorname{not} \boldsymbol{O}(\boldsymbol{n})$;
- Constants $b>1, d>0$:

$$
\begin{array}{ll}
n^{d} \text { is } O\left(b^{n}\right) & \text { but } \boldsymbol{b}^{\boldsymbol{n}} \text { is not } \boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{d}}\right) \\
b^{n} \text { is } O(n!) & \text { but } \boldsymbol{n}!\text { is not } \boldsymbol{O}\left(\boldsymbol{b}^{\boldsymbol{n}}\right)
\end{array}
$$

- $n!$ is $O\left(n^{n}\right) \quad$ but $\boldsymbol{n}^{\boldsymbol{n}}$ is not $\boldsymbol{O}(\boldsymbol{n}!)$
\Rightarrow strictly increasing complexities:
$O(1), O(\log (n)), O(n), O(n \log (n))$,
$O\left(n^{d}\right)(d>1), O\left(b^{n}\right)(b>1), O(n!), O\left(n^{n}\right)$

Sometimes confusing big- \boldsymbol{O} facts

- although $n!$ is $O\left(n^{n}\right)$ but n^{n} is not $O(n!)$: $\log (n!)$ is $O(n \log (n))$ and $n \log (n)$ is $O(\log (n!)$
- for constants $a>b$ and $c>1$:

$$
\begin{aligned}
& c^{\log _{a}(n)} \text { is } O\left(c^{\log _{b}(n)}\right) \\
& \quad \text { but } c^{\log _{b}(n)} \text { is not } O\left(c^{\log _{a}(n)}\right)
\end{aligned}
$$

\Rightarrow the base of the logarithm matters when the logarithm is in the exponent, otherwise the base doesn't matter

Proofs of some of the big- O facts

- $\quad \log (n)$ is $O(n)$

As $n<2^{n}$ (formal proof later), we have $\log (n)<\log \left(2^{n}\right)=n$, so $\log (n)$ is $O(n)$ with witnesses $C=k=1$.

- $\quad \forall t>0 \forall \varepsilon>0 \log (n)^{t}$ is $O\left(n^{\varepsilon}\right)$

Informally: $\log \left(n^{\varepsilon / t}\right)<n^{\varepsilon / t}$ for n large, so $\log (n)<(t / \varepsilon) n^{\varepsilon / t}$ and $(\log (n))^{t}<(t / \varepsilon)^{t} n^{\varepsilon}$, so $C=(t / \varepsilon)^{t}$ and large k.

- $\quad n$ is $O(n \log (n))$ because $n<n \log (n)$ for $n>e$ (so, witnesses $C=1, k=e$)
- $\quad n \log (n)$ is not $O(n)$ because $n \log (n) / n=\log (n)>C$ for $n>e^{C}$
- $\quad n^{k}$ is $O\left(b^{n}\right)$: for n large enough $k \log _{b}(n)<n$, thus for n large enough $n^{k}<b^{n}$
- $\quad b^{n}$ is not $O\left(n^{k}\right)$: for any constant $C>1$ and $n \operatorname{large}$ enough $n \log (b)-k \log (n)>\log (C)$, so $b^{n} / n^{k}>C$
- $\quad b^{n}$ is $O(n!)$ but $n!$ is not $O\left(b^{n}\right):(1 * 2 * \ldots * n) /\left(b^{*} b^{*} \ldots * b\right)$ has fixed number of factors <2 and growing (with n) number of factors ≥ 2.
- $n!$ is $O\left(n^{n}\right)$:
$n!=1 * 2 * \ldots * n \leq n^{*} n^{*} \ldots * n=n^{n}$, so $n!$ is $O\left(n^{n}\right)$ with witnesses $C=1, k=1$.
- $\quad n^{n}$ is not $O(n!)$
$\frac{n^{n}}{n!}=\frac{n}{n} \frac{n}{n-1} \cdots \frac{n}{2} \frac{n}{1}>n$ for $n>1$, so $n^{n}>n * n!$ so that n^{n} cannot be $\leq C n!$ for all large n.
- $\quad \log (n!)$ is $O(n \log (n))$:

Because $n!\leq n^{n}$, we have $\log (n!) \leq \log \left(n^{n}\right)=n \log (n)$, so $\log (n!)$ is $O(n \log (n))$ with witnesses $C=1, k=1$.

- $\quad n \log (n)$ is $O(\log (n!))$

For $0 \leq i<n$ we have that $(n-i)(i+1) \geq n$, so that $(n!)^{2} \geq n^{n}$ and $2 \log (n!) \geq n \log (n)$. It follows that $n \log (n)$ is $O(\log (n!))$ with witnesses $C=2, k=1$

Be careful combining big- O 's

$f_{1}, f_{2}, g_{1}, g_{2} \mathbf{R} \rightarrow \mathbf{R}, f_{i}(x)$ is $O\left(g_{i}(x)\right)$ for $i=1,2$

- $\left(f_{1}+f_{2}\right)(x)$ is $O\left(\max \left(g_{1}(x), g_{2}(x)\right)\right)$ (triangle inequality)
- $\left(f_{1} f_{2}\right)(x)$ is $O\left(g_{1}(x) g_{2}(x)\right)$ (trivial)
- but $\boldsymbol{f}(\boldsymbol{x})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{x})$) does not imply $b^{f(x)}$ is $O\left(b^{g(x)}\right)($ any $b>1)$
one example we've seen already:
$n \log (n)$ is $O\left(\log (n!)\right.$ but n^{n} is not $O(n!)$
an easier example: $f(x)=2 x, g(x)=x$:

$$
2 x \text { is } O(x) \text { but } 2^{2 x}=\left(2^{x}\right)^{2} \text { is not } O\left(2^{x}\right)
$$

Big-Omega

 seen that for $f, g \mathbf{R} \rightarrow \mathbf{R}$, " $f(x)$ is $O(g(x))$ "Page 180 if there are constants C and k such that

$$
\forall x>k \quad|f(x)| \leq C|g(x)|
$$

if there are constants $C>0, k>0$ such that

$$
\forall x>k \quad|f(x)| \geq C|g(x)|
$$

Page 189
then " $f(x)$ is $\Omega(g(x))$ "
" $f(x)$ is big-Omega of $g(x)$ "

Big-O and big-Omega

Page 191 " $f(x)$ is $O(g(x)) " \leftrightarrow " g(x)$ is $\Omega(f(x)) ")$
Exerc 26
Page 192 Not necessarily either Exerc 41

$$
\begin{aligned}
& \text { " } f(x) \text { is } O(g(x)) " \text { or " } g(x) \text { is } O(f(x)) " \text { ": } \\
& f(x)=\sin (x), g(x)=\cos (x) \text { (both } O(1))
\end{aligned}
$$

Big-Omega versus Big-O

- Big-O is an upper bound "My algorithm runs in $O(f)$ " means that it takes at most $C f(n)(n>k)$
- Big-Omega is a lower bound "My algorithm runs in $\Omega(f)$ " means that it takes at least $C f(n)(n>k)$
- In literature very often used incorrectly

Big-Theta: both Big-O \& Big-Omega

 If $f(x)$ is $O(g(x))$ and $f(x)$ is $\Omega(g(x))$ thenPage 189 " $f(x)$ is $\Theta(g(x)) "$
" $f(x)$ is big-Theta of $g(x)$ "

$$
f(x) \text { is said to be of order } g(x)
$$

Page 189
$" f(x)$ is $\Theta(g(x)) " \leftrightarrow " g(x)$ is $\Theta(f(x)) "$

Page 192 Exerc 62

Example: $n \log (n)$ is of order $\log (n!)$
(use $n^{n}>n!$ and $n^{n}<(n!)^{2}$)

Little-o

Page 192 Exerc 50
" $f(x)$ is $o(g(x)) "$ if $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=0$: " f is little-o of $g "$
$\Rightarrow \forall$ fixed $d,(\log (n))^{d}=n^{o(1)}$ for $n \rightarrow \infty$

Not in book

Find $f(n)$ with $(\log (n))^{d}=n^{f(n)}$ and $f(n)$ is $o(1)$:
$(\log (n))^{d}=e^{d \log (\log (n))}$ and $n^{f(n)}=e^{f(n) \log (n))}$ thus $(\log (n))^{d}=n^{f(n)}$ for $f(n)=\frac{d \log (\log (n))}{\log (n)}$;

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{1}=0, \text { so } f(n)=o(1)
$$

(any fixed power of $\log n$ loses compared to even the tiniest power of n)

Computational "complexity" worst or average case time used by

 Page 196 algorithms, on input of length n :
$\Theta(1)$
constant complexity (parity check)
$\Theta(\log n)$ logarithmic complexity (sorted search)
$\Theta(n) \quad$ linear complexity (search max)
$\Theta(n \log n) \quad n \log n$ complexity (fast sorting)
$\Theta\left(n^{2}\right) \quad$ quadratic complexity (bubble sort)
$\Theta\left(n^{3}\right) \quad$ cubic complexity (basic $n \times n$ matrix multiply ??)
$\Theta\left(n^{d}\right)$ polynomial complexity (d fixed)

sub-exponential complexity (integer factoring)
$\Theta\left(c^{n}\right)$
exponential complexity ($c>1$ fixed)
$\Theta(n!)$ factorial complexity (traveling salesman)
$\Theta\left(n^{n}\right)$ so bad that it does not have a name

Not in Book
"Easier" separation of the big- Θ 's
Fix $b>1$, and use $x^{y}=b^{y \log _{b}(x)}$
Polynomial $\Theta\left(n^{d}\right)=\Theta\left(b^{d \log _{b}(n)}\right)$
Exponential $\Theta\left(b^{n}\right)$: n strictly bigger than $d \log _{b}(n)$
Stirling's
Formula,
Page 146
Factorial $\Theta(n!)=\Theta\left(\sqrt{n}(n / e)^{n}\right)$

$$
=\Theta\left(\sqrt{n} b^{n \log _{b}(n / e)}\right)
$$

$n \log _{b}(n / e)$ strictly bigger than n
Even worse $\Theta\left(n^{n}\right)=\Theta\left(e^{n}(n / e)^{n}\right)$: strictly bigger than factorial because $e^{n} / \sqrt{ } n$ is unbounded

Sub-exponential complexity

Not in book

Inputlength n, complexity strictly between polynomial=good and exponential=bad $\Theta\left(n^{d}\right)($ fixed $d>0) \quad \Theta(? ?) \quad \Theta\left(b^{n}\right)($ fixed $b>1)$
$n^{d}=e^{d \log (n)}$

$$
b^{n}=e^{\delta_{n}}(\delta=\log (b))
$$

$n^{d}=e^{d n^{0} \log (n)^{1}}$
$b^{n}=e^{\delta_{n}^{1} \log (n)^{0}}$
\Rightarrow moving from polynomial to exponential the exponent pair $(0,1)$ is transformed into $(1,0)$

$$
\Rightarrow ? ?=e^{d n^{r} \log (n)^{1-r}} \text { with } 0<r<1
$$

Example: factoring integer m takes time

$$
e^{(1.92+o(1))(\log (m))^{1 / 3}(\log (\log (m)))^{2 / 3}} \quad(r=1 / 3)
$$

(inputlength is $O(\log (m))$; all logs natural)

Concludes $3^{\text {rd }}$ section of Chapter 3

On to sections 3.4-3.7: basic number theory
Most already covered in
Sciences de l'Information

Thus: here we focus on the missing bits and a quick reminder of known stuff

Integer division facts

Integers $m \neq 0, n, a, b, q, s, t \in \mathbf{Z}$:

- " m divides n " or " $m \mid n$ " if there is an integer q with $q m=n$:
" m is a factor of n "
" n is a multiple of m "
" n is divisible by m "
- Properties:
- if $m \mid a$ and $m \mid b$ then $m \mid a+b$
- if $m \mid a$ then $\forall b \in \mathbf{Z} m \mid a b$ (also if $b=0$)
- if $m \mid n$ and $n \mid a($ with $n \neq 0)$ then $m \mid a$
- if $m \mid a$ and $m \mid b$ then $\forall s, t \in \mathbf{Z} m \mid s a+t b$

More on division

Integers $m \neq 0, n, q, r \in \mathbf{Z}$:

- "Division algorithm"
$\forall n \in \mathbf{Z} \forall m \in \mathbf{Z}_{>0} \exists!q, r \in \mathbf{Z} 0 \leq r<m$ s.t.

$$
n=m q+r
$$

- n is the dividend, m the divisor
- $q=n \boldsymbol{\operatorname { d i v }} m$, the quotient of n and m,
- $r=n \boldsymbol{\operatorname { m o d }} m$, the remainder
(upon division of n by m)
- $m \mid n \leftrightarrow r=n \bmod m=0 \leftrightarrow m$ divides n
- and $m \nmid n \leftrightarrow n \bmod m \neq 0$
$\leftrightarrow m$ does not divide n

Modular arithmetic

Let $a, b, m \in \mathbf{Z}$ with $m>0$

- a is congruent to b modulo m if $m \mid a-b$: notation: $a \equiv b(\bmod m)($ or just $a \equiv b \bmod m)$
- if $m \nmid a-b($ i.e., $a-b \bmod m \neq 0)$ we write $a \neq b(\bmod m)$
- Properties:
- $\quad a$ and b are congruent modulo $m \leftrightarrow$

$$
\exists k \in \mathbf{Z} \text { s.t. } a=b+k m
$$

- $a \equiv c(\bmod m), b \equiv d(\bmod m)$, then:
$a+b \equiv c+d(\bmod m), a b \equiv c d(\bmod m)$
- $\quad(a+b) \bmod m=((a \bmod m)+(b \bmod m)) \bmod m$
- $\quad a b \bmod m=((a \bmod m)(b \bmod m)) \bmod m$

Notational note on modular arithmetic

- " $a \boldsymbol{\operatorname { m o d }} m$ " indicates the calculation of the remainder of a upon division by m
- " $a \equiv b(\bmod m)$ " or " $a \equiv b \bmod m$ " indicates that $a-b$ is divisible by m
(i.e., it says that $(a-b) \bmod m=0)$: a and b are said to be
"in the same residue class modulo m "
- " $a \equiv(a \bmod m) \bmod m$ " is the (true) proposition that

$$
a-(a \bmod m) \text { is divisible by } m
$$

- m is called the modulus

Toy mod application: Caesar's cipher

- $f:\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots, \mathrm{z}\} \rightarrow\{0,1,2, \ldots, 25\}$ bijection

Pages

- $g:\{0,1,2, \ldots, 25\} \rightarrow\{0,1,2, \ldots, 25\}:$
$n \mapsto(n+3) \bmod 26$
then $g^{-1}(m)=(m-3) \bmod 26$
Caesar's cipher : $f^{-1} \circ g \circ f$
- encryption: replace each plaintext character x by $f^{1}(g(f(x)))$
- Decryption: replace each ciphertext character c by $f^{-1}\left(g^{-1}(f(c))\right)$
(ciphers of this sort are obviously very weak)

Useful mod application: hash functions

Quick data retrieval while avoiding sorting (or search for specified item):

- Given n items, each item identified by unique key $k \in \mathbf{N}$
- Use m memory locations $\{0,1, \ldots, m-1\}$, with m quite a bit larger than n
- Store all items: item with key k stored at location k mod m ("the hash")

Once stored, quick retrieval of item with key s : at location $s \bmod m$
\Rightarrow Data retrieval in time $O(1)$ (as opposed to $O(\log n)$)

Collision problem with hash functions

If keys k_{1} and k_{2} of different items have same hash: items stored at same location

- Not good: a "collision"
- Collisions will occur if n approaches $\sqrt{ } m$ ("birthday paradox")
\Rightarrow unavoidable (unless m insanely big)
- Requires "collision resolution":
- Store at first subsequent free location (leads to hopefully brief linear search)
- Or use $2^{\text {nd }}\left(3^{\text {rd }}, \ldots\right)$ hash function
- Or ...

Pseudorandom number generation

With a (multiplier), c (increment),
and $\quad x_{i+1}=\left(a x_{i}+c\right) \bmod m$
we get a pseudorandom sequence

$$
x_{0}, x_{1}, \ldots, x_{k}, \ldots
$$

For properly chosen a, c, m, x_{0}

- the resulting sequence looks
"random" enough for many purposes
- fast (though it uses a division)
- very bad for cryptography (but widely used)

Remark

hashing and pseudorandom sequences

Not in book use fact that result of "modding out" by large modulus m looks "unpredictable"

Sequences of mods may cover tracks of a calculation, are thus useful for randomization and data protection

Primes are particularly nice moduli

Concludes $4^{\text {th }}$ section of Chapter 3

Basic results on primes

Why are we interested in primes?
Because they pop up all over the place:

- Hash tables
- Random number generation
- Information security
- Math
- Recreational math

Basic results on primes

Pages 210-212

Everyone here knows the following:

- a prime is an integer >1 that has only 1 and itself as positive factors
- non-primes are called composites
- $n \in \mathbf{N}_{>1}$ is prime or can be written as unique product (except for order) of two or more primes (proof later):
the prime factorization of n (no unsavory mishaps in $\mathbf{Z}: 2 * 3=6=(1-\sqrt{ }-5) *(1+\sqrt{ }-5)$)
- n composite $\leftrightarrow n$ has a prime factor $\leq \sqrt{ } n$
- $\quad \mid$ set of primes $\mid=\mathcal{K}_{0}$ (with an easy proof)
- given $x>0$, how many primes $\leq x$?

The prime number theorem (PNT)
Less well known (and non-trivial) fact:

- There are plenty of primes:

$$
\pi(x)=\#\{p \mid p \text { prime, } p \leq x\} \approx \frac{x}{\log (x)}
$$

- "prime counting function" $\pi(x)$ hard to calculate exactly; current record: $\pi\left(10^{24}\right)=?=18,435,599,767,349,200,867,866$
- Useful consequences of PNT:
- random k-bit integer is prime with probability $>1 / k$
- random 100 -digit m is prime with probability $1 / 230$
- different parties probably generate different primes
- But: how do we recognize if m is prime?

Generating primes

 generated using sieve of EratosthenesPages security applications need primes that are 241-244

- very large (hundreds of digits)
- unpredictable by others ("random")
\Rightarrow sieve of Eratosthenes cannot be used to generate those

Generating large primes

Pages 241-244
to generate a random k-bit prime (k large):

1. pick a random k-bit integer m
2. if m is composite return to Step 1
3. output m as the desired prime PNT \Rightarrow "expect" about k jumps to Step 1
how do we:
4. (hard) pick a random number?
5. (easy) check if m composite?

- try all factors $\leq \sqrt{ } m$ of m : hopeless
- use \approx Fermat's little theorem: p prime $\rightarrow \forall a \in \mathbf{Z} a^{p} \equiv a(\bmod p)$
one a with $a^{m} \not \equiv a(\bmod m)$ proves m composite

Applying (variation of) Fermat

$\leftrightarrow($ use $\boldsymbol{a}=a \bmod m)$ $\left(\boldsymbol{a}^{m} \bmod m-\boldsymbol{a}\right) \bmod m \neq 0$
$\boldsymbol{a}^{m} \bmod m=(\boldsymbol{a} * \boldsymbol{a} * \boldsymbol{a} * \ldots * \boldsymbol{a}) \bmod m=$
$\left.\left(\ldots\left(\left(\left(\boldsymbol{a}^{*} \boldsymbol{a}\right) \bmod m\right)^{*} \boldsymbol{a}\right) \bmod m\right)^{*} \ldots * \boldsymbol{a}\right) \bmod m$:

- all intermediate products taken modulo m
- repeated product infeasible for large m

Modular exponentiation

calculating a^{e} mod m using $e-1$ modular multiplications is infeasible for large e (and would defeat the purpose)
use binary representation $e=\sum_{i=0}^{L} e_{i} 2^{i}$
$\left(e_{i} \in\{0,1\}, e_{L}=1\right)$ of the exponent e
and : $a^{e} \bmod m=a^{\sum_{i=0}^{L} e_{i} 2^{i}} \bmod m=$ $\left(a^{1}\right)^{e_{0}} *\left(a^{2}\right)^{e_{1}} *\left(a^{2^{2}}\right)^{e_{2}} * \ldots *\left(a^{2^{L-1}}\right)^{e_{L-1}} *\left(a^{2^{L}}\right)^{e_{L}}$
(while computing everything modulo m) this can be used in two ways:

Page 226 in book

- right to left: $e_{0}, e_{1}, e_{2}, \ldots, e_{L-1}, e_{L}$
- left to right: $e_{L}, e_{L-1}, e_{L-2}, \ldots, e_{1}, e_{0}$

Intermezzo on polynomial evaluation

 Page 199 compute $f(c)=\sum_{i=0}^{d} f_{i} i^{i}=f_{d} c^{d}+\ldots+f_{1} c^{1}+f_{0} c^{0}$ Exerc 7, 8how not to do it: let power $=1$, result $=f_{0}$ for $i=1$ to d do: ("right to left")
replace power by power*c $\quad\left(\right.$ power $\left.=c^{i}\right)$
replace result by result $+f_{i}^{*}$ power now we have result $=f(c)$
how to do it (Horner): let result $=f_{d}$
for $i=d$ - 1 downto 0 do: ("left to right")
replace result by result ${ }^{*} c+f_{i}$ now we have result $=f(c)$
both $\Theta(d)$, but Horner twice faster (and fewer variables)

Application of same idea to exponentiation

 we can calculate$a^{e} \bmod m=a^{\sum_{i=0}^{L} e_{i} i^{i}} \bmod m=$

$$
\left(a^{2^{0}}\right)^{e_{0}} *\left(a^{2^{1}}\right)^{e_{1}} *\left(a^{2^{2}}\right)^{e_{2}} * \ldots *\left(a^{2^{L-1}}\right)^{e_{L-1}} *\left(a^{2^{L}}\right)^{e_{L}}
$$

as a product of successive squares
but also as squares of successive products:

$$
\left(\ldots\left(\left(\left(a^{e_{L}}\right)^{2} * a^{e_{L-1}}\right)^{2} * a^{e_{L-2}}\right)^{2} * \ldots * a^{e_{1}}\right)^{2} * a^{e_{0}}
$$

- unlike Horner, speed remains same
- like Horner: fewer variables
- "**" denotes "modular multiplication"

Right to left modular exponentiation

calculate $a^{e} \bmod m$ with $e=\sum_{i=0}^{L} e_{i} 2^{i}$ processing $e_{0}, e_{1}, e_{2}, \ldots, e_{L-1}, e_{L}$:
calculate $a^{2^{0}}, a^{2^{1}}, a^{2^{2}}, \ldots, a^{2^{L-1}}, a^{2^{L}}$, multiplying those for which $e_{i}=1$:
let result $=1$ and power $=a \bmod m$ for $i=0$ to L do:
if $e_{i}=1$ then
replace result by (result* power) $\bmod m$
replace power by power ${ }^{2} \bmod m$
now we have result $=a^{e} \bmod m$

Right to left exponentiation example

Calculate $3^{23} \bmod 47$
with $23=2^{4}+2^{2}+2^{1}+2^{0}=10111$ we find
$L=4$ and $e_{0}=1, e_{1}=1, e_{2}=1, e_{3}=0, e_{4}=1$ let result $=1$ and power $=3 \bmod 47=3{ }^{1} \bmod 47$
for $i=0$ to 4 do:
$i=0$: $e_{0}=1$: result $=1 * 3 \bmod 47=3$; power $=3^{2} \bmod 47=9$; now result $=3^{1} \bmod 47$, power $=3^{10} \bmod 47$
$i=1: e_{1}=1:$ result $=3 * 9 \bmod 47=27$; power $=9^{2} \bmod 47=34$;
now result $=3^{11} \bmod 47$, power $=3^{100} \bmod 47$
$i=2: e_{2}=1:$ result $=27 * 34 \bmod 47=25$; power $=34^{2} \bmod 47=28$;
now result $=3^{111} \bmod 47$, power $=3^{1000} \bmod 47$
$i=3: e_{3}=0$: leave result as is; power $=28^{2} \bmod 47=32$; now result $=3^{0111} \bmod 47$, power $=3^{10000} \bmod 47$
$i=4: e_{4}=1:$ result $=25^{*} 32 \bmod 47=1 ;$ power $=32^{2} \bmod 47=37$; now result $=3^{10111} \bmod 47$, done: result $=1\left(3^{47}=3 \bmod 47\right)$

Not Left to right modular exponentiation in book
calculate $a^{e} \bmod m$ with $e=\sum_{i=0}^{L} e_{i} 2^{i}$ processing $e_{L}, e_{L-1}, e_{L-2}, \ldots, e_{1}, e_{0}$: calculate $a^{e_{L}},\left(a^{e_{L}}\right)^{2} a^{e_{L-1}},\left(\left(a^{e_{L}}\right)^{2} a^{e_{L-1}}\right)^{2} a^{e_{L-2}}, \ldots$, using squarings, and multiplies when $e_{i}=1$:
let result $=a \bmod m\left(\right.$ since $\left.e_{L}=1\right)$ for $i=L-1$ downto 0 do:
replace result by result ${ }^{2} \bmod m$
if $e_{i}=1$ then
replace result by $($ result* $a \bmod m) \bmod m$
now we have result $=a^{e} \bmod m$

Left to right exponentiation example

Calculate $3^{23} \bmod 47$
$23=2^{4}+2^{2}+2^{1}+2^{0}=10111$ and we have
$L=4$ and $e_{0}=1, e_{1}=1, e_{2}=1, e_{3}=0, e_{4}=1$ let result $=3 \boldsymbol{\operatorname { m o d }} 47$
now result $=3{ }^{1} \bmod 47$
for $i=3$ downto 0 do:
$i=3$: result $=3^{2} \bmod 47=9 ; e_{3}=0$: leave result as is;
now result $=3^{10} \bmod 47$
$i=2:$ result $=9^{2} \bmod 47=34 ; e_{2}=1:$ result $=34 * 3 \bmod 47=8$; now result $=3^{101} \bmod 47$
$i=1:$ result $=8^{2} \bmod 47=17 ; e_{1}=1:$ result $=17 * 3 \bmod 47=4$; now result $=3^{1011} \bmod 47$
$i=0:$ result $=4^{2} \bmod 47=16 ; e_{0}=1:$ result $=16 * 3 \bmod 47=1$; now result $=3^{10111} \bmod 47$, done: result $=1\left(3^{47}=3 \bmod 47\right)$

Speed of modular exponentiation

 for both "right to left" and "left to right:"- \# modular squarings: $L+1$ or L
- \# modular multiplications:

Pages
226-227

$$
\#\left\{i: e_{i}=1\right\} \text { or } \#\left\{i: e_{i}=1\right\}-1
$$

either way:
total effort $\Theta(L)$ modular multiplications
schoolbook modular multiplication: $O\left((\log m)^{2}\right)$
overall:
modular exponentiation effort is $O\left(L(\log m)^{2}\right)$
if $L=\log _{2}(m)$, then this becomes $O\left((\log m)^{3}\right)$ annoying fact: the $\Theta(L)$ is inherently sequential

Speed of prime generation

Generate k-bit primes as follows:

1. Pick a random k-bit integer m (making it odd helps...)
2. Test if m is composite: pick random $a \in \mathbf{Z}$, check if $a^{m} \equiv a(\bmod m)($ actually: slight variant) If not return to Step 1
3. Output m as the desired prime

Silent assumption: for randomly selected a the test $a^{m} \equiv a(\bmod m)$ fails if m composite: incorrect, but in practice okay for large m
Overall effort: on average $\approx k$ attempts, each attempt $O\left(k^{3}\right) \Rightarrow$ expected overall $O\left(k^{4}\right)$ (with huge variation; and faster with fast multiplication)

Large primes, for what purpose?

 generation of large k-bit primes in (expected) $O\left(k^{\leq 4}\right)$ time allows implementation of- RSA: security based on the difficulty of inverting integer multiplication (factoring), approved for US government use
- approved methods based on difficulty

Not in book
of inverting modular exponentiation (discrete logarithm): variants of ElGamal, need $k=160$ or larger
(using other groups too, principle same)

Skipping

- greatest common divisors
division-free: make odd \& subtract $\left(O\left((\log (n))^{2}\right)\right.$
- extended Euclidean algorithm / Bezout easy $\quad:$ maintain $u v \equiv d(\bmod p)$
- Chinese remaindering
constructive : $x=x_{1}+p_{1}\left[\left(x_{2}-x_{1}\right) / p_{1} \bmod p_{2}\right]$
(all "covered" by Sciences de l'Information)
(some slides will be made available describing the division-free/easy/constructive methods referred to above: looks for gcd_etc_slides_0402)

Concludes $7^{\text {th }}$ section of Chapter 3

Section 3.8: matrices

- $n \times m$ rectangles of numbers: n rows, m columns
- Originally to represent linear transformations from \mathbf{R}^{m} to \mathbf{R}^{n}
- Wide variety of applications

Pages Matrix product

$$
\forall m, k, n \in \mathbf{Z}_{>0}:
$$

$$
\begin{aligned}
& m \times k \text { matrix } A=\left(a_{i j}\right)_{i=1, j=1}^{m, k}, \\
& k \times n \text { matrix } B=\left(b_{j i}\right)_{j=1, l, l=1}^{k, n},
\end{aligned}
$$

$$
A B=C \text { is } m \times n \text { matrix }\left(c_{i} l_{i=l, l=1}^{m, n}\right.
$$

$$
\text { with } c_{i l}=\sum_{j=1}^{k} a_{i j} b_{j l}
$$

- Computation in $m \times k \times n$ multiplications
- Not commutative:
even if $A B$ and $B A$ are both defined, they are not necessarily equal

Concludes Chapter 3

On to Chapter 4: induction \& recursion

Modular arithmetic

$\underset{\substack{\text { papss } \\ 24024}}{\text { 2nat }}$ let $a, b, m \in \mathbf{Z}$ with $m>0$

- a is congruent to b modulo m if $m \mid a-b$: notation: $a \equiv b(\bmod m)($ or just $a \equiv b \bmod m)$
- if $m \nmid a-b($ i.e., $a-b \bmod m \neq 0)$ we write

$$
a \not \equiv b(\bmod m)
$$

- properties:
- $\quad a$ and b are congruent modulo $m \leftrightarrow$

$$
\exists k \in \mathbf{Z} \text { s.t. } a=b+k m
$$

- $a \equiv c(\bmod m), b \equiv d(\bmod m)$, then: $a+b \equiv c+d(\bmod m), a b \equiv c d(\bmod m)$
- $\quad(a+b) \bmod m=((a \bmod m)+(b \bmod m)) \bmod m$
- $\quad a b \bmod m=((a \bmod m)(b \bmod m)) \bmod m$

Notational note on modular arithmetic

- " $a \bmod m$ " indicates the calculation of the remainder of a upon division by m
- " $a \equiv b(\bmod m)$ " or " $a \equiv b \bmod m$ " indicates that $a-b$ is divisible by m
(i.e., it says that $(a-b) \bmod m=0$): a and b are said to be
"in the same residue class modulo m "
- " $a \equiv(a \bmod m) \bmod m$ " is the (true) proposition that

$$
a-(a \bmod m) \text { is divisible by } m
$$

- m is called the modulus

Toy mod application: Caesar's cipher

- $f:\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots, \mathrm{z}\} \rightarrow\{0,1,2, \ldots, 25\}$ bijection mapping a to $0, \mathrm{~b}$ to $1, \ldots, \mathrm{z}$ to 25
- $g:\{0,1,2, \ldots, 25\} \rightarrow\{0,1,2, \ldots, 25\}:$
$n \mapsto(n+3) \bmod 26$
then $g^{-1}(m)=(m-3) \bmod 26$
Caesar's cipher: $f^{-1} \circ g \circ f$
- encryption: replace each plaintext character x by $f^{1}(g(f(x)))$
- decryption: replace each ciphertext character c by $f^{1}\left(g^{-1}(f(c))\right)$
(ciphers of this sort are obviously very weak)

Useful mod application: hash functions

quick data retrieval while avoiding sorting (or search for specified item):

- given n items, each item identified by unique key $k \in \mathbf{N}$
- use m memory locations $\{0,1, \ldots, m-1\}$, with m quite a bit larger than n
- store all items: item with key k stored at location $k \bmod m$ ("the hash") once stored, quick search for item with key s : at location $s \bmod m$
\Rightarrow data retrieval in time $O(1)$
(as opposed to $O(\log n)$)

Collision problem with hash functions

if keys k_{1} and k_{2} of different items have same hash: items stored at same location

- this is not good: called a "collision"
- for random keys, collisions will occur if n approaches $\sqrt{ } m$ ("birthday paradox")
\Rightarrow unavoidable (unless m insanely big)
- requires "collision resolution":
- store at first subsequent free location (leads to hopefully brief linear search)
- or use $2^{\text {nd }}\left(3^{\text {rd }}, \ldots\right)$ hash function
- or ...
- not to be confused with cryptographic hashing

Pseudorandom number generation

 with a (multiplier), c (increment), m (modulus), x_{0} (seed)and $x_{i+1}=\left(a x_{i}+c\right) \bmod m$
we get a pseudorandom sequence

$$
x_{0}, x_{1}, \ldots, x_{k}, \ldots
$$

for properly chosen a, c, m, x_{0}

- the resulting sequence looks
"random" enough for many purposes
- fast (though it uses a division)
- very bad for information protection (but widely used)

Remark

hashing and pseudorandom sequences use fact that result of "modding out" by large modulus m looks "unpredictable" sequences of mods may cover tracks of a calculation, are thus useful for randomization and data protection

primes are particularly nice moduli

related to one of the hardest practical problems in data protection: generating random numbers (notable screw-ups: netscape, debian, playstation3, SSL, X509 certs, ... most recently http://www.theregister.co.uk/2013/03/26/netbsd crypto bug/)

Concludes

first sections of Chapter 4 ($7^{\text {th }}$ edition) $4^{\text {th }}$ section of Chapter 3 ($6^{\text {th }}$ edition)

Basic results on primes

why are we interested in primes?
because they pop up all over the place:

- hash tables
- random number generation
- information security
- math
- recreational math

Basic results on primes

everyone here knows the following:

- a prime is an integer >1 that has only 1 and itself as positive factors
- non-primes are called composites
- $n \in \mathbf{N}_{>1}$ is prime or can be written as unique product (except for order) of two or more primes (proof later):
the prime factorization of n (no unsavory mishaps in $\mathbf{Z}: 2 * 3=6=(1-\sqrt{ }-5) *(1+\sqrt{ }-5)$)
- n composite $\leftrightarrow n$ has a prime factor $\leq \sqrt{ } n$
- $\quad \mid$ set of primes $\mid=\boldsymbol{\aleph}_{0}$ (with an easy proof)
- $\pi(x)$ is number of primes $\leq x:$ what is $\pi(x)$?

The prime number theorem (PNT)

less well known (and non-trivial) fact:

- there are plenty of primes:

$$
\pi(x)=\#\{p \mid p \text { prime, } p \leq x\} \approx \frac{x}{\log (x)}
$$

- "prime counting function" $\pi(x)$ hard to calculate exactly; current record: $\pi\left(10^{24}\right)=18,435,599,767,349,200,867,866$
- useful consequences of PNT:
- random k-bit integer is prime with probability $>1 / k$
- random 100 -digit m is prime with probability $1 / 230$
- different parties probably generate different primes
- but: how do we recognize if m is prime?

Generating primes

 generated using sieve of Eratosthenes

- large (hundreds of digits)
- unpredictable by others ("random")
\Rightarrow sieve of Eratosthenes cannot be used to generate those

Generating large primes

to generate a random k-bit prime (k large):

1. pick a random k-bit integer m
2. if m is composite return to Step 1
3. output m as the desired prime

PNT \Rightarrow "expect" about k jumps to Step 1
how do we:

1. pick a random number? hard or easy?
2. check if m composite? hard or easy?

Generating large primes

to generate a random k-bit prime (k large):

1. pick a random k-bit integer m
2. if m is composite return to Step 1
3. output m as the desired prime PNT \Rightarrow "expect" about k jumps to Step 1
how do we:
4. pick a random number? (this is hard)
5. check if m composite? (this is easy)

- try all factors $\leq \sqrt{ } m$ of m : hopeless
- use \approx Fermat's little theorem: p prime $\rightarrow \forall a \in \mathbf{Z} a^{p} \equiv a(\bmod p)$
one a with $a^{m} \equiv a(\bmod m)$ proves m composite

Applying (variation of) Fermat

proving m 's compositeness requires testing if $a^{m} \not \equiv a(\bmod m)$ for $a \in \mathbf{Z}$: m does not divide $a^{m}-a$
$\leftrightarrow\left(a^{m}-a\right) \bmod m \neq 0$
$\leftrightarrow\left(a^{m} \bmod m-a \bmod m\right) \bmod m \neq 0$
$\leftrightarrow($ use $\boldsymbol{a}=a \bmod m)$
$\left(\boldsymbol{a}^{m} \bmod m-\boldsymbol{a}\right) \bmod m \neq 0$
$\boldsymbol{a}^{m} \bmod m=(\boldsymbol{a} * \boldsymbol{a} * \boldsymbol{a} * \ldots * \boldsymbol{a}) \bmod m=$
$\left.\left(\ldots\left(\left(\left(\boldsymbol{a}^{*} \boldsymbol{a}\right) \bmod m\right)^{*} \boldsymbol{a}\right) \bmod m\right)^{*} \ldots * \boldsymbol{a}\right) \bmod m$:

- all products taken modulo m : no intermediate result $>m^{2}$
- but repeated product infeasible for large m

Modular exponentiation

calculating a^{e} mod m using $e-1$ modular multiplications is infeasible for large e (and defeats purpose of using Fermat)
from the first semester we know that
"Le calcul d'une puissance en arithmétique modulaire est particulièrement simple,
il suffit de décomposer l'exposant."
example (modulo 7):
$3^{12}=\left(3^{2}\right)^{6}=9^{6} \equiv 2^{6}=\left(2^{3}\right)^{2}=8^{2} \equiv 1^{2}=1$
we also know
"On pense aujourd'hui que la factorisation de nombres entiers très grands est un problème difficile."

Modular exponentiation

 still unclear how to calculate $a^{e} \bmod m$ for large e use binary representation $e=\sum_{i=0}^{L} e_{i} 2^{i}$ ($e_{i} \in\{0,1\}, e_{L}=1$) of the exponent e and: $a^{e} \bmod m=a^{\sum_{i=0}^{L} e_{i}^{i}} \bmod m=$ $\left(a^{1}\right)^{e_{0}} *\left(a^{2}\right)^{e_{1}} *\left(a^{2^{2}}\right)^{e_{2}} * \ldots *\left(a^{2^{L-1}}\right)^{e_{L-1}} *\left(a^{2^{L}}\right)^{e_{L}}$(while computing everything modulo m) this can be used in two ways:

- right to left: $e_{0}, e_{1}, e_{2}, \ldots, e_{L-1}, e_{L}$
- left to right: $e_{L}, e_{L-1}, e_{L-2}, \ldots, e_{1}, e_{0}$

Intermezzo on polynomial evaluation

compute $f(c)=\sum_{i=0}^{d} f_{i} c^{i}=f_{d} c^{d}+\ldots+f_{1} c^{1}+f_{0} c^{0}$

Application of same idea to exponentiation

 we can calculate$a^{e} \bmod m=a^{\sum_{i=0}^{L} e_{i} i^{i}} \bmod m=$

$$
\left(a^{2^{0}}\right)^{e_{0}} *\left(a^{2^{1}}\right)^{e_{1}} *\left(a^{2^{2}}\right)^{e_{2}} * \ldots *\left(a^{2^{L-1}}\right)^{e_{L-1}} *\left(a^{2^{L}}\right)^{e_{L}}
$$

as a product of successive squares
but also as squares of successive products:

$$
\left(\ldots\left(\left(\left(a^{e_{L}}\right)^{2} * a^{e_{L-1}}\right)^{2} * a^{e_{L-2}}\right)^{2} * \ldots * a^{e_{1}}\right)^{2} * a^{e_{0}}
$$

- unlike Horner, speed remains same
- like Horner: fewer variables
- "*" denotes "modular multiplication" and all squarings are "modular" too

Right to left modular exponentiation

calculate $a^{e} \bmod m$ with $e=\sum_{i=0}^{L} e_{i} 2^{i}$ processing $e_{0}, e_{1}, e_{2}, \ldots, e_{L-1}, e_{L}$: calculate $a^{2^{0}}, a^{2^{1}}, a^{2^{2}}, \ldots, a^{2^{L-1}}, a^{2^{L}}$, multiplying those for which $e_{i}=1$:
let result $=1$ and power $=a \bmod m$ for $i=0$ to L do:
if $e_{i}=1$ then
replace result by (result*power) $\bmod m$
replace power by power ${ }^{2} \bmod m$
now we have result $=a^{e} \bmod m$

Right to left exponentiation example

calculate $3^{23} \bmod 47$

with $23=2^{4}+2^{2}+2^{1}+2^{0}=10111$ we find
$L=4$ and $e_{0}=1, e_{1}=1, e_{2}=1, e_{3}=0, e_{4}=1$ let result $=1$ and power $=3 \bmod 47=3^{1} \bmod 47$
for $i=0$ to 4 do:
$i=0$: $e_{0}=1$: result $=1 * 3 \bmod 47=3$; power $=3^{2} \bmod 47=9$; now result $=3^{1} \bmod 47$, power $=3^{10} \bmod 47$
$i=1: e_{1}=1:$ result $=3 * 9 \bmod 47=27$; power $=9^{2} \bmod 47=34$;
now result $=3^{11} \bmod 47$, power $=3^{100} \bmod 47$
$i=2: e_{2}=1:$ result $=27 * 34 \bmod 47=25$; power $=34^{2} \bmod 47=28$; now result $=3^{111} \bmod 47$, power $=3^{1000} \bmod 47$
$i=3: e_{3}=0$: leave result as is; power $=28^{2} \bmod 47=32$; now result $=3^{0111} \bmod 47$, power $=3^{10000} \bmod 47$
$i=4: e_{4}=1:$ result $=25^{*} 32 \bmod 47=1 ;$ power $=32^{2} \bmod 47=37$; now result $=3^{10111} \bmod 47$, done: result $=1\left(3^{47}=3 \bmod 47\right)$

Not Left to right modular exponentiation in book
calculate $a^{e} \bmod m$ with $e=\sum_{i=0}^{L} e_{i} 2^{i}$ processing $e_{L}, e_{L-1}, e_{L-2}, \ldots, e_{1}, e_{0}$: calculate $a^{e_{L}},\left(a^{e_{L}}\right)^{2} a^{e_{L-1}},\left(\left(a^{e_{L}}\right)^{2} a^{e_{L-1}}\right)^{2} a^{e_{L-2}}, \ldots$, using squarings, and multiplies when $e_{i}=1$:
let result $=a \bmod m\left(\right.$ since $\left.e_{L}=1\right)$ for $i=L-1$ downto 0 do:
replace result by result ${ }^{2} \bmod m$
if $e_{i}=1$ then
replace result by $($ result* $a \bmod m) \bmod m$
now we have result $=a^{e} \bmod m$

Left to right exponentiation example

 calculate $3^{23} \bmod 47$$23=2^{4}+2^{2}+2^{1}+2^{0}=10111$ and we have $L=4$ and $e_{0}=1, e_{1}=1, e_{2}=1, e_{3}=0, e_{4}=1$ let result $=3 \boldsymbol{\operatorname { m o d }} 47$
now result $=3^{1} \bmod 47$
for $i=3$ downto 0 do:
$i=3$: result $=3^{2} \bmod 47=9 ; e_{3}=0$: leave result as is;
now result $=3^{10} \bmod 47$
$i=2:$ result $=9^{2} \bmod 47=34 ; e_{2}=1:$ result $=34 * 3 \bmod 47=8$; now result $=3^{101} \bmod 47$
$i=1:$ result $=8^{2} \bmod 47=17 ; e_{1}=1:$ result $=17 * 3 \bmod 47=4$; now result $=3^{1011} \bmod 47$
$i=0:$ result $=4^{2} \bmod 47=16 ; e_{0}=1:$ result $=16 * 3 \bmod 47=1$; now result $=3^{10111} \bmod 47$, done: result $=1\left(3^{47}=3 \bmod 47\right)$

Speed of modular exponentiation

 for both "right to left" and "left to right:"- \# modular squarings: $L+1$ or L
- \# modular multiplications:

$$
\#\left\{i: e_{i}=1\right\} \text { or } \#\left\{i: e_{i}=1\right\}-1
$$

either way:
total effort $\Theta(L)$ modular multiplications schoolbook modular multiplication: $O\left((\log m)^{2}\right)$ overall:
modular exponentiation effort is $O\left(L(\log m)^{2}\right)$
if $L=\log _{2}(m)$, then this becomes $O\left((\log m)^{3}\right)$ annoying fact: the $\Theta(L)$ is inherently sequential

Speed of prime generation

 generate k-bit primes as follows:1. pick a random k-bit integer m (making it odd helps...)
2. test if m is composite: pick random $a \in \mathbf{Z}$, check if $a^{m} \equiv a(\bmod m)$ (actually: slight variant) if not return to Step 1
3. output m as the desired prime
silent assumption: for randomly selected a
the test $a^{m} \equiv a(\bmod m)$ fails if m composite: incorrect, but in practice okay for large m
overall effort: on average $\approx k$ attempts, each attempt $O\left(k^{3}\right) \Rightarrow$ expected overall $O\left(k^{4}\right)$ (with huge variation; and faster with fast multiplication)

Large primes, for what purpose?

 generation of large k-bit primes in (expected) $O\left(k^{\leq 4}\right)$ time allows implementation of- RSA: security based on the difficulty of inverting integer multiplication (factoring), need $k=512$ and larger as of Jan 1, 2011: RSA no longer approved for US government use
- approved methods based on difficulty of inverting modular exponentiation (discrete logarithm): variants of ElGamal, need $k=160$ and larger (using other groups too, principle same)

Skipping

- greatest common divisors division-free: make odd \& subtract $\left(O(\log (n))^{2}\right)$
- extended Euclidean algorithm / Bezout easy $\quad:$ maintain $u v \equiv d(\bmod p)$
- Chinese remaindering
constructive : $x=x_{1}+p_{1}\left[\left(x_{2}-x_{1}\right) / p_{1} \bmod p_{2}\right]$
- all "covered" by Sciences de l'Information
- description of division-free/easy/constructive methods will be made available on slides

Concludes Chapter $4\left(7^{\text {th }}\right) / 3\left(6^{\text {th }}\right)$

on to Chapter $5\left(7^{\text {th }}\right) / 4\left(6^{\text {th }}\right)$:
 induction \& recursion

Greatest common divisor

given two integers a and b, not both zero; their greatest common divisor is the largest integer d with $d \mid a$ and $d \mid b: d=\operatorname{gcd}(a, b)$; conversely, least common multiple: smallest $s \in \mathbf{Z}_{>0}$ with $a|s, b| s: s=1 \mathrm{~cm}(a, b)$.

- $1 \mid a$ and $1 \mid b$, thus $\operatorname{gcd}(a, b) \geq 1$; also $\operatorname{gcd}(a, b) \leq \min (|a|,|b|)$; thus $\operatorname{gcd}(a, b)$ exists
- $a \mid a b$ and $b \mid a b$, thus $\operatorname{lcm}(a, b) \leq|a b|$; also $\operatorname{lcm}(a, b) \geq \max (|a|,|b|)$;
thus $\operatorname{lcm}(a, b)$ exists
- if $\operatorname{gcd}(a, b)=1$, then a and b are coprime.

Computing the ged and the $\mathbf{l c m}$

$$
\underset{\substack{\text { pages } \\ 264265}}{\text { if }} a=\prod_{i=1}^{n} p_{i}^{e_{i}}, b=\prod_{i=1}^{n} p_{i}^{d_{i}}\left(\text { distinct primes } p_{i}\right)
$$

/216-217

$$
\begin{aligned}
& \Rightarrow \operatorname{gcd}(a, b)=\prod_{i=1}^{n} p_{i}^{\min \left(e_{i}, d_{i}\right)}, \operatorname{lcm}(a, b)=\prod_{i=1}^{n} p_{i}^{\max \left(e_{i}, d_{i}\right)} \\
& \Rightarrow a b=\operatorname{gcd}(a, b) * \operatorname{lcm}(a, b) \\
& \Rightarrow \operatorname{lcm}(a, b) \text { easily follows from } \operatorname{gcd}(a, b)
\end{aligned}
$$

Observation underlying Euclidean algorithm

$\underset{\substack{\text { page } \\ 207228}}{ }$ thm. $\forall k \in \mathbf{Z}: \operatorname{gcd}(a, b)=\operatorname{gcd}(b, a-k b)$

proof

- if $d=\operatorname{gcd}(a, b)$ then $d \mid a$ and $d \mid b$,
and thus $\forall s, t \in \mathbf{Z} d \mid s a+t b$; take $s=1, t=-k$, then $d \mid a-k b$. (universal instantiation)
thus $d \mid b$ and $d \mid a-k b$, thus $d \mid \operatorname{gcd}(b, a-k b)$
- if $d=\operatorname{gcd}(b, a-k b)$ then $d \mid b$ and $d \mid a-k b$, and thus $\forall s, t \in \mathbf{Z} d \mid s b+t(a-k b)$; take $s=k, t=1$, then $d \mid k b+(a-k b)=a$. thus $d \mid b$ and $d \mid a$, thus $d \mid \operatorname{gcd}(b, a)=\operatorname{gcd}(a, b)$
$\Rightarrow \operatorname{gcd}(a, b) \mid \operatorname{gcd}(b, a-k b)$ and $\operatorname{gcd}(b, a-k b) \mid \operatorname{gcd}(a, b)$, which implies Thm.

Euclidean algorithm

early
peek at recursion, pages 353-356 /311-321
how to best use (with $a>0, b \geq 0$)

$$
" \forall k \in \mathbf{Z}: \operatorname{gcd}(a, b)=\operatorname{gcd}(b, a-k b) "
$$

replace problem of computing $\operatorname{gcd}(a, b)$ by smaller problem of computing $\operatorname{gcd}(b, a-k b)$, which k to use?
three approaches:
standard: use $k=a \operatorname{div} b($ and $\operatorname{gcd}(a, 0)=a)$

$$
(\text { so } 0 \leq a-k b=a \bmod b<b)
$$

not in book
better: minimize $|a-k b|$ (above k or $k+1$)

$$
(\text { so } 0 \leq|a-k b| \leq b / 2)
$$

binary: a, b odd: use $k=1$ and (Division-free!) remove 2s from $a-b$ ("shift")

Example

compute $\operatorname{gcd}(147,91)$

using factorization (bad idea)

$$
147=3 * 7^{2}, \quad 91=7 * 13
$$

$$
\text { so: } 147=3^{1 *} 7^{2} * 13^{0}, \quad 91=3^{0} * 7^{1} * 13^{1}
$$

thus

$$
\begin{aligned}
\operatorname{gcd}(147,91) & =3^{\min (1,0)} * 7^{\min (2,1)} * 13^{\min (0,1)} \\
& =3^{0} * 7^{1} * 13^{0} \\
& =7
\end{aligned}
$$

Euclidean algorithm examples

 pages compute $\operatorname{gcd}(147,91)$standard Euclidean algorithm
$147=1 * 91+56: \quad \operatorname{gcd}(147,91)=\operatorname{gcd}(91,56)$
$91=1 * 56+35: \quad \operatorname{gcd}(91,56)=\operatorname{gcd}(56,35)$
$56=1 * 35+21: \quad \operatorname{gcd}(56,35)=\operatorname{gcd}(35,21)$
$35=1 * 21+14: \quad \operatorname{gcd}(35,21)=\operatorname{gcd}(21,14)$
$21=1 * 14+7: \quad \operatorname{gcd}(21,14)=\operatorname{gcd}(14,7)$
$14=2 * 7+0: \quad \operatorname{gcd}(14,7)=\operatorname{gcd}(7,0)=7$
$\Rightarrow \operatorname{gcd}(147,91)=7$,
after 6 standard division steps: 147, 91, 56, 35, 21, 14, 7, 0
(bounding number of steps is cumbersome)

Euclidean algorithm examples

 book compute $\operatorname{gcd}(147,91)$smallest remainder Euclidean algorithm
$147=2 * 91-35: \quad \operatorname{gcd}(147,91)=\operatorname{gcd}(91,35)$
$91=3 * 35-14: \quad \operatorname{gcd}(91,35)=\operatorname{gcd}(35,14)$
$35=2 * 14+7: \quad \operatorname{gcd}(35,14)=\operatorname{gcd}(14,7)$
$14=2 * 7+0: \quad \operatorname{gcd}(14,7)=\operatorname{gcd}(7,0)=7$
$\Rightarrow \operatorname{gcd}(147,91)=7$,
after 4 division steps:
$147,91,35,14,7,0$
(number of division steps in $\operatorname{gcd}(n, m)$ is easily bounded by $\left.\log _{2}(\min (n, m))\right)$

Euclidean algorithm examples

 compute $\operatorname{gcd}(147,91)$binary Euclidean algorithm 147 and 91 both odd:

$$
\operatorname{gcd}(147,91)=\operatorname{gcd}(91,147-91)=\operatorname{gcd}(91,56)
$$

$$
=\operatorname{gcd}(91,7)(\text { removed three } 2 s)
$$

$$
\operatorname{gcd}(91,7)=\operatorname{gcd}(7,91-7)=\operatorname{gcd}(7,84)
$$

$$
=\operatorname{gcd}(7,21)(\text { removed two } 2 \mathrm{~s})
$$

$$
\operatorname{gcd}(21,7)=\operatorname{gcd}(7,21-7)=\operatorname{gcd}(7,14)
$$

$$
=\operatorname{gcd}(7,7)(\text { removed one } 2)
$$

$\Rightarrow \operatorname{gcd}(147,91)=7$, in 3 division-less steps $(147,91),(91,7),(21,7),(7,7)$
can you figure out how to deal with non-odd inputs?

Another example

compute $\operatorname{gcd}(127,91)$
using factorization
$127=127^{1}$ is prime
thus 127 coprime to any a with $0<a<127$
\Rightarrow we find $\operatorname{gcd}(127,91)=1$
(remember: gcds with primes are easy)

Euclidean algorithm examples

compute $\operatorname{gcd}(127,91)$
standard Euclidean algorithm
$127=1 * 91+36: \quad \operatorname{gcd}(127,91)=\operatorname{gcd}(91,36)$
$91=2 * 36+19: \quad \operatorname{gcd}(91,36)=\operatorname{gcd}(36,19)$
$36=1 * 19+17: \quad \operatorname{gcd}(36,19)=\operatorname{gcd}(19,17)$
$19=1 * 17+2: \quad \operatorname{gcd}(19,17)=\operatorname{gcd}(17,2)$
$17=8 * 2+1: \quad \operatorname{gcd}(17,2)=\operatorname{gcd}(2,1)$
$2=2 * 1+0: \quad \operatorname{gcd}(2,1)=\operatorname{gcd}(1,0)=1$
$\Rightarrow \operatorname{gcd}(127,91)=1$,
after 6 standard division steps: $127,91,36,19,17,2,1,0$

Euclidean algorithm examples

 compute $\operatorname{gcd}(127,91)$smallest remainder Euclidean algorithm $127=1 * 91+36: \quad \operatorname{gcd}(127,91)=\operatorname{gcd}(91,36)$ $91=3 * 36-17: \quad \operatorname{gcd}(91,36)=\operatorname{gcd}(36,17)$
$36=2 * 17+2: \quad \operatorname{gcd}(36,17)=\operatorname{gcd}(17,2)$
$17=8 * 2+1: \quad \operatorname{gcd}(17,2)=\operatorname{gcd}(2,1)$
$2=2 * 1+0: \quad \operatorname{gcd}(2,1)=\operatorname{gcd}(1,0)=1$
$\Rightarrow \operatorname{gcd}(127,91)=1$,
after 5 division steps:
$127,91,36,17,2,1,0$

Euclidean algorithm examples

compute $\operatorname{gcd}(127,91)$
binary Euclidean algorithm
127 and 91 both odd:

$$
\begin{aligned}
\operatorname{gcd}(127,91) & =\operatorname{gcd}(91,127-91)=\operatorname{gcd}(91,36) \\
& =\operatorname{gcd}(91,9)(\text { removed two } 2 \mathrm{~s})
\end{aligned}
$$

$$
\operatorname{gcd}(91,9)=\operatorname{gcd}(9,91-9)=\operatorname{gcd}(9,82)
$$

$$
=\operatorname{gcd}(9,41)(\text { removed one } 2)
$$

$$
\operatorname{gcd}(41,9)=\operatorname{gcd}(9,41-9)=\operatorname{gcd}(9,32)
$$

$$
=\operatorname{gcd}(9,1)(\text { removed five } 2 \mathrm{~s})
$$

$\Rightarrow \operatorname{gcd}(127,91)=1$, in 3 division-less steps $(127,91),(91,9),(41,9),(9,1)$
note: binary euclid runs in $O\left((\max (\log n, \log m))^{2}\right)$ bit operations

Linear congruences (i.e., modular inversion)

given modulus m, integers $a, b>0$,

b must be a multiple of $\operatorname{gcd}(a, m)$
i.e.: $\operatorname{gcd}(a, m) \mid b$ is necessary condition for solution to $a x \equiv b(\bmod m)$ to exist
i.e.: $a x \equiv b(\bmod m)$ solvable $\rightarrow \operatorname{gcd}(a, m) \mid b$
below constructive proof that $\operatorname{gcd}(a, m) \mid b$ suffices:
i.e.: $\operatorname{gcd}(a, m) \mid b \rightarrow a x \equiv b(\bmod m)$ solvable
conclusion:

$$
a x \equiv b(\bmod m) \text { solvable } \leftrightarrow \operatorname{gcd}(a, m) \mid b
$$

Solving $a x \equiv \operatorname{gcd}(a, m)(\bmod m)$

 (suffices for $a x \equiv b(\bmod m)$ with $\operatorname{gcd}(a, m) \mid b)$ use previous example: $a=91, m=127$ seen: $\operatorname{gcd}(91,127)=1$,thus try to solve $91 x \equiv 1(\bmod 127)$ for x combine related identities modulo 127:
(1) $91 * 0 \quad \equiv 127(\bmod 127)$, trivially true (2) $91 * 1 \equiv 91(\bmod 127)$, trivially true (3) $91 *(-1) \equiv 36(\bmod 127): \quad(1)-1 \times(2)$ (4) $91 * 3 \equiv 19(\bmod 127): \quad(2)-2 \times(3)$ (5) $91 *(-4) \equiv 17(\bmod 127): \quad(3)-1 \times(4)$ (6) $91 * 7 \equiv 2(\bmod 127): \quad(4)-1 \times(5)$ (7) $91 *(-60) \equiv 1(\bmod 127): \quad(5)-8 \times(6)$ thus $91 * 67 \equiv 1(\bmod 127): x=67$

Solving $\boldsymbol{a x} \equiv \operatorname{gcd}(a, m)(\bmod m)$

(suffices for $a x \equiv b(\bmod m)$ with $\operatorname{gcd}(a, m) \mid b)$
use previous example: $a=91, m=127$
seen: $\operatorname{gcd}(91,127)=1$,
thus try to solve $91 x \equiv 1(\bmod 127)$ for x
combine related identities modulo 127 :
(1) $91 * 0 \equiv 127(\bmod 127)$, trivially true
(2) $91 * 1 \equiv 91(\bmod 127)$, trivially true
(3) $91 *(-1) \equiv 36(\bmod 127): \quad(1)-1 \times(2)$
(4) $91 * 3 \equiv 19(\bmod 127): \quad$ (2) $-2 \times(3)$
(5) $91 *(-4) \equiv 17(\bmod 127): \quad(3)-1 \times(4)$
(6) $91 * 7 \equiv 2(\bmod 127): \quad$ (4) $-1 \times(5)$
(7) $91 *(-60) \equiv 1(\bmod 127): \quad(5)-8 \times(6)$
thus $91 * 67 \equiv 1(\bmod 127): x=67$

Solving $\boldsymbol{a x} \equiv \operatorname{gcd}(a, m)(\bmod m)$

(suffices for $a x \equiv b(\bmod m)$ with $\operatorname{gcd}(a, m) \mid b)$ use previous example: $a=91, m=127$
seen: $\operatorname{gcd}(91,127)=1$,
thus try to solve $91 x \equiv 1(\bmod 127)$ for x combine related identities modulo 127 :
(1) $91 * 0 \equiv 127(\bmod 127)$, trivially true

Euclidean algorithm examples

compute $\operatorname{gcd}(127,91)$

standard Euclidean algorithm

(2) $91 * 1 \equiv 91(\bmod 127)$, trivially true
$127=1 * 91+36$:
$\operatorname{gcd}(127,91)=\operatorname{gcd}(91,36)$
(3) $91 *(-1) \equiv 36(\bmod 127): \quad(1)-1 \times(2)$
(4) $91 * 3 \equiv 19(\bmod 127): \quad$ (2) $-2 \times(3)$
(5) $91 *(-4) \equiv 17(\bmod 127): \quad(3)-1 \times(4)$
$91=2 * 36+19$:
$\operatorname{gcd}(91,36)=\operatorname{gcd}(36,19)$
$36=1 * 19+17$:
$\operatorname{gcd}(36,19)=\operatorname{gcd}(19,17)$
$19=1 * 17+2$:
$\operatorname{gcd}(19,17)=\operatorname{gcd}(17,2)$
(6) $91 * 7 \equiv 2(\bmod 127): \quad$ (4) $-1 \times(5)$
$17=8 * 2+1$:
$\operatorname{gcd}(17,2)=\operatorname{gcd}(2,1)$
(7) $\quad 91 *(-60) \equiv 1(\bmod 127): \quad(5)-8 \times(6)$
thus $91 * 67 \equiv 1(\bmod 127): x=67$
$2=2 * 1+0$:
$\operatorname{gcd}(2,1)=\operatorname{gcd}(1,0)=1$
after 6 standard division steps:

$$
127,91,36,19,17,2,1,0
$$

same sequences

Solving $\boldsymbol{a x} \equiv \operatorname{gcd}(a, m)(\bmod m)$

(suffices for $a x \equiv b(\bmod m)$ with $\operatorname{gcd}(a, m) \mid b)$ use previous example: $a=91, m=127$
seen: $\operatorname{gcd}(91,127)=1$,
thus try to solve $91 x \equiv 1(\bmod 127)$ for x
combine related identities modulo 127 :
(1) $91 * 0 \equiv 127(\bmod 127)$, trivially true

Euclidean algorithm examples

compute $\operatorname{gcd}(127,91)$

standard Euclidean algorithm

(2) $91 * 1 \equiv 91(\bmod 127)$, trivially true
$127=1 * 91+36: \quad \operatorname{gcd}(127,91)=\operatorname{gcd}(91,36)$
(3) $91 *(-1) \equiv 36(\bmod 127): \quad(1)-1 \times(2)$
(4) $91 * 3 \equiv 19(\bmod 127): \quad$ (2) $-2 \times(3)$
(5) $91 *(-4) \equiv 17(\bmod 127): \quad(3)-1 \times(4)$
$91=2 * 36+19$:
$\operatorname{gcd}(91,36)=\operatorname{gcd}(36,19)$
$36=1 * 19+17$:
$\operatorname{gcd}(36,19)=\operatorname{gcd}(19,17)$
$19=1 * 17+2$:
$\operatorname{gcd}(19,17)=\operatorname{gcd}(17,2)$
(6) $91 * 7 \equiv 2(\bmod 127): \quad$ (4) $-1 \times(5)$
$17=8 * 2+1$:
$\operatorname{gcd}(17,2)=\operatorname{gcd}(2,1)$
(7) $91 *(-60) \equiv 1(\bmod 127): \quad$ (5) $-8 \times(6)$
thus $91 * 67 \equiv 1(\bmod 127): x=67$
$2=2 * 1+0$:
$\operatorname{gcd}(2,1)=\operatorname{gcd}(1,0)=1$
after 6 standard division steps:
127, 91, 36, 19, 17, 2, 1, 0

same sequences

and same sequences

Solving $\boldsymbol{a x} \equiv \operatorname{gcd}(\boldsymbol{a}, \boldsymbol{m})(\bmod \boldsymbol{m})$
(suffices for $a x \equiv b(\bmod m)$ with $\operatorname{gcd}(a, m) \mid b)$ use previous example: $a=91, m=127$
seen: $\operatorname{gcd}(91,127)=1$,
thus try to solve $91 x \equiv 1(\bmod 127)$ for x combine related identities modulo 127 :
(1) $91 * 0 \equiv 127(\bmod 127)$, trivially true
(2) $91 * 1 \equiv 91(\bmod 127)$, trivially true
(3) $91 *(-1) \equiv 36(\bmod 127): \quad(1)-1 \times(2)$
(4) $91 * 3 \equiv 19(\bmod 127): \quad(2)-2 \times(3)$
(5) $\quad 91 *(-4) \equiv 17(\bmod 127): \quad(3)-1 \times(4)$
(6) $91 * 7 \equiv 2(\bmod 127): \quad$ (4) $-1 \times(5)$
(7) $91 *(-60) \equiv 1(\bmod 127)$:
thus $91 * 67 \equiv 1(\bmod 127): x=67$

Euclidean algorithm examples

compute $\operatorname{gcd}(127,91)$

standard Euclidean algorithm

$$
\begin{array}{ll}
127=1 * 91+36: & \operatorname{gcd}(127,91)=\operatorname{gcd}(91,36) \\
91=2 * 36+19: & \operatorname{gcd}(91,36)=\operatorname{gcd}(36,19) \\
36=1 * 19+17: & \operatorname{gcd}(36,19)=\operatorname{gcd}(19,17) \\
19=1 * 17+2: & \operatorname{gcd}(19,17)=\operatorname{gcd}(17,2) \\
17=8 * 2+1: & \operatorname{gcd}(17,2)=\operatorname{gcd}(2,1) \\
2=2 * 1+0: & \operatorname{gcd}(2,1)=\operatorname{gcd}(1,0)=1
\end{array}
$$

in identities $a y \equiv t(\bmod m)$: $127,91,36,19,17,2,1,0$

- t follows sequence of Euclidean algorithm
- Euclidean sequence terminates at $t=\operatorname{gcd}(a, m)$ with y equal to x s.t. $a x \equiv \operatorname{gcd}(a, m)(\bmod m)$.
- this is constructive proof of
$\operatorname{gcd}(a, m) \mid b \rightarrow a x \equiv b(\bmod m)$ solvable
- multipliers are quotients in Euclidean algorithm

Example $a x \equiv \operatorname{gcd}(a, m)(\bmod m)$ with $\operatorname{gcd} \neq 1$ let $a=91, m=147$ try to find x such that $91 x \equiv \operatorname{gcd}(91,147)(\bmod 147)($ known to be 7$)$ combine related identities modulo 147 and use the standard Euclidean algorithm:
(1) $91 * 0 \quad \equiv 147(\bmod 147)$, trivially true
(2) $91 * 1 \equiv 91(\bmod 147)$, trivially true
(3) $91 *(-1) \equiv 56(\bmod 147): \quad(1)-1 \times(2)$
(4) $91 * 2 \equiv 35(\bmod 147): \quad(2)-1 \times(3)$
(5) $91 *(-3) \equiv 21(\bmod 147): \quad(3)-1 \times(4)$
(6) $91 * 5 \equiv 14(\bmod 147): \quad(4)-1 \times(5)$
(7) $91 *(-8) \equiv 7(\bmod 147): \quad(5)-1 \times(6)$

Thus $91 * 139 \equiv 7(\bmod 147): x=139$

Same example again

using the smallest remainder variant:
(1) $91 * 0 \equiv 147(\bmod 147)$
(2) $91 * 1 \equiv 91(\bmod 147)$
(3) $91 *(-2) \equiv-35(\bmod 147):(1)-2 \times(2)$
(4) $91 *(-5) \equiv-14(\bmod 147):(2)+3 \times(3)$
(5) $91 * 8 \equiv-7(\bmod 147): \quad(3)-2 \times(4)$ thus $91 * 139 \equiv 7(\bmod 147): x=139$
(sequence of multipliers as before, up to sign)

Same example again

using the binary variant, gets a bit messy:
(1) $91 * 0 \equiv 147(\bmod 147)$
(2) $91 * 1 \equiv 91(\bmod 147)$
(3) $91 *(-1) \equiv 56(\bmod 147): \quad(1)-1 \times(2)$ divide by 2 , with $-1 / 2 \equiv(-1+147) / 2=73$:
$91 * 73 \equiv 28(\bmod 147)$
divide by 2 , with $73 / 2 \equiv(73+147) / 2=110$:
$91 * 110 \equiv 14(\bmod 147)$
divide by 2 :
$91 * 55 \equiv 7(\bmod 147)$
thus $91 * 55 \equiv 7(\bmod 147)$: $x=55$
\Rightarrow other solution than before ... (147 not prime)

Remarks

for prime p and all a with $0<a<p$:

- $\operatorname{gcd}(a, p)=1$
- therefore $\exists x$ s.t. $a x \equiv 1(\bmod p)$, the multiplicative inverse of a modulo p
- careful runtime analyses of (all) Euclids: time $O\left((\log p)^{2}\right)$ to calculate a^{-1} modulo p
- $a^{p} \equiv a(\bmod p)($ Fermat $) \rightarrow$ $a^{p} * a^{-2} \equiv a^{*} a^{-2}(\bmod p) \rightarrow a^{p-2} \equiv a^{-1}(\bmod p)$ $\Rightarrow a^{-1}$ modulo p in time $O\left((\log p)^{3}\right)$ using modular exponentiation, only for prime p given $a x \equiv b(\bmod m)$,
k with $a x+k m=b$ follows as $(a x-b) / m$

Page 236 Application: Chinese remaindering thm. Let p and q be coprime integers and let $x_{p}, x_{q} \in \mathrm{Z}$ with $0 \leq x_{p}<p$ and $0 \leq x_{q}<q$. then: $\exists!x \in \mathbf{Z}$ with $0 \leq x<p q$ such that

$$
x \equiv x_{p}(\bmod p) \text { and } x \equiv x_{q}(\bmod q)
$$

proof by unique construction: if x exists, then $x \equiv x_{p}(\bmod p) \rightarrow x=x_{p}+k p \rightarrow$
$\left(\right.$ with $\left.x \equiv x_{q}(\bmod q)\right) x_{p}+k p \equiv x_{q}(\bmod q) \rightarrow$
$($ since $\operatorname{gcd}(p, q)=1) k \equiv\left(x_{q}-x_{p}\right) p^{-1}(\bmod q) \rightarrow$ $x=x_{p}+p\left(\left(x_{q}-x_{p}\right) p^{-1}(\bmod q)\right)$. This x works and $0 \leq x \leq p-1+p(q-1)=p q-1$

Applications of Chinese remaindering

- alternative arithmetic with large integers: let p_{i} be i th prime. Represent large n as $\left(n \bmod p_{1}, n \bmod p_{2}, \ldots, n \bmod p_{k}\right)$ for some k such that $n<p_{1}{ }^{*} p_{2}{ }^{*} \ldots{ }^{*} p_{k}$. allows components-wise,+- * (not at all widely used)
- the RSA public key cryptosystem: both in proof that it works and to make it fast
- counting

