## Chapter 5 / 4: induction and recursion

pages
307/263
and
339/295
two-step approach to problem solving:

1. solve smallest problem instance
"basis" of induction, "bottom" of recursion
2. show either how

- solution of instance of size $k$ leads to solution of instance of size $k+1 \leftarrow$ induction or how
- instance of size $k$ can be solved by
solving instance(s) of size $<k \leftarrow$ recursion
without basis or bottom:
step 2 useless and worthless


## Section 5.1 / 4.1: mathematical induction

let $P(n)$ be propositional function for $n \in \mathbf{Z}_{\geq 1}$ (thus $\forall n \in \mathbf{Z}_{\geq 1} P(n)=$ true $\vee P(n)=$ false) to prove the statement

$$
\forall n \in \mathbf{Z}_{\geq 1} P(n)=\text { true }
$$

it suffices to prove that:

1. $P(1)=$ true
(basis of the induction, or basis step)
2. $\forall k \in \mathbf{Z}_{\geq 1}$ : if $P(k)=$ true then $P(k+1)=$ true (inductive step)
(if $\exists n$ with $P(n)=$ false, let $s$ be the smallest, then
$s \neq 1$, so $s>1$, so $P(s-1)=$ true, so $P(s)=$ true)

## Section 5.1 / 4.1: mathematical induction

let $P(n)$ be propositional function for $n \in \mathbf{Z}_{\geq b}$ (thus $\forall n \in \mathbf{Z}_{\geq b} P(n)=$ true $\vee P(n)=$ false) to prove the statement

$$
\forall n \in \mathbf{Z}_{\geq b} P(n)=\text { true }
$$

it suffices to prove that:

1. $P(b)=$ true
(basis of the induction, or basis step)
2. $\forall k \in \mathbf{Z}_{\geq b}$ : if $P(k)=$ true then $P(k+1)=$ true (inductive step)
(if $\exists n$ with $P(n)=$ false, let $s$ be the smallest, then
$s \neq b$, so $s>b$, so $P(s-1)=$ true, so $P(s)=$ true $)$

## Mathematical induction (MI), examples

## pages

307-325 /263-279 mathematical induction great way to prove known results, hardly useful to derive them
$\underset{\substack{\text { page } \\ 312267}}{\substack{2\\}}$. seen that $\sum_{i=0}^{k} i=k(k+1) / 2$, now use MI to prove it (again)
$\substack{\text { page } \\ 314270} \bullet$ seen that $\sum_{i=0}^{k} r^{i}=\frac{r^{r}-1}{r-1} \quad(r \neq 1)$, now use MI to prove it (again)
page
$315 / 271$$\bullet$ not just equalities: $n<2^{n}$, prove with MI

- if suspect that $\sum_{i=0}^{k} i^{2}=k(k+1)(2 k+1) / 6$, we can use MI to prove it but how does one find that formula?
$\underset{\text { in book }}{\text { not }}$ Finding $S(k)=\sum_{i=0}^{k} i^{2}=k(k+1)(2 k+1) / 6$
- from $\int_{0}^{k} x^{2} d x=k^{3} / 3$ we suspect that

$$
S(k)=k^{3} / 3+a k^{2}+b k+c \text { for } a, b, c \in \mathbf{R}
$$

- $S(0)=0 \Rightarrow c=0$
- $S(1)=1 \Rightarrow 1 / 3+a+b=1$
- $S(2)=5 \Rightarrow 8 / 3+4 a+2 b=5$ subtract $1 / 3+a+b=1$ twice from $8 / 3+4 a+2 b=5$
$\Rightarrow 6 / 3+2 a=3 \Rightarrow a=1 / 2 \Rightarrow b=1 / 6$
$\Rightarrow$ we suspect $S(k)=k^{3} / 3+k^{2} / 2+k / 6$

$$
\begin{aligned}
& =\left(2 k^{3}+3 k^{2}+k\right) / 6 \\
& =k(k+1)(2 k+1) / 6
\end{aligned}
$$

now we still need to prove it... $P(n)$ : " $S(n)=n(n+1)(2 n+1) / 6$ " (for $n \geq 0)$

1. basis of induction, proof that $P(0)=$ true: because $S(0)=0$ and $0(0+1)(2 * 0+1)=0$ it follows that $P(0)=$ true
2. inductive step: assume $P(k)=$ true

$$
\begin{aligned}
& \begin{aligned}
& S(k+1)=S(k)+(k+1)^{2}(\text { from definition }) \\
&=k(k+1)(2 k+1) / 6+(k+1)^{2} \\
&(\text { we use } P(k)=\text { true: } S(k)=k(k+1)(2 k+1) / 6) \\
&=(k+1)(k(2 k+1)+6(k+1)) / 6 \\
&=(k+1)\left(2 k^{2}+7 k+6\right) / 6=(k+1)(k+2)(2 k+3) / 6 \\
& \text { which shows that } P(k+1)=\text { true }
\end{aligned}
\end{aligned}
$$

## Section 5.2 / 4.2: strong induction

me
let $P(n)$ be propositional function for $n \in \mathbf{Z}_{\geq b}$ (thus $\forall n \in \mathbf{Z}_{\geq b} P(n)=$ true $\vee P(n)=$ false) to prove the statement

$$
\forall n \in \mathbf{Z}_{\geq b} P(n)=\text { true }
$$

it suffices to prove that:

1. $P(b)=$ true
(the basis of the induction, or basis step)
2. $\forall k \in \mathbf{Z}_{\geq b}$ : if $P(b)=P(b+1)=\ldots=P(k)=$ true then $P(k+1)=$ true (the inductive step)
(if $\exists n$ with $P(n)=$ false, let $s$ be the smallest, then
$s \neq b$, so $s>b$, so $\forall i<s P(i)=$ true, so $P(s)=$ true)

## Strong induction, example

 /284-291
as mathematical induction
example: for $n \in \mathbf{Z}_{>1}$, let $P(n)$ be " $n$ can be
written as a product of one or more primes"

- $P(2)=$ true, since 2 is prime
- assume $\forall k \in \mathbf{Z}, 2 \leq k<n, P(k)=$ true, what about $P(n)$ ?
- if $n$ prime, then $P(n)=$ true
- if $n$ composite: $\exists n_{1}, n_{2} \in \mathbf{Z}$ s.t. $n=n_{1} n_{2}$ $2 \leq n_{1}, n_{2}<n \Rightarrow P\left(n_{1}\right)=P\left(n_{2}\right)=$ true $\Rightarrow$ $n$ is product of products of primes $\Rightarrow P(n)=$ true (uniqueness: page 270/233)


## Strong induction, another example

 stones can be split into two non-empty piles of $r>0$ and $k-r>0$ stones at cost $r(k-r)$how to split a single pile of $n$ stones into $n$ "piles" of one stone at lowest total cost $C(n)$ ?

- $n=1$ : nothing to do at $\operatorname{cost} C(1)=0$
- $n=2$ : one way to split $(2 \rightarrow 1+1)$ at $\operatorname{cost} C(2)=1(2-1)=1$
- $n=3$ : one way to split $(3 \rightarrow 2+1)$ at cost $2(3-2)=2$; next $2 \rightarrow 1+1$ at cost 1 ; total cost $C(3)=2+1=3$
- $n=4$ : either $4 \rightarrow 2+2$ at cost 4 , plus $2 C(2)=2: 4+2=6$; or $4 \rightarrow 3+1$ at cost 3 plus $C(3): 3+3=6 ; \Rightarrow C(4)=6$
- $n=5$ : either $5 \rightarrow 3+2$ at cost 6 , plus $C(3)+C(2)=4$, thus 10 or $5 \rightarrow 4+1$ at cost 4 plus $C(4)=6: 4+6=10 ; \Rightarrow C(5)=10$


## Splitting piles of stones, continued

$\begin{gathered}\text { page } \\ 337 / 292\end{gathered} \cdot \quad n=1$ : nothing to do at cost $C(1)=0$
exerc 10/14 $\quad n=2$ : one way to split $(2 \rightarrow 1+1)$ at $\operatorname{cost} C(2)=1(2-1)=1$

- $n=3$ : one way to split $(3 \rightarrow 2+1)$ at $\operatorname{cost} 2(3-2)=2$;
next $2 \rightarrow 1+1$ at cost 1 ; total cost $C(3)=2+1=3$
- $n=4$ : either $4 \rightarrow 2+2$ at cost 4 , plus $2 C(2)=2: 4+2=6$; or $4 \rightarrow 3+1$ at cost 3 plus $C(3): 3+3=6 ; \Rightarrow C(4)=6$
- $n=5$ : either $5 \rightarrow 3+2$ at cost 6 , plus $C(3)+C(2)=4$, thus 10 or $5 \rightarrow 4+1$ at $\operatorname{cost} 4$ plus $C(4)=6: 4+6=10 ; \Rightarrow C(5)=10$ we suspect that $C(n)=n(n-1) / 2$ why so simple? proof with strong induction: (page 400/359: find
- correct for $n=1$ combinatorial proof)
- split $n$ in $r>0$ and $n-r>0:$ cost $r(n-r)$ plus (induction hypothesis) $r(r-1) / 2+(n-r)(n-r-1) / 2$; $r(n-r)+r(r-1) / 2+(n-r)(n-r-1) / 2=n(n-1) / 2$


## Common recursive definitions \& algorithms

$\substack{\text { Pages } \\ 339.362}$ - factorial function:

$$
n!=n *(n-1)!\text { for } n>0
$$

with $0!=1$ this defines $n!$ for $n \geq 0$
leads to recursive implementation:
factorial $(n)=$ if $n<1$ then $1 \leftarrow$ bottom of recursion else $n *$ factorial $(n-1)$

- fibonacci numbers:

$$
\begin{aligned}
& \quad f_{n}=f_{n-1}+f_{n-2} \text { for } n>1 \\
& \text { with } f_{0}=0, f_{1}=1 \text { this defines } f_{n} \text { for } n \geq 0 \\
& \text { fib }(n)=\text { if } n<2 \text { then } n \quad \leftarrow \text { bottom of recursion } \\
& \quad \text { else } f i b(n-1)+f i b(n-2) \leftarrow \text { very bad idea }
\end{aligned}
$$

## More recursive algorithms

$\underset{\substack{\text { papes } \\ 52352}}{ }$ recursion often great for lazy programmer (with proper bottom of recursion):
$\Rightarrow$ useful to quickly get working prototypes

- $\operatorname{gcd}(a, b):(b==0) ? a: \operatorname{gcd}(b, a \bmod b)$
(refer to slide 35 of March 27 lecture for division-free method)
$\underset{\substack{\text { pases } \\ 355313}}{ }$ exponentiation: $a^{e} \bmod m(e \geq 0, m>1)$ $\operatorname{power}(a, e, m): \quad$ same computation if $e$ equals 0 : return (1) as before? else $t=(\operatorname{power}(a,[e / 2], m))^{2} \bmod m$ if ( $e$ is even): return $(t)$ else return $(t a \bmod m)$
- mostly less efficient than iterative version


## Exponentiation: $a^{e} \bmod m(e \geq 0, m>1)$

power( $a, e, m$ ):
if $e$ equals 0 : return(1)
else $t=(\operatorname{power}(a,[e / 2], m))^{2} \bmod m$
if ( $e$ is even): return $(t)$
else return $(t a \bmod m)$
to calculate $3^{5}$ mod 7 (using different colors for variables at different recursion levels)
call power $(3,5,7): a=3, e=5, m=7$
$e=5 \neq 0$, thus $t=(\operatorname{power}(3,[5 / 2]=2,7))^{2} \bmod 7$
generates recursive call power $(3,2,7): a=3, e=2, m=7$
$e=2 \neq 0$, thus $t=(\operatorname{power}(3,[2 / 2]=1,7))^{2} \bmod 7$
generates recursive call $\operatorname{power}(3,1,7): a=3, e=1, m=7$
$e=1 \neq 0$, thus $t=(\operatorname{power}(3,[1 / 2]=0,7))^{2} \bmod 7$
generates recursive call $\operatorname{power}(3,0,7): a=3, e=0, m=7$
$e=0$ : return 1 (as the value of $\operatorname{power}(3,0,7)$ )
we find $t=(\operatorname{power}(3,0,7))^{2} \bmod 7=(1)^{2} \bmod 7=1$
$e=1$ is not even: return $t a \bmod 7=1 * 3 \bmod 7=3($ as the value of $\operatorname{power}(3,1,7))$
we find $t=(\operatorname{power}(3,1,7))^{2} \bmod 7=3^{2} \bmod 7=2$
$e=2$ is even: return $t=2$ (as the value of $\operatorname{power}(3,2,7)$ )
we find $t=(\operatorname{power}(3,2,7))^{2} \bmod 7=2^{2} \bmod 7=4$
$e=5$ is not even: return $t a \bmod 7=4 * 3 \bmod 7=5($ as the value of $\operatorname{power}(3,5,7)$ )

## More recursive algorithms

$\underset{\substack{\text { papes } \\ 52352}}{ }$ recursion often great for lazy programmer (with proper bottom of recursion):
$\Rightarrow$ useful to quickly get working prototypes

- $\operatorname{gcd}(a, b):(b==0) ? a: \operatorname{gcd}(b, a \bmod b)$
(refer to slide 35 of March 27 lecture for division-free method)
pagse
355313
$\bullet$ exponentiation: $a^{e} \bmod m(e \geq 0, m>1)$ $\operatorname{power}(a, e, m): \quad$ same computation if $e$ equals 0 : return(1) as before else $t=(\operatorname{power}(a,[e / 2], m))^{2} \bmod m$ if ( $e$ is even): return $(t)$ else return $(t a \bmod m)$
- mostly less efficient than iterative version


## Exponentiation: $a^{e} \bmod m(e \geq 0, m>1)$

power( $a, e, m$ ):
if $e$ equals 0 : return(1)
else $t=(\operatorname{power}(a,[e / 2], m))^{2} \bmod m$
if ( $e$ is even): return $(t)$
else return $(t a \bmod m)$
to calculate $3^{5} \bmod 7$ (using different colors for variables at different recursion levels)
call power(3,5,7): $a=3, e=5, m=7$
$e=5 \neq 0$, thus $t=(\operatorname{power}(3,[5 / 2]=2,7))^{2} \bmod 7$

$$
\begin{aligned}
& \text { recursive call power }(3,2,7): a=3, e=2, m=7 \\
& e=2 \neq 0 \text {, thus } t=(\operatorname{power}(3,[2 / 2]=1,7))^{2} \bmod 7 \\
& \begin{array}{l}
\text { recursive call power }(3,1,7): a=3, e=1, m=7 \\
e=1 \neq 0 \text {, thus } t=(\operatorname{power}(3,[1 / 2]=0,7))^{2} \bmod 7
\end{array} \\
& \quad \begin{array}{l}
\text { recursive call } \operatorname{power}(3,0,7): a=3, e=0, m=7 \\
e=0 \text { : return } 1(\text { as the value of } \operatorname{power}(3,0,7))
\end{array} \\
& \text { we find } t=(\operatorname{power}(3,0,7))^{2} \bmod 7=(1)^{2} \bmod 7=1 \\
& e=1 \text { is not even: return } \operatorname{ta} \bmod 7=1 * 3 \bmod 7=3(\text { as the value of } \operatorname{power}(3,1,7))
\end{aligned}
$$

we find $t=(\operatorname{power}(3,1,7))^{2} \bmod 7=3^{2} \bmod 7=2$
$e=2$ is even: return $t=2$ (as the value of $\operatorname{power}(3,2,7)$ )
we find $t=(\operatorname{power}(3,2,7))^{2} \bmod 7=2^{2} \bmod 7=4$
$e=5$ is not even: return $t a \bmod 7=4 * 3 \bmod 7=5($ as the value of $\operatorname{power}(3,5,7))$

## Another quick and dirty recursion example

 print all permutations of $1,2,3, \ldots, n$initialize $a_{i}=i, 1 \leq i \leq n$
permute( $\left(\right.$ ): /* $a_{1}, a_{2}, \ldots, a_{b}$ still need to be permuted */
if $(b \leq 1)$
print $a_{1}, a_{2}, \ldots, a_{n}$
else

$$
\text { for } i=1 \text { to } b
$$

swap $a_{i}$ and $a_{b}$
permute ( $b-1$ )
swap $a_{i}$ and $a_{b}$
permute (n)

## Recursive sorting

 generic recursive sorting of list $L$ of $n$ items:if $n \leq 1$ : list sorted already, done else

1. create smaller subproblems: form disjoint sublists $L_{1}, L_{2}$ of $L$
2. recurse:
sort $L_{1}$ and $L_{2}$
3. combine:
sort $L$ using sorted $L_{1}$ and $L_{2}$ $\substack{\text { pages } \\ 399352} \frac{30}{}$ two common realizations of this idea:

- merge sort
page
$364 / 322$
exercises
quick sort


## Merge sort

pages sort list $L$ of $n$ items:
$\operatorname{cost} M(n)$ :
if $n \leq 1$ : list sorted already, done else

1. create smaller subproblems by splitting $L$ in the middle:
$L_{1}$ first half, $L_{2}$ second half of $L$
2. recurse: sort $L_{1}$ and sort $L_{2} \quad 2 M(n / 2)$
3. combine: merge sorted lists $L_{1}$ and
$L_{2}$ into single sorted list $L$
(as seen in homework 5.3c) total: $n+2 M(n / 2)$

## Solving $M(n)=n+2 M(n / 2)$

$$
\begin{aligned}
M(n) & =n+2 M(n / 2) \\
& =n+2(n / 2+2 M(n / 4)) \\
& =2 n+4 M(n / 4) \\
& =2 n+4(n / 4+2 M(n / 8)) \\
& =3 n+8 M(n / 8)
\end{aligned}
$$

$=k n+2^{k} M\left(n / 2^{k}\right)$
(when $k$ reaches $\log _{2}(n): M\left(n / 2^{k}\right)=0$ )
$=n \log _{2}(n)$

Proof that $M(n)=n \log _{2}(n)$
using strong induction:

1. $M(1)=0$ follows from the algorithm

$$
\begin{aligned}
& 1 * \log _{2}(1)=0 \\
& \quad \Rightarrow M(n)=n \log _{2}(n) \text { holds for } n=1
\end{aligned}
$$

2. induction hypothesis: $M(k)=k \log _{2}(k)$ if $k<n$ $M(n)=n+2 M(n / 2)($ from algorithm $)$
$=n+2\left((n / 2) \log _{2}(n / 2)\right) \quad($ Induction hypothesis)
$=n+n \log _{2}(n / 2)$
$=n+n\left(\log _{2}(n)-\log _{2}(2)\right)$
$=n+n\left(\log _{2}(n)-1\right)$
$=n \log _{2}(n)$
(note the cheating: this proof requires $n$ to be a power of 2; for general $n$ the result $M(n)=O(n \log (n))$ is valid though)

## Quick sort

$\substack{\text { pape } \\ 364322}$ sort list $L$ of $n$ items $l_{0}, l_{1}, \ldots, l_{n-1}:$ cost $Q(n)$ : $\substack { \text { exerisess } \\ \begin{subarray}{c}{43950555{ \text { exerisess } \\ \begin{subarray} { c } { 4 3 9 5 0 5 5 5 } } \\{\text { if }} \\{n} \end{subarray} 1$ : list sorted already, done else

1. create smaller subproblems:

$$
\begin{aligned}
& L_{1}=\left\{l_{i}: 0<i<n, l_{i} \leq l_{0}\right\}, r=\left|L_{1}\right| n-1 \\
& L_{2}=\left\{l_{i}: 0<i<n, l_{i}>l_{0}\right\}
\end{aligned}
$$

2. recurse: sort $L_{1}$ and sort $L_{2} Q(r)+Q(n-1-r)$
3. combine: concatenate sorted lists $L_{1}$, $l_{0}$ and $L_{2}$ into single sorted list $L$ :

$$
\begin{equation*}
L=L_{1}, l_{0}, L_{2} \tag{0}
\end{equation*}
$$

$$
\text { total: } n-1+Q(r)+Q(n-1-r)
$$

Solving $Q(n)=n-1+Q(r)+Q(n-1-r)$
depends on $r$ (and cardinalities in recursion)

- worst case: $r=0$ or $r=n-1$ :

$$
\begin{aligned}
Q(n) & =n-1+Q(n-1) \\
& =n-1+n-2+Q(n-2) \quad(\text { if bad luck again }) \\
& =n-1+n-2+n-3+Q(n-3) \quad(\text { same }) \\
& =\ldots=n(n-1) / 2
\end{aligned}
$$

(as bad as bubble or insertion sort)

- optimal case: always $r \approx n / 2 \approx n-r$ :

$$
\begin{aligned}
Q(n) & \approx n+2 Q(n / 2) \\
& =n \log _{2}(n)(\text { same as } M(n))
\end{aligned}
$$

A final recursion example: heapsort given $a_{i}, 0 \leq i<n$

- $i \leq[(n-1) / 2]: a_{i}$ 's children are $a_{2 i+1}$ and $a_{2 i+2}$
- to make $a_{i}$ largest among ordered offspring: $\operatorname{insert}(i, n)$ : if $a_{i}$ has larger child, then
- swap $a_{i}$ with largest child $a_{k}$
- insert(k,n)
- sort $a_{i}$ in increasing order:
$O(n) \quad$ for $i=[(n-1) / 2]$ downto 0 do $\operatorname{insert}(i, n)$ for $i=n-1$ downto 1 do
- $\quad$ swap $a_{0}$ and $a_{i}$
- $\quad \operatorname{insert}(0, i) \quad O(\log (i))$ per insertion
overall $O(n \log (n))$

