
Chapter 5 / 4: induction and recursion

two-step approach to problem solving:

1. solve smallest problem instance

2. show either how
• solution of instance of size k leads to

solution of instance of size k+1
or how
• instance of size k can be solved by

solving instance(s) of size < k

pages
307/263

and
339/295

 “basis” of induction, “bottom” of recursion

 minduction

 mrecursion

without basis or bottom:
step 2 useless and worthless

Section 5.1 / 4.1: mathematical induction

let P(n) be propositional function for n � Zt1
(thus � n � Zt1 P(n) = true � P(n) = false)

to prove the statement
� n � Zt1 P(n) = true

it suffices to prove that:
1. P(1) = true

(basis of the induction, or basis step)

2. � k � Zt1: if P(k) = true
then P(k+1) = true (inductive step)

(if � n with P(n) = false, let s be the smallest, then
s z 1, so s > 1, so P(s�1) = true, so P(s) = true)

pages
307-325
/263-279

Section 5.1 / 4.1: mathematical induction

let P(n) be propositional function for n � Ztb
(thus � n � Ztb P(n) = true � P(n) = false)

to prove the statement
� n � Ztb P(n) = true

it suffices to prove that:
1. P(b) = true

(basis of the induction, or basis step)

2. � k � Ztb: if P(k) = true
then P(k+1) = true (inductive step)

(if � n with P(n) = false, let s be the smallest, then
s z b, so s > b, so P(s�1) = true, so P(s) = true)

pages
307-325
/263-279

Mathematical induction (MI), examples

mathematical induction great way to prove
known results, hardly useful to derive them

• seen that ,
now use MI to prove it (again)

• seen that ,

now use MI to prove it (again)
• not just equalities: n < 2n, prove with MI

• if suspect that ,
we can use MI to prove it
but how does one find that formula?

• careful with buggy proofs (all horses have same color)

pages
307-325
/263-279

page
312/267

page
314/270

page
315/271

page
166/157

page 281
exerc

39-41 / 47-49

¦
�

k

i
kki

0
2/)1(

)1(
1

1
0

1

z
�
�

 ¦

�

r
r

r
rk

i

k
i

¦
��

k

i
kkki

0
2 6/)12)(1(

Finding

• from k3/3 we suspect that

S(k) = k3/3 + ak2 +bk +c for a, b, c �R
• S(0) = 0 � c = 0
• S(1) = 1 � 1/3 + a + b = 1
• S(2) = 5 � 8/3 + 4a + 2b = 5
subtract 1/3+a+b=1 twice from 8/3+4a+2b=5
�6/3+2a = 3 � a = ½ � b = 1/6
�we suspect S(k) = k3/3 + k2/2+k/6
 = (2k3 + 3k2+k)/6
 = k(k+1)(2k+1)/6
now we still need to prove it…

not
in book

¦
��

k

i
kkkikS

0
2 6/)12)(1()(

³
k

dxx

0

2

MI proof of

use familiar two step induction approach and
P(n): “S(n) = n(n+1)(2n+1)/6” (for n t 0)

1. basis of induction, proof that P(0) = true:
because S(0) = 0 and 0(0+1)(2
0+1) = 0
it follows that P(0) = true

2. inductive step: assume P(k) = true
 S(k+1) = S(k) + (k+1)2 (from definition)
 = k(k+1)(2k+1)/6 + (k+1)2

(we use P(k) = true: S(k) = k(k+1)(2k+1)/6)
= (k+1)(k(2k+1) + 6(k+1))/6
= (k+1)(2k2+7k+6)/6 = (k+1)(k+2)(2k+3)/6
 which shows that P(k+1) = true

page
325/280
exerc 5

¦
��

k

i
kkkikS

0
2 6/)12)(1()(

Section 5.2 / 4.2: strong induction

let P(n) be propositional function for n � Ztb
(thus � n � Ztb P(n) = true � P(n) = false)

to prove the statement
� n � Ztb P(n) = true

it suffices to prove that:
1. P(b) = true

(the basis of the induction, or basis step)

2. � k � Ztb : if P(b)=P(b+1)= … =P(k) = true
then P(k+1) = true (the inductive step)

(if � n with P(n) = false, let s be the smallest, then
s z b, so s > b, so �i<s P(i) = true, so P(s) = true)

pages
328-336
/283-291

Strong induction, example

strong induction equally powerful
as mathematical induction

example: for n � Z>1, let P(n) be “n can be
written as a product of one or more primes”
• P(2) = true, since 2 is prime
• assume � k � Z, 2 d k < n, P(k) = true,

what about P(n)?
• if n prime, then P(n) = true
• if n composite: � n1,n2 � Z s.t. n = n1n2

2dn1,n2<n � P(n1) = P(n2) = true �
n is product of products of primes

� P(n) = true (uniqueness: page 270/233)

pages
329-336
/284-291

page
331/286

Strong induction, another example

given pile of n stones; for any k a pile of k
stones can be split into two non-empty piles
of r > 0 and k�r > 0 stones at cost r(k�r)

how to split a single pile of n stones into n
“piles” of one stone at lowest total cost C(n)?

• n = 1: nothing to do at cost C(1) = 0
• n = 2: one way to split (2o1+1) at cost C(2) = 1(2�1) = 1
• n = 3: one way to split (3o2+1) at cost 2(3�2)=2;

 next 2o1+1 at cost 1; total cost C(3) = 2+1 = 3
• n = 4: either 4o2+2 at cost 4, plus 2C(2) = 2: 4+2 = 6;

 or 4o3+1 at cost 3 plus C(3): 3+3 = 6; � C(4) = 6
• n = 5: either 5o3+2 at cost 6, plus C(3)+C(2)=4, thus 10

 or 5o4+1 at cost 4 plus C(4)=6: 4+6=10; � C(5) = 10

page 337/292
exerc 10/14

Splitting piles of stones, continued

• n = 1: nothing to do at cost C(1) = 0
• n = 2: one way to split (2o1+1) at cost C(2) = 1(2�1) = 1
• n = 3: one way to split (3o2+1) at cost 2(3�2)=2;

 next 2o1+1 at cost 1; total cost C(3) = 2+1 = 3
• n = 4: either 4o2+2 at cost 4, plus 2C(2) = 2: 4+2 = 6;

 or 4o3+1 at cost 3 plus C(3): 3+3 = 6; � C(4) = 6
• n = 5: either 5o3+2 at cost 6, plus C(3)+C(2)=4, thus 10

 or 5o4+1 at cost 4 plus C(4)=6: 4+6=10; � C(5) = 10
we suspect that C(n) = n(n�1)/2
proof with strong induction:
• correct for n = 1
• split n in r > 0 and n�r > 0: cost r(n�r) plus
(induction hypothesis) r(r�1)/2+(n�r)(n�r�1)/2;
r(n�r)+r(r�1)/2+(n�r)(n�r�1)/2 = n(n�1)/2

page
337/292

exerc 10/14

 why so simple?
(page 400/359: find
combinatorial proof)

Common recursive definitions & algorithms

• factorial function:
n! = n
 (n�1)! for n > 0

with 0! = 1 this defines n! for n t 0
leads to recursive implementation:
factorial(n) = if n < 1 then 1

 else n
factorial(n�1)
• fibonacci numbers:

fn = fn�1 + fn�2 for n > 1
with f0 = 0, f1= 1 this defines fn for n t 0
fib(n) = if n < 2 then n

 else fib(n�1)+fib(n�2)

Pages
339-362
/294-321

 m bottom of recursion

m bottom of recursion

 m very bad idea

More recursive algorithms
recursion often great for lazy programmer

(with proper bottom of recursion):

� useful to quickly get working prototypes
• gcd(a,b): (b == 0) ? a : gcd(b,a mod b)
 (refer to slide 35 of March 27 lecture for division-free method)

• exponentiation: ae mod m (e t 0, m >1)
power(a,e,m):
if e equals 0: return(1)
else t = (power(a,[e/2],m))2mod m

 if (e is even): return(t)
 else return (ta mod m)

• mostly less efficient than iterative version

pages
353-362
/311-321

pages
355/313

same computation
 as before?

Exponentiation: ae mod m (e t 0, m >1)
power(a,e,m):
if e equals 0: return(1)
else t = (power(a,[e/2],m))2mod m
 if (e is even): return(t)
 else return (ta mod m)

to calculate 35 mod 7 (using different colors for variables at different recursion levels)

call power(3,5,7): a = 3, e = 5, m = 7
e = 5 z 0, thus t = (power(3,[5/2]=2,7))2mod 7
 generates recursive call power(3,2,7): a = 3, e = 2, m = 7
 e = 2 z 0, thus t = (power(3,[2/2]=1,7))2mod 7
 generates recursive call power(3,1,7): a = 3, e = 1, m = 7
 e = 1 z 0, thus t = (power(3,[1/2]=0,7))2mod 7
 generates recursive call power(3,0,7): a = 3, e = 0, m = 7
 e = 0: return 1 (as the value of power(3,0,7))
 we find t = (power(3,0,7))2mod 7 = (1)2mod 7 = 1
 e = 1 is not even: return ta mod 7 = 1
3 mod 7 = 3 (as the value of power(3,1,7))
 we find t = (power(3,1,7))2mod 7 = 32mod 7 = 2
 e = 2 is even: return t = 2 (as the value of power(3,2,7))
we find t = (power(3,2,7))2mod 7 = 22mod 7 = 4
e = 5 is not even: return ta mod 7 = 4
3 mod 7 = 5 (as the value of power(3,5,7))

More recursive algorithms
recursion often great for lazy programmer

(with proper bottom of recursion):

� useful to quickly get working prototypes
• gcd(a,b): (b == 0) ? a : gcd(b,a mod b)
 (refer to slide 35 of March 27 lecture for division-free method)

• exponentiation: ae mod m (e t 0, m >1)
power(a,e,m):
if e equals 0: return(1)
else t = (power(a,[e/2],m))2mod m

 if (e is even): return(t)
 else return (ta mod m)

• mostly less efficient than iterative version

pages
353-362
/311-321

pages
355/313

same computation
 as before

Exponentiation: ae mod m (e t 0, m >1)
power(a,e,m):
if e equals 0: return(1)
else t = (power(a,[e/2],m))2mod m
 if (e is even): return(t)
 else return (ta mod m)

to calculate 35 mod 7 (using different colors for variables at different recursion levels)

call power(3,5,7): a = 3, e = 5, m = 7
e = 5 z 0, thus t = (power(3,[5/2]=2,7))2mod 7
 recursive call power(3,2,7): a = 3, e = 2, m = 7
 e = 2 z 0, thus t = (power(3,[2/2]=1,7))2mod 7
 recursive call power(3,1,7): a = 3, e = 1, m = 7
 e = 1 z 0, thus t = (power(3,[1/2]=0,7))2mod 7
 recursive call power(3,0,7): a = 3, e = 0, m = 7
 e = 0: return 1 (as the value of power(3,0,7))
 we find t = (power(3,0,7))2mod 7 = (1)2mod 7 = 1
 e = 1 is not even: return ta mod 7 = 1
3 mod 7 = 3 (as the value of power(3,1,7))
 we find t = (power(3,1,7))2mod 7 = 32mod 7 = 2
 e = 2 is even: return t = 2 (as the value of power(3,2,7))
we find t = (power(3,2,7))2mod 7 = 22mod 7 = 4
e = 5 is not even: return ta mod 7 = 4
3 mod 7 = 5 (as the value of power(3,5,7))

Another quick and dirty recursion example
print all permutations of 1, 2, 3, …, n

initialize ai = i, 1 d i d n
permute(b): /* a1, a2, …, ab still need to be permuted */

if (b d 1)
 print a1, a2, …, an
else
 for i = 1 to b
 swap ai and ab
 permute(b�1)
 swap ai and ab

 permute(n)

Recursive sorting
generic recursive sorting of list L of n items:

if n d 1: list sorted already, done
else

1. create smaller subproblems:
form disjoint sublists L1, L2 of L

2. recurse:
sort L1 and L2

3. combine:
sort L using sorted L1 and L2

two common realizations of this idea:
• merge sort
• quick sort

pages
359-362
/317-319

page
364/322
exercises

34-39/50-55

Merge sort
sort list L of n items:

if n d 1: list sorted already, done
else

1. create smaller subproblems by
splitting L in the middle:
L1 first half, L2 second half of L

2. recurse: sort L1 and sort L2
3. combine: merge sorted lists L1 and

L2 into single sorted list L
(as seen in homework 5.3c)

pages
359-362
/317-319

 cost M(n):

 0

 0

 2M(n/2)

 n

 total: n + 2M(n/2)

Solving M(n) = n + 2M(n/2)

M(n) = n + 2M(n/2)
 = n + 2(n/2 + 2M(n/4))
 = 2n + 4M(n/4)
 = 2n + 4(n/4 + 2M(n/8))
 = 3n + 8M(n/8)
 …
 = kn + 2kM(n/2k)
 (when k reaches log2(n): M(n/2k) = 0)
 = nlog2(n)

Proof that M(n) = nlog2(n)
using strong induction:

1. M(1) = 0 follows from the algorithm
1
log2(1) = 0
 � M(n) = nlog2(n) holds for n = 1

2. induction hypothesis: M(k) = klog2(k) if k<n
M(n) = n + 2M(n/2) (from algorithm)
 = n + 2((n/2)log2(n/2)) (Induction hypothesis)
 = n + nlog2(n/2)
 = n + n(log2(n) � log2(2))
 = n + n(log2(n) � 1)
 = nlog2(n)
(note the cheating: this proof requires n to be a power of 2;
for general n the result M(n) = O(nlog(n)) is valid though)

Quick sort
sort list L of n items l0, l1,…,ln�1:

if n d 1: list sorted already, done
else

1. create smaller subproblems:
L1 = {li: 0<i<n, li d l0}, r = |L1|
L2 = {li: 0<i<n, li > l0}

2. recurse: sort L1 and sort L2
3. combine: concatenate sorted lists L1,

l0 and L2 into single sorted list L:
 L = L1, l0, L2

page
364/322
exercises

34-39/50-55

 cost Q(n):

 0

 n�1

 Q(r)+Q(n�1�r)

 0
 total: n�1 + Q(r)+Q(n�1�r)

Solving Q(n) = n�1 + Q(r) + Q(n�1�r)

depends on r (and cardinalities in recursion)

• worst case: r = 0 or r = n�1:
Q(n) = n�1 + Q(n�1)
 = n�1+n�2+Q(n�2) (if bad luck again)
 = n�1+n�2+n�3+Q(n�3) (same)
 = … = n(n�1)/2

 (as bad as bubble or insertion sort)

• optimal case: always r | n/2 | n�r:
Q(n) | n + 2Q(n/2)
 = nlog2(n) (same as M(n))

A final recursion example: heapsort

given ai, 0 d i < n

• i d [(n � 1)/2]: ai’s children are a2i+1 and a2i+2
• to make ai largest among ordered offspring:

insert(i,n): if ai has larger child, then
- swap ai with largest child ak
- insert(k,n)

• sort ai in increasing order:
for i = [(n � 1)/2] downto 0 do insert(i,n)
for i = n�1 downto 1 do
- swap a0 and ai
- insert(0,i)

O(n)

 O(log(i)) per insertion
 overall O(nlog(n))

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7

