Chapter 5/ 4: induction and recursion

pages

e tWO-step approach to problem solving:

and

231, solve smallest problem instance
“basis” of induction, “bottom” of recursion
2. show either how

* solution of instance of size & leads to
solution of instance of size k+1 <—induction

or how

* 1nstance of size k can be solved by
solving instance(s) of size <k <-recursion

without basis or bottom:
step 2 useless and worthless

Section 5.1/ 4.1;: mathematical induction

pages

ws et P(n) be propositional function for n € Z.,
T (thus V n € Z,, P(n) = true v P(n) = false)

to prove the statement
V nelZ, P(n)=true
it suffices to prove that:
1. P(l)=true
(basis of the induction, or basis step)
2. VkelZ,: 1t P(k) = true
then P(k+1) = true (inductive step)

(if 3 n with P(n) = false, let s be the smallest, then
s# 1,805 > 1, s0 P(s—1) = true, so P(s) = true)

Section 5.1/ 4.1;: mathematical induction

pages

s et P(n) be propositional function forn € Z,
7 (thus V' n € Z,, P(n) = true v P(n) = false)

to prove the statement
Vnel,, P(n)=true
it suffices to prove that:
1. P(b)=true
(basis of the induction, or basis step)
2. Vk el 1t P(k) = true
then P(k+1) = true (inductive step)

(if 3 n with P(n) = false, let s be the smallest, then
s # b, sos > b, so P(s—1) = true, so P(s) = true)

pages
307-325
/263-279

page
312/267

page
314/270

page
315/271

page
166/157

page 281
exerc
39-41/47-49

Mathematical induction (MI), examples

mathematical induction great way to prove

known results, hardly useful to derive them
k

+ seenthat), i=k(k+1)/2,
now use MI to provgkg (_algain)

* seen that Ziori = 1 (r#1),
I/'_

now use MI to prove it (again)
* not just equalities: n < 2", prove with MI

* 1f suspect that Zioiz =k(k+1D2k+1)/6,
we can use MI to prove it
but how does one find that formula?
careful with buggy proofs (all horses have same color)

* Finding S(k) Z P =k(k+DQk+1)/6
* from j x*dx =k3/3 we suspect that

S(k) = Kk/3 + ak? +bk +c for a, b, c eR
* S(0)=0 =c=0
e S(H=1 =13+ a+ b=1
e S2)=5 =8/3+4a+2b=>5
subtract 1/3+a+b=1 twice from 8/3+4a+2bH=5
—6/3+2a=3=>a="%=>b=1/6
= we suspect S(k) = k/3 + k?/2+k/6
= (2K + 3k2+k)/6
= k(k+1)(2k+1)/6
now we still need to prove it...

e MI proof of S(k)=> " i* = k(k+1)(2k+1)/6

use familiar two step induction approach and
P(n): “S(n)=n(n+1)(2n+1)/6” (for n = 0)

1. basis of induction, proof that P(0) = true:
because S(0) = 0 and 0(0+1)(2*0+1)=10
it follows that P(0) = true

2. 1nductive step: assume P(k) = true

S(k+1) = S(k) + (k+1)? (from definition)
= k(k+1)2k+1)/6 + (k+1)?

(we use P(k) = true: S(k)=k(k+1)(2k+1)/6)

= (k+1)(k(2k+1) + 6(k+1))/6
= (k+1)2E*+T7k+6)/6 = (k+1)(k+2)(2k+3)/6
which shows that P(k+1) = true

Section 5.2 / 4.2: strong induction

s let P(n) be propositional function forn € Z,
7 (thus VY n € Z., P(n) = true v P(n) = false)
to prove the statement
Vnel,, P(n)=true
it suffices to prove that:
1. P(b)=true
(the basis of the induction, or basis step)
2. Vkel,, 1t P(b)=P(b+1)=... =P(k) = true
then P(k+1) = true (the inductive step)

(if 3 n with P(n) = false, let s be the smallest, then
s # b, so s > b, so Vi<s P(i) = true, so P(s) = true)

Strong induction, example

0336 Strong induction equally powerful
/284-291 .
as mathematical induction

- example: for n € Z_,, let P(n) be “n can be
3126 written as a product of one or more primes”
* P(2) = true, since 2 1s prime
e assume V k € Z,2 <k < n, P(k) = true,
what about P(n)?
* 1f n prime, then P(n) = true
* 1if n composite: I n,n, € Zs.t. n=nn,
2<n,,n,<n = P(n,) = P(n,) = true =
n 1s product of products of primes
—> P(n) = true (uniqueness: page 270/233)

Strong induction, another example

page 337/292

e 1014 21VEN pile of n stones; for any k a pile of &
stones can be split into two non-empty piles
of » > 0 and k—r > 0O stones at cost r(k—7)

how to split a single pile of n stones into »
“piles” of one stone at lowest total cost C(n)?

n = 1: nothing to do at cost C(1) =0

n =2:one way to split (2—1+1)atcost C(2)=12-1)=1

n = 3: one way to split (3—2+1) at cost 2(3—-2)=2;
next 2—1+1 at cost 1; total cost C(3) =2+1 =3

n =4: either 4—2+2 at cost 4, plus 2C(2) = 2: 4+2 = 6;
or 4—3+1 atcost 3 plus C(3): 3+3=6; = (C(4) =6

n =135: either 5—3+2 at cost 6, plus C(3)+C(2)=4, thus 10
or 5—4+1 at cost 4 plus C(4)=6: 4+6=10; = C(5) =10

Splitting piles of stones, continued

e o n=1:nothing to do at cost C(1) =0
exerc 10/14 ®* p = 2: one way to split (2—1+1) atcost C(2) =1(2—-1)=1

* n=3:one way to split (3—2+1) at cost 2(3-2)=2;
next 2—1+1 at cost 1; total cost C(3) =2+1 =3

* n=4: either 4—>2+2 at cost 4, plus 2C(2) = 2: 4+2 = 6;
or 4—3+1 atcost 3 plus C(3): 3+3=6;, = (C(4) =6

 n=235: either 5—>3+2 at cost 6, plus C(3)+C(2)=4, thus 10
or 5—4+1 at cost 4 plus C(4)=6: 4+6=10; = C(5) =10

we suspect that C(n) = n(n—1)/2 why so simple?
proof with strong induction: (page 400/359: find
* correct forn =1 combinatorial proof)
* splitninr»> 0 and n—r> 0: cost r(n—r) plus
(induction hypothesis) r(r—1)/2+(n—r)(n—r—1)/2;
r(n—r)ytr(r—1)/2+(n—r)(n—r-1)/2 = n(n—1)/2

Common recursive definitions & algorithms

Pages

s * factorial function:
o n!'=nx*(n-1)! forn>0
with 0! = 1 this defines n! forn >0
leads to recursive implementation:
factorial(n) =1t n < 1 then 1 < bottom of recursion
else n*factorial(n—1)
* fibonacci numbers:
. =f._11tf ,forn>1
with f,=0, f,= 1 this defines f, forn >0
fib(n)=1tn<2thenn <« botiom of recursion
else fib(n—1)+fib(n—2) < very bad idea

More recursive algorithms
mess TeCUrsion often great for lazy programmer

353-362

sus2t (with proper bottom of recursion):

= useful to quickly get working prototypes
* gcd(a,b): (b==0)?a: gcd(b,a mod D)
(refer to slide 35 of March 27 lecture for division-free method)

pages

s ® exponentiation: a° mod m (e = 0, m >1)

power(a,e,m): same computation
if e equals 0: return(1) as before?
else = (power(a,[e/2],m))’mod m

if (e 1s even): return(z)

else return (fa mod m)

* mostly less efficient than iterative version

Exponentiation: a° mod m (e > 0, m >1)

power(a,e,m):

if e equals 0: return(1)

else = (power(a,[e/2],m))>mod m
if (e 1s even): return(?)
else return (ta mod m)

to calculate 3° mod 7 (using different colors for variables at different recursion levels)

call power(3,5,7):a=3,e=5m="7
e=5#0, thus t = (power(3,[5/2]=2,7))’mod 7
generates recursive call power(3,2,7):a=3,e=2, m="7
e=2#0, thus t = (power(3,[2/2]=1,7))’mod 7
generates recursive call power(3,1,7):a=3,e=1,m="7
e=1#0, thus t = (power(3,[1/2]=0,7))>mod 7
generates recursive call power(3,0,7):a=3,e=0,m="7
e = 0: return 1 (as the value of power(3,0,7))
we find ¢ = (power(3,0,7))>mod 7 = (1)’mod 7 = 1
e =1 is not even: return ta mod 7 = 1*3 mod 7 = 3 (as the value of power(3,1,7))
we find ¢ = (power(3,1,7))’mod 7 = 3°mod 7 = 2
e =2 is even: return ¢ = 2 (as the value of power(3,2,7))
we find 1 = (power(3,2,7))>’mod 7 = 2°mod 7 = 4
e =5 1s not even: return fa mod 7 = 4+*3 mod 7 = 5 (as the value of power(3,5,7))

More recursive algorithms
mess TeCUrsion often great for lazy programmer

353-362

sus2t (with proper bottom of recursion):

= useful to quickly get working prototypes
* gcd(a,b): (b==0)?a: gcd(b,a mod D)
(refer to slide 35 of March 27 lecture for division-free method)

pages

ssais ® exponentiation: a° mod m (e = 0, m >1)
power(a,e,m): same computation
if e equals 0: return(1) as before
else = (power(a,[e/2],m))’mod m
if (e 1s even): return(z)
else return (fa mod m)

* mostly less efficient than iterative version

Exponentiation: a° mod m (e > 0, m >1)

power(a,e,m):

if e equals 0: return(1)

else = (power(a,[e/2],m))>mod m
if (e 1s even): return(z)
else return (ta mod m)

to calculate 3° mod 7 (using different colors for variables at different recursion levels)

call power(3,5,7):a=3,e=5m="7
e=5#0, thus t = (power(3,[5/21=2.7))*mod 7

recursive call power(3,2,7):a=3,e=2, m="17
e =2 %0, thus = (power(3.[2/2]1=1.7))*mod 7

recursive call power(3,1,7):a=3,e=1,m="7
e=1#0, thus t = (power(3,[1/2]=0,7))’mod 7
recursive call power(3,0,7):a=3,e=0,m="7
e = 0: return 1 (as the value of power(3,0,7))
we find ¢ = (power(3,0,7))’mod 7 = (1)’mod 7 = 1

e =1 1s not even: return ta mod 7 = 1*3 mod 7 = 3 (as the value of power(3,1,7))

we find ¢ = (power(3,1,7))’mod 7 = 3°’mod 7 = 2
e =2 1s even: return ¢ = 2 (as the value of power(3.2.7))

we find = (power(3,2,7))>’mod 7 = 2°mod 7 = 4
e =5 1s not even: return fa mod 7 = 4+*3 mod 7 = 5 (as the value of power(3,5,7))

Another quick and dirty recursion example
print all permutations of 1,2,3, ..., n

initialize a,=i, 1 <i<n
permute(b): /* a,, a,, ..., a, still need to be permuted */
1f (b<1)
printa,, a,, ..., a
clse
fori=1tob
swap a; and a,
permute(b—1)
swap a; and a,

n

permute(n)

Recursive sorting
generic recursive sorting of list L of n items:

if n < 1: list sorted already, done
else
1. create smaller subproblems:
form disjoint sublists L, L, of L
2. recurse:
sort L, and L,
3. combine:
sort L using sorted L, and L,
o tWo common realizations of this idea:
/3;::9 * merge sort
o ® quick sort

34-39/50-55

Merge sort

e sort list L of n items: cost M(n):
TP if n < 1: list sorted already, done 0
else
1. create smaller subproblems by
splitting L 1n the middle: 0

L, first half, L, second half of L
2. recurse: sort L, and sort L, 2M(n/2)
3. combine: merge sorted lists L, and
L, into single sorted list L n

(as seen in homework 5.3¢)
total: n + 2M(n/2)

Solving M(n) = n + 2M(n/2)

M(n)=n+2M(n/2)
=n+2n/2+2M(n/4))
=2n + 4M(n/4)
=2n+ 4(n/4 + 2M(n/8))
=3n + 8M(n/8)

= kn + 2*M(n/2%)
(when k reaches log,(n): M(n/2%)=10)
= nlog,(n)

Proof that M(n) = nlog,(n)
using strong induction:

1. M(1)=0 follows from the algorithm
1*log,(1) =0
— M(n) = nlog,(n) holds for n = 1
2. mduction hypothesis: M(k) = klog,(k) i k<n
M(n) =n+ 2M(n/2) (from algorithm)
=n + 2((71/ 2)10g2(n/ 2)) (Induction hypothesis)
=n + nlog,(n/2)
=n + n(log,(n) — log,(2))
=n + n(logy(n) — 1)
= nlog,(n)

(note the cheating: this proof requires n to be a power of 2;
for general » the result M(n) = O(nlog(n)) 1s valid though)

Quick sort
mee SOTT l1st L of m items [/, [,,...,[,: cost O(n):

ssasssif n < 1: list sorted already, done 0
else
1. create smaller subproblems:
L,=14:0<i<n,[. <[}, r=1|L,| n-1
L,=1{l:0<i<n,[.>1,}
2. recurse: sort L, and sort L, O(r)+Q(n—1-r)
3. combine: concatenate sorted lists L,
[, and L, into single sorted list L:
L=L,1,L, 0
total: n—1 + O(r)+O(n—1-r)

Solving O(n) = n—1 + O(r) + O(n—1-r)
depends on (and cardinalities in recursion)

* worstcase: r=0orr=n—1:
O(n) = n—1+ Q(n-1)
= n—1+n—-2+0(n—-2) (ifbad luck again)
= n—1+n—-2+n-3+0(n—-3) (same)
= ...=nn-1)/2
(as bad as bubble or 1nsertion sort)

* optimal case: always r = n/2 = n—r:

On) =n+20(n/2)
= nlog,(n) (same as M(n))

A final recursion example: heapsort
givena,;, 0 <i<n

* [<[(n—1)/2]: a/s children are a,,., and a,,,,
* to make a, largest among ordered offspring:
insert(i,n): if a, has larger child, then
- swap a,; with largest child a,
- insert(k,n)
* sort @; 1n increasing order:
O(n) fori=[(n—-1)/2] downto 0 do insert(i,n)
for i = n—1 downto 1 do
- swap q, and g
- insert(0,i) O(log(7)) per 1nsertion
overall O(nlog(n))

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7

