Chapter 5 / 4: induction and recursion

^{pages} ^{307/263} two-step approach to problem solving:

- solve smallest problem instance
 "basis" of induction, "bottom" of recursion
- 2. show either how

339/295

- solution of instance of size k leads to solution of instance of size k+1 ← induction or how
- instance of size k can be solved by solving instance(s) of size < k ← recursion

without basis or bottom: step 2 useless and worthless

Section 5.1 / 4.1: mathematical induction

pages 307-325 /263-279

let P(n) be propositional function for $n \in \mathbb{Z}_{>1}$ (thus $\forall n \in \mathbb{Z}_{>1} P(n) = \text{true} \lor P(n) = \text{false}$) to prove the statement $\forall n \in \mathbb{Z}_{>1} P(n) = \text{true}$ it suffices to prove that: 1. P(1) = true(basis of the induction, or basis step) 2. $\forall k \in \mathbb{Z}_{>1}$: if P(k) = true then P(k+1) = true (*inductive step*)

(if $\exists n \text{ with } P(n) = \text{false, let } s \text{ be the smallest, then}$ $s \neq 1$, so s > 1, so P(s-1) = true, so P(s) = true)

Section 5.1 / 4.1: mathematical induction

pages 307-325 /263-279

let P(n) be propositional function for $n \in \mathbb{Z}_{>h}$ (thus $\forall n \in \mathbb{Z}_{>h} P(n) = \text{true} \lor P(n) = \text{false}$) to prove the statement $\forall n \in \mathbb{Z}_{>h} P(n) = \text{true}$ it suffices to prove that: 1. P(b) = true(basis of the induction, or basis step) 2. $\forall k \in \mathbb{Z}_{>h}$: if P(k) = true then P(k+1) = true (*inductive step*) (if $\exists n$ with P(n) = false, let *s* be the smallest, then $s \neq b$, so s > b, so P(s-1) = true, so P(s) = true)

Mathematical induction (MI), examples

pages mathematical induction great way to prove 307-325 /263-279 known results, hardly useful to derive them • seen that $\sum_{i=0}^{k} i = k(k+1)/2$, page 312/267 • seen that $\sum_{i=0}^{k} r^{i} = \frac{r^{k+1} - 1}{r - 1}$ $(r \neq 1)$, page 314/270 now use MI to prove it (again) • not just equalities: $n < 2^n$, prove with MI page 315/271 • if suspect that $\sum_{i=0}^{k} i^2 = k(k+1)(2k+1)/6$, page 166/157 we can use MI to prove it but how does one find that formula? page 281 • careful with buggy proofs (all horses have same color) exerc 39-41 / 47-49

^{not}_{in book} Finding $S(k) = \sum_{i=0}^{k} i^2 = k(k+1)(2k+1)/6$

• from $\int_0^k x^2 dx = k^3/3$ we suspect that $S(k) = k^3/3 + ak^2 + bk + c$ for $a, b, c \in \mathbb{R}$

•
$$S(0) = 0 \implies c = 0$$

- $S(1) = 1 \implies 1/3 + a + b = 1$
- $S(2) = 5 \implies 8/3 + 4a + 2b = 5$

subtract 1/3+a+b=1 twice from 8/3+4a+2b=5 $\Rightarrow 6/3+2a=3 \Rightarrow a = \frac{1}{2} \Rightarrow b = \frac{1}{6}$ \Rightarrow we suspect $S(k) = \frac{k^3}{3} + \frac{k^2}{2} + \frac{k}{6}$ $= \frac{(2k^3 + 3k^2 + k)}{6}$ $= \frac{k(k+1)(2k+1)}{6}$

now we still need to prove it...

MI proof of $S(k) = \sum_{i=0}^{k} i^2 = k(k+1)(2k+1)/6$ page 325/280 exerc 5 use familiar two step induction approach and P(n): "S(n) = n(n+1)(2n+1)/6" (for $n \ge 0$) 1. basis of induction, proof that P(0) = true: because S(0) = 0 and O(0+1)(2*0+1) = 0it follows that P(0) = true 2. inductive step: assume P(k) = true $S(k+1) = S(k) + (k+1)^2$ (from definition) $= k(k+1)(2k+1)/6 + (k+1)^2$ (we use P(k) = true: S(k) = k(k+1)(2k+1)/6) = (k+1)(k(2k+1) + 6(k+1))/6 $= (k+1)(2k^2+7k+6)/6 = (k+1)(k+2)(2k+3)/6$ which shows that P(k+1) = true

Section 5.2 / 4.2: strong induction

pages 328-336 /283-291 let P(n) be propositional function for $n \in \mathbb{Z}_{>h}$ (thus $\forall n \in \mathbb{Z}_{>h} P(n) = \text{true} \lor P(n) = \text{false}$) to prove the statement $\forall n \in \mathbb{Z}_{>h} P(n) = \text{true}$ it suffices to prove that: 1. P(b) = true(the basis of the induction, or basis step) 2. $\forall k \in \mathbb{Z}_{>b}$: if $P(b) = P(b+1) = \dots = P(k) = \text{true}$ then P(k+1) = true (the *inductive step*) (if $\exists n$ with P(n) = false, let s be the smallest, then $s \neq b$, so s > b, so $\forall i \le P(i) = \text{true}$, so P(s) = true)

Strong induction, example

^{pages} 329-336 /284-291 strong induction equally powerful as mathematical induction

example: for $n \in \mathbb{Z}_{>1}$, let P(n) be "*n* can be ^{page} written as a product of one or more primes"

- P(2) =true, since 2 is prime
- assume $\forall k \in \mathbb{Z}, 2 \le k \le n, P(k) = \text{true},$ what about P(n)?
 - if *n* prime, then P(n) = true
 - if *n* composite: $\exists n_1, n_2 \in \mathbb{Z}$ s.t. $n = n_1 n_2$ $2 \le n_1, n_2 \le n \Rightarrow P(n_1) = P(n_2) = \text{true} \Rightarrow$ *n* is product of products of primes $\Rightarrow P(n) = \text{true} \text{ (uniqueness: page 270/233)}$

Strong induction, another example

^{page 337/292} given pile of *n* stones; for any *k* a pile of *k* stones can be split into two non-empty piles of r > 0 and k-r > 0 stones at cost r(k-r)

> how to split a single pile of *n* stones into *n* "piles" of one stone at lowest total cost C(n)?

• n = 1: nothing to do at cost C(1) = 0

- n = 2: one way to split $(2 \rightarrow 1+1)$ at cost C(2) = 1(2-1) = 1
- n = 3: one way to split (3→2+1) at cost 2(3-2)=2; next 2→1+1 at cost 1; total cost C(3) = 2+1 = 3
- n = 4: either 4 \rightarrow 2+2 at cost 4, plus 2C(2) = 2: 4+2 = 6; or 4 \rightarrow 3+1 at cost 3 plus C(3): 3+3 = 6; $\Rightarrow C(4) = 6$
- *n* = 5: either 5→3+2 at cost 6, plus *C*(3)+*C*(2)=4, thus 10
 or 5→4+1 at cost 4 plus *C*(4)=6: 4+6=10; ⇒ *C*(5) = 10

Splitting piles of stones, continued

page • n = 1: nothing to do at cost C(1) = 0

- exerc 10/14 n = 2: one way to split $(2 \rightarrow 1+1)$ at cost C(2) = 1(2-1) = 1
 - n = 3: one way to split $(3 \rightarrow 2+1)$ at cost 2(3-2)=2; next $2 \rightarrow 1+1$ at cost 1; total cost C(3) = 2+1 = 3
 - n = 4: either 4 \rightarrow 2+2 at cost 4, plus 2C(2) = 2: 4+2 = 6; or 4 \rightarrow 3+1 at cost 3 plus C(3): 3+3 = 6; $\Rightarrow C(4) = 6$
 - *n* = 5: either 5→3+2 at cost 6, plus *C*(3)+*C*(2)=4, thus 10 or 5→4+1 at cost 4 plus *C*(4)=6: 4+6=10; ⇒ *C*(5) = 10 we suspect that *C*(*n*) = *n*(*n*−1)/2 why so simple? proof with strong induction: (page 400/359: find)
 - correct for n = 1 combinatorial proof)
 - split n in r > 0 and n-r > 0: cost r(n-r) plus (induction hypothesis) r(r-1)/2+(n-r)(n-r-1)/2; r(n-r)+r(r-1)/2+(n-r)(n-r-1)/2 = n(n-1)/2

Common recursive definitions & algorithms

Pages 339-362 • factorial function:

n! = n * (n-1)! for n > 0with 0! = 1 this defines n! for $n \ge 0$ leads to recursive implementation: factorial(n) = if n < 1 then $1 \leftarrow bottom \text{ of recursion}$ else n*factorial(n-1)

• fibonacci numbers:

 $f_n = f_{n-1} + f_{n-2} \text{ for } n > 1$ with $f_0 = 0$, $f_1 = 1$ this defines f_n for $n \ge 0$ fib(n) = if n < 2 then $n \leftarrow bottom \text{ of recursion}$ else $fib(n-1) + fib(n-2) \leftarrow very \text{ bad idea}$

More recursive algorithms

recursion often great for lazy programmer (with proper *bottom of recursion*):

 \Rightarrow useful to quickly get working prototypes

- gcd(a,b): (b == 0) ? a : gcd(b,a mod b)
 (refer to slide 35 of March 27 lecture for division-free method)
- pages
355/313• exponentiation: $a^e \mod m$ ($e \ge 0, m > 1$)power(a,e,m):
if e equals 0: return(1)
elsesame computation
as before?else $t = (power(a,[e/2],m))^2 \mod m$
if (e is even): return(t)
else return (ta mod m)
 - mostly less efficient than iterative version

Exponentiation: $a^e \mod m \ (e \ge 0, m \ge 1)$

power(a,e,m): if e equals 0: return(1) else $t = (power(a,[e/2],m))^2 \mod m$ if (e is even): return(t) else return (ta mod m)

to calculate 3⁵ mod 7 (using different colors for variables at different recursion levels)

call power(3,5,7): a = 3, e = 5, m = 7 $e = 5 \neq 0$, thus $t = (power(3, [5/2]=2, 7))^2 \mod 7$ generates recursive call power(3,2,7): a = 3, e = 2, m = 7 $e = 2 \neq 0$, thus $t = (power(3, [2/2]=1, 7))^2 \mod 7$ generates recursive call power(3,1,7): a = 3, e = 1, m = 7 $e = 1 \neq 0$, thus $t = (power(3, [1/2]=0, 7))^2 \mod 7$ generates recursive call *power*(3,0,7): a = 3, e = 0, m = 7e = 0: return 1 (as the value of power(3,0,7)) we find $t = (power(3,0,7))^2 \mod 7 = (1)^2 \mod 7 = 1$ e = 1 is not even: return ta mod $7 = 1*3 \mod 7 = 3$ (as the value of power(3,1,7)) we find $t = (power(3,1,7))^2 \mod 7 = 3^2 \mod 7 = 2$ e = 2 is even: return t = 2 (as the value of power(3,2,7)) we find $t = (power(3,2,7))^2 \mod 7 = 2^2 \mod 7 = 4$ e = 5 is not even: return ta mod $7 = 4*3 \mod 7 = 5$ (as the value of power(3,5,7))

More recursive algorithms

recursion often great for lazy programmer (with proper *bottom of recursion*):

 \Rightarrow useful to quickly get working prototypes

- gcd(a,b): (b == 0) ? a : gcd(b,a mod b)
 (refer to slide 35 of March 27 lecture for division-free method)
- pages 355/313 • exponentiation: $a^e \mod m$ ($e \ge 0, m > 1$) power(a,e,m): same computation if e equals 0: return(1) as before else $t = (power(a,[e/2],m))^2 \mod m$ if (e is even): return(t) else return ($ta \mod m$)
 - mostly less efficient than iterative version

Exponentiation: $a^e \mod m \ (e \ge 0, m \ge 1)$

power(a,e,m): if e equals 0: return(1) else $t = (power(a,[e/2],m))^2 \mod m$ if (e is even): return(t) else return (ta mod m)

to calculate 3⁵ mod 7 (using different colors for variables at different recursion levels)

call power(3,5,7): a = 3, e = 5, m = 7 $e = 5 \neq 0$, thus $t = (power(3, [5/2]=2, 7))^2 \mod 7$ recursive call *power*(3,2,7): *a* = 3, *e* = 2, *m* = 7 $e = 2 \neq 0$, thus $t = (power(3, [2/2]=1, 7))^2 \mod 7$ recursive call *power*(3,1,7): a = 3, e = 1, m = 7 $e = 1 \neq 0$, thus $t = (power(3, [1/2]=0, 7))^2 \mod 7$ recursive call *power*(3,0,7): a = 3, e = 0, m = 7e = 0: return 1 (as the value of *power*(3,0,7)) we find $t = (power(3,0,7))^2 \mod 7 = (1)^2 \mod 7 = 1$ e = 1 is not even: return ta mod $7 = 1*3 \mod 7 = 3$ (as the value of power(3,1,7)) we find $t = (power(3,1,7))^2 \mod 7 = 3^2 \mod 7 = 2$ e = 2 is even: return t = 2 (as the value of power(3,2,7)) we find $t = (power(3,2,7))^2 \mod 7 = 2^2 \mod 7 = 4$ e = 5 is not even: return $ta \mod 7 = 4*3 \mod 7 = 5$ (as the value of power(3,5,7))

Another quick and dirty recursion example print all permutations of 1, 2, 3, ..., n initialize $a_i = i, 1 \le i \le n$ *permute(b):* /* $a_1, a_2, ..., a_h$ still need to be permuted */ if $(b \leq 1)$ print $a_1, a_2, ..., a_n$ else for i = 1 to b swap a_i and a_h *permute*(*b*-1) swap a_i and a_b *permute(n)*

Recursive sorting

generic recursive sorting of list *L* of *n* items:

- if $n \le 1$: list sorted already, done else
 - 1. create smaller subproblems: form disjoint sublists L_1, L_2 of L
 - 2. recurse:
 - sort L_1 and L_2
 - 3. combine:

sort *L* using sorted L_1 and L_2 ^{pages} ³⁵⁹⁻³⁶² two common realizations of this idea: ^{/317-319}

- merge sort
- quick sort

exercises 34-39/50-55

page 364/322

Merge sort

- $\begin{array}{l} \underset{359-362}{\text{pages}} \\ \text{if } n \leq 1 \\ \end{array} \text{ list sorted already, done } 0 \\ \text{else} \end{array}$
 - 1. create smaller subproblems by splitting L in the middle: 0 L_1 first half, L_2 second half of L
 - 2. recurse: sort L_1 and sort $L_2 = 2M(n/2)$
 - 3. combine: merge sorted lists L_1 and L_2 into single sorted list L n(as seen in homework 5.3c) total: n + 2M(n/2)

Solving
$$M(n) = n + 2M(n/2)$$

 $M(n) = n + 2M(n/2)$
 $= n + 2(n/2 + 2M(n/4))$
 $= 2n + 4M(n/4)$
 $= 2n + 4(n/4 + 2M(n/8))$
 $= 3n + 8M(n/8)$

 $= kn + 2^{k}M(n/2^{k})$ (when k reaches $\log_{2}(n)$: $M(n/2^{k}) = 0$) $= n\log_{2}(n)$ **Proof that** $M(n) = n \log_2(n)$ using strong induction:

1.
$$M(1) = 0$$
 follows from the algorithm
 $1*\log_2(1) = 0$
 $\Rightarrow M(n) = n\log_2(n)$ holds for $n = 1$
2. induction hypothesis: $M(k) = k\log_2(k)$ if $k < n$
 $M(n) = n + 2M(n/2)$ (from algorithm)
 $= n + 2((n/2)\log_2(n/2))$ (Induction hypothesis)
 $= n + n\log_2(n/2)$
 $= n + n(\log_2(n) - \log_2(2))$
 $= n + n(\log_2(n) - 1)$
 $= n\log_2(n)$

(note the cheating: this proof requires *n* to be a power of 2; for general *n* the result $M(n) = O(n\log(n))$ is valid though)

Quick sort

page 364/322 sort list *L* of *n* items l_0, l_1, \dots, l_{n-1} : cost Q(n): exercises 34-39/50-55 if $n \leq 1$: list sorted already, done 0 else

1. create smaller subproblems:

$$L_1 = \{l_i: 0 \le i \le n, l_i \le l_0\}, r = |L_1| \quad n-1$$
$$L_2 = \{l_i: 0 \le i \le n, l_i \ge l_0\}$$

2. recurse: sort L_1 and sort $L_2 Q(r) + Q(n-1-r)$

3. combine: concatenate sorted lists L_1 ,

$$l_0$$
 and L_2 into single sorted list L:
 $L = L_1, l_0, L_2$ 0
total: $n-1 + Q(r)+Q(n-1-r)$

Solving Q(n) = n-1 + Q(r) + Q(n-1-r)depends on *r* (and cardinalities in recursion)

• worst case: r = 0 or r = n-1:

$$Q(n) = n-1 + Q(n-1)$$

= $n-1+n-2+Q(n-2)$ (if bad luck again)
= $n-1+n-2+n-3+Q(n-3)$ (same)
= ... = $n(n-1)/2$

(as bad as bubble or insertion sort)

• optimal case: always $r \approx n/2 \approx n-r$: $Q(n) \approx n + 2Q(n/2)$ $= n\log_2(n)$ (same as M(n))

A final recursion example: heapsort

given $a_i, 0 \le i < n$

- $i \le [(n-1)/2]$: a_i 's children are a_{2i+1} and a_{2i+2}
- to make a_i largest among ordered offspring: *insert(i,n)*: if a_i has larger child, then
 swap a_i with largest child a_k *insert(k,n)*
- sort a_i in increasing order:

 $O(n) \quad \text{for } i = [(n-1)/2] \text{ downto 0 do } insert(i,n)$ for i = n-1 downto 1 do

- swap a_0 and a_i

- insert(0,i) $O(\log(i))$ per insertion overall $O(n\log(n))$