
Chapter 5 / 4: induction and recursion 
 

two-step approach to problem solving: 
 

1. solve smallest problem instance 
 

2. show either how 
• solution of instance of size k leads to 

solution of instance of size k+1 
or how 
• instance of size k can be solved by 

solving instance(s) of size < k 
 

pages  
307/263 

and 
339/295 

  
 

  
 
   “basis” of induction, “bottom” of recursion 

 
   

                                                      minduction 
                                                       
   
                                                      mrecursion 

 

without basis or bottom: 
step 2  useless and worthless 



Section 5.1 / 4.1: mathematical induction 
 

let P(n) be propositional function for n � Zt1  
(thus � n � Zt1 P(n) = true � P(n) = false) 
 

to prove the statement 
� n � Zt1 P(n) = true 

it suffices to prove that: 
1.  P(1) = true       

(basis of the induction, or basis step) 
 

2. � k � Zt1: if P(k) = true 
then P(k+1) = true (inductive step) 

 

(if � n with P(n) = false, let s be the smallest, then 
s z 1, so s > 1, so P(s�1) = true, so P(s) = true) 

pages 
307-325 
/263-279 

 



Section 5.1 / 4.1: mathematical induction 
 

let P(n) be propositional function for n � Ztb  
(thus � n � Ztb P(n) = true � P(n) = false) 
 

to prove the statement 
� n � Ztb P(n) = true 

it suffices to prove that: 
1.  P(b) = true 

(basis of the induction, or basis step) 
 

2. � k � Ztb: if P(k) = true 
then P(k+1) = true (inductive step) 

 

(if � n with P(n) = false, let s be the smallest, then 
s z b, so s > b, so P(s�1) = true, so P(s) = true) 
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Mathematical induction (MI), examples 
 

mathematical induction great way to prove 
known results, hardly useful to derive them 
 

• seen that                               ,  
now use MI to prove it (again) 

 

• seen that                                        , 
 

now use MI to prove it (again) 
• not just equalities: n < 2n, prove with MI 
 

•  if suspect that                                           , 
we can use MI to prove it 
but how does one find that formula? 

• careful with buggy proofs (all horses have same color) 

pages 
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Finding 
 

• from                 k3/3  we suspect that 
 

S(k) = k3/3 + ak2 +bk +c for a, b, c �R 
• S(0) = 0  � c = 0 
• S(1) = 1  � 1/3 +   a +   b = 1 
• S(2) = 5  � 8/3 + 4a + 2b = 5 
subtract 1/3+a+b=1 twice from 8/3+4a+2b=5 
�6/3+2a = 3 � a = ½ � b = 1/6 
�we suspect S(k) = k3/3 + k2/2+k/6 
                               = (2k3 + 3k2+k)/6 
                               = k(k+1)(2k+1)/6 
now we still need to prove it… 
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MI proof of 
 

use familiar two step induction approach and 
P(n): “S(n) = n(n+1)(2n+1)/6”  (for n t 0) 
 

1. basis of induction, proof that P(0) = true: 
because S(0) = 0 and 0(0+1)(2
0+1) = 0 
it follows that P(0) = true 

2. inductive step: assume P(k) = true 
      S(k+1) = S(k) + (k+1)2 (from definition) 
                  = k(k+1)(2k+1)/6 + (k+1)2 

(we use P(k) = true: S(k) = k(k+1)(2k+1)/6 ) 
= (k+1)(k(2k+1) + 6(k+1))/6 
= (k+1)(2k2+7k+6)/6 = (k+1)(k+2)(2k+3)/6 
  which shows that P(k+1) = true 

page 
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Section 5.2 / 4.2: strong induction 
 

let P(n) be propositional function for n � Ztb  
(thus � n � Ztb P(n) = true � P(n) = false) 
 

to prove the statement 
� n � Ztb P(n) = true 

it suffices to prove that: 
1.  P(b) = true       

(the basis of the induction, or basis step) 
 

2. � k � Ztb : if P(b)=P(b+1)= … =P(k) = true 
then P(k+1) = true (the inductive step) 

 

(if � n with P(n) = false, let s be the smallest, then 
s z b, so s > b, so �i<s P(i) = true, so P(s) = true) 

pages 
328-336 
/283-291 
 



Strong induction, example 
 

strong induction equally powerful 
as mathematical induction 

 

example: for n � Z>1, let P(n) be “n can be  
written as a product of one or more primes” 
• P(2) = true, since 2 is prime 
• assume � k � Z, 2 d k < n, P(k) = true, 

what about P(n)? 
• if n prime, then P(n) = true 
• if n composite: � n1,n2 � Z s.t. n = n1n2  

2dn1,n2<n � P(n1) = P(n2) = true � 
n is product of products of primes 

� P(n) = true (uniqueness: page 270/233)    

pages 
329-336 
/284-291 

 
 
 

page 
331/286 

 
 

 



Strong induction, another example 
 

given pile of n stones; for any k a pile of k 
stones can be split into two non-empty piles 
of r > 0 and k�r > 0 stones at cost r(k�r) 
 

how to split a single pile of n stones into n 
“piles” of one stone at lowest total cost C(n)? 
 

• n = 1: nothing to do at cost C(1) = 0 
• n = 2: one way to split (2o1+1) at cost C(2) = 1(2�1) = 1 
• n = 3: one way to split (3o2+1) at cost 2(3�2)=2; 

   next 2o1+1 at cost 1; total cost C(3) = 2+1 = 3 
• n = 4: either 4o2+2 at cost 4, plus 2C(2) = 2: 4+2 = 6; 

   or 4o3+1 at cost 3 plus C(3): 3+3 = 6; � C(4) = 6 
• n = 5: either 5o3+2 at cost 6, plus C(3)+C(2)=4, thus 10 

   or 5o4+1 at cost 4 plus C(4)=6: 4+6=10; � C(5) = 10 

page 337/292 
exerc 10/14 

 
 
 
 
 
 
 
 
 
 
 
 
 



Splitting piles of stones, continued 
 

• n = 1: nothing to do at cost C(1) = 0 
• n = 2: one way to split (2o1+1) at cost C(2) = 1(2�1) = 1 
• n = 3: one way to split (3o2+1) at cost 2(3�2)=2; 

   next 2o1+1 at cost 1; total cost C(3) = 2+1 = 3 
• n = 4: either 4o2+2 at cost 4, plus 2C(2) = 2: 4+2 = 6; 

   or 4o3+1 at cost 3 plus C(3): 3+3 = 6; � C(4) = 6 
• n = 5: either 5o3+2 at cost 6, plus C(3)+C(2)=4, thus 10 

   or 5o4+1 at cost 4 plus C(4)=6: 4+6=10; � C(5) = 10 
we suspect that C(n) = n(n�1)/2 
proof with strong induction:  
• correct for n = 1 
• split n in r > 0 and n�r > 0: cost r(n�r) plus 
(induction hypothesis) r(r�1)/2+(n�r)(n�r�1)/2; 
r(n�r)+r(r�1)/2+(n�r)(n�r�1)/2 = n(n�1)/2  

page 
337/292 

exerc 10/14 
 
 
 
 
 

 

  why so simple? 
(page 400/359: find 
combinatorial proof) 



Common recursive definitions & algorithms 
 

• factorial function: 
n! = n 
 (n�1)!  for n > 0 

with 0! = 1 this defines n! for n t 0 
leads to recursive implementation: 
factorial(n) = if n < 1 then 1 

                  else n
factorial(n�1)  
• fibonacci numbers: 

fn = fn�1 + fn�2 for n > 1 
with f0 = 0,  f1= 1 this defines fn for n t 0 
fib(n) = if n < 2 then n 

         else fib(n�1)+fib(n�2) 
 

Pages 
339-362 
/294-321 

 
 
 
 
 

         m bottom of recursion 
 
 

 
 
 
 
m bottom of recursion 
 

              m very bad idea 



More recursive algorithms 
recursion often great for lazy programmer 

(with proper bottom of recursion): 
 

� useful to quickly get working prototypes 
• gcd(a,b): (b == 0) ? a : gcd(b,a mod b) 
  (refer to slide 35 of March 27 lecture for division-free method ) 
 

• exponentiation: ae mod m (e t 0, m >1) 
power(a,e,m): 
if e equals 0: return(1) 
else t = (power(a,[e/2],m))2mod m 

  if (e is even): return(t) 
  else return (ta mod m) 

 

• mostly less efficient than iterative version 

pages 
353-362 
/311-321 

 
 
 
 
 
 
 

pages 
355/313 

 
same computation 
       as before?  



Exponentiation: ae mod m (e t 0, m >1) 
power(a,e,m): 
if e equals 0: return(1) 
else t = (power(a,[e/2],m))2mod m 
  if (e is even): return(t) 
  else return (ta mod m) 
 

to calculate 35 mod 7 (using different colors for variables at different recursion levels) 
 

call power(3,5,7): a = 3, e = 5, m = 7 
e = 5 z 0, thus t = (power(3,[5/2]=2,7))2mod 7 
  generates recursive call power(3,2,7): a = 3, e = 2, m = 7 
  e = 2 z 0, thus t = (power(3,[2/2]=1,7))2mod 7 
  generates recursive call power(3,1,7): a = 3, e = 1, m = 7 
  e = 1 z 0, thus t = (power(3,[1/2]=0,7))2mod 7 
           generates recursive call power(3,0,7): a = 3, e = 0, m = 7 
           e = 0: return 1 (as the value of power(3,0,7)) 
  we find t = (power(3,0,7))2mod 7 = (1)2mod 7 = 1 
  e = 1 is not even: return ta mod 7 = 1
3 mod 7 = 3 (as the value of power(3,1,7)) 
 we find t = (power(3,1,7))2mod 7 = 32mod 7 = 2 
 e = 2 is even: return t = 2 (as the value of power(3,2,7)) 
we find t = (power(3,2,7))2mod 7 = 22mod 7 = 4 
e = 5 is not even: return ta mod 7 = 4
3 mod 7 = 5 (as the value of power(3,5,7) ) 



More recursive algorithms 
recursion often great for lazy programmer 

(with proper bottom of recursion): 
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• exponentiation: ae mod m (e t 0, m >1) 
power(a,e,m): 
if e equals 0: return(1) 
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Exponentiation: ae mod m (e t 0, m >1) 
power(a,e,m): 
if e equals 0: return(1) 
else t = (power(a,[e/2],m))2mod m 
  if (e is even): return(t) 
  else return (ta mod m) 
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call power(3,5,7): a = 3, e = 5, m = 7 
e = 5 z 0, thus t = (power(3,[5/2]=2,7))2mod 7 
  recursive call power(3,2,7): a = 3, e = 2, m = 7 
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Another quick and dirty recursion example 
print all permutations of  1, 2, 3, …, n 
 

initialize  ai = i, 1 d i d n  
permute(b): /* a1, a2, …, ab  still need to be permuted */ 

if (b d 1) 
 print a1, a2, …, an 
else 
 for i = 1 to b 
  swap ai and ab 
  permute(b�1) 
   swap ai and ab 

 

 permute(n) 



Recursive sorting 
generic recursive sorting of list L of n items: 
 

if n d 1: list sorted already, done 
else 

1. create smaller subproblems: 
form disjoint sublists L1, L2 of L 

2. recurse: 
sort L1 and L2 

3. combine: 
sort L using sorted L1 and L2  

two common realizations of this idea: 
• merge sort 
• quick sort 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

pages 
359-362 
/317-319 

 

page 
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34-39/50-55 
 



Merge sort 
sort list L of n items: 
 

if n d 1: list sorted already, done 
else 

1. create smaller subproblems by 
splitting L in the middle: 
L1 first half, L2 second half of L 

2. recurse: sort L1 and sort L2  
3. combine: merge sorted lists L1 and  

L2 into single sorted list L 
(as seen in homework 5.3c) 

pages 
359-362 
/317-319 

 

 
 

  
                                                        cost M(n): 
 

                                                                    0 
                                                    

  
                                                      0 
  

                                                        2M(n/2) 
  

                                                      n 
  
                               total: n + 2M(n/2)  



Solving M(n) = n + 2M(n/2) 
 

M(n) = n + 2M(n/2) 
       = n + 2(n/2 + 2M(n/4)) 
  = 2n + 4M(n/4) 
  = 2n + 4(n/4 + 2M(n/8)) 
  = 3n + 8M(n/8) 
  … 
  = kn + 2kM(n/2k) 
  (when k reaches log2(n): M(n/2k) = 0 ) 
  = nlog2(n) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 



Proof that M(n) = nlog2(n) 
using strong induction: 
 

1.  M(1) = 0 follows from the algorithm  
1
log2(1) = 0 
 � M(n) = nlog2(n) holds for n = 1 

2. induction hypothesis: M(k) = klog2(k) if k<n 
M(n) = n + 2M(n/2) (from algorithm) 
         = n + 2((n/2)log2(n/2))  (Induction hypothesis) 
         = n + nlog2(n/2) 
         = n + n(log2(n) � log2(2)) 
         = n + n(log2(n) � 1) 
         = nlog2(n) 
(note the cheating: this proof requires n to be a power of 2; 
for general n the result M(n) = O(nlog(n)) is valid though) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 



Quick sort 
sort list L of n items l0, l1,…,ln�1: 
 

if n d 1: list sorted already, done 
else 

1. create smaller subproblems: 
L1 = {li: 0<i<n, li d l0}, r = |L1|   
L2 = {li: 0<i<n, li > l0} 

2. recurse: sort L1 and sort L2 
3. combine: concatenate sorted lists L1,  

l0 and L2 into single sorted list L: 
 L = L1, l0, L2 

page 
364/322 
exercises 

34-39/50-55 
 
 

 
 

  
                                                        cost Q(n): 
 

                                                                    0 
                                                    

  
                                                      n�1 
  

                                                   Q(r)+Q(n�1�r) 
  

                                                       
                                                      0 
                   total: n�1 + Q(r)+Q(n�1�r)  



Solving Q(n) = n�1 + Q(r) + Q(n�1�r) 
 

depends on r (and cardinalities in recursion) 
 

• worst case: r = 0 or r = n�1: 
Q(n) = n�1 + Q(n�1) 
  = n�1+n�2+Q(n�2)  (if bad luck again) 
  = n�1+n�2+n�3+Q(n�3)  (same) 
  = … = n(n�1)/2 

  (as bad as bubble or insertion sort) 
 

• optimal case: always r | n/2 | n�r:   
Q(n)  | n + 2Q(n/2) 
        = nlog2(n) (same as M(n)) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 



A final recursion example: heapsort 
 

given ai, 0 d i < n 
 

• i d [(n � 1)/2]: ai’s children are a2i+1 and a2i+2 
• to make ai largest among ordered offspring: 

insert(i,n): if ai has larger child, then 
- swap ai with largest child ak  
- insert(k,n) 

• sort ai in increasing order: 
for i = [(n � 1)/2] downto 0 do insert(i,n) 
for i = n�1 downto 1 do 
- swap a0 and ai 
- insert(0,i) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

O(n) 
 
 
                                           O(log(i)) per insertion 
     overall O(nlog(n)) 
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