
 
Chapter 6 / 5: Counting 

 
general observation & recommendations: 
•  messing up while counting is hard to avoid 

(despite attempts to capture counting in “rules”) 
•  try smaller examples that keep essence 
•  check that answer makes sense 

(negative counts are usually incorrect) 
•  verify consistency between 

different ways to count the same 



Prelude: counting using Chinese remaindering 
 

to find the number C of people 
• let p and q be coprime integers with pq > C 
• form groups of p persons: find Cp = C mod p 
• form groups of q persons: find Cq = C mod q 
• thus C = Cp + kp for unknown integer k 
• to determine k, note that Cp + kp = Cq mod q 

thus k = (Cq � Cp)/p mod q 
• to calculate k we need s such that sp = 1 mod q 

and thus s = 1/p mod q (and k = s(Cq � Cp) mod q) 
• finding s: with “0
p = q mod q” and 

“1
p = p mod q”, perform the Euclidean 
algorithm on right hand sides until it equals 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 



Warm-up: two simple counting rules 
 

A and B are two different tasks, 
with n ways to do A and m ways to do B 

 

two scenarios: 
 

1. task A must be done followed by task B 
 
 

2. task A or task B must be done (not both) 
 

 
question: 

how many ways to carry out each scenario?  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

product rule: 
n times m ways to do A and then B 

 
sum rule:  

n plus m ways to do A or B 
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Trivial example: pick two bits, a 1st & a 2nd  
 

how many ways to pick the two bits? 
 

task A: pick 1st bit; 2 ways to do so  
task B: pick 2nd bit; 2 ways to do so 

� do task A followed by task B 
thus 2 u 2 = 4 ways to do A followed by B 

 

other way to define the tasks: 
task A: 1st bit is 0; 2 ways to pick 2nd bit 
task B: 1st bit is 1; 2 ways to pick 2nd bit 

� do task A or task B 
thus 2 + 2 = 4 ways to do A or B 

(works because A and B are disjoint)     
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 



Common pitfall of sum rule 
 

in how many ways can one pick seven bits 
such that last bit is 1 or the first 3 bits are 0? 
 

A: pick last bit as 1; product rule: 64 ways 
B: pick first 3 bits as 0; product rule:16 ways 
� (sum rule?) 64 + 16 = 80 ways to do A or B 
 

wrong because A and B are not disjoint: 
• 8 of the ways under A have first 3 bits 0, or 
• half the ways (i.e., 8) under B have last bit 1 
 

� either way, subtract 8 from 80: result 72 
 

(remember principle of inclusion and exclusion: |A�B| = |A|+|B|�|A�B|) 
(Bƍ: first 3 bits and last bit all zero, 8 total, is disjoint with A: |A|+|Bƍ|=72) 
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The first three of six simple examples 
consider strings of length 6 over {a,b,c,…,y,z} 
1. how many? 

26 choices for 1st, 26 choices for 2nd,  
26 for 3rd, …, and 26 for 6th  

� product rule: 266 
 

2. how many begin with a vowel {a,e,i,o,u}? 
5 choices for 1st, 26 choices for 2nd – 6th  

� product rule: 5*265 
 

3. how many begin and end with a vowel? 
5 choices for 1st and 6th, 26 for 2nd – 5th  

� product rule: 5*264*5 = 52*264 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 



Fourth simple example 
consider strings of length 6 over {a,b,c,…,y,z} 
4. how many begin or end with a vowel? 

5*265 begin with vowel 
265*5 end with vowel 
� 2*5*265 begin or end with vowel 

but we counted “begin and end” twice 
� 2*5*265 � 52*264 = 235*264 

 

alternative calculation: complement of those 
that begin and end with consonant 

� 266 � 212*264 = (262 � 212)*264 
 

use: (c1 = vowel � c6 = vowel) { � (c1 z vowel � c6 z vowel) 
                      { � (c1 = consonant � c6 = consonant ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 



Fifth simple example 
consider strings of length 6 over {a,b,c,…,y,z} 
5. how many begin or end with a vowel, 

but not a vowel at begin and end? 
“begin or end” was 2*5*265 � 52*264 
need to subtract “begin and end” again: 
� 2*5*265 � 2*52*264 = 210*264 

 

alternative calculation:  
begin vowel, end consonant: 5*264*21 
begin consonant, end vowel: 21*264*5 
these two possibilities are disjoint 
� sum rule: 

5*264*21+21*264*5 = 210*264 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 



Last simple example 
consider strings of length 6 over {a,b,c,…,y,z} 
6. how many have precisely one vowel? 

1st vowel, others consonants: 5*215 
2nd vowel, others consonants: 21*5*214 
3rd vowel, others consonants: 212*5*213 
… 
6th vowel, others consonants: 215*5 
(all possibilities disjoint) 

 

� sum rule: 6*5*215 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 



Brief pigeonhole discussion 
 

if N items are distributed over fewer than N bins,  
then there is a bin with at least two items (N > 1) 
 

example: in any group of t 2 persons there are 
   at least 2 who have the same number of friends 
   in the group (“being friends” is “symmetric”): 
persons p1, p2, …, pn; f(i): number of friends of pi   
bins b0, b1, …, bn�1; put person pi in bin bf(i) 
� n items in n bins: pigeonhole does not apply 
• if b0 is empty o 

p1, p2, …, pn assigned to b1, b2, …, bn�1 
• if  b0  is not empty o (symmetry) bn�1  empty o 

p1, p2, …, pn assigned to b0, b1, …, bn�2 
� either way there is a “collision” 
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More general pigeonhole principle 
 

with N items distributed over k bins, 
there is a bin with at least ªN/kº items 
 

select 8 different integers from {1,2,…,12}, 
then at least two pairs add up to precisely 13     
 

bins are pairs adding up to 13, thus k = 6 bins: 
(1,12), (2,11), (3,10), (4,9), (5,8), (6,7) 

 

items are integers that are selected, thus N = 8 
� selection corresponds to a choice of bins 
� there is a bin with ªN/kº = ª8/6º = 2 items 
� at least one pair adds up to 13 
 

remove it: N = 6, k = 5, ª6/5º = 2 � other pair  
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Related: cabling, and saving a few cables 
 

connect p printers to d desktops (d > p) such 
that p desktops always connect to p distinct 
printers, but cheaper than running all pd cables 
 

printers P1,P2,…,    , desktops D1,D2,…,Dd,  
• for 1 d i d p connect Di to Pi : p cables 
• p < k d d connect Dk to all Pis: (d�p)p cables 
� total (d�p)p+p cables (saving p2�p cables) 
 

works: Di with 1 d i d p connects to Pi; if free 
printers then Dk (k > p) can connect to them 
optimal: with (d�p)p+p�1 cables, there is a Pi  

connected to d d�p desktops, thus Pi not 
connected to t p desktops: let those print… 
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Permutations, combinations, etc 
 

in how many different ways can r objects be 
selected from collection of n different objects? 
 

have to distinguish different possibilities: 
• may an object be selected more than once? 
� replacement (repetition) or not (if not: r d n) 
• is the order of selection relevant? 
� permutation (“yes”) or combination (“no”) 
 

� 2u2 different possibilities to be considered: 
1. permutation without replacement 
2. combination without replacement 
3. permutation with replacement 
4. combination with replacement 
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Examples with n = 10, r = 3 
 

1. permutation without replacement 
 

2. combination without replacement 
 

3. permutation with replacement 
 

4. combination with replacement 
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gold, silver, bronze medal among 10 players 
 
select 3 representatives from class of 10 
 
select 3-digit PIN 
 
select 3 cookies from 10 types of cookies 
or: 

number of nonnegative integer solutions 
to x1+x2+…+x10= 3 (xi � Zt0) 

 



Simple formulas for general n and r 
 

1. permutation without replacement: P(n,r) 
n choices for 1st, n�1 for 2nd, …, n�r+1 for rth 

� P(n,r) = n(n�1)…(n�r+1) = n!/(n�r)! 
2. combination without replacement: C(n,r) 
each combination can be ordered in r! ways 
 

� C(n,r)r! = P(n,r) � 
(pronounced: “n choose r”) 

3. permutation with replacement 
n choices for 1st, n for 2nd, …, n for rth 

� in total nr r-permutations with repetition 
4. combination with replacement 

(the only non-intuitive one – do this later) 
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Examples: combinations without replacement 
hands of five cards from standard deck: 
52 cards: 13 “kinds” (valeurs) in 4 “suits” (couleurs) 
(2,…,10, jack,queen,king,ace; spades,clubs,hearts,diamonds) 
(2,…,10,valet,dame,roi,as; pique,trèfle,coeur,carreau) 
•  how many different hands? 

52 choose 5 = C(52,5) = 

•  how many hands contain your favorite card 
(say 5 of clubs)? 
•  pick it, left                       (⇒ almost 10%) 
•  or: complement of not picking it: 

•  or: 2598960 * (5/52) = 249900  
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More card examples 

•  # hands containing your two favorite cards? 
•  pick them, left                     (⇒ 0.75%) 
•  or: complement of not picking them: 

•  not the same, one must be wrong… 
•  correct version of complement method 

uses inclusion&exclusion principle: 

(subtract card one excluded, subtract card 
two excluded, add back both excluded) 
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More card examples 

•  # hands containing five kinds? 
pick kinds (C(13,5)), four suits per kind: 
C(13,5)45 = 1317888  (51%) 

•  # hands with a flush, i.e., all same suit 
pick suit (4), pick 5 out of 13 (C(13,5)): 

4C(13,5) = 5148  (0.2%) 
•  # hands with four cards of one kind? 

pick kind (C(13,1)), 
pick the four cards of that kind (C(4,4)=1), 
and pick remaining card (C(48,1)=48): 

13*48 = 624   (0.024%) 
•  three of a kind: C(13,1)*4*48*44/2, (2.11%) 
         (or:  C(12,2)*42 instead of 48*44/2) 
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Combinatorial and algebraic proofs 

•  combinatorial proof: formula holds based 
on counting argument or “insight” 

•  algebraic proof: usual math manipulations 
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Combinatorial and algebraic proofs 
an r-combination from n without replacement 
is equivalent to 
an (n-r)-combination from n without replacement 
⇒ C(n,r) = C(n,n-r) 

the above is example of a “combinatorial proof”: 
a counting argument that a formula holds 
easily confirmed by a trivial algebraic proof:  
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More examples 
1.  splitting pile of n stones: 
•  strong induction: total cost n(n-1)/2 
•  “handshake” argument: same result 

3.   P(n+1,r) = P(n,r)(n+1)/(n+1-r) 
•  algebraic proof immediate 
•  combinatorial: argument: 
P(n+1,r+1) = (n+1)P(n,r): 
take first from n+1, then r-perm from n 

or 
P(n+1,r+1) = P(n+1,r)(n+1-r): 
first take r-perm from n+1, then take last 
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More about n choose r: binomial coefficients 
Pascal’s identity (0 < k ≤ n):  
•  combinatorial proof: 
pick k-combination from n+1 by fixing one 
element: include it (k-1 from n remain to be 
chosen) or don’t (k from n remain to be chosen) 
•  algebraic proof: 
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Binomial theorem 
for n ≥ 0: 

•  combinatorial proof: 
expand product (x+y)n: for the term  xn-kyk  
the  y  needs to be chosen  k out of n times 
(order irrelevant since xn-kyk = yxn-kyk-1 = … = ykxn-k) 

⇒ coefficient of xn-kyk must be  n choose k 
•  algebraic proof: 

use mathematical induction 
and Pascal’s identity 
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Algebraic proof of binomial theorem 
let P(n) be the assumption that 

•    
shows that P(0) holds 

•  assume P(n) holds for some n ≥ 0. Then 



Combinatorial and algebraic proofs 
 

 

• combinatorial proof: formula holds based 
on counting argument or “insight” 

 

• algebraic proof: usual math manipulations 
 

seen both types of proofs for 
• Pascal’ identity (0 < k d n):  

 
 

• binomial theorem: for n t 0  
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Consequence of binomial theorem 
 

 
 

• algebraic proofs: 
• take x = y = 1 in binomial theorem 
• mathematical induction, Pascal’s identity 

 

• combinatorial proof: 
• 2n is the number of length n bitstrings 
• write the number of length n bitstrings 

as               , where Ci is the number of 
length n bitstrings with i bits “on”, and 
note that Ci is n choose I 

(or look at subsets and their cardinalities) 
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Another consequence of binomial theorem 
 

 
 

(Vandermonde’s identity) 
• algebraic proof: 

use (x+y)m+n = (x+y)m(x+y)n  
with binomial theorem 
and compare the terms for xm+n�ryr  

 
 

• combinatorial proof: 
count cardinality r subsets of 
cardinality m+n set in different ways 

 

• consequence: 
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Final combinatorial l algebraic example 
 

 
 

• combinatorial proof: suppose you need 
to pick a committee of r out of n, and a 
subcommittee of k out of those r (LHS). 
or pick the subcommittee of k first, then 
remaining r�k from remaining n�k (RHS) 

 

• algebraic proof straightforward too: 
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Useful identity (for combination with repetition)  
 

 
• combinatorial proof: look at last “on” bit 

of r+1 “on” bits in n+1 positions 
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More precisely 
 

combinatorial proof of 
pick r+1 out of x1, x2,…, xn+1, 
• largest index is n+1 
or 
• largest index is n 
or 
• largest index is n�1 
or 
• largest index is n�2 
or 
… 
• largest index is r+1 
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n choose r ways to pick other r 
  
n�1 choose r ways to pick other r 
  
n�2 choose r ways to pick other r 
  
n�3 choose r ways to pick other r 
  
  
r choose r ways to pick other r 



Useful identity 
 

 
• combinatorial proof: look at last “on” bit 

of r+1 “on” bits in n+1 positions  
• proof by hand waving: repeatedly use 

Pascal’s identity, walking up Pascal’s triangle 
 

• algebraic proof: use mathematical induction 
with respect to n (formalizing hand waving) 
• for n = r identity holds 
• assume holds for n; then for n+1: 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

page  
409/368 
thm 4 

 
 

nrn

rj
j
r

n
r d ¦  
�
� for    )()( 1
1

¦¦ �

  
�

�
�

��
�

 � 

� 
11

  

1
1

1
  

2
1

)( )()(        

 identity) sPascal' (use  )()()(
n

rj
j
r

n

rj
j
r

n
r

n
r

n
r

n
r



Back to counting formulas: pick r from n  
 

1. permutation without replacement: P(n,r) 
 P(n,r) = n(n�1)…(n�r+1) = n!/(n�r)! 

2. combination without replacement: C(n,r) 
 

 
 

3. permutation with replacement 
      nr 

4. combination with replacement 
still not done, and a bit less intuitive 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
 
 

)(
)!(!

!),( n
rrnr

nrnC  
�

 

pages 
411-415 
/371-374 

 

 
 



Pick r-combination from n with replacement  
to develop intuition, a few basic examples:  
• given infinite supply of n = 1 cookie type, 

in how many ways can one pick r cookies? 
clearly only one way: r cookies of type 1 

 
• same question with n = 2 types of cookies: 

from 0 to r of type 1, others type 2: r+1 ways 
  

• same question with n = 3 types of cookies: 
s, 0 ��s ��r, of type 1: r�s of types 2 or 3, 
thus                                                    ways    
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n =1: constant in r 
 
 
n =2: linear in r 
 
 
 
n =3: quadratic in r 
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r-combination from n with replacement  
observations we made:  
• n = 1: 1 way 
n = 2: r+1 ways 
n = 3: (r+1)(r+2)/2 ways 
�suggests (n+r�1) choose n�1 ways (º) 

� let  f(n,r) denote the number of 
r-combinations from n with replacement, then 
f(n,r) = f(n�1,0)+f(n�1,1)+…+f(n�1,r): 
take r of type 1, 0 left to take of n�1 types 
take r�1 of type 1, 1 left to take of n�1 types 
take r�2 of type 1, 2 left to take of n�1 types 
… 
take 0 of type 1, r left to take of n�1 types 
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r-combination from n with replacement  
observations we made:  
• n = 1: 1 way 
n = 2: r+1 ways 
n = 3: (r+1)(r+2)/2 ways 
�suggests (n+r�1) choose n�1 ways (º) 

� let  f(n,r) denote the number of 
r-combinations from n with replacement, then 
f(n,r) = f(n�1,0)+f(n�1,1)+…+f(n�1,r) 

 

• induction proof of º: basis n = 1 is okay;  
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r-combination from n with replacement  
why is the result so simple? 
combinatorial proof that 

uses n+r�1 positions n�1 of which are 
separators that “switch” to next type 

note: 
• f(n,r) counts number of nonnegative integer 

solutions to x1+x2+…+xn = r (xi � Z   ) 
little tricks to deal with: 
• xi � bi  for bounds bi: use  
• x1+x2+…+xn ��r: use slack variable xn+1  

 

• C(n,r) product for indistinguishable objects 
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