Chapter 6 / 5: Counting

general observation \& recommendations:

- messing up while counting is hard to avoid (despite attempts to capture counting in "rules")
- try smaller examples that keep essence
- check that answer makes sense
(negative counts are usually incorrect)
- verify consistency between different ways to count the same

Prelude: counting using Chinese remaindering

 to find the number C of people- let p and q be coprime integers with $p q>C$
- form groups of p persons: find $C_{p}=C \bmod p$
- form groups of q persons: find $C_{q}=C \bmod q$
- thus $C=C_{p}+k p$ for unknown integer k
- to determine k, note that $C_{p}+k p=C_{q} \bmod q$ thus $k=\left(C_{q}-C_{p}\right) / p \bmod q$
- to calculate k we need s such that $s p=1 \bmod q$ and thus $s=1 / p \bmod q\left(\right.$ and $\left.k=s\left(C_{q}-C_{p}\right) \bmod q\right)$
- finding s : with " $0 * p=q \bmod q$ " and " $1 * p=p \bmod q$ ", perform the Euclidean algorithm on right hand sides until it equals 1

Warm-up: two simple counting rules
A and B are two different tasks,
with n ways to do A and m ways to do B
two scenarios:

1. task A must be done followed by task B product rule:
n times m ways to do A and then B
2. task A or task B must be done (not both) sum rule:
n plus m ways to do A or B
question:
how many ways to carry out each scenario?

Trivial example: pick two bits, a $1^{\text {st }} \boldsymbol{\&}$ a $2^{\text {nd }}$ how many ways to pick the two bits?
task A : pick $1^{\text {st }}$ bit; 2 ways to do so task B : pick $2^{\text {nd }}$ bit; 2 ways to do so
\Rightarrow do task A followed by task B thus $2 \times 2=4$ ways to do A followed by B other way to define the tasks:
$\operatorname{task} A: 1^{\text {st }}$ bit is $0 ; 2$ ways to pick $2^{\text {nd }}$ bit task $B: 1^{\text {st }}$ bit is $1 ; 2$ ways to pick $2^{\text {nd }}$ bit \Rightarrow do task A or task B thus $2+2=4$ ways to do A or B (works because A and B are disjoint)

Common pitfall of sum rule

pages 382-383
in how many ways can one pick seven bits such that last bit is 1 or the first 3 bits are 0 ?
A : pick last bit as 1 ; product rule: 64 ways B : pick first 3 bits as 0 ; product rule: 16 ways \Rightarrow (sum rule?) $64+16=80$ ways to do A or B wrong because A and B are not disjoint:

- 8 of the ways under A have first 3 bits 0 , or
- half the ways (i.e., 8) under B have last bit 1
\Rightarrow either way, subtract 8 from 80: result 72
(remember principle of inclusion and exclusion: $|A \cup B|=|A|+|B|-|A \cap B|$)
(B^{\prime} : first 3 bits and last bit all zero, 8 total, is disjoint with $A:|A|+\left|B^{\prime}\right|=72$)

The first three of six simple examples consider strings of length 6 over $\{a, b, c, \ldots, y, z\}$

1. how many?

26 choices for $1^{\text {st }}, 26$ choices for $2^{\text {nd }}$,
26 for $3^{\text {rd }}, \ldots$, and 26 for $6^{\text {th }}$
\Rightarrow product rule: 26^{6}
2. how many begin with a vowel $\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}\}$?

5 choices for $1^{\text {st }}, 26$ choices for $2^{\text {nd }}-6^{\text {th }}$
\Rightarrow product rule: $5 * 26^{5}$
3. how many begin and end with a vowel? 5 choices for $1^{\text {st }}$ and $6^{\text {th }}, 26$ for $2^{\text {nd }}-5^{\text {th }}$ \Rightarrow product rule: $5 * 26^{4 * 5}=5 * 26^{4}$

Fourth simple example

consider strings of length 6 over $\{a, b, c, \ldots, y, z\}$
4. how many begin or end with a vowel?
$5 * 26^{5}$ begin with vowel
$26^{5 *} 5$ end with vowel
$\Rightarrow 2 * 5^{*} 26^{5}$ begin or end with vowel but we counted "begin and end" twice $\Rightarrow 2 * 5 * 26^{5}-52 * 26^{4}=235 * 26^{4}$
alternative calculation: complement of those that begin and end with consonant
use: $\left(c_{1}=\right.$ vowel $\vee c_{6}=$ vowel $) \equiv \neg\left(c_{1} \neq\right.$ vowel $\wedge c_{6} \neq$ vowel $)$

$$
\equiv \neg\left(c_{1}=\text { consonant } \wedge c_{6}=\text { consonant }\right)
$$

Fifth simple example

consider strings of length 6 over $\{a, b, c, \ldots, y, z\}$
5. how many begin or end with a vowel, but not a vowel at begin and end?
"begin or end" was $2 * 5 * 26^{5}-52 * 26^{4}$ need to subtract "begin and end" again:
$\Rightarrow 2 * 5 * 26^{5}-2 * 52 * 26^{4}=210 * 26^{4}$
alternative calculation:
begin vowel, end consonant: $5 * 26^{4 *} 21$ begin consonant, end vowel: $21 * 264 * 5$ these two possibilities are disjoint
\Rightarrow sum rule:

$$
5 * 26^{4 *} 21+21 * 26^{4 * 5}=210^{*} 26^{4}
$$

Last simple example

 consider strings of length 6 over $\{a, b, c, \ldots, y, z\}$6 . how many have precisely one vowel? $1^{\text {st }}$ vowel, others consonants: $5^{*} 21^{5}$ $2^{\text {nd }}$ vowel, others consonants: $21 * 5 * 21^{4}$ $3^{\text {rd }}$ vowel, others consonants: $21^{2 *} 5 * 21^{3}$
$6^{\text {th }}$ vowel, others consonants: $21^{5 * 5}$ (all possibilities disjoint)
\Rightarrow sum rule: $6 * 5 * 21^{5}$

Brief pigeonhole discussion

if N items are distributed over fewer than N bins, then there is a bin with at least two items $(N>1)$ example: in any group of ≥ 2 persons there are at least 2 who have the same number of friends in the group ("being friends" is "symmetric"): persons $p_{1}, p_{2}, \ldots, p_{n} ; f(i)$: number of friends of p_{i} bins $b_{0}, b_{1}, \ldots, b_{n-1}$; put person p_{i} in $\operatorname{bin} b_{f(i)}$ $\Rightarrow n$ items in n bins: pigeonhole does not apply

- if b_{0} is empty \rightarrow

$$
p_{1}, p_{2}, \ldots, p_{n} \text { assigned to } b_{1}, b_{2}, \ldots, b_{n-1}
$$

- if b_{0} is not empty \rightarrow (symmetry) b_{n-1} empty \rightarrow

$$
p_{1}, p_{2}, \ldots, p_{n} \text { assigned to } b_{0}, b_{1}, \ldots, b_{n-2}
$$

\Rightarrow either way there is a "collision"

More general pigeonhole principle

with N items distributed over k bins, there is a bin with at least $\lceil N / k\rceil$ items
select 8 different integers from $\{1,2, \ldots, 12\}$, then at least two pairs add up to precisely 13
bins are pairs adding up to 13 , thus $k=6$ bins:

$$
(1,12),(2,11),(3,10),(4,9),(5,8),(6,7)
$$

items are integers that are selected, thus $N=8$ \Rightarrow selection corresponds to a choice of bins
\Rightarrow there is a bin with $\lceil N / k\rceil=\lceil 8 / 6\rceil=2$ items \Rightarrow at least one pair adds up to 13
remove it: $N=6, k=5,\lceil 6 / 5\rceil=2 \Rightarrow$ other pair

Related: cabling, and saving a few cables

 that p desktops always connect to p distinct printers, but cheaper than running all $p d$ cables printers $P_{1}, P_{2}, \ldots, P_{p}$, desktops $D_{1}, D_{2}, \ldots, D_{d}$, - for $1 \leq i \leq p$ connect D_{i} to $P_{i}: p$ cables

- $p<k \leq d$ connect D_{k} to all P_{i} s: $(d-p) p$ cables
\Rightarrow total $(d-p) p+p$ cables (saving $p^{2}-p$ cables)
works: D_{i} with $1 \leq i \leq p$ connects to P_{i}; if free printers then $D_{k}(k>p)$ can connect to them optimal: with $(d-p) p+p-1$ cables, there is a P_{i} connected to $\leq d-p$ desktops, thus P_{i} not connected to $\geq p$ desktops: let those print...

Permutations, combinations, etc

in how many different ways can r objects be selected from collection of n different objects?
have to distinguish different possibilities:

- may an object be selected more than once?
\Rightarrow replacement (repetition) or not (if not: $r \leq n$)
- is the order of selection relevant?
\Rightarrow permutation ("yes") or combination ("no")
$\Rightarrow 2 \times 2$ different possibilities to be considered:

1. permutation without replacement
2. combination without replacement
3. permutation with replacement
4. combination with replacement

Examples with $n=10, r=3$

1. permutation without replacement gold, silver, bronze medal among 10 players
2. combination without replacement select 3 representatives from class of 10
3. permutation with replacement select 3-digit PIN
4. combination with replacement select 3 cookies from 10 types of cookies or:
number of nonnegative integer solutions

$$
\text { to } x_{1}+x_{2}+\ldots+x_{10}=3\left(x_{i} \in \mathbf{Z}_{\geq 0}\right)
$$

Simple formulas for general \boldsymbol{n} and \boldsymbol{r}

1. permutation without replacement: $P(n, r)$ n choices for $1^{\text {st }}, n-1$ for $2^{\text {nd }}, \ldots, n-r+1$ for $r^{\text {th }}$

$$
\Rightarrow P(n, r)=n(n-1) \ldots(n-r+1)=n!/(n-r)!
$$

2. combination without replacement: $C(n, r)$ each combination can be ordered in r ! ways
$\Rightarrow C(n, r) r!=P(n, r) \Rightarrow C(n, r)=\frac{n!}{r!(n-r)!}=\binom{n}{r}$
(pronounced: " n choose r ") r ! $(n-r)$!
3. permutation with replacement n choices for $1^{\text {st }}, n$ for $2^{\text {nd }}, \ldots, n$ for $r^{\text {th }}$
\Rightarrow in total $n^{r} r$-permutations with repetition
4. combination with replacement (the only non-intuitive one - do this later)

Examples: combinations without replacement

 hands of five cards from standard deck:52 cards: 13 "kinds" (valeurs) in 4 "suits" (couleurs)
($2, \ldots, 10$, jack,queen,king,ace; spades,clubs,hearts,diamonds)
($2, \ldots, 10$, valet,dame,roi, as; pique,trèfle,coeur,carreau)

- how many different hands?

52 choose $5=C(52,5)=\binom{52}{5}=\frac{52!}{5!47!}=2598960$

- how many hands contain your favorite card (say 5 of clubs)?
- pick it, left $\binom{51}{4}=249900(\Rightarrow$ almost $10 \%)$
- or: complement of not picking it:

$$
2598960-\binom{51}{5}=249900
$$

- or: $2598960 *(5 / 52)=249900$

More card examples

- \# hands containing your two favorite cards?
- pick them, left $\binom{50}{3}=19600(\Rightarrow 0.75 \%)$
- or: complement of not picking them: $2598960-\binom{50}{5}=480200$
- not the same, one must be wrong...
- correct version of complement method uses inclusion\&exclusion principle: $2598960-\binom{51}{5}-\binom{51}{5}+\binom{50}{5}=19600$ (subtract card one excluded, subtract card two excluded, add back both excluded)

More card examples

- \# hands containing five kinds?
pick kinds $(C(13,5))$, four suits per kind:

$$
C(13,5) 4^{5}=1317888(51 \%)
$$

- \# hands with a flush, i.e., all same suit pick suit (4), pick 5 out of $13(C(13,5))$:

$$
4 C(13,5)=5148(0.2 \%)
$$

- \# hands with four cards of one kind? pick kind $(C(13,1))$, pick the four cards of that kind $(C(4,4)=1)$, and pick remaining card $(C(48,1)=48)$:

$$
13 * 48=624 \quad(0.024 \%)
$$

- three of a kind: $C(13,1) * 4 * 48 * 44 / 2,(2.11 \%)$ (or: $C(12,2) * 4^{2}$ instead of $48 * 44 / 2$)

Combinatorial and algebraic proofs

page
400/359

- combinatorial proof: formula holds based on counting argument or "insight"
- algebraic proof: usual math manipulations

Combinatorial and algebraic proofs

$\underset{\substack{\text { paze } \\ 400359}}{ }$ an r-combination from n without replacement is equivalent to
an $(n-r)$-combination from n without replacement

$$
\Rightarrow C(n, r)=C(n, n-r)
$$

the above is example of a "combinatorial proof": a counting argument that a formula holds easily confirmed by a trivial algebraic proof:

$$
\begin{aligned}
C(n, r)=\binom{n}{r} & =\frac{n!}{r!(n-r)!}=\frac{n!}{(n-r)!(n-(n-r))!} \\
& =\binom{n}{n-r}=C(n, n-r)
\end{aligned}
$$

More examples

$\underset{\substack{\text { page } \\ 336222}}{ }$ 1. splitting pile of n stones:
exerc 10/14

- strong induction: total cost $n(n-1) / 2$
- "handshake" argument: same result
page
428/389 exerc 20/24

3. $P(n+1, r)=P(n, r)(n+1) /(n+1-r)$

- algebraic proof immediate
- combinatorial: argument:

$$
P(n+1, r+1)=(n+1) P(n, r):
$$

take first from $n+1$, then r-perm from n
Or

$$
P(n+1, r+1)=P(n+1, r)(n+1-r):
$$

first take r-perm from $n+1$, then take last

More about \boldsymbol{n} choose \boldsymbol{r} : binomial coefficients

$\underset{\substack{\text { pages } \\ \text { tos-409 }}}{ }$ Pascal's identity $(0<k \leq n):\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}$

- combinatorial proof: pick k-combination from $n+1$ by fixing one element: include it ($k-1$ from n remain to be chosen) or don't (k from n remain to be chosen)
- algebraic proof:

$$
\begin{aligned}
\binom{n}{k-1}+\binom{n}{k} & =\frac{n!}{(k-1)!(n-k+1)!}+\frac{n!}{k!(n-k)!} \\
& =\frac{n!k}{k!(n-k+1)!}+\frac{n!(n-k+1)}{k!(n-k+1)!} \\
& =\frac{n!k+n!(n-k+1)}{k!(n+1-k)!}=\frac{n!(n+1)}{k!(n+1-k)!}=\binom{n+1}{k}
\end{aligned}
$$

Binomial theorem

${ }_{40}^{\substack{\text { pasg } \\ 404363}}$ for $n \geq 0$:

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}
$$

- combinatorial proof:
expand product $(x+y)^{n}$: for the term $x^{n-k} y^{k}$ the y needs to be chosen k out of n times
(order irrelevant since $x^{n-k} y^{k}=y x^{n-k} y^{k-1}=\ldots=y^{k} x^{n-k}$)
\Rightarrow coefficient of $x^{n-k} y^{k}$ must be n choose k
- algebraic proof:
use mathematical induction and Pascal's identity

Algebraic proof of binomial theorem

 let $P(n)$ be the assumption that $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}$- $(x+y)^{0}=1=\binom{0}{0} x^{0} y^{0}=\sum_{k=0}^{0}\binom{0}{k} x^{0-k} y^{k}$
shows that $P(0)$ holds
- assume $P(n)$ holds for some $n \geq 0$. Then

$$
\begin{aligned}
(x & +y)^{n+1}=(x+y) \sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k} \text { (used induction hypothesis) } \\
& =\sum_{k=0}^{n}\binom{n}{k} x^{n-k+1} y^{k}+\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k+1} \\
& =\binom{n}{0} x^{n+1}+\sum_{k=1}^{n}\binom{n}{k} x^{n-k+1} y^{k}+\sum_{k=0}^{n-1}\binom{n}{k} x^{n-k} y^{k+1}+\binom{n}{n} y^{n+1} \\
& =\binom{n+1}{0} x^{n+1}+\sum_{k=1}^{n}\binom{n}{k} x^{n+1-k} y^{k}+\sum_{k=1}^{n}\binom{n}{k-1} x^{n+1-k} y^{k}+\binom{n+1}{n+1} y^{n+1} \\
& =\binom{n+1}{0} x^{n+1}+\sum_{k=1}^{n}\binom{n+1}{k} x^{n+1-k} y^{k}+\binom{n+1}{n+1} y^{n+1} \text { (Pascal's identity) } \\
& =\sum_{k=0}^{n+1}\binom{n+1}{k} x^{n+1-k} y^{k}
\end{aligned}
$$

Combinatorial and algebraic proofs

- combinatorial proof: formula holds based on counting argument or "insight"
- algebraic proof: usual math manipulations seen both types of proofs for
- Pascal' identity $(0<k \leq n)$:

$$
\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}
$$

- binomial theorem: for $n \geq 0$

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}
$$

Consequence of binomial theorem

$$
\begin{gathered}
\text { pages } \\
\text { pase } \\
36-365 \\
2^{n}
\end{gathered} \sum_{k=0}^{n}\binom{n}{k}
$$

- algebraic proofs:
- take $x=y=1$ in binomial theorem
- mathematical induction, Pascal's identity
- combinatorial proof:
- 2^{n} is the number of length n bitstrings
- write the number of length n bitstrings as $\sum_{k=0}^{n} C_{i}$, where C_{i} is the number of length n bitstrings with i bits "on", and note that C_{i} is n choose I
(or look at subsets and their cardinalities)

Another consequence of binomial theorem

$\binom{m+n}{r}=\sum_{k=0}^{r}\binom{m}{r-k}\binom{n}{k}$ for $r<m, n$
(Vandermonde's identity)

- algebraic proof:
use $(x+y)^{m+n}=(x+y)^{m}(x+y)^{n}$
with binomial theorem
and compare the terms for $x^{m+n-r} y^{r}$
- combinatorial proof:
count cardinality r subsets of
cardinality $m+n$ set in different ways
- consequence: $\binom{2 n}{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}$

Final combinatorial \leftrightarrow algebraic example

$$
\begin{gathered}
\text { Page } \\
\text { Reog } \\
\text { xerct } 1422
\end{gathered}\binom{n}{r}\binom{r}{k}=\binom{n}{k}\binom{n-k}{r-k}, 0 \leq k \leq r \leq n
$$

- combinatorial proof: suppose you need to pick a committee of r out of n, and a subcommittee of k out of those r (LHS). or pick the subcommittee of k first, then remaining $r-k$ from remaining $n-k$ (RHS)
- algebraic proof straightforward too:

$$
\begin{aligned}
\binom{n}{r}\binom{r}{k} & =\frac{n!}{r!(n-r)!} \frac{r!}{k!(r-k)!}=\frac{n!}{(n-r)!k!(r-k)!} \\
& =\frac{n!}{k!(n-k)!} \frac{(n-k)!}{(r-k)!(n-r)!}=\binom{n}{k}\binom{n-k}{r-k}
\end{aligned}
$$

Useful identity (for combination with repetition)
$\underset{\substack{\text { page } \\ \text { anolib8 }}}{ }\binom{n+1}{r+1}=\sum_{j=r}^{n}\binom{j}{r}$ for $r \leq n$

- combinatorial proof: look at last "on" bit of $r+1$ "on" bits in $n+1$ positions

More precisely

$\underset{\substack{\text { pase } \\ \text { and } \\ \text { umb }}}{\text { mid }}$ combinatorial proof of $\binom{n+1}{r+1}=\sum_{j=r}^{n}\binom{j}{r}(r \leq n)$ pick $r+1$ out of $x_{1}, x_{2}, \ldots, x_{n+1}$,

- largest index is $n+1$ n choose r ways to pick other r
largest index is n
$n-1$ choose r ways to pick other r
- largest index is $n-1$ $n-2$ choose r ways to pick other r
- largest index is $n-2$
or
$n-3$ choose r ways to pick other r
- largest index is $r+1$ r choose r ways to pick other r

Useful identity
$\underset{\substack{\text { page } \\ \text { quan } \\ \text { thm } \\ \text { did }}}{\substack{n+1 \\ r+1}})=\sum_{j=r}^{n}\binom{j}{r}$ for $r \leq n$

- combinatorial proof: look at last "on" bit of $r+1$ "on" bits in $n+1$ positions
- proof by hand waving: repeatedly use Pascal's identity, walking up Pascal's triangle
- algebraic proof: use mathematical induction with respect to n (formalizing hand waving)
- for $n=r$ identity holds
- assume holds for n; then for $n+1$:

$$
\begin{aligned}
\binom{n+2}{r+1} & =\binom{n+1}{r}+\binom{n+1}{r+1} \text { (use Pascal's identity) } \\
& =\binom{n+1}{r}+\sum_{j=r}^{n}\binom{j}{r}=\sum_{j=r}^{n+1}\binom{j}{r}
\end{aligned}
$$

Back to counting formulas: pick \boldsymbol{r} from n

1. permutation without replacement: $P(n, r)$

$$
P(n, r)=n(n-1) \ldots(n-r+1)=n!/(n-r)!
$$

2. combination without replacement: $C(n, r)$

$$
C(n, r)=\frac{n!}{r!(n-r)!}=\binom{n}{r}
$$

3. permutation with replacement

$$
n^{r}
$$

$\substack{\text { pages } \\ \text { tillis }}$. combination with replacement

Pick r-combination from n with replacement

 to develop intuition, a few basic examples:- given infinite supply of $n=1$ cookie type, in how many ways can one pick r cookies? clearly only one way: r cookies of type 1 $n=1$: constant in r
- same question with $n=2$ types of cookies: from 0 to r of type 1 , others type $2: r+1$ ways

$n=2$: linear in r

- same question with $n=3$ types of cookies: $s, 0 \leq s \leq r$, of type $1: r-s$ of types 2 or 3 , thus $\sum_{s=0}^{r}(r-s+1)=(r+1)(r+2) / 2$ ways $n=3$: quadratic in r

r-combination from n with replacement

- $n=1: 1$ way
$n=2: r+1$ ways
$n=3:(r+1)(r+2) / 2$ ways
\Rightarrow suggests $(n+r-1)$ choose $n-1$ ways $(*)$
\Rightarrow let $f(n, r)$ denote the number of
r-combinations from n with replacement, then
$f(n, r)=f(n-1,0)+f(n-1,1)+\ldots+f(n-1, r)$:
take r of type 1,0 left to take of $n-1$ types
take $r-1$ of type 1,1 left to take of $n-1$ types take $r-2$ of type 1,2 left to take of $n-1$ types
take 0 of type $1, r$ left to take of $n-1$ types

r-combination from n with replacement

 observations we made:- $n=1: 1$ way
$n=2: r+1$ ways
$n=3:(r+1)(r+2) / 2$ ways
\Rightarrow suggests $(n+r-1)$ choose $n-1$ ways $(*)$
\Rightarrow let $f(n, r)$ denote the number of
r-combinations from n with replacement, then

$$
f(n, r)=f(n-1,0)+f(n-1,1)+\ldots+f(n-1, r)
$$

- induction proof of $\boldsymbol{*}$: basis $n=1$ is okay;
$f(n, r)=\sum_{s=0}^{r} f(n-1, s)=\sum_{s=0}^{r}\binom{n+s-2}{n-2}$
(use $n+s-2=j)=\sum_{j=n-2}^{n+r-2}\binom{j}{n-2}=\binom{n+r-1}{n-1}$
r-combination from \boldsymbol{n} with replacement why is the result so simple?
combinatorial proof that $f(n, r)=\binom{n+r-1}{n-1}$
uses $n+r-1$ positions $n-1$ of which are separators that "switch" to next type note:
$\substack{\text { pages } \\ 413 \times 14} f(n, r)$ counts number of nonnegative integer solutions to $x_{1}+x_{2}+\ldots+x_{n}=r\left(x_{i} \in \mathbf{Z}_{\geq 0}\right)$ little tricks to deal with:
- $x_{i} \geq b_{i}$ for bounds b_{i} : use $r-\sum_{i=1}^{n} b_{i}$
- $x_{1}+x_{2}+\ldots+x_{n} \leq r$: use slack variable x_{n+1}
- $C(n, r)$ product for indistinguishable objects

