Chapter 6 / 5: Counting

general observation & recommendations:

* messing up while counting 1s hard to avoid
(despite attempts to capture counting in “rules”)
* try smaller examples that keep essence

* check that answer makes sense
(negative counts are usually incorrect)

* verify consistency between
different ways to count the same



Prelude: counting using Chinese remaindering

to find the number C of people

* let p and g be coprime integers with pg > C

* form groups of p persons: tind C, = C mod p

* form groups of g persons: tind C, = C mod ¢

* thus C = C, + kp for unknown integer &

* to determine k, note that C, + kp = C, mod ¢
thus £ = (C, — C,)/p mod g

* to calculate £ we need s such that sp = 1 mod ¢
and thus s = 1/p mod ¢ (and k = s(C, — C,) mod q)

* finding s: with “0O*p = g mod ¢’ and
“l*p =p mod q”, perform the Euclidean
algorithm on right hand sides until 1t equals 1



Warm-up: two simple counting rules

A and B are two different tasks,
with n ways to do 4 and m ways to do B

twoO scenarios:

1. task A must be done followed by task B
375376 product rule:

/335-336 .
n times m ways to do 4 and then B
mees 2. task A or task B must be done (not both)

379-380

/338-341 sum rule:
n plus m ways to do 4 or B

question:
how many ways to carry out each scenario?



Trivial example: pick two bits, a 1%t & a 2nd
how many ways to pick the two bits?

task A: pick 1%t bit; 2 ways to do so
task B: pick 2™ bit; 2 ways to do so
= do task A4 followed by task B
thus 2 x 2 =4 ways to do 4 followed by B

other way to define the tasks:
task A4: 1%t bit is 0; 2 ways to pick 2™ bit
task B: 15t bit is 1; 2 ways to pick 2™ bit
—> do task A4 or task B
thus 2 + 2 =4 waystodo 4 or B
(works because 4 and B are disjoint)



Common pitfall of sum rule

mees 1N hOW many ways can one pick seven bits

382-383

sa32 such that last bit 1s 1 or the first 3 bits are 0?

A: pick last bit as 1; product rule: 64 ways
B: pick first 3 bits as 0; product rule:16 ways
= (sum rule?) 64 + 16 = 80 ways to do 4 or B

wrong because A and B are not disjoint:
* 8 of the ways under 4 have first 3 bits 0, or
* half the ways (1.e., 8) under B have last bit 1

—> either way, subtract 8 from 80: result 72

(remember principle of inclusion and exclusion: [AUB| = |4|+|B| —|AmB|)

(B . first 3 bits and last bit all zero, 8 total, 1s disjoint with A: |4A|+|B ’|=72)



The first three of six simple examples
consider strings of length 6 over {a,b,c,...,y,z}
1. how many?

26 choices for 15t, 26 choices for 279,
26 for 31, ..., and 26 for 6%
= product rule: 26°

2. how many begin with a vowel {a,e,i,0,u}?
5 choices for 15, 26 choices for 2nd — 6th
= product rule: 5*26°

3. how many begin and end with a vowel?
5 choices for 15t and 6%, 26 for 2rd — 5t
= product rule: 5*26%*5 = 52*264



Fourth simple example
consider strings of length 6 over {a,b,c,...,y,z}
4. how many begin or end with a vowel?
5%26° begin with vowel
26°*5 end with vowel
= 2*5*26° begin or end with vowel
but we counted “begin and end” twice
— 2*¥5%26° — 52*%26% = 235*26*
alternative calculation: complement of those
that begin and end with consonant
= 26°— 212%26% = (26— 21%)*26*

use: (¢; = vowel v ¢, = vowel) = — (¢, # vowel A ¢, # vowel)
= — (¢, = consonant A ¢, = consonant )



Fifth simple example
consider strings of length 6 over {a,b,c,...,y,z}
5. how many begin or end with a vowel,
but not a vowel at begin and end?
“begin or end” was 2*5%26° — 52*26*
need to subtract “begin and end” again:
= 2*¥5%26° — 2*52%¥26% = 210*26*
alternative calculation:
begin vowel, end consonant: 5*264*21
begin consonant, end vowel: 21*26%*5
these two possibilities are disjoint
—> sum rule:

5%264%21+21%26%*5 = 210*26*



Last simple example
consider strings of length 6 over {a,b,c,...,y,z}
6. how many have precisely one vowel?
15t vowel, others consonants: 5*21°
2nd yowel, others consonants: 21*5*%214
3d yvowel, others consonants: 212%5%213

6th vowel, others consonants: 21°*5
(all possibilities disjoint)

— sum rule: 6*¥5*21°



pages
388-390
/347-348

Brief pigeonhole discussion

1f N 1items are distributed over fewer than N bins,
then there 1s a bin with at least two items (N > 1)

example: 1n any group of > 2 persons there are
at least 2 who have the same number of friends
in the group (“being friends” 1s “symmetric™):
persons py, p,, ..., p,; f(i): number of friends of p,
bins by, by, ..., b,_; put person p; in bin by,
—> n 1tems 1n 7 bins: pigeonhole does not apply
* 1f b,1s empty —>
DPi> Pys ---» P, assigned to b, b,, ..., b, ,
* 1if b, 1s not empty — (symmetry) b, , empty —
DPi> Pys ---» P, assigned to by, by, ..., b, ,
—> either way there 1s a “collision”



More general pigeonhole principle

pages

w0304 WIth NV 1tems distributed over & biIlS,
/349-353 . . . .
there 1s a bin with at least rN/k_\ items

select 8 different integers from {1,2,...,12},
then at least two pairs add up to precisely 13

bins are pairs adding up to 13, thus k£ = 6 bins:
(1,12), (2,11), (3,10), (4,9), (5,8), (6,7)

items are integers that are selected, thus N =8

= selection corresponds to a choice of bins
— there is a bin with | Nk | =] 8/6 | = 2 items
—> at least one pair adds up to 13

remove it: N=6, k=95, | 6/5 | =2 = other pair



Related: cabling, and saving a few cables

355/%65;1 connect p printers to d desktops (d > p) such
exerc 30/34

that p desktops always connect to p distinct
printers, but cheaper than running all pd cables

printers P,,P,,..., Pp, desktops D,,D,,...,D

* for 1 <i<pconnectD,;to P,;: p cables

* p<k<dconnectD,toall Ps: (d—p)p cables
= total (d—p)p+p cables (saving p>—p cables)

works: D. with 1 <i < p connects to P; if free

printers then D, (k > p) can connect to them

optimal: with (d—p)p+p—1 cables, there 1s a P,
connected to < d—p desktops, thus P; not
connected to > p desktops: let those print...



Permutations, combinations, etc

wsns 1N how many different ways can » objects be
7 selected from collection of # different objects?

have to distinguish different possibilities:

* may an object be selected more than once?
= replacement (repetition) or not (1f not: » < n)
* 1s the order of selection relevant?

= permutation (“‘yes’”’) or combination (*“no”

—> 2x2 different possibilities to be considered:
1. permutation without replacement

2. combination without replacement

3. permutation with replacement

4. combination with replacement



Examples withn =10,r=3

weps 1. permutation without replacement
/355-385 .
gold, silver, bronze medal among 10 players

2. combination without replacement
select 3 representatives from class of 10

3. permutation with replacement
select 3-digit PIN

4. combination with replacement
select 3 cookies from 10 types of cookies
Or:
number of nonnegative integer solutions
to x;+tx,+...4x,= 3 (x; € Z.)



Simple formulas for general n and r

1. permutation without replacement: P(n,r)
e p choices for 1%, n—1 for 2™, ..., n—r+1 for rh
=t = P(nyr) = n(n—1)...(n—r+1) = n!/(n—r)!

2. combination without replacement: C(7,r)

each combination can be ordered in »! ways
pages

398-401 !
/357-360 —> C(n,l")f’! — P(lfl,lf’) — C(I/l,l”) — ke — (f)
rl(n—r)!

(pronounced: “n choose )
3. permutation with replacement
n choices for 15, n for 204, ..., n for rih

—> 1n total n” r-permutations with repetition
mees 4, combination with replacement

411-415

s137 - (the only non-intuitive one — do this later)

page
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Examples: combinations without replacement

rees  Nands of five cards from standard deck:

399-401

nss350 57 cards: 13 “kinds” (Valeurs) n 4 “suits” (couleurs)

433-434
395398 (2,. ..,10, jack,queen,king,ace; spades,clubs,hearts,diamonds)

(2, ...,10,valet,dame,roi,as; pique,tréﬂe,coeur,carreau)

* how many different hands? 591

52 choose 5 = C(52,5) = (5) = % = 2598960

* how many hands contain your favorite card

(say S of clubs)?
o pickit, left (°})=249900 (= almost 10%)

* or: complement of not picking it:
2598960 — (°) = 249900

e or: 2598960 * (5/52) = 249900



More card examples
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s34 ® # hands containing your two favorite cards?
T e pick them, left () =19600 (= 0.75%)
* or: complement of not picking them:
2598960 — () = 480200
* not the same, one must be wrong...
* correct version of complement method
uses 1inclusion&exclusion principle:
2598960 — (Y= 1)+ () = 19600
(subtract card one excluded, subtract card
two excluded, add back both excluded)



More card examples
nes ® # hands containing five kinds?

433-434

msvs  pick kinds (C(13,5)), four suits per kind:
C(13,5)4°>=1317888 (51%)
e # hands with a flush, 1.e., all same suit
pick suit (4), pick 5 out of 13 (C(13,5)):
4C(13,5)=5148 (0.2%)
* # hands with four cards of one kind?
pick kind (C(13,1)),
pick the four cards of that kind (C(4,4)=1),
and pick remaining card (C(48,1)=48):
13*48 = 624 (0.024%)
* three of a kind: C(13,1)*4%48*44/2, (2.11%)
(or: C(12,2)*42 instead of 48*44/2)



Combinatorial and algebraic proofs

page
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combinatorial proof: formula holds based
on counting argument or “insight”

* algebraic proof: usual math manipulations



Combinatorial and algebraic proofs

page

wons Al r-combination from n without replacement
1s equivalent to
an (n-r)-combination from »n without replacement
= (C(n,r) = C(n,n-r)
the above 1s example of a “combinatorial proof™:
a counting argument that a formula holds

easily confirmed by a trivial algebraic proof:
, n! n!
Cn,r)=(,)= =
r'(n-r)l (m-r)ln-(mn-r))!

= (n,jr) = C(l’l,l’l —V)




More examples
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se002 1. splitting pile of n stones:
" e strong induction: total cost n(n-1)/2
* “handshake” argument: same result

e 3. P(n+1,r)=P(n,r)(n+t1)/(n+1-r)

2024 o gloebraic proof immediate
* combinatorial: argument:

P(n+1,r+1) = (n+1)P(n,r):

take first from n+1, then r-perm from »
or

P(n+1,r+1) = P(n+1,r)(n+1-r):

first take r-perm from n+1, then take last



More about n choose r: binomial coefficients
wna0 Pascal’s 1identity (0 < k < n): (n,:l) = )+()

/363-368

* combinatorial proof:

pick k-combination from n+1 by fixing one
element: include it (k-1 from » remain to be
chosen) or don’t (k from n remain to be chosen)

* algebraic proof:

n ny __ n! n!
C* = =k K-k

_ nlk . nl(n-k+1)

K(n-k+1)! kl(n-k+1)!
_nlk+nl(n-k+1)  nl(n+l)
K (n+1-k)! _k!(n+1—k)!_(k)




Binomial theorem

page

404/363 forn = 0:

(r+p) =3 Oyt

* combinatorial proof:
expand product (x+y)": for the term x"-)*
the y needs to be chosen k out of n times
(order irrelevant since x™ kyk = yarkykel = | = yhyn-k)

= coefficient of x*** must be n choose k

* algebraic proof:
use mathematical induction
and Pascal’s 1dentity



Algebraic proof of binomial theorem
let P(n) be the assumptlon that (x+p)" = Ek (G ko k

c(xry) =1=(Oxy = S (O
shows that P(0) holds
* assume P(n) holds for some n = 0. Then

(x+ )™ =(x+ y)EZ_O (! )x"*y* (used induction hypothesis)
_ EZ=O(Z)Xn —k+1 _ k + Ek O(k)xn -k _ k+1
_ (g)xn+l + Ek=1 (k)xn k+1 k Ek O(k)xn -k _ k+1 n (Z)yn+l
_ (ngl)xnﬂ + EZ=1 (Z)xn+1 -k _ k + Ek l(k 1)xn+1 -k _ k (Zii)ynﬂ
_ (ngl)xml + E:;l (nzl)xnﬂ —k _ k (n+1)yn+1 (P&SC&I'S ldentlty)

n+l
n+l N n+l-k  k
= 2k=0( P XY



Combinatorial and algebraic proofs

page
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combinatorial proof: formula holds based
on counting argument or “insight”

 algebraic proof: usual math manipulations

seen both types of proofs for

w40 o Pagcal’ identity (0 < k < n):

63368 (nzl) =(,)+()

e binomial theorem: forn >0

(x+2)" =2 G



Consequence of binomial theorem
pages - n .
we 2= ()

 algebraic proofs:

* take x =y =1 1n binomial theorem
* mathematical induction, Pascal’s identity

* combinatorial proof:
* 27"1s the number of length n bitstrings
* write the number of length # bitstrings
as ZZ C., where C, 1s the number of
length n b1tstr1ngs with 7 bits “on”, and
note that C, 1s n choose /

(or look at subsets and their cardinalities)



Another consequence of binomial theorem
e (Y=Y (") for r<myn
(Vandermonde’s 1dentity)
 algebraic proof:
use (x+y)"" = (x+y)"(x+y)"
with binomial theorem
and compare the terms for x™™ 7"y

* combinatorial proof:
count cardinality  subsets of
cardinality m+n set in different ways

* consequence: (%)= ZZ_O (1)



Final combinatorial <& algebraic example
wio (M) =C)),0<k<r<n

eeeee 14/22

* combinatorial proof: suppose you need
to pick a committee of » out of n, and a
subcommittee of £ out of those » (LHS).
or pick the subcommittee of £ first, then
remaining r—k from remaining n—k (RHS)

* algebraic proof straightforward too:

inery n! r! B n!
(-)G) = - K —k) -k k)
A Ul S

TR (=) (r= k) (n—7)!



Usetul identity (for combination with repetition)
sz (=2, () for r<n
"« combinatorial proof: look at last “on” bit
of r+1 “on” bits 1n n+1 positions



More precisely

page

&he combinatorial proof of (1)) = ijr ()) (r<n)

thm 4 r+l

pick 7+1 out of x, x,,..., X1,

* largestindexisnt+l
or 11 chooser ways to pick other r

Yo
5
4 . .
5 largest index 1s n .
o n—1 choose r ways to pick other r
& or
=« largest index is n—1 |
3 n—2 choose r ways to pick other r
= or ystop
%
S
S,
~|
<

* largest index 1s n—2

or 113 choose r ways to pick other r

* Jlargestindexisr+1
7 choose » ways to pick other r



Usetul identity

page
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thm 4
o

=" () for r<n

combinatorial proof: look at last “on” bit

of r+1 “on” bits 1n n+1 positions

proof by hand waving: repeatedly use
Pascal’s 1dentity, walking up Pascal’s triangle

algebraic proof: use mat
with respect to n (formal

hematical induction

1zing hand waving)

* for n = ridentity hold

S

e assume holds for »; then for n+1:
")y =(""+ (")) (use Pascal's identity)

r+l1 r+1

_(n+1)+ZJ r(]) Znﬂ



Back to counting formulas: pick r from »n

1. permutation without replacement: P(n,r)
P(n,r)=nmn-1)...(n—r+1)=n!l/(n—r)!
2. combination without replacement: C(7,r)
n!

Clmr)= rl(n—r)! =()

3. permutation with replacement
727'
Jes 4. combination with replacement
st1ll not done, and a bit less intuitive

/371-374



Pick r-combination from » with replacement
ans to develop intuition, a few basic examples:
""" e given infinite supply of n = 1 cookie type,
in how many ways can one pick » cookies?
clearly only one way: r cookies of type 1
n =1: constant in r
* same question with n = 2 types of cookies:
from O to » of type 1, others type 2: +1 ways
n =2: linear 1n r
* same question with n = 3 types of cookies:
s, 0<s<r, of type 1: r—s of types 2 or 3,
thus > (r—s+1)=(r+1)(r+2)/2 ways
n =3: quadratic 1n r



r-combination from n with replacement
ans observations we made:
e p=1:1way
n=2:r+l ways
n=73:(r+1)(r+2)/2 ways
—=suggests (n+r—1) choose n—1 ways (%)
= let f(n,r) denote the number of
r-combinations from n with replacement, then
f(n r) = f(n—1,0)+f(n—1,1)+...+f(n—1,r):
ake r of type 1, 0 left to take of n—1 types
taﬂge r—1 of type 1, 1 left to take of n—1 types

take -2 of type 1, 2 left to take of n—1 types

take O of type 1, r left to take of n—1 types



r-combination from n with replacement
ans observations we made:
e p=1:1way
n=2:r+1 ways
n=73:(r+1)(r+2)/2 ways
—=suggests (n+r—1) choose n—1 ways (%)
= let f(n,r) denote the number of
r-combinations from n with replacement, then

f(n,r)=f(n—1,0)t(n—1,1)+.. . +f(n—-1,r)

* induction proof of %: basis n =1 is okay;

=" fn-1s)=3"_ ("3

D n+r—2 1
(n 2) (n—l_r

‘ms (usen+s—2=7) :Z

j=n-2
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pages
415-419
/375-379

r-combination from »n with replacement
why 1s the result so simple?
combinatorial proof that f(n,7)=(""
uses nt+r—1 positions n—1 of Wthh are
separators that “switch” to next type
note:
* f(n,r) counts number of nonnegative integer
solutions to x;+x,t...tx, =r (x; € Z_)
little tricks to deal with:
* x;>b, forbounds b:use r—-> " b

xtx,+...4x, < r:use slack variable x,

n+r —1

* ((n,r) product for indistinguishable objects
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