Chapter 6 / 5: Counting

general observation & recommendations:

- messing up while counting is hard to avoid (despite attempts to capture counting in "rules")
- try smaller examples that keep essence
- check that answer makes sense (negative counts are usually incorrect)
- verify consistency between different ways to count the same

Prelude: counting using Chinese remaindering

to find the number *C* of people

- let p and q be coprime integers with pq > C
- form groups of p persons: find $C_p = C \mod p$
- form groups of q persons: find $\vec{C_q} = C \mod q$
- thus $C = C_p + kp$ for unknown integer k
- to determine k, note that $C_p + kp = C_q \mod q$ thus $k = (C_q - C_p)/p \mod q$
- to calculate k we need s such that $sp = 1 \mod q$ and thus $s = 1/p \mod q$ (and $k = s(C_q - C_p) \mod q$)
- finding s: with "0*p = q mod q" and "1*p = p mod q", perform the Euclidean algorithm on right hand sides until it equals 1

Warm-up: two simple counting rules
A and B are two different tasks, with n ways to do A and m ways to do B
two scenarios:

1. task *A* must be done **followed by** task *B* product rule:

n times *m* ways to do *A* and then *B*

pages 379-380 /338-341 2. task *A* or task *B* must be done (not both) sum rule:

n plus *m* ways to do *A* or *B*

question:

how many ways to carry out each scenario?

Trivial example: pick two bits, a 1st & a 2nd how many ways to pick the two bits? task *A*: pick 1st bit; 2 ways to do so task *B*: pick 2nd bit; 2 ways to do so \Rightarrow do task *A* followed by task *B* thus 2 × 2 = 4 ways to do *A* followed by *B*

other way to define the tasks:

task *A*: 1st bit is 0; 2 ways to pick 2nd bit task *B*: 1st bit is 1; 2 ways to pick 2nd bit

 \Rightarrow do task *A* or task *B*

thus 2 + 2 = 4 ways to do A or B(works because A and B are disjoint)

Common pitfall of sum rule

in how many ways can one pick seven bits ³⁸²⁻³⁸³/₃₄₁₋₃₄₂ such that last bit is 1 **or** the first 3 bits are 0?

A: pick last bit as 1; product rule: 64 ways *B*: pick first 3 bits as 0; product rule:16 ways \Rightarrow (sum rule?) 64 + 16 = 80 ways to do *A* or *B*

wrong because A and B are not disjoint:

- 8 of the ways under A have first 3 bits 0, or
- half the ways (i.e., 8) under *B* have last bit 1
- \Rightarrow either way, subtract 8 from 80: result 72

(remember principle of inclusion and exclusion: $|A \cup B| = |A| + |B| - |A \cap B|$) (*B'*: first 3 bits and last bit all zero, 8 total, is disjoint with *A*: |A| + |B'| = 72) The first three of six simple examples consider strings of length 6 over {a,b,c,...,y,z} 1. how many? 26 choices for 1st, 26 choices for 2nd,

26 for 3^{rd} , ..., and 26 for 6^{th}

 \Rightarrow product rule: 26⁶

- 2. how many begin with a vowel {a,e,i,o,u}?
 5 choices for 1st, 26 choices for 2nd 6th ⇒ product rule: 5*26⁵
- 3. how many begin and end with a vowel? 5 choices for 1st and 6th, 26 for $2^{nd} - 5^{th}$ \Rightarrow product rule: $5*26^{4*5} = 5^{2*26^4}$

Fourth simple example

consider strings of length 6 over {a,b,c,...,y,z}

- 4. how many begin or end with a vowel?
 5*26⁵ begin with vowel
 - 26⁵*5 end with vowel
 - $\Rightarrow 2*5*26^{5} \text{ begin or end with vowel}$ but we counted "begin and end" twice $\Rightarrow 2*5*26^{5} - 5^{2}*26^{4} = 235*26^{4}$

alternative calculation: complement of those that begin and end with consonant

$$\Rightarrow 26^6 - 21^{2*}26^4 = (26^2 - 21^2)^*26^4$$

use: $(c_1 = \text{vowel} \lor c_6 = \text{vowel}) \equiv \neg (c_1 \neq \text{vowel} \land c_6 \neq \text{vowel})$ $\equiv \neg (c_1 = \text{consonant} \land c_6 = \text{consonant})$

Fifth simple example

consider strings of length 6 over {a,b,c,...,y,z}
5. how many begin or end with a vowel, but not a vowel at begin and end?

"begin or end" was $2*5*26^5 - 5^{2*}26^4$ need to subtract "begin and end" again: $\Rightarrow 2*5*26^5 - 2*5^{2*}26^4 = 210*26^4$

alternative calculation:

begin vowel, end consonant: $5*26^{4*}21$ begin consonant, end vowel: $21*26^{4*}5$ these two possibilities are disjoint \Rightarrow sum rule:

 $5*26^{4*}21+21*26^{4*}5 = 210*26^{4}$

Last simple example

consider strings of length 6 over {a,b,c,...,y,z}6. how many have precisely one vowel?

1st vowel, others consonants: 5*21⁵
2nd vowel, others consonants: 21*5*21⁴
3rd vowel, others consonants: 21²*5*21³

6th vowel, others consonants: 21⁵*5 (all possibilities disjoint)

 \Rightarrow sum rule: 6*5*21⁵

Brief pigeonhole discussion

^{pages} ³⁸⁸⁻³⁹⁰ if *N* items are distributed over fewer than *N* bins, then there is a bin with at least two items (N > 1)

example: in any group of ≥ 2 persons there are at least 2 who have the same number of friends in the group ("being friends" is "symmetric"): persons $p_1, p_2, ..., p_n; f(i)$: number of friends of p_i bins $b_0, b_1, ..., b_{n-1}$; put person p_i in bin $b_{f(i)}$ $\Rightarrow n$ items in *n* bins: pigeonhole does not apply

• if b_0 is empty \rightarrow

 $p_1, p_2, ..., p_n$ assigned to $b_1, b_2, ..., b_{n-1}$

if b₀ is not empty → (symmetry) b_{n-1} empty →
 p₁, p₂, ..., p_n assigned to b₀, b₁, ..., b_{n-2}
 ⇒ either way there is a "collision"

More general pigeonhole principle

pages 390-394 /349-353

with N items distributed over k bins, there is a bin with at least $\lfloor N/k \rfloor$ items select 8 different integers from $\{1, 2, ..., 12\}$, then at least two pairs add up to precisely 13 bins are pairs adding up to 13, thus k = 6 bins: (1,12), (2,11), (3,10), (4,9), (5,8), (6,7)items are integers that are selected, thus N = 8 \Rightarrow selection corresponds to a choice of bins \Rightarrow there is a bin with $\lceil N/k \rceil = \lceil 8/6 \rceil = 2$ items \Rightarrow at least one pair adds up to 13 remove it: N = 6, k = 5, $\lceil 6/5 \rceil = 2 \Rightarrow$ other pair

Related: cabling, and saving a few cables

^{page} ^{395/354} connect *p* printers to *d* desktops (d > p) such that *p* desktops always connect to *p* distinct printers, but cheaper than running all *pd* cables

printers P_1, P_2, \dots, P_p , desktops D_1, D_2, \dots, D_d , • for $1 \le i \le p$ connect D_i to $P_i : p$ cables

• $p < k \le d$ connect D_k to all P_i s: (d-p)p cables \Rightarrow total (d-p)p+p cables (saving p^2-p cables)

works: D_i with $1 \le i \le p$ connects to P_i ; if free printers then $D_k (k > p)$ can connect to them optimal: with (d-p)p+p-1 cables, there is a P_i connected to $\le d-p$ desktops, thus P_i not connected to $\ge p$ desktops: let those print...

Permutations, combinations, etc

 $_{_{395-425}}^{_{395-425}}$ in how many different ways can *r* objects be selected from collection of *n* different objects?

have to distinguish different possibilities:

- may an object be selected more than once? \Rightarrow *replacement* (*repetition*) or not (if not: $r \le n$)
- is the order of selection relevant?
- ⇒ *permutation* ("yes") or *combination* ("no")
- \Rightarrow 2×2 different possibilities to be considered:
- 1. permutation without replacement
- 2. combination without replacement
- 3. permutation with replacement
- 4. combination with replacement

Examples with n = 10, r = 3

- ^{pages} ³⁹⁵⁻⁴²⁵ 1. permutation without replacement ⁽³⁵⁵⁻³⁸⁵ gold, silver, bronze medal among 10 players
 - combination without replacement select 3 representatives from class of 10
 - 3. permutation with replacement select 3-digit PIN
 - 4. combination with replacement select 3 cookies from 10 types of cookies or:

number of nonnegative integer solutions to $x_1+x_2+\ldots+x_{10}=3$ ($x_i \in \mathbb{Z}_{\geq 0}$)

Simple formulas for general *n* and *r*

1. permutation without replacement: P(n,r) n choices for 1st, n-1 for 2nd, ..., n-r+1 for r^{th} P(n,r) = n(n-1)...(n-r+1) = n!/(n-r)!

2. combination without replacement: C(n,r)each combination can be ordered in r! ways $\Rightarrow C(n,r)r! = P(n,r) \Rightarrow C(n,r) = \frac{n!}{r!(n-r)!} = {n \choose r}$ (pronounced: "n choose r")

3. permutation with replacement

n choices for 1st, *n* for 2nd, ..., *n* for r^{th} \implies in total n^r *r*-nermitations with re

pages 411-415

/371-374

⇒ in total n^r r-permutations with repetition
4. combination with replacement
(the only non-intuitive one – do this later)

Examples: combinations without replacement

pages 399-401 /358-359 433-434 /395-396

- hands of five cards from standard deck: 52 cards: 13 "kinds" (valeurs) in 4 "suits" (couleurs) (2,...,10, jack,queen,king,ace; spades,clubs,hearts,diamonds) (2,...,10,valet,dame,roi,as; pique,trèfle,coeur,carreau)
- how many different hands? 52 choose $5 = C(52,5) = {\binom{52}{5}} = \frac{52!}{5!47!} = 2598960$
- how many hands contain your favorite card (say 5 of clubs)?
 - pick it, left $\binom{51}{4} = 249900 \iff \text{almost } 10\%$
 - or: complement of not picking it: $2598960 - \binom{51}{5} = 249900$
 - or: 2598960 * (5/52) = 249900

More card examples

pages 433-434 /395-396

- # hands containing your two favorite cards?
 - pick them, left $\binom{50}{3} = 19600 \ (\Rightarrow 0.75\%)$
 - or: complement of not picking them: $2598960 - \binom{50}{5} = 480200$
 - not the same, one must be wrong...
 - correct version of complement method uses inclusion&exclusion principle: 2598960 - (⁵¹/₅) - (⁵¹/₅) + (⁵⁰/₅) = 19600 (subtract card one excluded, subtract card two excluded, add back both excluded)

More card examples

- # hands containing five kinds?
- pages 433-434 /395-396
- pick kinds (C(13,5)), four suits per kind: $C(13,5)4^5 = 1317888$ (51%)
- # hands with a flush, i.e., all same suit pick suit (4), pick 5 out of 13 (*C*(13,5)):
 4*C*(13,5) = 5148 (0.2%)
- # hands with four cards of one kind? pick kind (C(13,1)),
 pick the four cards of that kind (C(4,4)=1),
 and pick remaining card (C(48,1)=48):
 13*48 = 624 (0.024%)
- three of a kind: C(13,1)*4*48*44/2, (2.11%)
 (or: C(12,2)*4² instead of 48*44/2)

Combinatorial and algebraic proofs

page 400/359

- combinatorial proof: formula holds based on counting argument or "insight"
- algebraic proof: usual math manipulations

Combinatorial and algebraic proofs

^{page}_{400/359} an *r*-combination from *n* without replacement is equivalent to an (n-r)-combination from *n* without replacement

 $\Rightarrow C(n,r) = C(n,n-r)$ the above is example of a "combinatorial proof": a counting argument that a formula holds easily confirmed by a trivial algebraic proof:

$$C(n,r) = \binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n!}{(n-r)!(n-(n-r))!}$$
$$= \binom{n}{n-r} = C(n,n-r)$$

More examples

- $_{336/292}^{\text{page}}$ 1. splitting pile of *n* stones: exerc 10/14 strong induction: total cost n(n-1)/2• "handshake" argument: same result 3. P(n+1,r) = P(n,r)(n+1)/(n+1-r)page 428/389 exerc 20/24
 - algebraic proof immediate
 - combinatorial: argument:

P(n+1,r+1) = (n+1)P(n,r): take first from *n*+1, then *r*-perm from *n*

or

$$P(n+1,r+1) = P(n+1,r)(n+1-r)$$
:
first take *r*-perm from $n+1$, then take last

More about *n* choose *r*: binomial coefficients

pages 403-409 /363-368

- Pascal's identity $(0 \le k \le n)$: $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$
 - combinatorial proof:

pick *k*-combination from *n*+1 by fixing one element: include it (*k*-1 from *n* remain to be chosen) or don't (*k* from *n* remain to be chosen)

• algebraic proof:

$$\binom{n}{k-1} + \binom{n}{k} = \frac{n!}{(k-1)!(n-k+1)!} + \frac{n!}{k!(n-k)!}$$

$$= \frac{n!k}{k!(n-k+1)!} + \frac{n!(n-k+1)}{k!(n-k+1)!}$$

$$= \frac{n!k+n!(n-k+1)}{k!(n+1-k)!} = \frac{n!(n+1)}{k!(n+1-k)!} = \binom{n+1}{k}$$

Binomial theorem

 $_{404/363}^{\text{page}}$ for $n \ge 0$:

$$(x+y)^n = \sum_{k=0}^n {n \choose k} x^{n-k} y^k$$

- combinatorial proof: expand product $(x+y)^n$: for the term $x^{n-k}y^k$ the y needs to be chosen k out of n times (order irrelevant since $x^{n-k}y^k = yx^{n-k}y^{k-1} = \dots = y^kx^{n-k}$) \Rightarrow coefficient of $x^{n-k}y^k$ must be *n* choose *k*
- algebraic proof: use mathematical induction and Pascal's identity

Algebraic proof of binomial theorem

let P(n) be the assumption that $(x + y)^n = \sum_{k=0}^n {n \choose k} x^{n-k} y^k$

•
$$(x+y)^0 = 1 = {\binom{0}{0}} x^0 y^0 = \sum_{k=0}^0 {\binom{0}{k}} x^{0-k} y^k$$

shows that $P(0)$ holds

• assume P(n) holds for some $n \ge 0$. Then

$$(x + y)^{n+1} = (x + y) \sum_{k=0}^{n} {n \choose k} x^{n-k} y^{k} \text{ (used induction hypothesis)}$$

$$= \sum_{k=0}^{n} {n \choose k} x^{n-k+1} y^{k} + \sum_{k=0}^{n} {n \choose k} x^{n-k} y^{k+1}$$

$$= {n \choose 0} x^{n+1} + \sum_{k=1}^{n} {n \choose k} x^{n-k+1} y^{k} + \sum_{k=0}^{n-1} {n \choose k} x^{n-k} y^{k+1} + {n \choose n} y^{n+1}$$

$$= {n+1 \choose 0} x^{n+1} + \sum_{k=1}^{n} {n \choose k} x^{n+1-k} y^{k} + \sum_{k=1}^{n} {n \choose k-1} x^{n+1-k} y^{k} + {n+1 \choose n+1} y^{n+1}$$

$$= {n+1 \choose 0} x^{n+1} + \sum_{k=1}^{n} {n+1 \choose k} x^{n+1-k} y^{k} + {n+1 \choose n+1} y^{n+1} \text{ (Pascal's identity)}$$

$$= \sum_{k=0}^{n+1} {n+1 \choose k} x^{n+1-k} y^{k}$$

Combinatorial and algebraic proofs

page 400/359

pages

- combinatorial proof: formula holds based on counting argument or "insight"
- algebraic proof: usual math manipulations

seen both types of proofs for

• Pascal' identity $(0 \le k \le n)$: 403-409 /363-368

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

binomial theorem: for $n \ge 0$ •

$$(x+y)^n = \sum_{k=0}^n {n \choose k} x^{n-k} y^k$$

Consequence of binomial theorem

 $\sum_{\substack{405-406\\/364-365}}^{\text{pages}} 2^n = \sum_{k=0}^n \binom{n}{k}$

- algebraic proofs:
 - take x = y = 1 in binomial theorem
 - mathematical induction, Pascal's identity
- combinatorial proof:
 - 2^{*n*} is the number of length *n* bitstrings
 - write the number of length *n* bitstrings as $\sum_{k=0}^{n} C_i$, where C_i is the number of length *n* bitstrings with *i* bits "on", and note that C_i is *n* choose *I* (or look at subsets and their cardinalities)

Another consequence of binomial theorem

pages 408-409 /367-368

$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{r-k} \binom{n}{k}$$
 for $r < m, n$

(Vandermonde's identity)

- algebraic proof:
 use (x+y)^{m+n} = (x+y)^m(x+y)ⁿ
 with binomial theorem
 and compare the terms for x^{m+n-r}y^r
- combinatorial proof:
 count cardinality *r* subsets of
 cardinality *m*+*n* set in different ways
- consequence: $\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k}^2$

Final combinatorial ↔ algebraic example

 $\sum_{\substack{409/369\\ \text{exerc 14/22}}}^{\text{Page}} \binom{n}{r} \binom{r}{k} = \binom{n}{k} \binom{n-k}{r-k}, \quad 0 \le k \le r \le n$

- combinatorial proof: suppose you need to pick a committee of *r* out of *n*, and a subcommittee of *k* out of those *r* (LHS). or pick the subcommittee of *k* first, then remaining *r*-*k* from remaining *n*-*k* (RHS)
- algebraic proof straightforward too: $\binom{n}{r}\binom{r}{k} = \frac{n!}{r!(n-r)!} \frac{r!}{k!(r-k)!} = \frac{n!}{(n-r)!k!(r-k)!}$ $= \frac{n!}{k!(n-k)!} \frac{(n-k)!}{(r-k)!(n-r)!} = \binom{n}{k}\binom{n-k}{r-k}$

Useful identity (for combination with repetition) $\binom{n+1}{r+1} = \sum_{j=r}^{n} \binom{j}{r}$ for $r \le n$

page 409/368 thm 4

 combinatorial proof: look at last "on" bit of *r*+1 "on" bits in *n*+1 positions

More precisely

page 409/368 thm 4

- combinatorial proof of $\binom{n+1}{r+1} = \sum_{j=r}^{n} \binom{j}{r}$ $(r \le n)$ pick *r*+1 out of $x_1, x_2, ..., x_{n+1}$, largest index is *n*+1 *n* choose *r* ways to pick other *r* All possibilities disioint or largest index is nn-1 choose r ways to pick other ror largest index is n-1n-2 choose *r* ways to pick other *r* or largest index is n-2n-3 choose *r* ways to pick other *r* or
 - largest index is *r*+1 *r* choose *r* ways to pick other *r*

Useful identity

page 409/368 thm 4

- $_{58} \binom{n+1}{r+1} = \sum_{j=r}^{n} \binom{j}{r} \text{ for } r \leq n$
 - combinatorial proof: look at last "on" bit of *r*+1 "on" bits in *n*+1 positions
 - proof by hand waving: repeatedly use Pascal's identity, walking up Pascal's triangle
 - algebraic proof: use mathematical induction with respect to *n* (formalizing hand waving)
 - for n = r identity holds
 - assume holds for *n*; then for *n*+1: $\binom{n+2}{r+1} = \binom{n+1}{r} + \binom{n+1}{r+1}$ (use Pascal's identity)

$$= \binom{n+1}{r} + \sum_{j=r}^{n} \binom{j}{r} = \sum_{j=r}^{n+1} \binom{j}{r}$$

Back to counting formulas: pick r from n

- 1. permutation without replacement: P(n,r)P(n,r) = n(n-1)...(n-r+1) = n!/(n-r)!
- 2. combination without replacement: C(n,r)

$$C(n,r) = \frac{n!}{r!(n-r)!} = \binom{n}{r}$$

- 3. permutation with replacement n^r
- ^{pages}₄₁₁₋₄₁₅ 4. combination with replacement ^{/371-374} still not done, and a bit less intuitive

Pick *r*-combination from *n* with replacement

^{pages}₄₁₁₋₄₁₅ to develop intuition, a few basic examples:

- given infinite supply of n = 1 cookie type, in how many ways can one pick *r* cookies? clearly only one way: *r* cookies of type 1 n = 1: constant in *r*
- same question with n = 2 types of cookies: from 0 to r of type 1, others type 2: r+1 ways n = 2: linear in r
- same question with n = 3 types of cookies: $s, 0 \le s \le r$, of type 1: r-s of types 2 or 3, thus $\sum_{s=0}^{r} (r-s+1) = (r+1)(r+2)/2$ ways n = 3: quadratic in r

r-combination from *n* with replacement

pages 411-415 observations we made: /371-374 • n = 1: 1 way n = 2: r+1 ways n = 3: (r+1)(r+2)/2 ways \Rightarrow suggests (*n*+*r*-1) choose *n*-1 ways (\bigstar) \Rightarrow let f(n,r) denote the number of *r*-combinations from *n* with replacement, then $f(n,r) = f(n-1,0)+f(n-1,1)+\ldots+f(n-1,r)$: take r of type 1, 0 left to take of n-1 types take r-1 of type 1, 1 left to take of n-1 types take r-2 of type 1, 2 left to take of n-1 types

take 0 of type 1, r left to take of n-1 types

r-combination from *n* with replacement

pages observations we made: 411-415 /371-374 • n = 1: 1 way n = 2: r + 1 ways n = 3: (r+1)(r+2)/2 ways \Rightarrow suggests (*n*+*r*-1) choose *n*-1 ways (\bigstar) \Rightarrow let f(n,r) denote the number of *r*-combinations from *n* with replacement, then $f(n,r) = f(n-1,0) + f(n-1,1) + \ldots + f(n-1,r)$

• induction proof of \star : basis n = 1 is okay;

$$f(n,r) = \sum_{s=0}^{r} f(n-1,s) = \sum_{s=0}^{r} {n+s-2 \choose n-2}$$

page 409/368 thm 4

$$(\text{use } n + s - 2 = j) = \sum_{j=n-2}^{n+r-2} {j \choose n-2} = {n+r-1 \choose n-1}$$

r-combination from *n* with replacement why is the result so simple? combinatorial proof that $f(n,r) = \binom{n+r-1}{n-1}$ uses n+r-1 positions n-1 of which are separators that "switch" to next type note:

- f(n,r) counts number of nonnegative integer solutions to $x_1+x_2+\ldots+x_n = r$ ($x_i \in \mathbb{Z}_{\geq 0}$) little tricks to deal with:
 - $x_i \ge b_i$ for bounds b_i : use $r \sum_{i=1}^n b_i$
 - $x_1 + x_2 + \ldots + x_n \le r$: use slack variable x_{n+1}

• *C*(*n*,*r*) product for indistinguishable objects

pages 415-419 /375-379