
skipping section 6.6 / 5.6 
(generating permutations and combinations) 

  
concludes basic counting in Chapter 6 / 5 

 
on to Chapter 7 / 6: Discrete probability 

(before we go to trickier counting in Chapter 8 / 7) 



Goal of Chapter 7 / 6 
understanding basic probabilities, 

as they pop up all over the place: 
• spam filters: 

    is email spam when it contains “rolex”? 
• drug tests: 

    are you sick when you test positive? 
• evaluation of lossy channels: 

    was “on” bit sent when “on” bit received?  
 

• playing roulette/lotteries/game shows… 
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Introduction to discrete probability 
basic definitions: 
• sample space: a set of “possible outcomes” 

   (hands of cards, numbers on dice) 
• given a sample space S, 

an experiment results in an outcome s � S 
- dealing cards (no rep.) � hands of cards 
- rolling dice (with rep.) � numbers 

• event: a subset of the sample space 
( “three of a kind”  ,  “sum is six” ) 

• if S finite and each s � S is equally likely  
to be the result of an experiment, then 
probability of event  E  is  p(E) = |E|/|S| 
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Complement and union of events 
 

• event E � S (sample space): 
the probability that E does not occur is 
                           
 
 

 

• events E1, E2  � S, then 
p(E1�E2) = p(E1) + p(E2) �p(E1�E2) 

 

proof immediate from 
 |E1�E2| = |E1| + |E2| � |E1�E2| 

 

• “counting” is crucial for 
elementary discrete probabilities 
   (unfortunately it is not enough) 
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Example of discrete probabilities 
urns, doors, coins, dice, cards: 
• three doors, price behind only one door: 

probability 1/3 to win the prize 
• select one card from standard deck: 

probability 4/52 = 1/13 it’s an ace 
• roll two dice: probability 5/36 that sum=6, 

for event = {(1,5),(2,4),(3,3),(4,2),(5,1)} 
 

• gets complicated very easily… 
 

• how to better model “sum of two dice” 
with sample space {2,3,…,12} and 
events with different probabilities? 

• how to model unfair coin, loaded dice, …? 
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Probability theory, odds and ends 
more flexible approach to probability needed, 
to deal with unfair coins, sum of dice, 
more contrived combinations of events, etc. 
 

• assigning probabilities: not just p(E) = |E|/|S| 
• conditional probability, independence 
• Bernoulli trials: repeating experiments 
• random variables: from outcomes to values  
• birthday “paradox:” collisions unavoidable 
(and, later, possibly: 
• probabilistic algs: wrt time & outcome 
• “the probabilistic method:” nonconstructive 

existence proof based on probability theory) 
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Assigning probabilities 
to lift the p(E) = |E|/|S| restriction: 
 

let S be a countable set of outcomes 
probability distribution on S is a function 
p: S o [0,1] = R      with 
 

thus: 
• each s � S is assigned a probability p(s) 
• for each s � S:  0 d p(s) d 1 
• together (�s � S) probabilities sum to 1: 

each experiment results in some outcome 
 

define  
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Assigning probabilities, simple remarks 
 
 

• probability distribution approach 
covers earlier discrete probabilities: 
uniform distribution on S with |S| = n: 

�s�S   p(s) = 1/n    (�   p(E) = |E|/|S|)  
(selecting an element from a sample space with 
uniform distribution is sampling at random) 
 

• (un)fair coin or dice, sum of dice, etc: 
easy to model (just make sure                  )  

 

• complement                            and 
union  p(E1�E2) = p(E1) + p(E2) �p(E1�E2) 
follow as before 
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Conditional probability and independence 
often probabilities exist in some context, 
or when a certain condition is satisfied: 
• what’s chance to test positive 
• what’s chance to test positive if sick 
• what’s chance email is spam, if “…rolex...”  
we need to be able to figure out if 
context or condition influences probability: 
• what’s the chance of “heads” if the last 

five tosses were “tails”? 
 

generally speaking: intuition cannot be trusted 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
 
 

pages 
441-444 
/404-406 

 

 
 
 
 
 
 
 
 
 



Conditional probability: definition 
let E and F be events with p(F) > 0 

(thus E, F � S, for some sample space S) 
the conditional probability of E given F 
• is denoted by p(E|F)    (seen this in 1st semester already) 
 

• is defined as 
 

• and should be interpreted as the probability 
that E occurs given the fact that F occurs 
 

intuition:  universe S replaced by F, 
     event E by E�F 
� p(E)=|E|/|S| by p(E|F)=|E�F |/|F|= 
 (|E�F|/|S|)/(|F|/|S|) = p(E�F)/p(F)  
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Conditional probability, examples 
roll a die, what’s probability outcome is even? 
•   3/6 = ½ 
• but given that outcome is ���" 

probability becomes 1/3, 
since F = {1,2,3}, p(F) = ½, 
 E = {2,4,6}, E�F={2}, p(E�F)=1/6, 
p(E|F) = p(E�F)/p(F) = (1/6)/(1/2) = 1/3 

toss coin 6u; probability last toss is heads? 
•   ½ 
• but given that first five are tails? 

probability remains ½: 
F={tttttt,ttttth}, E�F={ttttth}, p(E|F)=½  

� condition may or may not affect probability  
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Independence 
if p(E|F) = p(E), then apparently 

occurrence of F does not influence E 
E and F are called independent: 

 

events E and F are defined to be independent 
if p(E�F) =p(E)p(F) 

 

( p(E|F)=p(E�F)/p(F)=p(E)p(F)/p(F)=p(E) ) 
 

note that p(F|E)=p(F) follows too (if p(E)z0) 
 

how does one decide independence? 
• calculate p(E�F), p(E), and p(F), 

declare independence if p(E�F) =p(E)p(F) 
• in particular: don’t trust your intuition 
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Independence examples 
consider families with k t 2 children, assume 
all 2k boy/girl configurations equally likely 
• E event that family has boy(s) and girl(s) 
• F event that family has at most one boy 
are E and F independent? 
 

(my) intuition useless: answer depends on k 
• k=2: p(E={bg,gb})=1/2, p(F={bg,gb,gg})=3/4 

p(E�F={bg,gb})=1/2; p(E�F) z p(E)p(F): no  
• k=3:p(E={bbg,bgb,bgg,gbb,gbg,ggb})=6/8, 

p(F={bgg,gbg,ggb,ggg})=4/8, 
p(E�F={bgg,gbg,ggb})=3/8 = p(E)p(F):  yes 

• k=4: … : not independent 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
 
 

pages 
443-444 

/406 
 

 
 
 
 
 
 
 
 
 



Brief recap 
•   probability distribution on  

countable set of outcomes S is a function 
     p: S o [0,1] = R      with 
 

•  
 

•   if  |S| = n  and  �s � S  p(s) = 1/n  then:  
    uniform distribution, selection at random 
•   E, F � S 
•  p(E�F) = p(E) + p(F) � p(E�F) 
•  conditional probability (if p(F)z0) 

p(E|F) = p(E�F)/p(F) 
•  if  p(E�F) =p(E)p(F) then E and F are  

independent ( l  p(E|F) = p(E) ) 
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Conditional probabilities, example 
 

D: event that someone has disease d 
Y: event that someone tests positive for d 
events: 
 
 
 
 

event probabilities given by lab experiments 
(note that 1&3 and 2&4 are complementary) 
what can we say about the probability of 
• D given Y  (should one worry when testing positive? ) 
 

•                   (can one be relieved when testing negative? ) 
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Example continued 
 

suppose p(Y|D) = 0.999 and                            : 
i.e., test is 99.9% accurate 
what can we say about p(D|Y) and               ? 
 

generally speaking, almost nothing: 
it depends on frequency of disease 

 

if common disease, say p(D) = 0.01: 
be concerned if test positive: p(D|Y) > 0.9 

 

if rare disease, say p(D) = 0.000001: 
be only slightly concerned if test positive: 

p(D|Y) < 0.001 
(quite a bit smaller than 0.999 …) 
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Based on: Bayes theorem 
turning p(Y|D) into p(D|Y), etc: 
 

definition: p(Y|D) = p(Y�D)/p(D)  (p(D) z 0) 
�  p(Y�D) = p(Y|D)p(D) 

 

similarly, if p(Y) z 0: p(Y�D) = p(D|Y)p(Y) 
 

�  p(D|Y)p(Y) = p(Y|D)p(D) 
 

�  p(D|Y) = p(Y|D)p(D)/p(Y) 
 

with “D: have disease”, “Y: test positive” 
•   p(D|Y) | p(Y|D) if  chances of having 

disease and testing positive are comparable 
•   p(D|Y) << p(Y|D) if disease unlikely 

compared to testing positive for it 
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Bayes theorem, more useful&common form 
seen that: p(D|Y) = p(Y|D)p(D)/p(Y) 
 

with                                     a disjoint union: 
 
 
 
Bayes thm follows (where p(Y) z 0, p(D) z 0):  
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Bayes theorem, details of earlier example 
D: event to have disease d 
Y: event to test positive for d 
p(Y|D) = 0.999 and                            , thus 
 
 

If p(D) = 0.01: 
 
 
 
 
 

If p(D) = 0.000001:  
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Bayes theorem, example details continued 
 

if p(D) = 0.01: 
 
 
 
 
 
 

if p(D) = 0.000001:  
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Bayes theorem, recognizing spam 
S: event that an email message is spam 
  : complementary event that it is not spam 
in book:                     : 
same probabilities for spam and non-spam 
 

more general: for instance 
assume twice as much spam as non-spam 

� 
 

assume you’ve observed that  
•  p(“opportunity”|S) = 1/10 
•  p(“opportunity”|  ) = 1/100 
 

what is probability that an email message 
containing “opportunity” is spam? 
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Bayes theorem, recognizing spam, continued 
 

we have 
 

and have observed that  
•  p(“opportunity”|S) = 1/10 
•  p(“opportunity”|  ) = 1/100 
 

need the probability that an email containing 
“opportunity” is spam, i.e., p(S|“opportunity”) 
 

according to Bayes thm (w = “opportunity”): 
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concludes section 7.3 / 6.3 
 

on to expected values and variances etc, 
section 7.4 / 6.4 



Expected values and variances 
given some probability distribution: 
• what can we expect to happen? 
• how much fluctuation is reasonable? 

 

intuitively: expect average over all outcomes, 
each outcome weighted by its probability 

 

•   roll one die: outcomes are 1,2, …, 6, 
each with probability 1/6,  
average outcome: 1/6+2/6+…+6/6 = 3½  

•   roll two dice: outcomes are pairs (1,1), (1,2),  
(1,3),…,(6,6), each with probability 1/36, 
average outcome: ((1,1)+…+(6,6))/36 = ? 

•   tossing a coin, what’s the average? 
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Transforming outcomes into real values: 
random variables 

a random variable is 
• not random 
• not a variable 
but: 
• a function S o R, where S is a sample space 
� a random variable assigns a real value 

to each possible outcome in S 
 

distribution of random variable X on S 
is the set of pairs (r, p(X=r)) for r � X(S), 
where 
 

(note that this is a probability distribution)  
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Random variables, example 
transform uniform distribution into 

a more general probability distribution: 
 

let S = {(1,1),(1,2),…,(6,6)}, 
set of outcomes of rolling two dice 

 

define X on S by X((i,j)) = i+j, then: 
 

•  X(S) = {2,3,…,12} = Sƍ 
•  uniform distribution on S generates 
   non-uniform probability distribution p on Sƍ�� 
      
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
 
 

pages 
446-447 
/408-409 

 
 
 
 
 
 
 
 
 

etc.  ,18/1)1,2(())2,1(()()3(

36/1))1,1(()()2()2(

3)(:

2)(:

 �  

     

¦

¦

 �

 �

ppspp

pspXpp

sXSs

sXSs



Expected values of a random variable 
 

given random variable X on sample space S, 
intuitive definition of expected value E(X)  
becomes 
 
with                                    it follows that 
 
 
 
 

thus two different ways to compute E(X): 
•  sum over values of X: (2/36+3/18+…+11/18+12/36 = 7) 
•  sum over sample space: ((2+3+3+…+11+11+12)/36 = 7) 
(which one to use depends on circumstances) 
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Example: Bernoulli trial 
an experiment with two possible outcomes 
(success or failure) is called a Bernoulli trial: 
�  if p is success probability, then 

q = 1�p is the failure probability 
 

three relevant questions: 
•  if same Bernoulli trial is repeated n times, 
   what is probability of a total of k successes? 
•  how many successes expected after n trials? 
•  expect how many trials before success? 
 

assumption: n trials (mutually) independent, 
i.e., conditional probability of success of any 
trial is p, conditioned on outcomes of others  
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n independent Bernoulli trials: 
if success probability of each trial is p, then 
the probability of precisely k successes in 
n independent trials is C(n,k)pkqn�k: 
 

• each particular sequence of k successes  
  (and thus n�k failures) occurs with 
  probability pkqn�k (due to independence) 
• there are C(n,k) different sequences 
  of k successes (sum probabilities of disjoint events) 

 

as a function of k: the binomial distribution 
because sanity check 
relies on binomial theorem   
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n Bernoulli trials, expected # successes 
X: random variable counting the number of 

successes after n Bernoulli trials,   
� p(X = k) = C(n,k)pkqn�k 

 

                                        where X(S)={0,1,…,n} 
 

� 
 
 
 
 
 
(using                                       : inconvenient) 
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n Bernoulli trials, expected # successes, easier 
 

if X and Y are random variables on S, then 
E(X+Y) = E(X) + E(Y) 

 

proof: 
 
 
 
 
 
 

(                                                     inconvenient) 
 

(application: (i,j) result of two dice, X1((i,j))=i,  
X2((i,j))=j, then E(X1+X2)=E(X1)+E(X2) = 3½+3½ = 7 ) 
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Remaining question on Bernoulli trials  
 

how many trials can we expect before success? 
•   experiment: perform trials until success 
•   outcomes: Y, NY, NNY, …., NN…NY, … 
� infinite sample space S = {Y,NY,NNY,…} 
•   random variable X on S: 

X(s) = number of trials needed for s�S, 
thus X(Y)=1, X(NY)=2,  X(NNY)=3, … 

� p(X=1)=p, p(X=2)=qp, …, p(X=k)=qk�1p,… 
(note:                                                        , 
        thus called geometric distribution)  

 

we need E(X)  (use T(r), lecture 8, slide 5; p>0):   
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More on expectations 
seen that E(X+Y) = E(X) + E(Y) for any 
random variables X and Y on sample space S 
 

is it also true that E(XY) = E(X)E(Y)? 
•   toss coin twice, outcomes {HH,HT,TH,TT} 

X = “total number heads”, so E(X) = 1 
Y = “total number tails”, so E(Y) = 1 
E(XY) = 20/4+11/4+11/4+02/4 = ½  

� E(XY) not equal to E(X)E(Y) 
 

� in general E(XY) not equal to E(X)E(Y) 
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Independence of random variables 
if  � x,y�R: 

p(X = x and Y = y) 
equals 

p(X = x)  p(Y = y) 
then X and Y are independent 
 

if X and Y are independent: E(XY) = E(X)E(Y) 
 
 
 
 
 
 

(p(X=0 and Y=0) = 0 z 1/16 = p(X=0)p(Y=0)) 
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variance and standard deviation 
if �s�S: X(s) t 0 then E(X) can be used to 
bound probability that X deviates from E(X): 

�x�R>0: p(X t x) d E(X)/x  
(Markov’s inequality) 

pf: 
 

 
 
 

stronger result uses variance V(X) of X, 
 
 

and the standard deviation 
 

(note: if X in “unit”, then V(X) in “unit2”)  
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Variance of a random variable 
 
 

    
•  V(X) = E(X2) � (E(X))2  (proof: use definition) 

� variance single Bernoulli trial is pq 
 

•   X, Y independent: V(X+Y)= V(X) + V(Y) 
    pf.: use V(X) = E(X2) � (E(X))2,  

E(X+Y) = E(X) + E(Y) (always true) 
    and E(XY) = E(X)E(Y) (due to independence) 
 

� variance n indep. Bernoulli trials is npq 
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Chebyshev’s inequality: 
 

p(|X(s) �E(X)| t x) d V(X)/x2 
 

pf.: A={s�S||X(s)�E(X)| t x} � V(X)/x2 t p(A) 
 
•   Chebyshev’s stronger than Markov’s 

( X(S) t 0: �x�R>0 p(X t x) d E(X)/x ) 
 

•   Chebyshev useless for x d V(X) 
 

•   exponential (and non-trivial) estimates: 
use Chernoff bound (not here) 
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Variance example: course evaluation 
 
 

 
 
E(X) = (14+26+310+449+583+624)/176 = 4.55 
E(X2) = (124+226+3210+4249+5283+6224)/176 = 21.82 
� V(X) = E(X2) � (E(X))2 = 21.82 � 4.552 = 1.11 
 

using Chebyshev’s p(|X(s) �E(X)| t x) d V(X)/x2,  
how many “extremely poor” can we expect? 
   p(|X(s) � 4.55| t 3.55) d 1.11/3.552 = 0.08807 
   so: at most 1760.08807 = 15.50 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
 
 

 

 
 
 
 
 
 
 
 
 



Basic probability, facts to remember 
 

•   Bayes theorem: 
 

•   random variable, a function from a 
sample space to the real numbers 

 

•   expected value E is additive: 
for all random variables X and Y: 

E(X+Y) = E(X) + E(Y) 
 

•   variance V(X) = E(X2) � E(X)2 
 

•   for independent random variables X and Y: 
E(XY) = E(X)E(Y) 
 

V(X+Y) = V(X) + V(Y) 
•   after about �n drawings from n: collision 
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Final remark on Ch.7/6: birthday problem 
S sample space with |S| = n, 
draw k elements at random with replacement 
 

how likely is a collision, 
i.e., that an element is drawn twice or more? 

(applications: building hash table, 
    digital fingerprinting, cryptanalysis, etc.) 

 

•  if k d 1: duplicate with probability 0 
•  if k > n: duplicate with probability 1 
 

collision probability increases with growing k, 
� for what k is collision probability t ½ ? 
 

purpose: show that this k is not about n/2  
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Birthday problem, rough analysis 
drawing k random elements with replacement 
from sample space S with |S| = n, 
for what k is collision probability t ½ ? 
 

look at complementary problem: 
analyse probability to pick k distinct elements 
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Probability to pick k distinct elements 
 

1. if k = 1: probability 1 that element is unique 
 

2. if k = 2: probability                to have 
 two distinct elements  

 

3. if k = 3: probability                        to have 
three distinct elements 

 

4. for general k: 
 

 is probability to have k distinct elements 
 

(this becomes zero for k > n, which is right)  
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Birthday problem, rough analysis continued 
S sample space with |S| = n, 
draw k elements at random with replacement 
 
 

“all-distinct” probability after k drawings is 
 
 
clearly decreasing: for what k does it get d ½  
(and thus collision probability t ½)? 
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Birthday problem, rough analysis continued 
for what k collision probability t ½, i.e.: 
 
 
this is equivalent to 
 
 

hand-wavy argument: 
(n�1)(n�2)…(n�k+1) = nk�1�(k(k�1)/2)nk�2+… 
 

�   nk�1 � (k(k�1)/2)nk�2 + …  d  nk�1/2 
�  nk�1/2  d  (k(k�1)/2)nk�2 � … 
 

�  suffices to take k a little bigger than �n 
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Birthday problem, conclusion 
S sample space with |S| = n, 
draw k elements at random with replacement: 
 
 

after “only”                    drawings, probability 
of a collision is larger than 1�1/e = 0.632120… 
 

•   k is lower than what intuition suggests, 
� commonly called birthday paradox 

 

•   nothing paradoxical about it, 
just a consequence of 1+2+…+k = k(k+1)/2 

 

•   leads to lots of algorithms, and trouble 
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