skipping section 6.6 / 5.6
(generating permutations and combinations)

concludes basic counting in Chapter 6 / 5

on to Chapter 7 / 6: Discrete probability
(before we go to trickier counting in Chapter 8 / 7)
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Goal of Chapter 7/6
understanding basic probabilities,
as they pop up all over the place:

* spam filters:

1s email spam when 1t contains “rolex”?
* drug tests:

are you sick when you test positive?
* e¢valuation of lossy channels:

was “on” bit sent when “on” bit received?

* playing roulette/lotteries/game shows...



Introduction to discrete probability
s basic definitions:
7« sample space: a set of “possible outcomes”
(hands of cards, numbers on dice)
* given a sample space S,
an experiment results 1n an outcome s € §
- dealing cards (no rep.) = hands of cards
- rolling dice (with rep.) = numbers
* event: a subset of the sample space
( “three of a kind” , “‘sum 1s six”
* 1f § finite and each s € S 1s equally likely
to be the result of an experiment, then
probability of event £ 1s p(E) = |E|/|S]



Complement and union of events

pages
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e ¢ event E < § (sample space):
the probability that £ does not occur 1s
p(E)=1-p(E) (use| £ =S || E])

(E is complementary event of E wrt S)

* events E,, £, < S, then
P(E\VEy) = p(E)) + p(Ey) —p(E\NE))
proof immediate from
E\VEy| = |E|| + |Ey| — |[E\NE)
* “counting’ 1s crucial for

elementary discrete probabilities
(unfortunately 1t 1s not enough)
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Example of discrete probabilities

urns, doors, coins, dice, cards:

* three doors, price behind only one door:
probability 1/3 to win the prize

* select one card from standard deck:
probability 4/52 = 1/13 1t’s an ace

* roll two dice: probability 5/36 that sum=6
for event = {(1,5),(2,4),(3,3),(4,2),(5,1)}

* gets complicated very easily...

* how to better model “sum of two dice”
with sample space {2,3,...,12} and
events with different probabilities?

 how to model unfair coin, loaded dice, ..."

b

(?



Probability theory, odds and ends
sss,  more flexible approach to probability needed,
/400-414 . . . .

to deal with unfair coins, sum of dice,

more contrived combinations of events, etc.

* assigning probabilities: not just p(E) = |E|/|S]

* conditional probability, independence

* Bernoulli trials: repeating experiments

* random variables: from outcomes to values

* birthday “paradox:” collisions unavoidable

(and, later, possibly:

* probabilistic algs: wrt time & outcome

* “the probabilistic method:” nonconstructive
existence proof based on probability theory)



Assigning probabilities
sy to lift the p(E) = |E/|S| restriction:

/401-403

let § be a countable set of outcomes
probability distribution on S 1s a function
p:S—>[0,1]=R, with > p(s)=1

thus: e

* cach s € Si1s assigned a probability p(s)
 foreachs € §: 0<p(s)<1

* together (Vs € §) probabilities sum to 1:
cach experiment results in some outcome

define p(E)=) p(s) (1= p(s),since E < S)

seF ses



Assigning probabilities, simple remarks
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a3 ®  probability distribution approach
covers earlier discrete probabilities:
uniform distribution on $ with |S| = n:
VseS p(s)=1/n (= pE)=|E|/S])
(selecting an element from a sample space with
uniform distribution 1s sampling at random)

* (un)fair coin or dice, sum of dice, etc:
easy to model (just make surez p(s)=1)

seS

« complement p(E)=1- p(E) and
union p(E,VE,) = p(E)) + p(E,) —p(E,NE,)
follow as before



Conditional probability and independence
aae  Often probabilities exist in some context,
/404-406 A . o o . .

or when a certain condition 1s satisfied:

* what’s chance to test positive

* what’s chance to test positive 1f sick

* what’s chance email 1s spam, 1f “...rolex...”

we need to be able to figure out 1f

context or condition influences probability:

 what’s the chance of “heads” if the last

five tosses were “tails’?

generally speaking: intuition cannot be trusted



Conditional probability: definition
s let E and I be events with p(F) > 0
(thus E, F'c S, for some sample space .S)
the conditional probability of £ given F
e 1s denoted by p(E |F') (seen this in 15t semester already)

ENF
* 1s defined as p(E|F):p( NF)
| p(F) -
* and should be interpreted as the probability

that £ occurs given the fact that /" occurs

intuition: universe S replaced by F,
event £ by ENF
= p(E)=|EV/|S| by p(E|F)=|ENF |/|F]=
ENFVIS/EVIS]) = p(ENE)/p(F)



Conditional probability, examples
woas roll a die, what’s probability outcome 1s even?
T e 3/6=1
* but given that outcome 1s < 3?
probability becomes 1/3,
since F'= {1,2,3}, p(F) =",
E=1{2,4,6}, ENnF={2}, p(ENF)=1/6,
P(E|F) = p(ENF)/p(F) = (1/6)/(1/2) = 1/3
toss coin 6x; probability last toss 1s heads?
*
* but given that first five are tails?
probability remains ’4:
F={tttttt ttttth Y, ENF={ttttth}, p(E|F)="%
—> condition may or may not affect probability



Independence
ana 1 p(E|F) = p(F), then apparently
% occurrence of F does not influence E
E and F are called independent:

events £ and [ are defined to be independent
if p(ENF) =p(E)p(F)

(P(E|F)y=p(ENF)/p(F)=p(E)p(I)/p(F)=p(E) )

note that p(F|E)=p(F’) follows too (if p(£)=0)

how does one decide independence?

* calculate p(ENF), p(£), and p(F),
declare independence if p(ENF) =p(£)p(F)

* 1n particular: don’t trust your intuition



Independence examples
mome consider families with £ > 2 children, assume
" all 2% boy/girl configurations equally likely
* FE event that family has boy(s) and girl(s)
* F event that family has at most one boy
are E and F' independent?

(my) intuition useless: answer depends on k

* k=2: p(E={bg,gb})=1/2, p(F={bg,gb,gg})=3/4
PENF={bg,gb})=1/2; p(ENF) # p(E)p(F): no

* k=3:p(E={bbg,bgb,bgg gbb,gbg ggb})=6/8,
p(F={bgg,gbg,ggb,ggg})=4/8,

p(ENF={bgg,gbg,ggb})=3/8 = p(E)p(F): yes
* k=4: ... :not independent



Brief recap
seae  * probability distribution on
e countable set of outcomes S 1s a function
p:S—[0,1]1=R,,_with ) __p(s)=1

« EcCS:p(E)=> p(s), p(E)=1-p(E)

seFE

* 1if |S|=n and Vs € § p(s) = 1/n then:
uniform distribution, selection at random
e E.FcS
* p(EVF) =p(E) + p(F) — p(ENF)
* conditional probability (if p(F)=0)
P(E|F) = p(ENF)/p(F)
o if p(ENF)=p(E)p(F) then E and F are
independent ( < p(E|F) =p(E))



Conditional probabilities, example

page

so49 - ) event that someone has disease d
Y: event that someone tests positive for d

events: 1. Y given D : true positive
2. Y givenB' false positive
3. Y glvenD false negative
4.Y g1venD true negative

event probabilities given by lab experiments
(note that 1&3 and 2&4 are complementary)
what can we say about the probability of

e D given Y (should one worry when testing positive? )

e D given Y (can one be relieved when testing negative? )
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Example continued

suppose p(Y|D) = 0.999 and p(I_/ | 5) =0.999:
1.€., test 18 99.9% accurate -
what can we say about p(D|Y) and p(D|Y)?

generally speaking, almost nothing:
it depends on frequency of disease

1f common disease, say p(D) = 0.01:
be concerned 1f test positive: p(D]Y) > 0.9

if rare disease, say p(D) = 0.000001:
be only slightly concerned 1if test positive:

p(D|Y)<0.001
(quite a bit smaller than 0.999 ...)



Based on: Bayes theorem
sy turning p(Y|D) into p(D)Y), etc:

/418-419

definition: p(Y|D) = p(YN\D)/p(D) (p(D) # 0)
= p(YND) = p(Y|D)p(D)

similarly, if p(Y) # 0: p(YN\D) = p(D|Y)p(Y)
= p(D|\Y)p(Y) = p(Y|D)p(D)
= p(D|Y) = p(Y|D)p(D)/p(Y)

with “D: have disease™, “Y: test positive”

* p(D|Y) = p(Y|D)1f chances of having
disease and testing positive are comparable

* p(D|Y) << p(Y|D) 1f disease unlikely
compared to testing positive for it




Bayes theorem, more useful&common form
ssas seen that: p(D|Y) = p(Y|D)p(D)/p(Y)

| with ¥ =(Y N D)UY N D)a disjoint union:
p(Y)=p(YND)+p(YND)
=p(Y | D)p(D)+ p(Y | D) p(D)
Bayes thm follows (where p(Y) # 0, p(D) # 0):

(DY) = pY|D)p(D)
p(Y | D)p(D)+ p(Y | D)p(D)



Bayes theorem, details of earlier example
o D: event to have disease d
Y: event to test positive for d

p(YID)=0.999 and p(Y|D)=0.999, thus
(Y| D)=0.001 and p(Y | D) = 0.001
If p(D) = 0.01:
p(D|Y) = pX|D)p(D)
pY |D)p(D)+ p(Y|D)p(D)
. 0.9990.01 00008
0.999%0.01+0.001%0.99

If p(D) = 0.000001:

(D] V)= 0.999 x0.000001 _ 0.000998
0.999 % 0.000001+0.001%0.999999




Bayes theorem, example details continued

456/419 1fp(D) =001: . _
p(D|7)=——PLIDPD)
p(Y|D)p(D)+ p(Y|D)p(D)

_ 0.999%0.99 > 0.999989
0.999%0.99+0.001*%0.01

if p(D) = 0.000001:

0.999 % (0.999999

p(D|Y)=
0.999:%(0.999999 + (0.001%0.000001
> (0.99999999K9




Bayes theorem, recognizing spam

sy O event
S: comp

1n book:

that an email message 1s spam
lementary event that 1t 1s not spam

p(S)=p(S):

same probabilities for spam and non-spam

more general: for instance
assume twice as much spam as non-spam

= p(S)

=2/3, p(S)=1/3

assume you’ve observed that

* p(“op
* p(“op

portunity”|S) = 1/10
portunity”|S) = 1/100

what 15 ]

orobability that an email message

containing “opportunity’ 1s spam?



Bayes theorem, recognizing spam, continued
w21 we have p(S)=2/3, p(S)=1/3

and have observed that
* p(“opportunity”|S) = 1/10
* p(“opportunity’|S) = 1/100

need the probability that an email containing
“opportunity” 1s spam, 1.¢., p(S|“opportunity”)

according to Bayes thm (w = “opportunity”):
wl|S)p(S
(S | w) = pw|S)pS)
p(w|S)p(S)+ p(w[S)p(S)
B 0.1%2/3
0.1%¥2/3+0.01%1/3

> (.9523




concludes section 7.3/ 6.3

on to expected values and variances etc,
section 7.4/ 6.4



Expected values and variances
sy glven some probability distribution:
/426-439
* what can we expect to happen?
* how much fluctuation is reasonable?

intuitively: expect average over all outcomes,
each outcome weighted by 1ts probability

* roll one die: outcomes are 1,2, ..., 6,
each with probability 1/6,
average outcome: 1/6+2/6+...+6/6 = 3\

* roll two dice: outcomes are pairs (1,1), (1,2),
(1,3),...,(6,6), each with probability 1/36,
average outcome: ((1,1)+...+(6,6))/36 =7

* tossing a coin, what’s the average?
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Transforming outcomes into real values:
random variables

a random variable 1s

* not random

* not a variable

but:

* afunction § > R, where S is a sample space

—> a random variable assigns a real value
to each possible outcome 1n §

distribution of random variable X on S
1s the set of pairs (r, p(X=r)) for r € X(S),

where p(X =r)= Zp(s)

seS: X (s)=r

(note that this 1s a probability distribution)



Random variables, example
sesy  transform uniform distribution 1nto
/408-409 oq o . . .
a more general probability distribution:

let S= {(1,1),(1,2),...,(6,6)},
set of outcomes of rolling two dice

define X on S by X((i,j)) = itj, then:

* X(8)=1{2,3,...,12} =&

* uniform distribution on § generates
non-uniform probability distribution p on §":
p2)=p(X=2)= > p(s)=p((L1)=1/36

seS:X (5)=2

pB)= > p(s)=p((12))+ p((2,1) =1/18, etc.

seS: X (s)=3
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Expected values of a random variable

given random variable X on sample space S,
intuitive definition of expected value E(X)
becomes E(X) = Zr * p(X =r)

reX(S)
with p(X =r)= > p(s) it follows that
seS: X (s)=r
£0= Trd_Tpo) |- Zx0p00
reX(S) seS: X (s)=r seS

thus two different ways to compute E(X):

* sum over values of X: (2i36+3/18+.. +11/18+12/36 = 7)
* sum over sample space: (@3+3+..+11+11+12)/36=7)
(which one to use depends on circumstances)



Example: Bernoulli trial
sens an experiment with two possible outcomes
™ (success or failure) is called a Bernoulli trial:
—> 1f p 1s success probability, then
g = 1—p 1s the failure probability

three relevant questions:

 1f same Bernoulli trial 1s repeated » times,
what 1s probability of a total of & successes?

* how many successes expected after » trials?

* expect how many trials before success?

assumption: » trials (mutually) independent,
1.€., conditional probability of success of any
trial 1s p, conditioned on outcomes of others



n independent Bernoulli trials:
sens 1 success probability of each trial 1s p, then
™ the probability of precisely & successes in

n independent trials is C(n,k)p g™

* cach particular sequence of k successes
(and thus n—k failures) occurs with
probability p*q”* (due to independence)

* there are C(n,k) different sequences
of k successes (sum probabilities of disjoint events)

as a function of &: the binomial distribution
because sanity check ), _ C(n,k)p'q"™* =1
relies on binomial theorem



n Bernoulli trials, expected # successes
wsms X. random variable counting the number of
successes after n Bernoull: trials,

= p(X = k) = C(n,k)p*q"™
E(X)= ) k*p(X =k) where X(S)={0,1,...,n}

keX (S)
= E(X)=) kC(n,k)p‘q"™
(pick k from n first, then leader among £,
or pick leader first, then k —1 from n —1)

—Zk_ nC(n-Lk-1)p*q"™
=..=np
(using E(X) =) X (s)* p(s): inconvenient)



n Bernoulli trials, expected # successes, easier

page . .
w649 1f X and Y are random variables on S, then

E(X+Y)=EX)+ E(Y)
proof: E(X+Y)=> (X+Y)(s)*p(s)

(use definition of sum of two functions)
=D (X () +Y())* p(s)

= 2 s X% p(9)+ 2, Y (s)* p(s)
— E(X)+ E(Y)
(E(X+Y)= ) t*p(X+Y =t) inconvenient)

te(X+Y)(S)

(application: (i,j) result of two dice, X,((iy))=i,
X,((i,)))=j, then E(X,+X,))=E(X,))+tE(X,) =3%+3% =17)



Remaining question on Bernoulli trials

7005 how many trials can we expect before success?
* experiment: perform trials until success
e outcomes: Y, NY, NNY, ...., NN...NY, ...
—> 1nfinite sample space S = {Y,NY,NNY,...}
* random variable X on S:
X(s) = number of trials needed for s€S,
thus X(Y)=1, X(NY)=2, X(NNY)=3, ...
= p(X=D=p, p(X=2)=gp, ... P(X=K)=¢""'p, ..
(note:Y .4 ' p=pY. d' =pll-q)=1,
thus called geometric distribution)
we need E(X) (use T(r), lecture 8, slide 5; p>0):

E(X)= Z;qu_lp =.=pl/l-q) =1/p
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More on expectations
seen that E(X+Y) = E(X) + E(Y) for any
random variables X and Y on sample space §

1s 1t also true that E(XY) = E(X)E(Y)?

* toss coin twice, outcomes {HH,HT,TH,TT}
X = “total number heads”, so £(X) =1
Y = “total number tails”, so E(Y) = 1
E(XY)=2%0/4+1*1/4+1%1/4+0%2/4 =",

= E(XY) not equal to E(X)E(Y)
= 1n general £(XY) not equal to E(X)E(Y)



Independence of random variables
mm 1E YV x,yeR:
/434-435 p(X: ¥ and Y: y)

equals

pX=x)*p(Y=y)
then X and Y are independent
if X and Y are independent: E(XY) = E(X)E(Y)
E(XY)= Zrem) r+ p(XY =7r)
=2 risyars @ ¥ X =xandY = y)
= éem),yem)xy #*p(X =x)p(Y = y)

=2y s ¥ ¥ PX =x>)* (ZyenS)y*P(Y =y>)
= E(X)E®Y)

(p(X=0 and Y=0) =0 = 1/16 = p(X=0)*p(¥=0))



variance and standard deviation
e 1 Vse§S: X(s) > 0 then E(X) can be used to
" bound probability that X deviates from E(X):
VxeR.,: p(X = x) < E(X)/x

(Markov’s inequality)
pf: E(X)/x= ) (r/x)p(X =r)
reX(S)
> Zp(X:r):p(XZX)
reX (S),r>x

stronger result uses variance V(X) of X,

V(X) =), _(X(s)=E(X)) p(s),

and the standard deviation o(X) = \/ V(X)
(note: if X in “unit”, then V(X) in “unit?”)



Variance of a random variable
S V(X)=Y (X(s)-E(X)) p(s)

/436-439

* V(X)= E(Xz) — (E(X))2 (proof: use definition)
—> variance single Bernoulli trial 1s pg
* X, Yindependent: V(X+Y)= V(X) + V(Y)

pf.: use V(X) = E(X*) — (E(X))’,
EX+Y) = E(X) + E(Y) (always true)
and £(XY) = E(X)E(Y) (due to independence)

= variance n indep. Bernoull trials 1s npqg



Chebyshev’s inequality:

w0 p(X(s) —EX)| > x) < V(X)/x2
pf.: A={seS|[X(s)-EX)| = x} = V(X)/x2 = p(A)

* Chebyshev’s stronger than Markov’s
(X(S)=20: VxeR , p(X2x) < EX)/x)
* Chebyshev useless for x < o(X)

* exponential (and non-trivial) estimates:
use Chernoff bound (not here)



Variance example: course evaluation

E(X) = (1x4+2¢6+3%10+4+49+5+83+6x24)/176 = 4.55
E(X?) = (126442246432 10+42¢49+52483+6224)176 = 21.82

= V(X)=EX?) — (E(X))*=21.82-4.55>=1.11
using Chebyshev’s p(|X(s) —E(X)| = x) < N(X)/x?,
how many “extremely poor” can we expect?

p(|X(s) —4.55/>3.55)<1.11/3.552=0.08807
so: at most 176*0.08807 = 15.50



Basic probability, facts to remember

p(Y | D)p(D)
. p(Y|D)p(D)+p(Y | D)p(D)
random variable, a function from a

sample space to the real numbers

Bayes theorem: p(D|v)=

expected value E 1s additive:
for all random variables X and Y:

EX+Y)=EX) + E(Y)
variance V(X) = E(X?) — E(X)?
for independent random variables X and Y-
E(XY) = E(X)E(Y)
VX+Y) = 1(X)+ V(YY)

after about \r drawings from n: collision



Final remark on Ch.7/6: birthday problem
arae S sample space with |S| = n,
% draw k elements at random with replacement

how likely 1s a collision,
1.e., that an element 1s drawn twice or more?
(applications: building hash table,
digital fingerprinting, cryptanalysis, etc.)

* 1if £ < 1: duplicate with probability O
* 1f k> n: duplicate with probability 1

collision probability increases with growing £,
—> for what £ 1s collision probability > 2 ?

purpose: show that this & 1s not about #n/2



Birthday problem, rough analysis
wrae  drawing k£ random elements with replacement
" from sample space S with [S] = n,

for what £ 1s collision probability > V2 ?

look at complementary problem:
analyse probability to pick £ distinct elements



pages

Probability to pick k distinct elements

w1 1f k= 1: probability 1 that element 1s unique

/409-410

2.

. for general k: 1%

n—1

if k= 2: probability 1= to have
two distinct elements  *
. . -1 n-2
. 1f k= 3: probability 1* T« 272 40 have
n

three distinct elements
n-1 n-2 n—k+1

n n n
1s probability to have k distinct elements

(this becomes zero for £ > n, which 1s right)



Birthday problem, rough analysis continued
arae S sample space with |S| = n,
% draw k elements at random with replacement

“all-distinct” probability after &£ drawings i1s
n—1 n-2 n—k+1

1

n n n
clearly decreasing: for what & does 1t get < '

(and thus collision probability > 75)?
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Birthday problem, rough analysis continued
for what k collision probability > 1%, 1.¢.:

n—-1 n-2 n—k+1

1 <1/2

n n n
this 1s equivalent to

(n-D)(n-=2)...(n—k+1)<n"/2
hand-wavy argument:
(n—1)(n-2)...(n—k+1) = n*'—(k(k—1)/2)n2+....

= 1= (k(k=1)/2)n* 2+ ... < n¥1)/2
< 12 < (k(k—1)2)n% =2 — ...

— suffices to take k a little bigger than Vn



Birthday problem, conclusion
arae S sample space with |S| = n,
% draw k elements at random with replacement:

after “only” k =+/7m/2 drawings, probability
of a collision 1s larger than 1-1/e = 0.632120...

* k1s lower than what intuition suggests,
— commonly called birthday paradox

* nothing paradoxical about it,
just a consequence of 1+2+...+k = k(k+1)/2

* leads to lots of algorithms, and trouble
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