skipping section 6.6 / 5.6 (generating permutations and combinations)

concludes basic counting in Chapter 6 / 5

on to Chapter 7 / 6: Discrete probability (before we go to trickier counting in Chapter 8 / 7)

Goal of Chapter 7 / 6

pages 431-475 /393-439

- understanding basic probabilities, as they pop up all over the place:
 - spam filters:
 - is email spam when it contains "rolex"?
 - drug tests: are you sick when you test positive?
 - evaluation of lossy channels: was "on" bit sent when "on" bit received?
 - playing roulette/lotteries/game shows...

Introduction to discrete probability

basic definitions:

pages 431-436 /394-398

- sample space: a set of "possible outcomes" (hands of cards, numbers on dice)
- given a sample space S, an **experiment** results in an outcome $s \in S$
 - dealing cards (no rep.) \Rightarrow hands of cards
 - rolling dice (with rep.) \Rightarrow numbers
- event: a subset of the sample space

("three of a kind", "sum is six")

• if S finite and each $s \in S$ is equally likely to be the result of an experiment, then **probability** of event E is p(E) = |E|/|S|

Complement and union of events

pages 435-436 /396-397

• event $E \subseteq S$ (sample space): the probability that E does not occur is $p(\overline{E}) = 1 - p(E)$ (use $|\overline{E}| = |S| - |E|$)

(\overline{E} is complementary event of E wrt S)

- events $E_1, E_2 \subseteq S$, then $p(E_1 \cup E_2) = p(E_1) + p(E_2) - p(E_1 \cap E_2)$ proof immediate from $|E_1 \cup E_2| = |E_1| + |E_2| - |E_1 \cap E_2|$
- "counting" is crucial for elementary discrete probabilities (unfortunately it is not enough)

Example of discrete probabilities

^{pages} 432-434 /394-395 urns, doors, coins, dice, cards:

- three doors, price behind only one door: probability 1/3 to win the prize
- select one card from standard deck: probability 4/52 = 1/13 it's an ace
- roll two dice: probability 5/36 that sum=6, for event = {(1,5),(2,4),(3,3),(4,2),(5,1)}
- pages 436-437 /398-399 Monty & exercises
- gets complicated very easily...
- how to better model "sum of two dice" with sample space {2,3,...,12} and events with different probabilities?
- how to model unfair coin, loaded dice, ...?

Probability theory, odds and ends

pages 438-452 /400-414 more flexible approach to probability needed, to deal with unfair coins, sum of dice, more contrived combinations of events, etc.

- assigning probabilities: not just p(E) = |E|/|S|
- conditional probability, independence
- Bernoulli trials: repeating experiments
- random variables: from outcomes to values
- birthday "paradox:" collisions unavoidable (and, later, possibly:
- probabilistic algs: wrt time & outcome
- "the probabilistic method:" nonconstructive existence proof based on probability theory)

Assigning probabilities

pages 439-441 /401-403

to lift the p(E) = |E|/|S| restriction: let *S* be a countable set of outcomes **probability distribution** on *S* is a function $p: S \rightarrow [0,1] = \mathbb{R}_{\geq 0,\leq 1}$ with $\sum_{s \in S} p(s) = 1$ thus:

- each $s \in S$ is assigned a probability p(s)
- for each $s \in S$: $0 \le p(s) \le 1$
- together (∀s ∈ S) probabilities sum to 1:
 each experiment results in some outcome

define
$$p(E) = \sum_{s \in E} p(s)$$
 ($\leq 1 = \sum_{s \in S} p(s)$, since $E \subseteq S$)

Assigning probabilities, simple remarks

pages 440-441 /402-403

- probability distribution approach covers earlier discrete probabilities:
 uniform distribution on S with |S| = n:
 ∀s∈S p(s) = 1/n (⇒ p(E) = |E|/|S|)
 (selecting an element from a sample space with uniform distribution is sampling at random)
- (un)fair coin or dice, sum of dice, etc: easy to model (just make sure $\sum p(s) = 1$)
- complement $p(\overline{E}) = 1 p(E)$ and union $p(E_1 \cup E_2) = p(E_1) + p(E_2) - p(E_1 \cap E_2)$ follow as before

Conditional probability and independence

pages 441-444 /404-406 often probabilities exist in some context, or when a certain condition is satisfied:

- what's chance to test positive
- what's chance to test positive if sick
- what's chance email is spam, if "…rolex…" we need to be able to figure out if context or condition influences probability:
- what's the chance of "heads" if the last five tosses were "tails"?

generally speaking: intuition cannot be trusted

Conditional probability: definition

^{page}_{442/404} let *E* and *F* be events with p(F) > 0

(thus $E, F \subseteq S$, for some sample space S) the **conditional probability** of E given F

- is denoted by p(E|F) (seen this in 1st semester already)
- is **defined** as $p(E | F) = \frac{p(E \cap F)}{p(F)}$
- and should be interpreted as the probability that *E* occurs **given the fact** that *F* occurs

intuition: universe S replaced by F, event E by $E \cap F$

 $\Rightarrow p(E) = |E|/|S| \text{ by } p(E|F) = |E \cap F|/|F| = (|E \cap F|/|S|)/(|F|/|S|) = p(E \cap F)/p(F)$

Conditional probability, examples

pages 442-443 /404-405 roll a die, what's probability outcome is even?

- $3/6 = \frac{1}{2}$
- but given that outcome is ≤ 3? probability becomes 1/3, since F = {1,2,3}, p(F) = ½, E = {2,4,6}, E ∩ F={2}, p(E ∩ F)=1/6, p(E|F) = p(E ∩ F)/p(F) = (1/6)/(1/2) = 1/3
 toss coin 6×; probability last toss is heads?
 - 1/2
 - but given that first five are tails? probability remains $\frac{1}{2}$: $F = \{ tttttt, tttth \}, E \cap F = \{ ttttth \}, p(E|F) = \frac{1}{2} \}$
- \Rightarrow condition may or may not affect probability

Independence

pages 443-444 /405-406 if p(E|F) = p(E), then apparently occurrence of *F* does not influence *E E* and *F* are called **independent**:

events *E* and *F* are **defined to be** independent if $p(E \cap F) = p(E)p(F)$

 $(p(E|F)=p(E \cap F)/p(F)=p(E)p(F)/p(F)=p(E))$ note that p(F|E)=p(F) follows too (if $p(E)\neq 0$)

how does one decide independence?

- calculate $p(E \cap F)$, p(E), and p(F), declare independence if $p(E \cap F) = p(E)p(F)$
- in particular: don't trust your intuition

Independence examples

- pages 443-444 /406
- consider families with $k \ge 2$ children, assume all 2^k boy/girl configurations equally likely
 - *E* event that family has boy(s) and girl(s)
 - *F* event that family has at most one boy are *E* and *F* independent?
 - (my) intuition useless: answer depends on k
 - $k=2: p(E=\{bg,gb\})=1/2, p(F=\{bg,gb,gg\})=3/4$ $p(E \cap F=\{bg,gb\})=1/2; p(E \cap F) \neq p(E)p(F):$ no
 - $k=3:p(E=\{bbg,bgb,bgg,gbb,gbg,ggb\})=6/8$, $p(F=\{bgg,gbg,ggb,ggg\})=4/8$, $p(E \cap F=\{bgg,gbg,ggb\})=3/8 = p(E)p(F)$: yes
 - $k=4: \ldots :$ not independent

Brief recap

pages 438-444 /400-406

- **probability distribution** on countable set of outcomes *S* is a function
 - $p: S \rightarrow [0,1] = \mathbf{R}_{\geq 0,\leq 1} \text{ with } \sum_{s \in S} p(s) = 1$
- $E \subseteq S: p(E) = \sum_{s \in E} p(s), \quad p(\overline{E}) = 1 p(E)$
- if |S| = n and $\forall s \in S \ p(s) = 1/n$ then: uniform distribution, selection at random
- $E, F \subseteq S$
 - $p(E \cup F) = p(E) + p(F) p(E \cap F)$
 - conditional probability (if $p(F) \neq 0$) $p(E|F) = p(E \cap F)/p(F)$
 - if $p(E \cap F) = p(E)p(F)$ then *E* and *F* are independent ($\leftrightarrow p(E|F) = p(E)$)

Conditional probabilities, example

page 456/419

- D: event that someone has disease d Y: event that someone tests positive for d events: 1. Y given D: true positive 2. *Y* given *D* : false positive 3. *Y* given *D* : false negative 4. *Y* given *D* : true negative event probabilities given by lab experiments (note that 1&3 and 2&4 are complementary) what can we say about the probability of
 - D given Y (should one worry when testing positive?)
 - \overline{D} given \overline{Y} (can one be relieved when testing negative?)

Example continued

page 456/419

suppose p(Y|D) = 0.999 and p(Y|D) = 0.999: i.e., test is 99.9% accurate what can we say about p(D|Y) and p(D|Y)? generally speaking, almost nothing: it depends on frequency of disease if common disease, say p(D) = 0.01: be concerned if test positive: p(D|Y) > 0.9if rare disease, say p(D) = 0.000001: be only slightly concerned if test positive: p(D|Y) < 0.001(quite a bit smaller than 0.999 ...)

Based on: Bayes theorem

turning p(Y|D) into p(D|Y), etc:

pages 455-457 /418-419

definition: $p(Y|D) = p(Y \cap D)/p(D) \quad (p(D) \neq 0)$ $\Rightarrow p(Y \cap D) = p(Y|D)p(D)$

similarly, if $p(Y) \neq 0$: $p(Y \cap D) = p(D|Y)p(Y)$

$$\Rightarrow p(D|Y)p(Y) = p(Y|D)p(D)$$

$$\Rightarrow p(D|Y) = p(Y|D)p(D)/p(Y)$$

with "D: have disease", "Y: test positive"

- *p*(*D*|*Y*) ≈ *p*(*Y*|*D*) if chances of having disease and testing positive are comparable
- p(D|Y) << p(Y|D) if disease unlikely compared to testing positive for it

Bayes theorem, more useful&common form
seen that:
$$p(D|Y) = p(Y|D)p(D)/p(Y)$$

with $Y = (Y \cap D) \cup (Y \cap \overline{D})$ a disjoint union:
 $p(Y) = p(Y \cap D) + p(Y \cap \overline{D})$
 $= p(Y \mid D)p(D) + p(Y \mid \overline{D})p(\overline{D})$
Bayes thm follows (where $p(Y) \neq 0, p(D) \neq 0$):
 $p(D \mid Y) = \frac{p(Y \mid D)p(D)}{p(Y \mid D)p(D) + p(Y \mid \overline{D})p(\overline{D})}$

Bayes theorem, example details continued

if
$$p(D) = 0.01$$
:
 $p(\overline{D} | \overline{Y}) = \frac{p(\overline{Y} | \overline{D}) p(\overline{D})}{p(\overline{Y} | \overline{D}) p(\overline{D}) + p(\overline{Y} | D) p(D)}$
 $= \frac{0.999 * 0.99}{0.999 * 0.99 + 0.001 * 0.01} > 0.999989$

if p(D) = 0.000001:

Bayes theorem, recognizing spam

- $\frac{A_{58/421}}{S}$ S: event that an email message is spam
 - S: complementary event that it is not spam in book: $p(S) = p(\overline{S})$:
 - same probabilities for spam and non-spam

more general: for instance

assume twice as much spam as non-spam $\Rightarrow p(S) = 2/3, p(\overline{S}) = 1/3$

assume you've observed that

- p(``opportunity''|S) = 1/10
- $p(\text{``opportunity''}|\overline{S}) = 1/100$

what is probability that an email message containing "opportunity" is spam?

Bayes theorem, recognizing spam, continued we have p(S) = 2/3, $p(\overline{S}) = 1/3$

and have observed that

page

458/421

- $p(\text{``opportunity''}|\underline{S}) = 1/10$
- p("opportunity" | S) = 1/100

need the probability that an email containing "opportunity" is spam, i.e., p(S| "opportunity") according to Bayes thm (w = "opportunity"): $p(S \mid w) = \frac{p(w \mid S)p(S)}{p(w \mid S)p(S) + p(w \mid \overline{S})p(\overline{S})}$ 0.1 * 2/3 $\frac{0.1 \times 2/3}{0.1 \times 2/3 + 0.01 \times 1/3} > 0.9523$

concludes section 7.3 / 6.3

on to expected values and variances etc, section 7.4 / 6.4

Expected values and variances

pages 463-477 /426-439

- given some probability distribution:
 - what can we expect to happen?
 - how much fluctuation is reasonable?

intuitively: expect average over all outcomes, each outcome weighted by its probability

- roll one die: outcomes are 1,2, ..., 6, each with probability 1/6, average outcome: $1/6+2/6+\ldots+6/6 = 3\frac{1}{2}$
- roll two dice: outcomes are pairs (1,1), (1,2), (1,3),...,(6,6), each with probability 1/36, average outcome: ((1,1)+...+(6,6))/36 = ?
- tossing a coin, what's the average?

Transforming outcomes into real values: random variables

- pages 446-447 /408-409
- a random variable is
- not random
- not a variable

but:

 a function S → R, where S is a sample space
 ⇒ a random variable assigns a real value to each possible outcome in S

distribution of random variable *X* on *S* is the set of pairs (r, p(X=r)) for $r \in X(S)$, where $p(X = r) = \sum_{s \in S: X(s)=r} p(s)$ (note that this is a probability distribution)

Random variables, example

transform uniform distribution into

pages 446-447 /408-409

a more general probability distribution:
let
$$S = \{(1,1),(1,2),...,(6,6)\},\$$
set of outcomes of rolling two dice
define *X* on *S* by $X((i,j)) = i+j$, then:

- $X(S) = \{2,3,\ldots,12\} = S'$
- uniform distribution on *S* generates non-uniform probability distribution *p* on *S'*: $p(2) = p(X = 2) = \sum_{s \in S: X(s)=2} p(s) = p((1,1)) = 1/36$

 $p(3) = \sum_{s \in S: X(s)=3} p(s) = p((1,2)) + p((2,1) = 1/18, \text{ etc.}$

Expected values of a random variable

pages 463-477 /426-439

- given random variable *X* on sample space *S*, intuitive definition of expected value E(X)becomes $E(X) = \sum_{r \in X(S)} r * p(X = r)$
- with $p(X = r) = \sum_{s \in S: X(s) = r} p(s)$ it follows that $E(X) = \sum_{r \in X(S)} r * \left(\sum_{s \in S: X(s) = r} p(s) \right) = \sum_{s \in S} X(s) * p(s)$

thus two different ways to compute E(X):

- sum over values of X: (2/36+3/18+...+11/18+12/36=7)
- sum over sample space: ((2+3+3+...+11+11+12)/36 = 7) (which one to use depends on circumstances)

Example: Bernoulli trial

pages 444-445 /406-408 an experiment with two possible outcomes (success or failure) is called a Bernoulli trial: \Rightarrow if p is success probability, then q = 1-p is the failure probability

three relevant questions:

- if same Bernoulli trial is repeated *n* times, what is probability of a total of *k* successes?
- how many successes expected after *n* trials?
- expect how many trials before success?

assumption: *n* trials (mutually) independent, i.e., conditional probability of success of any trial is *p*, conditioned on outcomes of others

n independent Bernoulli trials:

pages 444-445 /406-408 if success probability of each trial is p, then the probability of precisely k successes in n independent trials is $C(n,k)p^kq^{n-k}$:

- each particular sequence of k successes (and thus n-k failures) occurs with probability p^kq^{n-k} (due to independence)
- there are C(n,k) different sequences
 of k successes (sum probabilities of disjoint events)

as a function of k: the **binomial distribution** because sanity check $\sum_{k=0}^{n} C(n,k) p^{k} q^{n-k} = 1$ relies on binomial theorem

n Bernoulli trials, expected # successes

$$X: random variable counting the number of successes after n Bernoulli trials,
$$\Rightarrow p(X = k) = C(n,k)p^{k}q^{n-k}$$

$$E(X) = \sum_{k \in X(S)} k * p(X = k) \text{ where } X(S) = \{0,1,...,n\}$$

$$\Rightarrow E(X) = \sum_{k=1}^{n} kC(n,k)p^{k}q^{n-k}$$
(pick *k* from *n* first, then leader among *k*, or pick leader first, then leader among *k*, or pick leader first, then $k - 1$ from $n - 1$)

$$= \sum_{k=1}^{n} nC(n-1,k-1)p^{k}q^{n-k}$$
(using $E(X) = \sum_{s \in S} X(s) * p(s)$: inconvenient)$$

n Bernoulli trials, expected # successes, easier page 466/429 if X and Y are random variables on S, then E(X+Y) = E(X) + E(Y)proof: $E(X+Y) = \sum_{s \in S} (X+Y)(s) * p(s)$ (use definition of sum of two functions) $= \sum_{s \in S} (X(s) + Y(s)) * p(s)$ $= \sum_{s \in S} X(s) * p(s) + \sum_{s \in S} Y(s) * p(s)$ = E(X) + E(Y) $(E(X+Y) = \sum t * p(X+Y=t) \text{ inconvenient})$ $t \in (X+Y)(S)$ (application: (i,j) result of two dice, $X_1((i,j))=i$, $X_2((i,j))=j$, then $E(X_1+X_2)=E(X_1)+E(X_2)=3\frac{1}{2}+3\frac{1}{2}=7$)

Remaining question on Bernoulli trials

page 470/429

how many trials can we expect before success?

- experiment: perform trials until success
- outcomes: Y, NY, NNY,, NN...NY,
- \Rightarrow infinite sample space $S = \{Y, NY, NNY, ...\}$
- random variable *X* on *S*:

 $X(s) = \text{number of trials needed for } s \in S,$ $thus X(Y)=1, X(NY)=2, X(NNY)=3, \dots$ $\Rightarrow p(X=1)=p, p(X=2)=qp, \dots, p(X=k)=q^{k-1}p, \dots$ $(\text{note: } \sum_{k=1}^{\infty} q^{k-1}p = p \sum_{\ell=0}^{\infty} q^{\ell} = p/(1-q) = 1,$ thus called geometric distribution)

we need E(X) (use T(r), lecture 8, slide 5; p>0): $E(X) = \sum_{k=1}^{\infty} kq^{k-1}p = ... = p/(1-q)^2 = 1/p$

More on expectations

- pages 471-472 /434-435
- seen that E(X+Y) = E(X) + E(Y) for **any** random variables *X* and *Y* on sample space *S* is it also true that E(XY) = E(X)E(Y)?
- toss coin twice, outcomes {HH,HT,TH,TT} *X* = "total number heads", so *E*(*X*) = 1 *Y* = "total number tails", so *E*(*Y*) = 1 *E*(*XY*) = 2*0/4+1*1/4+1*1/4+0*2/4 = ¹/₂ ⇒ *E*(*XY*) not equal to *E*(*X*)*E*(*Y*)
- \Rightarrow in general E(XY) not equal to E(X)E(Y)

Independence of random variables
if
$$\forall x, y \in \mathbf{R}$$
:
 $p(X = x \text{ and } Y = y)$
equals
 $p(X = x) * p(Y = y)$
then X and Y are independent
if X and Y are independent: $E(XY) = E(X)E(Y)$
 $E(XY) = \sum_{r \in XY(S)} r * p(XY = r)$
 $= \sum_{x \in X(S), y \in Y(S)} xy * p(X = x \text{ and } Y = y)$
 $= \sum_{x \in X(S), y \in Y(S)} xy * p(X = x) p(Y = y)$
 $= (\sum_{x \in X(S), y \in Y(S)} x * p(X = x)) * (\sum_{y \in Y(S)} y * p(Y = y))$
 $= E(X)E(Y)$
 $(p(X=0 \text{ and } Y=0) = 0 \neq 1/16 = p(X=0)*p(Y=0))$

variance and standard deviation if $\forall s \in S: X(s) \ge 0$ then E(X) can be used to pages 472-476 /436-439 bound probability that X deviates from E(X): $\forall x \in \mathbf{R}_{>0}: p(X \ge x) \le E(X)/x$ (Markov's inequality) pf: $E(X)/x = \sum (r/x)p(X = r)$ $r \in X(S)$ $\geq \sum p(X=r) = p(X \geq x)$ $r \in X(S), r \ge x$ stronger result uses variance V(X) of X, $V(X) = \sum_{s \in S} (X(s) - E(X))^2 p(s),$ and the standard deviation $\sigma(X) = \sqrt{V(X)}$ (note: if X in "unit", then V(X) in "unit²")

Variance of a random variable $V(X) = \sum_{s \in S} (X(s) - E(X))^2 p(s)$

pages 472-476 /436-439

- $V(X) = E(X^2) (E(X))^2$ (proof: use definition) \Rightarrow variance single Bernoulli trial is pq
- X, Y independent: V(X+Y) = V(X) + V(Y)pf.: use $V(X) = E(X^2) - (E(X))^2$, E(X+Y) = E(X) + E(Y) (always true) and E(XY) = E(X)E(Y) (due to independence)

 \Rightarrow variance *n* indep. Bernoulli trials is *npq*

Chebyshev's inequality:

page 476/439

$$p(|X(s) - E(X)| \ge x) \le V(X)/x^2$$

pf.: $A = \{s \in S | |X(s) - E(X)| \ge x\} \implies V(X)/x^2 \ge p(A)$

- Chebyshev's stronger than Markov's ($X(S) \ge 0$: $\forall x \in \mathbf{R}_{>0} p(X \ge x) \le E(X)/x$)
- Chebyshev useless for $x \le \sigma(X)$
- exponential (and non-trivial) estimates: use **Chernoff bound** (not here)

Variance example: course evaluation

					83	
				49		
0	4	6	10			24
	2%	3%	6.94	28%	47%	14%
not concerned	extremely poor	poor	unsatisfactory	satisfactory	good	excellent
	1	2	3	4	5	6

 $E(X) = \frac{1*4+2*6+3*10+4*49+5*83+6*24}{176} = 4.55$ $E(X^2) = \frac{12*4+22*6+32*10+42*49+52*83+62*24}{176} = 21.82$ $\Rightarrow V(X) = E(X^2) - (E(X))^2 = 21.82 - 4.55^2 = 1.11$ using Chebyshev's $p(|X(s) - E(X)| \ge x) \le V(X)/x^2$, how many "extremely poor" can we expect? $p(|X(s) - 4.55| \ge 3.55) \le 1.11/3.55^2 = 0.08807$ so: at most $176 \times 0.08807 = 15.50$

Basic probability, facts to remember

- Bayes theorem: $p(D|Y) = \frac{p(Y|D)p(D)}{p(Y|D)p(D) + p(Y|\overline{D})p(\overline{D})}$
- random variable, a function from a sample space to the real numbers
- expected value *E* is additive: for all random variables *X* and *Y*: E(X+Y) = E(X) + E(Y)
- variance $V(X) = E(X^2) E(X)^2$
- for independent random variables X and Y: E(XY) = E(X)E(Y)

V(X+Y) = V(X) + V(Y)

• after about \sqrt{n} drawings from *n*: collision

Final remark on Ch.7/6: birthday problem S sample space with |S| = n, draw k elements at random with replacement how likely is a **collision**, i.e., that an element is drawn twice or more? (applications: building hash table, digital fingerprinting, cryptanalysis, etc.)

• if $k \le 1$: duplicate with probability 0

pages

/409-410

• if k > n: duplicate with probability 1

collision probability increases with growing k, \Rightarrow for what k is collision probability $\geq \frac{1}{2}$? purpose: show that this k is **not** about n/2

Birthday problem, rough analysis

pages 447-449 /409-410 drawing *k* random elements with replacement from sample space *S* with |S| = n, for what *k* is collision probability $\geq \frac{1}{2}$?

look at complementary problem: analyse probability to pick *k* distinct elements

Probability to pick k distinct elements

pages 447-449 /409-410

1. if k = 1: probability 1 that element is unique 2. if k = 2: probability $1 * \frac{n-1}{k}$ to have n two distinct elements 3. if k = 3: probability $1 * \frac{n-1}{2} * \frac{n-2}{2}$ to have n three distinct elements n 4. for general *k*: $1 * \frac{n-1}{2} * \frac{n-2}{2} * \dots * \frac{n-k+1}{2}$ is probability to have k distinct elements

(this becomes zero for k > n, which is right)

Birthday problem, rough analysis continued S sample space with |S| = n, /409-410

pages

447-449

draw k elements at random with replacement

"all-distinct" probability after k drawings is

 $1 * \frac{n-1}{1} * \frac{n-2}{1} * \dots * \frac{n-k+1}{1}$ n n n clearly decreasing: for what k does it get $\leq \frac{1}{2}$ (and thus collision probability $\geq \frac{1}{2}$)?

Birthday problem, rough analysis continued for what k collision probability $\geq \frac{1}{2}$, i.e.: /409-410 $1 * \frac{n-1}{2} * \frac{n-2}{2} * \dots * \frac{n-k+1}{2} < 1/2$ n nn this is equivalent to $(n-1)(n-2)...(n-k+1) \le n^{k-1}/2$ hand-wavy argument: $(n-1)(n-2)...(n-k+1) = n^{k-1} - (k(k-1)/2)n^{k-2} + ...$

 $\Rightarrow n^{k-1} - (k(k-1)/2)n^{k-2} + \dots \leq n^{k-1}/2$ $\Leftrightarrow n^{k-1/2} \leq (k(k-1)/2)n^{k-2} - \dots$

pages

447-449

 \Rightarrow suffices to take k a little bigger than \sqrt{n}

Birthday problem, conclusion

pages 447-449 /409-410 S sample space with |S| = n,

draw k elements at random with replacement:

after "only" $k = \sqrt{\pi n/2}$ drawings, probability of a collision is larger than 1-1/e = 0.632120...

- *k* is lower than what intuition suggests,
 ⇒ commonly called *birthday paradox*
- nothing paradoxical about it, just a consequence of $1+2+\ldots+k = k(k+1)/2$
- leads to lots of algorithms, and trouble