skipping section 6.6 / 5.6

(generating permutations and combinations)
concludes basic counting in Chapter 6 / 5
on to Chapter 7 / 6: Discrete probability (before we go to trickier counting in Chapter $8 / 7$)

Goal of Chapter 7 / 6

understanding basic probabilities, as they pop up all over the place:

- spam filters:
is email spam when it contains "rolex"?
- drug tests:
are you sick when you test positive?
- evaluation of lossy channels:
was "on" bit sent when "on" bit received?
- playing roulette/lotteries/game shows...

Introduction to discrete probability

basic definitions:

- sample space: a set of "possible outcomes" (hands of cards, numbers on dice)
- given a sample space S,
an experiment results in an outcome $s \in S$
- dealing cards (no rep.) \Rightarrow hands of cards
- rolling dice (with rep.) \Rightarrow numbers
- event: a subset of the sample space
("three of a kind", "sum is six")
- if S finite and each $s \in S$ is equally likely to be the result of an experiment, then probability of event E is $p(E)=|E| /|S|$

Complement and union of events

- event $E \subseteq S$ (sample space): the probability that E does not occur is

$$
p(\overline{\bar{E}})=1-p(E)(\text { use }|\bar{E}|=|S|-|E|)
$$

(\bar{E} is complementary event of E wrt S)

- events $E_{1}, E_{2} \subseteq S$, then

$$
p\left(E_{1} \cup E_{2}\right)=p\left(E_{1}\right)+p\left(E_{2}\right)-p\left(E_{1} \cap E_{2}\right)
$$ proof immediate from

$$
\left|E_{1} \cup E_{2}\right|=\left|E_{1}\right|+\left|E_{2}\right|-\left|E_{1} \cap E_{2}\right|
$$

- "counting" is crucial for elementary discrete probabilities (unfortunately it is not enough)

Example of discrete probabilities

urns, doors, coins, dice, cards:

- three doors, price behind only one door: probability $1 / 3$ to win the prize
- select one card from standard deck: probability $4 / 52=1 / 13$ it's an ace
- roll two dice: probability $5 / 36$ that sum=6, for event $=\{(1,5),(2,4),(3,3),(4,2),(5,1)\}$
- gets complicated very easily...
- how to better model "sum of two dice" with sample space $\{2,3, \ldots, 12\}$ and events with different probabilities?
- how to model unfair coin, loaded dice, ...?

Probability theory, odds and ends

 more flexible approach to probability needed, to deal with unfair coins, sum of dice, more contrived combinations of events, etc.- assigning probabilities: not just $p(E)=|E| /|S|$
- conditional probability, independence
- Bernoulli trials: repeating experiments
- random variables: from outcomes to values
- birthday "paradox:" collisions unavoidable (and, later, possibly:
- probabilistic algs: wrt time \& outcome
- "the probabilistic method:" nonconstructive existence proof based on probability theory)

Assigning probabilities

to lift the $p(E)=|E| /|S|$ restriction:
let S be a countable set of outcomes
probability distribution on S is a function $p: S \rightarrow[0,1]=\mathbf{R}_{20, \leq 1}$ with $\sum_{s \in S} p(s)=1$ thus:

- each $s \in S$ is assigned a probability $p(s)$
- for each $s \in S: 0 \leq p(s) \leq 1$
- together $(\forall s \in S)$ probabilities sum to 1 : each experiment results in some outcome
define $p(E)=\sum_{s \in E} p(s)\left(\leq 1=\sum_{s \in S} p(s)\right.$, since $\left.E \subseteq S\right)$

Assigning probabilities, simple remarks

- probability distribution approach covers earlier discrete probabilities: uniform distribution on S with $|S|=n$:

$$
\forall s \in S \quad p(s)=1 / n \quad(\Rightarrow p(E)=|E||S|)
$$

(selecting an element from a sample space with uniform distribution is sampling at random)

- (un)fair coin or dice, sum of dice, etc: easy to model (just make sure $\sum_{s \in S} p(s)=1$)
- complement $p(\bar{E})=1-p(E)$ and union $p\left(E_{1} \cup E_{2}\right)=p\left(E_{1}\right)+p\left(E_{2}\right)-p\left(E_{1} \cap E_{2}\right)$ follow as before

Conditional probability and independence

often probabilities exist in some context,
or when a certain condition is satisfied:

- what's chance to test positive
- what's chance to test positive if sick
- what's chance email is spam, if "...rolex..." we need to be able to figure out if
context or condition influences probability:
- what's the chance of "heads" if the last five tosses were "tails"?
generally speaking: intuition cannot be trusted

Conditional probability: definition

$\underset{\substack{\text { page } \\ 422404}}{ }$ let E and F be events with $p(F)>0$
(thus $E, F \subseteq S$, for some sample space S) the conditional probability of E given F

- is denoted by $p(E \mid F) \quad$ (seen this in $1^{t s}$ semester already)
- is defined as $p(E \mid F)=\frac{p(E \cap F)}{p(F)}$
- and should be interpreted as the probability that E occurs given the fact that F occurs
intuition: universe S replaced by F,

$$
\begin{array}{cc}
& \text { event } E \text { by } E \cap F \\
\Rightarrow & p(E)=|E| /|S| \text { by } p(E \mid F)=|E \cap F| /|F|= \\
& (|E \cap F| /|S|) /(|F| /|S|)=p(E \cap F) / p(F)
\end{array}
$$

Conditional probability, examples

- $3 / 6=1 / 2$
- but given that outcome is ≤ 3 ? probability becomes $1 / 3$, since $F=\{1,2,3\}, p(F)=1 / 2$,

$$
\begin{aligned}
E & =\{2,4,6\}, E \cap F=\{2\}, p(E \cap F)=1 / 6, \\
p(E \mid F) & =p(E \cap F) / p(F)=(1 / 6) /(1 / 2)=1 / 3
\end{aligned}
$$

toss coin $6 \times$; probability last toss is heads?

- $1 / 2$
- but given that first five are tails? probability remains $1 / 2$: $F=\{\mathrm{ttttt}, \mathrm{tttth}\}, E \cap F=\{\mathrm{tttth}\}, p(E \mid F)=1 / 2$ \Rightarrow condition may or may not affect probability

Independence

if $p(E \mid F)=p(E)$, then apparently
occurrence of F does not influence E E and F are called independent:
events E and F are defined to be independent

$$
\text { if } p(E \cap F)=p(E) p(F)
$$

$(p(E \mid F)=p(E \cap F) / p(F)=p(E) p(F) / p(F)=p(E))$ note that $p(F \mid E)=p(F)$ follows too (if $p(E) \neq 0$)
how does one decide independence?

- calculate $p(E \cap F), p(E)$, and $p(F)$, declare independence if $p(E \cap F)=p(E) p(F)$
- in particular: don't trust your intuition

Independence examples

consider families with $k \geq 2$ children, assume all 2^{k} boy/girl configurations equally likely

- E event that family has boy(s) and girl(s)
- F event that family has at most one boy are E and F independent?
(my) intuition useless: answer depends on k
- $k=2: p(\mathrm{E}=\{\mathrm{bg}, \mathrm{gb}\})=1 / 2, p(F=\{\mathrm{bg}, \mathrm{gb}, \mathrm{gg}\})=3 / 4$ $p(E \cap F=\{\mathrm{bg}, \mathrm{gb}\})=1 / 2 ; p(E \cap F) \neq p(E) p(F):$ no
- $k=3: p(\mathrm{E}=\{\mathrm{bbg}, \mathrm{bgb}, \mathrm{bgg}, \mathrm{gbb}, \mathrm{gbg}, \mathrm{ggb}\})=6 / 8$, $p(F=\{\mathrm{bgg}, \mathrm{gbg}, \mathrm{ggb}, \mathrm{ggg}\})=4 / 8$, $p(E \cap F=\{\mathrm{bgg}, \mathrm{gbg}, \mathrm{ggb}\})=3 / 8=p(E) p(F)$: yes
- $k=4$: ... : not independent

Brief recap

- probability distribution on countable set of outcomes S is a function $p: S \rightarrow[0,1]=\mathbf{R}_{\geq 0, \leq 1}$ with $\sum_{s \in S} p(s)=1$
- $E \subseteq S: p(E)=\sum_{s \in E} p(s), \quad p(\bar{E})=1-p(E)$
- if $|S|=n$ and $\forall s \in S p(s)=1 / n$ then:
uniform distribution, selection at random
- $E, F \subseteq S$
- $p(E \cup F)=p(E)+p(F)-p(E \cap F)$
- conditional probability (if $p(F) \neq 0$)

$$
p(E \mid F)=p(E \cap F) / p(F)
$$

- if $p(E \cap F)=p(E) p(F)$ then E and F are independent $(\leftrightarrow p(E \mid F)=p(E))$

Conditional probabilities, example

D : event that someone has disease d Y : event that someone tests positive for d
events: 1. Y given D : true positive
2. Y given \bar{D} : false positive
3. \bar{Y} given D : false negative
4. \bar{Y} given \bar{D} : true negative
event probabilities given by lab experiments (note that $1 \& 3$ and $2 \& 4$ are complementary) what can we say about the probability of

- D given Y (should one worry when testing positive?)
- \bar{D} given \bar{Y} (can one be relieved when testing negative?)

Example continued

suppose $p(Y \mid D)=0.999$ and $p(\bar{Y} \mid \bar{D})=0.999$:
i.e., test is 99.9% accurate
what can we say about $p(D \mid Y)$ and $p(\bar{D} \mid \bar{Y})$?
generally speaking, almost nothing:
it depends on frequency of disease
if common disease, say $p(D)=0.01$:
be concerned if test positive: $p(D \mid Y)>0.9$
if rare disease, say $p(D)=0.000001$:
be only slightly concerned if test positive:

$$
p(D \mid Y)<0.001
$$

(quite a bit smaller than 0.999 ...)

Based on: Bayes theorem

turning $p(Y \mid D)$ into $p(D \mid Y)$, etc: definition: $p(Y \mid D)=p(Y \cap D) / p(D)(p(D) \neq 0)$

$$
\Rightarrow p(Y \cap D)=p(Y \mid D) p(D)
$$

similarly, if $p(Y) \neq 0: p(Y \cap D)=p(D \mid Y) p(Y)$

$$
\begin{aligned}
& \Rightarrow p(D \mid Y) p(Y)=p(Y \mid D) p(D) \\
& \Rightarrow \boldsymbol{p}(\boldsymbol{D} \mid \boldsymbol{Y})=\boldsymbol{p}(\boldsymbol{Y} \mid \boldsymbol{D}) \boldsymbol{p}(\boldsymbol{D}) / \boldsymbol{p}(\boldsymbol{Y})
\end{aligned}
$$

with " D : have disease", " Y : test positive"

- $p(D \mid Y) \approx p(Y \mid D)$ if chances of having disease and testing positive are comparable
- $p(D \mid Y) \ll p(Y \mid D)$ if disease unlikely compared to testing positive for it

Bayes theorem, more useful\&common form

$$
\begin{aligned}
p(Y) & =p(Y \bigcap D)+p(Y \bigcap \bar{D}) \\
& =p(Y \mid D) p(D)+p(Y \mid \bar{D}) p(\bar{D})
\end{aligned}
$$

Bayes thm follows (where $p(Y) \neq 0, p(D) \neq 0$):

$$
p(D \mid Y)=\frac{p(Y \mid D) p(D)}{p(Y \mid D) p(D)+p(Y \mid \bar{D}) p(\bar{D})}
$$

Bayes theorem, details of earlier example

 $\underbrace{}_{\substack{\text { page } \\ 456419}} D$: event to have disease $d$$Y$: event to test positive for d $p(Y \mid D)=0.999$ and $p(\bar{Y} \mid \bar{D})=0.999$, thus $p(\bar{Y} \mid D)=0.001$ and $p(Y \mid \bar{D})=0.001$ If $p(D)=0.01$:

$$
\begin{aligned}
p(D \mid Y) & =\frac{p(Y \mid D) p(D)}{p(Y \mid D) p(D)+p(Y \mid \bar{D}) p(\bar{D})} \\
& =\frac{0.999 * 0.01}{0.999 * 0.01+0.001 * 0.99}=0.9098
\end{aligned}
$$

If $p(D)=0.000001$:
$p(D \mid Y)=\frac{0.999 * 0.000001}{0.999 * 0.000001+0.001 * 0.999999}=0.000998$

Bayes theorem, example details continued

$$
\begin{aligned}
& \text { if } p(D)= \\
& \begin{aligned}
p(\bar{D} \mid \bar{Y}) & =\frac{p(\bar{Y} \mid \bar{D}) p(\bar{D})}{p(\bar{Y} \mid \bar{D}) p(\bar{D})+p(\bar{Y} \mid D) p(D)} \\
& =\frac{0.999 * 0.99}{0.999 * 0.99+0.001 * 0.01}>0.999989
\end{aligned}
\end{aligned}
$$

if $p(D)=0.000001$:
$\begin{aligned} p(\bar{D} \mid \bar{Y}) & =\frac{0.999 * 0.999999}{0.999 * 0.999999+0.001 * 0.000001} \\ & >0.9999999989\end{aligned}$

Bayes theorem, recognizing spam

$\underset{\substack{\text { page } \\ 4888421}}{ } S$: event that an email message is spam
\bar{S} : complementary event that it is not spam in book: $p(S)=p(S)$:
same probabilities for spam and non-spam more general: for instance
assume twice as much spam as non-spam $\Rightarrow p(S)=2 / 3, p(\bar{S})=1 / 3$
assume you've observed that

- p ("opportunity" $\mid \underline{S})=1 / 10$
- $p($ "opportunity" $\mid S)=1 / 100$
what is probability that an email message containing "opportunity" is spam?

Bayes theorem, recognizing spam, continued

we have $p(S)=2 / 3, p(\bar{S})=1 / 3$
and have observed that

- p ("opportunity" $\mid S$) = $1 / 10$
- $p($ ("opportunity" $\mid S)=1 / 100$
need the probability that an email containing
"opportunity" is spam, i.e., $p(S \mid$ "opportunity")
according to Bayes thm ($w=$ "opportunity"):

$$
\begin{aligned}
p(S \mid w) & =\frac{p(w \mid S) p(S)}{p(w \mid S) p(S)+p(w \mid \bar{S}) p(\bar{S})} \\
& =\frac{0.1 * 2 / 3}{0.1 * 2 / 3+0.01 * 1 / 3}>0.9523
\end{aligned}
$$

concludes section 7.3 / 6.3

on to expected values and variances etc, section 7.4 / 6.4

Expected values and variances

- what can we expect to happen?
- how much fluctuation is reasonable?
intuitively: expect average over all outcomes, each outcome weighted by its probability
- roll one die: outcomes are $1,2, \ldots, 6$, each with probability $1 / 6$, average outcome: $1 / 6+2 / 6+\ldots+6 / 6=31 / 2$
- roll two dice: outcomes are pairs $(1,1),(1,2)$,
$(1,3), \ldots,(6,6)$, each with probability $1 / 36$, average outcome: $((1,1)+\ldots+(6,6)) / 36=$?
- tossing a coin, what's the average?

Transforming outcomes into real values:

random variables

a random variable is

- not random
- not a variable
but:
- a function $S \rightarrow \mathbf{R}$, where S is a sample space \Rightarrow a random variable assigns a real value to each possible outcome in S
distribution of random variable X on S is the set of pairs $(r, p(X=r))$ for $r \in X(S)$,
where $p(X=r)=\sum p(s)$
(note that this is a probability distribution)

Random variables, example

 transform uniform distribution intoa more general probability distribution:
let $S=\{(1,1),(1,2), \ldots,(6,6)\}$,
set of outcomes of rolling two dice
define X on S by $X((i, j))=i+j$, then:

- $X(S)=\{2,3, \ldots, 12\}=S^{\prime}$
- uniform distribution on S generates non-uniform probability distribution p on $S^{\prime \prime}$:

$$
\begin{aligned}
& p(2)=p(X=2)=\sum_{s \in S: X(s)=2} p(s)=p((1,1))=1 / 36 \\
& p(3)=\sum_{s \in S: X(s)=3} p(s)=p((1,2))+p((2,1)=1 / 18, \text { etc. }
\end{aligned}
$$

Expected values of a random variable

given random variable X on sample space S, intuitive definition of expected value $E(X)$
becomes $E(X)=\sum_{r \in X(S)} r * p(X=r)$
with $p(X=r)=\sum_{k} p(s)$ it follows that $E(X)=\sum_{r \in X(S)} r *\left(\sum_{s \in S: X(s)=r}^{s \in: X(s)=r} p(s)\right)=\sum_{s \in S} X(s) * p(s)$
thus two different ways to compute $E(X)$:

- sum over values of $X:(2 / 36+3 / 18+\ldots+11 / 18+12 / 36=7)$
- sum over sample space: $((2+3+3+\ldots+11+11+12) 36=7)$
(which one to use depends on circumstances)

Example: Bernoulli trial

an experiment with two possible outcomes (success or failure) is called a Bernoulli trial:
\Rightarrow if p is success probability, then $q=1-p$ is the failure probability
three relevant questions:

- if same Bernoulli trial is repeated n times, what is probability of a total of k successes?
- how many successes expected after n trials?
- expect how many trials before success?
assumption: n trials (mutually) independent, i.e., conditional probability of success of any trial is p, conditioned on outcomes of others

n independent Bernoulli trials:

if success probability of each trial is p, then the probability of precisely k successes in
n independent trials is $C(n, k) p^{k} q^{n-k}$:

- each particular sequence of k successes (and thus $n-k$ failures) occurs with probability $p^{k} q^{n-k}$ (due to independence)
- there are $C(n, k)$ different sequences of k successes (sum probabilities of disjoint events)
as a function of k : the binomial distribution because sanity check $\sum_{k=0}^{n} C(n, k) p^{k} q^{n-k}=1$ relies on binomial theorem

n Bernoulli trials, expected \# successes

X : random variable counting the number of
successes after n Bernoulli trials,
$\Rightarrow p(X=k)=C(n, k) p^{k} q^{n-k}$
$E(X)=\sum_{k \in X(S)} k * p(X=k)$ where $X(S)=\{0,1, \ldots, n\}$
$\Rightarrow E(X)=\sum_{k=1}^{n} k C(n, k) p^{k} q^{n-k}$
(pick k from n first, then leader among k, or pick leader first, then $k-1$ from $n-1$)

$$
\begin{aligned}
& =\sum_{k=1}^{n} n C(n-1, k-1) p^{k} q^{n-k} \\
& =\ldots=n p
\end{aligned}
$$

(using $E(X)=\sum_{s \in S} X(s) * p(s)$: inconvenient)

n Bernoulli trials, expected \# successes, easier

${ }_{4669429}^{\substack{\text { page }}}$ if X and Y are random variables on S, then

$$
E(X+Y)=E(X)+E(Y)
$$

proof: $E(X+Y)=\sum_{s \in S}(X+Y)(s) * p(s)$
(use definition of sum of two functions)

$$
\begin{aligned}
& =\sum_{s \in S}(X(s)+Y(s)) * p(s) \\
& =\sum_{s \in S} X(s) * p(s)+\sum_{s \in S} Y(s) * p(s) \\
& =E(X)+E(Y)
\end{aligned}
$$

$\left(E(X+Y)=\sum_{t \in(X+Y)(S)} t * p(X+Y=t)\right.$ inconvenient $)$
(application: (i, j) result of two dice, $X_{1}((i, j))=i$, $X_{2}((i, j))=j$, then $\left.E\left(X_{1}+X_{2}\right)=E\left(X_{1}\right)+E\left(X_{2}\right)=31 / 2+31 / 2=7\right)$

Remaining question on Bernoulli trials

how many trials can we expect before success?

- experiment: perform trials until success
- outcomes: Y, NY, NNY,, NN...NY, ...
\Rightarrow infinite sample space $S=\{Y, N Y, N N Y, \ldots\}$
- random variable X on S :
$X(s)=$ number of trials needed for $s \in S$,
thus $X(\mathrm{Y})=1, X(\mathrm{NY})=2, ~ X(\mathrm{NNY})=3, \ldots$

$$
\begin{gathered}
\Rightarrow p(X=1)=p, p(X=2)=q p, \ldots, p(X=k)=q^{k-1} p, \ldots \\
\text { (note: } \sum_{k=1}^{\infty} q^{k-1} p=p \sum_{\ell=0}^{\infty} q^{\ell}=p /(1-q)=1 \\
\text { thus called geometric distribution) }
\end{gathered}
$$

we need $E(X)$ (use $T(r)$, lecture 8 , slide $5 ; p>0$):

$$
E(X)=\sum_{k=1}^{\infty} k q^{k-1} p=\ldots=p /(1-q)^{2}=1 / p
$$

More on expectations

seen that $E(X+Y)=E(X)+E(Y)$ for any
random variables X and Y on sample space S
is it also true that $E(X Y)=E(X) E(Y)$?

- toss coin twice, outcomes $\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$
$X=$ 'total number heads", so $E(X)=1$
$Y=$ "total number tails", so $E(Y)=1$

$$
E(X Y)=2 * 0 / 4+1 * 1 / 4+1 * 1 / 4+0 * 2 / 4=1 / 2
$$

$\Rightarrow E(X Y)$ not equal to $E(X) E(Y)$
\Rightarrow in general $E(X Y)$ not equal to $E(X) E(Y)$

Independence of random variables

if $\forall x, y \in \mathbf{R}$:

$$
p(X=x \text { and } Y=y)
$$

equals

$$
p(X=x) * p(Y=y)
$$

then X and Y are independent
if X and Y are independent: $E(X Y)=E(X) E(Y)$

$$
\begin{aligned}
E(X Y) & =\sum_{r \in X Y(S)} r p(X Y=r) \\
& =\sum_{x \in X(S), y e Y(S)} x y * p(X=x \text { and } Y=y) \\
& =\sum_{x \in X(S), v e Y(S)} x y * p(X=x) p(Y=y) \\
& \left.=\left(\sum_{x \in X(S)} * p(X=x)\right) * \sum_{y \in Y(S)} y * p(Y=y)\right) \\
& =E(X) E(Y)
\end{aligned}
$$

$(p(X=0$ and $Y=0)=0 \neq 1 / 16=p(X=0) * p(Y=0))$

variance and standard deviation

 if $\forall s \in S: X(s) \geq 0$ then $E(X)$ can be used to bound probability that X deviates from $E(X)$:$$
\forall x \in \mathbf{R}_{>0}: p(X \geq x) \leq E(X) / x
$$

(Markov's inequality)
pf: $\begin{aligned} E(X) / x & =\sum_{r \in X(S)}(r / x) p(X=r) \\ & \geq \sum_{r \in X(S), r \geq x} p(X=r)=p(X \geq x)\end{aligned}$
stronger result uses variance $V(X)$ of X,

$$
V(X)=\sum_{s \in S}(X(s)-E(X))^{2} p(s)
$$

and the standard deviation $\sigma(X)=\sqrt{V(X)}$
(note: if X in "unit", then $V(X)$ in "unit ${ }^{2}$ ")

Variance of a random variable

$$
V(X)=\sum_{s \in S}(X(s)-E(X))^{2} p(s)
$$

- $V(X)=E\left(X^{2}\right)-(E(X))^{2}$ (proof: use definition) \Rightarrow variance single Bernoulli trial is $p q$
- X, Y independent: $V(X+Y)=V(X)+V(Y)$ pf.: use $V(X)=E\left(X^{2}\right)-(E(X))^{2}$, $E(X+Y)=E(X)+E(Y)$ (always true) and $E(X Y)=E(X) E(Y)$ (due to independence)
\Rightarrow variance n indep. Bernoulli trials is $n p q$

Chebyshev's inequality:

$$
\begin{aligned}
& p(|X(s)-E(X)| \geq x) \leq V(X) / x^{2} \\
& \text { pf.: } A=\{s \in S| | X(s)-E(X) \mid \geq x\} \Rightarrow V(X) / x^{2} \geq p(A)
\end{aligned}
$$

- Chebyshev's stronger than Markov's

$$
\left(X(S) \geq 0: \forall x \in \mathbf{R}_{>0} p(X \geq x) \leq E(X) / x\right)
$$

- Chebyshev useless for $x \leq \sigma(X)$
- exponential (and non-trivial) estimates: use Chernoff bound (not here)

Variance example: course evaluation

$E(X)=(1 * 4+2 * 6+3 * 10+4 * 49+5 * 83+6 * 24) / 176=4.55$
$E\left(X^{2}\right)=\left(1^{2} * 4+2^{2} * 6+3^{2} * 10+4^{2} * 49+5^{2} * 83+6^{2} * 24\right) / 176=21.82$
$\Rightarrow V(X)=E\left(X^{2}\right)-(E(X))^{2}=21.82-4.55^{2}=1.11$
using Chebyshev's $p(|X(s)-E(X)| \geq x) \leq V(X) / x^{2}$,
how many "extremely poor" can we expect?
$p(|X(s)-4.55| \geq 3.55) \leq 1.11 / 3.55^{2}=0.08807$
so: at most $176 * 0.08807=15.50$

Basic probability, facts to remember

- Bayes theorem: $p(D \mid Y)=\frac{p(Y \mid D) p(D)}{p(Y \mid D) p(D)+p(Y \mid \bar{D}) p(\bar{D})}$
- random variable, a function from a sample space to the real numbers
- expected value E is additive: for all random variables X and Y :

$$
E(X+Y)=E(X)+E(Y)
$$

- variance $V(X)=E\left(X^{2}\right)-E(X)^{2}$
- for independent random variables X and Y :

$$
\begin{aligned}
& E(X Y)=E(X) E(Y) \\
& V(X+Y)=V(X)+V(Y)
\end{aligned}
$$

- after about $\sqrt{ } n$ drawings from n : collision

Final remark on Ch.7/6: birthday problem

S sample space with $|S|=n$,

draw k elements at random with replacement how likely is a collision, i.e., that an element is drawn twice or more? (applications: building hash table, digital fingerprinting, cryptanalysis, etc.)

- if $k \leq 1$: duplicate with probability 0
- if $k>n$: duplicate with probability 1
collision probability increases with growing k, \Rightarrow for what k is collision probability $\geq 1 / 2$? purpose: show that this k is not about $n / 2$

Birthday problem, rough analysis
look at complementary problem: analyse probability to pick k distinct elements

Probability to pick \boldsymbol{k} distinct elements

1. if $k=1$: probability 1 that element is unique 2. if $k=2$: probability $1 * \frac{n-1}{n}$ to have two distinct elements
2. if $k=3$: probability $1 * \frac{n-1}{n} * \frac{n-2}{n}$ to have three distinct elements
3. for general k : $1 * \frac{n-1}{n} * \frac{n-2}{n} * \ldots * \frac{n-k+1}{n}$ is probability to have k distinct elements
(this becomes zero for $k>n$, which is right)

Birthday problem, rough analysis continued

S sample space with $|S|=n$,
draw k elements at random with replacement
"all-distinct" probability after k drawings is

$$
1 * \frac{n-1}{n} * \frac{n-2}{n} * \cdots * \frac{n-k+1}{n}
$$

clearly decreasing: for what k does it get $\leq 1 / 2$ (and thus collision probability $\geq 1 / 2$)?

Birthday problem, rough analysis continued

$$
1 * \frac{n-1}{n} * \frac{n-2}{n} * \cdots * \frac{n-k+1}{n} \leq 1 / 2
$$

this is equivalent to

$$
(n-1)(n-2) \ldots(n-k+1) \leq n^{k-1} / 2
$$

hand-wavy argument:
$(n-1)(n-2) \ldots(n-k+1)=n^{k-1}-(k(k-1) / 2) n^{k-2}+\ldots$
$\Rightarrow n^{k-1}-(k(k-1) / 2) n^{k-2}+\ldots \leq n^{k-1} / 2$
$\Leftrightarrow n^{k-1} / 2 \leq(k(k-1) / 2) n^{k-2}-\ldots$
\Rightarrow suffices to take k a little bigger than $\sqrt{ } n$

Birthday problem, conclusion

S sample space with $|S|=n$,
draw k elements at random with replacement:
after "only" $k=\sqrt{\pi n / 2}$ drawings, probability
of a collision is larger than $1-1 / e=0.632120 \ldots$

- k is lower than what intuition suggests, \Rightarrow commonly called birthday paradox
- nothing paradoxical about it, just a consequence of $1+2+\ldots+k=k(k+1) / 2$
- leads to lots of algorithms, and trouble

