on to Chapter 8 / 7:
a goody bag of assorted fancy counting tricks,
without proofs
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Counting using recurrence relations
section 8.1/ 7.1:

examples of non-obvious counting problems
that allow easy reduction to sub-problems

general approach:

* solution a, to problem of size n
1s written as function f of a,,a,,...,a, ,

* depending on fthis may (or may not) lead
to a way to determine a, (in later sections)

examples: runtimes from earlier sections

* binary search among nitemsinb,=b,,+ C
* mergesort of n items mm, =2m, , + n,
solved using ad hoc techniques and MI



Counting examples, section 8.1 /7.1
sss0s  cOmpound 1nterest:
e deposit dy=x at 2% interest, d, after n years:
clearly d, =1.02d,_, and thus d, =1.02"x
* with additional annual contribution of y:
d =1.02d, _,+y, general solution more work

(undying) Tabbits, or # n-bitstrings without “00:
a,=a, ta, , (Fibonacci, different a,, a,)
towers of Hano1: 7,=1, h, =2h,_+1=...=2"-1
# n-digit integers with even number of zeros:

a, =9, ,+(10"'—a ,)=8a, +10"!
# parenthizations of x,*x,*...*x, (Catalan):
Cn — COCn—l T CICn—Z Tt Cn—2C1 T Cn—ICO



8.2 /7.2: Solving (some of) these recurrences
w5 solving a, = c,a,_, was easy: a, =(c,)"a,

/460-471

next case, a, = c,a, | + c,a, », 18 harder:
1s degree 2 case of

linear homogeneous recurrence relation of degree k:
an — Clan—l ™ CZan—Z T Ckan—k
where ¢;s are real constants and ¢, # 0

v d =1.02d_ _,, of degree 1

* d, =1.02d,_,+y: nonhomogeneous

va =a, *a, ,, of degree 2

* h,=2h, ,+1: nonhomogeneous

*m,=2m,,+n: no fixed degree, nonhomogeneous
cC =C,C, ,+CC ,+...+C, ,C, nonlinear
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Solving a, = ca, { + c,a, , (¢, #0)
try a, = r" as solution (for unknown r # 0):
a,=ca, | tca, ,o rm=crl+ e
Srt—cr = =0
Srr—-cr—c,=0
=>Vrr-cr-c=0and a, € R:
a, =X ar'solvesa,=ca, +ca, ,
polynomial 7> — ¢, — ¢, has 2 or 1 roots:
* 2 roots: ry, r, with r,#r,, a, = a1 +a,r,
* Slngle I‘OOt r. an — alrn T aznrn (root of derivative as Well)
with «; determined by g, and a,

conversely: each solution of this form



Example: solving f =1+ f, 5 f=0,f=1

pages

e 2 —r— 1 has roots (1£V5)/2
= 1 = o, (1+N5)12)" + e ((1-V5)/2)"
from f,= o+, =0

and f;= o, (1+V5)2+a,(1-N5)2 = 1
it follows that = 1/75 and a,= —1/\/5

— the nth Fibonacci number i1s

£ =((1+V5) — (1=N5)" )/(2m5)



Example: solving d, =4d, _,—4d,_,, d,=d,=1

wae 12— 4r+ 4 =(r — 2)? has double root 2
—=>d, = 2"+ a,n2”"
from dy= o, = 1

and d\= a2+ta,2 =1
it follows that ;= 1 and a,= '

=d =2"—n2"!
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Solving a,=c,a, +c,a, ,+...+c.a, (¢, #0)
same approach: try a, = " as solution ...:

polynomial 7* — ¢,/*! — ...— ¢, has < k roots:
e all distinct roots 7, 7y, ..., 7.

— hn n n

* roots with multiplicities: more complicated
with ¢; determined by a, a,,..., a,_,
conversely: each solution of this form

Note:
o yk—c"1— ...—c,: characteristic equation
e 1ts roots the characteristic roots
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Handling the nonhomogeneous case

a,=C\a, T Ca, 5+ ... T ca,  + F(n)

with c¢;s real constants, ¢, # 0, and F(n) # 0:
linear nonhomogeneous recurrence relation
witha,=ca, +c.a, ,+...+ca, ,asits
associated homogeneous recurrence relation

* any solution to the latter (which we know)
can be added to solution a'”’ to the former
* particular solution ¢'”’ always exists if
F(n) = (degree t polynomial in n) x s™:
a” =n"(pn'+p_n" +..+p,)s"
where p, # 0 and m 1s multiplicity
of s as root of ¥ — ¢,/ 1— ... — ¢,



Example application “nonhomogeneous”
pages

susor - Hanoi, h=1, h, =2h,_+1=...=2"-1:
* characteristic equation (“CE”) r—-2 =10
—> solution to homogeneous part 1s 2"

* F(n)=1=(degree ¢t polynomial in n) x s"
t=0,s=1:
= a'” =n"(p,)1" aparticular solution
s =1 1snot aroot of CE, som =0
substitute ¢\’ = p, in h, =2h,_+1

* general solution of form a2" — 1
useh=l=>aR!-1=1=a=1
* solutionis 2" — 1



Another application of “nonhomogeneous”
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susorgnterest, dy=x, d, =1.02d,_,+y, where y # 0:
* characteristic equation (“CE”) r—1.02=0
—> solution to homogeneous part 1s a1.02"

* F(n)=y=(degree t polynomial in ) x s"
t=0,s=1:
= a'” =n"(p,)1" aparticular solution
s =1 1s not aroot of CE, som =0
substitute a'”’ = p, ind,=1.02d,_,+y
= py=—/0.02
* general solution of form «1.02” — /0.02
use dy=x = «1.02° —y/0.02=x = a=x+y/0.02

* solution 1s (x+y/0.02)1.02" — /0.02
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Another example
a,: the number of length » ternary strings
(Os, 1s, 2s) with an even number of 1s

n=0:*“” 1s unique empty string, no Is: g, =1
n=1:“0"and “2”, thus a, =2
n=2:%007,“027, “117, “207, “22”, thus a, = 5
recurrence relation?

to get a proper length n+1 string:

* take any (of 3") ternary length » string,

add a “0” (if even 1s) or “1” (1f odd 15s)

* oradd “2” to any of the a, length n strings

= a, ., = a,+ 3", example of nonhomogeneous

(& confirming that a, = 1)



Solving nonhomogeneous a,,, =a, + 3"
sasr (Withay=1,a,=2,a,=)95)
™ characteristic equation (“CE”) r—1=0

= Solution to homogeneous part 1s al” = «

* F(n)=3"=(degree t polynomial in n) x s”
t=0,s=3:
= a'”’ =n"(p,)3" a particular solution

s=31snotarootof CE,som=0
substitute ¢'”) = p 3"in a,,, = a, + 3"

= p,3" 1 =p,3"+3"= p, =%

* general solution of form o + 2 3”
use qy=1 > a+2=1= a="7

* solutioni1s %2(1+ 3”) (is intuitively about right)



Final section 8.2 / 7.2 example application

pages n
o, sumofsquares a,=» i°=a,=a, +n’

* characteristic equation (“CE”) y— 1 = ()
—> solution to homogeneous part 1s a1” =

* F(n)=n?>=(degree 2 polynomlal in n) X §"
t=2,s=1=a” =n"(p,n’+pn+ p,)1"
1s a particular solution; since s = 1 1s a root
of CE of multiplicity 1 it follows that m = 1

* substitute a'” =n(p,n’+ pn+ p,)
ina,=a, ,+n?
and solve for p,, p,, p, using a,, a,, a,

(very much like we’ve determined a, betfore)

» finally use solutiona'”’ + & to conclude a=0



Brief remark on 8.3 / 7.3: simple tricks
s SO far: linear (non)homogeneous recurrences
o of fixed degree
not suitable to solve
*b,=b,,+ C (bmary search runtime)
b, = O(log n)
*m,=2m,,+ n(mergesort runtime)
m, = O(nlog n)
* k, =3k, ,+ Cn (Karatsuba runtime)
k= O(nlog23)
e s =75 ,+ Cn? (Strassen’s Karatsuba-like matrix x)
5 = O(nlog27)
* ctc: see: thms 1&2, pages 514&516 / 477&479
(or use common sense)



8.4 / 7.4 Generating functions
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susn - golving counting problems
by interpreting coefficients of polynomials
(or power series) as the required solutions

simple example:
number of non-negative integer solutions to
e,te, te,=4
* pick 4 cookies from 3 types of cookies in
3+4—1 choose 3— 1 = 15 ways

epick x* from1+x+x" +x° +...=1/(1-x),
pick x from1+x+x" +x° +.. :ﬁ_/(i_—x),and
pick x® from1+x+x" +x° +...=1/(1-x)

— need coefficient of x* in 1/(1—x)’



Power series, basics
sosn ® power series 1s a polynomial of
/484-495 . . .
possibly infinite degree:

S (%)= ZZofixi’ g(x) = ijo gjxj
e define: f(x)+g(x)= Zio (f;+g)x
J(x)g(x) = Zio (Z;_o fkgi—k)xi

* [-to-1 correspondence between /4 and 1ts
Taylor series expansion (around a):

(n)
h(x) = ZOO_O o (a) (x—a)" (' : nth derivative)




Common power/Taylor series expansions

page

526/489 (1 n .Xf)n _ ZZZO (Z)xk
I .
1—x - Zkzox

(1 X) _Zk O( (1 X) _Zk O(”+

e'=> " x/kl  In(+x)=> (-D"'x"/k

plus common substitutions (—x or cx for x),
and term by term differentiation and integration



Back to simple example
s pumber of non-negative integer solutions to
e, +e,+e;=4
* pick 4 cookies from 3 types of cookies in
3+4—1 choose 3— 1 = 15 ways

epick X froml+x+x" +x" +...=1/(1-x),
pick x* from1+x+x" +x° +...=ﬁ_/(i_—x),and
pick x* froml+x+x" +x’ +...=1/(1-x)

—need coefficient of x* in 1/(1—x)’

Wlth . n+k—1
(1 )C) Zk 0(

this coefficient equals (°* ) =15
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Another simple example

number of non-negative integer solutions to
e,te, te,=4

such that e, 1s even and e, a multiple of 3

e unclear how to use basic earlier method
epick x* from1+x+x"+x° +...=1/(1-x),

pick x? from 1+ x> +x* +...=1/(1- xz) and
pick x® from 1+ x° + x° +.. —1/(1 x”)
—need coefficient of x* in 1/((1—x)(1-x?)(1— x?))




Final simple example

s pumber of non-negative integer solutions to
e, te,te;+e, =20
with e, even, e, multiple of 5, e; <4, ¢, <1,

x“ froml+x" +x*+...=1/(1-x"),and
x? froml+x" +x" +...=1/(1-x")
x3 froml+x+x"+x" +x" =1-x")/1-x)

x“ from1+x=(1-x")/(1-x)
— solution is 21 : the coefficient of x° in

( 1 j( 1 jl—x5 l—xz_ 1
1-x* \1-x 1-x \1-x _(l—x)2



Generating function to solve recurrences
soas letapg=1,a, =2a, _,

show that a, = 2" using a generating function:
A(x) = ZZO ax = xA(x) = Z; a j_lxj

= A(x)—2xA(x) =a, + Z: (a.—2a,)x' =1
= A(x)=1/(1-2x)

we know that Y "+ =1/(1-r) (for|r[<1)
with r =2x we find )~ (2x)' =1/(1-2x)
and thus )~ (2x)" = A(x)

it follows that a, =2’
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Another example: a, =a, {+n, ay=0,a,=1

o0

A(x) = Zl_ax—ao+ _ax— S ax'

i=1 !

= A(x) = Zi:1 (a_ +i)x' = ZFO (a,+j+1)x’ .
= A(x) = Z;io ax’ " ijo (j+Dx’"
= A(x) = xz; a jxj + ij;O (j+1)x’

— A(.X) — XA()C) + A (< and ¥ use page 526/489)
(1-x)°
= A(x) = —Zl CB+i—], Dx™!

(1- X)

— A(x) o ijlc(] +19j_1)xj — a, = n(n+1)

2




The approach:
sosn * Interpret sequence a, to be determined as
/493-495 . .
coefficients of a power series of some 4
* use the recurrence relation to derive an
alternative expression f for 4
 find (using a table, using Taylor, ...)
power series expansion for f:

)=, fx

* coefficients f; are closed expression for a,

(many more details in section 8.4 / 7.4)



page
530/493

a,..=a,+ 3" with generating functions

a,=1,a,=2,a,=15
A(x) = Zl_ax —a0+zl_ a,x
= A(x)=1+) a]+1x’+1—1+xzj (X
= A(x)=1+x J_ax +X J_OBJ x’
= A(x) =1+ xA(x)+
1 - 3x1 ,
X —2x
= (1—-x)A(x)=1+ =
(1=x)A(x) 1-3x 1-3x

1-2x
(1-x)(1-3x)

= A(x) =



Continuation

2. we have A(x)=— 2%
(I-x)(1-3x)
write A(x) = v __V
l-x 1-3x

thus u(1-3x)+v(l—x)=1-2x

implying that u+v=1 and 3u+v=2

thus u=v=1/2 and A(x)=;(L+ 1 j

l-x 1-3x
it follows that A(x) =" (1" +3")x’

and thus that a, = %(1 +3")
(always check correctness of a,,a,,a,)



Catalan numbers

e, =3 k1w1thC C =1
let G(x) = Zn Cox

el

=>Gx)’'=) D CkCn_k)x”
S ere
Zn 1Cvnxn —1
= xG(x)” = anl C x"=G(x)-C,

= xG(x)" = G(x)+1=0
1++/1—4x
2X

= G(x) =




Catalan numbers, continued
1—~/1—4x
2x

let xG(x) = — ! J1-4x = f(x)
= f'(x)=(1-4x)""
we will see that (1—4x) " = Z::O (>")x"

G(x) = (+ - choice is bad at zero)

= f'(x)= Z: O(zn)x" term by term integration :
= f(x)= C+Zn L GOxT
— C"‘Zn s 2n)xn+1 _ XG(.X) _ Z(:zocnxn—lrl



Extended binomial coefficients and theorem
nn—1..(n—k+1)
k!
define for real u and integer £ >0
(") = u(u—1)..(u—k+1)
- k!
then for any real u and real x with |x|<1:

(I+x) =2 (Ox'

compare to binomial theorem (integer n > 0) :

(+x)" =2 ()x*

n,ktegers>0: ()=

and (;) =1



Back to Catalan numbers, (1-4x)~"
from (1+x)" = Z:;O (" )x" 1t follows that

(1-4x)""? =" (,)(—4x)"

we will see that (7//%) = (*")

1
()"

o0

G g
n=0 (_4)n( 4)6)

_ Z::o (Znn)xn

thus (1—-4x)™"* = Z



Final step: (7%)

for positive integer » :
(117 = (—=1/2)((-1/2)=1)...((-1/2)—n+1)
e |
_ (—1/2)(-3/ 2)(_5n/ 2)...(—2n-1)/2)
n!
_(=1)" 1-3-5-.2.’1.-('211—1). 2-4-6-n...-(2n)
n! 2" n!
n!'n!

-1/2 2 1
==




8.5& 8.6/7.5 & 7.6: Inclusion & Exclusion

5547 covered 1n homeworks and at midterm

/499-512
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