
 
on to Chapter 8 / 7: 

a goody bag of assorted fancy counting tricks, 
without proofs 



Counting using recurrence relations 
section 8.1 / 7.1: 
examples of non-obvious counting problems 
that allow easy reduction to sub-problems  
 

general approach: 
•   solution an to problem of size n 

is written as function f of a1,a2,…,an�1 
•   depending on f this may (or may not) lead 

to a way to determine an (in later sections) 
 

examples: runtimes from earlier sections 
•   binary search among n items in bn = bn/2 + C 
•   mergesort of n items in mn = 2mn/2 + n, 
solved using ad hoc techniques and MI 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
 
 

pages 
485-494 
/449-456 

 

 
 
 
 
 
 
 
 
 



Counting examples, section 8.1 / 7.1 
compound interest: 
•   deposit d0=x at 2% interest, dn after n years: 

clearly dn =1.02dn�1 and thus dn =1.02nx 
•   with additional annual contribution of y: 

dn =1.02dn�1+y, general solution more work 
 

(undying) rabbits, or # n-bitstrings without “00”: 
an = an�1+an�2 (Fibonacci, different a1, a2) 

 

towers of Hanoi: h1=1, hn =2hn�1+1= …= 2n�1 
# n-digit integers with even number of zeros: 

an = 9an�1+ (10n�1�an�1) = 8an�1+10n�1 
# parenthizations of x0x1…xn (Catalan): 
   Cn = C0Cn�1 + C1Cn�2 +…+ Cn�2C1 + Cn�1C0 
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8.2 / 7.2: Solving (some of) these recurrences 
solving an = c1an�1 was easy: an =(c1)na0 
 

next case, an = c1an�1 + c2an�2, is harder: 
is degree 2 case of 
 

linear homogeneous recurrence relation of degree k: 
an = c1an�1 + c2an�2 +…+ ckan�k 

where cis are real constants and ck z 0 
 
9 dn =1.02dn�1, of degree 1 
•  dn =1.02dn�1+y: nonhomogeneous 
9 an = an�1+an�2, of degree 2 
• hn =2hn�1+1: nonhomogeneous  
• mn = 2mn/2 +n: no fixed degree, nonhomogeneous 
• Cn = C0Cn�1 + C1Cn�2 +…+ Cn�1C0: nonlinear 
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Solving an = c1an�1 + c2an�2   (c2 z 0) 
 

try an = rn as solution (for unknown r z 0): 
an = c1an�1 + c2an�2 �  rn = c1rn�1 + c2rn�2 

 

     � rn � c1rn�1 � c2rn�2 = 0 
 

     � r2 � c1r � c2 = 0 
 

� � r: r2 � c1r � c2 = 0 and Dr � R: 
an = 6r Drrn solves an = c1an�1 + c2an�2 

 

polynomial r2 � c1r � c2 has 2 or 1 roots: 
• 2 roots: r1, r2 with r1zr2, 
• single root r:                              (root of derivative as well) 
with Di determined by a0 and a1 
 

conversely: each solution of this form 
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Example: solving  fn = fn�1 + fn�2,  f0=0, f1=1 
 
 

r2 � r � 1 has roots (1r�5)/2 
 

� fn = D1((1+�5)/2)n + D2((1��5)/2)n 
 

from f0= D1+D2 = 0 
and f1= D1(1+�5)/2+D2(1��5)/2 = 1 
it follows that D1= 1/�5 and D2= �1/�5 
 

� the nth Fibonacci number is  
fn = ( (1+�5)n � (1��5)n )/(2n�5) 
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Example: solving  dn = 4dn�1 � 4dn�2,  d0= d1=1 
 
 

r2 � 4r + 4 =(r � 2)2 has double root 2 
 

� dn = D12n + D2n2n 
 

from d0= D1 = 1 
and d1= D12+D22 = 1 
it follows that D1= 1 and D2= �½ 
 

� dn = 2n � n2n�1 
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Solving an=c1an�1+c2an�2+…+ckan�k (ck z 0) 
 

same approach: try an = rn as solution …: 
 

polynomial rk � c1rk�1 � …� ck has d k roots: 
• all distinct roots r1, r2,…, rk : 
 
 
• roots with multiplicities: more complicated 
 

with Di determined by a0, a1,…, ak�1 
 
 

conversely: each solution of this form 
 

Note: 
•  rk � c1rk�1 � …� ck: characteristic equation 
•  its roots the characteristic roots 
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Handling the nonhomogeneous case 
 

an = c1an�1 + c2an�2 + … + ckan�k + F(n)  
with cis real constants, ck z 0, and F(n) z 0: 
linear nonhomogeneous recurrence relation 
with an = c1an�1 + c2an�2 + … + ckan�k as its 
associated homogeneous recurrence relation 
 

•   any solution to the latter (which we know) 
can be added to solution        to the former 

•   particular solution         always exists if 
F(n) = (degree t polynomial in n) u sn: 
 
where pt z 0 and m is multiplicity 
 of s as root of rk � c1rk�1 � … � ck  
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Example application “nonhomogeneous” 
 

Hanoi, h1=1, hn =2hn�1+1= …= 2n�1: 
•   characteristic equation (“CE”) r � 2 = 0 
� solution to homogeneous part is D2n 
 

•   F(n) = 1 = (degree t polynomial in n) u sn 
t = 0, s = 1: 
�                            a particular solution 
     s = 1 is not a root of CE, so m = 0 

substitute                 in hn = 2hn�1+1 
� p0 = �1 

 

•   general solution of form D2n � 1 
use h1=1 � D21 � 1 = 1 � D = 1 

•   solution is 2n � 1 
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Another application of “nonhomogeneous” 
 

interest, d0=x, dn =1.02dn�1+y, where y z 0: 
•   characteristic equation (“CE”) r � 1.02 = 0 
� solution to homogeneous part is D1.02n 
 

•   F(n) = y = (degree t polynomial in n) u sn 
t = 0, s = 1: 
�                            a particular solution 
     s = 1 is not a root of CE, so m = 0 

substitute                 in dn = 1.02dn�1+y 
� p0 = �y/0.02 

 

•   general solution of form D1.02n � y/0.02 
use d0=x � D1.020 � y/0.02=x � D = x+y/0.02 

•   solution is (x+y/0.02)1.02n � y/0.02 
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Another example 
an: the number of length n ternary strings 
(0s, 1s, 2s) with an even number of 1s 
 

n = 0: “” is unique empty string, no 1s: a0 = 1 
n = 1: “0” and “2”, thus a1 = 2 
n = 2: “00”, “02”, “11”, “20”, “22”, thus a2 = 5 
recurrence relation? 

to get a proper length n+1 string: 
•   take any (of 3n) ternary length n string, 

add a “0” (if even 1s) or “1” (if odd 1s) 
•   or add “2” to any of the an length n strings 

� an+1 = an + 3n, example of nonhomogeneous 
 

(& confirming that a0 = 1) 
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Solving nonhomogeneous an+1 = an + 3n 
(with a0 = 1, a1 = 2, a2 = 5) 
characteristic equation (“CE”) r � 1 = 0 
� Solution to homogeneous part is D1n = D 
 

•   F(n) = 3n = (degree t polynomial in n) u sn 
t = 0, s = 3: 
�                            a particular solution 
      s = 3 is not a root of CE, so m = 0 

substitute                    in  an+1 = an + 3n  
� p03n+1 = p03n + 3n � p0 = ½  

 

•   general solution of form D + ½ 3n 
use a0=1 � D + ½ = 1 � D = ½  

•   solution is  ½(1+ 3n)  (is intuitively about right) 
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Final section 8.2 / 7.2 example application 
 

sum of squares  
•   characteristic equation (“CE”) r � 1 = 0 
� solution to homogeneous part is D1n = D 
 

•   F(n) = n2 = (degree 2 polynomial in n) u sn 
t = 2, s = 1 �  
is a particular solution; since s = 1 is a root  
of CE of multiplicity 1 it follows that m = 1 

•   substitute 
in an = an�1 + n2 

and solve for p0, p1, p2 using a0, a1, a2 
    (very much like we’ve determined an before) 
•   finally use solution               to conclude D=0  
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Brief remark on 8.3 / 7.3: simple tricks 
so far: linear (non)homogeneous recurrences 

of fixed degree 
not suitable to solve 
• bn = bn/2 + C  (binary search runtime) 

bn = O(log n) 
• mn = 2mn/2 + n (mergesort runtime) 

mn = O(nlog n) 
• kn = 3kn/2 + Cn (Karatsuba runtime) 
 
• sn = 7sn/2 + Cn2 (Strassen’s Karatsuba-like matrix u) 
 
• etc: see: thms 1&2, pages 514&516 / 477&479 
                    (or use common sense)  
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8.4 / 7.4 Generating functions 
 

solving counting problems 
by interpreting coefficients of polynomials 
(or power series) as the required solutions 

 

simple example: 
number of non-negative integer solutions to 

e1 + e2 + e3 = 4 
• pick 4 cookies from 3 types of cookies in 

3+4�1 choose 3�1 = 15 ways 
•  
 
 
� need coefficient of x4 in 1/(1�x)3 
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Power series, basics 
•  power series is a polynomial of 

possibly infinite degree:  
 
 
•   define: 
 
 
 
 
 
 

 
 

•   1-to-1 correspondence between h and its 
Taylor series expansion (around a): 
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Common power/Taylor series expansions 
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Back to simple example 
number of non-negative integer solutions to 

e1 + e2 + e3 = 4 
• pick 4 cookies from 3 types of cookies in 

3+4�1 choose 3�1 = 15 ways 
•  
 
 
�need coefficient of x4 in 1/(1�x)3 

     
with 
 
this coefficient equals  
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Another simple example 
number of non-negative integer solutions to 

e1 + e2 + e3 = 4 
such that e2 is even and e3 a multiple of 3  
• unclear how to use basic earlier method 
•  
 
 

 

�need coefficient of x4 in 1/((1�x)(1�x2)(1� x3)) 
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Final simple example 
number of non-negative integer solutions to 

e1 + e2 + e3 + e4 = 20 
with e1 even, e2 multiple of 5, e3 d 4, e4 d 1,  
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Generating function to solve recurrences 
let a0 = 1, an = 2an�1 
 

show that an = 2n using a generating function:  
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Another example: an = an�1 + n,  a0 = 0, a1 = 1 
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The approach: 
•  interpret sequence an to be determined as 
    coefficients of a power series of some A 
•  use the recurrence relation to derive an 

alternative expression  f  for A 
•  find (using a table, using Taylor, …) 
    power series expansion for f: 
 
•  coefficients fi are closed expression for ai 
 

(many more details in section 8.4 / 7.4) 
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an+1 = an + 3n with generating functions 
a0 = 1, a1 = 2, a2 = 5  
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Continuation  
we have  
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Catalan numbers 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
 
 

page 
?/498 

 

 
 
 
 
 
 
 
 
 

1   with 10
1

0 1    ¦ �

 �� CCCCC n

k knkn

¦f

 
 

0
)(let 

n
n

nxCxG

� �¦ ¦f

  � �
0 0

2  )(
n

nn

k knk xCCxG

� �¦ ¦f

 
��

 �� 
1

11

0 1  
n

nn

k knk xCC

¦f

 
� 

1
1

n
n

nxC

01
2 )()( CxGxCxxG

n
n

n �  � ¦f

 

01)()( 2  ��� xGxxG

x
xxG

2
411)( �r

 �



Catalan numbers, continued 
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Extended binomial coefficients and theorem  
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Back to Catalan numbers, (1�4x)�½  
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Final step: 
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8.5 & 8.6 / 7.5 & 7.6: Inclusion & Exclusion 
 

covered in homeworks and at midterm  
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