
23. The flux

The flux of a vector field ~F across a curve C is∫
C

~F · n̂ ds,

where n̂ is the unit normal vector to the curve C, obtained from the
unit tangent vector T̂ by rotating this vector through π/2 clockwise.

This gives us two line integrals:
We can integrate ~F · T̂ . In terms of Riemann sums, we add up the

contributions from the component of ~F in the direction of T̂ , that is,
along C. This computes the work done.

Or we can integrate ~F · n̂. In terms of Riemann sums, we add up
the contributions from the component of ~F in the direction of n̂, that
is, perpendicular to C. This computes the flux.

Suppose that ~F is a velocity vector field. Then the line integral∫
C

~F · n̂ ds,

represents how much matter crosses C in unit time.
To see this, let’s fix ideas and suppose that ~F represents flow of water.

Consider a small portion of C. Along this portion, ~F is approximately
constant. The amount of water crossing C in unit time is given by a
parallelogram with sides ~F and (∆s)T̂ . The area of this parallelogram
is

(~F · n̂)∆s;

~F · n̂ is the height of the parallelogram and ∆s is the base. Dividing
C into small pieces and summing all of these terms, gives a Riemann
sum, an approximation to the total amount of water crossing C in unit
time. Taking the limit as ∆s goes to zero, the line integral∫

C

~F · n̂ ds,

represents how much water crosses C in unit time.
Note that water flowing left to right across C gets counted positively

and water crossing right to left gets counted negatively (from the point
of view of a particle travelling along C).

Example 23.1. Suppose C is a circle of radius a, centre the origin.
Let ~F = xı̂+ y̂. Then ~F points in the same direction as n̂. So

~F · n̂ = |~F | = a.
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It follows that ∮
C

~F · n̂ ds =

∮
C

a ds = 2πa2.

The flux is 2πa2.
On the other hand, suppose we start with ~F = −yı̂+ x̂. Then

~F · n̂ = 0,

since ~F is perpendicular to n̂. The flux is zero.

Note that this makes sense physically. In the first example, water is
spewing out of the origin. Lots of it crosses C. In the second example,
water is spinning around the origin. None of it crosses C.

Now let’s turn to how we would calculate the flux algebraically. We
have

d~r = T̂ ds = 〈dx, dy〉.

The vector n̂ is obtained from T̂ by rotation through π/2 clockwise. So

n̂ ds = 〈dy,−dx〉.

So as not to get lost in notation, let’s suppose the components of ~F
are P and Q,

~F = 〈P,Q〉 = P ı̂+Q̂.

We have∫
C

~F · n̂ ds =

∫
C

〈P,Q〉 · 〈dy,−dx〉 =

∫
C

−Q dx+ P dy.

Theorem 23.2 (Green’s Theorem for flux). If C is a positively oriented

closed curve enclosing a region R and ~F = P ı̂+Q̂ then∮
C

−Q dx+ P dy =

∫∫
R

div ~F dA, where div ~F = Px +Qy.
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Proof. Call M = −Q and N = P , so that ~G = 〈M,N〉 is ~F rotated
through π/2 anticlockwise. Then we have∮

C

−Q dx+ P dy =

∮
C

M dx+N dy

=

∫∫
R

curl ~G dy

=

∫∫
R

Nx −My dy

=

∫∫
R

Px +Qy dy

=

∫∫
R

div ~F dA. �

Example 23.3. Consider the example of a circle C of radius a, centre
the origin. Suppose that ~F = xı̂+ y̂. Then

div ~F = 1 + 1 = 2.

So the RHS of (23.2) is ∫∫
R

2 dA = 2πa2.

Suppose we move the circle away from the origin. Then computing the
LHS becomes quite hard. But the RHS is unchanged.

div ~F is called the divergence of ~F . If ~F is the velocity vector field
of water, the divergence measures how much water is being added (or
taken away); these are known as sources (or sinks). For the vector field
~F = xı̂+ y̂, water is being added everywhere (imagine rain falling on
the ground and then flowing away from the origin).

For the vector field ~F = −yı̂ + x̂ the divergence is zero. No water
is being added or removed, there are no sources or sinks.
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