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Introduction

I first wrote Applied Cryptography in 1993. Two years later, I wrote the greatly 
expanded second edition. At this vantage point of two decades later, it can be hard to 
remember how heady cryptography’s promise was back then. These were the early 
days of the Internet. Most of my friends had e-mail, but that was because most of 
my friends were techies. Few of us used the World Wide Web. There was nothing yet 
called electronic commerce.

Cryptography was being used by the few who cared. We could encrypt our e-mail 
with PGP, but mostly we didn’t. We could encrypt sensitive files, but mostly we 
didn’t. I don’t remember having the option of a usable full-disk encryption product, 
at least one that I would trust to be reliable.

What we did have were ideas—research and engineering ideas—and that was 
the point of Applied Cryptography. My goal in writing the book was to collect 
all the good ideas of academic cryptography under one cover and in a form that 
non-mathematicians could read and use.

What we also had, more important than ideas, was the unshakable belief that 
technology trumped politics. You can see it in John Perry Barlow’s 1996 “Declara-
tion of the Independence of Cyberspace,” where he told governments, “You have 
no moral right to rule us, nor do you possess any methods of enforcement that we 
have reason to fear.” You can see it three years earlier in cypherpunk John Gilmore’s 
famous quote: “The Net interprets censorship as damage and routes around it.” You 
can see it in the pages of Applied Cryptography. The first paragraph of the Preface, 
which I wrote in 1993, says, “There are two kinds of cryptography in this world: 
cryptography that will stop your kid sister from reading your files, and cryptography 
that will stop major governments from reading your files. This book is about the 
latter.”

This was the promise of cryptography. It was the promise behind everything—
from file and e-mail encryption to digital signatures, digital certified mail, secure 
election protocols, and digital cash. The math would give us all power and security, 
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because math trumps everything else. It would topple everything from government 
sovereignty to the music industry’s attempts at stopping file sharing.

The “natural law” of cryptography is that it’s much easier to use than it is to 
break. To take a hand-waving example, think about basic encryption. Adding a sin-
gle bit to a key, say from a 64-bit key to a 65-bit key, adds at most a small amount of 
work to encrypt and decrypt. But it doubles the amount of work to break. Or, more 
mathematically, encryption and decryption work grows linearly with key length, 
but cryptanalysis work grows exponentially. It’s always easier for the communica-
tors than the eavesdropper.

It turned out that this was all true, but less important than we had believed. A 
few years later, we realized that cryptography was just math, and that math has no 
agency. In order for cryptography to actually do anything, it has to be embedded in 
a protocol, written in a programming language, embedded in software, run on an 
operating system and computer attached to a network, and used by living people. 
All of those things add vulnerabilities and—more importantly—they’re more con-
ventionally balanced. That is, there’s no inherent advantage for the defender over 
the attacker. Spending more effort on either results in linear improvements. Even 
worse, the attacker generally has an inherent advantage over the defender, at least 
today.

So when we learn about the NSA through the documents provided by Edward 
Snowden, we find that most of the time the NSA breaks cryptography by circum-
venting it. The NSA hacks the computers doing the encryption and decryption. It 
exploits bad implementations. It exploits weak or default keys. Or it “exfiltrates”—
NSA-speak for steals—keys. Yes, it has some mathematics that we don’t know 
about, but that’s the exception. The most amazing thing about the NSA as revealed 
by Snowden is that it isn’t made of magic.

This doesn’t mean that cryptography is useless: far from it. What cryptography 
does is raise both the cost and risk of attack. Data zipping around the Internet unen-
crypted can be collected wholesale with minimal effort. Encrypted data has to be 
targeted individually. The NSA—or whoever is after your data—needs to target you 
individually and attack your computer and network specifically. That takes time 
and manpower, and is inherently risky. No organization has enough budget to do 
that to everyone; they have to pick and choose. While ubiquitous encryption won’t 
eliminate targeted collection, it does have the potential to make bulk collection 
infeasible. The goal is to leverage the economics, the physics, and the math.

There’s one more problem, though—one that the Snowden documents have illus-
trated well. Yes, technology can trump politics, but politics can also trump tech-
nology. Governments can use laws to subvert cryptography. They can sabotage the 
cryptographic standards in the communications and computer systems you use. 
They can deliberately insert backdoors into those same systems. They can do all 
of those, and then forbid the corporations implementing those systems to tell you 
about it. We know the NSA does this; we have to assume that other governments 
do the same thing.

Never forget, though, that while cryptography is still an essential tool for security, 
cryptography does not automatically mean security. The technical challenges of 
implementing cryptography are far more difficult than the mathematical challenges 
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of making the cryptography secure. And remember that the political challenges of 
being able to implement strong cryptography are just as important as the technical 
challenges. Security is only as strong as the weakest link, and the further away you 
get from the mathematics, the weaker the links become.

The 1995 world of Applied Cryptography, Second Edition, was very different from 
today’s world. That was a singular time in academic cryptography, when I was able 
to survey the entire field of research and put everything under one cover. Today, 
there’s too much, and the task of compiling it all is just too great. For those who 
want a more current book, I recommend Cryptography Engineering¸ which I wrote 
in 2010 with Niels Ferguson and Tadayoshi Kohno. But for a review of those heady 
times of the mid-1990s, and an introduction to what has become an essential tech-
nology of the Internet, Applied Cryptography still holds up surprisingly well.

—Minneapolis, Minnesota, and Cambridge, Massachusetts, January 2015

_______ _________,.,.%~ 
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Foreword 
By Whitfield Diffie 

The literature of cryptography has a curious history. Secrecy, of course, has always 
played a central role, but until the First World War, important developments appeared 
in print in a more or less timely fashion and the field moved forward in much the 
same way as other specialized disciplines. As late as 1918, one of the most influential 
cryptanalytic papers of the twentieth century, William F. Friedman's monograph The 
Index of Coincidence and Its Applications in Cryptography, appeared as a research 
report of the private Riverbank Laboratories [577]. And this, despite the fact that the 
work had been done as part of the war effort. In the same year Edward H. Hebern of 
Oakland, California filed the first patent for a rotor machine [710], the device destined 
to be a mainstay of military cryptography for nearly 50 years. 

After the First World War, however, things began to change. U.S. Army and Navy 
organizations, working entirely in secret, began to make fundamental advances in 
cryptography. During the thirties and forties a few basic papers did appear in the 
open literature and several treatises on the subject were published, but the latter 
were farther and farther behind the state of the art. By the end of the war the transi­
tion was complete. With one notable exception, the public literature had died. That 
exception was Claude Shannon's paper "The Communication Theory of Secrecy 
Systems," which appeared in the Bell System Technical Journal in 1949 [1432]. It 
was similar to Friedman's 1918 paper, in that it grew out of wartime work of Shan­
non's. After the Second World War ended it was declassified, possibly by mistake. 

From 1949 until 1967 the cryptographic literature was barren. In that year a dif­
ferent sort of contribution appeared: David Kahn's history, The Codebreakers [794]. 
It didn't contain any new technical ideas, but it did contain a remarkably complete 
history of what had gone before, including mention of some things that the govern­
ment still considered secret. The significance of The Codebreakers lay not just in its 
remarkable scope, but also in the fact that it enjoyed good sales and made tens of 
thousands of people, who had never given the matter a moment's thought, aware of 
cryptography. A trickle of new cryptographic papers began to be written. 



xviii Foreword by Whitfield Diffie
~-..------:s -------

At about the same time, Horst Feistel, who had earlier worked on identification 
friend or foe devices for the Air Force, took his lifelong passion for cryptography to 
the IBM Watson Laboratory in Yorktown Heights, New York. There, he began devel­
opment of what was to become the U.S. Data Encryption Standard; by the early 
1970s several technical reports on this subject by Feistel and his colleagues had been 
made public by IBM [1482,1484,552]. 

This was the situation when I entered the field in late 1972. The cryptographic lit­
erature wasn't abundant, but what there was included some very shiny nuggets. 

Cryptology presents a difficulty not found in normal academic disciplines: the need 
for the proper interaction of cryptography and cryptanalysis. This arises out of the fact 
that in the absence of real communications requirements, it is easy to propose a sys­
tem that appears unbreakable. Many academic designs are so complex that the would­
be cryptanalyst doesn't know where to start; exposing flaws in these designs is far 
harder than designing them in the first place. The result is that the competitive pro­
cess, which is one strong motivation in academic research, cannot take hold. 

When Martin Hellman and I proposed public-key cryptography in 1975 [496], one 
of the indirect aspects of our contribution was to introduce a problem that does not 
even appear easy to solve. Now an aspiring cryptosystem designer could produce 
something that would be recognized as clever-something that did more than just 
turn meaningful text into nonsense. The result has been a spectacular increase in 
the number of people working in cryptography, the number of meetings held, and 
the number of books and papers published. 

In my acceptance speech for the Donald E. Fink award-given for the best expos­
itory paper to appear in an IEEE journal-which I received jointly with Hellman in 
1980, I told the audience that in writing "Privacy and Authentication," I had an 
experience that I suspected was rare even among the prominent scholars who popu­
late the IEEE awards ceremony: I had written the paper I had wanted to study, but 
could not find, when I first became seriously interested in cryptography. Had I been 
able to go to the Stanford bookstore and pick up a modern cryptography text, I 
would probably have learned about the field years earlier. But the only things avail­
able in the fall of 1972 were a few classic papers and some obscure technical reports. 

The contemporary researcher has no such problem. The problem now is choosing 
where to start among the thousands of papers and dozens of books. The contempo­
rary researcher, yes, but what about the contemporary programmer or engineer who 
merely wants to use cryptography? Where does that person turn? Until now, it has 
been necessary to spend long hours hunting out and then studying the research lit­
erature before being able to design the sort of cryptographic utilities glibly described 
in popular articles. 

This is the gap that Bruce Schneier's Applied Cryptography has come to fill. 
Beginning with the objectives of communication security and elementary examples 
of programs used to achieve these objectives, Schneier gives us a panoramic view of 
the fruits of 20 years of public research. The title says it all; from the mundane 
objective of having a secure conversation the very first time you call someone to the 
possibilities of digital money and cryptographically secure elections, this is where 
you'll find it. 
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Not satisfied that the book was about the real world merely because it went all 
the way down to the code, Schneier has included an account of the world in which 
cryptography is developed and applied, and discusses entities ranging from the Inter­
national Association for Cryptologic Research to the NSA. 

When public interest in cryptography was just emerging in the late seventies and 
early eighties, the National Security Agency (NSA), America's official cryptographic 
organ, made several attempts to quash it. The first was a letter from a long-time 
NSA employee allegedly, avowedly, and apparently acting on his own. The letter 
was sent to the IEEE and warned that the publication of cryptographic material was 
a violation of the International Traffic in Arms Regulations (ITAR). This viewpoint 
turned out not even to be supported by the regulations themselves-which con­
tained an explicit exemption for published material-but gave both the public prac­
tice of cryptography and the 1977 Information Theory Workshop lots of unexpected 
publicity. 

A more serious attempt occurred in 1980, when the NSA funded the American 
Council on Education to examine the issue with a view to persuading Congress to 
give it legal control of publications in the field of cryptography. The results fell far 
short of NSA's ambitions and resulted in a program of voluntary review of crypto­
graphic papers; researchers were requested to ask the NSA's opinion on whether dis­
closure of results would adversely affect the national interest before publication. 

As the eighties progressed, pressure focused more on the practice than the study 
of cryptography. Existing laws gave the NSA the power, through the Department of 
State, to regulate the export of cryptographic equipment. As business became more 
and more international and the American fraction of the world market declined, the 
pressure to have a single product in both domestic and offshore markets increased. 
Such single products were subject to export control and thus the NSA acquired sub­
stantial influence not only over what was exported, but also over what was sold in 
the United States. 

As this is written, a new challenge confronts the public practice of cryptography. 
The government has augmented the widely published and available Data Encryp­
tion Standard, with a secret algorithm implemented in tamper-resistant chips. 
These chips will incorporate a codified mechanism of government monitoring. The 
negative aspects of this "key-escrow" program range from a potentially disastrous 
impact on personal privacy to the high cost of having to add hardware to products 
that had previously encrypted in software. So far key escrow products are enjoying 
less than stellar sales and the scheme has attracted widespread negative comment, 
especially from the independent cryptographers. Some people, however, see more 
future in programming than politicking and have redoubled their efforts to provide 
the world with strong cryptography that is accessible to public scrutiny. 

A sharp step back from the notion that export control law could supersede the 
First Amendment seemed to have been taken in 1980 when the Federal Register 
announcement of a revision to ITAR included the statement: " ... provision has 
been added to make it clear that the regulation of the export of technical data does 
not purport to interfere with the First Amendment rights of individuals." But the 
fact that tension between the First Amendment and the export control laws has not 
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gone away should be evident from statements at a conference held by RSA Data 
Security. NSA's representative from the export control office expressed the opinion 
that people who published cryptographic programs were "in a grey area" with 
respect to the law. If that is so, it is a grey area on which the first edition of this book 
has shed some light. Export applications for the book itself have been granted, with 
acknowledgement that published material lay beyond the authority of the Muni­
tions Control Board. Applications to export the enclosed programs on disk, how­
ever, have been denied. 

The shift in the NSA's strategy, from attempting to control cryptographic research 
to tightening its grip on the development and deployment of cryptographic prod­
ucts, is presumably due to its realization that all the great cryptographic papers in 
the world do not protect a single bit of traffic. Sitting on the shelf, this volume may 
be able to do no better than the books and papers that preceded it, but sitting next 
to a workstation, where a programmer is writing cryptographic code, it just may. 

Whitfield Diffie 
Mountain View, CA 
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Preface 

There are two kinds of cryptography in this world: cryptography that will stop your 
kid sister from reading your files, and cryptography that will stop major govern­
ments from reading your files. This book is about the latter. 

If I take a letter, lock it in a safe, hide the safe somewhere in New York, then tell 
you to read the letter, that's not security. That's obscurity. On the other hand, if I 
take a letter and lock it in a safe, and then give you the safe along with the design 
specifications of the safe and a hundred identical safes with their combinations so 
that you and the world's best safecrackers can study the locking mechanism-and 
you still can't open the safe and read the letter-that's security. 

For many years, this sort of cryptography was the exclusive domain of the mili­
tary. The United States' National Security Agency (NSA), and its counterparts in 
the former Soviet Union, England, France, Israel, and elsewhere, have spent billions 
of dollars in the very serious game of securing their own communications while try­
ing to break everyone else's. Private individuals, with far less expertise and budget, 
have been powerless to protect their own privacy against these governments. 

During the last 20 years, public academic research in cryptography has exploded. 
While classical cryptography has been long used by ordinary citizens, computer 
cryptography was the exclusive domain of the world's militaries since World War IL 
Today, state-of-the-art computer cryptography is practiced outside the secured walls 
of the military agencies. The layperson can now employ security practices that can 
protect against the most powerful of adversaries-security that may protect against 
military agencies for years to come. 

Do average people really need this kind of security? Yes. They may be planning a 
political campaign, discussing taxes, or having an illicit affair. They may be design­
ing a new product, discussing a marketing strategy, or planning a hostile business 
takeover. Or they may be living in a country that does not respect the rights of pri­
vacy of its citizens. They may be doing something that they feel shouldn't be illegal, 
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but is. For whatever reason, the data and communications are personal, private, and 
no one else's business. 

This book is being published in a tumultuous time. In 1994, the Clinton admin­
istration approved the Escrowed Encryption Standard (including the Clipper chip 
and Fortezza card) and signed the Digital Telephony bill into law. Both of these ini­
tiatives try to ensure the government's ability to conduct electronic surveillance. 

Some dangerously Orwellian assumptions are at work here: that the government 
has the right to listen to private communications, and that there is something 
wrong with a private citizen trying to keep a secret from the government. Law 
enforcement has always been able to conduct court-authorized surveillance if pos­
sible, but this is the first time that the people have been forced to take active mea­
sures to make themselves available for surveillance. These initiatives are not 
simply government proposals in some obscure area; they are preemptive and unilat­
eral attempts to usurp powers that previously belonged to the people. 

Clipper and Digital Telephony do not protect privacy; they force individuals to 
unconditionally trust that the government will respect their privacy. The same law 
enforcement authorities who illegally tapped Martin Luther King Jr.'s phones can 
easily tap a phone protected with Clipper. In the recent past, local police authorities 
have either been charged criminally or sued civilly in numerous jurisdictions­
Maryland, Connecticut, Vermont, Georgia, Missouri, and Nevada-for conducting 
illegal wiretaps. It's a poor idea to deploy a technology that could some day facilitate 
a police state. 

The lesson here is that it is insufficient to protect ourselves with laws; we need to 
protect ourselves with mathematics. Encryption is too important to be left solely to 
governments. 

This book gives you the tools you need to protect your own privacy; cryptography 
products may be declared illegal, but the information will never be. 

How TO READ THIS BOOK 

I wrote Applied Cryptography to be both a lively introduction to the field of cryp­
tography and a comprehensive reference. I have tried to keep the text readable with­
out sacrificing accuracy. This book is not intended to be a mathematical text. 
Although I have not deliberately given any false information, I do play fast and loose 
with theory. For those interested in formalism, there are copious references to the 
academic literature. 

Chapter 1 introduces cryptography, defines many terms, and briefly discusses pre­
computer cryptography. 

Chapters 2 through 6 (Part I) describe cryptographic protocols: what people can do 
with cryptography. The protocols range from the simple (sending encrypted mes­
sages from one person to another) to the complex (flipping a coin over the telephone) 
to the esoteric (secure and anonymous digital money exchange). Some of these pro­
tocols are obvious; others are almost amazing. Cryptography can solve a lot of prob­
lems that most people never realized it could. 
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Chapters 7 through 10 (Part II) discuss cryptographic techniques. All four chapters in 
this section are important for even the most basic uses of cryptography. Chapters 7 and 
8 are about keys: how long a key should be in order to be secure, how to generate keys, 
how to store keys, how to dispose of keys, and so on. Key management is the hardest 
part of cryptography and often the Achilles' heel of an otherwise secure system. Chap­
ter 9 discusses different ways of using cryptographic algorithms, and Chapter 10 gives 
the odds and ends of algorithms: how to choose, implement, and use algorithms. 

Chapters 11 through 23 (Part III) list algorithms. Chapter 11 provides the mathe­
matical background. This chapter is only required if you are interested in public-key 
algorithms. If you just want to implement DES (or something similar), you can skip 
ahead. Chapter 12 discusses DES: the algorithm, its history, its security, and some 
variants. Chapters 13, 14, and 15 discuss other block algorithms; if you want some­
thing more secure than DES, skip to the section on IDEA and triple-DES. If you want 
to read about a bunch of algorithms, some of which may be more secure than DES, 
read the whole chapter. Chapters 16 and 17 discuss stream algorithms. Chapter 18 
focuses on one-way hash functions; MD5 and SHA are the most common, although 
I discuss many more. Chapter 19 discusses public-key encryption algorithms, Chap­
ter 20 discusses public-key digital signature algorithms, Chapter 21 discusses public­
key identification algorithms, and Chapter 22 discusses public-key key exchange 
algorithms. The important algorithms are RSA, DSA, Fiat-Shamir, and Diffie­
Hellman, respectively. Chapter 23 has more esoteric public-key algorithms and pro­
tocols; the math in this chapter is quite complicated, so wear your seat belt. 

Chapters 24 and 25 (Part IV) turn to the real world of cryptography. Chapter 24 
discusses some of the current implementations of these algorithms and protocols, 
while Chapter 25 touches on some of the political issues surrounding cryptography. 
These chapters are by no means intended to be comprehensive. 

Also included are source code listings for 10 algorithms discussed in Part III. I was 
unable to include all the code I wanted to due to space limitations, and crypto­
graphic source code cannot otherwise be exported. (Amazingly enough, the State 
Department allowed export of the first edition of this book with source code, but 
denied export for a computer disk with the exact same source code on it. Go figure.) 
An associated source code disk set includes much more source code than I could fit 
in this book; it is probably the largest collection of cryptographic source code out­
side a military institution. I can only send source code disks to U.S. and Canadian 
citizens living in the U.S. and Canada, but hopefully that will change someday. If 
you are interested in implementing or playing with the cryptographic algorithms in 
this book, get the disk. See the last page of the book for details. 

One criticism of this book is that its encyclopedic nature takes away from its 
readability. This is true, but I wanted to provide a single reference for those who 
might come across an algorithm in the academic literature or in a product. For those 
who are more interested in a tutorial, I apologize. A lot is being done in the field; 
this is the first time so much of it has been gathered between two covers. Even so, 
space considerations forced me to leave many things out. I covered topics that I felt 
were important, practical, or interesting. If I couldn't cover a topic in depth, I gave 
references to articles and papers that did. 
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I have done my best to hunt down and eradicate all errors in this book, but many 
have assured me that it is an impossible task. Certainly, the second edition has far 
fewer errors than the first. An errata listing is available from me and will be period­
ically posted to the Usenet newsgroup sci.crypt. If any reader finds an error, please 
let me know. I'll send the first person to find each error in the book a free copy of the 
source code <lisle 
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CHAPTER 1 

Foundations 

1.1 TERMINOLOGY 

Sender and Receiver 

Suppose a sender wants to send a message to a receiver. Moreover, this sender 
wants to send the message securely: She wants to make sure an eavesdropper can­
not read the message. 

Messages and Encryption 

A message is plaintext (sometimes called cleartext). The process of disguising a 
message in such a way as to hide its substance is encryption. An encrypted message 
is ciphertext. The process of turning ciphertext back into plaintext is decryption. 
This is all shown in Figure 1.1. 

(If you want to follow the ISO 7498-2 standard, use the terms "encipher" and 
"decipher." It seems that some cultures find the terms "encrypt" and "decrypt" 
offensive, as they refer to dead bodies.) 

The art and science of keeping messages secure is cryptography, and it is practiced 
by cryptographers. Cryptanalysts are practitioners of cryptanalysis, the art and sci­
ence of breaking ciphertext; that is, seeing through the disguise. The branch of 
mathematics encompassing both cryptography and cryptanalysis is cryptology and 
its practitioners are cryptologists. Modern cryptologists are generally trained in the­
oretical mathematics-they have to be. 

Original 
Plaintext I Ciphertext I Plaintext ----•~I Encryption 1 •. Decryption I • 

Figure 1.1 Encryption and Decryption. 
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Plaintext is denoted by M, for message, or P, for plaintext. It can be a stream of 
bits, a text file, a bitmap, a stream of digitized voice, a digital video image ... what­
ever. As far as a computer is concerned, Mis simply binary data. (After this chapter, 
this book concerns itself with binary data and computer cryptography.) The plain­
text can be intended for either transmission or storage. In any case, Mis the message 
to be encrypted. 

Ciphertext is denoted by C. It is also binary data: sometimes the same size as M, 
sometimes larger. (By combining encryption with compression, C may be smaller 
than M. However, encryption does not accomplish this.) The encryption function E, 
operates on M to produce C. Or, in mathematical notation: 

E(M)=C 

In the reverse process, the decryption function D operates on C to produce M: 

D(C)=M 

Since the whole point of encrypting and then decrypting a message is to recover 
the original plaintext, the following identity must hold true: 

D(E(M))=M 

Authentication, Integrity, and Nonrepudiation 
In addition to providing confidentiality, cryptography is often asked to do other 

jobs: 

Authentication. It should be possible for the receiver of a message to 
ascertain its origin; an intruder should not be able to masquerade as 
someone else. 

Integrity. It should be possible for the receiver of a message to verify 
that it has not been modified in transit; an intruder should not be able 
to substitute a false message for a legitimate one. 

Nonrepudiation. A sender should not be able to falsely deny later that 
he sent a message. 

These are vital requirements for social interaction on computers, and are analo­
gous to face-to-face interactions. That someone is who he says he is ... that some­
one's credentials-whether a driver's license, a medical degree, or a passport-are 
valid ... that a document purporting to come from a person actually came from that 
person .... These are the things that authentication, integrity, and nonrepudiation 
provide. 

Algorithms and Keys 

A cryptographic algorithm, also called a cipher, is the mathematical function used 
for encryption and decryption. (Generally, there are two related functions: one for 
encryption and the other for decryption.) 
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If the security of an algorithm is based on keeping the way that algorithm works 
a secret, it is a restricted algorithm. Restricted algorithms have historical interest, 
but are woefully inadequate by today's standards. A large or changing group of users 
cannot use them, because every time a user leaves the group everyone else must 
switch to a different algorithm. If someone accidentally reveals the secret, everyone 
must change their algorithm. 

Even more damning, restricted algorithms allow no quality control or standard­
ization. Every group of users must have their own unique algorithm. Such a group 
can't use off-the-shelf hardware or software productsi an eavesdropper can buy the 
same product and learn the algorithm. They have to write their own algorithms and 
implementations. If no one in the group is a good cryptographer, then they won't 
know if they have a secure algorithm. 

Despite these major drawbacks, restricted algorithms are enormously popular for 
low-security applications. Users either don't realize or don't care about the security 
problems inherent in their system. 

Modern cryptography solves this problem with a key, denoted by K. This key might 
be any one of a large number of values. The range of possible values of the key is called 
the keyspace. Both the encryption and decryption operations use this key (i.e., they 
are dependent on the key and this fact is denoted by the K subscript), so the functions 
now become: 

EK(M) = C 

DK(C)=M 

Those functions have the property that (see Figure 1.2): 

DK(EJ<(M)) = M 

Some algorithms use a different encryption key and decryption key (see Figure 
1.3). That is, the encryption key, K1, is different from the corresponding decryption 
key, K2 • In this case: 

EK1(M) = C 

Dg2(C)=M 

DK2(EK1 (M)) = Af 

All of the security in these algorithms is based in the key (or keysb none is based 
in the details of the algorithm. This means that the algorithm can be published and 
analyzed. Products using the algorithm can be mass-produced. It doesn't matter if an 

Key 

Plaintext ,---~-~ Ciphertext 
Encryption 

Key 

Original 
,---~-~ Plaintext 

Decryption f------

Figure 1.2 Encryption and decryption with a key. 
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Encryption Decryption 
Key Key 

Original 
Plaintext Ciphertext Plaintext 

Encryption Decryption 

Figure 1.3 Encryption and decryption with two different keys. 

eavesdropper knows your algorithm; if she doesn't know your particular key, she 
can't read your messages. 

A cryptosystem is an algorithm, plus all possible plaintexts, ciphertexts, and keys. 

Symmetric Algorithms 
There are two general types of key-based algorithms: symmetric and public-key. 

Symmetric algorithms, sometimes called conventional algorithms, are algorithms 
where the encryption key can be calculated from the decryption key and vice versa. 
In most symmetric algorithms, the encryption key and the decryption key are the 
same. These algorithms, also called secret-key algorithms, single-key algorithms, or 
one-key algorithms, require that the sender and receiver agree on a key before they 
can communicate securely. The security of a symmetric algorithm rests in the key; 
divulging the key means that anyone could encrypt and decrypt messages. As long 
as the communication needs to remain secret, the key must remain secret. 

Encryption and decryption with a symmetric algorithm are denoted by: 

E1dM) = C 

DK(C)=M 

Symmetric algorithms can be divided into two categories. Some operate on the 
plaintext a single bit (or sometimes byte) at a time; these are called stream algo­
rithms or stream ciphers. Others operate on the plaintext in groups of bits. The 
groups of bits are called blocks, and the algorithms are called block algorithms or 
block ciphers. For modern computer algorithms, a typical block size is 64 bits­
large enough to preclude analysis and small enough to be workable. (Before com­
puters, algorithms generally operated on plaintext one character at a time. You can 
think of this as a stream algorithm operating on a stream of characters.) 

Public-Key Algorithms 
Public-key algorithms (also called asymmetric algorithms) are designed so that 

the key used for encryption is different from the key used for decryption. Further­
more, the decryption key cannot (at least in any reasonable amount of time) be cal­
culated from the encryption key. The algorithms are called "public-key" because 
the encryption key can be made public: A complete stranger can use the encryption 
key to encrypt a message, but only a specific person with the corresponding decryp-
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tion key can decrypt the message. In these systems, the encryption key is often 
called the public key, and the decryption key is often called the private key. The pri­
vate key is sometimes also called the secret key, but to avoid confusion with sym­
metric algorithms, that tag won't be used here. 

Encryption using public key K is denoted by: 

EK(M) = C 

Even though the public key and private key are different, decryption with the cor­
responding private key is denoted by: 

DK(C)=M 

Sometimes, messages will be encrypted with the private key and decrypted with 
the public key; this is used in digital signatures (see Section 2.6). Despite the possi­
ble confusion, these operations are denoted by, respectively: 

EK(M) = C 

DK(C) =M 

Cryptanalysis 

The whole point of cryptography is to keep the plaintext (or the key, or both) 
secret from eavesdroppers (also called adversaries, attackers, interceptors, interlop­
ers, intruders, opponents, or simply the enemy). Eavesdroppers are assumed to have 
complete access to the communications between the sender and receiver. 

Cryptanalysis is the science of recovering the plaintext of a message without 
access to the key. Successful cryptanalysis may recover the plaintext or the key. It 
also may find weaknesses in a cryptosystem that eventually lead to the previous 
results. (The loss of a key through noncryptanalytic means is called a compromise.) 

An attempted cryptanalysis is called an attack. A fundamental assumption in 
cryptanalysis, first enunciated by the Dutchman A. Kerckhoffs in the nineteenth 
century, is that the secrecy must reside entirely in the key [794]. Kerckhoffs 
assumes that the cryptanalyst has complete details of the cryptographic algorithm 
and implementation. ( Of course, one would assume that the CIA does not make a 
habit of telling Mossad about its cryptographic algorithms, but Mossad probably 
finds out anyway.) While real-world cryptanalysts don't always have such detailed 
information, it's a good assumption to make. If others can't break an algorithm, 
even with knowledge of how it works, then they certainly won't be able to break it 
without that knowledge. 

There are four general types of cryptanalytic attacks. Of course, each of them 
assumes that the cryptanalyst has complete knowledge of the encryption algo­
rithm used: 

1. Ciphertext-only attack. The cryptanalyst has the ciphertext of several 
messages, all of which have been encrypted using the same encryption 
algorithm. The cryptanalyst's job is to recover the plaintext of as many 
messages as possible, or better yet to deduce the key (or keys) used to 
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encrypt the messages, in order to decrypt other messages encrypted with 
the same keys. 

Given: C1 = Ek(Pi), C2 = Ek(P2), ... C; = El<(P;) 

Deduce: Either P 1, P2, ..• P;; k; or an algorithm 
to infer P; + 1 from C; + 1 = Ek(P1 + 1) 

2. Known-plaintext attack. The cryptanalyst has access not only to the 
ciphertext of several messages, but also to the plaintext of those messages. 
His job is to deduce the key (or keys) used to encrypt the messages or an 
algorithm to decrypt any new messages encrypted with the same key (or 
keys). 

Given: P1, C 1 = Ek(Pi), P2, C2 = E1<(P2), ... P;, C; = E1AP;) 

Deduce: Either k, or an algorithm 
to infer P; + 1 from cj +I= Ek(P; + 1) 

3. Chosen-plaintext attack. The cryptanalyst not only has access to the 
ciphertext and associated plaintext for several messages, but he also 
chooses the plaintext that gets encrypted. This is more powerful than a 
known-plaintext attack, because the cryptanalyst can choose specific 
plaintext blocks to encrypt, ones that might yield more information about 
the key. His job is to deduce the key (or keys) used to encrypt the messages 
or an algorithm to decrypt any new messages encrypted with the same key 
(or keys). 

Given: P1, C1 = EdP 1), P2, C2 = E1z(P2), ... P;, C; = Ek(P;), 
where the cryptanalyst gets to choose P1, P2, ... P; 

Deduce: Either k, or an algorithm to infer P; + 1 from C; + 1 = E1z(P; + 1) 

4. Adaptive-chosen-plaintext attack. This is a special case of a chosen­
plaintext attack. Not only can the cryptanalyst choose the plaintext that is 
encrypted, but he car. also modify his choice based on the results of previ­
ous encryption. In a chosen-plaintext attack, a cryptanalyst might just be 
able to choose one large block of plaintext to be encrypted; in an adaptive­
chosen-plaintext attack he can choose a smaller block of plaintext and 
then choose another based on the results of the first, and so forth. 

There are at least three other types of cryptanalytic attack. 

5. Chosen-ciphertext attack. The cryptanalyst can choose different cipher­
texts to be decrypted and has access to the decrypted plaintext. For exam­
ple, the cryptanalyst has access to a tamperproof box that does automatic 
decryption. His job is to deduce the key. 

Given: C 1, P1 = Dk(C1), C2, P2 = D1z(C2 ), ••. C;, P; = D1<(C;) 

Deduce: k 
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This attack is primarily applicable to public-key algorithms and will be 
discussed in Section 19 .3. A chosen-ciphertext attack is sometimes effec­
tive against a symmetric algorithm as well. (Sometimes a chosen-plaintext 
attack and a chosen-ciphertext attack are together known as a chosen-text 
attack.) 

6. Chosen-key attack. This attack doesn't mean that the cryptanalyst can 
choose the key; it means that he has some knowledge about the relation­
ship between different keys. It's strange and obscure, not very practical, 
and discussed in Section 12.4. 

7. Rubber-hose cryptanalysis. The cryptanalyst threatens, blackmails, or tor­
tures someone until they give him the key. Bribery is sometimes referred 
to as a purchase-key attack. These are all very powerful attacks and often 
the best way to break an algorithm. 

Known-plaintext attacks and chosen-plaintext attacks are more common than 
you might think. It is not unheard-of for a cryptanalyst to get a plaintext message 
that has been encrypted or to bribe someone to encrypt a chosen message. You may 
not even have to bribe someone; if you give a message to an ambassador, you will 
probably find that it gets encrypted and sent back to his country for consideration. 
Many messages have standard beginnings and endings that might be known to the 
cryptanalyst. Encrypted source code is especially vulnerable because of the regular 
appearance of keywords: #define, struct, else, return. Encrypted executable code has 
the same kinds of problems: functions, loop structures, and so on. Known-plaintext 
attacks (and even chosen-plaintext attacks) were successfully used against both the 
Germans and the Japanese during World War II. David Kahn's books [794,795,796] 
have historical examples of these kinds of attacks. 

And don't forget Kerckhoffs's assumption: If the strength of your new cryptosys­
tem relies on the fact that the attacker does not know the algorithm's inner work­
ings, you're sunk. If you believe that keeping the algorithm's insides secret 
improves the security of your cryptosystem more than letting the academic com­
munity analyze it, you're wrong. And if you think that someone won't disassemble 
your code and reverse-engineer your algorithm, you're nai:ve. (In 1994 this hap­
pened with the RC4 algorithm-see Section 17.1.) The best algorithms we have are 
the ones that have been made public, have been attacked by the world's best cryp­
tographers for years, and are still unbreakable. (The National Security Agency 
keeps their algorithms secret from outsiders, but they have the best cryptographers 
in the world working within their walls-you don't. Additionally, they discuss 
their algorithms with one another, relying on peer review to uncover any weak­
nesses in their work.) 

Cryptanalysts don't always have access to the algorithms, as when the United 
States broke the Japanese diplomatic code PURPLE during World War II [794]-but 
they often do. If the algorithm is being used in a commercial security program, it is 
simply a matter of time and money to disassemble the program and recover the algo­
rithm. If the algorithm is being used in a military communications system, it is sim-
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ply a matter of time and money to buy (or steal) the equipment and reverse-engineer 
the algorithm. 

Those who claim to have an unbreakable cipher simply because they can't break 
it are either geniuses or fools. Unfortunately, there are more of the latter in the 
world. Beware of people who extol the virtues of their algorithms, but refuse to 
make them public; trusting their algorithms is like trusting snake oil. 

Good cryptographers rely on peer review to separate the good algorithms from 
the bad. 

Security of Algorithms 
Different algorithms offer different degrees of security; it depends on how hard 

they are to break. If the cost required to break an algorithm is greater than the value 
of the encrypted data, then you're probably safe. If the time required to break an 
algorithm is longer than the time the encrypted data must remain secret, then 
you're probably safe. If the amount of data encrypted with a single key is less than 
the amount of data necessary to break the algorithm, then you're probably safe. 

I say "probably" because there is always a chance of new breakthroughs in crypt­
analysis. On the other hand, the value of most data decreases over time. It is impor­
tant that the value of the data always remain less than the cost to break the security 
protecting it. 

Lars Knudsen classified these different categories of breaking an algorithm. In 
decreasing order of severity [858]: 

1. Total break. A cryptanalyst finds the key, K. such that DI<(C) = P. 

2. Global deduction. A cryptanalyst finds an alternate algorithm, A, equiva­
lent to D 1dC), without knowing K. 

3. Instance (or local) deduction. A cryptanalyst finds the plaintext of an inter­
cepted ciphertext. 

4. Information deduction. A cryptanalyst gains some information about the 
key or plaintext. This information could be a few bits of the key, some 
information about the form of the plaintext, and so forth. 

An algorithm is unconditionally secure if, no matter how much ciphertext a 
cryptanalyst has, there is not enough information to recover the plaintext. In point 
of fact, only a one-time pad (see Section 1.5) is unbreakable given infinite resources. 
All other cryptosystems are breakable in a ciphertext-only attack, simply by trying 
every possible key one by one and checking whether the resulting plaintext is mean­
ingful. This is called a brute-force attack (see Section 7.1 ). 

Cryptography is more concerned with cryptosystems that are computationally 
infeasible to break. An algorithm is considered computationally secure (sometimes 
called strong) if it cannot be broken with available resources, either current or 
future. Exactly what constitutes "available resources" is open to interpretation. 

You can measure the complexity (see Section 11.1) of an attack in different ways: 
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1. Data complexity. The amount of data needed as input to the attack. 

2. Processing complexity. The time needed to perform the attack. This is 
often called the work factor. 

3. Storage requirements. The amount of memory needed to do the attack. 

As a rule of thumb, the complexity of an attack is taken to be the minimum of 
these three factors. Some attacks involve trading off the three complexities: A faster 
attack might be possible at the expense of a greater storage requirement. 

Complexities are expressed as orders of magnitude. If an algorithm has a process­
ing complexity of 2128, then 2 128 operations are required to break the algorithm. 
(These operations may be complex and time-consuming.) Still, if you assume that 
you have enough computing speed to perform a million operations every second and 
you set a million parallel processors against the task, it will still take over 1019 years 
to recover the key. That's a billion times the age of the universe. 

While the complexity of an attack is constant (until some cryptanalyst finds a bet­
ter attack, of course), computing power is anything but. There have been phenome­
nal advances in computing power during the last half-century and there is no reason 
to think this trend won't continue. Many cryptanalytic attacks are perfect for paral­
lel machines: The task can be broken down into billions of tiny pieces and none of 
the processors need to interact with each other. Pronouncing an algorithm secure 
simply because it is infeasible to break, given current technology, is dicey at best. 
Good cryptosystems are designed to be infeasible to break with the computing 
power that is expected to evolve many years in the future. 

Historical Terms 
Historically, a code refers to a cryptosystem that deals with linguistic units: 

words, phrases, sentences, and so forth. For example, the word "OCELOT" might be 
the ciphertext for the entire phrase "TURN LEFT 90 DEGREES," the word "LOL­
LIPOP" might be the ciphertext for "TURN RIGHT 90 DEGREES," and the words 
"BENT EAR" might be the ciphertext for "HOWITZER." Codes of this type are not 
discussed in this book; see [794,795]. Codes are only useful for specialized circum­
stances. Ciphers are useful for any circumstance. If your code has no entry for 
"ANTEATERS," then you can't say it. You can say anything with a cipher. 

1.2 STEGANOGRAPHY 

Steganography serves to hide secret messages in other messages, such that the 
secret's very existence is concealed. Generally the sender writes an innocuous mes­
sage and then conceals a secret message on the same piece of paper. Historical tricks 
include invisible inks, tiny pin punctures on selected characters, minute differences 
between handwritten characters, pencil marks on typewritten characters, grilles 
which cover most of the message except for a few characters, and so on. 
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More recently, people are hiding secret messages in graphic images. Replace the 
least significant bit of each byte of the image with the bits of the message. The 
graphical image won't change appreciably-most graphics standards specify more 
gradations of color than the human eye can notice-and the message can be stripped 
out at the receiving end. You can store a 64-kilobyte message in a 1024 x 1024 grey­
scale picture this way. Several public-domain programs do this sort of thing. 

Peter Wayner's mimic functions obfuscate messages. These functions modify a 
message so that its statistical profile resembles that of something else: the classi­
fieds section of The New York Times, a play by Shakespeare, or a newsgroup on the 
Internet [1584, 1585]. This type of steganography won't fool a person, but it might 
fool some big computers scanning the Internet for interesting messages. 

1.3 SUBSTITUTION CIPHERS AND TRANSPOSITION CIPHERS 

Before computers, cryptography consisted of character-based algorithms. Different 
cryptographic algorithms either substituted characters for one another or transposed 
characters with one another. The better algorithms did both, many times each. 

Things are more complex these days, but the philosophy remains the same. The 
primary change is that algorithms work on bits instead of characters. This is actu­
ally just a change in the alphaLet size: from 26 elements to two elements. Most good 
cryptographic algorithms still combine elements of substitution and transposition. 

Substitution Ciphers 

A substitution cipher is one in which each character in the plaintext is substi­
tuted for another character in the ciphertext. The receiver inverts the substitution 
on the ciphertext to recover the plaintext. 

In classical cryptography, there are four types of substitution ciphers: 

A simple substitution cipher, or monoalphabetic cipher, is one in 
which each character of the plaintext is replaced with a correspond­
ing character of ciphertext. The cryptograms in newspapers are sim­
ple substitution ciphers. 

A homophonic substitution cipher is like a simple substitution cryp­
tosystem, except a single character of plaintext can map to one of sev­
eral characters of ciphertext. For example, 11 A" could correspond to 
either 5, 13, 25, or 56, "B" could correspond to either 7, 19, 31, or 42, 
and so on. 

A polygram substitution cipher is one in which blocks of characters 
are encrypted in groups. For example, "ABA" could correspond to 
"RTQ, 11 "ABB" could correspond to "SLL, 11 and so on. 

A polyalphabetic substitution cipher is made up of multiple simple 
substitution ciphers. For example, there might be five different sim­
ple substitution ciphers used; the particular one used changes with 
the position of each character of the plaintext. 



1.3 Substitution Ciphers and Transposition Ciphers 

The famous Caesar Cipher, in which each plaintext character is replaced by the 
character three to the right modulo 26 ("A" is replaced by "D," "B" is replaced by 
"E," ... , "W" is replaced by "Z," "X" is replaced by "A," "Y" is replaced by "B," 
and "Z" is replaced by "C") is a simple substitution cipher. It's actually even sim­
pler, because the ciphertext alphabet is a rotation of the plaintext alphabet and not 
an arbitrary permutation. 

ROT13 is a simple encryption program commonly found on UNIX systems; it is 
also a simple substitution cipher. In this cipher, "A" is replaced by "N," "B" is 
replaced by "O," and so on. Every letter is rotated 13 places. 

Encrypting a file twice with ROT13 restores the original file. 

P = ROT13 (ROT13 (P)) 

ROT13 is not intended for security; it is often used in Usenet posts to hide poten­
tially offensive text, to avoid giving away the solution to a puzzle, and so forth. 

Simple substitution ciphers can be easily broken because the cipher does not hide 
the underlying frequencies of the different letters of the plaintext. All it takes is 
about 25 English characters before a good cryptanalyst can reconstruct the plaintext 
[1434]. An algorithm for solving these sorts of ciphers can be found in [578,587, 
1600, 78,1475, 1236,880]. A good computer algorithm is [703]. 

Homophonic substitution ciphers were used as early as 1401 by the Duchy of Man­
tua [794]. They are much more complicated to break than simple substitution ciphers, 
but still do not obscure all of the statistical properties of the plaintext language. With 
a known-plaintext attack, the ciphers are trivial to break. A ciphertext-only attack is 
harder, but only takes a few seconds on a computer. Details are in [1261]. 

Polygram substitution ciphers are ciphers in which groups of letters are encrypted 
together. The Playfair cipher, invented in 1854, was used by the British during 
World War I [794]. It encrypts pairs of letters together. Its cryptanalysis is discussed 
in [587,1475,880]. The Hill cipher is another example of a polygram substitution 
cipher [732]. Sometimes you see Huffman coding used as a cipher; this is an insecure 
polygram substitution cipher. 

Polyalphabetic substitution ciphers were invented by Leon Battista in 1568 [794]. 
They were used by the Union army during the American Civil War. Despite the fact 
that they can be broken easily [819,577,587,794] (especially with the help of com­
puters), many commercial computer security products use ciphers of this form 
[1387, 1390, 1502]. (Details on how to break this encryption scheme, as used in Word­
Perfect, can be found in [135, 139].) The Vigenere cipher, first published in 1586, and 
the Beaufort cipher are also examples of polyalphabetic substitution ciphers. 

Polyalphabetic substitution ciphers have multiple one-letter keys, each of which 
is used to encrypt one letter of the plain text. The first key encrypts the first letter of 
the plaintext, the second key encrypts the second letter of the plaintext, and so on. 
After all the keys are used, the keys are recycled. If there were 20 one-letter keys, 
then every twentieth letter would be encrypted with the same key. This is called the 
period of the cipher. In classical cryptography, ciphers with longer periods were sig­
nificantly harder to break than ciphers with short periods. There are computer tech­
niques that can easily break substitution ciphers with very long periods. 
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A running-key cipher-sometimes called a book cipher-in which one text is 
used to encrypt another text, is another example of this sort of cipher. Even though 
this cipher has a period the length of the text, it can also be broken easily [576,794]. 

Transposition Ciphers 
In a transposition cipher the plaintext remains the same, but the order of charac­

ters is shuffled around. In a simple columnar transposition cipher, the plaintext is 
written horizontally onto a piece of graph paper of fixed width and the ciphertext is 
read off vertically (see Figure 1 .4). Decryption is a matter of writing the ciphertext 
vertically onto a piece of graph paper of identical width and then reading the plain­
text off horizontally. 

Cryptanalysis of these ciphers is discussed in [587,1475]. Since the letters of the 
ciphertext are the same as those of the plain text, a frequency analysis on the cipher­
text would reveal that each letter has approximately the same likelihood as in 
English. This gives a very good clue to a cryptanalyst, who can then use a variety of 
techniques to determine the right ordering of the letters to obtain the plaintext. 
Putting the ciphertext through a second transposition cipher greatly enhances secu­
rity. There are even more complicated transposition ciphers, but computers can 
break almost all of them. 

The German ADFGVX cipher, used during World War I, is a transposition cipher 
combined with a simple substitution. It was a very complex algorithm for its day 
but was broken by Georges Painvin, a French cryptanalyst [794]. 

Although many modern algorithms use transposition, it is troublesome because it 
requires a lot of memory and sometimes requires messages to be only certain 
lengths. Substitution is far more common. 

Rotor Machines 
In the 1920s, various mechanical encryption devices were invented to automate 

the process of encryption. Most were based on the concept of a rotor, a mechanical 
wheel wired to perform a general substitution. 

A rotor machine has a keyboard and a series of rotors, and implements a version 
of the Vigenere cipher. Each rotor is an arbitrary permutation of the alphabet, has 26 
positions, and performs a simple substitution. For example, a rotor might be wired 

Plaintext:coMPUTER GRAPHICS MAY BE SLOW BUT AT LEAST IT'S EXPENSIVE. 

COMPUTERGR 
APHICSMAYB 
F:SLOWBUTAT 
LEASTITSEX 
PENSIVE 

Ciphertext: CAELP OP SEE MHLAN PIOSS UCWTI TSBIVEMUTE RATS', YAERB TX 

Figure 1.4 Columnar transposition cipher. 
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to substitute "F" for "A," "U" for 11B, 11 11L11 for 11 C, 11 and so on. And the output pins 
of one rotor are connected to the input pins of the next. 

For example, in a 4-rotor machine the first rotor might substitute 11F11 for II A," the 
second might substitute 11Y" for 11F, 11 the third might substitute 11E11 for 11Y, 11 and the 
fourth might substitute "C" for 11E"; 11C 11 would be the output ciphertext. Then 
some of the rotors shift, so next time the substitutions will be different. 

It is the combination of several rotors and the gears moving them that makes the 
machine secure. Because the rotors all move at different rates, the period for an n­
rotor machine is 26n. Some rotor machines can also have a different number of posi­
tions on each rotor, further frustrating cryptanalysis. 

The best-known rotor device is the Enigma. The Enigma was used by the Ger­
mans during World War IL The idea was invented by Arthur Scherbius and Arvid 
Gerhard Damm in Europe. It was patented in the United States by Arthur Scherbius 
[1383]. The Germans beefed up the basic design considerably for wartime use. 

The German Enigma had three rotors, chosen from a set of five, a plugboard that 
slightly permuted the plaintext, and a reflecting rotor that caused each rotor to oper­
ate on each plaintext letter twice. As complicated as the Enigma was, it was broken 
during World War IL First, a team of Polish cryptographers broke the German 
Enigma and explained their attack to the British. The Germans modified their 
Enigma as the war progressed, and the British continued to cryptanalyze the new 
versions. For explanations of how rotor ciphers work and how they were broken, see 
[794,86,448,498,446,880,1315,1587,690]. Two fascinating accounts of how the 
Enigma was broken are [735,796]. 

Further Reading 
This is not a book about classical cryptography,, so I will not dwell further on these 

subjects. Two excellent precomputer cryptology books are [587,1475]; [448] presents 
some modern cryptanalysis of cipher machines. Dorothy Denning discusses many of 
these ciphers in [456] and [880] has some fairly complex mathematical analysis of the 
same ciphers. Another older cryptography text, which discusses analog cryptogra­
phy, is [99]. An article that presents a good overview of the subject is [579]. David 
Kahn's historical cryptography books are also excellent [794,795,796]. 

1.4 SIMPLE XOR 
XOR is exclusive-or operation: 1 /\ 1 in C or EB in mathematical notation. It's a stan­
dard operation on bits: 

0EB0=0 

0EBl=l 

lEB0=l 

lEBl=0 

Also note that: 

aEBa=0 

aEBbEBb=a 
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The simple-XOR algorithm is really an embarrassment; it's nothing more than a 
Vigenere polyalphabetic cipher. It's here only because of its prevalence in commer­
cial software packages, at least those in the MS-DOS and Macintosh worlds 
[1502,1387]. Unfortunately, if a software security program proclaims that it has a 
"proprietary" encryption algorithm-significantly faster than DES-the odds are 
that it is some variant of this. 

/* Usage: crypto key input_file output_file */ 

void main (int a rgc, char *argv[J) 
{ 

FILE *fi' *fo; 
char *cp; 
int C; 

if ((cp = argv[l]) && *cp!='\O') 
if ((fi = fopen(argv[ZJ, "rb")J != NULL) 

if ((fo = fopen(argv[3J, "wb"Jl != NULL) 
while (Cc= getc(fi)) != EOF) { 

if (!*cpl cp= argv[l]; 
C '= *(cp++); 
putc(c,fo); 

fcl ose( fo); 

fcl ose(fi); 

This is a symmetric algorithm. The plaintext is being XORed with a keyword to 
generate the ciphertext. Since XORing the same value twice restores the original, 
encryption and decryption use exactly the same program: 

PfBK=C 

CfBK=P 

There's no real security here. This kind of encryption is trivial to break, even 
without computers [587, 1475]. It will only take a few seconds with a computer. 

Assume the plaintext is English. Furthermore, assume the key length is any small 
number of bytes. Here's how to break it: 

1. Discover the length of the key by a procedure known as counting coinci­
dences [577]. XOR the ciphertext against itself shifted various numbers of 
bytes, and count those bytes that are equal. If the displacement is a multi­
ple of the key length, then something over 6 percent of the bytes will be 
equal. If it is not, then less than 0.4 percent will be equal (assuming a ran­
dom key encrypting normal ASCII text; other plaintext will have different 
numbers). This is called the index of coincidence. The smallest displace­
ment that indicates a multiple of the key length is the length of the key. 
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2. Shift the ciphertext by that length and XOR it with itself. This removes 
the key and leaves you with plaintext XORed with the plaintext shifted 
the length of the key. Since English has 1.3 bits of real information per byte 
( see Section 11.1 ), there is plenty of redundancy for determining a unique 
decryption. 

Despite this, the list of software vendors that tout this toy algorithm as being 
"almost as secure as DES" is staggering [1387]. It is the algorithm (with a 160-bit 
repeated "key") that the NSA finally allowed the U.S. digital cellular phone indus­
try to use for voice privacy. An XOR might keep your kid sister from reading your 
files, but it won't stop a cryptanalyst for more than a few minutes. 

1.5 ONE-TIME PADS 

Believe it or not, there is a perfect encryption scheme. It's called a one-time pad, and 
was invented in 1917 by Major Joseph Mauborgne and AT&T's Gilbert Vernam 
[794]. (Actually, a one-time pad is a special case of a threshold scheme; see Section 
3.7.) Classically, a one-time pad is nothing more than a large nonrepeating set of 
truly random key letters, written on sheets of paper, and glued together in a pad. In 
its original form, it was a one-time tape for teletypewriters. The sender uses each 
key letter on the pad to encrypt exactly one plaintext character. Encryption is the 
addition modulo 26 of the plaintext character and the one-time pad key character. 

Each key letter is used exactly once, for only one message. The sender encrypts 
the message and then destroys the used pages of the pad or used section of the tape. 
The receiver has an identical pad and uses each key on the pad, in turn, to decrypt 
each letter of the ciphertext. The receiver destroys the same pad pages or tape sec­
tion after decrypting the message. New message-new key letters. For example, if 
the message is: 

ONETIMEPAD 

and the key sequence from the pad is 

TBFRGFARFM 

then the ciphertext is 

IPKLPSFHGQ 

because 

0 +T mod26 =I 

N +Bmod26 =P 

E + F mod 26 = K 

etc. 
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Assuming an eavesdropper can't get access to the one-time pad used to encrypt 
the message, this scheme is perfectly secure. A given ciphertext message is equally 
likely to correspond to any possible plaintext message of equal size. 

Since every key sequence is equally likely (remember, the key letters are gener­
ated randomly), an adversary has no information with which to cryptanalyze the 
ciphertext. The key sequence could just as likely be: 

POYYAEAAZX 

which would decrypt to: 

SALMON EGGS 

or 

BXFGBMTMXM 

which would decrypt to: 

GREEN FLUID 

This point bears repeating: Since every plaintext message is equally possible, 
there is no way for the cryptanalyst to determine which plaintext message is the 
correct one. A random key sequence added to a nonrandom plaintext message pro­
duces a completely random ciphertext message and no amount of computing power 
can change that. 

The caveat, and this is a big one, is that the key letters have to be generated ran­
domly. Any attacks against this scheme will be against the method used to generate 
the key letters. Using a pseudo-random number generator doesn't count; they 
always have nonrandom properties. If you use a real random source-this is much 
harder than it might first appear, see Section 17.14-it's secure. 

The other important point is that you can never use the key sequence again, ever. 
Even if you use a multiple-gigabyte pad, if a cryptanalyst has multiple ciphertexts 
whose keys overlap, he can reconstruct the plaintext. He slides each pair of cipher­
texts against each other and counts the number of matches at each position. If they 
are aligned right, the proportion of matches jumps suddenly-the exact percentages 
depend on the plaintext language. From this point cryptanalysis is easy. It's like the 
index of coincidence, but with just two "periods" to compare [904]. Don't do it. 

The idea of a one-time pad can be easily extended to binary data. Instead of a one­
time pad consistmg of letters, use a one-time pad of bits. Instead of adding the plain­
text to the one-time pad, use an XOR. To decrypt, XOR the ciphertext with the same 
one-time pad. Everything else remains the same and the security is just as perfect. 

This all sounds good, but there are a few problems. Since the key bits must be ran­
dom and can never be used again, the length of the key sequence must be equal to 
the length of the message. A one-time pad might be suitable for a few short mes­
sages, but it will never work for a 1.544 Mbps communications channel. You can 
store 650 megabytes worth of random bits on a CD-ROM, but there are problems. 
First, you want exactly two copies of the random bits, but CD-ROMs are cconomi-
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cal only for large quantities. And second, you want to be able to destroy the bits 
already used. CD-ROM has no erase facilities except for physically destroying the 
entire disk. Digital tape is a much better medium for this sort of thing. 

Even if you solve the key distribution and storage problem, you have to make sure 
the sender and receiver are perfectly synchronized. If the receiver is off by a bit (or if 
some bits are dropped during the transmission), the message won't make any sense. 
On the other hand, if some bits are altered during transmission (without any bits 
being added or removed-something far more likely to happen due to random noise), 
only those bits will be decrypted incorrectly. But on the other hand, a one-time pad 
provides no authenticity. 

One-time pads have applications in today's world, primarily for ultra-secure low­
bandwidth channels. The hotline between the United States and the former Soviet 
Union was (is it still active?) rumored to be encrypted with a one-time pad. Many 
Soviet spy messages to agents were encrypted using one-time pads. These messages 
are still secure today and will remain that way forever. It doesn't matter how long 
the supercomputers work on the problem. Even after the aliens from Andromeda 
land with their massive spaceships and undreamed-of computing power, they will 
not be able to read the Soviet spy messages encrypted with one-time pads (unless 
they can also go back in time and get the one-time pads). 

1.6 COMPUTER ALGORITHMS 

There are many cryptographic algorithms. These are three of the most common: 

DES (Data Encryption Standard) is the most popular computer encryp­
tion algorithm. DES is a U.S. and international standard. It is a sym­
metric algorithm; the same key is used for encryption and decryption. 

RSA (named for its creators-Rivest, Shamir, and Adleman) is the 
most popular public-key algorithm. It can be used for both encryption 
and digital signatures. 

DSA (Digital Signature Algorithm, used as part of the Digital Signa­
ture Standard) is another public-key algorithm. It cannot be used for 
encryption, but only for digital signatures. 

These are the kinds of stuff this book is about. 

1. 7 LARGE NUMBERS 

Throughout this book, I use various large numbers to describe different things in 
cryptography. Because it is so easy to lose sight of these numbers and what they sig­
nify, Table 1.1 gives physical analogues for some of them. 

These numbers are order-of-magnitude estimates, and have been culled from a 
variety of sources. Many of the astrophysics numbers are explained in Freeman 
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Physical Analogue 

TABLE 1.1 
Large Numbers 

Odds of being killed by lightning (per day) 
Odds of winning the top prize in a U.S. state lottery 
Odds of winning the top prize in a U.S. state lottery 
and being killed by lightning in the same day 

Odds of drowning (in the U.S. per year) 
Odds of being killed in an automobile accident 
(in the U.S. in 1993) 

Odds of being killed in an automobile accident 
(in the U.S. per lifetime) 

Time until the next ice age 
Time until the sun goes nova 
Age of the planet 
Age of the Universe 
Number of atoms in the planet 
Number of atoms in the sun 
Number of atoms in the galaxy 
Number of atoms in the Universe (dark matter excluded) 
Volume of the Universe 

If the Universe is Closed: 
Total lifetime of the Universe 

If the Universe is Open: 
Time until low-mass stars cool off 
Time until planets detach from stars 
Time until stars detach from galaxies 
Time until orbits decay by gravitational radiation 
Time until black holes decay by the Hawking process 
Time until all matter is liquid at zero temperature 
Time until all matter decays to iron 
Time until all matter collapses to black holes 

Number 

1 in 9 billion (233 ) 

1 in 4,000,000 (222) 

1 in 255 
1 in 59,000 (216) 

1 in 6100 (213) 

1 in 88 (27) 

14,000 (214) years 
109 (230) years 
109 (230) years 
1010 (234) years 
1051 (2170) 
1057(2190) 
1067 (2223) 
1077 (2265) 
1Os4 (22so) cm3 

1011 (237) years 
1018 (261) seconds 

1014 (247) years 
1015 (2 50) years 
1019 (264) years 
1020 (267) years 
1064 (2213) years 
1065 (2216) years 
101026 years 
101076 years 

Dyson's paper, "Time Without End: Physics and Biology in an Open Universe," in 
Reviews of Modern Physics, v. 52, n. 3, July 1979, pp. 447-460. Automobile accident 
deaths are calculated from the Department of Transportation's statistic of 163 
deaths per million people in 1993 and an average lifespan of 69.7 years. 
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CHAPTER 2 

Protocol Building Blocks 

2.1 INTRODUCTION TO PROTOCOLS 

The whole point of cryptography is to solve problems. (Actually, that's the whole 
point of computers-something many people tend to forget.) Cryptography solves 
problems that involve secrecy, authentication, integrity, and dishonest people. You 
can learn all about cryptographic algorithms and techniques, but these are academic 
unless they can solve a problem. This is why we are going to look at protocols first. 

A protocol is a series of steps, involving two or more parties, designed to accom­
plish a task. This is an important definition. A "series of steps" means that the pro­
tocol has a sequence, from start to finish. Every step must be executed in turn, and 
no step can be taken before the previous step is finished. "Involving two or more 
parties" means that at least two people are required to complete the protocol; one 
person alone does not make a protocol. A person alone can perform a series of steps 
to accomplish a task (like baking a cake), but this is not a protocol. (Someone else 
must eat the cake to make it a protocol.) Finally, "designed to accomplish a task" 
means that the protocol must achieve something. Something that looks like a pro­
tocol but does not accomplish a task is not a protocol-it's a waste of time. 

Protocols have other characteristics as well: 

Everyone involved in the protocol must know the protocol and all of 
the steps to follow in advance. 

Everyone involved in the protocol must agree to follow it. 

The protocol must be unambiguous; each step must be well defined 
and there must be no chance of a misunderstanding. 

The protocol must be complete; there must be a specified action for 
every possible situation. 
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The protocols in this book are organized as a series of steps. Execution of the pro­
tocol proceeds linearly through the steps, unless there are instructions to branch to 
another step. Each step involves at least one of two things: computations by one or 
more of the parties, or messages sent among the parties. 

A cryptographic protocol is a protocol that uses cryptography. The parties can be 
friends and trust each other implicitly or they can be adversaries and not trust one 
another to give the correct time of day. A cryptographic protocol involves some 
cryptographic algorithm, but generally the goal of the protocol is something beyond 
simple secrecy. The parties participating in the protocol might want to share parts 
of their secrets to compute a value, jointly generate a random sequence, convince 
one another of their identity, or simultaneously sign a contract. The whole point of 
using cryptography in a protocol is to prevent or detect eavesdropping and cheating. 
If you have never seen these protocols before, they will radically change your ideas 
of what mutually distrustful parties can accomplish over a computer network. In 
general, this can be stated as: 

It should not be possible to do more or learn more than what is spec­
ified in the protocol. 

This is a lot harder than it looks. In the next few chapters I discuss a lot of proto­
cols. In some of them it is possible for one of the participants to cheat the other. In 
others, it is possible for an eavesdropper to subvert the protocol or learn secret infor­
mation. Some protocols fail because the designers weren't thorough enough in their 
requirements definitions. Others fail because their designers weren't thorough 
enough in their analysis. Like algorithms, it is much easier to prove insecurity than 
it is to prove security. 

The Purpose of Protocols 

In daily life, there are informal protocols for almost everything: ordering goods 
over the telephone, playing poker, voting in an election. No one thinks much about 
these protocols; they have evolved over time, everyone knows how to use them, and 
they work reasonably well. 

These days, more and more human interaction takes place over computer net­
works instead of face-to-face. Computers need formal protocols to do the same 
things that people do without thinking. If you moved from one state to another and 
found a voting booth that looked completely different from the ones you were used 
to, you could easily adapt. Computers are not nearly so flexible. 

Many face-to-face protocols rely on people's presence to ensure fairness and secu­
rity. Would you send a stranger a pile of cash to buy groceries for you? Would you 
play poker with someone if you couldn't see him shuffle and deal? Would you mail 
the government your secret ballot without some assurance of anonymity? 

It is nai:ve to assume that people on computer networks are honest. It is nai:ve to 
assume that the managers of computer networks are honest. It is even nai:ve to 
assume that the designers of computer networks are honest. Most are, but the dis-
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honest few can do a lot of damage. By formalizing protocols, we can examine ways 
in which dishonest parties can subvert them. Then we can develop protocols that 
are immune to that subversion. 

In addition to formalizing behavior, protocols abstract the process of accomplish­
ing a task from the mechanism by which the task is accomplished. A communica­
tions protocol is the same whether implemented on PCs or VAXs. We can examine 
the protocol without getting bogged down in the implementation details. When we 
are convinced we have a good protocol, we can implement it in everything from 
computers to telephones to intelligent muffin toasters. 

The Players 
To help demonstrate protocols, I have enlisted the aid of several people (see Table 

2.1). Alice and Bob are the first two. They will perform all general two-person pro­
tocols. As a rule, Alice will initiate all protocols and Bob will respond. If the proto­
col requires a third or fourth person, Carol and Dave will perform those roles. Other 
actors will play specialized supporting roles; they will be introduced later. 

Arbitrated Protocols 
An arbitrator is a disinterested third party trusted to complete a protocol (see Fig­

ure 2. la). Disinterested means that the arbitrator has no vested interest in the pro­
tocol and no particular allegiance to any of the parties involved. Trusted means that 
all people involved in the protocol accept what he says as true, what he does as cor­
rect, and that he will complete his part of the protocol. Arbitrators can help com­
plete protocols between two mutually distrustful parties. 

In the real world, lawyers are often used as arbitrators. For example, Alice is sell­
ing a car to Bob, a stranger. Bob wants to pay by check, but Alice has no way of 
knowing if the check is good. Alice wants the check to clear before she turns the 
title over to Bob. Bob, who doesn't trust Alice any more than she trusts him, doesn't 
want to hand over a check without receiving a title. 

Alice 
Bob 
Carol 
Dave 
Eve 
Mallory 
Trent 
Walter 
Peggy 
Victor 

TABLE 2.1 
Dramatis Personae 

First participant in all the protocols 
Second participant in all the protocols 
Participant in the three- and four-party protocols 
Participant in the four-party protocols 
Eavesdropper 
Malicious active attacker 
Trusted arbitrator 
Warden; he'll be guarding Alice and Bob in some protocols 
Prover 
Verifier 



~-:s _____ C_H_A_P_T_E_R_2 __ P_r_o_to_c_o_l_B_u_1_·1d_1_·n_g_B_lo_c_k_s ______________ _ 

Trent 

Allee ,/"" .. ~ Bob 

~ ~---------~ 1iiir 
(a) Arbitrated protocol 

Alice Bob Trent a ~ liiir . ~ ~, ::. -. 
(After the fact) 

Evidence 

( b) Adjudicated protocol 

Alice Bob a 
( c) Self-enforcing protocol 

Figure 2.1 Types of protocols. 

Enter a lawyer trusted by both. With his help, Alice and Bob can use the following 
protocol to ensure that neither cheats the other: 

( 1) Alice gives the title to the lawyer. 

(2) Bob gives the check to Alice. 

(3) Alice deposits the check. 

(4) After waiting a specified time period for the check to clear, the lawyer 
gives the title to Bob. If the check does not clear within the specified time 
period, Alice shows proof of this to the lawyer and the lawyer returns the 
title to Alice. 

In this protocol, Alice trusts the lawyer not to give Bob the title unless the check 
has cleared, and to give it back to her if the check does not clear. Bob trusts the 
lawyer to hold the title until the check clears, and to give it to him once it does. The 
lawyer doesn't care if the check clears. He will do his part of the protocol in either 
case, because he will be paid in either case. 
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In the example, the lawyer is playing the part of an escrow agent. Lawyers also act 
as arbitrators for wills and sometimes for contract negotiations. The various stock 
exchanges act as arbitrators between buyers and sellers. 

Bankers also arbitrate protocols. Bob can use a certified check to buy a car from 
Alice: 

( 1) Bob writes a check and gives it to the bank. 

(2) After putting enough of Bob's money on hold to cover the check, the bank 
certifies the check and gives it back to Bob. 

(3) Alice gives the title to Bob and Bob gives the certified check to Alice. 

(4) Alice deposits the check. 

This protocol works because Alice trusts the banker's certification. Alice trusts 
the bank to hold Bob's money for her, and not to use it to finance shaky real estate 
operations in mosquito-infested countries. 

A notary public is another arbitrator. When Bob receives a notarized document 
from Alice, he is convinced that Alice signed the document voluntarily and with her 
own hand. The notary can, if necessary, stand up in court and attest to that fact. 

The concept of an arbitrator is as old as society. There have always been people­
rulers, priests, and so on-who have the authority to act fairly. Arbitrators have a 
certain social role and position in our society; betraying the public trust would jeop­
ardize that. Lawyers who play games with escrow accounts face almost-certain dis­
barment, for example. This picture of trust doesn't always exist in the real world, 
but it's the ideal. 

This ideal can translate to the computer world, but there are several problems 
with computer arbitrators: 

It is easier to find and trust a neutral third party if you know who the 
party is and can see his face. Two parties suspicious of each other are 
also likely to be suspicious of a faceless arbitrator somewhere else on 
the network. 

The computer network must bear the cost of maintaining an arbitra­
tor. We all know what lawyers charge; who wants to bear that kind of 
network overhead? 

There is a delay inherent in any arbitrated protocol. 

The arbitrator must deal with every transaction; he is a bottleneck in 
large-scale implementations of any protocol. Increasing the number 
of arbitrators in the implementation can mitigate this problem, but 
that increases the cost. 

Since everyone on the network must trust the arbitrator, he repre­
sents a vulnerable point for anyone trying to subvert the network. 
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Even so, arbitrators still have a role to play. In protocols using a trusted arbitrator, 
the part will be played by Trent. 

Adjudicated Protocols 
Because of the high cost of hiring arbitrators, arbitrated protocols can be subdi­

vided into two lower-level suhprotocols. One is a nonarbitrated subprotocol, exe­
cuted every time parties want to complete the protocol. The other is an arbitrated 
subprotocol, executed only in exceptional circumstances-when there is a dispute. 
This special type of arbitrator is called an adjudicator (see Figure 2.1 b). 

An adjudicator is also a disinterested and trusted third party. Unlike an arbitrator, 
he is not directly involved in every protocol. The adjudicator is called in only to 
determine whether a protocol was performed fairly. 

Judges are professional adjudicators. Unlike a notary public, a judge is brought in 
only if there is a dispute. Alice and Bob can enter into a contract without a judge. A 
judge never sees the contract until one of them hauls the other into court. 

This contract-signing protocol can be formalized in this way: 
Nonarbitrated subprotocol (executed every time): 

( 1) Alice and Bob negotiate the terms of the contract. 

(2) Alice signs the contract. 

(3) Bob signs the contract. 

Adjudicated subprotocol (executed only in case of a dispute): 

(4) Alice and Bob appear before a judge. 

(5) Alice presents her evidence. 

(6) Bob presents his evidence. 

(7) The judge rules on the evidence. 

The difference between an adjudicator and an arbitrator (as used in this book) is 
that the adjudicator is not always necessary. In a dispute, a judge is called in to adju­
dicate. If there is no di:-pute, using a judge is unnecessary. 

There are adjudicated computer protocols. These protocols rely on the parties to 
be honesti but if someone suspects cheating, a body of data exists so that a trusted 
third party could determine if someone cheated. In a good adjudicated protocol, the 
adjudicator could also determine the cheater's identity. Instead of preventing cheat­
ing, adjudicated protocols detect cheating. The inevitability of detection acts as a 
preventive and discourages cheating. 

Self-Enforcing Protocols 
A self-enforcing protocol is the best type of protocol. The protocol itself guaran­

tees fairness (see Figure 2.lc). No arbitrator is required to complete the protocol. No 
adjudicator is required to resolve disputes. The protocol is constructed so that there 
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cannot be any disputes. If one of the parties tries to cheat, the other party immedi­
ately detects the cheating and the protocol stops. Whatever the cheating party 
hoped would happen by cheating, doesn't happen. 

In the best of all possible worlds, every protocol would be self-enforcing. Unfor­
tunately, there is not a self-enforcing protocol for every situation. 

Attacks against Protocols 

Cryptographic attacks can be directed against the cryptographic algorithms used 
in protocols, against the cryptographic techniques used to implement the algo­
rithms and protocols, or against the protocols themselves. Since this section of the 
book discusses protocols, I will assume that the cryptographic algorithms and tech­
niques are secure. I will only examine attacks against the protocols. 

People can try various ways to attack a protocol. Someone not involved in the pro­
tocol can eavesdrop on some or all of the protocol. This is called a passive attack, 
because the attacker does not affect the protocol. All he can do is observe the proto­
col and attempt to gain information. This kind of attack corresponds to a ciphertext­
only attack, as discussed in Section 1. 1. Since passive attacks are difficult to detect, 
protocols try to prevent passive attacks rather than detect them. In these protocols, 
the part of the eavesdropper will be played by Eve. 

Alternatively, an attacker could try to alter the protocol to his own advantage. He 
could pretend to be someone else, introduce new messages in the protocol, delete 
existing messages, substitute one message for another, replay old messages, inter­
rupt a communications channel, or alter stored information in a computer. These 
are called active attacks, because they require active intervention. The form of these 
attacks depends on the network. 

Passive attackers try to gain information about the parties involved in the protocol. 
They collect messages passing among various parties and attempt to cryptanalyze 
them. Active attacks, on the other hand, can have much more diverse objectives. The 
attacker could be interested in obtaining information, degrading system performance, 
corrupting existing information, or gaining unauthorized access to resources. 

Active attacks are much more serious, especially in protocols in which the differ­
ent parties don't necessarily trust one another. The attacker does not have to be a 
complete outsider. He could be a legitimate system user. He could be the system 
administrator. There could even be many active attackers working together. Here, 
the part of the malicious active attacker will be played by Mallory. 

It is also possible that the attacker could be one of the parties involved in the pro­
tocol. He may lie during the protocol or not follow the protocol at all. This type of 
attacker is called a cheater. Passive cheaters follow the protocol, but try to obtain 
more information than the protocol intends them to. Active cheaters disrupt the 
protocol in progress in an attempt to cheat. 

It is very difficult to maintain a protocol's security if most of the parties involved 
are active cheaters, but sometimes it is possible for legitimate parties to detect that 
active cheating is going on. Certainly, protocols should be secure against passive 
cheating. 
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2.2 COMMUNICATIONS USING SYMMETRIC CRYPTOGRAPHY 

How do two parties communicate securely? They encrypt their communications, of 
course. The complete protocol is more complicated than that. Let's look at what 
must happen for Alice to send an encrypted message to Bob. 

( 1) Alice and Bob agree on a cryptosystem. 

(2) Alice and Bob agree on a key. 

(3) Alice takes her plaintext message and encrypts it using the encryption 
algorithm and the key. This creates a ciphertext message. 

(4) Alice sends the ciphertext message to Bob. 

(5) Bob decrypts the ciphertext message with the same algorithm and key and 
reads it. 

What can Eve, sitting between Alice and Bob, learn from listening in on this pro­
tocol? If all she hears is the transmission in step (4), she must try to cryptanalyze the 
ciphertext. This passive attack is a ciphertext-only attack; we have algorithms that 
are resistant (as far as we know) to whatever computing power Eve could realisti­
cally bring to bear on the problem. 

Eve isn't stupid, though. She also wants to listen in on steps (1) and (2). Then, she 
would know the algorithm and the key-just as well as Bob. When the message 
comes across the communications channel in step (4), all she has to do is decrypt it 
herself. 

A good cryptosystem is one in which all the security is inherent in knowledge 
of the key and none is inherent in knowledge of the algorithm. This is why key 
management is so important in cryptography. With a symmetric algorithm, Alice 
and Bob can perform step ( 1) in public, but they must perform step (2) in secret. 
The key must remain secret before, during, and after the protocol-as long as the 
message must remain secret-otherwise the message will no longer be secure. 
(Public-key cryptography solves this problem another way, and will be discussed 
in Section 2.5.) 

Mallory, an active attacker, could do a few other things. He could attempt to 
break the communications path in step (4), ensuring that Alice could not talk to Bob 
at all. Mallory could also intercept Alice's messages and substitute his own. If he 
knew the key (by intercepting the communication in step (2), or by breaking the 
cryptosystem), he could encrypt his own message and send it to Bob in place of the 
intercepted message. Bob would have no way of knowing that the message had not 
come from Alice. If Mallory didn't know the key, he could only create a replacement 
message that would decrypt to gibberish. Bob, thinking the message came from 
Alice, might conclude that either the network or Alice had some serious problems. 

What about Alice? What can she do to disrupt the protocol? She can give a copy of 
the key to Eve. Now Eve can read whatever Bob says. She can reprint his words in 
The New York Times. Although serious, this is not a problem with the protocol. 
There is nothing to stop Alice from giving Eve a copy of the plaintext at any point 
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during the protocol. Of course, Bob could also do anything that Alice could. This 
protocol assumes that Alice and Bob trust each other. 

In summary, symmetric cryptosystems have the following problems: 

Keys must be distributed in secret. They are as valuable as all the 
messages they encrypt, since knowledge of the key gives knowledge 
of all the messages. For encryption systems that span the world, this 
can be a daunting task. Often couriers hand-carry keys to their desti­
nations. 

If a key is compromised (stolen, guessed, extorted, bribed, etc.), then 
Eve can decrypt all message traffic encrypted with that key. She can 
also pretend to be one of the parties and produce false messages to 
fool the other party. 

Assuming a separate key is used for each pair of users in a network, 
the total number of keys increases rapidly as the number of users 
increases. A network of n users requires n(n - 1 )/2 keys. For example, 
10 users require 45 different keys to talk with one another and 100 
users require 4950 keys. This problem can be minimized by keeping 
the number of users small, but that is not always possible. 

2.3 ONE-WAY FUNCTIONS 

The notion of a one-way function is central to public-key cryptography. While not 
protocols in themselves, one-way functions are a fundamental building block for 
most of the protocols discussed in this book. 

One-way functions are relatively easy to compute, but significantly harder to 
reverse. That is, given x it is easy to compute f(x), but given f(x) it is hard to compute 
x. In this context, "hard" is defined as something like: It would take millions of 
years to compute x from f(x), even if all the computers in the world were assigned to 
the problem. 

Breaking a plate is a good example of a one-way function. It is easy to smash a 
plate into a thousand tiny pieces. However, it's not easy to put all of those tiny 
pieces back together into a plate. 

This sounds good, but it's a lot of smoke and mirrors. If we are being strictly math­
ematical, we have no proof that one-way functions exist, nor any real evidence that 
they can be constructed [230,530,600,661]. Even so, many functions look and smell 
one-way: We can compute them efficiently and, as of yet, know of no easy way to 
reverse them. For example, in a finite field x2 is easy to compute, but x 1i2 is much 
harder. For the rest of this section, I'm going to pretend that there are one-way func­
tions. I'll talk more about this in Section 11.2. 

So, what good are one-way functions? We can't use them for encryption as is. A 
message encrypted with the one-way function isn't useful; no one could decrypt it. 
(Exercise: Write a message on a plate, smash the plate into tiny bits, and then give 
the bits to a friend. Ask your friend to read the message. Observe how impressed 
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he is with the one-way function.) For public-key cryptography, we need something 
else (although there are cryptographic applications for one-way functions-see 
Section 3.2). 

A trapdoor one-way function is a special type of one-way function, one with a 
secret trapdoor. It is easy to compute in one direction and hard to compute in the 
other direction. But, if you know the secret, you can easily compute the function in 
the other direction. That is, it is easy to compute f(x) given x, and hard to compute 
x given f(x). However, there is some secret information, y, such that given f(x) and y 
it is easy to compute x. 

Taking a watch apart is a good example of a trap-door one-way function. It is easy 
to disassemble a watch into hundreds of minuscule pieces. It is very difficult to put 
those tiny pieces back together into a working watch. However, with the secret 
information-the assembly instructions of the watch-it is much easier to put the 
watch back together. 

2.4 ONE-WAY HASH FUNCTIONS 

A one-way hash function has many names: compression function, contraction func­
tion, message digest, fingerprint, cryptographic checksum, message integrity check 
(MIC), and manipulation detection code (MDC). Whatever you call it, it is central to 
modern cryptography. One-way hash functions are another building block for many 
protocols. 

Hash functions have been used in computer science for a long time. A hash func­
tion is a function, mathematical or otherwise, that takes a variable-length input 
string (called a pre-image) and converts it to a fixed-length (generally smaller) output 
string (called a hash value). A simple hash function would be a function that takes 
pre-image and returns a byte consisting of the XOR of all the input bytes. 

The point here is to fingerprint the pre-image: to produce a value that indicates 
whether a candidate pre-image is likely to be the same as the real pre-image. 
Because hash functions are typically many-to-one, we cannot use them to deter­
mine with certainty that the two strings are equal, but we can use them to get area­
sonable assurance of accuracy. 

A one-way hash function is a hash function that works in one direction: It is easy 
to compute a hash value from pre-image, but it is hard to generate a pre-image that 
hashes to a particular value. The hash function previously mentioned is not one­
way: Given a particular byte value, it is trivial to generate a string of bytes whose 
XOR is that value. You can't do that with a one-way hash function. A good one-way 
hash function is also collision-free: It is hard to generate two pre-images with the 
same hash value. 

The hash function is publici there's no secrecy to the process. The security of a 
one-way hash function is its one-wayness. The output is not dependent on the input 
in any discernible way. A single bit change in the pre-image changes, on the average, 
half of the bits in the hash value. Given a hash value, it is computationally unfeasi­
ble to find a pre-image that hashes to that value. 



2.5 Communications Using Public-Key Cryptography 

Think of it as a way of fingerprinting files. If you want to verify that someone has 
a particular file (that you also have), but you don't want him to send it to you, then 
ask him for the hash value. If he sends you the correct hash value, then it is almost 
certain that he has that file. This is particularly useful in financial transactions, 
where you don't want a withdrawal of $100 to turn into a withdrawal of $1000 
somewhere in the network. Normally, you would use a one-way hash function 
without a key, so that anyone can verify the hash. If you want only the recipient to 
be able to verify the hash, then read the next section. 

Message Authentication Codes 
A message authentication code (MAC), also known as a data authentication code 

(DAC), is a one-way hash function with the addition of a secret key (see Section 
18.14). The hash value is a function of both the pre-image and the key. The theory 
is exactly the same as hash functions, except only someone with the key can verify 
the hash value. You can create a MAC out of a hash function or a block encryption 
algorithm; there are also dedicated MACs. 

2.5 COMMUNICATIONS USING PUBLIC-KEY CRYPTOGRAPHY 

Think of a symmetric algorithm as a safe. The key is the combination. Someone 
with the combination can open the safe, put a document inside, and close it again. 
Someone else with the combination can open the safe and take the document out. 
Anyone without the combination is forced to learn safecracking. 

In 1976, Whitfield Diffie and Martin Hellman changed that paradigm of cryptog­
raphy forever [496]. (The NSA has claimed knowledge of the concept as early as 
1966, but has offered no proof.) They described public-key cryptography. They used 
two different keys-one public and the other private. It is computationally hard to 
deduce the private key from the public key. Anyone with the public key can encrypt 
a message but not decrypt it. Only the person with the private key can decrypt the 
message. It is as if someone turned the cryptographic safe into a mailbox. Putting 
mail in the mailbox is analogous to encrypting with the public key; anyone can do 
it. Just open the slot and drop it in. Getting mail out of a mailbox is analogous to 
decrypting with the private key. Generally it's hard; you need welding torches. 
However, if you have the secret (the physical key to the mailbox), it's easy to get 
mail out of a mailbox. 

Mathematically, the process is based on the trap-door one-way functions previ­
ously discussed. Encryption is the easy direction. Instructions for encryption are the 
public key; anyone can encrypt a message. Decryption is the hard direction. It's 
made hard enough that people with Cray computers and thousands (even millions) 
of years couldn't decrypt the message without the secret. The secret, or trapdoor, is 
the private key. With that secret, decryption is as easy as encryption. 

This is how Alice can send a message to Bob using public-key cryptography: 

(1) Alice and Bob agree on a public-key cryptosystem. 
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(2) Bob sends Alice his public key. 

(3) Alice encrypts her message using Bob's public key and sends it to Bob. 

(4) Bob decrypts Alice's message using his private key. 

Notice how public-key cryptography solves the key-management problem with 
symmetric cryptosystems. Before, Alice and Bob had to agree on a key in secret. 
Alice could choose one at random, but she still had to get it to Bob. She could hand 
it to him sometime beforehand, but that requires foresight. She could send it to him 
by secure courier, but that takes time. Public-key cryptography makes it easy. With 
no prior arrangements, Alice can send a secure message to Bob. Eve, listening in on 
the entire exchange, has Bob's public key and a message encrypted in that key, but 
cannot recover either Bob's private key or the message. 

More commonly, a network of users agrees on a public-key cryptosystem. Every 
user has his or her own public key and private key, and the public keys are all pub­
lished in a database somewhere. Now the protocol is even easier: 

( 1) Alice gets Bob's public key from the database. 

(2) Alice encrypts her message using Bob's public key and sends it to Bob. 

(3) Bob then decrypts Alice's message using his private key. 

In the first protocol, Bob had to send Alice his public key before she could send 
him a message. The second protocol is more like traditional mail. Bob is not 
involved in the protocol until he wants to read his message. 

Hybrid Cryptosystems 

The first public-key algorithms became public at the same time that DES was 
being discussed as a proposed standard. This resulted in some partisan politics in the 
cryptographic community. As Diffie described it [494]: 

The excitement public key cryptosystems provoked in the popular and scientific 
press was not matched by corresponding acceptance in the cryptographic estab­
lishment, however. In the same year that public key cryptography was discovered, 
the National Security Agency (NSA), proposed a conventional cryptographic sys­
tem, designed by International Business Machines (IBM), as a federal Data 
Encryption Standard (DES). Marty Hellman and I criticized the proposal on the 
ground that its key was too small, but manufacturers were gearing up to support 
the proposed standard and our criticism was seen by many as an attempt to dis­
rupt the standards-making process to the advantage of our own work. Public key 
cryptography in its turn was attacked, in sales literature [1125] and technical 
papers [849, 1159] alike, more as though it were a competing product than a recent 
research discovery. This, however, did not deter the NSA from claiming its share 
of the credit. Its director, in the words of the Encyclopedia Britannica [1461], 
pointed out that "two-key cryptography had been discovered at the agency a 
decade earlier," although no evidence for this claim was ever offered publicly. 



2.5 Communications Using Public-Key Cryptography 

In the real world, public-key algorithms are not a substitute for symmetric algo­
rithms. They are not used to encrypt messages; they are used to encrypt keys. There 
are two reasons for this: 

1. Public-key algorithms are slow. Symmetric algorithms are generally at 
least 1000 times faster than public-key algorithms. Yes, computers are get­
ting faster and faster, and in 15 years computers will be able to do public­
key cryptography at speeds comparable to symmetric cryptography today. 
But bandwidth requirements are also increasing, and there will always be 
the need to encrypt data faster than public-key cryptography can manage. 

2. Public-key cryptosystems are vulnerable to chosen-plaintext attacks. If C 
= E(P), when P is one plaintext out of a set of n possible plaintexts, then a 
cryptanalyst only has to encrypt all n possible plaintexts and compare the 
results with C (remember, the encryption key is public). He won't be able 
to recover the decryption key this way, but he will be able to determine P. 

A chosen-plaintext attack can be particularly effective if there are relatively few 
possible encrypted messages. For example, if P were a dollar amount less than 
$1,000,000, this attack would work; the cryptanalyst tries all million possible dollar 
amounts. (Probabilistic encryption solves the problem; see Section 23.15.) Even if P 
is not as well-defined, this attack can be very effective. Simply knowing that a 
ciphertext does not correspond to a particular plaintext can be useful information. 
Symmetric cryptosystems are not vulnerable to this attack because a cryptanalyst 
cannot perform trial encryptions with an unknown key. 

In most practical implementations public-key cryptography is used to secure and 
distribute session keys; those session keys are used with symmetric algorithms to 
secure message traffic [879]. This is sometimes called a hybrid cryptosystem. 

( 1) Bob sends Alice his public key. 

(2) Alice generates a random session key, K, encrypts it using Bob's public key, 
and sends it to Bob. 

En(K) 

(3) Bob decrypts Alice's message using his private key to recover the session 
key. 

Dn(En(K)) = K 

(4) Both of them encrypt their communications using the same session key. 

Using public-key cryptography for key distribution solves a very important key­
management problem. With symmetric cryptography, the data encryption key sits 
around until it is used. If Eve ever gets her hands on it, she can decrypt messages 
encrypted with it. With the previous protocol, the session key is created when it is 
needed to encrypt communications and destroyed when it is no longer needed. This 
drastically reduces the risk of compromising the session key. Of course, the private 
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key is vulnerable to compromise, but it is at less risk because it is only used once per 
communication to encrypt a session key. This is further discussed in Section 3.1. 

Merkle's Puzzles 

Ralph Merkle invented the first construction of public-key cryptography. In 1974 
he registered for a course in computer security at the University of California, 
Berkeley, taught by Lance Hoffman. His term paper topic, submitted early in the 
term, addressed the problem of "Secure Communication over Insecure Channels" 
[1064]. Hoffman could not understand Merkle's proposal and eventually Merkle 
dropped the course. He continued to work on the problem, despite continuing fail­
ure to make his results understood. 

Merkle's technique was based on "puzzles" that were easier to solve for the 
sender and receiver than for an eavesdropper. Here's how Alice sends an encrypted 
message to Bob without first having to exchange a key with him. 

(1) Bob generates 220, or about a million, messages of the form: 11This is puzzle 
number x. This is the secret key number y," where xis a random number 
and y is a random secret key. Both x and y are different for each message. 
Using a symmetric algorithm, he encrypts each message with a different 
20-bit key and sends them all to Alice. 

(2) Alice chooses one message at random and performs a brute-force attack to 
recover the plaintext. This is a large, but not impossible, amount of work. 

(3) Alice encrypts her secret message with the key she recovered and some 
symmetric algorithm, and sends it to Bob along with x. 

(4) Bob knows which secret key y he encrypts in message x, so he can decrypt 
the message. 

Eve can break this system, but she has to do far more work than either Alice or 
Bob. To recover the message in step (3), she has to perform a brute-force attack 
against each of Bob1s 220 messages in step ( 1 ); this attack has a complexity of 240 . The 
x values won't help Eve either; they were assigned randomly in step ( 1 ). In general, 
Eve has to expend approximately the square of the effort that Alice expends. 

This n to n2 advantage is small by cryptographic standards, but in some circum­
stances it may be enough. If Alice and Bob can try ten thousand keys per second, it 
will take them a minute each to perform their steps and another minute to com­
municate the puzzles from Bob to Alice on a 1.544 MB link. If Eve had comparable 
computing facilities, it would take her about a year to break the system. Other algo­
rithms are even harder to break. 

2.6 DIGITAL SIGNATURES 

Handwritten signatures have long been used as proof of authorship of, or at least 
agreement with, the contents of a document. What is it about a signature that is so 
compelling [1392]? 
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1. The signature is authentic. The signature convinces the document's recip­
ient that the signer deliberately signed the document. 

2. The signature is unforgeable. The signature is proof that the signer, and no 
one else, deliberately signed the document. 

3. The signature is not reusable. The signature is part of the document; an 
unscrupulous person cannot move the signature to a different document. 

4. The signed document is unalterable. After the document is signed, it can­
not be altered. 

5. The signature cannot be repudiated. The signature and the document are 
physical things. The signer cannot later claim that he or she didn't sign it. 

In reality, none of these statements about signatures is completely true. Signa­
tures can be forged, signatures can be lifted from one piece of paper and moved to 
another, and documents can be altered after signing. However, we are willing to 
live with these problems because of the difficulty in cheating and the risk of 
detection. 

We would like to do this sort of thing on computers, but there are problems. First, 
computer files are trivial to copy. Even if a person's signature were difficult to forge 
(a graphical image of a written signature, for example), it would be easy to cut and 
paste a valid signature from one document to another document. The mere presence 
of such a signature means nothing. Second, computer files are easy to modify after 
they are signed, without leaving any evidence of modification. 

Signing Documents with Symmetric Cryptosystems and an Arbitrator 
Alice wants to sign a digital message and send it to Bob. With the help of Trent 

and a symmetric cryptosystem, she can. 
Trent is a powerful, trusted arbitrator. He can communicate with both Alice and 

Bob (and everyone else who may want to sign a digital document). He shares a secret 
key, KA, with Alice, and a different secret key, KB, with Bob. These keys have been 
established long before the protocol begins and can be reused multiple times for 
multiple signings. 

( 1) Alice encrypts her message to Bob with KA and sends it to Trent. 

(2) Trent decrypts the message with KA. 

(3) Trent takes the decrypted message and a statement that he has received 
this message from Alice, and encrypts the whole bundle with K8 . 

(4) Trent sends the encrypted bundle to Bob. 

(5) Bob decrypts the bundle with KB. He can now read both the message and 
Trent's certification that Alice sent it. 

How does Trent know that the message is from Alice and not from some 
imposter? He infers it from the message's encryption. Since only he and Alice share 
their secret key, only Alice could encrypt a message using it. 
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Is this as good as a paper signature? Let's look at the characteristics we want: 

1. This signature is authentic. Trent is a trusted arbitrator and Trent knows 
that the message came from Alice. Trent's certification serves as proof to 
Bob. 

2. This signature is unforgeable. Only Alice (and Trent, but everyone trusts 
him) knows KA, so only Alice could have sent Trent a message encrypted 
with KA. If someone tried to impersonate Alice, Trent would have imme­
diately realized this in step (2) and would not certify its authenticity. 

3. This signature is not reusable. If Bob tried to take Trent's certification and 
attach it to another message, Alice would cry foul. An arbitrator (it could 
be Trent or it could be a completely different arbitrator with access to the 
same information) would ask Bob to produce both the message and Alice's 
encrypted message. The arbitrator would then encrypt the message with 
KA and see that it did not match the encrypted message that Bob gave him. 
Bob, of course, could not produce an encrypted message that matches 
because he does not know KA. 

4. The signed document is unalterable. Were Bob to try to alter the document 
after receipt, Trent could prove foul play in exactly the same manner just 
described. 

5. The signature cannot be repudiated. Even if Alice later claims that she 
never sent the message, Trent's certification says otherwise. Remember, 
Trent is trusted by everyone; what he says is true. 

If Bob wants to show Carol a document signed by Alice, he can't reveal his secret 
key to her. He has to go through Trent again: 

( 1) Bob takes the message and Trent's statement that the message came from 
Alice, encrypts them with KB, and sends them back to Trent. 

(2) Trent decrypts the bundle with KB. 

(3) Trent checks his database and confirms that the original message came 
from Alice. 

(4) Trent re-encrypts the bundle with the secret key he shares with Carol, Kc, 
and sends it to Carol. 

(5) Carol decrypts the bundle with Kc. She can now read both the message and 
Trent's certification that Alice sent it. 

These protocols work, but they're time-consuming for Trent. He must spend his 
days decrypting and encrypting messages, acting as the intermediary between every 
pair of people who want to send signed documents to one another. He must keep a 
database of messages (although this can be avoided by sending the recipient a copy 
of the sender's encrypted message). He is a bottleneck in any communications sys­
tem, even if he's a mindless software program. 
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Harder still is creating and maintaining someone like Trent, someone that every­
one on the network trusts. Trent has to be infallible; if he makes even one mistake in 
a million signatures, no one is going to trust him. Trent has to be completely secure. 
If his database of secret keys ever got out or if someone managed to modify his pro­
gramming, everyone's signatures would be completely useless. False documents pur­
ported to be signed years ago could appear. Chaos would result. Governments would 
collapse. Anarchy would reign. This might work in theory, but it doesn't work very 
well in practice. 

Digital Signature Trees 

Ralph Merkle proposed a digital signature scheme based on secret-key cryptogra­
phy, producing an infinite number of one-time signatures using a tree structure 
[1067,1068]. The basic idea of this scheme is to place the root of the tree in some 
public file, thereby authenticating it. The root signs one message and authenticates 
its sub-nodes in the tree. Each of these nodes signs one message and authenticates 
its sub-nodes, and so on. 

Signing Documents with Public-Key Cryptography 
There are public-key algorithms that can be used for digital signatures. In some 

algorithms-RSA is an example (see Section 19.3)-either the public key or the pri­
vate key can be used for encryption. Encrypt a document using your private key, and 
you have a secure digital signature. In other cases-DSA is an example (see Section 
20.1)-there is a separate algorithm for digital signatures that cannot be used for 
encryption. This idea was first invented by Diffie and Hellman [496] and further 
expanded and elaborated on in other texts [1282, 1328, 1024, 1283,426]. See [1099] for 
a good survey of the field. 

The basic protocol is simple: 

( 1) Alice encrypts the document with her private key, thereby signing the doc­
ument. 

(2) Alice sends the signed document to Bob. 

(3) Bob decrypts the document with Alice's public key, thereby verifying the 
signature. 

This protocol is far better than the previous one. Trent is not needed to either sign 
or verify signatures. (He is needed to certify that Alice's public key is indeed her 
public key.) The parties do not even need Trent to resolve disputes: If Bob cannot 
perform step (3 ), then he knows the signature is not valid. 

This protocol also satisfies the characteristics we're looking for: 

1. The signature is authentic; when Bob verifies the message with Alice's 
public key, he knows that she signed it. 

2. The signature is unforgeable; only Alice knows her private key. 

3. The signature is not reusable; the signature is a function of the document 
and cannot be transferred to any other document. 



~ .... :s;~----C_H_A_PT_E_R_2 __ P_r_o_to_c_o_l_B_u_i_ld_1_·n_g_B_l_o_ck_s _____________ _ 

4. The signed document is unalterable; if there is any alteration to the docu­
ment, the signature can no longer be verified with Alice's public key. 

5. The signature cannot be repudiated. Bob doesn't need Alice's help to verify 
her signature. 

Signing Documents and Timestamps 
Actually, Bob can cheat Alice in certain circumstances. He can reuse the docu­

ment and signature together. This is no problem if Alice signed a contract (what's 
another copy of the same contract, more or less?), but it can be very exciting if Alice 
signed a digital check. 

Let's say Alice sends Bob a signed digital check for $100. Bob takes the check to 
the bank, which verifies the signature and moves the money from one account to 
the other. Bob, who is an unscrupulous character, saves a copy of the digital check. 
The following week, he again takes it to the bank (or maybe to a different bank). The 
bank verifies the signature and moves the money from one account to the other. If 
Alice never balances her checkbook, Bob can keep this up for years. 

Consequently, digital signatures often include timestamps. The date and time of 
the signature are attached to the message and signed along with the rest of the mes­
sage. The bank stores this timestamp in a database. Now, when Bob tries to cash 
Alice's check a second time, the bank checks the timestamp against its database. 
Since the bank already cashed a check from Alice with the same timestamp, the 
bank calls the police. Bob then spends 15 years in Leavenworth prison reading up on 
cryptographic protocols. 

Signing Documents with Public-Key Cryptography 
and One-Way Hash Functions 

In practical implementations, public-key algorithms are often too inefficient to 
sign long documents. To save time, digital signature protocols are often imple­
mented with one-way hash functions [432,433]. Instead of signing a document, 
Alice signs the hash of the document. In this protocol, both the one-way hash func­
tion and the digital signature algorithm are agreed upon beforehand. 

( 1) Alice produces a one-way hash of a document. 

(2) Alice encrypts the hash with her private key, thereby signing the docu­
ment. 

(3) Alice sends the document and the signed hash to Bob. 

(4) Bob produces a one-way hash of the document that Alice sent. He then, 
using the digital signature algorithm, decrypts the signed hash with Alice's 
public key. If the signed hash matches the hash he generated, the signature 
is valid. 

Speed increases drastically and, since the chances of two different documents hav­
ing the same 160-bit hash are only one in 2160, anyone can safely equate a signature 
of the hash with a signature of the document. If a non-one-way hash function were 
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used, it would be an easy matter to create multiple documents that hashed to the 
same value, so that anyone signing a particular document would be duped into sign­
ing a multitude of documents. 

This protocol has other benefits. First, the signature can be kept separate from the 
document. Second, the recipient's storage requirements for the document and sig­
nature are much smaller. An archival system can use this type of protocol to verify 
the existence of documents without storing their contents. The central database 
could just store the hashes of files. It doesn't have to see the files at all; users submit 
their hashes to the database, and the database timestamps the submissions and 
stores them. If there is any disagreement in the future about who created a docu­
ment and when, the database could resolve it by finding the hash in its files. This 
system has vast implications concerning privacy: Alice could copyright a document 
but still keep the document secret. Only if she wished to prove her copyright would 
she have to make the document public. (See Section 4.1). 

Algorithms and Terminology 

There are many digital signature algorithms. All of them are public-key algo­
rithms with secret information to sign documents and public information to verify 
signatures. Sometimes the signing process is called encrypting with a private key 
and the verification process is called decrypting with a public key. This is mislead­
ing and is only true for one algorithm, RSA. And different algorithms have different 
implementations. For example, one-way hash functions and timestamps sometimes 
add extra steps to the process of signing and verifying. Many algorithms can be used 
for digital signatures, but not for encryption. 

In general, I will refer to the signing and verifying processes without any details of 
the algorithms involved. Signing a message with private key K is: 

SK(M) 

and verifying a signature with the corresponding public key is: 

V1dM) 

The bit string attached to the document when signed (in the previous example, 
the one-way hash of the document encrypted with the private key) will be called the 
digital signature, or just the signature. The entire protocol, by which the receiver of 
a message is convinced of the identity of the sender and the integrity of the message, 
is called authentication. Further details on these protocols are in Section 3.2. 

Multiple Signatures 

How could Alice and Bob sign the same digital document? Without one-way hash 
functions, there are two options. One is that Alice and Bob sign separate copies of 
the document itself. The resultant message would be over twice the size of the orig­
inal document. The second is that Alice signs the document first and then Bob signs 
Alice's signature. This works, but it is impossible to verify Alice's signature without 
also verifying Bob's. 
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With one-way hash functions, multiple signatures are easy: 

( 1) Alice signs the hash of the document. 

(2) Bob signs the hash of the document. 

(3) Bob sends his signature to Alice. 

(4) Alice sends the document, her signature, and Bob's signature to Carol. 

(5) Carol verifies both Alice's signature and Bob's signature. 

Alice and Bob can do steps (1) and (2) either in parallel or in series. In step (5), 
Carol can verify one signature without having to verify the other. 

Nonrepudiation and Digital Signatures 

Alice can cheat with digital signatures and there's nothing that can be done about 
it. She can sign a document and then later claim that she did not. First, she signs the 
document normally. Then, she anonymously publishes her private key, conve­
niently loses it in a public place, or just pretends to do either one. Alice then claims 
that her signature has been compromised and that others are using it, pretending to 
be her. She disavows signing the document and any others that she signed using that 
private key. This is called repudiation. 

Timestamps can limit the effects of this kind of cheating, but Alice can always 
claim that her key was compromised earlier. If Alice times things well, she can sign 
a document and then successfully claim that she didn't. This is why there is so 
much talk about private keys buried in tamper-resistant modules-so that Alice 
can't get at hers and abuse it. 

Although nothing can be done about this possible abuse, one can take steps to 
guarantee that old signatures are not invalidated by actions taken in disputing new 
ones. (For example, Alice could "lose" her key to keep from paying Bob for the junk 
car he sold her yesterday and, in the process, invalidate her bank account.) The solu­
tion is for the receiver of a signed document to have it timestamped [453]. 

The general protocol is given in [28]: 

( 1) Alice signs a message. 

(2) Alice generates a header containing some identifying information. She 
concatenates the header with the signed message, signs that, and sends it 
to Trent. 

(3) Trent verifies the outside signature and confirms the identifying informa­
tion. He adds a timestamp to Alice's signed message and the identifying 
information. Then he signs it all and sends it to both Alice and Bob. 

(4) Bob verifies Trent's signature, the identifying information, and Alice's sig­
nature. 

(5) Alice verifies the message Trent sent to Bob. If she did not originate the 
message, she speaks up quickly. 
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Another scheme uses Trent after the fact [209]. After receiving a signed message, 
Bob can send a copy to Trent for verification. Trent can attest to the validity of 
Alice's signature. 

Applications of Digital Signatures 

One of the earliest proposed applications of digital signatures was to facilitate the 
verification of nuclear test ban treaties [1454, 1467]. The United States and the Soviet 
Union (anyone remember the Soviet Union?) permitted each other to put seis­
mometers on the other's soil to monitor nuclear tests. The problem was that each 
country needed to assure itself that the host nation was not tampering with the data 
from the monitoring nation's seismometers. Simultaneously, the host nation needed 
to assure itself that the monitor was sending only the specific information needed 
for monitoring. 

Conventional authentication techniques can solve the first problem, but only dig­
ital signatures can solve both problems. The host nation can read, but not alter, data 
from the seismometer, and the monitoring nation knows that the data has not been 
tampered with. 

2. 7 DIGITAL SIGNATURES WITH ENCRYPTION 

By combining digital signatures with public-key cryptography, we develop a protocol 
that combines the security of encryption with the authenticity of digital signatures. 
Think of a letter from your mother: The signature provides proof of authorship and 
the envelope provides privacy. 

( 1) Alice signs the message with her private key. 

SA(M) 

(2) Alice encrypts the signed message with Bob's public key and sends it to Bob. 

EB(SA(M)) 

(3) Bob decrypts the message with his private key. 

Ds(Es(SA(M))) = SA(M) 

(4) Bob verifies with Alice's public key and recovers the message. 

VA(SA(M)) = M 

Signing before encrypting seems natural. When Alice writes a letter, she signs it 
and then puts it in an envelope. If she put the letter in the envelope unsigned and 
then signed the envelope, then Bob might worry if the letter hadn't been covertly 
replaced. If Bob showed to Carol Alice's letter and envelope, Carol might accuse Bob 
of lying about which letter arrived in which envelope. 

In electronic correspondence as well, signing before encrypting is a prudent prac­
tice [48]. Not only is it more secure-an adversary can't remove a signature from an 
encrypted message and add his own-but there are legal considerations: If the text 
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to be signed is not visible to the signer when he affixes his signature, then the sig­
nature may have little legal force [1312]. And there are some cryptanalytic attacks 
against this technique with RSA signatures (see Section 19.3). 

There's no reason Alice has to use the same public-key/private-key key pair for 
encrypting and signing. She can have two key pairs: one for encryption and the other 
for signatures. Separation has its advantages: she can surrender her encryption key 
to the police without compromising her signature, one key can be escrowed (see 
Section 4.13) without affecting the other, and the keys can have different sizes and 
can expire at different times. 

Of course, timestamps should be used with this protocol to prevent reuse of mes­
sages. Timestamps can also protect against other potential pitfalls, such as the one 
described below. 

Resending the Message as a Receipt 

Consider an implementation of this protocol, with the additional feature of con­
firmation messages. Whenever Bob receives a message, he returns it as a confirma­
tion of receipt. 

( 1) Alice signs a message with her private key, encrypts it with Bob's public 
key, and sends it to Bob. 

EB(SA(M)) 

(2) Bob decrypts the message with his private key and verifies the signature 
with Alice's public key, thereby verifying that Alice signed the message 
and recovering the message. 

VA(DB(EB(SA(M)))) = M 

(3) Bob signs the message with his private key, encrypts it with Alice's public 
key, and sends it back to Alice. 

EA(SB(M)) 

(4) Alice decrypts the message with her private key and verifies the signature 
with Bob's public key. If the resultant message is the same one she sent to 
Bob, she knows that Bob received the message accurately. 

If the same algorithm is used for both encryption and digital-signature verification 
there is a possible attack [506]. In these cases, the digital signature operation is the 
inverse of the encryption operation: Vx = Ex and Sx = Dx. 

Assume that Mallory is a legitimate system user with his own public and private 
key. Now, let's watch as he reads Bob's mail. First, he records Alice's message to Bob 
in step ( 1 ). Then, at some later time, he sends that message to Bob, claiming that it 
came from him (Mallory). Bob thinks that it is a legitimate message from Mallory, 
so he decrypts the message with his private key and then tries to verify Mallory's 
signature by decrypting it with Mallory's public key. The resultant message, which 
is pure gibberish, is: 
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Even so, Bob goes on with the protocol and sends Mallory a receipt: 

EM(DB(EM(DA(M)))) 

Now, all Mallory has to do is decrypt the message with his private key, encrypt it 
with Bob's public key, decrypt it again with his private key, and encrypt it with 
Alice's public key. Voila! Mallory has M. 

It is not unreasonable to imagine that Bob may automatically send Mallory a 
receipt. This protocol may be embedded in his communications software, for exam­
ple, and send receipts automatically. It is this willingness to acknowledge the receipt 
of gibberish that creates the insecurity. If Bob checked the message for comprehensi­
bility before sending a receipt, he could avoid this security prnblem. 

There are enhancements to this attack that allow Mallory to send Bob a different 
message from the one he eavesdropped on. Never sign arbitrary messages from other 
people or decrypt arbitrary messages and give the results to other people. 

Foiling the Resend Attack 

The attack just described works because the encrypting operation is the same as 
the signature-verifying operation and the decryption operation is the same as the 
signature operation. A secure protocol would use even a slightly different operation 
for encryption and digital signatures. Using different keys for each operation solves 
the problem, as does using different algorithms for each operation; as do time­
stamps, which make the incoming message and the outgoing message different; as 
do digital signatures with one-way hash functions (see Section 2.6). 

In general, then, the following protocol is secure as the public-key algorithm used: 

( 1) Alice signs a message. 

(2) Alice encrypts the message and signature with Bob's public key (using a 
different encryption algorithm than for the signature) and sends it to Bob. 

(3) Bob decrypts the message with his private key. 

(4) Bob verifies Alice's signature. 

Attacks against Public-Key Cryptography 

In all these public-key cryptography protocols, I glossed over how Alice gets Bob's 
public key. Section 3.1 discusses this in detail, but it is worth mentioning here. 

The easiest way to get someone's public key is from a secure database some­
where. The database has to be public, so that anyone can get anyone else's public 
key. The database also has to be protected from write-access by anyone except 
Trent; otherwise Mallory could substitute any public key for Bob's. After he did 
that, Bob couldn't read messages addressed to him, but Mallory could. 

Even if the public keys are stored in a secure database, Mallory could still substi­
tute one for another during transmission. To prevent this, Trent can sign each pub­
lic key with his own private key. Trent, when used in this manner, is often known 
as a Key Certification Authority or Key Distribution Center (KDC). In practical 
implementations, the KDC signs a compound message consisting of the user's 
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name, his public key, and any other important information about the user. This 
signed compound message is stored in the KDC's database. When Alice gets Bob's 
key, she verifies the KDC's signature to assure herself of the key's validity. 

In the final analysis, this is not making things impossible for Mallory, only more 
difficult. Alice still has the KDC's public key stored somewhere. Mallory would 
have to substitute his own public key for that key, corrupt the database, and substi­
tute his own keys for the valid keys /all signed with his private key as if he were the 
KDC), and then he's in business. But, even paper-based signatures can be forged if 
Mallory goes to enough trouble. Key exchange will be discussed in minute detail in 
Section 3.1. 

2.8 RANDOM AND PSEUDO-RANDOM-SEQUENCE GENERATION 

Why even bother with random-number generation in a book on cryptography? 
There's already a random-number generator built into most every compiler, a mere 
function call away. Why not use that? Unfortunately, those random-number gener­
ators are almost definitely not secure enough for cryptography, and probably not 
even very random. Most of them are embarrassingly bad. 

Random-number generators are not random because they don't have to be. Most 
simple applications, like computer games, need so few random numbers that they 
hardly notice. However, cryptography is extremely sensitive to the properties of 
random-number generators. Use a poor random-number generator and you start get­
ting weird correlations and strange results [1231, 1238]. If you are depending on your 
random-number generator for security, weird correlations and strange results are 
the last things you want. 

The problem is that a random-number generator doesn't produce a random 
sequence. It probably doesn't produce anything that looks even remotely like a ran­
dom sequence. Of course, it is impossible to produce something truly random on a 
computer. Donald Knuth quotes John von Neumann as saying: "Anyone who con­
siders arithmetical methods of producing random digits is, of course, in a state of sin" 
[863]. Computers are deterministic beasts: Stuff goes in one end, completely pre­
dictable operations occur inside, and different stuff comes out the other end. Put the 
same stuff in on two separate occasions and the same stuff comes out both times. Put 
the same stuff into two identical computers, and the same stuff comes out of both of 
them. A computer can only be in a finite number of states (a large finite number, but 
a finite number nonetheless), and the stuff that comes out will always be a deter­
ministic function of the stuff that went in and the computer's current state. That 
means that any random-number generator on a computer (at least, on a finite-state 
machine) is, by definition, periodic. Anything that is periodic is, by definition, pre­
dictable. And if something is predictable, it can't be random. A true random-number 
generator requires some random input; a computer can't provide that. 

Pseudo-Random Sequences 

The best a computer can produce is a pseudo-random-sequence generator. What's 
that? Many people have taken a stab at defining this formally, but I'll hand-wave 
here. A pseudo-random sequence is one that looks random. The sequence's period 
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should be long enough so that a finite sequence of reasonable length-that is, one 
that is actually used-is not periodic. If you need a billion random bits, don't choose 
a sequence generator that repeats after only sixteen thousand bits. These relatively 
short nonperiodic subsequences should be as indistinguishable as possible from 
random sequences. For example, they should have about the same number of ones 
and zeros, about half the runs (sequences of the same bit) should be of length one, 
one quarter of length two, one eighth of length three, and so on. They should not be 
compressible. The distribution of run lengths for zeros and ones should be the same 
[643,863,99,1357]. These properties can be empirically measured and then com­
pared to statistical expectations using a chi-square test. 

For our purposes, a sequence generator is pseudo-random if it has this property: 

1. It looks random. This means that it passes all the statistical tests of ran­
domness that we can find. (Start with the ones in [863].) 

A lot of effort has gone into producing good pseudo-random sequences on com­
puter. Discussions of generators abound in the academic literature, along with vari­
ous tests of randomness. All of these generators are periodic (there's no escaping 
that); but with potential periods of 2256 bits and higher, they can be used for the 
largest applications. 

The problem is still those weird correlations and strange results. Every pseudo­
random-sequence generator is going to produce them if you use them in a certain 
way. And_ that's what a cryptanalyst will use to attack the system. 

Cryptographically Secure Pseudo-Random Sequences 

Cryptographic applications demand much more of a pseudo-random-sequence 
generator than do most other applications. Cryptographic randomness doesn't mean 
just statistical randomness, although that's part of it. For a sequence to be crypto­
graphically secure pseudo-random, it must also have this property: 

2. It is unpredictable. It must be computationally infeasible to predict what 
the next random bit will be, given complete knowledge of the algorithm or 
hardware generating the sequence and all of the previous bits in the stream. 

Cryptographically secure pseudo-random sequences should not be compress­
ible ... unless you know the key. The key is generally the seed used to set the initial 
state of the generator. 

Like any cryptographic algorithm, cryptographically secure pseudo-random­
sequence generators are subject to attack. Just as it is possible to break an encryption 
algorithm, it is possible to break a cryptographically secure pseudo-random-sequence 
generator. Making generators resistant to attack is what cryptography is all about. 

Real Random Sequences 
Now we're drifting into the domain of philosophers. Is there such a thing as ran­

domness? What is a random sequence? How do you know if a sequence is random? Is 
"101110100" more random than "10101010 l "? Quantum mechanics tells us that 
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there is honest-to-goodness randomness in the real world. But can we preserve that 
randomness in the deterministic world of computer chips and finite-state machines? 

Philosophy aside, from our point of view a sequence generator is real random if it 
has this additional third property: 

3. It cannot be reliably reproduced. If you run the sequence generator twice 
with the exact same input (at least as exact as humanly possible), you will 
get two completely unrelated random sequences. 

The output of a generator satisfying these three properties will be good enough for 
a one-time pad, key generation, and any other cryptographic applications that 
require a truly random sequence generator. The difficulty is in determining whether 
a sequence is really random. If I repeatedly encrypt a string with DES and a given 
key, I will get a nice, random-looking output; you won't be able to tell that it's non­
random unless you rent time on the NSA's DES cracker. 
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CHAPTER 3 

Basic Protocols 

3.1 KEY EXCHANGE 

A common cryptographic technique is to encrypt each individual conversation with a 
separate key. This is called a session key, because it is used for only one particular 
communications session. As discussed in Section 8.5, session keys are useful because 
they only exist for the duration of the communication. How this common session key 
gets into the hands of the conversants can be a complicated matter. 

Key Exchange with Symmetric Cryptography 
This protocol assumes that Alice and Bob, users on a network, each share a secret 

key with the Key Distribution Center (KDC) [1260]-Trent in our protocols. These 
keys must be in place before the start of the protocol. (The protocol ignores the very 
real problem of how to distribute these secret keys; just assume they are in place and 
Mallory has no idea what they are.) 

( 1) Alice calls Trent and requests a session key to communicate with Bob. 

(2) Trent generates a random session key. He encrypts two copies of it: one in 
Alice's key and the other in Bob's key. Trent sends both copies to Alice. 

(3) Alice decrypts her copy of the session key. 

(4) Alice sends Bob his copy of the session key. 

(5) Bob decrypts his copy of the session key. 

(6) Both Alice and Bob use this session key to communicate securely. 

This protocol relies on the absolute security of Trent, who is more likely to be a 
trusted computer program than a trusted individual. If Mallory corrupts Trent, the 
whole network is compromised. He has all of the secret keys that Trent shares with 
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each of the users; he can read all past communications traffic that he has saved, and 
all future communications traffic. All he has to do is to tap the communications 
lines and listen to the encrypted message traffic. 

The other problem with this system is that Trent is a potential bottleneck. He 
has to be involved in every key exchange. If Trent fails, that disrupts the entire 
system. 

Key Exchange with Public-Key Cryptography 
The basic hybrid cryptosystem was discussed in Section 2.5. Alice and Bob use 

public-key cryptography to agree on a session key, and use that session key to 
encrypt data. In some practical implementations, both Alice's and Bob's signed pub­
lic keys will be available on a database. This makes the key-exchange protocol even 
easier, and Alice can send a secure message to Bob even if he has never heard of her: 

( 1) Alice gets Bob's public key from the KDC. 

(2) Alice generates a random session key, encrypts it using Bob's public key, 
and sends it to Bob. 

(3) Bob then decrypts Alice's message using his private key. 

(4) Both of them encrypt their communications using the same session key. 

Man-in-the-Middle Attack 
While Eve cannot do better than try to break the public-key algorithm or attempt 

a ciphertext-only attack on the ciphertext, Mallory is a lot more powerful than Eve. 
Not only can he listen to messages between Alice and Bob, he can also modify mes­
sages, delete messages, and generate totally new ones. Mallory can imitate Bob when 
talking to Alice and imitate Alice when talking to Bob. Here's how the attack works: 

( 1) Alice sends Bob her public key. Mallory intercepts this key and sends Bob 
his own public key. 

(2) Bob sends Alice his public key. Mallory intercepts this key and sends Alice 
his own public key. 

(3) When Alice sends a message to Bob, encrypted in "Bob's" public key, Mal­
lory intercepts it. Since the message is really encrypted with his own pub­
lic key, he decrypts it with his private key, re-encrypts it with Bob's public 
key, and sends it on to Bob. 

(4) When Bob sends a message to Alice, encrypted in "Alice's" public key, 
Mallory intercepts it. Since the message is really encrypted with his own 
public key, he decrypts it with his private key, re-encrypts it with Alice's 
public key, and sends it on to Alice. 

Even if Alice's and Bob's public keys are stored on a database, this attack will 
work. Mallory can intercept Alice's database inquiry and substitute his own public 
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key for Bob's. He can do the same to Bob and substitute his own public key for 
Alice's. Or better yet, he can break into the database surreptitiously and substitute 
his key for both Alice's and Bob's. Then he simply waits for Alice and Bob to talk 
with each other, intercepts and modifies the messages, and he has succeeded. 

This man-in-the-middle attack works because Alice and Bob have no way to ver­
ify that they are talking to each other. Assuming Mallory doesn't cause any notice­
able network delays, the two of them have no idea that someone sitting between 
them is reading all of their supposedly secret communications. 

Interlock Protocol 

The interlock protocol, invented by Ron Rivest and Adi Shamir [ 132 7], has a good 
chance of foiling the man-in-the-middle attack. Here's how it works: 

( 1) Alice sends Bob her public key. 

(2) Bob sends Alice his public key. 

(3) Alice encrypts her message using Bob's public key. She sends half of the 
encrypted message to Bob. 

(4) Bob encrypts his message using Alice's public key. He sends half of the 
encrypted message to Alice. 

(5) Alice sends the other half of her encrypted message to Bob. 

(6) Bob puts the two halves of Alice's message together and decrypts it with 
his private key. Bob sends the other half of his encrypted message to Alice. 

(7) Alice puts the two halves of Bob's message together and decrypts it with 
her private key. 

The important point is that half of the message is useless without the other half; 
it can't be decrypted. Bob cannot read any part of Alice's message until step (6); Alice 
cannot read any part of Bob's message until step (7). There are a number of ways to 
do this: 

If the encryption algorithm is a block algorithm, half of each block 
(e.g., every other bit) could be sent in each half message. 

Decryption of the message could be dependent on an initialization 
vector (see Section 9.3), which could be sent with the second half of 
the message. 

The first half of the message could be a one-way hash function of the 
encrypted message (see Section 2.4) and the encrypted message itself 
could be the second half. 

To see how this causes a problem for Mallory, let's review his attempt to subvert 
the protocol. He can still substitute his own public keys for Alice's and Bob's in 
steps (1) and (2). But now, when he intercepts half of Alice's message in step (3), he 
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cannot decrypt it with his private key and re-encrypt it with Bob's public key. He 
must invent a totally new message and send half of it to Bob. When he intercepts 
half of Bob's message to Alice in step (4), he has the same problem. He cannot 
decrypt it with his private key and re-encrypt it with Alice's public key. He has to 
invent a totally new message and send half of it to Alice. By the time he intercepts 
the second halves of the real messages in steps (5) and (6), it is too late for him to 
change the new messages he invented. The conversation between Alice and Bob will 
necessarily be completely different. 

Mallory could possibly get away with this scheme. If he knows Alice and Bob well 
enough to mimic both sides of a conversation between them, they might never real­
ize that they are being duped. But surely this is much harder than sitting between 
the two of them, intercepting and reading their messages. 

Key Exchange with Digital Signatures 

Implementing digital signatures during a session-key exchange protocol circum­
vents this man-in-the-middle attack as well. Trent signs both Alice's and Bob's pub­
lic keys. The signed keys include a signed certification of ownership. When Alice 
and Bob receive the keys, they each verify Trent's signature. Now they know that 
the public key belongs to that other person. The key exchange protocol can then 
proceed. 

Mallory has serious problems. He cannot impersonate either Alice or Bob because 
he doesn't know either of their private keys. He cannot substitute his public key for 
either of theirs because, while he has one signed by Trent, it is signed as being Mal­
lory's. All he can do is listen to the encrypted traffic go back and forth or disrupt the 
lines of communication and prevent Alice and Bob from talking. 

This protocol uses Trent, but the risk of compromising the KDC is less than the 
first protocol. If Mallory compromises Trent (breaks into the KDC), all he gets is 
Trent's private key. This key enables him only to sign new keys; it does not let him 
decrypt any session keys or read any message traffic. To read the traffic, Mallory has 
to impersonate a user on the network and trick legitimate users into encrypting 
messages with his phony public key. 

Mallory can launch that kind of attack. With Trent's private key, he can create 
phony signed keys to fool both Alice and Bob. Then, he can either exchange them in 
the database for real signed keys, or he can intercept users' database requests and 
reply with his phony keys. This enables him to launch a man-in-the-middle attack 
and read people's communications. 

This attack will work, but remember that Mallory has to be able to intercept and 
modify messages. In some networks this is a lot more difficult than passively sitting 
on a network reading messages as they go by. On a broadcast channel, such as a radio 
network, it is almost impossible to replace one message with another-although the 
entire network can be jammed. On computer networks this is easier and seems to 
be getting easier every day. Consider IP spoofing, router attacks, and so forth; active 
attacks don't necessarily mean someone down a manhole with a datascope, and 
they are not limited to three-letter agencies. 
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Key and Message Transmission 
Alice and Bob need not complete the key-exchange protocol before exchanging 

messages. In this protocol, Alice sends Bob the message, M, without any previous 
key exchange protocol: 

( 1) Alice generates a random session key, K, and encrypts Musing K. 

E1<(M) 

(2) Alice gets Bob's public key from the database. 

(3) Alice encrypts K with Bob's public key. 

EB(K) 

(4) Alice sends both the encrypted message and encrypted session key to Bob. 

EK(M), EB(K) 
For added security against man-in-the-middle attacks, Alice can sign the 

transmission. 

(5) Bob decrypts Alice's session key, K, using his private key. 

(6) Bob decrypts Alice's message using the session key. 

This hybrid system is how public-key cryptography is most often used in a com­
munications system. It can be combined with digital signatures, timestamps, and 
any other security protocols. 

Key and Message Broadcast 

There is no reason Alice can't send the encrypted message to several people. In 
this example, Alice will send the encrypted message to Bob, Carol, and Dave: 

( 1) Alice generates a random session key, K, and encrypts M using K. 

EK(M) 

(2) Alice gets Bob's, Carol's, and Dave's public keys from the database. 

(3) Alice encrypts Kwith Bob's public key, encrypts Kwith Carol's public key, 
and then encrypts K with Dave's public key. 

EB(K), Ec(K), Ev(K) 

(4) Alice broadcasts the encrypted message and all the encrypted keys to any­
body who cares to receive it. 

EB(K), Ec(K), Ev(K), EK(M) 

(5) Only Bob, Carol, and Dave can decrypt the key, K, each using his or her pri­
vate key. 

(6) Only Bob, Carol, and Dave can decrypt Alice's message using K. 

This protocol can be implemented on a store-and-forward network. A central 
server can forward Alice's message to Bob, Carol, and Dave along with their partic-



~"":s;~------C_H_A_P_T_E_R_3 __ B_a_s1_·c_P_r_o_t_o_c_o_ls ________________ _ 

ular encrypted key. The server doesn't have to be secure or trusted, since it will not 
be able to decrypt any of the messages. 

3.2 AUTHENTICATION 

When Alice logs into a host computer (or an automatic teller, or a telephone bank­
ing system, or any other type of terminal), how does the host know who she is? How 
does the host know she is not Eve trying to falsify Alice's identity? Traditionally, 
passwords solve this problem. Alice enters her password, and the host confirms that 
it is correct. Both Alice and the host know this secret piece of knowledge and the 
host requests it from Alice every time she tries to log in. 

Authentication Using One-Way Functions 
What Roger Needham and Mike Guy realized is that the host does not need to 

know the passwords; the host just has to be able to differentiate valid passwords 
from invalid passwords. This is easy with one-way functions [1599,526,1274,1121]. 
Instead of storing passwords, the host stores one-way functions of the passwords. 

( 1) Alice sends the host her password. 

(2) The host performs a one-way function on the password. 

(3) The host compares the result of the one-way function to the value it pre­
viously stored. 

Since the host no longer stores a table of everybody's valid password, the threat of 
someone breaking into the host and stealing the password list is mitigated. The list 
of passwords operated on by the one-way function is useless, because the one-way 
function cannot be reversed to recover the passwords. 

Dictionary Attacks and Salt 

A file of passwords encrypted with a one-way function is still vulnerable. In his 
spare time, Mallory compiles a list of the 1,000,000 most common passwords. He 
operates on all 1,000,000 of them with the one-way function and stores the results. If 
each password is about 8 bytes, the resulting file will be no more than 8 megabytes; 
it will fit on a few floppy disks. Now, Mallory steals an encrypted password file. He 
compares that file with his file of encrypted possible passwords and sees what 
matches. 

This is a dictionary attack, and it's surprisingly successful (see Section 8.1). Salt is 
a way to make it more difficult. Salt is a random string that is concatenated with 
passwords before being operated on by the one-way function. Then, both the salt 
value and the result of the one-way function are stored in a database on the host. If 
the number of possible salt values is large enough, this practically eliminates a dic­
tionary attack against commonly used passwords because Mallory has to generate 
the one-way hash for each possible salt value. This is a simple attempt at an initial­
ization vector (see Section 9.3). 
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The point here is to make sure that Mallory has to do a trial encryption of each 
password in his dictionary every time he tries to break another person's password, 
rather than just doing one massive precomputation for all possible passwords. 

A lot of salt is needed. Most UNIX systems use only 12 bits of salt. Even with 
that, Daniel Klein developed a password-guessing program that often cracks 40 
percent of the passwords on a given host system within a week [847,848] (see 
Section 8.1 ). David Feldmeier and Philip Karn compiled a list of about 732,000 
common passwords concatenated with each of 4096 possible salt values. They 
estimate that 30 percent of passwords on any given host can be broken with this 
list [561]. 

Salt isn't a panacea; increasing the number of salt bits won't solve everything. 
Salt only protects against general dictionary attacks on a password file, not against 
a concerted attack on a single password. It protects people who have the same 
password on multiple machines, but doesn't make poorly chosen passwords any 
better. 

SKEY 

SKEY is an authentication program that relies on a one-way function for its secu­
rity. It's easy to explain. 

To set up the system, Alice enters a random number, R. The computer computes 
f(R), f(f(R)), f(f(f(R))), and so on, about a hundred times. Call these numbers x 1, x2, 

x3, ••• , x 100• The computer prints out this list of numbers, and Alice puts it in her 
pocket for safekeeping. The computer also stores x 101, in the clear, in a login data­
base next to Alice's name. 

The first time Alice wants to log in, she types her name and x 100• The computer 
calculates f(x 100 ) and compares it with x 10u if they match, Alice is authenticated. 
Then, the computer replaces x 101 with x 100 in the database. Alice crosses Xiao off 
her list. 

Every time Alice logs in, she enters the last uncrossed number on her list: X;. The 
computer calculates f(x;) and compares it with x; + 1 stored in its database. Eve can't 
get any useful information because each number is only used once, and the function 
is one-way. Similarly, the database is not useful to an attacker. Of course, when 
Alice runs out of numbers on her list, she has to reinitialize the system. 

Authentication Using Public-Key Cryptography 
Even with salt, the first protocol has serious security problems. When Alice sends 

her password to her host, anyone who has access to her data path can read it. She 
might be accessing her host through a convoluted transmission path that passes 
through four industrial competitors, three foreign countries, and two forward­
thinking universities. Eve can be at any one of those points, listening to Alice's login 
sequence. If Eve has access to the processor memory of the host, she can see the 
password before the host hashes it. 

Public-key cryptography can solve this problem. The host keeps a file of every 
user's public key; all users keep their own private keys. Here is a nai:ve attempt at a 
protocol. When logging in, the protocol proceeds as follows: 
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( 1) The host sends Alice a random string. 

(2) Alice encrypts the string with her private key and sends it back to the host, 
along with her name. 

(3) The host looks up Alice's public key in its database and decrypts the mes­
sage using that public key. 

(4) If the decrypted string matches what the host sent Alice in the first place, 
the host allows Alice access to the system. 

No one else has access to Alice's private key, so no one else can impersonate 
Alice. More important, Alice never sends her private key over the transmission line 
to the host. Eve, listening in on the interaction, cannot get any information that 
would enable her to deduce the private key and impersonate Alice. 

The private key is both long and non-mnemonic, and will probably be processed 
automatically by the user's hardware or communications software. This requires an 
intelligent terminal that Alice trusts, but neither the host nor the communications 
path needs to be secure. 

It is foolish to encrypt arbitrary strings-not only those sent by untrusted third 
parties, but under any circumstances at all. Attacks similar to the one discussed in 
Section 19.3 can be mounted. Secure proof-of-identity protocols take the following, 
more complicated, form: 

( 1) Alice performs a computation based on some random numbers and her pri­
vate key and sends the result to the host. 

(2) The host sends Alice a different random number. 

(3) Alice makes some computation based on the random numbers (both the 
ones she generated and the one she received from the host) and her private 
key, and sends the result to the host. 

(4) The host does some computation on the various numbers received from 
Alice and her public key to verify that she knows her private key. 

(5) If she does, her identity is verified. 

If Alice does not trust the host any more than the host trusts Alice, then Alice 
will require the host to prove its identity in the same manner. 

Step ( 1) might seem unnecessary and confusing, but it is required to prevent 
attacks against the protocol. Sections 21.1 and 21.2 mathematically describe several 
algorithms and protocols for proving identity. See also [935]. 

Mutual Authentication Using the Interlock Protocol 

Alice and Bob are two users who want to authenticate each other. Each of them 
has a password that the other knows: Alice has PA and Bob has PR, Here's a protocol 
that will not work: 

( 1) Alice and Bob trade public keys. 

(2) Alice encrypts PA with Bob's public key and sends it to him. 
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(3) Bob encrypts PB with Alice's public key and sends it to her. 

(4) Alice decrypts what she received in step (2) and verifies that it is correct. 

(5) Bob decrypts what he received in step (3) and verifies that it is correct. 

Mallory can launch a successful man-in-the-middle attack (see Section 3.1 ): 

( 1) Alice and Bob trade public keys. Mallory intercepts both messages. He sub­
stitutes his public key for Bob's and sends it to Alice. Then he substitutes 
his public key for Alice's and sends it to Bob. 

(2) Alice encrypts PA with "Bob's" public key and sends it to him. Mallory 
intercepts the message, decrypts PA with his private key, re-encrypts it 
with Bob's public key and sends it on to him. 

(3) Bob encrypts PB with "Alice's" public key and sends it to her. Mallory 
intercepts the message, decrypts PB with his private key, re-encrypts it 
with Alice's public key, and sends it on to her. 

(4) Alice decrypts PB and verifies that it is correct. 

(5) Bob decrypts PA and verifies that it is correct. 

Alice and Bob see nothing different. However, Mallory knows both PA and PB. 
Donald Davies and Wyn Price describe how the interlock protocol (described in 

Section 3.1) can defeat this attack [435]. Steve Bellovin and Michael Merritt discuss 
ways to attack this protocol [ 110]. If Alice is a user and Bob is a host, Mallory can pre­
tend to be Bob, complete the beginning steps of the protocol with Alice, and then 
drop the connection. True artistry demands Mallory do this by simulating line noise 
or network failure, but the final result is that Mallory has Alice's password. He can 
then connect with Bob and complete the protocol, thus getting Bob's password, too. 

The protocol can be modified so that Bob gives his password before Alice, under 
the assumption that the user's password is much more sensitive than the host's 
password. This falls to a more complicated attack, also described in [110]. 

SKID 
SKID2 and SKID3 are symmetric cryptography identification protocols developed 

for RACE's RIPE project [1305] (See Section 25. 7). They use a MAC (see Section 2.4) 
to provide security and both assume that both Alice and Bob share a secret key, K. 

SKID2 allows Bob to prove his identity to Alice. Here's the protocol: 

( 1) Alice chooses a random number, RA. (The RIPE document specifies a 64-bit 
number). She sends it to Bob. 

(2) Bob chooses a random number, RB. (The RIPE document specifies a 64-bit 
number). He sends Alice: 

RB,HK(RA,RB,B) 

HK is the MAC. (The RIPE document suggests the RIPE-MAC function­
see Section 18.14.) Bis Bob's name. 
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(3) Alice computes HK(RA,RB,B) and compares it with what she received from 
Bob. If the results are identical, then Alice knows that she is communicat­
ing with Bob. 

SKID3 provides mutual authentication between Alice and Bob. Steps ( 1) through (3) 
are identical to SKID2, and then the protocol proceeds with: 

(4) Alice sends Bob: 

HK(RR,A) 

A is Alice's name. 

(5) Bob computes HK(RR,A), and compares it with what he received from Alice. 
If the results are identical, then Bob knows that he is communicating with 
Alice. 

This protocol is not secure against a man-in-the-middle attack. In general, a man-in­
the-middle attack can defeat any protocol that doesn't involve a secret of some kind. 

Message Authentication 
When Bob receives a message from Alice, how does he know it is authentic? If 

Alice signed her message, this is easy. Alice's digital signature is enough to convince 
anyone that the message is authentic. 

Symmetric cryptography provides some authentication. When Bob receives a 
message from Alice encrypted in their shared key, he knows it is from Alice. No one 
else knows their key. However, Bob has no way of convincing a third party of this 
fact. Bob can't show the message to Trent and convince him that it came from Alice. 
Trent can be convinced that the message came from either Alice or Bob (since no 
one else shared their secret key), but he has no way of knowing which one. 

If the message is unencrypted, Alice could also use a MAC. This also convinces 
Bob that the message is authentic, but has the same problems as symmetric cryp­
tography solutions. 

3.3 AUTHENTICATION AND KEY EXCHANGE 

These protocols combine authentication with key exchange to solve a general com­
puter problem: Alice and Bob are on opposite ends of a network and want to talk 
securely. How can Alice and Bob exchange a secret key and at the same time each 
be sure that he or she is talking to the other and not to Mallory? Most of the proto­
cols assume that Trent shares a different secret key with each participant, and that 
all of these keys are in place before the protocol begins. 

The symbols used in these protocols are summarized in Table 3.1. 

Wide-Mouth Frog 
The Wide-Mouth Frog protocol [283,284] is probably the simplest symmetric key­

management protocol that uses a trusted server. Both Alice and Bob share a secret 
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A 
B 
EA 
EB 
I 
K 

TABLE 3.1 
Symbols used in authentication and key exchange protocols 

Alice's name 
Bob's name 
Encryption with a key Trent shares with Alice 
Encryption with a key Trent shares with Bob 
Index number 

L 
TA,TB 
RA,RB 

A random session key 
Lifetime 
A timestamp 
A random number, sometimes called a nonce, chosen by Alice and Bob 
respectively 

key with Trent. The keys are just used for key distribution and not to encrypt any 
actual messages between users. Just by using two messages, Alice transfers a session 
key to Bob: 

( 1) Alice concatenates a times tamp, Bob's name, and a random session key 
and encrypts the whole message with the key she shares with Trent. She 
sends this to Trent, along with her name. 

A,EA(TA,B,K) 

(2) Trent decrypts the message from Alice. Then he concatenates a new time­
stamp, Alice's name, and the random session key; he encrypts the whole 
message with the key he shares with Bob. Trent sends to Bob: 

EB(TB,A,K) 

The biggest assumption made in this protocol is that Alice is competent enough 
to generate good session keys. Remember that random numbers aren 1t easy to gen­
erate; it might be more than Alice can be trusted to do properly. 

Yahalom 
In this protocol, both Alice and Bob share a secret key with Trent [283,284]. 

( 1) Alice concatenates her name and a random number, and sends it to Bob. 

A,RA 

(2) Bob concatenates Alice's name, Alice's random number, his own random 
number, and encrypts it with the key he shares with Trent. He sends this 
to Trent, along with his name. 

B,EB(A,RA,RB) 

(3) Trent generates two messages. The first consists of Bob's name, a random 
session key, Alice's random number, and Bob's random number, all 
encrypted with the key he shares with Alice. The second consists of 
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Alice's name and the random session key, encrypted with the key he 
shares with Bob. He sends both messages to Alice. 

EA(B,K,RA,RB),EB(A,K) 

(4) Alice decrypts the first message, extracts K. and confirms that RA has the 
same value as it did in step ( 1 ). Alice sends Bob two messages. The first is 
the message received from Trent, encrypted with Bob's key. The second is 
RB, encrypted with the session key. 

EB(A,K),EK(RB) 

(5) Bob decrypts the message encrypted with his key, extracts K. and confirms 
that RB has the same value as it did in step (2). 

At the end, Alice and Bob are each convinced that they are talking to the other and 
not to a third party. The novelty here is that Bob is the first one to contact Trent, 
who only sends one message to Alice. 

Needham-Schroeder 

This protocol, invented by Roger Needham and Michael Schroeder [1159], also uses 
symmetric cryptography and Trent. 

( 1) Alice sends a message to Trent consisting of her name, Bob's name, and a 
random number. 

A,B,RA 

(2) Trent generates a random session key. He encrypts a message consisting of 
a random session key and Alice's name with the secret key he shares with 
Bob. Then he encrypts Alice's random value, Bob's name, the key, and the 
encrypted message with the secret key he shares with Alice. Finally, he 
sends her the encrypted message: 

EA(RA,B,K,EB(K,A)) 

(3) Alice decrypts the message and extracts K. She confirms that RA is the 
same value that she sent Trent in step ( 1 ). Then she sends Bob the message 
that Trent encrypted in his key. 

ER(K.A) 

(4) Bob decrypts the message and extracts K. He then generates another ran­
dom value, RB. He encrypts the message with Kand sends it to Alice. 

EK(RB) 

(5) Alice decrypts the message with K. She generates RR - 1 and encrypts it 
with K. Then she sends the message back to Bob. 

EK(RB - 1) 
(6) Bob decrypts the message with Kand verifies that it is RB - 1. 

All of this fussing around with RA and RB and RB - 1 is to prevent replay attacks. 
In this attack, Mallory can record old messages and then use them later in an 
attempt to subvert the protocol. The presence of RA in step (2) assures Alice that 
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Trent's message is legitimate and not a replay of a response from a previous execu­
tion of the protocol. When Alice successfully decrypts RB and sends Bob RB - l in 
step (5), Bob is ensured that Alice's messages are not replays from an earlier execu­
tion of the protocol. 

The major security hole in this protocol is that old session keys are valuable. If 
Mallory gets access to an old K, he can launch a successful attack [461]. All he has 
to do is record Alice's messages to Bob in step (3). Then, once he has K, he can pre­
tend to be Alice: 

( 1) Mallory sends Bob the following message: 

EB(K,A) 

(2) Bob extracts K, generates RB, and sends Alice: 

EK(RB) 

(3) Mallory intercepts the message, decrypts it with K, and sends Bob: 

EK(RB - l) 

(4) Bob verifies that "Alice's" message is R 13 - l. 

Now, Mallory has Bob convinced that he is Alice. 
A stronger protocol, using timestamps, can defeat this attack [461,456]. A time­

stamp is added to Trent's message in step (2) encrypted with Bob's key: EB(K,A, T). 
Timestamps require a secure and accurate system clock-not a trivial problem in 
itself. 

If the key Trent shares with Alice is ever compromised, the consequences are 
drastic. Mallory can use it to obtain session keys to talk with Bob (or anyone else he 
wishes to talk to). Even worse, Mallory can continue to do this even after Alice 
changes her key [90]. 

Needham and Schroeder attempted to correct these problems in a modified ver­
sion of their protocol [1160]. Their new protocol is essentially the same as the 
Otway-Rees protocol, published in the same issue of the same journal. 

Otway-Rees 

This protocol also uses symmetric cryptography [1224]. 

( 1) Alice generates a message consisting of an index number, her name, Bob's 
name, and a random number, all encrypted in the key she shares with 
Trent. She sends this message to Bob along with the index number, her 
name, and his name: 

I,A,B,EA(RA,I,A,B) 

(2) Bob generates a message consisting of a new random number, the index 
number, Alice's name, and Bob's name, all encrypted in the key he shares 
with Trent. He sends it to Trent, along with Alice's encrypted message, the 
index number, her name, and his name: 

I,A,B,EA(RA,I,A,B),EB(RB,I,A,B) 
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(3) Trent generates a random session key. Then he creates two messages. One 
is Alice's random number and the session key, encrypted in the key he 
shares with Alice. The other is Bob's random number and the session key, 
encrypted in the key he shares with Bob. He sends these two messages, 
along with the index number, to Bob: 

I,EA(RA,K),EB(RB,K) 

(4) Bob sends Alice the message encrypted in her key, along with the index 
number: 

I,EA(RA,K) 

(5) Alice decrypts the message to recover her key and random number. She 
then confirms that both have not changed in the protocol. 

Assuming that all the random numbers match, and the index number hasn't 
changed along the way, Alice and Bob are now convinced of each other's identity, 
and they have a secret key with which to communicate. 

Kerberos 
Kerberos is a variant of Needham-Schroeder and is discussed in detail in Section 

24.5. In the basic Kerberos Version 5 protocol, Alice and Bob each share keys with 
Trent. Alice wants to generate a session key for a conversation with Bob. 

( 1) Alice sends a message to Trent with her identity and Bob's identity. 

A,B 

(2) Trent generates a message with a timestamp, a lifetime, L, a random ses­
sion key, and Alice's identity. He encrypts this in the key he shares with 
Bob. Then he takes the timestamp, the lifetime, the session key, and Bob's 
identity, and encrypts these in the key he shares with Alice. He sends both 
encrypted messages to Alice. 

EA(T,L,K,B),EB(T,L,K,A) 

(3) Alice generates a message with her identity and the timestamp, encrypts it 
in K, and sends it to Bob. Alice also sends Bob the message encrypted in 
Bob's key from Trent. 

EK(A, T),EB(T,L,K,A) 

(4) Bob creates a message consisting of the timestamp plus one, encrypts it in 
K, and sends it to Alice. 

EK(T+ 1) 

This protocol works, but it assumes that everyone's clocks are synchronized with 
Trent's clock. In practice, the effect is obtained by synchronizing clocks to within a 
few minutes of a secure time server and detecting replays within the time interval. 

Neuman-Stubblebine 
Whether by system faults or by sabotage, clocks can become unsynchronized. If 

the clocks get out of sync, there is a possible attack against most of these protocols 
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[644]. If the sender's clock is ahead of the receiver's clock, Mallory can intercept a 
message from the sender and replay it later when the timestamp becomes current at 
the receiver's site. This attack is called suppress-replay and can have irritating 
consequences. 

This protocol, first presented in [820] and corrected in [1162] attempts to counter 
the suppress-replay attack. It is an enhancement to Yahalom and is an excellent 
protocol. 

( l) Alice concatenates her name and a random number and sends it to Bob. 

A,RA 

(2) Bob concatenates Alice's name, her random number, and a timestamp, and 
encrypts with the key he shares with Trent. He sends it to Trent along with 
his name and a new random number. 

B,RB,EB(A,RA, TB) 

(3) Trent generates a random session key. Then he creates two messages. The 
first is Bob's name, Alice's random number, a random session key, and the 
timestamp, all encrypted with the key he shares with Alice. The second is 
Alice's name, the session key, and the timestamp, all encrypted with the 
key he shares with Bob. He sends these both to Alice, along with Bob's ran­
dom number. 

EA(B,RA,K, TB),EA(A,K, TB),RB 

(4) Alice decrypts the message encrypted with her key, extracts K, and con­
firms that RA has the same value as it did in step (1). Alice sends Bob two 
messages. The first is the message received from Trent, encrypted with 
Bob's key. The second is RB, encrypted with the session key. 

EB(A,K, TB),EdRB) 

(5) Bob decrypts the message encrypted with his key, extracts K, and confirms 
that TB and RB have the same value they did in step (2). 

Assuming both random numbers and the timestamp match, Alice and Bob are 
convinced of one another's identity and share a secret key. Synchronized clocks are 
not required because the timestamp is only relative to Bob's clock; Bob only checks 
the timestamp he generated himself. 

One nice thing about this protocol is that Alice can use the message she received 
from Trent for subsequent authentication with Bob, within some predetermined 
time limit. Assume that Alice and Bob completed the above protocol, communi­
cated, and then terminated the connection. Alice and Bob can reauthenticate in 
three steps, without having to rely on Trent. 

(1) Alice sends Bob the message Trent sent her in step (3) and a new random 
number. 

EB(A,K, TB),R' A 
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(2) Bob sends Alice another new random number, and Alice's new random 
number encrypted in their session key. 

R'B,EK(R'A) 

(3) Alice sends Bob his new random number, encrypted in their session key. 

EK(R'B) 
The new random numbers prevent replay attacks. 

DASS 
The Distributed Authentication Security Service (DASS) protocols, developed at 

Digital Equipment Corporation, also provide for mutual authentication and key 
exchange [ 604, 1519, 1518]. Unlike the previous protocols, DASS uses both public­
key and symmetric cryptography. Alice and Bob each have a private key. Trent has 
signed copies of their public keys. 

( 1) Alice sends a message to Trent, consisting of Bob's name. 

B 

(2) Trent sends Alice Bob's public key, K8 , signed with Trent's private key, T 
The signed message includes Bob's name. 

Sr(B,KB) 

(3) Alice verifies Trent's signature to confirm that the key she received is actu­
ally Bob's public key. She generates a random session key, and a random 
public-key/private-key key pair: Kr. She encrypts a timestamp with K. 
Then she signs a key lifetime, L, her name, and Kr with her private key, KA. 
Finally, she encrypts K with Bob's public key, and signs it with Kr. She 
sends all of this to Bob. 

EK(TA),SKA(L,A,Kp),SKp(EKB(K)) 

(4) Bob sends a message to Trent (this may be a different Trent), consisting of 
Alice's name. 

A 

(5) Trent sends Bob Alice's public key, signed in Trent's private key. The 
signed message includes Alice's name. 

Sr(A,KA) 

(6) Bob verifies Trent's signature to confirm that the key he received is actu­
ally Alice's public key. He then verifies Alice's signature and recovers Kr. 
He verifies the signature and uses his private key to recover K. Then he 
decrypts TA to make sure this is a current message. 

(7) If mutual authentication is required, Bob encrypts a new timestamp with 
K, and sends it to Alice. 

EK(TB) 

(8) Alice decrypts T8 with K to make sure that the message is current. 

SPX, a product by DEC, is based on DASS. Additional information can be found 
in [34]. 
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Denning-Sacco 

This protocol also uses public-key cryptography [461]. Trent keeps a database of 
everyone's public keys. 

( 1) Alice sends a message to Trent with her identity and Bob's identity: 

A,B 

(2) Trent sends Alice Bob's public key, K8, signed with Trent's private key, T. 
Trent also sends Alice her own public key, KA, signed with his private key. 

Sy(B,KB),Sy(A,KA) 

(3) Alice sends Bob a random session key and a timestamp, signed in her pri­
vate key and encrypted in Bob's public key, along with both signed public 
keys. 

EB(SA(K, TA)),Sr(B,KB),Sy(A,KA) 

(4) Bob decrypts Alice's message with his private key and then verifies Alice's 
signature with her public key. He checks to make sure that the times tamp 
is still valid. 

At this point both Alice and Bob have K, and can communicate securely. 
This looks good, but it isn't. After completing the protocol with Alice, Bob can 

then masquerade as Alice [5]. Watch: 

( 1) Bob sends his name and Carol's name to Trent 

B,C 

(2) Trent sends Bob both Bob's and Carol's signed public keys. 

Sy(B,KB),Sy(C,Kc) 

(3) Bob sends Carol the signed session key and timestamp he previously 
received from Alice, encrypted with Carol's public key, along with Alice's 
certificate and Carol's certificate. 

Ec(SA(K, TA)),Sr(A,KA),S-r( C,Kc) 

(4) Carol decrypts Alice's message with her private key and then verifies 
Alice's signature with her public key. She checks to make sure that the 
timestamp is still valid. 

Carol now thinks she is talking to Alice; Bob has successfully fooled her. In fact, 
Bob can fool everyone on the network until the timestamp expires. 

This is easy to fix. Add the names inside the encrypted message in step (3): 

EB(SA(A,B,K, TA)),S-r(A,KA),Sr(B,KB) 

Now Bob can't replay the old message to Carol, because it is clearly meant for 
communication between Alice and Bob. 

Woo-Lam 

This protocol also uses public-key cryptography [1610, 1611]: 
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( 1) Alice sends a message to Trent with her identity and Bob's identity: 

A,B 

(2) Trent sends Alice Bob's public key, KB, signed with Trent's private key, T 

Sr(KR) 

(3) Alice verifies Trent's signature. Then she sends Bob her name and a ran­
dom number, encrypted with Bob's public key. 

EKB(A,RA) 

(4) Bob sends Trent his name, Alice's name, and Alice's random number 
encrypted with Trent's public key, Kr. 

A,B,EKy(RA) 

(5) Trent sends Bob Alice's public key, KA, signed with Trent's private key. He 
also sends him Alice's random number, a random session key, Alice's 
name, and Bob's name, all signed with Trent's private key and encrypted 
with Bob's public key. 

Sr(KA),EKB(Sr(RA,K,A,B)) 

(6) Bob verifies Trent's signatures. Then he sends Alice the second part of 
Trent's message from step (5) and a new random number-all encrypted in 
Alice's public key. 

EKA(Sr(RA,K,A,B),RR) 

(7) Alice verifies Trent's signature and her random number. Then she sends 
Bob the second random number, encrypted in the session key. 

EK(RB) 

(8) Bob decrypts his random number and verifies that it unchanged. 

Other Protocols 
There are many other protocols in the literature. The X.509 protocols are dis­

cussed in Section 24.9, KryptoKnight is discussed in Section 24.6, and Encrypted 
Key Exchange is discussed in Section 22.5. 

Another new public-key protocol is Kuperee [694]. And work is being done on pro­
tocols that use beacons, a trusted node on a network that continuously broadcasts 
authenticated nonces [783]. 

Lessons Learned 
There are some important lessons in the previous protocols, both those which 

have been broken and those which have not: 

Many protocols failed because the designers tried to be too clever. They 
optimized their protocols by leaving out important pieces: names, random 
numbers, and so on. The remedy is to make everything explicit [43,44]. 

Trying to optimize is an absolute tar pit and depends a whole lot on 
the assumptions you make. For example: If you have authenticated 
time, you can do a whole lot of things you can't do if you don't. 
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The protocol of choice depends on the underlying communications archi­
tecture. Do you want to minimize the size of messages or the number of 
messages? Can all parties talk with each other or can only a few of them? 

It's questions like these that led to the development of formal methods for ana­
lyzing protocols. 

3.4 FORMAL ANALYSIS OF AUTHENTICATION AND KEY­

EXCHANGE PROTOCOLS 

The problem of establishing secure session keys between pairs of computers (and 
people) on a network is so fundamental that it has led to a great deal of research. 
Some of the research focused on the development of protocols like the ones dis­
cussed in Sections 3.1, 3.2, and 3.3. This, in turn, has led to a greater and more inter­
esting problem: the formal analysis of authentication and key-exchange protocols. 
People have found flaws in seemingly secure protocols years after they were pro­
posed, and researchers wanted tools that could prove a protocol's security from the 
start. Although much of this work can apply to general cryptographic protocols, the 
emphasis in research is almost exclusively on authentication and key exchange. 

There are four basic approaches to the analysis of cryptographic protocols [1045]: 

1. Model and verify the protocol using specification languages and verifica­
tion tools not specifically designed for the analysis of cryptographic pro­
tocols. 

2. Develop expert systems that a protocol designer can use to develop and 
investigate different scenarios. 

3. Model the requirements of a protocol family using logics for the analysis of 
knowledge and belief. 

4. Develop a formal method based on the algebraic term-rewriting properties 
of cryptographic systems. 

A full discussion on these four approaches and the research surrounding them is 
well beyond the scope of this book. See [1047,1355] for a good introduction to the 
topic; I am only going to touch on the major contributions to the field. 

The first approach treats a cryptographic protocol as any other computer program 
and attempts to prove correctness. Some researchers represent a protocol as a finite­
state machine [1449,1565], others use extensions of first-order predicate calculus 
[822], and still others use specification languages to analyze protocols [1566]. How­
ever, proving correctness is not the same as proving security and this approach fails 
to detect many flawed protocols. Although it was widely studied at first, most of the 
work in this area has been redirected as the third approach gained popularity. 

The second approach uses expert systems to determine if a protocol can reach an 
undesirable state (the leaking of a key, for example). While this approach better 
identifies flaws, it neither guarantees security nor provides techniques for develop-



~-s _______ C_H_A_P_T_E_R_3 __ B_a_s1_·c_P_r_o_t_o_c_o_ls _________________ _ 

ing attacks. It is good at determining whether a protocol contains a given flaw, but 
is unlikely to discover unknown flaws in a protocol. Examples of this approach can 
be found in [987,1521]; [1092] discusses a rule-based system developed by the U.S. 
military, called the Interrogator. 

The third approach is by far the most popular, and was pioneered by Michael Bur­
rows, Martin Abadi, and Roger Needham. They developed a formal logic model for 
the analysis of knowledge and belief, called BAN logic [283,284]. BAN logic is the 
most widely used logic for analyzing authentication protocols. It assumes that 
authentication is a function of integrity and freshness, and uses logical rules to 
trace both of those attributes through the protocol. Although many variants and 
extensions have been proposed, most protocol designers still refer back to the orig­
inal work. 

BAN logic doesn't provide a proof of security; it can only reason about authenti­
cation. It has a simple, straightforward logic that is easy to apply and still useful for 
detecting flaws. Some of the statements in BAN logic include: 

Alice believes X. (Alice acts as though X is true.) 
Alice sees X. (Someone has sent a message containing X to Alice, who can read 

and repeat X-possibly after decrypting it.) 
Alice said X. (At some time, Alice sent a message that includes the statement 

X. It is not known how long ago the message was sent or even that it was sent dur­
ing the current run of the protocol. It is known that Alice believed X when she 
said it.) 

X is fresh. (X has not been sent in a message at any time before the current run 
of the protocol.) 

And so on. BAN logic also provides rules for reasoning about belief in a protocol. 
These rules can then be applied to the logical statements about the protocol to prove 
things or answer questions about the protocol. For example, one rule is the message­
meaning rule: 

IF Alice believes that Alice and Bob share a secret key, K, and Alice sees X, 
encrypted under K, and Alice did not encrypt X under K, THEN Alice believes 
that Bob once said X. 

Another rule is the nonce-verification rule: 

IF Alice believes that X could have been uttered only recently and that Bob once 
said X, THEN Alice believes that Bob believes X. 

There are four steps in BAN analysis: 

( 1) Convert the protocol into idealized form, using the statements previously 
described. 

(2) Add all assumptions about the initial state of the protocol. 
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(3) Attach logical formulas to the statements: assertions about the state of the 
system after each statement. 

(4) Apply the logical postulates to the assertions and assumptions to discover 
the beliefs held by the parties in the protocol. 

The authors of BAN logic "view the idealized protocols as clearer and more com­
plete specifications than traditional descriptions found in the literature .... " 
[283,284]. Others are not so impressed and criticize this step because it may not 
accurately reflect the real protocol [1161,1612]. Further debate is in [221,1557]. 
Other critics try to show that BAN logic can deduce characteristics about proto­
cols that are obviously false [1161]-see [285, 1509] for a rebuttal-and that BAN 
logic deals only with trust and not security [1509]. More debate is in [1488, 
706,1002]. 

Despite these criticisms, BAN logic has been a success. It has found flaws in sev­
eral protocols, including Needham-Schroeder and an early draft of a CCITT X.509 
protocol [303]. It has uncovered redundancies in many protocols, including Yaha­
lom, Needham-Schroeder, and Kerberos. Many published papers use BAN logic to 
make claims about their protocol's security [40, 1162, 73]. 

Other logic systems have been published, some designed as extensions to BAN 
logic [645,586, 1556,828] and others based on BAN to correct perceived weaknesses 
[1488, 1002]. The most successful of these is GNY [645], although it has some short­
comings [40]. Probabalistic beliefs were added to BAN logic, with mixed success, 
by [292,474]. Other formal logics are [156,798,288]; [1514] attempts to combine the 
features of several logics. And [1124,1511] present logics where beliefs can change 
over time. 

The fourth approach to the analysis of cryptographic protocols models the proto­
col as an algebraic system, expresses the state of the participants' knowledge about 
the protocol, and then analyzes the attainability of certain states. This approach has 
not received as much attention as formal logics, but that is changing. It was first 
used by Michael Merritt [1076], who showed that an algebraic model can be used to 
analyze cryptographic protocols. Other approaches are in [473, 1508, 1530, 1531, 1532, 
1510,1612]. 

The Navy Research Laboratory's (NRL) Protocol Analyzer is probably the most 
successful application of these techniques [1512,823,1046,1513]; it has been used to 
discover both new and known flaws in a variety of protocols [1044,1045,1047]. The 
Protocol Analyzer defines the following actions: 

Accept (Bob, Alice, M, N). (Bob accepts the message Mas from Alice 
during Bob's local round N.) 

Learn (Eve, M). (Eve learns M.) 

Send (Alice, Bob, Q, M). (Alice sends M to Bob in response to 
query, Q.) 

Request (Bob, Alice, Q, N). (Bob sends Q to Alice during Bob's local 
round N.) 
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From these actions, requirements can be specified. For example: 

If Bob accepted message M from Alice at some point in the past, then 
Eve did not learn M at some point in the past. 

If Bob accepted message M from Alice in Bob's local round N, then 
Alice sent M to Bob as a response to a query in Bob's local round N. 

To use the NRL Protocol Analyzer, a protocol must be specified using the previ­
ous constructs. Then, there are four phases of analysis: defining transition rules for 
honest participants, describing operations available to all-honest and dishonest­
participants, describing the basic building blocks of the protocol, and describing the 
reduction rules. The point of all this is to show that a given protocol meets its 
requirements. Tools like the NRL Protocol Analyzer could eventually lead to a pro­
tocol that can be proven secure. 

While much of the work in formal methods involves applying the methods to 
existing protocols, there is some push towards using formal methods to design the 
protocols in the first place. Some preliminary steps in this direction are [711]. The 
NRL Protocol Analyzer also attempts to do this [1512,222,1513]. 

The application of formal methods to cryptographic protocols is still a fairly new 
idea and it's really hard to figure out where it is headed. At this point, the weakest 
link seems to be the formalization process. 

3.5 MULTIPLE-KEY PUBLIC-KEY CRYPTOGRAPHY 

Public-key cryptography uses two keys. A message encrypted with one key can be 
decrypted with the other. Usually one key is private and the other is public. How­
ever, let's assume that Alice has one key and Bob has the other. Now Alice can 
encrypt a message so that only Bob can decrypt it, and Bob can encrypt a message so 
that only Alice can read it. 

This concept was generalized by Colin Boyd [217]. Imagine a variant of public-key 
cryptography with three keys: KA, KB, and Kc, distributed as shown in Table 3.2. 

Alice can encrypt a message with KA so that Ellen, with Kn and Kc, can decrypt it. 
So can Bob and Carol in collusion. Bob can encrypt a message so that Frank can read 

TABLE 3.2 
Three-Key Key Distribution 

Alice KA 
Bob KB 
Carol Kc 
Dave KA and KB 
Ellen KB and Kc 
Frank Kc and KA 
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it, and Carol can encrypt a message so that Dave can read it. Dave can encrypt a 
message with KA so that Ellen can read it, with KB so that Frank can read it, or with 
both KA and KB so that Carol can read it. Similarly, Ellen can encrypt a message so 
that either Alice, Dave, or Frank can read it. All the possible combinations are sum­
marized in Table 3.3; there are no other ones. 

This can be extended ton keys. If a given subset of the keys is used to encrypt the 
message, then the other keys are required to decrypt the message. 

Broadcasting a Message 
Imagine that you have 100 operatives out in the field. You want to be able to send 

messages to subsets of them, but don't know which subsets in advance. You can 
either encrypt the message separately for each person or give out keys for every pos­
sible combination of people. The first option requires a lot of messages; the second 
requires a lot of keys. 

Multiple-key cryptography is much easier. We'll use three operatives: Alice, Bob, 
and Carol. You give Alice KA and KB, Bob KB and Kc, and Carol Kc and KA. Now you 
can talk to any subset you want. If you want to send a message so that only Alice 
can read it, encrypt it with Kc. When Alice receives the message, she decrypts it 
with KA and then KB. If you want to send a message so that only Bob can read it, 
encrypt it with KA; so that only Carol can read it, with KB. If you want to send a mes­
sage so that both Alice and Bob can read it, encrypt it with KA and Kc, and so on. 

This might not seem exciting, but with 100 operatives it is quite efficient. Indi­
vidual messages mean a shared key with each operative ( 100 keys total) and each 
message. Keys for every possible subset means 2 100 - 2 different keys (messages to all 
operatives and messages to no operatives are excluded). This scheme needs only one 
encrypted message and 100 different keys. The drawback of this scheme is that you 
also have to broadcast which subset of operatives can read the message, otherwise 
each operative would have to try every combination of possible keys looking for the 
correct one. Even just the names of the intended recipients may be significant. At 
least for the straightforward implementation of this, everyone gets a really large 
amount of key data. 

There are other techniques for message broadcasting, some of which avoid the 
previous problem. These are discussed in Section 22.7. 

TABLE 3.3 
Three-Key Message Encryption 

Encrypted with Keys: Must be Decrypted with Keys: 

KA 
KB 
Kc 
KA and KB 
KA and Kc 
KB and Kc 

KB and Kc 
KA and Kc 
KA and KB 
Kc 
KB 
KA 
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3.6 SECRET SPLITTING 

Imagine that you've invented a new, extra gooey, extra sweet, cream filling or a 
burger sauce that is even more tasteless than your competitors'. This is important; 
you have to keep it secret. You could tell only your most trusted employees the 
exact mixture of ingredients, but what if one of them defects to the competition? 
There goes the secret, and before long every grease palace on the block will be mak­
ing burgers with sauce as tasteless as yours. 

This calls for secret splitting. There are ways to take a message and divide it up 
into pieces [551]. Each piece by itself means nothing, but put them together and the 
message appears. If the message is the recipe and each employee has a piece, then 
only together can they make the sauce. If any employee resigns with his single piece 
of the recipe, his information is useless by itself. 

The simplest sharing scheme splits a message between two people. Here's a pro­
tocol in which Trent can split a message between Alice and Bob: 

( 1) Trent generates a random-bit string, R, the same length as the message, M. 

(2) Trent XORs M with R to generate S. 

MffiR=S 

(3) Trent gives R to Alice and S to Bob. 

To reconstruct the message, Alice and Bob have only one step to do: 

(4) Alice and Bob XOR their pieces together to reconstruct the message: 

RffiS=M 

This technique, if done properly, is absolutely secure. Each piece, by itself, is 
absolutely worthless. Essentially, Trent is encrypting the message with a one-time 
pad and giving the ciphertext to one person and the pad to the other person. Section 
1.5 discusses one-time pads; they have perfect security. No amount of computing 
power can determine the message from one of the pieces. 

It is easy to extend this scheme to more people. To split a message among more 
than two people, XOR more random-bit strings into the mixture. In this example, 
Trent divides up a message into four pieces: 

( 1) Trent generates three random-bit strings, R, S, and T, the same length as 
the message, M. 

(2) Trent XORs M with the three strings to generate U: 

MffiRffiSffiT=U 

(3) Trent gives R to Alice, S to Bob, T to Carol, and U to Dave. 

Alice, Bob, Carol, and Dave, working together, can reconstruct the message: 

(4) Alice, Bob, Carol, and Dave get together and compute: 

RffiSffiTffi U=M 
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This is an adjudicated protocol. Trent has absolute power and can do whatever he 
wants. He can hand out gibberish and claim that it is a valid piece of the secret; no 
one will know it until they try to reconstruct the secret. He can hand out a piece to 
Alice, Bob, Carol, and Dave, and later tell everyone that only Alice, Carol, and Dave 
are needed to reconstruct the secret, and then fire Bob. But since this is Trent's 
secret to divide up, this isn't a problem. 

However, this protocol has a problem: If any of the pieces gets lost and Trent isn't 
around, so does the message. If Carol, who has a piece of the sauce recipe, goes to 
work for the competition and takes her piece with her, the rest of them are out of 
luck. She can't reproduce the recipe, but neither can Alice, Bob, and Dave working 
together. Her piece is as critical to the message as every other piece combined. All 
Alice, Bob, or Dave know is the length of the message-nothing more. This is true 
because R, S, T, U, and Mall have the same length; seeing anyone of them gives the 
length of M. Remember, M isn't being split in the normal sense of the word; it is 
being XORed with random values. 

3. 7 SECRET SHARING 

You're setting up a launch program for a nuclear missile. You want to make sure 
that no single raving lunatic can initiate a launch. You want to make sure that no 
two raving lunatics can initiate a launch. You want at least three out of five officers 
to be raving lunatics before you allow a launch. 

This is easy to solve. Make a mechanical launch controller. Give each of the five 
officers a key and require that at least three officers stick their keys in the proper 
slots before you'll allow them to blow up whomever we're blowing up this week. (If 
you're really worried, make the slots far apart and require the officers to insert the 
keys simultaneously-you wouldn't want an officer who steals two keys to be able 
to vaporize Toledo.) 

We can get even more complicated. Maybe the general and two colonels are 
authorized to launch the missile, but if the general is busy playing golf then five 
colonels are required to initiate a launch. Make the launch controller so that it 
requires five keys. Give the general three keys and the colonels one each. The gen­
eral together with any two colonels can launch the missile; so can the five colonels. 
However, a general and one colonel cannot; neither can four colonels. 

A more complicated sharing scheme, called a threshold scheme, can do all of this 
and more-mathematically. At its simplest level, you can take any message (a secret 
recipe, launch codes, your laundry list, etc.) and divide it into n pieces, called shad­
ows or shares, such that any m of them can be used to reconstruct the message. 
More precisely, this is called an (m,n)-threshold scheme. 

With a (3,4)-threshold scheme, Trent can divide his secret sauce recipe among 
Alice, Bob, Carol, and Dave, such that any three of them can put their shadows 
together and reconstruct the message. If Carol is on vacation, Alice, Bob, and Dave 
can do it. If Bob gets run over by a bus, Alice, Carol, and Dave can do it. However, if 
Bob gets run over by a bus while Carol is on vacation, Alice and Dave can't recon­
struct the message by themselves. 
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General threshold schemes are even more versatile. Any sharing scenario you can 
imagine can be modeled. You can divide a message among the people in your build­
ing so that to reconstruct it, you need seven people from the first floor and five peo­
ple from the second floor, unless there is someone from the third floor involved, in 
which case you only need that person and three people from the first floor and two 
people from the second floor, unless there is someone from the fourth floor 
involved, in which case you need that person and one person from the third floor, or 
that person and two people from the first floor and one person from the second floor, 
unless there is ... well, you get the idea. 

This idea was invented independently by Adi Shamir [1414] and George Blakley 
[182] and studied extensively by Gus Simmons [1466]. Several different algorithms 
are discussed in Section 23.2. 

Secret Sharing with Cheaters 
There are many ways to cheat with a threshold scheme. Here are just a few of them. 
Scenario 1: Colonels Alice, Bob, and Carol are in a bunker deep below some iso-

lated field. One day, they get a coded message from the president: "Launch the mis­
siles. We're going to eradicate the last vestiges of neural network research in the 
country." Alice, Bob, and Carol reveal their shadows, but Carol enters a random 
number. She's actually a pacifist and doesn't want the missiles launched. Since 
Carol doesn't enter the correct shadow, the secret they recover is the wrong secret. 
The missiles stay in their silos. Even worse, no one knows why. Alice and Bob, even 
if they work together, cannot prove that Carol's shadow is invalid. 

Scenario 2: Colonels Alice and Bob are sitting in the bunker with Mallory. Mal­
lory has disguised himself as a colonel and none of the others is the wiser. The 
same message comes in from the president, and everyone reveals their shadows. 
"Bwa-ha-ha!" shouts Mallory. "I faked that message from the president. Now I 
know both of your shadows." He races up the staircase and escapes before anyone 
can catch him. 

Scenario 3: Colonels Alice, Bob, and Carol are sitting in the bunker with Mallory, 
who is again disguised. (Remember, Mallory doesn't have a valid shadow.) The same 
message comes in from the president and everyone reveals their shadows. Mallory 
reveals his shadow only after he has heard the other three. Since only three shadows 
are needed to reconstruct the secret, he can quickly create a valid shadow and 
reveals that. Now, not only does he know the secret, but no one realizes that he isn't 
part of the scheme. 

Some protocols that handle these sorts of cheaters are discussed in Section 23.2. 

Secret Sharing without Trent 
A bank wants its vault to open only if three out of five officers enter their keys. 

This sounds like a basic (3,5)-threshold scheme, but there's a catch. No one is to 
know the entire secret. There is no Trent to divide the secret up into five pieces. 
There are protocols by which the five officers can create a secret and each get a 
piece, such that none of the officers knows the secret until they all reconstruct it. 
I'm not going to discuss these protocols in this book; see [756] for details. 



3.8 Cryptographic Protection of Databases 

Sharing a Secret without Revealing the Shares 
These schemes have a problem. When everyone gets together to reconstruct their 

secret, they reveal their shares. This need not be the case. If the shared secret is a pri­
vate key (to a digital signature, for example), then n shareholders can each complete 
a partial signature of the document. After the nth partial signature, the document 
has been signed with the shared private key and none of the shareholders learns any 
other shares. The point is that the secret can be reused, and you don't need a trusted 
processor to handle it. This concept is explored further by Yvo Desmedt and Yair 
Frankel [483,484]. 

Verifiable Secret Sharing 
Trent gives Alice, Bob, Carol, and Dave each a share or at least he says he does. 

The only way any of them know if they have a valid share is to try to reconstruct the 
secret. Maybe Trent sent Bob a bogus share or Bob accidentally received a bad share 
through communications error. Verifiable secret sharing allows each of them to 
individually verify that they have a valid share, without having to reconstruct the 
secret [558,1235]. 

Secret-Sharing Schemes with Prevention 
A secret is divided up among 50 people so that any 10 can get together and recon­

struct the secret. That's easy. But, can we implement the same secret-sharing 
scheme with the added constraint that 20 people can get together and prevent the 
others from reconstructing the secret, no matter how many of them there are? As it 
turns out, we can [153]. 

The math is complicated, but the basic idea is that everyone gets two shares: a 
"yes" share and a "no" share. When it comes time to reconstruct the secret, people 
submit one of their shares. The actual share they submit depends on whether they 
wish the secret reconstructed. If there are m or more "yes" shares and fewer than n 
"no" shares, the secret can be reconstructed. Otherwise, it cannot. 

Of course, nothing prevents a sufficient number of "yes" people from going off in 
a corner without the "no" people (assuming they know who they are) and recon­
structing the secret. But in a situation where everyone submits their shares into a 
central computer, this scheme will work. 

Secret Sharing with Disenrollment 
You've set up your secret-sharing system and now you want to fire one of your 

shareholders. You could set up a new scheme without that person, but that's time­
consuming. There are methods for coping with this system. They allow a new 
sharing scheme to be activated instantly once one of the participants becomes 
untrustworthy [1004]. 

3 .8 CRYPTOGRAPHIC PROTECTION OF DATABASES 

The membership database of an organization is a valuable commodity. On the one 
hand, you want to distribute the database to all members. You want them to com-
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municate with one another, exchange ideas, and invite each other over for cucum­
ber sandwiches. On the other hand, if you distribute the membership database to 
everyone, copies are bound to fall into the hands of insurance salesmen and other 
annoying purveyors of junk mail. 

Cryptography can ameliorate this problem. We can encrypt the database so that it 
is easy to extract the address of a single person but hard to extract a mailing list of 
all the members. 

The scheme, from [550,549], is straightforward. Choose a one-way hash function 
and a symmetric encryption algorithm. Each record of the database has two fields. 
The index field is the last name of the member, operated on by the one-way hash 
function. The data field is the full name and address of the member, encrypted 
using the last name as the key. Unless you know the last name, you can't decrypt 
the data field. 

Searching a specific last name is easy. First, hash the last name and look for the 
hashed value in the index field of the database. If there is a match, then that last 
name is in the database. If there are several matches, then there are several people 
in the database with the last name. Finally, for each matching entry, decrypt the full 
name and address using the last name as the key. 

In [550] the authors use this system to protect a dictionary of 6000 Spanish verbs. 
They report minimal performance degradation due to the encryption. Additional 
complications in [549] handle searches on multiple indexes, but the idea is the 
same. The primary problem with this system is that it's impossible to search for 
people when you don't know how to spell their name. You can try variant spellings 
until you find the correct one, but it isn't practical to scan through everyone whose 
name begins with "Sch" when looking for "Schneier." 

This protection isn't perfect. It is possible for a particularly persistent insurance 
salesperson to reconstruct the membership database through brute-force by trying 
every possible last name. If he has a telephone database, he can use it as a list of pos­
sible last names. This might take a few weeks of dedicated number crunching, but 
it can be done. It makes his job harder and, in the world of junk mail, "harder" 
quickly becomes "too expensive." 

Another approach, in [185], allows statistics to be compiled on encrypted data. 
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CHAPTER 4 

Intermediate Protocols 

4.1 TIMESTAMPING SERVICES 

In many situations, people need to certify that a document existed on a certain date. 
Think about a copyright or patent dispute: The party that produces the earliest copy 
of the disputed work wins the case. With paper documents, notaries can sign and 
lawyers can safeguard copies. If a dispute arises, the notary or the lawyer testifies 
that the letter existed on a certain date. 

In the digital world, it's far more complicated. There is no way to examine a digi­
tal document for signs of tampering. It can be copied and modified endlessly with­
out anyone being the wiser. It's trivial to change the date stamp on a computer file. 
No one can look at a digital document and say: "Yes, this document was created 
before November 4, 1952." 

Stuart Haber and W. Scott Stornetta at Bellcore thought about the problem [682, 
683,92]. They wanted a digital timestamping protocol with the following properties: 

The data itself must be timestamped, without any regard to the phys­
ical medium on which it resides. 

It must be impossible to change a single hit of the document without 
that change being apparent. 

It must he impossible to timestamp a document with a date and time 
different from the present one. 

Arbitrated Solution 
This protocol uses Trent, who has a trusted timestamping service, and Alice, who 

wishes to timestamp a document. 

( 1) Alice transmits a copy of the document to Trent. 
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(2) Trent records the date and time he received the document and retains a 
copy of the document for safekeeping. 

Now, if anyone calls into question Alice's claim of when the document was cre­
ated, she just has to call up Trent. He will produce his copy of the document and ver­
ify that he received the document on the date and time stamped. 

This protocol works, but has some obvious problems. First, there is no privacy. 
Alice has to give a copy of the document to Trent. Anyone listening in on the com­
munications channel could read it. She could encrypt it, but still the document has 
to sit in Trent's database. Who knows how secure that database is? 

Second, the database itself would have to be huge. And the bandwidth require­
ments to send large documents to Trent would be unwieldy. 

The third problem has to do with the potential errors. An error in transmission, or 
an electromagnetic bomb detonating somewhere in Trent's central computers, 
could completely invalidate Alice's claim of a timestamp. 

And fourth, there might not be someone as honest as Trent to run the time­
stamping service. Maybe Alice is using Bob's Timestamp and Taco Stand. There is 
nothing to stop Alice and Bob from colluding and timestamping a document with 
any time that they want. 

Improved Arbitrated Solution 
One-way hash functions and digital signatures can clear up most of these prob-

lems easily: 

(1) Alice produces a one-way hash of the document. 

(2) Alice transmits the hash to Trent. 

(3) Trent appends the date and time he received the hash onto the hash and 
then digitally signs the result. 

(4) Trent sends the signed hash with timestamp back to Alice. 

This solves every problem but the last. Alice no longer has to worry about revealing 
the contents of her document; the hash is sufficient. Trent no longer has to store 
copies of the document (or even of the hash), so the massive storage requirements and 
security problems are solved (remember, one-way hash functions don't have a key). 
Alice can immediately examine the signed timestamped hash she receives in step (4), 
so she will immediately catch any transmission errors. The only problem remaining 
is that Alice and Trent can still collude to produce any timestamp they want. 

Linking Protocol 

One way to solve this problem is to link Alice's timestamp with timestamps pre­
viously generated by Trent. These timestamps will most probably be generated for 
people other than Alice. Since the order that Trent receives the different timestamp 
requests can't be known in advance, Alice's timestamp must have occurred after 
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the previous one. And since the request that came after is linked with Alice's 
timestamp, then hers must have occurred before. This sandwiches Alice's request 
in time. 

If A is Alice's name, the hash value that Alice wants timestamped is Hw and the 
previous time stamp is Tn _ 1, then the protocol is: 

( 1) Alice sends Trent Hn and A. 

(2) Trent sends back to Alice: 

Tn = SK(n,A,Hn,tnJn - 1,Hn - I, Tn - 1,Ln) 

where Ln consists of the following hashed linking information: 

Ln = H(In - 1,Hn - !, Tn - 1,Ln - i) 

SK indicates that the message is signed with Trent's private key. Alice's 
name identifies her as the originator of the request. The parameter n indi­
cates the sequence of the request: This is the nth timestamp Trent has 
issued. The parameter tn is the time. The additional information is the 
identification, original hash, time, and hashed timestamp of the previous 
document Trent stamped. 

(3) After Trent stamps the next document, he sends Alice the identification of 
the originator of that document: In+ 1• 

If someone challenges Alice's timestamp, she just contacts the originators of the 
previous and following documents: In_ 1 and I11 + 1. If their documents are called into 
question, they can get in touch with In_ 2 and In+ 2, and so on. Every person can show 
that their document was timestamped after the one that came before and before the 
one that came after. 

This protocol makes it very difficult for Alice and Trent to collude and produce a 
document stamped with a different time than the actual one. Trent cannot forward­
date a document for Alice, since that would require knowing in advance what doc­
ument request came before it. Even if he could fake that, he would have to know 
what document request came before that, and so on. He cannot back-date a docu­
ment, because the timestamp must be embedded in the timestamps of the docu­
ment issued immediately after, and that document has already been issued. The 
only possible way to break this scheme is to invent a fictitious chain of documents 
both before and after Alice's document, long enough to exhaust the patience of any­
one challenging the timestamp. 

Distributed Protocol 
People die; timestamps get lost. Many things could happen between the time­

stamping and the challenge to make it impossible for Alice to get a copy of In_ 1's 
timestamp. This problem could be alleviated by embedding the previous 10 people's 
timestamps into Alice's, and then sending Alice the identities of the next 10 people. 
Alice has a greater chance of finding people who still have their timestamps. 
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Along a similar line, the following protocol does away with Trent altogether. 

(1) Using H11 as input, Alice generates a string of random values using a cryp­
tographically secure pseudo-random-number generator: 

Vi, V2, Vi, ... vk 
(2) Alice interprets each of these values as the identification, I, of another per­

son. She sends H 11 to each of these people. 

(3) Each of these people attaches the date and time to the hash, signs the 
result, and sends it back to Alice. 

(4) Alice collects and stores all the signatures as the timestamp. 

The cryptographically secure pseudo-random-number generator in step (1) pre­
vents Alice from deliberately choosing corrupt Is as verifiers. Even if she makes triv­
ial changes in her document in an attempt to construct a set of corrupt Is, her 
chances of getting away with this are negligible. The hash function randomizes the 
Is; Alice cannot force them. 

This protocol works because the only way for Alice to fake a timestamp would be 
to convince all of the k people to cooperate. Since she chose them at random in step 
( 1 ), the odds against this are very high. The more corrupt society is, the higher a 
number k should be. 

Additionally, there should be some mechanism for dealing with people who can't 
promptly return the timestamp. Some subset of k is all that would be required for a 
valid timestamp. The details depend on the implementation. 

Further Work 

Further improvements to timestamping protocols are presented in [92]. The authors 
use binary trees to increase the number of timestamps that depend on a given time­
stamp, reducing even further the possibility that someone could create a chain of fic­
titious timestamps. They also recommend publishing a hash of the day's timestamps 
in a public place, such as a newspaper. This serves a function similar to sending the 
hash to random people in the distributed protocol. In fact, a timestamp has appeared 
in every Sunday's New York Times since 1992. 

These timestamping protocols are patented [684,685,686]. A Bellcore spin-off com­
pany called Surety Technologies owns the patents and markets a Digital Notary Sys­
tem to support these protocols. In their first version, clients send "certify" requests 
to a central coordinating server. Following Merkle's technique of using hash func­
tions to build trees [1066], the server builds a tree of hash values whose leaves are all 
the requests received during a given second, and sends back to each requester the list 
of hash values hanging off the path from its leaf to the root of the tree. The client soft­
ware stores this locally, and can issue a Digital Notary "certificate" for any file that 
has been certified. The sequence of roots of these trees comprises the "Universal Val­
idation Record" that will be available electronically at multiple repository sites (and 
also published on CD-ROM). The client software also includes a "validate" function, 
allowing the user to test whether a file has been certified in exactly its current form 
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(by querying a repository for the appropriate tree root and comparing it against a hash 
value appropriately recomputed from the file and its certificate). For information 
contact Surety Technologies, 1 Main St., Chatham, NJ, 07928; (201) 701-0600; Fax: 
(201) 701-0601. 

4.2 SUBLIMINAL CHANNEL 

Alice and Bob have been arrested and are going to prison. He's going to the men's 
prison and she's going to the women's prison. Walter, the warden, is willing to let 
Alice and Bob exchange messages, but he won't allow them to be encrypted. Walter 
expects them to coordinate an escape plan, so he wants to be able to read everything 
they say. 

Walter also hopes to deceive either Alice or Bob. He wants one of them to accept 
a fraudulent message as a genuine message from the other. Alice and Bob go along 
with this risk of deception, otherwise they cannot communicate at all, and they 
have to coordinate their plans. To do this they have to deceive the warden and find 
a way of communicating secretly. They have to set up a subliminal channel, a covert 
communications channel between them in full view of Walter, even though the 
messages themselves contain no secret information. Through the exchange of per­
fectly innocuous signed messages they will pass secret information back and forth 
and fool Walter, even though Walter is watching all the communications. 

An easy subliminal channel might be the number of words in a sentence. An odd 
number of words in a sentence might correspond to "1," while an even number of 
words might correspond to "0." So, while you read this seemingly innocent para­
graph, I have sent my operatives in the field the message "101." The problem with 
this technique is that it is mere steganography (see Section 1.2); there is no key and 
security depends on the secrecy of the algorithm. 

Gustavus Simmons invented the concept of a subliminal channel in a conventional 
digital signature algorithm [1458,1473]. Since the subliminal messages are hidden in 
what looks like normal digital signatures, this is a form of obfuscation. Walter sees 
signed innocuous messages pass back and forth, but he completely misses the infor­
mation being sent over the subliminal channel. In fact, the subliminal-channel sig­
nature algorithm is indistinguishable from a normal signature algorithm, at least to 
Walter. Walter not only cannot read the subliminal message, but he also has no idea 
that one is even present. 

In general the protocol looks like this: 

( 1) Alice generates an innocuous message, pretty much at random. 

(2) Using a secret key shared with Bob, Alice signs the innocuous message in 
such a way that she hides her subliminal message in the signature. (This is 
the meat of the subliminal channel protocol; see Section 23.3.) 

(3) Alice sends this signed message to Bob via Walter. 

(4) Walter reads the innocuous message and checks the signature. Finding 
nothing amiss, he passes the signed message to Bob. 
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(5) Bob checks the signature on the innocuous message, confirming that the 
message came from Alice. 

(6) Bob ignores the innocuous message and, using the secret key he shares 
with Alice, extracts the subliminal message. 

What about cheating? Walter doesn't trust anyone and no one trusts him. He can 
always prevent communication, but he has no way of introducing phony messages. 
Since he can't generate any valid signatures, Bob will detect his attempt in step (5). 
And since he does not know the shared key, he can't read the subliminal messages. 
Even more important, he has no idea that the subliminal messages are there. Signed 
messages using a digital signature algorithm look no different from signed messages 
with subliminal messages embedded in the signature. 

Cheating between Alice and Bob is more problematic. In some implementations 
of a subliminal channel, the secret information Bob needs to read the subliminal 
message is the same information Alice needs to sign the innocuous message. If this 
is the case, Bob can impersonate Alice. He can sign messages purporting to come 
from her, and there is nothing Alice can do about it. If she is to send him subliminal 
messages, she has to trust him not to abuse her private key. 

Other subliminal channel implementations don't have this problem. A secret key 
shared by Alice and Bob allows Alice to send Bob subliminal messages, but it is not 
the same as Alice's private key and does not allow Bob to sign messages. Alice need 
not trust Bob not to abuse her private key. 

Applications of Subliminal Channel 
The most obvious application of the subliminal channel is in a spy network. If 

everyone sends and receives signed messages, spies will not be noticed sending sub­
liminal messages in signed documents. Of course, the enemy's spies can do the 
same thing. 

Using a subliminal channel, Alice could safely sign a document under threat. She 
would, when signing the document, imbed the subliminal message, saying, "I am 
being coerced." Other applications are more subtle. A company can sign documents 
and embed subliminal messages, allowing them to be tracked throughout the docu­
ments' lifespans. The government can "mark" digital cash. A malicious signature 
program can leak secret information in its signatures. The possibilities are endless. 

Subliminal-Free Signatures 

Alice and Bob are sending signed messages to each other, negotiating the terms of 
a contract. They use a digital signature protocol. However, this contract negotiation 
has been set up as a cover for Alice's and Bob's spying activities. When they use the 
digital signature algorithm, they don't care about the messages they are signing. 
They are using a subliminal channel in the signatures to send secret information to 
each other. The counterespionage service, however, doesn't know that the contract 
negotiations and the use of signed messages are just cover-ups. This concern has led 
people to create subliminal-free signature schemes. These digital signature schemes 
cannot be modified to contain a subliminal channel. See [480,481] for details. 
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4.3 UNDENIABLE DIGITAL SIGNATURES 

Normal digital signatures can be copied exactly. Sometimes this property is useful, 
as in the dissemination of public announcements. Other times it could be a prob­
lem. Imagine a digitally signed personal or business letter. If many copies of that 
document were floating around, each of which could be verified by anyone, this 
could lead to embarrassment or blackmail. The best solution is a digital signature 
that can be proven valid, but that the recipient cannot show to a third party without 
the signer's consent. 

The Alice Software Company distributes DEW (Do-Everything-Word). To ensure 
that their software is virus-free, they include a digital signature with each copy. 
However, they want only legitimate buyers of the software, not software pirates, to 
be able to verify the signature. At the same time, if copies of DEW are found to con­
tain a virus, the Alice Software Company should be unable to deny a valid signature. 

Undeniable signatures [343,327] are suited to these sorts of tasks. Like a normal 
digital signature, an undeniable signature depends on the signed document and the 
signer's private key. But unlike normal digital signatures, an undeniable signature 
cannot be verified without the signer's consent. Although a better name for these 
signatures might be something like "nontransferable signatures," the name comes 
from the fact that if Alice is forced to either acknowledge or deny a signature-per­
haps in court-she cannot falsely deny her real signature. 

The mathematics are complicated, but the basic idea is simple: 

( 1) Alice presents Bob with a signature. 

(2) Bob generates a random number and sends it to Alice. 

(3) Alice does a calculation using the random number and her private key and 
sends Bob the result. Alice could only do this calculation if the signature is 
valid. 

(4) Bob confirms this. 

There is also an additional protocol so that Alice can prove that she did not sign a 
document, and cannot falsely deny a signature. 

Bob can't turn around and convince Carol that Alice's signature is valid, because 
Carol doesn't know that Bob's numbers are random. He could have easily worked 
the protocol backwards on paper, without any help from Alice, and then shown 
Carol the result. Carol can be convinced that Alice's signature is valid only if she 
completes the protocol with Alice herself. This might not make much sense now, 
but it will once you see the mathematics in Section 23.4. 

This solution isn't perfect. Yvo Desmedt and Moti Yung show that it is possible, 
in some applications, for Bob to convince Carol that Alice's signature is valid [489]. 

For instance, Bob buys a legal copy of DEW. He can validate the signature on the 
software package whenever he wants. Then, Bob convinces Carol that he's a sales­
man from the Alice Software Company. He sells her a pirated copy of DEW. When 
Carol tries to validate the signature with Bob, he simultaneously validates the signa-
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ture with Alice. When Carol sends him the random number, he then sends it on to 
Alice. When Alice replies, he then sends the reply on to Carol. Carol is convinced 
that she is a legitimate buyer of the software, even though she isn't. This attack is an 
instance of the chess grandmaster problem and is discussed in detail in Section 5.2. 

Even so, undeniable signatures have a lot of applications; in many instances Alice 
doesn't want anyone to be able to verify her signature. She might not want personal 
correspondence to be verifiable by the press, be shown and verified out of context, 
or even to be verified after things have changed. If she signs a piece of information 
she sold, she won't want someone who hasn't paid for the information to be able to 
verify its authenticity. Controlling who verifies her signature is a way for Alice to 
protect her personal privacy. 

A variant of undeniable signatures separates the relation between signer and mes­
sage from the relation between signer and signature [910]. In one signature scheme, 
anyone can verify that the signer actually created the signature, but the cooperation 
of the signer is required to verify that the signature is valid for the message. 

A related notion is an entrusted undeniable signature [1229]. Imagine that Alice 
works for Toxins, Inc., and sends incriminating documents to a newspaper using an 
undeniable signature protocol. Alice can verify her signature to the newspaper 
reporter, but not to anyone else. However, CEO Bob suspects that Alice is the source 
of the documents. He demands that Alice run the disavowal protocol to clear her 
name, and Alice refuses. Bob maintains that the only reason Alice has to refuse is 
that she is guilty, and fires her. 

Entrusted undeniable signatures are like undeniable signatures, except that the 
disavowal protocol can only be run by Trent. Bob cannot demand that Alice run the 
disavowal protocol; only Trent can. And if Trent is the court system, then he will 
only run the protocol to resolve a formal dispute. 

4.4 DESIGNATED CONFIRMER SIGNATURES 

The Alice Software Company is doing a booming business selling DEW-so good, in 
fact, that Alice is spending more time verifying undeniable signatures than writing 
new features. 

Alice would like a way to designate one particular person in the company to be in 
charge of signature verification for the whole company. Alice, or any other pro­
grammer, would be able to sign documents with an undeniable protocol. But the 
verifications would all be handled by Carol. 

As it turns out, this is possible with designated confirmer signatures [333, 1213]. 
Alice can sign a document such that Bob is convinced the signature is valid, but he 
cannot convince a third party; at the same time Alice can designate Carol as the 
future confirmer of her signature. Alice doesn't even need to ask Carol's permission 
beforehand; she just has to use Carol's public key. And Carol can still verify Alice's 
signature if Alice is out of town, has left the company, or just upped and died. 

Designated confirmer signatures are kind of a compromise between normal digi­
tal signatures and undeniable signatures. There are certainly instances where Alice 
might want to limit who can verify her signature. On the other hand, giving Alice 
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complete control undermines the enforceability of signatures: Alice might refuse to 
cooperate in either confirming or denying, she might claim the loss of keys for con­
firming or denying, or she might just be unavailable. Designated confirmer signa­
tures can give Alice the protection of an undeniable signature while not letting her 
abuse that protection. Alice might even prefer it that way: Designated confirmer 
signatures can help prevent false applications, protect her if she actually does lose 
her key, and step in if she is on vacation, in the hospital, or even dead. 

This idea has all sorts of possible applications. Carol can set herself up as a notary 
public. She can publish her public key in some directory somewhere, and people can 
designate her as a confirmer for their signatures. She can charge a small fee for con­
firming signatures for the masses and make a nice living. 

Carol can be a copyright office, a government agency, or a host of other things. 
This protocol allows organizations to separate the people who sign documents from 
the people who help verify signatures. 

4.5 PROXY SIGNATURES 

Designated confirmer signatures allows a signer to designate someone else to verify 
his signature. Alice, for instance, needs to go on a business trip to someplace which 
doesn't have very good computer network access-to the jungles of Africa, for exam­
ple. Or maybe she is incapacitated after major surgery. She expects to receive some 
important e-mail, and has instructed her secretary Bob to respond accordingly. How 
can Alice give Bob the power to sign messages for her, without giving him her pri­
vate key? 

Proxy signatures is a solution [ 1001 ]. Alice can give Bob a proxy, such that the fol-
lowing properties hold: 

Distinguishability. Proxy signatures are distinguishable from normal 
signatures by anyone. 

Unforgeability. Only the original signer and the designated proxy 
signer can create a valid proxy signature. 

Proxy signer's deviation. A proxy signer cannot create a valid proxy 
signature not detected as a proxy signature. 

Verifiability. From a proxy signature, a verifier can be convinced of 
the original signer's agreement on the signed message. 

Identifiability. An original signer can determine the proxy signer's 
identity from a proxy signature. 

Undeniability. A proxy signer cannot disavow an accepted proxy sig­
nature he created. 

In some cases, a stronger form of identifiability is required-that anyone can 
determine the proxy signer's identity from the proxy signature. Proxy signature 
schemes, based on different digital signature schemes, are in [1001]. 
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4.6 GROUP SIGNATURES 

David Chaum introduces this problem in [330]: 

A company has several computers, each connected to the local network. Each 
department of that company has its own printer (also connected to the network) 
and only persons of that department are allowed to use their department's printer. 
Before printing, therefore, the printer must be convinced that the user is working 
in that department. At the same time, the company wants privacy; the user's 
name may not be revealed. If, however, someone discovers at the end of the day 
that a printer has been used too often, the director must be able to discover who 
misused that printer, and send him a bill. 

The solution to this problem is called a group signature. Group signatures have 
the following properties: 

Only members of the group can sign messages. 

The receiver of the signature can verify that it is a valid signature 
from the group. 

The receiver of the signature cannot determine which member of the 
group is the signer. 

In the case of a dispute, the signature can be "opened" to reveal the 
identity of the signer. 

Group Signatures with a Trusted Arbitrator 

This protocol uses a trusted arbitrator: 

(1) Trent generates a large pile of public-key/private-key key pairs and gives 
every member of the group a different list of unique private keys. No keys 
on any list are identical. (If there are n members of the group, and each 
member gets m key pairs, then there are n * m total key pairs.) 

(2) Trent publishes the master list of all public keys for the group, in random 
order. Trent keeps a secret record of which keys belong to whom. 

(3) When group members want to sign a document, he chooses a key at ran­
dom from his personal list. 

(4) When someone wants to verify that a signature belongs to the group, he 
looks on the master list for the corresponding public key and verifies the 
signature. 

(5) In the event of a dispute, Trent knows which public key corresponds to 
which group member. 

The problem with this protocol is that it requires a trusted party. Trent knows 
everyone's private keys and can forge signatures. Also, m must be long enough to 
preclude attempts to analyze which keys each member uses. 
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Chaum [330] lists a number of other protocols, some in which Trent is unable to 
fake signatures and others in which Trent is not even required. Another protocol 
[348] not only hides the identity of the signer, but also allows new members to join 
the group. Yet another protocol is [1230]. 

4. 7 FAIL-STOP DIGITAL SIGNATURES 

Let's say Eve is a very powerful adversary. She has vast computer networks and 
rooms full of Cray computers-orders of magnitude more computing power than 
Alice. All of these computers chug away, day and night, trying to break Alice's pri­
vate key. Finally-success. Eve can now impersonate Alice, forging her signature on 
documents at will. 

Fail-stop digital signatures, introduced by Birgit Pfitzmann and Michael Waidner 
[1240], prevent this kind of cheating. If Eve forges Alice's signatures after a brute-force 
attack, then Alice can prove they are forgeries. If Alice signs a document and then dis­
avows the signature, claiming forgery, a court can verify that it is not a forgery. 

The basic idea behind fail-stop signatures is that for every possible public key, 
many possible private keys work with it. Each of these private keys yields many dif­
ferent possible signatures. However, Alice has only one private key and can com­
pute just one signature. Alice doesn't know any of the other private keys. 

Eve wants to break Alice's private key. (Eve could also be Alice, trying to compute 
a second private key for herself.) She collects signed messages and, using her array of 
Cray computers, tries to recover Alice's private key. Even if she manages to recover 
a valid private key, there are so many possible private keys that it is far more likely 
that she has a different one. The probability of Eve's recovering the proper private 
key can be made so small as to be negligible. 

Now, when Eve forges a signed document using the private key she generated, it 
will have a different signature than if Alice signs the document herself. When Alice 
is hauled off to court, she can produce two different signatures for the same message 
and public key (corresponding to her private key and to the private key Eve created) 
to prove forgery. On the other hand, if Alice cannot produce the two different signa­
tures, there is no forgery and Alice is still bound by her signature. 

This signature scheme protects against Eve breaking Alice's signature scheme by 
sheer computational power. It does nothing against Mallory's much more likely 
attack of breaking into Alice's house and stealing her private key or Alice's attack of 
signing a document and then conveniently losing her private key. To protect against 
the former, Alice should buy herself a good guard dog; that kind of thing is beyond 
the scope of cryptography. 

Additional theory and applications of fail-stop signatures can be found in [1239, 
1241, 730,731]. 

4.8 COMPUTING WITH ENCRYPTED DATA 

Alice wants to know the solution to some function f(x), for some particular value of 
x. Unfortunately, her computer is broken. Bob is willing to compute f(x) for her, but 
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Alice isn't keen on letting Bob know her x. How can Alice let Bob compute f(x) for 
her without telling him x? 

This is the general problem of computing with encrypted data, also called hiding 
information from an oracle. (Bob is the oracle; he answers questions.) There are 
ways to do this for certain functions; they are discussed in Section 23.6. 

4.9 BIT COMMITMENT 

The Amazing Alice, magician extraordinaire, will now perform a mystifying feat of 
mental prowess. She will guess the card Bob will choose before he chooses it! Watch 
as Alice writes her prediction on a piece of paper. Marvel as Alice puts that piece of 
paper in an envelope and seals it shut. Thrill as Alice hands that sealed envelope to 
a random member of the audience. "Pick a card, Bob, any card." He looks at it and 
shows it to Alice and the audience. It's the seven of diamonds. Alice now takes the 
envelope back from the audience. She rips it open. The prediction, written before 
Bob chose his card, says "seven of diamonds"! Applause. 

To make this work, Alice had to switch envelopes at the end of the trick. How­
ever, cryptographic protocols can provide a method immune from any sleight of 
hand. Why is this useful? Here's a more mundane story: 

Stockbroker Alice wants to convince investor Bob that her method of picking 
winning stocks is sound. 

BoB: "Pick five stocks for me. If they are all winners, I'll give you my business." 
ALICE: "If I pick five stocks for you, you could invest in them without paying me. Why 

don't I show you the stocks I picked last month?" 
BoB: "How do I know you didn't change last month's picks after you knew their out­

come? If you tell me your picks now, I'll know that you can't change them. I 
won't invest in those stocks until after I've purchased your method. Trust me." 

ALICE: "I'd rather show you my picks from last month. I didn't change them. Trust me." 

Alice wants to commit to a prediction (i.e., a bit or series of bits) but does not 
want to reveal her prediction until sometime later. Bob, on the other hand, wants 
to make sure that Alice cannot change her mind after she has committed to her 
prediction. 

Bit Commitment Using Symmetric Cryptography 

This bit-commitment protocol uses symmetric cryptography: 

(1) Bob generates a random-bit string, R, and sends it to Alice. 

R 

(2) Alice creates a message consisting of the bit she wishes to commit to, b (it 
can actually be several bits), and Bob's random string. She encrypts it with 
some random key, K, and sends the result back to Bob. 

EK(R,b) 



__________________ 4_.9 __ B_i_t_C_o_m_m_i_tm_e_n_t _______ 7__,,~ 

That is the commitment portion of the protocol. Bob cannot decrypt the message, 
so he does not know what the bit is. 

When it comes time for Alice to reveal her bit, the protocol continues: 

(3) Alice sends Bob the key. 

(4) Bob decrypts the message to reveal the bit. He checks his random string to 
verify the bit's validity. 

If the message did not contain Bob's random string, Alice could secretly decrypt 
the message she handed Bob with a variety of keys until she found one that gave her 
a bit other than the one she committed to. Since the bit has only two possible val­
ues, she is certain to find one after only a few tries. Bob's random string prevents her 
from using this attack; she has to find a new message that not only has her bit 
inverted, but also has Bob's random string exactly reproduced. If the encryption 
algorithm is good, the chance of her finding this is minuscule. Alice cannot change 
her bit after she commits to it. 

Bit Commitment Using One-Way Functions 

This protocol uses one-way functions: 

(1) Alice generates two random-bit strings, R 1 and R 2 • 

R1,R2 

(2) Alice creates a message consisting of her random strings and the bit she 
wishes to commit to (it can actually be several bits). 

(R1,R2,b) 

(3) Alice computes the one-way function on the message and sends the result, 
as well as one of the random strings, to Bob. 

H(R1,R2,b),R1 

This transmission from Alice is evidence of commitment. Alice's one-way func­
tion in step (3) prevents Bob from inverting the function and determining the bit. 

When it comes time for Alice to reveal her bit, the protocol continues: 

(4) Alice sends Bob the original message. 

(R1,R2,b) 

(5) Bob computes the one-way function on the message and compares it and 
R 1, with the value and random string he received in step (3). If they match, 
the bit is valid. 

The benefit of this protocol over the previous one is that Bob does not have to 
send any messages. Alice sends Bob one message to commit to a bit and another 
message to reveal the bit. 

Bob's random string isn't required because the result of Alice's commitment is a 
message operated on by a one-way function. Alice cannot cheat and find another 
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message (R1,R2',b'), such that H(R 1,R2',b') = H(R 1,R2,b). By sending Bob R1 she is 
committing to the value of b. If Alice didn't keep R 2 secret, then Bob could com­
pute both H(R1,R2,b) and H(R1,R2,b') and see which was equal to what he received 
from Alice. 

Bit Commitment Using Pseudo-Random-Sequence Generators 
This protocol is even easier [1137]: 

( 1) Bob generates a random-bit string and sends it to Alice. 

RB 
(2) Alice generates a random seed for a pseudo-random-bit generator. Then, for 

every bit in Bob's random-bit string, she sends Bob either: 

(a) the output of the generator if Bob's bit is 0, or 

(b) the XOR of output of the generator and her bit, if Bob's bit is 1. 

When it comes time for Alice to reveal her bit, the protocol continues: 

(3) Alice sends Bob her random seed. 

(4) Bob completes step (2) to confirm that Alice was acting fairly. 

If Bob's random-bit string is long enough, and the pseudo-random-bit generator is 
unpredictable, then there is no practical way Alice can cheat. 

Blobs 
These strings that Alice sends to Bob to commit to a bit are sometimes called 

blobs. A blob is a sequence of bits, although there is no reason in the protocols why 
it has to be. As Gilles Brassard said, "They could be made out of fairy dust if this 
were useful" [236]. Blobs have these four properties: 

1. Alice can commit to blobs. By committing to a blob, she is committing to 
a bit. 

2. Alice can open any blob she has committed to. When she opens a blob, she 
can convince Bob of the value of the bit she committed to when she com­
mitted to the blob. Thus, she cannot choose to open any blob as either a 
zero or a one. 

3. Bob cannot learn how Alice is able to open any unopened blob she has 
committed to. This is true even after Alice has opened other blobs. 

4. Blobs do not carry any information other than the bit Alice committed to. 
The blobs themselves, as well as the process by which Alice commits to and 
opens them, are uncorrelated to anything else that Alice might wish to keep 
secret from Bob. 
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4.10 FAIR COIN FLIPS 

It's story time with Joe Kilian [831]: 

Alice and Bob wanted to flip a fair coin, but had no physical coin to flip. Alice 
offered a simple way of flipping a fair coin mentally. 

"First, you think up a random bit, then I'll think up a random bit. We'll then 
exclusive-or the two bits together," she suggested. 

"But what if one of us doesn't flip a coin at random?" Bob asked. 
"It doesn't matter. As long as one of the bits is truly random, the exclusive-or 

of the bits should be truly random," Alice replied, and after a moment's reflec­
tion, Bob agreed. 

A short while later, Alice and Bob happened upon a book on artificial intelli­
gence, lying abandoned by the roadside. A good citizen, Alice said, "One of us 
must pick this book up and find a suitable waste receptacle." Bob agreed, and 
suggested they use their coin-flipping protocol to determine who would have to 
throw the book away. 

"If the final bit is a 0, then you will pick the book up, and if it is a 1, then I 
will," said Alice. "What is your bit?" 

Bob replied, "1." 
"Why, so is mine," said Alice, slyly, "I guess this isn't your lucky day." 
Needless to say, this coin-flipping protocol had a serious bug. While it is true 

that a truly random bit, x, exclusive-ORed with any independently distributed 
bit, y, will yield a truly random bit, Alice's protocol did not ensure that the two 
bits were distributed independently. In fact, it is not hard to verify that no men­
tal protocol can allow two infinitely powerful parties to flip a fair coin. Alice 
and Bob were in trouble until they received a letter from an obscure graduate 
student in cryptography. The information in the letter was too theoretical to be 
of any earthly use to anyone, but the envelope the letter came in was extremely 
handy. 

The next time Alice and Bob wished to flip a coin, they played a modified ver­
sion of the original protocol. First, Bob decided on a bit, but instead of announc­
ing it immediately, he wrote it down on a piece of paper and placed the paper in 
the envelope. Next, Alice announced her bit. Finally, Alice and Bob took Bob's 
bit out of the envelope and computed the random bit. This bit was indeed truly 
random whenever at least one of them played honestly. Alice and Bob had a 
working protocol, the cryptographer's dream of social relevance was fulfilled, 
and they all lived happily ever after. 

Those envelopes sound a lot like bit-commitment blobs. When Manuel Blum 
introduced the problem of flipping a fair coin over a modem [194], he solved it using 
a bit-commitment protocol: 

( 1) Alice commits to a random bit, using any of the bit-commitment schemes 
listed in Section 4.9. 
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(2) Bob tries to guess the bit. 

(3) Alice reveals the bit to Bob. Bob wins the flip if he correctly guessed the bit. 

In general, we need a protocol with these properties: 

Alice must flip the coin before Bob guesses. 

Alice must not be able to re-flip the coin after hearing Bob's guess. 

Bob must not be able to know how the coin landed before making his 
guess. 

There are several ways in which we can do this. 

Coin Flipping Using One-Way Functions 
If Alice and Bob can agree on a one-way function, this protocol is simple: 

( 1) Alice chooses a random number, x. She computes y = f(x), where f(x) is the 
one-way function. 

(2) Alice sends y to Bob. 

(3) Bob guesses whether xis even or odd and sends his guess to Alice. 

(4) If Bob's guess is correct, the result of the coin flip is heads. If Bob's guess is 
incorrect, the result of the coin flip is tails. Alice announces the result of 
the coin flip and sends x to Bob. 

(5) Bob confirms that y = f(x). 

The security of this protocol rests in the one-way function. If Alice can find x and 
x', such that x is even and x' is odd, and y = f(x) = f(x'), then she can cheat Bob every 
time. The least significant bit of f(x) must also be uncorrelated with x. If not, Bob can 
cheat Alice at least some of the time. For example, if f(x) produces even numbers 75 
percent of the time if xis even, Bob has an advantage. (Sometimes the least significant 
bit is not the best one to use in this application, because it can be easier to compute.) 

Coin Flipping Using Public-Key Cryptography 
This protocol works with either public-key cryptography or symmetric cryptog­

raphy. The only requirement is that the algorithm commute. That is: 

DK1(EK2(EK1(M))) = EK2(M) 

In general, this property is not true for symmetric algorithms, but it is true for 
some public-key algorithms (RSA with identical moduli, for example). This is the 
protocol: 

(1) Alice and Bob each generate a public-key/private-key key pair. 

(2) Alice generates two messages, one indicating heads and the other indicating 
tails. These messages should contain some unique random string, so that 
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she can verify their authenticity later in the protocol. Alice encrypts both 
messages with her public key and sends them to Bob in a random order. 

EA(Mi), EA(M2) 

(3) Bob, who cannot read either message, chooses one at random. (He can sing 
"eeny meeny miney moe," engage a malicious computer intent on sub­
verting the protocol, or consult the I Ching-it doesn't matter.) He 
encrypts it with his public key and sends it back to Alice. 

EB(EA(M)) 
Mis either M1 or M2. 

(4) Alice, who cannot read the message sent back to her, decrypts it with her 
private key and then sends it back to Bob. 

DA(EB(EA(M))) = EB(Mi) if M = M 1, or 

ER(M2) if Af = M2 

(5) Bob decrypts the message with his private key to reveal the result of the 
coin flip. He sends the decrypted message to Alice. 

Dn(En(Mi)) = M1 or DB(ER(M2)) = M2 

(6) Alice reads the result of the coin flip and verifies that the random string is 
correct. 

(7) Both Alice and Bob reveal their key pairs so that both can verify that the 
other did not cheat. 

This protocol is self-enforcing. Either party can immediately detect cheating by 
the other, and no trusted third party is required to participate in either the actual 
protocol or any adjudication after the protocol has been completed. To see how this 
works, let's try to cheat. 

If Alice wanted to cheat and force heads, she has three potential ways of affecting 
the outcome. First, she could encrypt two "heads" messages in step (2). Bob would 
discover this when Alice revealed her keys at step (7). Second, she could use some 
other key to decrypt the message in step (4). This would result in gibberish, which 
Bob would discover in step (5). Third, she could lie about the validity of the message 
in step (6). Bob would also discover this in step (7), when Alice could not prove that 
the message was not valid. Of course, Alice could refuse to participate in the proto­
col at any step, at which point Alice's attempted deception would be obvious to Bob. 

If Bob wanted to cheat and force "tails, 11 his options are just as poor. He could 
incorrectly encrypt a message at step (3), but Alice would discover this when she 
looked at the final message at step (6). He could improperly perform step (5), but this 
would also result in gibberish, which Alice would discover at step (6). He could 
claim that he could not properly perform step (5) because of some cheating on the 
part of Alice, but this form of cheating would be discovered at step (7). Finally, he 
could send a "tails" message to Alice at step ( 5 ), regardless of the message he 
decrypted, but Alice would immediately be able to check the message for authen­
ticity at step (6). 
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Flipping Coins into a Well 
It is interesting to note that in all these protocols, Alice and Bob don't learn the 

result of the coin flip at the same time. Each protocol has a point where one of the par­
ties (Alice in the first two protocols and Bob in the last one) knows the result of the 
coin flip but cannot change it. That party can, however, delay disclosing the result to 
the other party. This is known as flipping coins into a well. Imagine a well. Alice is 
next to the well and Bob is far away. Bob throws the coin and it lands in the well. Alice 
can now look into the well and see the result, but she cannot reach down to change it. 
Bob cannot see the result until Alice lets him come close enough to look. 

Key Generation Using Coin Flipping 
A real application for this protocol is session-key generation. Coin-flipping proto­

cols allow Alice and Bob to generate a random session key such that neither can 
influence what the session key will be. And assuming that Alice and Bob encrypt 
their exchanges, this key generation is secure from eavesdropping as well. 

4.11 MENTAL POKER 

A protocol similar to the public-key fair coin flip protocol allows Alice and Bob to 
play poker with each other via electronic mail. Instead of Alice making and encrypt­
ing two messages, one for heads and one for tails, she makes 52 messages, M1, 

M2, .•• , M52, one for each card in the deck. Bob chooses five messages at random, 
encrypts them with his public key, and then sends them back to Alice. Alice 
decrypts the messages and sends them back to Bob, who decrypts them to determine 
his hand. He then chooses five more messages at random and sends them back to 
Alice as he received them; she decrypts these and they become her hand. During the 
game, additional cards can be dealt to either player by repeating the procedure. At 
the end of the game, Alice and Bob both reveal their cards and key pairs so that each 
can be assured that the other did not cheat. 

Mental Poker with Three Players 
Poker is more fun with more players. The basic mental poker protocol can easily 

be extended to three or more players. In this case, too, the cryptographic algorithm 
must be commutative. 

(1) Alice, Bob, and Carol each generate a public-key/private-key key pair. 

(2) Alice generates 52 messages, one for each card in the deck. These messages 
should contain some unique random string, so that she can verify their 
authenticity later in the protocol. Alice encrypts all the messages with her 
public key and sends them to Bob. 

EA(Mn) 
(3) Bob, who cannot read any of the messages, chooses five at random. He 

encrypts them with his public key and sends them back to Alice. 

EB(EA(Mn)) 
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(4) Bob sends the other 47 messages to Carol. 

EA(M11) 

(5) Carol, who cannot read any of the messages, chooses five at random. She 
encrypts them with her public key and sends them to Alice. 

Ec(EA(Mn)) 

(6) Alice, who cannot read any of the messages sent back to her, decrypts 
them with her private key and then sends them back to Bob or Carol 
(depending on where they came from). 

DA(EB(EA(Mn))) = EB(Mn) 

DA(Ec(EA(M11))) = Ec(Mn) 

(7) Bob and Carol decrypt the messages with their keys to reveal their hands. 

DB(En(Mn)) = Mn 

Dc(Ec(Mn)) = Mn 

(8) Carol chooses five more messages at random from the remaining 42. She 
sends them to Alice. 

EA(Mn) 

(9) Alice decrypts the messages with her private key to reveal her hand. 

DA(EA(Mn)) = Mn 

( 10) At the end of the game Alice, Bob, and Carol all reveal their hands and all 
of their keys so that everyone can make sure that no one has cheated. 

Additional cards can be dealt in the same manner. If Bob or Carol wants a card, 
either one can take the encrypted deck and go through the protocol with Alice. If 
Alice wants a card, whoever currently has the deck sends her a random card. 

Ideally, step ( 10) would not be necessary. All players shouldn't be required to reveal 
their hands at the end of the protocol; only those who haven't folded. Since step (10) is 
part of the protocol designed only to catch cheaters, perhaps there are improvements. 

In poker, one is only interested in whether the winner cheated. Everyone else can 
cheat as much as they want, as long as they still lose. (Actually, this is not really 
true. Someone can, while losing, collect data on another player's poker style.) So, 
let's look at cases in which different players win. 

If Alice wins, she reveals her hand and her keys. Bob can use Alice's private key to 
confirm that Alice performed step (2) correctly-that each of the 52 messages corre­
sponded to a different card. Carol can confirm that Alice is not lying about her hand 
by encrypting the cards with Alice's public key and verifying that they are the same 
as the encrypted messages she sent to her in step (8). 

If either Bob or Carol wins, the winner reveals his hand and keys. Alice can con­
firm that the cards are legitimate by checking her random strings. She can also con­
firm that the cards are the ones dealt by encrypting the cards with the winner's 
public key and verifying that they are the same as the encrypted messages she 
received in step (3) or (5). 
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This protocol isn't secure against collusion among malicious players. Alice and 
another player can effectively gang up on the third and together swindle that player 
out of everything without raising suspicion. Therefore, it is important to check all 
the keys and random strings every time the players reveal their hands. And if you're 
sitting around the virtual table with two people who never reveal their hands when­
ever one of them is the dealer (Alice, in the previous protocol), stop playing. 

Understand that while this is all interesting theory, actually implementing it on 
a computer is an arduous task. A Spare implementation with three players on sepa­
rate workstations takes eight hours to shuffle a deck of cards, let alone play an 
actual game [513]. 

Attacks against Poker Protocols 
Cryptographers have shown that a small amount of information is leaked by these 

poker protocols if the RSA public-key algorithm is used [453,573]. Specifically, if the 
binary representation of the card is a quadratic residue (see Section 11.3 ), then the 
encryption of the card is also a quadratic residue. This property can be used to 
"mark" some cards-all the aces, for example. This does not reveal much about the 
hands, but in a game such as poker even a tiny bit of information can be an advan­
tage in the long run. 

Shafi Goldwasser and Silvio Micali [624] developed a two-player mental-poker 
protocol that fixes this problem, although its complexity makes it far more theoret­
ical than practical. A general n-player poker protocol that eliminates the problem of 
information leakage was developed in [389]. 

Other research on poker protocols can be found in [573,1634,389]. A compli­
cated protocol that allows players to not reveal their hands can be found in [390]. 
Don Coppersmith discusses two ways to cheat at mental poker using the RSA 
algorithm [370]. 

Anonymous Key Distribution 
While it is unlikely that anyone is going to use this protocol to play poker via 

modem, Charles Pfleeger discusses a situation in which this type of protocol would 
come in handy [1244]. 

Consider the problem of key distribution. If we assume that people cannot gener­
ate their own keys (they might have to be of a certain form, or have to be signed by 
some organization, or something similar), we have to set up a Key Distribution Cen­
ter to generate and distribute keys. The problem is that we have to figure out some 
way of distributing keys such that no one, including the server, can figure out who 
got which key. 

This protocol solves the problem: 

( 1) Alice generates a public-key /private-key key pair. For this protocol, she 
keeps both keys secret. 

(2) The KDC generates a continuous stream of keys. 

(3) The KDC encrypts the keys, one by one, with its own public key. 



_________________ 4_._1_2 __ O_n_e_-_W_a_y_A_c_c_u_m_u_l_a_t_o_rs ______ 7 __ ~ 

(4) The KDC transmits the encrypted keys, one by one, onto the network. 

(5) Alice chooses a key at random. 

(6) Alice encrypts the chosen key with her public key. 

(7) Alice waits a while (long enough so the server has no idea which key she 
has chosen) and sends the double-encrypted key back to the KDC. 

(8) The KDC decrypts the double-encrypted key with its private key, leaving 
a key encrypted with Alice's public key. 

(9) The server sends the encrypted key back to Alice. 

( 10) Alice decrypts the key with her private key. 

Eve, sitting in the middle of this protocol, has no idea what key Alice chose. She 
sees a continuous stream of keys go by in step (4). When Alice sends the key back to 
the server in step (7), it is encrypted with her public key, which is also secret during 
this protocol. Eve has no way of correlating it with the stream of keys. When the 
server sends the key back to Alice in step (9), it is also encrypted with Alice's public 
key. Only when Alice decrypts the key in step (10) is the key revealed. 

If you use RSA, this protocol leaks information at the rate of one bit per message. 
It's the quadratic residues again. If you're going to distribute keys in this manner, 
make sure this leakage isn't enough to matter. Also, the stream of keys from the 
KDC must be great enough to preclude a brute-force attack. Of course, if Alice can't 
trust the KDC, then she shouldn't be getting keys from it. A malicious KDC could 
presumably keep records of every key it generates. Then, it could search them all to 
determine which is Alice's. 

This protocol also assumes that Alice is going to act fairly. There are things she 
can do, using RSA, to get more information than she might otherwise. This is not a 
problem in our scenario, but can be in other circumstances. 

4.12 ONE-WAY ACCUMULATORS 

Alice is a member of Cabal, Inc. Occasionally she has to meet with other members 
in dimly lit restaurants and whisper secrets back and forth. The problem is that the 
restaurants are so dimly lit that she has trouble knowing if the person across the 
table from her is also a member. 

Cabal Inc. can choose from several solutions. Every member can carry a member­
ship list. This has two problems. One, everyone now has to carry a large database, 
and two, they have to guard that membership list pretty carefully. Alternatively, a 
trusted secretary could issue digitally signed ID cards. This has the added advantage 
of allowing outsiders to verify members (for discounts at the local grocery store, for 
example), but it requires a trusted secretary. Nobody at Cabal, Inc. can be trusted to 
that degree. 

A novel solution is to use something called a one-way accumulator [116]. This is 
sort of like a one-way hash function, except that it is commutative. That is, it is pos­
sible to hash the database of members in any order and get the same value. More-
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over, it is possible to add members into the hash and get a new hash, again without 
regard to order. 

So, here's what Alice does. She calculates the accumulation of every member's 
name other than herself. Then she saves that single value along with her own name. 
Bob, and every other member, does the same. Now, when Alice and Bob meet in the 
dimly lit restaurant, they simply trade accumulations and names with each other. 
Alice confirms that Bob's name added to his accumulation is equal to Alice's name 
added to her accumulation. Bob does the same. Now they both know that the other 
is a member. And at the same time, neither can figure out the identities of any other 
member. 

Even better, nonmembers can be given the accumulation of everybody. Now Alice 
can verify her membership to a nonmember (for membership discounts at their local 
counterspy shop, perhaps) without the nonmember being able to figure out the 
entire membership list. 

New members can be added just by sending around the new names. Unfortu­
nately, the only way to delete a member is to send everyone a new list and have 
them recompute their accumulations. But Cabal, Inc. only has to do that if a mem­
ber resigns; dead members can remain on the list. (Oddly enough, this has never 
been a problem.) 

This is a clever idea, and has applications whenever you want the same effect as 
digital signatures without a centralized signer. 

4.13 ALL-OR-NOTHING DISCLOSURE OF SECRETS 

Imagine that Alice is a former agent of the former Soviet Union, now unemployed. 
In order to make money, Alice sells secrets. Anyone who is willing to pay the price 
can buy a secret. She even has a catalog. All her secrets are listed by number, with 
tantalizing titles: "Where is Jimmy Hoffa?", "Who is secretly controlling the Trilat­
eral Commission?", "Why does Boris Yeltsin always look like he swallowed a live 
frog?", and so on. 

Alice won't give away two secrets for the price of one or even partial information 
about any of the secrets. Bob, a potential buyer, doesn't want to pay for random 
secrets. He also doesn't want to tell Alice which secrets he wants. It's none of 
Alice's business, and besides, Alice could then add "what secrets Bob is interested 
in" to her catalog. 

A poker protocol won't work in this case, because at the end of the protocol Alice 
and Bob have to reveal their hands to each other. There are also tricks Bob can do to 
learn more than one secret. 

The solution is called all-or-nothing disclosure of secrets (ANDOS) [246] because, 
as soon as Bob has gained any information whatsoever about one of Alice's secrets, 
he has wasted his chance to learn anything about any of the other secrets. 

There are several ANDOS protocols in the cryptographic literature. Some of them 
are discussed in Section 23.9. 
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4.14 KEY ESCROW 

This excerpt is from Silvio Micah's introduction to the topic [1084]: 

Currently, court-authorized line tapping is an effective method for securing crim­
inals to justice. More importantly, in our opinion, it also prevents the further 
spread of crime by deterring the use of ordinary communication networks for 
unlawful purposes. Thus, there is a legitimate concern that widespread use of 
public-key cryptography may be a big boost for criminal and terrorist organiza­
tions. Indeed, many bills propose that a proper governmental agency, under cir­
cumstances allowed by law, should be able to obtain the clear text of any 
communication over a public network. At the present time, this requirement 
would translate into coercing citizens to either ( 1) using weak cryptosystems­
i.e., cryptosystems that the proper authorities (but also everybody else!) could 
crack with a moderate effort-or (2) surrendering, a priori, their secret key to the 
authority. It is not surprising that such alternatives have legitimately alarmed 
many concerned citizens, generating as reaction the feeling that privacy should 
come before national security and law enforcement. 

Key escrow is the heart of the U.S. government's Clipper program and its Escrowed 
Encryption Standard. The challenge here is to develop a cryptosystem that both pro­
tects individual privacy but at the same time allows for court-authorized wiretaps. 

The Escrowed Encryption Standard gets its security from tamperproof hardware. 
Each encryption chip has a unique ID number and secret key. This key is split into 
two pieces and stored, along with the ID number, by two different escrow agencies. 
Every time the chip encrypts a data file, it first encrypts the session key with this 
unique secret key. Then it transmits this encrypted session key and its ID number 
over the communications channel. When some law enforcement agency wants to 
decrypt traffic encrypted with one of these chips, it listens for the ID number, col­
lects the appropriate keys from the escrow agencies, XORs them together, decrypts 
the session key, and then uses the session key to decrypt the message traffic. There 
are more complications to make this scheme work in the face of cheaters; see Sec­
tion 24.16 for details. The same thing can be done in software, using public-key 
cryptography [77, 1579, 1580, 1581 ]. 

Micali calls his idea fair cryptosystems [1084, 1085]. (The U.S. government report­
edly paid Micali $1,000,000 for the use of his patents [1086,1087] in their Escrowed 
Encryption Standard; Banker's Trust then bought Micah's patent.) In these cryp­
tosystems, the private key is broken up into pieces and distributed to different 
authorities. Like a secret sharing scheme, the authorities can get together and recon­
struct the private key. However, the pieces have the additional property that they 
can be individually verified to be correct, without reconstructing the private key. 

Alice can create her own private key and give a piece to each of n trustees. None of 
these trustees can recover Alice's private key. However, each trustee can verify that 
his piece is a valid piece of the private key; Alice cannot send one of the trustees a 
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random-bit string and hope to get away with it. If the courts authorize a wiretap, the 
relevant law enforcement authorities can serve a court order on then trustees to sur­
render their pieces. With all n pieces, the authorities reconstruct the private key and 
can wiretap Alice's communications lines. On the other hand, Mallory has to corrupt 
all n trustees in order to be able to reconstruct Alice's key and violate her privacy. 

Here's how the protocol works: 

( 1) Alice creates her private-key /public-key key pair. She splits the private key 
into several public pieces and private pieces. 

(2) Alice sends a public piece and corresponding private piece to each of the 
trustees. These messages must be encrypted. She also sends the public key 
to the KDC. 

(3) Each trustee, independently, performs a calculation on its public piece and 
its private piece to confirm that they are correct. Each trustee stores the 
private piece somewhere secure and sends the public piece to the KDC. 

(4) The KDC performs another calculation on the public pieces and the public 
key. Assuming that everything is correct, it signs the public key and either 
sends it back to Alice or posts it in a database somewhere. 

If the courts order a wiretap, then each of the trustees surrenders his or her piece 
to the KDC, and the KDC can reconstruct the private key. Before this surrender, nei­
ther the KDC nor any individual trustee can reconstruct the private key; all the 
trustees are required to reconstruct the key. 

Any public-key cryptography algorithm can be made fair in this manner. Some 
particular algorithms are discussed in Section 23.10. Micali's paper [1084,1085] dis­
cusses ways to combine this with a threshold scheme, so that a subset of the 
trustees (e.g., three out of five) is required to reconstruct the private key. He also 
shows how to combine this with oblivious transfer (see Section 5.5) so that the 
trustees do not know whose private key is being reconstructed. 

Fair cryptosystems aren't perfect. A criminal can exploit the system, using a sub­
liminal channel (see Section 4.2) to embed another secret key into his piece. This 
way, he can communicate securely with someone else using this subliminal key 
without having to worry about court-authorized wiretapping. Another protocol, 
called failsafe key escrowing, solves this problem [946,833]. Section 23.10 describes 
the algorithm and protocol. 

The Politics of Key Escrow 

Aside from the government's key-escrow plans, several commercial key-escrow 
proposals are floating around. This leads to the obvious question: What are the 
advantages of key-escrow for the user? 

Well, there really aren't any. The user gains nothing from key escrow that he 
couldn't provide himself. He can already back up his keys if he wants (see Section 
8.8). Key-escrow guarantees that the police can eavesdrop on his conversations or 
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read his data files even though they are encrypted. It guarantees that the NSA can 
eavesdrop on his international phone calls-without a warrant-even though they 
are encrypted. Perhaps he will be allowed to use cryptography in countries that now 
ban it, but that seems to be the only advantage. 

Key escrow has considerable disadvantages. The user has to trust the escrow 
agents' security procedures, as well as the integrity of the people involved. He has to 
trust the escrow agents not to change their policies, the government not to change 
its laws, and those with lawful authority to get his keys to do so lawfully and 
responsibly. Imagine a major terrorist attack in New York; what sorts of limits on 
the police would be thrown aside in the aftermath? 

It is hard to imagine escrowed encryption schemes working as their advocates 
imagine without some kind of legal pressure. The obvious next step is a ban on the 
use of non-escrowed encryption. This is probably the only way to make a commercial 
system pay, and it's certainly the only way to get technologically sophisticated crim­
inals and terrorists to use it. It's not clear how difficult outlawing non-escrowed cryp­
tography will be, or how it will affect cryptography as an academic discipline. How 
can I research software-oriented cryptography algorithms without having software 
non-escrowed encryption devices in my possession; will I need a special license? 

And there are legal questions. How do escrowed keys affect users' liability, should 
some encrypted data get out? If the U.S. government is trying to protect the escrow 
agencies, will there be the implicit assumption that if the secret was compromised 
by either the user or the escrow agency, then it must have been the user? 

What if a major key-escrow service, either government or commercial, had its 
entire escrowed key database stolen? What if the U.S. government tried to keep this 
quiet for a while? Clearly, this would have an impact on users' willingness to use 
key escrow. If it's not voluntary, a couple of scandals like this would increase polit­
ical pressure to either make it voluntary, or to add complex new regulations to the 
industry. 

Even more dangerous is a scandal where it becomes public that political opponent 
of the current administration, or some outspoken critic of some intelligence or 
police agencies has been under surveillance for years. This could raise public senti­
ment strongly against escrowed encryption. 

If signature keys are escrowed as well as encryption keys, there are additional 
issues. Is it acceptable for the authorities to use signature keys to run operations 
against suspected criminals? Will the authenticity of signatures based on escrowed 
keys be accepted in courts? What recourse do users have if the authorities actually 
do use their signature keys to sign some unfavorable contract, to help out a state­
supported industry, or just to steal money? 

The globalization of cryptography raises an additional set of questions. Will key­
escrow policies be compatible across national borders? Will multi-national corpora­
tions have to keep separate escrowed keys in every country to stay in compliance 
with the various local laws? Without some kind of compatibility, one of the supposed 
advantages of key-escrow schemes (international use of strong encryption) falls apart. 

What if some countries don't accept the security of escrow agencies on faith? How 
do users do business there? Are their digital contracts upheld by their courts, or is 
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the fact that their signature key is held in escrow in the U.S. going to allow them to 
claim in Switzerland that someone else could have signed this electronic contract? 
Or will there be special waivers for people who do business in such countries? 

And what about industrial espionage? There is no reason to believe that countries 
which currently conduct industrial espionage for their important or state-run com­
panies will refrain from doing so on key-escrowed encryption systems. Indeed, since 
virtually no country is going to allow other countries to oversee its intelligence 
operations, widespread use of escrowed encryption will probably increase the use of 
wiretaps. 

Even if countries with good civil rights records use key escrow only for the legiti­
mate pursuit of criminals and terrorists, it's certain to be used elsewhere to keep 
track of dissidents, blackmail political opponents, and so on. Digital communica­
tions offer the opportunity to do a much more thorough job of monitoring citizens' 
actions, opinions, purchases, and associations than is possible in an analog world. 

It's not clear how this will affect commercial key escrow, except that 20 years 
from now, selling Turkey or China a ready-made key-escrow system may look a lot 
like selling shock batons to South Africa in 1970, or building a chemical plant for 
Iraq in 1980. Even worse, effortless and untraceable tapping of communications may 
tempt a number of governments into tracking many of their citizens' communica­
tions, even those which haven't generally tried to do so before. And there's no guar­
antee that liberal democracies will be immune to this temptation. 
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CHAPTER 5 

Advanced Protocols 

5.1 ZERO-KNOWLEDGE PROOFS 

Here's another story: 

ALICE: "I know the password to the Federal Reserve System computer, the ingredients 
in McDonald's secret sauce, and the contents of Volume 4 of Knuth." 

BoB: "No, you don't." 
ALICE: "Yes, I do." 

BOB: "Do not!" 
ALICE: "Do too!" 

BOB: "Prove it!" 
ALICE: "All right. I'll tell you." She whispers in Bob's ear. 

BoB: "That's interesting. Now I know it, too. I'm going to tell The Washington 
Post." 

ALICE: "Oops." 

Unfortunately, the usual way for Alice to prove something to Bob is for Alice to 
tell him. But then he knows it, too. Bob can then tell anyone else he wants to and 
Alice can do nothing about it. (In the literature, different characters are often used 
in these protocols. Peggy is usually cast as the prover and Victor is the verifier. 
These names appear in the upcoming examples, instead of Alice and Bob.) 

Using one-way functions, Peggy could perform a zero-knowledge proof [626]. This 
protocol proves to Victor that Peggy does have a piece of information, but it does not 
give Victor any way to know what the information is. 

These proofs take the form of interactive protocols. Victor asks Peggy a series of 
questions. If Peggy knows the secret, she can answer all the questions correctly. If 
she does not, she has some chance-SO percent in the following examples-of 
answering correctly. After 10 or so questions, Victor will be convinced that Peggy 
knows the secret. Yet none of the questions or answers gives Victor any information 
about Peggy's information-only about her knowledge of it. 
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Basic Zero-Knowledge Protocol 

Jean-Jacques Quisquater and Louis Guillou explain zero-knowledge with a story 
about a cave [1281]. The cave, illustrated in Figure 5.1, has a secret. Someone who 
knows the magic words can open the secret door between C and D. To everyone 
else, both passages lead to dead ends. 

Peggy knows the secret of the cave. She wants to prove her knowledge to Victor, 
but she doesn't want to reveal the magic words. Here's how she convinces him: 

( 1) Victor stands at point A. 

(2) Peggy walks all the way into the cave, either to point C or point D. 

(3) After Peggy has disappeared into the cave, Victor walks to point B. 

(4) Victor shouts to Peggy, asking her either to: 

(a) come out of the left passage or 

(b) come out of the right passage. 

(5) Peggy complies, using the magic words to open the secret door if she has to. 

(6) Peggy and Victor repeat steps (1) through (5) n times. 

Assume that Victor has a camcorder and records everything he sees. He records 
Peggy disappearing into the cave, he records when he shouts out where he wants 
Peggy to come out from, and he records Peggy coming out. He records all n trials. If 
he showed this recording to Carol, would she believe that Peggy knew the magic 
words to open the door? No. What if Peggy and Victor had agreed beforehand what 
Victor would call out, and Peggy would make sure that she went into that path. 
Then she could come out where Victor asked her every time, without knowing the 
magic words. Or maybe they couldn't do that. Peggy would go into one of the pas­
sages and Victor would call out a random request. If Victor guessed right, great; if he 
didn't, they would edit that trial out of the camcorder recording. Either way, Victor 

.. A 
. 

. . 

B .. 

. 
cl o . Figure 5.1 The zero-knowledge cave . 
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can get a recording showing exactly the same sequence of events as in a real proof 
where Peggy knew the magic words. 

This shows two things. One, it is impossible for Victor to convince a third party 
of the proof's validity. And two, it proves that the protocol is zero-knowledge. In the 
case where Peggy did not know the magic words, Victor will obviously not learn 
anything from watching the recording. But since there is no way to distinguish a real 
recording from a faked recording, Victor cannot learn anything from the real proof­
it must be zero knowledge. 

The technique used in this protocol is called cut and choose, because of its simi­
larity to the classic protocol for dividing anything fairly: 

( 1) Alice cuts the thing in half. 

(2) Bob chooses one of the halves for himself. 

(3) Alice takes the remaining half. 

It is in Alice's best interest to divide fairly in step ( 1 ), because Bob will choose 
whichever half he wants in step (2). Michael Rabin was the first person to use the 
cut-and-choose technique in cryptography [1282]. The concepts of interactive pro­
tocol and zero-knowledge were formalized later [626,627]. 

The cut-and-choose protocol works because there is no way Peggy can repeat­
edly guess which side Victor will ask her to come out of. If Peggy doesn't know the 
secret, she can only come out the way she came in. She has a 50 percent chance of 
guessing which side Victor will ask in each round (sometimes called an accredita­
tion) of the protocol, so she has a 50 percent chance of fooling him. The chance of 
her fooling him in two rounds is 25 percent, and the chance of her fooling him all 
n times is 1 in 211• After 16 rounds, Peggy has a 1 in 65,536 chance of fooling Vic­
tor. Victor can safely assume that if all 16 of Peggy's proofs are valid, then she 
must know the secret words to open the door between points C and D. (The cave 
analogy isn't perfect. Peggy can simply walk in one side and out the other; there's 
no need for any cut-and-choose protocol. However, mathematical zero knowledge 
requires it.) 

Assume that Peggy knows some information, and furthermore that the informa­
tion is the solution to a hard problem. The basic zero-knowledge protocol consists 
of several rounds. 

( 1) Peggy uses her information and a random number to transform the hard 
problem into another hard problem, one that is isomorphic to the original 
problem. She then uses her information and the random number to solve 
this new instance of the hard problem. 

(2) Peggy commits to the solution of the new instance, using a bit-commitment 
scheme. 

(3) Peggy reveals to Victor the new instance. Victor cannot use this new prob­
lem to get any information about the original instance or its solution. 
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(4) Victor asks Peggy either to: 

(a) prove to him that the old and new instances are isomorphic (i.e., two 
different solutions to two related problems), or 

(b) open the solution she committed to in step (2) and prove that it is a 
solution to the new instance. 

(5) Peggy complies. 

(6) Peggy and Victor repeat steps (1) through (5) n times. 

Remember the camcorder in the cave protocol? You can do the same thing here. 
Victor can make a transcript of the exchange between him and Peggy. He cannot use 
this transcript to convince Carol, because he can always collude with Peggy to build 
a simulator that fakes Peggy's knowledge. This argument can be used to prove that 
the proof is zero-knowledge. 

The mathematics behind this type of proof is complicated. The problems and the 
random transformation must be chosen carefully, so that Victor does not get any 
information about the solution to the original problem, even after many iterations 
of the protocol. Not all hard problems can be used for zero-knowledge proofs, but a 
lot of them can. 

Graph Isomorphism 

An example might go a long way to explain this concept; this one comes from 
graph theory [619,622]. A graph is a network of lines connecting different points. If 
two graphs are identical except for the names of the points, they are called isomor­
phic. For an extremely large graph, finding whether two graphs are isomorphic can 
take centuries of computer time; it's one of those NP-complete problems discussed 
in Section 11.1. 

Assume that Peggy knows the isomorphism between the two graphs, G1 and G2• 

The following protocol will convince Victor of Peggy's knowledge: 

(1) Peggy randomly permutes G1 to produce another graph, H, that is isomor­
phic to G1. Because Peggy knows the isomorphism between Hand G1, she 
also knows the isomorphism between H and G2 • For anyone else, finding 
an isomorphism between G1 and H or between G2 and H is just as hard as 
finding an isomorphism between G1 and G2 . 

(2) Peggy sends H to Victor. 

(3) Victor asks Peggy either to: 

(a) prove that Hand G 1 are isomorphic, or 

(b) prove that Hand G2 are isomorphic. 

(4) Peggy complies. She either: 

(a) proves that H and G1 are isomorphic, without proving that H and G2 

are isomorphic, or 

(b) proves that Hand G2 are isomorphic, without proving that Hand G1 

are isomorphic. 

(5) Peggy and Victor repeat steps (1) through (4) n times. 
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If Peggy does not know an isomorphism between G 1 and G2, she cannot create 
graph H which is isomorphic to both. She can create a graph that is either isomorphic 
to G 1 or one that is isomorphic to G2• Like the previous example, she has only a 50 
percent chance of guessing which proof Victor will ask her to perform in step (3). 

This protocol doesn't give Victor any useful information to aid him in figuring out 
an isomorphism between G1 and G2• Because Peggy generates a new graph H for each 
round of the protocol, he can get no information no matter how many rounds they 
go through the protocol. He won't be able to figure out an isomorphism between G 1 

and G2 from Peggy's answers. 
In each round, Victor receives a new random permutation of H, along with an iso­

morphism between Hand either G1 or G2• Victor could just as well have generated 
this by himself. Because Victor can create a simulation of the protocol, it can be 
proven to be zero-knowledge. 

Hamiltonian Cycles 
A variant of this example was first presented by Manuel Blum [196]. Peggy knows 

a circular, continuous path along the lines of a graph that passes through each point 
exactly once. This is called a Hamiltonian cycle. Finding a Hamiltonian cycle is 
another hard problem. Peggy has this piece of information-she probably got it by 
creating the graph with a certain Hamiltonian cycle-and this is what she wants to 
convince Victor that she knows. 

Peggy knows the Hamiltonian cycle of a graph, G. Victor knows G, but not the 
Hamiltonian cycle. Peggy wants to prove to Victor that she knows this Hamiltonian 
cycle without revealing it. This is how she does it: 

( 1) Peggy randomly permutes G. She moves the points around and changes their 
labels to make a new graph, H. Since G and Hare topologically isomorphic 
(i.e., the same graph), if she knows the Hamiltonian cycle of G then she can 
easily find the Hamiltonian cycle of H. If she didn't create H herself, deter­
mining the isomorphism between two graphs would be another hard prob­
lem; it could also take centuries of computer time. She then encrypts H to 
get H'. (This has to be a probabilistic encryption of each line in H, that is, an 
encrypted O or an encrypted 1 for each line in H.) 

(2) Peggy gives Victor a copy of H'. 

(3) Victor asks Peggy either to: 
(a) prove to him that H' is an encryption of an isomorphic copy of G, or 
(b) show him a Hamiltonian cycle for H. 

(4) Peggy complies. She either: 
(a) proves that H' is an encryption of an isomorphic copy of G by revealing 

the permutations and decrypting everything, without showing a 
Hamiltonian cycle for either G or H, or 

(b) shows a Hamiltonian cycle for H by decrypting only those lines that 
constitute a Hamiltonian cycle, without proving that G and H are 
topologically isomorphic. 

(5) Peggy and Victor repeat steps (1) through (4) n times. 
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If Peggy is honest, she can provide either proof in step (4) to Victor. However, if 
she does not know a Hamiltonian cycle for G, she cannot create an encrypted graph 
H' which can meet both challenges. The best she can do is to create a graph that is 
either isomorphic to G or one that has the same number of points and lines and a 
valid Hamiltonian cycle. While she has a 50 percent chance of guessing which proof 
Victor will ask her to perform in step (3 ), Victor can repeat the protocol enough 
times to convince himself that Peggy knows a Hamiltonian cycle for G. 

Parallel Zero-Knowledge Proofs 

The basic zero-knowledge protocol involves n exchanges between Peggy and Vic­
tor. Why not do them all in parallel: 

( 1) Peggy uses her information and n random numbers to transform the hard 
problem into n different isomorphic problems. She then uses her informa­
tion and the random numbers to solve then new hard problems. 

(2) Peggy commits to the solution of then new hard problems. 

(3) Peggy reveals to Victor the n new hard problems. Victor cannot use these 
new problems to get any information about the original problems or its 
solutions. 

(4) For each of then new hard problems, Victor asks Peggy either to: 

(a) prove to him that the old and new problems are isomorphic, or 

(b) open the solution she committed to in step (2) and prove that it is a 
solution to the new problem. 

(5) Peggy complies for each of then new hard problems. 

Unfortunately, it's not that simple. This protocol does not have the same zero­
knowledge properties as the previous protocol. In step (4), Victor can choose the 
challenges as a one-way hash of all the values committed to in the second step, thus 
making the transcript nonsimulatable. It is still zero-knowledge, but of a different 
sort. It seems to be secure in practice, but no one knows how to prove it. We do 
know that in certain circumstances, certain protocols for certain problems can be 
run in parallel while retaining their zero-knowledge property [247,106,546,616]. 

Noninteractive Zero-Knowledge Proofs 

Carol can't be convinced because the protocol is interactive, and she is not involved 
in the interaction. To convince Carol, and anyone else who may be interested, we 
need a noninteractive protocol. 

Protocols have been invented for noninteractive zero-knowledge proofs [477, 
198,478,197]. These protocols do not require any interaction; Peggy could publish 
them and thereby prove to anyone who takes the time to check that the proof 
is valid. 

The basic protocol is similar to the parallel zero-knowledge proof, but a one-way 
hash function takes the place of Victor: 
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( 1) Peggy uses her information and n random numbers to transform the hard 
problem into n different isomorphic problems. She then uses her informa­
tion and the random numbers to solve then new hard problems. 

(2) Peggy commits to the solution of then new hard problems. 

(3) Peggy uses all of these commitments together as a single input to a one­
way hash function. (After all, the commitments are nothing more than bit 
strings.) She then saves the first n bits of the output of this one-way hash 
function. 

(4) Peggy takes then bits generated in step (3). For each ith new hard problem 
in turn, she takes the ith bit of those n bits and: 

(a) if it is a 0, she proves that the old and new problems are isomorphic, or 

(b) if it is a 1, she opens the solution she committed to in step (2) and 
proves that it is a solution to the new problem. 

(5) Peggy publishes all the commitments from step (2) as well as the solutions 
in step (4). 

(6) Victor or Carol or whoever else is interested, verifies that steps ( 1) through 
(5) were executed properly. 

This is amazing: Peggy can publish some data that contains no information about 
her secret, but can be used to convince anyone of the secret's existence. The proto­
col can also be used for digital signature schemes, if the challenge is set as a one-way 
hash of both the initial messages and the message to be signed. 

This works because the one-way hash function acts as an unbiased random-bit 
generator. For Peggy to cheat, she has to be able to predict the output of the one-way 
hash function. (Remember, if she doesn't know the solution to the hard problem, 
she can do either (a) or (b) of step (4), but not both.) If she somehow knew what the 
one-way hash function would ask her to do, then she could cheat. However, there is 
no way for Peggy to force the one-way function to produce certain bits or to guess 
which bits it will produce. The one-way function is, in effect, Victor's surrogate in 
the protocol-randomly choosing one of two proofs in step (4). 

In a noninteractive protocol, there must be many more iterations of the chal­
lenge/reply sequence. Peggy, not Victor, picks the hard problems using random 
numbers. She can pick different problems, hence different commitment vectors, till 
the hash function produces something she likes. In an interactive protocol, 10 iter­
ations-a probability of 1 in 2 10 (1 in 1024) that Peggy can cheat-may be fine. How­
ever, that's not enough for noninteractive zero-knowledge proofs. Remember that 
Mallory can always do either (a) or (b) of step (4). He can try to guess which he will 
be asked to do, go through steps (1) through (3), and see if he guessed right. If he 
didn't, he can try again-repeatedly. Making 1024 guesses is easy on a computer. To 
prevent this brute-force attack, noninteractive protocols need 64 iterations, or even 
128 iterations, to be valid. 

This is the whole point of using a one-way hash function: Peggy cannot predict the 
output of the hash function because she cannot predict its input. The commitments 
which are used as the input are only known after she solves the new problems. 
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Generalities 
Blum proved that any mathematical theorem can be converted into a graph such 

that the proof of that theorem is equivalent to proving a Hamiltonian cycle in the 
graph. The general case that any NP statement has a zero-knowledge proof, assum­
ing one-way functions and therefore good encryption algorithms, was proved in 
[620]. Any mathematical proof can be converted into a zero-knowledge proof. Using 
this technique, a researcher can prove to the world that he knows the proof of a par­
ticular theorem without revealing what that solution is. Blum could have published 
these results without revealing them. 

There are also minimum-disclosure proofs [590]. In a minimum-disclosure proof, 
the following properties hold: 

1. Peggy cannot cheat Victor. If Peggy does not know the proof, her chances 
of convincing Victor that she knows the proof are negligible. 

2. Victor cannot cheat Peggy. He doesn't get the slightest hint of the proof, 
apart from the fact that Peggy knows the proof. In particular, Victor cannot 
demonstrate the proof to anyone else without proving it himself from 
scratch. 

Zero-knowledge proofs have an additional condition: 

3. Victor learns nothing from Peggy that he could not learn by himself with­
out Peggy, apart from the fact that Peggy knows the proof. 

There is considerable mathematical difference between proofs that are only 
minimum-disclosure and those that are zero-knowledge. That distinction is be­
yond the scope of this book, but more sophisticated readers are welcome to peruse 
the references. The concepts were introduced in [626,619,622]. Further elaboration 
on their ideas, based on different mathematical assumptions, were developed in 
[240,319,239]. 

There are also different kinds of zero-knowledge proofs: 

Perfect. There is a simulator that gives transcripts identically dis­
tributed to real transcripts (the Hamiltonian cycle and graph isomor­
phism examples). 

Statistical. There is a simulator that gives transcripts identically dis­
tributed to real transcripts, except for some constant number of 
exceptions. 

Computational. There is a simulator that gives transcripts indistin­
guishable from real transcripts. 

No-use. A simulator may not exist, but we can prove that Victor will 
not learn any polynomial amount of information from the proof (the 
parallel example). 



5.2 Zero-Knowledge Proofs of Identity 

Over the years, extensive work, both theoretical and applied, has been done on 
minimum-disclosure and zero-knowledge proofs. Mike Burmester and Yvo Desmedt 
invented broadcast interactive proofs, where one prover can broadcast a zero­
knowledge interactive proof to a large group of verifiers [280]. Cryptographers proved 
that everything that can be proven with an interactive proof can also be proven with 
a zero-knowledge interactive proof [753,137]. 

A good survey article on the topic is [548]. For additional mathematical details, 
variations, protocols, and applications, consult [590,619,240,319,620,113,241,1528, 
660,238,591,617,510,592,214, 104,216,832,97,939,622,482,615,618,215,476, 71]. A lot 
has been written on this subject. 

5.2 ZERO-KNOWLEDGE PROOFS OF IDENTITY 

In the real world, we often use physical tokens as proofs of identity: passports, driver's 
licenses, credit cards, and so on. The token contains something that links it to a per­
son: a picture, usually, or a signature, but it could almost as easily be a thumbprint, a 
retinal scan, or a dental x-ray. Wouldn't it be nice to do the same thing digitally? 

Using zero-knowledge proofs as proofs of identity was first proposed by Uriel 
Feige, Amos Fiat, and Adi Shamir [566,567]. Alice's private key becomes a function 
of her "identity." Using a zero-knowledge proof, she proves that she knows her pri­
vate key and therefore proves her identity. Algorithms for this can be found in Sec­
tion 23.11. 

This idea is quite powerful. It allows a person to prove his identity without any 
physical token. However, it's not perfect. Here are some abuses. 

The Chess Grandmaster Problem 
Here's how Alice, who doesn't even know the rules to chess, can defeat a grand­

master. (This is sometimes called the Chess Grandmaster Problem.) She challenges 
both Gary Kasparov and Anatoly Karpov to a game, at the same time and place, but 
in separate rooms. She plays white against Kasparov and black against Karpov. Nei­
ther grandmaster knows about the other. 

Karpov, as white, makes his first move. Alice records the move and walks into the 
room with Kasparov. Playing white, she makes the same move against Kasparov. 
Kasparov makes his first move as black. Alice records the move, walks into the 
room with Karpov, and makes the same move. This continues, until she wins one 
game and loses the other, or both games end in a draw. 

In reality, Kasparov is playing Karpov and Alice is simply acting as the middleman, 
mimicking the moves of each grandmaster on the other's board. However, if neither 
Karpov nor Kasparov knows about the other's presence, each will be impressed with 
Alice's play. 

This kind of fraud can be used against zero-knowledge proofs of identity [485,120]. 
While Alice is proving her identity to Mallory, Mallory can simultaneously prove to 
Bob that he is Alice. 
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The Mafia Fraud 

When discussing his zero-knowledge identification protocol, Adi Shamir [1424] 
said: "I could go to a Mafia-owned store a million successive times and they will 
still not be able to misrepresent themselves as me." 

Here's how the Mafia can. Alice is eating at Bob's Diner, a Mafia-owned restau­
rant. Carol is shopping at Dave's Emporium, an expensive jewelry store. Bob and 
Carol are both members of the Mafia and are communicating by a secret radio link. 
Alice and Dave are unaware of the fraud. 

At the end of Alice's meal, when she is ready to pay and prove her identity to Bob, 
Bob signals Carol that the fraud is ready to begin. Carol chooses some expensive dia­
monds and gets ready to prove her identity to Dave. Now, as Alice proves her iden­
tity to Bob, Bob radios Carol and Carol performs the same protocol with Dave. 
When Dave asks a question in the protocol, Carol radios the question back to Bob, 
and Bob asks it of Alice. When Alice answers, Bob radios the correct answer to 
Carol. Actually, Alice is just proving her identity to Dave, and Bob and Carol are 
simply sitting in the middle of the protocol passing messages back and forth. When 
the protocol finishes, Alice has proved herself to Dave and has purchased some 
expensive diamonds (which Carol disappears with). 

The Terrorist Fraud 

If Alice is willing to collaborate with Carol, they can also defraud Dave. In this pro­
tocol, Carol is a well-known terrorist. Alice is helping her enter the country. Dave is 
the immigration officer. Alice and Carol are connected by a secret radio link. 

When Dave asks Carol questions as part of the zero-knowledge protocol, Carol 
radios them back to Alice, who answers them herself. Carol recites these answers to 
Dave. In reality, Alice is proving her identity to Dave, with Carol acting as a com­
munications path. When the protocol finishes, Dave thinks that Carol is Alice and 
lets her into the country. Three days later, Carol shows up at some government 
building with a minivan full of explosives. 

Suggested Solutions 

Both the Mafia and Terrorist frauds are possible because the conspirators can 
communicate via a secret radio. One way to prevent this requires all identifications 
to take place inside Faraday cages, which block all electromagnetic radiation. In the 
terrorist example, this assures immigration officer Dave that Carol was not receiv­
ing her answers from Alice. In the Mafia example, Bob could simply build a faulty 
Faraday cage in his restaurant, but jeweler Dave would have a working one; Bob and 
Carol would not be able to communicate. To solve the Chess Grandmaster Problem, 
Alice should be forced to sit in her seat until the end of a game. 

Thomas Beth and Yvo Desmedt proposed another solution, one using accurate 
clocks [148]. If each step in the protocol must take place at a given time, no time 
would be available for the conspirators to communicate. In the Chess Grandmaster 
Problem, if every move in each game must be made as a clock strikes one minute, 
then Alice will have no time to run from room to room. In the Mafia story, Bob and 
Carol will have no time to pass questions and answers to one another. 



5.2 Zero-Knowledge Proofs of Identity 

The Multiple Identity Fraud 
There are other possible abuses to zero-knowledge proofs of identity, also dis­

cussed in [485,120]. In some implementations, there is no check when an individual 
registers a public key. Hence, Alice can have several private keys and, therefore, sev­
eral identities. This can be a great help if she wants to commit tax fraud. Alice can 
also commit a crime and disappear. First, she creates and publishes several identi­
ties. One of them she doesn't use. Then, she uses that identity once and commits a 
crime so that the person who identifies her is the witness. Then, she immediately 
stops using that identity. The witness knows the identity of the person who com­
mitted the crime, but if Alice never uses that identity again-she's untraceable. 

To prevent this, there has to be some mechanism by which each person has only 
one identity. In [120] the authors suggest the bizarre idea of tamperproof babies who 
are impossible to clone and contain a unique number as part of their genetic code. 
They also suggested having each baby apply for an identity at birth. (Actually, the 
parents would have to do this as the baby would be otherwise occupied.) This could 
easily be abused; parents could apply for multiple identities at the child's birth. In 
the end, the uniqueness of an individual is based on trust. 

Renting Passports 
Alice wants to travel to Zaire, but that government won't give her a visa. Carol 

offers to rent her identity to Alice. (Bob offered first, but there were some obvious 
problems.) Carol sells Alice her private key and Alice goes off to Zaire pretending to 
be Carol. 

Carol has not only been paid for her identity, but now she has a perfect alibi. She 
commits a crime while Alice is in Zaire. "Carol" has proved her identity in Zaire; 
how could she commit a crime back home? 

Of course, Alice is free to commit crimes as well. She does so either before she 
leaves or after she returns, near Carol's home. First she identifies herself as Carol 
(she has Carol's private key, so she can easily do that), then she commits a crime and 
runs away. The police will come looking for Carol. Carol will claim she rented her 
identity to Alice, but who would believe such a nonsensical story? 

The problem is that Alice isn't really proving her identity; she is proving that she 
knows a piece of secret information. It is the link between that information and the 
person it belongs to that is being abused. The tamperproof baby solution would pro­
tect against this type of fraud, as would a police state where all citizens would have 
to prove their identity very frequently (at the end of each day, at each street corner, 
etc.). Biometric methods-fingerprints, retinal scanning, voiceprints, and so on­
may help solve this problem. 

Proofs of Membership 
Alice wants to prove to Bob that she is a member of some super-secret organiza­

tion, but she does not want to reveal her identity. This problem is similar but dif­
ferent to proving identity, and has also been studied [887,906,907,1201,1445]. Some 
solutions are related to the problem of group signatures (see Section 4.6). 
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5.3 BLIND SIGNATURES 

An essential feature of digital signature protocols is that the signer knows what he 
is signing. This is a good idea, except when we want the reverse. 

We might want people to sign documents without ever seeing their contents. 
There are ways that a signer can almost, but not exactly, know what he is signing. 
But first things first. 

Completely Blind Signatures 
Bob is a notary public. Alice wants him to sign a document, but does not want him 

to have any idea what he is signing. Bob doesn't care what the document says; he is 
just certifying that he notarized it at a certain time. He is willing to go along with this. 

(1) Alice takes the document and multiplies it by a random value. This ran-
dom value is called a blinding factor. 

(2) Alice sends the blinded document to Bob. 

(3) Bob signs the blinded document. 

(4) Alice divides out the blinding factor, leaving the original document signed 
by Bob. 

This protocol only works if the signature function and multiplication are com­
mutative. If they are not, there are other ways to modify the document other than 
by multiplying. Some relevant algorithms appear in Section 23.12. For now, assume 
that the operation is multiplication and all the math works. 

Can Bob cheat? Can he collect any information about the document that he is 
signing? If the blinding factor is truly random and makes the blinded document 

· truly random, he cannot. The blinded document Bob signs in step (2) looks nothing 
like the document Alice began with. The blinded document with Bob's signature on 
it in step (3) looks nothing like the signed document at the end of step (4). Even if 
Bob got his hands on the document, with his signature, after completing the proto­
col, he cannot prove (to himself or to anyone else) that he signed it in that particu­
lar protocol. He knows that his signature is valid. He can, like anyone else, verify his 
signature. However, there is no way for him to correlate any information he 
received during the signing protocol with the signed document. If he signed a mil­
lion documents using this protocol, he would have no way of knowing in which 
instance he signed which document. 

The properties of completely blind signatures are: 

1. Bob's signature on the document is valid. The signature is a proof that Bob 
signed the document. It will convince Bob that he signed the document if 
it is ever shown to him. It also has all of the other properties of digital sig­
natures discussed in Section 2.6. 

2. Bob cannot correlate the signed document with the act of signing the doc­
ument. Even if he keeps records of every blind signature he makes, he can­
not determine when he signed any given document. 
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Eve, who is in the middle, watching this protocol, has even less information 
than Bob. 

Blind Signatures 
With the completely blind signature protocol, Alice can have Bob sign anything: 

"Bob owes Alice a million dollars," "Bob owes Alice his first-born child," "Bob owes 
Alice a bag of chocolates." The possibilities are endless. This protocol isn't useful in 
many applications. 

However, there is a way that Bob can know what he is signing, while still main­
taining the useful properties of a blind signature. The heart of this protocol is the 
cut-and-choose technique. Consider this example. Many people enter this country 
every day, and the Department of Immigration wants to make sure they are not 
smuggling cocaine. The officials could search everyone, but instead they use a 
probabilistic solution. They will search one-tenth of the people coming in. One 
person in ten has his belongings inspected; the other nine get through untouched. 
Chronic smugglers will get away with their misdeeds most of the time, but they 
have a 10 percent chance of getting caught. And if the court system is effective, the 
penalty for getting caught once will more than wipe out the gains from the other 
nine times. 

If the Department of Immigration wants to increase the odds of catching smug­
glers, they have to search more people. If they want to decrease the odds, they have 
to search fewer people. By manipulating the probabilities, they control how suc­
cessful the protocol is in catching smugglers. 

The blind signature protocol works in a similar manner. Bob will be given a large 
pile of different blinded documents. He will open, that is examine, all but one and 
then sign the last. 

Think of the blinded document as being in an envelope. The process of blinding 
the document is putting the document in an envelope and the process of removing 
the blinding factor is opening the envelope. When the document is in an envelope, 
nobody can read it. The document is signed by having a piece of carbon paper in the 
envelope: When the signer signs the envelope, his signature goes through the carbon 
paper and signs the document as well. 

This scenario involves a group of counterintelligence agents. Their identities 
are secret; not even the counterintelligence agency knows who they are. The 
agency's director wants to give each agent a signed document stating: "The bearer 
of this signed document, (insert agent's cover name here), has full diplomatic 
immunity." Each of the agents has his own list of cover names, so the agency can't 
just hand out signed documents. The agents do not want to send their cover names 
to the agency; the enemy might have corrupted the agency's computer. On the 
other hand, the agency doesn't want to blindly sign any document an agent gives 
it. A clever agent might substitute a message like: "Agent (name) has retired and 
collects a million-dollar-a-year pension. Signed, Mr. President." In this case, blind 
signatures could be useful. 

Assume that all the agents have 10 possible cover names, which they have chosen 
themselves and which no one else knows. Also assume that the agents don't care 
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under which cover name they are going to get diplomatic immunity. Also assume 
that the agency's computer is the Agency's Large Intelligent Computing Engine, or 
ALICE, and that our particular agent is the Bogota Operations Branch: BOB. 

(I) BOB prepares n documents, each using a different cover name, giving him-
self diplomatic immunity. 

(2) BOB blinds each of these documents with a different blinding factor. 

(3) BOB sends then blinded documents to ALICE. 

(4) ALICE chooses n - I documents at random and asks BOB for the blinding 
factors for each of those documents. 

(5) BOB sends ALICE the appropriate blinding factors. 

(6) ALICE opens (i.e., she removes the blinding factor) n - I documents and 
makes sure they are correct-and not pension authorizations. 

(7) ALICE signs the remaining document and sends it to BOB. 

(8) Agent removes the blinding factor and reads his new cover name: "The 
Crimson Streak." The signed document gives him diplomatic immunity 
under that name. 

This protocol is secure against BOB cheating. For him to cheat, he would have to 
predict accurately which document ALICE would not examine. The odds of him 
doing this are I in n-not very good. ALICE knows this and feels confident signing 
a document that she is not able to examine. With this one document, the protocol 
is the same as the previous completely blinded signature protocol and maintains all 
of its properties of anonymity. 

There is a trick that makes BOB's chance of cheating even smaller. In step (4), 
ALICE randomly chooses n/2 of the documents to challenge, and BOB sends her the 
appropriate blinding factors in step (5 ). In step (7), ALICE multiplies together all of 
the unchallenged documents and signs the mega-document. In step (8), BOB strips 
off all the blinding factors. ALICE's signature is acceptable only if it is a valid signa­
ture of the product of n/2 identical documents. To cheat BOB has to be able to guess 
exactly which subset ALICE will challenge; the odds are much smaller than the 
odds of guessing which one document ALICE won't challenge. 

BOB has another way to cheat. He can generate two different documents, one that 
ALICE is willing to sign and one that ALICE is not. Then he can find two different 
blinding factors that transform each document into the same blinded document. That 
way, if ALICE asks to examine the document, BOB gives her the blinding factor that 
transforms it into the benign document. If ALICE doesn't ask to see the document and 
signs it, he uses the blinding factor that transforms it into the malevolent document. 
While this is theoretically possible, the mathematics of the particular algorithms 
involved make the odds of BO B's being able to find such a pair negligibly small. In fact, 
it can be made as small as the odds of Bob being able to produce the signature on an 
arbitrary message himself. This issue is discussed further in Section 23.12. 



5.4 Identity-Based Public-Key Cryptography 

Patents 
Chaum has patents for several flavors of blind signatures (see Table 5.1). 

5.4 IDENTITY-BASED PuBLIC-KEY CRYPTOGRAPHY 

Alice wants to send a secure message to Bob. She doesn't want to get his public key 
from a key server; she doesn't want to verify some trusted third party's signature on 
his public-key certificate; and she doesn't even want to store Bob's public key on her 
own computer. She just wants to send him a secure message. 

Identity-based cryptosystems, sometimes called Non-Interactive Key Sharing 
(NIKS) systems, solve this problem [1422]. Bob's public key is based on his name and 
network address (or telephone number, or physical street address, or whatever). 
With normal public-key cryptography, Alice needs a signed certificate that associ­
ates Bob's public key with his identity. With identity-based cryptography, Bob's pub­
lic key is his identity. This is a really cool idea, and about as ideal as you can get for 
a mail system: If Alice knows Bob's address, she can send him secure mail. It makes 
the cryptography about as transparent as possible. 

The system is based on Trent issuing private keys to users based on their identity. 
If Alice's private key is compromised, she has to change some aspect of her identity 
to get another one. A serious problem is designing a system in such a way that a col­
lusion of dishonest users cannot forge a key. 

A lot of work has been done on the mathematics of these sorts of schemes-most 
of it in Japan-which turn out to be infuriatingly complicated to make secure. Many 
of the proposed solutions involve Trent choosing a random number for each user­
in my opinion this defeats the real point of the system. Some of the algorithms 
discussed in Chapters 19 and 20 can be identity-based. For details, algorithms, 
and cryptanalysis, see [191, 1422,891, 1022, 1515, 1202, 1196,908,692,674, 1131, 1023, 
1516,1536, 1544,63, 1210,314,313, 1545, 1539,1543,933, 1517, 748, 1228]. An algorithm 
that does not rely on any random numbers is [1035]. The system discussed in 
[1546,1547,1507] is insecure against a chosen-public-key attack; so is the system 
proposed as NIKS-TAS [1542,1540,1541,993,375,1538]. Honestly, nothing proposed 
so far is both practical and secure. 

U.S. PATENT# 

4,759,063 
4,759,064 
4,914,698 
4,949,380 
4,991,210 

TABLE 5.1 
Chaum' s Blind Signature Patents 

DATE TITLE 

7/19/88 Blind Signature Systems [323] 
7/19/88 Blind Unanticipated Signature Systems [324] 
3/3/90 One-Show Blind Signature Systems [326] 
8/14/90 Returned-Value Blind Signature Systems [328] 
2/5/91 Unpredictable Blind Signature Systems [331] 
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5. 5 OBLIVIOUS TRANSFER 

Cryptographer Bob is desperately trying to factor a 500-bit number, n. He knows it's 
the product of five 100-bit numbers, but nothing more. (This is a problem. If he can't 
recover the key he'll have to work overtime and he'll miss his weekly mental poker 
game with Alice.) 

What do you know? Here comes Alice now: 

"I happen to know one factor of the number," she says, "and I'll sell it to you for 
$100. That's a dollar a bit." To show she's serious, she uses a bit-commitment 
scheme and commits to each bit individually. 

Bob is interested, but has only $50. Alice is unwilling to lower her price and 
offers to sell Bob half the bits for half the price. "It'll save you a considerable 
amount of work," she says. 

"But how do I know that your number is actually a factor of nl If you show me 
the number and let me verify that it is a factor, then I will agree to your terms," 
says Bob. 

They are at an impasse. Alice cannot convince Bob that her number is a factor 
of n without revealing it, and Bob is unwilling to buy 50 bits of a number that 
could very well be worthless. 

This story, stolen from Joe Kilian [831 ], introduces the concept of oblivious trans­
fer. Alice transmits a group of messages to Bob. Bob receives some subset of those 
messages, but Alice has no idea which ones he receives. This doesn't completely 
solve the problem, however. After Bob has received a random half of the bits, Alice 
has to convince him that the bits she sent are part of a factor of n, using a zero­
knowledge proof. 

In the following protocol, Alice will send Bob one of two messages. Bob will 
receive one, and Alice will not know which. 

(1) Alice generates two public-key/private-key key pairs, or four keys in all. 
She sends both public keys to Bob. 

(2) Bob chooses a key in a symmetric algorithm (DES, for example). He chooses 
one of Alice's public keys and encrypts his DES key with it. He sends the 
encrypted key to Alice without telling her which of her public keys he used 
to encrypt it. 

(3) Alice decrypts Bob's key twice, once with each of her private keys. In one of 
the cases, she uses the correct key and successfully decrypts Bob's DES key. 
In the other case, she uses the wrong key and only manages to generate a 
meaningless pile of bits that nonetheless look like a random DES key. Since 
she does not know the correct plaintext, she has no idea which is which. 

(4) Alice encrypts both of her messages, each with a different one of the DES 
keys she generated in the previous step (one real and one meaningless) and 
sends both of them to Bob. 

(5) Bob gets one of Alice's messages encrypted with the proper DES key and 
the other one encrypted with the gibberish DES key. When Bob decrypts 
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each of them with his DES key, he can read one of them; the other just 
looks like gibberish to him. 

Bob now has one of the two messages from Alice and Alice does not know which 
one he was able to read successfully. Unfortunately, if the protocol stopped here it 
would be possible for Alice to cheat. Another step is necessary. 

(6) After the protocol is complete and both possible results of the transfer are 
known, Alice must give Bob her private keys so that he can verify that she 
did not cheat. After all, she could have encrypted the same message with 
both keys in step (4). 

At this point, of course, Bob can figure out the second message. 
The protocol is secure against an attack by Alice because she has no way of know­

ing which of the two DES keys is the real one. She encrypts them both, but Bob only 
successfully recovers one of them-until step (6). It is secure against an attack by 
Bob because, before step (6), he cannot get Alice's private keys to determine the DES 
key that the other message was encrypted in. This may still seem like nothing more 
than a more complicated way to flip coins over a modem, but it has extensive impli­
cations when used in more complicated protocols. 

Of course, nothing stops Alice from sending Bob two completely useless mes­
sages: "Nyah Nyah" and "You sucker." This protocol guarantees that Alice sends 
Bob one of two messages; it does nothing to ensure that Bob wants to receive either 
of them. 

Other oblivious transfer protocols are found in the literature. Some of them are 
noninteractive, meaning that Alice can publish her two messages and Bob can learn 
only one of them. He can do this on his own; he doesn't have to communicate with 
Alice [105]. 

No one really cares about being able to do oblivious transfer in practice, but the 
notion is an important building block for other protocols. Although there are many 
types of oblivious transfer-I have two secrets and you get one; I haven secrets and 
you get one; I have one secret which you get with probability 1/2; and so on-they 
are all equivalent [245,391,395]. 

5.6 OBLIVIOUS SIGNATURES 

Honestly, I can't think of a good use for these, but there are two kinds [346]: 

1. Alice has n different messages. Bob can choose one of the n messages for 
Alice to sign, and Alice will have no way of knowing which one she signed. 

2. Alice has one message. Bob can choose one of n keys for Alice to use in 
signing the message, and Alice will have no way of knowing which key 
she used. 

It's a neat idea; I'm sure it has a use somewhere. 
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5. 7 SIMULTANEOUS CONTRACT SIGNING 

Contract Signing with an Arbitrator 
Alice and Bob want to enter into a contract. They've agreed on the wording, but 

neither wishes to sign unless the other signs as well. Face to face, this is easy: Both 
sign together. Over a distance, they could use an arbitrator. 

( 1) Alice signs a copy of the contract and sends it to Trent. 

(2) Bob signs a copy of the contract and sends it to Trent. 

(3) Trent sends a message to both Alice and Bob indicating that the other has 
signed the contract. 

(4) Alice signs two copies of the contract and sends them to Bob. 

(5) Bob signs both copies of the contract, keeps one for himself, and sends the 
other to Alice. 

(6) Alice and Bob both inform Trent that they each have a copy of the contract 
signed by both of them. 

(7) Trent tears up his two copies of the contract with only one signature each. 

This protocol works because Trent prevents either of the parties from cheating. If 
Bob were to refuse to sign the contract in step (5 ), Alice could appeal to Trent for a 
copy of the contract already signed by Bob. If Alice were to refuse to sign in step (4), 
Bob could do the same. When Trent indicates that he received both contracts in step 
(3 ), both Alice and Bob know that the other is bound by the contract. If Trent does 
not receive both contracts in steps (1) and (2), he tears up the one he received and 
neither party is bound. 

Simultaneous Contract Signing without an Arbitrator (Face-to-Face) 

If Alice and Bob were sitting face-to-face, they could sign the contract this way 
[1244]: 

( 1) Alice signs the first letter of her name and passes the contract to Bob. 

(2) Bob signs the first letter of his name and passes the contract to Alice. 

(3) Alice signs the second letter of her name and passes the contract to Bob. 

(4) Bob signs the second letter of his name and passes the contract to Alice. 

(5) This continues until both Alice and Bob have signed their entire names. 

If you ignore the obvious problem with this protocol (Alice has a longer name 
than Bob), it works just fine. After signing only one letter, Alice knows that no judge 
will bind her to the terms of the contract. But the letter is an act of good faith, and 
Bob responds with a similar act of good faith. 

After each party has signed several letters, a judge could probably be convinced 
that both parties had signed the contract. The details are murky, though. Surely 
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they are not bound after only the first letter; just as surely they are bound after they 
sign their entire names. At what point in the protocol do they become bound? After 
signing one-half of their names? Two-thirds of their names? Three-quarters? 

Since neither Alice nor Bob is certain of the exact point at which she or he is 
bound, each has at least some fear that she or he is bound throughout the protocol. 
At no point can Bob say: "You signed four letters and I only signed three. You are 
bound but I am not." Bob has no reason not to continue with the protocol. Fur­
thermore, the longer they continue, the greater the probability that a judge will 
rule that they are bound. Again, there is no reason not to continue with the proto­
col. After all, they both wanted to sign the contract; they just didn't want to sign 
before the other one. 

Simultaneous Contract Signing without an Arbitrator (Not Face-to-Face) 

This protocol uses the same sort of uncertainty [138]. Alice and Bob alternate tak­
ing baby steps toward signing until both have signed. 

In the protocol, Alice and Bob exchange a series of signed messages of the form: "I 
agree that with probability p, I am bound by this contract." 

The recipient of this message can take it to a judge and, with probability p, the 
judge will consider the contract to be signed. 

( 1) Alice and Bob agree on a date by which the signing protocol should be com­
pleted. 

(2) Alice and Bob decide on a probability difference that they are willing to 
live with. For example, Alice might decide that she is not willing to be 
bound with a greater probability than 2 percent over Bob's probability. Call 
Alice's difference a; call Bob's difference b. 

(3) Alice sends Bob a signed message with p = a. 

(4) Bob sends Alice a signed message with p =a+ b. 

(5) Let p be the probability of the message Alice received in the previous step 
from Bob. Alice sends Bob a signed message with p' = p + a or 1, whichever 
is smaller. 

(6) Let p be the probability of the message Bob received in the previous step 
from Alice. Bob sends Alice a signed message with p' = p + b or 1, 
whichever is smaller. 

(7) Alice and Bob continue alternating steps (5) and (6) until both have 
received messages with p = 1 or until the date agreed to in step ( 1) has 
passed. 

As the protocol proceeds, both Alice and Bob agree to be bound to the contract 
with a greater and greater probability. For example, Alice might define her a as 2 
percent and Bob might define his b as 1 percent. (It would be nice if they had cho­
sen larger increments; we will be here for a while.) Alice's first message might 
state that she is bound with 2 percent probability. Bob might respond that he is 
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bound with 3 percent probability. Alice's next message might state that she is 
bound with 5 percent probability and so on, until both are bound with 100 percent 
probability. 

If both Alice and Bob complete the protocol by the completion date, all is well. 
Otherwise, either party can take the contract to the judge, along with the other 
party's last signed message. The judge then randomly chooses a value between O and 
1 before seeing the contract. If the value is less than the probability the other party 
signed, then both parties are bound. If the value is greater than the probability, then 
both parties are not bound. (The judge then saves the value, in case he has to rule on 
another matter regarding the same contract.) This is what is meant by being bound 
to the contract with probability p. 

That's the basic protocol, but it can have more complications. The judge can rule 
in the absence of one of the parties. The judge's ruling either binds both or neither 
party; in no situation is one party bound and the other one not. Furthermore, as long 
as one party is willing to have a slightly higher probability of being bound than the 
other (no matter how small), the protocol will terminate. 

Simultaneous Contract Signing without an Arbitrator 
(Using Cryptography) 

This cryptographic protocol uses the same baby-step approach [529]. DES is used 
in the description, although any symmetric algorithm will do. 

( 1) Both Alice and Bob randomly select 2n DES keys, grouped in pairs. The 
pairs are nothing special; they are just grouped that way for the protocol. 

(2) Both Alice and Bob generate n pairs of messages, L; and R;: "This is the left 
half of my ith signature" and "This is the right half of my ith signature," 
for example. The identifier, i, runs from 1 ton. Each message will probably 
also include a digital signature of the contract and a timestamp. The con­
tract is considered signed if the other party can produce both halves, L; and 
R;, of a single signature pair. 

(3) Both Alice and Bob encrypt their message pairs in each of the DES key 
pairs, the left message with the left key in the pair and the right message 
with the right key in the pair. 

(4) Alice and Bob send each other their pile of 2n encrypted messages, making 
clear which messages are which halves of which pairs. 

(5) Alice and Bob send each other every key pair using the oblivious transfer 
protocol for each pair. That is, Alice sends Bob either the key used to 
encrypt the left message or the key used to encrypt the right message, inde­
pendently, for each of then pairs. Bob does the same. They can either alter­
nate sending halves or one can send 100 and then the other-it doesn't 
matter. Now both Alice and Bob have one key in each key pair, but neither 
knows which halves the other one has. 

(6) Both Alice and Bob decrypt the message halves that they can, using the 
keys they received. They make sure that the decrypted messages are valid. 
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(7) Alice and Bob send each other the first bits of all 2n DES keys. 

(8) Alice and Bob repeat step (7) for the second bits of all 2n DES keys, the 
third bits, and so on, until all the bits of all the DES keys have been trans­
ferred. 

(9) Alice and Bob decrypt the remaining halves of the message pairs and the 
contract is signed. 

(10) Alice and Bob exchange the private keys used during the oblivious transfer 
protocol in step ( 5) and each verifies that the other did not cheat. 

Why do Alice and Bob have to go through all this world Let's assume Alice wants 
to cheat and see what happens. In steps (4) and (5), Alice could disrupt the protocol 
by sending Bob nonsense bit strings. Bob would catch this in step (6), when he tried 
to decrypt whatever half he received. Bob could then stop safely, before Alice could 
decrypt any of Bob's message pairs. 

If Alice were very clever, she could only disrupt half the protocol. She could send 
one half of each pair correctly, but send a gibberish string for the other half. Bob has 
only a 50 percent chance of receiving the correct half, so half the time Alice could 
cheat. However, this only works if there is one key pair. If there were only two pairs, 
this sort of deception would succeed 25 percent of the time. That is why n should be 
large. Alice has to guess correctly the outcome of n oblivious transfer protocols; she 
has a 1 in 2n chance of doing this. If n = IO, Alice has a 1 in 1024 chance of deceiv­
ing Bob. 

Alice could also send Bob random bits in step (8). Perhaps Bob won't know that 
she is sending him random bits until he receives the whole key and tries to decrypt 
the message halves. But again, Bob has probability on his side. He has already 
received half of the keys, and Alice does not know which half. If n is large enough, 
Alice is sure to send him a nonsense bit to a key he has already received and he will 
know immediately that she is trying to deceive him. 

Maybe Alice will just go along with step (8) until she has enough bits of the keys to 
mount a brute-force attack and then stop transmitting bits. DES has a 56-bit-long key. 
If she receives 40 of the 56 bits, she only has to try 216, or 65,536, keys in order to read 
the message-a task certainly within the realm of a computer's capabilities. But Bob 
will have exactly the same number of bits of her keys (or, at worst, one bit less), so he 
can do the same thing. Alice has no real choice but to continue the protocol. 

The basic point is that Alice has to play fairly, because the odds of fooling Bob are 
just too small. At the end of the protocol, both parties have n signed message pairs, 
any one of which is sufficient for a valid signature. 

There is one way Alice can cheat; she can send Bob identical messages in Step (5). 
Bob can't detect this until after the protocol is finished, but he can use a transcript 
of the protocol to convince a judge of Alice's duplicity. 

There are two weaknesses with protocols of this type [138]. First, it's a problem if 
one of the parties has significantly more computing power than the other. If, for 
example, Alice can mount a brute-force attack faster than Bob can, then she can stop 
sending bits early in step (8), and figure out Bob's keys herself. Bob, who cannot do 
the same in a reasonable amount of time, will not be happy. 
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Second, it's a problem if one of the parties stops the protocol early. If Alice 
abruptly stops the protocol, both face similar computational efforts, but Bob does 
not have any real legal recourse. If, for example, the contract specifies that she do 
something in a week, and Alice terminates the protocol at a point when Bob would 
have to spend a year's worth of computing power before she is really committed, 
that's a problem. The real difficulty here is the lack of a near-term deadline by 
which the process cleanly terminates with either both or neither party bound. 

These problems also apply to the protocols in Sections 5.8 and 5.9. 

5.8 DIGITAL CERTIFIED MAIL 

The same simultaneous oblivious transfer protocol used for contract signing works, 
with some modifications, for computer certified mail [529]. Suppose Alice wants to 
send a message to Bob, but she does not want him to read it without signing a 
receipt. Surly postal workers handle this process in real life, but the same thing can 
be done with cryptography. Whitfield Diffie first discussed this problem in [490]. 

At first glance, the simultaneous contract-signing protocol can do this. Alice sim­
ply encrypts her message with a DES key. Her half of the protocol can be something 
like: "This is the left half of the DES key: 32f5, 11 and Bob's half can be something 
like: "This is the left half of my receipt." Everything else stays the same. 

To see why this won't work, remember that the protocol hinges on the fact that 
the oblivious transfer in step (5) keeps both parties honest. Both of them know that 
they sent the other party a valid half, but neither knows which. They don't cheat in 
step (8) because the odds of getting away with it are miniscule. If Alice is sending 
Bob not a message but half of a DES key, Bob can't check the validity of the DES key 
in step (6). Alice can still check the validity of Bob's receipt, so Bob is still forced to 
be honest. Alice can freely send Bob some garbage DES key, and he won't know the 
difference until she has a valid receipt. Tough luck, Bob. 

Getting around this problem requires some adjustment of the protocol: 

( 1) Alice encrypts her message using a random DES key, and sends the mes­
sage to Bob. 

(2) Alice generates n pairs of DES keys. The first key of each pair is generated 
at random; the second key of each pair is the XOR of the first key and the 
message encryption key. 

(3) Alice encrypts a dummy message with each of her 2n keys. 

(4) Alice sends the whole pile of encrypted messages to Bob, making sure he 
knows which messages are which halves of which pairs. 

(5) Bob generates n pairs of random DES keys. 

(6) Bob generates a pair of messages that indicates a valid receipt. "This is the 
left half of my receipt" and "this is the right half of my receipt" are good 
candidates, with the addition of some kind of random-bit string. He makes 
n receipt pairs, each numbered. As with the previous protocol, the receipt 
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is considered valid if Alice can produce both halves of a receipt (with the 
same number) and all of her encryption keys. 

( 7) Bob encrypts each of his message pairs with DES key pairs, the ith message 
pair with the ith key pair, the left message with the left key in the pair, and 
the right message with the right key in the pair. 

(8) Bob sends his pile of message pairs to Alice, making sure that Alice knows 
which messages are which halves of which pairs. 

(9) Alice and Bob send each other every key pair using the oblivious transfer 
protocol. That is, Alice sends Bob either the key used to encrypt the left 
message or the key used to encrypt the right message, for each of then pairs. 
Bob does the same. They can either alternate sending halves or one can send 
n and then the other-it doesn't matter. Now both Alice and Bob have one 
key in each key pair, but neither knows which halves the other has. 

( 10) Both Alice and Bob decrypt the halves they can and make sure that the 
decrypted messages are valid. 

( 11) Alice and Bob send each other the first bits of all 2n DES keys. (If they are 
worried about Eve being able to read these mail messages, then they should 
encrypt their transmissions to each other.) 

(12) Alice and Bob repeat step (11) for the second bits of all 2n DES keys, the 
third bits, and so on, until all the bits of all the DES keys have been 
transferred. 

( 13) Alice and Bob decrypt the remaining halves of the message pairs. Alice has 
a valid receipt from Bob, and Bob can XOR any key pair to get the original 
message encryption key. 

(14) Alice and Bob exchange the private keys used during the oblivious transfer 
protocol and each verifies that the other did not cheat. 

Steps (5) through (8) for Bob, and steps (9) through (12) for both Alice and Bob, are 
the same as the contract-signing protocol. The twist is all of Alice's dummy mes­
sages. They give Bob some way of checking the validity of her oblivious transfer in 
step (10), which forces her to stay honest during steps (11) through (13). And, as with 
the simultaneous contract-signing protocol, both a left and a right half of one of 
Alice's message pairs are required to complete the protocol. 

5. 9 SIMULTANEOUS EXCHANGE OF SECRETS 

Alice knows secret A; Bob knows secret B. Alice is willing to tell Bob A, if Bob tells 
her B. Bob is willing to tell Alice B, if Alice tells him A. This protocol, observed in 
a schoolyard, does not work: 

( 1) Alice: "I'll tell if you tell me first." 

(2) Bob: "I'll tell if you tell me first." 
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(3) Alice: "No, you first." 

(4) Bob: "Oh, all right." Bob whispers. 

(5) Alice: "Ha! I won't tell you." 

(6) Bob: "That's not fair." 

Cryptography can make it fair. The previous two protocols are implementations 
of this more general protocol, one that lets Alice and Bob exchange secrets simulta­
neously [529]. Rather than repeat the whole protocol, I'll sketch the modifications 
to the certified mail protocol. 

Alice performs steps ( 1) through (4) using A as the message. Bob goes through sim­
ilar steps using B as his message. Alice and Bob perform the oblivious transfer in 
step (9), decrypt the halves they can in step ( 10), and go through the iterations in 
steps (11) and (12). If they are concerned about Eve, they should encrypt their mes­
sages. Finally, both Alice and Bob decrypt the remaining halves of the message pairs 
and XOR any key pair to get the original message encryption key. 

This protocol allows Alice and Bob to exchange secrets simultaneously, but says 
nothing about the quality of the secrets exchanged. Alice could promise Bob the 
solution to the Minotaur's labyrinth, but actually send him a map of Boston's sub­
way system. Bob will get whatever secret Alice sends him. Other protocols are 
[1286, 195,991, 1524, 705,753,259,358,415]. 
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CHAPTER 6 

Esoteric Protocols 

6 .1 SECURE ELECTIONS 

Computerized voting will never be used for general elections unless there is a pro­
tocol that both maintains individual privacy and prevents cheating. The ideal pro­
tocol has, at the very least, these six requirements: 

1. Only authorized voters can vote. 

2. No one can vote more than once. 

3. No one can determine for whom anyone else voted. 

4. No one can duplicate anyone else's vote. (This turns out to be the hardest 
requirement.) 

5. No one can change anyone else's vote without being discovered. 

6. Every voter can make sure that his vote has been taken into account in the 
final tabulation. 

Additionally, some voting schemes may have the following requirement: 

7. Everyone knows who voted and who didn't. 

Before describing the complicated voting protocols with these characteristics, 
let's look at some simpler protocols. 

Simplistic Voting Protocol # 1 

( 1) Each voter encrypts his vote with the public key of a Central Tabulating 
Facility (CTF). 

(2) Each voter sends his vote in to the CTF. 

(3) The CTF decrypts the votes, tabulates them, and makes the results public. 
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This protocol is rife with problems. The CTF has no idea where the votes are 
from, so it doesn't even know if the votes are coming from eligible voters. It has no 
idea if eligible voters are voting more than once. On the plus side, no one can change 
anyone else's vote; but no one would bother trying to modify someone else's vote 
when it is far easier to vote repeatedly for the result of your choice. 

Simplistic Voting Protocol #2 

( 1) Each voter signs his vote with his private key. 

(2) Each voter encrypts his signed vote with the CTF's public key. 

(3) Each voter sends his vote to a CTF. 

(4) The CTF decrypts the votes, checks the signatures, tabulates the votes, 
and makes the results public. 

This protocol satisfies properties one and two: Only authorized voters can vote 
and no one can vote more than once-the CTF would record votes received in step 
(3 ). Each vote is signed with the voter's private key, so the CTF knows who voted, 
who didn't, and how often each voter voted. If a vote comes in that isn't signed by 
an eligible voter, or if a second vote comes in signed by a voter who has already 
voted, the facility ignores it. No one can change anyone else's vote either, even if 
they intercept it in step (3), because of the digital signature. 

The problem with this protocol is that the signature is attached to the vote; the 
CTF knows who voted for whom. Encrypting the votes with the CTF's public key 
prevents anyone from eavesdropping on the protocol and figuring out who voted for 
whom, but you have to trust the CTF completely. It's analogous to having an elec­
tion judge staring over your shoulder in the voting booth. 

These two examples show how difficult it is to achieve the first three require­
ments of a secure voting protocol, let alone the others. 

Voting with Blind Signatures 
We need to somehow dissociate the vote from the voter, while still maintaining 

authentication. The blind signature protocol does just that. 

( 1) Each voter generates 10 sets of messages, each set containing a valid vote 
for each possible outcome (e.g., if the vote is a yes or no question, each set 
contains two votes, one for "yes" and the other for "no"). Each message 
also contains a randomly generated identification number, large enough to 
avoid duplicates with other voters. 

(2) Each voter individually blinds all of the messages (see Section 5.3) and 
sends them, with their blinding factors, to the CTF. 

(3) The CTF checks its database to make sure the voter has not submitted his 
blinded votes for signature previously. It opens nine of the sets to check that 
they are properly formed. Then it individually signs each message in the set. 
It sends them back to the voter, storing the name of the voter in its database. 
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(4) The voter unblinds the messages and is left with a set of votes signed by 
the CTF. (These votes are signed but unencrypted, so the voter can easily 
see which vote is "yes" and which is "no.") 

(5) The voter chooses one of the votes (ah, democracy) and encrypts it with the 
CTF's public key. 

(6) The voter sends his vote in. 

(7) The CTF decrypts the votes, checks the signatures, checks its database for 
a duplicate identification number, saves the serial number, and tabulates 
the votes. It publishes the results of the election, along with every serial 
number and its associated vote. 

A malicious voter, call him Mallory, cannot cheat this system. The blind signa­
ture protocol ensures that his votes are unique. If he tries to send in the same vote 
twice, the CTF will notice the duplicate serial number in step (7) and throw out the 
second vote. If he tries to get multiple votes signed in step (2), the CTF will discover 
this in step (3 ). Mallory cannot generate his own votes because he doesn't know the 
facility's private key. He can't intercept and change other people's votes for the same 
reason. 

The cut-and-choose protocol in step (3) is to ensure that the votes are unique. 
Without that step, Mallory could create a set of votes that are the same except for 
the identification number, and have them all validated. 

A malicious CTF cannot figure out how individuals voted. Because the blind sig­
nature protocol prevents the facility from seeing the serial numbers on the votes 
before they are cast, the CTF cannot link the blinded vote it signed with the vote 
eventually cast. Publishing a list of serial numbers and their associated votes allows 
voters to confirm that their vote was tabulated correctly. 

There are still problems. If step (6) is not anonymous and the CTF can record who 
sent in which vote, then it can figure out who voted for whom. However, if it 
receives votes in a locked ballot box and then tabulates them later, it cannot. Also, 
while the CTF may not be able to link votes to individuals, it can generate a large 
number of signed, valid votes and cheat by submitting those itself. And if Alice dis­
covers that the CTF changed her vote, she has no way to prove it. A similar proto­
col, which tries to correct these problems, is [1195,1370]. 

Voting with Two Central Facilities 

One solution is to divide the CTF in two. Neither party would have the power to 
cheat on its own. 

The following protocol uses a Central Legitimization Agency (CLA) to certify vot­
ers and a separate CTF to count votes [1373]. 

( 1) Each voter sends a message to the CLA asking for a validation number. 

(2) The CLA sends the voter back a random validation number. The CLA 
maintains a list of validation numbers. The CLA also keeps a list of the 
validation numbers' recipients, in case someone tries to vote twice. 
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(3) The CLA sends the list of validation numbers to the CTF. 

(4) Each voter chooses a random identification number. He creates a message 
with that number, the validation number he received from the CLA, and 
his vote. He sends this message to the CTF. 

(5) The CTF checks the validation number against the list it received from the 
CLA in step (3). If the validation number is there, the CTF crosses it off (to 
prevent someone from voting twice). The CTF adds the identification 
number to the list of people who voted for a particular candidate and adds 
one to the tally. 

(6) After all votes have been received, the CTF publishes the outcome, as well 
as the lists of identification numbers and for whom their owners voted. 

Like the previous protocol, each voter can look at the lists of identification num­
bers and find his own. This gives him proof that his vote was counted. Of course, all 
messages passing among the parties in the protocol should be encrypted and signed 
to prevent someone from impersonating someone else or intercepting transmissions. 

The CTF cannot modify votes because each voter will look for his identification 
string. If a voter doesn't find his identification string, or finds his identification 
string in a tally other than the one he voted for, he will immediately know there was 
foul play. The CTF cannot stuff the ballot box because it is being watched by the 
CLA. The CLA knows how many voters have been certified and their validation 
numbers, and will detect any modifications. 

Mallory, who is not an eligible voter, can try to cheat by guessing a valid valida­
tion number. This threat can be minimized by making the number of possible vali­
dation numbers much larger than the number of actual validation numbers: 
100-digit numbers for a million voters, for example. Of course, the validation num­
bers must be generated randomly. 

Despite this, the CLA is still a trusted authority in some respects. It can certify 
ineligible voters. It can certify eligible voters multiple times. This risk could be 
minimized by having the CLA publish a list of certified voters (but not their valida­
tion numbers). If the number of voters on this list is less than the number of votes 
tabulated, then something is awry. However, if more voters were certified than 
votes tabulated, it probably means that some certified people didn't bother voting. 
Many people who are registered to vote don't bother to cast ballots. 

This protocol is vulnerable to collusion between the CLA and the CTF. If the two of 
them got together, they could correlate databases and figure out who voted for whom. 

Voting with a Single Central Facility 
A more complex protocol can be used to overcome the danger of collusion 

between the CLA and the CTF [1373]. This protocol is identical to the previous one, 
with two modifications: 

The CLA and the CTF are one organization, and 

ANDOS (see Section 4.13) is used to anonymously distribute valida­
tion numbers in step (2). 
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Since the anonymous key distribution protocol prevents the CTF from knowing 
which voter got which validation number, there is no way for the CTF to correlate 
validation numbers with votes received. The CTF still has to be trusted not to give 
validation numbers to ineligible voters, though. You can also solve this problem 
with blind signatures. 

Improved Voting with a Single Central Facility 

This protocol also uses ANDOS [1175]. It satisfies all six requirements of a good 
voting protocol. It doesn't satisfy the seventh requirement, but has two properties 
additional to the six listed at the beginning of the section: 

7. A voter can change his mind (i.e., retract his vote and vote again) within a 
given period of time. 

8. If a voter finds out that his vote is miscounted, he can identify and correct 
the problem without jeopardizing the secrecy of his ballot. 

Here's the protocol: 

( 1) The CTF publishes a list of all legitimate voters. 

(2) Within a specified deadline, each voter tells the CTF whether he intends 
to vote. 

(3) The CTF publishes a list of voters participating in the election. 

(4) Each voter receives an identification number, I, using an ANDOS protocol. 

( 5) Each voter generates a public-key /private-key key pair: k, d. If vis the vote, 
he generates the following message and sends it to the CTF: 

I,Ek(I,v) 
This message must be sent anonymously. 

(6) The CTF acknowledges receipt of the vote by publishing: 

Ek(I,v) 

(7) Each voter sends the CTF: 

I,d 

(8) The CTF decrypts the votes. At the end of the election, it publishes the 
results of the election and, for each different vote, the list of all Ek(I, v) val­
ues that contained that vote. 

(9) If a voter observes that his vote is not properly counted, he protests by 
sending the CTF: 

I,E1JI,v),d 

(10) If a voter wants to change his vote (possible, in some elections) from v to 
v', he sends the CTF: 

I,Ek(I, v'),d 

A different voting protocol uses blind signatures instead of ANDOS, but is essen­
tially the same [585]. Steps (1) through (3) are preliminary to the actual voting. Their 
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purpose is to find out and publicize the total number of actual voters. Although 
some of them probably will not participate, it reduces the ability of the CTF to add 
fraudulent votes. 

In step (4), it is possible for two voters to get the same identification number. This 
possibility can be minimized by having far more possible identification numbers 
than actual voters. If two voters submit votes with the same identification tag, the 
CTF generates a new identification number, I', chooses one of the two votes, and 
publishes: 

I',Ek(I,v) 

The owner of that vote recognizes it and sends in a second vote, by repeating step 
(5 ), with the new identification number. 

Step (6) gives each voter the capability to check that the CTF received his vote 
accurately. If his vote is miscounted, he can prove his case in step (9). Assuming a 
voter's vote is correct in step (6), the message he sends in step (9) constitutes a proof 
that his vote is miscounted. 

One problem with the protocol is that a corrupt CTF could allocate the votes of 
people who respond in step (2) but who do not actually vote. Another problem is the 
complexity of the ANDOS protocol. The authors recommend dividing a large popu­
lation of voters into smaller populations, such as election districts. 

Another, more serious problem is that the CTF can neglect to count a vote. This 
problem cannot be resolved: Alice claims that the CTF intentionally neglected to 
count her vote, but the CTF claims that the voter never voted. 

Voting without a Central Tabulating Facility 
The following protocol does away with the CTF entirely; the voters watch each 

other. Designed by Michael Merritt [452, 1076,453], it is so unwieldy that it cannot 
be implemented practically for more than a handful of people, but it is useful to 
learn from nevertheless. 

Alice, Bob, Carol, and Dave are voting yes or no (0 or 1) on a particular issue. 
Assume each voter has a public and private key. Also assume that everyone knows 
everyone else's public keys. 

( 1) Each voter chooses his vote and does the following: 

(a) He attaches a random string to his vote. 

(b) He encrypts the result of step (a) with Dave's public key. 

(c) He encrypts the result of step (b) with Carol's public key. 

(d) He encrypts the result of step (c) with Bob's public key. 

(e) He encrypts the result of step (d) with Alice's public key. 

(f) He attaches a new random string to the result of step (e) and encrypts 
it with Dave's public key. He records the value of the random string. 

(g) He attaches a new random string to the result of step (f) and encrypts it 
with Carol's public key. He records the value of the random string. 
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(h) He attaches a new random string to the result of step (g) and encrypts 
it with Bob's public key. He records the value of the random string. 

(i) He attaches a new random string to the result of step (h) and encrypts 
it with Alice's public key. He records the value of the random string. 

If E is the encryption function, R1 is a random string, and V is the vote, his 
message looks like: 

EA(Rs,EB(R4,Ec(R3,Ev(R2,EA(EB(Ec(En(V,R1)))))))) 
Each voter saves the intermediate results at each point in the calculation. 
These results will be used later in the protocol to confirm that his vote is 
among those being counted. 

(2) Each voter sends his message to Alice. 

(3) Alice decrypts all of the votes with her private key and then removes all of 
the random strings at that level. 

(4) Alice scrambles the order of all the votes and sends the result to Bob. 
Each vote now looks like this: 

EB(R4,Ec(R,,Ev(R2,EA(E13(Ec(Ev(V,R1))))))) 
(5) Bob decrypts all of the votes with his private key, checks to see that his 

vote is among the set of votes, removes all the random strings at that level, 
scrambles all the votes, and then sends the result to Carol. 

Each vote now looks like this: 

Ec(R,,Ev(R2,EA(E13(Ec(Ev(V,R1)))))) 
(6) Carol decrypts all of the votes with her private key, checks to see that her 

vote is among the set of votes, removes all the random strings at that level, 
scrambles all the votes, and then sends the result to Dave. 

Each vote now looks like this: 

Ev(R2,EA(E13(Ec(Ev(V,R1))))) 
(7) Dave decrypts all of the votes with his private key, checks to see that his 

vote is among the set of votes, removes all the random strings at that level, 
scrambles all the votes, and sends them to Alice. 

Each vote now looks like this: 

EA(EB(Ec(Ev(V,Ri)))) 
(8) Alice decrypts all the votes with her private key, checks to see that her 

vote is among the set of votes, signs all the votes, and then sends the result 
to Bob, Carol, and Dave. 

Each vote now looks like this: 

SA(EB(Ec(Ev( V,R 1 )))) 

(9) Bob verifies and deletes Alice's signatures. He decrypts all the votes with 
his private key, checks to see that his vote is among the set of votes, signs 
all the votes, and then sends the result to Alice, Carol, and Dave. 

Each vote now looks like this: 

SR(EdEv(V,Ri))) 
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( 10) Carol verifies and deletes Bob's signatures. She decrypts all the votes with 
her private key, checks to see that her vote is among the set of votes, signs 
all the votes, and then sends the result to Alice, Bob, and Dave. 

Each vote now looks like this: 

Sc(Ev(V,R1)) 

( 11) Dave verifies and deletes Carol's signatures. He decrypts all the votes with 
his private key, checks to see that his vote is among the set of votes, signs 
all the votes, and then sends the result to Alice, Bob, and Carol. 

Each vote now looks like this: 

Sv(V,Ri) 

(12) All verify and delete Dave's signature. They check to make sure that their 
vote is among the set of votes (by looking for their random string among 
the votes). 

( 13) Everyone removes the random strings from each vote and tallies the votes. 

Not only does this protocol work, it is also self-adjudicating. Alice, Bob, Carol, 
and Dave will immediately know if someone tries to cheat. No CTF or CLA is 
required. To see how this works, let's try to cheat. 

If someone tries to stuff the ballot, Alice will detect the attempt in step (3) when 
she receives more votes than people. If Alice tries to stuff the ballot, Bob will notice 
in step (4). 

More devious is to substitute one vote for another. Since the votes are encrypted 
with various public keys, anyone can create as many valid votes as needed. The 
decryption protocol has two rounds: round one consists of steps (3) through (7), and 
round two consists of steps (8) through (11). Vote substitution is detected differently 
in the different rounds. 

If someone substitutes one vote for another in round two, his actions are discov­
ered immediately. At every step the votes are signed and sent to all the voters. If one 
(or more) of the voters noticed that his vote is no longer in the set of votes, he 
immediately stops the protocol. Because the votes are signed at every step, and 
because everyone can backtrack through the second round of the protocol, it is easy 
to detect who substituted the votes. 

Substituting one vote for another during round one of the protocol is more subtle. 
Alice can't do it in step (3), because Bob, Carol, or Dave will detect it in step (5), (6), 
or (7). Bob could try in step (5). If he replaces Carol's or Dave's vote (remember, he 
doesn't know which vote corresponds to which voter), Carol or Dave will notice in 
step (6) or (7). They wouldn't know who tampered with their vote (although it would 
have had to be someone who had already handled the votes), but they would know 
that their vote was tampered with. If Bob is lucky and picks Alice's vote to replace, 
she won't notice until the second round. Then, she will notice her vote missing in 
step (8). Still, she would not know who tampered with her vote. In the first round, the 
votes are shuffled from one step to the other and unsigned; it is impossible for any­
one to backtrack through the protocol to determine who tampered with the votes. 
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Another form of cheating is to try to figure out who voted for whom. Because of 
the scrambling in the first round, it is impossible for someone to backtrack 
through the protocol and link votes with voters. The removal of the random 
strings during the first round is also crucial to preserving anonymity. If they are 
not removed, the scrambling of the votes could be reversed by re-encrypting the 
emerging votes with the scrambler's public key. As the protocol stands, the confi­
dentiality of the votes is secure. 

Even more strongly, because of the initial random string, R 1, even identical votes 
are encrypted differently at every step of the protocol. No one knows the outcome 
of the vote until step ( 11 ). 

What are the problems with this protocol? First, the protocol has an enormous 
amount of computation. The example described had only four voters and it was 
complicated. This would never work in a real election, with tens of thousands of 
voters. Second, Dave learns the results of the election before anyone else does. 
While he still can't affect the outcome, this gives him some power that the others 
do not have. On the other hand, this is also true with centralized voting schemes. 

The third problem is that Alice can copy anyone else's vote, even though she does 
not know what it is beforehand. To see why this could be a problem, consider a 
three-person election between Alice, Bob, and Eve. Eve doesn't care about the result 
of the election, but she wants to know how Alice voted. So she copies Alice's vote, 
and the result of the election is guaranteed to be equal to Alice's vote. 

Other Voting Schemes 

Many complex secure election protocols have been proposed. They come in two 
basic flavors. There are mixing protocols, like "Voting without a Central Tabulating 
Facility," where everyone's vote gets mixed up so that no one can associate a vote 
with a voter. 

There are also divided protocols, where individual votes are divided up among dif­
ferent tabulating facilities such that no single one of them can cheat the voters 
[360,359,118,115]. These protocols only protect the privacy of voters to the extent 
that different "parts" of the government (or whoever is administering the voting) do 
not conspire against the voter. (This idea of breaking a central authority into differ­
ent parts, who are only trusted when together, comes from [316].) 

One divided protocol is [ 13 71 ]. The basic idea is that each voter breaks his vote into 
several shares. For example, if the vote were "yes" or "no," a 1 could indicate "yes" 
and a O could indicate "no"; the voter would then generate several numbers whose 
sum was either O or 1. These shares are sent to tabulating facilities, one to each, and 
are also encrypted and posted. Each center tallies the shares it receives (there are pro­
tocols to verify that the tally is correct) and the final vote is the sum of all the tallies. 
There are also protocols to ensure that each voter's shares add up to O or 1. 

Another protocol, by David Chaum [322], ensures that voters who attempt to dis­
rupt the election can be traced. However, the election must then be restarted with­
out the interfering voter; this approach is not practical for large-scale elections. 

Another, more complex, voting protocol that solves some of these problems can 
be found in [770,771]. There is even a voting protocol that uses multiple-key ciphers 
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[219]. Yet another voting protocol, which claims to be practical for large-scale elec­
tions, is in [585]. And [347] allows voters to abstain. 

Voting protocols work, but they make it easier to buy and sell votes. The incen­
tives become considerably stronger as the buyer can be sure that the seller votes as 
promised. Some protocols are designed to be receipt-free, so that it is impossible for 
a voter to prove to someone else that he voted in a certain way [117, 1170,1372]. 

6.2 SECURE MULTIPARTY COMPUTATION 

Secure multiparty computation is a protocol in which a group of people can get 
together and compute any function of many variables in a special way. Each partic­
ipant in the group provides one or more variables. The result of the function is 
known to everyone in the group, but no one learns anything about the inputs of any 
other members other than what is obvious from the output of the function. Here are 
some examples: 

Protocol #1 
How can a group of people calculate their average salary without anyone learning 

the salary of anyone else? 

( 1) Alice adds a secret random number to her salary, encrypts the result with 
Bob's public key, and sends it to Bob. 

(2) Bob decrypts Alice's result with his private key. He adds his salary to what 
he received from Alice, encrypts the result with Carol's public key, and 
sends it to Carol. 

(3) Carol decrypts Bob's result with her private key. She adds her salary to 
what she received from Bob, encrypts the result with Dave's public key, 
and sends it to Dave. 

(4) Dave decrypts Carol's result with his private key. He adds his salary to 
what he received from Carol, encrypts the result with Alice's public key, 
and sends it to Alice. 

(5) Alice decrypts Dave's result with her private key. She subtracts the ran­
dom number from step ( 1) to recover the sum of everyone's salaries. 

(6) Alice divides the result by the number of people (four, in this case) and 
announces the result. 

This protocol assumes that everyone is honest; they may be curious, but they 
follow the protocol. If any participant lies about his salary, the average will be 
wrong. A more serious problem is that Alice can misrepresent the result to every­
one. She can subtract any number she likes in step (5), and no one would be the 
wiser. Alice could be prevented from doing this by requiring her to commit to her 
random number using any of the bit-commitment schemes from Section 4.9, but 
when she revealed her random number at the end of the protocol Bob could learn 
her salary. 
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Protocol #2 
Alice and Bob are at a restaurant together, having an argument over who is older. 

They don't, however, want to tell the other their age. They could each whisper their 
age into the ear of a trusted neutral party (the waiter, for example), who could com­
pare the numbers in his head and announce the result to both Alice and Bob. 

The above protocol has two problems. One, your average waiter doesn't have the 
computational ability to handle situations more complex than determining which 
of two numbers is greater. And two, if Alice and Bob were really concerned about 
the secrecy of their information, they would be forced to drown the waiter in a bowl 
of vichyssoise, lest he tell the wine steward. 

Public-key cryptography offers a far less violent solution. There is a protocol by 
which Alice, who knows a value a, and Bob, who knows a value b, can together 
determine if a < b, so that Alice gets no additional information about b and Bob gets 
no additional information about a. And, both Alice and Bob are convinced of the 
validity of the computation. Since the cryptographic algorithm used is an essential 
part of the protocol, details can be found in Section 23 .14. 

Of course, this protocol doesn't protect against active cheaters. There's nothing to 
stop Alice (or Bob, for that matter) from lying about her age. If Bob were a computer 
program that blindly executed the protocol, Alice could learn his age (is the age of a 
computer program the length of time since it was written or the length of time since 
it started running?) by repeatedly executing the protocol. Alice might give her age as 
60. After learning that she is older, she could execute the protocol again with her age 
as 30. After learning that Bob is older, she could execute the protocol again with her 
age as 45, and so on, until Alice discovers Bob's age to any degree of accuracy she 
wishes. 

Assuming that the participants don't actively cheat, it is easy to extend this pro­
tocol to multiple participants. Any number of people can find out the order of their 
ages by a sequence of honest applications of the protocol; and no participant can 
learn the age of another. 

Protocol #3 
Alice likes to do kinky things with teddy bears. Bob has erotic fantasies about 

marble tables. Both are pretty embarrassed by their particular fetish, but would love 
to find a mate who shared in their ... um ... lifestyle. 

Here at the Secure Multiparty Computation Dating Service, we've designed a pro­
tocol for people like them. We've numbered an astonishing list of fetishes, from 
"aardvarks" to "zoot suits." Discreetly separated by a modem link, Alice and Bob 
can participate in a secure multiparty protocol. Together, they can determine 
whether they share the same fetish. If they do, they might look forward to a lifetime 
of bliss together. If they don't, they can part company secure in the knowledge that 
their particular fetish remains confidential. No one, not even the Secure Multiparty 
Computation Dating Service, will ever know. 

Here's how it works: 

( 1) Using a one-way function, Alice hashes her fetish into a seven-digit string. 

(2) Alice uses the seven-digit string as a telephone number, calls the number, 
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and leaves a message for Bob. If no one answers or the number is not in ser­
vice, Alice applies a one-way function to the telephone number until she 
finds someone who can play along with the protocol. 

(3) Alice tells Bob how many times she had to apply the one-way hash func­
tion to her fetish. 

(4) Bob hashes his fetish the same number of times that Alice did. He also uses 
the seven-digit string as a telephone number, and asks the person at the 
other end whether there were any messages for him. 

Note that Bob has a chosen-plaintext attack. He can hash common fetishes and 
call the resulting telephone numbers, looking for messages for him. This protocol 
only really works if there are enough possible plaintext messages for this to be 
impractical. 

There's also a mathematical protocol, one similar to Protocol #2. Alice knows a, 
Bob knows b, and together they will determine whether a = b, such that Bob does 
not learn anything additional about a and Alice does not learn anything additional 
about b. Details are in Section 23.14. 

Protocol #4 
This is another problem for secure multiparty computation [1373]: A council of 

seven meets regularly to cast secret ballots on certain issues. (All right, they rule the 
world-don't tell anyone I told you.) All council members can vote yes or no. In 
addition, two parties have the option of casting "super votes": S-yes and S-no. They 
do not have to cast super votes; they can cast regular votes if they prefer. If no one 
casts any super votes, then the majority of votes decides the issue. In the case of a 
single or two equivalent super votes, all regular votes are ignored. In the case of two 
contradicting super votes, the majority of regular votes decides. We want a protocol 
that securely performs this style of voting. 

Two examples should illustrate the voting process. Assume there are five regular 
voters, N 1 through N 5, and two super voters: S1 and S2 • Here's the vote on issue #1: 

S1 
S-yes 

S1 
no 

Nz 
no 

N, 
yes 

Ns 
yes 

In this instance the only vote that matters is Si's, and the result is "yes." 
Here is the vote on issue #2: 

S1 
S-yes 

S1 
S-no 

Nz 
no 

N, 
yes 

Ns 
yes 

Here the two super votes cancel and the majority of regular "no" votes decide 
the issue. 

If it isn't important to hide the knowledge of whether the super vote or the regu­
lar vote was the deciding vote, this is an easy application of a secure voting protocol. 
Hiding that knowledge requires a more complicated secure multiparty computation 
protocol. 
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This kind of voting could occur in real life. It could be part of a corporation's orga­
nizational structure, where certain people have more power than others, or it could 
be part of the United Nations's procedures, where certain nations have more power 
than others. 

Multiparty Unconditionally Secure Protocols 

This is just a simple case of a general theorem: Any function of n inputs can be 
computed by a set of n players in a way that will let all learn the value of the func­
tion, but any set of less than n/2 players will not get any additional information that 
does not follow from their own inputs and the value of the output information. For 
details, sec [136,334,1288,621]. 

Secure Circuit Evaluation 

Alice has her input, a. Bob has his input, b. Together they wish to compute some 
general function, f(a,b), such that Alice learns nothing about Bob's input and Bob 
learns nothing about Alice's input. The general problem of secure multiparty com­
putation is also called secure circuit evaluation. Here, Alice and Bob can create an 
arbitrary Boolean circuit. This circuit accepts inputs from Alice and from Bob and 
produces an output. Secure circuit evaluation is a protocol that accomplishes three 
things: 

1. Alice can enter her input without Bob's being able to learn it. 

2. Bob can enter his input without Alice's being able to learn it. 

3. Both Alice and Bob can calculate the output, with both parties being sure 
the output is correct and that neither party has tampered with it. 

Details on secure circuit evaluation can be found in [831]. 

6.3 ANONYMOUS MESSAGE BROADCAST 

You can't go out to dinner with a bunch of cryptographers without raising a ruckus. 
In [321], David Chaum introduced the Dining Cryptographers Problem: 

Three cryptographers are sitting down to dinner at their favorite three-star restau­
rant. Their waiter informs them that arrangements have been made with the 
maitre d'hotel for the bill to be paid anonymously. One of the cryptographers 
might be paying for the dinner, or it might have been the NSA. The three cryp­
tographers respect each other's right to make an anonymous payment, but they 
wonder if the NSA is paying. 

How do the cryptographers, named Alice, Bob, and Carol, determine if one of them 
is paying for dinner, while at the same time preserving the anonymity of the payer? 

Chaum goes on to solve the problem: 

Each cryptographer flips an unbiased coin behind his menu, between him and the 
cryptographer to his right, so that only the two of them can see the outcome. Each 
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cryptographer then states aloud whether the two coins he can see-the one he 
flipped and the one his left-hand neighbor flipped-fell on the same side or on dif­
ferent sides. If one of the cryptographers is the payer, he states the opposite of 
what he sees. An odd number of differences uttered at the table indicates that a 
cryptographer is paying; an even number of differences indicates that NSA is pay­
ing (assuming that the dinner was paid for only once). Yet, if a cryptographer is 
paying, neither of the other two learns anything from the utterances about which 
cryptographer it is. 

To see that this works, imagine Alice trying to figure out which other cryptogra­
pher paid for dinner (assuming that neither she nor the NSA paid). If she sees two 
different coins, then either both of the other cryptographers, Bob and Carol, said, 
"same" or both said, "different." (Remember, an odd number of cryptographers say­
ing "different" indicates that one of them paid.) If both said, "different," then the 
payer is the cryptographer closest to the coin that is the same as the hidden coin (the 
one that Bob and Carol flipped). If both said, "same," then the payer is the cryptog­
rapher closest to the coin that is different from the hidden coin. However, if Alice 
sees two coins that are the same, then either Bob said, "same" and Carol said, "dif­
ferent," or Bob said, "different" and Carol said, "same." If the hidden coin is the 
same as the two coins she sees, then the cryptographer who said, "different" is the 
payer. If the hidden coin is different from the two coins she sees, then the cryptog­
rapher who said, "same" is the payer. In all of these cases, Alice needs to know the 
result of the coin flipped between Bob and Carol to determine which of them paid. 

This protocol can be generalized to any number of cryptographers; they all sit in a 
ring and flip coins among them. Even two cryptographers can perform the protocol. Of 
course, they know who paid, but someone watching the protocol could tell only if one 
of the two paid or if the NSA paid; they could not tell which cryptographer paid. 

The applications of this protocol go far beyond sitting around the dinner table. 
This is an example of unconditional sender and recipient untraceability. A group of 
users on a network can use this protocol to send anonymous messages. 

( 1) The users arrange themselves into a circle. 

(2) At regular intervals, adjacent pairs of users flip coins between them, using 
some fair coin flip protocol secure from eavesdroppers. 

(3) After every flip, each user announces either "same" or "different." 

If Alice wishes to broadcast a message, she simply starts inverting her statement 
in those rounds corresponding to a 1 in the binary representation of her message. For 
example, if her message were "1001," she would invert her statement, tell the truth, 
tell the truth, and then invert her statement. Assuming the result of her flips were 
11 different," 11 same," 11 same," 11 same," she would say "same," "same," "same," 
11 different." 

If Alice notices that the overall outcome of the protocol doesn't match the mes­
sage she is trying to send, she knows that someone else is trying to send a message 
at the same time. She then stops sending the message and waits some random num-
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her of rounds before trying again. The exact parameters have to be worked out based 
on the amount of message traffic on this network, but the idea should be clear. 

To make things even more interesting, these messages can be encrypted in 
another user's public keys. Then, when everyone receives the message (a real imple­
mentation of this should add some kind of standard message-beginning and 
message-ending strings), only the intended recipient can decrypt and read it. No one 
else knows who sent it. No one else knows who could read it. Traffic analysis, 
which traces and compiles patterns of people's communications even though the 
messages themselves may be encrypted, is useless. 

An alternative to flipping coins between adjacent parties would be for them to 
keep a common file of random bits. Maybe they could keep them on a CD-ROM, or 
one member of the pair could generate a pile of them and send them to the other 
party (encrypted, of course). Alternatively, they could agree on a cryptographically 
secure pseudo-random-number generator between them, and they could each gener­
ate the same string of pseudo-random bits for the protocol. 

One problem with this protocol is that while a malicious participant cannot read 
any messages, he can disrupt the system unobserved by lying in step (3). There is a 
modification to the previous protocol that detects disruption [1578,1242]; the prob­
lem is called "The Dining Cryptographers in the Disco." 

6.4 DIGITAL CASH 

Cash is a problem. It's annoying to carry, it spreads germs, and people can steal it 
from you. Checks and credit cards have reduced the amount of physical cash flow­
ing through society, but the complete elimination of cash is virtually impossible. 
It'll never happen; drug dealers and politicians would never stand for it. Checks and 
credit cards have an audit trail; you can't hide to whom you gave money. 

On the other hand, checks and credit cards allow people to invade your privacy to 
a degree never before imagined. You might never stand for the police following you 
your entire life, but the police can watch your financial transactions. They can see 
where you buy your gas, where you buy your food, who you call on the telephone­
all without leaving their computer terminals. People need a way to protect their 
anonymity in order to protect their privacy. 

Happily, there is a complicated protocol that allows for authenticated but untrace­
able messages. Lobbyist Alice can transfer digital cash to Congresscritter Bob so that 
newspaper reporter Eve does not know Alice's identity. Bob can then deposit that 
electronic money into his bank account, even though the bank has no idea who Alice 
is. But if Alice tries to buy cocaine with the same piece of digital cash she used to 
bribe Bob, she will be detected by the bank. And if Bob tries to deposit the same piece 
of digital cash into two different accounts, he will be detected-but Alice will remain 
anonymous. Sometimes this is called anonymous digital cash to differentiate it from 
digital money with an audit trail, such as credit cards. 

A great social need exists for this kind of thing. With the growing use of the Inter­
net for commercial transactions, there is more call for network-based privacy and 
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anonymity in business. (There are good reasons people are reluctant to send their 
credit card numbers over the Internet.) On the other hand, banks and governments 
seem unwilling to give up the control that the current banking system's audit trail 
provides. They'll have to, though. All it will take for digital cash to catch on is for 
some trustworthy institution to be willing to convert the digits to real money. 

Digital cash protocols are very complex. We'll build up to one, a step at a time. For 
more formal details, read [318,339,325,335,340]. Realize that this is just one digital 
cash protocol; there are others. 

Protocol #1 
The first few protocols are physical analogies of cryptographic protocols. This first 

protocol is a simplified physical protocol for anonymous money orders: 

( 1) Alice prepares 100 anonymous money orders for $ 1000 each. 

(2) Alice puts one each, and a piece of carbon paper, into 100 different 
envelopes. She gives them all to the bank. 

(3) The bank opens 99 envelopes and confirms that each is a money order for 
$1000. 

(4) The bank signs the one remaining unopened envelope. The signature goes 
through the carbon paper to the money order. The bank hands the unopened 
envelope back to Alice, and deducts $ 1000 from her account. 

(5) Alice opens the envelope and spends the money order with a merchant. 

(6) The merchant checks for the bank's signature to make sure the money 
order is legitimate. 

(7) The merchant takes the money order to the bank. 

(8) The bank verifies its signature and credits $1000 to the merchant's account. 

This protocol works. The bank never sees the money order it signed, so when the 
merchant brings it to the bank, the bank has no idea that it was Alice's. The bank is 
convinced that it is valid, though, because of the signature. The bank is confident 
that the unopened money order is for $1000 (and not for $100,000 or $100,000,000) 
because of the cut-and-choose protocol (see Section 5.1 ). It verifies the other 99 
envelopes, so Alice has only a 1 percent chance of cheating the bank. Of course, the 
bank will make the penalty for cheating great enough so that it isn't worth that 
chance. If the bank refuses to sign the last check (if Alice is caught cheating) with­
out penalizing Alice, she will continue to try until she gets lucky. Prison terms are 
a better deterrent. 

Protocol #2 
The previous protocol prevents Alice from writing a money order for more than 

she claims to, but it doesn't prevent Alice from photocopying the money order and 
spending it twice. This is called the double spending problem; to solve it, we need a 
complication: 
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( 1) Alice prepares 100 anonymous money orders for $ 1000 each. On each 
money order she includes a different random uniqueness string, one long 
enough to make the chance of another person also using it negligible. 

(2) Alice puts one each, and a piece of carbon paper, into 100 different 
envelopes. She gives them all to the bank. 

(3) The bank opens 99 envelopes and confirms that each is a money order for 
$1000. 

(4) The bank signs the one remaining unopened envelope. The signature goes 
through the carbon paper to the money order. The bank hands the unopened 
envelope back to Alice and deducts $1000 from her account. 

(5) Alice opens the envelope and spends the money order with a merchant. 

(6) The merchant checks for the bank's signature to make sure the money 
order is legitimate. 

(7) The merchant takes the money order to the bank. 

(8) The bank verifies its signature and checks its database to make sure a 
money order with the same uniqueness string has not been previously 
deposited. If it hasn't, the bank credits $1000 to the merchant's account. 
The bank records the uniqueness string in a database. 

(9) If it has been previously deposited, the bank doesn't accept the money order. 

Now, if Alice tries to spend a photocopy of the money order, or if the merchant 
tries to deposit a photocopy of the money order, the bank will know about it. 

Protocol #3 
The previous protocol protects the bank from cheaters, but it doesn't identify 

them. The bank doesn't know if the person who bought the money order (the bank 
has no idea it's Alice) tried to cheat the merchant or if the merchant tried to cheat 
the bank. This protocol corrects that: 

( 1) Alice prepares 100 anonymous money orders for $1000 each. On each of 
the money orders she includes a different random uniqueness string, one 
long enough to make the chance of another person also using it negligible. 

(2) Alice puts one each, and a piece of carbon paper, into 100 different 
envelopes. She gives them all to the bank. 

(3) The bank opens 99 envelopes and confirms that each is a money order for 
$1000 and that all the random strings are different. 

(4) The bank signs the one remaining unopened envelope. The signature goes 
through the carbon paper to the money order. The bank hands the unopened 
envelope back to Alice and deducts $1000 from her account. 

(5) Alice opens the envelope and spends the money order with a merchant. 

(6) The merchant checks for the bank's signature to make sure the money 
order is legitimate. 
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(7) The merchant asks Alice to write a random identity string on the money 
order. 

(8) Alice complies. 

(9) The merchant takes the money order to the bank. 

( 10) The bank verifies the signature and checks its database to make sure a 
money order with the same uniqueness string has not been previously 
deposited. If it hasn't, the bank credits $ 1000 to the merchant's account. The 
bank records the uniqueness string and the identity string in a database. 

( 11) If the uniqueness string is in the database, the bank refuses to accept the 
money order. Then, it compares the identity string on the money order 
with the one stored in the database. If it is the same, the bank knows that 
the merchant photocopied the money order. If it is different, the bank 
knows that the person who bought the money order photocopied it. 

This protocol assumes that the merchant cannot change the identity string once 
Alice writes it on the money order. The money order might have a series of little 
squares, which the merchant would require Alice to fill in with either Xs or Os. The 
money order might be made out of paper that tears if erased. 

Since the interaction between the merchant and the bank takes place after Alice 
spends the money, the merchant could be stuck with a bad money order. Practical 
implementations of this protocol might require Alice to wait near the cash register 
during the merchant-bank interaction, much the same way as credit-card purchases 
are handled today. 

Alice could also frame the merchant. She could spend a copy of the money order 
a second time, giving the same identity string in step (7). Unless the merchant keeps 
a database of money orders it already received, he would be fooled. The next proto­
col eliminates that problem. 

Protocol #4 
If it turns out that the person who bought the money order tried to cheat the mer­

chant, the bank would want to know who that person was. To do that requires mov­
ing away from a physical analogy and into the world of cryptography. 

The technique of secret splitting can be used to hide Alice's name in the digital 
money order. 

( 1) Alice prepares n anonymous money orders for a given amount. 
Each of the money orders contains a different random uniqueness string, 

X, one long enough to make the chance of two being identical negligible. 
On each money order, there are also n pairs of identity bit strings, I 1, 

I2, ••• , I11• (Yes, that's n different pairs on each check.) Each of these pairs is 
generated as follows: Alice creates a string that gives her name, address, and 
any other piece of identifying information that the bank wants to see. Then, 
she splits it into two pieces using the secret splitting protocol (see Section 
3.6). Then, she commits to each piece using a bit-commitment protocol. 
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For example, {,7 consists of two parts: I_,7L and {i 7R. Each part is a bit­
committed packet that Alice can be asked to open and whose proper open­
ing can be instantly verified. Any pair (e.g., I37L and I37 R' but not 1371 and 138 ), 

reveals Alice's identity. 
Each of the money orders looks like this: 

Amount 
Uniqueness String: X 
Identity Strings: ! 1 ,Ii 

I2 ~ ( I21 , 

(2) Alice blinds all n money orders, using a blind signature protocol. She gives 
them all to the bank. 

(3) The bank asks Alice to unblind n - 1 of the money orders at random and 
confirms that they are all well formed. The bank checks the amount, the 
uniqueness string, and asks Alice to reveal all of the identity strings. 

(4) If the bank is satisfied that Alice did not make any attempts to cheat, it 
signs the one remaining blinded money order. The bank hands the blinded 
money order back to Alice and deducts the amount from her account. 

(5) Alice unblinds the money order and spends it with a merchant. 
(6) The merchant verifies the bank's signature to make sure the money order 

is legitimate. 

(7) The merchant asks Alice to randomly reveal either the left half or the right 
half of each identity string on the money order. In effect, the merchant 
gives Alice a random n-bit selector string, b1, b2, ••• , bn. Alice opens either 
the left or right half of I;, depending on whether bi is a O or a 1. 

(8) Alice complies. 

(9) The merchant takes the money order to the bank. 
(10) The bank verifies the signature and checks its database to make sure a 

money order with the same uniqueness string has not been previously 
deposited. If it hasn't, the bank credits the amount to the merchant's 
account. The bank records the uniqueness string and all of the identity 
information in a database. 

( 11) If the uniqueness string is in the database, the bank refuses to accept the 
money order. Then, it compares the identity string on the money order 
with the one stored in the database. If it is the same, the bank knows that 
the merchant copied the money order. If it is different, the bank knows 
that the person who bought the money order photocopied it. Since the sec­
ond merchant who accepted the money order handed Alice a different 
selector string than did the first merchant, the bank finds a bit position 
where one merchant had Alice open the left half and the other merchant 
had Alice open the right half. The bank XORs the two halves together to 
reveal Alice's identity. 
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This is quite an amazing protocol, so let's look at it from various angles. 
Can Alice cheat? Her digital money order is nothing more than a string of bits, so 

she can copy it. Spending it the first time won't be a problem; she'll just complete 
the protocol and everything will go smoothly. The merchant will give her a random 
n-bit selector string in step (7) and Alice will open either the left half or right half of 
each l; in step (8). In step (10), the bank will record all of this data, as well as the 
money order's uniqueness string. 

When she tries to use the same digital money order a second time, the merchant 
(either the same merchant or a different merchant) will give her a different random 
selector string in step (7). Alice must comply in step (8); not doing so will immedi­
ately alert the merchant that something is suspicious. Now, when the merchant 
brings the money order to the bank in step ( 10), the bank would immediately notice 
that a money order with the same uniqueness string was already deposited. The 
bank then compares the opened halves of the identity strings. The odds that the two 
random selector strings are the same is 1 in 2n; it isn't likely to happen before the 
next ice age. Now, the bank finds a pair with one half opened the first time and the 
other half opened the second time. It XORs the two halves together, and out pops 
Alice's name. The bank knows who tried to spend the money order twice. 

Note that this protocol doesn't keep Alice from trying to cheat; it detects her 
cheating with almost certainty. Alice can't prevent her identity from being revealed 
if she cheats. She can't change either the uniqueness string or any of the identity 
strings, because then the bank's signature will no longer be valid. The merchant will 
immediately notice that in step (6). 

Alice could try to sneak a bad money order past the bank, one on which the iden­
tity strings don't reveal her name; or better yet, one whose identity strings reveal 
someone else's name. The odds of her getting this ruse past the bank in step (3) are 
1 inn. These aren't impossible odds, but if you make the penalty severe enough, 
Alice won't try it. Or, you could increase the number of redundant money orders 
that Alice makes in step ( 1 ). 

Can the merchant cheat? His chances are even worse. He can't deposit the money 
order twice; the bank will notice the repeated use of the selector string. He can't 
fake blaming Alice; only she can open any of the identity strings. 

Even collusion between Alice and the merchant can't cheat the bank. As long as 
the bank signs the money order with the uniqueness string, the bank is assured of 
only having to make good on the money order once. 

What about the bank? Can it figure out that the money order it accepted from the 
merchant was the one it signed for Alice? Alice is protected by the blind signature 
protocol in steps (2) through (5). The bank cannot make the connection, even if it 
keeps complete records of every transaction. Even more strongly, there is no way for 
the bank and the merchant to get together to figure out who Alice is. Alice can walk 
in the store and, completely anonymously, make her purchase. 

Eve can cheat. If she can eavesdrop on the communication between Alice and the 
merchant, and if she can get to the bank before the merchant does, she can deposit 
the digital cash first. The bank will accept it and, even worse, when the merchant 
tries to deposit the cash he will be identified as a cheater. If Eve steals and spends 
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Alice's cash before Alice can, then Alice will be identified as a cheater. There's no 
way to prevent this; it is a direct result of the anonynimity of the cash. Both Alice 
and the merchant have to protect their bits as they would paper money. 

This protocol lies somewhere between an arbitrated protocol and a self-enforcing 
protocol. Both Alice and the merchant trust the bank to make good on the money 
orders, but Alice does not have to trust the bank with knowledge of her purchases. 

Digital Cash and the Perfect Crime 

Digital cash has its dark side, too. Sometimes people don't want so much privacy. 
Watch Alice commit the perfect crime [1575]: 

( 1) Alice kidnaps a baby. 

(2) Alice prepares 10,000 anonymous money orders for $1000 (or as many as 
she wants for whatever denomination she wants). 

(3) Alice blinds all 10,000 money orders, using a blind signature protocol. She 
sends them to the authorities with the threat to kill the baby unless the 
following instructions are met: 

(a) Have a bank sign all 10,000 money orders. 

(b) Publish the results in a newspaper. 

(4) The authorities comply. 

(5) Alice buys a newspaper, unblinds the money orders, and starts spending 
them. There is no way for the authorities to trace the money orders to her. 

( 6) Alice frees the baby. 

Note that this situation is much worse than any involving physical tokens-cash, 
for example. Without physical contact, the police have less opportunity to appre­
hend the kidnapper. 

In general, though, digital cash isn't a good deal for criminals. The problem is that 
the anonymity only works one way: The spender is anonymous, but the merchant 
is not. Moreover, the merchant cannot hide the fact that he received money. Digital 
cash will make it easy for the government to determine how much money you 
made, but impossible to determine what you spent it on. 

Practical Digital Cash 

A Dutch company, DigiCash, owns most of the digital cash patents and has 
implemented digital cash protocols in working products. Anyone interested should 
contact DigiCash BV, Kruislaan 419, 1098 VA Amsterdam, Netherlands. 

Other Digital Cash Protocols 

There are other digital cash protocols; see [707,1554,734,1633,973]. Some of 
them involve some pretty complicated mathematics. Generally, the various digi­
tal cash protocols can be divided into various categories. On-line systems require 
the merchant to communicate with the bank at every sale, much like today's 
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credit-card protocols. If there is a problem, the bank doesn't accept the cash and 
Alice cannot cheat. 

Off-line systems, like Protocol #4, require no communication between the mer­
chant and the bank until after the transaction between the merchant and the cus­
tomer. These systems do not prevent Alice from cheating, but instead detect her 
cheating. Protocol #4 detected her cheating by making Alice's identity known if she 
tried to cheat. Alice knows that this will happen, so she doesn't cheat. 

Another way is to create a special smart card (see Section 24.13) containing a tam­
perproof chip called an observer [332,341,387]. The observer chip keeps a mini data­
base of all the pieces of digital cash spent by that smart card. If Alice attempts to 
copy some digital cash and spend it twice, the imbedded observer chip would detect 
the attempt and would not allow the transaction. Since the observer chip is tamper­
proof, Alice cannot erase the mini-database without permanently damaging the 
smart card. The cash can wend its way through the economy; when it is finally 
deposited, the bank can examine the cash and determine who, if anyone, cheated. 

Digital cash protocols can also be divided along another line. Electronic coins 
have a fixed value; people using this system will need several coins in different 
denominations. Electronic checks can be used for any amount up to a maximum 
value and then returned for a refund of the unspent portion. 

Two excellent and completely different off-line electronic coin protocols are 
[225,226,227] and [563,564,565]. A system called NetCash, with weaker anonymity 
properties, has also been proposed [1048,1049]. Another new system is [289]. 

In [1211], Tatsuaki Okamoto and Kazuo Ohta list six properties of an ideal digital 
cash system: 

1. Independence. The security of the digital cash is not dependent on any 
physical location. The cash can be transferred through computer networks. 

2. Security. The digital cash cannot be copied and reused. 

3. Privacy (Untraceability). The privacy of the user is protected; no one can 
trace the relationship between the user and his purchases. 

4. Off-line Payment. When a user pays for a purchase with electronic cash, 
the protocol between the user and the merchant is executed off-line. That 
is, the shop does not need to be linked to a host to process the user's 
payment. 

5. Transferability. The digital cash can be transferred to other users. 

6. Divisibility. A piece of digital cash in a given amount can be subdivided 
into smaller pieces of cash in smaller amounts. (Of course, everything has 
to total up properly in the end.) 

The protocols previously discussed satisfy properties 1, 2, 3, and 4, but not 5 and 
6. Some on-line digital cash systems satisfy all properties except 4 [318,413, 
1243]. The first off-line digital cash system that satisfies properties 1, 2, 3, and 4, 
similar to the one just discussed, was proposed in [339]. Okamoto and Ohta pro­
posed a system that satisfies properties 1 through 5 [ 1209]; they also proposed a sys-
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tern that satisfies properties 1 through 6 as well, but the data requirement for a sin­
gle purchase is approximately 200 megabytes. Another off-line divisible coin system 
is described in [522]. 

The digital cash scheme proposed in [1211], by the same authors, satisfies proper­
ties 1 through 6, without the enormous data requirements. The total data transfer for 
a payment is about 20 kilobytes, and the protocol can be completed in several sec­
onds. The authors consider this the first ideal untraceable electronic cash system. 

Anonymous Credit Cards 
This protocol [988] uses several different banks to protect the identity of the cus­

tomer. Each customer has an account at two different banks. The first bank knows 
the person's identity and is willing to extend him credit. The second bank knows 
the customer only under a pseudonym (similar to a numbered Swiss bank account). 

The customer can withdraw funds from the second bank by proving that the 
account is his. However, the bank does not know the person and is unwilling to 
extend him credit. The first bank knows the customer and transfers funds to the sec­
ond bank-without knowing the pseudonym. The customer then spends these 
funds anonymously. At the end of the month, the second bank gives the first bank a 
bill, which it trusts the bank to pay. The first bank passes the bill on to the cus­
tomer, which it trusts the customer to pay. When the customer pays, the first bank 
transfers additional funds to the second bank. All transactions are handled through 
an intermediary, which acts sort of like an electronic Federal Reserve: settling 
accounts among banks, logging messages, and creating an audit trail. 

Exchanges between the customer, merchant, and various banks are outlined in 
[988]. Unless everyone colludes against the customer, his anonymity is assured. 
However, this is not digital cash; it is easy for the bank to cheat. The protocol allows 
customers to keep the advantages of credit cards without giving up their privacy. 





PART II 
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CHAPTER 7 

Key Length 

7 .1 SYMMETRIC KEY LENGTH 

The security of a symmetric cryptosystem is a function of two things: the strength 
of the algorithm and the length of the key. The former is more important, but the 
latter is easier to demonstrate. 

Assume that the strength of the algorithm is perfect. This is extremely difficult to 
achieve in practice, but easy enough for this example. By perfect, I mean that there 
is no better way to break the cryptosystem other than trying every possible key in a 
brute-force attack. 

To launch this attack, a cryptanalyst needs a small amount of ciphertext and the 
corresponding plaintext; a brute-force attack is a known-plaintext attack. For a 
block cipher, the cryptanalyst would need a block of ciphertext and corresponding 
plaintext: generally 64 bits. Getting this plaintext and ciphertext is easier than you 
might imagine. A cryptanalyst might get a copy of a plaintext message by some 
means and intercept the corresponding ciphertext. He may know something about 
the format of the ciphertext: For example, it is a WordPerfect file, it has a standard 
electronic-mail message header, it is a UNIX directory file, it is a TIFF image, or it 
is a standard record in a customer database. All of these formats have some prede­
fined bytes. The cryptanalyst doesn't need much plaintext to launch this attack. 

Calculating the complexity of a brute-force attack is easy. If the key is 8 bits long, 
there are 28, or 256, possible keys. Therefore, it will take 256 attempts to find the 
correct key, with a 50 percent chance of finding the key after half of the attempts. If 
the key is 56 bits long, then there are 256 possible keys. Assuming a supercomputer 
can try a million keys a second, it will take 2285 years to find the correct key. If the 
key is 64 bits long, then it will take the same supercomputer about 585,000 years to 
find the correct key among the 264 possible keys. If the key is 128 bits long, it will 
take 1025 years. The universe is only 1010 years old, so 1025 years is a long time. With 
a 2048-bit key, a million million-attempts-per-second computers working in paral-
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lel will spend 10597 years finding the key. By that time the universe will have long 
collapsed or expanded into nothingness. 

Before you rush to invent a cryptosystem with an 8-kilobyte key, remember the 
other side to the strength question: The algorithm must be so secure that there is no 
better way to break it than with a brute-force attack. This is not as easy as it might 
seem. Cryptography is a subtle art. Cryptosystems that look perfect are often 
extremely weak. Strong cryptosystems, with a couple of minor changes, can become 
weak. The warning to the amateur cryptographer is to have a healthy, almost para­
noid, suspicion of any new algorithm. It is best to trust algorithms that professional 
cryptographers have scrutinized for years without cracking them and to be suspi­
cious of algorithm designers' grandiose claims of security. 

Recall an important point from Section 1.1: The security of a cryptosystem 
should rest in the key, not in the details of the algorithm. Assume that any crypt­
analyst has access to all the details of your algorithm. Assume he has access to as 
much ciphertext as he wants and can mount an intensive ciphertext-only attack. 
Assume that he can mount a plaintext attack with as much data as he needs. Even 
assume that he can mount a chosen-plaintext attack. If your cryptosystem can 
remain secure, even in the face of all that knowledge, then you've got something. 

That warning aside, there is still plenty of room in cryptography to maneuver. In 
reality, this kind of security isn't really necessary in many situations. Most adver­
saries don't have the knowledge and computing resources of a major government, 
and even the ones who do probably aren't that interested in breaking your cryp­
tosystem. If you're plotting to overthrow a major government, stick with the tried 
and true algorithms in the back of the book. The rest of you, have fun. 

Time and Cost Estimates for Brute-Force Attack 
Remember that a brute-force attack is typically a known-plaintext attack; it 

requires a small amount of ciphertext and corresponding plaintext. If you assume 
that a brute-force attack is the most efficient attack possible against an algorithm­
a big assumption-then the key must be long enough to make the attack infeasible. 
How long is that? 

Two parameters determine the speed of a brute-force attack: the number of keys 
to be tested and the speed of each test. Most symmetric algorithms accept any fixed­
length bit pattern as the key. DES has a 56-bit key; it has 256 possible keys. Some 
algorithms discussed in this book have a 64-bit key; these have 264 possible keys. 
Others have a 128-bit key. 

The speed at which each possible key can be tested is also a factor, but a less 
important one. For the purposes of this analysis, I will assume that each different 
algorithm can be tested in the same amount of time. The reality may be that one 
algorithm may be tested two, three, or even ten times faster than another. But since 
we are looking for key lengths that are millions of times more difficult to crack than 
would be feasible, small differences due to test speed are irrelevant. 

Most of the debate in the cryptologic community about the efficiency of brute­
force attacks has centered on the DES algorithm. In 1977, Whitfield Diffie and Mar­
tin Hellman [497] postulated the existence of a special-purpose DES-cracking 
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machine. This machine consisted of a million chips, each capable of testing a mil­
lion keys per second. Such a machine could test 256 keys in 20 hours. If built to 
attack an algorithm with a 64-bit key, it could test all 264 keys in 214 days. 

A brute-force attack is tailor-made for parallel processors. Each processor can test 
a subset of the keyspace. The processors do not have to communicate among them­
selves; the only communication required at all is a single message signifying suc­
cess. There are no shared memory requirements. It is easy to design a machine with 
a million parallel processors, each working independent of the others. 

More recently, Michael Wiener decided to design a brute-force cracking machine 
[1597, 1598]. (He designed the machine for DES, but the analysis holds for most any 
algorithm.) He designed specialized chips, boards, and racks. He estimated prices. 
And he discovered that for $1 million, someone could build a machine that could 
crack a 56-bit DES key in an average of 3.5 hours (results guaranteed in 7 hours). And 
that the price/speed ratio is linear. Table 7.1 generalizes these numbers to a variety 
of key lengths. Remember Moore's Law: Computing power doubles approximately 
every 18 months. This means costs go down a factor of 10 every five years; what cost 
$1 million to build in 1995 will cost a mere $100,000 in the year 2000. Pipelined 
computers might do even better [724]. 

For 56-bit keys, these numbers are within the budgets of most large companies 
and many criminal organizations. The military budgets of most industrialized 
nations can afford to break 64-bit keys. Breaking an 80-bit key is still beyond the 
realm of possibility, but if current trends continue that will change in only 30 years. 

Of course, it is ludicrous to estimate computing power 35 years in the future. 
Breakthroughs in some science-fiction technology could make these numbers look 
like a joke. Conversely, physical limitations unknown at the present time could 
make them unrealistically optimistic. In cryptography it is wise to be pessimistic. 
Fielding an algorithm with an 80-bit key seems extremely short-sighted. Insist on at 
least 112-bit keys. 

Table 7.1 
Average Time Estimates for a Hardware Brute-Force Attack in 1995 

LENGTH OF KEY IN BITS 

Cost 40 56 64 80 112 128 

$100 K 2 seconds 35 hours 1 year 70,000 years 1014 years 1019 years 
$1 M .2 seconds 3.5 hours 37 days 7000 years 1013 years 1018 years 
$10M .02 seconds 21 minutes 4 days 700 years 1012 years 1017 years 
$100M 2 milliseconds 2 minutes 9 hours 70 years 1011 years 1016 years 
$1 G .2 milliseconds 13 seconds 1 hour 7 years 1010 years 1010 years 
$10 G .02 milliseconds 1 second 5.4 minutes 245 days 109 years 1014 years 
$100G 2 microseconds .1 second 32 seconds 24 days 108 years 1013 years 
$1 T .2 microseconds .01 second 3 seconds 2.4 days 107 years 1012 years 
$10 T .02 microseconds 1 millisecond .3 second 6 hours 106 years 1011 years 
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If an attacker wants to break a key badly enough, all he has to do is spend money. 
Consequently, it seems prudent to try to estimate the minimum "value" of a key: 
How much value can be trusted to a single key before it makes economic sense to 
try to break? To give an extreme example, if an encrypted message is worth $1.39, 
then it wouldn't make much financial sense to set a $IO-million cracker to the task 
of recovering the key. On the other hand, if the plaintext message is worth $100 mil­
lion, then decrypting that single message would justify the cost of building the 
cracker. Also, the value of some messages decreases rapidly with time. 

Software Crackers 
Without special-purpose hardware and massively parallel machines, brute-force 

attacks are significantly harder. A software attack is about a thousand times slower 
than a hardware attack. 

The real threat of a software-based brute-force attack is not that it is certain, but 
that it is "free." It costs nothing to set up a microcomputer to test possible keys 
whenever it is idle. If it finds the correct key-great. If it doesn't, then nothing is 
lost. It costs nothing to set up an entire microcomputer network to do that. A recent 
experiment with DES used the collective idle time of 40 workstations to test 234 

keys in a single day [603]. At this speed, it will take four million days to test all keys, 
but if enough people try attacks like this, then someone somewhere will get lucky. 
As was said in [603]: 

The crux of the software threat is sheer bad luck. Imagine a university computer 
network of 512 workstations, networked together. On some campuses this would 
be a medium-sized network. They could even be spread around the world, coordi­
nating their activity through electronic mail. Assume each workstation is capable 
of running [the algorithm] at a rate of 15,000 encryptions per second .... Allow-
ing for the overhead of testing and changing keys, this comes down to ... 8192 
tests per second per machine. To exhaust [a 56-bit] keyspace with this setup 
would take 545 years (assuming the network was dedicated to the task twenty­
four hours per day). Notice, however, that the same calculations give our hypo­
thetical student hackers one chance in 200,000 of cracking a key in one day. Over 
a long weekend their odds increase to one chance in sixty-six thousand. The faster 
their hardware, or the more machines involved, the better their chance becomes. 
These are not good odds for earning a living from horse racing, but they're not the 
stuff of good press releases either. They are much better odds than the Govern­
ment gives on its lotteries, for instance. "One-in-a-million"? "Couldn't happen 
again in a thousand years"? It is no longer possible to say such things honestly. Is 
this an acceptable ongoing risk? 

Using an algorithm with a 64-bit key instead of a 56-bit key makes this attack 256 
times more difficult. With a 40-bit key, the picture is far more bleak. A network of 
400 computers, each capable of performing 32,000 encryptions per second, can com­
plete a brute-force attack against a 40-bit key in a single day. (In 1992, the RC2 and 
RC4 algorithms were approved for export with a 40-bit key-see Section 13.8.) 

A 128-bit key makes a brute-force attack ridiculous even to contemplate. Indus­
try experts estimate that by 1996 there will be 200 million computers in use world-
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wide. This estimate includes everything from giant Cray mainframes to subnote­
books. If every one of those computers worked together on this brute-force attack, 
and each computer performed a million encryptions per second every second, it 
would still take a million times the age of the universe to recover the key. 

Neural Networks 
Neural nets aren't terribly useful for cryptanalysis, primarily because of the shape 

of the solution space. Neural nets work best with problems that have a continuity 
of solutions, some better than others. This allows a neural net to learn, proposing 
better and better solutions as it does. Breaking an algorithm provides for very little 
in the way of learning opportunities: You either recover the key or you don't. (At 
least this is true if the algorithm is any good.) Neural nets work well in structured 
environments where there is something to learn, but not in the high-entropy, seem­
ingly random world of cryptography. 

Viruses 
The greatest difficulty in getting millions of computers to work on a brute-force 

attack is convincing millions of computer owners to participate. You could ask 
politely, but that's time-consuming and they might say no. You could try breaking 
into their machines, but that's even more time-consuming and you might get 
arrested. You could also use a computer virus to spread the cracking program more 
efficiently over as many computers as possible. 

This is a particularly insidious idea, first presented in [1593]. The attacker writes 
and lets loose a computer virus. This virus doesn't reformat the hard drive or delete 
files; it works on a brute-force cryptanalysis problem whenever the computer is idle. 
Various studies have shown that microcomputers are idle between 70 percent and 90 
percent of the time, so the virus shouldn't have any trouble finding time to work on 
its task. If it is otherwise benign, it might even escape notice while it does its work. 

Eventually, one machine will stumble on the correct key. At this point there are 
two ways of proceeding. First, the virus could spawn a different virus. It wouldn't do 
anything but reproduce and delete any copies of the cracking virus it finds but 
would contain the information about the correct key. This new virus would simply 
propagate through the computer world until it lands on the computer of the person 
who wrote the original virus. 

A second, sneakier approach would be for the virus to display this message on the 
screen: 

There is a serious bug in this computer. 
Please call 1-800-123-4567 and read the 
following 64-bit number to the operator: 

xxxx xxxx xxxx xxxx 

There is a $100 reward for the first 
person to report this bug. 

How efficient is this attack? Assume the typical infected computer tries a thou­
sand keys per second. This rate is far less than the computer's maximum potential, 
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because we assume it will be doing other things occasionally. Also assume that the 
typical virus infects 10 million machines. This virus can break a 56-bit key in 83 
days and a 64-bit key in 58 years. You might have to bribe the antiviral software 
makers, but that's your problem. Any increase in computer speeds or the virus infec­
tion rate would, of course, make this attack more efficient. 

The Chinese Lottery 

The Chinese Lottery is an eclectic, but possible, suggestion for a massively paral­
lel cryptanalysis machine [1278]. Imagine that a brute-force, million-test-per-second 
cracking chip was built into every radio and television sold. Each chip is programmed 
to test a different set of keys automatically upon receiving a plaintext/ciphertext pair 
over the airwaves. Every time the Chinese government wants to break a key, it 
broadcasts the data. All the radios and televisions in the country start chugging away. 
Eventually, the correct key will appear on someone's display, somewhere in the 
country. The Chinese government pays a prize to that person; this makes sure that 
the result is reported promptly and properly, and also helps the sale of radios and tele­
visions with the cracking chips. 

If every man, woman, and child in China owns a radio or television, then the cor­
rect key to a 56-bit algorithm will appear in 61 seconds. If only 1 in 10 Chinese owns 
a radio or television-closer to reality-the correct key will appear in 10 minutes. 
The correct key for a 64-bit algorithm will appear in 4.3 hours-43 hours if only 1 in 
10 owns a radio or television. 

Some modifications are required to make this attack practical. First, it would be 
easier to have each chip try random keys instead of a unique set of keys. This would 
make the attack about 39 percent slower-not much in light of the numbers we're 
working with. Also, the Chinese Communist party would have to mandate that 
every person listen to or watch a certain show at a certain time, just to make sure 
that all of the radios and televisions are operating when the plaintext/ciphertext pair 
is broadcast. Finally, everyone would have to be instructed to call a Central-Party­
Whatever-It's-Called if a key ever shows up on their screen, and then to read off the 
string of numbers appearing there. 

Table 7.2 shows the effectiveness of the Chinese Lottery for different countries and 
different key lengths. China would clearly be in the best position to launch such an 
attack if they have to outfit every man, woman, and child with their own television 
or radio. The United States has fewer people but a lot more equipment per capita. 
The state of Wyoming could break a 56-bit key all by itself in less than a day. 

Biotechnology 

If biochips are possible, then it would be foolish not to use them as a distributed 
brute-force cryptanalysis tool. Consider a hypothetical animal, unfortunately called 
a "DESosaur" [1278]. It consists of biological cells capable of testing possible keys. 
The plaintext/ciphertext pair is broadcast to the cells via some optical channel 
(these cells are transparent, you see). Solutions are carried to the DESosaur's speech 
organ via special cells that travel through the animal's circulatory system. 

The typical dinosaur had about 1014 cells (excluding bacteria). If each of them can 
perform a million encryptions per second (granted, this is a big if), breaking a 56-bit 
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Table 7.2 
Brute-Force Cracking Estimates for Chinese Lottery 

Country Population # of Televisions/Radios 

China 1,190,431,000 257,000,000 
U.S. 260,714,000 739,000,000 
Iraq 19,890,000 4,730,000 
Israel 5,051,000 3,640,000 
Wyoming 470,000 1,330,000 
Winnemucca, NV 6,100 17,300 

(All data is from the 1995 World Almanac and Book of Facts.) 

TIME TO BREAK 

56-bit 

280 seconds 
97 seconds 
4.2 hours 
5.5 hours 
15 hours 
48 days 

64-bit 

20 hours 
6.9 hours 
44 days 
58 days 
160 days 
34 years 

key would take seven ten-thousandths of a second. Breaking a 64-bit key would take 
less than two tenths of a second. Breaking a 128-bit key would still take 1011 years, 
though. 

Another biological approach is to use genetically engineered cryptanalytic algae 
that are capable of performing brute-force attacks against cryptographic algorithms 
[1278]. These organisms would make it possible to construct a distributed machine 
with more processors because they could cover a larger area. The plaintext/cipher­
text pair could be broadcast by satellite. If an organism found the result, it could 
induce the nearby cells to change color to communicate the solution back to the 
satellite. 

Assume the typical algae cell is the size of a cube 10 microns on a side ( this is 
probably a large estimate), then 1015 of them can fill a cubic meter. Pump them into 
the ocean and cover 200 square miles (518 square kilometers) of water to a meter 
deep (you figure out how to do it-I'm just the idea man), and you'd have 1023 (over 
a hundred billion gallons) of them floating in the ocean. (For comparison, the Exxon 
Valdez spilled 10 million gallons of oil.) If each of them can try a million keys per 
second, they will recover the key for a 128-bit algorithm in just over 100 years. (The 
resulting algae bloom is your problem.) Breakthroughs in algae processing speed, 
algae diameter, or even the size puddle one could spread across the ocean, would 
reduce these numbers significantly. 

Don't even ask me about nanotechnology. 

Thermodynamic Limitations 
One of the consequences of the second law of thermodynamics is that a certain 

amount of energy is necessary to represent information. To record a single bit by 
changing the state of a system requires an amount of energy no less than kT, where 
Tis the absolute temperature of the system and k is the Boltzman constant. (Stick 
with mei the physics lesson is almost over.) 

Given that k = 1.38* 10-16 erg/°Kelvin, and that the ambient temperature of the 
universe is 3.2°K, an ideal computer running at 3.2°K would consume 4.4* 10-16 ergs 
every time it set or cleared a bit. To run a computer any colder than the cosmic 
background radiation would require extra energy to run a heat pump. 
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Now, the annual energy output of our sun is about 1.21 * 1041 ergs. This is enough 
to power about 2. 7 * 1056 single bit changes on our ideal computer; enough state 
changes to put a 187-bit counter through all its values. If we built a Dyson sphere 
around the sun and captured all of its energy for 32 years, without any loss, we could 
power a computer to count up to 2192. Of course, it wouldn't have the energy left 
over to perform any useful calculations with this counter. 

But that's just one star, and a measly one at that. A typical supernova releases 
something like 1051 ergs. (About a hundred times as much energy would be released 
in the form of neutrinos, but let them go for now.) If all of this energy could be chan­
neled into a single orgy of computation, a 219-bit counter could be cycled through 
all of its states. 

These numbers have nothing to do with the technology of the devices; they are 
the maximums that thermodynamics will allow. And they strongly imply that 
brute-force attacks against 256-bit keys will be infeasible until computers are built 
from something other than matter and occupy something other than space. 

7.2 PUBLIC-KEY KEY LENGTH 

One-way functions were discussed in Section 2.3. Multiplying two large primes is a 
one-way function; it's easy to multiply the numbers to get a product but hard to fac­
tor the product and recover the two large primes ( see Section 11.3). Public-key cryp­
tography uses this idea to make a trap-door one-way function. Actually, that's a lie; 
factoring is conjectured to be a hard problem (see Section 11.4). As far as anyone 
knows, it seems to be. Even if it is, no one can prove that hard problems are actually 
hard. Most everyone assumes that factoring is hard, but it has never been mathe­
matically proven one way or the other. 

This is worth dwelling on. It is easy to imagine that 50 years in the future we will 
all sit around, reminiscing about the good old days when people used to think fac­
toring was hard, cryptography was based on factoring, and companies actually made 
money from this stuff. It is easy to imagine that future developments in number the­
ory will make factoring easier or that developments in complexity theory will make 
factoring trivial. There's no reason to believe this will happen-and most people 
who know enough to have an opinion will tell you that it is unlikely-but there's 
also no reason to believe it won't. 

In any case, today's dominant public-key encryption algorithms are based on the 
difficulty of factoring large numbers that are the product of two large primes. (Other 
algorithms are based on something called the Discrete Logarithm Problem, but for 
the moment assume the same discussion applies.) These algorithms are also sus­
ceptible to a brute-force attack, but of a different type. Breaking these algorithms 
does not involve trying every possible key; breaking these algorithms involves try­
ing to factor the large number (or taking discrete logarithms in a very large finite 
field-a similar problem). If the number is too small, you have no security. If the 
number is large enough, you have security against all the computing power in the 
world working from now until the sun goes nova-given today's understanding of 
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the mathematics. Section 11.3 discusses factoring in more mathematical detail; 
here I will limit the discussion to how long it takes to factor numbers of various 
lengths. 

Factoring large numbers is hard. Unfortunately for algorithm designers, it is get­
ting easier. Even worse, it is getting easier faster than mathematicians expected. In 
1976 Richard Guy wrote: "I shall be surprised if anyone regularly factors numbers of 
size 1080 without special form during the present century" [680]. In 1977 Ron Rivest 
said that factoring a 125-digit number would take 40 quadrillion years [599]. In 1994 
a 129-digit number was factored [66]. If there is any lesson in all this, it is that mak­
ing predictions is foolish. 

Table 7.3 shows factoring records over the past dozen years. The fastest factoring 
algorithm during the time was the quadratic sieve (see Section 11.3). 

These numbers are pretty frightening. Today it is not uncommon to see 512-bit 
numbers used in operational systems. Factoring them, and thereby completely com­
promising their security, is well in the range of possibility: A weekend-long worm 
on the Internet could do it. 

Computing power is generally measured in mips-years: a one-million-instruction­
per-second (mips) computer running for one year, or about 3* 1013 instructions. By 
convention, a 1-mips machine is equivalent to the DEC VAX 11/780. Hence, a mips­
year is a VAX 11/780 running for a year, or the equivalent. (A 100 MHz Pentium is 
about a 50 mips machine; a 1800-node Intel Paragon is about 50,000.) 

The 1983 factorization of a 71-digit number required 0.1 mips-years; the 1994 fac­
torization of a 129-digit number required 5000. This dramatic increase in comput­
ing power resulted largely from the introduction of distributed computing, using the 
idle time on a network of wm::kstations. This trend was started by Bob Silverman 
and fully developed by Arjen Lenstra and Mark Manasse. The 1983 factorization 
used 9.5 CPU hours on a single Cray X-MP; the 1994 factorization took 5000 mips­
years and used the idle time on 1600 computers around the world for about eight 
months. Modern factoring methods lend themselves to this kind of distributed 
implementation. 

The picture gets even worse. A new factoring algorithm has taken over from the 
quadratic sieve: the general number field sieve. In 1989 mathematicians would have 

Year 

1983 
1985 
1988 
1989 
1993 
1994 

Table 7.3 
Factoring Using the Quadratic Sieve 

# of decimal How many times harder to 
digits factored factor a 512-bit number 

71 >20 million 
80 >2 million 
90 250,000 
100 30,000 
120 500 
129 100 
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told you that the general number field sieve would never be practical. In 1992 they 
would have told you that it was practical, but only faster than the quadratic sieve for 
numbers greater than 130 to 150 digits or so. Today it is known to be faster than the 
quadratic sieve for numbers well below 116 digits [472,635]. The general number 
field sieve can factor a 512-bit number over 10 times faster than the quadratic sieve. 
The algorithm would require less than a year to run on an 1800-node Intel Paragon. 
Table 7.4 gives the number of mips-years required to factor numbers of different 
sizes, given current implementations of the general number field sieve [1190]. 

And the general number field sieve is still getting faster. Mathematicians keep 
coming up with new tricks, new optimizations, new techniques. There's no reason to 
think this trend won't continue. A related algorithm, the special number field sieve, 
can already factor numbers of a certain specialized form-numbers not generally 
used for cryptography-much faster than the general number field sieve can factor 
general numbers of the same size. It is not unreasonable to assume that the general 
number field sieve can be optimized to run this fast [1190]; it is possible that the NSA 
already knows how to do this. Table 7.5 gives the number of mips-years required for 
the special number field sieve to factor numbers of different lengths [ 1190]. 

At a European Institute for System Security workshop in 1991, the participants 
agreed that a 1024-bit modulus should be sufficient for long-term secrets through 
2002 [150]. However, they warned: "Although the participants of this workshop feel 
best qualified in their respective areas, this statement [with respect to lasting secu­
rity] should be taken with caution." This is good advice. 

The wise cryptographer is ultra-conservative when choosing public-key key 
lengths. To determine how long a key you need requires you to look at both the 
intended security and lifetime of the key, and the current state-of-the-art of factor­
ing. Today you need a 1024-bit number to get the level of security you got from a 
512-bit number in the early 1980s. If you want your keys to remain secure for 20 
years, 1024 bits is likely too short. 

Even if your particular secrets aren't worth the effort required to factor your mod­
ulus, you may be at risk. Imagine an automatic banking system that uses RSA for 
security. Mallory can stand up in court and say: "Did you read in the newspaper in 
1994 that RSA-129 was broken, and that 512-bit numbers can be factored by any 

Table 7.4 
Factoring Using the General 

Number Field Sieve 
# of bits 

512 
768 
1024 
1280 
1536 
2048 

Mips-years required to factor 

30,000 
2* 108 

3 * 1011 

1 * 1014 

3 * 1016 

3* 1020 
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Table 7.5 
Factoring Using the Special 

Number Field Sieve 

# of bits Mips-years required to factor 

512 
768 
1024 
1280 
1536 
2048 

<200 
100,000 
3* 107 

3* 109 

2* 1011 

4* 1014 

organization willing to spend a few million dollars and wait a few months? My bank 
uses 512-bit numbers for security and, by the way, I didn't make these seven with­
drawals." Even if Mallory is lying, the judge will probably put the onus on the bank 
to prove it. 

Why not use 10,000-bit keys? You can, but remember that you pay a price in com­
putation time as your keys get longer. You want a key long enough to be secure, but 
short enough to be computationally usable. 

Earlier in this section I called making predictions foolish. Now I am about to 
make some. Table 7.6 gives my recommendations for public-key lengths, depending 
on how long you require the key to be secure. There are three key lengths for each 
year, one secure against an individual, one secure against a major corporation, and 
the third secure against a major government. 

Here are some assumptions from [66]: 

We believe that we could acquire 100 thousand machines without superhuman or 
unethical efforts. That is, we would not set free an Internet worm or virus to find 
resources for us. Many organizations have several thousand machines each on the 
net. Making use of their facilities would require skillful diplomacy, but should 
not be impossible. Assuming the 5 mips average power, and one year elapsed 
time, it is not too unreasonable to embark on a project which would require half 
a million mips years. 

The project to factor the 129-digit number harnessed an estimated 0.03 percent of 
the total computing power of the Internet [ 1190], and they didn't even try very hard. 
It isn't unreasonable to assume that a well-publicized project can harness 2 percent 
of the world's computing power for a year. 

Assume a dedicated cryptanalyst can get his hands on 10,000 mips-years, a large 
corporation can get 107 mips-years, and that a large government can get 109 mips­
years. Also assume that computing power will increase by a factor of 10 every five 
years. And finally, assume that advances in factoring mathematics allow us to fac­
tor general numbers at the speeds of the special number field sieve. (This isn't pos­
sible yet, but the breakthrough could occur at any time.) Table 7.6 recommends 
different key lengths for security during different years. 
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Table 7.6 
Recommended Public-key Key Lengths (in bits) 

Year 

1995 
2000 
2005 
2010 
2015 

vs. Individual 

768 
1024 
1280 
1280 
1536 

vs. Corporation 

1280 
1280 
1536 
1536 
2048 

vs. Government 

1536 
1536 
2048 
2048 
2048 

Remember to take the value of the key into account. Public keys are often used to 
secure things of great value for a long time: the bank's master key for a digital cash 
system, the key the government uses to certify its passports, or a notary public's dig­
ital signature key. It probably isn't worth the effort to spend months of computing 
time to break an individual's private key, but if you can print your own money with 
a broken key the idea becomes more attractive. A 1024-bit key is long enough to 
sign something that will be verified within the week, or month, or even a few years. 
But you don't want to stand up in court 20 years from now with a digitally signed 
document and have the opposition demonstrate how to forge documents with the 
same signature. 

Making predictions beyond the near future is even more foolish. Who knows what 
kind of advances in computing, networking, and mathematics are going to happen 
by 2020? However, if you look at the broad picture, in every decade we can factor 
numbers twice as long as in the previous decade. This leads to Table 7.7. 

On the other hand, factoring technology may reach its Omega point long before 
2045. Twenty years from now, we may be able to factor anything. I think that is 
unlikely, though. 

Not everyone will agree with my recommendations. The NSA has mandated 512-
bit to 1024-bit keys for their Digital Signature Standard (see Section 20.1)-far less 
than I recommend for long-term security. Pretty Good Privacy (see Section 24.12) 
has a maximum RSA key length of 2047 bits. Arjen Lenstra, the world's most sue-

Table 7 .7 
Long-range 

Factoring Predictions 

Year Key Length (in bits) 

1995 1024 
2005 2048 
2015 4096 
2025 8192 
2035 16,384 
2045 32,768 



_______________ 7._2_P_u_b_l_ic_-_K_ey_K_e_y_L_e_n_g_th ______ 7-,.,,,~ 

cessful factorer, refuses to make predictions past 10 years [949]. Table 7.8 gives Ron 
Rivest's key-length recommendations, originally made in 1990, which I consider 
much too optimistic [1323]. While his analysis looks fine on paper, recent history 
illustrates that surprises regularly happen. It makes sense to choose your keys to be 
resilient against future surprises. 

Low estimates assume a budget of $25,000, the quadratic sieve algorithm, and a 
technology advance of 20 percent per year. Average estimates assume a budget of 
$25 million, the general number field sieve algorithm, and a technology advance of 
33 percent per year. High estimates assume a budget of $25 billion, a general 
quadratic sieve algorithm running at the speed of the special number field sieve, and 
a technology advance of 45 percent per year. 

There is always the possibility that an advance in factoring will surprise me as 
well, but I factored that into my calculations. But why trust me? I just proved my 
own foolishness by making predictions. 

DNA Computing 
Now it gets weird. In 1994 Leonard M. Adleman actually demonstrated a method 

for solving an NP-complete problem (see Section 11.2) in a biochemistry laboratory, 
using DNA molecules to represent guesses at solutions to the problem [17]. (That's 
"solutions" meaning "answers," not meaning "liquids containing solutes." Termi­
nology in this field is going to be awkward.) The problem that Adleman solved was 
an instance of the Directed Hamiltonian Path problem: Given a map of cities con­
nected by one-way roads, find a path from City A to City Z that passes exactly once 
through all other cities on the map. Each city was represented by a different random 
20-base string of DNA; with conventional molecular biology techniques, Adleman 
synthesized 50 picomols (30 million million molecules) of the DNA string repre­
senting each city. Each road was also represented by a 20-base DNA string, but these 
strings were not chosen randomly: They were cleverly chosen so that the "begin­
ning" end of the DNA string representing the road from City P to City K ("Road 
PK") would tend to stick to the DNA string representing City P, and the end of Road 
PK would tend to stick to City K. 

Table 7.8 
Rivest's Optimistic Key-length 

Recommendations (in bits) 

Year 

1990 
1995 
2000 
2005 
2010 
2015 
2020 

Low Average High 

398 515 1289 
405 542 1399 
422 572 1512 
439 602 1628 
455 631 1754 
472 661 1884 
489 677 2017 
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Adleman synthesized 50 picomols of the DNA representing each road, mixed 
them all together with the DNA representing all the cities, and added a ligase 
enzyme, which links together the ends of DNA molecules. The clever relationship 
between the road DNA strings and the city DNA strings causes the ligase to link the 
road DNA strings together in a legal fashion. That is, the "exit" end of the road from 
P to K will always be linked to the "entrance" end of some road that originates at 
City K, never to the "exit" end of any road and never to the "entrance" end of a road 
that originates at some city other than K. After a carefully limited reaction time, the 
ligase has built a large number of DNA strings representing legal but otherwise ran­
dom multiroad paths within the map. 

From this soup of random paths, Adleman can find the tiniest trace-perhaps 
even a single molecule-of the DNA that represents the answer to the problem. 
Using common techniques of molecular biology, he discards all the DNA strings 
representing paths that are too long or too short. (The number of roads in the desired 
path must equal the number of cities minus one.) Next he discards all the DNA 
strings that do not pass through City A, then those that miss City B, and so forth. If 
any DNA survives this screening, it is examined to find the sequence of roads that 
it represents: This is the solution to the directed Hamiltonian path problem. 

By definition, an instance of any NP-complete problem can be transformed, in 
polynomial time, into an instance of any other NP-complete problem, and therefore 
into an instance of the directed Hamiltonian path problem. Since the 1970s, cryptol­
ogists have been trying to use NP-complete problems for public-key cryptography. 

While the instance that Adleman solved was very modest (seven cities on his 
map, a problem that can be solved by inspection in a few minutes), the technique is 
in its infancy and has no forbidding obstacles keeping it from being extended to 
larger problems. Thus, arguments about the security of cryptographic protocols 
based on NP-complete problems, arguments that heretofore have begun, "Suppose 
an adversary has a million processors, each of which can perform a million tests 
each second," may soon have to be replaced with, "Suppose an adversary has a thou­
sand fermentation vats, each 20,000 liters in capacity." 

Quantum Computing 
Now, it gets even weirder. The underlying principle behind quantum computing 

involves Einstein's wave-particle duality. A photon can simultaneously exist in a 
large number of states. A classic example is that a photon behaves like a wave when 
it encounters a partially silvered mirror; it is both reflected and transmitted, just as 
an ocean wave striking a seawall with a small opening in it will both reflect off the 
wall and pass through it. However, when a photon is measured, it behaves like a par­
ticle and only a single state can be detected. 

In [1443], Peter Shor outlines a design for a factoring machine based on quantum 
mechanical principles. Unlike a classical computer, which can be thought of as hav­
ing a single, fixed state at a given time, a quantum computer has an internal wave 
function, which is a superposition of a combination of the possible basis states. 
Computations transform the wave function, altering the entire set of states in a sin­
gle operation. In this way, a quantum computer is an improvement over classical 
finite-state automata: It uses quantum properties to allow it to factor in polynomial 
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time, theoretically allowing one to break cryptosystems based on factoring or the 
discrete logarithm problem. 

The consensus is that quantum computers are compatible with the fundamental 
laws of quantum mechanics. However, it is unlikely that a quantum factoring 
machine will be built in the foreseeable future ... if ever. One major obstacle is the 
problem of decoherence, which causes superimposed waveforms to lose their dis­
tinctness and makes the computer fail. Decoherence will make a quantum com­
puter running at 1 ° Kelvin fail after just one nanosecond. Additionally, an enormous 
number of gates would be required to build a quantum factoring device; this may 
render the machine impossible to build. Shor's design requires a complete modular 
exponentiator. No internal clock can be used, so millions or possibly billions of 
individual gates would be required to factor cryptographically significant numbers. 
If n quantum gates have some minimum probability p of failure, the average num­
ber of trials required per successful run is (1/(1 - p))11 • The number of gates required 
presumably grows polynomially with the length (in bits) of the number, so the num­
ber of trials required would be superexponential with the length of the numbers 
used-worse than factoring by trial division! 

So, while quantum factorization is an area of great academic excitement, it is 
extremely unlikely that it will be practical in the foreseeable future. But don't say I 
didn't warn you. 

7 .3 COMPARING SYMMETRIC AND PUBLIC-KEY KEY LENGTH 

A system is going to be attacked at its weakest point. If you are designing a system 
that uses both symmetric and public-key cryptography, the key lengths for each 
type of cryptography should be chosen so that it is equally difficult to attack the sys­
tem via each mechanism. It makes no sense to use a symmetric algorithm with a 
128-bit key together with a public-key algorithm with a 386-bit key, just as it makes 
no sense to use a symmetric algorithm with a 56-bit key together with a public-key 
algorithm with a 1024-bit key. 

Table 7.9 lists public-key modulus lengths whose factoring difficulty roughly 
equals the difficulty of a brute-force attack for popular symmetric key lengths. 

This table says that if you are concerned enough about security to choose a sym­
metric algorithm with a 112-bit key, you should choose a modulus length for your 
public-key algorithm of about 1792 bits. In general, though, you should choose a 
public-key length that is more secure than your symmetric-key length. Public keys 
generally stay around longer, and are used to protect more information. 

7 .4 BIRTHDAY ATTACKS AGAINST ONE-WAY HASH 

FUNCTIONS 

There are two brute-force attacks against a one-way hash function. The first is the 
most obvious: Given the hash of message, H(M), an adversary would like to be able 
to create another document, M', such that H(M) = H(M'). The second attack is more 
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Table 7.9 
Symmetric and Public-key Key Lengths 

with Similar Resistances to Brute-Force Attacks 

Symmetric Public-key 
Key Length Key Length 

56 bits 384 bits 
64 bits 512 bits 
80 bits 768 bits 
112 bits 1792 bits 
128 bits 2304 bits 

subtle: An adversary would like to find two random messages, M, and M', such that 
H(M) = H(M'). This is called a collision, and it is a far easier attack than the first one. 

The birthday paradox is a standard statistics problem. How many people must be 
in a room for the chance to be greater than even that one of them shares your birth­
day? The answer is 253. Now, how many people must there be for the chance to be 
greater than even that at least two of them will share the same birthday? The answer 
is surprisingly low: 23. With only 23 people in the room, there are still 253 different 
pairs of people in the room. 

Finding someone with a specific birthday is analogous to the first attack; finding 
two people with the same random birthday is analogous to the second attack. The 
second attack is commonly known as a birthday attack. 

Assume that a one-way hash function is secure and the best way to attack it is by 
using brute force. It produces an m-bit output. Finding a message that hashes to a 
given hash value would require hashing 2m random messages. Finding two messages 
that hash to the same value would only require hashing 2m12 random messages. A 
machine that hashes a million messages per second would take 600,000 years to find 
a second message that matched a given 64-bit hash. The same machine could find a 
pair of messages that hashed to the same value in about an hour. 

This means that if you are worried about a birthday attack, you should choose a 
hash-value twice as long as you otherwise might think you need. For example, if you 
want to drop the odds of someone breaking your system to less than 1 in 280, use a 
160-bit one-way hash function. 

7 .5 How LONG SHOULD A KEY BE? 

There's no single answer to this question; it depends on the situation. To determine 
how much security you need, you must ask yourself some questions. How much is 
your data worth? How long does it need to be secure? What are your adversaries' 
resources? 

A customer list might be worth $1000. Financial data for an acrimonious divorce 
case might be worth $10,000. Advertising and marketing data for a large corporation 
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might be worth $1 million. The master keys for a digital cash system might be 
worth billions. 

In the world of commodities trading, secrets only need to be kept for minutes. In 
the newspaper business, today's secrets are tomorrow's headlines. Product develop­
ment information might need to remain secret for a year or two. U.S. Census data 
are required by law to remain secret for 100 years. 

The guest list for your sister's surprise birthday party is only interesting to your 
nosy relatives. Corporate trade secrets are interesting to rival companies. Military 
secrets are interesting to rival militaries. 

You can even specify security requirements in these terms. For example: 

The key length must be such that there is a probability of no more than 1 in 232 

that an attacker with $100 million to spend could break the system within one 
year, even assuming technology advances at a rate of 30 percent per annum over 
the period. 

Table 7.10, taken partially from [150], estimates the secrecy requirements for sev­
eral kinds of information: 

Future computing power is harder to estimate, but here is a reasonable rule of 
thumb: The efficiency of computing equipment divided by price doubles every 18 
months and increases by a factor of 10 every five years. Thus, in 50 years the 
fastest computers will be 10 billion times faster than today's! Remember, too, that 
these numbers only relate to general-purpose computers; who knows what kind of 
specialized cryptosystem-breaking equipment will be developed in the next 50 
years? 

Assuming that a cryptographic algorithm will be in use for 30 years, you can get 
some idea how secure it must be. An algorithm designed today probably will not see 
general use until 2000, and will still be used in 2025 to encrypt messages that must 
remain secret until 2075 or later. 

Table 7.10 
Security Requirements for Different Information 

Type of Traffic 

Tactical military information 
Product announcements, mergers, interest rates 
Long-term business plans 
Trade secrets (e.g., recipe for Coca-Cola) 
H-bomb secrets 
Identities of spies 
Personal affairs 
Diplomatic embarrassments 
U.S. census data 

Lifetime 

minutes/hours 
days/weeks 

years 
decades 

>40 years 
>50 years 
>50 years 
>65 years 
100 years 

Minimum 
Key Length 

56-64 bits 
64 bits 
64 bits 
112 bits 
128 bits 
128 bits 
128 bits 

at least 128 bits 
at least 128 bits 
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7.6 CAVEAT EMPTOR 

This entire chapter is a whole lot of nonsense. The very notion of predicting com­
puting power 10 years in the future, let alone 50 years is absolutely ridiculous. 
These calculations are meant to be a guide, nothing more. If the past is any guide, 
the future will be vastly different from anything we can predict. 

Be conservative. If your keys are longer than you imagine necessary, then fewer 
technological surprises can harm you. 
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CHAPTER 8 

Key Management 

Alice and Bob have a secure communications system. They play mental poker, 
simultaneously sign contracts, even exchange digital cash. Their protocols are 
secure. Their algorithms are top-notch. Unfortunately, they buy their keys from 
Eve's "Keys-R-Us," whose slogan is "You can trust us: Security is the middle name 
of someone our ex-mother-in-law's travel agent met at the Kwik-E-Mart." 

Eve doesn't have to break the algorithms. She doesn't have to rely on subtle flaws 
in the protocols. She can use their keys to read all of Alice's and Bob's message traf­
fic without lifting a cryptanalytic finger. 

In the real world, key management is the hardest part of cryptography. Designing 
secure cryptographic algorithms and protocols isn't easy, but you can rely on a large 
body of academic research. Keeping the keys secret is much harder. 

Cryptanalysts often attack both symmetric and public-key cryptosystems 
through their key management. Why should Eve bother going through all the trou­
ble of trying to break the cryptographic algorithm if she can recover the key because 
of sloppy key storage procedures? Why should she spend $10 million building a 
cryptanalysis machine if she can spend $1000 bribing a clerk? Spending a million 
dollars to buy a well-placed communications clerk in a diplomatic embassy can be 
a bargain. The Walkers sold U.S. Navy encryption keys to the Soviets for years. The 
CIA's director of counterintelligence went for less than $2 million, wife included. 
That's far cheaper than building massive cracking machines and hiring brilliant 
cryptanalysts. Eve can steal the keys. She can arrest or abduct someone who knows 
the keys. She can seduce someone and get the keys that way. (The Marines who 
guarded the U.S. Embassy in Moscow were not immune to that attack.) It's a whole 
lot easier to find flaws in people than it is to find them in cryptosystems. 

Alice and Bob must protect their key to the same degree as all the data it encrypts. 
If a key isn't changed regularly, this can be an enormous amount of data. Unfortu­
nately, many commercial products simply proclaim "We use DES" and forget about 
everything else. The results are not very impressive. 
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For example, the DiskLock program for Macintosh (version 2.1 ), sold at most soft­
ware stores, claims the security of DES encryption. It encrypts files using DES. Its 
implementation of the DES algorithm is correct. However, DiskLock stores the DES 
key with the encrypted file. If you know where to look for the key, and want to read 
a file encrypted with DiskLock's DES, recover the key from the encrypted file and 
then decrypt the file. It doesn't matter that this program uses DES encryption-the 
implementation is completely insecure. 

Further information on key management can be found in [457,98,1273,1225, 
775,357]. The following sections discuss some of the issues and solutions. 

8.1 GENERATING KEYS 

The security of an algorithm rests in the key. If you're using a cryptographically 
weak process to generate keys, then your whole system is weak. Eve need not 
cryptanalyze your encryption algorithm; she can cryptanalyze your key generation 
algorithm. 

Reduced Keyspaces 

DES has a 56-bit key. Implemented properly, any 56-bit string can be the key; 
there are 256 (1016) possible keys. Norton Discreet for MS-DOS (versions 8.0 and ear­
lier) only allows ASCII keys, forcing the high-order bit of each byte to be zero. The 
program also converts lowercase letters to uppercase (so the fifth bit of each byte is 
always the opposite of the sixth bit) and ignores the low-order bit of each byte, 
resulting in only 240 possible keys. These poor key generation procedures have made 
its DES ten thousand times easier to break than a proper implementation. 

Table 8.1 gives the number of possible keys with various constraints on the input 
strings. Table 8.2 gives the time required for an exhaustive search through all of 
those keys, given a million attempts per second. Remember, there is very little time 
differential between an exhaustive search for 8-byte keys and an exhaustive search 
of 4-, 5-, 6-, 7-, and 8-byte keys. 

All specialized brute-force hardware and parallel implementations will work here. 
Testing a million keys per second (either with one machine or with multiple 
machines in parallel), it is feasible to crack lowercase-letter and lowercase-letter-

Table 8.1 
Number of Possible Keys of Various Keyspaces 

Lowercase letters (26): 
Lowercase letters and digits (36): 
Alphanumeric characters (62): 
Printable characters (95 ): 
ASCII characters (128): 
8-bit ASCII characters (256): 

4-Byte 5-Byte 6-Byte 7-Byte 

460,000 1.2• 107 3.1 * 108 8.0* 109 

1,700,000 6.0 * 107 2.2 * 109 7 .8 * 1010 

l.5•10 7 9.2•10 8 5.7•10 10 3.5•10 12 

8.1 * 107 

2.7• 108 

4.3* 109 

7.7* 109 

3.4• 1010 

l.1•1012 

7.4.1011 
4.4• 1012 

2.8• 1014 

7.0* lQLi 

5.6* 1014 

7.2* 1016 

8-Byte 

2.1 * 1011 

2.8* 1012 

2.2* 1014 

6.6* 1015 

7.2* 1016 
1.8 * 1019 



__________________ 8_._l_G_en_e_r_a_t1_·n_g_K_e_y_s ________ 7,,,,.~ 

Table 8.2 
Exhaustive Search of Various Keyspaces (assume one million attempts per second) 

4-Byte 5-Byte 6-Byte 7-Byte 8-Byte 

Lowercase letters (26): .5 seconds 12 seconds 5 minutes 2.2 hours 2.4 days 
Lowercase letters and digits (36): 1.7 seconds 1 minute 36 minutes 22 hours 33 days 
Alphanumeric characters (62): 15 seconds 15 minutes 16 hours 41 days 6.9 years 
Printable characters (95): 1.4 minutes 2.1 hours 8.5 days 2.2 years 210 years 
ASCII characters ( 128): 4.5 minutes 9.5 hours 51 days 18 years 2300 years 
8-bit ASCII characters (256): 1.2 hours 13 days 8.9 years 2300 years 580,000 years 

and-number keys up to 8 bytes long, alphanumeric-character keys up to 7 bytes 
long, printable character and ASCII-character keys up to 6 bytes long, and 8-bit­
ASCII-character keys up to 5 bytes long. 

And remember, computing power doubles every 18 months. If you expect your keys 
to stand up against brute-force attacks for 10 years, you'd better plan accordingly. 

Poor Key Choices 
When people choose their own keys, they generally choose poor ones. They're far 

more likely to choose "Barney" than "*9 (hH/A." This is not always due to poor 
security practices; "Barney" is easier to remember than "*9 (hH/A." The world's 
most secure algorithm won't help much if the users habitually choose their spouse's 
names for keys or write their keys on little pieces of paper in their wallets. A smart 
brute-force attack doesn't try all possible keys in numerical order; it tries the obvi­
ous keys first. 

This is called a dictionary attack, because the attacker uses a dictionary of com­
mon keys. Daniel Klein was able to crack 40 percent of the passwords on the aver­
age computer using this system [847,848]. No, he didn't try one password after 
another, trying to login. He copied the encrypted password file and mounted the 
attack offline. Here's what he tried: 

1. The user's name, initials, account name, and other relevant personal infor­
mation as a possible password. All in all, up to 130 different passwords 
were tried based on this information. For an account name klone with 
a user named "Daniel V. Klein," some of the passwords that would be 
tried were: klone, klone0, klonel, klonel23, dvk, dvkdvk, dklein, DKlein 
leinad, nielk, dvklein, danielk, DvkkvD, DANIEL-KLEIN, (klone), KleinD, 
and so on. 

2. Words from various databases. These included lists of men's and women's 
names (some 16,000 in all); places (including variations so that "spain," 
"spanish," and "spaniard" would all be considered); names of famous 
people; cartoons and cartoon characters; titles, characters, and locations 
from films and science fiction stories; mythical creatures (garnered from 
Bullfinch's Mythology and dictionaries of mythical beasts); sports (includ-
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ing team names, nicknames, and specialized terms); numbers (both as 
numerals-"2001," and written out-"twelve"); strings of letters and num­
bers ("a," "aa," "aaa," "aaaa," etc.); Chinese syllables (from the Pinyin 
Romanization of Chinese, an international standard system of writing Chi­
nese on an English keyboard); the King James Bible; biological terms; collo­
quial and vulgar phrases (such as "fuckyou," "ibmsux," and "deadhead"); 
keyboard patterns (such as "qwerty," "asdf," and "zxcvbn"); abbreviations 
(such as "roygbiv"-the colors in the rainbow, and "ooottafagvah"-a 
mnemonic for remembering the 12 cranial nerves); machine names 
(acquired from /etc/hosts); characters, plays, and locations from Shake­
speare; common Yiddish words; the names of asteroids; and a collection of 
words from various technical papers Klein previously published. All told, 
more than 60,000 separate words were considered per user (with any inter­
and intra-dictionary duplicates being discarded). 

3. Variations on the words from step 2. This included making the first letter 
uppercase or a control character, making the entire word uppercase, revers­
ing the word (with and without the aforementioned capitalization), chang­
ing the letter 'o' to the digit '0' (so that the word "scholar" would also be 
checked as "scholar"), changing the letter 'l' to the digit 'l' (so that the 
word "scholar" would also be checked as "scholar"), and performing sim­
ilar manipulation to change the letter 'z' into the digit '2', and the letter's' 
into the digit '5'. Another test was to make the word into a plural (irre­
spective of whether the word was actually a noun), with enough intelli­
gence built in so that "dress" became "dresses," "house" became 
"houses," and "daisy" became "daisies." Klein did not consider plural­
ization rules exclusively, though, so that "datum" forgivably became 
"datums" (not "data"), while "sphynx" became "sphynxs" (and not 
"sphynges"). Similarly, the suffixes "-ed," "-er," and "-ing" were added to 
transform words like "phase" into "phased," "phaser," and "phasing." 
These additional tests added another 1,000,000 words to the list of possible 
passwords that were tested for each user. 

4. Various capitalization variations on the words from step 2 that were not 
considered in step 3. This included all single-letter capitalization varia­
tions (so that "michael" would also be checked as "mlchael," "miChael," 
"micHael," "michAel," etc.), double-letter capitalization variations 
("Michael," "MiChael," "MicHael," ... , "mIChael," "mlcHael," etc.), 
triple-letter variations, etc. The single-letter variations added roughly 
another 400,000 words to be checked per user, while the double-letter vari­
ations added another 1,500,000 words. Three-letter variations would have 
added at least another 3,000,000 words per user had there been enough 
time to complete the tests. Tests of four-, five-, and six-letter variations 
were deemed to be impracticable without much more computational 
horsepower to carry them out. 

5. Foreign language words on foreign users. The specific test that was per­
formed was to try Chinese language passwords on users with Chinese 
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names. The Pinyin Romanization of Chinese syllables was used, combin­
ing syllables together into one-, two-, and three-syllable words. Because no 
tests were done to determine whether the words actually made sense, an 
exhaustive search was initiated. Since there are 298 Chinese syllables in 
the Pinyin system, there are 158,404 two-syllable words, and slightly more 
than 16,000,000 three-syllable words. A similar mode of attack could as 
easily be used with English, using rules for building pronounceable non­
sense words. 

6. Word pairs. The magnitude of an exhaustive test of this nature is stagger­
ing. To simplify the test, only words of three or four characters in length 
from /usr/dict/words were used. Even so, the number of word pairs is 
about ten million. 

A dictionary attack is much more powerful when it is used against a file of keys and 
not a single key. A single user may be smart enough to choose good keys. If a thousand 
people each choose their own key as a password to a computer system, the odds are 
excellent that at least one person will choose a key in the attacker's dictionary. 

Random Keys 
Good keys are random-bit strings generated by some automatic process. If the key 

is 64 bits long, every possible 64-bit key must be equally likely. Generate the key 
bits from either a reliably random source (see Section 17.14) or a cryptographically 
secure pseudo-random-bit generator (see Chapters 16 and 17.) If these automatic 
processes are unavailable, flip a coin or roll a die. 

This is important, but don't get too caught up in arguing about whether random 
noise from audio sources is more random than random noise from radioactive decay. 
None of these random-noise sources will be perfect, but they will probably be good 
enough. It is important to use a good random-number generator for key generation, 
but it is far more important to use good encryption algorithms and key management 
procedures. If you are worried about the randomness of your keys, use the key­
crunching technique described below. 

Some encryption algorithms have weak keys: specific keys that are less secure 
than the other keys. I advise testing for these weak keys and generating a new one if 
you discover one. DES has only 16 weak keys out of 256, so the odds of generating 
any of these keys are incredibly small. It has been argued that a cryptanalyst would 
have no idea that a weak key is being used and therefore gains no advantage from 
their accidental use. It has also been argued that not using weak keys gives a crypt­
analyst information. However, testing for the few weak keys is so easy that it seems 
imprudent not to do so. 

Generating keys for public-key cryptography systems is harder, because often the 
keys must have certain mathematical properties (they may have to be prime, be a 
quadratic residue, etc.). Techniques for generating large random prime numbers are 
discussed in Section 11.5. The important thing to remember from a key manage­
ment point of view is that the random seeds for those generators must be just that: 
random. 
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Generating a random key isn't always possible. Sometimes you need to remember 
your key. (See how long it takes you to remember 2Se8 56£2 e8ba c820). If you have 
to generate an easy-to-remember key, make it obscure. The ideal would be some­
thing easy to remember, but difficult to guess. Here are some suggestions: 

Word pairs separated by a punctuation character, for example "tur­
tle *moose" or "zorch!splat" 

Strings of letters that are an acronym of a longer phrase; for 
example, "Mein Luftkissenfahrzeug ist voller Aale!" generates the key 
"MLivA!" 

Pass Phrases 
A better solution is to use an entire phrase instead of a word, and to convert that 

phrase into a key. These phrases are called pass phrases. A technique called key 
crunching converts the easy-to-remember phrases into random keys. Use a one-way 
hash function to transform an arbitrary-length text string into a pseudo-random-bit 
string. 

For example, the easy-to-remember text string: 

My name is Ozymandias, king of kings. Look on my works, ye mighty, and despair. 

might crunch into this 64-bit key: 

e6cl 4398 5ae9 Oa9b 

Of course, it can be difficult to type an entire phrase into a computer with the 
echo turned off. Clever suggestions to solve this problem would be appreciated. 

If the phrase is long enough, the resulting key will be random. Exactly what "long 
enough" means is open to interpretation. Information theory tells us that standard 
English has about 1.3 bits of information per character (see Section 11.1). For a 64-
bit key, a pass phrase of about 49 characters, or 10 normal English words, should be 
sufficient. As a rule of thumb, figure that you need five words for each 4 bytes of key. 
That's a conservative assumption, since it doesn't take into account case, spacing, 
and punctuation. 

This technique can even be used to generate private keys for public-key cryp­
tography systems: The text string could be crunched into a random seed, and that 
seed could be fed into a deterministic system that generates public-key/private­
key key pairs. 

If you are choosing a pass phrase, choose something unique and easy-to-remember. 
Don't choose phrases from literature-the example from "Ozymandias" is a bad one. 
Both the complete works of Shakespeare and the dialogue from Star Wars are avail­
able on-line and can be used in a dictionary attack. Choose something obscure, but 
personal. Include punctuation and capitalization; if you can, include numbers and 
non-alphanumeric symbols. Poor or improper English, or even a foreign language, 
makes the pass phrase less susceptible to a dictionary attack. One suggestion is to 
use a phrase that is "shocking nonsense": something offensive enough that you are 
likely to remember and unlikely to write down. 
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Despite everything written here, obscurity is no substitute for true randomness. 
The best keys are random keys, difficult as they are to remember. 

X9.17 Key Generation 
The ANSI X9.l 7 standard specifies a method of key generation (see Figure 8.1) [55]. 

This does not generate easy-to-remember keys; it is more suitable for generating ses­
sion keys or pseudo-random numbers within a system. The cryptographic algorithm 
used to generate keys is triple-DES, but it could just as easily be any algorithm. 

Let EK(X) be triple-DES encryption of X with key K. This is a special key reserved 
for secret key generation. V0 is a secret 64-bit seed. Tis a timestamp. To generate the 
random key Ri, calculate: 

Ri = EK(EK(Ti) EB Vi) 

To generate Vi+ 1, calculate: 

vi+ 1 = EK(EK(Ti) EB Kl 
To turn Ri into a DES key, simply adjust every eighth bit for parity. If you need a 

64-bit key, use it as is. If you need a 128-bit key, generate a pair of keys and con­
catenate them together. 

DoD Key Generation 
The U.S. Department of Defense recommends using DES in OFB mode (see Sec­

tion 9.8) to generate random keys [1144]. Generate a DES key from system interrupt 
vectors, system status registers, and system counters. Generate an initialization 
vector from the system clock, system ID, and date and time. For the plaintext, use 
an externally generated 64-bit quantity: eight characters typed in by a system 
administrator, for example. Use the output as your key. 

8.2 NONLINEAR KEYSPACES 

Imagine that you are a military cryptography organization, building a piece of cryp­
tography equipment for your troops. You want to use a secure algorithm, but you are 

T; Encrypt 

Encrypt V; + 1 

V;----.i-++--+1 Encrypt ,---~------•R; 

Figure 8.1 ANSI X9.17 key generation. 



~~s _______ C_H_A_P_T_E_R_8 __ K_e_y_M_a_n_a_g_e_m_e_n_t ________________ _ 

worried about the equipment falling into enemy hands. The last thing you want is 
for your enemy to be able to use the equipment to protect their secrets. 

If you can put your algorithm in a tamperproof module, here's what you can do. 
You can require keys of a special and secret form; all other keys will cause the mod­
ule to encrypt and decrypt using a severely weakened algorithm. You can make it so 
that the odds of someone, not knowing this special form but accidentally stumbling 
on a correct key, are vanishingly small. 

This is called a nonlinear keyspace, because all the keys are not equally strong. 
(The opposite is a linear, or flat, keyspace.) An easy way to do this is to create the 
key as two parts: the key itself and some fixed string encrypted with that key. The 
module decrypts the string with the key; if it gets the fixed string it uses the key nor­
mally, if not it uses a different, weak algorithm. If the algorithm has a 128-bit key 
and a 64-bit block size, the overall key is 192 bits; this gives the algorithm an effec­
tive key of 2128, but makes the odds of randomly choosing a good key one in 264 • 

You can be even subtler. You can design an algorithm such that certain keys are 
stronger than others. An algorithm can have no weak keys-keys that are obviously 
very poor-and can still have a nonlinear keyspace. 

This only works if the algorithm is secret and the enemy can't reverse-engineer 
it, or if the difference in key strength is subtle enough that the enemy can't figure 
it out. The NSA did this with the secret algorithms in their Overtake modules (see 
Section 25.1). Did they do the same thing with Skipjack (see Section 13.12)? No 
one knows. 

8.3 TRANSFERRING KEYS 

Alice and Bob are going to use a symmetric cryptographic algorithm to communicate 
securely; they need the same key. Alice generates a key using a random-key genera­
tor. Now she has to give it to Bob-securely. If Alice can meet Bob somewhere (a back 
alley, a windowless room, or one of Jupiter's moons), she can give him a copy of the 
key. Otherwise, they have a problem. Public-key cryptography solves the problem 
nicely and with a minimum of prearrangement, but these techniques are not always 
available (see Section 3.1 ). Some systems use alternate channels known to be secure. 
Alice could send Bob the key with a trusted messenger. She could send it by certified 
mail or via an overnight delivery service. She could set up another communications 
channel with Bob and hope no one is eavesdropping on that one. 

Alice could send Bob the symmetric key over their communications channel­
the one they are going to encrypt. This is foolish; if the channel warrants encryp­
tion, sending the encryption key in the clear over the same channel guarantees that 
anyone eavesdropping on the channel can decrypt all communications. 

The X9.l 7 standard [55] specifies two types of keys: key-encryption keys and data 
keys. Key-Encryption Keys encrypt other keys for distribution. Data Keys encrypt 
message traffic. These key-encrypting keys have to be distributed manually 
(although they can be secured in a tamperproof device, like a smart card), but only 
seldomly. Data keys are distributed more often. More details are in [75]. This two­
tiered key concept is used a lot in key distribution. 
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Another solution to the distribution problem splits the key into several different 
parts (see Section 3.6) and sends each of those parts over a different channel. One 
part could be sent over the telephone, one by mail, one by overnight delivery ser­
vice, one by carrier pigeon, and so on. (see Figure 8.2). Since an adversary could col­
lect all but one of the parts and still have no idea what the key is, this method will 
work in all but extreme cases. Section 3.6 discusses schemes for splitting a key into 
several parts. Alice could even use a secret sharing scheme (see Section 3. 7), allow­
ing Bob to reconstruct the key if some of the shares are lost in transmission. 

Alice sends Bob the key-encryption key securely, either by a face-to-face meeting 
or the splitting technique just discussed. Once Alice and Bob both have the key­
encryption key, Alice can send Bob daily data keys over the same communications 
channel. Alice encrypts each data key with the key-encryption key. Since the 
amount of traffic being encrypted with the key-encryption key is low, it does not 
have to be changed as often. However, since compromise of the key-encryption key 
could compromise every message encrypted with every key that was encrypted with 
the key-encryption key, it must be stored securely. 

Key Distribution in Large Networks 
Key-encryption keys shared by pairs of users work well in small networks, but can 

quickly get cumbersome if the networks become large. Since every pair of users 
must exchange keys, the total number of key exchanges required in an n-person net­
work is n(n - 1 )/2. 

In a six-person network, 15 key exchanges are required. In a 1000-person network, 
nearly 500,000 key exchanges are required. In these cases, creating a central key 
server (or servers) makes the operation much more efficient. 

Alternatively, any of the symmetric-cryptography or public-key-cryptography 
protocols in Section 3.1 provides for secure key distribution. 

SENDER 
Separates 

Key 

RECEIVER 
Reassembles 

Key 

Figure 8.2 Key distribution via parallel channels. 
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8.4 VERIFYING KEYS 

When Bob receives a key, how does he know it came from Alice and not from some­
one pretending to be Alice? If Alice gives it to him when they are face-to-face, it's easy. 
If Alice sends her key via a trusted courier, then Bob has to trust the courier. If the key 
is encrypted with a key-encryption key, then Bob has to trust the fact that only Alice 
has that key. If Alice uses a digital signature protocol to sign the key, Bob has to trust 
the public-key database when he verifies that signature. (He also has to trust that Alice 
has kept her key secure.) If a Key Distribution Center (KDC) signs Alice's public key, 
Bob has to trust that his copy of the KDC's public key has not been tampered with. 

In the end, someone who controls the entire network around Bob can make him 
think whatever he likes. Mallory could send an encrypted and signed message pur­
porting to be from Alice. When Bob tried to access the public-key database to verify 
Alice's signature, Mallory could substitute his own public key. Mallory could 
invent his own false KDC and exchange the real KDC's public key for his own cre­
ation. Bob wouldn't be the wiser. 

Some people have used this argument to claim that public-key cryptography is 
useless. Since the only way for Alice and Bob to ensure that their keys have not been 
tampered with is to meet face-to-face, public-key cryptography doesn't enhance 
security at all. 

This view is nai:ve. It is theoretically true, but reality is far more complicated. 
Public-key cryptography, used with digital signatures and trusted KDCs, makes it 
much more difficult to substitute one key for another. Bob can never be absolutely 
certain that Mallory isn't controlling his entire reality, but Bob can be confident 
that doing so requires more resources than most real-world Mallorys have access to. 

Bob could also verify Alice's key over the telephone, where he can hear her voice. 
Voice recognition is a really good authentication scheme. If it's a public key, he can 
safely recite it in public. If it's a secret key, he can use a one-way hash function to 
verify the key. Both PCP (see Section 24.12) and the AT&T TSD (see Section 24.18) 
use this kind of key verification. 

Sometimes, it may not even be important to verify exactly whom a public key 
belongs to. It may be necessary to verify that it belongs to the same person to whom 
it belonged last year. If someone sends a signed withdrawal message to a bank, the 
bank does not have to be concerned with who withdraws the money, only whether 
it is the same person who deposited the money in the first place. 

Error Detection during Key Transmission 
Sometimes keys get garbled in transmission. Since a garbled key can mean 

megabytes of undecryptable ciphertext, this is a problem. All keys should be trans­
mitted with some kind of error detection and correction bits. This way errors in 
transmission can be easily detected and, if required, the key can be resent. 

One of the most widely used methods is to encrypt a constant value with the 
key, and to send the first 2 to 4 bytes of that ciphertext along with the key. At the 
receiving end, do the same thing. If the encrypted constants match, then the key 
has been transmitted without error. The chance of an undetected error ranges 
from one in 2 16 to one in 232 • 
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Key-error Detection during Decryption 

Sometimes the receiver wants to check if a particular key he has is the correct 
symmetric decryption key. If the plaintext message is something like ASCII, he can 
try to decrypt and read the message. If the plaintext is random, there are other tricks. 

The nai:ve approach is to attach a verification block: a known header to the plain­
text message before encryption. At the receiving end, Bob decrypts the header and 
verifies that it is correct. This works, but it gives Eve a known plaintext to help 
cryptanalyze the system. It also makes attacks against short-key ciphers like DES 
and all exportable ciphers easy. Precalculate the checksum once for each key, then 
use that checksum to determine the key in any message you intercept after that. 
This is a feature of any key checksum that doesn't include random or at least differ­
ent data in each checksum. It's very similar in concept to using salt when generat­
ing keys from passphrases. 

Here's a better way to do this [821]: 

(1) Generate an IV (not the one used for the message). 

(2) Use that IV to generate a large block of bits: say, 512. 

(3) Hash the result. 

(4) Use the same fixed bits of the hash, say 32, for the key checksum. 

This gives Eve some information, but very little. If she tries to use the low 32 bits 
of the final hash value to mount a brute-force attack, she has to do multiple encryp­
tions plus a hash per candidate key; brute-force on the key itself would be quicker. 

She also gets no known-plaintext values to try out, and even if she manages to 
choose our random value for us, she never gets a chosen-plaintext out of us, since it 
goes through the hash function before she sees it. 

8.5 USING KEYS 

Software encryption is scary. Gone are the days of simple microcomputers under the 
control of single programs. Now there's Macintosh System 7, Windows NT, and 
UNIX. You can't tell when the operating system will suspend the encryption appli­
cation in progress, write everything to disk, and take care of some pressing task. 
When the operating system finally gets back to encrypting whatever is being 
encrypted, everything will look just fine. No one will ever realize that the operating 
system wrote the encryption application to disk, and that it wrote the key along 
with it. The key will sit on the disk, unencrypted, until the computer writes over 
that area of memory again. It could be minutes or it could be months. It could even 
be never; the key could still be sitting there when an adversary goes over the hard 
drive with a fine-tooth comb. In a preemptive, multitasking environment, you can 
set your encryption operation to a high enough priority so it will not be interrupted. 
This would mitigate the risk. Even so, the whole thing is dicey at best. 

Hardware implementations are safer. Many encryption devices are designed to 
erase the key if tampered with. For example, the IBM PS/2 encryption card has an 
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epoxy unit containing the DES chip, battery, and memory. Of course, you have to 
trust the hardware manufacturer to implement the feature properly. 

Some communications applications, such as telephone encryptors, can use ses­
sion keys. A session key is a key that is just used for one communications session­
a single telephone conversation-and then discarded. There is no reason to store the 
key after it has been used. And if you use some key-exchange protocol to transfer the 
key from one conversant to the other, the key doesn't have to be stored before it is 
used either. This makes it far less likely that the key might be compromised. 

Controlling Key Usage 

In some applications it may be desirable to control how a session key is used. 
Some users may need session keys only for encryption or only for decryption. Ses­
sion keys might only be authorized for use on a certain machine or at a certain time. 
One scheme to handle these sorts of restrictions attaches a Control Vector (CV) to 
the key; the control vector specifies the uses and restrictions for that key (see Sec­
tion 24.1) [1025,1026]. This CV is hashed and XORed with a master key; the result 
is used as an encryption key to encrypt the session key. The resultant encrypted ses­
sion key is then stored with the CV. To recover the session key, hash the CV and 
XOR it with the master key, and use the result to decrypt the encrypted session key. 

The advantages of this scheme are that the CV can be of arbitrary length and that 
it is always stored in the clear with the encrypted key. This scheme assumes quite 
a bit about tamperproof hardware and the inability of users to get at the keys 
directly. This system is discussed further in Sections 24.1 and 24.8. 

8.6 UPDATING KEYS 

Imagine an encrypted data link where you want to change keys daily. Sometimes it's 
a pain to distribute a new key every day. An easier solution is to generate a new key 
from the old key; this is sometimes called key updating. 

All it takes is a one-way function. If Alice and Bob share the same key and they 
both operate on it using the same one-way function, they will get the same result. 
Then they can take the bits they need from the results to create the new key. 

Key updating works, but remember that the new key is only as secure as the old 
key was. If Eve managed to get her hands on the old key, she can perform the key 
updating function herself. However, if Eve doesn't have the old key and is trying a 
ciphertext-only attack on the encrypted traffic, this is a good way for Alice and Bob 
to protect themselves. 

8.7 STORING KEYS 

The least complex key storage problem is that of a single user, Alice, encrypting 
files for later use. Since she is the only person involved, she is the only person 
responsible for the key. Some systems take the easy approach: The key is stored in 
Alice's brain and never on the system. Alice is responsible for remembering the key 
and entering it every time she needs a file encrypted or decrypted. 
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An example of this system is IPS [881]. Users can either directly enter the 64-bit 
key or enter the key as a longer character string. The system then generates a 64-bit 
key from the character string using a key-crunching technique. 

Another solution is to store the key in a magnetic stripe card, plastic key with an 
embedded ROM chip (called a ROM key), or smart card [556,557,455]. A user could 
then enter his key into the system by inserting the physical token into a special 
reader in his encryption box or attached to his computer terminal. While the user 
can use the key, he does not know it and cannot compromise it. He can use it only 
in the way and for the purposes indicated by the control vector. 

A ROM key is a very clever idea. People understand physical keys, what they sig­
nify and how to protect them. Putting a cryptographic key in the same physical 
form makes storing and protecting that key more intuitive. 

This technique is made more secure by splitting the key into two halves, storing 
one half in the terminal and the other half in the ROM key. The U.S. government's 
STU-III secure telephone works this way. Losing the ROM key does not compro­
mise the cryptographic key-change that key and everything is back to normal. The 
same is true with the loss of the terminal. This way, compromising either the ROM 
key or the system does not compromise the cryptographic key-an adversary must 
have both parts. 

Hard-to-remember keys can be stored in encrypted form, using something similar 
to a key-encryption key. For example, an RSA private key could be encrypted with a 
DES key and stored on disk. To recover the RSA key, the user has to type in the DES 
key to a decryption program. 

If the keys are generated deterministically (with a cryptographically secure pseudo­
random-sequence generator), it might be easier to regenerate the keys from an easy­
to-remember password every time they are required. 

Ideally, a key should never appear unencrypted outside the encryption device. 
This isn't always possible, but it is a worthy goal. 

8.8 BACKUP KEYS 

Alice is the chief financial officer at Secrets, Ltd.-"We don't tell you our motto." 
Like any good corporate officer, she follows the company's security guidelines and 
encrypts all her data. Unfortunately, she ignores the company's street-crossing 
guidelines and gets hit by a truck. What does the company's president, Bob, do? 

Unless Alice left a copy of her key, he's in deep trouble. The whole point of 
encryption is to make files unrecoverable without the key. Unless Alice was a 
moron and used lousy encryption software, her files are gone forever. 

Bob can avoid this in several ways. The simplest is sometimes called key escrow 
(see Section 4.14): He requires all employees to write their keys on paper and give 
them to the company's security officer, who will lock them in a safe somewhere (or 
encrypt them all with a master key). Now, when Alice is bowled over on the Inter­
state, Bob can ask his security officer for her key. Bob should make sure to have the 
combination to the safe himself as well; otherwise, if the se.curity officer is run over 
by another truck, Bob will be out of luck again. 
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The problem with this key management system is that Bob has to trust his secu­
rity officer not to misuse everyone's keys. Even more significantly, all the employ­
ees have to trust the security officer not to misuse their keys. A far better solution 
is to use a secret-sharing protocol (see Section 3. 7). 

When Alice generates a key, she also divides up that key into some number of 
pieces. She then sends each piece-encrypted, of course-to a different company 
officer. None of those pieces alone is the key, but someone can gather all the pieces 
together and reconstruct the key. Now Alice is protected against any one malicious 
person, and Bob is protected against losing all of Alice's data after her run-in with 
the truck. Or, she could just store the different pieces, encrypted with each of the 
officer's different public keys, on her own hard disk. That way, no one gets involved 
with key management until it becomes necessary. 

Another backup scheme [188] uses smart cards (see Section 24.13) for the tempo­
rary escrow of keys. Alice can put the key to secure her hard drive onto the smart 
card and give it to Bob while she is away. Bob can use the card to get into Alice's hard 
drive, but because the key is stored in the card Bob cannot learn it. And the system 
is bilaterally auditable: Bob can verify that the key will open Alice's drive, and when 
Alice returns she can verify if Bob has used the key and how many times. 

Such a scheme makes no sense for data transmission. On a secure telephone, the 
key should exist for the length of the call and no longer. For data storage, as just 
described, key escrow can be a good idea. I've lost about one key every five years, 
and my memory is better than most. If 200 million people were using cryptography, 
that same rate would equal 40 million lost keys per year. I keep copies of my house 
keys with a neighbor because I may lose mine. If house keys were like cryptographic 
keys, and I lost them, I could never get inside and recover my possessions, ever 
again. Just as I keep off-site backups of my data, it makes sense to keep backups of 
my data-encryption keys. 

8.9 COMPROMISED KEYS 

All of the protocols, techniques, and algorithms in this book are secure only if the 
key (the private key in a public-key system) remains secret. If Alice's key is lost, 
stolen, printed in the newspaper, or otherwise compromised, then all her security 
is gone. 

If the compromised key was for a symmetric cryptosystem, Alice has to change 
her key and hope the actual damage was minimal. If it was a private key, she has big­
ger problems; her public key is probably on servers all over the network. And if Eve 
gets access to Alice's private key, she can impersonate her on the network: reading 
encrypted mail, signing correspondence, entering into contracts, and so forth. Eve 
can, effectively, become Alice. 

It is vital that news of a private key's compromise propagate quickly throughout 
the network. Any databases of public keys must immediately be notified that a par­
ticular private key has been compromised, lest some unsuspecting person encrypt a 
message in that compromised key. 
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One hopes Alice knows when her key was compromised. If a KDC is managing 
the keys, Alice should notify it that her key has been compromised. If there is no 
KDC, then she should notify all correspondents who might receive messages from 
her. Someone should publicize the fact that any message received after her key was 
lost is suspect, and that no one should send messages to Alice with the associated 
public key. The application should be using some sort of timestamp, and then users 
can determine which messages are legitimate and which are suspect. 

If Alice doesn't know exactly when her key was compromised, things are more 
difficult. Alice may want to back out of a contract because the person who stole the 
key signed it instead of her. If the system allows this, then anyone can back out of a 
contract by claiming that his key was compromised before it was signed. It has to be 
a matter for an adjudicator to decide. 

This is a serious problem and brings to light the dangers of Alice tying all of her 
identity to a single key. It would be better for Alice to have different keys for differ­
ent applications-just as she has different physical keys in her pocket for different 
locks. Other solutions to this problem involve biometrics, limits on what can be 
done with a key, time delays, and countersigning. 

These procedures and tips are hardly optimal, but are the best we can do. The 
moral of the story is to protect keys, and protect private keys above all else. 

8.10 LIFETIME OF KEYS 

No encryption key should be used for an indefinite period. It should expire auto­
matically like passports and licenses. There are several reasons for this: 

The longer a key is used, the greater the chance that it will be com­
promised. People write keys down; people lose them. Accidents hap­
pen. If you use the same key for a year, there's a far greater chance of 
compromise than if you use it for a day. 

The longer a key is used, the greater the loss if the key is compro­
mised. If a key is used only to encrypt a single budgetary document on 
a file server, then the loss of the key means only the compromise of 
that document. If the same key is used to encrypt all the budgetary 
information on the file server, then its loss is much more devastating. 

The longer a key is used, the greater the temptation for someone to 
spend the effort necessary to break it-even if that effort is a brute­
force attack. Breaking a key shared between two military units for a 
day would enable someone to read and fabricate messages between 
those units for that day. Breaking a key shared by an entire military 
command structure for a year would enable that same person to read 
and fabricate messages throughout the world for a year. In our 
budget-conscious, post-Cold War world, which key would you choose 
to attack? 
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It is generally easier to do cryptanalysis with more ciphertext 
encrypted with the same key. 

For any cryptographic application, there must be a policy that determines the per­
mitted lifetime of a key. Different keys may have different lifetimes. For a connection­
based system, like a telephone, it makes sense to use a key for the length of the 
telephone call and to use a new one with each call. 

Systems on dedicated communications channels are not as obvious. Keys should 
have relatively short lifetimes, depending on the value of the data and the amount 
of data encrypted during a given period. The key for a gigabit-per-second communi­
cations link might have to be changed more often than the key for a 9600-baud 
modem link. Assuming there is an efficient method of transferring new keys, ses­
sion keys should be changed at least daily. 

Key-encryption keys don't have to be replaced as frequently. They are used only 
occasionally (roughly once per day) for key exchange. This generates little cipher­
text for a cryptanalyst to work with, and the corresponding plaintext has no partic­
ular form. However, if a key-encryption key is compromised, the potential loss is 
extreme: all communications encrypted with every key encrypted with the key­
encryption key. In some applications, key-encryption keys are replaced only once a 
month or once a year. You have to balance the inherent danger in keeping a key 
around for a while with the inherent danger in distributing a new one. 

Encryption keys used to encrypt data files for storage cannot be changed often. 
The files may sit encrypted on disk for months or years before someone needs them 
again. Decrypting them and re-encrypting them with a new key every day doesn't 
enhance security in any way; it just gives a cryptanalyst more to work with. One 
solution might be to encrypt each file with a unique file key, and then encrypt all 
the file keys with a key-encryption key. The key-encryption key should then be 
either memorized or stored in a secure location, perhaps in a safe somewhere. Of 
course, losing this key would mean losing all the individual file keys. 

Private keys for public-key cryptography applications have varying lifetimes, 
depending on the application. Private keys used for digital signatures and proofs of 
identity may have to last years (even a lifetime). Private keys used for coin-flipping 
protocols can be discarded immediately after the protocol is completed. Even if a 
key's security is expected to last a lifetime, it may be prudent to change the key 
every couple of years. The private keys in many networks arc good only for two 
years; after that the user must get a new private key. The old key would still have to 
remain secret, in case the user needed to verify a signature from that period. But the 
new key would be used to sign new documents, reducing the number of signed doc­
uments a cryptanalyst would have for an attack. 

8.11 DESTROYING KEYS 

Given that keys must be replaced regularly, old keys must be destroyed. Old keys 
are valuable, even if they are never used again. With them, an adversary can read old 
messages encrypted with those keys [65]. 
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Keys must be destroyed securely (see Section 10.9). If the key is written on paper, 
the paper should be shredded or burned. Be careful to use a high-quality shredder; 
many lousy shredders are on the market. Algorithms in this book are secure against 
brute-force attacks costing millions of dollars and taking millions of years. If an adver­
sary can recover your key by taking a bag of shredded documents from your trash and 
paying 100 unemployed workers in some backwater country ten cents per hour for a 
year to piece the shredded pages together, that would be $26,000 well spent. 

If the key is in a hardware EEPROM, the key should be overwritten multiple 
times. If the key is in a hardware EPROM or PROM, the chip should be smashed 
into tiny bits and scattered to the four winds. If the key is stored on a computer disk, 
the actual bits of the storage should be overwritten multiple times (see Section 10.9) 
or the disk should be shredded. 

A potential problem is that, in a computer, keys can be easily copied and stored in 
multiple locations. Any computer that does its own memory management, con­
stantly swapping programs in and out of memory, exacerbates the problem. There is 
no way to ensure that successful key erasure has taken place in the computer, espe­
cially if the computer's operating system controls the erasure process. The more 
paranoid among you should consider writing a special erasure program that scans all 
disks looking for copies of the key's bit pattern on unused blocks and then erases 
those blocks. Also remember to erase the contents of any temporary, or "swap," files. 

8.12 PUBLIC-KEY KEY MANAGEMENT 

Public-key cryptography makes key management easier, but it has its own unique 
problems. Each person has only one public key, regardless of the number of people 
on the network. If Alice wants to send a message to Bob, she has to get Bob's public 
key. She can go about this several ways: 

She can get it from Bob. 

She can get it from a centralized database. 

She can get it from her own private database. 

Section 2.5 discussed a number of possible attacks against public-key cryptogra­
phy, based on Mallory substituting his key for Bob's. The scenario is that Alice 
wants to send a message to Bob. She goes to the public-key database and gets Bob's 
public key. But Mallory, who is sneaky, has substituted his own key for Bob's. (If 
Alice asks Bob directly, Mallory has to intercept Bob's transmission and substitute 
his key for Bob's.) Alice encrypts her message in Mallory's key and sends it to Bob. 
Mallory intercepts the message, decrypts it, and reads it. He re-encrypts it with 
Bob's real key and sends it on to Bob. Neither Alice nor Bob is the wiser. 

Public-key Certificates 
A public-key certificate is someone's public key, signed by a trustworthy person. 

Certificates are used to thwart attempts to substitute one key for another [879]. Bob's 
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certificate, in the public-key database, contains a lot more than his public key. It con­
tains information about Bob-his name, address, and so on-and it is signed by some­
one Alice trusts: Trent (usually known as a certification authority, or CA). By signing 
both the key and the information about Bob, Trent certifies that the information 
about Bob is correct and that the public key belongs to Bob. Alice checks Trent's sig­
nature and then uses the public key, secure in the knowledge that it is Bob's and no 
one else's. Certificates play an important role in a number of public-key protocols 
such as PEM [825] (see Section 24.10) and X.509 [304] (see Section 24.9). 

A complicated noncryptographic issue surrounds this type of system. What is the 
meaning of certification? Or, to put it another way, who is trusted to issue certifi­
cates to whom? Anyone may sign anyone else's certificate, but there needs to be 
some way to filter out questionable certificates: for example, certificates for employ­
ees of one company signed by the CA of another company. Normally, a certification 
chain transfers trust: A single trusted entity certifies trusted agents, trusted agents 
certify company CAs, and company CAs certify their employees. 

Here are some more things to think about: 

What level of trust in someone's identity is implied by his certificate? 

What are the relationships between a person and the CA that certified 
his public key, and how can those relationships be implied by the cer­
tificate? 

Who can be trusted to be the "single trusted entity" at the top of the 
certification chain? 

How long can a certification chain be? 

Ideally, Bob would follow some kind of authentication procedure before the CA 
signs his certificate. Additionally, some kind of timestamp or an indication of the 
certificate's validity period is important to guard against compromised keys [461]. 

Timestamping is not enough. Keys may be invalidated before they have expired, 
either through compromise or for administrative reasons. Hence, it is important the 
CA keep a list of invalid certificates, and for users to regularly check that list. This 
key revocation problem is still a difficult one to solve. 

And one public-key/private-key pair is not enough. Certainly any good imple­
mentation of public-key cryptography needs separate keys for encryption and digi­
tal signatures. This separation allows for different security levels, expiration times, 
backup procedures, and so on. Someone might sign messages with a 2048-bit key 
stored on a smart card and good for t\A.renty years, while they might use a 768-bit key 
stored in the computer and good for six months for encryption. 

And a single pair of encryption and signature keys isn't enough, either. A private 
key authenticates a relationship as well as an identity, and people have more than 
one relationship. Alice might want to sign one document as Alice the individual, 
another as Alice, vice-president of Monolith, Inc., and a third as Alice, president of 
her community organization. Some of these keys are more valuable than others, so 
they can be better protected. Alice might have to store a backup of her work key 
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with the company's security officer; she doesn't want the company to have a copy of 
the key she signed her mortgage with. Just as Alice has multiple physical keys in her 
pocket, she is going to have multiple cryptographic keys. 

Distributed Key Management 
In some situations, this sort of centralized key management will not work. Per­

haps there is no CA whom Alice and Bob both trust. Perhaps Alice and Bob trust 
only their friends. Perhaps Alice and Bob trust no one. 

Distributed key management, used in PGP (see Section 24.12), solves this prob­
lem with introducers. Introducers are other users of the system who sign their 
friends' public keys. For example, when Bob generates hiE> public key, he gives 
copies to his friends: Carol and Dave. They know Bob, so they each sign Bob's key 
and give Bob a copy of the signature. Now, when Bob presents his key to a stranger, 
Alice, he presents it with the signatures of these two introducers. If Alice also 
knows and trusts Carol, she has reason to believe that Bob's key is valid. If she 
knows and trusts Carol and Dave a little, she has reason to believe that Bob's key is 
valid. If she doesn't know either Carol or Dave, she has no reason to trust Bob's key. 

Over time, Bob will collect many more introducers. If Alice and Bob travel in sim­
ilar circles, the odds are good that Alice will know one of Bob's introducers. To pre­
vent against Mallory's substituting one key for another, an introducer must be sure 
that Bob's key belongs to Bob before he signs it. Perhaps the introducer should 
require the key be given face-to-face or verified over the telephone. 

The benefit of this mechanism is that there is no CA that everyone has to trust. 
The down side is that when Alice receives Bob's public key, she has no guarantee 
that she will know any of the introducers and therefore no guarantee that she will 
trust the validity of the key. 
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There are two basic types of symmetric algorithms: block ciphers and stream ciphers. 
Block ciphers operate on blocks of plaintext and ciphertext-usually of 64 bits but 
sometimes longer. Stream ciphers operate on streams of plaintext and ciphertext one 
bit or byte (sometimes even one 32-bit word) at a time. With a block cipher, the same 
plaintext block will always encrypt to the same ciphertext block, using the same key. 
With a stream cipher, the same plaintext bit or byte will encrypt to a different bit or 
byte every time it is encrypted. 

A cryptographic mode usually combines the basic cipher, some sort of feedback, 
and some simple operations. The operations are simple because the security is a 
function of the underlying cipher and not the mode. Even more strongly, the cipher 
mode should not compromise the security of the underlying algorithm. 

There are other security considerations: Patterns in the plaintext should be con­
cealed, input to the cipher should be randomized, manipulation of the plaintext by 
introducing errors in the ciphertext should be difficult, and encryption of more than 
one message with the same key should be possible. These will be discussed in detail 
in the next sections. 

Efficiency is another consideration. The mode should not be significantly less effi­
cient than the underlying cipher. In some circumstances it is important that the 
ciphertext be the same size as the plaintext. 

A third consideration is fault-tolerance. Some applications need to parallelize 
encryption or decryption, while others need to be able to preprocess as much as pos­
sible. In still others it is important that the decrypting process be able to recover 
from bit errors in the ciphertext stream, or dropped or added bits. As we will see, dif­
ferent modes have different subsets of these characteristics. 

9 .1 ELECTRONIC CODEBOOK MODE 

Electronic codebook (ECB) mode is the most obvious way to use a block cipher: A 
block of plaintext encrypts into a block of ciphertext. Since the same block of plain-
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text always encrypts to the same block of ciphertext, it is theoretically possible to 
create a code book of plaintexts and corresponding ciphertexts. However, if the 
block size is 64 bits, the code book will have 264 entries-much too large to pre­
compute and store. And remember, every key has a different code book. 

This is the easiest mode to work with. Each plaintext block is encrypted indepen­
dently. You don't have to encrypt a file linearly; you can encrypt the 10 blocks in the 
middle first, then the blocks at the end, and finally the blocks in the beginning. This 
is important for encrypted files that are accessed randomly, like a database. If a data­
base is encrypted with ECB mode, then any record can be added, deleted, encrypted, 
or decrypted independently of any other record-assuming that a record consists of 
a discrete number of encryption blocks. And processing is parallizeable; if you have 
multiple encryption processors, they can encrypt or decrypt different blocks with­
out regard for each other. 

The problem with ECB mode is that if a cryptanalyst has the plain text and cipher­
text for several messages, he can start to compile a code book without knowing the 
key. In most real-world situations, fragments of messages tend to repeat. Different 
messages may have bit sequences in common. Computer-generated messages, like 
electronic mail, may have regular structures. Messages may be highly redundant or 
have long strings of zeros or spaces. 

If a cryptanalyst learns that the plaintext block "5e08lbc5" encrypts to the cipher­
text block "7 ea593a4," he can immediately decrypt that ciphertext block whenever 
it appears in another message. If the encrypted messages have a lot of redundancies, 
and these tend to show up in the same places in different messages, a cryptanalyst 
can get a lot of information. He can mount statistical attacks on the underlying 
plaintext, irrespective of the strength of the block cipher. 

This vulnerability is greatest at the beginning and end of messages, where well­
defined headers and footers contain information about the sender, receiver, date, 
and so on. This problem is sometimes called stereotyped beginnings and stereotyped 
endings. 

On the plus side, there is no security risk in encrypting multiple messages with 
the same key. In fact, each block can be looked at as a separate message encrypted 
with the same key. Bit errors in the ciphertext, when decrypted, will cause the 
entire plaintext block to decrypt incorrectly but will not affect the rest of the plain­
text. However, if a ciphertext bit is accidentally lost or added, all subsequent cipher­
text will decrypt incorrectly unless there is some kind of frame structure to realign 
the block boundaries. 

Padding 
Most messages don't divide neatly into 64-bit (or whatever size) encryption 

blocks; there is usually a short block at the end. ECB requires 64-bit blocks. Padding 
is the way to deal with this problem. 

Pad the last block with some regular pattern-zeros, ones, alternating ones and 
zeros-to make it a complete block. If you need to delete the padding after decryp­
tion, add the number of padding bytes as the last byte of the last block. For example, 
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assume the block size is 64 bits and the last block consists of 3 bytes (24 bits). Five 
bytes of padding are required to make the last block 64 bits; add 4 bytes of zeros and 
a final byte with the number 5. After decryption, delete the last 5 bytes of the last 
decryption block. For this method to work correctly, every message must be padded. 
Even if the plaintext ends on a block boundary, you have to pad one complete block. 
Otherwise, you can use an end-of-file character to denote the final plaintext byte, 
and then pad after that character. 

Figure 9 .1 is an alternative, called ciphertext stealing [402 ]. Pn _ 1 is the last full 
plaintext block and Pn is the final, short, plaintext block. Cn _ 1 is the last full cipher­
text block and Cn is the final, short, ciphertext block. C' is just an intermediate 
result and is not part of the transmitted ciphertext. 

9.2 BLOCK REPIAY 

A more serious problem with ECB mode is that an adversary could modify encrypted 
messages without knowing the key, or even the algorithm, in such a way as to fool 
the intended recipient. This problem was first discussed in [291]. 

To illustrate the problem, consider a money transfer system that moves money 
between accounts in different banks. To make life easier for the bank's computer 
systems, banks agree on a standard message format for money transfer that looks 
like this: 

Bank One: Sending 
Bank Two: Receiving 
Depositor's Name 
Depositor's Account 
Amount of Deposit 

1.5 blocks 
1.5 blocks 
6 blocks 
2 blocks 
1 block 

A block corresponds to an 8-byte encryption block. The messages are encrypted 
using some block algorithm in ECB mode. 

Encryption Decryption 

C' cn-1 

c,, C' C' 

Figure 9.1 Ciphertext stealing in ECB mode. 
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Mallory, who is listening on the communications line between two banks, Bank 
of Alice and Bank of Bob, can use this information to get rich. First, he sets up his 
computer to record all of the encrypted messages from Bank of Alice to Bank of Bob. 
Then, he transfers $100 from Bank of Alice to his account in Bank of Bob. Later, he 
does it again. Using his computer, he examines the recorded messages looking for a 
pair of identical messages. These messages are the ones authorizing the $100 trans­
fers to his account. If he finds more than one pair of identical messages (which is 
most likely in real life), he does another money transfer and records those results. 
Eventually he can isolate the message that authorized his money transaction. 

Now he can insert that message into the communications link at will. Every time 
he sends the message to Bank of Bob, another $100 will be credited to his account. 
When the two banks reconcile their transfers (probably at the end of the day), they 
will notice the phantom transfer authorizationsi but if Mallory is clever, he will 
have already withdrawn the money and headed for some banana republic without 
extradition laws. And he probably did his scam with dollar amounts far larger than 
$100, and with lots of different banks. 

At first glance, the banks could easily prevent this by adding a timestamp to their 
messages. 

Date/Time Stamp: 
Bank One: Sending 
Bank Two: Receiving 
Depositor's Name 
Depositor's Account 
Amount of Deposit 

1 block 
1.5 blocks 
1.5 blocks 
6 blocks 
2 blocks 
1 block 

Two identical messages would be easy to spot using this system. Still, using a 
technique called block replay, Mallory can still get rich. Figure 9.2 shows that Mal­
lory can pick out the eight ciphertext blocks that correspond to his own name and 
account number: blocks 5 through 12. A diabolical laugh is appropriate at this point, 
because Mallory is now ready. 

He intercepts random messages from Bank of Alice to Bank of Bob and replaces 
blocks 5 through 12 in the message with the bytes that correspond to his name and 

Block Number 

1 2 I 3 I 4 5 I 6 I 7 I 8 I 9 I 10 11 I 12 13 

Time- Sending I Receiving Depositor's Depositor's 
Amount stamp Bank Bank Name Account 

Field 

Figure 9.2 Encryption blocks for an example record. 
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account number. Then he sends them on to Bank of Bob. He doesn't have to know 
who the original depositor was; he doesn't even have to know what the amount was 
(although, he could correlate the messages he doctored with the various deposits 
into his account and determine the encrypted blocks corresponding to some dollar 
amount). He simply changes the name and account numbers to his own and 
watches his account balance grow. (I suppose Mallory has to be careful not to mod­
ify a withdrawal message, but assume for the moment that each is a different length 
or something.) 

This will take longer than a day for the banks to catch. When they reconcile their 
transfers at the end of the day, everything will match. It probably won't be until one 
of the legitimate depositors notices that his deposits are not being credited, or when 
someone flags unusual activity in Mallory's account, that the banks will figure out 
the scam. Mallory isn't stupid, and by then he will have closed his account, changed 
his name, and bought a villa in Argentina. 

Banks can minimize the problem by changing their keys frequently, but this only 
means that Mallory is going to have to work more quickly. Adding a MAC, however, 
will also solve the problem. Even so, this is a fundamental problem with ECB mode. 
Mallory can remove, repeat, or interchange blocks at will. The solution is a tech­
nique called chaining. 

9. 3 CIPHER BLOCK CHAINING MODE 

Chaining adds a feedback mechanism to a block cipher: The results of the encryp­
tion of previous blocks are fed back into the encryption of the current block. In 
other words, each block is used to modify the encryption of the next block. Each 
ciphertext block is dependent not just on the plaintext block that generated it but 
on all the previous plaintext blocks. 

In cipher block chaining (CBC) mode, the plaintext is XORed with the previous 
ciphertext block before it is encrypted. Figure 9.3a shows CBC encryption in action. 
After a plaintext block is encrypted, the resulting ciphertext is also stored in a feed­
back register. Before the next plaintext block is encrypted, it is XORed with the 
feedback register to become the next input to the encrypting routine. The resulting 
ciphertext is again stored in the feedback register, to be XORed with the next plain­
text block, and so on until the end of the message. The encryption of each block 
depends on all the previous blocks. 

Decryption is just as straightforward (see Figure 9.3b). A ciphertext block is 
decrypted normally and also saved in a feedback register. After the next block is 
decrypted, it is XORed with the results of the feedback register. Then the next cipher­
text block is stored in the feedback register, and so on, until the end of the message. 

Mathematically, this looks like: 

C; = EK(P; E8 C; - i) 

P, = C; - I E8 DJ((C;) 
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(a) CBC Encryption (b) CBC Decryption 

Figure 9.3 Cipher block chaining mode. 

Initialization Vector 
CBC mode forces identical plaintext blocks to encrypt to different ciphertext 

blocks only when some previous plaintext block is different. Two identical mes­
sages will still encrypt to the same ciphertext. Even worse, two messages that begin 
the same will encrypt in the same way up to the first difference. 

Some messages have a common header: a letterhead, or a "From" line, or what­
ever. While block replay would still be impossible, this identical beginning might 
give a cryptanalyst some useful information. 

Prevent this by encrypting random data as the first block. This block of random 
data is callc'd the initialization vector (IV), initializing variable, or initial chaining 
value. The IV has no meaning; it's just there to make each message unique. When 
the receiver decrypts this block, he just uses it to fill the feedback register and oth­
erwise ignores it. A times tamp often makes a good IV. Otherwise, use some random 
bits from someplace. 

With the addition of IVs, identical plaintext messages encrypt to different cipher­
text messages. Thus, it is impossible for an eavesdropper to attempt block replay, 
and more difficult for him to build a code book. While the IV should be unique for 
each message encrypted with the same key, it is not an absolute requirement. 

The IV need not be secret; it can be transmitted in the clear with the ciphertext. 
If this seems wrong, consider the following argument. Assume that we have a mes­
sage of several blocks: B1, B2, ••. , B1• B1 is encrypted with the IV. B2 is encrypted 
using the ciphertext of B1 as the IV. B3 is encrypted using the ciphertext of B2 as the 
IV, and so on. So, if there are n blocks, there are n-1 exposed "IVs," even if the orig­
inal IV is kept secret. So there's no reason to keep the IV secret; the IV is just a 
dummy ciphertext block-you can think of it as B0 to start the chaining. 
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Padding 
Padding works just like ECB mode, but in some applications the ciphertext has to 

be exactly the same size as the plain text. Perhaps a plain text file has to be encrypted 
and then replaced in the exact same memory location. In this case, you have to 
encrypt the last short block differently. Assume the last block has j bits. After 
encrypting the last full block, encrypt the ciphertext again, select the left-most j bits 
of the encrypted ciphertext, and XOR that with the short block to generate the 
ciphertext. Figure 9.4 illustrates this. 

The weakness here is that while Mallory cannot recover the last plaintext block, 
he can change it systematically by changing individual bits in the ciphertext. If the 
last few bits of the ciphertext contain essential information, this is a weakness. If 
the last bits simply contain housekeeping information, it isn't a problem. 

Ciphertext stealing is a better way (see Figure 9.5) [402]. Pn _ 1 is the last full plain­
text block, and Pn is the final, short, plaintext block. Cn _ 1 is the last full ciphertext 
block, and Cn is the final, short, ciphertext block. C' is just an intermediate result 
and is not part of the transmitted ciphertext. The benefit of this method is that all 
the bits of the plaintext message go through the encryption algorithm. 

Error Propagation 
CBC mode can be characterized as feedback of the ciphertext at the encryption 

end and feedforward of the ciphertext at the decryption end. This has implications 
having to do with errors. A single bit error in a plaintext block will affect that 
ciphertext block and all subsequent ciphertext blocks. This isn't significant because 
decryption will reverse that effect, and the recovered plaintext will have the same 
single error. 

Ciphertext errors are more common. They can easily result from a noisy commu­
nications path or a malfunction in the storage medium. In CBC mode, a single-bit 
error in the ciphertext affects one block and one bit of the recovered plaintext. The 

Select 
Leftmost 

J bits 

Pn (}-bits long) 

C" (}-bits long) 

Figure 9.4 Encrypting the last short block in CBC mode. 
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Figure 9.5 Ciphertext stealing in CBC mode. 

block containing the error is completely garbled. The subsequent block has a I-bit 
error in the same bit position as the error. 

This property of taking a small ciphertext error and converting it into a large 
plain text error is called error extension. It is a major annoyance. Blocks after the sec­
ond are not affected by the error, so CBC mode is self-recovering. Two blocks are 
affected by an error, but the system recovers and continues to work correctly for all 
subsequent blocks. CBC is an example of a block cipher being used in a self­
synchronizing manner, but only at the block level. 

While CBC mode recovers quickly from bit errors, it doesn't recover at all from 
synchronization errors. If a bit is added or lost from the ciphertext stream, then all 
subsequent blocks are shifted one bit out of position and decryption will generate 
garbage indefinitely. Any cryptosystem that uses CBC mode must ensure that the 
block structure remains intact, either by framing or by storing data in multiple­
block-sized chunks. 

Security Problems 
Some potential problems are caused by the structure of CBC. First, because a 

ciphertext block affects the following block in a simple way, Mallory can add blocks 
to the end of an encrypted message without being detected. Sure, it will probably 
decrypt to gibberish, but in some situations this is undesirable. 

If you are using CBC, you should structure your plain text so that you know where 
the message ends and can detect the addition of extra blocks. 

Second, Mallory can alter a ciphertext block to introduce controlled changes in 
the following decrypted plaintext block. For example, if Mallory toggles a single 
ciphertext bit, the entire block will decrypt incorrectly, but the following block will 
have a I-bit error in the corresponding bit position. There are situations where this 
is desirable. The entire plaintext message should include some kind of controlled 
redundancy or authentication. 

Finally, although plaintext patterns are concealed by chaining, very long mes­
sages will still have patterns. The birthday paradox predicts that there will be iden-
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tical blocks after 2m/2 blocks, where m is the block size. For a 64-bit block size, that's 
about 34 gigabytes. A message has to be pretty long before this is a problem. 

9.4 STREAM CIPHERS 

Stream ciphers convert plaintext to ciphertext 1 bit at a time. The simplest imple­
mentation of a stream cipher is shown in Figure 9.6. A keystream generator (some­
times called a running-key generator) outputs a stream of bits: k 1, k 2, k,, ... , k;. 
This keystream (sometimes called a running key) is XORed with a stream of plain­
text bits, p 1, p 2, p3, •.. , Pi, to produce the stream of ciphertext bits. 

Ci= p1 EB R; 

At the decryption end, the ciphertext bits are XORed with an identical keystream 
to recover the plaintext bits. 

p; = c, EB k; 

Since 

Pi EB k1 EB ki = Pi 

this works nicely. 
The system's security depends entirely on the insides of the keystream generator. 

If the keystream generator outputs an endless stream of zeros, the ciphertext will 
equal the plain text and the whole operation will be worthless. If the keystream gen­
erator spits out a repeating 16-bit pattern, the algorithm will be a simple XOR with 
negligible security (see Section 1.4). If the keystream generator spits out an endless 
stream cf random (not pseudo-random, but real random-see Section 2.8) bits, you 
have a one-time pad and perfect security. 

The reality of stream cipher security lies somewhere between the simple XOR 
and the one-time pad. The keystream generator generates a bit stream that looks 
random, but is actually a deterministic stream that can be flawlessly reproduced at 
decryption time. The closer the keystream generator's output is to random, the 
harder time a cryptanalyst will have breaking it. 

Keystream 
Generator 

Keystream K ; 

Plaintext 

Keystream 
Generator 

Keystream K ; 

Plaintext Ciphertext 
P; -----t-+-+--------------i--,c-+------ P; 

Encrypt 
C; 

Decrypt 

Figure 9.6 Stream cipher. 
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If, however, the keystream generator produces the same bit stream every time it 
is turned on, the resulting cryptosystem will be trivial to break. An example will 
show why. 

If Eve has a ciphertext and associated plaintext, she can XOR the plaintext and 
the ciphertext to recover the keystream. Or, if she has two different ciphertexts 
encrypted with the same keystream, she can XOR them together and get two plain­
text messages XORed with each other. This is easy to break, and then she can XOR 
one of the plaintexts with the ciphertext to get the keystream. 

Now, whenever she intercepts another ciphertext message, she has the keystream 
bits necessary to decrypt it. In addition, she can decrypt and read any old ciphertext 
messages she has previously intercepted. When Eve gets a single plaintext/cipher­
text pair, she can read everything. 

This is why all stream ciphers have keys. The output of the keystream generator 
is a function of the key. Now, if Eve gets a plaintext/ciphertext pair, she can only 
read messages encrypted with a single key. Change the key, and the adversary is 
back to square one. Stream ciphers are especially useful to encrypt never-ending 
streams of communications traffic: a T-1 link between two computers, for example. 

A keystream generator has three basic parts (see Figure 9. 7). The internal state 
describes the current state of the keystream generator. Two keystream generators, 
with the same key and the same internal state, will produce the same keystream. 
The output function takes the internal state and generates a keystream bit. The 
next-state function takes the internal state and generates a new internal state. 

9.5 SELF-SYNCHRONIZING STREAM CIPHERS 

For a self-synchronizing stream cipher, each keystream bit is a function of a fixed 
number of previous ciphertext bits [1378]. The military calls this ciphertext auto 
key (CTAK). The basic idea was patented in 1946 [667]. 

KEY K 

Figure 9. 7 Inside a keystream generator. 



9.5 Self-synchronizing Stream Ciphers 

Figure 9.8 shows a self-synchronizing stream cipher. The internal state is a func­
tion of the previous n ciphertext bits. The cryptographic complexity is in the output 
function, which takes the internal state and generates a keystream bit. 

Since the internal state depends wholly on the previous n ciphertext bits, the 
decryption keystream generator will automatically synchronize with the encryp­
tion keystream generator after receiving n ciphertext bits. 

In smart implementations of this mode, each message begins with a random 
header n bits long. That header is encrypted, transmitted, and then decrypted. The 
decryption will be incorrect, but after those n bits both keystream generators will be 
synchronized. 

The down side of a self-synchronizing stream cipher is error propagation. For each 
ciphertext bit garbled in transmission, the decryption keystream generator will 
incorrectly produce n keystream bits. Therefore, for each ciphertext error, there will 
be n corresponding plaintext errors, until the garbled bit works its way out of the 
internal state. 

Security Problems 
Self-synchronizing stream ciphers are also vulnerable to a playback attack. First 

Mallory records some ciphertext bits. Then, at a later time, he substitutes this 
recording into current traffic. After some initial garbage while the receiving end 
resynchronizes, the old ciphertext will decrypt as normal. The receiving end has no 
way of knowing that this is not current data, but old data being replayed. Unless 
timestamps are used, Mallory can convince a bank to credit his account again and 
again, by replaying the same message (assuming the key hasn't been changed, of 
course). Other weaknesses in this type of scheme could be exploited in the cases of 
very frequent resynchronization [408]. 

Figure 9.8 A self-synchronizing keystream generator. 



CHAPTER 9 Algorithm Types and Modes 

9 .6 CIPHER-FEEDBACK MODE 

Block ciphers can also be implemented as a self-synchronizing stream cipher; this is 
called cipher-feedback (CFB) mode. With CBC mode, encryption cannot begin until 
a complete block of data is received. This is a problem in some network applica­
tions. In a secure network environment, for example, a terminal must be able to 
transmit each character to the host as it is entered. When data has to be processed 
in byte-sized chunks, CBC mode just won't do. 

In CFB mode, data can be encrypted in units smaller than the block size. The fol­
lowing example will encrypt one ASCII character at a time (this is called 8-bit CFB), 
but nothing is sacred about the number eight. You can encrypt data one bit at a time 
using 1-bit CFB, although using one complete encryption of a block cipher for a sin­
gle bit seems like a whole lot of work; a stream cipher might be a better idea. 
(Reducing the number of rounds of the block cipher to speed things up is not rec­
ommended [1269].) You can also use 64-bit CFB, or any n-bit CFB where n is less 
than or equal to the block size. 

Figure 9.9 shows 8-bit CFB mode working with a 64-bit block algorithm. A block 
algorithm in CFB mode operates on a queue the size of the input block. Initially, the 
queue is filled with an IV, as in CBC mode. The queue is encrypted and the left-most 
eight bits of the result are XORed with the first 8-bit character of the plaintext to 
become the first 8-bit character of the ciphertext. This character can now be trans­
mitted. The same eight bits are also moved to the right-most eight bit positions of 
the queue, and all the other bits move eight to the left. The eight left-most bits are 
discarded. Then the next plaintext character is encrypted in the same manner. 
Decryption is the reverse of this process. On both the encryption and the decryption 
side, the block algorithm is used in its encryption mode. 

If the block size of the algorithm is n, then n-bit CFB looks like (see Figure 9.10): 

Shift Register Shift Register 

KEY K Encrypt ti 
1 KEY K 

(a) Encipherment (b) Deciphering 

Figure 9.9 8-bit cipher-feedback mode. 
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Ci-I C I C;_ 1 

C; = P; EB EK(C; _ i) 

P; = C; EB EK(C; - i) 

Figure 9.10 n-bit CFB with an n-bit 
algorithm. 

Like CBC mode, CFB mode links the plaintext characters together so that the 
ciphertext depends on all the preceding plaintext. 

Initialization Vector 
To initialize the CFB process, the input to the block algorithm must be initialized 

with an IV. Like the IV used in CBC mode, it need not be secret. 
The IV must be unique, though. (This is different from the IV in CBC mode, 

which should be unique but does not have to be.) If the IV in CFB is not unique, a 
cryptanalyst can recover the corresponding plain text. The IV must be changed with 
every message. It can be a serial number, which increments after each message and 
does not repeat during the lifetime of the key. For data encrypted for storage, it can 
be a function of the index used to look up the data. 

Error Propagation 
With CFB mode, an error in the plaintext affects all subsequent ciphertext and 

reverses itself at decryption. An error in the ciphertext is more interesting. The first 
effect of a single-bit error in the ciphertext is to cause a single error in the plaintext. 
After that, the error enters the shift register, where it causes ciphertext to be garbled 
until it falls off the other end of the register. In 8-bit CFB mode, 9 bytes of decrypted 
plaintext are garbled by a single-bit error in the ciphertext. After that, the system 
recovers and all subsequent ciphertext is decrypted correctly. In general, in n-bit 
CFB a single ciphertext error will affect the decryption of the current and following 
m/n-1 blocks, where m is the block size. 

One subtle problem with this kind of error propagation is that if Mallory knows the 
plaintext of a transmission, he can toggle bits in a given block and make it decrypt to 
whatever he wants. The next block will decrypt to garbage, but the damage may 
already be done. And he can change the final bits of a message without detection. 

CFB is self-recovering with respect to synchronization errors as well. The error 
enters the shift register, where it garbles 8 bytes of data until it falls off the other 
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end. CFB is an example of block cipher being used as a self-synchronizing stream 
cipher (at the block level). 

9. 7 SYNCHRONOUS STREAM CIPHERS 

In a synchronous stream cipher the keystream is generated independent of the mes­
sage stream. The military calls this Key Auto-Key (KAK). On the encryption side, a 
keystream generator spits out keystream bits, one after the other. On the decryption 
side, another keystream generator spits out the identical keystream bits, one after 
the other. This works, as long as the two keystream generators are synchronized. If 
one of them skips a cycle or if a ciphertext bit gets lost during transmission, then 
every ciphertext character after the error will decrypt incorrectly. 

If this happens, the sender and receiver must resynchronize their keystream gen­
erators before they can proceed. Frustrating matters even further, they must do this 
in such a way as to ensure that no part of the keystream is repeated, so the obvious 
solution of resetting the keystream generator to an earlier state won't work. 

On the plus side, synchronous ciphers do not propagate transmission errors. If a 
bit is garbled during transmission, which is far more likely than a bit being lost alto­
gether, then only the garbled bit will be decrypted incorrectly. All preceding and 
subsequent bits will be unaffected. 

Since a keystream generator must generate the same output on both the encryp­
tion and decryption ends, it must be deterministic. Because it is implemented in a 
finite-state machine (i.e., a computer), the sequence will eventually repeat. These 
keystream generators are called periodic. Except for one-time pads, all keystream 
generators are periodic. 

The keystream generator must have a long period, one far longer than the number 
of bits the generator will output between key changes. If the period is less than the 
plaintext, then different parts of the plaintext will be encrypted the same way-a 
severe weakness. If a cryptanalyst knows a piece of the plaintext, he can recover a 
piece of the keystream and use that to recover more of the plain text. Even if the ana­
lyst only has the ciphertext, he can XOR the sections encrypted with the same 
keystream and get the XOR of plaintext with plain text. This is just the simple XOR 
algorithm with a very long key. 

How long a period is long enough depends on the application. A keystream gener­
ator encrypting a continuous T-1 link will encrypt 237 bits per day. The keystream 
generator's period must be orders of magnitude larger than that, even if the key is 
changed daily. If the period is long enough, you might only have to change the key 
weekly or even monthly. 

Synchronous stream ciphers also protect against any insertions and deletions in 
the ciphertext, because these cause a loss of synchronization and will be immedi­
ately detected. They do not, however, fully protect against bit toggling. Like block 
ciphers in CFB mode, Mallory can toggle individual bits in the stream. If he knows 
the plaintext, he can make those bits decrypt to whatever he wants. Subsequent bits 
will decrypt correctly, so in certain applications Mallory can still do considerable 
damage. 
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Insertion Attack 
Synchronous stream ciphers are vulnerable to an insertion attack [93]. Mallory 

has recorded a ciphertext stream, but does not know the plaintext or the keystream 
used to encrypt the plaintext. 

Original plaintext: 
Original keystream: 
Original ciphertext: 

Pi P2 p3 p, 
k1 kz k3 k, 
C1 Cz C3 C4 

Mallory inserts a single known bit, p', into the plain text after p 1 and then manages 
to get the modified plaintext encrypted with the same keystream. He records the 
resultant new ciphertext: 

New plaintext: 
Original keystream: 
Updated ciphertext: 

P1 p' P1 p3 P, 
k1 kz k1 k, ks 
C1 c'2 c'1 c'4 e's 

Assuming he knows the value of p', he can determine the entire plaintext after 
that bit from the original ciphertext and new ciphertext: 

k2 = c'2 El) p', and then P1 = C1 El) k1 
k3 = c'3 El) P1, and then p3 = C1 El) k3 
k4 = c'4 El) p3 , and then p, = c4 \B k4 

Mallory doesn't even have to know the exact pos1t10n in which the bit was 
inserted; he can just compare the original and updated ciphertexts to see where they 
begin to differ. To protect against this attack, never use the same keystream to 
encrypt two different messages. 

9.8 OUTPUT-FEEDBACK MODE 

Output-feedback (OFB} mode is a method of running a block cipher as a syn­
chronous stream cipher. It is similar to CFB mode, except that n bits of the previous 
output block are moved into the right-most positions of the queue (see Figure 9 .11 ). 
Decryption is the reverse of this process. This is called n-bit OFB. On both the 
encryption and the decryption sides, the block algorithm is used in its encryption 
mode. This is sometimes called internal feedback, because the feedback mechanism 
is independent of both the plaintext and the ciphertext streams [291]. 

If n is the block size of the algorithm, then n-bit OFB looks like (see Figure 9.12): 

C; = P; EB S;; S; = EK(S; - i) 

P; = C; EB S;; S; = EK(S; - i) 

S; is the state, which is independent of either the plaintext or the ciphertext. 
One nice feature of OFB mode is that most of the work can occur offline, before 

the plaintext message even exists. When the message finally arrives, it can be 
XORed with the output of the algorithm to produce the ciphertext. 
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(a) Encipherment (b) Deciphering 

Figure 9.11 8-bit output-feedback mode. 

Initialization Vector 
The OFB shift register must also be initially loaded with an IV. It should be unique 

but does not have to be secret. 

Error Propagation 
OFB mode has no error extension. A single-bit error in the ciphertext causes a 

single-bit error in the recovered plaintext. This can be useful in some digitized ana­
log transmissions, like digitized voice or video, where the occasional single-bit error 
can be tolerated but error extension cannot. 

On the other hand, a loss of synchronization is fatal. If the shift registers on the 
encryption end and the decryption end are not identical, then the recovered plain­
text will be gibberish. Any system that uses OFB mode must have a mechanism for 
detecting a synchronization loss and a mechanism to fill both shift registers with a 
new (or the same) IV to regain synchronization. 

Figure 9.12 n-bit OFB with an n-bit 
algorithm. 
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Security Problems with OFB 

An analysis of OFB mode [588,430,431,789] demonstrates that OFB should be 
used only when the feedback size is the same as the block size. For example, you 
should only use a 64-bit algorithm in 64-bit OFB mode. Even though the U.S. gov­
ernment authorizes other feedback sizes for DES [1143], avoid them. 

OFB mode XORs a keystream with the text. This keystream will eventually 
repeat. It is important that it does not repeat with the same key; otherwise, there is 
no security. When the feedback size equals the block size, the block cipher acts as a 
permutation of m-bit values (where m is the block length) and the average cycle 
length is 2m - 1. For a 64-bit block length, this is a very long number. When the feed­
back size n is less than the block length, the average cycle length drops to around 
2m12• For a 64-bit block cipher, this is only 232-not long enough. 

Stream Ciphers in OFB 

A stream cipher can also run in OFB mode. In this case, the key affects the next­
state function (see Figure 9.13). The output function does not depend on the key; 
very often it is something simple like a single bit of the internal state or the XOR 
of multiple bits of the internal state. The cryptographic complexity is in the next­
state function; this function is key-dependent. This method is also called internal 
feedback [291], because the feedback mechanism is internal to the key generation 
algorithm. 

In a variant of this mode, the key determines just the initial state of the keystream 
generator. After the key sets the internal state of the generator, the generator runs 
undisturbed from then on. 

9.9 COUNTER MODE 

Block ciphers in counter mode use sequence numbers as the input to the algorithm 
[824,498,715]. Instead of using the output of the encryption algorithm to fill the reg­
ister, the input to the register is a counter. After each block encryption, the counter 

K; 

Figure 9.13 A keystream generator 
in output-feedback mode. 
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increments by some constant, typically one. The synchronization and error propa­
gation characteristics of this mode are identical to those of OFB. Counter mode 
solves the OFB mode problem of n-bit output where n is less than the block length. 

Nothing is sacred about the counter; it does not have to count through all the 
possible inputs in order. You can use any of the random-sequence generators in 
Chapters 16 and 17, whether cryptographically secure or not, as input to the block 
algorithm. 

Stream Ciphers in Counter Mode 
Stream ciphers in counter mode have simple next-state functions and compli­

cated output functions dependent on the key. This technique, illustrated in Figure 
9.14, was suggested in [498,715]. The next-state function can be something as sim­
ple as a counter, adding one to the previous state. 

With a counter mode stream cipher, it is possible to generate the ith key bit, ki, 
without first generating all the previous key bits. Simply set the counter manually 
to the ith internal state and generate the bit. This is useful to secure random-access 
data files; you can decrypt a specific block of data without decrypting the entire file. 

9 .10 OTHER BLOCK-CIPHER MODES 

Block Chaining Mode 

To use a block algorithm in block chaining (BC) mode, simply XOR the input to 
the block cipher with the XOR of all the previous ciphertext blocks. As with CBC, 
an IV starts the process. 

Mathematically, this looks like: 

C1 = EK(Pi EB Fi); F1 + I = Fi EB Ci 

P, = Fi EB DK( C;); Fi+ I = F; EB C; 

Like CBC, BC's feedback process extends errors in the plaintext. The primary 
problem with BC is that because the decryption of a ciphertext block depends on all 

Internal State ----~ 

KEYK 

K; 

Figure 9.14 A keystream generator 
in counter mode. 
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the previous ciphertext blocks, a single error in the ciphertext will result in the 
incorrect decryption of all subsequent ciphertext blocks. 

Propagating Cipher Block Chaining Mode 

Propagating cipher block chaining (PCBC} [1080] mode is similar to CBC mode, 
except that both the previous plaintext block and the previous ciphertext block are 
XORed with the current plaintext block before encryption (or after decryption) (see 
Figure 9.15). 

C; = EK(P; EB cj _ 1 EB P; _ i) 

pi= C; - I E8 P; - I E8 DK( C;) 

PCBC was used in Kerberos version 4 (see Section 24.5) to perform both encryp­
tion and integrity checking in one pass. In PCBC mode, an error in the ciphertext 
will result in incorrect decryption of all blocks that follow. This means that check­
ing a standard block at the end of a message will ensure the integrity of the entire 
message. 

Unfortunately, there is a problem with this mode [875]. Swapping two ciphertext 
blocks results in the incorrect decryption of the two corresponding plaintext blocks, 
but due to the nature of the XOR with the plaintext and the ciphertext, the errors 
cancel. So if the integrity checker looks only at the last few blocks of the decrypted 
plain text, it could be fooled into accepting a partially garbled message. Although no 
one has figured out how to exploit this weakness, Kerberos version 5 switched to 
CBC mode after the flaw was discovered. 

Cipher Block Chaining with Checksum 
Cipher block chaining with checksum (CBCC} is a CBC variant [1618]. Keep a 

running XOR of all the plaintext blocks, and XOR that with the last plaintext block 
before encryption. CBCC ensures that any change made to any ciphertext block 

Figure 9.15 Propagating cipher block chain­
ing mode. 
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changes the decrypted output of the last block. If the last block contains any sort of 
integrity check or a constant, then the integrity of the decrypted plaintext can be 
checked with very little additional overhead. 

Output Feedback with a Nonlinear Function 
Output feedback with a nonlinear function ( OFBNLF) [777] is a variant of both 

OFB and ECB where the key changes with every block: 

CJ= EKi(Pi); K = EK(Ki - i) 

pi= DK)Ci); Ki= EK(Ki - i) 

A single bit error in the ciphertext propagates to only one plaintext block. How­
ever, if a single bit is lost or added, then there is infinite error extension. With a 
block algorithm that has a complicated key scheduling algorithm, like DES, this 
mode is slow. I know of no cryptanalysis of this mode. 

More Modes 
Other modes are possible, although they are not extensively used. Plaintext block 

chaining (PBC) is like CBC except the previous plaintext block is XORed with the 
plain text block instead of with the ciphertext block. Plaintext feedback (PFB) is like 
CFB, except the plain text, not the ciphertext, is used for feedback. These two modes 
allow chosen-plaintext attacks in order to resist known-plaintext attacks. There is 
also cipher block chaining of plaintext difference (CBCPD). I'm sure it gets even 
weirder. 

If a cryptanalyst has a brute-force keysearch machine, then he can recover the key 
if he can guess one of the plain text blocks. Some of these stranger modes amount to 
light encryption before applying the encryption algorithm: for example, XO Ring the 
text with a fixed secret string or permuting the text. Almost anything nonstandard 
will frustrate this sort of cryptanalysis. 

9 .11 CHOOSING A CIPHER MODE 

If simplicity and speed are your main concerns, ECB is the easiest and fastest mode 
to use a block cipher. It is also the weakest. Besides being vulnerable to replay 
attacks, an algorithm in ECB mode is the easiest to cryptanalyze. I don't recommend 
ECB for message encryption. 

For encrypting random data, such as other keys, ECB is a good mode to use. Since 
the data is short and random, none of the shortcomings of ECB matter for this 
application. 

For normal plain text, use CBC, CFB, or OFB. Which mode you choose depends on 
your specific requirements. Table 9.1 gives a summary of the security and efficiency 
of the various modes. 

CBC is generally best for encrypting files. The increase in security is significant; 
and while there are sometimes bit errors in stored data, there are almost never syn­
chronization errors. If your application is software-based, CBC is almost always the 
best choice. 
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Table 9.1 
Summary of Block Cipher Modes 

ECB: 

Security: 
- Plaintext patterns are not concealed. 
- Input to the block cipher is not randomized; it is the 
same as the plaintext. 
+ More than one message can be encrypted with the same 
key. 
- Plaintext is easy to manipulate; blocks can be removed, 
repeated, or interchanged. 

Efficiency: 
+ Speed is the same as the block cipher. 
- Ciphertext is up to one block longer than the plaintext, 
due to padding. 
- No preprocessing is possible. 
+ Processing is parallelizable. 

Fault-tolerance: 
- A ciphertext error affects one full block of plaintext. 
- Synchronization error is unrecoverable. 

CFB: 

Security: 
+ Plaintext patterns are concealed. 
+ Input to the block cipher is randomized. 
+ More than one message can be encrypted with the same 
key, provided that a different IV is used. 
+/- Plaintext is somewhat difficult to manipulate; blocks 
can be removed from the beginning and end of the mes­
sage, bits of the first block can be changed, and repetition 
allows some controlled changes. 

Efficiency: 
+ Speed is the same as the block cipher. 
- Ciphertext is the same size as the plaintext, not count­
ing the IV. 
+/- Encryption is not parallelizable; decryption is paral­
lelizable and has a random-access property. 
- Some preprocessing is possible before a block is seen; the 
previous ciphertext block can be encrypted. 
+/- Encryption is not parallelizable; decryption is paral­
lelizable and has a random-access property. 

Fault-tolerance: 
- A ciphertext error affects the corresponding bit of plain­
text and the next full block. 
+ Synchronization errors of full block sizes are recover­
able. 1-bit CFB can recover from the addition or loss of 
single bits. 

CBC: 

Security: 
+ Plaintext patterns are concealed by XORing with previ­
ous ciphertext block. 
+ Input to the block cipher is randomized by XO Ring with 
the previous ciphertext block. 
+ More than one message can be encrypted with the same 
key. 
+/- Plaintext is somewhat difficult to manipulate; blocks 
can be removed from the beginning and end of the mes­
sage, bits of the first block can be changed, and repetition 
allows some controlled changes. 

Efficiency: 
+ Speed is the same as the block cipher. 
- Ciphertext is up to one block longer than the plaintext, 
not counting the IV. 
- No preprocessing is possible. 
+/- Encryption is not parallelizable; decryption is paral­
lelizable and has a random-access property. 

Fault-tolerance: 
- A ciphertext error affects one full block of plaintext and 
the corresponding bit in the next block. 
- Synchronization error is unrecoverable. 

OFB/Counter: 

Security: 
+ Plaintext patterns are concealed. 
+ Input to the block cipher is randomized. 
+ More than one message can be encrypted with the same 
key, provided that a different IV is used. 
- Plaintext is very easy to manipulate; any change in 
ciphertext directly affects the plaintext. 

Efficiency: 
+ Speed is the same as the block cipher. 
- Ciphertext is the same size as the plaintext, not count­
ing the IV. 
+ Processing is possible before the message is seen. 
-/ + OFB processing is not parallelizable; counter process­
ing is parallelizable. 

Fault-tolerance: 
+ A ciphertext error affects only the corresponding bit of 
plain text. 
- Synchronization error is unrecoverable. 
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CFB-specifically 8-bit CFB-is generally the mode of choice for encrypting 
streams of characters when each character has to be treated individually, as in a link 
between a terminal and a host. OFB is most often used in high-speed synchronous 
systems where error propagation is intolerable. OFB is also the mode of choice if pre­
processing is required. 

OFB is the mode of choice in a error-prone environment, because it has no error 
extension. 

Stay away from the weird modes. One of the four basic modes-ECB, CBC, OFB, 
and CFB-is suitable for almost any application. These modes are not overly com­
plex and probably do not reduce the security of the system. While it is possible that 
a complicated mode might increase the security of a system, most likely it just 
increases the complexity. None of the weird modes has any better error propagation 
or error recovery characteristics. 

9.12 INTERLEAVING 

With most modes, encryption of a bit (or block) depends on the encryption of the 
previous bits (or blocks). This can often make it impossible to parallelize encryp­
tion. For example, consider a hardware box that does encryption in CBC mode. Even 
if the box contains four encryption chips, only one can work at any time. The next 
chip needs the results of the previous chip before it starts working. 

The solution is to interleave multiple encryption streams. (This is not multiple 
encryption; that's covered in Sections 15.1 and 15.2). Instead of a single CBC chain, 
use four. The first, fifth, and every fourth block thereafter are encrypted in CBC 
mode with one IV. The second, sixth, and every fourth block thereafter are encrypted 
in CBC mode with another IV, and so on. The total IV is much longer than it would 
have been without interleaving. 

Think of it as encrypting four different messages with the same key and four dif­
ferent IVs. These messages are all interleaved. 

This trick can also be used to increase the overall speed of hardware encryption. If 
you have three encryption chips, each capable of encrypting data at 33 megabits/sec­
ond, you can interleave them to encrypt a single 100 megabit/second data channel. 

Figure 9.16 shows three parallel streams interleaved in CFB mode. The idea can 
also work in CBC and OFB modes, and with any number of parallel streams. Just 
remember that each stream needs its own IV. Don't share. 

9 .13 BLOCK CIPHERS VERSUS STREAM CIPHERS 

Although block and stream ciphers are very different, block ciphers can be imple­
mented as stream ciphers and stream ciphers can be implemented as block ciphers. 
The best definition of the difference I've found is from Rainer Rueppel [ 1362]: 

Block ciphers operate on data with a fixed transformation on large blocks of plain­
text data; stream ciphers operate with a time-varying transformation on individ­
ual plaintext digits. 



9.13 Block Ciphers versus Stream Ciphers 

Figure 9.16 Interleaving three CFB encryptions. 

In the real world, block ciphers seem to be more general (i.e., they can be used in 
any of the four modes) and stream ciphers seem to be easier to analyze mathemati­
cally. There is a large body of theoretical work on the analysis and design of stream 
ciphers-most of it done in Europe, for some reason. They have been used by the 
world's militaries since the invention of electronics. This seems to be changing; 
recently a whole slew of theoretical papers have been written on block cipher 
design. Maybe soon there will be a theory of block cipher design as rich as our cur­
rent theory of stream cipher design. 

Otherwise, the differences between stream ciphers and block ciphers are in the 
implementation. Stream ciphers that only encrypt and decrypt data one bit at a time 
are not really suitable for software implementation. Block ciphers can be easier to 
implement in software, because they often avoid time-consuming bit manipula­
tions and they operate on data in computer-sized blocks. On the other hand, stream 
ciphers can be more suitable for hardware implementation because they can be 
implemented very efficiently in silicon. 

These are important considerations. It makes sense for a hardware encryption 
device on a digital communications channel to encrypt the individual bits as they 
go by. This is what the device sees. On the other hand, it makes no sense for a soft­
ware encryption device to encrypt each individual bit separately. There are some 
specific instances where bit- and byte-wise encryption might be necessary in a com­
puter system-encrypting the li:ilk between the keyboard and the CPU, for exam­
ple-but generally the encryption block should be at least the width of the data bus. 
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Using 
Algorithms 

CHAPTER 10 

Think of security-data security, communications security, information security, 
whatever-as a chain. The security of the entire system is only as strong as the 
weakest link. Everything has to be secure: cryptographic algorithms, protocols, key 
management, and more. If your algorithms are great but your random-number gen­
erator stinks, any smart cryptanalyst is going to attack your system through the 
random-number generation. If you patch that hole but forget to securely erase a 
memory location that contains the key, a cryptanalyst will break your system via 
that route. If you do everything right and accidentally e-mail a copy of your secure 
files to The Wall Street [ournal, you might as well not have bothered. 

It's not fair. As the designer of a secure system, you have to think of every possi­
ble means of attack and protect against them all, but a cryptanalyst only has to find 
one hole in your security and exploit it. 

Cryptography is only a part of security, and 0ften a very small part. It is the math­
ematics of making a system secure, which is different from actually making a sys­
tem secure. Cryptography has its "size queens": people who spend so much time 
arguing about how long a key should be that they forget about everything else. If the 
secret police want to know what is on your computer, it is far easier for them to 
break into your house and install a camera that can record what is on your computer 
screen than it is for them to cryptanalze your hard drive. 

Additionally, the traditional view of computer cryptography as "spy versus spy" 
technology is becoming increasingly inappropriate. Over 99 percent of the cryptog­
raphy used in the world is not protecting military secrets; it's in applications such 
as bank cards, pay-TV, road tolls, office building and computer access tokens, lot­
tery terminals, and prepayment electricity meters [43,44]. In these applications, the 
role of cryptography is to make petty crime slightly more difficult; the paradigm of 
the well-funded adversary with a rabbit warren of cryptanalysts and roomsful of 
computers just doesn't apply. 
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Most of those applications have used lousy cryptography, but successful attacks 
against them had nothing to do with cryptanalysis. They involved crooked employ­
ees, clever sting operations, stupid implementations, integration blunders, and ran­
dom idiocies. (I strongly recommend Ross Anderson's paper, "Why Cryptosytems 
Fail" [44]; it should be required reading for anyone involved in this field.) Even the 
NSA has admitted that most security failures in its area of interest are due to fail­
ures in implementation, and not failures in algorithms or protocols [1119]. In these 
instances it didn't matter how good the cryptography was; the successful attacks 
bypassed it completely. 

10 .1 CHOOSING AN ALGORITHM 

When it comes to evaluating and choosing algorithms, people have several alter­
natives: 

They can choose a published algorithm, based on the belief that a 
published algorithm has been scrutinized by many cryptographers; if 
no one has broken the algorithm yet, then it must be pretty good. 

They can trust a manufacturer, based on the belief that a well-known 
manufacturer has a reputation to uphold and is unlikely to risk that 
reputation by selling equipment or programs with inferior algo­
rithms. 

They can trust a private consultant, based on the belief that an impar­
tial consultant is best equipped to make a reliable evaluation of dif­
ferent algorithms. 

They can trust the government, based on the belief that the govern­
ment is trustworthy and wouldn't steer its citizens wrong. 

They can write their own algorithms, based on the belief that their 
cryptographic ability is second-to-none and that they should trust 
nobody but themselves. 

Any of these alternatives is problematic, but the first seems to be the most sensi­
ble. Putting your trust in a single manufacturer, consultant, or government is ask­
ing for trouble. Most people who call themselves security consultants (even those 
from big-name firms) usually don't know anything about encryption. Most security 
product manufacturers are no better. The NSA has some of the world's best cryp­
tographers working for it, but they're not telling all they know. They have their own 
interests to further which are not congruent with those of their citizens. And even 
if you're a genius, writing your own algorithm and then using it without any peer 
review is just plain foolish. 

The algorithms in this book are public. Most have appeared in the open literature 
and many have been cryptanalyzed by experts in the field. I list all published results, 
both positive and negative. I don't have access to the cryptanalysis done by any of 
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the myriad military security organizations in the world (which are probably better 
than the academic institutions-they've been doing it longer and are better funded), 
so it is possible that these algorithms are easier to break than it appears. Even so, it 
is far more likely that they are more secure than an algorithm designed and imple­
mented in secret in some corporate basement. 

The hole in all this reasoning is that we don't know the abilities of the various 
military cryptanalysis organizations. 

What algorithms can the NSA break? For the majority of us, there's really no way 
of knowing. If you are arrested with a DES-encrypted computer hard drive, the FBI 
is unlikely to introduce the decrypted plaintext at your trial; the fact that they can 
break an algorithm is often a bigger secret than any information that is recovered. 
During WWII, the Allies were forbidden from using decrypted German Ultra traffic 
unless they could have plausibly gotten the information elsewhere. The only way to 
get the NSA to admit to the ability to break a given algorithm is to encrypt some­
thing so valuable that its public dissemination is worth the admission. Or, better 
yet, create a really funny joke and send it via encrypted e-mail to shady characters 
in shadowy countries. NSA employees are people, too; I doubt even they can keep a 
good joke secret. 

A good working assumption is that the NSA can read any message that it chooses, 
but that it cannot read all messages that it chooses. The NSA is limited by 
resources, and has to pick and choose among its various targets. Another good 
assumption is that they prefer breaking knuckles to breaking codes; this preference 
is so strong that they will only resort to breaking codes when they wish to preserve 
the secret that they have read the message. 

In any case, the best most of us can do is to choose among public algorithms that 
have withstood a reasonable amount of public scrutiny and cryptanalysis. 

Algorithms for Export 
Algorithms for export out of the United States must be approved by the U.S. gov­

ernment (actually, by the NSA-see Section 25.1 ). It is widely believed that these 
export-approved algorithms can be broken by the NSA. Although no one has admit­
ted this on the record, these are some of the things the NSA is rumored to privately 
suggest to companies wishing to export their cryptographic products: 

Leak a key bit once in a while, embedded in the ciphertext. 

"Dumb down" the effective key to something in the 30-bit range. For 
example, while the algorithm might accept a 100-bit key, most of 
those keys might be equivalent. 

Use a fixed IV, or encrypt a fixed header at the beginning of each 
encrypted message. This facilitates a known-plaintext attack. 

Generate a few random bytes, encrypt them with the key, and then 
put both the plaintext and the ciphertext of those random bytes at the 
beginning of the encrypted message. This also facilitates a known­
plaintext attack. 
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NSA gets a copy of the source code, but the algorithm's details remain secret from 
everyone else. Certainly no one advertises any of these deliberate weaknesses, but 
beware if you buy a U.S. encryption product that has been approved for export. 

10.2 PUBLIC-KEY CRYPTOGRAPHY VERSUS SYMMETRIC 

CRYPTOGRAPHY 

Which is better, public-key cryptography or symmetric cryptography? This question 
doesn't make any sense, but has been debated since public-key cryptography was 
invented. The debate assumes that the two types of cryptography can be compared 
on an equal footing. They can't. 

Needham and Schroeder [1159] pointed out that the number and length of mes­
sages are far greater with public-key algorithms than with symmetric algorithms. 
Their conclusion was that the symmetric algorithm was more efficient than the 
public-key algorithm. While true, this analysis overlooks the significant security 
benefits of public-key cryptography. 

Whitfield Diffie writes [492,494]: 

In viewing public-key cryptography as a new form of cryptosystem rather than a 
new form of key management, I set the stage for criticism on grounds of both secu­
rity and performance. Opponents were quick to point out that the RSA system ran 
about one-thousandth as fast as DES and required keys about ten times as large. 
Although it had been obvious from the beginning that the use of public key sys­
tems could be limited to exchanging keys for conventional [symmetric] cryptogra­
phy, it was not immediately clear that this was necessary. In this context, the 
proposal to build hybrid systems [879] was hailed as a discovery in its own right. 

Public-key cryptography and symmetric cryptography are different sorts of animals; 
they solve different sorts of problems. Symmetric cryptography is best for encrypting 
data. It is orders of magnitude faster and is not susceptible to chosen-ciphertext 
attacks. Public-key cryptography can do things that symmetric cryptography can't; it 
is best for key management and a myriad of protocols discussed in Part I. 

Other primitives were discussed in Part I: one-way hash functions, message 
authentication codes, and so on. Table 10.1 lists different types of algorithms and 
their properties [804]. 

10.3 ENCRYPTING COMMUNICATIONS CHANNELS 

This is the classic Alice and Bob problem: Alice wants to send Bob a secure message. 
What does she do? She encrypts the message. 

In theory, this encryption can take place at any layer in the OSI (Open Systems 
Interconnect) communications model. (See the OSI security architecture standard for 
more information [305].) In practice, it takes place either at the lowest layers (one and 
two) or at higher layers. If it takes place at the lowest layers, it is called link-by-link 
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Algorithm 

Symmetric encryption algorithms 

Public-key encryption algorithms 

Digital signature algorithms 

Key-agreement algorithms 

One-way hash functions 

Message authentication codes 

Table 10.1 
Classes of Algorithms 

Confidentiality Authentication 

Yes No 

Yes No 

No Yes 

Yes Optional 

No No 

No Yes 

Key 
Integrity Management 

No Yes 

No Yes 

Yes No 

No Yes 

Yes No 

Yes No 

encryption; everything going through a particular data link is encrypted. If it takes 
place at higher layers, it is called end-to-end encryption; the data are encrypted selec­
tively and stay encrypted until they are decrypted by the intended final recipient. 
Each approach has its own benefits and drawbacks. 

Link-by-Link Encryption 
The easiest place to add encryption is at the physical layer (see Figure 10.1 ). This 

is called link-by-link encryption. The interfaces to the physical layer are generally 
standardized and it is easy to connect hardware encryption devices at this point. 
These devices encrypt all data passing through them, including data, routing infor­
mation, and protocol information. They can be used on any type of digital commu­
nication link. On the other hand, any intelligent switching or storing nodes between 
the sender and the receiver need to decrypt the data stream before processing it. 

This type of encryption is very effective. Because everything is encrypted, a crypt­
analyst can get no information about the structure of the information. He has no 
idea who is talking to whom, how long the messages they are sending are, what 
times of day they communicate, and so on. This is called traffic-flow security: the 
enemy is not only denied access to the information, but also access to the knowl­
edge of where and how much information is flowing. 

Security does not depend on any traffic management techniques. Key manage­
ment is also simple; only the two endpoints of the line need a common key, and 
they can change their key independently from the rest of the network. 

Node 1 Node 2 Node3 Node 4 

Figure 10.1 Link encryption. 



~--:s. ______ C_H_A_P_T_ER_l_0_U_s1_·n_g_A_lg_o_r_it_h_m_s _______________ _ 

Imagine a synchronous communications line, encrypted using 1-bit CFB. After 
initialization, the line can run indefinitely, recovering automatically from bit or 
synchronization errors. The line encrypts whenever messages are sent from one end 
to the other; otherwise it just encrypts and decrypts random data. Eve has no idea 
when messages are being sent and when they are not; she has no idea when mes­
sages begin and end. All she sees is an endless stream of random-looking bits. 

If the communications line is asynchronous, the same 1-bit CFB mode can be 
used. The difference is that the adversary can get information about the rate of 
transmission. If this information must be concealed, make some provision for pass­
ing dummy messages during idle times. 

The biggest problem with encryption at the physical layer is that each physical 
link in the network needs to be encrypted: Leaving any link unencrypted jeopar­
dizes the security of the entire network. If the network is large, the cost may quickly 
become prohibitive for this kind of encryption. 

Additionally, every node in the network must be protected, since it processes 
unencrypted data. If all the network's users trust one another, and all nodes are in 
secure locations, this may be tolerable. But this is unlikely. Even in a single corpora­
tion, information might have to be kept secret within a department. If the network 
accidentally misroutes information, anyone can read it. Table 10.2 summarizes the 
pros and cons of link-by-link encryption. 

End-to-End Encryption 

Another approach is to put encryption equipment between the network layer and 
the transport layer. The encryption device must understand the data according to 
the protocols up to layer three and encrypt only the transport data units, which are 
then recombined with the unencrypted routing information and sent to lower lay­
ers for transmission. 

This approach avoids the encryption/decryption problem at the physical layer. By 
providing end-to-end encryption, the data remains encrypted until it reaches its 
final destination (see Figure 10.2). The primary problem with end-to-end encryption 
is that the routing information for the data is not encrypted; a good cryptanalyst can 

Table 10.2 
Link-by-Link Encryption: Advantages and Disadvantages 

Advantages: 
Easier operation, since it can be made transparent to the user. That is, everything 

is encrypted before being sent over the link. 
Only one set of keys per link is required. 
Provides traffic-flow security, since any routing information is encrypted. 
Encryption is online. 

Disadvantages: 
Data is exposed in the intermediate nodes. 
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Node 1 Node 2 Node 3 Node 4 

p >----+--- p 
Link 1 Link 2 Link 3 

Figure 10.2 End-to-end encryption. 

learn much from who is talking to whom, at what times and for how long, without 
ever knowing the contents of those conversations. Key management is also more 
difficult, since individual users must make sure they have common keys. 

Building end-to-end encryption equipment is difficult. Each particular communi­
cations system has its own protocols. Sometimes the interfaces between the levels 
are not well-defined, making the task even more difficult. 

If encryption takes place at a high layer of the communications architecture, like 
the applications layer or the presentation layer, then it can be independent of the 
type of communication network used. It is still end-to-end encryption, but the 
encryption implementation does not have to bother about line codes, synchroniza­
tion between modems, physical interfaces, and so forth. In the early days of elec­
tromechanical cryptography, encryption and decryption took place entirely offline; 
this is only one step removed from that. 

Encryption at these high layers interacts with the user software. This software is 
different for different computer architectures, and so the encryption must be opti­
mized for different computer systems. Encryption can occur in the software itself or 
in specialized hardware. In the latter case, the computer will send the data to the 
specialized hardware for encryption before sending it to lower layers of the commu­
nication architecture for transmission. This process requires some intelligence and 
is not suitable for dumb terminals. Additionally, there may be compatibility prob­
lems with different types of computers. 

The major disadvantage of end-to-end encryption is that it allows traffic analysis. 
Traffic analysis is the analysis of encrypted messages: where they come from, where 
they go to, how long they are, when they are sent, how frequent or infrequent they 
are, whether they coincide with outside events like meetings, and more. A lot of 
good information is buried in that data, and a cryptanalyst will want to get his hands 
on it. Table 10.3 presents the positive and negative aspects of end-to-end encryption. 

Combining the Two 

Table 10.4, primarily from [1244], compares link-by-link and end-to-end encryp­
tion. Combining the two, while most expensive, is the most effective way of secur­
ing a network. Encryption of each physical link makes any analysis of the routing 
information impossible, while end-to-end encryption reduces the threat of unen­
crypted data at the various nodes in the network. Key management for the two 
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Table 10.3 
End-to-End Encryption: Advantages and Disadvantages 

Advantages: 
Higher secrecy level. 

Disadvantages: 
Requires a more complex key-management system. 
Traffic analysis is possible, since routing information is not encrypted. 
Encryption is offline. 

schemes can be completely separate: The network managers can take care of 
encryption at the physical level, while the individual users have responsibility for 
end-to-end encryption. 

10.4 ENCRYPTING DATA FOR STORAGE 

Encrypting data for storage and later retrieval can also be thought of in the Alice and 
Bob model. Alice is still sending a message to Bob, but in this case "Bob" is Alice at 
some future time. However, the problem is fundamentally different. 

In communications channels, messages in transit have no intrinsic value. If Bob 
doesn't receive a particular message, Alice can always resend it. This is not true for 
data encrypted for storage. If Alice can't decrypt her message, she can't go back in 
time and re-encrypt it. She has lost it forever. This means that encryption applica­
tions for data storage should have some mechanisms to prevent unrecoverable 
errors from creeping into the ciphertext. 

The encryption key has the same value as the message, only it is smaller. In effect, 
cryptography converts large secrets into smaller ones. Being smaller, they can be eas­
ily lost. Key management procedures should assume that the same keys will be used 
again and again, and that data may sit on a disk for years before being decrypted. 

Furthermore, the keys will be around for a long time. A key used on a communi­
cations link should, ideally, exist only for the length of the communication. A key 
used for data storage might be needed for years, and hence must be stored securely 
for years. 

Other problems particular to encrypting computer data for storage were listed 
in [357]: 

The data may also exist in plaintext form, either on another disk, in 
another computer, or on paper. There is much more opportunity for a 
cryptanalyst to perform a known-plaintext attack. 

In database applications, pieces of data may be smaller than the block 
size of most algorithms. This will cause the ciphertext to be consid­
erably larger than the plaintext. 
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Table 10.4 
Comparing Link-by-Link and End-to-End Encryption 

LINK-BY-LINK ENCRYPTION 

Security within Hosts 
Message exposed in 

sending host 
Message exposed in 

intermediate nodes 

Role of User 
Applied by sending host 
Invisible to user 
Host maintains encryption 
One facility for all users 
Can be done in hardware 
All or no messages encrypted 

Implementation Concerns 
Requires one key per 

host pair 
Requires encryption hardware 

or software at each host 
Provides node authentication 

END-TO-END ENCRYPTION 

Message encrypted in sending 
host 

Message encrypted in 
intermediate nodes 

Applied by sending process 
User applies encryption 
User must find algorithm 
User selects encryption 
More easily done in software 
User chooses to encrypt or 

not, for each message 

Requires one key per user 
pair 

Requires encryption hardware 
or software at each node 

Provides user authentication 

The speed of 1/0 devices demands fast encryption and decryption, and 
will probably require encryption hardware. In some applications, spe­
cial high-speed algorithms may be required. 

Safe, long-term storage for keys is required. 

Key management is much more complicated, since different people 
need access to different files, different portions of the same file, and so 
forth. 

If the encrypted files are not structured as records and fields, such as text files, 
retrieval is easier: The entire file is decrypted before use. If the encrypted files are 
database files, this solution is problematic. Decrypting the entire database to access 
a single record is inefficient, but encrypting records independently might be suscep­
tible to a block-replay kind of attack. 

In addition, you must make sure the unencrypted file is erased after encryption 
(see Section 10.9). For further details and insights, consult [425,569]. 

Dereferencing Keys 
When encrypting a large hard drive, you have two options. You can encrypt all the 

data using a single key. This gives a cryptanalyst a large amount of ciphertext to 
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analyze and makes it impossible to allow multiple users to see only parts of the 
drive. Or, you can encrypt each file with a different key, forcing users to memorize 
a different key for each file. 

The solution is to encrypt each file with a separate key, and to encrypt the keys 
with another key known by the users. Each user only has to remember that one key. 
Different users can have different subsets of the file-encryption keys encrypted with 
their key. And there can even be a master key under which every file-encryption key 
is encrypted. This is even more secure because the file-encryption keys are random 
and less susceptible to a dictionary attack. 

Driver-Level vs. File-Level Encryption 

There are two ways to encrypt a hard drive: at the file level and at the driver level. 
Encryption at the file level means that every file is encrypted separately. To use a 
file that's been encrypted, you must first decrypt the file, then use it, and then re­
encrypt it. 

Driver-level encryption maintains a logical drive on the user's machine that has all 
data on it encrypted. If done well, this can provide security that, beyond choosing 
good passwords, requires little worry on the part of the user. The driver must be con­
siderably more complex than a simple file-encryption program, however, because it 
must deal with the issues of being an installed device driver, allocation of new sec­
tors to files, recycling of old sectors from files, random-access read and update 
requests for any data on the logical disk, and so on. 

Typically, the driver prompts the user for a password before starting up. This is 
used to generate the master decryption key, which may then be used to decrypt 
actual decryption keys used on different data. 

Providing Random Access to an Encrypted Drive 

Most systems expect to be able to access individual disk sectors randomly. This 
adds some complication for using many stream ciphers and block ciphers in any 
chaining mode. Several solutions are possible. 

Use the sector address to generate a unique IV for each sector being encrypted or 
decrypted. The drawback is that each sector will always be encrypted with the same 
IV. Make sure this is not a security problem. 

For the master key, generate a pseudo-random block as large as one sector. (You 
can do this by running an algorithm in OFB mode, for example.) To encrypt any sec­
tor, first XOR in this pseudo-random block, then encrypt normally with a block 
cipher in ECB mode. This is called ECB+OFB (see Section 15.4). 

Since CBC and CFB are error-recovering modes, you can use all but the first block 
or two in the sector to generate the IV for that sector. For example, the IV for sector 
3001 may be the hash of the all but the first 128 bits of the sector's data. After gen­
erating the IV, encrypt normally in CBC mode. To decrypt the sector, you use the 
second 64-bit block of the sector as an IV, and decrypt the remainder of the sector. 
Then, using the decrypted data, you regenerate the IV and decrypt the first 128 bits. 

You can use a block cipher with a large enough block size that it can encrypt the 
whole sector at once. Crab (see Section 14.6) is an example. 
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10.5 HARDWARE ENCRYPTION VERSUS SOFTWARE 

ENCRYPTION 

Hardware 
Until very recently, all encryption products were in the form of specialized hard­

ware. These encryption/decryption boxes plugged into a communications line and 

Table 10.5 
Comparing File-Level and Driver-Level Encryption 

FILE- LEVEL ENCRYPTION 

Benefits: 
Ease of implementation and use. 
Flexible. 
Relatively small performance penalty. 
Users can move files between different 

machines without problems. 
Users can back files up without 

problems. 

Security Issues: 
Potential leakage through security­

unconscious programs. (Program 
may write file to disk for temporary 
storage, for example.) 

Bad implementations may always re­
encrypt with same key for same 
password. 

Usability Problems: 
User has to figure out what to do. 
There may be different passwords for 

different files. 
Manual encryption of selected files is 

the only access control. 

DRIVER-LEVEL ENCRYPTION 

Temporary files, work files, and so 
forth can be kept on the secure 
drive. 

It's harder to forget to re-encrypt 
something on this kind of system. 

Lots of things can go wrong with a 
device-driver or memory-resident 
program. 

Bad implementations will allow 
chosen-plaintext, or even chosen­
ciphertext attacks. 

If whole system is master-keyed 
under one password, loss of that 
password means that the attacker 
gets everything. 

A more limited set of ciphers can 
reasonably be used for this kind 
of application. For example, OFB 
stream ciphers would not work. 

There will be a performance penalty. 
The driver may interact in weird 

ways with Windows, OS/2 DOS 
emulation, device drivers, and so on. 
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encrypted all the data going across that line. Although software encryption is becom­
ing more prevalent today, hardware is still the embodiment of choice for military and 
serious commercial applications. The NSA, for example, only authorizes encryption 
in hardware. There are several reasons why this is so. 

The first is speed. As we will see in Part III, encryption algorithms consist of many 
complicated operations on plaintext bits. These are not the sorts of operations that 
are built into your run-of-the-mill computer. The two most common encryption 
algorithms, DES and RSA, run inefficiently on general-purpose processors. While 
some cryptographers have tried to make their algorithms more suitable for software 
implementation, specialized hardware will always win a speed race. 

Additionally, encryption is often a computation-intensive task. Tying up the 
computer's primary processor for this is inefficient. Moving encryption to another 
chip, even if that chip is just another processor, makes the whole system faster. 

The second reason is security. An encryption algorithm running on a generalized 
computer has no physical protection. Mallory can go in with various debugging 
tools and surreptitiously modify the algorithm without anyone ever realizing it. 
Hardware encryption devices can be securely encapsulated to prevent this. Tamper­
proof boxes can prevent someone from modifying a hardware encryption device. 
Special-purpose VLSI chips can be coated with a chemical such that any attempt to 
access their interior will result in the destruction of the chip's logic. The U.S. gov­
ernment's Clipper and Capstone chips (see Sections 24.16 and 24.17) are designed to 
be tamperproof. The chips can be designed so that it is impossible for Mallory to 
read the unencrypted key. 

IBM developed a cryptographic system for encrypting data and communications 
on mainframe computers [515,1027]. It includes tamper-resistant modules to hold 
keys. This system is discussed in Section 24.1. 

Electromagnetic radiation can sometimes reveal what is going on inside a piece of 
electronic equipment. Dedicated encryption boxes can be shielded, so that they leak 
no compromising information. General-purpose computers can be shielded as well, 
but it is a far more complex problem. The U.S. military calls this TEMPEST; it's a 
subject well beyond the scope of this book. 

The final reason for the prevalence of hardware is the ease of installation. Most 
encryption applications don't involve general-purpose computers. People may wish 
to encrypt their telephone conversations, facsimile transmissions, or data links. It is 
cheaper to put special-purpose encryption hardware in the telephones, facsimile 
machines, and modems than it is to put in a microprocessor and software. 

Even when the encrypted data comes from a computer, it is easier to install a ded­
icated hardware encryption device than it is to modify the computer's system soft­
ware. Encryption should be invisible; it should not hamper the user. The only way 
to do this in software is to write encryption deep into the operating system. This 
isn't easy. On the other hand, even a computer neophyte can plug an encryption box 
between his computer and his external modem. 

The three basic kinds of encryption hardware on the market today are: self­
contained encryption modules (that perform functions such as password verification 
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and key management for banks), dedicated encryption boxes for communications 
links, and boards that plug into personal computers. 

Some encryption boxes are designed for certain types of communications links, 
such as T-1 encryption boxes that are designed not to encrypt synchronization bits. 
There are different boxes for synchronous and asynchronous communications lines. 
Newer boxes tend to accept higher bit rates and are more versatile. 

Even so, many of these devices have some incompatibilities. Buyers should be 
aware of this and be well-versed in their particular needs, lest they find themselves 
the owners of encryption equipment unable to perform the task at hand. Pay atten­
tion to restrictions in hardware type, operating system, applications software, net­
work, and so forth. 

PC-board encryptors usually tncrypt everything written to the hard disk and can 
be configured to encrypt everything sent to the floppy disk and serial port as well. 
These boards are not shielded against electromagnetic radiation or physical inter­
ference, since there would be no benefit in protecting the boards if the computer 
remained unaffected. 

More companies are starting to put encryption hardware into their communications 
equipment. Secure telephones, facsimile machines, and n1odems are all available. 

Internal key management for these devices is generally secure, although there are 
as many different schemes as there are equipment vendors. Some schemes are more 
suited for one situation than another, and buyers should know what kind of key 
management is incorporated into the encryption box and what they are expected to 
provide themselves. 

Software 

Any encryption algorithm can be implemented in software. The disadvantages are 
in speed, cost, and ease of modification (or manipulation). The advantages are in 
flexibility and portability, ease of use, and ease of upgrade. The algorithms written 
in C at the end of this book can be implemented, with little modification, on any 
computer. They can be inexpensively copied and installed on many machines. They 
can be incorporated into larger applications, such as communications programs or 
word processors. 

Software encryption programs are popular and are available for all major operating 
systems. These are meant to protect individual files; the user generally has to man­
ually encrypt and decrypt specific files. It is important that the key management 
scheme be secure: The keys should not be stored on disk anywhere (or even written 
to a place in memory from where the processor swaps out to disk). Keys and unen­
crypted files should be erased after encryption. Many programs are sloppy in this 
regard, and a user has to choose carefully. 

Of course, Mallory can always replace the software encryption algorithm with 
something lousy. But for most users, that isn't a problem. If Mallory can break into 
our office and modify our encryption program, he can also put a hidden camera on the 
wall, a wiretap on the telephone, and a TEMPEST detector down the street. If Mallory 
is that much more powerful than the user, the user has lost the game before it starts. 
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10. 6 COMPRESSION, ENCODING, AND ENCRYPTION 

Using a data compression algorithm together with an encryption algorithm makes 
sense for two reasons: 

Cryptanalysis relies on exploiting redundancies in the plaintext; com­
pressing a file before encryption reduces these redundancies. 

Encryption is time-consuming; compressing a file before encryption 
speeds up the entire process. 

The important thing to remember is to compress before encryption. If the encryp­
tion algorithm is any good, the ciphertext will not be compressible; it will look like 
random data. (This makes a reasonable test of an encryption algorithm; if the cipher­
text can be compressed, then the algorithm probably isn't very good.) 

If you are going to add any type of transmission encoding or error detection and 
recovery, remember to add that after encryption. If there is noise in the communi­
cations path, decryption's error-extension properties will only make that noise 
worse. Figure 10.3 summarizes these steps. 

10. 7 DETECTING ENCRYPTION 

How does Eve detect an encrypted file? Eve is in the spy business, so this is an 
important question. Imagine that she's eavesdropping on a network where messages 
are flying in all directions at high speeds; she has to pick out the interesting ones. 
Encrypted files are certainly interesting, but how does she know they are encrypted? 

Generally, she relies on the fact that most popular encryption programs have 
well-defined headers. Electronic-mail messages encrypted with either PEM or PGP 
(see Sections 24.10 and 24.12) are easy to identify for that reason. 

Other file encryptors just produce a ciphertext file of seemingly random bits. How 
can she distinguish it from any other file of seemingly random bits? There is no sure 
way, but Eve can try a number of things: 

Examine the file. ASCII text is easy to spot. Other file formats, such as 
TIFF, TeX, C, Postscript, G3 facsimile, or Microsoft Excel, have stan-

Data 

-.1 Compress ~I Encrypt ~~C-~-~-~-~I~ Error 
Control 

Repeat 
Requests 

I Decrypt 1-. Uncompress 

Figure 10.3 Encryption with compression and error control. 



10.8 Hiding Ciphertext in Ciphertext 

<lard identifying characteristics. Executable code is detectable, as well. 
UNIX files often have "magic numbers" that can be detected. 

Try to uncompress the file, using the major compression algorithms. 
If the file is compressed (and not encrypted), this should yield the 
original file. 

Try to compress the file. If the file is ciphertext (and the algorithm is 
good), then the probability that the file can be appreciably compressed 
by a general-purpose compression routine is small. (By appreciably, I 
mean more than 1 or 2 percent.) If it is something else (a binary image 
or a binary data file, for example) it probably can be compressed. 

Any file that cannot be compressed and is not already compressed is probably 
ciphertext. (Of course, it is possible to specifically make ciphertext that is com­
pressible.) Identifying the algorithm is a whole lot harder. If the algorithm is good, 
you can't. If the algorithm has some slight biases, it might be possible to recognize 
those biases in the file. However, the biases have to be pretty significant or the file 
has to be pretty big in order for this to work. 

10.8 HIDING CIPHERTEXT IN CIPHERTEXT 

Alice and Bob have been sending encrypted messages to each other for the past year. 
Eve has been collecting them all, but she cannot decrypt any of them. Finally, the 
secret police tire of all this unreadable ciphertext and arrest the pair. "Give us your 
encryption keys," they demand. Alice and Bob refuse, but then they notice the 
thumbscrews. What can they do? 

Wouldn't it be nice to be able to encrypt a file such that there are two possible 
decryptions, each with a different key. Alice could encrypt a real message to Bob in 
one of the keys and some innocuous message in the other key. If Alice were caught, 
she could surrender the key to the innocuous message and keep the real key secret. 

The easiest way to do this is with one-time pads. Let P be the plaintext, D the 
dummy plaintext, C the ciphertext, K the real key, and K' the dummy key. Alice 
encrypts P: 

PEBK=C 

Alice and Bob share K, so Bob can decrypt C: 

CEBK=P 

If the secret police ever force them to surrender their key, they don't surrender K, 
but instead surrender: 

K' = C EB D 

The police then recover the dummy plaintext: 

C EB K' = D 
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Since these are one-time pads and K is completely random, there is no way to 
prove that K' was not the real key. To make matters more convincing, Alice and Bob 
should concoct some mildly incriminating dummy messages to take the place of the 
really incriminating real messages. A pair of Israeli spies once did this. 

Alice could take P and encrypt it with her favorite algorithm and key K to get C. 
Then she takes C and XORs it with some piece of mundane plaintext-Pride and 
Prejudice for example, to get K'. She stores both C and the XOR on her hard disk. 
Now, when the secret police interrogate her, she can explain that she is an amateur 
cryptographer and that K' is a merely one-time pad for C. The secret police might 
suspect something, but unless they know K they cannot prove that Alice's explana­
tion isn't valid. 

Another method is to encrypt P with a symmetric algorithm and K, and D with 
K'. Intertwine bits (or bytes) of the ciphertext to make the final ciphertexts. If the 
secret police demand the key, Alice gives them K' and says that the alternating bits 
(or bytes) are random noise designed to frustrate cryptanalysis. The trouble is the 
explanation is so implausible that the secret police will probably not believe her 
(especially considering it is suggested in this book). 

A better way is for Alice to create a dummy message, D, such that the concatena­
tion of P and D, compressed, is about the same size as D. Call this concatenation P'. 
Alice then encrypts P' with whatever algorithm she and Bob share to get C. Then 
she sends C to Bob. Bob decrypts C to get P', and then P and D. Then they both com­
pute C EB D = K'. This K' becomes the dummy one-time pad they use in case the 
secret police break their doors down. Alice has to transmit D so that hers and Bob's 
alibis match. 

Another method is for Alice to take an innocuous message and run it through 
some error-correcting code. Then she can introduce errors that correspond to the 
secret encrypted message. On the receiving end, Bob can extract the errors to recon­
struct the secret message and decrypt it. He can also use the error-correcting code to 
recover the innocuous message. Alice and Bob might be hard pressed to explain to 
the secret police why they consistently get a 30 percent bit-error rate on an otherwise 
noise-free computer network, but in some circumstances this scheme can work. 

Finally, Alice and Bob can use the subliminal channels in their digital signature 
algorithms (see Sections 4.2 and 23.3). This is undetectable, works great, but has the 
drawback of only allowing 20 or so characters of subliminal text to be sent per 
signed innocuous message. It really isn't good for much more than sending keys. 

10.9 DESTROYING INFORMATION 

When you delete a file on most computers, the file isn't really deleted. The only 
thing deleted is an entry in the disk's index file, telling the machine that the file is 
there. Many software vendors have made a fortune selling file-recovery software 
that recovers files after they have been deleted. 

And there's yet another worry: Virtual memory means your computer can read 
and write memory to disk any time. Even if you don't save it, you never know when 
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a sensitive document you are working on is shipped off to disk. This means that 
even if you never save your plaintext data, your computer might do it for you. And 
driver-level compression programs like Stacker and DoubleSpace can make it even 
harder to predict how and where information is stored on a disk. 

To erase a file so that file-recovery software cannot read it, you have to physically 
write over all of the file's bits on the disk. According to the National Computer 
Security Center [1148]: 

Overwriting is a process by which unclassified data are written to storage loca­
tions that previously held sensitive data .... To purge the ... storage media, the 
DoD requires overwriting with a pattern, then its complement, and finally with 
another pattern; e.g., overwrite first with OOll 0101, followed by 1100 1010, then 
1001 Oll 1. The number of times an overwrite must be accomplished depends on 
the storage media, sometimes on its sensitivity, and sometimes on different DoD 
component requirements. In any case, a purge is not complete until a final over­
write is made using unclassified data. 

You may have to erase files or you may have to erase entire drives. You should 
also erase all unused space on your hard disk. 

Most commercial programs that claim to implement the DoD standard over­
write three times: first with all ones, then with all zeros, and finally with a repeat­
ing one-zero pattern. Given my general level of paranoia, I recommend overwriting 
a deleted file seven times: the first time with all ones, the second time with all 
zeros, and five times with a cryptographically secure pseudo-random sequence. 
Recent developments at the National Institute of Standards and Technology with 
electron-tunneling microscopes suggest even that might not be enough. Honestly, 
if your data is sufficiently valuable, assume that it is impossible to erase data com­
pletely off magnetic media. Burn or shred the media; it's cheaper to buy media new 
than to lose your secrets. 





PART III 
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Mathematical 
Background 

11.1 INFORMATION THEORY 

CHAPTER 1 1 

Modern information theory was first published in 1948 by Claude Elmwood Shan­
non [1431,1432]. (His papers have been reprinted by the IEEE Press [1433].) For a 
good mathematical treatment of the topic, consult [593]. In this section, I will just 
sketch some important ideas. 

Entropy and Uncertainty 
Information theory defines the amount of information in a message as the mini­

mum number of bits needed to encode all possible meanings of that message, 
assuming all messages are equally likely. For example, the day-of-the-week field in 
a database contains no more than 3 bits of information, because the information can 
be encoded with 3 bits: 

000 ~ Sunday 
001 ~ Monday 
010 ~ Tuesday 
011 ~ Wednesday 
100 ~ Thursday 
101 ~ Fri day 
110 ~ Saturday 
111 is unused 

If this information were represented by corresponding ASCII character strings, it 
would take up more memory space but would not contain any more information. 
Similarly, the "sex" field of a database contains only 1 bit of information, even 
though it might be stored as one of two 6-byte ASCII strings: "MALE" or "FEMALE." 

Formally, the amount of information in a message Mis measured by the entropy 
of a message, denoted by H(M). The entropy of a message indicating sex is 1 bit; the 
entropy of a message indicating the day of the week is slightly less than 3 bits. In 
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general, the entropy of a message measured in bits is log2 n, in which n is the num­
ber of possible meanings. This assumes that each meaning is equally likely. 

The entropy of a message also measures its uncertainty. This is the number of 
plaintext bits needed to be recovered when the message is scrambled in ciphertext 
in order to learn the plain text. For example, if the ciphertext block "QHP * SM" is 
either "MALE" or "FEMALE," then the uncertainty of the message is 1. A cryptan­
alyst has to learn only one well-chosen bit to recover the message. 

Rate of a Language 
For a given language, the rate of the language is 

r=H(M)/N 

in which N is the length of the message. The rate of normal English takes various 
values between 1.0 bits/letter and 1.5 bits/letter, for large values of N. Shannon, in 
[1434], said that the entropy depends on the length of the text. Specifically he indi­
cated a rate of 2.3 bits/letter for 8-letter chunks, but the rate drops to between 1.3 
and 1.5 for 16-letter chunks. Thomas Cover used a gambling estimating technique 
and found an entropy of 1.3 bits/character [386]. (I'll use 1.3 in this book.) The abso­
lute rate of a language is the maximum number of bits that can be coded in each 
character, assuming each character sequence is equally likely. If there are L charac­
ters in a language, the absolute rate is: 

R = log2 L 

This is the maximum entropy of the individual characters. 
For English, with 26 letters, the absolute rate is log2 26, or about 4. 7 bits/letter. It 

should come as no surprise to anyone that the actual rate of English is much less 
than the absolute rate; natural language is highly redundant. 

The redundancy of a language, denoted D, is defined by: 

D=R-r 

Given that the rate of English is 1.3, the redundancy is 3.4 bits/letter. This means 
that each English character carries 3.4 bits of redundant information. 

An ASCII message that is nothing more than printed Inglish has 1.3 bits of infor­
mation per byte of message. This means it has 6. 7 bits of redundant information, 
giving it an overall redundancy of 0.84 bits of information per bit of ASCII text, and 
an entropy of 0.16 bits of information per bit of ASCII text. The same message in 
BAUDOT, at 5 bits per character, has a redundancy of 0. 7 4 bits per bit and an 
entropy of 0.26 bits per bit. Spacing, punctuation, numbers, and formatting modify 
these results. 

Security of a Cryptosystem 

Shannon defined a precise mathematical model of what it means for a cryptosystem 
to be secure. The goal of a cryptanalyst is to determine the key K, the plaintext P, or 
both. However, he may be satisfied with some probabilistic information about P: 
whether it is digitized audio, German text, spreadsheet data, or something else. 
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In most real-world cryptanalysis, the cryptanalyst has some probabilistic infor­
mation about P before he even starts. He probably knows the language of the plain­
text. This language has a certain redundancy associated with it. If it is a message to 
Bob, it probably begins with "Dear Bob." Certainly "Dear Bob" is more probable 
than "e8T&g [,m." The purpose of cryptanalysis is to modify the probabilities asso­
ciated with each possible plaintext. Eventually one plaintext will emerge from the 
pile of possible plaintexts as certain (or at least, very probable). 

There is such a thing as a cryptosystem that achieves perfect secrecy: a cryp­
tosystem in which the ciphertext yields no possible information about the plaintext 
(except possibly its length). Shannon theorized that it is only possible if the number 
of possible keys is at least as large as the number of possible messages. In other 
words, the key must be at least as long as the message itself, and no key can be 
reused. In still other words, the one-time pad (see Section 1.5) is the only cryptosys­
tem that achieves perfect secrecy. 

Perfect secrecy aside, the ciphertext unavoidably yields some information about the 
corresponding plaintext. A good cryptographic algorithm keeps this information to a 
minimum; a good cryptanalyst exploits this information to determine the plaintext. 

Cryptanalysts use the natural redundancy of language to reduce the number of 
possible plaintexts. The more redundant the language, the easier it is to cryptana­
lyze. This is the reason that many real-world cryptographic implementations use a 
compression program to reduce the size of the text before encrypting it. Compres­
sion reduces the redundancy of a message as well as the work required to encrypt 
and decrypt. 

The entropy of a cryptosystem is a measure of the size of the keyspace, K. It is 
approximated by the base two logarithm of the number of keys: 

H(K) = log2 K 

A cryptosystem with a 64-bit key has an entropy of 64 bits; a cryptosystem with 
a 56-bit key has an entropy of 56 bits. In general, the greater the entropy, the harder 
it is to break a cryptosystem. 

Unicity Distance 

For a message of length n, the number of different keys that will decipher a cipher­
text message to some intelligible plaintext in the same language as the original 
plaintext (such as an English text string) is given by the following formula [712,95]: 

2HIK) - nD _ 1 

Shannon [1432] defined the unicity distance, U, also called the unicity point, as an 
approximation of the amount of ciphertext such that the sum of the real informa­
tion (entropy) in the corresponding plaintext plus the entropy of the encryption key 
equals the number of ciphertext bits used. He then went on to show that ciphertexts 
longer than this distance are reasonably certain to have only one meaningful decryp­
tion. Ciphertexts significantly shorter than this are likely to have multiple, equally 
valid decryptions and therefore gain security from the opponent's difficulty in 
choosing the correct one. 
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For most symmetric cryptosystems, the unicity distance is defined as the entropy 
of the cryptosystem divided by the redundancy of the language. 

U=H(K)/D 

Unicity distance does not make deterministic predictions, but gives probabilistic 
results. Unicity distance estimates the minimum amount of ciphertext for which it 
is likely that there is only a single intelligible plaintext decryption when a brute- . 
force attack is attempted. Generally, the longer the unicity distance, the better the 
cryptosystem. For DES, with a 56-bit key, and an ASCII English message, the unicity 
distance is about 8.2 ASCII characters or 66 bits. Table 11.1 gives the unicity dis­
tances for varying key lengths. The unicity distances for some classical cryptosys­
tems are found in [445]. 

Unicity distance is not a measure of how much ciphertext is required for crypt­
analysis, but how much ciphertext is required for there to be only one reasonable 
solution for cryptanalysis. A cryptosystem may be computationally infeasible to 
break even if it is theoretically possible to break it with a small amount of cipher­
text. (The largely esoteric theory of relativized cryptography is relevant here 
[230,231,232,233,234,235].) The unicity distance is inversely proportional to the 
redundancy. As redundancy approaches zero, even a trivial cipher can be unbreak­
able with a ciphertext-only attack. 

Shannon defined a cryptosystem whose unicity distance is infinite as one that has 
ideal secrecy. Note that an ideal cryptosystem is not necessarily a perfect cryp­
tosystem, although a perfect cryptosystem would necessarily be an ideal cryptosys­
tem. If a cryptosystem has ideal secrecy, even successful cryptanalysis will leave 
some uncertainty about whether the recovered plaintext is the real plain text. 

Information Theory in Practice 
While these concepts have great theoretical value, actual cryptanalysis seldom 

proceeds along these lines. Unicity distance guarantees insecurity if it's too small 
but does not guarantee security if it's high. Few practical algorithms are absolutely 
impervious to analysis; all manner of characteristics might serve as entering wedges 

Table 11.1 
Unicity Distances of ASCII Text Encrypted 
with Algorithms with Varying Key Lengths 

Key Length (in bits) Unicity Distance (in characters) 

40 5.9 
56 8.2 
64 9.4 
80 11.8 
128 18.8 
256 37.6 
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to crack some encrypted messages. However, similar information theory considera­
tions are occasionally useful, for example, to determine a recommended key change 
interval for a particular algorithm. Cryptanalysts also employ a variety of statistical 
and information theory tests to help guide the analysis in the most promising direc­
tions. Unfortunately, most literature on applying information theory to cryptanaly­
sis remains classified, including the seminal 1940 work of Alan Turing. 

Confusion and Diffusion 

The two basic techniques for obscuring the redundancies in a plaintext message 
are, according to Shannon, confusion and diffusion [1432]. 

Confusion obscures the relationship between the plaintext and the ciphertext. 
This frustrates attempts to study the ciphertext looking for redundancies and sta­
tistical patterns. The easiest way to do this is through substitution. A simple sub­
stitution cipher, like the Caesar Cipher, is one in which every identical letter of 
plain text is substituted for a single letter of ciphertext. Modern substitution ciphers 
are more complex: A long block of plaintext is substituted for a different block of 
ciphertext, and the mechanics of the substitution change with each bit in the plain­
text or key. This type of substitution is not necessarily enough; the German Enigma 
is a complex substitution algorithm that was broken during World War II. 

Diffusion dissipates the redundancy of the plaintext by spreading it out over the 
ciphertext. A cryptanalyst looking for those redundancies will have a harder time 
finding them. The simplest way to cause diffusion is through transposition (also 
called permutation). A simple transposition cipher, like columnar transposition, 
simply rearranges the letters of the plaintext. Modern ciphers do this type of per­
mutation, but they also employ other forms of diffusion that can diffuse parts of the 
message throughout the entire message. 

Stream ciphers rely on confusion alone, although some feedback schemes add dif­
fusion. Block algorithms use both confusion and diffusion. As a general rule, diffu­
sion alone is easily cracked (although double transposition ciphers hold up better 
than many other pencil-and-paper systems). 

11. 2 COMPLEXITY THEORY 

Complexity theory provides a methodology for analyzing the computational com­
plexity of different cryptographic techniques and algorithms. It compares crypto­
graphic algorithms and techniques and determines their security. Information 
theory tells us that all cryptographic algorithms (except one-time pads) can be bro­
ken. Complexity theory tells us whether they can be broken before the heat death 
of the universe. 

Complexity of Algorithms 

An algorithm's complexity is determined by the computational power needed to 
execute it. The computational complexity of an algorithm is often measured by two 
variables: T (for time complexity) and S (for space complexity, or memory require-
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ment). Both T and Sare commonly expressed as functions of n, where n is the size 
of the input. (There are other measures of complexity: the number of random bits, 
the communications bandwidth, the amount of data, and so on.) 

Generally, the computational complexity of an algorithm is expressed in what is 
called "big O" notation: the order of magnitude of the computational complexity. 
It's just the term of the complexity function which grows the fastest as n gets larger; 
all lower-order terms are ignored. For example, if the time complexity of a given 
algorithm is 4n 2 + 7n + 12, then the computational complexity is on the order of n2, 

expressed O(n2 ). 

Measuring time complexity this way is system-independent. You don't have to 
know the exact timings of various instructions or the number of bits used to repre­
sent different variables or even the speed of the processor. One computer might be 
50 percent faster than another and a third might have a data path twice as wide, but 
the order-of-magnitude complexity of an algorithm remains the same. This isn't 
cheating; when you're dealing with algorithms as complex as the ones presented 
here, the other stuff is negligible (is a constant factor) compared to the order-of­
magnitude complexity. 

This notation allows you to see how the input size affects the time and space 
requirements. For example, if T= O(n), then doubling the input size doubles the run­
ning time of the algorithm. If T= 0(2n), then adding one bit to the input size doubles 
the running time of the algorithm (within a constant factor). 

Generally, algorithms are classified according to their time or space complexities. 
An algorithm is constant if its complexity is independent of n: 0(1). An algorithm is 
linear, if its time complexity is O(n). Algorithms can also be quadratic, cubic, and so 
on. All these algorithms are polynomial; their complexity is O(nm), when mis a con­
stant. The class of algorithms that have a polynomial time complexity are called 
polynomial-time algorithms. 

Algorithms whose complexities are O(tfl111), where tis a constant greater than 1 and 
f(n) is some polynomial function of n, are called exponential. The subset of expo­
nential algorithms whose complexities are O(d 1111), where c is a constant and f(n) is 
more than constant but less than linear, is called superpolynomial. 

Ideally, a cryptographer would like to be able to say that the best algorithm to 
break this encryption algorithm is of exponential-time complexity. In practice, the 
strongest statements that can be made, given the current state of the art of compu­
tational complexity theory, are of the form "all known cracking algorithms for this 
cryptosystem are of superpolynomial-time complexity." That is, the cracking algo­
rithms that we know are of superpolynomial-time complexity, but it is not yet pos­
sible to prove that no polynomial-time cracking algorithm could ever be discovered. 
Advances in computational complexity may some day make it possible to design 
algorithms for which the existence of polynomial-time cracking algorithms can be 
ruled out with mathematical certainty. 

As n grows, the time complexity of an algorithm can make an enormous differ­
ence in whether the algorithm is practical. Table 11.2 shows the running times for 
different algorithm classes in which n equals one million. The table ignores con­
stants, but also shows why ignoring constants is reasonable. 
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Table 11.2 
Running Times of Different Classes of Algorithms 

# of Operations Time at 
Class Complexity for n = 106 106 O/S 

Constant 0(1) 1 1 µsec. 
Linear O(n) 106 1 sec. 
Quadratic O(n2 ) 1012 11.6 days 
Cubic O(n') 101s 32,000 yrs. 
Exponential 0(2 11) 

10301,030 10301,006 times the age 
of the universe 

Assuming that the unit of "time" for our computer is a microsecond, the com­
puter can complete a constant algorithm in a microsecond, a linear algorithm in a 
second, and a quadratic algorithm in 11.6 days. It would take 32,000 years to com­
plete a cubic algorithm; not terribly practical, but a computer built to withstand the 
next ice age would deliver a solution eventually. Performing the exponential algo­
rithm is futile, no matter how well you extrapolate computing power, parallel pro­
cessing, or contact with superintelligent aliens. 

Look at the problem of a brute-force attack against an encryption algorithm. The 
time complexity of this attack is proportional to the number of possible keys, which 
is an exponential function of the key length. If n is the length of the key, then the 
complexity of a brute-force attack is 0(2 11 ). Section 12.3 discusses the controversy 
surrounding a 56-bit key for DES instead of a 112-bit key. The complexity of a brute­
force attack against a 56-bit key is 256; against a 112-bit key the complexity is 2112. 
The former is possible; the latter isn't. 

Complexity of Problems 
Complexity theory also classifies the inherent complexity of problems, not just 

the complexity of particular algorithms used to solve problems. (Excellent intro­
ductions to this topic are [600,211, 1226]; see also [ 1096,2 7,739].) The theory looks at 
the minimum time and space required to solve the hardest instance of a problem on 
a theoretical computer known as a Turing machine. A Turing machine is a finite­
state machine with an infinite read-write memory tape. It turns out that a Turing 
machine is a realistic model of computation. 

Problems that can be solved with polynomial-time algorithms are called tractable, 
because they can usually be solved in a reasonable amount of time for reasonable­
sized inputs. (The exact definition of "reasonable" depends on the circumstance.) 
Problems that cannot be solved in polynomial time are called intractable, because 
calculating their solution quickly becomes infeasible. Intractable problems are 
sometimes just called hard. Problems that can only be solved with algorithms that 
are superpolynomial are computationally intractable, even for relatively small val­
ues of n. 
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It gets worse. Alan Turing proved that some problems are undecidable. It is im­
possible to devise any algorithm to solve them, regardless of the algorithm's time 
complexity. 

Problems can be divided into complexity classes, which depend on the complex­
ity of their solutions. Figure 11.1 shows the more important complexity classes and 
their presumed relationships. (Unfortunately, not much about this material has 
been proved mathematically.) 

On the bottom, the class P consists of all problems that can be solved in polyno­
mial time. The class NP consists of all problems that can be solved in polynomial 
time only on a nondf,terministic Turing machine: a variant of a normal Turing 
machine that can make guesses. The machine guesses the solution to the problem­
either by making "lucky guesses" or by trying all guesses in parallel-and checks its 
guess in polynomial time. 

NP's relevance to cryptography is this: Many symmetric algorithms and all public­
key algorithms can be cracked in nondeterministic polynomial time. Given a 
ciphertext C, the cryptanalyst simply guesses a plaintext, X, and a key, k, and in 
polynomial time runs the encryption algorithm on inputs X and k and checks 
whether the result is equal to C. This is important theoretically, because it puts an 
upper bound on the complexity of cryptanalysis for these algorithms. In practice, of 
course, it is a deterministic polynomial-time algorithm that the cryptanalyst seeks. 
Furthermore, this argument is not applicable to all classes of ciphersi in particular, 
it is not applicable to one-time pads-for any C, there are many X, k pairs that yield 
C when run through the encryption algorithm, but most of these Xs are nonsense, 
not legitimate plaintexts. 

EXPTIME 

PSPACE 

NP 

Figure 11.1 Complexity classes. 
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The class NP includes the class P, because any problem solvable in polynomial 
time on a deterministic Turing machine is also solvable in polynomial time on a 
nondeterministic Turing machine; the guessing stage can simply be omitted. 

If all NP problems are solvable in polynomial time on a deterministic machine, 
then P =NP.Although it seems obvious that some NP problems are much harder 
than others (a brute-force attack against an encryption algorithm versus encrypt­
ing a random block of plaintext), it has never been proven that P -:f. NP (or that 
P = NP). However, most people working in complexity theory believe that they 
are unequal. 

Stranger still, specific problems in NP can be proven to be as difficult as any prob­
lem in the class. Steven Cook [365] proved that the Satisfiability problem (given a 
propositional Boolean formula, is there a way to assign truth values to the variables 
that makes the formula true?) is NP-complete. This means that, if Satisfiability is 
solvable in polynomial time, then P =NP.Conversely, if any problem in NP can be 
proven not to have a deterministic polynomial-time algorithm, the proof will show 
that Satisfiability does not have a deterministic polynomial-time algorithm either. 
No problem is harder than Satisfiability in NP. 

Since Cook's seminal paper was published, a huge number of problems have been 
shown to be equivalent to Satisfiability; hundreds are listed in [600], and some 
examples follow. By equivalent, I mean that these problems are also NP-complete; 
they are in NP and also as hard as any problem in NP. If their solvability in deter­
ministic polynomial time were resolved, the P versus NP question would be solved. 
The question of whether P = NP is the central unsolved question of computational 
complexity theory, and no one expects it to be solved anytime soon. If someone 
showed that P = NP, then most of this book would be irrelevant: As previously 
explained, many classes of ciphers are trivially breakable in nondeterministic poly­
nomial time. If P = NP, they are breakable by feasible, deterministic algorithms. 

Further out in the complexity hierarchy is PSPACE. Problems in PSPACE can be 
solved in polynomial space, but not necessarily polynomial time. PSPACE includes 
NP, but some problems in PSPACE are thought to be harder than NP. Of course, this 
isn't proven either. There is a class of problems, the so-called PSPACE-complete 
problems, with the property that, if any one of them is in NP then PSPACE = NP and 
if any one of them is in P then PSPACE = P. 

And finally, there is the class of problems called EXPTIME. These problems are 
solvable in exponential time. The EXPTIME-complete problems can actually be 
proven not to be solvable in deterministic polynomial time. It has been shown that 
P does not equal EXPTIME. 

NP-Complete Problems 

Michael Garey and David Johnson compiled a list of over 300 NP-complete prob-
lems [600]. Here are just a few of them: 

Traveling Salesman Problem. A traveling salesman has to visit n dif­
ferent cities using only one tank of gas (there is a maximum distance 
he can travel). Is there a route that allows him to visit each city 
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exactly once on that single tank of gas? (This is a generalization of the 
Hamiltonian Cycle problem-see Section 5.1.) 

Three-Way Marriage Problem. In a room are n men, n women, and n 
clergymen (priests, rabbis, whatever). There is also a list of acceptable 
marriages, which consists of one man, one woman, and one clergy­
man willing to officiate. Given this list of possible triples, is it possi­
ble to arrange n marriages such that everyone is either marrying one 
person or officiating at one marriage? 

Three-Satisfiability. There is a list of n logical statements, each with 
three variables. For example: if (x and y) then z, (x and w) or (not z), if 
((not u and not x) or (z and (u or not x))) then (not z and u) or x), and so 
on. Is there a truth assignment for all the variables that satisfies all 
the statements? (This is a special case of the Satisfiability problem 
previously mentioned.) 

11. 3 NUMBER THEORY 

This isn't a book on number theory, so I'm just going to sketch a few ideas that 
apply to cryptography. If you want a detailed mathematical text on number theory, 
consult one of these books: [1430, 72, 1171, 12,959,681,742,420]. My two favorite 
books on the mathematics of finite fields are [971,1042]. See also [88,1157, 
1158, 1060]. 

Modular Arithmetic 
You all learned modular arithmetic in school; it was called "clock arithmetic." 

Remember these word problems? If Mildred says she'll be home by 10:00, and she's 
13 hours late, what time does she get home and for how many years does her father 
ground her? That's arithmetic modulo 12. Twenty-three modulo 12 equals 11. 

(10 + 13) mod 12 = 23 mod 12 = 11 mod 12 

Another way of writing this is to say that 23 and 11 are equivalent, modulo 12: 

23 == 11 (mod 12) 

Basically, a== b (mod n) if a= b + kn for some integer k. If a is non-negative and b 
is between O and n, you can think of b as the remainder of a when divided by n. 
Sometimes, b is called the residue of a, modulo n. Sometimes a is called congruent 
to b, modulo n (the triple equals sign, ==, denotes congruence). These are just differ­
ent ways of saying the same thing. 

The set of integers from Oto n - 1 form what is called a complete set of residues 
modulo n. This means that, for every integer a, its residue modulo n is some num­
ber from O to n - 1. 

The operation a mod n denotes the residue of a, such that the residue is some inte­
ger from O to n - 1. This operation is modular reduction. For example, 5 mod 3 = 2. 

This definition of mod may be different from the definition used in some pro­
gramming languages. For example, PASCAL's modulo operator sometimes returns a 
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negative number. It returns a number between -(n - 1) and n - 1. In C, the % oper­
ator returns the remainder from the division of the first expression by the second; 
this can be a negative number if either operand is negative. For all the algorithms in 
this book, make sure you add n to the result of the modulo operator if it returns a 
negative number. 

Modular arithmetic is just like normal arithmetic: It's commutative, associative, 
and distributive. Also, reducing each intermediate result modulo n yields the same 
result as doing the whole calculation and then reducing the end result modulo n. 

(a+ b) mod n == ((a mod n) + (b mod n)) mod n 

(a - b) mod n == ((a mod n) - (b mod n)) mod n 

(a*b) mod n == ((a mod n)*(b mod n)) mod n 

(a*(b + c)) mod n == (((a* b) mod n) + ((a*c) mod n)) mod n 

Cryptography uses computation mod n a lot, because calculating discrete loga­
rithms and square roots mod n can be hard problems. Modular arithmetic is also eas­
ier to work with on computers, because it restricts the range of all intermediate 
values and the result. For a k-bit modulus, n, the intermediate results of any addi­
tion, subtraction, or multiplication will not be more than 2k-bits long. So we can 
perform exponentiation in modular arithmetic without generating huge intermedi­
ate results. Calculating the power of some number modulo some number, 

ax modn, 

is just a series of multiplications and divisions, but there are speedups. One kind of 
speedup aims to minimize the number of modular multiplications; another kind 
aims to optimize the individual modular multiplications. Because the operations 
are distributive, it is faster to do the exponentiation as a stream of successive mul­
tiplications, taking the modulus every time. It doesn't make much difference now, 
but it will when you're working with 200-bit numbers. 

For example, if you want to calculate a8 mod n, don't use the nai:ve approach and 
perform seven multiplications and one huge modular reduction: 

(a*a*a*a*a*a*a*a) mod n 

Instead, perform three smaller multiplications and three smaller modular reductions: 

((a2 mod n)2 mod n)2 mod n 

By the same token, 

a16 mod n == (((a2 mod n)2 mod n)2 mod n)2 mod n 

Computing ax mod n, where x is not a power of 2, is only slightly harder. Binary 
notation expresses x as a sum of powers of 2: 25 is 11001 in binary, so 25 == 24 + 23 + 
2°. So 

a25 mod n == (a*a24 ) mod n == (a*a8 *a 16) mod n 
== (a*((a2)2)2*(((a2)2)2)2) mod n == ((((a2*a)2)2)2*a) mod n 
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With judicious storing of intermediate results, you only need six multiplications: 

(((((((a2 mod n)*a) mod n)2 mod n)2 mod n)2 mod n)*a) mod n 

This is called addition chaining [863], or the binary square and multiply method. 
It uses a simple and obvious addition chain based on the binary representation. In C, 
it looks like: 

unsigned long qe2(unsigned long x, unsigned long y, unsigned long n) ( 
unsigned long s,t,u; 
int i; 

s = 1; t = x; u = y; 

while ( u) ( 
if(u&l) s = (S*t)%n; 
u»= 1; 
t = (t*t)%n; 

return(s); 

Another, recursive, algorithm is: 

unsigned long fast_exp(unsigned long x, unsigned long y, unsigned long NJ ( 
unsigned long tmp; 

if(y==l) return(x % N); 
if ((y&l)==O) { 

else 

tmp = fast_exp(x,y/2,N); 
return ((tmp*tmp)%N); 

tmp = fast_exp(x,(y-1)/2,N); 
tmp = (tmp•tmp)%N; 
tmp = (tmp•x)%N; 
return (tmp); 

This technique reduces the operation to, on the average, 1.5 * k operations, if k is 
the length of the number x in bits. Finding the calculation with the fewest opera­
tions is a hard problem (it has been proven that the sequence must contain at least 
k - 1 operations), but it is not too hard to get the number of operations down to 
1.1 * k or better, as k grows. 

An efficient way to do modular reductions many times using the same n is Mont­
gomery's method [ 1111 ]. Another method is called Barrett's algorithm [87]. The soft­
ware performance of these two algorithms and the algorithm previously discussed is 
in [210]: The algorithm I've discussed is the best choice for singular modular reduc­
tions; Barrett's algorithm is the best choice for small arguments; and Montgomery's 
method is the best choice for general modular exponentiations. (Montgomery's 
method can also take advantage of small exponents, using something called mixed 
arithmetic.) 
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The inverse of exponentiation modulo n is calculating a discrete logarithm. I'll 
discuss this shortly. 

Prime Numbers 
A prime number is an integer greater than 1 whose only factors are 1 and itself: 

No other number evenly divides it. Two is a prime number. So are 73, 2521, 
2365347734339, and 2756839 - 1. There are an infinite number of primes. Cryptog­
raphy, especially public-key cryptography, uses large primes (512 bits and even 
larger) often. 

Evangelos Kranakis wrote an excellent book on number theory, prime numbers, 
and their applications to cryptography [896]. Paulo Ribenboim wrote two excellent 
references on prime numbers in general [1307, 1308]. 

Greatest Common Divisor 
Two numbers are relatively prime when they share no factors in common other 

than 1. In other words, if the greatest common divisor of a and n is equal to 1. This 
is written: 

gcd(a,n) = 1 

The numbers 15 and 28 are relatively prime, 15 and 27 are not, and 13 and 500 are. 
A prime number is relatively prime to all other numbers except its multiples. 

One way to compute the greatest common divisor of two numbers is with Euclid's 
algorithm. Euclid described the algorithm in his book, Elements, written around 300 
B.C. He didn't invent it. Historians believe the algorithm could be 200 years older. It 
is the oldest nontrivial algorithm that has survived to the present day, and it is still 
a good one. Knuth describes the algorithm and some modern modifications [863]. 

In C: 

/* returns gcd of x and y *I 

int gcd (int x, int y) 

int g; 

if ( X < 0) 

X ~ -x; 
if (y < 0) 

y ~ -y; 
if ( X + y -- 0) 

ERROR; 
g ~ y; 
while ( X > 0) 

g ~ X; 

X ~ y % X; 

y ~ g; 

return g; 
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This algorithm can be generalized to return the gcd of an array of m numbers: 

/* returns the gcd of xl, x2 ... xm */ 

int multiple_gcd (int m, int *x) 
{ 

size_t i; 
int g; 

if(m<l) 
return O; 

g = x[OJ; 
for (i=l; i<m; ++i) { 

g = gcd(g, x[i]); 
/* optimization, since for random x[i], g==l 60% of the time: */ 

if(g==l) 
return l; 

return g; 

Inverses Modulo a Number 

Remember inverses? The multiplicative inverse of 4 is 1/4, because 4* 1/4 = 1. In 
the modulo world, the problem is more complicated: 

4*x == 1 (mod 7) 

This equation is equivalent to finding an x and k such that 

4x= 7k + 1 

where both x and k are integers. 
The general problem is finding an x such that 

1 = (a*x) mod n 

This is also written as 

a-1 == x (mod n) 

The modular inverse problem is a lot more difficult to solve. Sometimes it has a 
solution, sometimes not. For example, the inverse of 5, modulo 14, is 3. On the 
other hand, 2 has no inverse modulo 14. 

In general, a- 1 == x (mod n) has a unique solution if a and n are relatively prime. If 
a and n are not relatively prime, then a- 1 == x (mod n) has no solution. If n is a prime 
number, then every number from 1 ton - 1 is relatively prime ton and has exactly 
one inverse modulo n in that range. 

So far, so good. Now, how do you go about finding the inverse of a modulo n? 
There are a couple of ways. Euclid's algorithm can also compute the inverse of a 
number modulo n. Sometimes this is called the extended Euclidean algorithm. 

Here's the algorithm in C++: 

#define isEven(x) ((x & OxOl) == 0) 
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(x & OxOll #define isOdd(x) 
#define swap(x,y) (x A= Y, YA= x, x A= y) 

void ExtBinEuclid(int *u, int *v, int *ul, int *u2, int *u3) 
( 

// warning: u and v will be swapped if u < v 
int k, tl, t2, t3; 

if ( *u < *v ) swap(*u,*v); 
for Ck= O; isEven(*u) && isEven(*v); ++k) { 

*u >>= l; *v >>= l; 

*ul = l; *u2 = O; *u3 = *u; tl 
do { 

do 
if (isEven(*u3)) { 

*v; t2 *u-1; t3 *v; 

if (isOdd(*ul) I I is0dd(*u2)) 
*ul += *v; *u2 += *u; 

*ul >>= l; *u2 >>= l; *u3 >>= l; 

if (isEven(t3) 11 *u3 < t3) { 

swap(*ul,tl); swap(*u2,t2); swap(*u3,t3); 

while (isEven(*u3)l; 
while (*ul < tl I I *uZ < tZ) 

*ul += *v; *u2 += *u; 

*ul -= tl; *uZ -= t2; *u3 t3; 
while (t3 > O); 

while (*ul >= *v && *uZ >= *u) { 
*ul *v; *uZ *u; 

*ul <<= k; *uZ <<= k; *u3 <<= k; 

main(int argc, char **argv) { 
int a, b, gcd; 

if ( a rgc < 3 ) 
cerr « "Usage: xeucl id u v" « endl; 
return -1; 

int u = atoi(argv[l]); 
int v = atoi(argv[ZJ); 
if C u <= 0 I I v <= 0 ) 

} 

cerr << "Arguments must be positive!"<< endl; 
return -2; 

// warning: u and v will be swapped if u < v 
ExtBinEuclid(&u, &v, &a, &b, &gcd); 
cout <<a<<"*"<< u << "+ (-" 

<< b << ") *" << v << "=" << gcd << endl; 
if ( gcd == 1 ) 
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cout << "the inverse of" << v << "mod " << u << " is: 
« u - b « end l ; 

return O; 

I'm not going to prove that it works or give the theory behind it. Details can be 
found in [863], or in any of the number theory texts previously listed. 

The algorithm is iterative and can be slow for large numbers. Knuth showed that 
the average number of divisions performed by the algorithm is: 

.843*log2 (n) + 1.47 

Solving for Coefficients 

Euclid's algorithm can be used to solve this class of problems: Given an array of m 
variables x 1, x2, ... x,w find an array of m coefficients, u 1, u2 •.. u,w such that 

Fermat's Little Theorem 
If m is a prime, and a is not a multiple of m, then Fermat's little theorem says 

am - 1 = 1 (mod m) 

(Pierre de Fermat, pronounced "Fair-ma," was a French mathematician who lived 
from 1601 to 1665. This theorem has nothing to do with his last theorem.) 

The Euler Totient Function 
There is another method for calculating the inverse modulo n, but it's not always 

possible to use it. The reduced set of residues mod n is the subset of the complete 
set of residues that is relatively prime ton. For example, the reduced set of residues 
mod 12 is jl,5,7,11). If n is prime, then the reduced set of residues mod n is the set 
of all numbers from 1 to n - 1. The number O is never part of the reduced set of 
residues for any n not equal to 1. 

The Euler totient function, also called the Euler phi function and written as cp(n), 
is the number of elements in the reduced set of residues modulo n. In other words, 
cp(n) is the number of positive integers less than n that are relatively prime ton (for 
any 11 greater than 1). (Leonhard Euler, pronounced "Oiler," was a Swiss mathe­
matician who lived from 1707 to 1783.) 

If 11 is prime, then cp(n) = n - 1. If n = pq, where p and q are prime, then cp(11) = 
(p - l)(q - 1). These numbers appear in some public-key algorithms; this is why. 

According to Euler's generalization of Fermat's little theorem, if gcd(a,n) = 1, then 

a¢ln) mod 11 = 1 

Now it is easy to compute a- 1 mod n: 

X = a¢1n) - 1 mod TI 

For example, what is the inverse of 5, modulo 7? Since 7 is prime, cp(7) = 7 - 1 = 6. 
So, the inverse of 5, modulo 7, is 
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56 - t mod 7 = 55 mod 7 = 3 

Both methods for calculating inverses can be extended to solve for x in the general 
problem (if gcd(a,n) = 1): 

(a*x) mod n = b 

Using Euler's generalization, solve 

x = (b*a~lnl - t) mod n 

Using Euclid's algorithm, solve 

x = (b*(a-t mod n)) mod n 

In general, Euclid's algorithm is faster than Euler's generalization for calculating 
inverses, especially for numbers in the 500-bit range. If gcd(a,n) t: 1, all is not lost. In 
this general case, (a*x) mod n = b, can have multiple solutions or no solution. 

Chinese Remainder Theorem 
If you know the prime factorization of n, then you can use something called the 

Chinese remainder theorem to solve a whole system of equations. The basic version 
of this theorem was discovered by the first-century Chinese mathematician, Sun Tse. 

In general, if the prime factorization of n is Pt* p 2 * ... * Pt, then the system of equa­
tions 

(x mod p;) = a;, where i = 1, 2, ... , t 

has a unique solution, x, where xis less than n. (Note that some primes can appear 
more than once. For example, Pt might be equal to p 2.) In other words, a number (less 
than the product of some primes) is uniquely identified by its residues mod those 
primes. 

For example, use 3 and 5 as primes, and 14 as the number. 14 mod 3 = 2, and 14 
mod 5 = 4. There is only one number less than 3*5 = 15 which has those residues: 
14. The two residues uniquely determine the number. 

So, for an arbitrary a< p and b < q (where p and q are prime), there exists a unique 
x, where xis less than pq, such that 

x = a (modp), andx = b (mod q) 

To find this x, first use Euclid's algorithm to find u, such that 

u*q = 1 (modp) 

Then compute: 

x = (((a - b)*u) mod p)*q + b 

Here is the Chinese remainder theorem in C: 

/* r is the number of elements in arrays m and u; 
mis the array of (pairwise relatively prime) moduli 
u is the array of coefficients 



CHAPTER 11 Mathematical Background 

return value is n such than n u[kJ%m[kJ (k~O .. r-1) and 
n < m[OJ*m[l]* ... *m[r-1] 

*I 

/* totient() is left as an exercise to the reader. */ 

int chinese_remainder (size_t r, int *m, int *u) 
I 

size_t i; 
int modulus; 
int n; 

modulus~ l; 
f Or ( i ~o; i < r; ++i ) 

modulus *~ m[i J; 

n O; 
for ( i ~o; i < r; ++i ) i 

n +~ u[i] * modexp(modulus / m[i], totient(m[i]l, 
m [ i J ) ; 

n %~ modulus; 

return n; 

The converse of the Chinese remainder theorem can also be used to find the solu­
tion to the problem: if p and q are primes, and p is less than q, then there exists a 
unique x less than pq, such that 

a= x (modp), and b = x (mod q) 

If a ~ b mod p, then 

x = (((a - (b mod p))*u) mod p)*q + b 

If a< b modp, then 

x =(((a+ p - (b modp))*u) modp)*q + b 

Quadratic Residues 
If p is prime, and a is greater than O and less than p, then a is a quadratic residue 

modp if 

x2 = a (mod p), for some x 

Not all values of a satisfy this property. For a to be a quadratic residue modulo n, 
it must be a quadratic residue modulo all the prime factors of n. For example, if p = 
7, the quadratic residues are 1, 2, and 4: 

12 = 1 = 1 (mod 7) 

22 = 4 = 4 (mod 7) 

32 = 9 = 2 (mod 7) 
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42 = 16 == 2 (mod 7) 

52 = 25 == 4 (mod 7) 

62 = 36 == 1 (mod 7) 

Note that each quadratic residue appears twice on this list. 
There are no values of x which satisfy any of these equations: 

x2 == 3 (mod 7) 

x2 == 5 (mod 7) 

x2 == 6 (mod 7) 

The quadratic nonresidues modulo 7, the numbers that are not quadratic residues, 
are 3, 5, and 6. 

Although I will not do so here, it is easy to prove that, when p is odd, there are 
exactly (p - 1 )/2 quadratic residues mod p and the same number of quadratic non­
residues mod p. Also, if a is a quadratic residue mod p, then a has exactly two square 
roots, one of them between O and (p - 1 )/2, and the other between (p - 1 )/2 and 
(p - 1 ). One of these square roots is also a quadratic residue mod p; this is called the 
principal square root. 

If n is the product of two primes, p and q, there are exactly (p - 1 )(q - 1 )/4 
quadratic residues mod n. A quadratic residue mod n is a perfect square modulo n. 
This is because to be a square mod n, the residue must be a square mod p and a 
square mod q. For example, there are 11 quadratic residues mod 35: 1, 4, 9, 11, 14, 
15, 16, 21, 25, 29, and 30. Each quadratic residue has exactly four square roots. 

Legendre Symbol 

The Legendre symbol, written L(a,p), is defined when a is any integer and pis a 
prime greater than 2. It is equal to 0, 1, or -1. 

L(a,p) = 0 if a is divisible by p. 

L(a,p) = 1 if a is a quadratic residue mod p. 

L(a,p) = -1 is a is a quadratic nonresidue mod p. 

One way to calculate L(a,p) is: 

L(a,p) = air - 1112 mod p 

Or you can use the following algorithm: 

1. If a= 1, then L(a,p) = 1 

2. If a is even, then L(a,p) = L(a/2,p)*(-l)IP 2
- 11/8 

3. If a is odd (and* 1), then L(a,p) = L(p mod a,a)*(-1)1" - 1l·lr- 1l/4 

Note that this is also an efficient way to determine whether a is a quadratic residue 
mod p (when p is prime). 
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Jacobi Symbol 
The Jacobi symbol, written J(a,n), is a generalization of the Legendre symbol to 

composite moduli; it is defined for any integer a and any odd integer n. The function 
shows up in primality testing. The Jacobi symbol is a function on the set of reduced 
residues of the divisors of n and can be calculated by several formulas [1412]. This is 
one method: 

Definition 1: J(a,n) is only defined if n is odd. 

Definition 2: J(O,n) = 0. 

Definition 3: If n is prime, then the Jacobi symbol J(a,n) = 0 if n divides a. 

Definition 4: If n is prime, then the Jacobi symbol J(a,nl = 1 if a is a 
quadratic residue modulo n. 

Definition 5: If n is prime, then the Jacobi symbol J(a,n) = -1 if a is a 
quadratic nonresidue modulo n. 

Definition 6: If n is composite, then the Jacobi symbol J(a,n) = J(a,pi) 
* ... * J(a,pm), where p 1 ••• Pm is the prime factorization of n. 

The following algorithm computes the Jacobi symbol recursively: 

Rule 1: J(l,n) = 1 

Rule 2: J(a•b,n) = J(a,n)•J(b,n) 

Rule 3: J(2,n) = 1 if (n2 - 1)/8 is even, and -1 otherwise 

Rule 4: J(a,n) = J((a mod n),n) 

Rule 5: J(a,bi * b2) = J(a,bi)• J(a,h) 

Rule 6: If the greatest common divisor of a and b = 1, and a and b are 
odd: 

Rule 6a: J(a,b) = J(b,a) if (a - l)(b - 1)/4 is even 

Rule 6b: J(a,b) =-J(b,a) if (a - l)(b - 1)/4 is odd 

Here is the algorithm in C: 

/* This algorithm computes the Jacobi symbol recursively*/ 

int jacobi(int a, int bl 
( 

int g; 

assert(odd(bl); 

if ( a >= bl a %= b; !* by Rule 4 */ 
if (a== 0) return O; I* by Definition 2 */ 
if (a== ll return 1; !* by Rule 1 */ 

if (a< 0) 
if (((b-1)/2 % 2 == 0l 
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return jacobi(-a,bl; 
else 

return -jacobi(-a,bl; 

if (a% 2 == 0l /* a is even*/ 
if (((b*b - ll/Sl % 2 == 0l 

return +jacobi(a/2, bl 
else 

return -jacobi(a/2, bl/* by Rule 3 and Rule 2 */ 
g=gcd(a,bl; 

assert(odd(all; /* this is guaranteed by the (a% 2 0l 
test*/ 

if (g == al /* a exactly divides b */ 
return 0; /* by Rules 5 and 4, and Definition 2 */ 

else if (g != ll 
return jacobi(g,bl * jacobi(a/g, bl;/* by Rule 2 */ 

else if (((a-ll*(b-ll/4l % 2 == 0l 
return +jacobi(b,al; /* by Rule 6a */ 

else 
return -jacobi(b,al; /* by Rule 6b */ 

If n is known to be prime beforehand, simply compute alln - 11121 mod n instead of 
running the previous algorithm; in this case J(a,n) is equivalent to the Legendre 
symbol. 

The Jacobi symbol cannot be used to determine whether a is a quadratic residue 
mod n (unless n is prime, of course). Note that, if J(a,n) = 1 and n is composite, it is 
not necessarily true that a is a quadratic residue modulo n. For example: 

J(7,143) = J(7,ll)*J(7,13) = (-1)(-1) = 1 

However, there is no integer x such that x2 = 7 (mod 143). 

Blum Integers 
If p and q are two primes, and both are congruent to 3 modulo 4, then n = pq is 

sometimes called a Blum integer. If n is a Blum integer, each quadratic residue has 
exactly four square roots, one of which is also a square; this is the principal square 
root. For example, the principal square root of 139 mod 43 7 is 24. The other three 
square roots are 185, 252, and 413. 

Generators 
If p is a prime, and g is less than p, then g is a generator mod p if 

for each b from 1 top - 1, there exists some a where ga = b (mod p). 

Another way of saying this is that g is primitive with respect top. 
For example, if p = 11, 2 is a generator mod 11: 

210 = 1024 = 1 (mod 11) 

2 1 =2=2(modll) 
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28 = 256 = 3 (mod 11) 

22 =4 = 4 (mod 11) 

24 = 16 = 5 (mod 11) 

29 = 512 = 6 (mod 11) 

27 = 128 = 7 (mod 11) 

23 = 8 = 8 (mod 11) 

26 = 64 = 9 (mod 11) 

25 = 32 = 10 (mod 11) 

Every number from 1 to 10 can be expressed as 2a (mod p). 
For p = 11, the generators are 2, 6, 7, and 8. The other numbers are not generators. 

For example, 3 is not a generator because there is no solution to 

3" = 2 (mod 11) 

In general, testing whether a given number is a generator is not an easy problem. It 
is easy, however, if you know the factorization of p - 1. Let q1, q2, ••• , qn be the dis­
tinct prime factors of p - 1. To test whether a number g is a generator mod p, calculate 

glP - ll/q mod p 

for all values of q = q1, q2, ... , qn. 
If that number equals 1 for some value of q, then g is not a generator. If that value 

does not equal 1 for any values of q, then g is a generator. 
For example, let p = 11. The prime factors of p - 1 = 10 are 2 and 5. To test whether 

2 is a generator: 

2111 - 1115 (mod 11) = 4 

2 111 - 1112 (mod 11) = 10 

Neither result is 1, so 2 is a generator. 
To test whether 3 is a generator: 

3111 - 1115 (mod 11) = 9 

3111 - 1112 (mod 11) = 1 

Therefore, 3 is not a generator. 
If you need to find a generator mod p, simply choose a random number from 1 to 

p - 1 and test whether it is a generator. Enough of them will be, so you'll probably 
find one fast. 

Computing in a Galois Field 

Don't be alarmed; that's what we were just doing. If n is prime or the power of a 
large prime, then we have what mathematicians call a finite field. In honor of that 
fact, we use p instead of n. In fact, this type of finite field is so exciting that mathe­
maticians gave it its own name: a Galois field, denoted as GF(p). (Evariste Galois 
was a French mathematician who lived in the early nineteenth century and did a lot 
of work in number theory before he was killed at age 20 in a duel.) 
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In a Galois field, addition, subtraction, multiplication, and division by nonzero 
elements are all well-defined. There is an additive identity, 0, and a multiplicative 
identity, 1. Every nonzero number has a unique inverse (this would not be true if p 
were not prime). The commutative, associative, and distributive laws are true. 

Arithmetic in a Galois field is used a great deal in cryptography. All of the num­
ber theory worksi it keeps numbers a finite size, and division doesn't have any 
rounding errors. Many cryptosystems are based on GF(p), where pis a large prime. 

To make matters even more complicated, cryptographers also use arithmetic 
modulo irreducible polynomials of degree n whose coefficients are integers modulo 
q, where q is prime. These fields are called GF(qn). All arithmetic is done modulo 
p(x), where p(x) is an irreducible polynomial of degree n. 

The mathematical theory behind this is far beyond the scope of the book, 
although I will describe some cryptosystems that use it. If you want to try to work 
more with this, GF(2·') has the following elements: 0, 1, x, x + 1, x2, x2 + 1, x2 + x, x2 

+ x + 1. There is an algorithm for computing inverses in GF(2n) that is suitable for 
parallel implementation [421]. 

When talking about polynomials, the term "prime" is replaced by "irreducible." A 
polynomial is irreducible if it cannot be expressed as the product of two other poly­
nomials (except for 1 and itself, of course). The polynomial x2 + 1 is irreducible over 
the integers. The polynomial x 3 + 2x2 +xis noti it can he expressed as x(x + 1 )(x + 1 ). 

A polynomial that is a generator in a given field is called primitive; all its coeffi­
cients are relatively prime. We'll see primitive polynomials again when we talk 
about linear-feedback shift registers (see Section 16.2). 

Computation in GF(2n) can be quickly implemented in hardware with linear­
feedback shift registers. For that reason, computation over GF(2n) is often quicker 
than computation over GF(p). Just as exponentiation is much more efficient m 
GF(2n), so is calculating discrete logarithms [ 180,181,368,379]. If you want to learn 
more about this, read [140]. 

For a Galois field GF(2n), cryptographers like to use the trinomial p(x) = xn + x + 1 
as the modulus, because the long string of zeros between the xn and x coefficients 
makes it easy to implement a fast modular multiplication [183]. The trinomial 
must be primitive, otherwise the math does not work. Values of n less than 1000 
[1649, 1648] for which xn + x + 1 is primitive are: 

1, 3, 4, 6, 9, 15, 22, 28, 30, 46, 60, 63, 127, 153, 172, 303, 471, 532, 
865,900 

There exists a hardware implementation of GF(2 127 ) where p(x) = x 127 + x + 1 
[1631,1632,1129]. Efficient hardware architectures for implementing exponentia­
tion in GF(2n) are discussed in [147]. 

11.4 f ACTORING 

Factoring a number means finding its prime factors. 

10 = 2*5 

60 = 2*2*3*5 
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252601 = 41 *61 * 101 

2113 - 1 = 3391 *23279*65993* 1868569* 1066818132868207 

The factoring problem is one of the oldest in number theory. It's simple to factor 
a number, but it's time-consuming. This is still true, but there have been some 
major advances in the state of the art. 

Currently, the best factoring algorithm is: 

Number field sieve (NFS) [953] (see also [952,16,279]). The general num­
ber field sieve is the fastest-known factoring algorithm for numbers 
larger than 110 digits or so [472,635]. It was impractical when originally 
proposed, but that has changed due to a series of improvements over the 
last few years [953]. The NFS is still too new to have broken any factor­
ing records, but this will change soon. An early version was used to fac­
tor the ninth Fermat number: 2512 + 1 [955,954]. 

Other factoring algorithms have been supplanted by the NFS: 

Quadratic sieve (QS) [1257,1617,1259]. This is the fastest-known algo­
rithm for numbers less than 110 decimal digits long and has been used 
extensively [440]. A faster version of this algorithm is called the multi­
ple polynomial quadratic sieve [1453,302]. The fastest version of this 
algorithm is called the double large prime variation of the multiple poly­
nomial quadratic sieve. 

Elliptic curve method (ECM) [957,1112,1113]. This method has been 
used to find 43-digit factors, but nothing larger. 

Pollard's Monte Carlo algorithm [1254,248]. (This algorithm also appears 
in volume 2, page 370 of Knuth [863].) 

Continued fraction algorithm. See [1123,1252,863]. This algorithm isn't 
even in the running. 

Trial division. This is the oldest factoring algorithm and consists of test­
ing every prime number less than or equal to the square root of the can­
didate number. 

See [251] for a good introduction to these different factoring algorithms, except for 
the NFS. The best discussion of the NFS is [953]. Other, older references are [505, 
1602, 1258]. Information on parallel factoring can be found in [250]. 

If n is the number being factored, the fastest QS variants have a heuristic asymp­
totic run time of: 

ell + O(l)l(ln (n)lll/2!(1n (In (n)l)il/2) 

The NFS is much faster, with a heuristic asymptotic time estimate of: 
elL923 + O(l)l(ln (n)l1I /3l11n (In (n)l)l2/3) 

In 1970, the big news was the factoring of a 41-digit hard number [1123]. (A "hard" 
number is one that does not have any small factors and is not of a special form that 
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allows it to be factored more easily.) Ten years later, factoring hard numbers twice 
that size took a Cray computer just a few hours [440]. 

In 1988, Carl Pomerance designed a modular factoring machine, using custom 
VLSI chips [1259]. The size of the number you would be able to factor depends on 
how large a machine you can afford to build. He never built it. 

In 1993, a 120-digit hard number was factored using the quadratic sieve; the cal­
culation took 825 mips-years and was completed in three months real time [463]. 
Other results are [504]. 

Today's factoring attempts use computer networks [302,955]. In factoring a 116-
digit number, Arjen Lenstra and Mark Manasse used 400 mips-years-the spare 
time on an array of computers around the world for a few months. 

In March 1994, a 129-digit (428-bit) number was factored using the double large 
prime variation of the multiple polynomial QS [66] by a team 0£ mathematicians led 
by Lenstra. Volunteers on the Internet carried out the computation: 600 people and 
1600 machines over the course of eight months, probably the largest ad hoc multi­
processor ever assembled. The calculation was the equivalent of 4000 to 6000 mips­
years. The machines communicated via electronic mail, sending their individual 
results to a central repository where the final steps of analysis took place. This com­
putation used the QS and five-year-old theory; it would have taken one-tenth the 
time using the NFS [949]. According to [66]: "We conclude that commonly used 512-
bit RSA moduli are vulnerable to any organization prepared to spend a few million 
dollars and to wait a few months." They estimate that factoring a 512-bit number 
would be 100 times harder using the same technology, and only 10 times harder 
using the NFS and current technology [949]. 

To keep up on the state of the art of factoring, RSA Data Security, Inc. set up the 
RSA Factoring Challenge in March 1991 [532]. The challenge consists of a list of 
hard numbers, each the product of two primes of roughly equal size. Each prime was 
chosen to be congruent to 2 modulo 3. There are 42 numbers in the challenge, one 
each of length 100 digits through 500 digits in steps of 10 digits (plus one additional 
number, 129 digits long). At the time of writing, RSA-100, RSA-110, RSA-120, and 
RSA-129 have been factored, all using the QS. RSA-130 might be next (using the 
NFS), or the factoring champions might skip directly to RSA-140. 

This is a fast-moving field. It is difficult to extrapolate factoring technology 
because no one can predict advances in mathematical theory. Before the NFS was 
discovered, many people conjectured that the QS was asymptotically as fast as any 
factoring method could be. They were wrong. 

Near-term advances in the NFS are likely to come in the form of bringing down 
the constant: 1.923. Some numbers of a special form, like Fermat numbers, have a 
constant more along the lines of 1.5 [955,954]. If the hard numbers used in public­
key cryptography had that kind of constant, 1024-bit numbers could be factored 
today. One way to lower the constant is to find better ways of representing numbers 
as polynomials with small coefficients. The problem hasn't been studied very exten­
sively yet, but it is probable that advances are coming [949]. 

For the most current results from the RSA Factoring Challenge, send e-mail to 
challenge-info@rsa.com. 
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Square Roots Modulo n 

If n is the product of two primes, then the ability to calculate square roots mod n 
is computationally equivalent to the ability to factor n [1283,35,36,193]. In other 
words, someone who knows the prime factors of n can easily compute the square 
roots of a number mod n, but for everyone else the computation has been proven to 
be as hard as computing the prime factors of n. 

11.5 PRIME NUMBER GENERATION 

Public-key algorithms need prime numbers. Any reasonably sized network needs 
lots of them. Before discussing the mathematics of prime number generation, I will 
answer a few obvious questions. 

1. If everyone needs a different prime number, won't we run out? No. In fact, 
there are approximately 10151 primes 512 bits in length or less. For numbers 
near n, the probability that a random number is prime is approximately 
one in ln n. So the total number of primes less than n is n/(ln n). There are 
only 1077 atoms in the universe. If every atom in the universe needed a bil­
lion new primes every microsecond from the beginning of time until now, 
you would only need 10109 primes; there would still be approximately 10151 

512-bit primes left. 

2. What if two people accidentally pick the same prime number? It won't 
happen. With over 10151 prime numbers to choose from, the odds of that 
happening are significantly less than the odds of your computer sponta­
neously combusting at the exact moment you win the lottery. 

3. If someone creates a database of all primes, won't he be able to use that 
database to break public-key algorithms? Yes, but he can't do it. If you 
could store one gigabyte of information on a drive weighing one gram, then 
a list of just the 512-bit primes would weigh so much that it would exceed 
the Chandrasekhar limit and collapse into a black hole ... so you couldn't 
retrieve the data anyway. 

But if factoring numbers is so hard, how can generating prime numbers be easy? 
The trick is that the yes/no question, "Is n prime?" is a much easier question to 
answer than the more complicated question, "What are the factors of n!" 

The wrong way to find primes is to generate random numbers and then try to fac­
tor them. The right way is to generate random numbers and test if they are prime. 
There are several probabilistic primality tests; tests that determine whether a num­
ber is prime with a given degree of confidence. Assuming this "degree of confi­
dence" is large enough, these sorts of tests are good enough. I've heard primes 
generated in this manner called "industrial-grade primes": These are numbers that 
are probably prime with a controllably small chance of error. 

Assume a test is set to fail once in 250 tries. This means that there is a 1 in 1015 

chance that the test falsely indicates that a composite number is prime. (The test 
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will never falsely indicate that a prime number is composite.) If for some reason you 
need more confidence that the number is prime, you can set the failure level even 
lower. On the other hand, if you consider that the odds of the number being com­
posite are 300 million times less than the odds of winning top prize in a state lot­
tery, you might not worry about it so much. 

Overviews of recent developments in the field can be found in [1256,206]. Other 
important papers are [1490,384,11,19,626,651,911]. 

Solovay-Strassen 
Robert Solovay and Volker Strassen developed a probabilistic primality testing 

algorithm [1490]. Their algorithm uses the Jacobi symbol to test if pis prime: 

( 1) Choose a random number, a, less than p. 

(2) If the gcd(a,p) cf. 1, then p fails the test and is composite. 
(3) Calculate;= aiP - 1112 mod p. 

(4) Calculate the Jacobi symbol J(a,p). 

(5) If; cf. J(a,p), then pis definitely not prime. 

(6) If ; = J(a,p), then the likelihood that p is not prime is no more than 50 
percent. 

A number a that does not indicate that p is definitely not prime is called a wit­
ness. If pis composite, the odds of a random a being a witness is no less than 50 per­
cent. Repeat this test t times, with t different random values for a. The odds of a 
composite number passing all t tests is no more than one in 21• 

Lehmann 
Another, simpler, test was developed independently by Lehmann [945]. Here it 

tests if p is prime: 

( 1) Choose a random number a less than p. 

(2) Calculate alv - 1112 mod p. 

(3) If alv - 1112 =Is 1 or -1 (mod p), then pis definitely not prime. 

(4) If atv - 1112 = 1 or -1 (mod p), then the likelihood that p is not prime is no 
more than 50 percent. 

Again, the odds of a random a being a witness to p's compositeness is no less than 
50 percent. Repeat this test t times. If the calculation equals l or -1, but does not 
always equal 1, then pis probably prime with an error rate of 1 in 21• 

Rabin-Miller 
The algorithm everyone uses-it's easy-was developed by Michael Rabin, based 

in part on Gary Miller's ideas [1093, 1284]. Actually, this is a simplified version of 
the algorithm recommended in the DSS proposal [1149, 1154]. 
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Choose a random number, p, to test. Calculate b, where b is the number of times 
2 divides p - 1 (i.e., 21, is the largest power of 2 that divides p - 1 ). Then calculate m, 
such that p = 1 + 2b* m. 

( 1) Choose a random number, a, such that a is less than p. 

(2) Set j = 0 and set z = am modp. 

(3) If z = 1, or if z = p - 1, then p passes the test and may be prime. 

(4) If j > 0 and z = 1, then pis not prime. 

(5) Set j = j + 1. If j <band z =I=-p - 1, set z = z2 mod p and go back to step (4). If 
z = p - 1, then p passes the test and may be prime. 

(6) If j =band z =I=-p - 1, then pis not prime. 

The odds of a composite passing decreases faster with this test than with previous 
ones. Three-quarters of the possible values of a are guaranteed to be witnesses. This 
means that a composite number will slip through t tests no more than ¼1 of the time, 
where t is the number of iterations. Actually, these numbers are very pessimistic. 
For most random numbers, something like 99 .9 percent of the possible a values are 
witnesses [96]. 

There are even better estimations [417]. For n-bit candidate primes (where n is more 
than 100), the odds of error in one test are less than 1 in 4n2 1kl211i 121• And for a 256-bit 
n, the odds of error in six tests are less than 1 in 2 51 . More theory is in [ 418]. 

Practical Considerations 
In real-world implementations, prime generation goes quickly. 

( 1) Generate a random n-bit number, p. 

(2) Set the high-order and low-order bit to 1. (The high-order bit ensures that 
the prime is of the required length and the low-order bit ensures that it 
is odd.) 

(3) Check to make sure pis not divisible by any small primes: 3, 5, 7, 11, and 
so on. Many implementations test p for divisibility by all primes less than 
256. The most efficient is to test for divisibility by all primes less than 
2000 [949]. You can do this efficiently using a wheel [863]. 

(4) Perform the Rabin-Miller test for some random a. If p passes, generate 
another random a and go through the test again. Choose a small value of a 
to make the calculations go quicker. Do five tests [651]. (One might seem 
like enough, but do five.) If p fails one of the tests, generate another p and 
try again. 

Another option is not to generate a random p each time, but to incrementally 
search through numbers starting at a random point until you find a prime. 

Step (3) is optional, but it is a good idea. Testing a random odd p to make sure it is 
not divisible by 3, 5, and 7 eliminates 54 percent of the odd numbers before you get 
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to step (4). Testing against all primes less than 100 eliminates 76 percent of the odd 
numbers; testing against all primes less than 256 eliminates 80 percent. In general, 
the fraction of odd candidates that is not a multiple of any prime less than n is 
1.12/ln n. The larger then you test up to, the more precomputation is required 
before you get to the Rabin-Miller test. 

One implementation of this method on a Spare II was able to find 256-bit primes 
in an average of 2.8 seconds, 512-bit primes in an average of 24.0 seconds, 768-bit 
primes in an average of 2.0 minutes, and 1024-bit primes in an average of 5.1 min­
utes [918]. 

Strong Primes 

If n is the product of two primes, p and q, it may be desirable to use strong primes 
for p and q. These are prime numbers with certain properties that make the product 
n difficult to factor by specific factoring methods. Among the properties suggested 
have been [1328,651]: 

The greatest common divisor of p - 1 and q - 1 should be small. 

Both p - 1 and q - 1 should have large prime factors, respectively p' and q'. 

Both p' - 1 and q' - 1 should have large prime factors. 

Both p + 1 and q + 1 should have large prime factors. 

Both (p - 1)/2 and (q - 1)/2 should be prime [182]. (Note that if this 
condition is true, then so are the first two.) 

Whether strong primes are necessary is a subject of debate. These properties were 
designed to thwart some older factoring algorithms. However, the fastest factoring 
algorithms have as good a chance of factoring numbers that meet these criteria as 
they do of factoring numbers that do not [831]. 

I recommend against specifically generating strong primes. The length of the 
primes is much more important than the structure. Moreover, structure may be 
damaging because it is less random. 

This may change. New factoring techniques may be developed that work better 
on numbers with certain properties than on numbers without them. If so, strong 
primes may be required once again. Check current theoretical mathematics journals 
for updates. 

11.6 DISCRETE LOGARITHMS IN A FINITE FIELD 

Modular exponentiation is another one-way function used frequently in cryptogra­
phy. Evaluating this expression is easy: 

ax modn 

The inverse problem of modular exponentiation is that of finding the discrete log­
arithm of a number. This is a hard problem: 
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Find x where ax= b (mod n). 

For example: 

lf3x= 15modl7,thenx=6 

Not all discrete logarithms have solutions (remember, the only valid solutions are 
integers). It's easy to see that there is no solution, x, to the equation 

3x = 7 (mod 13) 

It's far more difficult to solve these problems using 1024-bit numbers. 

Calculating Discrete Logarithms in a Finite Group 

There are three main groups whose discrete logarithms are of interest to cryp-
tographers: 

The multiplicative group of prime fields: GF(p) 

The multiplicative group of finite fields of characteristic 2: GF(211 ) 

Elliptic curve groups over finite fields F: EC(F) 

The security of many public-key algorithms is based on the problem of finding 
discrete logarithms, so the problem has been extensively studied. A good compre­
hensive overview of the problem, and the best solutions at the time, can be found in 
[1189,1039]. The best current article on the topic is [934]. 

If p is the modulus and is prime, then the complexity of finding discrete logarithms 
in GF(p) is essentially the same as factoring an integer n of about the same size, when 
n is the product of two approximately equal-length primes [1378,934]. This is: 

ell + O( J ))lln (p))l 1/2I(1n tin (p)))ll/2) 

The number field sieve is faster, with an heuristic asymptotic time estimate of 
el!.923 + Oll)llln iPl(l 1/3I11n (In ir))(i2/3I 

Stephen Pohlig and Martin Hellman found a fast way of computing discrete loga­
rithms in GF(p) if p - 1 has only small prime factors [1253]. For this reason, only 
fields where p - 1 has at least one large factor are used in cryptography. Another 
algorithm [14] computes discrete logarithms at a speed comparable to factoring; it 
has been expanded to fields of the form GF(p11) [716]. This algorithm was criticized 
[727] for having some theoretical problems. Other articles [1588] show how difficult 
the problem really is. 

Computing discrete logarithms is closely related to factoring. If you can solve the 
discrete logarithm problem, then you can factor. (The converse has never been 
proven to be true.) Currently, there are three methods for calculating discrete loga­
rithms in a prime field [370,934,648]: the linear sieve, the Gaussian integer scheme, 
and the number field sieve. 

The preliminary, extensive computing has to be done only once per field. After­
ward, individual logarithms can be quickly calculated. This can be a security disad-
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vantage for systems based on these fields. It is important that different applications 
use different prime fields. Multiple users in the same application can use a common 
field, though. 

In the world of extension fields, GF(211) hasn't been ignored by researchers. An 
algorithm was proposed in [727]. Coppersmith's algorithm makes finding discrete 
logarithms in fields such as GF(2 127 ) reasonable and finding them in fields around 
GF(2400 ) possible [368]. This was based on work in [180]. The precomputation stage 
of this algorithm is enormous, but otherwise it is nice and efficient. A practical 
implementation of a less efficient version of the same algorithm, after a seven-hour 
precomputation period, found discrete logs in GF(2 127) in several seconds each 
[1130, 180]. (This particular field, once used in some cryptosystems [142, 1631, 1632], 
is insecure.) For surveys of some of these results, consult [1189,1039]. 

More recently, the precomputations for GF(2227 ), GF(23 n), and GF(2401 ) are done, 
and significant progress has been made towards GF(2s03 ). These calculations are 
being executed on an nCube-2 massively parallel computer with 1024 processors 
[649,650]. Computing discrete logarithms in GF(2593 ) is still barely out of reach. 

Like discrete logarithms in a prime field, the precomputation required to cal­
culate discrete logarithms in a polynomial field has to be done only once. Taher 
ElGamal [520] gives an algorithm for calculating discrete logs in the field GF(p2 ). 
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Data Encryption 
Standard (DES) 

12.1 BACKGROUND 

12 

The Data Encryption Standard (DES), known as the Data Encryption Algorithm 
(DEA) by ANSI and the DEA-1 by the ISO, has been a worldwide standard for 20 
years. Although it is showing signs of old age, it has held up remarkably well against 
years of cryptanalysis and is still secure against all but possibly the most powerful 
of adversaries. 

Development of the Standard 
In the early 1970s, nonmilitary cryptographic research was haphazard. Almost no 

research papers were published in the field. Most people knew that the military used 
special coding equipment to communicate, hut few understood the science of cryp­
tography. The National Security Agency (NSA) had considerable knowledge, but 
they did not even publicly admit their own existence. 

Buyers didn't know what they were buying. Several small companies made and 
sold cryptographic equipment, primarily to overseas governments. The equipment 
was all different and couldn't interoperate. No one really knew if any of it was 
secure; there was no independent body to certify the security. As one government 
report said [441]: 

The intricacies of relating key variations and working principles to the real 
strength of the encryption/decryption equipment were, and are, virtually 
unknown to almost all buyers, and informed decisions as to the right type of on­
line, off-line, key generation, etc., which will meet buyers' security needs, have 
been most difficult to make. 

In 1972, the National Bureau of Standards (NBS), now the National Institute of 
Standards and Technology (NIST), initiated a program to protect computer and com­
munications data. As part of that program, they wanted to develop a single, standard 
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cryptographic algorithm. A single algorithm could be tested and certified, and dif­
ferent cryptographic equipment using it could interoperate. It would also be cheaper 
to implement and readily available. 

In the May 15, 1973 Federal Register, the NBS issued a public request for propos-
als for a standard cryptographic algorithm. They specified a series of design criteria: 

The algorithm must provide a high level of security. 

The algorithm must be completely specified and easy to understand. 

The security of the algorithm must reside in the keyi the security 
should not depend on the secrecy of the algorithm. 

The algorithm must be available to all users. 

The algorithm must be adaptable for use in diverse applications. 

The algorithm must be economically implementable in electronic 
devices. 

The algorithm must be efficient to use. 

The algorithm must be able to be validated. 

The algorithm must be exportable. 

Public response indicated that there was considerable interest in a cryptographic 
standard, but little public expertise in the field. None of the submissions came close 
to meeting the requirements. 

The NBS issued a second request in the August 27, 1974 Federal Register. Even­
tually they received a promising candidate: an algorithm based on one developed by 
IBM during the early 1970s, called Lucifer (see Section 13.1). IBM had a team work­
ing on cryptography at both Kingston and Yorktown Heights, including Roy Adler, 
Don Coppersmith, Horst Feistel, Edna Grossman, Alan Konheim, Carl Meyer, Bill 
Notz, Lynn Smith, Walt Tuchman, and Bryant Tuckerman. 

The algorithm, although complicated, was straightforward. It used only simple 
logical operations on small groups of bits and could be implemented fairly effi­
ciently in hardware. 

The NBS requested the NSA's help in evaluating the algorithm's security and 
determining its suitability as a federal standard. IBM had already filed for a patent 
[514], but was willing to make its intellectual property available to others for man­
ufacture, implementation, and use. Eventually, the NBS worked out the terms of 
agreement with IBM and received a nonexclusive, royalty-free license to make, use, 
and sell equipment that implemented the algorithm. 

Finally, in the March 17, 1975 Federal Register, the NBS published both the 
details of the algorithm and IBM's statement granting a nonexclusive, royalty-free 
license for the algorithm, and requested comment [536]. Another notice, in the 
August 1, 1975 Federal Register, again requested comments from agencies and the 
general public. 

And there were comments [721,497, 1120]. Many were wary of the NSA's "invisi­
ble hand" in the development of the algorithm. They were afraid that the NSA had 
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modified the algorithm to install a trapdoor. They complained that the NSA reduced 
the key size from the original 128-bits to 56-bits (see Section 13.1 ). They complained 
about the inner workings of the algorithm. Much of NSA's reasoning became clear 
in the early 1990s, but in the 1970s this seemed mysterious and worrisome. 

In 1976, the NBS held two workshops to evaluate the proposed standard. The 
first workshop discussed the mathematics of the algorithm and the possibility of a 
trapdoor [1139]. The second workshop discussed the possibility of increasing the 
algorithm's key length [229]. The algorithm's designers, evaluators, implementors, 
vendors, users, and critics were invited. From all reports, the workshops were 
lively [1118]. 

Despite criticism, the Data Encryption Standard was adopted as a federal standard 
on November 23, 1976 [229] and authorized for use on all unclassified govern­
ment communications. The official description of the standard, PIPS PUB 46, "Data 
Encryption Standard," was published on January 15, 1977 and became effective six 
months later [1140]. PIPS PUB 81, "DES Modes of Operation," was published in 
1980 [1143]. PIPS PUB 74, "Guidelines for Implementing and Using the NBS Data 
Encryption Standard," was published in 1981 [1142]. NBS also published PIPS PUB 
112, specifying DES for password encryption [1144], and PIPS PUB 113, specifying 
DES for computer data authentication [1145]. (PIPS stands for Federal Information 
Processing Standard.) 

These standards were unprecedented. Never before had an NSA-evaluated algo­
rithm been made public. This was probably the result of a misunderstanding 
between NSA and NBS. The NSA thought DES was hardware-only. The standard 
mandated a hardware implementation, but NBS published enough details so that 
people could write DES software. Off the record, NSA has characterized DES as one 
of their biggest mistakes. If they knew the details would be released so that people 
could write software, they would never have agreed to it. DES did more to galvanize 
the field of cryptanalysis than anything else. Now there was an algorithm to study: 
one that the NSA said was secure. It is no accident that the next government stan­
dard algorithm, Skipjack (see Section 13.12), was classified. 

Adoption of the Standard 
The American National Standards Institute (ANSI) approved DES as a private­

sector standard in 1981 (ANSI X3.92) [50]. They called it the Data Encryption Algo­
rithm (DEA). ANSI published a standard for DEA modes of operation (ANSI X3.106) 
[52], similar to the NBS document, and a standard for network encryption that uses 
DES (ANSI X3.105) [51]. 

Two other groups within ANSI, representing retail and wholesale banking, devel­
oped DES-based standards. Retail banking involves transactions between financial 
institutions and private individuals, and wholesale banking involves transactions 
between financial institutions. 

ANSI's Financial Institution Retail Security Working Group developed a standard 
for the management and security of PINs (ANSI X9.8) [53] and another DES-based 
standard for the authentication of retail financial messages (ANSI X9.19) [56]. The 
group has a draft standard for secure key distribution (ANSI X9.24) [58]. 
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ANSI's Financial Institution Wholesale Security Working Group developed its 
own set of standards for message authentication (ANSI X9.9) [54], key management 
(ANSI X9.l 7) [55,1151], encryption (ANSI X9.23) [57], and secure personal and node 
authentication (ANSI X9.26) [59]. 

The American Bankers Association develops voluntary standards for the financial 
industry. They published a standard recommending DES for encryption [l], and 
another standard for managing cryptographic keys [2]. 

Before the Computer Security Act of 1987, the General Services Administration 
(GSA) was responsible for developing federal telecommunications standards. Since 
then, that responsibility transferred to NIST. The GSA published three standards 
that used DES: two for general security and interoperability requirements (Federal 
Standard 1026 [662] and Federal Standard 1027 [663]), and one for Group 3 facsimile 
equipment (Federal Standard 1028) [664]. 

The Department of the Treasury wrote policy directives requiring that all 
electronic-funds transfer messages be authenticated with DES [468,470]. They also 
wrote DES-based criteria that all authentication devices must meet [469]. 

The ISO first voted to approve DES-they called it the DEA-1-as an interna­
tional standard, then decided not to play a role in the standardization of cryptogra­
phy. However, in 1987 the International Wholesale Financial Standards group of ISO 
used DES in an international authentication standard [758] and for key management 
[761]. DES is also specified in an Australian banking standard [1497]. 

Validation and Certification of DES Equipment 
As part of the DES standard, NIST validates implementations of DES. This vali­

dation confirms that the implementation follows the standard. Until 1994, NIST 
only validated hardware and firmware implementations-until then the standard 
prohibited software implementations. As of March 1995, 73 different implementa­
tions had been validated. 

NIST also developed a program to certify that authentication equipment conformed 
to ANSI X9.9 and FIPS 113. As of March, 1995, 33 products had been validated. The 
Department of the Treasury has an additional certification procedure. NIST also has 
a program to confirm that equipment conforms to ANSI X9.l 7 for wholesale key 
management [1151]; four products have been validated as of March, 1995. 

1987 
The terms of the DES standard stipulate that it be reviewed every five years. In 

1983 DES was recertified without a hitch. In the March 6, 1987 Federal Register, 
NBS published a request for comments on the second five-year review. NBS offered 
three alternatives for consideration [1480,1481]: reaffirm the standard for another 
five years, withdraw the standard, or revise the applicability of the standard. 

NBS and NSA reviewed the standard. NSA was more involved this time. Because 
of an executive directive called NSDD-145, signed by Reagan, NSA had veto power 
over the NBS in matters of cryptography. Initially, the NSA announced that it would 
not recertify the standard. The problem was not that DES had been broken, or even 
that it was suspected of having been broken. It was simply increasingly likely that 
it would soon be broken. 
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In its place, the NSA proposed the Commercial COMSEC Endorsement Program 
(CCEP), which would eventually provide a series of algorithms to replace DES [85]. 
These NSA-designed algorithms would not be made public, and would only be avail­
able in tamper-proof VLSI chips (see Section 25.1 ). 

This announcement wasn't well received. People pointed out that business 
(especially the financial industry) uses DES extensively, and that no adequate 
alternative is available. Withdrawal of the standard would leave many organiza­
tions with no data protection. After much debate, DES was reaffirmed as a U.S. 
government standard until 1992 [1141]. According to the NBS, DES would not be 
certified again [ 1480]. 

1993 

Never say "not." In 1992, there was still no alternative for DES. The NBS, now 
called NIST, again solicited comments on DES in the Federal Register [540]: 

The purpose of this notice is to announce the review to assess the continued ade­
quacy of the standard to protect computer data. Comments from industry and the 
public are invited on the following alternatives for FIPS 46-1. The costs (impacts) 
and benefits of these alternatives should be included in the comments: 

-Reaffirm the standard for another five (5) years. The National Institute of 
Standards and Technology would continue to validate equipment that imple­
ments the standard. FIPS 46-1 would continue to be the only approved method 
for protecting unclassified computer data. 
-Withdraw the standard. The National Institute of Standards and Technology 
would no longer continue to support the standard. Organizations could con­
tinue to utilize existing equipment that implements the standard. Other stan­
dards could be issued by NIST as a replacement for the DES. 
-Revise the applicability and/or implementation statements for the standard. 
Such revisions could include changing the standard to allow the use of imple­
mentations of the DES in software as well as hardware; to allow the iterative 
use of the DES in specific applications; to allow the use of alternative algo­
rithms that are approved and registered by NIST. 

The comment period closed on December 10, 1992. According to Raymond Kam-
mer, then the acting director of NIST [813]: 

Last year, NIST formally solicited comments on the recertification of DES. After 
reviewing those comments, and the other technical inputs that I have received, I 
plan to recommend to the Secretary of Commerce that he recertify DES for 
another five years. I also plan to suggest to the Secretary that when we announce 
the recertification we state our intention to consider alternatives to it over the 
next five years. By putting that announcement on the table, we hope to give peo­
ple an opportunity to comment on orderly technological transitions. In the mean­
time, we need to consider the large installed base of systems that rely upon this 
proven standard. 

Even though the Office of Technology Assessment quoted NIST's Dennis 
Branstead as saying that the useful lifetime of DES would end in the late 1990s 
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[1191], the algorithm was recertified for another five years [1150]. Software imple­
mentations of DES were finally allowed to be certified. 

Anyone want to guess what will happen in 1998? 

12.2 DESCIDPTION OF DES 

DES is a block cipher; it encrypts data in 64-bit blocks. A 64-bit block of plaintext 
goes in one end of the algorithm and a 64-bit block of ciphertext comes out the other 
end. DES is a symmetric algorithm: The same algorithm and key are used for both 
encryption and decryption ( except for minor differences in the key schedule). 

The key length is 56 bits. (The key is usually expressed as a 64-bit number, but 
every eighth bit is used for parity checking and is ignored. These parity bits are the 
least-significant bits of the key bytes.) The key can be any 56-bit number and can be 
changed at any time. A handful of numbers are considered weak keys, but they can 
easily be avoided. All security rests within the key. 

At its simplest level, the algorithm is nothing more than a combination of the two 
basic techniques of encryption: confusion and diffusion. The fundamental building 
block of DES is a single combination of these techniques (a substitution followed by 
a permutation) on the text, based on the key. This is known as a round. DES has 16 
rounds; it applies the same combination of techniques on the plaintext block 16 
times (see Figure 12.1). 

The algorithm uses only standard arithmetic and logical operations on numbers of 
64 bits at most, so it was easily implemented in late 1970s hardware technology. 
The repetitive nature of the algorithm makes it ideal for use on a special-purpose 
chip. Initial software implementations were clumsy, but current implementations 
are better. 

Outline of the Algorithm 
DES operates on a 64-bit block of plaintext. After an initial permutation, the 

block is broken into a right half and a left half, each 32 bits long. Then there are 16 
rounds of identical operations, called Function f, in which the data are combined 
with the key. After the sixteenth round, the right and left halves are joined, and a 
final permutation (the inverse of the initial permutation) finishes off the algorithm. 

In each round (see Figure 12.2), the key bits are shifted, and then 48 bits are 
selected from the 56 bits of the key. The right half of the data is expanded to 48 bits 
via an expansion permutation, combined with 48 bits of a shifted and permuted key 
via an XOR, sent through 8 S-boxes producing 32 new bits, and permuted again. 
These four operations make up Function f. The output of Function f is then com­
bined with the left half via another XOR. The result of these operations becomes the 
new right half; the old right half becomes the new left half. These operations are 
repeated 16 times, making 16 rounds of DES. 

If Bi is the result of the ith iteration, L1 and R1 are the left and right halves of Bi, Ki 
is the 48-bit key for round i, and f is the function that does all the substituting and 
permuting and XO Ring with the key, then a round looks like: 
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Plaintext 

-----

Ciphertext Figure 12.1 DES. 

L;=R;-1 

Ri = Li - I E8 f (Ri - I, Ki) 

The Initial Permutation 
The initial permutation occurs before round l; it transposes the input block as 

described in Table 12.1. This table, like all the other tables in this chapter, should be 
read left to right, top to bottom. For example, the initial permutation moves bit 58 
of the plaintext to bit position 1, bit 50 to bit position 2, bit 42 to bit position 3, and 
so forth. 

The initial permutation and the corresponding final permutation do not affect 
DES's security. (As near as anyone can tell, its primary purpose is to make it easier 
to load plaintext and ciphertext data into a DES chip in byte-sized pieces. Remem­
ber that DES predates 16-bit or 32-bit microprocessor busses.) Since this bit-wise 
permutation is difficult in software (although it is trivial in hardware), many soft­
ware implementations of DES leave out both the initial and final permutations. 
While this new algorithm is no less secure than DES, it does not follow the DES 
standard and should not be called DES. 
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Figure 12.2 One round of DES. 

The Key Transformation 
Initially, the 64-bit DES key is reduced to a 56-bit key by ignoring every eighth bit. 

This is described in Table 12.2. These bits can be used as parity check to ensure the 
key is error-free. After the 56-bit key is extracted, a different 48-bit subkey is gener­
ated for each of the 16 rounds of DES. These subkeys, K;, are determined in the fol­
lowing manner. 

First, the 56-bit key is divided into two 28-bit halves. Then, the halves are circu­
larly shifted left by either one or two bits, depending on the round. This shift is 
given in Table 12.3. 

Table 12.1 
Initial Permutation 

58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, 
62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, 
57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, 
61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7 
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Table 12.2 
Key Permutation 

57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, 
10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, 
63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, 
14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 

After being shifted, 48 out of the 56 bits are selected. Because this operation per­
mutes the order of the bits as well as selects a subset of bits, it is called a compres­
sion permutation. This operation provides a subset of 48 bits. Table 12.4 defines the 
compression permutation (also called the permuted choice). For example, the bit in 
position 33 of the shifted key moves to position 35 of the output, and the bit in posi­
tion 18 of the shifted key is ignored. 

Because of the shifting, a different subset of key bits is used in each subkey. Each 
bit is used in approximately 14 of the 16 subkeys, although not all bits are used 
exactly the same number of times. 

The Expansion Permutation 
This operation expands the right half of the data, R;, from 32 bits to 48 bits. 

Because this operation changes the order of the bits as well as repeating certain bits, 
it is known as an expansion permutation. This operation has two purposes: It makes 
the right half the same size as the key for the XOR operation and it provides a longer 
result that can be compressed during the substitution operation. However, neither 
of those is its main cryptographic purpose. By allowing one bit to affect two substi­
tutions, the dependency of the output bits on the input bits spreads faster. This is 
called an avalanche effect. DES is designed to reach the condition of having every bit 
of the ciphertext depend on every bit of the plaintext and every bit of the key as 
quickly as possible. 

Figure 12.3 defines the expansion permutation. This is sometimes called the E­
box. For each 4-bit input block, the first and fourth bits each represent two bits of 
the output block, while the second and third bits each represent one bit of the out­
put block. Table 12.5 shows which output positions correspond to which input posi­
tions. For example, the bit in position 3 of the input block moves to position 4 of the 
output block, and the bit in position 21 of the input block moves to positions 30 and 
32 of the output block. 

Although the output block is larger than the input block, each input block gener­
ates a unique output block. 

Round 1 
Number 1 

Table 12.3 
Number of Key Bits Shifted per Round 

2 3 4 5 6 7 8 9 10 11 12 13 
1 2 2 2 2 2 2 1 2 2 2 2 

14 
2 

15 
2 

16 
1 
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Table 12.4 
Compression Permutation 

14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, 
23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, 
41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, 
44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32 

The S-Box Substitution 

After the compressed key is XORed with the expanded block, the 48-bit result 
moves to a substitution operation. The substitutions are performed by eight substi­
tution boxes, or S-boxes. Each S-box has a 6-bit input and a 4-bit output, and there are 
eight different S-boxes. (The total memory requirement for the eight DES S-boxes is 
256 bytes.) The 48 bits are divided into eight 6-bit sub-blocks. Each separate block is 
operated on by a separate S-box: The first block is operated on by S-box 1, the second 
block is operated on by S-box 2, and so on. See Figure 12.4. 

Each S-box is a table of 4 rows and 16 columns. Each entry in the box is a 4-bit 
number. The 6 input bits of the S-box specify under which row and column number 
to look for the output. Table 12.6 shows all eight S-boxes. 

The input bits specify an entry in the S-box in a very particular manner. Consider 
an S-box input of 6 bits, labeled b 1, b2, b3, b4, b5, and b6• Bits b, and b6 are combined 
to form a 2-bit number, from O to 3, which corresponds to a row in the table. The 
middle 4 bits, b2 through b5, are combined to form a 4-bit number, from O to :5, 
which corresponds to a column in the table. 

For example, assume that the input to the sixth S-box (i.e., bits 31 through 36 of 
the XOR function) is 110011. The first and last bits combine to form 11, which cor-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 2 3 4 5 6 7 8 9 10 1112 1314 15 16 17 18 19 20 21 22 23 24 

Figure 12.3 Expansion permutation. 
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Table 12.5 
Expansion Permutation 

32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 
8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17, 

16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25, 
24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1 

responds to row 3 of the sixth S-box. The middle 4 bits combine to form 1001, which 
corresponds to the column 9 of the same S-box. The entry under row 3, column 9 of 
S-box 6 is 14. (Remember to count rows and columns from 0 and not from 1.) The 
value 1110 is substituted for 110011. 

It is, of course, far easier to implement the S-boxes in software as 64-entry arrays. It 
takes some rearranging of the entries to do this, but that's not hard. (Don't just change 
the indexing without rearranging the entries. The S-boxes are designed very carefully.) 
However, this way of describing the S-boxes helps visualize how they work. Each 
S-box can be viewed as a substitution function on a 4-bit entry: b2 through b5 go in, 
and a 4-bit result comes out. Bits b1 and b6 come from neighboring blocks; they select 
one out of four substitution functions available in the particular S-box. 

The S-box substitution is the critical step in DES. The algorithm's other opera­
tions are linear and easy to analyze. The S-boxes are nonlinear and, more than any­
thing else, give DES its security. 

The result of this substitution phase is eight 4-bit blocks which are recombined 
into a single 32-bit block. This block moves to the next step: the P-box permutation. 

The P-Box Permutation 
The 32-bit output of the S-box substitution is permuted according to a P-box. This 

permutation maps each input bit to an output position; no bits are used twice and 
no bits are ignored. This is called a straight permutation or just a permutation. Table 
12. 7 shows the position to which each bit moves. For example, bit 21 moves to bit 
4, while bit 4 moves to bit 31. 

32-Bit Output 

Figure 12.4 S-box substitution. 
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Table 12.6 
S-Boxes 

S-box 1: 
14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, 
0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8, 
4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0, 

15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13, 

S-box 2: 
15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, 
3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5, 
0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15, 

13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9, 

S-box 3: 
10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, 
13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1, 
13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7, 

1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12, 

S-box 4: 
7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, 

13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9, 
10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4, 
3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14, 

S-box 5: 
2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9, 

14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6, 
4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14, 

11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3, 

S-box 6: 
12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, 
10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8, 
9, 14, 15, 5, 2, 8. 12, 3, 7, 0, 4, 10, 1, 13, 11, 6, 
4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13, 

S-box 7: 
4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1, 

13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6, 
1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2, 
6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12, 

S-box 8: 
13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7, 

1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2, 
7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8, 
2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 
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16, 7, 20, 
2, 8, 24, 

Table 12.7 
P-Box Permutation 

21, 29, 12, 28, 
14, 32, 27, 3, 

17, 
9, 

1, 
19, 

15, 23, 26, 5, 
13, 30, 6, 22, 

18, 31, 
11, 4, 

10, 
25 

Finally, the result of the P-box permutation is XORed with the left half of the ini­
tial 64-bit block. Then the left and right halves are switched and another round 
begins. 

The Final Permutation 

The final permutation is the inverse of the initial permutation and is described in 
Table 12.8. Note that the left and right halves are not exchanged after the last round 
of DES; instead the concatenated block R16L16 is used as the input to the final per­
mutation. There's nothing going on here; exchanging the halves and shifting around 
the permutation would yield exactly the same result. This is so that the algorithm 
can be used to both encrypt and decrypt. 

Decrypting DES 

After all the substitutions, permutations, XORs, and shifting around, you might 
think that the decryption algorithm is completely different and just as confusing as 
the encryption algorithm. On the contrary, the various operations were chosen to 
produce a very useful property: The same algorithm works for both encryption and 
decryption. 

With DES it is possible to use the same function to encrypt or decrypt a block. 
The only difference is that the keys must be used in the reverse order. That is, if the 
encryption keys for each round are K1, K2, K3, ••• , K16, then the decryption keys are 
K16, K1s, K 14, ••• , K 1• The algorithm that generates the key used for each round is 
circular as well. The key shift is a right shift and the number of positions shifted is 
0,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1. 

Modes of DES 

FIPS PUB 81 specifies four modes of operation: ECB, CBC, OFB, and CFB (see 
Chapter 9) [ 1143]. The ANSI banking standards specify ECB and CBC for encryption, 
and CBC and n-bit CFB for authentication [52]. 

In the software world, certification is usually not an issue. Because of its simplic­
ity, ECB is most often used in off-the-shelf commercial software products, although 

Table 12.8 
Final Permutation 

40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31, 
38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29, 
36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27, 
34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25 
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it is the most vulnerable to attack. CBC is used occasionally, even though it is just 
slightly more complicated than ECB and provides much more security. 

Hardware and Software Implementations of DES 
Much has been written on efficient hardware and software implementations of 

the algorithm [997,81,533,534,437,738,1573,176,271,1572]. At this writing, the 
recordholder for the fastest DES chip is a prototype developed at Digital Equipment 
Corporation [512]. It supports ECB and CBC modes and is based on a GaAs gate 
array of 50,000 transistors. Data can be encrypted and decrypted at a rate of 1 giga­
bit per second, which translates to 16.8 million blocks per second. This is impres­
sive. Table 12.9 gives the specifications for some commercial DES chips. Seeming 
discrepancies between clock speed and data rate are due to pipelining within the 
chip; a chip might have multiple DES engines working in parallel. 

The most impressive DES chip is VLSI's 6868 (formerly called "Gatekeeper"). Not 
only can it perform DES encryption in only 8 clock cycles (prototypes in the lab can 
do it in 4 clock cycles), but it can also do ECB triple-DES in 25 clock cycles, and OFB 
or CBC triple-DES in 35 clock cycles. This sounds impossible to me, too, but I 
assure you it works. 

A software implementation of DES on an IBM 3090 mainframe can perform 
32,000 DES encryptions per second. Most microcomputers are slower, but impres­
sive nonetheless. Table 12.10 [603,793] gives actual results and estimates for various 
Intel and Motorola microprocessors. 

12.3 SECURITY OF DES 

People have long questioned the security of DES [458]. There has been much spec­
ulation on the key length, number of iterations, and design of the S-boxes. The 
S-boxes were particularly mysterious-all those constants, without any apparent 
reason as to why or what they're for. Although IBM claimed that the inner workings 
were the result of 17 man-years of intensive cryptanalysis, some people feared that 
the NSA embedded a trapdoor into the algorithm so they would have an easy means 
of decrypting messages. 

The U.S. Senate Select Committee on Intelligence, with full top-secret clear­
ances, investigated the matter in 1978. The findings of the committee are classified, 
but an unclassified summary of those findings exonerated the NSA from any 
improper involvement in the algorithm's design [1552]. "It was said to have con­
vinced IBM that a shorter key was adequate, to have indirectly assisted in the devel­
opment of the S-box structures and to have certified that the final DES algorithm 
was, to the best of their knowledge, free of any statistical or mathematical weak­
nesses" [435]. However, since the government never made the details of the inves­
tigation public, many people remained unconvinced. 

Tuchman and Meyer, two of the IBM cryptographers who designed DES, said the 
NSA did not alter the design [841]: 

Their basic approach was to look for strong substitution, permutation, and key 
scheduling functions .... IBM has classified the notes containing the selection 
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Table 12.9 
Commercial DES Chips 

Manufacturer Chip Year Clock Data Rate 

AMD Am9518 1981 3MHz 1.3 MByte/s 
AMD Am9568 4MHz 1.5 MByte/s 
AMD AmZ8068 1982 4MHz 1. 7 MByte/s 
AT&T Tl000A 1985 1.9 MByte/s 
CE-Infosys SuperCrypt 1992 20MHz 12.5 MByte/s 

CE99C003 
CE-Infosys SuperCrypt 1994 30MHz 20.0 MByte/s 

CE99C003A 
Cryptech Cryl2Cl02 1989 20MHz 2.8 MByte/s 
Newbridge CA20C03A 1991 25MHz 3.85 MByte/s 
Newbridge CA20C03W 1992 8MHz 0.64 MByte/s 
Newbridge CA95C68/18/09 1993 33MHz 14.67 MByte/s 
Pijnenburg PCClO0 2.5 MByte/s 
Semaphore Roadrunner284 40MHz 35.5 MByte/s 

Communications 
VLSI Technology VM007 1993 32MHz 200.0 MByte/s 
VLSI Technology VM009 1993 33MHz 14.0 MByte/s 
VLSI Technology 6868 1995 32MHz 64.0 MByte/s 
Western Digital WD2001 /2002 1984 3MHz 0.23 MByte/s 

Table 12.10 
DES Speeds on Different Microprocessors and Computers 

Processor Speed (in MHz) DES Blocks (per second) 

8088 
68000 
80286 
68020 
68030 
80386 
68030 
68040 
68040 
80486 

Sun ELC 
HyperSparc 
RS6000-350 
Spare 10/52 
DEC Alpha 4000/610 
HP 9000/887 

4.7 
7.6 
6 
16 
16 
25 
50 
25 
40 
66 

125 

370 
900 

1,100 
3,500 
3,900 
5,000 
10,000 
16,000 
23,000 
43,000 

26,000 
32,000 
53,000 
84,000 
154,000 
196,000 

Availability 

N 
N 
N 
N 
y 

y 

y 

y 

y 

y 

y 

y 

y 

y 

y 

N 
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criteria at the request of the NSA .... "The NSA told us we had inadvertently 
reinvented some of the deep secrets it uses to make its own algorithms," explains 
Tuchman. 

Later in the article, Tuchman is quoted: "We developed the DES algorithm 
entirely within IBM using IBMers. The NSA did not dictate a single wire!" Tuch­
man reaffirmed this when he spoke on the history of DES at the 1992 National 
Computer Security Conference. 

On the other hand, Coppersmith wrote [373,374]: "The National Security Agency 
(NSA) also provided technical advice to IBM." And Konheim has been quoted as say­
ing: "We sent the S-boxes off to Washington. They came back and were all different. 
We ran our tests and they passed." People have pointed to this as evidence that the 
NSA put a trapdoor in DES. 

NSA, when questioned regarding any imposed weakness in DES, said [363]: 

Regarding the Data Encryption Standard (DES), we believe that the public record 
from the Senate Committee for Intelligence's investigation in 1978 into NSA's 
role in the development of the DES is responsive to your question. That commit­
tee report indicated that NSA did not tamper with the design of the algorithm in 
any way and that the security afforded by the DES was more than adequate for at 
least a 5-10 year time span for the unclassified data for which it was intended. In 
short, NSA did not impose or attempt to impose any weakness on the DES. 

Then why did they modify the S-boxes? Perhaps it was to ensure that IBM did not 
put a trapdoor in DES. The NSA had no reason to trust IBM's researchers, and would 
be lax in their duty if they did not make absolutely sure that DES was free of trap­
doors. Dictating the S-boxes is one way they could make sure. 

Very recently some new cryptanalysis results have shed some light on this issue, 
but for many years this has been the subject of much speculation. 

Weak Keys 
Because of the way the initial key is modified to get a subkey for each round of the 

algorithm, certain initial keys are weak keys [721,427]. Remember that the initial 
value is split into two halves, and each half is shifted independently. If all the bits in 
each half are either O or 1, then the key used for any cycle of the algorithm is the 
same for all the cycles of the algorithm. This can occur if the key is entirely ls, 
entirely Os, or if one half of the key is entirely ls and the other half is entirely Os. 
Also, two of the weak keys have other properties that make them less secure [427]. 

The four weak keys are shown in hexadecimal notation in Table 12.11. (Remem­
ber that every eighth bit is a parity bit.) 

Additionally, some pairs of keys encrypt plaintext to the identical ciphertext. In 
other words, one key in the pair can decrypt messages encrypted with the other key 
in the pair. This is due to the way in which DES generates subkeys; instead of gen­
erating 16 different subkeys, these keys generate only two different subkeys. Each of 
these subkeys is used eight times in the algorithm. These keys are called semiweak 
keys, and are shown in hexadecimal notation in Table 12.12. 
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Table 12.11 
DES Weak Keys 

Weak Key Value (with parity bits) 

0101 0101 0101 0101 
lFlF lFlF 0E0E 0E0E 
E0E0 E0E0 FlFl FlFl 
FEFE FEFE FEFE FEFE 

Actual Key 

0000000 0000000 
0000000 FFFFFFF 
FFFFFFF 0000000 
FFFFFFF FFFFFFF 

Some keys produce only four subkeys, each used four times in the algorithm. 
These possibly weak keys are listed in Table 12.13. 

Before condemning DES for having weak keys, consider that this list of 64 keys is 
minuscule compared to the total set of 72,057,594,037,927,936 possible keys. If you 
select a random key, the odds of picking one of these keys is negligible. If you are 
truly paranoid, you could always check for weak keys during key generation. Some 
people don't think it's worth the bother. Others say that it's so easy to check, there's 
no reason not to. 

There is further analysis on weak and semiweak keys in [1116], and additional key 
patterns have been investigated for weaknesses. None have been found. 

Complement Keys 
Take the bit-wise complement of a key; that is, replace all the Os with ls and the 

ls with Os. Now, if the original key encrypts a block of plaintext, then the comple­
ment of the key will encrypt the complement of the plaintext block into the com­
plement of the ciphertext block. 

If x' is the complement of x, then the identity is as follows: 

E1<(P) = C 

EK'(P') = C' 

This isn't anything mysterious. The subkeys are XO Red with the right half after the 
expansion permutation in every round. This complementation property is a direct 
result of that fact. 

Table 12.12 
DES Semiweak Key Pairs 

0lFE 0lFE 0lFE 0lFE and FE0l FE0l FE0l FE0l 
lFE0 lFE0 0EFl 0EFl and E0lF E0lF FlOE FlOE 
0lE0 0lE0 0lFl 0lFl and E00l E00l FlOl Fl0l 
lFFE lFFE 0EFE 0EFE and FElF FElF FE0E FE0E 
0llF 0llF 0lOE 0lOE and lF0l lF0l 0E0l 0E0l 
E0FE E0FE FIFE FIFE and FEE0 FEE0 FEFl FEFl 



IF 
01 
IF 
01 
EO 
FE 
FE 
EO 
FE 
EO 
EO 
FE 
FE 
EO 
FE 
EO 
01 
IF 
IF 
01 
IF 
01 
01 
IF 
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Table 12.13 
DES Possibly Weak Keys 

IF 01 01 OE OE 01 01 EO 01 01 EO Fl 01 01 
IF IF 01 01 OE OE 01 FE IF 01 EO FE OE 01 
01 01 IF OE 01 01 OE FE 01 IF EO FE 01 OE 
01 IF IF 01 01 OE OE EO IF IF EO Fl OE OE 
EO 01 01 Fl Fl 01 01 FE 01 01 FE FE 01 01 
FE 01 01 FE FE 01 01 EO IF 01 FE Fl OE 01 
EO IF 01 FE Fl OE 01 EO 01 IF FE Fl 01 OE 
FE IF 01 Fl FE OE 01 FE IF IF FE FE OE OE 
EO 01 IF FE Fl 01 OE IF FE 01 EO OE FE 01 
FE 01 IF Fl FE 01 OE 01 FE IF EO 01 FE OE 
EO IF IF Fl Fl OE OE IF EO 01 FE OE Fl 01 
FE IF IF FE FE OE OE 01 EO IF FE 01 Fl OE 
IF EO 01 FE OE Fl 01 01 01 EO EO 01 01 Fl 
IF FE 01 Fl OE FE 01 IF IF EO EO OE OE Fl 
01 EO IF FE 01 Fl OE IF 01 FE EO OE 01 FE 
01 FE IF Fl 01 FE OE 01 IF FE EO 01 OE FE 
EO EO 01 01 Fl Fl 01 IF 01 EO FE OE 01 Fl 
FE EO 01 OE FE FO 01 01 IF EO FE 01 OE Fl 
EO FE 01 OE Fl FE 01 01 01 FE FE 01 01 FE 
FE FE 01 01 FE FE 01 IF IF FE FE OE OE FE 
EO EO IF OE Fl Fl OE FE FE EO EO FE FE Fl 
FE EO IF 01 FE Fl OE EO FE FE EO Fl FE FE 
EO FE IF 01 Fl FE OE FE EO EO FE FE Fl Fl 
FE FE IF OE FE FE OE EO EO FE FE Fl Fl FE 

What this means is that a chosen-plaintext attack against DES only has to test 
half the possible keys: 255 keys instead of 256 [1080]. Eli Biham and Adi Shamir 
showed [172] that there is a known-plaintext attack of the same complexity, requir­
ing at least 233 known plaintexts. 

It is questionable whether this is a weakness, since most messages don't have com­
plement blocks of plaintext (in random plaintext, the odds against it are extremely 
high) and users can be warned not to use complement keys. 

Algebraic Structure 

All possible 64-bit plaintext blocks can be mapped onto all possible 64-bit cipher­
text blocks in 264 ! different ways. The DES algorithm, with its 56-bit key, gives us 
256 (approximately 1017) of these mappings. Using multiple encryption, it seems pos­
sible to reach a larger portion of those possible mappings. However, this is only true 
if the DES operation does not have certain algebraic structures. 

Fl 
Fl 
Fl 
Fl 
FE 
FE 
FE 
FE 
Fl 
Fl 
FE 
FE 
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FE 
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FE 
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FE 
FE 
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If DES were closed, then for any Ki and K2 there would always be a K3 such that 

EK2(EKi(P)) = EK)P) 

In other words, the DES encryption operation would form a group, and encrypting a 
set of plaintext blocks with Ki followed by K2 would be identical to encrypting the 
blocks with K,. Even worse, DES would be vulnerable to a meet-in-the-middle 
known-plaintext attack that runs in only 228 steps [807]. 

If DES were pure, then for any Ki, K2, and K3 there would always be a K4 such that 

EK3(EK2(EK1(P))) = EK4(P) 

Triple encryption would be useless. (Note that a closed cipher is necessarily pure, 
but a pure cipher is not necessarily closed.) 

An early theoretical paper by Don Coppersmith gave some hints, but it wasn't 
enough [377]. Various cryptographers wrestled with this question [588,427,431, 
527,723,789]. Cycling experiments gathered "overwhelming evidence" that DES is 
not a group [807,371,808, 1116,809], but it wasn't until 1992 that cryptographers 
proved that DES is not a group [293]. Coppersmith said that the IBM team knew it 
all along. 

Key Length 

IBM's original submission to NBS had a 112-bit key. By the time the DES became 
a standard, that was reduced to a 56-bit key. Many cryptographers argued for the 
longer key. Their arguments centered on the possibility of a brute-force attack (see 
Section 7.1). 

In 1976 and 1977, Diffie and Hellman argued that a special-purpose DES-cracking 
parallel computer could recover the key in a day and cost $20 million. In 1981, 
Diffie upped this to a two-day search time and a cost of $50 million [491]. Diffie and 
Hellman argued then that this was out of reach for everybody except organizations 
like the NSA, but that by 1990 DES would be totally insecure [714]. 

Hellman [716] presented another argument against the small key size: By trading 
memory space for time, it would be possible to speed up the searching process. He 
suggested the possibility of computing and storing 256 possible results of encrypting 
a single plaintext block under every possible key. Then, to break an unknown key, 
all that would be required would be for the cryptanalyst to insert the plaintext block 
into the encryption stream, recover the resulting ciphertext, and look the key up. 
Hellman pegged the cost of this cracking machine at $5 million. 

Arguments for and against the existence of a DES-cracker lurking in some gov­
ernment basement somewhere have continued. Several people pointed out that the 
mean time between failures for the DES chips would never be high enough to ensure 
that the machine would work. This objection was shown to be superfluous in 
[1278]. Others suggested ways to speed the process even further and to reduce the 
effects of chip failures. 

Meanwhile, hardware implementations of DES slowly approached the million­
encryptions-per-second requirement of Diffie and Hellman's special-purpose ma­
chine. In 1984 DES chips capable of performing 256,000 encryptions per second had 
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been produced [533,534]. By 1987 chips performing 512,000 encryptions per second 
were being developed, and a version capable of checking over a million keys per sec­
ond was feasible [738,1573]. And in 1993 Michael Wiener designed a $1 million 
machine that could complete a brute-force attack against DES in an average of 3.5 
hours (see Section 7.1). 

No one has publicly admitted building this machine, although it is a reasonable 
assumption that someone has. A million dollars is not a lot of money to a large-or 
even a medium-sized-country. 

It was not until 1990 that two Israeli mathematicians, Biham and Shamir, discov­
ered differential cryptanalysis, a technique that put to rest the question of key 
length. Before we discuss that technique, let's turn to some other design criticisms 
of DES. 

Number of Rounds 
Why 16 rounds? Why not 32? After five rounds every ciphertext bit is a function 

of every plaintext bit and every key bit [1078,1080], and after eight rounds the 
ciphertext was essentially a random function of every plaintext bit and every key bit 
[880]. (This is called the avalanche effect.) So why not stop after eight rounds? 

Over the years, variants of DES with a reduced number of rounds have been suc­
cessfully attacked. DES with three or four rounds was easily broken in 1982 [49]. 
DES with six rounds fell some years later [336]. Biham and Shamir's differential 
cryptanalysis explained this as well: DES with any number of rounds fewer than 16 
could be broken with a known-plaintext attack more efficiently than by a brute­
force attack. Certainly brute-force is a much more likely attack, but it is interesting 
that the algorithm has exactly 16 rounds. 

Design of the S-Boxes 

In addition to being accused of reducing the key length, NSA was also accused of 
modifying the contents of the S-boxes. When pressed for design justification for the 
S-boxes, the NSA indicated that elements of the algorithm's design were "sensitive" 
and would not be made public. Many cryptographers were concerned that the NSA­
designed S-boxes hid a trapdoor, making it possible for them to easily cryptanalyze 
the algorithm. 

Since then, considerable effort has gone into analyzing the design and operation of 
the S-boxes. In the mid-1970s, Lexar Corporation [961,721] and Bell Laboratories 
[1120] examined the operation of the S-boxes. Neither analysis revealed any weak­
nesses, although both found inexplicable features. The S-boxes had more features in 
common with a linear transformation than one would expect if they were chosen at 
random. The Bell Laboratories team stated that the S-boxes may have hidden trap­
doors, and the Lexar report concluded with: 

Structures have been found in DES that were undoubtedly inserted to strengthen 
the system against certain types of attack. Structures have also been found that 
appear to weaken the system. 
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On the other hand, this report also warned: 

... the problem [of the search for structure in the S-boxes] is complicated by the 
ability of the human mind to find apparent structure in random data, which is 
really not structure at all. 

At the second workshop on DES, the National Security Agency revealed several 
design criteria behind the S-boxes [229]. This did nothing to quell people's suspi­
cions, and the debate continued [228,422,714, 1506, 1551 ]. 

Various oddities about the S-boxes appeared in the literature. The last three out­
put bits of the fourth S-box can be derived in the same way as the first by comple­
menting some of the input bits [436,438]. Two different, but carefully chosen, inputs 
to S-boxes can produce the same output [436]. It is possible to obtain the same out­
put of a single DES round by changing bits in only three neighboring S-boxes [487]. 
Shamir noticed that the S-boxes entries appeared to be somewhat imbalanced, but 
wasn't about to turn that imbalance into an attack [1423]. (He mentioned a feature 
of the fifth S-box, but it took another eight years before linear cryptanalysis 
exploited that feature.) Other researchers showed that publicly known design prin­
ciples could be used to generate S-boxes with the observed characteristics [266]. 

Additional Results 

There were other attempts to cryptanalyze DES. One cryptographer looked at non­
randomness based on spectral tests [559]. Others analyzed sequences of linear fac­
tors, but their attack failed after eight rounds [1297,336,531]. A 1987 unpublished 
attack by Donald Davies exploited the way the expansion permutation repeats bits 
into adjacent S-boxes; this attack is also impractical after eight rounds [172,429]. 

12.4 DIFFERENTIAL AND LINEAR CRYPTANALYSIS 

Differential Cryptanalysis 

In 1990, Eli Biham and Adi Shamir introduced differential cryptanalysis [167,168, 
171,172]. This is a new method of cryptanalysis, heretofore unknown to the public. 
Using this method, Biham and Shamir found a chosen-plaintext attack against DES 
that was more efficient than brute force. 

Differential cryptanalysis looks specifically at ciphertext pairs: pairs of cipher­
texts whose plain texts have particular differences. It analyzes the evolution of these 
differences as the plaintexts propagate through the rounds of DES when they are 
encrypted with the same key. 

Simply, choose pairs of plaintexts with a fixed difference. The two plaintexts can 
be chosen at random, as long as they satisfy particular difference conditions; the 
cryptanalyst does not even have to know their values. (For DES, the term "differ­
ence" is defined using XOR. This can be different for different algorithms.) Then, 
using the differences in the resulting ciphertexts, assign different probabilities to 
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different keys. As you analyze more and more ciphertext pairs, one key will emerge 
as the most probable. This is the correct key. 

The details are more complicated. Figure 12.5 is the DES round function. Imagine 
a pair of inputs, X and X', that have the difference ~- The outputs, Y and Y' are 
known, and therefore so is the difference, ~y Both the expansion permutation and 
the P-box are known, so Mand ~Care known.Band B' are not known, but their 
difference ~B is known and equal to M. (When looking at the difference, the XOR­
ing of Ki with A and A' cancels out.) So far, so good. Here's the trick: For any given 
M, not all values of ~C are equally likely. The combination of M and ~C suggests 
values for bits of A XOR Ki and A' XOR Ki. Since A and A' are known, this gives us 
information about K. 

Look at the last round of DES. (Differential cryptanalysis ignores the initial and 
final permutation. They have no effect on the attack, except to make it harder to 
explain.) If we can identify K16, then we have 48 bits of the key. (Remember, the sub­
key in each round consists of 48 bits of the 56-bit key.) The other 8 bits we can get 
by brute force. Differential cryptanalysis will get us K16• 

Certain differences in plaintext pairs have a high probability of causing certain 
differences in the resulting ciphertext pairs. These are called characteristics. Char­
acteristics extend over a number of rounds and essentially define a path through 
these rounds. There is an input difference, a difference at each round, and an output 
difference-with a specific probability. 

You can find these characteristics by generating a table where the rows represent 
the possible input XORs (the XOR of two different sets of input bits), the columns 

E(X} 

L'iA 

L'iB 

S-Box 

L'iC 

Figure 12.5 DES round function. 
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represent the possible output XORs, and the entries represent the number of times 
a particular output XOR occurs for a given input XOR. You can generate such a table 
for each of DES's eight S-boxes. 

For example, Figure 12.6a is a one-round characteristic. The input difference of 
the left side is L; it could be anything. The input difference of the right side is 0. (The 
two inputs have the same right-hand side, so their difference is 0.) Since there is no 
difference going in to the round function, then there is no difference coming out of 
the round function. Therefore, the output difference of the left side is L EBO= L, and 
the output difference of the right side is 0. This is a trivial characteristic, and is true 
with probability 1. 

Figure 12.6b is a less obvious characteristic. Again, the input difference to the left 
side is arbitrary: L. The input difference to the right side is 0x60000000; the two 
inputs differ in only the second and third bits. With a probability of '¼4, the output 
difference of the round function is L EB 0x00808200. This means that the output dif­
ference of the left side is L EB 0x00808200 and the output difference of the right side 
is 0x60000000-with probability'¼ •. 

Different characteristics can be joined. And, assuming the rounds are indepen­
dent, the probabilities can be multiplied. Figure 12. 7 joins the two characteristics 
previously described. The input difference to the left side is 0x00808200 and the 
input difference to the right side is 0x60000000. At the end of the first round the 
input difference and the output of the round function cancel out, leaving an output 
difference of 0. This feeds into the second round; the final output difference of the 
left side is 0x60000000 and the final output difference of the right side is 0. This 
two-round characteristic has a probability of '¼4. 

A plaintext pair that satisfies the characteristic is a right pair. A plaintext pair 
which does not is a wrong pair. A right pair will suggest the correct round key (for 
the last round of the characteristic); a wrong pair will suggest a random round key. 

~=L ~=0 

~f • A • 0 cE= K,A • 0 j 
~=Leo 

With Probability 1 

(a) 

~=0 

Figure 12.6 DES characteristics. 

~=L ~=X 

f~• AeY cE=K'AeX j 
X= 60000000 
Y= 00808200 

With Probability ~: 

(b) 

~=X 
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With Probability !! 

ti.= X 

Figure 12. 7 A two-round DES character­
istic. 

To find the correct round key, simply collect enough guesses so that one subkey is 
suggested more often than all the others. In effect, the correct subkey will rise out 
of all the random alternatives. 

So, the basic differential attack on n-round DES will recover the 48-bit subkey 
used in round n, and the remaining 8 key bits are obtained by brute-force guessing. 

There are still considerable problems. First, there is a negligible chance of success 
until you reach some threshold. That is, until you accumulate sufficient data you 
can't tell the correct subkey from all the noise. And the attack isn't practical: You 
have to use counters to assign different probabilities to 248 possible subkeys, and too 
much data is required to make this work. 

At this point, Biham and Shamir tweaked their attack. Instead of a using a 15-
round characteristic on 16-round DES, they used a 13-round characteristic and some 
tricks to get the last few rounds. A shorter characteristic with a higher probability 
worked better. And they used some clever mathematics to obtain 56-bit key candi­
dates which could be tested immediately, eliminating the need for counters. This 
attack succeeds as soon as a right pair is found; this avoids the threshold and gives a 
linear success probability. If you have 1000 times fewer pairs, then you have 1000 
times smaller chance of success. This sounds terrible, but it is a lot better than the 
threshold. There is always some chance of immediate success. 

The results are most interesting. Table 12.14 is a summary of the best differential 
attack against DES with varying numbers of rounds [172]. The first column is the 
number of rounds. The next two columns are the numbers of chosen plaintexts or 
known plaintexts that must be examined for the attack, and the fourth column is 
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Table 12.14 
Differential Cryptanalysis Attacks against DES 

No. of Chosen Known Analyzed Complexity 
Rounds Plain texts Plain texts Plain texts of Analysis 

8 214 238 4 29 

9 224 244 2 232t 

10 224 243 214 21s 

11 231 247 2 232t 

12 231 247 221 221 

13 239 2s2 2 232t 

14 239 2s1 229 229 

15 247 256 27 237 

16 247 2ss 236 237 

tThe complexity of the analysis can be greatly reduced for these variants by 
using about four times as many plaintexts with the clique method. 

the number of those plaintexts actually analyzed. The last column is the complex­
ity of analysis, after the required plaintexts are found. 

The best attack against full 16-round DES requires 247 chosen plaintexts. This can 
be converted to a known plaintext attack, but that requires 255 known plaintexts. 
And 237 DES operations are required during analysis. 

Differential cryptanalysis works against DES and other similar algorithms with 
constant S-boxes. The attack is heavily dependent on the structure of the S-boxesi 
the ones in DES just happen to be optimized against differential cryptanalysis. And 
the attack works against DES in any of its operating modes-ECB, CBC, CFB, and 
OFB-with the same complexity [172]. 

DES's resistance can be improved by increasing the number of rounds. Chosen­
plaintext differential cryptanalysis DES with 17 or 18 rounds takes about the same 
time as a brute-force search [160]. At 19 rounds or more, differential cryptanalysis 
becomes impossible because it requires more than 264 chosen plaintexts: Remem­
ber, DES has a 64-bit block size, so it only has 264 possible plaintext blocks. (In gen­
eral, you can prove that an algorithm is resistant to differential cryptanalysis by 
showing that the amount of plaintext required to mount such an attack is greater 
than the amount of plaintext possible.) 

Here are a few important points. First, this attack is largely theoretical. The enor­
mous time and data requirements to mount a differential cryptanalytic attack put it 
beyond the reach of almost everyone. To get the requisite data for this attack against 
a full DES, you have to encrypt a 1.5 megabits-per-second data stream of chosen 
plaintext for almost three years. Second, this is primarily a chosen-plaintext attack. 
It can be converted to a known-plaintext attack, but you have to sift through all of 
the plaintext-ciphertext pairs looking for the useful ones. For full 16-round DES, 
this makes the attack slightly less efficient than brute force (the differential crypt-
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analytic attack requires 255·1 operations, and brute force requires 255 ). The consensus 
is that DES, when implemented properly, is still secure against differential crypt­
analysis. 

Why is DES so resistant to differential cryptanalysis? Why are the S-boxes opti­
mized to make this attack as difficult as possible? Why are there as many rounds as 
required, but no more? Because the designers knew about it. IBM's Don Copper­
smith recently wrote [373,374]: 

The design took advantage of certain cryptanalytic techniques, most prominently 
the technique of "differential cryptanalysis," which were not known in the pub­
lished literature. After discussions with NSA, it was decided that disclosure of the 
design consideration would reveal the technique of differential cryptanalysis, a 
powerful technique that can be used against many ciphers. This in turn would 
weaken the competitive advantage the United States enjoyed over other countries 
in the field of cryptography. 

Adi Shamir responded to this, challenging Coppersmith to say that he hadn't found 
any stronger attacks against DES since then. Coppersmith has chosen to remain 
silent on that question [1426]. 

Related-Key Cryptanalysis 

Table 12.3 showed the number of bits the DES key is rotated after each round: 2 
bits after each round, except for 1 bit after rounds 1, 2, 9, and 16. Why? 

Related-key cryptanalysis is similar to differential cryptanalysis, but it exam­
ines the difference between keys. The attack is different from any previously dis­
cussed: The cryptanalyst chooses a relationship between a pair of keys, but does 
not know the keys themselves. Data is encrypted with both keys. In the known­
plaintext version, the cryptanalyst knows the plaintext and ciphertext of data 
encrypted with the two keys. In the chosen-plaintext version, the cryptanalyst 
gets to choose the plaintext encrypted with the two keys. 

A modified DES, where the key is rotated two bits after every round, is less secure. 
Related-key cryptanalysis can break that variant using 217 chosen-key chosen plain­
texts or 233 chosen-key known plaintexts [158,163]. 

This attack is not at all practical, but it is interesting for three reasons. One, it is 
the first cryptanalytic attack against DES's subkey-generation algorithm. Two, this 
attack is independent of the number of rounds of the cryptographic algorithm; it's 
just as effective against DES with 16 rounds, 32 rounds, or 1000 rounds. And three, 
DES is impervious to this attack. The variability in the rotation thwarts related-key 
cryptanalysis. 

Linear Cryptanalysis 

Linear cryptanalysis is another type of cryptanalytic attack, invented by Mitsuru 
Matsui [1016, 1015, 1017]. This attack uses linear approximations to describe the 
action of a block cipher (in this case, DES.) 

This means that if you XOR some of the plaintext bits together, XOR some 
ciphertext bits together, and then XOR the result, you will get a single bit that is the 
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XOR of some of the key bits. This is a linear approximation and will hold with some 
probability p. If p * ½, then this bias can be exploited. Use collected plaintexts and 
associated ciphertexts to guess the values of the key bits. The more data you have, 
the more reliable the guess. The greater the bias, the greater the success rate with 
the same amount of data. 

How do you identify good linear approximations for DES? Find good 1-round lin­
ear approximations and join them together. (Again, ignore the initial and final per­
mutations; they don't affect the attack.) Look at the S-boxes. There are 6 input bits 
and 4 output bits. The input bits can be combined using XOR in 63 useful ways 
(26 - 1), and the output bits can be combined in 15 useful ways. Now, for each S-box 
you can evaluate the probability that for a randomly chosen input, an input XOR 
combination equals some output XOR combination. If there is a combination with 
a high enough bias, then linear cryptanalysis may work. 

If the linear approximations are unbiased, then they would hold for 32 of the 64 
possible inputs. I'll spare you the pages of tables, but the most biased S-box is S-box 
5. In fact, the second input bit is equal to the XOR of all 4 output bits for only 12 
inputs. This translates to a probability of ½6, or a bias of ¾6, and is the most extreme 
bias in all the S-boxes. (Shamir noted this in [1423], but could not find a way to 
exploit it.) 

Figure 12.8 shows how to turn this into an attack against the DES round function. 
The input bit into S-box 5 is h 6 • (I am numbering the bits from left to right and from 
1 to 64. Matsui ignores this convention with DES and numbers his bits from right 

E(X) 

8-Boxes 

y 

K;. 26 

Figure 12.8 A 1-round linear ap­
proximation for DES. 
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to left and from Oto 63. It's enough to drive you mad.) The 4 output bits from S-box 
5 are c 17, c18, c 19, and c20 • We can trace h 6 backwards from the input to the S-box. The 
bit a26 is XORed with a bit from the subkey Ki, 26 to obtain b26. And bit X1 7 goes 
through the expansion permutation to become a26. After the S-box, the 4 output bits 
go through the P-box to become 4 output bits of the round function: Y3, ¥8, ¥ 14, and 
Y25 • This means that with probability ½ - '!k 

X17 EB Y3 EB Ys EB Y14 EB Y2s = Ki,26 

Linear approximations for different rounds can be joined in a manner similar to that 
discussed under differential cryptanalysis. Figure 12.9 is a 3-round approximation 
with a probability of½+ .0061. The individual approximations are of varying quality: 
The last is very good, the first is pretty good, and the middle is bad. But together the 
three 1-round approximations give a very good three-round approximation. 

The basic attack is to use the best linear approximation for 16-round DES. It 
requires 247 known plaintext blocks, and will result in 1 key bit. That's not very use­
ful. If you interchange the role of plain text and ciphertext and use decryption as well 
as encryption, you can get 2 key bits. That's still not very useful. 

B 17 

K; _ 1.26 

B 17 

B 17 

17 B 
K;,2 

17 3 

17 A 

17 
K;+ 1,26 

17 

A 17 

A= [3, 8, 14, 25) B = [8, 14, 25) 

With Probability ~ + 6.1 x 1 o-3 

Figure 12.9 A 3-round linear approximation for DES. 
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There are refinements. Use a 14-round linear approximation for rounds 2 through 
15. Guess the 6 subkey bits relevant to S-box 5 for the first and last rounds ( 12 key 
bits in all). Effectively you are doing 2 12 linear cryptanalyses in parallel and picking 
the correct one based on probabilities. This recovers the 12 bits plus the b26, and 
reversing plain text and ciphertext recovers another 13 bits. To get the remaining 30 
bits, use exhaustive search. There are other tricks, but that's basically it. 

Against full 16-round DES, this attack can recover the key with an average of 243 

known plain texts. A software implementation of this attack recovered a DES key in 
50 days using 12 HP9000/735 workstations [1019]. That is the most effective attack 
against DES at the time of this writing. 

Linear cryptanalysis is heavily dependent on the structure of the S-boxes and the 
S-boxes in DES are not optimized against this attack. In fact, the ordering of the 
S-boxes chosen for DES lies among the 9 percent to 16 percent that offer the least 
protection against linear cryptanalysis [1018]. According to Don Coppersmith 
[373,374], resistance to linear cryptanalysis "was not part of the design criteria of 
DES." Either they didn't know about linear cryptanalysis or they knew about some­
thing else even more powerful whose resistance criteria took precedence. 

Linear cryptanalysis is newer than differential cryptanalysis, and there may be 
more performance improvements in the coming years. Some ideas are proposed in 
[ 12 70,811], but it is not clear that they can be used effectively against full DES. They 
work very well against reduced round variants, however. 

Future Directions 
Some work has been done to try to extend the concept of differential cryptanaly­

sis to higher-order differentials [702,161,927,858,860]. Lars Knudsen uses something 
called partial differentials to attack 6-round DES; it requires 32 chosen plaintexts 
and 20,000 encryptions [860]. It is still too new to know if these extensions will 
make it easier to attack full 16-round DES. 

Another avenue of attack is differential-linear cryptanalysis: combining differen­
tial and linear cryptanalysis. Susan Langford and Hellman have an attack on 8-
round DES that recovers 10 key bits with an 80 percent probability of success with 
512 chosen plaintexts and a 95 percent probability of success with 768 chosen 
plaintexts [938]. After the attack, a brute-force search of the remaining keyspace 
(246 possible keys) is required. While this attack is comparable in time to previous 
attacks, it requires far less plaintext. However, it doesn't seem to extend easily to 
more rounds. 

But this attack is still new and work continues. It is possible that there may be a 
breakthrough some time during the next few years. Maybe there are benefits in 
combining this attack with higher-order differential cryptanalysis. Who knows? 

12. 5 THE REAL DESIGN CRITERIA 

After differential cryptanalysis became public, IBM published the design criteria for 
the S-boxes and the P-box [373,374]. The criteria for the S-boxes are: 



CHAPTER 12 Data Encryption Standard (DES) 

Each S-box has 6 input bits and 4 output bits. (This was the largest 
size that could be accommodated in a single chip with 1974 technol­
ogy.) 

No output bit of an S-box should be too close to a linear function of 
the input bits. 

If you fix the left-most and right-most bits of an S-box and vary the 4 
middle bits, each possible 4-bit output is attained exactly once. 

If two inputs to an S-box differ in exactly 1 bit, the outputs must dif­
fer in at least 2 bits. 

If two inputs to an S-box differ in the 2 middle bits exactly, the out­
puts must differ in at least 2 bits. 

If two inputs to an S-box differ in their first 2 bits and are identical in 
their last 2 bits, the two outputs must not be the same. 

For any nonzero 6-bit difference between inputs, no more than 8 of 
the 32 pairs of inputs exhibiting that difference may result in the 
same output difference. 

A criterion similar to the previous one, but for the case of three active 
S-boxes. 

The criteria for the P-box are: 

The 4 output bits from each S-box in round i are distributed so that 2 
of them affect the middle-bits of S-boxes at round i + 1 and the other 
2 affect end bits. 

The 4 output bits from each S-box affect six different S-boxes; no 2 
affect the same S-box. 

If the output bit from one S-box affects a middle bit of another S-box, 
then an output bit from that other S-box cannot affect a middle bit of 
the first S-box. 

The paper goes on to discuss the criteria. Generating S-boxes is pretty easy today, 
but was a complicated task in the early 1970s. Tuchman has been quoted as saying 
that they ran computer programs for months cooking up the S-boxes. 

12.6 DES VARIANTS 

Multiple DES 

Some DES implementations use triple-DES (see Figure 12.10) [55]. Since DES is 
not a group, then the resultant ciphertext is much harder to break using exhaustive 
search: 2112 attempts instead of 256 attempts. See Section 15.2 for more details. 
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Figure 12.10 Triple-DES. 

DES with Independent Subkeys 
Another variation is to use a different subkey for each round, instead of generat­

ing them from a single 56-bit key [851 ]. Since 48 key bits are used in each of 16 
rounds, this means that the key length for this variant is 768 bits. This variant 
would drastically increase the difficulty of a brute-force attack against the algo­
rithm; that attack would have a complexity of 2768 . 

However, a meet-in-the-middle attack (see Section 15.1) would be possible. This 
would reduce the complexity of attack to 2384; still long enough for any conceivable 
security needs. 

Although independent subkeys foil linear cryptanalysis, this variant is suscepti­
ble to differential cryptanalysis and can be broken with 261 chosen plaintexts (see 
Table 12.15) [167,172]. It would seem that any modification of the key schedule can­
not make DES much stronger. 

DESX 
DESX is a DES variant from RSA Data Security, Inc. that has been included in the 

MailSafe electronic mail security program since 1986 and the BSAFE toolkit since 
1987. DESX uses a technique called whitening (see Section 15.6) to obscure the 
inputs and outputs to DES. In addition to a 56-bit DES key, DESX has an additional 
64-bit whitening key. These 64 bits are XO Red to the plaintext before the first round 
of DES. An additional 64 bits, computed as a one-way function of the entire 120-bit 
DES key, is XORed to the ciphertext after the last round [155]. Whitening makes 
DESX much stronger than DES against a brute-force attack; the attack requires 
(2120)/n operations with n known plaintexts. It also improves security against differ­
ential and linear cryptanalysis; the attacks require 261 chosen plaintexts and 260 

known plaintexts, respectively [1338]. 



CHAPTER 12 Data Encryption Standard (DES) 

CRYPT(3) 

CRYPT(3) is a DES variant found on UNIX systems. It is primarily used as a one­
way function for passwords, but sometimes can also be used for encryption. The dif­
ference between CRYPT(3) and DES is that CRYPT(3) has a key-dependent expansion 
permutation with 212 possible permutations. This was done primarily so that off-the­
shelf DES chips could not be used to construct a hardware password-cracker. 

Generalized DES 
Generalized DES (GDES) was designed both to speed up DES and to strengthen 

the algorithm [1381,1382]. The overall block size increases while the amount of 
computation remains constant. 

Figure 12.11 is a block diagram of GDES. GDES operates on variable-sized blocks 
of plaintext. Encryption blocks are divided up into q 32-bit sub-blocks; the exact 
number depends on the total block size (this was variable in the design, but must be 
fixed for each implementation). In general, q equals the block size divided by 32. 

Function f is calculated once per round on the right-most block. The result is 
XO Red with all the other parts, which are then rotated to the right. GDES has a vari­
able number of rounds, n. There is a slight modification to the last round, so that the 
encryption and decryption processes differ only in the order of the subkeys (just like 
DES). In fact, if q = 2 and n = 16, this is DES. 

Biham and Shamir [167,168] showed that, using differential cryptanalysis, GDES 
with q = 8 and n = 16 is breakable with only six chosen plaintexts. If independent 
subkeys are also used, 16 chosen plaintexts are required. GDES with q = 8 and n = 
22 is breakable with 48 chosen plaintexts, and GDES with q = 8 and n = 31 requires 
only 500,000 chosen plaintexts to break. Even GDES with q = 8 and n = 64 is weaker 
than DES; 249 chosen plaintexts are required to break it. In fact, any GDES scheme 
that is faster than DES is also less secure (see Table 12.15). 

A variant of this scheme recently appeared [1591]. It is probably no more secure 
than the original GDES. In general, any large block DES variant that is faster than 
DES is probably also less secure than DES. 

DES with Alternate S-Boxes 
Other DES modifications centered around the S-boxes. Some designs made the 

order of the S-boxes variable. Other designers varied the contents of the S-boxes them­
selves. Biham and Shamir showed [170,172] that the design of the S-boxes, and even 
the order of the S-boxes themselves, were optimized against differential cryptanalysis: 

The replacement of the order of the eight DES S-boxes (without changing their 
value) also makes DES much weaker: DES with 16 rounds of a particular replaced 
order is breakable in about 238 steps .... DES with random S-boxes is shown to be 
very easy to break. Even a minimal change of one entry of one of the DESS-boxes 
can make DES easier to break. 

The DESS-boxes were not optimized against linear cryptanalysis. There are bet­
ter S-boxes than the ones that come with DES, but blindly choosing new S-boxes 
isn't a good idea. 
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Figure 12.11 GDES. 

Table 12.15 [167,169] lists some modifications to DES and the number of chosen 
plaintexts required for differential cryptanalysis. One change not listed, combining 
the left and right halves using addition mod 24 instead of XOR, is 217 times harder to 
break than DES [689]. 

RDES 
RDES is a variant that replaces swapping the left and right halves at the end of 

each round with a key-dependent swap [893]. The swappings are fixed, depending 
solely on the key. This means that the 15 key-dependent swaps occur with 215 pos­
sible instances, and that the variant is not resistant to differential cryptanalysis 
[816,894,112]. RDES has a large number of weak keys. In fact, almost every key is 
weaker than a typical DES key. This variant should not be used. 

A better idea is to swap only within the right half, at the beginning of each round. 
Another better idea is to make the swapping dependent on the input data and not a 
static function of the key. There are a number of possible variants [813,815]. In 
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Table 12.15 
Differential Cryptanalysis Attacks against DES Variants 

Modified Operation 

Full DES (no modification) 
P permutation 

Identity permutation 
Order of S-boxes 
Replace XORs by additions 
S-boxes: 

Random 
Random permutations 
One entry 
Uniform tables 

Elimination of the E Expansion 
Order of E and subkey XOR 
GDES (width q = 8): 

16 rounds 
64 rounds 

Chosen Plaintexts 
247 

Cannot strengthen 
219 
238 

239, 231 

21s_220 
2"3-241 

233 

226 

226 

244 

6, 16 
249 (independent key) 

RDES-1, there is a data-dependent swap of the 16-bit words at the beginning of each 
round. In RDES-2, there is a data-dependent swap of the bytes at the beginning of 
each round after the 16-bit swappings as in RDES-1. And so on through RDES-4. 
RDES-1 is secure against both differential cryptanalysis [815] and linear cryptanaly­
sis [1136]. Presumably RDES-2 and greater are as well. 

s0 DES 
A group of Korean researchers, led by Kwangjo Kim, has attempted to find a set of 

S-boxes that are optimally secure against both linear and differential cryptanalysis. 
Their first attempt, known as s2DES, was presented in [834] and shown to be worse 
than DES against differential cryptanalysis in [855,858]. Their next attempt, s3DES, 
was presented in [839] and shown to be worse than DES against linear cryptanalysis 
[856,1491,1527,858,838]. Biham suggested a minor change to make s3DES secure 
against both linear and differential cryptanalysis [165]. The group went back to their 
computers and developed better techniques for S-box design [835,837]. They pro­
posed s4DES [836] and then s5DES [838,944]. 

Table 12.16 gives the s3DES S-boxes with S-box 1 and S-box 2 reversed, which are 
secure against both differential and linear cryptanalysis. Sticking this variant in a 
triple-DES mix is sure to irritate cryptanalysts. 

DES with Key-Dependent S-Boxes 

Linear and differential cryptanalysis work only if the analyst knows the composi­
tion of the S-boxes. If the S-boxes are key-dependent and chosen by a cryptographi­
cally strong method, then linear and differential cryptanalysis are much more 
difficult. Remember though, that randomly generated S-boxes have very poor differ­
ential and linear characteristics; even if they are secret. 
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Table 12.16 
s3DES S-Boxes (with S-box 1 and S-box 2 reversed) 

S-box 1: 
13 14 0 3 10 4 7 9 11 8 12 6 1 15 2 5 
8 2 11 13 4 1 14 7 5 15 0 3 10 6 9 12 

14 9 3 10 0 7 13 4 8 5 6 15 11 12 1 2 
1 4 14 7 11 13 8 2 6 3 5 10 12 0 15 9 

S-box 2: 
15 8 3 14 4 2 9 5 0 11 10 1 13 7 6 12 
6 15 9 5 3 12 10 0 13 8 4 11 14 2 1 7 
9 14 5 8 2 4 15 3 10 7 6 13 1 11 12 0 

10 5 3 15 12 9 0 6 1 2 8 4 11 14 7 13 

S-box 3: 
13 3 11 5 14 8 0 6 4 15 1 12 7 2 10 9 
4 13 1 8 7 2 14 11 15 10 12 3 9 5 0 6 
6 5 8 11 13 14 3 0 9 2 4 1 10 7 15 12 
1 11 7 2 8 13 4 14 6 12 10 15 3 0 9 5 

S-box 4: 
9 0 7 11 12 5 10 6 15 3 1 14 2 8 4 13 
5 10 12 6 0 15 3 9 8 13 11 1 7 2 14 4 

10 7 9 12 5 0 6 11 3 14 4 2 8 13 15 1 
3 9 15 0 6 10 5 12 14 2 1 7 13 4 8 11 

S-box 5: 
5 15 9 10 0 3 14 4 2 12 7 1 13 6 8 11 
6 9 3 15 5 12 0 10 8 7 13 4 2 11 14 1 

15 0 10 9 3 5 4 14 8 11 1 7 6 12 13 2 
12 5 0 6 15 10 9 3 7 2 14 11 8 1 4 13 

S-box 6: 
4 3 7 10 9 0 14 13 15 5 12 6 2 11 1 8 

14 13 11 4 2 7 1 8 9 10 5 3 15 0 12 6 
13 0 10 9 4 3 7 14 1 15 6 12 8 5 11 2 
1 7 4 14 11 8 13 2 10 12 3 5 6 15 0 9 

S-box 7: 
4 10 15 12 2 9 1 6 11 5 0 3 7 14 13 8 

10 15 6 0 5 3 12 9 1 8 11 13 14 4 7 2 
2 12 9 6 15 10 4 1 5 11 3 0 8 7 14 13 

12 6 3 9 0 5 10 15 2 13 4 14 7 11 1 8 

S-box 8: 
13 10 0 7 3 9 14 4 2 15 12 1 5 6 11 8 
2 7 13 1 4 14 11 8 15 12 6 10 9 5 0 3 
4 13 14 0 9 3 7 10 1 8 2 11 15 5 12 6 
8 11 7 14 2 4 13 1 6 5 9 0 12 15 3 10 
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Here is a method to use 48 additional key bits to generate S-boxes that are resis­
tant to both linear and differential cryptanalysis [165]. 

(1) Rearrange the DESS-boxes: 24673158. 

(2) Select 16 of the remaining key bits. If the first bit is 1, swap the first two 
rows of S-box 1 with the last two rows of S-box 1. If the second bit is a 1, 
swap the first eight columns of S-box 1 with the second eight columns of 
S-box 1. Do the same to S-box 2 with the third and fourth key bits. Do the 
same with S-boxes 3 through 8. 

(3) Take the remaining 32 key bits. XOR the first four with every entry of 
S-box 1, the second four with every entry of S-box 2, and so on. 

The complexity of a differential cryptanalysis attack against this system is 251; the 
complexity of a linear cryptanalysis attack is 253. The complexity of exhaustive 
search is 2 102• 

What is neat about this DES variant is that it can be implemented in existing 
hardware. Several DES chip vendors sell DES chips with loadable S-boxes. This 
S-box generation method can be done outside the chip and then loaded in. Differen­
tial and linear cryptanalysis require so much known or chosen plaintext as to be 
unworkable, and a brute-force attack is inconceivable-with no speed penalties. 

12.7 How SECURE Is DES TooAv? 

The answer is both easy and hard. The easy answer just looks at key length (see Sec­
tion 7.1). A brute-force DES-cracking machine that can find a key in an average of 
3.5 hours cost only $1 million in 1993 [1597,1598]. DES is so widespread that it is 
naive to pretend that the NSA and its counterparts haven't built such a machine. 
And remember, that cost will drop by a factor of 5 every 10 years. DES will only 
become less secure as time goes on. 

The hard answer tries to estimate cryptanalytic techniques. Differential crypt­
analysis was known by the NSA long before the mid-1970s, when DES first became 
a standard. It is naive to pretend that the NSA theoreticians have been idle since 
then; almost certainly they have developed newer cryptanalytic techniques that can 
be applied against DES. But there are no facts, only rumors. 

Winn Schwartau writes that the NSA had built a massively parallel DES-cracking 
machine as early as the mid-1980s [1404]. At least one such machine was built by 
Harris Corp. with a Cray Y-MP as a front end. Supposedly there are a series of algo­
rithms that can reduce the complexity of a DES brute-force search by several orders 
of magnitude. Contextual algorithms, based on the inner workings of DES, can scrap 
sets of possible keys based on partial solutions. Statistical algorithms reduce the 
effective key size even further. And other algorithms choose likely keys-words, 
printable ASCII, and so on (see Section 8.1 )-to test. The rumor is that the NSA can 
crack DES in 3 to 15 minutes, depending on how much preprocessing they can do. 
And these machines cost only $50,000 each, in quantity. 
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A different rumor is that if the NSA has a large amount of plaintext and cipher­
text, its experts can perform some kind of statistical calculation and then go out to 
an array of optical disks and retrieve the key. 

These are just rumors, but they don't give me a warm, fuzzy feeling about DES. It 
has just been too big a target for too long. Almost any change to DES will be more 
annoying; maybe the resultant cipher will be easier to break, but the NSA might not 
have the resources to devote to the problem. 

My recommendation is to use Biham's construction for key-dependent S-boxes. It 
is easy to implement in software and in hardware chips that have loadable S-boxes, 
and has no performance penalty over DES. It increases the algorithm's resistance to 
a brute-force attack, makes differential and linear cryptanalysis harder, and gives 
the NSA something at least as strong as DES-but different-to worry about. 
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CHAPTER 13 

Other Block Ciphers 

13 .1 LUCIFER 

In the late 1960s, led by Horst Feistel and later by Walt Tuchman, IBM initiated a 
research program in computer cryptography called Lucifer. Lucifer is also the name 
of a block algorithm that came out of that program in the early 1970s [1482,1484]. 
In fact, there are at least two different algorithms with that name [552, 1492]. And 
[552] leaves some gaps in the specification of the algorithm. All this has led to more 
than a little confusion. 

Lucifer is a substitution-permutation network, with building blocks similar to 
DES. In DES, the output of the function f is XORed with the input of the previous 
round to form the input of the next round. Lucifer's S-boxes have 4-bit inputs and 
4-bit outputs; the input of the S-boxes is the bit-permuted output of the S-boxes of 
the previous round; the input of the S-boxes of the first round is the plaintext. A key 
bit is used to choose the actual S-box from two possible S-boxes. (Lucifer represents 
this as a single T-box with 9 bits in and 8 bits out.) Unlike DES, there is no swapping 
between rounds and no block halves are used. Lucifer has 16 rounds, 128-bit blocks, 
and a key schedule simpler than DES. 

Using differential cryptanalysis against the first incarnation of Lucifer, Biham and 
Shamir [170,172] showed that Lucifer, with 32-bit blocks and 8 rounds, can be bro­
ken with 40 chosen plain texts and 229 steps; the same attack can break Lucifer with 
128-bit blocks and 8 rounds with 60 chosen plaintexts and 253 steps. Another differ­
ential cryptanalytic attack breaks 18-round, 128-bit Lucifer with 24 chosen plain­
texts in 221 steps. All of these attacks used the strong DESS-boxes. Using differential 
cryptanalysis against the second incarnation, they found the S-boxes to be much 
weaker than DES. Further analysis showed that over half the possible keys are inse­
cure [112]. Related-key cryptanalysis can break 128-bit Lucifer, with any number of 
rounds, with 233 chosen-key chosen plaintexts, or with 265 chosen-key known plain­
texts [158]. The second incarnation of Lucifer is even weaker [170,172,112]. 
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Some people feel that Lucifer is more secure than DES because of the longer key 
length and lack of published results. This is clearly not the case. 

Lucifer is the subject of several U.S. patents: [553,554,555,1483]. They have all 
expired. 

13.2 MADRYGA 

W. E. Madryga proposed this block algorithm in 1984 [999]. It is efficient for soft­
ware: It has no irritating permutations and all its operations work on bytes. 

His design objectives are worth repeating: 

1. The plaintext cannot be derived from the ciphertext without using the key. 
(This just means that the algorithm is secure.) 

2. The number of operations required to determine the key from a sample of 
plaintext and ciphertext should be statistically equal to the product of the 
operations in an encryption times the number of possible keys. (This 
means that no plaintext attack should be better than brute force.) 

3. Knowledge of the algorithm should not defeat the strength of the cipher. 
(All the security should rest in the key.) 

4. A one-bit change of the key should produce a radical change in the cipher­
text using the same plaintext, and a 1-bit change of the plaintext should 
produce a radical change in the ciphertext using the same key. (This is the 
avalanche effect.) -

5. The algorithm should contain a noncommutative combination of substi­
tution and permutation. 

6. The algorithm should include substitutions and permutations under the 
control of both the input data and the key. 

7. Redundant bit groups in the plaintext should be totally obscured in the 
ciphertext. 

8. The length of the ciphertext should be the same length as the plaintext. 

9. There should be no simple relationships between any possible keys and 
ciphertext effects. 

10. Any possible key should produce a strong cipher. (There should be no 
weak keys.) 

11. The length of the key and the text should be adjustable to meet varying 
security requirements. 

12. The algorithm should be efficiently implementable in software on large 
mainframes, minicomputers, and microcomputers, and in discrete logic. 
(In fact, the functions used in the algorithm are limited to XOR and bit­
shifting.) 

DES had already met objectives one through nine, but the next three were new. 
Assuming that the best way to break the algorithm was through brute force, a 
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variable-length key would surely silence those who thought 56 bits was too low. 
They could implement this algorithm with any key length they desired. And, for 
anyone who has ever attempted to implement DES in software, an algorithm that 
took software implementations into account would be welcomed. 

Description of Madryga 
Madryga consists of two nested cycles. The outer cycle repeats eight times 

(although this could be increased if security warrants) and consists of an applica­
tion of the inner cycle to the plaintext. The inner cycle transforms plaintext to 
ciphertext and repeats once for each 8-bit block (byte) of the plaintext. Thus, the 
algorithm passes through the entire plaintext eight successive times. 

An iteration of the inner cycle operates on a 3-byte window of data, called the 
working frame (see Figure 13.1). This window advances 1 byte for each iteration. 
(The data are considered circular when dealing with the last 2 bytes.) The first 2 
bytes of the working frame are together rotated a variable number of positions, 
while the last byte is XORed with some key bits. As the working frame advances, 
all bytes are successively rotated and XORed with key material. Successive rota­
tions overlap the results of a previous XOR and rotation, and data from the XOR is 
used to influence the rotation. This makes the entire process reversible. 

Because every byte of data influences the 2 bytes to its left and the 1 byte to its 
right, after eight passes every byte of the ciphertext is dependent on 16 bytes to the 
left and 8 bytes to the right. 

When encrypting, each iteration of the inner cycle starts the working frame at the 
next-to-last byte of the plaintext and advances circularly through to the third-to-last 

Text i 1 I 2 I 3 I .. 4 I s I 6 I TL-2 

Moving WF(1) WF(2) 
Working 
Frame 8 bits 8 bits 

I ROT 

Transposition I Rotate Target 

16bits 

Translation 

Key 

XOR 

Key Hash 

--
~ 8b1ts , 

I 

11-1 ___.__R_o_ta_te_C_o_un_t___, 

3bits 

Translate Target 

Bbits _,,, 
\ XOR _,,, 

I KL I 

KL 

Figure 13.1 One iteration of Madryga. 

TL-1 TL 
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byte of the plaintext. First, the entire key is XORed with a random constant and 
then rotated to the left 3 bits. The low-order 3 bits of the low-order byte of the work­
ing frame are saved; they will control the rotation of the other 2 bytes. Then, the 
low-order byte of the working frame is XORed with the low-order byte of the key. 
Next, the concatenation of the 2 high-order bytes are rotated to the left the variable 
number of bits (0 to 7). Finally, the working frame is shifted to the right 1 byte and 
the whole process repeats. 

The point of the random constant is to turn the key into a pseudo-random 
sequence. The length of this constant must be equal to the length of the key and 
must be the same for everyone who wishes to communicate with one another. For 
a 64-bit key, Madryga recommends the constant 0x0fle2d3c4b5a6978. 

Decryption reverses this process. Each iteration of the inner cycle starts the work­
ing frame at the third-to-last byte of the ciphertext and advances in the reverse 
direction circularly through to the second-to-last byte of the ciphertext. Both the 
key and the 2 ciphertext bytes are shifted to the right. And the XOR is done before 
the rotations. 

Cryptanalysis of Madryga 

Researchers at Queensland University of Technology [675] examined Madryga, 
along with several other block ciphers. They observed that the algorithm didn't 
exhibit the plaintext-ciphertext avalanche effect. Additionally, many ciphertexts 
had a higher percentage of ones than zeros. 

Although I know of no formal analysis of the algorithm, it doesn't look terribly 
secure. A cursory review by Eli Biham led to the following observations [160]: 

The algorithm consists only of linear operations (rotations and XOR), which are 
slightly modified depending on the data. 

There is nothing like the strength of DES's S-boxes. 
The parity of all the bits of the plaintext and the ciphertext is a constant, 

depending only on the key. So, if you have one plaintext and its corresponding 
ciphertext, you can predict the parity of the ciphertext for any plaintext. 

None of this is damning in itself, but it doesn't leave me with a good feeling about 
the algorithm. I do not recommend Madryga. 

13.3 NEwDES 

NewDES was designed in 1985 by Robert Scott as a possible DES replacement 
[1405,364]. The algorithm is not a DES variant, as its name might imply. It operates 
on 64-bit blocks of plaintext, but it has a 120-bit key. NewDES is simpler than DES, 
with no initial or final permutations. All operations are on entire bytes. (Actually, 
NewDES isn't anything like a new version of DES; the name is unfortunate.) 

The plaintext block is divided into eight 1-byte sub-blocks: B0, B1, ... , B6, B7• 

Then the sub-blocks go through 17 rounds. Each round has eight steps. In each step, 
one of the sub-blocks is XORed with some key material (there is one exception), 
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substituted with another byte via an f function, and then XORed with another sub­
block to become that sub-block. The 120-bit key is divided into 15 key sub-blocks: 
K0, K1, ••• , K13, K14• The process is easier to understand visually than to describe. 
Figure 13.2 shows the NewDES encryption algorithm. 

The £-function is derived from the Declaration of Independence. See [ 1405] for 
details. 

Scott showed that every bit of the plaintext block affects every bit of the cipher­
text block after only 7 rounds. He also analyzed the f function and found no obvious 
problems. NewDES has the same complementation property that DES has [364]: If 
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Round 2 
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Figure 13.2 NewDES. 
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EK(P) = C, then EK(P') = C'. This reduces the work required for a brute-force attack 
from 2 120 steps to 2 119 steps. Biham noticed that any change of a full byte, applied to 
all the key and data bytes, leads to another complementation property [160]. This 
reduces a brute-force attack further to 2112 steps. 

This is not damning, but Biham's related-key cryptanalytic attack can break 
NewDES with 233 chosen-key chosen-plaintexts in 248 steps [160]. While this 
attack is time-consuming and largely theoretical, it shows that New DES is weaker 
than DES. 

13.4 FEAL 

FEAL was designed by Akihiro Shimizu and Shoji Miyaguchi from NTT Japan 
[1435]. It uses a 64-bit block and a 64-bit key. The idea was to make a DES-like algo­
rithm with a stronger round function. Needing fewer rounds, the algorithm would 
run faster. Unfortunately, reality fell far short of the design goals. 

Description of FEAL 

Figure 13.3 is a block diagram of one round of FEAL. The encryption process starts 
with a 64-bit block of plaintext. First, the data block is XORed with 64 key bits. The 

64 bits 
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-----{(K12, K13, K14, K15)} 

64bits 
32bits .--------~-------~ 

LO {R 8} RO {LS} 

LO {R 8 l r,• --------r~'----14-------~ KO {K 7 l 
H ROILS} 

=========,;;;:7~;;;;:::==:::::;;~~~-K I {K 6} 

L I {R 7} 1-++--------i f ,__ ______ --<RI {L 7} 

--===----::::.. __ 

L 7 {RI} fr_:_-_____ dJ_f_"""_""~========-=-:T+-1R 7 {: 17} {KO} 

R8{LO}_ .. ,LS\RO} 
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Figure 13.3 One round of PEAL. 
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data block is then split into a left half and a right half. The left half is XORed with 
the right half to form a new right half. The left and new right halves go through n 
rounds (four, initially). In each round the right half is combined with 16 bits of key 
material (using function f) and XORed with the left half to form the new right half. 
The original right half (before the round) forms the new left half. After n rounds 
(remember not to switch the left and right halves after the nth round) the left half is 
again XO Red with the right half to form a new right half, and then the left and right 
halves are concatenated together to form a 64-bit whole. The data block is XORed 
with another 64 bits of key material, and the algorithm terminates. 

Function f takes the 32 bits of data and 16 bits of key material and mixes them 
together. First the data block is broken up into 8-bit chunks, then the chunks are 
XORed and substituted with each other. Figure 13.4 is a block diagram of function f. 
The two functions S0 and S1, are defined as: 

S0(a,b) = rotate left two bits ((a+ b) mod 256) 

S1(a,b) = rotate left two bits ((a+ b + 1) mod 256) 

The same algorithm can be used for decryption. The only difference is: When 
decrypting, the key material must be used in the reverse order. 

Figure 13.5 is a block diagram of the key-generating function. First the 64-bit key 
is divided into two halves. The halves are XO Red and operated on by function f1" as 
indicated in the diagram. Figure 13.6 is a block diagram of function fk. The two 32-
bit inputs are broken up into 8-bit blocks and combined and substituted as shown. 
S0 and S1 are defined as just shown. The 16-bit key blocks are then used in the 
encryption/ decryption algorithm. 

On a 10 megahertz 80286 microprocessor, an assembly-language implementation 
of FEAL-32 can encrypt data at a speed of 220 kilobits per second. FEAL-64 can 
encrypt data at a speed of 120 kilobits per second [1104]. 

f (a, b) 

Figure 13.4 Function f. 

r---r---- b 
16bits 

a 
32bits 
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Figure 13.5 Key processing part of FEAL. 
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Cryptanalysis of FEAL 
FEAL-4, FEAL with four rounds, was successfully cryptanalyzed with a chosen­

plaintext attack in [201] and later demolished in [1132]. This latter attack, by Sean 
Murphy, was the first published differential-cryptanalysis attack and required only 
20 chosen plaintexts. The designers retaliated with 8-round FEAL [ 1436, 143 7, 1108] 
which Biham and Shamir cryptanalyzed at the SECURICOM '89 conference [1424]. 
Another chosen-plaintext attack, using only 10,000 blocks, against FEAL-8 [610] 
forced the designers to throw up their hands and define FEAL-N [ 1102, 1104], with a 
variable number of rounds (greater than 8, of course). 

Biham and Shamir used differential cryptanalysis against FEAL-N; they could break 
it more quickly than by brute force (with fewer than 264 chosen plaintext encryptions) 
for N less than 32 [169]. FEAL-16 required 228 chosen plaintexts or 2465 known plain­
texts to break. FEAL-8 required 2000 chosen plaintexts or 2375 known plaintexts to 
break. FEAL-4 could be broken with just eight carefully selected chosen plaintexts. 

The FEAL designers also defined FEAL-NX, a modification of FEAL, that accepts 
128-bit keys (see Figure 13.7) [1103, 1104]. Biham and Shamir showed that FEAL-NX 
with a 128-bit key is just as easy to break as FEAL-Nwith a 64-bit key, for any value 
of N [169]. Recently FEAL-N(X)S has been proposed, which strengthens FEAL with 
a dynamic swapping function [1525]. 

There's more. Another attack against FEAL-4, requiring only 1000 known plain­
texts, and against FEAL-8, requiring only 20,000 known plaintexts, was published in 
[1520]. Other attacks are in [1549,1550]. The best attack is by Mitsuru Matsui and 
Atshuiro Yamagishi [1020]. This is the first use of linear cryptanalysis, and can break 
FEAL-4 with 5 known plaintexts, FEAL-6 with 100 known plaintexts and FEAL-8 
with 2 15 known plaintexts. Further refinements are in [64]. Differential-linear crypt­
analysis can break FEAL-8 with only 12 chosen plaintexts [62]. Whenever someone 
discovers a new cryptanalytic attack, he always seems to try it out on FEAL first. 

Patents 
FEAL is patented in the United States [1438] and has patents pending in England, 

France, and Germany. Anyone wishing to license the algorithm should contact the 
Intellectual Property Department, NTT, 1-6 Uchisaiwai-cho, 1-chome, Chiyoda-ku, 
100 Japan. 

13.5 REDOC 

REDOC II is another block algorithm, designed by Michael Wood for Cryptech, Inc. 
[1613,400]. It has a 20-byte (160-bit) key and an 80-bit block. 

REDOC II performs all of its manipulations-permutations, substitutions, and 
key XORs-on bytes; the algorithm is efficient in software. REDOC II uses variable 
function tables. Unlike DES, which has a fixed (albeit optimized for security) set of 
permutation and substitution tables, REDOC II uses a key-dependent and plaintext­
dependent set of tables (S-boxes, actually). REDOC II has 10 rounds; each round is a 
complicated series of manipulations on the block. 
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Figure 13. 7 FEAL-NX key schedule. 

Another unique feature in the design is the use of masks. These are numbers 
derived from the key table that are used to select the tables in a given function 
within a given round. Both the value of the data and the masks are used together to 
select the function tables. 

Assuming that brute force is the most efficient means of attack, REDOC II is very 
secure: 2160 operations are required to recover the key. Thomas Cusick cryptana­
lyzed 1 round of REDOC II, but he was unable to extend the attack to multiple 
rounds [400]. Using differential cryptanalysis, Biham and Shamir were able to sue-
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cessfully cryptanalyze 1 round of REDOC II with 2300 chosen-plaintexts [170]. This 
attack cannot be extended to multiple rounds, but they were able to obtain three 
mask values after 4 rounds. I know of no other cryptanalysis. 

REDOC Ill 
REDOC III is a streamlined version of REDOC II, also designed by Michael Wood 

[1615]. It operates on an 80-bit block. The key length is variable and can be as large 
as 2560 bytes (20,480 bits). The algorithm consists solely of XORing key bytes with 
message bytes; there are no permutations or substitutions. 

( 1) Create a key table of 256 10-byte keys, using the secret key. 

(2) Create two 10-byte mask blocks, M 1 and M2• M 1 is the XOR of the first 128 
10-byte keys; M2 is the XOR of the second 128 10-byte keys. 

(3) To encrypt a 10-byte block: 

(a) XOR the first byte of the data block with the first byte of M 1• Select a 
key from the key table computed in step (1). Use the computed XOR 
as the index into the table. XOR each byte in the data block with the 
corresponding byte in the chosen key, except for the first data byte. 

(b) XOR the second byte of the data block with the second byte of M1• 

Select a key from the key table computed in step ( 1 ). Use the computed 
XOR as the index into the table. XOR each byte in the data block with 
the corresponding byte in the chosen key, except for the second data 
byte. 

(c) Continue with the entire block (bytes 3 through 10), until each byte 
has been used to select a key from the key table after XORing it with 
the corresponding M1 value. Then XOR each byte with the key except 
for the byte used to select the key. 

(d) Repeat steps (a) through (c) with M2 • 

The algorithm is easy and fast. On a 33 megahertz 80386, the algorithm encrypts 
data at 2.75 megabits per second. Wood estimates that a VLSI-pipelined design, with 
a 64-bit data path, woud encrypt data at over 1.28 gigabits per second with a 20 
megahertz clock. 

REDOC III is not secure [1440]. It is vulnerable to differential cryptanalysis. Only 
about 223 chosen plaintexts are required to reconstruct both masks. 

Patents and Licenses 
Both REDOC versions are patented in the United States [1614]. Foreign patents 

are pending. Anyone interested in licensing either REDOC II or REDOC III should 
contact Michael C. Wood, Delta Computec, Inc., 6647 Old Thompson Rd., Syra­
cuse, NY 13211. 
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13.6 LOKI 

LOKI is Australian and was first presented in 1990 as a potential alternative to DES 
[273]. It uses a 64-bit block and a 64-bit key. The general structure of the algorithm 
and key schedule were based on [274,275], and the design of the S-boxes was based 
on [1247]. 

Using differential cryptanalysis, Biham and Shamir were able to break LOKI with 
11 or fewer rounds faster than by brute force [170]. Furthermore, there is an 8-bit 
complementation property, which reduces the complexity of a brute-force attack by 
a factor of 256 [170,916,917]. 

Lars Knudsen showed that LOKI, with 14 rounds or fewer, is vulnerable to dif­
ferential cryptanalysis [852,853]. Additionally, if LOKI is implemented with alter­
nate S-boxes, the resulting cipher will probably be vulnerable to differential 
cryptanalysis. 

LOK/91 

In response to these attacks, LO Ki's designers went back to the drawing board and 
revised their algorithm. The result is LOKI91 [272]. (The previous version of LOKI 
was renamed LOKI89.) 

To make the algorithm more resistant to differential cryptanalysis and to remove 
the complementation property, the following changes were made to the original 
design: 

1. The subkey generation algorithm was changed so that the halves were 
swapped every second round, not every round. 

2. The subkey generation algorithm was changed so that the rotation of the 
left subkey alternated between 12 and 13 bits to the left. 

3. The initial and final XOR of the block with the key were eliminated. 

4. The S-box function was altered to flatten out their XOR profile (to improve 
their resistance to differential cryptanalysis), and to eliminate any value of 
x such that f(x) = 0, where f is the combination of the E-, S-, and P-boxes. 

Description of LOKl91 

The mechanics of LOKI91 are similar to DES (see Figure 13.8). The data block is 
then divided into a left half and a right half and goes through 16 rounds, much like 
DES. In each round, the right half is first XORed with a piece of the key, then sent 
through an expansion permutation (see Table 13.1). 

The 48-bit output is divided into four 12-bit blocks, and each block is sent through 
an S-box substitution. The S-box substitution is as follows: Take each 12-bit input; 
use the 2 left-most bits and the 2 right-most bits to form the number r, and the 8 
innermost bits and form the number c. The output of the S-box, 0, is as follows: 

O(r,c) = (c + ((r* 17) EB 0xff) & 0xff)31 mod Pr 
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Then, the four 8-bit outputs are recombined to form a single 32-bit number and 
sent through the permutation described in Table 13.3. Finally, the right half is 
XO Red with the left half to become the new left half, and the left half becomes the 
new right halt. After 16 rounds, the block is again XORed with the key to produce 
the ciphertext. 

The subkeys are generated from the key in a straightforward manner. The 64-bit 
key is split into a left half and a right half. In each round, the subkey is the left half. 
This left half is then rotated 12 or 13 bits to the left, and then every two rounds the 
left and right halves are exchanged. As with DES, the same algorithm can be used for 
both encryption and decryption, with some modification in how the subkeys are used. 

Table 13.1 
Expansion Permutation 

4, 3, 2, 1, 32, 31, 20, 29, 28, 27, 26, 25, 
28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 
20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 
12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 
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Table 13.2 
P, 

r: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 
P,: 375, 379, 391, 395, 397, 415, 419, 425, 433, 445, 451, 463, 471, 477, 487, 499 

Cryptanalysis of LOK/91 

Knudsen attempted to cryptanalyze LOKI91 [854,858], but found it secure against 
differential cryptanalysis. However, he found a related-key chosen-plaintext attack 
that reduces the complexity of a brute-force search by almost a factor of four. This 
attack exploits a weakness in the key schedule and may also apply if the algorithm 
is used as a one-way hash function (see Section 18.11). 

Another attack on related keys can break LOKI91 with 232 chosen-key chosen 
plaintexts, or 248 chosen-key known plaintexts [158]. The attack is independent of 
the number of rounds of the algorithm. (In the same paper, Biham breaks LOKI89 
with 2 17 chosen-key chosen plaintexts or 233 known-key known plaintexts using 
related-key cryptanalysis.) It's easy to make LOKI91 resistant to this attack; avoid 
the simple key schedule. 

Patents and Licenses 
LOKI is not patented. Anyone can implement the algorithm and use it. The 

source code implementation in this book is copyrighted by the University of New 
South Wales. Anyone interested in using this implementation (or their other imple­
mentation, which is several orders of magnitude faster) in a commercial product 
should contact Director CITRAD, Department of Computer Science, University 
College, UNSW, Australian Defense Force Academy, Canberra ACT 2600, Aus­
tralia; FAX: +61 6 268 85 81. 

13. 7 KHUFU AND KHAFRE 

In 1990 Ralph Merkle proposed two algorithms. The basic design principles behind 
them are [1071]: 

1. DES's 56-bit key size is too small. Considering the negligible cost of increas­
ing the key size (computer memory is cheap and plentiful), it should be 
increased. 

2. DES's extensive use of permutations, while suitable for hardware imple­
mentations, is very difficult to implement in software. The faster software 

32, 24, 
28, 20, 

16, 8, 31, 23, 
12, 4, 27, 19, 

Table 13.3 
P-Box Permutation 

15, 7, 30, 22, 
11, 3, 26, 18, 

14, 6, 29, 21, 
10, 2, 25, 17, 

13, 5, 
9, 1 
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implementations of DES implement the permutations by table lookup. 
Table lookup can provide the same "diffusion" characteristics as permuta­
tion and can be much more flexible. 

3. The S-boxes in DES are small, with only 64 4-bit entries per box. Now that 
memory is larger, S-boxes should grow. Moreover, all eight S-boxes are 
used simultaneously. While this is suitable for hardware, it seems like an 
unreasonable restriction in software. A larger S-box size and sequential 
(rather than parallel) S-box usage should be employed. 

4. The initial and final permutations in DES are widely viewed as crypto­
graphically pointless and should be discarded. 

5. All the faster implementations of DES precompute the keys for each 
round. Given this fact, there is no reason not to make this computation 
more complicated. 

6. Unlike DES, the S-box design criteria should be public. 

To this list, Merkle would probably now add "resistant to differential cryptanaly­
sis and to linear attacks," but those attacks were still unknown at the time. 

Khufu 
Khufu is a 64-bit block cipher. The 64-bit plain text is first divided into two 32-bit 

halves, Land R. First, both halves are XORed with some key material. Then, they 
are subjected to a series of rounds similar to DES. In each round, the least significant 
byte of L is used as the input to an S-box. Each S-box has 8 input bits and 32 output 
bits. The selected 32-bit entry in the S-box is then XO Red with R. Lis then rotated 
some multiple of 8 bits, Land R are swapped, and the round ends. The S-box itself 
is not static, but changes every 8 rounds. Finally, after the last round, L and R are 
XORed with more key material, and then combined to form the ciphertext block. 

Although parts of the key are XORed with the encryption block at the beginning 
and end of the algorithm, the primary purpose of the key is to generate the S-boxes. 
These S-boxes are secret and, in essence, part of the key. Khufu calls for a total key 
size of 512 bits (64 bytes) and gives an algorithm for generating S-boxes from the key. 
The number of rounds for the algorithm is left open. Merkle mentioned that 8-round 
Khufu is susceptible to a chosen-plaintext attack and recommended 16, 24, or 32 
rounds [1071]. (He restricted the choice of rounds to a multiple of eight.) 

Because Khufu has key-dependent and secret S-boxes, it is resistant to differential 
cryptanalysis. There is a differential attack against 16-round Khufu that recovers the 
key after 231 chosen plaintexts [611], but it cannot be extended to more rounds. If 
brute-force is the best way to attack Khufu, it is impressively secure. A 512-bit key 
gives a complexity of 2512-inconceivable under any circumstances. 

Khafre 
Khafre is the second of two cryptosystems proposed by Merkle [1071]. (Khufu and 

Khafre are names of Egyptian pharaohs.) It is similar in design to Khufu, except that 
it was designed for applications without precomputation time. The S-boxes are not 
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key-dependent. Instead, Khafre uses fixed S-boxes. And the key is XORed with the 
encryption block not only before the first round and after the last round, but also 
after every 8 rounds of encryption. 

Merkle speculated that key sizes of 64- or 128-bits would be used for Khafre and 
that more rounds of encryption would be required for Khafre than for Khufu. This, 
combined with the fact that each round of Khafre is more complex than for Khufu, 
makes Khafre slower. In compensation, Khafre does not require any precomputation 
and will encrypt small amounts of data more quickly. 

In 1990 Biham and Shamir turned their differential cryptanalysis techniques 
against Khafre [170]. They were able to break 16-round Khafre with a chosen­
plaintext attack using about 1500 different encryptions. It took about an hour, using 
their personal computer. Converting that to a known-plain text attack would require 
about 238 encryptions. Khafre with 24 rounds can be broken by a chosen-plaintext 
attack using 253 encryptions, and a known-plaintext attack using 259 encryptions. 

Patents 
Both Khufu and Khafre are patented [1072]. Source code for the algorithms are 

in the patent. Anyone interested in licensing either or both algorithms should con­
tact Director of Licensing, Xerox Corporation, P.O. Box 1600, Stamford, CT, 
06904-1600. 

13.8 RC2 

RC2 is a variable-key-size encryption algorithm designed by Ron Rivest for RSA 
Data Security, Inc. (RSADSI). Apparently, "RC" stands for "Ron's Code," although 
it officially stands for "Rivest Cipher." (RC3 was broken at RSADSI during devel­
opment; RCl never got further than Rivest's notebook.) It is proprietary, and its 
details have not been published. Don't think for a minute that this helps security. 
RC2 has already appeared in commercial products. As far as I know, RC2 has not 
been patented and is only protected as a trade secret. 

RC2 is a variable-key-size 64-bit block cipher, designed to be a replacement for 
DES. According to the company, software implementations of RC2 are three times 
faster than DES. The algorithm accepts a variable-length key, from O bytes to the 
maximum string length the computer system supports; encryption speed is inde­
pendent of key size. This key is preprocessed to yield a key-dependent table of 128 
bytes. So the number of effectively different keys is 21024 . RC2 has no S-boxes [805]; 
the two operations are "mix" and "mash," and one is chosen in each round. Accord­
ing to their literature [1334]: 

... RC2 is not an iterative block cipher. This suggests that RC2 offers more pro­
tection against differential and linear cryptanalysis than other block ciphers 
which have relied for their security on copying the design of DES. 

RSADSI's refusal to make RC2 public casts doubt on their claims. They are will­
ing to provide details of the algorithm to most anyone willing to sign a nondisclo-



_______________ 1_3_.9_I_D_E_A ________ 7 ~ 

sure agreement, and have claimed to allow cryptanalysts to publish any negative 
results they find. I don't know of any cryptanalyst outside the employ of the com­
pany who studied it, since it would amount to doing their analysis work for them. 

Still, Ron Rivest is not the usual snake-oil peddler. He's a respected and compe­
tent cryptographer. I would put a fair degree of trust in the algorithm, even though I 
haven't personally inspected the code. RC4, once the proprietary intellectual prop­
erty of RSADSI, was posted to the Internet (see Section 17.1 ), and it's probably just 
a matter of time before RC2 is posted as well. 

An agreement between the Software Publishers Association (SPA) and the U.S. 
government gave RC2 and RC4 (see Section 17.1) special export status (see Section 
25.14). Products that implement one of these two algorithms have a much simpler 
export approval process, provided that the keys are no more than 40 bits long. 

Is a 40-bit key enough? There are a total of one trillion possible keys. Assuming 
that brute force is the most efficient method of cryptanalysis (a big assumption, con­
sidering that the algorithm has never been published), and assuming that a brute­
force cryptanalysis chip can test one million keys per second, it will take him 12. 7 
days to find the correct key. One thousand machines working in parallel can pro­
duce the key in twenty minutes. 

RSA Data Security, Inc., maintains that while encryption and decryption are 
quick, exhaustive key search is not. A significant amount of time is spent setting up 
the key schedule. While this time is negligible when encrypting and decrypting 
messages, it is not when trying every possible key. 

The U.S. government would never allow export of any algorithm it couldn't, at 
least in theory, break. They could create a magnetic tape or CD of a specific plain­
text block encrypted with every possible key. To break a given message, they could 
just run the tape and compare the ciphertext blocks in the message with the cipher­
text blocks on the tape. If there is a match, they could try the candidate key and see 
if the message makes any sense. If they choose a common plaintext block (all zeros, 
the ASCII characters for a space, etc.), this method should work. The storage 
requirement for a 64-bit plaintext block encrypted with all 1012 possible keys is 8 
terabytes-certainly possible. 

For information on licensing RC2, contact RSADSI (see Section 25.4). 

13.9 IDEA 
The first incarnation of the IDEA cipher, by Xuejia Lai and James Massey, surfaced 
in 1990 [929]. It was called PES (Proposed Encryption Standard). The next year, after 
Biham and Shamir's demonstrated differential cryptanalysis, the authors strength­
ened their cipher against the attack and called the new algorithm IPES (Improved 
Proposed Encryption Standard) [931,924]. IPES changed its name to IDEA (Interna­
tional Data Encryption Algorithm) in 1992 [925]. 

IDEA is based on some impressive theoretical foundations and, although crypt­
analysis has made some progress against reduced-round variants, the algorithm still 
seems strong. In my opinion, it is the best and most secure block algorithm avail­
able to the public at this time. 
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The future of IDEA is not yet clear. There has been no rush to adopt it as a replace­
ment to DES, partly because it is patented and must be licensed for commercial 
applications, and partly because people are still waiting to see how well the algo­
rithm fares during the coming years of cryptanalysis. Its current claim to fame is 
that it is part of PGP (see Section 24.12). 

Overview of IDEA 

IDEA is a block cipheri it operates on 64-bit plaintext blocks. The key is 128 bits 
long. The same algorithm is used for both encryption and decryption. 

As with all the other block ciphers we've seen, IDEA uses both confusion and dif­
fusion. The design philosophy behind the algorithm is one of "mixing operations 
from different algebraic groups." Three algebraic groups are being mixed, and they 
are all easily implemented in both hardware and software: 

XOR 

Addition modulo 216 

Multiplication modulo 2 16 + 1. (This operation can be viewed as 
IDEA's S-box.) 

All these operations (and these are the only operations in the algorithm-there are 
no bit-level permutations) operate on 16-bit sub-blocks. This algorithm is even effi­
cient on 16-bit processors. 

Description of IDEA 

Figure 13.9 is an overview of IDEA. The 64-bit data block is divided into four 16-
bit sub-blocks: X 1, X 2, X.,, and X 4 . These four sub-blocks become the input to the first 
round of the algorithm. There are eight rounds total. In each round the four sub­
blocks are XORed, added, and multiplied with one another and with six 16-bit sub­
keys. Between rounds, the second and third sub-blocks are swapped. Finally, the 
four sub-blocks are combined with four subkeys in an output transformation. 

In each round, the sequence of events is as follows: 

( 1) Multiply X 1 and the first subkey. 

(2) Add X2 and the second subkey. 

(3) Add X 3 and the third subkey. 

(4) Multiply X4 and the fourth subkey. 

(5) XOR the results of steps (1) and (3). 

(6) XOR the results of steps (2) and (4). 

(7) Multiply the results of step (5) with the fifth subkey. 

(8) Add the results of steps (6) and (7). 

(9) Multiply the results of step (8) with the sixth subkey. 

(10) Add the results of steps (7) and (9). 
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Figure 13.9 IDEA. 

Output Transformation 

X; : 16-bit plaintext sub-block 

Y;: 16-bitciphertextsub-block 

Z; ( rJ: 16-bit key sub-block 

EB: bil-by-bit exclusive-or (XOR) of 16-bit sub-blocks 

EE: addition modulo216 of 16-bit integers 

0: multiplication modulo 216 + 1 of 16-bit integers 

with the zero sub-block corresponding to 216 

(11) XOR the results of steps (1) and (9). 

( 12) XOR the results of steps (3) and (9). 

(13) XOR the results of steps (2) and (10). 

(14) XOR the results of steps (4) and (10). 

The output of the round is the four sub-blocks that are the results of steps ( 11 ), 
(12), (13), and (14). Swap the two inner blocks (except for the last round) and that's 
the input to the next round. 

After the eighth round, there is a final output transformation: 

( 1) Multiply X1 and the first subkey. 
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(2) Add X2 and the second subkey. 

(3) Add X 3 and the third sub key. 

(4) Multiply X4 and the fourth subkey. 

Finally, the four sub-blocks are reattached to produce the ciphertext. 
Creating the subkeys is also easy. The algorithm uses 52 of them (six for each of 

the eight rounds and four more for the output transformation). First, the 128-bit key 
is divided into eight 16-bit subkeys. These are the first eight subkeys for the algo­
rithm (the six for the first round, and the first two for the second round). Then, the 
key is rotated 25 bits to the left and again divided into eight subkeys. The first four 
are used in round 2; the last four are used in round 3. The key is rotated another 25 
bits to the left for the next eight subkeys, and so on until the end of the algorithm. 

Decryption is exactly the same, except that the subkeys are reversed and slightly 
different. The decryption subkeys are either the additive or multiplicative inverses 
of the encryption subkeys. (For the purposes of IDEA, the all-zero sub-block is con­
sidered to represent 216 = -1 for multiplication modulo 216 + l; thus the multiplica­
tive inverse of 0 is 0.) Calculating these takes some doing, but you only have to do 
it once for each decryption key. Table 13.4 shows the encryption subkeys and the 
corresponding decryption subkeys. 

Speed of IDEA 

Current software implementations of IDEA are about twice as fast as DES. IDEA 
on a 33 megahertz 386 machine encrypts data at 880 kilobits per second, and 2400 
kilobits per second on a 66 megahertz 486 machine. You might think IDEA should 
be faster, but multiplications aren't cheap. To multiply two 32-bit numbers on a 486 
requires 40 clock cycles ( 10 on a Pentium). 

A VLSI implementation of PES encrypts data at 55 megabits per second at 25 
megahertz [208,398]. Another VLSI chip developed at ETH Zurich, consisting of 
251,000 transistors on a chip 107.8 square millimeters, encrypts data using the 

Round 

1st 
2nd 
3rd 
4th 
5th 
6th 
7th 
8th 
output 
transformation 

Table 13.4 
IDEA Encryption and Decryption Subkeys 
Encryption Subkeys 
Z1ll) zll zll zp1 Zsll) zll 
z 1121 zp1 z 3121 z 4121 z 5121 z 6121 
Z1l31 Z2l31 z3131 z4131 Zsl31 z6131 
Z1141 Zl 1 Z3141 Z4141 Zs141 Z6141 
Z1IS) Z2IS) Z)SI zll ZslS) z615) 
Z1l6I Z2l6I Z3l6I z416J Zsl61 z6161 
zp1 zp1 z3171 zp1 zs171 zti 
zi131 z21s1 Z31s1 zpi Zsl81 z61s1 
z1191 z2191 zl1 zl1 

Decryption Subkeys 
Z1l9) - 1 -Z2l9) -Z)91 z419) - 1 Zsl8) z618) 
z 11s1 - 1 _z 31s1 _z 21s1 z 41s1-1 zs171 zti 
zp1 - 1 -ztl -Z2l7) zpi - 1 Zsl6) z616) 
Z/61 - 1 -Zll -Z2l6) z416) - 1 Zs(S) z615) 
Z1IS) - 1 -Z3IS) -zll Zll - 1 Zsl4) z614) 
Z1l4)-1 -zl1-z214) z414) - 1 Zsl3) Zll 
Z1l3) - 1 -z313) -z213) zpi - 1 Zsl2) z612) 
z1121 - 1 -z3121 -zPI zp1 - 1 Zsll) Zll 
z1111 - 1 -zl1 -zi1 z)11 - 1 
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IDEA algorithm at a 177 megabit-per-second data rate when clocked at 25 mega­
hertz [926,207,397]. 

Cryptanalysis of IDEA 
IDEA's key length is 128 bits-over twice as long as DES. Assuming that a brute­

force attack is the most efficient, it would require 2128 ( 1038 ) encryptions to recover 
the key. Design a chip that can test a billion keys per second and throw a billion of 
them at the problem, and it will still take 1013 years-that's longer than the age of 
the universe. An array of 1024 such chips can find the key in a day, but there aren't 
enough silicon atoms in the universe to build such a machine. Now we're getting 
somewhere-although I'd keep my eye on the dark matter debate. 

Perhaps brute force isn't the best way to attack IDEA. The algorithm is still too 
new for any definitive cryptanalytic results. The designers have done their best to 
make the algorithm immune to differential cryptanalysis; they defined the concept 
of a Markov cipher and showed that resistance to differential cryptanalysis can be 
modeled and quantified [931,925]. (Figure 13.10 shows the original PES algorithm to 
be contrasted with the IDEA algorithm of Figure 13.9 which was strengthened 
against differential cryptanalysis. It's amazing how a few subtle changes can make 
such a big difference.) In [925], Lai argued (he gave evidence, not a proof) that IDEA 
is immune to differential cryptanalysis after only 4 of its 8 rounds. According to 
Biham, his related-key cryptanalytic attack doesn't work against IDEA, either [160]. 

Willi Meier examined the three algebraic operations of IDEA, and pointed out that 
while they are incompatible, there are instances where they can be simplified in 
such a way as to facilitate cryptanalysis some percentage of the time [ 1050]. His 
attack is more efficient than brute-force for 2-round IDEA (242 operations), but less 
efficient for 3-round IDEA or higher. Normal IDEA, with 8 rounds, is safe. 

Joan Daemen discovered a class of weak keys for IDEA [406,409]. These are not 
weak keys in the sense of the DES weak keys; that is, the encryption function is self­
inverse. They are weak in the sense that if they are used, an attacker can easily iden­
tify them in a chosen-plaintext attack. For example, a weak key is (in hex): 

0000, 0000, 0xO0, 0000, 0000, 000x,xxxx,xO00 

The number at the positions of "x" can be any number. If this key is used, the bit­
wise XOR of certain plaintext pairs guarantees the bit-wise XOR of the resultant 
ciphertext pairs. 

In any case, the chance of accidentally generating one of these weak keys is very 
small: one in 296 • There is no danger if you choose keys at random. And it is easy to 
modify IDEA so that it doesn't have any weak keys: XOR every subkey with the 
value 0x0dae [409]. 

I know of no other cryptanalytic results against IDEA, although many people 
have tried. 

IDEA Modes of Operation and Variants 
IDEA can work within any block cipher mode discussed in Chapter 9. Any dou­

ble-IDEA implementation would be susceptible to the same meet-in-the-middle 
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Figure 13.10 PBS. 

Output Transformation 

X; : 16-bit plaintext sub-block 

Y; : 16-bit ciphertext sub-block 

Z; ( r): 16-bit key sub-block 

EB: bit-by-bit exclusive-or (XOR) of 16-bit sub-blocks 

EE: addition modulo 2160f 16-bit integers 

Q: multiplication modulo 216 + 1 of 16-bit integers 

with the zero sub-block corresponding to 216 

attack as DES (see Section 15.1). However, because IDEA's key length is more than 
double DES's, the attack is impractical. It would require a storage space of 64*2 128 

bits, or 1039 bytes. Maybe there's enough matter in the universe to create a memory 
device that large, but I doubt it. 

If you're worried about parallel universes as well, use a triple-IDEA implementa­
tion (see Section 15.2): 

C = EK3(DK2(EK1( P))) 

It is immune to the meet-in-the-middle attack. 
There's also no reason why you can't implement IDEA with independent subkeys, 

especially if you have key-management tools to handle the longer key. IDEA needs 
a total of 52 16-bit keys, for a total key length of 832 bits. This variant is definitely 
more secure, but no one knows by how much. 
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A nai:ve variation might double the block size. The algorithm would work just as 
well with 32-bit sub-blocks instead of 16-bit sub-blocks, and a 256-bit key. Encryp­
tion would be quicker and security would increase 232 times. Or would it? The the­
ory behind the algorithm hinges on the fact that 2 16 + 1 is prime; 232 + 1 is not. 
Perhaps the algorithm could be modified to work, but it would have very different 
security properties. Lai says it would be difficult to make it work [926]. 

While IDEA appears to be significantly more secure than DES, it isn't always easy 
to substitute one for the other in an existing application. If your database and mes­
sage templates are hardwired to accept a 64-bit key, it may be impossible to imple­
ment IDEA's 128-bit key. 

For those applications, generate a 128-bit key by concatenating the 64-bit key 
with itself. Remember that IDEA is weakened considerably by this modification. 

If you are more concerned with speed than security, you might consider a variant 
of IDEA with fewer rounds. Currently the best attack against IDEA is faster than 
brute force only for 2.5 rounds or less [1050]; 4 round IDEA would be twice as fast 
and, as far as I know, just as secure. 

Caveat Emptor 
IDEA is a relatively new algorithm, and many questions remain. Is IDEA a group? 

(Lai thinks not [926].) Are there any still-undiscovered ways of breaking this cipher? 
IDEA has a firm theoretical basis, but time and time again secure-looking algo­
rithms have fallen to new forms of cryptanalysis. Several academic and military 
groups have cryptanalyzed IDEA. None of them has gone public about any successes 
they might have had. One might-someday. 

Patents and Licenses 
IDEA is patented in Europe and the United States [1012, 1013]. The patent is held 

by Ascom-Tech AG. No license fee is required for non-commercial use. Commercial 
users interested in licensing the algorithm should contact Ascom Systec AG, Dept 
CMVV, Gewerbepark, CH-5506, Magenwil, Switzerland; +41 64 56 59 83; Fax: +41 
64 56 59 90; idea@ascom.ch. 

13.10 MMB 

A complaint against IDEA, that it uses a 64-bit encryption block, was addressed by 
Joan Daemen in an algorithm called MMB (Modular Multiplication-based Block 
cipher) [385,405,406]. MMB is based on the same basic theory as IDEA: mixing oper­
ations of different algebraic groups. MMB is an iterative algorithm that mainly con­
sists of linear steps (XOR and key applications) and the parallel applications of four 
large nonlinear invertible substitutions. These substitutions are determined by a 
multiplication modulo 232 - 1 with constant factors. The result is an algorithm that 
has both a 128-bit key and a 128-bit block size. 

MMB operates on 32-bit sub-blocks of text (x0, x1, x2, x3) and 32-bit sub-blocks of 
key (k0, k 1, k 2, k3). This makes the algorithm well suited for implementation on 
modern, 32-bit processors. A nonlinear function, f, is applied six times alternating 
with XORing. Here it is (all index operations are mod 4): 
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X; = X; EB k;, for i = 0 to 3 

f(xo,X1,X2,X3) 

x; = X; EB k; + 1, for i = 0 to 3 

f(xo,X1,X2,X3) 

x; = x; EB k; + 2, for i = 0 to 3 

f(xo,X1,X2,X3) 

X; = X; EB k;, for i = 0 to 3 

f(xo,X1,X2,X3) 

x; = x; EB k; + 1, for i = 0 to 3 

f(xo,X1,X2,X3) 

x; = x; EB k; + 2, for i = 0 to 3 

f(xo,X1,X2,X3) 

The function f has three steps: 

( 1) X; = C; * X;, for i = 0 to 3 (If the input to the multiplication is all 1 s, the out­
put is also all ls.) 

(2) If the least significant bit of x0 = 1, then x0 = x0 EB C. If the least significant 
byte of x3 = 0, then x3 = X3 EB C. 

(3) X; = X; _ 1 EB X; EB X; + 1, for i = 0 to 3 

All index operations are mod 4. The multiplication operation in step ( 1) is modulo 
232 - 1. For the purposes of the algorithm, if the second operand is 232 - 1, then the 
result is 232 - 1. The various constants are: 

C = 2aaaaaaa 

c0 = 025£1 cdb 

C1 = 2 * Co 

C2 = 23 * Co 

C3 = 27 * Co 

The constant C is the "simplest" constant with a high ternary weight, a least­
significant bit of zero, and no circular symmetry. The constant c0 has certain other 
characteristics. The constants c1, c2, and c3 are shifted versions of c0, preventing 
attacks based on symmetry. See [405] for more details. 

Decryption is the reverse process. Steps (2) and (3) are their own inverse. Step (1) 
uses C;- 1 instead of c;. The value of c0- 1 is 0dad4694. 

Security of MMB 

The design of MMB ensures that each round has considerable diffusion indepen­
dent of the key. In IDEA, the amount of diffusion is to some extent dependent on the 
particular subkeys. MMB was also designed not to have any weak keys as IDEA has. 
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MMB is dead [402]. Although no cryptanalysis has been published, this is true for 
several reasons. First, it was not designed to be resistant to linear cryptanalysis. The 
multiplication factors were chosen to be resistant to differential cryptanalysis, but 
the algorithm's authors were unaware of linear cryptanalysis. 

Second, Eli Biham has an effective chosen-key attack [160], which exploits the 
fact that all rounds are identical and that the key schedule is just a cyclic shift by 32 
bits. Third, even though MMB would be very efficient in software, the algorithm 
would be less efficient than DES in hardware. 

Daemen suggests that anyone interested in improving MMB should first do an 
analysis of modular multiplication with respect to linear cryptanalysis and choose a 
new multiplication factor, and then make the constant C different for each round 
[402]. Then, improve the key scheduling by adding constants to the round keys to 
remove the bias. He's not going to do it; he designed 3-Way instead (see Section 14.5). 

13.11 CA-1.1 

CA is a block cipher built on cellular automata, designed by Howard Gutowitz 
[677,678,679]. It encrypts plaintext in 384-bit blocks and has a 1088-bit key (it's 
really two keys, a 1024-bit key and a 64-bit key). Because of the nature of cellular 
automata, the algorithm is most efficient when implemented in massively parallel 
integrated circuits. 

CA-1.1 uses both reversible and irreversible cellular automaton rules. Under a 
reversible rule, each state of the lattice comes from a unique predecessor state, 
while under an irreversible rule, each state can have many predecessor states. Dur­
ing encryption, irreversible rules are iterated backward in time. To go backward 
from a given state, one of the possible predecessor states is selected at random. This 
process can be repeated many times. Backward iteration thus serves to mix random 
information with the message information. CA-1.1 uses a particular kind of par­
tially linear irreversible rule, which is such that a random predecessor state for any 
given state can be rapidly built. Reversible rules are also used for some stages of 
encryption. 

The reversible rules (simple parallel permutations on sub-blocks of the state) are 
nonlinear. The irreversible rules are derived entirely from information in the key, 
while the reversible rules depend both on key information and on the random infor­
mation inserted during the stages of encryption with irreversible rules. 

CA-1.1 is built around a block-link structure. That is, the processing of the mes­
sage block is partially segregated from the processing of the stream of random infor­
mation inserted during encryption. This random information serves to link stages of 
encryption together. It can also be used to chain together a ciphertext stream. The 
information in the link is generated as part of encryption. 

Because CA-1.1 is a new algorithm, it is too early to make any pronouncements on 
its security. Gutowitz discusses some possible attacks, including differential crypt­
analysis, but is unable to break the algorithm. As an incentive, Gutowitz has offered 
a $1000 prize to "the first person who develops a tractable procedure to break CA-1.1." 
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CA-1.1 is patented [678], but is available free for non-commercial use. Anyone 
interested in either licensing the algorithm or in the cryptanalysis prize should con­
tact Howard Gutowitz, ESPCI, Laboratoire d'Electronique, 10 rue Vauquelin, 75005 
Paris, France. 

13 .12 SKIP JACK 

Skipjack is the NSA-developed encryption algorithm for the Clipper and Capstone 
chips (see Sections 24.16 and 24.17). Since the algorithm is classified Secret, its details 
have never been published. It will only be implemented in tamperproof hardware. 

The algorithm is classified Secret, not because that enhances its security, but 
because the NSA doesn't want Skipjack being used without the Clipper key-escrow 
mechanism. They don't want the algorithm implemented in software and spread 
around the world. 

Is Skipjack secure? If the NSA wants to produce a secure algorithm, they presum­
ably can. On the other hand, if the NSA wants to design an algorithm with a trap­
door, they can do that as well. 

Here's what has been published [1154,462]. 

It's an iterative block cipher. 

The block size is 64 bits. 

It has an 80-bit key. 

It can be used in ECB, CBC, 64-bit OFB, or 1-, 8-, 16-, 32- or 64-bit CFB 
modes. 

There are 32 rounds of processing per single encrypt or decrypt oper­
ation. 

NSA started the design in 1985 and completed the evaluation in 1990. 

The documentation for the Mykotronx Clipper chip says that the latency for the 
Skipjack algorithm is 64 clock cycles. This means that each round consists of two 
clock cycles: presumably one for the S-box substitution and another for the final 
XOR at the end of the round. (Remember: permutations take no time in hardware.) 
The Mykotronx documentation calls this two-clock-cycle operation a "G-box, 11 and 
the whole thing a "shift." (Some part of the G-box is called an "F-table, 11 probably a 
table of constants but maybe a table of functions.) 

I heard a rumor that Skipjack uses 16 S-boxes, and another that the total memory 
requirement for storing the S-boxes is 128 bytes. It is unlikely that both of these 
rumors are true. 

Another rumor implies that Skipjack's rounds, unlike DES's, do not operate on 
half of the block size. This, combined with the notion of "shifts," an inadvertent 
statement made at Crypto '94 that Skipjack has II a 48-bit internal structure, 11 

implies that it is similar in design to SHA (see Section 18. 7) but with four 16-bit sub­
blocks: three sub-blocks go through a key-dependent one-way function to produce 
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16 bits, which are XO Red with the remaining sub-block; then the whole block is cir­
cularly shifted 16 bits to become the input to the next round, or shift. This also 
implies 128 bytes of S-box data. I suspect that the S-boxes are key-dependent. 

The structure of Skipjack is probably similar to DES. The NSA realizes that their 
tamperproof hardware will be reverse-engineered eventually; they won't risk any 
advanced cryptographic techniques. 

The fact that the NSA is planning to use the Skipjack algorithm to encrypt their 
Defense Messaging System (DMS) implies that the algorithm is secure. To convince 
the skeptics, NIST allowed a panel of "respected experts from outside the govern­
ment ... access to the confidential details of the algorithm to assess its capabilities 
and publicly report its findings" [812]. 

The preliminary report of these experts [262] (there never was a final report, and 
probably never will be) concluded that: 

Under an assumption that the cost of processing power is halved every 18 
months, it will be 36 years before the difficulty of breaking Skipjack by exhaus­
tive search will be equal to the difficulty of breaking DES today. Thus, there is no 
significant risk that Skipjack will be broken by exhaustive search in the next 
30-40 years. 

There is no significant risk that Skipjack can be broken through a shortcut 
method of attack, including differential cryptanalysis. There are no weak keys; 
there is no complementation property. The experts, not having time to evaluate 
the algorithm to any great extent, instead evaluated NSA's own design and evalu­
ation process. 

The strength of Skipjack against a cryptanalytic attack does not depend on the 
secrecy of the algorithm. 

Of course, the panelists did not look at the algorithm long enough to come to any 
conclusions themselves. All they could do was to look at the results that the NSA 
showed to them. 

One unanswered question is whether the Skipjack keyspace is flat (see Section 
8.2). Even if Skipjack has no weak keys in the DES sense, some artifact of the key­
scheduling process could make some keys stronger than others. Skipjack could have 
270 strong keys, far more than DES; the odds of choosing one of those strong keys at 
random would still be about 1 in 1000. Personally, I think the Skipjack keyspace is 
flat, but the fact that no one has ever said this publicly is worrisome. 

Skipjack is patented, but the patent is being withheld from distribution by a patent 
secrecy agreement [I 122]. The patent will only be issued when and if the Skipjack 
algorithm is successfully reverse-engineered. This gives the government the best of 
both worlds: the protection of a patent and the confidentiality of a trade secret. 
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CHAPTER 14 

Still Other Block Ciphers 

14.1 GOST 
GOST is a block algorithm from the former Soviet Union [655,1393]. "GOST" is an 
acronym for "Gosudarstvennyi Standard," or Government Standard, sort of similar 
to a PIPS, except that it can (and does) refer to just about any kind of standard. (Actu­
ally, the full name is Gosudarstvennyi Standard Soyuza SSR, or Government Stan­
dard of the Union of Soviet Socialist Republics.) This standard is number 28147-89. 
The Government Committee for Standards of the USSR authorized the standard, 
whoever they were. 

I don't know whether GOST 28147-89 was used for classified traffic or just for 
civilian encryption. A remark at its beginning states that the algorithm "satisfies all 
cryptographic requirements and not limits the grade of information to be pro­
tected." I have heard claims that it was initially used for very high-grade communi­
cations, including classified military communications, but I have no confirmation. 

Description of GOST 
GOST is a 64-bit block algorithm with a 256-bit key. GOST also has some addi­

tional key material that will be discussed later. The algorithm iterates a simple 
encryption algorithm for 32 rounds. 

To encrypt, first break the text up into a left half, L, and a right half, R. The sub­
key for round i is K1. A round, i, of GOST is: 

Li= R; -1 

R; = Li - I E8 f(Ri - I, Ki) 

Figure 14.1 is a single round of GOST. Function f is straightforward. First, the 
right half and the ith subkey are added modulo 232 . The result is broken into eight 
4-bit chunks, and each chunk becomes the input to a different S-box. There are eight 
different S-boxes in GOST; the first 4 bits go into the first S-box, the second 4 bits go 
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R;_ 1 Choose One Subkey 

S-Box Substitution 

Left Circular Shift 

Figure 14.1 One round of COST. 

into the second S-box, and so on. Each S-box is a permutation of the numbers 0 
through 15. For example, an S-box might be: 

7, 10, 2, 4, 15, 9, 0, 3, 6, 12, 5, 13, 1, 8, 11 

In this case, if the input to the S-box is 0, the output is 7. If the input is 1, the out­
put is 10, and so on. All eight S-boxes are different; these are considered additional 
key material. The S-boxes are to be kept secret. 

The outputs of the eight S-boxes are recombined into a 32-bit word, then the 
entire word undergoes an 11-bit left circular shift. Finally, the result XORed to the 
left half to become the new right half, and the right half becomes the new left half. 
Do this 32 times and you're done. 

The subkeys are generated simply. The 256-bit key is divided into eight 32-bit 
blocks: k 1, k 2, ••• , k 8• Each round uses a different subkey, as shown in Table 14.1. 
Decryption is the same as encryption with the order of the k;s reversed. 

The COST standard does not discuss how to generate the S-boxes, only that they 
are somehow supplied [655]. This has led to speculation that some Soviet organiza­
tion would supply good S-boxes to those organizations it liked and bad S-boxes to 
those organizations it wished to eavesdrop on. This may very well be true, but fur­
ther conversations with a COST chip manufacturer within Russia offered another 
alternative. He generated the S-box permutations himself, using a random-number 
generator. 
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Table 14.1 
Use of GOST Subkeys in Different Rounds 

Round: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Subkey: 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 
Round: 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

Subkey: 1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1 

More recently, a set of S-boxes used in an application for the Central Bank of the 
Russian Federation surfaced. These S-boxes are also used in the GOST one-way 
hash function (see section 18.11) [657].They are listed in Table 14.2. 

Cryptanalysis of GOST 

These are the major differences between DES and GOST. 

DES has a complicated procedure for generating the subkeys from the 
keys. GOST has a very simple procedure. 

DES has a 56-bit key; GOST has a 256-bit key. If you add in the secret 
S-box permutations, GOST has a total of about 610 bits of secret 
information. 

Table 14.2 
GOST S-Boxes 

S-box 1: 
4 10 9 2 13 8 0 14 6 11 1 12 7 15 5 3 

S-box 2: 
14 11 4 12 6 13 15 10 2 3 8 1 0 7 5 9 

S-box 3: 
5 8 1 13 10 3 4 2 14 15 12 7 6 0 9 11 

S-box 4: 
7 13 10 1 0 8 9 15 14 4 6 12 11 2 5 3 

S-box 5: 
6 12 7 1 5 15 13 8 4 10 9 14 0 3 11 2 

S-box 6: 
4 11 10 0 7 2 1 13 3 6 8 5 9 12 15 14 

S-box 7: 
13 11 4 1 3 15 5 9 0 10 14 7 6 8 2 12 

S-box 8: 
1 15 13 0 5 7 10 4 9 2 3 14 6 11 8 12 
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The S-boxes in DES have 6-bit inputs and 4-bit outputs; the S-boxes 
in GOST have 4-bit inputs and outputs. Both algorithms have eight 
S-boxes, but an S-box in GOST is one-fourth the size of an S-box in 
DES. 

DES has an irregular permutation, called a P-box; GOST uses an 11-
bit left circular shift. 

DES has 16 rounds; GOST has 32 rounds. 

If there is no better way to break GOST other than brute force, it is a very secure 
algorithm. GOST has a 256-bit key-longer if you count the secret S-boxes. Against 
differential and linear cryptanalysis, GOST is probably stronger than DES. Although 
the random S-boxes in GOST are probably weaker than the fixed S-boxes in DES, 
their secrecy adds to GOST's resistance against differential and linear attacks. Also, 
both of these attacks depend on the number of rounds: the more rounds, the more 
difficult the attack. GOST has twice as many rounds as DES; this alone probably 
makes both differential and linear cryptanalysis infeasible. 

The other parts of GOST are either on par or worse than DES. GOST doesn't have 
the same expansion permutation that DES has. Deleting this permutation from 
DES weakens it by reducing the avalanche effect; it is reasonable to believe that 
GOST is weaker for not having it. GOST's use of addition instead is no less secure 
than DES's XOR. 

The greatest difference between them seems to be GOST's cyclic shift instead of a 
permutation. The DES permutation increases the avalanche effect. In GOST a change 
in one input bit affects one S-box in one round, which then affects two S-boxes in the 
next round, three the round after that, and so on. GOST requires 8 rounds before a sin­
gle change in an input affects every output bit; DES only requires 5 rounds. This is cer­
tainly a weakness. But remember: GOST has 32 rounds to DES's 16. 

GOST's designers tried to achieve a balance between efficiency and security. They 
modified DES's basic design to create an algorithm that is better suited for software 
implementation. They seem to have been less sure of their algorithm's security, and 
have tried to compensate by making the key length very large, keeping the S-boxes 
secret, and doubling the number of iterations. Whether their efforts have resulted in 
an algorithm more secure than DES remains to be seen. 

14.2 CAST 

CAST was designed in Canada by Carlisle Adams and Stafford Tavares [10, 7]. They 
claim that the name refers to their design procedure and should conjure up images 
of randomness, but note the authors' initials. The example CAST algorithm uses a 
64-bit block size and a 64-bit key. 

The structure of CAST should be familiar. The algorithm uses six S-boxes with an 
8-bit input and a 32-bit output. Construction of these S-boxes is implementation­
dependent and complicated; see the references for details. 
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To encrypt, first divide the plaintext block into a left half and a right half. The 
algorithm has 8 rounds. In each round the right half is combined with some key 
material using function f and then XORed with the left half to form the new right 
half. The original right half (before the round) becomes the new left half. After 8 
rounds (don't switch the left and right halves after the eighth round), the two halves 
are concatenated to form the ciphertext. 

Function f is simple: 

( 1) Divide the 32-bit input into four 8-bit quarters: a, b, c, d. 

(2) Divide the 16-bit subkey into two 8-bit halves: e, f. 
(3) Process a through S-box 1, b through S-box 2, c through S-box 3, d through 

S-box 4. e through S-box 5, and f through S-box 6. 

(4) XOR the six S-box outputs together to get the final 32-bit output. 

Alternatively, the 32-bit input can be XO Red with 32 bits of key, divided into four 
8-bit quarters, processed through the S-boxes, and then XORed together [7]. N 
rounds of this appears to be as secure as N + 2 rounds of the other option. 

The 16-bit subkey for each round is easily calculated from the 64-bit key. If k 1, 

k 2, ••• , ks are the 8 bytes of the key, then the subkeys for each round are: 

Round 1: k1, k2 

Round 2: k3, k4 

Round 3: ks, k6 

Round 4: k1, ks 

Round 5: k4, k3 

Round 6: k2, k1 

Round 7: ks, k1 

Round 8: k6, ks 

The strength of this algorithm lies in its S-boxes. CAST does not have fixed S-boxes; 
new ones are constructed for each application. Design criteria are in [10]; bent func­
tions are the S-box columns, selected for a number of desirable S-box properties 
(see Section 14.10). Once a set of S-boxes has been constructed for a given imple­
mentation of CAST, they are fixed for all time. The S-boxes are implementation­
dependent, but not key-dependent. 

It was shown in [10] that CAST is resistant to differential cryptanalysis and in 
[728] that CAST is resistant to linear cryptanalysis. There is no known way to break 
CAST other than brute force. 

Northern Telecom is using CAST in their Entrust security software package for 
Macintoshes, PCs, and UNIX workstations. The particular S-boxes they chose are 
not public. The Canadian government is evaluating CAST as a new encryption stan­
dard. CAST is patent-pending. 
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14. 3 BLOWFISH 

Blowfish is an algorithm of my own design, intended for implementation on large 
microprocessors [1388, 1389]. The algorithm is unpatented, and the C code in the 
back of this book is in the public domain. I designed Blowfish to meet the following 
design criteria. 

1. Fast. Blowfish encrypts data on 32-bit microprocessors at a rate of 26 clock 
cycles per byte. 

2. Compact. Blowfish can run in less than SK of memory. 

3. Simple. Blowfish uses only simple operations: addition, XORs, and table 
lookups on 32-bit operands. Its design is easy to analyze which makes it 
resistant to implementation errors [1391]. 

4. Variably Secure. Blowfish's key length is variable and can be as long as 
448 bits. 

Blowfish is optimized for applications where the key does not change often, like a 
communications link or an automatic file encryptor. It is significantly faster than 
DES when implemented on 32-bit microprocessors with large data caches, such as 
the Pentium and the PowerPC. Blowfish is not suitable for applications, such as 
packet switching, with frequent key changes, or as a one-way hash function. Its 
large memory requirement makes it infeasible for smart card applications. 

Description of Blowfish 
Blowfish is a 64-bit block cipher with a variable-length key. The algorithm con­

sists of two parts: key expansion and data encryption. Key expansion converts a key 
of up to 448 bits into several subkey arrays totaling 4168 bytes. 

Data encryption consists of a simple function iterated 16 times. Each round con­
sists of a key-dependent permutation, and a key- and data-dependent substitution. 
All operations are additions and XORs on 32-bit words. The only additional opera­
tions are four indexed array data lookups per round. 

Blowfish uses a large number of subkeys. These keys must be precomputed before 
any data encryption or decryption. 

The P-array consists of 18 32-bit subkeys: 

Four 32-bit S-boxes have 256 entries each: 

S1,0, S1,1, ... , Suss 

S2,0, S2,1, ... , S2,2ss 

s3,o, s3,1, ... , s3.2ss 

s4,o, s4,1, ... , s4.2ss 

The exact method used to calculate these subkeys will be described later in this 
section. 
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p 32 Bits 
I 

Plaintext 

64 Bits 
32 Bits 32 Bits 

32 Bits 

13 More Iterations 

>-------, F >----------11~ 

Pis -----•-H 
32 Bits 32 Bits 

64 Bits 

[ Ciphertext ] Figure 14.2 Blowfish. 

Blowfish is a Feistel network (see Section 14.10) consisting of 16 rounds. The 
input is a 64-bit data element, x. To encrypt: 

Divide x into two 32-bit halves: xL, xR 

Fori=ltol6: 

XL= XL EB P; 

xR = F(xL) EB xR 

Swap xL and xR 

Swap xL and xR (Undo the last swap.) 

XR =XR EB P17 

XL= XL EB Pis 

Recombine xL and xR 
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8 Bits S-Box 1 32 Bits 

8 Bits S-Box 2 32 Bits 

32 Bits 

8 Bits S-Box 3 32 Bits 

32 Bits 

8 Bits S-Box 4 >-3_2_B_its __ ~ 

Figure 14.3 Function F. 

Function F is as follows ( see Figure 14.3 ): 

Divide xL into four eight-bit quarters: 
a, b, c, and d F(xL) = ((Si,a + S2,b mod 232 ) EB S3,c) + S4,d mod 232 

Decryption is exactly the same as encryption, except that Pi, P2, ••• , Pis are used 
in the reverse order. 

Implementations of Blowfish that require the fastest speeds should unroll the 
loop and ensure that all subkeys are stored in cache. See [568] for details. 

The subkeys are calculated using the Blowfish algorithm. The exact method 
follows. 

( 1) Initialize first the P-array and then the four S-boxes, in order, with a fixed 
string. This string consists of the hexadecimal digits of n. 

(2) XOR Pi with the first 32 bits of the key, XOR P2 with the second 32-bits of 
the key, and so on for all bits of the key (up to Pis). Repeatedly cycle 
through the key bits until the entire P-array has been XO Red with key bits. 

(3) Encrypt the all-zero string with the Blowfish algorithm, using the subkeys 
described in steps (1) and (2). 

(4) Replace Pi and P2 with the output of step (3). 

(5) Encrypt the output of step (3) using the Blowfish algorithm with the mod­
ified subkeys. 

(6) Replace P3 and P4 with the output of step (5). 

(7) Continue the process, replacing all elements of the P-array, and then all 
four S-boxes in order, with the output of the continuously changing Blow­
fish algorithm. 
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In total, 521 iterations are required to generate all required subkeys. Applica­
tions can store the subkeys-there's no need to execute this derivation process 
multiple times. 

Security of Blowfish 
Serge Vaudenay examined Blowfish with known S-boxes and r rounds; a differen­

tial attack can recover the P-array with 28'+ 1 chosen plaintexts [1568]. For certain 
weak keys that generate bad S-boxes (the odds of getting them randomly are 1 in 214), 

the same attack requires only 24' + 1 chosen plain texts to recover the P-array. With 
unknown S-boxes this attack can detect whether a weak key is being used, but can­
not determine what it is (neither the S-boxes nor the P-array). This attack only 
works against reduced-round variants; it is completely ineffective against 16-round 
Blowfish. 

Of course, the discovery of weak keys is significant, even though they seem 
impossible to exploit. A weak key is one in which two entries for a given S-box are 
identical. There is no way to check for weak keys before doing the key expansion. If 
you are worried, you have to do the key expansion and check for identical S-box 
entries. I don't think this is necessary, though. 

I know of no successful cryptanalysis against Blowfish. To be safe, do not imple­
ment Blowfish with a reduced number of rounds. 

Kent Marsh Ltd. has incorporated Blowfish in their FolderBolt security product for 
Microsoft Windows and Macintosh. It is also part of Nautilus and PGPfone. 

14.4 SAFER 
SAFER K-64 stands for Secure And Fast Encryption Routine with a Key of 64 bits 
[1009]. James Massey produced this nonproprietary algorithm for Cylink Corp. and 
it is incorporated into some of their products. The government of Singapore is plan­
ning to use this algorithm-with a 128-bit key [1010]-for a wide variety of applica­
tions. There are no patent, copyright, or other restrictions on its use. 

The algorithm has a block and key size of 64 bits. It is not a Feistel network like 
DES (see Section 14.10), but an iterated block cipher: The same function is applied 
for some number of rounds. Each round uses two 64-bit subkeys, and the algorithm 
only uses operations on bytes. 

Description of SAFER K-64 
The plaintext block is divided into eight byte-length sub-blocks: B1, B2, ••• , B7, 

B8• Then the sub-blocks go through r rounds. Finally, an output transformation is 
applied to the sub-blocks. Each round uses two subkeys: K2; _ 1 and K2;. 

Figure 14.4 shows one round of SAFER K-64. First, sub-blocks are either XORed or 
added with bytes of subkey K2; _ 1• Then, the eight sub-blocks are subjected to one of 
two nonlinear transformations: 

y = 45x mod 257. (If x = 128, then y = 0.) 

y = log45 x. (If x = 0, then y = 128.) 
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These are operations in the finite field GF(257), and 45 is a primitive element in 
that field. In practical implementations of SAFER K-64, it is quicker to implement 
this in a lookup table than to calculate new results all the time. 

Then, sub-blocks are either XORed or added with bytes of subkey K2r. The results 
of this operation are fed through three layers of linear operations designed to 
increase the avalanche effect. Each operation is called a Pseudo-Hadamard Trans­
form (PHT). If the inputs to a PHT are a1 and a2, then the outputs are: 

b1 = (2a1 + a2) mod 256 

b2 = (a1 + a2) mod 256 

After r rounds, there is a final output transformation. This is the same as the first 
step of each round. B1, B4, B5, and B8 are XORed with the corresponding bytes of the 
last subkey, and B2, B3, B6, and B7 are added to the corresponding bytes of the last 
subkey. The result is the ciphertext. 

Round Input (8 Bytes) 
1 2 3 4 5 6 7 8 

i i i i i i i i 
xor add add xor xor add add xor I-K2i-l 

add xor xor add add xor xor add -K 2; 

2-PHT 

2-PHT 

2-PHT 

2 3 4 5 6 7 8 

Round Output (8 Bytes) 

Figure 14.4 One round of SAFER. 
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Decryption is the reverse process: the output transformation (with subtraction 
instead of addition), then r reverse rounds. The Inverse PHT (IPHT) is: 

a 1 = (bi - b2 ) mod 256 

a2 =(-bi+ 2b2) mod 256 

Massey recommends 6 rounds, but you can increase that if you want greater 
security. 

Generating subkeys is easy. The first subkey, K 1, is simply the user key. Subse­
quent subkeys are generated by the following procedure: 

K; + 1 = (K1 <<< 3i) + C; 

The symbol "<<<" is a left circular shift or a left rotation. The rotation is byte by 
byte, and C; is a round constant. If C;; is the jth byte of the ith round constant, then 
you can calculate all of the round constants by the formula 

C;; = 4545'[19i + ii mod 256) mod 257 mod 25 7 

Generally, these values are stored in a table. 

SAFER K-128 

This alternate key schedule was developed by the Ministry of Home Affairs in 
Singapore, and then incorporated into SAFER by Massey [1010]. It uses two keys, Ka 
and Kb, each 64-bits long. The trick is to generate two subkey sequences in parallel, 
and then alternate subkeys from each sequence. This means that if you choose Ka = 
Kb, then the 128-bit key is compatible with the 64-bit key Ka. 

Security of SAFER K-64 

Massey showed that SAFER K-64 is immune to differential cryptanalysis after 8 
rounds and is adequately secure against the attack after 6 rounds. After only 3 
rounds linear cryptanalysis is ineffective against this algorithm [1010]. 

Knudsen found a weakness in the key schedule: For virtually every key, there 
exists at least one (and sometimes as many as nine) other key that encrypts some 
different plaintext to identical ciphertexts [862]. The number of different plaintexts 
that encrypt to identical ciphertexts after 6 rounds is anywhere from 222 to 228 • 

While this attack may not impact SAFER's security when used as an encryption 
algorithm, it greatly reduces its security when used as a one-way hash function. In 
any case, Knudsen recommends at least 8 rounds. 

SAFER was designed for Cylink, and Cylink is tainted by the NSA [80]. I recom­
mend years of intense cryptanalysis before using SAFER in any form. 

14.5 3-WAY 

3-Way is a block cipher designed by Joan Daemen [402,410]. It has a 96-bit block 
length and key length, and is designed to be very efficient in hardware. 
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3-Way is not a Feistel network, but it is an iterated block cipher. 3-Way can have 
n rounds; Daemen recommends 11. 

Description of 3-Way 

The algorithm is simple to describe. To encrypt a plaintext block, x: 

For i = 0 to n - 1 

x=xXORKi 

x= theta (x) 

X= pi - 1 (x) 

x=gamma (x) 

X= pi- 2 (x) 

X = X E9 Kn 
x = theta (x) 

The functions are: 

theta(x) is a linear substitution function-basically a bunch of circu­
lar shifts and XORs. 

pi-l(x) and pi-2(x) are simple permutations. 

gamma(x) is a nonlinear substitution function. This is the step that 
gives 3-Way its name; it is the parallel execution of the substitution 
step on 3-bit blocks of the input. 

Decryption is similar to encryption, except that the bits of the input have to be 
reversed and the bits of the output have to be reversed. Code to implement 3-Way 
can be found in the back of this book. 

So far, there has been no successful cryptanalysis of 3-Way. The algorithm is 
unpatented. 

14.6 CRAB 

This algorithm was developed by Burt Kaliski and Matt Robshaw of RSA Laborato­
ries [810]. The idea behind Crab is to use techniques from one-way hash functions 
to make a fast encryption algorithm. Hence, Crab is very similar to MDS, and this 
section assumes you are familiar with Section 18.5. 

Crab has a very large block: 1024 bytes. Since Crab is presented more as a research 
contribution than a real algorithm, no definitive key-generation routines are pre­
sented. The authors suggest a method that could turn an 80-bit key into three req­
uisite subkeys, although the algorithm could easily accept variable-length keys. 

Crab uses two sets of large subkeys: 

A permutatiop of the numbers O through 255: Pa, P1, P2, . .. , P255. 

A 2048-entry array of 32-bit numbers: Sa, S1, S2, ... , S2a41. 
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These subkeys must all be calculated before encryption or decryption. 
To encrypt a 1024-byte block X: 

( 1) Divide X into 256 32-bit sub-blocks: X 0, X 1, X 2, .•• , X 255 • 

(2) Permute the sub-blocks of X according to P 

(3) For r = 0 to 3 
For g = 0 to 63 

A = X14i;i «< 2r 

B = Xl4g + 11 «< 2, 

C = X14i; + 21 <« 2r 

D = X14g + 31 <« 2r 

For step s = 0 to 7 

A= A EB (B + t(B,C,D) + S512r + sg + s) 

TEMP=D 

D=C 

C=B 

B =A«< 5 

A=TEMP 

Xl4gl <« 2r = A 

x(4g + I)<« 2r = B 

Xl4g + 21 <« 2r = C 

Xl4g + 31 <« 2, = D 

(4) Recombine X 0, X1, X 2, ..• , X255 to form the ciphertext. 

The functions f,(B,C,D) are similar to those used in MD5: 

f0(B,C,D) =(BA C) v ((--, B) I\ D) 

f 1(B,C,D) =(BAD) v (CA(--, D)) 

f2(B,C,D) = B EB C EB D 

f,(B,C,D) = C EB (B v (--, D)) 

Decryption is the reverse process. 
Generating the subkeys is a large task. Here is how the permutation array, P, 

could be generated from an 80-bit key, K. 

( 1) Initialize K0, K1, K2, ... , K9 with the 10 bytes of K. 

(2) For i = IO to 255 

K; = K; _ 2 EB K _ 6 EB K; _ 1 EB K - 10 

(3) For i = 0 to 255, Pi= i 
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(4) m=0 

( 5) For j = 0 to 1 

For i = 256 to 1 step -1 

m = (K256 _; + K257 _ ;) modi 

K2s7 - ; = K2s7 - ; <<< 3 

Swap P; and P; _ 1 

The S-array of 2048 32-bit words could be generated in a similar manner, either 
from the same 80-bit key or from another key. The authors caution that these 
details should "be viewed as motivational; there may very well be alternative 
schemes which are both more efficient and offer improved security" [810]. 

Crab was proposed as a testbed of new ideas and not as a working algorithm. It 
uses many of the same techniques as MDS. Biham has argued that a very large block 
size makes an algorithm easier to cryptanalyze [160]. On the other hand, Crab may 
make efficient use of a very large key. In such a case, "easier to cryptanalyze" might 
not mean much. 

14.7 SXALS/MBAL 

This is a 64-bit block algorithm from Japan [769]. SXAL8 is the basic algorithm; 
MBAL is an expanded version with a variable block length. Since MBAL does some 
clever things internally, the authors claim that they can get adequate security with 
only a few rounds. With a block length of 1024 bytes, MBAL is about 70 times faster 
than DES. Unfortunately, [1174] shows that MBAL is susceptible to differential 
cryptanalysis, and [865] shows that it is susceptible to linear cryptanalysis. 

14.8 RCS 

RCS is a block cipher with a variety of parameters: block size, key size, and num­
ber of rounds. It was invented by Ron Rivest and analyzed by RSA Laboratories 
[1324, 1325]. 

There are three operations: XOR, addition, and rotations. Rotations are constant­
time operations on most processors and variable rotations are a nonlinear function. 
These rotations, which depend on both the key and the data, are the interesting 
operation. 

RCS has a variable-length block, but this example will focus on a 64-bit data 
block. Encryption uses 2r + 2 key-dependent 32-bit words-S 0, S1, S2, ... , S2r + 1-

where r is the number of rounds. We'll generate those words later. To encrypt, first 
divide the plaintext block into two 32-bit words: A and B. (RCS assumes a little­
endian convention for packing bytes into words: The first byte goes into the low­
order bit positions of register A, etc.) Then: 

A =A+ S0 

B = B + S1 
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For i =Ito r: 

A= ((A EBB)<« B) + S2; 

B = ((B EB A)«< A)+ S2; + I 

The output is in the registers A and B. 
Decryption is just as easy. Divide the plaintext block into two words, A and B, 

and then: 

For i = r down to 1: 

B = ((B - S2; + 1) »> A) EB A 

A= ((A - S2;) »> B) EBB 

B = B- S1 

A =A- So 

The symbol ">>>" is a right circular shift. Of course, all addition and subtraction 
are mod 232 • 

Creating the array of keys is more complicated, but also straightforward. First, 
copy the bytes of the key into an array, L, of c 32-bit words, padding the final word 
with zeros if necessary. Then, initialize an array, S, using a linear congruential gen­
erator mod 232: 

So= P 

for i = 1 to 2(r + 1) - 1: 

S; = (S; _ 1 + Q) mod 232 

P = 0xb 7 e 15163 and Q = 0x9e3 779b9; these constants are based on the binary rep­
resentation of e and phi. 

Finally, mix L into S: 

i=f=O 

A=B=O 

do 3n times (where n is the maximum of 2(r + 1) and c): 

A= S; = (S; +A+ B) <« 3 

B =Li= (L; + A + B) «< (A + B) 

i = (i + 1) mod 2(r + 1) 

i = (i + I) mod c 

RCS is actually a family of algorithms. We just defined RCS with a 32-bit word 
size and 64-bit block; there's no reason why the same algorithm can't have a 64-bit 
word size and 128-bit block size. For w= 64, P and Qare 0xb7e151628aed2a6b and 
0x9e3 779b97f4a7cl5, respectively. Rivest designates particular implementations of 
RCS as RCS-w/r/b, where w is the word size, r is the number of rounds, and bis the 
length of the key in bytes. 

RCS is new, but RSA Laboratories has spent considerable time analyzing it with 
a 64-bit block. After 5 rounds, the statistics look very good. After 8 rounds, every 
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plaintext bit affects at least one rotation. There is a differential attack that requires 
224 chosen plaintexts for 5 rounds, 245 for 10 rounds, 253 for 12 rounds, and 268 for 15 
rounds. Of course, there are only 264 possible chosen plaintexts, so this attack won't 
work for 15 or more rounds. Linear cryptanalysis estimates indicate that it is secure 
after 6 rounds. Rivest recommends at least 12 rounds, and possibly 16 [1325]. This 
number may change. 

RSADSI is in the process of patenting RCS, and the name is trademarked. The com­
pany claims that license fees will be very small, but you'd better check with them. 

14.9 OTHER BLOCK ALGORITHMS 

There is an algorithm called CRYPTO-MECCANO in the literature [301]; it is inse­
cure. Four Japanese cryptographers presented an algorithm based on chaotic maps at 
Eurocrypt '91 [687,688]; Biham cryptanalyzed the algorithm at the same conference 
[157]. Another algorithm relies on subsets of a particular set of random codes [693]. 
There are several algorithms based on the theory of error-correcting codes: a variant 
of the McEliece algorithm (see Section 19. 7) [786, 1290], the Rao-Nam algorithm 
[1292,733, 1504, 1291, 1056, 1057, 1058, 1293], variants of the Rao-Nam algorithm 
[464,749,1503], and the Li-Wang algorithm [964,1561]-they are all insecure. CALC 
is insecure [1109]. An algorithm called TEA, for Tiny Encryption Algorithm, is too 
new to comment on [1592]. Vino is another algorithm [503]. MacGuffin, a block 
algorithm by Matt Blaze and me, is also insecure [189]; it was broken at the same 
conference it was proposed. BaseKing, similar in design philosophy as 3-way but 
with a 192-bit block [402], is too new to comment on. 

There are many more block algorithms outside the cryptology community. Some 
are used by various government and military organizations. I have no information 
about any of those. There are also dozens of proprietary commercial algorithms. 
Some might be good; most are probably not. If companies do not feel that their inter­
ests are served by making their algorithms public, it is best to assume they're right 
and avoid the algorithm. 

14 .10 THEORY OF BLOCK CIPHER DESIGN 

In Section 11. 1, I described Shannon's principles of confusion and diffusion. Fifty 
years after these principles were first written, they remain the cornerstone of good 
block cipher design. 

Confusion serves to hide any relationship between the plaintext, the ciphertext, 
and the key. Remember how linear and differential cryptanalysis can exploit even 
a slight relationship between these three things? Good confusion makes the rela­
tionship statistics so complicated that even these powerful cryptanalytic tools 
won't work. 

Diffusion spreads the influence of individual plain text or key bits over as much of 
the ciphertext as possible. This also hides statistical relationships and makes crypt­
analysis more difficult. 
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Confusion alone is enough for security. An algorithm consisting of a single key­
dependent lookup table of 64 bits of plaintext to 64 bits of ciphertext would be 
plenty strong. The problem is that large lookup tables require lots of memory to 
implement: 1020 bytes of memory for the table just mentioned. The whole point of 
block cipher design is to create something that looks like a large lookup table, but 
with much smaller memory requirements. 

The trick is to repeatedly mix confusion (with much smaller tables) and diffusion 
in a single cipher in different combinations. This is called a product cipher. Some­
times a block cipher that incorporates layers of substitution and permutation is 
called a substitution-permutation network, or even an SP network. 

Look back at function f of DES. The expansion permutation and P-box perform 
diffusion; the S-boxes perform confusion. The expansion permutation and P-box are 
linear; the S-boxes are nonlinear. Each operation is pretty simple on its own; 
together they work pretty well. 

DES also illustrates a few more principles of block cipher design. The first is the 
idea of an iterated block cipher. This simply means taking a simple round function 
and iterating it multiple times. Two-round DES isn't very strong; it takes 5 rounds 
before all of the output bits are dependent on all of the input bits and all of the key 
bits [1078,1080]. Sixteen-round DES is strong; 32-round DES is even stronger. 

Feistel Networks 

Most block algorithms are Feistel networks. This idea dates from the early 1970s 
[552,553]. Take a block of length n and divide it into two halves of length n/2: Land 
R. Of course, n must be even. You can define an iterated block cipher where the out­
put of the ith round is determined from the output of the previous round: 

L; = R; _ I 

R; = L; _ 1 EB f(R; -1,K,) 

K; is the subkey used in the ith round and f is an arbitrary round function. 
You've seen this concept in DES, Lucifer, FEAL, Khufu, Khafre, LOKI, COST, 

CAST, Blowfish, and others. Why is it such a big deal? The function is guaranteed 
to be reversible. Because XOR is used to combine the left half with the output of the 
round function, it is necessarily true that 

L; - 1 EB f(R; - 1,K;) EB f(R; - 1,K;) = L; - 1 

A cipher that uses this construction is guaranteed to be invertible as long as the 
inputs to fin each round can be reconstructed. It doesn't matter what f is; f need not 
be invertible. We can design f to be as complicated as we please, and we don't have 
to implement two different algorithms-one for encryption and another for decryp­
tion. The structure of a Feistel network takes care of all this automatically. 

Simple Relations 
DES has the property that if EK(P) = C, then EK'(P') = C', where P', C', and K' are the 

bit-wise complements of P, C, and K. This property reduces the complexity of a 
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brute-force attack by a factor of two. LOKI has complementation properties that 
reduce the complexity of a brute-force attack by a factor of 256. 

A simple relation can be defined as [857]: 

If EK(P) = C, then EtiK! (g(P,K)) = h(C,K) 

where f, g, and hare simple functions. By simple I mean that they are easy to com­
pute, much easier than an iteration of the block cipher. In DES, f is the bit-wise 
complement of K, g is the bit-wise complement of P, and h is the bit-wise comple­
ment of C. This is a result of XORing the key into part of the text. 

In a good block cipher, there are no simple relations. Methods for finding some of 
these weaknesses are in [917]. 

Group Structure 
When discussing an algorithm, the question of whether it is a group arises. The 

elements of the group are the ciphertext blocks with each possible key, and the 
group operation is composition. Looking at an algorithm's group structure is an 
attempt to get a handle on just how much extra scrambling happens under multiple 
encryption. 

The useful question is, however, not whether an algorithm is actually a group, but 
just how close to a group it is. If it were only lacking one element, it wouldn't be a 
group; but double encryption would be-statistically speaking-a waste of time. 
The work on DES showed that DES is very far away from being a group. There are 
still some interesting questions about the semigroup that DES encryption generates. 
Does it contain the identity: That is, does it even generate a group? To put it another 
way, does some combination of encryption (not decryption) operations eventually 
generate the identity function? If so, how long is the shortest such combination? 

The goal is to estimate the size of the keyspace for a theoretical brute-force attack, 
and the result is a greatest lower bound on the keyspace entropy. 

Weak Keys 
In a good block cipher, all keys are equally strong. Algorithms with a small num­

ber of weak keys, like DES, are generally no problem. The odds of picking one at ran­
dom are very small, and it's easy to test for and discard them. However, these weak 
keys can sometimes be exploited if the block cipher is used as a one-way hash func­
tion (see Section 18.11). 

Strength against Differential and Linear Cryptanalysis 

The study of differential and linear cryptanalysis has shed significant light on the 
theory of good block cipher design. The inventors of IDEA introduced the concept 
of differentials, a generalization of the basic idea of characteristics [931]. They 
argued that block ciphers can be designed to resist this attack; IDEA is the result of 
that work [931]. This concept was further formalized in [1181,1182], when Kaisa 
Nyberg and Lars Knudsen showed how to make block ciphers provably secure 
against differential cryptanalysis. This theory has extensions to higher-order differ­
entials [702,161,927,858,860] and partial differentials [860]. Higher-order differen-
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tials seem to apply only to ciphers with a small number of rounds, but partial dif­
ferentials combine nicely with differentials. 

Linear cryptanalysis is newer, and is still being improved. Notions of key ranking 
[1019] and multiple approximations [811,812] have been defined. Other work that 
extends the idea of linear cryptanalysis can be found in [1270]; [938] tries to combine 
linear and differential cryptanalysis into one attack. It is unclear what design tech­
niques will protect against these sorts of attacks. 

Knudsen has made some progress, considering some necessary (but not perhaps 
sufficient) criteria for what he calls practically secure Feistel networks: ciphers that 
resist both linear and differential cryptanalysis [857]. Nyberg introduced in linear 
cryptanalysis an analogy to the concept of differentials from differential cryptanaly­
sis [1180]. 

Interestingly enough, there seems to be a duality between differential and linear 
cryptanalysis. This duality becomes apparent both in the design of techniques to 
construct good differential characteristics and linear approximations [ 164, 1018 ], and 
also in the design criteria for making algorithms that are secure against both attacks 
[307]. Exactly where this line of research will lead is still unknown. As a start, 
Daemen has developed an algorithm-design strategy based on linear and differential 
cryptanalysis [402]. 

S-Box Design 
The strength of various Feistel networks-and specifically their resistance to dif­

ferential and linear cryptanalysis-is tied directly to their S-boxes. This has 
prompted a spate of research on what constitutes a good S-box. 

An S-box is simply a substitution: a mapping of m-bit inputs ton-bit outputs. Pre­
viously I talked about one large lookup table of 64-bit inputs to 64-bit outputs; that 
would be a 64*64-bit S-box. An S-box with an m-bit input and an n-bit output is 
called a m*n-bit S-box. S-boxes are generally the only nonlinear step in an algo­
rithm; they are what give a block cipher its security. In general, the bigger they are, 
the better. 

DES has eight different 6 * 4-bit S-boxes. Khufu and Khafre have a single 8 * 32-bit 
S-box, LOKI has a 12*8-bit S-box, and both Blowfish and CAST have 8*32-bit 
S-boxes. In IDEA the modular multiplication step is effectively the S-box; it is a 
16*16-bit S-box. The larger this S-box, the harder it is to find useful statistics to 
attack using either differential or linear cryptanalysis [653,729, 1626]. Also, while 
random S-boxes are usually not optimal to protect against differential and linear 
attacks, it is easier to find strong S-boxes if the S-boxes are larger. Most random 
S-boxes are nonlinear, nondegenerate, and have strong resistance to linear crypt­
analysis-and the fraction that does not goes down rapidly as the number of input 
bits decreases [1185,1186,1187]. 

The size of m is more important than the size of n. Increasing the size of n 
reduces the effectiveness of differential cryptanalysis, but greatly increases the 
effectiveness of linear cryptanalysis. In fact, if n :2: 2m - m, then there is definitely a 
linear relation of the input and output bits of the S-box. And if n :2: 211', then there is 
a linear relation of only the output bits [164]. 
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Much of this work involves the study of Boolean functions [94,1098,1262,1408]. 
In order to be secure, the Boolean functions used in S-boxes must satisfy specific 
conditions. They should not be linear or affine, nor even close to linear or affine 
[9, 1177, 1178, 1188]. There should be a balance of zeros and ones, and no correlations 
between different combinations of bits. The output bits should behave indepen­
dently when any single input bit is complemented. These design criteria are also 
related to the study of bent functions: functions which can be shown to be optimally 
nonlinear. Although their definition is simple and natural, their study is very com­
plicated [1344,1216,947,905, 1176, 1271,295,296,297, 149,349,471,298]. 

One property that seems very important is the avalanche effect: how many out­
put bits of an S-box change when some subset of the input bits are changed. It's easy 
to impose conditions on Boolean functions so that they satisfy certain avalanche cri­
teria, but constructing them is a harder task. The strict avalanche criteria (SAC) 
guarantees that exactly half of the output bits change when one input bit changes 
[1586]. See also [982,571,1262,399]. One paper attempts to look at all these criteria 
in terms of information leakage [1640]. 

A few years ago cryptographers proposed choosing S-boxes so that the difference 
distribution table for each S-box is uniform. This would provide immunity against 
differential cryptanalysis by smoothing out the differentials in any particular round 
[6,443,444,1177]. LOKI is an example of this design. However, this approach can 
sometimes aid in differential cryptanalysis [172]. Actually, a better approach is mak­
ing sure that the maximum differential is as small as possible. Kwangjo Kim pro­
posed five criteria for the construction of S-boxes [834], similar to the design criteria 
for the DESS-boxes. 

Choosing good S-boxes is not an easy task; there are many competing ideas on 
how to do it. Four general approaches can be identified. 

1. Choose randomly. It is clear that small random S-boxes are insecure, but 
large random S-boxes may be good enough. Random S-boxes with eight or 
more inputs are quite strong [1186, 1187]. Twelve-bit S-boxes are better. 
Even more strength is added if the S-boxes are both random and key­
dependent. IDEA uses both large and key-dependent S-boxes. 

2. Choose and test. Some ciphers generate random S-boxes and then test 
them for the requisite properties. See [9,729] for examples of this approach. 

3. Man-made. This technique uses little mathematics: S-boxes are generated 
using more intuitive techniques. Bart Preneel stated that " ... theoretically 
interesting criteria are not sufficient [for choosing Boolean functions for 
S-boxes] ... " and that" ... ad hoc design criteria are required" [1262]. 

4. Math-made. Generate S-boxes according to mathematical principles so 
that they have proven security against differential and linear cryptanalysis, 
and good diffusive properties. See [1179] for an excellent example of this 
approach. 

There has been some call for a combination of the "math-made" and "man-made' 
approaches [1334], but the real debate seems to be between randomly chosen 
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S-boxes and S-boxes with certain properties. Certainly the latter approach has the 
advantage of being optimal against known attacks-linear and differential crypt­
analysis-but it offers unknown protection against unknown attacks. The designers 
of DES knew about differential cryptanalysis, and its S-boxes were optimized 
against it. They did not seem to know about linear cryptanalysis, and the DES 
S-boxes are very weak against it [1018]. Randomly selected S-boxes in DES would be 
weaker against differential cryptanalysis and stronger against linear cryptanalysis. 

On the other hand, random S-boxes may not be optimal against these attacks, but 
they can be made sufficiently large and therefore sufficiently resistant. Also, they 
are more likely to be sufficiently resistant against unknown attacks. The debate is 
still raging, but my personal feeling is that S-boxes should be as large as possible, 
random, and key-dependent. 

Designing a Block Cipher 

It is easy to design a block cipher. If you think of a 64-bit block cipher as a per­
mutation of the 64-bit numbers, it is clear that almost all of those permutations are 
secure. What is difficult is to design a block cipher that is not only secure, but can 
also be easily described and simply implemented. 

It's easy to design a block cipher if you have sufficient memory for 48 * 32 S-boxes. 
It's hard to design an insecure DES variant if you iterate it for 128 rounds. If the 
length of your key is 512 bits, you really don't care if there are key-complementation 
properties. 

The real trick-and the reason that real-world block cipher design is very diffi­
cult-is to design a block cipher with the smallest possible key, the smallest possi­
ble memory requirement, and the fastest possible running time. 

14.11 USING ONE-WAY HASH FUNCTIONS 

The simplest way to encrypt with a one-way function is to hash the previous cipher­
text block concatenated with the key, then XOR the result with the current plain­
text block: 

C; = P; EB H(K,C; _ i) 

P; = C; EB H(K,C; _ i) 

Set the block length equal to the output of the one-way hash function. This, in 
effect uses the one-way function as a block cipher in CFB mode. A similar con­
struction can use the one-way function in OFB mode: 

C; = P; EB S;; S; = H(K,C; _ 1) 

P; = C; EB S;; S; = H(K,C; _ 1) 

The security of this scheme depends on the security of the one-way function. 

Karn 

This method, invented by Phil Karn and placed in the public domain, makes an 
invertible encryption algorithm out of certain one-way hash functions. 
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The algorithm operates on plaintext and ciphertext in 32-byte blocks. The key can 
be any length, although certain key lengths will be more efficient for certain one­
way hash functions. For the one-way hash functions MD4 and MDS, 96-byte keys 
work best. 

To encrypt, first split the plaintext into two 16-byte halves: Pi and P,. Then, split 
the key into two 48-byte halves: Ki and Kr-

p = P1,P, 

K= K1,K, 

Append Ki to Pi and hash it with a one-way hash function, then XOR the result of 
the hash with P, to produce C,, the right half of the ciphertext. Then, append K, to 
C, and hash it with the one-way hash function. XOR the result with Pi to produce 
Ci. Finally, append C, to Ci to produce the ciphertext. 

C, = P, EB H(P1,Ki) 

Ci= Pi EB H( Cr,K,) 

C = Ci,C, 

To decrypt, simply reverse the process. Append K, to C" hash and XOR with Ci to 
produce P1. Append K1 to P1, hash and XOR with C, to produce P,. 

P1 = C1 EB H( CnK,) 

P, = C, EB H(P1,Ki) 

P = Pi,P, 
The overall structure of Karn is the same as many of the other block algorithms 

discussed in this section. It has only two rounds, because the complexity of the algo­
rithm is embedded in the one-way hash function. And since the key is used only as 
the input to the hash function, it cannot be recovered even using a chosen-plain text 
attack-assuming, of course, that the one-way hash function is secure. 

Luby-Racko// 
Michael Luby and Charles Rackoff showed that Karn is not secure [992]. Consider 

two single-block messages: AB and AC. If a cryptanalyst knows both the plaintext 
and the ciphertext of the first message, and knows the first half of the plaintext of 
the second message, then he can easily compute the entire second message. This 
known-plaintext attack is useful only in certain circumstances, but it is a major 
security problem. 

A three-round encryption algorithm avoids this problem [992, 1643, 1644]. It uses 
three different hash functions: H 1, H 2, and H3 • Further work shows that H 1 can equal 
H 2, or that H 2 can equal H3, but not both [1193]. Also, H 1, H 2, and H3 cannot be based 
on iterating the same basic function [1643]. Anyway, assuming that H(k,x) behaves 
like a pseudo-random function, here is a three-round version: 

( 1) Divide the key into two halves: Ki and K,. 

(2) Divide the plaintext block into two halves: L0 and R0 • 
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(3) Append K1 to L0 and hash it. XOR the result of the hash with Ro to pro­
duce R 1: 

R1 = Ro EB H(K1,L0 ) 

(4) Append K, to R 1 and hash it. XOR the result of the hash with L0 to pro­
duce L1: 

L1 = Lo EB H(K,,Ri) 

(5) Append K1 to L 1 and hash it. XOR the result of the hash with R 1 to pro­
duce R2 : 

R2 = R1 EB H(K1,Li) 
(6) Append L 1 to R2 to generate the message. 

Message Digest Cipher (MDC) 

MDC, invented by Peter Gutmann [676], is a means of turning one-way hash 
functions into a block cipher that runs in CFB mode. The cipher runs almost as fast 
as the hash function and is at least as secure as the hash function. The rest of this 
section assumes you are familiar with Chapter 18. 

Hash functions such as MD5 and SHA use a 512-bit text block to transform an 
input value (128 bits with MD5, and 160 bits with SHA) into an output value of 
equal size. This transformation is not reversible, but it is perfect for CFB mode: The 
same operation is used for both encryption and decryption. 

Let's look at MDC with SHA. MDC has a 160-bit block size and a 512-bit key. The 
hash function is run "sideways," with the old hash state as the input plain text block 
(160 bits) and the 512-bit hash input as a key (see Figure 14.5). Normally, when 
using the hash to simply hash some input, the 512-bit input to the hash is varied as 
each new 512-bit block is hashed. But in this case the 512-bit input becomes an 
unchanging key. 

MDC can be used with any one-way hash function: MD4, MD5, Snefru, and oth­
ers. It is unpatented. Anyone can use it at any time, in any way, royalty-free [676]. 

However, I don't trust this construction. It is possible to attack the hash function 
in a way that hash functions are not designed to withstand. It is not important for 
hash functions to be able to resist a chosen-plaintext attack, where a cryptanalyst 
chooses several of those starting 160-bit values, has them "encrypted" by the same 
512-bit "key," and uses this to learn some information about the 512-bit key used. 
Since the designers didn't have to worry about this, it seems like a bad idea to count 
on your cipher being able to resist this attack. 

Security of Ciphers Based on One-Way Hash Functions 

While these constructions can be secure, they depend on the choice of the under­
lying one-way hash function. A good one-way hash function doesn't necessarily 
make a secure encryption algorithm. Cryptographic requirements are different. For 
example, linear cryptanalysis is not a viable attack against one-way hash functions, 
but works against encryption algorithms. A one-way hash function such as SHA 
could have linear characteristics which, while not affecting its security as a one-
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Figure 14.5 Message Digest Cipher (MDC). 

way hash function, could make it insecure in an encryption algorithm such as 
MDC. I know of no cryptanalytic analysis of particular one-way hash functions as 
block ciphers; wait for such analysis before you trust any of them. 

14 .12 CHOOSING A BLOCK ALGORITHM 

It's a tough decision. DES is almost certainly insecure against the major governments 
of the world unless you only encrypt very small chunks of data for a single key. It's 
probably all right against anyone else, but that is changing soon. Brute-force DES key 
search machines will quickly become economical for all sorts of organizations. 

Biham's key-dependent S-boxes for DES should be secure for at least a few years 
against all but the most well-funded adversaries, and possibly even from them. If 
you need security that lasts decades or fear the cryptanalytic efforts of major gov­
ernments, use triple-DES with three independent keys. 

The other algorithms aren't worthless. I like Blowfish because it is fast and I wrote 
it. 3-WAY looks good, and GOST is probably okay. The problem with any recom­
mendation is that the NSA almost certainly has an array of impressive cryptanalytic 
techniques that are still classified, and I don't know which algorithms they can break 
with them. Table 14.3 gives timing measurements for some algorithms. These are 
meant for comparison purposes only. 

My favorite algorithm is IDEA. Its 128-bit key, combined with its resistance to 
any public means of cryptanalysis, gives me a warm, fuzzy feeling about the algo­
rithm. The algorithm has been analyzed by a lot of different groups, and no serious 
results have been announced yet. Barring extraordinary cryptanalytic news tomor­
row, I am betting on IDEA today. 



_______________ 1_4_.1_2 __ C_h_o_o_s_in_g_a_B_l_o_ck_A_l_g_o_n_·th_m _____ z: __ ~ 

Table 14.3 
Encryption Speeds of Some Block Ciphers on a 33 MHz 486SX 

Algorithm 

Blowfish ( 12 rounds) 
Blowfish (16 rounds) 
Blowfish (20 rounds) 
DES 
FEAL-8 
FEAL-16 
FEAL-32 
GOST 
IDEA 
Khufu (16 rounds) 
Khufu (24 rounds) 
Khufu (32 rounds) 
Luby-Racko££ (using MD4) 
Luby-Racko££ (using MD5) 
Luby-Racko££ (using SHA) 
Lucifer 

Encryption Speed 
(Kilobytes/second) 

182 
135 
110 
35 

300 
161 
91 
53 
70 

221 
153 
115 
47 
34 
11 
52 

Algorithm 

MDC (using MD4) 
MDC (using MD5) 
MDC (using SHA) 
NewDES 
REDOC II 
REDOC III 
RC5-32/8 
RC5-32/12 
RC5-32/16 
RC5-32/20 
SAFER (6 rounds) 
SAFER (8 rounds) 
SAFER ( 10 rounds) 
SAFER (12 rounds) 
3-Way 
Triple-DES 

Encryption Speed 
(Kilobytes/second) 

186 
135 
23 

233 
1 

78 
127 
86 
65 
52 
81 
61 
49 
41 
25 
12 
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Combining 
Block Ciphers 

CHAPTER 15 

There are many ways to combine block algorithms to get new algorithms. The 
impetus behind these schemes is to try to increase security without going through 
the trouble of designing a new algorithm. DES is a secure algorithm; it has been 
cryptanalyzed for a good 20 years and the most practical way to break it is still brute 
force. However, the key is too short. Wouldn't it be nice to use DES as a building 
block for another algorithm with a longer key? We'd have the best of both worlds: 
the assurance of two decades of cryptanalysis plus a long key. 

Multiple encryption is one combination technique: using an algorithm to encrypt 
the same plaintext block multiple times with multiple keys. Cascading is like mul­
tiple encryption, but uses different algorithms. There are other techniques. 

Encrypting a plaintext block twice with the same key, whether with the same 
algorithm or a different one, is not smart. For the same algorithm, it does not affect 
the complexity of a brute-force search. (Remember, you assume a cryptanalyst 
knows the algorithm including the number of encryptions used.) For different algo­
rithms, it may or may not. If you are going to use any of the techniques in this chap­
ter, make sure the multiple keys are different and independent. 

15 .1 DOUBLE ENCRYPTION 

A nai"ve way of improving the security of a block algorithm is to encrypt a block 
twice with two different keys. First encrypt a block with the first key, then encrypt 
the resulting ciphertext with the second key. Decryption is the reverse process. 

C = EK2(EK1(P)) 

p = DK1(DK2(C)) 

If the block algorithm is a group (see Section 11.3 ), then there is always a K3 

such that 
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If this is not the case, the resultant doubly-encrypted ciphertext block should be 
much harder to break using an exhaustive search. Instead of 2n attempts (where n is 
the bit length of the key), it would require 221] attempts. If the algorithm is a 64-bit algo­
rithm, the doubly-encrypted ciphertext would require 2128 attempts to find the key. 

This turns out not to be true for a known-plaintext attack. Merkle and Hellman 
[1075] developed a time-memory trade-off that could break this double-encryption 
scheme in 21] + 1 encryptions, not in 221] encryptions. (They showed this for DES, but 
the result can be generalized to any block algorithm.) The attack is called a meet-in­
the-middle attack; it works by encrypting from one end, decrypting from the other, 
and matching the results in the middle. 

In this attack, the cryptanalyst knows P1, C1, P2, and C2, such that 

C1 = EK2(EK1(Pi)) 

C2 = EK2(EK1(P2)) 

For each possible K, he computes EK(Pi) and stores the result in memory. After col­
lecting them all, he computes DK(Ci) for each Kand looks for the same result in 
memory. If he finds it, it is possible that the current key is K2 and the key in mem­
ory is K1• He tries encrypting P2 with K1 and K2; if he gets C2 he can be pretty sure 
(with a probability of success of 1 in 22m - 21], where m is the block size) that he has 
both K1 and K2 • If not, he keeps looking. The maximum number of encryption trials 
he will probably have to run is 2 * 21], or 2n + 1. If the probability of error is too large, 
he can use a third ciphertext block to get a probability of success of 1 in 23m - 21]. 
There are still other optimizations [912]. 

This attack requires a lot of memory: 21] blocks. For a 56-bit algorithm, this trans­
lates to 256 64-bit blocks, or 1017 bytes. This is still considerably more memory stor­
age than one could comfortably comprehend, but it's enough to convince the most 
paranoid of cryptographers that double encryption is not worth anything. 

For a 128-bit key, the amount of memory required is an enormous 1039 bytes. If we 
assume that a way exists to store a bit of information on a single atom of aluminum, 
the memory device required to launch this attack would be a cube of solid alu­
minum over a kilometer on a side. And then you need some place to put it! The 
meet-in-the middle attack seems infeasible for keys this size. 

Another double-encryption method, sometimes called Davies-Price, is a variant 
of CBC [435]. 

C; = EK1(P; EB EK2(C; - ill 
P; = DK1(C;) EB EK2(C; - i) 

They claim "no special virtue of this mode," but it seems to be vulnerable to the 
same meet-in-the-middle attacks as other double-encryption modes. 

15. 2 TRIPLE ENCRYPTION 

Triple Encryption with Two Keys 
A better idea, proposed by Tuchman in [1551], operates on a block three times with 

two keys: with the first key, then with the second key, and finally with the first key 
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again. He suggested that the sender first encrypt with the first key, then decrypt with 
the second key, and finally encrypt with the first key. The receiver decrypts with the 
first key, then encrypts with the second key, and finally decrypts with the first key. 

C = E1<1(DK2(EK1(P))) 

p = DK1(EK2(DK1(C))) 

This is sometimes called encrypt-decrypt-encrypt (EDE} mode [55]. If the block 
algorithm has an n-bit key, then this scheme has a 2n-bit key. The curious encrypt­
decrypt-encrypt pattern was designed by IBM to preserve compatibility with con­
ventional implementations of the algorithm: Setting the two keys equal to each 
other is identical to encrypting once with the key. There is no security inherent in 
the encrypt-decrypt-encrypt pattern, but this mode has been adopted to improve the 
DES algorithm in the X9.l 7 and ISO 8732 standards [55,761]. 

K1 and K2 alternate to prevent the meet-in-the-middle attack previously described. 
If C = EK2(EK1(EK1(P))), then a cryptanalyst could precompute EK1(EK1(P))) for every 
possible K1 and then proceed with the attack. It only requires 2n + 2 encryptions. 

Triple encryption with two keys is not susceptible to the same meet-in-the­
middle attack described earlier. But Merkle and Hellman developed another time­
memory trade-off that could break this technique in 211 - 1 steps using 211 blocks of 
memory [1075]. 

For each possible K2, decrypt O and store the result in memory. Then, decrypt 0 
with each possible K1 to get P. Triple-encrypt P to get C, and then decrypt C with K1. 

If that decryption is a decryption of O with a K2 (stored in memory), the K1 K 2 pair is 
a possible candidate. Check if it is right. If it's not, keep looking. 

This is a chosen-plaintext attack, requiring an enormous amount of chosen plain­
text to mount. It requires 2n time and memory, and 2m chosen plaintexts. It is not 
very practical, but it is a weakness. 

Paul van Oorschot and Michael Wiener converted this to a known-plaintext 
attack, requiring p known plain texts. This example assumes EDE mode. 

( 1) Guess the first intermediate value, a. 

(2) Tabulate, for each possible K1, the second intermediate value, b, when the 
first intermediate value is a, using known plaintext: 

b =DK1(C) 

where C is the resulting ciphertext from a known plaintext. 

(3) Look up in the table, for each possible K2, elements with a matching sec­
ond intermediate value, b: 

b = EK2(a) 

(4) The probability of success is p/m, where pis the number of known plaintexts 
and m is the block size. If there is no match, try another a and start again. 

The attack requires 211 + rn/p time and p memory. For DES, this is 2120/p [1558]. For 
p greater than 256, this attack is faster than exhaustive search. 
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Triple Encryption with Three Keys 
If you are going to use triple encryption, I recommend three different keys. The 

key length is longer, but key storage is usually not a problem. Bits are cheap. 

C = EK,,(DK2(EK1(P))) 

p = DK1(EK2(DK)C))) 

The best time-memory trade-off attack takes 2211 steps and requires 211 blocks of 
memory; it's a meet-in-the-middle attack [1075]. Triple encryption, with three inde­
pendent keys, is as secure as one might naively expect double encryption to be. 

Triple Encryption with Minimum Key (TEMK) 

There is a secure way of using triple encryption with two keys that prevents the 
previous attack, called Triple Encryption with Minimum Key (TEMK) [858]. The 
trick is to derive three keys from two: X 1 and X2 : 

K1 = Ex1(Dx2(Ex1(Ti))) 

K2 = Ex1(Dx2(Ex1(T2))) 

Ki= Ex1(Dx2(Ex1(T3))) 

T1, T2, and T3 are constants, which do not have to be secret. This is a special con­
struction that guarantees that for any particular pair of keys, the best attack is a 
known-plaintext attack. 

Triple-Encryption Modes 

It's not enough to just specify triple encryption; there arc several ways to do it. 
The decision of which to use affects both security and efficiency. 

Here are two possible triple-encryption modes: 

Inner-CBC: Encrypt the entire file in CBC mode three different times 
(see Figure 15.la). This requires three different IVs. 

C; = EK)S; EB C; _ 1); S; = DK2(T; EB S; - i); T; = EK1(P; EB T; - i) 

P; = T; - J EB Dl(l(T;); T; = S; - 1 EB EK2(S;); S; = C; - 1 EB DK3(C;) 

C0, S0, and T0 are IVs. 
Outer-CBC: Triple-encrypt the entire file in CBC mode (see Figure 15.lb). This 
requires one IV. 

C; = El()DK2(EK1(P; EB C; - 1))) 

P; = C; _ 1 EB DK1(EK2(DK3(C;))) 
Both modes require more resources than single encryption: more hardware or 

more time. However, given three encryption chips, the throughput of inner-CBC is 
no slower than single encryption. Since the three CBC encryptions are independent, 
three chips can be kept busy all the time, each feeding back into itself. 

On the other hand, outer-CBC feedback is outside the three encryptions. This 
means that even with three chips, the throughput is only one-third that of single 
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(a) Inner CBC (b) Outer CBC 

Figure 15.1 Triple encryption in CBC mode. 

encryption. To get the same throughput with outer-CBC, you need to interleave IVs 
(see Section 9.12): 

C; = EK3(DK2(EK1(P; Ef> C; - 3))) 

In this case C0, C_1, and C_2 are IVs. This doesn't help software implementations 
any, unless you have a parallel machine. 

Unfortunately, the simpler mode is also the least secure. Biham analyzed various 
modes with respect to chosen-ciphertext differential cryptanalysis and found that 
inner-CBC is only slightly more secure than single encryption against a differential 
attack. If you think of triple encryption as a single larger algorithm, then inner feed­
backs allow the introduction of external and known information into the inner 
workings of the algorithm; this facilitates cryptanalysis. The differential attacks 
require enormous amounts of chosen ciphertext to mount and are not very practi­
cal, but the results should be enough to give the most paranoid pause. Another anal­
ysis against meet-in-the-middle and brute-force attacks concludes that they are all 
equally secure [806]. 

There are other modes, as well. You can encrypt the entire file once in ECB, then 
twice in CBC; or once in CBC, once in ECB, and once in CBC; or twice in CBC and 
once in ECB. Biham showed that these variants are no more secure than single DES 
against a chosen-plaintext differential cryptanalysis attack [162]. And he doesn't 
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have high hopes for any other variants. If you are going to use triple encryption, use 
modes with outer feedback. 

Variants on Triple Encryption 
Before there were proofs that DES does not form a group, several schemes were 

proposed for multiple encryption. One way to guarantee that triple encryption 
doesn't reduce to single encryption is to change the effective block size. One simple 
method is to add a bit of padding. Pad the text with a string of random bits, half a 
block in length, between the first and second and between the second and third 
encryptions (see Figure 15.2). If pis the padding function, then: 

C = EK3(p(EK2(p(EK1(P))))) 

This padding not only disrupts patterns, but also overlaps encrypted blocks like 
bricks. It only adds one block to the length of the message. 

Another technique, proposed by Carl Ellison, is to use some kind of keyless per­
mutation function between the three encryptions. The permutation could work on 
large blocks-8 kilobytes or so-and would effectively give this variant a block size 
of 8 kilobytes. Assuming that the permutation is fast, this variant is not much 
slower than basic triple encryption. 

C = EK3(T(EK2(T(EK1(P))))) 

T collects a block of input (up to 8 kilobytes in length) and uses a pseudo-random­
number generator to transpose it. A 1-bit change in the input causes 8 changed out­
put bytes after the first encryption, up to 64 changed output bytes after the second 
encryption, and up to 512 changed output bytes after the third encryption. If each 
block algorithm is in CBC mode, as originally proposed, then the effect of a single 

I Plaintext 

Enc~pt-QQQQQ 
IPADI .... 

Enc~pt-QQQQQ 
IPADI 

Enc~pt-QQQQQ 
I Ciphertext • • • • 

Figure 15.2 Triple encryption with padding. 
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changed input bit is likely to be the entire 8 kilobyte block, even in blocks other 
than the first. 

The most recent variant of this scheme responded to Biham's attack on inner­
CBC by including a whitening pass to hide plain text patterns. That pass is a stream 
XOR with a cryptographically secure random-number generator called R below. The 
Ton either side of it prevents the cryptanalyst from knowing a priori which key was 
used to encrypt any given byte on input to the last encryption. The second encryp­
tion is labelled nE (encryption with one of n different keys, used cyclically): 

C = EK3(R(T(nEK2(T(EK1(R)))))) 

All encryptions are in ECB mode and keys are provided at least for the n + 2 
encryption keys and the cryptographically secure random-number generator. 

This scheme was proposed with DES, but works with any block algorithm. I know 
of no analysis of the security of this scheme. 

15.3 DOUBLING THE BLOCK LENGTH 

There is some argument in the academic community whether a 64-bit block is long 
enough. On the one hand, a 64-bit block length only diffuses plaintext over 8 bytes 
of ciphertext. On the other hand, a longer block length makes it harder to hide pat­
terns securely; there is more room to make mistakes. 

Some propose doubling the block length of an algorithm using multiple encryp­
tions [299]. Before implementing any of these, look for the possibility of meet-in­
the-middle attacks. Richard Outerbridge's scheme [300], illustrated in Figure 15.3, is 
no more secure than single-block, two-key triple encryption [859]. 

However, I advise against this sort of thing. It isn't faster than conventional triple 
encryption: six encryptions are still required to encrypt two blocks of data. We 
know the characteristics of triple encryption; constructions like this often have hid­
den problems. 

15.4 OTHER MULTIPLE ENCRYPTION SCHEMES 

The problem with two-key triple encryption is that it only doubles the size of the 
keyspace, but it requires three encryptions per block of plaintext. Wouldn't it be 
nice to find some clever way of combining two encryptions that would double the 
size of the keyspace? 

Double OFB/Counter 
This method uses a block algorithm to generate two keystreams, which are then 

used to encrypt the plaintext. 

S; = EK1(S; - I EB Ii); I1 = I1 + 1 

T; = EK2(T; - I EB I2); I2 = I2 + 1 

C; = P; EB S; EB T; 



CHAPTER 15 Combining Block Ciphers 

Left 
Half 

Left 
Half 

Right 
Half 

Plaintext 

Ciphertext 

Left 
Half 

Right 
Half 

Right 
Half 

~------------------------

Figure 15.3 Doubling the block length. 

Si and Ti are internal variables, and 11 and 12 are counters. Two copies of the block 
algorithm run in a kind of hybrid OFB/counter mode, and the plain text, S" and Ti are 
XORed together. The two keys, K1 and K2, are independent. I know of no cryptanal­
ysis of this variant. 

ECB+OFB 
This method was designed for encrypting multiple messages of a fixed length, for 

example, disk blocks [186,188]. Use two keys: K1 and K2 • First, use the algorithm and 
K1 to generate a mask of the required block length. This mask will be used repeat­
edly to encrypt messages with the same keys. Then, XOR the plaintext message 
with the mask. Finally, encrypt the XORed plaintext with the algorithm and K2 in 
ECB mode. 

This mode has not been analyzed outside the paper in which it was proposed. 
Clearly it is at least as strong as a single ECB encryption and may be as strong as two 
passes with the algorithm. Possibly, a cryptanalyst could search for the two keys 
independently, if several known plaintext files are encrypted with the same key. 

To thwart analysis of identical blocks in the same positions of different messages, 
you can add an IV. Unlike an IV in any other mode, here the IV is XO Red with every 
block of the message before ECB encryption. 

Matt Blaze designed this mode for his UNIX Cryptographic File System (CFS). It 
is a nice mode because the latency is only one encryption in ECB mode; the mask 
can be generated once and stored. In CFS, DES is the block algorithm. 
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xDESi 

In [1644,1645], DES is used as a building block for a series of block algorithms 
with both larger key sizes and larger block sizes. These constructions do not depend 
on DES in any way and can be used with any block algorithm. 

The first, xDES 1, is simply a Luby-Racko££ construction with the block cipher as 
the underlying function (see Section 14.11 ). The block size is twice the size of the 
underlying block cipher and the key size is three times the size of the underlying 
block cipher. In each of 3 rounds, encrypt the right half with the block algorithm 
and one of the keys, XOR the result with the left half, and swap the two halves. 

This is faster than conventional triple encryption, since three encryptions encrypt 
a block twice as large as the underlying algorithm. But there is also a simple meet­
in-the-middle attack that finds the key with a table the size of 2k, where k is the key 
size of the underlying algorithm. Encrypt the right half of a plaintext block with all 
possible values of K,, XOR the left half of the plaintext, and store these values in a 
table. Then, encrypt the right half of the ciphertext with all possible values of K, and 
look for a match in the table. If you find one, the key pair K 1 and K, are possible can­
didates for the right key. Repeat the attack a few times, and only one candidate will 
remain. This shows that xDES 1 is not an ideal solution. Even worse, there is a cho­
sen plaintext attack that proves xDES 1 is not much stronger than the underlying 
block cipher [858]. 

xDES 2 extends this idea to a 5-round algorithm with a block size 4 times that of 
the underlying block cipher and a key size 10 times that of the underlying block 
cipher. Figure 15.4 is one round of xDES 2; each of the four sub-blocks are the size of 
the underlying block ciphers and all 10 keys are independent. 

This scheme is also faster than triple encryption: Ten encryptions are used to 
encrypt a block four times the size of the underlying block cipher. However, it is 
vulnerable to differential cryptanalysis [858] and should not be used. The scheme is 
even vulnerable if DES with independent round keys is used. 

Figure 15.4 One round ofxDES 2. 



CHAPTER 15 Combining Block Ciphers 

For i 2 3, xDES; is probably too big to be useful as a block algorithm. For example, 
the block size for xDES 3 is 6 times that of the underlying cipher, the key size is 21 
times, and 21 encryptions are required to encrypt a block 6 times that of the under­
lying block cipher. Triple encryption is faster. 

Quintuple Encryption 

If triple encryption isn't secure enough-perhaps you need to encrypt triple­
encryption keys using an even stronger algorithm-then higher multiples might be 
in order. Quintuple encryption is very strong against meet-in-the-middle attacks. 
(Similar arguments to the ones used with double encryption can show that quadru­
ple encryption provides minimal security improvements over triple encryption.) 

C = EK1(DK2(EK3(DK2(EK1(P))))) 

p = DK1(EK2(DK'l(EK2(DK1(C))))) 

This construction is backwards compatible with triple encryption if K2 = K3, and 
is backwards compatible with single encryption if K1 = K2 = K3 • Of course, it would 
be even stronger if all five keys were independent. 

15.5 CDMF KEY SHORTENING 

This method was designed by IBM for their Commercial Data Masking Facility or 
CDMF (see Section 24.8) to shrink a 56-bit DES key to a 40-bit key suitable for 
export [785]. It assumes that the original DES key includes the parity bits. 

( 1) Zero the parity bits: bits 8, 16, 24, 32, 40, 48, 56, 64. 

(2) Encrypt the output of step (1) with DES and the key 0xc408b0540bale0ae, 
and XOR the result with the output of step ( 1 ). 

(3) Take the output of step (2) and zero the following bits: 1, 2, 3, 4, 8, 16, 17, 
18, 19, 20,24,32,33,34,35,36, 40,48, 49, 50, 51, 52, 56, 64. 

(4) Encrypt the output of step (3) with DES and the following key: 
0xef2c04lce6382fe6. This key is then used for message encryption. 

Remember that this method shortens the key length, and thereby weakens the 
algorithm. 

15.6 WHITENING 

Whitening is the name given to the technique of XORing some key material with 
the input to a block algorithm, and XORing some other key material with the out­
put. This was first done in the DESX variant developed by RSA Data Security, Inc., 
and then (presumably independently) in Khufu and Khafre. (Rivest named this tech­
nique; it's a nonstandard usage of the word.) 
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The idea is to prevent a cryptanalyst from obtaining a plaintext/ciphertext pair for 
the underlying algorithm. The technique forces a cryptanalyst to guess not only the 
algorithm key, but also one of the whitening values. Since there is an XOR both 
before and after the block algorithm, this technique is not susceptible to a meet-in­
the-middle attack. 

C = K3 EB EK2(P EB K1) 

P = K1 EB DK2(C EB K3) 

If K1 = K3, then a brute-force attack requires 2n + m/p operations, where n is the key 
size, m is the block size, and p is the number of known plaintexts. If K1 and K3 are 
different, then a brute-force attack requires 2n + m + 1 operations with three known 
plaintexts. Against differential and linear cryptanalysis, these measures only pro­
vide a few key bits of protection. But computationally this is a very cheap way to 
increase the security of a block algorithm. 

15. 7 CASCADING MULTIPLE BLOCK ALGORITHMS 

What about encrypting a message once with Algorithm A and key KA, then again 
with Algorithm B and key KB? Maybe Alice and Bob have different ideas about 
which algorithms are secure: Alice wants to use Algorithm A and Bob wants to use 
Algorithm B. This technique is sometimes called cascading, and can be extended far 
beyond only two algorithms and keys. 

Pessimists have said that there is no guarantee that the two algorithms will work 
together to increase security. There may be subtle interactions between the two 
algorithms that actually decrease security. Even triple encryption with three differ­
ent algorithms may not be as secure as you think. Cryptography is a black art; if you 
don't know what you are doing, you can easily get into trouble. 

Reality is much rosier. The previous warnings are true only if the different keys 
are related to each other. If all of the multiple keys are independent, then the resul­
tant cascade is at least as difficult to break as the first algorithm in the cascade 
[1033]. If the second algorithm is vulnerable to a chosen-plaintext attack, then the 
first algorithm might facilitate that attack and make the second algorithm vulnera­
ble to a known-plaintext attack when used in a cascade. This potential attack is not 
limited to encryption algorithms: If you let someone else specify any algorithm 
which is used on your message before encryption, then you had better be sure that 
your encryption will withstand a chosen-plaintext attack. (Note that the most com­
mon algorithm used for compressing and digitizing speech to modem speeds, used 
before any encryption, is CELP-designed by the NSA.) 

This can be better phrased: Using a chosen-plaintext attack, a cascade of ciphers 
is at least as hard to break as any of its component ciphers [858]. A previous result 
showed that the cascade is at least as difficult to break as the strongest algorithm, 
but that result is based on some unstated assumptions [528]. Only if the algorithms 
commute, as they do in the case of cascaded stream ciphers (or block ciphers in OFB 
mode), is the cascade at least as strong as the strongest algorithm. 
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If Alice and Bob do not trust each other's algorithms, they can use a cascade. If 
these are stream algorithms, the order doesn't matter. If they are block algorithms, 
Alice can first use Algorithm A and then use Algorithm B. Bob, who trusts Algo­
rithm B more, can use Algorithm B followed by Algorithm A. They might even add 
a good stream cipher between the two algorithms; it can't hurt and could very well 
increase security. 

Remember that the keys for each algorithm in the cascade must be independent. 
If Algorithm A has a 64-bit key and Algorithm B has a 128-bit key, then the resul­
tant cascade must have a 192-bit key. If you don't use independent keys, then the 
pessimists are much more likely to be right. 

15.8 COMBINING MULTIPLE BLOCK ALGORITHMS 

Here's another way to combine multiple block algorithms, one that is guaranteed to 
be at least as secure as both algorithms. With two algorithms (and two independent 
keys): 

(1) Generate a random-bit string, R, the same size as the message M. 

(2) Encrypt R with the first algorithm. 

(3) Encrypt M EB R with the second algorithm. 

(4) The ciphertext message is the results of steps (2) and (3). 

Assuming the random-bit string is indeed random, this method encrypts M with 
a one-time pad and then encrypts both the pad and the encrypted message with each 
of the two algorithms. Since both are required to reconstruct M, a cryptanalyst must 
break both algorithms. The drawback is that the ciphertext is twice the size of the 
plain text. 

This method can be extended to multiple algorithms, but the ciphertext expands 
with each additional algorithm. It's a good idea, but I don't think it's very practical. 
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CHAPTER 

Pseudo-Random­
Sequence Generators 
and Stream Ciphers 
16.1 LINEAR CONGRUENTIAL GENERATORS 

16 

Linear congruential generators are pseudo-random-sequence generators of the form 

Xn = (aXn _ 1 + b) mod m 

in which Xn is the nth number of the sequence, and Xn _ 1 is the previous number of 
the sequence. The variables a, b, and m are constants: a is the multiplier, b is the 
increment, and m is the modulus. The key, or seed, is the value of X 0• 

This generator has a period no greater than m. If a, b, and m are properly chosen, 
then the generator will be a maximal period generator (sometimes called maximal 
length) and have period of m. (For example, b should be relatively prime to m.) 
Details on choosing constants to ensure maximal period can be found in [863,942]. 
Another good article on linear congruential generators and their theory is [ 1446]. 

Table 16.1, taken from [1272], gives a list of good constants for linear congruential 
generators. They all produce maximal period generators and even more important, 
pass the spectral test for randomness for dimensions 2, 3, 4, 5, and 6 [385,863]. They 
are organized by the largest product that does not overflow a specific word length. 

The advantage of linear congruential generators is that they are fast, requiring few 
operations per bit. 

Unfortunately, linear congruential generators cannot be used for cryptography; 
they are predictable. Linear congruential generators were first broken by Jim Reeds 
[ 1294, 1295, 1296] and then by Joan Boyar [ 1251 ]. She also broke quadratic generators: 

Xn = (aXn _ i2 + bXn _ 1 + c) mod m 

and cubic generators: 

Xn = (aXn _ 13 + bXn _ 12 + cXn - 1 + d) mod m 

Other researchers extended Boyar's work to break any polynomial congruential 
generator [923,899,900]. Truncated linear congruential generators were also broken 
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Table 16.1 
Constants for Linear Congruential Generators 

Overflow At: a b m 

220 106 1283 6075 
221 211 1663 7875 
222 421 1663 7875 
2n 430 2531 11979 

936 1399 6655 
1366 1283 6075 

224 171 11213 53125 
859 2531 11979 
419 6173 29282 
967 3041 14406 

22s 141 28411 134456 
625 6571 31104 
1541 2957 14000 
1741 2731 12960 
1291 4621 21870 
205 29573 139968 

226 421 17117 81000 
1255 6173 29282 
281 28411 134456 

227 1093 18257 86436 
421 54773 259200 
1021 24631 116640 
1021 25673 121500 

228 1277 24749 117128 
741 66037 312500 

2041 25673 121500 
229 2311 25367 120050 

1807 45289 214326 
1597 51749 244944 
1861 49297 233280 
2661 36979 175000 
4081 25673 121500 
3661 30809 145800 

230 3877 29573 139968 
3613 45289 214326 
1366 150889 714025 

231 8121 28411 134456 
4561 51349 243000 
7141 54773 259200 

232 9301 49297 233280 
4096 150889 714025 

2"" 2416 374441 1771875 
234 17221 107839 510300 

36261 66037 312500 
235 84589 45989 217728 
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[581,705,580], as were truncated linear congruential generators with unknown 
parameters [1500,212]. The preponderance of evidence is that congruential genera­
tors aren't useful for cryptography. 

Linear congruential generators remain useful for noncryptographic applications, 
however, such as simulations. They are efficient and show good statistical behavior 
with respect to most reasonable empirical tests. Considerable information on linear 
congruential generators and their implementations can be found in [942]. 

Combining Linear Congruential Generators 
Various people examined the combination of linear congruential generators 

[1595,941]. The results are no more cryptographically secure, but the combinations 
have longer periods and perform better in some randomness tests. 

Use this generator for 32-bit computers [941]: 

static long sl - 1 ; /* A "long" must be 32 bits long. */ static long s2 -

#define MODMULT(a,b,c,m,sl q - s/a; s - b*(s-a*ql - c*q; if (s<Ol s+-m ; 
/* MODMULT(a,b,c,m,sl computes s*b mod m, provided that m-a*b+c and O <- c < 
m. * I 

/* combinedLCG returns a pseudorandom real value in the range 
* (0,1). It combines linear congruential generators with 
* periods of 2'1-85 and 231-249, and has a period that is the 
* product of these two prime numbers. */ 

double combinedLCG ( void l 
I 

long q ; 
long z ; 

M0DMULT ( 53668, 40014, 12211, 2147483563L, sl ) 
MODMULT ( 52774, 40692, 3791, 2147483399L, s2 ) 
z - sl - s2 ; 
if ( z < 1 l 

z +- 2147483562 , 
return z * 4.656613e-10 

/* In general, call initLCG before using combinedLCG. */ 
void initLCG ( long lnitSl, long InitS2 ) 
I 

sl InitSl 
s2 InitS2 

This generator works as long as the machine can represent all integers between 
-2 31 + 85 and 231 - 85. The variables, s1 and s2, are global; they hold the current state 
of the generator. Before the first call, they must be initialized. The variable s1 needs 
an initial value between 1 and 2147483562; the variable s2 needs an initial value 
between 1 and 2147483398. The generator has a period somewhere in the neighbor­
hood of 1018 . 
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If you only have a 16-bit computer, use this generator instead: 

static int sl 
static int s2 
static int s3 

/* An "int" must be 16 bits long. */ 

#define MODMULT(a,b,c,m,s) q = s/a; s = b*(s-a*ql - c*q; if 
Cs<O) s+=m 

/* combined LCG returns a pseudorandom real value in the 
range 
* (0,1). It combines linear congruential generators with 
* periods of 215-405, 215-1041, and 215-1111, and has a period 
* that is the product of these three prime numbers. */ 

double combinedLCG ( void ) 
{ 

int q ; 
int z ; 

MODMULT 206,157, 21, 32363, sl) 
MODMULT 217, 146, 45, 31727, s2) 
MODMULT 222, 142, 133, 31657, s3) 
z = sl - s2 ; 
if ( z > 706 ) 

z -= 32362 
z += s3 ; 
if(z<l) 

z += 32362 
return z * 3.0899e-5 

/* In general, call initLCG before using combinedLCG. */ 
void initLCG C int lnitSl, int InitS2, InitS3 ) 
{ 

sl lnitSl 
s2 InitS2 
s3 InitS3 

This generator works as long as the machine can represent all integers between 
-32363 and 32363. The variables, Si, s2, and s3, are global; they hold the current state 
of the generator. Before the first call, they must be initialized. The variable s1 needs 
an initial value between 1 and 32362. The variable s2 needs an initial value between 
1 and 31726. The variable s3 needs an initial value between 1 and 31656. This gen­
erator has a period of 1.6* 1013• 

For both of these generators, the constant term b in the linear congruence is 0. 

16.2 LINEAR FEEDBACK SHIFT REGISTERS 

Shift register sequences are used in both cryptography and coding theory. There is a 
wealth of theory about them; stream ciphers based on shift registers have been the 
workhorse of military cryptography since the beginnings of electronics. 
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A feedback shift register is made up of two parts: a shift register and a feedback 
function (see Figure 16.1 ). The shift register is a sequence of bits. (The length of a 
shift register is figured in bits; if it is n bits long, it is called an n-bit shift register.) 
Each time a bit is needed, all of the bits in the shift register are shifted 1 bit to the 
right. The new left-most bit is computed as a function of the other bits in the regis­
ter. The output of the shift register is 1 bit, often the least significant bit. The period 
of a shift register is the length of the output sequence before it starts repeating. 

Cryptographers have liked stream ciphers made up of shift registers: They are 
easily implemented in digital hardware. I will only touch on the mathematical the­
ory. Ernst Selmer, the Norwegian government's chief cryptographer, worked out 
the theory of shift register sequences in 1965 [1411]. Solomon Golomb, an NSA 
mathematician, wrote a book with Selmer's results and some of his own [643]. See 
also [970,971,1647]. 

The simplest kind of feedback shift register is a linear feedback shift register, or 
LFSR (see Figure 16.2). The feedback function is simply the XOR of certain bits in 
the register; the list of these bits is called a tap sequence. Sometimes this is called a 
Fibonacci configuration. Because of the simple feedback sequence, a large body of 
mathematical theory can be applied to analyzing LFSRs. Cryptographers like to ana­
lyze sequences to convince themselves that they are random enough to be secure. 
LFSRs are the most common type of shift registers used in cryptography. 

Figure 16.3 is a 4-bit LFSR tapped at the first and fourth bit. If it is initialized with 
the value 1111, it produces the following sequence of internal states before repeating: 

1 1 1 1 

0 1 1 1 

1 0 1 1 

0 101 

101 0 

1 1 0 1 

0 1 1 0 

0 0 1 1 

100 1 

I I I I I I 
Feedback Function 

Figure 16.1 Feedback shift register. 
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Shift Register 

Figure 16.2 Linear feedback shift register. 

0100 

0010 

0001 

1000 

1 100 

1 1 1 0 

Output Bit 

The output sequence is the string of least significant bits: 

1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 .... 

An n-bit LFSR can be in one of 2n - 1 internal states. This means that it can, in 
theory, generate a 211 - 1-bit-long pseudo-random sequence before repeating. (It's 
2n - 1 and not 211 because a shift register filled with zeros will cause the LFSR to out­
put a neverending stream of zeros-this is not particularly useful.) Only LFSRs with 
certain tap sequences will cycle through all 211 - 1 internal states; these are the 
maximal-period LFSRs. The resulting output sequence is called an m-sequence. 

In order for a particular LFSR to be a maximal-period LFSR, the polynomial 
formed from a tap sequence plus the constant 1 must be a primitive polynomial 
mod 2. The degree of the polynomial is the length of the shift register. A primitive 
polynomial of degree n is an irreducible polynomial that divides x 2n - 1 + 1, but not 
xa + 1 for any d that divides 2n - 1 (see Section 11.3). For the mathematical theory 
behind all this, consult [643,1649,1648]. 

Output Bit 

Figure 16.3 4-bit LFSR. 
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In general, there is no easy way to generate primitive polynomials mod 2 for a 
given degree. The easiest way is to choose a random polynomial and test whether it 
is primitive. This is complicated-something like testing random numbers for pri­
mality-but many mathematical software packages do this. See [970,971] for some 
methods. 

Table 16.2 lists some, but by no means all, primitive polynomials mod 2 of vary­
ing degrees [1583,643,1649,1648,1272,691]. For example, the listing (32, 7, 5, 3, 2, 
1, 0) means that the following polynomial is primitive modulo 2: 

x' 2 + x 7 + x5 + x' + x2 + x + 1 

It's easy to turn this into a maximal-period LFSR. The first number is the length of 
the LFSR. The last number is always O and can be ignored. All the numbers, except 
the 0, specify the tap sequence, counting from the left of the shift register. That is, 
low degree terms in the polynomial correspond to taps near the left-hand side of the 
register. 

To continue the example, the listing (32, 7, 5, 3, 2, 1, 0) means that if you take a 
32-bit shift register and generate the new bit by XORing the thirty-second, seventh, 
fifth, third, second, and first bits together (see Figure 16.4), the resultant LFSR will 
be maximal length; it will cycle through 232 - 1 values before repeating. 

The C code for this LFSR looks like: 

intLFSR(){ 
static unsigned long ShiftRegister ~ l; 
/* Anything but 0. */ 
ShiftRegister ~ ((((ShiftRegister >> 31) 

A (ShiftRegister >> 6) 
A (ShiftRegister >> 4) 
A (ShiftRegister >> 2) 
A ( ShiftRegi ster » 1) 

A ShiftRegister)) 
& OxOOOOOOOl) 
« 31) 

I (ShiftRegister >> 1) ; 
return ShiftRegister & OxOOOOOOOl; 

Figure 16.4 32-bit long maximal-length LFSR. 

Output Bit 
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(1, 0) 
(2, 1, 0) 
(3, 1, 0) 
(4, 1, O) 
(5, 2, O) 
(6, 1, O) 
(7, 1, 0) 
(7, 3, 0) 
(8, 4, 3, 2, 0) 
(9, 4, O) 
(10, 3, 0) 
(11, 2, 0) 
(12, 6, 4, 1, 0) 
(13, 4, 3, 1, 0) 
(14, 5, 3, 1, 0) 
(15, 1, 0) 
(16, 5, 3, 2, O) 
(17, 3, 0) 
(17, 5, 0) 
(17, 6, 0) 
(18, 7, 0) 
(18, 5, 2, 1, 0) 
(19, 5, 2, 1, O) 
(20, 3, 0) 
(21, 2, 0) 
(22, 1, 0) 
(23, 5, 0) 
(24, 4, 3, 1, 0) 
(25, 3, 0) 
(26, 6, 2, 1, 0) 
(27, 5, 2, 1, O) 
(28, 3, 0) 
(29, 2, 0) 
(30, 6, 4, 1, 0) 
(31, 3, 0) 
(31, 6, 0) 
(31, 7, 0) 
(31, 13, 0) 
(32, 7, 6, 2, 0) 
(32, 7, 5, 3, 2, 1, 0) 
(33, 13, 0) 
(33, 16, 4, 1, 0) 
(34, 8, 4, 3, 0) 
(34, 7, 6, 5, 2, 1, O) 
(35, 2, 0) 

Table 16.2 
Some Primitive Polynomials Mod 2 

(36, 11, 0) 
(36, 6, 5, 4, 2, 1, 0) 
(37, 6, 4, 1, 0) 
(37, 5, 4, 3, 2, 1, 0) 
(38, 6, 5, 1, O) 
(39, 4, O) 
(40, 5, 4, 3, 0) 
(41, 3, 0) 
(42, 7, 4, 3, 0) 
(42, 5, 4, 3, 2, 1, 0) 
(43, 6, 4, 3, 0) 
(44, 6, 5, 2, O) 
(45, 4, 3, 1, 0) 
(46, 8, 7, 6, 0) 
(46, 8, 5, 3, 2, 1, 0) 
(47, 5, 0) 
(48, 9, 7, 4, 0) 
(48, 7, 5, 4, 2, 1, 0) 
(49, 9, 0) 
(49, 6, 5, 4, 0) 
(50, 4, 3, 2, 0) 
(51, 6, 3, 1, 0) 
(52, 3, O) 
(53, 6, 2, 1, 0) 
(54, 8, 6, 3, O) 
(54, 6, 5, 4, 3, 2, 0) 
(55, 24, 0) 
(55, 6, 2, 1, 0) 
(56, 7, 4, 2, 0) 
(57, 7. O) 
(57, 5, 3, 2, O) 
(58, 19, 0) 
(58, 6, 5, 1, 0) 
(59, 7, 4, 2, 0) 
(59, 6, 5, 4, 3, 1, 0) 
(60, 1, 0) 
(61, 5, 2, 1, Oj 
(62, 6, 5, 3, Oj 
(63, 1, 0) 
(64, 4, 3, 1, 0) 
(65, 18, 0) 
(65, 4, 3, 1, Oj 
(66, 9, 8, 6, Oj 
(66, 8, 6, 5, 3, 2, Oj 
(67, 5, 2, 1, Oj 

(68, 9, Oj 
(68, 7, 5, 1, 0) 
(69, 6, 5, 2, 0) 
(70, 5, 3, 1, 0) 
(71, 6, Oj 
(71, 5, 3, 1, 0) 
(72, 10, 9, 3, Oj 
(72, 6, 4, 3, 2, 1, 0) 
(73, 25, 0) 
(73, 4, 3, 2, 0) 
(74, 7, 4, 3, 0) 
(75, 6, 3, 1, Oj 
(76, 5, 4, 2, 0) 
(77, 6, 5, 2, Oj 
(78, 7, 2, 1, Oj 
(79, 9, 0) 
(79, 4, 3, 2, Oj 
(80, 9, 4, 2, Oj 
(80, 7, 5, 3, 2, 1, O) 
(81, 4, Oj 
(82, 9, 6, 4, Oj 
(82, 8, 7, 6, 1, 0) 
(83, 7, 4, 2, 0) 
(84, 13, Oj 
(84, 8, 7, 5, 3, 1, O) 
(85, 8, 2, 1, 0) 
(86, 6, 5, 2, 0) 
(87, 13, 0) 
(87, 7, 5, 1, 0) 
(88, 11, 9, 8, 0) 
(88, 8, 5, 4, 3, 1, 0) 
(89, 38, Oj 
(89, 51, Oj 
(89, 6, 5, 3, Oj 
(90, 5, 3, 2, 0) 
(91, 8, 5, 1, 0) 
(91, 7, 6, 5, 3, 2, O) 
(92, 6, 5, 2, Oj 
(93, 2, 0) 
(94, 21, 0) 
(94, 6, 5, 1, 0) 
(95, 11, 0) 
(95, 6, 5, 4, 2, 1, 0) 
(96, 10, 9, 6, Oj 
(96, 7, 6, 4, 3, 2, 0) 

(97, 6, Oj 
(98, 11, 0) 
(98, 7, 4, 3, 1, 0) 
(99, 7, 5, 4, O) 
(100, 37, Oj 
(100, 8, 7, 2, 0) 
(101, 7, 6, 1, 0) 
(102,6530) 
(103, 9, 9) 
(104, 11, 10, 1, 0) 
(105, 16, 0) 
(106, 15, Oj 
(107, 9, 7, 4, 0) 
(108, 31, Oj 
(109, 5, 4, 2, 0) 
(110, 6, 4, 1, 0) 
(111, 10, Oj 
(111, 49, Oj 
(113, 9, Oj 
(113, 15, 0) 
(113, 30, Oj 
(114, 11, 2, 1, Oj 
(115, 8, 7, 5, 0) 
(116, 6, 5, 2, 0) 
(117, 5, 2, 1, Oj 
(118, 33, Oj 
(119, 8, Oj 
(119, 45, Oj 
(120, 9, 6, 2, 0) 
(121, 18, 0) 
(122, 6, 2, 1, Oj 
(123, 2, Oj 
(124, 37, Oj 
(125, 7, 6, 5, 0) 
(126, 7, 4, 2, 0) 
(127, 1, 0) 
(127, 7, Oj 
(127, 63, Oj 
( 128, 7, 2, 1, 0) 
(129, 5, Oj 
(130, 3, 0) 
(131, 8, 3, 2, 0) 
(132, 29, Oj 
(133, 9, 8, 2, Oj 
(134, 57, Oj 



(135,11,0) 
(135, 16, 0) 
(135, 22, 0) 
(136, 8, 3, 2, 0) 
(137, 21, 0) 
( 138, 8, 7, 1, 0) 
(139, 8, 5, 3, 0) 
(140, 29, 0) 
(141, 13, 6, 1, 0) 
(142, 21, 0) 
(143, 5, 3, 2, 0) 
(144, 7, 4, 2, 0) 
(145, 52, 0) 
(145, 69, 0) 
(146, 5, 3, 2, 0) 
(147, 11, 4, 2, 0) 
(148, 27, 0) 
(149, 10, 9, 7, 0) 
(150, 53, 0) 
(151, 3, 0) 
(151, 9, 0) 
(151, 15, 0) 
(151, 31, 0) 
(151, 39, 0) 
(151,43,0) 
(151, 46, 0) 
(151, 51, 0) 
(151, 63, 0) 
(151, 66, 0) 
(151, 67, 0) 
(151, 70, 0) 

16.2 Linear Feedback Shift Registers 

Table 16.2 (Cont.) 
Some Primitive Polynomials Mod 2 

(152, 6, 3, 2, 0) 
(153, 1,0) 
(153, 8, 0) 
(154, 9, 5, 1, 0) 
(155, 7, 5, 4, 0) 
(156, 9, 5, 3, 0) 
(157, 6, 5, 2, 0) 
(158, 8, 6, 5, 0) 
(159, 31, 0) 
(159, 34, 0) 
(159, 40, 0) 
(160, 5, 3, 2, 0) 
(161, 18, 0) 
(161, 39, 0) 
(161, 60, 0) 
(162, 8, 7, 4, 0) 
(163, 7, 6, 3, 0) 
(164, 12, 6, 5, 0) 
(165, 9, 8, 3, 0) 
(166, 10, 3, 2, 0) 
(167, 6, 0) 
(170, 23, 0) 
(172, 2, 0) 
(174, 13, 0) 
(175, 6, 0) 
(175, 16, 0) 
(175, 18, 0) 
(175, 57, 0) 
(177, 8, 0) 
(177, 22, O) 
(177, 88, 0) 

(178, 87, 0) 
(183, 56, O) 
(194, 87, 0) 
(198, 65, 0) 
(201, 14, 0) 
(201, 17, 0) 
(201, 59, 0) 
(201, 79, 0) 
(202, 55, 0) 
(207, 43, 0) 
(212, 105, 0) 
(218, 11, 0) 
(218, 15, 0) 
(218, 71, 0) 
(218, 83, 0) 
(225, 32, 0) 
(225, 74, 0) 
(225, 88, 0) 
(225, 97, 0) 
(225, 109, 0) 
(231, 26, 0) 
(231, 34, 0) 
(234, 31, 0) 
(234, 103, 0) 
(236, 5, 0) 
(250, 103, 0) 
(255, 52, 0) 
(255, 56, 0) 
(255, 82, 0) 
(258, 83, 0) 
(266, 47, 0) 

(270, 133, 0) 
(282, 35, 0) 
(282, 43, 0) 
(286, 69, 0) 
(286, 73, 0) 
(294, 61, 0) 
(322, 67, 0) 
(333, 2, 0) 
(350, 53, 0) 
(366, 29, 0) 
(378, 43, 0) 
(378, 107, 0) 
(390, 89, 0) 
(462, 73, 0) 
(521, 32, 0) 
(521, 48, 0) 
(521, 158, 0) 
(521, 168, 0) 
(607, 105, 0) 
(607, 147, 0) 
(607, 273, 0) 
(1279, 216, 0) 
(1279, 418, 0) 
(2281, 715, 0) 
(2281, 915, 0) 
(2281, 1029, 0) 
(3217, 67, 0) 
(3217, 576, 0) 
(4423, 271, 0) 
(9689, 84, 0) 

The code is a little more complicated when the shift register is longer than the com­
puter's word size, but not significantly so. 

Note that all of these listings have an odd number of coefficients. I have provided 
such a large table because LFSRs are often used for stream-cipher cryptography and 
I wanted many examples so that different people would pick different primitive 
polynomials. Since, if p(x) is primitive, then so is xnp( 1/x); each entry on the table is 
actually two primitive polynomials. 

For example, if (a, b, 0) is primitive, then (a, a - b, 0) is also primitive. If (a, b, c, 
d, 0) is primitive, then (a, a - d, a - c, a - b, 0) is also primitive. Mathematically: 

if x" + xz, + 1 is primitive, so is x" + x" - b + 1 

if x" + xb + x" + xc1 + 1 is primitive, so is x" + x" - c1 + x" - c + x" - b + 1 
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Primitive trinomials are fastest in software, because only two bits of the shift reg­
ister have to be XORed to generate each new bit. Actually, all the feedback polyno­
mials listed in Table 16.2 are sparse, meaning that they only have a few coefficients. 
Sparseness is always a source of weakness, sometimes enough to break the algo­
rithm. It is far better to use dense primitive polynomials, those with a lot of coeffi­
cients, for cryptographic applications. If you use dense polynomials, and especially 
if you make them part of the key, you can live with much shorter LFSRs. 

Generating dense primitive polynomials modulo 2 is not easy. In general, to gen­
erate primitive polynomials of degree k you need to know the factorization of 2k - 1. 
Three good references for finding primitive polynomials are [652, 1285, 1287]. 

LFSRs are competent pseudo-random-sequence generators all by themselves, but 
they have some annoying nonrandom properties. Sequential bits are linear, which 
makes them useless for encryption. For an LFSR of length n, the internal state is the 
next n output bits of the generator. Even if the feedback scheme is unknown, it can 
be determined from only 2n output bits of the generator, by using the highly effi­
cient Berlekamp-Massey algorithm [1082,1083]: see Section 16.3. 

Also, large random numbers generated from sequential bits of this sequence are 
highly correlated and, for certain types of applications, not very random at all. Even 
so, LFSRs are often used as building blocks in encryption algorithms. 

LFSRs in Software 
LFSRs are slow in software, but they're faster in assembly language than in C. One 

solution is to run 16 LFSRs (or 32, depending on your computer's word size) in paral­
lel. This scheme uses an array of words that is the length of the LFSR, with each bit 
position in the words representing a different LFSR. Assuming all the feedback poly­
nomials are the same, this can run pretty quickly. In general, the best way to update 
shift registers is to multiply the current state by suitable binary matrices [901 ]. 

It is also possible to modify the LFSR's feedback scheme. The resultant generator 
is no better cryptographically, but it still has a maximal period and is easy to imple­
ment in software [1272]. Instead of using the bits in the tap sequence to generate the 
new left-most bit, each bit in the tap sequence is XORed with the output of the gen­
erator and replaced; then the output of the generator becomes the new left-most bit 
(see Figure 16.5). This is sometimes called a Galois configuration. 

In C, this looks like: 

#define mask Ox80000057 

static unsigned long ShiftRegister=l; 
void seed_LFSR (unsigned long seed) 
{ 

if (seed== 0) /* avoid calamity*/ 
seed= l; 

ShiftRegister = seed; 

int modified_LFSR (void) 
{ 



16.3 Design and Analysis of Stream Ciphers 

Figure 16.5 Galois LFSR. 

if (ShiftRegister & OxOOOOOOOlJ { 
ShiftRegister - ((ShiftRegister 'mask>> 1) I 

Ox8000000; 
return l; 

else I 
ShiftRegister >>- l; 
return O; 

The savings here is that all the XORs can be done as a single operation. This can 
also be parallelized, and the different feedback polynomials can be different. The 
Galois configuration can also be faster in hardware, especially in custom VLSI imple­
mentations. In general, if you are using hardware that is good at shifts, use a Fibonacci 
configuration; if you can exploit parallelism, use a Galois configuration. 

16.3 DESIGN AND ANALYSIS OF STREAM CIPHERS 

Most practical stream-cipher designs center around LFSRs. In the early days of elec­
tronics, they were very easy to build. A shift register is nothing more than an array 
of bit memories and the feedback sequence is just a series of XOR gates. Even in 
VLSI circuitry, a LFSR-based stream cipher can give you a lot of security with only 
a few logic gates. 

The problem with LFSRs is that they are very inefficient in software. You want to 
avoid sparse feedback polynomials-they facilitate correlation attacks [ 1051, 1090, 
350]-and dense feedback polynomials are inefficient. Any stream cipher outputs a 
bit at a time; you have to iterate the algorithm 64 times to encrypt what a single 
iteration of DES can encrypt. In fact, a simple LFSR algorithm like the shrinking 
generator described later is no faster in software than DES. 

This branch of cryptography is fast-paced and very politically charged. Most 
designs are secret; a majority of military encryptions systems in use today are based 
on LFSRs. In fact, most Cray computers (Cray 1, Cray X-MP, Cray Y-MP) have a 
rather curious instruction generally known as "population count." It counts the 1 
bits in a register and can be used both to efficiently calculate the Hamming distance 
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between two binary words and to implement a vectorized version of a LFSR. I've 
heard this called the canonical NSA instruction, demanded by almost all computer 
contracts. 

On the other hand, an astonishingly large number of seemingly complex shift­
register-based generators have been cracked. And certainly military cryptanalysis 
institutions such as the NSA have cracked a lot more. Sometimes it's amazing to see 
the simple ones proposed again and again. 

Linear Complexity 
Analyzing stream ciphers is often easier than analyzing block ciphers. For exam­

ple, one important metric used to analyze LFSR-based generators is linear complex­
ity, or linear span. This is defined as the length, n, of the shortest LFSR that can 
mimic the generator output. Any sequence generated by a finite-state machine over 
a finite field has a finite linear complexity [1006]. Linear complexity is important 
because a simple algorithm, called the Berlekamp-Massey algorithm, can generate 
this LFSR after examining only 2n bits of the keystream [1005]. Once you've gener­
ated this LFSR, you've broken the stream cipher. 

This idea has extensions from fields to rings [1298], and when the output sequence 
is viewed as numbers over fields of odd characteristic [842]. A further enhancement 
is the notion of a linear complexity profile, which measures the linear complexity of 
the sequence as it gets longer and longer [1357,1168,411,1582]. Another algorithm 
for computing linear complexity is useful only in very specialized circumstances 
[597,595,596, 1333]. A generalization of linear complexity is in [776]. There is also the 
notion of sphere complexity [502] and 2-adic complexity [844]. 

In any case, remember that a high linear complexity does not necessarily indicate 
a secure generator, but a low linear complexity indicates an insecure one [ 1357, 1249]. 

Correlation Immunity 
Cryptographers try to get a high linear complexity by combining the output of 

several output sequences in some nonlinear manner. The danger here is that one or 
more of the internal output sequences-often just outputs of individual LFSRs-can 
be correlated with the combined keystream and attacked using linear algebra. Often 
this is called a correlation attack or a divide-and-conquer attack. Thomas Siegen­
thaler has shown that correlation immunity can be precisely defined, and that there 
is a trade-off between correlation immunity and linear complexity [1450]. 

The basic idea behind a correlation attack is to identify some correlation between 
the output of the generator and the output of one of its internal pieces. Then, by 
observing the output sequence, you can obtain information about that internal out­
put. Using that information and other correlations, collect information about the 
other internal outputs until the entire generator is broken. 

Correlation attacks and variations such as fast correlation attacks-these offer a 
trade-off between computational complexity and effectiveness-have been success­
fully applied to a number of LFSR-based keystream generators [1451,278,1452,572, 
1636, 1051, 1090,350,633, 1054, 1089,995 ]. Some interesting new ideas along these 
lines are in [46,1641]. 
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Other Attacks 
There are other general attacks against keystream generators. The linear consistency 

test attempts to identify some subset of the encryption key using matrix techniques 
[1638]. There is also the meet-in-the-middle consistency attack [39,41]. The linear syn­
drome algorithm relies on being able to write a fragment of the output sequence as a 
linear equation [1636,1637]. There is the best affine approximation attack [502] and the 
derived sequence attack [42]. The techniques of differential cryptanalysis have even 
been applied to stream ciphers [501], as has linear cryptanalysis [631]. 

16.4 STREAM CIPHERS USING LFSRs 

The basic approach to designing a keystream generator using LFSRs is simple. First 
you take one or more LFSRs, generally of different lengths and with different feed­
back polynomials. (If the lengths are all relatively prime and the feedback polynomi­
als are all primitive, the whole generator is maximal length.) The key is the initial 
state of the LFSRs. Every time you want a bit, shift the LFSRs once (this is sometimes 
called clocking). The output bit is a function, preferably a nonlinear function, of 
some of the bits of the LFSRs. This function is called the combining function, and the 
whole generator is called a combination generator. (If the output bit is a function of 
a single LFSR, the generator is called a filter generator.) Much of the theoretical back­
ground for this kind of thing was laid down by Selmer and Neal Zierler [1647]. 

Complications have been added. Some generators have LFSRs clocked at different 
rates; sometimes the clocking of one generator depends on the output of another. 
These are all electronic versions of pre-WWII cipher machine ideas, and are called 
clock-controlled generators [641]. Clock control can be feedforward, where the out­
put of one LFSR controls the clocking of another, or feedback, where the output of 
one LFSR controls its own clocking. 

Although these generators are, at least in theory, susceptible to embedding and 
probabilistic correlation attacks [634,632], many are secure for now. Additional the­
ory on clock-controlled shift registers is in [89]. 

Ian Cassells, once the head of pure mathematics at Cambridge and a former 
Bletchly Park cryptanalyst, said that "cryptography is a mixture of mathematics and 
muddle, and without the muddle the mathematics can be used against you." What 
he meant was that in stream ciphers, you need some kind of mathematical struc­
ture-such as a LFSR-to guarantee maximal-length and other properties, and then 
some complicated nonlinear muddle to stop someone from getting at the register 
and solving it. This advice also holds true for block algorithms. 

What follows is a smattering of LFSR-based keystream generators that have 
appeared in the literature. I don't know if any of them have been used in actual cryp­
tographic products. Most of them are of theoretical interest only. Some have been 
broken; some may still be secure. 

Since LFSR-based ciphers are generally implemented in hardware, electronics 
logic symbols will be used in the figures. In the text, EB is XOR, /\ is AND, v is OR, 
and -, is NOT. 
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Geffe Generator 

This keystream generator uses three LFSRs, combined in a nonlinear manner (see 
Figure 16.6) [606]. Two of the LFSRs are inputs into a multiplexer, and the third 
LFSR controls the output of the multiplexer. If a 1, a2, and a3 are the outputs of the 
three LFSRs, the output of the Geffe generator can be described by: 

b = (a1 /\ a2) EB((--, ai) I\ a3) 

If the LFSRs have lengths n 1, n 2, and n 3, respectively, then the linear complexity 
of the generator is 

(n1 + 1 )n2 + n1n3 

The period of the generator is the least common multiple of the periods of the 
three generators. Assuming the degrees of the three primitive feedback polynomials 
are relatively prime, the period of this generator is the product of the periods of the 
three LFSRs. 

Although this generator looks good on paper, it is cryptographically weak and falls 
to a correlation attack [829, 1638]. The output of the generator equals the output of 
LFSR-2 75 percent of the time. So, if the feedback taps are known, you can guess the 
initial value for LFSR-2 and generate the output sequence of that register. Then you 
can count the number of times the output of the LFSR-2 agrees with the output of the 
generator. If you guessed wrong, the two sequences will agree about 50 percent of the 
time; if you guessed right, the two sequences will agree about 75 percent of the time. 

Similarly, the output of the generator equals the output of LFSR-3 about 75 per­
cent of the time. With those correlations, the keystream generator can be easily 
cracked. For example, if the primitive polynomials only have three terms each, and 
the largest LFSR is of length n, it only takes a segment of the output sequence 3 7n­
bits long to reconstruct the internal states of all three LFSRs [1639]. 

Generalized Geffe Generator 
Instead of choosing between two LFSRs, this scheme chooses between k LFSRs, as 

long ask is a power of 2. There are k + 1 LFSRs total (see Figure 16.7). LFSR-1 must 
be clocked log2k times faster than the other k LFSRs. 

LFSR-2 

LFSR-3 

LFSR-1 

.. 

2-to-1 
Multiplexer 

Select 

Figure 16.6 Geffe generator. 

i---• bro 
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Even though this scheme is more complex than the Geffe generator, the same 
kind of correlation attack is possible. I don't recommend this generator. 

Jennings Generator 

This scheme uses a multiplexer to combine two LFSRs [778,779,780]. The multi­
plexer, controlled by LFSR-1, selects 1 bit of LFSR-2 for each output bit. There is 
also a function that maps the output of LFSR-2 to the input of the multiplexer (see 
Figure 16.8). 

The key is the initial state of the two LFSRs and the mapping function. Although 
this generator has great statistical properties, it fell to Ross Anderson's meet-in-the­
middle consistency attack [39] and the linear consistency attack [1638,442]. Don't 
use this generator. 

Beth-Piper Stop-and-Go Generator 

This generator, shown in Figure 16.9, uses the output of one LFSR to control the 
clock of another LFSR [151]. The clock input of LFSR-2 is controlled by the output 
of LFSR-1, so that LFSR-2 can change its state at time t only if the output of LFSR-1 
was 1 at time t - 1. 

No one has been able to prove results about this generator's linear complexity in 
the general case. However, it falls to a correlation attack [1639]. 

Alternating Stop-and-Go Generator 

This generator uses three LFSRs of different length. LFSR-2 is clocked when the 
output of LFSR-1 isl; LFSR-3 is clocked when the output of LFSR-1 is 0. The output 
of the generator is the XOR of LFSR-2 and LFSR-3 (see Figure 16.10) [673]. 

This generator has a long period and large linear complexity. The authors found a 
correlation attack against LFSR-1, but it does not substantially weaken the genera­
tor. There have been other attempts at keystream generators along these lines [1534, 
1574,1477]. 

I LFSR-n + 1 I ~ . . . . n-to-1 

I I 
Multiplexer 

LFSR-3 ~ 

h(t) 

I LFSR-2 I ~ Select 

LFSR-1 J 

Figure 16. 7 Generalized Geffe generator. 
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Multiplexer h(t) 

Figure 16.8 fennings generator. 

Bilateral Stop-and-Go Generator 
This generator uses two LFSRs, both of length n (see Figure 16.11) [1638]. The out­

put of the generator is the XOR of the outputs of each LFSR. If the output of LFSR-2 
at time t - 1 is O and the output at time t - 2 is 1, then LFSR-2 does not clock at 
time t. Conversely, if the output of LFSR-1 at time t - 1 is O and the output at t - 2 
is 1, and if LFSR-1 clocked at time t, then LFSR-2 does not clock at time t. 

The linear complexity of this system is roughly equal to the period. According to 
[1638], "no evident key redundancy has been observed in this system." 

Threshold Generator 
This generator tries to get around the security problems of the previous generators 

by using a variable number of LFSRs [277]. The theory is that if you use a lot of 
LFSRs, it's harder to break the cipher. 

This generator is illustrated in Figure 16.12. Take the output of a large number of 
LFSRs (use an odd number of them). Make sure the lengths of all the LFSRs are rel­
atively prime and all the feedback polynomials are primitive: maximize the period. 
If more than half the output bits are 1, then the output of the generator is 1. If more 
than half the output bits are 0, then the output of the generator is 0. 

LFSR-2 

LFSR-1 

LFSR-3 

Clock _..,_ _________ __. 

Figure 16.9 Beth-Piper stop-and-go generator. 
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LFSR-2 
LFSR-1 

LFSR-3 

'1)(1)----~ 

Figure 16.10 Alternating stop-and-go generator. 

With three LFSRs, the output generator can be written as: 

b = (a1 /\ a2) EB (a1 /\ a3) EB (a2 /\ a3) 

This is very similar to the Geffe generator, except that it has a larger linear com­
plexity of 

where n 1, n 2, and n3 are the lengths of the first, second, and third LFSRs. 
This generator isn't great. Each output bit of the generator yields some informa­

tion about the state of the LFSRs-0.189 bit to be exact-and the whole thing falls 
to a correlation attack. I don't recommend using it. 

Self-Decimated Generators 
Self-decimated generators are generators that control their own clock. Two have 

been proposed, one by Rainer Rueppel (see Figure 16.13) [1359] and another by Bill 

(b(t) ------; <b A (I) 

a(r+n-2) Q(I) 

n-stage LFSR-2 

[)--+ C(I) 

n-stage LFSR-1 

b(r+n-2) bui 

Figure 16.11 Bilateral stop-and-go generator. 
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LFSR-1 

LFSR-2 

LFSR-3 

LFSR-n 

Majority 
Function 

Figure 16.12 Threshold generator. 

b(I) 

Chambers and Dieter Gollmann [308] (see Figure 16.14). In Rueppel's generator, 
when the output of the LFSR is 0, the LFSR is clocked d times. When the output of 
the LFSR is 1, the LFSR is clocked k times. Chambers's and Gollmann's generator is 
more complicated, but the idea is the same. Unfortunately, both generators are inse­
cure [1639], although some modifications have been proposed that may correct the 
problems [1362]. 

Multispeed Inner-Product Generator 

This generator, by Massey and Rueppel [1014], uses two LFSRs clocked at two dif­
ferent speeds (see Figure 16.15). LFSR-2 is clocked d times as fast as LFSR-1. The 
individual bits of the two LFSRs are ANDed together and then XORed with each 
other to produce the final output bit of the generator. 

Although this generator has high linear complexity and it possesses excellent sta­
tistical properties, it still falls to a linear consistency attack [1639]. If n 1 is the length 
of LFSR-1, n 2 is the length of the LFSR-2, and dis the speed multiple between the 
two, then the internal state of the generator can be recovered from an output 
sequence of length 

n1 + n2 + log2d 

Summation Generator 
More work by Rainer Rueppel, this generator adds the output of two LFSRs (with 

carry) [1358, 1357]. This operation is highly nonlinear. Through the late 1980s, this 

0: Clock d times 
1: Clock k times LFSR 

Figure 16.13 Rueppel's self-decimated generator. 

1---e----• bro 



_______________ 1_6_.4 __ S_tr_e_a_m_C_i_p_h_er_s_U_s1_·n_g_L_F_S_R_s _____ 7 ___ ~ 

0: Clock d times 
1: Clock k times 

f----- • b(tJ 

Figure 16.14 Chambers's and Gollmann's self-decimated generator. 

generator was the security front-runner, but it fell to a correlation attack [1053, 
1054,1091]. And it has been shown that this is an example of a feedback with carry 
shift register (see Section 17.4), and can be broken [844]. 

DNRSG 
That stands for" dynamic random-sequence generator" [1117]. The idea is to have 

two different filter generators-threshold, summation, or whatever-fed by a single 
set of LFSRs and controlled by another LFSR. 

First clock all the LFSRs. If the output of LFSR-0 is 1, then compute the output of 
the first filter generator. If the output of LFSR-0 is 0, then compute the output of the 
second filter generator. The final output is the first output XOR the second. 

Gollmann Cascade 
The Gollmann cascade (see Figure 16.16), described in [636,309], is a strengthened 

version of a stop-and-go generator. It consists of a series of LFSRs, with the clock of 
each controlled by the previous LFSR. If the output of LFSR-1 is 1 at time t - l, then 
LFSR-2 clocks. If the output of LFSR-2 is 1 at time t - l, then LFSR-3 clocks, and so 
on. The output of the final LFSR is the output of the generator. If all the LFSRs have 
the same length, n, the linear complexity of a system with k LFSRs is 

n(2" - 1 )1' - I 

/ -stage LFSR-1 

d·dl n -stage LFSR-2 

Figure 16.15 Multispeed inner-product generator. 
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Cascades are a cool idea: They are conceptually very simple and they can be used 
to generate sequences with huge periods, huge linear complexities, and good statis­
tical properties. They are vulnerable to an attack called lock-in [640]. This is a tech­
nique by which a cryptanalyst reconstructs the input to the last shift register in the 
cascade, then proceeds to break the cascade register by register. This is a serious 
problem in some situations and weakens the effective key length of the algorithm, 
but precautions can be taken to minimize the attack. 

Further analysis has indicated that the sequence approaches random as k gets 
larger [637,638,642,639]. Based on recent attacks on short Gollmann cascades 
[1063], I recommend using a k of at least 15. You're better off using more LFSRs of 
shorter length than fewer LFSRs of longer length. 

Shrinking Generator 

The shrinking generator [378] uses a different form of clock control than the pre­
vious generators. Take two LFSRs: LFSR-1 and LFSR-2. Clock both of them. If the 
output of LFSR-1 is 1, then the output of the generator is LFSR-2. If the output of 
LFSR-1 is 0, discard the two bits, clock both LFSRs, and try again. 

This idea is simple, reasonably efficient, and looks secure. If the feedback polyno­
mials are sparse, the generator is vulnerable, but no other problems have been 
found. Even so, it's new. One implementation problem is that the output rate is not 
regular; if LFSR-1 has a long string of zeros then the generator outputs nothing. The 
authors suggest buffering to solve this problem [378]. Practical implementation of 
the shrinking generator is discussed in [901]. 

Self-Shrinking Generator 

The self-shrinking generator [1050] is a variant of the shrinking generator. 
Instead of using two LFSRs, use pairs of bits from a single LFSR. Clock a LFSR 
twice. If the first bit in the pair is 1, the output of the generator is the second bit. 
If the first bit is 0, discard both bits and try again. While the self-shrinking gener­
ator requires about half the memory space as the shrinking generator, it is also 
half the speed. 

While the self-shrinking generator also seems secure, it still has some unexplained 
behavior and unknown properties. This is a very new generator; give it some time. 

1 

l~FsR-1~ I ... 
Figure 16.16 Gollmann cascade. 
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16.5 A5 

AS is the stream cipher used to encrypt GSM (Group Special Mobile). That's the 
non-American standard for digital cellular mobile telephones. It is used to encrypt 
the link from the telephone to the base station. The rest of the link is unencrypted; 
the telephone company can easily eavesdrop on your conversations. 

A lot of strange politics surrounds this one. Originally it was thought that 
GSM's cryptography would prohibit export of the phones to some countries. Now 
some officials are discussing whether AS might harm export sales, implying that 
it is so weak as to be an embarrassment. Rumor has it that the various NATO 
intelligence agencies had a catfight in the mid-1980s over whether GSM encryp­
tion should be strong or weak. The Germans wanted strong cryptography, as they 
were sitting near the Soviet Union. The other countries overruled them, and AS is 
a French design. 

We know most of the details. A British telephone company gave all the docu­
mentation to Bradford University without remembering to get them to sign a 
nondisclosure agreement. It leaked here and there, and was eventually posted to the 
Internet. A paper describing AS is [1622]; there is also code at the back of this book. 

AS consists of three LFSRs; the register lengths are 19, 22, and 23; all the feedback 
polynomials are sparse. The output is the XOR of the three LFSRs. AS uses variable 
clock control. Each register is clocked based on its own middle bit, XO Red with the 
inverse threshold function of the middle bits of all three registers. Usually, two of 
the LFSRs clock in each round. 

There is a trivial attack requiring 240 encryptions: Guess the contents of the first 
two LFSRs, then try to determine the third LFSR from the keystream. (Whether this 
attack is actually feasible is under debate, but a hardware key search machine cur­
rently under design should resolve the matter soon [45].) 

Nonetheless, it is becoming clear that the basic ideas behind AS are good. It is 
very efficient. It passes all known statistical tests; its only known weakness is that 
its registers are short enough to make exhaustive search feasible. Variants of AS 
with longer shift registers and denser feedback polynomials should be secure. 

16.6 HUGHES XPD/KPD 

This algorithm is brought to you by Hughes Aircraft Corp. They put it in army tac­
tical radios and direction-finding equipment for sale to foreign militaries. It was 
designed in 1986 and called XPD, for Exportable Protection Device. Later it was 
renamed KPD-Kinetic Protection Device-and declassified [1037, 1036]. 

The algorithm uses a 61-bit LFSR. There are 210 different primitive feedback poly­
nomials, which were approved by the NSA. The key selects one of these polynomi­
als (they are all stored in ROM somewhere), as well as the initial state of the LFSR. 

It has eight different nonlinear filters, each of which has six taps from the LFSR 
and which produces 1 bit. The bits combine to generate a byte, which is used to 
encrypt or decrypt the datastream. 
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This algorithm looks pretty impressive, but I doubt it is. The NSA allows export, 
so there must be some attack on the order of 240 or less. What is it? 

16. 7 NANOTEQ 

Nanoteq is a South African electronics company. This is their algorithm that has 
been fielded by the South African police to encrypt their fax transmissions, and pre­
sumably for other uses as well. 

The algorithm is described, more or less, in [902,903]. It uses a 127-bit LFSR with 
a fixed feedback polynomial; the key is the initial state of the feedback register. The 
127 bits of the register are reduced to a single keystream bit using 25 primitive cells. 
Each cell has five inputs and one output: 

f(x1,X2,X3,X4,X5) = X1 + X2 + (x1 + X3) (x2 + X4 + Xs) + (x1 + X4) (x2 + X3) + Xs 

Each input of the function is XORed with some bit of the key. There is also a 
secret permutation that depends on the particular implementation, and is not de­
tailed in the papers. This algorithm is only available in hardware. 

Is this algorithm secure? I doubt it. During the transition to majority rule, embar­
rassing faxes from one police station to another would sometimes turn up in the lib­
eral newspapers. These could easily have been the results of U.S., U.K., or Soviet 
intelligence efforts. Ross Anderson took some initial steps towards cryptanalyzing 
this algorithm in [46]; I expect more results to come soon. 

16.8 RAMBUTAN 

Rambutan is a British algorithm, designed by the Communications Electronics 
Security Group (one of the aliases used by GCHQ). It is only sold as a hardware mod­
ule and is approved for the protection of classified material up to "Confidential." 
The algorithm itself is secret, and the chip is not generally commercially available. 

Rambutan has a 112-bit key (plus parity bits) and can operate in three modes: ECB, 
CBC, and 8-bit CFB. This strongly indicates that it is a block algorithm, but rumors 
point elsewhere. Supposedly, it is a LFSR stream cipher. It has five shift registers, 
each one of a different length around 80 bits. The feedback polynomials are fairly 
sparse, with only about 10 taps each. Each shift register provides four inputs to a very 
large and complex nonlinear function which eventually spits out a single bit. 

Why call it Rambutan? Perhaps, like the fruit, it's spiny and forbidding on the out­
side but soft and yielding inside. On the other hand, maybe that's not the reason. 

16. 9 ADDITIVE GENERATORS 

Additive generators (sometimes called lagged Fibonacci generators) are extremely 
efficient because they produce random words instead of random bits [863]. They are 
not secure on their own, but can be used as building blocks for secure generators. 
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The initial state of the generator is an array of n-bit words: 8-bit words, 16-bit 
words, 32-bit words, whatever: X1, X2, X 3, ••• , Xm. This initial state is the key. The 
ith word of the generator is 

X; = (X; _ a + X; _ b + X; _ c + ... + X; _ ml mod 2n 

If the coefficients a, b, c, ... , m are chosen right, the period of this generator is at 
least 2n - 1. One of the requirements on the coefficients is that the least significant 
bit forms a maximal-length LFSR. 

For example, (55,24,0) is a primitive polynomial mod 2 from Table 16.2. This 
means that the following additive generator is maximal length. 

X, = (X; _ 55 + X; _ 24 ) mod 2n 

This works because the primitive polynomial has three coefficients. If it has more 
than three, you need some additional requirements to make it maximal length. See 
[249] for details. 

Fish 
Fish is an additive generator based on techniques used in the shrinking generator 

[190]. It produces a stream of 32-bit words which can be XORed with a plaintext 
stream to produce ciphertext, or XORed with a ciphertext stream to produce plain­
text. The algorithm is named as it is because it is a Fibonacci shrinking generator. 

First, use these two additive generators. The key is the initial values of these 
generators. 

A;= (A; - s5 +A;_ 24) mod 232 

B; = (B; - 52 +Bi_ 19) mod 232 

These sequences are shrunk, as a pair, depending on the least significant bit of B;: 
if it is 1, use the pair; if it is 0, ignore the pair. C1 is the sequence of used words from 
Ai, and D1 is the sequence of used words from Bi. These words are used in pairs-C 2,, 

C2 1 + 1, D2 1, and D2 1 + 1-to generate two 32-bit output words: K2 1 and K2 1 + 1-

E21 = C21 EB (D21 /\ D2 1 + i) 

F21 = D21 + 1 /\ (E21 A C2; + i) 

K21 = E2; EB F2; 

K2; + 1 = C2; + 1 EB F2 1 

This algorithm is fast. On a 33 megahertz 486, a C implementation of Fish 
encrypts data at 15 megabits per second. Unfortunately, it is also insecure; an attack 
has a work factor of about 240 [45]. 

Pike 
Pike is a leaner, meaner version of Fish, brought to you by Ross Anderson, the 

man who broke Fish [45]. It uses three additive generators. For example: 

A; = (A; - 55 + A; _ 24) mod 232 
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B1 = (B1 _ s1 + B1 _ 7) mod 232 

C1 = ( C1 - ss + C1 _ 19) mod 232 

To generate the keystream word, look at the addition carry bits. If all three agree 
(all are O or all are 1 ), then clock all three generators. If they do not, just clock the 
two generators that agree. Save the carry bits for next time. The final output is the 
XOR of the three generators. 

Pike is faster than Fish, since on the average 2. 75 steps will be required per output 
rather than 3. It is far too new to trust, but looks good so far. 

Mush 
Mush is a mutual shrinking generator. It's easy to explain [1590]. Take two addi­

tive generators: A and B. If the carry bit of A is set, clock B. If the carry bit of B is 
set, clock A. Clock A. and set the carry bit if there is a carry. Clock B, and set the 
carry bit if there is a carry. The final output is the XOR of the output of A and B. 

The easiest generators to use are the ones from Fish: 

Ai= (A1 - 55 +A;_ 24) mod 232 

B; = (B; - s2 + B1 _ 19 ) mod 232 

On the average, three generator iterations are required to produce one output 
word. And if the coefficients of the additive generators are chosen correctly and are 
relatively prime, the output sequence will be maximal length. I know of no suc­
cessful attacks, but remember that this algorithm is very new. 

16.10 GIFFORD 

David Gifford invented a stream cipher and used it to encrypt news wire reports in 
the Boston area from 1984 until 1988 [608,607,609]. The algorithm has a single 
8-byte register: b0, b1, •.. , b7. The key is the initial state of the register. The algorithm 
works in OFB; the plaintext does not affect the algorithm at all. (See Figure 16.17). 

To generate a key byte k;, concatenate b0 and b2 and concatenate b4 and b7• Multi­
ply the two together to get a 32-bit number. The third byte from the left is k;. 

To update the register, take b 1 and sticky right shift it 1 bit. This means the left­
most bit is both shifted and also remains in place. Take b7 and shift it 1 bit to the 
left; there should be a O in the right-most bit position. Take the XOR of the modified 
b 1, the modified b7, and b0 . Shift the original register 1 byte to the right and put this 
byte in the left-most position. 

This algorithm remained secure throughout its life, but was broken in 1994 [287]. 
It turns out that the feedback polynomial isn't primitive and can be attacked that 
way-oops. 
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Discard 

Figure 16.17 Gifford. 

16.11 ALGORITHM M 

The name is from Knuth [863]. It's a method for combining multiple pseudo-random 
streams that increases their security. One generator's output is used to select a 
delayed output from the other generator [996, 1003]. In C: 

#define ARR_SIZE (8192) /* for example - the larger the better 
*/ 

static unsigned char delay[ ARR SIZE 

unsigned char prngA( void J 
long prngB( void J ; 

void init_algM( void 
{ 

long i ; 

for ( i = 0 ; i < ARR_SIZE i++) 
delay[i] = prngA() 

I* in it_a l gM * / 

unsigned char algM( void ) 
{ 

long j,v; 
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j ~ prngB(l % ARR_SIZE , /* get the delay[] index*/ 
v ~ delay[j] ; /* get the value to return*/ 
delay[j] ~ prngA(l /* replace it*/ 

return ( v l ; 
/* algM */ 

This has strength in that if prngA were truly random, one could not learn any­
thing about prngB (and could therefore not cryptanalyze it). If prngA were of the 
form that it could be cryptanalyzed only if its output were available in order (i.e., 
only if prngB were cryptanalyzed first) and otherwise it was effectively truly ran­
dom, then the combination would be secure. 

16.12 PKZIP 

Roger Schlafly designed the encryption algorithm built into the PKZIP data com­
pression program. It's a stream cipher that encrypts data one byte at a time. At least, 
this is the algorithm in version 2.04g. I can't speak for later versions, but unless 
there is some announcement you can probably assume that they are identical. 

The algorithm uses three 32-bit variables, initialized as follows: 

Ka= 305419896 

Ki= 591751049 

K2 = 878082192 

It has an 8-bit key, K,, derived from K2 • Here is the algorithm (all symbols are stan-
dard C notation): 

Ci= Pi I\ K3 

K0 = crc32 (K0, P;) 

Ki= Ki+ (Ko&. 0x000000ff) 

Ki= K 1 * 134775813 + 1 

K2 = crc32 (K2, Ki » 24) 

K3 = ((K2 I 2) * ((K2 I 2) /\ 1)) » 8 

The function crc32 takes the previous value and a byte, XORs them, and calcu­
lates the next value by the CRC polynomial denoted by 0xedb88320. In practice, a 
256-entry table can be precomputed and the crc32 calculation becomes: 

crc32 (a, b) =(a» 8) /\ table [(a&. 0xff) EB b] 

The table is precomputed by the original definition of crc32: 

table [i] = crc32 (i, 0) 

To encrypt a plaintext stream, first loop the key bytes through the encryption 
algorithm to update the keys. Ignore the ciphertext output in this step. Then 
encrypt the plain text, one byte at a time. Twelve random bytes are prepended to the 
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plaintext, but that's not really important. Decryption is similar to encryption, 
except that C1 is used in the second step of the algorithm instead of Pi. 

Security of PKZIP 

Unfortunately, it's not that great. An attack requires 40 to 200 bytes of known 
plaintext and has a time complexity of about 227 [166]. You can do it in a few hours 
on your personal computer. If the compressed file has any standard headers, getting 
the known plaintext is no problem. Don't use the built-in encryption in PKZIP. 
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RC4 is a variable-key-size stream cipher developed in 1987 by Ron Rivest for RSA 
Data Security, Inc. For seven years it was proprietary, and details of the algorithm 
were only available after signing a nondisclosure agreement. 

In September, 1994 someone posted source code to the Cypherpunks mailing 
list-anonymously. It quickly spread to the Usenet newsgroup sci.crypt, and via the 
Internet to ftp sites around the world. Readers with legal copies of RC4 confirmed 
compatibility. RSA Data Security, Inc. tried to put the genie back into the bottle, 
claiming that it was still a trade secret even though it was public; it was too late. It 
has since been discussed and dissected on Usenet, distributed at conferences, and 
taught in cryptography courses. 

RC4 is simple to describe. The algorithm works in OFB: The keystream is inde­
pendent of the plaintext. It has a 8 * 8 S-box: S0, S1, •.• , S255 • The entries are a per­
mutation of the numbers O through 255, and the permutation is a function of the 
variable-length key. It has two counters, i and j, initialized to zero. 

To generate a random byte, do the following: 

i = (i + 1) mod 256 

j = (j + Si) mod 256 

swap S; and Si 

t =(Si+ Si) mod 256 

K=S1 

The byte K is XO Red with the plain text to produce ciphertext or XORed with the 
ciphertext to produce plaintext. Encryption is fast-about 10 times faster than DES. 

Initializing the S-box is also easy. First, fill it linearly: S0 = 0, S1 = 1, ... , S255 = 255. 
Then fill another 256-byte array with the key, repeating the key as necessary to fill 
the entire array: K0, K1, ... , K255 . Set the index j to zero. Then: 
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for i = 0 to 255: 

j = (j + S; + K1 ) mod 256 

swap S; and S; 

And that's it. RSADSI claims that the algorithm is immune to differential and 
linear cryptanalysis, doesn't seem to have any small cycles, and is highly non­
linear. (There are no public cryptanalytic results. RC4 can be in about 2 1700 

(256! x 256 2 ) possible states: an enormous number.) The S-box slowly evolves with 
use: i ensures that every element changes and j ensures that the elements change 
randomly. The algorithm is simple enough that most programmers can quickly 
code it from memory. 

It should be possible to generalize this idea to larger S-boxes and word sizes. The 
previous version is 8-bit RC4. There's no reason why you can't define 16-bit RC4 
with a 16 * 16 S-box (lOOK of memory) and a 16-bit word. You'd have to iterate the 
initial setup a lot more times-65,536 to keep with the stated design-but the 
resulting algorithm should be faster. 

RC4 has special export status if its key length is 40 bits or under (see Section 13.8). 
This special export status has nothing to do with the secrecy of the algorithm, 
although RSA Data Security, Inc. has hinted for years that it does. The name is 
trademarked, so anyone who writes his own code has to call it something else. Var­
ious internal documents by RSA Data Security, Inc. have not yet been made public 
[ 1320, 133 7]. 

So, what's the deal with RC4? It's no longer a trade secret, so presumably anyone 
can use it. However, RSA Data Security, Inc. will almost certainly sue anyone who 
uses unlicensed RC4 in a commercial product. They probably won't win, but they 
will certainly make it cheaper for a company to license than fight. 

RC4 is in dozens of commercial cryptography products, including Lotus Notes, 
Apple Computer's AOCE, and Oracle Secure SQL. It is part of the Cellular Digital 
Packet Data specification [37]. 

17.2 SEAL 

SEAL is a software-efficient stream cipher designed at IBM by Phil Rogaway and 
Don Coppersmith [1340]. The algorithm was optimized for 32-bit processors: To run 
well it needs eight 32-bit registers and a cache of a few kilobytes. Using a relatively 
slow operation, SEAL preprocesses the key operation into a set of tables. These 
tables are then used to speed up encryption and decryption. 

Pseudo-random Function Family 
One novel feature of SEAL is that is isn't really a traditional stream cipher: it is a 

pseudo-random function family. Given a 160-bit key k, and a 32-bit n, SEAL stretches 
n into an L-bit string k(n). L can take any value less than 64 kilobytes. SEAL is sup­
posed to enjoy the property that if k is selected at random, then k(n) should be com­
putationally indistinguishable from a random L-bit function of n. 
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The practical effect of SEAL being a pseudo-random function family is that it is 
useful in applications where traditional stream ciphers are not. With most stream 
ciphers you generate a sequence of bits in one direction: Knowing the key and a posi­
tion i, the only way to determine the ith bit generated is to generate all the bits up 
until the ith one. But a pseudo-random function family is different: You get easy 
access at any desired position in the key stream. This is very useful. 

Imagine you need to secure a hard drive. You want to encrypt each and every 512-
byte sector. With a pseudo-random function family like SEAL, you can encrypt the 
contents of sector n by XORing it with k(n). It is as though the entire disk is XORed 
with a long pseudo-random string, where any piece of that long string can be com­
puted without any trouble. 

A pseudo-random function family also simplifies the synchronization problem 
encountered with standard stream ciphers. Suppose you send encrypted messages 
over a channel that sometimes drops messages. With a pseudo-random function fam­
ily, you can encrypt under k the nth message you transmit, Xm as n together with the 
XOR of x 11 and k(n). The receiver doesn't need to store any state to recover xw nor does 
he need to worry about lost messages affecting the message decryption process. 

Description of SEAL 

The inner loop of SEAL is shown by Figure 17.1. Three key-derived tables, called 
R, S, and T, drive the algorithm. The preprocessing step maps the key k, to these 
tables using a procedure based on SHA (see Section 18.7). The 2-kilobyte table, T, is 
a 9 * 32 bit S-box. 

SEAL also uses four 32-bit registers, A, B, C, and D, whose initial values are deter­
mined by n and the k-derived tables Rand T. These registers get modified over sev­
eral iterations, each one involving 8 rounds. In each round 9 bits of a first register 
(either A, B, C, or D) are used to index into table T. The value retrieved from Tis 
then added to or XO Red with the contents of a second register: again one of A, B, C, 
or D. The first register is then circularly shifted by nine positions. In some rounds 
the second register is further modified by adding or XO Ring it with the (now shifted) 
first register. After 8 rounds of this, A, B, C, and D are added to the keystream, each 
masked first by adding or XORing it with a certain word from S. The iteration is 
completed by adding to A and C additional values dependent on n, n 1, n 2, n 3, n 4i 

exactly which one depends on the parity of the iteration number. 
The important ideas in this design seem to be: 

1. Use a large, secret, key-derived S-box (T). 

2. Alternate arithmetic operations which don't commute (addition and XOR). 

3. Use an internal state maintained by the cipher which is not directly man­
ifest in the data stream (the n1 values which modify A and Cat the end of 
each iteration). 

4. Vary the round function according to the round number, and vary the iter­
ation function according to the iteration number. 
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Figure 17.1 The inner loop of SEAL. 

SEAL requires about five elementary machine operations to encrypt each byte of 
text. It runs at 58 megabits per second on a SO megahertz 486 machine. This is prob­
ably the fastest software algorithm in the book. 

On the other hand, SEAL must preprocess its key into internal tables. These tables 
total roughly 3 kilobytes in size, and their calculation takes about 200 SHA compu­
tations. Thus, SEAL is not appropriate to use in situations where you don't have the 
time to perform the key setup or you don't have the memory to store the tables. 

Security of SEAL 

SEAL is a new algorithm and has yet to be subjected to any published cryptanaly­
sis. This suggests caution. However, SEAL seems to be well thought through. Its 
peculiarities do, in the end, make a good deal of sense. And Don Coppersmith is gen­
erally regarded as the world's cleverest cryptanalyst. 

Patents and Licenses 

SEAL is being patented [380]. Anyone wishing to license SEAL should contact the 
Director of Licenses, IBM Corporation, 500 Columbus Ave., Thurnwood, NY, 10594. 

17.3 WAKE 

WAKE is the Word Auto Key Encryption algorithm, invented by David Wheeler 
[1589]. It produces a stream of 32-bit words which can be XORed with a plaintext 
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stream to produce ciphertext, or XORed with a ciphertext stream to produce plain­
text. And it's fast. 

WAKE works in CFB; the previous ciphertext word is used to generate the next 
key word. It also uses an S-box of 256 32-bit values. This S-box has a special prop­
erty: The high-order byte of all the entries is a permutation of all possible bytes, and 
the low-order 3 bytes are random. 

First, generate the S-box entries, S;, from the key. Then initialize four registers 
with the key (or with another key): a0, b0, c0, and d0 • To generate a 32-bit keystream 
word, Ki: 

K;=di 

The ciphertext word C1, is the plaintext word, P; XORed with K;. 
Then, update the four registers: 

a;+ 1 = M(a;,d;) 

bi+ 1 = M(bi,ai + 1) 
C;+ 1 =M(c;,b1+ i) 

di+!= M(d;,Ci + i) 

Function M is 

M(x,y) = (x + y) » 8 EB Six+ y) "'255 

This is shown in Figure 17.2. The operation» is a right shift, not a rotation. The 
low-order 8 bits of x + y are the input into the S-box. Wheeler gives a procedure for 

D f------..1 M 

C 

B 

A 

K 

P-----+r+-------------~---C 

Figure 17.2 Wake. 
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generating the S-box, but it isn't really complete. Any algorithm to generate random 
bytes and a random permutation will work. 

WAKE's biggest asset is that it is fast. However, it's insecure against a chosen­
plaintext or chosen-ciphertext attack. It is being used in the current version of Dr. 
Solomon's Anti-Virus program. 

1 7 .4 FEEDBACK WITH CARRY SHIFT REGISTERS 

A feedback with carry shift register, or FCSR, is similar to a LFSR. Both have a shift 
register and a feedback function; the difference is that a FCSR also has a carry reg­
ister (see Figure 17.3). Instead of XORing all the bits in the tap sequence, add the 
bits together and add in the contents of the carry register. The result mod 2 
becomes the new bit. The result divided by 2 becomes the new content of the carry 
register. 

Figure 17.4 is an example of a 3-bit FCSR tapped at the first and second bit. Its ini­
tial value is 001, and the initial contents of the carry register is 0. The output bit is 
the right-most bit of the shift register. 

Shift Register Carry Register 

0 0 1 0 

100 0 

0 1 0 0 

1 0 1 0 

1 1 0 0 

1 1 1 0 

0 1 1 1 

Shift Register 

Sum Mod 2 
bn-1 

r----'--------7._J 
I•-----~ Sum 

Sum Div 2 

Figure 17.3 Feedback with carry shift register. 
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17.4 Feedback with Carry Shift Registers 

1 

1 

1 

1 

0 

Note that the final internal state (including the contents of the carry register) is 
the same as the second internal state. The sequence cycles at this point, and has a 
period of 10. 

There are a few things to note here. First, the carry register is not a single bit; it is 
a number. The size of the carry register must be at least log2t, where tis the number 
of taps. There are only two taps in the previous example, so the carry register only 
has to be 1 bit wide. If there were four taps, the carry register would have to be 2 bits 
wide, and could be either 0, 1, 2, or 3. 

Second, there is an initial transient before the FCSR settles down into its repeat­
ing period. In the previous example, only one state never repeated. For larger and 
more complicated FCSRs, there may be more. 

Third, the maximum period of a FCSR is not 211 - 1, where n is the length of the 
shift register. The maximum period is q - 1, where q is the connection integer. This 
number gives the taps and is defined by: 

q = 2qi + 22q2 + 24q4 + ... + 2nq11 - 1 

(Yes, the q;s are numbered from left to right.) And even worse, q has to be a prime 
for which 2 is a primitive root. The rest of this discussion assumes q is of this form. 

In this example, q = 2*0 + 4* 1 + 8* 1 - 1 = 11. And 11 is a prime with 2 as a prim­
itive root. So the maximum period is 10. 

Not all initial states give you the maximum period. For example, look at the 
FCSR when the initial value is 101 and the carry register is set to 4. 

Sum Mod 2 Output Bit 

Sum 

Sum Div 2 

Figure 17.4 3-bit FCSR. 
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Shift Register 

1 0 1 

1 1 0 

1 1 1 

1 1 1 

Carry Register 

4 

2 

1 

1 

At this point the register spits out a neverending stream of ls. 
Any initial state will result in one of four things. First, it is part of the maximum 

period. Second, it will fall into the maximum period after an initial transient. Third, 
it will fall into a sequence of all zeros after an initial transient. Fourth, it will fall 
into a sequence of all ones after an initial transient. 

There is a mathematical formula for determining what will happen to a given ini­
tial state, but it's much easier to just test it. Run the FCSR for a while. (If m is the 
initial memory, and t is the number of taps, then log2(t) + log 2(m) + 1 steps are 
enough.) If it degenerates into a neverending stream of Os or ls within n bits, where 
n is the length of the FCSR, don't use it. If it doesn't, then use it. Since the initial 
state of a FCSR corresponds to the key of the stream cipher, this means that a FCSR­
based generator will have a set of weak keys. 

Table 17.1 lists all connection integers less than 10,000 for which 2 is a primitive 
root. These all have maximum period q - I. To turn one of these numbers into a tap 
sequence, calculate the binary expansion of q + 1. For example, 9949 would trans­
late to taps on bits 1, 2, 3, 4, 6, 7, 9, 10, and 13, because 

9950 = 21c, + 2 10 + 29 + 27 + 26 + 24 + 23 + 22 + 2 1 

Table 17.2 lists all the 4-tap tap sequences that result in a maximal-length FCSR 
for shift register lengths of 32 bits, 64 bits, and 128 bits. Each of the four values, a, 
b, c, and d, combine to generate q, a prime for which 2 is primitive. 

q = 2" + 2b + 2c + 2d - 1 

Any of these tap sequences can be used to create a FCSR with period q - I. 
The idea of using FCSRs for cryptography is still very new; it is being pioneered 

by Andy Klapper and Mark Goresky [844,845,654,843,846]. Just as the analysis of 
LFSRs is based on the addition of primitive polynomials mod 2, analysis of FCSRs is 
based on addition over something called the 2-adic numbers. The theory is well 
beyond the scope of this book, but there seems to be a 2-adic analog for everything. 
Just as you can define linear complexity, you can define 2-adic complexity. There is 
even a 2-adic analog to the Berlekamp-Massey algorithm. What this means is that 
the list of potential stream ciphers has just doubled-at least. Anything you can do 
with a LFSR you can do with a FCSR. 

There are further enhancements to this sort of idea, ones that involve multiple 
carry registers. The analysis of these sequence generators is based on addition over 
the ramified extensions of the 2-adic numbers [845,846]. 
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17 .5 STREAM CIPHERS USING FCSRs 

There aren't any FCSR stream ciphers in the literature; the theory is still too new. 
In the interests of getting the ball rolling, I propose some here. I am taking two dif­
ferent tacks: I am proposing FCSR stream ciphers that are identical to previously 
proposed LFSR generators, and I am proposing stream ciphers that use both FCSRs 
and LFSRs. The security of the former can probably be analyzed using 2-adic num­
bers; the latter cannot be analyzed using algebraic techniques-they can probably 
only be analyzed indirectly. In any case, it is important to choose LFSRs and FCSRs 
whose periods are relatively prime. 

All this will come later. Right now I know of no implementation or analysis of any 
of these ideas. Wait some years and scan the literature before you trust any of them. 

Cascade Generators 

There are two ways to use FCSRs in a cascade generator: 

FCSR Cascade. The Gollmann cascade with FCSRs instead of LFSRs. 

LFSR/FCSR Cascade. The Gollmann cascade with the generators 
alternating between LFSRs and FCSRs. 

FCSR Combining Generators 

These generators use a variable number of LFSRs and/or FCSRs, and a variety of 
functions to combine them. The XOR operation destroys the algebraic properties of 
FCSRs, so it makes sense to use it to combine them. The generator, shown in Figure 
17.5, uses a variable number of FCSRs. Its output is the XOR of the outputs of the 
individual FCSRs. 

Other generators along similar lines are: 

FCSR Parity Generator. All registers are FCSRs and the combining 
function is XOR. 

LFSR/FCSR Parity Generator. Registers are a mix of LFSRs and 
FCSRs and the combining function is XOR. 

FCSR Threshold Generator. All registers are FCSRs and the combin­
ing function is the majority function. 

LFSR/FCSR Threshold Generator. Registers are a mix of LFSRs and 
FCSRs and the combining function is the majority function. 

FCSR Summation Generator. All registers are FCSRs and the com­
bining function is addition with carry. 

LFSR/FCSR Summation Generator. Registers are a mix of LFSRs and 
FCSRs and the combining function is addition with carry. 
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Table 17.1 
Connection Integers for Maximal-period FCSRs 

2 653 1549 2477 3539 
5 659 1571 2531 3547 
11 661 1619 2539 3557 
13 677 1621 2549 3571 
19 701 1637 2557 3581 
29 709 1667 2579 3613 
37 757 1669 2621 3637 
53 773 1693 2659 3643 
59 787 1733 2677 3659 
61 797 1741 2683 3677 
67 821 1747 2693 3691 
83 827 1787 2699 3701 
101 829 1861 2707 3709 
107 853 1867 2741 3733 
131 859 1877 2789 3779 
139 877 1901 2797 3797 
149 883 1907 2803 3803 
163 907 1931 2819 3851 
173 941 1949 2837 3853 
179 947 1973 2843 3877 
181 1019 1979 2851 3907 
197 1061 1987 2861 3917 
211 1091 1997 2909 3923 
227 1109 2027 2939 3931 
269 1117 2029 2957 3947 
293 1123 2053 2963 3989 
317 1171 2069 3011 4003 
347 1187 2083 3019 4013 
349 1213 2099 3037 4019 
373 1229 2131 3067 4021 
379 1237 2141 3083 4091 
389 1259 2213 3187 4093 
419 1277 2221 3203 4099 
421 1283 2237 3253 4133 
443 1291 2243 3299 4139 
461 1301 2267 3307 4157 
467 1307 2269 3323 4219 
491 1373 2293 3347 4229 
509 1381 2309 3371 4243 
523 1427 2333 3413 4253 
541 1451 2339 3461 4259 
547 1453 2357 3467 4261 
557 1483 2371 3469 4283 
563 1493 2389 3491 4349 
587 1499 2437 3499 4357 
613 1523 2459 3517 4363 
619 1531 2467 3533 4373 
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Table 17.1 (Cont.) 
Connection Integers for Maximal-period FCSRs 

4397 5693 6781 7717 8861 
4451 5701 6803 7757 8867 
4483 5717 6827 7789 8923 
4493 5741 6829 7829 8933 
4507 5749 6869 7853 8963 
4517 5779 6883 7877 8971 
4547 5813 6899 7883 9011 
4603 5827 6907 7901 9029 
4621 5843 6917 7907 9059 
4637 5851 6947 7933 9173 
4691 5869 6949 7949 9181 
4723 5923 6971 8053 9203 
4787 5939 7013 8069 9221 
4789 5987 7019 8093 9227 
4813 6011 7027 8117 9283 
4877 6029 7043 8123 9293 
4933 6053 7069 8147 9323 
4957 6067 7109 8171 9341 
4973 6101 7187 8179 9349 
4987 6131 7211 8219 9371 
5003 6173 7219 8221 9397 
5011 6197 7229 8237 9419 
5051 6203 7237 8243 9421 
5059 6211 7243 8269 9437 
5077 6229 7253 8291 9467 
5099 6269 7283 8293 9491 
5107 6277 7307 8363 9533 
5147 6299 7331 8387 9539 
5171 6317 7349 8429 9547 
5179 6323 7411 8443 9587 
5189 6373 7451 8467 9613 
5227 6379 7459 8539 9619 
5261 6389 7477 8563 9629 
5309 6397 7499 8573 9643 
5333 6469 7507 8597 9661 
5387 6491 7517 8627 9677 
5443 6547 7523 8669 9733 
5477 6619 7541 8677 9749 
5483 6637 7547 8693 9803 
5501 6653 7549 8699 9851 
5507 6659 7573 8731 9859 
5557 6691 7589 8741 9883 
5563 6701 7603 8747 9901 
5573 6709 7621 8803 9907 
5651 6733 7643 8819 9923 
5659 6763 7669 8821 9941 
5683 6779 7691 8837 9949 
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Table 17.2 
Tap Sequences for Maximal-length FCSRs 

(32, 6, 3, 2) (64, 24, 19, 2) (64, 59, 28, 2) (96, 55, 53, 2) 
(32, 7, 5, 2) (64, 25, 3, 2) (64, 59, 38, 2) (96, 56, 9, 2) 
(32, 8, 3, 2) (64, 25, 4, 2) (64, 59, 44, 2) (96, 56, 51, 2) 
(32, 13, 8, 2) (64, 25, 11, 2) (64, 60, 49, 2) (96, 57, 3, 2) 
(32, 13, 12, 2) (64, 25, 19, 2) (64, 61, 51, 2) (96, 57, 17, 2) 
(32, 15, 6, 2) (64, 27, 5, 2) (64, 63, 8, 2) (96, 57, 47, 2) 
(32, 16, 2, 1) (64, 27, 16, 2) (64, 63, 13, 2) (96, 58, 35, 2) 
(32, 16, 3, 2) (64, 27, 22, 2) (64, 63, 61, 2) (96, 59, 46, 2) 
(32, 16, 5, 2) (64, 28, 19, 2) (96, 60, 29, 2) 
(32, 17, 5, 2) (64, 28, 25, 2) (96, 15, 5, 2) (96, 60, 41, 2) 
(32, 19, 2, 1) (64, 29, 16, 2) (96, 21, 17, 2) (96, 60, 45, 2) 
(32, 19, 5, 2) (64, 29, 28, 2) (96, 25, 19, 2) (96, 61, 17, 2) 
(32, 19, 9, 2) (64, 31, 12, 2) (96, 25, 20, 2) (96, 63, 20, 2) 
(32, 19, 12, 2) (64, 32, 21, 2) (96, 29, 15, 2) (96, 65, 12, 2) 
(32, 19, 17, 2) (64, 35, 29, 2) (96, 29, 17, 2) (96, 65, 39, 2) 
(32, 20, 17, 2) (64, 36, 7, 2) (96, 30, 3, 2) (96, 65, 51, 2) 
(32, 21, 9, 2) (64, 37, 2, 1) (96, 32, 21, 2) (96, 67, 5, 2) 
(32, 21, 15, 2) (64, 37, 11, 2) (96, 32, 27, 2) (96, 67, 25, 2) 
(32, 23, 8, 2) (64, 39, 4, 2) (96, 33, 5, 2) (96, 67, 34, 2) 
(32, 23, 21, 2) (64, 39, 25, 2) (96, 35, 17, 2) (96, 68, 5, 2) 
(32, 25, 5, 2) (64, 41, 5, 2) (96, 35, 33, 2) (96, 68, 19, 2) 
(32, 25, 12, 2) (64, 41, 11, 2) (96, 39, 21, 2) (96, 69, 17, 2) 
(32, 27, 25, 2) (64, 41, 27, 2) (96, 40, 25, 2) (96, 69, 36, 2) 
(32, 29, 19, 2) (64, 43, 21, 2) (96, 41, 12, 2) (96, 70, 23, 2) 
(32, 29, 20, 2) (64, 43, 28, 2) (96, 41, 27, 2) (96, 71, 6, 2) 
(32, 30, 3, 2) (64, 45, 28, 2) (96, 41, 35, 2) (96, 71, 40, 2) 
(32, 30, 7, 2) (64, 45, 41, 2) (96, 42, 35, 2) (96, 72, 53, 2) 
(32, 31, 5, 2) (64, 47, 5, 2) (96, 43, 14, 2) (96, 73, 32, 2) 
(32, 31, 9, 2) (64, 47, 21, 2) (96, 44, 23, 2) (96, 77, 27, 2) 
(32, 31, 30, 2) (64, 47, 30, 2) (96, 45, 41, 2) (96, 77, 31, 2) 

(64, 49, 19, 2) (96, 47, 36, 2) (96, 77, 32, 2) 
(64, 3, 2, 1) (64, 49, 20, 2) (96, 49, 31, 2) (96, 77, 33, 2) 
(64, 14, 3, 2) (64, 52, 29, 2) (96, 51, 30, 2) (96, 77, 71, 2) 
(64, 15, 8, 2) (64, 53, 8, 2) (96, 53, 17, 2) (96, 78, 39, 2) 
(64, 17, 2, 1) (64, 53, 43, 2) (96, 53, 19, 2) (96, 79, 4, 2) 
(64, 17, 9, 2) (64, 56, 39, 2) (96, 53, 32, 2) (96, 81, 80, 2) 
(64, 17, 16, 2) (64, 56, 45, 2) (96, 53, 48, 2) (96, 83, 14, 2) 
(64, 19, 2, 1) (64, 59, 5, 2) (96, 54, 15, 2) (96, 83, 26, 2) 
(64, 19, 18, 2) (64, 59, 8, 2) (96, 55, 44, 2) (96, 83, 54, 2) 
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(96, 83, 60, 2) 
(96, 83, 65, 2) 
(96, 83, 78, 2) 
(96, 84, 65, 2) 
(96, 85, 17, 2) 
(96, 85, 31, 2) 
(96, 85, 76, 2) 
(96, 85, 79, 2) 
(96, 86, 39, 2) 
(96, 86, 71, 2) 
(96, 87, 9, 2) 
(96, 87, 44, 2) 
(96, 87, 45, 2) 
(96, 88, 19, 2) 
(96, 88, 35, 2) 
(96, 88, 43, 2) 
(96, 88, 79, 2) 
(96, 89, 35, 2) 
(96, 89, 51, 2) 
(96, 89, 69, 2) 
(96, 89, 87, 2) 
(96, 92, 51, 2) 
(96, 92, 71, 2) 
(96, 93, 32, 2) 
(96, 93, 39, 2) 
(96, 94, 35, 2) 
(96, 95, 4, 2) 
(96, 95, 16, 2) 
(96, 95, 32, 2) 
(96, 95, 44, 2) 
(96, 95, 45, 2) 

(128, 5, 4, 2) 
(128, 15, 4, 2) 
(128, 21, 19, 2) 
( 128, 25, 5, 2) 
(128, 26, 11, 2) 
(128, 27, 25, 2) 

Table 17 .2 (Cont.) 
Tap Sequences for Maximal-length FCSRs 

(128, 31, 25, 2) 
(128, 33, 21, 2) 
(128, 35, 22, 2) 
(128, 37, 8, 2) 
(128, 41, 12, 2) 
(128, 42, 35, 2) 
(128, 43, 25, 2) 
(128, 43, 42, 2) 
(128, 45, 17, 2) 
(128, 45, 27, 2) 
(128, 49, 9, 2) 
(128, 51, 9, 2) 
(128, 54, 51, 2) 
(128, 55, 45, 2) 
(128, 56, 15, 2) 
(128, 56, 19, 2) 
(128, 56, 55, 2) 
(128, 57, 21, 2) 
(128, 57, 37, 2) 
( 128, 59, 29, 2) 
(128, 59, 49, 2) 
(128, 60, 57, 2) 
(128, 61, 9, 2) 
(128, 61, 23, 2) 
(128, 61, 52, 2) 
(128, 63, 40, 2) 
( 128, 63, 62, 2) 
(128, 67, 41, 2) 
(128, 69, 33, 2) 
(128, 71, 53, 2) 
(128, 72, 15, 2) 
(128, 72, 41, 2) 
(128, 73, 5, 2) 
(128, 73, 65, 2) 
(128, 73, 67, 2) 
(128, 75, 13, 2) 
(128, 80, 39, 2) 
(128, 80, 53, 2) 

(128, 81, 55, 2) 
(128, 82, 67, 2) 
(128, 83, 60, 2) 
(128, 83, 61, 2) 
(128, 83, 77, 2) 
( 128, 84, 15, 2) 
(128, 84, 43, 2) 
( 128, 85, 63, 2) 
(128, 87, 57, 2) 
(128, 87, 81, 2) 
(128, 89, 81, 2) 
(128, 90, 43, 2) 
(128, 91, 9, 2) 
(128, 91, 13, 2) 
(128, 91, 44, 2) 
(128, 92, 35, 2) 
(128, 95, 94, 2) 
(128, 96, 23, 2) 
(128, 96, 61, 2) 
(128, 97, 25, 2) 
(128, 97, 68, 2) 
(128, 97, 72, 2) 
(128, 97, 75, 2) 
(128, 99, 13, 2) 
(128, 99, 14, 2) 
(128, 99, 26, 2) 
(128, 99, 54, 2) 
(128, 99, 56, 2) 
( 128, 99, 78, 2) 
(128, 100, 13, 2) 
(128, 100, 39, 2) 
( 128, 101, 44, 2) 
(128, 101, 97, 2) 
(128, 103, 46, 2) 
(128, 104, 13, 2) 
(128, 104, 19, 2) 
(128, 104, 35, 2) 
(128, 105, 7, 2) 

(128, 105, 11, 2) 
(128, 105, 31, 2) 
(128, 105, 48, 2) 
(128, 107, 40, 2) 
(128, 107, 62, 2) 
(128, 107, 102, 2) 
(128, 108, 35, 2) 
(128, 108, 73, 2) 
(128, 108, 75, 2) 
(128, 108, 89, 2) 
(128, 109, 11, 2) 
(128, 109, 108, 2) 
(128, 110, 23, 2) 
( 128, 111, 61, 2) 
(128, 113, 59, 2) 
(128, 114, 83, 2) 
(118, 115, 73, 2) 
(128, 117, 105, 2) 
(128, 119, 30, 2) 
(128, 119, 101, 2) 
(128, 120, 9, 2) 
(128, 120, 27, 2) 
(128, 120, 37, 2) 
(128, 120, 41, 2) 
(128, 120, 79, 2) 
(128, 120, 81, 2) 
(128, 121, 5, 2) 
(128, 121, 67, 2) 
(128, 121, 95, 2) 
(128, 121, 96, 2) 
(128, 123, 40, 2) 
(128, 123, 78, 2) 
(128, 124, 41, 2) 
(128, 124, 69, 2) 
(128, 124, 81, 2) 
(128, 125, 33, 2) 
(128, 125, 43, 2) 
(128, 127, 121, 2) 
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Figure 17.5 Combining Generators. 

LFSR/FCSR Summation/Parity Cascade 
The theory is that addition with carry destroys the algebraic properties of LFSRs, 

and that XOR destroys the algebraic properties of FCSRs. This generator combines 
those ideas, as used in the LFSR/FCSR Summation Generator and the LFSR/FCSR 
Parity Generator just listed, with the Gollmann cascade. 

The generator is a series of arrays of registers, with the clock of each array con­
trolled by the output of the previous array. Figure 17.6 is one stage of this generator. 
The first array of LFSRs is clocked and the results are combined using addition with 
carry. If the output of this combining function is 1, then the next array (of FCSRs) is 
clocked and the output of those FCSRs is combined with the output of the previous 
combining function using XOR. If the output of the first combining function is 0, 
then the array of FCSRs is not clocked and the output is simply added to the carry 
from the previous round. If the output of this second combining function is 1, then 
the third array of LFSRs is clocked, and so on. 

This generator uses a lot of registers: n*m, where n is the number of stages and m 
is the number of registers per stage. I recommend n = 10 and m = 5. 

Alternating Stop-and-Go Generators 

These generators are stop-and-go generators with FCSRs instead of some LFSRs. 
Additionally, the XOR operation can be replaced with an addition with carry (see 
Figure 17. 7). 

FCSR Stop-and-Go Generator. Register-I, Register-2, and Register-3 
are FCSRs. The combining operation is XOR. 

FCSR/LFSR Stop-and-Go Generator. Register-I is a FCSR, and Regis­
ters-2 and -3 are LFSRs. The combining operation is addition with 
carry. 
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LFSR 

LFSR 

Adder 
with 

Carry 

Figure 17.6 Concoction Generator. 

FCSR 

XOR 

FCSR 

LFSR/FCSR Stop-and-Go Generator. Register-I is a LFSR, and Regis­
ters-2 and -3 are FCSRs. The combining operation is XOR. 

Shrinking Generators 

There are four basic generator types using FCSRs: 

FCSR Shrinking Generator. A shrinking generator with FCSRs 
instead of LFSRs. 

FCSR/LFSR Shrinking Generator. A shrinking generator with a LFSR 
shrinking a FCSR. 

LFSR/FCSR Shrinking Generator: A shrinking generator with a FCSR 
shrinking a LFSR. 

Register-2 

Figure 17. 7 Alternating stop-and-go generators. 

Combining 
Function 
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FCSR Self-Shrinking Generator. A self-shrinking generator with a 
FCSR instead of a LFSR. 

1 7 .6 NONLINEAR-FEEDBACK SHIFT REGISTERS 

It is easy to imagine a more complicated feedback sequence than the ones used in 
LFSRs or FCSRs. The problem is that there isn't any mathematical theory that can 
analyze them. You'll get something, but who knows what it is? In particular, here 
are some problems with nonlinear-feedback shift register sequences. 

There may be biases, such as more ones than zeros or fewer runs than 
expected, in the output sequence. 

The maximum period of the sequence may be much lower than 
expected. 

The period of the sequence might be different for different starting 
values. 

The sequence may appear random for a while, but then "dead end" 
into a single value. (This can easily be solved by XORing the nonlin­
ear function with the rightmost bit.) 

On the plus side, if there is no theory to analyze nonlinear-feedback shift registers 
for security, there are few tools to cryptanalyze stream ciphers based on them. We 
can use nonlinear-feedback shift registers in stream-cipher design, but we have to be 
careful. 

In a nonlinear-feedback shift register, the feedback function can be anything you 
want (see Figure 17.8). 

~______,~. i.------~ 

+------~ 

Figure 17.8 A nonlinear-feedback shift register (probably insecure). 
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Figure 17.9 3-bit nonlinear feedback shift register. 

Figure 17.9 is a 3-bit shift register with the following feedback function: The new 
bit is the first bit times the second bit. If it is initialized with the value 110, it pro­
duces the following sequence of internal states: 

1 1 0 

0 1 1 

1 0 1 

0 1 0 

0 0 1 

000 

000 

And so on forever. 
The output sequence is the string of least significant bits: 

0 1 1 0 1 0 0 0 0 0 0 0 .... 

This isn't terribly useful. 
It gets even worse. If the initial value is 100, it produces 010, 001, then repeats for­

ever at 000. If the initial value is 111, it repeats itself forever right from the start. 
Some work has been done on computing the linear complexity of the product of 

two LFSRs [1650, 726, 1364,630,658,659]. A construction that involved computing 
LFSRs over a field of odd characteristic [310] is insecure [842]. 

17. 7 OTHER STREAM CIPHERS 

Many other stream ciphers have appeared in the literature here and there. Here are 
some of them. 

Pless Generator 
This generator is designed around the capabilities of the J-K flip-flop [1250]. Eight 

LFSRs drive four J-K flip-flops; each flip-flop acts as a nonlinear combiner for two~ c 
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the LFSRs. To avoid the problem that knowledge of an output of the flip-flop identi­
fies both the source and value of the next output bit, clock the four flip-flops and 
then interleave the outputs to yield the final keystream. 

This algorithm has been cryptanalyzed by attacking each of the four flip-flops 
independently [1356]. Additionally, combining J-K flip-flops is cryptographically 
weak; generators of this type succumb to correlation attacks [1451]. 

Cellular Automaton Generator 

In [1608, 1609], Steve Wolfram proposed using a one-dimensional cellular automa­
ton as a pseudo-random-number generator. Cellular automata is not the subject of 
this book, but Wolfram's generator consisted of a one-dimensional array of bits, a 1, 

a2, a3, •.. , a1<, ... , aw and an update function: 

a;_= ak _ 1 EB (ak v ak + i) 

The bit is extracted from one of the ak values; which one really doesn't matter. 
The generator's behavior appears to be quite random. However, there is a known­

plaintext attack against these generators [1052]. This attack works on a PC with val­
ues of n up to 500 bits. Additionally, Paul Bardell proved that the output of a cellular 
automaton can also be generated by a linear-feedback shift register of equal length 
and is therefore no more secure [ 83]. 

1/p Generator 
This generator was proposed, and then cryptanalyzed, in [193]. If the internal state 

of the generator at time t is Xu then 

x( + 1 = bx( mod p 

The output of the generator is the least significant bit of xt div p, where div is the 
truncated integer division. For maximum period, the constants b and p should be 
chosen so that pis prime and bis a primitive root mod p. Unfortunately, this gen­
erator isn't secure. (Note that for b = 2, an FCSR with a connection integer p outputs 
the reverse of this sequence.) 

crypt(l) 

The original UNIX encryption algorithm, crypt( 1 ), is a stream cipher based on the 
same ideas as the Enigma. This is a 256-element, single-rotor substitution cipher 
with a reflector. Both the rotor and the reflector are generated from the key. This 
algorithm is far simpler than the World War II German Enigma and, for a skilled 
cryptanalyst, very easy to break [1576, 1299]. A public-domain UNIX program, 
called Crypt Breakers Workbench (CBW), can be used to break files encrypted with 
crypt(l). 

Other Schemes 

Another generator is based on the knapsack problem (see Section 19.2) [1363]. 
CRYPTO-LEGGO is insecure [301]. Joan Daemen has developed SubStream, Jam, 
and StepRightUp [402]; they are all too new to comment on. Many other algorithms 
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are described in the literature, and even more are kept secret and incorporated 
into equipment. 

17 .8 SYSTEM-THEORETIC APPROACH TO STREAM-CIPHER 

DESIGN 

In practice, stream-cipher design is a lot like block-cipher design. It involves more 
mathematical theory, but in the end a cryptographer proposes a design and then 
tries to analyze it. 

According to Rainer Rueppel, there are four different approaches to the construc-
tion of stream ciphers [ 1360, 1362 ]: 

System-theoretic approach. Try to make sure that each design creates 
a difficult and unknown problem for the cryptanalyst, using a set of 
fundamental design principles and criteria. 

Information-theoretic approach. Try to keep the cryptanalyst in the 
dark about the plaintext. No matter how much work the cryptanalyst 
invests, he will never get a unique solution. 

Complexity-theoretic approach. Try to base the cryptosystem on, or 
make it equivalent to, some known and difficult problem such as fac­
toring or taking discrete logarithms. 

Randomized approach. Try to generate an unmanageably large prob­
lem by forcing the cryptanalyst to examine lots of useless data in his 
attempts at cryptanalysis. 

The approaches differ in their assumptions about the capabilities and opportuni­
ties of the cryptanalyst, the definition of cryptographic success, and the notion of 
security. Most of the research in this field is theoretical, but there are some good 
stream ciphers among the impractical ones. 

The system-theoretic approach was used in all the stream ciphers previously 
listed; it produces most of the stream ciphers that are practical enough to be used in 
the real world. A cryptographer designs keystream generators that have testable 
security properties-period, distribution of bit patterns, linear complexity, and so 
on-and not ciphers based on mathematical theory. The cryptographer also studies 
various cryptanalytic techniques against these generators and makes sure the gen­
erators are immune to these attacks. 

Over the years, the approach has resulted in a set of design criteria for stream 
ciphers [1432,99,1357,1249]. These were discussed by Rueppel in [1362], in which 
he details the theory behind them. 

Long period, no repetitions. 

Linear complexity criteria-large linear complexity, linear complex­
ity profile, local linear complexity, and so forth. 
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Statistical criteria such as ideal k-tuple distributions. 

Confusion-every keystream bit must be a complex transformation 
of all or most of the key bits. 

Diffusion-redundancies in substructures must be dissipated into 
long-range statistics. 

Nonlinearity criteria for Boolean functions like mth-order correlation 
immunity, distance to linear functions, avalanche criterion, and so on. 

This list of design criteria is not unique for stream ciphers designed by the 
system-theoretic approach; it is true for all stream ciphers. It is even true for all 
block ciphers. The unique point about the system-theoretic approach is that stream 
ciphers are designed to satisfy these goals directly. 

The major problem with these cryptosystems is that nothing can be proven about 
their security; the design criteria have never been proved to be either necessary or 
sufficient for security. A keystream generator may satisfy all the design principles, 
but could still turn out to be insecure. Another could turn out to be secure. There is 
still some magic to the process. 

On the other hand, breaking each of these keystream generators is a different 
problem for a cryptanalyst. If enough different generators are out there, it may not 
be worth the cryptanalyst's time to try to break each one. He may better achieve 
fame and glory by figuring out better ways to factor large numbers or calculating dis­
crete logarithms. 

1 7. 9 COMPLEXITY-THEORETIC APPROACH TO STREAM­

CIPHER DESIGN 

Rueppel also delineated a complexity-theoretic approach to stream-cipher design. 
Here, a cryptographer attempts to use complexity theory to prove that his genera­
tors are secure. Consequently, the generators tend to be more complicated, based on 
the same sorts of hard problems as public-key cryptography. And like public-key 
algorithms, they tend to be slow and cumbersome. 

Shamir's Pseudo-Random-Number Generator 

Adi Shamir used the RSA algorithm as a pseudo-random-number generator [1417]. 
While Shamir showed that predicting the output of the pseudo-random-number gen­
erator is equivalent to breaking RSA, potential biases in the output were demon­
strated in [1401,200]. 

Blum-Micali Generator 
This generator gets its security from the difficulty of computing discrete loga­

rithms [200]. Let g be a prime and p be an odd prime. A key x0, starts off the process: 

x 1 + 1 = gx1 mod p 

The output of the generator is 1 if xi< (p - 1 )/2, and O otherwise. 
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If p is large enough so that computing discrete logarithms mod p is infeasible, 
then this generator is secure. Additional theoretical results can be found in [1627, 
986,985,123 7,896,799]. 

RSA 
This RSA generator [35,36] is a modification of [200]. The initial parameters are a 

modulus N which is the product of two large primes p and q, an integer e which is 
relatively prime to (p - 1) (q - 1 ), and a random seed x0, where x0 is less than N. 

xi+ 1 = xf mod N 

The output of the generator is the least significant bit of xi. The security of this 
generator is based on the difficulty of breaking RSA. If N is large enough, then the 
generator is secure. Additional theory can be found in [1569,1570,1571,30,354]. 

Blum, Blum, and Shub 
The simplest and most efficient complexity-theoretic generator is called the 

Blum, Blum, and Shub generator, after its inventors. Mercifully, we shall abbreviate 
it to BBS, although it is sometimes called the quadratic residue generator [193]. 

The theory behind the BBS generator has to do with quadratic residues modulo n 
(see Section 11.3). Here's how it works. 

First find two large prime numbers, p and q, which are congruent to 3 modulo 4. 
The product of those numbers, n, is a Blum integer. Choose another random integer, 
x, which is relatively prime ton. Compute 

x 0 =x 2 modn 

That's the seed for the generator. 
Now you can start computing bits. The ith pseudo-random bit is the least signifi­

cant bit of x1, where 

x 1 = x 1 _ 12 mod n 

The most intriguing property of this generator is that you don't have to iterate 
through all i - 1 bits to get the ith bit. If you know p and q, you can compute the ith 
bit directly. 

b . h 1 . 'f' b' f h (2i)mo<l((p-l)(q-ll) 
1 1s t e east s1gn1 1cant 1t o x 1, w ere xi= x 0 · 

This property means you can use this cryptographically strong pseudo-random-bit 
generator as a stream cryptosystem for a random-access file. 

The security of this scheme rests on the difficulty of factoring n. You can make n 
public, so anyone can generate bits using the generator. However, unless a cryptan­
alyst can factor n, he can never predict the output of the generator-not even with a 
statement like: "The next bit has a 51 percent chance of being a 1." 

More strongly, the BBS generator is unpredictable to the left and unpredictable to 
the right. This means that given a sequence generated by the generator, a cryptana­
lyst cannot predict the next bit in the sequence nor the previous bit in the sequence. 
This is not security based on some complicated bit generator that no one under­
stands, but the mathematics behind factoring n. 
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This algorithm is slow, but there are speedups. As it turns out, you can use more 
than the least significant bit of each X; as a pseudo-random bit. According to [1569, 
15 70, 15 71,35,36], if n is the length of x 1, the least significant log 2n bits of x 1 can be 
used. The BBS generator is comparatively slow and isn't useful for stream ciphers. 
However, for high-security applications, such as key generation, this generator is 
the best of the lot. 

17 .10 OTHER APPROACHES TO STREAM-CIPHER DESIGN 

In an information-theoretic approach to stream ciphers, the cryptanalyst is assumed 
to have unlimited time and computing power. The only practical stream cipher that 
is secure against an adversary like this is a one-time pad (see Section 1.5 ). Since bits 
would be impractical on a pad, this is sometimes called a one-time tape. Two mag­
netic tapes, one at the encryption end and the other at the decryption end, would 
have the same random keystream on them. To encrypt, simply XOR the plaintext 
with the bits on the tape. To decrypt, XOR the ciphertext with the bits on the other, 
identical, tape. You never use the same keystream bits twice. Since the keystream 
bits are truly random, no one can predict the keystream. If you burn the tapes when 
you are through with them, you've got perfect secrecy (assuming no one else has 
copies of the tape). 

Another information-theoretic stream cipher, developed by Claus Schnorr, 
assumes that the cryptanalyst only has access to a limited number of ciphertext bits 
[1395]. The results are highly theoretical and have no practical value, at least not yet. 
For more details, consult [1361,1643,1193]. 

In a randomized stream cipher, the cryptographer tries to ensure that the crypt­
analyst has an infeasibly large problem to solve. The objective is to increase the 
number of bits the cryptanalyst has to work with, while keeping the secret key 
small. This can be done by making use of a large public random string for encryption 
and decryption. The key would specify which parts of the large random string are to 
be used for encryption and decryption. The cryptanalyst, not knowing the key, is 
forced to pursue a brute-force search through the random string. The security of this 
sort of cipher can be expressed by the average number of bits a cryptanalyst must 
examine before the chances of determining the key improve over pure guessing. 

Rip van Winkle Cipher 

James Massey and Ingemar Ingemarsson proposed the Rip van Winkle cipher 
[1011], so named because the receiver has to receive 2n bits of ciphertext before 
attempting decryption. The algorithm, illustrated in Figure 17.10, is simple to 
implement, provably secure, and completely impractical. Simply XOR the plain text 
with the keystream, and delay the keystream by O to 20 years-the exact delay is 
part of the key. In Massey's words: "One can easily guarantee that the enemy crypt­
analyst will need thousands of years to break the cipher, if one is willing to wait mil­
lions of years to read the plaintext." Further work on this idea can be found in 
[1577, 755]. 
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Figure 17.10 Rip van Winkle cipher. 

Diffie's Randomized Stream Cipher 

Delay 

Plaintext 

This scheme was first proposed by Whitfield Diffie [1362]. The data are 2n random 
sequences. The key is k, a random n-bit string. To encrypt a message, Alice uses the 
kth random string as a one-time pad. She then sends the ciphertext plus the 2n ran­
dom strings over 2n + 1 different communications channels. 

Bob knows k, so he can easily choose which one-time pad to decrypt the message 
with. Eve has no choice but to examine the random sequences one at a time until 
she finds the correct one-time pad. Any attack must examine an expected number 
of bits which is in 0(2n). Rueppel points out that if you send n random strings 
instead of 2n, and if the key is used to specify a linear combination of those random 
strings, the security is the same. 

Maurer's Randomized Stream Cipher 

Ueli Maurer described a scheme based on XORing the plaintext with several large 
public random-bit sequences [1034, 1029, 1030]. The key is the set of starting positions 
within each sequence. This turns out to be provably almost secure, with a calculable 
probability of being broken based on how much memory the attacker has at his dis­
posal, without regard to the amount of computing power he has. Maurer claims that 
this scheme would be practical with about 100 different sequences of 1020 random bits 
each. Digitizing the face of the moon might be one way to get this many bits. 

1 7 .11 CASCADING MULTIPLE STREAM CIPHERS 

If performance is no issue, there's no reason not to choose multiple stream ciphers 
and cascade them. Simply XOR the output of each generator with the plaintext to 
get the ciphertext. Ueli Maurer's result (see Section 15. 7) says that if the generators 
have independent keys, then the security of the cascade is at least as secure as the 
strongest algorithm in the cascade. It is probably much more secure than that. 

Stream ciphers can be combined in all the same ways as block ciphers (see Chap­
ter 15). Stream ciphers can be cascaded (see Section 15.7) with other stream ciphers, 
or together with block ciphers. 
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A clever trick is to use one algorithm, either a block or stream algorithm, to fre­
quently rekey a fast stream algorithm (which could even be a block algorithm in 
OFB mode). The fast algorithm could be weak, since a cryptanalyst would never see 
very much plaintext encrypted with any one key. 

There's a trade-off between the size of the fast algorithm's internal state (which 
may impact security) and how often you can afford to rekey. The rekey needs to be 
relatively fast; algorithms that have a long key setup routine aren't suitable for this 
kind of application. And the rekeying should be independent of the internal state of 
the fast algorithm. 

1 7 .12 CHOOSING A STREAM CIPHER 

If the study of stream ciphers offers any lessons, it's that new types of attacks are 
invented with alarming regularity. Classically, stream ciphers have been based on 
considerable mathematical theory. This theory can be used to prove good properties 
about the cipher, but can also be used to find new attacks against the cipher. I worry 
about any stream cipher based solely on LFSRs for this reason. 

I prefer stream ciphers that are designed more along the lines of block ciphers: 
nonlinear transformations, large S-boxes, and so on. RC4 is my favorite, and SEAL 
is a close second. I would be very interested in seeing cryptanalytic results against 
my generators that combine LFSRs and FCSRs; this seems to be a very fruitful area 
of stream-cipher research to mine for actual designs. Or, you can use a block cipher 
in OFB or CFB to get a stream cipher. 

Table 17.3 gives some timing measurements for some algorithms. These are 
meant for comparison purposes only. 

1 7 .13 GENERATING MULTIPLE STREAMS FROM A SINGLE 
PSEUDO-RANDOM-SEQUENCE GENERATOR 

If you need to encrypt multiple channels of communications in a single box­
a multiplexer, for example-the easy solution is to use a different pseudo-random­
sequence generator for each stream. This has two problems: It requires more hard­
ware, and all the different generators have to be synchronized. It would be simpler 
to use a single generator. 

Table 17.3 
Encryption Speeds of Some 

Stream Ciphers on a 33MHz 486SX 
Algorithm Encryption Speed (Kilobytes/Second) 

AS 5 
PIKE 62 
RC4 164 
SEAL 381 
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One solution is to clock the generator multiple times. If you want three indepen­
dent streams, clock the generator three times and send 1 bit into each stream. This 
technique works, but you may have trouble clocking the generator as fast as you 
would like. For example, if you can only clock the generator three times as fast as 
the data stream, you can only create three streams. Another way is to use the same 
sequence for each channel-perhaps with a variable time delay. This is insecure. 

A really clever idea [1489], patented by the NSA, is shown in Figure 17.11. Dump 
the output of your favorite generator into an m-bit simple shift register. At each 
clock pulse, shift the register one to the right. Then, for each output stream, AND 
the register with a different m-bit control vector viewed as a unique identifier for 
the desired output stream, then XOR all the bits together to get the output bit for 
that stream. If you want several output streams in parallel, you need a separate con­
trol vector and an XOR/ AND logic array for each output stream. 

There are some things to watch out for. If any of the streams are linear combina­
tions of other streams, then the system can be broken. But if you are clever, this is 
an easy and secure way to solve the problem. 

1 7 .14 REAL RANDOM-SEQUENCE GENERATORS 

Sometimes cryptographically secure pseudo-random numbers are not good enough. 
Many times in cryptography, you want real random numbers. Key generation is a 
prime example. It's fine to generate random cryptographic keys based on a pseudo-
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Figure 17.11 Multiple-bit generator. 
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random sequence generator, but if an adversary gets a copy of that generator and the 
master key, the adversary can create the same keys and break your cryptosystem, no 
matter how secure your algorithms are. A random-sequence generator's sequences 
cannot be reproduced. No one, not even you, can reproduce the bit sequence out of 
those generators. 

There is a large philosophical debate over whether any of these techniques actu­
ally produces real random bits. I am not going to address that debate. The point here 
is to produce bits that have the same statistical properties as random bits and are not 
reproducible. 

The important thing about any real random-sequence generator is that it be 
tested. There is a wealth of literature on this topic. Tests of randomness can be 
found in [863,99]. Maurer showed that all these tests can be derived from trying to 
compress the sequence [1031, 1032]. If you can compress a random sequence, then it 
is not truly random. 

Anyhow, what we have here is a whole lot of black magic. The primary point is to 
generate a sequence of bits that your adversary is unlikely to guess. It doesn't sound 
like much, but it's harder than you think. I can't prove that any of these techniques 
generates random bits. These techniques produce a sequence of bits that cannot be 
easily reproduced. For some details, see [1375,1376,511]. 

RAND Tables 
Back in 1955, when computers were still new, the Rand Corporation published a 

book that contained a million random digits [1289]. Their method is described in 
the book: 

The random digits in the book were produced by rerandomization of a basic table 
generated by an electronic roulette wheel. Briefly, a random frequency pulse 
source, providing on the average about 100,000 pulses per second, was gated about 
once per second by a constant frequency pulse. Pulse standardization circuits 
passed the pulses through a 5-place binary counter. In principle the machine was 
a 32-place roulette wheel which made, on the average, about 3000 revolutions per 
trial and produced one number per second. A binary-to-decimal converter was 
used which converted 20 of the 32 numbers (the other twelve were discarded) and 
retained only the final digit of two-digit numbers; this final digit was fed into an 
IBM punch to produce finally a punched card table of random digits. 

The book goes on to discuss the results of various randomness tests on the data. 
It also suggests how to use the book to find a random number: 

The lines of the digit table are numbered from 00000 to 19999. In any use of the 
table, one should first find a random starting position. A common procedure for 
doing this is to open the book to an unselected page of the digit table and blindly 
choose a five-digit number; this number with the first digit reduced modulo 2 deter­
mines the starting line; the two digits to the right of the initially selected five-digit 
number are reduced modulo 50 to determine the starting column in the starting 
line. To guard against the tendency of books to open repeatedly at the same page 
and the natural tendency of a person to choose a number toward the center of the 
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page: every five-digit number used to determine a starting position should be 
marked and not used a second time for this purpose. 

The meat of the book is the "Table of Random Digits." It lists them in 5-digit 
groups-"10097 32533 76520 13586 ... "-50 on a line and 50 lines on a page. The 
table goes on for 400 pages and, except for a particularly racy section on page 283 
which reads "69696," makes for a boring read. The book also includes a table of 
100,000 normal deviates. 

The interesting thing about the RAND book is not its million random digits, but 
that they were created before the computer revolution. Many cryptographic algo­
rithms use arbitrary constants-so-called "magic numbers." Choosing magic num­
bers from the RAND tables ensures that they haven't been specially chosen for 
some nefarious reason. Khafre does this, for example. 

Using Random Noise 

The best way to collect a large number of random bits is to tap the natural ran­
domness of the real world. Often this method requires specialized hardware, but you 
can play tricks with computers. 

Find an event that happens regularly but randomly: atmospheric noise peaking at 
a certain threshold, a toddler falling while learning to walk, or some such. Measure 
the time interval between one event and the next event. Record it. Measure the time 
interval between the second event and the third event. Record it as well. If the first 
time interval is greater than the second, output 1 as the bit. If the second time inter­
val is greater than the first, output O as the event. Do it again for the next event. 

Throw a dart at the New York Stock Exchange closing prices in your local news­
paper. Compare the closing price of the stock you hit with the closing price of the 
stock directly above it. If the one you hit is more, output O; if it less, output 1. 

Hook a Geiger counter up to your computer, count emissions over a fixed time 
interval, and keep the least significant bit. Or measure the time between successive 
ticks. (Since the radioactive source is decaying, the average time between successive 
ticks is continuously getting longer. You want to choose a source with the half life 
long enough to make this negligible-like plutonium. Or, if you're worried about 
your health, you can apply appropriate statistical corrections.) 

G. B. Agnew proposed a real random-bit generator, suitable for integration into a 
VLSI device [21]. It is a metal insulator semiconduction capacitor (MISC). Two of 
them are placed in close proximity, and the random bit is a function of the differ­
ence in charge between the two. Another random-number generator generates a ran­
dom-bit stream based on the frequency instability in a free-running oscillator [535]. 
A commercial chip from AT & T generates random numbers from the same phe­
nomenon [67]. M. Gude built a random-number generator that collected random 
bits from physical phenomena, such as radioactive decay [668,669]. Manfield 
Richter developed a random-number generator based on thermal noise from a semi­
conductor diode [1309]. 

Supposedly the time intervals between successive 2e4 light emissions from a 
trapped mercury atom are random. Use that. Better yet, find a semiconductor com­
pany that makes random-number-generation chips; they are out there. 
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There is also a random-number generator that uses the computer's disk drive 
[439]. It measures the time required to read a disk block and uses the variation in 
that time as a random number source. It filters the timing data to remove structure 
that comes from quantization, then applies a fast Fourier transform to vectors of the 
numbers. This removes bias and correlation. Finally, it uses the spectral angles for 
frequencies in (0, 1r), normalized to the unit interval, as the random bits. A large part 
of the variation in disk rotation speed is caused by air turbulence, so there is ran­
domness in the system. There are caveats, though. If you keep too many bits of the 
output, you are using the fast Fourier transform as a random-number generator and 
risk predictability. And it's best to read the same disk block over and over, so that 
your filtering doesn't have to remove structure that comes from the disk-scheduler. 
An implementation of this system was able to collect about 100 bits per minute 
[439]. 

Using the Computer's Clock 
If you want a single random bit (or even a few), take the least significant bit from 

any clock register. This might not be terribly random in a UNIX system because of 
various potential synchronizations, but it works on some personal computers. 

Beware of getting too many bits this way. Executing the same subroutine several 
times in succession could easily skew bits generated in this manner. For example, if 
each bit generation subroutine takes an even number of clock ticks to execute, you 
will get an endless stream of the same bit out of the generator. If each subroutine 
takes an odd number of clock ticks to execute, you will get an endless stream of 
alternating bits out of the generator. Even if the resonance isn't this obvious, the 
resultant bit stream will be far from random. 

One random-number generator works this way [918]: 

Our truly random number generator ... works by setting an alarm and then 
incrementing a counter register rapidly in the CPU until an interrupt occurs. The 
contents of the register are then XORed with the contents of an output buffer byte 
(truncating the register's data to 8 bits). After each byte of the output buffer is 
filled, the buffer is further processed by doing a right, circular shift of each char­
acter by 2 bits. This has the effect of moving the most active (and random) least 
significant bits into the most significant positions. The entire process is then 
repeated 3 times. Finally each character of the buffer has been touched by the two 
most random bits of the counter register after interrupts. That is 4n interrupts 
have occurred where n is the number of desired random bytes. 

This method is very sensitive to the randomness of system interrupts and the 
granularity of the clock. The output looked pretty good when tested on real UNIX 
machines. 

Measuring Keyboard Latency 

People's typing patterns are both random and nonrandom. They are nonrandom 
enough that they can be used as a means of identification, but they are random 
enough that they can be used to generate random bits. Measure the time between 
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successive keystrokes, then take the least significant bits of those measurements. 
These bits are going to be pretty random. This technique may not work on a UNIX 
terminal, since the keystrokes pass through filters and other mechanisms before 
they get to your program, but it will work on most personal computers. 

Ideally, you only want to collect one random bit per keystroke. Collecting more 
may skew the results, depending on how good a typist is sitting at the keyboard. 
This technique is limited, though. While it's easy to have someone type 100 words 
or so when it is time to generate a key, it isn't reasonable to ask the typist to type a 
100,000-word essay to generate a keystream for a one-time pad. 

Biases and Correlations 
A major problem with all these systems is that there could be nonrandomness in 

the generated sequence. The underlying physical processes might be random, but 
many kinds of measuring instruments are between the digital part of the computer 
and the physical process. Those instruments could easily introduce problems. 

A way to eliminate bias, or skew, is to XOR several bits together. If a random bit 
is biased toward Oby a factor e, then the probability of 0 can be written as: 

P(0) = .5 + e 

XORing two of these bits together yields: 

P(0) = (.5 + e)2 + (.5 - e)2 = .5 + 2e 2 

By the same calculation, XO Ring 4 bits together yields: 

P(0) = .5 + 8e4 

XO Ring m bits will exponentially converge to an equal probability of 0 and 1. If you 
know the maximum bias you are willing to accept for your application, you can cal­
culate how many bits you need to XOR together to get random bits below that bias. 

An even better method is to look at the bits in pairs. If the 2 bits are the same, dis­
card them and look at the next pair. If the 2 bits are different, take the first bit as the 
output of the generator. This eliminates bias completely. Other techniques for reduc­
ing bias use transition mappings, compression, and fast Fourier transforms [511]. 

The potential problem with both methods is that if there is a correlation between 
adjacent bits, then these methods will increase the bias. One way to correct this is 
to use multiple random sources. Take four different random sources and XOR the 
bits together; or take two random sources, and look at those bits in pairs. 

For example, take a radioactive source and hook a Geiger counter to your com­
puter. Take a pair of noisy diodes and record as an event every time the noise 
exceeds a certain peak. Measure atmospheric noise. Get a random bit from each and 
XOR them together to produce the random bit. The possibilities are endless. 

The mere fact that a random-number generator has a bias does not necessarily 
mean that it is unusable. It just means that it is less secure. For example, consider 
the problem of Alice generating a triple-DES 168-bit key. All she has is a random-bit 
generator with a bias toward 0: It produces 55 percent Os and 45 percent ls. This 
means that there are only 0.99277 bits of entropy per key bit, as opposed to 1 bit of 
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entropy if the generator were perfect. Mallory, trying to break the key, can optimize 
his brute-force search to try the most probable key first (000 ... 0), and work toward 
the least probable key ( 111 ... 1 ). Because of the bias, Mallory can expect to find the 
key in 2109 attempts. If there were no bias, Mallory would expect to make 2111 

attempts. The resultant key is less secure, but not appreciably so. 

Distilling Randomness 

In general, the best way to generate random numbers is to find a whole lot of 
seemingly random events and distill randomness from them. This randomness can 
then be stored in a pool or reservoir that applications can draw on as needed. One­
way hash functions are ready-made for the job; they're fast, so you can shovel quite 
a bit through them without worrying too much about performance or the actual ran­
domness of each observation. Hash almost anything you can find that has at least 
some randomness. Try: 

A copy of every keystroke 

Mouse commands 

The sector number, time of day, and seek latency for every disk oper­
ation 

Actual mouse position 

Number of current scanline of monitor 

Contents of the actually displayed image 

Contents of FATs, kernel tables, and so on 

Access/modify times of /dev/tty 

CPU load 

Arrival times of network packets 

Input from a microphone 

/dev/audio without a microphone attached 

If your system uses separate crystal oscillators for its CPU and time-of-day clocks, 
try reading the time of day in a tight loop. On some (but not all) systems this will 
reflect the random phase jitter between the two oscillators. 

Since much of the randomness in these events is in their timing, use the most 
finely grained time-of-day clock you can find. A standard PC uses an Intel 8254 
clock chip (or equivalent) driven at 1.1931818 megahertz, so reading the counter 
register directly gives you 838-nanosecond resolution. To avoid skewing the results, 
avoid taking your event samples on a timer interrupt. 

Here is the process in C with MD5 (see Section 18.5) as the hash function: 

char Randpool [16]; 

/* Call early and call often on a wide variety of random or semi­
* random system events to churn the randomness pool. 
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* The exact format and length of randevent doesn't matter as long as 
* its contents are at least somewhat unpredictable. 
*! 

void churnrand(char *randevent,unsigned int randlen) 
I 

MD5_CTX md5; 
MD5Init(&md5); 
MD 5 Update ( &md 5, Rand pool , size of (Rand pool ) ) ; 
MD5Update(&md5,randevent,randlen); 
MD5Final (Randpool ,&md5); 

After calling churnrand() enough to build up sufficient randomness in Randpool, 
you can now generate random bits from it. MDS again comes in handy, this time as 
a counter-mode pseudo-random byte-stream generator. 

long Randcnt; 
void genrand(char *buf,unsigned int buflen) 
I 

MD5_CTX md5; 
char tmp[l6J; 
unsigned int n; 

while(buflen !~ 0) i 
/* Hash the pool with a counter*/ 
MD5Init(&md5); 
MD5 Update ( &md 5, Rand pool , size of ( Rand pool ) ) ; 
MD5Update(&md5,(unsigned char *)&Randcnt,sizeof(Randcnt)); 
MD5Fi na l ( tmp, &md5); 
Randcnt++; /* Increment counter*/ 

/* Copy 16 bytes or requested amount, whichever is less, 
* to the user's buffer*/ 
n ~ (buflen < 16) ? buflen : 16; 
memcpy(buf,tmp,n); 
buf +~ n; 
buflen -~ n; 

The hash function is crucial here for several reasons. First, it provides an easy way 
to generate an arbitrary amount of pseudo-random data without having to call 
churnrand() each time. In effect, the system degrades gracefully from perfect to prac­
tical randomness when the demand exceeds the supply. In this case it becomes the­
oretically possible to use the result from one genrand() call to determine a previous 
or subsequent result. But this requires inverting MDS, which is computationally 
infeasible. 

This is important since the routine doesn't know what each caller will do with 
the random data it returns. One call might generate a random number for a protocol 
that is sent in the clear, perhaps in response to a direct request by an attacker. The 
very next call might generate a secret key for an unrelated session that the attacker 
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wishes to penetrate. Obviously, it is very important that an attacker not be able to 
deduce the secret key from the nonce. 

One problem remains. There must be sufficient randomness in the Randpool[] 
array before the first call to genrand(). If the system has been running for a while 
with a local user typing on the keyboard, no problem. But what about a standalone 
system that reboots automatically without seeing any keyboard or mouse input? 

This is a tough one. A partial solution would require the operator to type for a 
while after the very first reboot, and to create a seed file on disk before shutting 
down to carry the randomness in Randseed[] across reboots. But do not save the 
Randseed[] array directly. An attacker who steals this file could determine all of the 
results from genrand() after the last call to churnrand() prior to the file being created. 

The fix to this problem is to hash the Randseed[] array before storing it, perhaps 
by just calling genrand(). When the system reboots, you read in the seed file, pass it 
to churnrand(), then promptly destroy it. Unfortunately, this does not deal with the 
threat of someone stealing the seed file between reboots and using it to guess future 
values of the genrand() function. I see no solution to this problem other than to wait 
until enough external random events have taken place after a reboot before allowing 
genrand() to produce results. 
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CHAPTER 18 

One-Way 
Hash Functions 

18.1 BACKGROUND 

A one-way hash function, H(M), operates on an arbitrary-length pre-image message, 
M. It returns a fixed-length hash value, h. 

h = H(M), where h is of length m 

Many functions can take an arbitrary-length input and return an output of fixed 
length, but one-way hash functions have additional characteristics that make them 
one-way [1065]: 

Given M, it is easy to compute h. 

Given h, it is hard to compute M such that H(M) = h. 

Given M, it is hard to find another message, M', such that H(M) = H(M'). 

If Mallory could do the hard things, he would undermine the security of every pro­
tocol that uses the one-way hash function. The whole point of the one-way hash 
function is to provide a "fingerprint" of M that is unique. If Alice signed M by using 
a digital signature algorithm on H(M), and Bob could produce M', another message 
different from M where H(M) = H(M'), then Bob could claim that Alice signed M'. 

In some applications, one-wayness is insufficient; we need an additional require­
ment called collision-resistance. 

It is hard to find two random messages, Mand M', such that H(M) = H(M'). 

Remember the birthday attack from Section 7.4? It is not based on finding another 
message M', such that H(M) = H(M'), but based on finding two random messages, M 
and M', such that H(M) = H(M'). 
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The following protocol, first described by Gideon Yuval [1635], shows how-if 
the previous requirement were not true-Alice could use the birthday attack to 
swindle Bob. 

( 1) Alice prepares two versions of a contract: one is favorable to Bob; the other 
bankrupts him. 

(2) Alice makes several subtle changes to each document and calculates the 
hash value for each. (These changes could be things like: replacing SPACE 
with SPACE-BACKSPACE-SPACE, putting a space or two before a carriage 
return, and so on. By either making or not making a single change on each 
of 32 lines, Alice can easily generate 232 different documents.) 

(3) Alice compares the hash values for each change in each of the two docu­
ments, looking for a pair that matches. (If the hash function only outputs a 
64-bit value, she would usually find a matching pair with 232 versions of 
each.) She reconstructs the two documents that hash to the same value. 

(4) Alice has Bob sign the version of the contract that is favorable to him, 
using a protocol in which he only signs the hash value. 

(5) At some time in the future, Alice substitutes the contract Bob signed with 
the one that he didn't. Now she can convince an adjudicator that Bob 
signed the other contract. 

This is a big problem. (One moral is to always make a cosmetic change to any doc­
ument you sign.) 

Other similar attacks could be mounted assuming a successful birthday attack. 
For example, an adversary could send an automated control system (on a satellite, 
perhaps) random message strings with random signature strings. Eventually, one of 
those random messages will have a valid signature. The adversary would have no 
idea what the command would do, but if his only objective was to tamper with the 
satellite, this would do it. 

Length of One-Way Hash Functions 
Hash functions of 64 bits are just too small to survive a birthday attack. Most 

practical one-way hash functions produce 128-bit hashes. This forces anyone 
attempting the birthday attack to hash 264 random documents to find two that hash 
to the same value, not enough for lasting security. NIST, in its Secure Hash Standard 
(SHS), uses a 160-bit hash value. This makes the birthday attack even harder, requir­
ing 280 random hashes. 

The following method has been proposed to generate a longer hash value than a 
given hash function produces. 

( 1) Generate the hash value of a message, using a one-way hash function listed 
in this book. 
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(2) Prepend the hash value to the message. 

(3) Generate the hash value of the concatenation of the message and the hash 
value. 

(4) Create a larger hash value consisting of the hash value generated in step ( 1) 
concatenated with the hash value generated in step (3). 

(5) Repeat steps (1) through (3) as many times as you wish, concatenating as 
you go. 

Although this method has never been proved to be either secure or insecure, var­
ious people have some serious reservations about it [ 1262,859]. 

Overview of One-Way Hash Functions 

It's not easy to design a function that accepts an arbitrary-length input, let alone 
make it one-way. In the real world, one-way hash functions are built on the idea of 
a compression function. This one-way function outputs a hash value of length n 
given an input of some larger length m [1069,414]. The inputs to the compression 
function are a message block and the output of the previous blocks of text (see Fig­
ure 18.1). The output is the hash of all blocks up to that point. That is, the hash of 
block M 1 is 

h=f(M,,h-1) 

This hash value, along with the next message block, becomes the next input to the 
compression function. The hash of the entire message is the hash of the last block. 

The pre-image should contain some kind of binary representation of the length of 
the entire message. This technique overcomes a potential security problem result­
ing from messages with different lengths possibly hashing to the same value 
[1069,414]. This technique is sometimes called MD-strengthening [930]. 

Various researchers have theorized that if the compression function is secure, 
then this method of hashing an arbitrary-length pre-image is also secure-but noth­
ing has been proved [ 1138, 1070,414]. 

A lot has been written on the design of one-way hash functions. For more mathe­
matical information, consult [1028,793,791,1138,1069,414,91,858,1264]. Bart Pre­
neel's thesis [1262] is probably the most comprehensive treatment of one-way hash 
functions. 

M; ----1:~l.__~-~-~-~~-io_~_Y__.,__-~ .. - h; 
h;-1 - Figure 18.1 One-way function. 
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18.2 SNEFRU 

Snefru is a one-way hash function designed by Ralph Merkle [1070]. (Snefru, like 
Khufu and Khafre, was an Egyptian pharaoh.) Snefru hashes arbitrary-length mes­
sages into either 128-bit or 256-bit values. 

First the message is broken into chunks, each 512-m in length. (The variable mis 
the length of the hash value.) If the output is a 128-bit hash value, then the chunks 
are each 384 bits long; if the output is a 256-bit hash value, then the chunks are each 
256 bits long. 

The heart of the algorithm is function H, which hashes a 512-bit value into an m­
bit value. The first m bits of H's output are the hash of the block; the rest are dis­
carded. The next block is appended to the hash of the previous block and hashed 
again. (The initial block is appended to a string of zeros.) After the last block (if the 
message isn't an integer number of blocks long, zeros are used to pad the last block), 
the first m bits are appended to a binary representation of the length of the message 
and hashed one final time. 

Function His based on E, which is a reversible block-cipher function that operates 
on 512-bit blocks. His the last m bits of the output of E XORed with the first m bits 
of the input of E. 

The security of Snefru resides in function E, which randomizes data in several 
passes. Each pass is composed of 64 randomizing rounds. In each round a different 
byte of the data is used as an input to an S-box; the output word of the S-box is 
XORed with two neighboring words of the message. The S-boxes are constructed in 
a manner similar to those in Khafre (see Section 13. 7). Some rotations are thrown in, 
too. Originally Snefru was designed with two passes. 

Cryptanalysis of Snefru 
Using differential cryptanalysis, Biham and Shamir demonstrated the insecurity 

of two-pass Snefru ( 128-bit hash value) [ 172]. Their attack finds pairs of messages 
that hash to the same value within minutes. 

On 128-bit Snefru, their attacks work better than brute force for four passes or 
less. A birthday attack against Snefru takes 264 operations; differential cryptanalysis 
can find a pair of messages that hash to the same value in 2285 operations for three­
pass Snefru and 2445 operations for four-pass Snefru. Finding a message that hashes 
to a given value by brute force requires 2128 operations; differential cryptanalysis 
takes 256 operations for three-pass Snefru and 288 operations for four-pass Snefru. 

Although Biham and Shamir didn't analyze 256-bit hash values, they extended 
their analysis to 224-bit hash values. Compared to a birthday attack that requires 
2112 operations, they can find messages that hash to the same value in 212·5 opera­
tions for two-pass Snefru, 233 operations for three-pass Snefru, and 281 operations for 
four-pass Snefru. 

Currently, Merkle recommends using Snefru with at least eight passes [1073]. 
However, with this many passes the algorithm is significantly slower than either 
MDS or SHA. 
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18.3 N-HASH 

N-Hash is an algorithm invented by researchers at Nippon Telephone and Tele­
graph, the same people who invented FEAL, in 1990 [1105, 1106]. N-Hash uses 128-
bit message blocks, a complicated randomizing function similar to FEAL's, and 
produces a 128-bit hash value. 

The hash of each 128-bit block is a function of the block and the hash of the pre­
vious block. 

H 0 = I, where I is a random initial value 

H; = g(M;,H 1 _ 1) EB M 1 EB H1-1 

The hash of the entire message is the hash of the last message block. The random 
initial value, I, can be any value determined by the user (even all zeros). 

The function g is a complicated one. Figure 18.2 is an overview of the algorithm. 
Initially, the 128-bit hash of the previous message block, H; _ 1, has its 64-bit left half 

EX G : Exchange of left and right half 

v: 1010 ... 1010inbinary(128bits) 

PS : Processing stage 

Vj = 6 IIAJ J 11 6 IIAJ 211 6 IIAJ 311 6 IIAJ 4 

(II: concatenation) 

6 : 000 ... 0 in binary (24 bits) 

Ajk = 4•(i - I)+ k I k =1,2,3,4, Ajk : 8-bits long) 

hi -1 ------<-

128 bits 

Figure 18.2 Outline of N-Hash. 
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and 64-bit right half swapped; it is then XORed with a repeating one/zero pattern ( 128 
bits worth), and then XO Red with the current message block, M 1• This value then cas­
cades into N (N = 8 in the figures) processing stages. The other input to the processing 
stage is the previous hash value XORed with one of eight binary constant values. 

One processing stage is given in Figure 18.3. The message block is broken into 
four 32-bit values. The previous hash value is also broken into four 32-bit values. 
The function f is given in Figure 18.4. Functions S0 and S1 are the same as they were 
in FEAL. 

S0(a,b) = rotate left two bits ((a+ b) mod 256) 

Si(a,b) = rotate left two bits ((a+ b + 1) mod 256) 

The output of one processing stage becomes the input to the next processing 
stage. After the last processing stage, the output is XO Red with the M 1 and H 1 _ 1, and 
then the next block is ready to be hashed. 

Cryptanalysis of N-Hash 

Bert den Boer discovered a way to produce collisions in the round function of 
N-Hash [1262]. Biham and Shamir used differential cryptanalysis to break 6-round 

Input: X =X I IIX 2IIX 3IIX 4 
X 1 X 2 

P=P 1IIP2IIP311P 4 
32bits 32bits I 
I 

L -

fp, fp2 t P3 Tp4 
32 bits 32 bits 32 bits 32 bits 

Output: Y =Y 1IIY 2IIY 3IIY 4 

Y=PS(X,P) 

____ J 

Figure 18.3 One processing stage of N-Hash. 
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8bits 

X 

32bits 
p ------+-l 

32bits 

8bits 8bits 

32bits 

f (x,P) 

8 bits 

Y = So(X 1.X2) = Rot2((X 1 +X 2)mlld 2561 

Y = S1 (X 1. X21 = Rot2(1X1 +X2 + I) mod 256) 

Y (8 bits): output, X1 /X2 (8 bits): inputs 
Rot2(TJ : a 2-bit left rotation on the 8-bit data T 

Figure 18.4 Function f. 

N-Hash [169,172]. Their particular attack (there certainly could be others) works for 
any N that is divisible by 3, and is more efficient than the birthday attack for any N 
less than 15. 

The same attack can find pairs of messages that hash to the same value for 12-
round N-Hash in 256 operations, compared to 264 operations for a brute-force attack. 
N-hash with 15 rounds is safe from differential cryptanalysis: The attack requires 272 

operations. 
The algorithm's designers recommend using N-Hash with at least 8 rounds [1106]. 

Given the proven insecurity of N-Hash and FEAL (and its speed with 8 rounds), I 
recommend using another algorithm entirely. 

18.4 MD4 

MD4 is a one-way hash function designed by Ron Rivest [1318,1319,1321]. MD 
stands for Message Digest; the algorithm produces a 128-bit hash, or message digest, 
of the input message. 

In [1319], Rivest outlined his design goals for the algorithm: 

Security. It is computationally infeasible to find two messages that 
hashed to the same value. No attack is more efficient than brute force. 
Direct Security. MD4's security is not based on any assumption, like the 
difficulty of factoring. 
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Speed. MD4 is suitable for high-speed software implementations. It is 
based on a simple set of bit manipulations on 32-bit operands. 
Simplicity and Compactness. MD4 is as simple as possible, without large 
data structures or a complicated program. 
Favor Little-Endian Architectures. MD4 is optimized for microprocessor 
architectures (specifically Intel microprocessors); larger and faster com­
puters make any necessary translations. 

After the algorithm was first introduced, Bert den Boer and Antoon Bosselaers 
successfully cryptanalyzed the last two of the algorithm's three rounds [202]. In an 
unrelated cryptanalytic result, Ralph Merkle successfully attacked the first two 
rounds [202]. Eli Biham discussed a differential cryptanalysis attack against the first 
two rounds of MD4 [159]. Even though these attacks could not be extended to the 
full algorithm, Rivest strengthened the algorithm. The result is MD5. 

18.5 MD5 

MD5 is an improved version of MD4 [1386,1322]. Although more complex than 
MD4, it is similar in design and also produces a 128-bit hash. 

Description of MD5 
After some initial processing, MD5 processes the input text in 512-bit blocks, 

divided into 16 32-bit sub-blocks. The output of the algorithm is a set of four 32-bit 
blocks, which concatenate to form a single 128-bit hash value. 

First, the message is padded so that its length is just 64 bits short of being a mul­
tiple of 512. This padding is a single 1-bit added to the end of the message, followed 
by as many zeros as are required. Then, a 64-bit representation of the message's 
length (before padding bits were added) is appended to the result. These two steps 
serve to make the message length an exact multiple of 512 bits in length (required 
for the rest of the algorithm), while ensuring that different messages will not look 
the same after padding. 

Four 32-bit variables are initialized: 

A= 0x01234567 

B = 0x89abcdef 

C = 0xfedcba98 

D = 0x76543210 

These are called chaining variables. 
Now, the main loop of the algorithm begins. This loop continues for as many 512-

bit blocks as are in the message. 
The four variables are copied into different variables: a gets A, b gets B, c gets C, 

and d gets D. 
The main loop has four rounds (MD4 had only three rounds), all very similar. Each 

round uses a different operation 16 times. Each operation performs a nonlinear func-
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Figure 18.5 MDS main loop. 

tion on three of a, b, c, and d. Then it adds that result to the fourth variable, a sub­
block of the text and a constant. Then it rotates that result to the right a variable 
number of bits and adds the result to one of a, b, c, or d. Finally the result replaces 
one of a, b, c, or d. See Figures 18.5 and 18.6. 

There are four nonlinear functions, one used in each operation (a different one for 
each round). 

F(X, Y,Z) = (X A Y) v ((-, X) AZ) 

G(X, Y,Z) = (X AZ) v (YA(-, Z)) 

H(X, Y,Z) = X EBY EB Z 

I(X, Y,Z) = Y EB (Xv(-, Z)) 

(EB is XOR, A is AND, vis OR, and-, is NOT.) 
These functions are designed so that if the corresponding bits of X, Y, and Z are 

independent and unbiased, then each bit of the result will also be independent and 
unbiased. The function Fis the bit-wise conditional: If X then Y else Z. The function 
His the bit-wise parity operator. 

If Mi represents the jth sub-block of the message (from Oto 15), and <«s repre-
sents a left circular shift of s bits, the four operations are: 

FF(a,b,c,d,Mi,s,ti) denotes a= b +((a+ F(b,c,d) +Mt+ ti)«< s) 

GG(a,b,c,d,M"s,t 1) denotes a= b +((a+ G(b,c,d) +Mt+ ti)<« s) 

HH(a,b,c,d,Mps,ti) denotes a= b +((a+ H(b,c,d) +Mi+ t,) «< s) 

Il(a,b,c,d,Mt,s,t,) denotes a= b +((a+ I(b,c,d) +Mi+ ti)«< s) 
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Figure 18.6 One MD5 operation. 

The four rounds (64 steps) look like: 

Round 1: 
FF (a, b, c, d, M0, 7, 0xd76aa478) 

FF (d, a, b, c, M 1, 12, 0xe8c7b756) 

FF (c, d, a, b, M2, 17, 0x242070db) 

FF (b, c, d, a, M3, 22, 0xclbdceee) 

FF (a, b, c, d, M4, 7, 0xf57c0faf) 

FF (d, a, b, c, M5, 12, 0x4787c62a) 

FF (c, d, a, b, Mr,, 17, 0xa8304613) 

FF (b, c, d, a, M7, 22, 0xfd469501) 

FF (a, b, c, d, M8, 7, 0x698098d8) 

FF (d, a, b, c, M9, 12, 0x8b44f7af) 

FF (c, d, a, b, M 10, 17, 0xffffSbbl) 

FF (b, c, d, a, M 11, 22, 0x895cd7be) 

FF (a, b, c, d, M 12, 7, 0x6b901122) 

FF (d, a, b, c, M 13, 12, 0xfd987193) 

FF (c, d, a, b, M 14, 17, 0xa679438e) 

FF (b, c, d, a, M 15, 22, 0x49b40821) 
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Round 2: 

GG (a, b, c, d, M1, 5, 0xf6le2562) 

GG (d, a, b, c, M6, 9, 0xc040b340) 

GG (c, d, a, b, M 11, 14, 0x265e5a51) 

GG (b, c, d, a, M0, 20, 0xe9b6c7aa) 

GG (a, b, c, d, Ms, 5, 0xd62fl05d) 

GG (d, a, b, c, M 10, 9, 0x02441453) 

GG (c, d, a, b, M 15, 14, 0xd8ale681) 

GG (b, c, d, a, M4, 20, 0xe7d3fbc8) 

GG (a, b, c, d, M9, 5, 0x2lelcde6) 

GG (d, a, b, c, M 14, 9, 0xc33707d6) 

GG (c, d, a, b, M3, 14, 0xf4d50d87) 

GG (b, c, d, a, M8, 20, 0x455al4ed) 

GG (a, b, c, d, M 13, 5, 0xa9e3e905) 

GG (d, a, b, c, M2, 9, 0xfcefa3f8) 

GG (c, d, a, b, M7, 14, 0x676f02d9) 

GG (b, c, d, a, M 12, 20, 0x8d2a4c8a) 

Round 3: 

HH (a, b, c, d, Ms, 4, 0xfffa3942) 

HH (d, a, b, c, M8, 11, 0x877lf681) 

HH (c, d, a, b, Mll, 16, 0x6d9d6122) 

HH (b, c, d, a, M 14, 23, 0xfde5380c) 

HH (a, b, c, d, M 1, 4, 0xa4beea44) 

HH (d, a, b, c, M4, 11, 0x4bdecfa9) 

HH (c, d, a, b, M7, 16, 0xf6bb4b60) 

HH (b, c, d, a, M 10, 23, 0xbebfbc70) 

HH (a, b, c, d, M 13, 4, 0x289b7ec6) 

HH (d, a, b, c, M0, 11, 0xeaal27fa) 

HH (c, d, a, b, M3, 16, 0xd4ef3085) 

HH (b, c, d, a, M6, 23, 0x0488ld05) 

HH (a, b, c, d, M9, 4, 0xd9d4d039) 

HH (d, a, b, c, M 12, 11, 0xe6db99e5) 

HH (c, d, a, b, M1s, 16, 0xlfa27cf8) 

HH (b, c, d, a, M2, 23, 0xc4ac5665) 
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Round 4: 

II (a, b, c, d, M 0, 6, 0xf4292244) 

II (d, a, b, c, M 7, 10, 0x432aff97) 

II (c, d, a, b, M 14, 15, 0xab9423a7) 

II (b, c, d, a, M5, 21, 0xfc93a039) 

II (a, b, c, d, M 12, 6, 0x655b59c3) 

II (d, a, b, c, M3, 10, 0x8f0ccc92) 

II (c, d, a, b, M 10, 15, 0xffeff47d) 

II (b, c, d, a, M 1, 21, 0x85845ddl) 

II (a, b, c, d, M8, 6, 0x6fa87e4f) 

II (d, a, b, c, M15, 10, 0xfe2ce6e0) 

II (c, d, a, b, M 6, 15, 0xa3014314) 

II (b, c, d, a, M 13, 21, 0x4e08llal) 

II (a, b, c, d, M4, 6, 0xf7537e82) 

II (d, a, b, c, M 11, 10, 0xbd3af235) 

II (c, d, a, b, M2, 15, 0x2ad7d2bb) 

II (b, c, d, a, M 9, 21, 0xeb86d391) 

Those constants, t;, were chosen as follows: 

In step i, t, is the integer part of 2·'2 •abs(sin(i)), where i is in radians. 

After all of this, a, b, c, and dare added to A, B, C, D, respectively, and the algo­
rithm continues with the next block of data. The final output is the concatenation 
of A, B, C, and D. 

Security of MD5 

Ron Rivest outlined the improvements of MD5 over MD4 [1322]: 

1. A fourth round has been added. 

2. Each step now has a unique additive constant. 

3. The function Gin round 2 was changed from ((X A Y) v (X AZ) v (YA Z)) to 
((X AZ) v (YA-, Z)) to make G less symmetric. 

4. Each step now adds in the result of the previous step. This promotes a 
faster avalanche effect. 

5. The order in which message sub-blocks are accessed in rounds 2 and 3 is 
changed, to make these patterns less alike. 

6. The left circular shift amounts in each round have been approximately 
optimized, to yield a faster avalanche effect. The four shifts used in each 
round are different from the ones used in other rounds. 
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Tom Berson attempted to use differential cryptanalysis against a single round of 
MD5 [144], but his attack is ineffective against all four rounds. A more successful 
attack by den Boer and Bosselaers produces collisions using the compression func­
tion in MD5 [203, 1331, 1336]. This does not lend itself to attacks against MD5 in 
practical applications, and it does not affect the use of MD5 in Luby-Rackoff-like 
encryption algorithms (see Section 14.11 ). It does mean that one of the basic design 
principles of MD5-to design a collision-resistant compression function-has been 
violated. Although it is true that "there seems to be a weakness in the compression 
function, but it has no practical impact on the security of the hash function" [1336], 
I am wary of using MD5. 

18.6 MD2 

MD2 is another 128-bit one-way hash function designed by Ron Rivest [801, 1335]. It, 
along with MDS, is used in the PEM protocols (see Section 24.10). The security of 
MD2 is dependent on a random permutation of bytes. This permutation is fixed, and 
depends on the digits of n. S0, S1, S2, •.. , S255 is the permutation. To hash a message M: 

( 1) Pad the message with i bytes of value i so that the resulting message is a 
multiple of 16 bytes long. 

(2) Append a 16-byte checksum to the message. 

(3) Initialize a 48-byte block: X 0, X1, X2, .•• , X47 . Set the first 16 bytes of X to 
be 0, the second 16 bytes of X to be the first 16 bytes of the message, and 
the third 16 bytes of X to be the XOR of the first 16 bytes of X and the sec­
ond 16 bytes of X. 

(4) This is the compression function: 

t = 0 

For j = 0 to 17 

Fork= 0 to 47 

t =Xk XOR St 

Xk=t 
t = ( t + j) mod 256 

(5) Set the second 16 bytes of X to be the second 16 bytes of the message, and 
the third 16 bytes of X to be the XOR of the first 16 bytes of X and the sec­
ond 16 bytes of X. Do step (4). Repeat steps (5) and (4) with every 16 bytes 
of the message, in turn. 

(6) The output is the first 16 bytes of X. 

Although no weaknesses in MD2 have been found (see [1262]), it is slower than 
most other suggested hash functions. 
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18. 7 SECURE HASH ALGORITHM (SHA) 

NIST, along with the NSA, designed the Secure Hash Algorithm (SHA) for use with 
the Digital Signature Standard (see Section 20.2) [1154]. (The standard is the Secure 
Hash Standard (SHS); SHA is the algorithm used in the standard.) 
According to the Federal Register [539]: 

And 

A Federal Information Processing Standard (FIPS) for Secure Hash Standard (SHS) 
is being proposed. This proposed standard specified a Secure Hash Algorithm 
(SHA) for use with the proposed Digital Signature Standard .... Additionally, for 
applications not requiring a digital signature, the SHA is to be used whenever a 
secure hash algorithm is required for Federal applications. 

This Standard specifies a Secure Hash Algorithm (SHA), which is necessary to 
ensure the security of the Digital Signature Algorithm (DSA). When a message of 
any length< 264 bits is input, the SHA produces a 160-bit output called a message 
digest. The message digest is then input to the DSA, which computes the signa­
ture for the message. Signing the message digest rather than the message often 
improves the efficiency of the process, because the message digest is usually 
much smaller than the message. The same message digest should be obtained by 
the verifier of the signature when the received version of the message is used as 
input to SHA. The SHA is called secure because it is designed to be computa­
tionally infeasible to recover a message corresponding to a given message digest, 
or to find two different messages which produce the same message digest. Any 
change to a message in transit will, with a very high probability, result in a dif­
ferent message digest, and the signature will fail to verify. The SHA is based on 
principles similar to those used by Professor Ronald L. Rivest of MIT when 
designing the MD4 message digest algorithm [1319], and is closely modelled after 
that algorithm. 

SHA produces a 160-bit hash, longer than MD5. 

Description of SHA 
First, the message is padded to make it a multiple of 512 bits long. Padding is 

exactly the same as in MD5: First append a one, then as many zeros as necessary to 
make it 64 bits short of a multiple of 512, and finally a 64-bit representation of the 
length of the message before padding. 

Five 32-bit variables (MD5 has four variables, but this algorithm needs to produce 
a 160-bit hash) are initialized as follows: 

A= 0x67452301 

B = 0xefcdab89 

C = 0x98badcfe 

D = 0xl0325476 

E = 0xc3d2elf0 
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The main loop of the algorithm then begins. It processes the message 512 bits at 
a time and continues for as many 512-bit blocks as are in the message. 

First the five variables are copied into different variables: a gets A, b gets B, c gets 
C, d gets D, and e gets E. 

The main loop has four rounds of 20 operations each (MD5 has four rounds of 16 
operations each). Each operation performs a nonlinear function on three of a, b, c, d, 
and e, and then does shifting and adding similar to MD5. 

SHA's set of nonlinear functions is: 

ft(X, Y,Z) = (X A Y) v ((---, X) AZ), fort= 0 to 19. 

ft(X, Y,Z) = X E8 Y E8 Z, fort= 20 to 39. 

ft(X, Y,Z) = (X A Y) v (X AZ) v (YA Z), fort= 40 to 59. 

ft(X, Y,Z) = X E8 Y E8 Z, fort= 60 to 79. 

Four constants are used in the algorithm: 

Kt= Ox5a827999, fort= 0 to 19. 

Kt= Ox6ed9ebal, fort= 20 to 39. 

Kt= Ox8flbbcdc, fort= 40 to 59. 

Kt= Oxca62cld6, fort= 60 to 79. 

(If you wonder where those numbers came from: Ox5a827999 = 2112/4, Ox6ed9ebal 
= 3112/4, Ox8flbbcdc = 5112/4, and Oxca62cld6 = 10112/4; all times 232 .) 

The message block is transformed from 16 32-bit words (Mo to M 15) to 80 32-bit 
words (W0 to W 79) using the following algorithm: 

Wt = Mt, for t = O to 15 

Wt= (Wt -3 E8 Wt - s E8 Wt_ 14 E8 Wt_ 16) <<< L fort= 16 to 79. 

(As an interesting aside, the original SHA specification did not have the left cir­
cular shift. The change "corrects a technical flaw that made the standard less secure 
than had been thought" [543]. The NSA has refused to elaborate on the exact nature 
of the flaw.) 

If tis the operation number (from Oto 79), Wt represents the tth sub-block of the 
expanded message, and <<< s represents a left circular shift of s bits, then the main 
loop looks like: 

FOR t = 0 to 79 

TEMP= (a«< 5) + ft(b,c,d) + e +Wt+ Kt 

e=d 

d=c 

c = b «< 30 

b=a 

a=TEMP 
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Figure 18. 7 One SHA operation. 

Figure 18. 7 shows one operation. Shifting the variables accomplishes the same 
thing as MDS does by using different variables in different locations. 

After all of this, a, b, c, d, and e are added to A, B, C, D, and E respectively, and 
the algorithm continues with the next block of data. The final output is the con­
catenation of A, B, C, D, and E. 

Security of SHA 
SHA is very similar to MD4, but has a 160-bit hash value. The main changes are 

the addition of an expand transformation and the addition of the previous step's out­
put into the next step for a faster avalanche effect. Ron Rivest made public the 
design decisions behind MDS, but SHA's designers did not. Here are Rivest's MDS 
improvements to MD4 and how they compare with SHA's: 

1. "A fourth round has been added." SHA does this, too. However, in SHA the 
fourth round uses the same f function as the second round. 

2. "Each step now has a unique additive constant." SHA keeps the MD4 
scheme where it reuses the constants for each group of 20 rounds. 

3. "The function Gin round 2 was changed from ((X A Y) v (X AZ) v (Y /\ Z)) 
to ((X /\ Z) v (Y /\-, (Z))) to make G less symmetric." SHA uses the MD4 
version: ((X /\ Y) v (X /\ Z) v (Y /\ Z)). 
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4. "Each step now adds in the result of the previous step. This promotes a 
faster avalanche effect." This change has been made in SHA as well. The 
difference in SHA is that a fifth variable is added, and not b, c, or d, which 
is already used in ft- This subtle change makes the den Boer-Bosselaers 
attack against MD5 impossible against SHA. 

5. "The order in which message sub-blocks are accessed in rounds 2 and 3 is 
changed, to make these patterns less alike." SHA is completely different, 
since it uses a cyclic error-correcting code. 

6. "The left circular shift amounts in each round have been approximately 
optimized, to yield a faster avalanche effect. The four shifts used in each 
round are different from the ones used in other rounds." SHA uses a con­
stant shift amount in each round. This shift amount is relatively prime to 
the word size, as in MD4. 

This leads to the following comparison: SHA is MD4 with the addition of an 
expand transformation, an extra round, and better avalanche effect; MD5 is MD4 
with improved bit hashing, an extra round, and better avalanche effect. 

There are no known cryptographic attacks against SHA. Because it produces a 
160-bit hash, it is more resistant to brute-force attacks (including birthday attacks) 
than 128-bit hash functions covered in this chapter. 

18.8 RIPE-MD 

RIPE-MD was developed for the European Community's RIPE project [1305] (see 
Section 25.7). The algorithm is a variation of MD4, designed to resist known crypt­
analytic attacks, and produce a 128-bit hash value. The rotations and the order of 
the message words are modified. Additionally, two instances of the algorithm, dif­
fering only in the constants, run in parallel. After each block, the output of both 
instances are added to the chaining variables. This seems to make the algorithm 
highly resistant to cryptanalysis. 

18.9 HAVAL 

HAVAL is a variable-length one-way hash function [1646]. It is a modification of 
MD5. HAVAL processes messages in blocks of 1024 bits, twice those of MD5. It has 
eight 32-bit chaining variables, twice those of MD5. It has a variable number of 
rounds, from three to five (each of which has 16 steps), and it can produce a hash 
length of 128, 160, 192, 224, or 256 bits. 

HAVAL replaces MD5's simple nonlinear functions with highly nonlinear 7-
variable functions, each of which satisfies the strict avalanche criterion. Each round 
uses a single function, but in every step a different permutation is applied to the 
inputs. It has a new message order and every step (except those in the first round) 
uses a different additive constant. The algorithm also has two rotations. 
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The core of the algorithm is 

TEMP= (f(j,A,B, C,D,E,F, G) «< 7) + (H «< 11) + M[il[r(j)] + K(j) 

H = G; G = F; F = E; E = D; D = C; C = B; B = A; A= TEMP 

The variable number of rounds and variable-length output mean there are 15 ver­
sions of this algorithm. Den Boer's and Bosselaers's attack against MD5 [203] does 
not apply to HA VAL because of the rotation of H. 

18.10 OTHER ONE-WAY HASH FUNCTIONS 

MD3 is yet another hash function designed by Ron Rivest. It had several flaws and 
never really made it out of the laboratory, although a description was recently pub­
lished in [1335]. 

A group of researchers at the University of Waterloo have proposed a one-way 
hash function based on iterated exponentiation in GF(2"9') [22]. In this scheme, a 
message is divided into 593-bit blocks; beginning with the first block, the blocks are 
successively exponentiated. Each exponent is the result of the computation with 
the previous block; the first exponent is given by an IV. 

Ivan Damgard designed a one-way hash function based on the knapsack problem 
(see Section 19.2) [414]; it can be broken in about 2' 2 operations [290,1232, 787]. 

Steve Wolfram's cellular automata [1608] have been proposed as a basis for one­
way hash functions. An early implementation [414] is insecure [1052,404]. Another 
one-way hash function, Cellhash [384,404], and an improved version, Subhash 
[384,402,405], are based on cellular automata; both are designed for hardware. Boog­
nish mixes the design principles of Cellhash with those of MD4 [402,407]. 
StepRightUp can be implemented as a hash function as well [402]. 

Claus Schnorr proposed a one-way hash function based on the discrete Fourier 
transform, called FFT-Hash, in the summer of 1991 [1399]; it was broken a few 
months later by two independent groups [403,84]. Schnorr proposed a revised ver­
sion, called FFT-Hash II (the previous version was renamed FFT-Hash I) [1400], 
which was broken a few weeks later [1567]. Schnorr has proposed further modifica­
tions [1402,1403] but, as it stands, the algorithm is much slower than the others in 
this chapter. Another hash function, called SL2 [1526], is insecure [315]. 

Additional theoretical work on constructing one-way hash functions from one­
way functions and one-way permutations can be found in [412,1138,1342]. 

18.11 ONE-WAY HASH FUNCTIONS USING SYMMETRIC 

BLOCK ALGORITHMS 

It is possible to use a symmetric block cipher algorithm as a one-way hash function. 
The idea is that if the block algorithm is secure, then the one-way hash function 
will also be secure. 
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The most obvious method is to encrypt the message with the algorithm in CBC 
or CFB mode, a fixed key, and IV; the last ciphertext block is the hash value. These 
methods are described in various standards using DES: both modes in [1143], CFB in 
[1145], CBC in [55,56,54]. This just isn't good enough for one-way hash functions, 
although it will work for a MAC (see Section 18.14) [29]. 

A cleverer approach uses the message block as the key, the previous hash value as 
the input, and the current hash value as the output. 

The actual hash functions proposed are even more complex. The block size is usu­
ally the key length, and the size of the hash value is the block size. Since most block 
algorithms are 64 bits, several schemes are designed around a hash that is twice the 
block size. 

Assuming the hash function is correct, the security of the scheme is based on the 
security of the underlying block function. There are exceptions, though. Differential 
cryptanalysis is easier against block functions in hash functions than against block 
functions used for encryption: The key is known, so several tricks can be applied; 
only one right pair is needed for success; and you can generate as much chosen 
plaintext as you want. Some work on these lines is [1263,858,1313]. 

What follows is a summary of the various hash functions that have appeared in 
the literature [925, 1465, 1262 ]. Statements about attacks against these schemes 
assume that the underlying block cipher is secure; that is, the best attack against 
them is brute force. 

One useful measure for hash functions based on block ciphers is the hash rate, or 
the number of n-bit messages blocks, where n is the block size of the algorithm, pro­
cessed per encryption. The higher the hash rate, the faster the algorithm. (This mea­
sure was given the opposite definition in [1262], but the definition given here is 
more intuitive and is more widely used. This can be confusing.) 

Schemes Where the Hash Length Equals the Block Size 

The general scheme is as follows (see Figure 18.8): 

H 0 = IH, where IH is a random initial value 

H; = EA(B) EB C 

where A, B, and C can be either M;, H; _ 1, (M; EB H; _ i), or a constant (assumed to be OJ. 
H0 is some random initial value: IH. The message is divided up into block-size chunks, 
M;, and processed individually. And there is some kind of MD-strengthening, perhaps 
the same padding procedure used in MD5 and SHA. 

:_~LJ:i~y I .l. 
~rypt . 

Figure 18.8 General hash function where the 
hash length equals the block size. 
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Table 18.1 
Secure Hash Functions Where the 
Block Length Equals the Hash Size 

H; =EH;_ l(MJ EB Mj 
H; = EHi- l(M; EB H; - i) EB M; EB H, - I 

Hi= EH;_ l(MJ EB H; - I EB M; 
H; = EH;_ 1(Mi EB Hi_ i) EB Mi 
Hi= EM (H; - i) EB H; - I 

1 

Hi= EMAM; EB H; - i) EB M; EB H; - I 

H; = EM;(Hi-1) EB Mi EB Hi- I 
H; = EM(M; EB H; - i) EB H; - I 

1 

Hi= EM; EB H; - l(M;) EB M; 
H; = EM, EB H· l(H; - 1) EB H; - I 

1 1 -

H; = EMi EB Hj - l(Mi) EB H; - I 

H; = EM; EB H; - l(H; - i) EB M; 

The three different variables can take on one of four possible values, so there are 
64 total schemes of this type. Bart Preneel studied them all [1262]. 

Fifteen are trivially weak because the result does not depend on one of the inputs. 
Thirty-seven are insecure for more subtle reasons. Table 18.1 lists the 12 secure 
schemes remaining: The first 4 are secure against all attacks (see Figure 18.9) and 
the last 8 are secure against all but a fixed-point attack, which is not really worth 
worrying about. 

The first scheme was described in [1028]. The third scheme was described in 
[1555,1105,1106] and was proposed as an ISO standard [766]. The fifth scheme was 
proposed by Carl Meyer, but is commonly called Davies-Meyer in the literature 
[1606, 1607,434, 1028]. The tenth scheme was proposed as a hash-function mode for 
LOKI [273]. 

The first, second, third, fourth, ninth, and eleventh schemes have a hash rate of l; 
the key length equals the block length. The others have a rate of k/n, where k is the 
key length. This means that if the key length is shorter than the block length, then 
the message block can only be the length of the key. It is not recommended that the 
message block be longer than the key length, even if the encryption algorithm's key 
length is longer than the block length. 

If the block algorithm has a DES-like complementation property and DES-like 
weak keys, there is an additional attack that is possible against all 12 schemes. The 
attack isn't very dangerous and not really worth worrying about. However, you can 
solve it by fixing bits 2 and 3 of the key to "01" or "10" [1081, 1107]. Of course, this 
reduces the length of k from 56 bits to 54 bits (in DES, for example) and decreases 
the hash rate. 

The following schemes, proposed in the literature, have been shown to be insecure. 
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Figure 18.9 The four secure hash functions where the block length equals the 
hash size. 

This scheme [1282] was broken in [369]: 

H; = EM,(H; - 1) 

Davies and Price proposed a variant which cycles the entire message through the 
algorithm twice [432,433]. Coppersmith's attack works on this variant with not 
much larger computational requirements [369]. 

Another scheme [432,458] was shown insecure in [1606]: 

H,=EMEllH l(H;-1) 
1 1 -

This scheme was shown insecure in [1028] (c is a constant): 

H; = Ec(M; EB H; _ i) EB M; EB H; _ 1 

Modified Davies-Meyer 

Lai and Massey modified the Davies-Meyer technique to work with the IDEA 
cipher [930,925]. IDEA has a 64-bit block size and 128-bit key size. Their scheme is 

H0 = IH, where IH is a random initial value 

H; =EH;_ 1,M;(H; - d 
This function hashes the message in blocks of 64 bits and produces a 64-bit hash 

value (See Figure 18.10). 
No known attack on this scheme is easier than brute force. 
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Hi-I 

Figure 18.10 Modified Davies-Meyer. 

Preneel-Bosselaers-Govaerts-Vandewalle 

This hash function, first proposed in [1266], produces a hash value twice the block 
length of the encryption algorithm: A 64-bit algorithm produces a 128-bit hash. 

With a 64-bit block algorithm, the scheme produces two 64-bit hash values, G; 
and H;, which are concatenated to produce the 128-bit hash. With most block algo­
rithms, the block size is 64 bits. Two adjacent message blocks, L; and R;, each the 
size of the block length, are hashed together. 

G0 = le, where his a random initial value 

H 0 = lH, where lH is another random initial value 

G; = EL; Ell H; - l(R; EB G; - i) EB R; EB G; - I EB H; - I 

H; = EL; Ell R;(H; - I EB G; - i) EB L; EB G; - 1 EB H; - 1 

Lai demonstrates attacks against this scheme that, in some instances, make the 
birthday attack trivially solvable [925,926]. Preneel [1262] and Coppersmith [372] 
also have successful attacks against this scheme. Do not use it. 

Quisquater-Girault 
This scheme, first proposed in [1279], generates a hash that is twice the block 

length and has a hash rate of 1. It has two hash values, G; and H;, and two blocks, L1 

and R1, are hashed together. 

G0 = le, where le is a random initial value 

H 0 = lH, where lH is another random initial value 

W; = Ei;(G1 _ 1 EB R1) EB R1 EB H; _ 1 

G; = ER;(W; EB L,) EB G; _ 1 EB H; _ 1 EB L; 

Hi = W; EB G; - I 

This scheme appeared in a 1989 draft ISO standard [764], but was dropped in a 
later version [765]. Security problems with this scheme were identified in [1107,925, 
1262,372]. (Actually, the version in the proceedings was strengthened after the ver­
sion presented at the conference was attacked.) In some instances the birthday 
attack is solvable with a complexity of 239, not 264, through brute force. Do not use 
this scheme. 
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LOKI Double-Block 

This algorithm is a modification of Quisquater-Girault, specifically designed to 
work with LOKI [273]. All parameters are as in Quisquater-Girault. 

G0 = Ic;, where Ic; is a random initial value 

H 0 = IH, where IH is another random initial value 

wi =EL;'® ci _ 1 ( G; _ 1 EB R;) EB Ri EB H; _ 1 

Gi =ER;'® Hi_ l(W; EB L;) EB Gi - 1 EB Hi - I EB L; 

Hi = Wi EB G; _ 1 

Again, in some instances the birthday attack is trivially solvable [925,926, 1262, 
372,736]. Do not use this scheme. 

Parallel Davies-Meyer 

This is yet another attempt at an algorithm with a hash rate of 1 that produces a 
hash twice the block length [736]. 

G0 = le;, where Ic is a random initial value 

H 0 = IH, where IH is another random initial value 

G; = EL '® R (Gi - I EB Li) EB Li EB Hi - I 
1 1 

H; = EdHi - 1 EB R;) EB Ri EB Hi - 1 

Unfortunately, this scheme isn't secure either [928,861]. As it turns out, a 
double-length hash function with a hash rate of 1 cannot be more secure than 
Davies-Meyer [861]. 

Tandem and Abreast Davies-Meyer 

Another way around the inherent limitations of a block cipher with a 64-bit key 
uses an algorithm, like IDEA (see Section 13.9), with a 64-bit block and a 128-bit key. 
These two schemes produce a 128-bit hash value and have a hash rate of½ [930,925]. 

Encrypt 

Key 

M 
l 

Key 

Encrypt 

Figure 18.11 Tandem Davies-Meyer. 
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In this first scheme, two modified Davies-Meyer functions work in tandem (see 
Figure 18.11 ). 

G0 = Ic, where Ic is some random initial value 

H 0 = IH, where IH is some other random initial value 

wi = Eci - l'MAHj - i) 

Gi = Gi - 1 EB EM;,w;(Gi - i) 

Hi = W; EB H; - I 

The following scheme uses two modified Davies-Meyer functions side-by-side 
(see Figure 18.12). 

G0 = Ic, where Ic is some random initial value 

H 0 = IH, where IH is some other random initial value 

Gi = Gi - I EB EMi,Hi _ 1(-,Gi - 1) 

Hi= Hi - I EB Ec;i _ l'MAHi - 1) 

In both schemes, the two 64-bit hash values G; and H; are concatenated to produce 
a single 128-bit hash. 

As far as anyone knows, these algorithms have ideal security for a 128-bit hash 
function: Finding a message that hashes to a given hash value requires 2128 attempts, 
and finding two random messages that hash to the same value requires 264 attempts­
assuming that there is no better way to attack the block algorithm than by using 
brute force. 

MDC-2 and MDC-4 

MDC-2 and MDC-4 were first developed at IBM [1081,1079]. MDC-2, sometimes 
called Meyer-Schilling, is under consideration as an ANSI and ISO standard [61,765]; 
a variant was proposed in [762]. MDC-4 is specified for the RIPE project [1305] (see 
Section 25. 7). The specifications use DES as the block function, although in theory 
any encryption algorithm could be used. 

Hi-I 
Encrypt 

Hi 

Mi 

Gi-1 

Key 

Gi Encrypt 

Figure 18.12 Abreast Davies-Meyer. 
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Figure 18.13 MDC-2. 

G; 

r----+-- H; 

MDC-2 has a hash rate of ½, and produces a hash value twice the length of the 
block size. It is shown in Figure 18.13. MDC-4 also produces a hash value twice the 
length of the block size, and has a hash rate of¼ (see Figure 18.14). 

These schemes have been analyzed in [925, 1262]. They are secure against current 
computing power, but they are not nearly as secure as the designers have estimated. 
If the block algorithm is DES, they have been looked at with respect to differential 
cryptanalysis [1262]. 

Both MDC-2 and MDC-4 are patented [223]. 

AR Hash Function 

The AR hash function was developed by Algorithmic Research, Ltd. and has been 
distributed by the ISO for information purposes only [767]. Its basic structure is a 
variant of the underlying block cipher (DES in the reference) in CBC mode. The last 
two ciphertext blocks and a constant are XORed to the current message block and 
encrypted by the algorithm. The hash is the last two ciphertext blocks computed. 
The message is processed twice, with two different keys, so the hash function has a 
hash rate of ½. The first key is 0x0000000000000000, the second key is 0x2a4152 
2f4446502a, and c is 0x0123456789abcdef. The result is compressed to a single 128-
bit hash value. See [750] for the details. 

H; = EK(M; EB H; _ 1 EB H; _ 2 EB c) EB M; 

This sounds interesting, but it is insecure. After considerable preprocessing, it is 
possible to find collisions for this hash function easily [416]. 
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f----+- • G; 

Figure 18.14 MDC-4. 

GOST Hash Function 
This hash function comes from Russia, and is specified in the standard GOST R 

34.11-94 [657]. It uses the GOST block algorithm (see Section 14.1 ), although in the­
ory it could use any block algorithm with a 64-bit block size and a 256-bit key. The 
function produces a 256-bit hash value. 

The compression function, H; = f(M;,H; _ i) (both operands are 256-bit quantities) is 
defined as follows: 

( 1) Generate four GOST encryption keys by some linear mixing of M;, H; _ 1, 

and some constants. 

(2) Use each key to encrypt a different 64 bits of H; _ 1 in ECB mode. Store the 
resulting 256 bits into a temporary variable, S. 

(3) H; is a complex, although linear, function of S, M;, and H; _ 1• 

The final hash of M is not the hash of the last block. There are actually three 
chaining variables: Hn is the hash of the last message block, Z is the sum mod 2256 of 
all the message blocks, and Lis the length of the message. Given those variables and 
the padded last block, M', the final hash value is: 

H = f(Z E8 M',f(L,f(M',Hn))) 

The documentation is a bit confusing (and in Russian), but I think all that is cor­
rect. In any case, this hash function is specified for use with the Russian Digital Sig­
nature Standard (see Section 20.3). 
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Other Schemes 
Ralph Merkle proposed a scheme using DES, but it's slow; it only processes seven 

message bits per iteration and each iteration involves two DES encryptions [ 1065, 
1069]. Another scheme [1642,1645] is insecure [1267]; it was once proposed as an 
ISO standard. 

18.12 USING PuBLIC-KEY ALGORITHMS 

It is possible to use a public-key encryption algorithm in a block chaining mode as 
a one-way hash function. If you then throw away the private key, breaking the hash 
would be as difficult as reading the message without the private key. 

Here's an example using RSA. If Mis the message to be hashed, n is the product of 
two primes p and q, and e is another large number relatively prime to (p - l)(q - 1), 
then the hash function, H(M), would be 

H(M) = Me mod n 

An even easier solution would be to use a single strong prime as the modulus 
p. Then: 

H(M) = Me mod p 

Breaking this problem is probably as difficult as finding the discrete logarithm of 
e. The problem with this algorithm is that it's far slower than any others discussed 
here. I don't recommend it for that reason. 

18.13 CHOOSING A ONE-WAY HASH FUNCTION 

The contenders seem to be SHA, MD5, and constructions based on block ciphers; 
the others really haven't been studied enough to be in the running. I vote for SHA. 
It has a longer hash value than MD5, is faster than the various block-cipher con­
structions, and was developed by the NSA. I trust the NSA's abilities at cryptanaly­
sis, even if they don't make their results public. 

Table 18.2 gives timing measurements for some hash functions. They are meant 
for comparison purposes only. 

18.14 MESSAGE AUTHENTICATION CODES 

A message authentication code, or MAC, is a key-dependent one-way hash function. 
MACs have the same properties as the one-way hash functions discussed previously, 
but they also include a key. Only someone with the identical key can verify the hash. 
They are very useful to provide authenticity without secrecy. 

MACs can be used to authenticate files between users. They can also be used by 
a single user to determine if his files have been altered, perhaps by a virus. A user 
could compute the MAC of his files and store that value in a table. If the user used 
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Table 18.2 
Speeds of Some Hash Functions on a 33 MHz 486SX 

Algorithm 

Abreast Davies-Meyer (with IDEA) 
Davies-Meyer (with DES) 
COST Hash 
HAVAL (3 passes) 
HAVAL (4 passes) 
HAVAL (5 passes) 
MD2 
MD4 
MD5 
N-HASH (12 rounds) 
N-HASH (15 rounds) 
RIPE-MD 
SHA 
SNEFRU (4 passes) 
SNEFRU (8 passes) 

Hash Length 

128 
64 

256 
variable 
variable 
variable 

128 
128 
128 
128 
128 
128 
160 
128 
128 

Encryption Speed 
(kilobytes/second) 

22 
9 

11 
168 
118 
95 
23 

236 
174 
29 
24 

182 
75 
48 
23 

instead a one-way hash function, then the virus could compute the new hash value 
after infection and replace the table entry. A virus could not do that with a MAC, 
because the virus does not know the key. 

An easy way to turn a one-way hash function into a MAC is to encrypt the hash 
value with a symmetric algorithm. Any MAC can be turned into a one-way hash 
function by making the key public. 

CBC-MAC 
The simplest way to make a key-dependent one-way hash function is to encrypt a 

message with a block algorithm in CBC or CFB modes. The hash is the last encrypted 
block, encrypted once more in CBC or CFB modes. The CBC method is specified in 
ANSI X9.9 [54], ANSI X9.19 [56], ISO 8731-1 [759], ISO 9797 [763], and an Australian 
standard [1496]. Differential cryptanalysis can break this scheme with reduced-round 
DES or FEAL as the underlying block algorithms [1197]. 

The potential security problem with this method is that the receiver must have 
the key, and that key allows him to generate messages with the same hash value as 
a given message by decrypting in the reverse direction. 

Message Authenticator Algorithm (MAA) 
This algorithm is an ISO standard [760]. It produces a 32-bit hash, and was 

designed for mainframe computers with a fast multiply instruction [428]. 
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V = V <<< 1 

e=vEBw 
x = ((((e + y) mod 232 ) v A/\ C) * (x EB M;)) mod 232 - 1 

y = ((((e + x) mod 232 ) v B /\ D) * (y EB Mi)) mod 232 - 2 

Iterate these for each message block, Mi, and the resultant hash is the XOR of x and 
y. The variables v and e are determined from the key. A, B, C, and D are constants. 

This algorithm is probably in wide use, but I can't believe it is all that secure. It 
was designed a long time ago, and isn't very complicated. 

Bidirectional MAC 
This MAC produces a hash value twice the length of the block algorithm [978]. 

First, compute the CBC-MAC of the message. Then, compute the CBC-MAC of the 
message with the blocks in reverse order. The bidirectional MAC value is simply 
the concatenation of the two. Unfortunately, this construction is insecure [1097]. 

Jueneman 's Methods 
This MAC is also called a quadratic congruential manipulation detection code 

(QCMDC) [792,789]. First, divide the message into m-bit blocks. Then: 

H 0 = IH, where IH is the secret key 

Hi= (Hi_ 1 + M;)2 mod p, where p is a prime less than 2m - 1 
and+ denotes integer addition 

Jueneman suggests n = 16 and p = 231 - 1. In [792] he also suggests that an addi­
tional key be used as H 1, with the actual message starting at H2 • 

Because of a variety of birthday-type attacks discovered in conjunction with Don 
Coppersmith, Jueneman suggested computing the QCMDC four times, using the 
result of one iteration as the IV for the next iteration, and then concatenating the 
results to obtain a 128-bit hash value [793]. This was further strengthened by doing 
the four iterations in parallel and cross-linking them [790,791]. This scheme was 
broken by Coppersmith [376]. 

Another variant [432,434] replaced the addition operation with an XOR and used 
message blocks significantly smaller than p. H 0 was also set, making it a keyless 
one-way hash function. After this scheme was attacked [612], it was strengthened as 
part of the European Open Shop Information-TeleTrust project [1221], quoted in 
CCITT X.509 [304], and adopted in ISO 10118 [764,765]. Unfortunately, Copper­
smith has broken this scheme as well [376]. There has been some research using 
exponents other than 2 [603], but none of it has been promising. 

RIPE-MAC 

RIPE-MAC was invented by Bart Preneel [1262] and adopted by the RIPE project 
[1305] (see Section 18.8). It is based on ISO 9797 [763], and uses DES as a block 
encryption function. RIPE-MAC has two flavors: one using normal DES, called 
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RIPE-MACl, and another using triple-DES for even greater security, called RIPE­
MAC3. RIPE-MACl uses one DES encryption per 64-bit message block; RIPE-MAC3 
uses three. 

The algorithm consists of three parts. First, the message is expanded to a length 
that is a multiple of 64 bits. Next, the expanded message is divided up into 64-bit 
blocks. A keyed compression function is used to hash these blocks, under the con­
trol of a secret key, into a single block of 64 bits. This is the step that uses either 
DES or triple-DES. Finally, the output of this compression is subjected to another 
DES-based encryption with a different key, derived from the key used in the com­
pression. See [1305] for details. 

/BC-Hash 
IBC-Hash is another MAC adopted by the RIPE project [1305] (see Section 18.8). It 

is interesting because it is provably secure; the chance of successful attack can be 
quantified. Unfortunately, every message must be hashed with a different key. The 
chosen level of security puts constraints on the maximum message size that can be 
hashed-something no other function in this chapter does. Given these considera­
tions, the RIPE report recommends that IBC-Hash be used only for long, infre­
quently sent messages. 

The heart of the function is 

h = ((Mi modp) + v) mod 2n 

The secret key is the pair p and v, where pis an n-bit prime and vis a random num­
ber less than 2n. The Mi values are derived by a carefully specified padding procedure. 
The probabilities of breaking both the one-wayness and the collision-resistance can 
be quantified, and users can choose their security level by changing the parameters. 

One-Way Hash Function MAC 
A one-way hash function can also be used as a MAC [1537]. Assume Alice and Bob 

share a key K, and Alice wants to send Bob a MAC for message M. Alice concate­
nates Kand M, and computes the one-way hash of the concatenation: H(K,M). This 
hash is the MAC. Since Bob knows K, he can reproduce Alice's result. Mallory, who 
does not know K, can't. 

This method works with MD-strengthening techniques, but has serious prob­
lems. Mallory can always add new blocks to the end of the message and compute a 
valid MAC. This attack can be thwarted if you put the message length at the begin­
ning, but Preneel is suspicious of this scheme [1265]. It is better to put the key at the 
end of the message, H(M,K), but this has some problems as well [1265]. If His one­
way but not collision-free, Mallory can forge messages. Still better is H(K,M,K), or 
H(K1,M,K2), where K1 and K2 are different [1537]. Preneel is still suspicious [1265]. 

The following constructions seem secure: 

H(K1, H(K2,M)) 

H(K, H(K,M)) 

H(K,p,M,K), where p pads K to a full message block. 
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CSPRNG 

Shift Register 1 

Message Stream 

Shift Register 2 

Figure 18.15 Stream cipher MAC. 

The best approach is to concatenate at least 64 bits of the key with each message 
block. This makes the one-way hash function less efficient, because the message 
blocks are smaller, but it is much more secure [1265]. 

Alternatively, use a one-way hash function and a symmetric algorithm. Hash the 
file, then encrypt the hash. This is more secure than first encrypting the file and 
then hashing the encrypted file, but it is vulnerable to the same attack as the H(M,K) 
approach [1265]. 

Stream Cipher MAC 
This MAC scheme uses stream ciphers (see Figure 18.15) [932]. A cryptographi­

cally secure pseudo-random-bit generator demultiplexes the message stream into 
two substreams. If the output bit of the bit generator k,, is 1, then the current mes­
sage bit m 1, is routed to the first substream; if the k; is 0, the m 1 is routed to the sec­
ond substream. The substreams are each fed into a different LFSR (see Section 16.2). 
The output of the MAC is simply the final states of the shift registers. 

Unfortunately, this method is not secure against small changes in the message 
[1523]. For example, if you alter the last bit of the message, then only 2 bits in the 
corresponding MAC value need to be altered to create a fake MAC; this can be done 
with reasonable probability. The author presents a more secure, and more compli­
cated, alternative. 
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CHAPTER 19 

Public-Key Algorithms 

19.1 BACKGROUND 

The concept of public-key cryptography was invented by Whitfield Diffie and Mar­
tin Hellman, and independently by Ralph Merkle. Their contribution to cryptogra­
phy was the notion that keys could come in pairs-an encryption key and a 
decryption key-and that it could be infeasible to generate one key from the other 
(see Section 2.5 ). Diffie and Hellman first presented this concept at the 1976 
National Computer Conference [495]; a few months later, their seminal paper "New 
Directions in Cryptography" was published [496]. (Due to a glacial publishing pro­
cess, Merkle's first contribution to the field didn't appear until 1978 [1064].) 

Since 1976, numerous public-key cryptography algorithms have been proposed. 
Many of these are insecure. Of those still considered secure, many are impractical. 
Either they have too large a key or the ciphertext is much larger than the plaintext. 

Only a few algorithms are both secure and practical. These algorithms are gener­
ally based on one of the hard problems discussed in Section 11.2. Of these secure and 
practical public-key algorithms, some are only suitable for key distribution. Others 
are suitable for encryption (and by extension for key distribution). Still others are 
only useful for digital signatures. Only three algorithms work well for both encryp­
tion and digital signatures: RSA, ElGamal, and Rabin. All of these algorithms are 
slow. They encrypt and decrypt data much more slowly than symmetric algorithms; 
usually that's too slow to support bulk data encryption. 

Hybrid cryptosystems (see Section 2.5) speed things up: A symmetric algorithm 
with a random session key is used to encrypt the message, and a public-key algo­
rithm is used to encrypt the random session key. 

Security of Public-Key Algorithms 

Since a cryptanalyst has access to the public key, he can always choose any mes­
sage to encrypt. This means that a cryptanalyst, given C = EK(P), can guess the value 
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of P and easily check his guess. This is a serious problem if the number of possible 
plaintext messages is small enough to allow exhaustive search, but can be solved by 
padding messages with a string of random bits. This makes identical plaintext mes­
sages encrypt to different ciphertext messages. (For more about this concept, see 
Section 23.15.) 

This is especially important if a public-key algorithm is used to encrypt a session 
key. Eve can generate a database of all possible session keys encrypted with Bob's 
public key. Sure, this requires a large amount of time and memory, but for a 40-bit 
exportable key or a 56-bit DES key, it's a whole lot less time and memory than 
breaking Bob's public key. Once Eve has generated the database, she will have his 
key and can read his mail at will. 

Public-key algorithms are designed to resist chosen-plaintext attacks; their secu­
rity is based both on the difficulty of deducing the secret key from the public key 
and the difficulty of deducing the plaintext from the ciphertext. However, most 
public-key algorithms are particularly susceptible to a chosen-ciphertext attack (see 
Section 1.1 ). 

In systems where the digital signature operation is the inverse of the encryption 
operation, this attack is impossible to prevent unless different keys are used for 
encryption and signatures. 

Consequently, it is important to look at the whole system and not just at the indi­
vidual parts. Good public-key protocols are designed so that the various parties can't 
decrypt arbitrary messages generated by other parties-the proof-of-identity proto­
cols are a good example (see Section 5.2). 

19 .2 KNAPSACK ALGORITHMS 

The first algorithm for generalized public-key encryption was the knapsack algo­
rithm developed by Ralph Merkle and Martin Hellman [713,107 4]. It could only be 
used for encryption, although Adi Shamir later adapted the system for digital signa­
tures [1413]. Knapsack algorithms get their security from the knapsack problem, an 
NP-complete problem. Although this algorithm was later found tc be insecure, it is 
worth examining because it demonstrates how an NP-complete problem can be 
used for public-key cryptography. 

The knapsack problem is a simple one. Given a pile of items, each with different 
weights, is it possible to put some of those items into a knapsack so that the knap­
sack weighs a given amount? More formally: Given a set of values M 1, M2, •.. , Mw 
and a sum S, compute the values of b1 such that 

s = b1Mt + b2M2 +,,, + bnMn 

Tl1e values of b1 can be either zero or one. A one indicates that the item is in the 
knapsack; a zero indicates that it isn't. 

For example, the items might have weights of 1, 5, 6, 11, 14, and 20. You could 
pack a knapsack that weighs 22; use weights 5, 6, and 11. You could not pack a knap­
sack that weighs 24. In general, the time required to solve this problem seems to 
grow exponentially with the number of items in the pile. 
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The idea behind the Merkle-Hellman knapsack algorithm is to encode a message 
as a solution to a series of knapsack problems. A block of plaintext equal in length 
to the number of items in the pile would select the items in the knapsack (plain text 
bits corresponding to the b values), and the ciphertext would be the resulting sum. 
Figure 19.1 shows a plaintext encrypted with a sample knapsack problem. 

The trick is that there are actually two different knapsack problems, one solvable 
in linear time and the other believed not to be. The easy knapsack can be modified 
to create the hard knapsack. The public key is the hard knapsack, which can easily 
be used to encrypt but cannot be used to decrypt messages. The private key is the 
easy knapsack, which gives an easy way to decrypt messages. People who don't 
know the private key are forced to try to solve the hard knapsack problem. 

Superincreasing Knapsacks 

What is the easy knapsack problem? If the list of weights is a superincreasing 
sequence, then the resulting knapsack problem is easy to solve. A superincreasing 
sequence is a sequence in which every term is greater than the sum of all the previ­
ous terms. For example, jl,3,6,13,27,52! is a superincreasing sequence, but jl,3,4,9, 
15,25) is not. 

The solution to a superincreasing knapsack is easy to find. Take the total weight 
and compare it with the largest number in the sequence. If the total weight is less 
than the number, then it is not in the knapsack. If the total weight is greater than or 
equal to the number, then it is in the knapsack. Reduce the weight of the knapsack 
by the value and move to the next largest number in the sequence. Repeat until fin­
ished. If the total weight has been brought to zero, then there is a solution. If the 
total weight has not, there isn't. 

For example, consider a total knapsack weight of 70 and a sequence of weights of 
!2,3,6, 13,27,52). The largest weight, 52, is less than 70, so 52 is in the knapsack. Sub­
tracting 52 from 70 leaves 18. The next weight, 27, is greater than 18, so 27 is not in 
the knapsack. The next weight, 13, is less than 18, so 13 is in the knapsack. Sub­
tracting 13 from 18 leaves 5. The next weight, 6, is greater than 5, so 6 is not in the 
knapsack. Continuing this process will show that both 2 and 3 are in the knapsack 
and the total weight is brought to 0, which indicates that a solution has been found. 
Were this a Merkle-Hellman knapsack encryption block, the plaintext that resulted 
from a ciphertext value of 70 would be 110101. 

Non-superincreasing, or normal, knapsacks are hard problems; they have no 
known quick algorithm. The only known way to determine which items are in the 

Plaintext: 111 0 0 1 0 10 1 1 0 000 0 0 0 011 0 0 0 

Knapsack: 1 56111420 156111420 156111420 1 56111420 

Ciphertext: 1+5+6+20= 5+11+14= 0= 5+6= 

32 30 0 11 

Figure 19.1 Encryption with knapsacks. 
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knapsack is to methodically test possible solutions until you stumble on the correct 
one. The fastest algorithms, taking into account the various heuristics, grow expo­
nentially with the number of possible weights in the knapsack. Add one item to the 
sequence of weights, and it takes twice as long to find the solution. This is much 
more difficult than a superincreasing knapsack where, if you add one more weight 
to the sequence, it simply takes another operation to find the solution. 

The Merkle-Hellman algorithm is based on this property. The private key is a 
sequence of weights for a superincreasing knapsack problem. The public key is a 
sequence of weights for a normal knapsack problem with the same solution. Merkle 
and Hellman developed a technique for converting a superincreasing knapsack prob­
lem into a normal knapsack problem. They did this using modular arithmetic. 

Creating the Public Key from the Private Key 
Without going into the number theory, this is how the algorithm works: To get a 

normal knapsack sequence, take a superincreasing knapsack sequence, for example 
[2,3,6, 13,27,52), and multiply all of the values by a number n, mod m. The modulus 
should be a number greater than the sum of all the numbers in the sequence: for 
example, 105. The multiplier should have no factors in common with the modulus: 
for example, 31. The normal knapsack sequence would then be 

2 * 31 mod 105 = 62 

3 * 31 mod 105 = 93 

6 * 31 mod 105 = 81 

13 * 31 mod 105 = 88 

27 * 31 mod 105 = 102 

52 * 31 mod 105 = 3 7 

The knapsack would then be (62,93,81,88,102,37l. 
The superincreasing knapsack sequence is the private key. The normal knapsack 

sequence is the public key. 

Encryption 
To encrypt a binary message, first break it up into blocks equal to the number of 

items in the knapsack sequence. Then, allowing a one to indicate the item is present 
and a zero to indicate that the item is absent, compute the total weights of the lrnap­
sacks-one for every message block. 

For example, if the message were 0l 1000110101101110 in binary, encryption 
using the previous knapsack would proceed like this: 

message = 011000 110101 101110 

011000 corresponds to 93 + 81 = 17 4 

110101 corresponds to 62 + 93 + 88 + 37 = 280 

101110 corresponds to 62 + 81 + 88 + 102 = 333 

The ciphertext would be 

174,280,333 
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Decryption 

A legitimate recipient of this message knows the private key: the original super­
increasing knapsack, as well as the values of n and m used to transform it into a nor­
mal knapsack. To decrypt the message, the recipient must first determine n- 1 such 
that n(n- 1) = 1 (mod m). Multiply each of the ciphertext values by n- 1 mod m, and 
then partition with the private knapsack to get the plaintext values. 

In our example, the superincreasing knapsack is (2,3,6, 13,27,52), m is equal to 
105, and n is equal to 31. The ciphertext message is 174,280,333. In this case n- 1 is 
equal to 61, so the ciphertext values must be multiplied by 61 mod 105. 

174 * 61 mod 105 = 9 = 3 + 6, which corresponds to 011000 

280 * 61 mod 105 = 70 = 2 + 3 + 13 + 52, which corresponds to 110101 

333 * 61 mod 105 = 48 = 2 + 6 + 13 + 27, which corresponds to 101110 

The recovered plaintext is 011000 110101 101110. 

Practical Implementations 
With a knapsack sequence of only six items, it's not hard to solve the problem 

even if it isn't superincreasing. Real knapsacks should contain at least 250 items. 
The value for each term in the superincreasing knapsack should be somewhere 
between 200 and 400 bits long, and the modulus should be somewhere between 100 
to 200 bits long. Real implementations of the algorithm use random-sequence gen­
erators to produce these values. 

With knapsacks like that, it's futile to try to solve them by brute force. If a com­
puter could try a million possibilities per second, trying all possible knapsack values 
would take over 1046 years. Even a million machines working in parallel wouldn't 
solve this problem before the sun went nova. 

Security of Knapsacks 
It wasn't a million machines that broke the knapsack cryptosystem, but a pair of 

cryptographers. First a single bit of plaintext was recovered [725]. Then, Shamir 
showed that knapsacks can be broken in certain circumstances [1415, 1416]. There 
were other results-[1428,38,754,516,488]-but no one could break the general 
Merkle-Hellman system. Finally, Shamir and Zippel [1418,1419,1421] found flaws 
in the transformation that allowed them to reconstruct the superincreasing knap­
sack from the normal knapsack. The exact arguments are beyond the scope of this 
book, but a nice summary of them can be found in [1233, 1244]. At the conference 
where the results were presented, the attack was demonstrated on stage using an 
Apple II computer [492,494]. 

Knapsack Variants 

Since the original Merkle-Hellman scheme was broken, many other knapsack sys­
tems have been proposed: multiple iterated knapsacks, Graham-Shamir knapsacks, 
and others. These have all been analyzed and broken, generally using the same cryp­
tographic techniques, and litter the cryptographic highway [260,253,269,921, 15,919, 
920,922,366,254,263,255]. Good overviews of these systems and their cryptanalyses 
can be found in [267,479,257,268]. 
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Other algorithms have been proposed that use ideas similar to those used in lrnap­
sack cryptosystems, but these too have been broken. The Lu-Lee cryptosystem 
[990,13] was broken in [20,614,873]; a modification [507] is also insecure [1620]. 
Attacks on the Goodman-McAuley cryptosystem are in [646,647,267,268]. The 
Pieprzyk cryptosystem [1246] can be broken by similar attacks. The Niemi cryp­
tosystem [1169], based on modular knapsacks, was broken in [345,788]. A newer 
multistage knapsack [747] has not yet been broken, but I am not optimistic. Another 
variant is [294]. 

While a variation of the knapsack algorithm is currently secure-the Chor-Rivest 
knapsack [356], despite a "specialized attack" [743]-the amount of computation 
required makes it far less useful than the other algorithms discussed here. A variant, 
called the Powerline System, is not secure [958]. Most important, considering the 
ease with which all the other variations fell, it doesn't seem prudent to trust them. 

Patents 

The original Merkle-Hellman algorithm is patented in the United States [720] and 
worldwide (see Table 19.1). Public Key Partners (PKP) licenses the patent, along 
with other public-key cryptography patents (see Section 25.5). The U.S. patent will 
expire on August 19, 1997. 

19.3 RSA 

Soon after Merkle's knapsack algorithm came the first full-fledged public-key algo­
rithm, one that works for encryption and digital signatures: RSA [1328, 1329]. Of all 
the public-key algorithms proposed over the years, RSA is by far the easiest to 
understand and implement. (Martin Gardner published an early description of the 
algorithm in his "Mathematical Games" column in Scientific American [599].) It is 

Table 19.1 
Foreign Merkle-Hellman Knapsack Patents 

Country Number Date of Issue 

Belgium 871039 5 Apr 1979 
Netherlands 7810063 10 Apr 1979 
Crea t Britain 2006580 2 May 1979 
Germany 2843583 10 May 1979 
Sweden 7810478 14 May 1979 
France 2405532 8 Jun 1979 
Germany 2843583 3 Jun 1982 
Germany 2857905 15 Jul 1982 
Canada 1128159 20 Jul 1982 
Crea t Britain 2006580 18 Aug 1982 
Switzerland 63416114 14 Jan 1983 
Italy 1099780 28 Sep 1985 
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also the most popular. Named after the three inventors-Ron Rivest, Adi Shamir, 
and Leonard Adleman-it has since withstood years of extensive cryptanalysis. 
Although the cryptanalysis neither proved nor disproved RSA's security, it does sug­
gest a confidence level in the algorithm. 

RSA gets its security from the difficulty of factoring large numbers. The public 
and private keys are functions of a pair of large ( 100 to 200 digits or even larger) 
prime numbers. Recovering the plaintext from the public key and the ciphertext is 
conjectured to be equivalent to factoring the product of the two primes. 

To generate the two keys, choose two random large prime numbers, p and q. For 
maximum security, choose p and q of equal length. Compute the product: 

n=pq 

Then randomly choose the encryption key, e, such that e and (p - 1 )(q - 1) are rela­
tively prime. Finally, use the extended Euclidean algorithm to compute the decryp­
tion key, d, such that 

ed == 1 mod (p - 1 )(q - 1) 

In other words, 

d = e- 1 mod ((p- l)(q- 1)) 

Note that d and n are also relatively prime. The numbers e and n are the public 
key; the number dis the private key. The two primes, p and q, are no longer needed. 
They should be discarded, but never revealed. 

To encrypt a message m, first divide it into numerical blocks smaller than n (with 
binary data, choose the largest power of 2 less than n). That is, if both p and q are 
100-digit primes, then n will have just under 200 digits and each message block, m,, 
should be just under 200 digits long. (If you need to encrypt a fixed number of 
blocks, you can pad them with a few zeros on the left to ensure that they will always 
be less than n.) The encrypted message, c, will be made up of similarly sized mes­
sage blocks, C;, of about the same length. The encryption formula is simply 

C;=m/ modn 

To decrypt a message, take each encrypted block C; and compute 

m; = c/ mod n 

Since 

C·d = (m·e)d =med= m.klp- IJlq - 11 + 1 = m-m-klp - lllq- 11 = m * 1 = m. all 
1 1 1 1 1 1 l lJ 

(modn) 

the formula recovers the message. This is summarized in Table 19.2. 
The message could just as easily have been encrypted with d and decrypted with 

e; the choice is arbitrary. I will spare you the number theory that proves why this 
works; most current texts on cryptography cover it in detail. 

A short example will probably go a long way to making this clearer. If p = 47 and 
q = 71, then 
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Public Key: 

Table 19.2 
RSA Encryption 

n product of two primes, p and q (p and q must remain secret) 
e relatively prime to (p - l)(q - 1) 

Private Key: 
d e-1 mod((p-l)(q-l)) 

Encrypting: 
c=memodn 

Decrypting: 
m = ca modn 

n = pq=3337 

The encryption key, e, must have no factors in common with 

(p - l)(q - 1) = 46 * 70 = 3220 

Choose e (at random) to be 79. In that case 

d = 79-1 mod 3220 = 1019 

This number was calculated using the extended Euclidean algorithm (see Section 
11.3). Publish e and n, and keep d secret. Discard p and q. 

To encrypt the message 

m = 6882326879666683 

first break it into small blocks. Three-digit blocks work nicely in this case. The mes­
sage is split into six blocks, m" in which 

m1 = 688 
m 2 = 232 

ill3 = 687 
ill4 = 966 
mi= 668 

m6 = 003 

The first block is encrypted as 

688 79 mod 3337 = 1570 = c1 

Performing the same operation on the subsequent blocks generates an encrypted 
message: 

C = 1570 2756 2091 2276 2423 158 

Decrypting the message requires performing the same exponentiation using the 
decryption key of 1019, so 
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15701019 mod 3337 = 688 = m1 

The rest of the message can be recovered in this manner. 

RSA in Hardware 
Much has been written on the subject of hardware implementations of RSA [ 1314, 

1474, 1456, 1316, 1485,874, 1222,87, 1410, 1409, 1343,998,367, 1429,523, 772]. Good sur­
vey articles are [258,872]. Many different chips perform RSA encryption [1310,252, 
1101, 1317,874,69, 737,594, 1275, 1563,509, 1223 ]. A partial list of currently available 
RSA chips, from [150,258], is listed in Table 19.3. Not all are available on the open 
market. 

Speed of RSA 
In hardware, RSA is about 1000 times slower than DES. The fastest VLSI hard­

ware implementation for RSA with a 512-bit modulus has a throughput of 64 kilo­
bits per second [258]. There are also chips that perform 1024-bit RSA encryption. 
Currently chips are being planned that will approach 1 megabit per second using a 
512-bit modulus; they will probably be available in 1995. Manufacturers have also 
implemented RSA in smart cards; these implementations are slower. 

In software, DES is about 100 times faster than RSA. These numbers may change 
slightly as technology changes, but RSA will never approach the speed of symmet­
ric algorithms. Table 19.4 gives sample software speeds of RSA [918]. 

Software Speedups 
RSA encryption goes much faster if you're smart about choosing a value of e. The 

three most common choices are 3, 17, and 6553 7 (216 + 1 ). (The binary representation 
of 65537 has only two ones, so it takes only 17 multiplications to exponentiate.) 
X.509 recommends 65537 [304], PEM recommends 3 [76], and PKCS #1 (see Section 
24.14) recommends 3 or 65537 [1345]. There are no security problems with using 

Table 19.3 
Existing RSA Chips 

Clock Cycles 
Clock Baud Rate Per 512 Bit Bits per Number of 

Company Speed Per 512 Bits Encryption Technology Chip Transistors 

Alpha Techn. 25MHz 13 K .98M 2 micron 1024 180,000 
AT&T 15 MHz 19 K .4M 1.5 micron 298 100,000 
British Telecom 10MHz 5.1 K lM 2.5 micron 256 
Business Sim. Ltd. 5MHz 3.8 K .67M Gate Array 32 
Calmos Syst. Inc. 20MHz 28 K .36M 2 micron 593 95,000 
CNET 25MHz 5.3 K 2.3M 1 micron 1024 100,000 
Cryptech 14MHz 17 K .4M Gate Array 120 33,000 
Cylink 30MHz 6.8 K 1.2M 1.5 micron 1024 150,000 
GEC Marconi 25MHz 10.2 K .67M 1.4 micron 512 160,000 
Pijnenburg 25MHz 50 K .256M 1 micron 1024 400,000 
Sandia 8MHz 10 K .4M 2 micron 272 86,000 
Siemens 5MHz 8.5 K .3M 1 micron 512 60,000 
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Table 19.4 
RSA Speeds for Different Modulus Lengths 

with an 8-bit Public Key (on a SPARC II) 
512 bits 768 bits 1,024 bits 

Encrypt 0.03 sec 0.05 sec 0.08 sec 
Decrypt 0.16 sec 0.48 sec 0.93 sec 
Sign 0.16 sec 0.52 sec 0.97 sec 
Verify 0.02 sec 0.07 sec 0.08 sec 

any of these three values fore (assuming you pad messages with random values-see 
later section), even if a whole group of users uses the same value for e. 

Private key operations can be speeded up with the Chinese remainder theorem if 
you save the values of p and q, and additional values such as d mod (p - 1 ), d mod 
(q - 1), and q- 1 mod p [1283,1276]. These additional numbers can easily be calcu­
lated from the private and public keys. 

Security of RSA 

The security of RSA depends wholly on the problem of factoring large numbers. 
Technically, that's a lie. It is conjectured that the security of RSA depends on the 
problem of factoring large numbers. It has never been mathematically proven that 
you need to factor n to calculate m from c and e. It is conceivable that an entirely 
different way to cryptanalyze RSA might be discovered. However, if this new way 
allows the cryptanalyst to deduce d, it could also be used as a new way to factor 
large numbers. I wouldn't worry about it too much. 

It is also possible to attack RSA by guessing the value of (p - 1 )(q - 1 ). This attack 
is no easier than factoring n [1616]. 

For the ultraskeptical, some RSA variants have been proved to be as difficult as 
factoring (see Section 19.5). Also look at [36], which shows that recovering even cer­
tain bits of information from an RSA-encrypted ciphertext is as hard as decrypting 
the entire message. 

Factoring n is the most obvious means of attack. Any adversary will have the 
public key, e, and the modulus, n. To find the decryption key, d, he has to factor n. 
Section 11.4 discusses the current state of factoring technology. Currently, a 129-
decimal-digit modulus is at the edge of factoring technology. So, n must be larger 
than that. Read Section 7.2 on public key length. 

It is certainly possible for a cryptanalyst to try every possible d until he stumbles on 
the correct one. This brute-force attack is even less efficient than trying to factor n. 

From time to time, people claim to have found easy ways to break RSA, but to 
date no such claim has held up. For example, in 1993 a draft paper by William Payne 
proposed a method based on Fermat's little theorem [1234]. Unfortunately, this 
method is also slower than factoring the modulus. 

There's another worry. Most common algorithms for computing primes p and q 
are probabilistic; what happens if p or q is composite? Well, first you can make the 
odds of that happening as small as you want. And if it does happen, the odds are that 
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encryption and decryption won't work properly-you'll notice right away. There are 
a few numbers, called Carmichael numbers, which certain probabilistic primality 
algorithms will fail to detect. These are exceedingly rare, but they are insecure [746]. 
Honestly, I wouldn't worry about it. 

Chosen Ciphertext Attack against RSA 

Some attacks work against the implementation of RSA. These are not attacks 
against the basic algorithm, but against the protocol. It's important to realize that 
it's not enough to use RSA. Details matter. 

Scenario 1: Eve, listening in on Alice's communications, manages to collect a 
ciphertext message, c, encrypted with RSA in her public key. Eve wants to be able 
to read the message. Mathematically, she wants m, in which 

m=ca 

To recover m, she first chooses a random number, r, such that r is less than n. She 
gets Alice's public key, e. Then she computes 

x=re modn 

y=xc modn 
t = r- 1 mod n 

If x = re mod n, then r = ~ mod n. 
Now, Eve gets Alice to sign y with her private key, thereby decrypting y. (Alice 

has to sign the message, not the hash of the message.) Remember, Alice has never 
seen y before. Alice sends Eve 

u =yd modn 

Now, Eve computes 

tu mod n = r 1yd mod n = c 1~ca mod n = ca mod n = m 

Eve now has m. 
Scenario 2: Trent is a computer notary public. If Alice wants a document nota­

rized, she sends it to Trent. Trent signs it with an RSA digital signature and sends it 
~ck. (No one-way hash functions are used here; Trent encrypts the entire message 
with his private key.) 

Mallory wants Trent to sign a message he otherwise wouldn't. Maybe it has a 
phony timestamp; maybe it purports to be from another person. Whatever the rea­
son, Trent would never sign it if he had a choice. Let's call this message m'. 

First, Mallory chooses an arbitrary value x and computes y = x" mod n. He can eas­
ily get e; it's Trent's public key and must be public to verify his signatures. Then he 
computes m = ym' mod n, and sends m to Trent to sign. Trent returns m'd mod n. 
Now Mallory calculates (ma mod n)x- 1 mod n, which equals n'd mod n and is the sig­
nature of m'. 

Actually, Mallory can use several methods to accomplish these same things 
[423,458,486]. The weakness they all exploit is that exponentiation preserves the 
multiplicative structure of the input. That is: 

(xm)a mod n = ~ma mod n 
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Scenario 3: Eve wants Alice to sign m 3 • She generates two messages, m 1 and m 2, 

such that 

m3 == m 1m 2 (mod n) 

If Eve can get Alice to sign m 1 and m 2, she can calculate m 3: 

m/ = (m/ mod n)(ml mod n) 

Moral: Never use RSA to sign a random document presented to you by a stranger. 
Always use a one-way hash function first. The ISO 9796 block format prevents this 
attack. 

Common Modulus Attack on RSA 

A possible RSA implementation gives everyone the same n, but different values 
for the exponents e and d. Unfortunately, this doesn't work. The most obvious prob­
lem is that if the same message is ever encrypted with two different exponents (both 
having the same modulus), and those two exponents are relatively prime (which 
they generally would be), then the plaintext can be recovered without either of the 
decryption exponents [1457]. 

Let m be the plaintext message. The two encryption keys are e1 and e2 • The com­
mon modulus is n. The two ciphertext messages are: 

C1 =me 1 modn 

c2 =m"2 modn 

The cryptanalyst knows n, e1, e2, c1, and c2 . Here's how he recovers m. 
Since e1 and e2 are relatively prime, the extended Euclidean algorithm can find r 

and s, such that 

re 1 + se2 = 1 

Assuming r is negative (either r ors has to be, so just call the negative oner), then 
the extended Euclidean algorithm can be used again to calculate c1- 1• Then 

(c1-1)-r * C2' = m mod TI 

There are two other, more subtle, attacks against this type of system. One attack 
uses a probabilistic method for factoring n. The other uses a deterministic algorithm 
for calculating someone's secret key without factoring the modulus. Both attacks 
are described in detail in [449]. 

Moral: Don't share a common n among a group of users. 

Low Encryption Exponent Attack against RSA 

RSA encryption and signature verification are faster if you use a low value for e, 
but that can also be insecure [704]. If you encrypt e(e + 1)/2 linearly dependent mes­
sages with different public keys having the same value of e, there is an attack 
against the system. If there are fewer than that many messages, or if the messages 
are unrelated, there is no problem. If the messages are identical, then e messages are 
enough. The easiest solution is to pad messages with independent random values. 
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This also ensures that me mod n -:t-me. Most real-world RSA implementations-FEM 
and PGP (see Sections 24.10 and 24.12), for example-do this. 

Moral: Pad messages with random values before encrypting them; make sure m is 
about the same size as n. 

Low Decryption Exponent Attack against RSA 
Another attack, this one by Michael Wiener, will recover d, when dis up to one 

quarter the size of n and e is less than n [1596]. This rarely occurs if e and dare cho­
sen at random, and cannot occur if e has a small value. 

Moral: Choose a large value for d. 

Lessons Learned 

Judith Moore lists several restrictions on the use of RSA, based on the success of 
these attacks [1114, 1115]: 

Knowledge of one encryption/decryption pair of exponents for a given 
modulus enables an attacker to factor the modulus. 

Knowledge of one encryption/decryption pair of exponents for a given 
modulus enables an attacker to calculate other encryption/ 
decryption pairs without having to factor n. 

A common modulus should not be used in a protocol using RSA in a 
communications network. (This should be obvious from the previous 
two points.) 

Messages should be padded with random values to prevent attacks on 
low encryption exponents. 

The decryption exponent should be large. 

Remember, it is not enough to have a secure cryptographic algorithm. The entire 
cryptosystem must be secure, and the cryptographic protocol must be secure. A fail­
ure in any of those three areas makes the overall system insecure. 

Attack on Encrypting and Signing with RSA 

It makes sense to sign a message before encrypting it (see Section 2. 7), but not 
everyone follows this practice. With RSA, there is an attack against protocols that 
encrypt before signing [48]. 

Alice wants to send a message to Bob. First she encrypts it with Bob's public key; 
then she signs it with her private key. Her encrypted and signed message looks like: 

(meB mod nB)dA mod nA 

Here's how Bob can claim that Alice sent him m' and not m. Realize that since 
Bob knows the factorization of nB (it's his modulus), he can calculate discrete loga­
rithms with respect to nB. Therefore, all he has to do is to find an x such that 
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Then, if he can publish xeB as his new public exponent and keep nB as his modu­
lus, he can claim that Alice sent him message m' encrypted in this new exponent. 

This is a particularly nasty attack in some circumstances. Note that hash func­
tions don't solve the problem. However, forcing a fixed encryption exponent for 
every user does. 

Standards 
RSA is a de facto standard in much of the world. The ISO almost, but not quite, 

created an RSA digital-signature standard; RSA is in an information annex to ISO 
9796 [762]. The French banking community standardized on RSA [525], as have the 
Australians [1498]. The United States currently has no standard for public-key 
encryption, because of pressure from the NSA and patent issues. Many U.S. compa­
nies use PKCS (see Section 24.14), written by RSA Data Security, Inc. A draft ANSI 
banking standard specifies RSA [61]. 

Patents 
The RSA algorithm is patented in the United States [1330], but not in any other 

country. PKP licenses the patent, along with other public-key cryptography patents 
(see Section 25.5). The U.S. patent will expire on September 20, 2000. 

19.4 POHLIG-HELLMAN 

The Pohlig-Hellman encryption scheme [1253] is similar to RSA. It is not a sym­
metric algorithm, because different keys are used for encryption and decryption. It 
is not a public-key scheme, because the keys are easily derivable from each other; 
both the encryption and decryption keys must be kept secret. 

Like RSA, 

where 

C =Pemodn 

P= ca modn 

ed = 1 (mod some complicated number) 

Unlike RSA, n is not defined in terms of two large primes, it must remain part of 
the secret key. If someone had e and n, they could calculated. Without knowledge 
of e or d, an adversary would be forced to calculate 

e = logpC mod n 

We have already seen that this is a hard problem. 

Patents 
The Pohlig-Hellman algorithm is patented in the United States [722] and also in 

Canada. PKP licenses the patent, along with other public-key cryptography patents 
(see Section 25.5). 
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19.5 RABIN 

Rabin's scheme [1283,1601] gets its security from the difficulty of finding square 
roots modulo a composite number. This problem is equivalent to factoring. Here is 
one implementation of this scheme. 

First choose two primes, p and q, both congruent to 3 mod 4. These primes are the 
private key; the product n = pq is the public key. 

To encrypt a message, M (M must be less than n), simply compute 

C=M 2 modn 

Decrypting the message is just as easy, but slightly more annoying. Since the 
receiver knows p and q, he can solve the two congruences using the Chinese 
remainder theorem. Compute 

m1 =err+ 1114 mod p 

m2 = (p - C1P + 1114) mod p 

m 3 = C1q + 1114 mod q 

ill4 = (q - Ciq + 1114) mod q 

Then choose an integer a= q(q- 1 mod p) and a integer b = p(p- 1 mod q). The four 
possible solutions are: 

M1 = (am 1 + bm 3 ) mod n 

M2 = (am 1 + bm 4 ) mod n 

M3 = (am2 + bm") mod n 

M4 = (am 2 + bm 4 ) mod n 

One of those four results, M1, M2, M3, or M4, equals M. If the message is English 
text, it should be easy to choose the correct M1• On the other hand, if the message is 
a random-bit stream (say, for key generation or a digital signature), there is no way 
to determine which M 1 is correct. One way to solve this problem is to add a known 
header to the message before encrypting. 

Williams 
Hugh Williams redefined Rabin's schemes to eliminate these shortcomings [1601]. 

In his scheme, p and q are selected such that 

p = 3 mod 8 

q = 7 mod 8 

and 

N=pq 

Also, there is a small integer, S, such that J(S,N) = -1. (J is the Jacobi symbol-see 
Section 11.3 ). N and S are public. The secret key is k, such that 

k= 1/2 * (1/4 * (p-1) * (q-1)+ 1) 
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To encrypt a message M, compute c1 such that J(M,N) = (-l)c1. Then, compute M' 
= (Sci * M) mod N. Like Rabin's scheme, C = M'2 mod N. And c2 = M' mod 2. The final 
ciphertext message is the triple: 

(C, C1, C2) 

To decrypt C, the receiver computes M" using 

ck== ±M" (mod N) 

The proper sign of M" is given by c2 • Finally, 

M = (sci * (-l)ci * M") mod N 

Williams refined this scheme further in [ 1603, 1604, 1605]. Instead of squaring the 
plaintext message, cube it. The large primes must be congruent to 1 mod 3; other­
wise the public and private keys are the same. Even better, there is only one unique 
decryption for each encryption. 

Both Rabin and Williams have an advantage over RSA in that they are provably as 
secure as factoring. However, they are completely insecure against a chosen­
ciphertext attack. If you are going to use these schemes in instances where an 
attacker can mount this attack (for example, as a digital signature algorithm where 
an attacker can choose messages to be signed), be sure to use a one-way hash func­
tion before signing. Rabin suggested another way of defeating this attack: Append a 
different random string to each message before hashing and signing. Unfortunately, 
once you add a one-way hash function to the system it is no longer provably as 
secure as factoring [628], although adding hashing cannot weaken the system in any 
practical sense. 

Other Rabin variants are [972,909,696,697, 1439,989]. A two-dimensional variant 
is in [866,889]. 

19 .6 ELGAMAL 

The ElGamal scheme [518,519] can be used for both digital signatures and encryp­
tion; it gets its security from the difficulty of calculating discrete logarithms in a 
finite field. 

To generate a key pair, first choose a prime, p, and two random numbers, g and x, 
such that both g and x are less than p. Then calculate 

y=gx modp 

The public key is y, g, and p. Both g and p can be shared among a group of users. 
The private key is x. 

EIGamal Signatures 
To sign a message, M, first choose a random number, k, such that k is relatively 

prime top - 1. Then compute 

a =gk modp 
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and use the extended Euclidean algorithm to solve for b in the following equation: 

M = (xa + kb) mod (p - 1) 

The signature is the pair: a and b. The random value, k, must be kept secret. 
To verify a signature, confirm that 

y"ab mod p = gM mod p 

Each ElGamal signature or encryption requires a new value of k, and that value 
must be chosen randomly. If Eve ever recovers a k that Alice used, she can recover 
Alice's private key, x. If Eve ever gets two messages signed or encrypted using the 
same k, even if she doesn't know what it is, she can recover x. 

This is summarized in Table 19.5. 
For example, choose p = 11 and g = 2. Choose private key x = 8. Calculate 

y = gx mod p = 2 8 mod 11 = 3 

The public key is y = 3, g = 2, and p = 11. 
To authenticate M = 5, first choose a random number k = 9. Confirm that gcd(9,10) 

= 1. Compute 

a = gk mod p = 29 mod 11 = 6 

and use the extended Euclidean algorithm to solve for b: 

M =(ax+ kb) mod (p - 1) 

5 = (8 * 6 + 9 * b) mod 10 

The solution is b = 3, and the signature is the pair: a= 6 and b = 3. 

Table 19.5 
EIGamal Signatures 

Public Key: 
p prime (can be shared among a group of users) 
g < p (can be shared among a group of users) 
y =gxmodp 

Private Key: 
X <p 

Signing: 
k choose at random, relatively prime top - 1 
a (signature)= gk mod p 
b (signature) such that M = (xa + kb) mod (p - 1) 

Verifying: 
Accept as valid if y"ab mod p = gM mod p 
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To verify a signature, confirm that 

y"al' modp =gM modp 

3663 mod 11 = 25 mod 11 

A variant of ElGamal for signatures is in [1377]. Thomas Beth invented a variant 
of the ElGamal scheme suitable for proofs of identity [146]. There are variants for 
password authentication [312], and for key exchange [773]. And there are thousands 
more (see Section 20.4). 

EIGamal Encryption 

A modification of ElGamal can encrypt messages. To encrypt message M, first 
choose a random k, such that k is relatively prime top - l. Then compute 

a =gk modp 

b =ykMmodp 

The pair, a and b, is the ciphertext. Note that the ciphertext is twice the size of the 
plain text. 

To decrypt a and b, compute 

M= b/axmodp 

Since ax= gkx (modp), and b/ax = ykM/ax = gxkM/gxk = M (modp), this all works 
(see Table 19.6). This is really the same as Diffie-Hellman key exchange (see Section 
22.1), except that y is part of the key, and the encryption is multiplied by yk. 

Speed 

Table 19.7 gives sample software speeds of ElGamal [918]. 

Table 19.6 
EIGamal Encryption 

Public Key: 
p prime (can be shared among a group of users) 
g < p (can be shared among a group of users) 
y =gx modp 

Private Key: 
X <p 

Encrypting: 
k choose at random, relatively prime top - l. 
a (ciphertext) = gk mod p 
b (ciphertext) = ykM mod p 

Decrypting: 
M (plaintext) = bf ax mod p 
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Patents 
ElCamal is unpatented. But, before you go ahead and implement the algorithm, 

realize that PKP feels that this algorithm is covered under the Diffie-Hellman patent 
[718]. However, the Diffie-Hellman patent will expire on April 29, 1997, making 
ElCamal the first public-key cryptography algorithm suitable for encryption and 
digital signatures unencumbered by patents in the United States. I can hardly wait. 

19. 7 McELIECE 

In 1978 Robert McEliece developed a public-key cryptosystem based on algebraic 
coding theory [1041]. The algorithm makes use of the existence of a class of error­
correcting codes, known as Goppa codes. His idea was to construct a Coppa code 
and disguise it as a general linear code. There is a fast algorithm for decoding Coppa 
codes, but the general problem of finding a code word of a given weight in a linear 
binary code is NP-complete. A good description of this algorithm can be found in 
[1233]; see also [1562]. Following is just a quick summary. 

Let dH(x,y) denote the Hamming distance between x and y. The numbers n, k, and 
t are system parameters. 

The private key has three parts: G' is a k * n generator matrix for a Coppa code 
that can correct t errors. P is an n * n permutation matrix. S is a k * k nonsingular 
matrix. 

The public key is a k * n matrix G: G = SG'P. 
Plaintext messages are strings of k bits, in the form of k-element vectors over CF(2). 
To encrypt a message, choose a random n-element vector over CF(2), z, with Ham-

ming distance less than or equal to t. 

c=mG+z 

To decrypt the ciphertext, first compute c' = cP--1. Then, using the decoding algo­
rithm for the Coppa code, find m' such that dH(m'G, c') is less than or equal to t. 
Finally, compute m = m'S- 1• 

In his original paper, McEliece suggested that n = 1024, t = 50, and k = 524. These 
are the minimum values required for security. 

Table 19.7 
ElGamal Speeds for Different 

Modulus Lengths with a 160-bit 
Exponent (on a SPARC II) 

512 bits 768 bits 1024 bits 

Encrypt 0.33 sec 0.80 sec 1.09 sec 
Decrypt 0.24 sec 0.58 sec 0.77 sec 
Sign 0.25 sec 0.47 sec 0.63 sec 
Verify 1.37 sec 5.12 sec 9.30 sec 
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Although the algorithm was one of the first public-key algorithms, and there were 
no successful cryptanalytic results against the algorithm, it has never gained wide 
acceptance in the cryptographic community. The scheme is two to three orders of 
magnitude faster than RSA, but has some problems. The public key is enormous: 2 19 

bits long. The data expansion is large: The ciphertext is twice as long as the plain text. 
Some attempts at cryptanalysis of this system can be found in [8,943,1559,306]. 

None of these were successful in the general case, although the similarity between 
the McEliece algorithm and knapsacks worried some. 

In 1991, two Russian cryptographers claimed to have broken the McEliece system 
with some parameters [882]. Their paper contained no evidence to substantiate their 
claim, and most cryptographers discount the result. Another Russian attack, one 
that cannot be used directly against the McEliece system, is in [1447,1448]. Exten­
sions to McEliece can be found in [424,1227,976]. 

Other Algorithms Based on Linear Error-Correcting Codes 
The Niederreiter algorithm [1167] is closely related to the McEliece algorithm, and 

assumes that the public key is a random parity-check matrix of an error-correcting 
code. The private key is an efficient decoding algorithm for this matrix. 

Another algorithm, used for identification and digital signatures, is based on 
syndrome decoding [1501]; see [306] for comments. An algorithm based on error­
correcting codes [1621] is insecure [698,33,31,1560,32]. 

19 .8 ELLIPTIC CURVE CRYPTOSYSTEMS 

Elliptic curves have been studied for many years and there is an enormous amount 
of literature on the subject. In 1985, Neal Ko blitz and V. S. Miller independently pro­
posed using them for public-key cryptosystems [867,1095]. They did not invent a 
new cryptographic algorithm with elliptic curves over finite fields, but they imple­
mented existing public-key algorithms, like Diffie-Hellman, using elliptic curves. 

Elliptic curves are interesting because they provide a way of constructing "ele­
ments" and "rules of combining" that produce groups. These groups have enough 
familiar properties to build cryptographic algorithms, but they don't have certain 
properties that may facilitate cryptanalysis. For example, there is no good notion of 
"smooth" with elliptic curves. That is, there is no set of small elements in terms of 
which a random element has a good chance of being expressed by a simple algo­
rithm. Hence, index calculus discrete logarithm algorithms do not work. See [1095] 
for more details. 

Elliptic curves over the finite field GF(2n) are particularly interesting. The arith­
metic processors for the underlying field are easy to construct and are relatively sim­
ple to implement for n in the range of 130 to 200. They have the potential to provide 
faster public-key cryptosystems with smaller key sizes. Many public-key algo­
rithms, like Diffie-Hellman, ElGamal, and Schnorr, can be implemented in elliptic 
curves over finite fields. 

The mathematics here are complex and beyond the scope of this book. Those 
interested in this topic are invited to read the two references previously mentioned, 
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and the excellent book by Alfred Menezes [1059]. Two analogues of RSA work in 
elliptic curves [890,454]. Other papers are [23,119, 1062,869, 152,871,892,25,895,353, 
1061,26,913,914,915]. Elliptic curve cryptosystems with small key lengths are dis­
cussed in [701]. Next Computer Inc.'s Fast Elliptic Encryption (FEE) algorithm also 
uses elliptic curves [388]. FEE has the nice feature that the private key can be any 
easy-to-remember string. There are proposed public-key cryptosystems using hyper­
elliptic curves [868,870, 1441, 1214]. 

19.9 LUC 

Some cryptographers have developed generalizations of RSA that use various per­
mutation polynomials instead of exponentiation. A variation called Kravitz-Reed, 
using irreducible binary polynomials [898], is insecure [451,589]. Winfried Muller 
and Wilfried Ni:ibauer use Dickson polynomials [1127,1128,965]. Rudolph Lidl and 
Muller generalized this approach in [966, 1126] (a variant is called the Reidi scheme), 
and Ni:ibauer looked at its security in [1172, 1173]. (Comments on prime generation 
with Lucas functions are in [969,967,968,598].) Despite all of this prior art, a group 
of researchers from New Zealand managed to patent this scheme in 1993, calling it 
LUC [1486,521, 1487]. 

The nth Lucas number, V11(P, 1 ), is defined as 

Vn(P, 1) = PVn - i(P, 1) - Vn - 2 (P,1) 

There's a lot more theory to Lucas numbers; I'm ignoring all of it. A good theoret­
ical treatment of Lucas sequences is in [ 1307, 1308]. A particularly nice description 
of the mathematics of LUC is in [1494, 708]. 

In any case, to generate a public-key/private-key key pair, first choose two large 
primes, p and q. Calculate n, the product of p and q. The encryption key, e, is a ran­
dom number that is relatively prime top - 1, q - 1, p + 1, and q + 1. 

There are four possible decryption keys, 

d = e-1 mod (lcm((p + 1), (q + 1))) 

d = e-1 mod (lcm((p + 1), (q - 1))) 

d = e-1 mod (lcm((p - 1), (q + 1))) 

d = e-1 mod (lcm((p- 1), (q- 1))) 

where lcm is the least common multiple. 
The public key is d and n; the private key is e and n. Discard p and q. 
To encrypt a message, P (P must be less than n), calculate 

C = Ve(P, 1) (mod n) 

And to decrypt: 

P = Va(P, 1) (mod n), with the proper d 

At best, LUC is no more secure than RSA. And recent, still-unpublished results 
show how to break LUC in at least some implementations. I just don't trust it. 
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19 .10 FINITE AUTOMATON PUBLIC-KEY CRYPTOSYSTEMS 

Chinese cryptographer Tao Renji has developed a public-key algorithm based on 
finite automata [1301, 1302, 1303, 1300, 1304,666]. Just as it is hard to factor the prod­
uct of two large primes, it is also hard to factor the composition of two finite 
automata. This is especially so if one or both of them is nonlinear. 

Much of this research took place in China in the 1980s and was published in Chi­
nese. Renji is starting to write in English. His main result was that certain nonlin­
ear automata (the quasilinear automata) possess weak inverses if, and only if, they 
have a certain echelon matrix structure. This property disappears if they are com­
posed with another automaton (even a linear one). In the public-key algorithm, the 
secret key is an invertible quasilinear automaton and a linear automaton, and the 
corresponding public key can be derived by multiplying them out term by term. 
Data is encrypted by passing it through the public automaton, and decrypted by 
passing it through the inverses of its components (in some cases provided they have 
been set to a suitable initial state). This scheme works for both encryption and dig­
ital signatures. 

The performance of such systems can be summed up by saying that like McEliece's 
system, they run much faster than RSA, but require longer keys. The keylength 
thought to give similar security to 512-bit RSA is 2792 bits, and to 1024-bit RSA is 
4152 bits. For the former case, the system encrypts data at 20,869 bytes/sec and 
decrypts data at 17,117 bytes/sec, running on a 33 MHz 80486. 

Renji has published three algorithms. The first is FAPKC0. This is a weak system 
which uses linear components, and is primarily illustrative. Two serious systems, 
FAPKCl and FAPKC2, use one linear and one nonlinear component each. The latter 
is more complex, and was developed in order to support identity-based operation. 

As for their strength, quite a lot of work has been done on them in China (where 
there are now over 30 institutes publishing cryptography and security papers). One 
can see from the considerable Chinese language literature that the problem has been 
studied. 

One possible attraction of FAPKCl and FAPKC2 is that they are not encumbered 
by any U.S. patents. Thus, once the Diffie-Hellman patent expires in 1997, they will 
unquestionably be in the public domain. 
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CHAPTER 

Public-Key Digital 
Signature Algorithms 

20.1 DIGITAL SIGNATURE ALGORITHM (DSA) 

20 

In August 1991, The National Institute of Standards and Technology (NIST) pro­
posed the Digital Signature Algorithm (DSA) for use in their Digital Signature Stan­
dard (DSS). According to the Federal Register [538]: 

And: 

A Federal Information Processing Standard (FIPS) for Digital Signature Standard 
(DSS) is being proposed. This proposed standard specifies a public-key digital sig­
nature algorithm (DSA) appropriate for Federal digital signature applications. The 
proposed DSS uses a public key to verify to a recipient the integrity of data and 
identity of the sender of the data. The DSS can also be used by a third party to 
ascertain the authenticity of a signature and the data associated with it. 

This proposed standard adopts a public-key signature scheme that uses a pair of 
transformations to generate and verify a digital value called a signature. 

This proposed FIPS is the result of evaluating a number of alternative digital sig­
nature techniques. In making the selection NIST has followed the mandate con­
tained in section 2 of the Computer Security Act of 1987 that NIST develop 
standards to " ... assure the cost-effective security and privacy of Federal infor­
mation and, among technologies offering comparable protection, on selecting the 
option with the most desirable operating and use characteristics." 

Among the factors that were considered during this process were the level of 
security provided, the ease of implementation in both hardware and software, the 
ease of export from the U.S., the applicability of patents, impact on national secu­
rity and law enforcement and the level of efficiency in both the signing and veri­
fication functions. A number of techniques were deemed to provide appropriate 
protection for Federal systems. The technique selected has the following desirable 
characteristics: 
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NIST expects it to be available on a royalty-free basis. Broader use of this 
technique resulting from public availability should be an economic benefit to 
the government and the public. 

The technique selected provides for efficient implementation of the signature 
operations in smart card applications. In these applications the signing opera­
tions are performed in the computationally modest environment of the smart 
card while the verification process is implemented in a more computationally 
rich environment such as a personal computer, a hardware cryptographic 
module, or a mainframe computer. 

Before it gets too confusing, let me review the nomenclature: DSA is the algo­
rithm; the DSS is the standard. The standard employs the algorithm. The algorithm 
is part of the standard. 

Reaction to the Announcement 
NIST's announcement created a maelstrom of criticisms and accusations. Unfor­

tunately, it was more political than academic. RSA Data Security, Inc., purveyors of 
the RSA algorithm, led the criticism against DSS. They wanted RSA, and not 
another algorithm, used as the standard. RSADSI makes a lot of money licensing the 
RSA algorithm, and a royalty-free digital signature standard would directly affect 
their bottom line. (Note: DSA is not necessarily free of patent infringements; I'll dis­
cuss that later.) 

Before the algorithm was announced, RSADSI campaigned against a "common 
modulus," which might have given the government the ability to forge signatures. 
When the algorithm was announced without this common modulus, they attacked 
it on other grounds [154], both in letters to NIST and statements to the press. (Four 
letters to NIST appeared in [1326]. When reading them, keep in mind that at least 
two of the authors, Rivest and Hellman, had a financial interest in DSS's not being 
approved.) 

Many large software companies that already licensed the RSA algorithm came out 
against the DSS. In 1982, the government had solicited public-key algorithms for a 
standard [537]. After that, there wasn't a peep out of NIST for nine years. Companies 
such as IBM, Apple, Novell, Lotus, Northern Telecom, Microsoft, DEC, and Sun had 
already spent large amounts of money implementing the RSA algorithm. They were 
not interested in losing their investment. 

In all, NIST received 109 comments by the end of the first comment period on 
February 28, 1992. 

Let's look at the criticisms against DSA, one by one. 

1. DSA cannot be used for encryption or key distribution. 
True, but not the point of the standard. This is a signature standard. NIST 

should have a standard for public-key encryption. NIST is committing a 
grave injustice to the American people by not implementing a public-key 
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encryption standard. It is suspicious that this proposed digital signature 
standard cannot be used for encryption. (As it turns out, though, it can-see 
Section 23.3.) That does not mean that a signature standard is useless. 

2. DSA was developed by the NSA, and there may be a trapdoor in the algo­
rithm. 

Much of the initial comments were just paranoia: "NIST's denial of 
information with no apparent justification does not inspire confidence in 
DSS, but intensifies concern that there is a hidden agenda, such as laying 
the groundwork for a national public-key cryptosystem that is in fact vul­
nerable to being broken by NIST and/or NSA" [154]. One serious question 
about the security of DSA was raised by Arjen Lenstra and Stuart Haber at 
Bellcore. This will be discussed later. 

3. DSA is slower than RSA [800]. 
True, more or less. Signature generation speeds are the same, but signa­

ture verification can be 10 to 40 times slower with DSA. Key generation, 
however, is faster. But key generation is irrelevant; a user rarely does it. On 
the other hand, signature verification is the most common operation. 

The problem with this criticism is that there are many ways to play with 
the test parameters, depending on the results you want. Precomputations 
can speed up DSA signature generation, but don't always apply. Proponents 
of RSA use numbers optimized to make their calculations easier; propo­
nents of DSA use their own optimizations. In any case, computers are get­
ting faster all the time. While there is a speed difference, it will not be 
noticeable in most applications. 

4. RSA is a de facto standard. 
Here are two examples of this complaint. From Robert Follett, the pro-

gram director of standards at IBM [570]: 

IBM is concerned that NIST has proposed a standard with a different 
digital signature scheme rather than adopting the international stan­
dard. We have been convinced by users and user organizations that the 
international standards using RSA will be a prerequisite to the sales of 
security products in the very near future. 

From Les Shroyer, vice president and director, corporate MIS and 
telecommunications, at Motorola [1444]: 

We must have a single, robust, politically-accepted digital signature 
standard that is usable throughout the world, between both U.S. and 
non-U.S., and Motorola and non-Motorola entities. The lack of other 
viable digital signature technology for the last eight years has made 
RSA a de facto standard .... Motorola and many other companies ... 
have committed millions of dollars to RSA. We have concern over the 
interoperability and support of two different standards, as that situation 
will lead to added costs, delays in deployment, and complication .... 
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Many companies wanted NIST to adopt the ISO 9796, the international 
digital signature standard that uses RSA [762]. While this is a valid com­
plaint, it is not a sufficient justification to make it a standard. A royalty­
free standard would better serve the U.S. public interest. 

5. The DSA selection process was not public; sufficient time for analysis has 
not been provided. 

First NIST claimed that they designed the DSA; then they admitted that 
NSA helped them. Finally, they confirmed that NSA designed the algo­
rithm. This worries many people; the NSA doesn't inspire trust. Even so, 
the algorithm is public and available for analysis; and NIST extended the 
time for analysis and comment. 

6. DSA may infringe on other patents. 
It may. This will be discussed in the section on patent issues. 

7. The key size is too small. 
This was the only valid criticism of DSS. The original implementation 

set the modulus at 512 bits [1149]. Since the algorithm gets its security 
from the difficulty of computing discrete logs in that modulus, this wor­
ried most cryptographers. There have since been advances in the problem 
of calculating discrete logarithms in a finite field, and 512 bits is too short 
for long-term security (see Section 7.2). According to Brian LaMacchia and 
Andrew Odlyzko, " ... even 512-bit primes appear to offer only marginal 
security ... " [934]. In response to this criticism, NIST made the key size 
variable, from 512 bits to 1024 bits. Not great, but better. 

On May 19, 1994, the standard was finally issued [1154]. The issuing statement 
said [542]: 

This standard is applicable to all Federal departments and agencies for the protec­
tion of unclassified information .... This standard shall be used in designing and 
implementing public-key based signature schemes which Federal departments 
and agencies operate or which are operated for them under contract. Adoption and 
use of this standard is available to private and commercial organizations. 

Before you run out and implement this standard in your next product, read the 
section on patent issues below. 

Description of DSA 

DSA is a variant of the Schnorr and ElGamal signature algorithms, and is fully 
described in [1154]. The algorithm uses the following parameters: 

p = a prime number L bits long, when L ranges from 512 to 1024 and is a 
multiple of 64. (In the original standard, the size of p was fixed at 512 
bits [1149]. This was the source of much criticism and was changed by 
NIST [1154].) 
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q = a 160-bit prime factor of p - 1. 

g = h 1P - JJ/q mod p, where h is any number less than p - 1 such that 
hiP - IJ/q mod p is greater than 1. 

x = a number less than q. 

y=gxmodp. 

The algorithm also makes use of a one-way hash function: H(m). The standard 
specifies the Secure Hash Algorithm, discussed in Section 18.7. 

The first three parameters, p, q, and g, are public and can be common across a net­
work of users. The private key is x; the public key is y. 

To sign a message, m: 

( 1) Alice generates a random number, k, less than q. 

(2) Alice generates 

r = (gk mod p) mod q 

s = (k-1 (H(m) + xr)) mod q 

The parameters r and s are her signature; she sends these to Bob. 

(3) Bob verifies the signature by computing 

w= s-1 mod q 

u 1 = (H(m) * w) mod q 

u2 = (rw) mod q 

v = ((gu1 * yu2) mod p) mod q 

If v = r, then the signature is verified. 

Proofs for the mathematical relationships are found in [1154]. Table 20.1 provides 
a summary. 

Speed Precomputations 

Table 20.2 gives sample software speeds of DSA [918]. 
Real-world implementations of DSA can often be speeded up through precompu­

tations. Notice that the valuer does not depend on the message. You can create a 
string of random k values, and then precompute r values for each of them. You can 
also precompute k- 1 for each of those k values. Then, when a message comes along, 
you can compute s for a given r and k- 1. 

This precomputation speeds up DSA considerably. Table 20.3 is a comparison of 
DSA and RSA computation times for a particular smart card implementation 
[1479]. 
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Table 20.1 
DSA Signatures 

Public Key: 
p 512-bit to 1024-bit prime (can be shared among a group of users) 
q 160-bit prime factor of p - 1 (can be shared among a group of users) 
g = h 1P - ll/q mod p, where his less than p - 1 and h 1P - ll/q mod p > 1 (can be shared 

among a group of users) 
y = gx mod p (a p-bit number) 

Private Key: 
x < q (a 160-bit number) 

Signing: 
k choose at random, less than q 
r (signature)= (g1' mod p) mod q 
s (signature)= (k-1 (H(m) + xr)) mod q 

Verifying: 
w = s- 1 mod q 
u 1 (H(m) * w) mod q 
u2 = (rw) mod q 
v = ((g111 * yu2) mod p) mod q 
If v = r, then the signature is verified. 

DSA Prime Generation 

Lenstra and Haber pointed out that certain moduli are much easier to crack than 
others [950]. If someone forced a network to use one of these "cooked" moduli, then 
their signatures would be easier to forge. This isn't a problem for two reasons: These 
moduli are easy to detect and they are so rare that the chances of using one when 
choosing a modulus randomly are almost negligible-smaller, in fact, than the 
chances of accidentally generating a composite number using a probabilistic prime 
generation routine. 

In [ 1154] NIST recommended a specific method for generating the two primes, p 
and q, where q divides p - 1. The prime pis L bits long, between 512 and 1024 bits 

Table 20.2 
DSA Speeds for Different Modulus Lengths 

with a 160-bit Exponent (on a SPARC II) 

Sign 
Verify 

512 bits 

0.20 sec 
0.35 sec 

768 bits 

0.43 sec 
0.80 sec 

1024 bits 

0.57 sec 
1.27 sec 
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Table 20.3 
Comparison of RSA and DSA Computation Times 

Global Computations 
Key Generation 
Precomputation 
Signature 
Verification 

DSA 

Off-card (P) 
14 sec 
14 sec 
.03 sec 
16 sec 

1-5 sec off-card (P) 

RSA 

N/A 
Off-card (S) 

N/A 
15 sec 
1.5 sec 

1-3 sec off-card (P) 

DSA with 
Common p, q, g 

Off-card (P) 
4 sec 
4 sec 

.03 sec 
10 sec 

Off-card computations were performed on an 80386 33 mHz, personal computer. (P) indi­
cates public parameters off-card and IS) indicates secret parameters off-card. Both algorithms 
use a 512-bit modulus. 

long, in some multiple of 64 bits. The prime q is 160 bits long. Let L - 1 = 160n + b, 
where Lis the length of p, and n and bare two numbers and bis less than 160. 

( 1) Choose an arbitrary sequence of at least 160 bits and call it S. Let g be the 
length of S in bits. 

(2) Compute U = SHA(S) EB SHA ((S + 1) mod 2g), where SHA is the Secure 
Hash Algorithm (see Section 18.7). 

(3) Form q by setting the most significant bit and the least significant bit 
of U to 1. 

(4) Check whether q is prime. 

(5) If q is not prime, go back to step (1). 

(6) Let C = 0 and N = 2. 

(7) Fork= 0, 1, ... , n, let Vk = SHA ((S + N + k) mod 2g) 

(8) Let W be the integer 

w =Vo+ 216ov1 + ... + 2160[n - 11vn - I+ 2160n(vn mod 21,) 

and let 

X= w+2L- 1 

Note that Xis an L-bit number. 

(9) Let p = X - ((X mod 2q) - 1 ). Note that pis congruent to 1 mod 2q. 

(10) Ifp<2L- 1, thengotostep(l3). 

( 11) Check whether p is prime. 

(12) If pis prime, go to step (15). 

( 13) Let C = C + 1 and N = N + n + 1. 
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(14) If C = 4096, then go to step (1). Otherwise, go to step (7). 

(15) Save the value of Sand the value of C used to generate p and q. 

In [1154], the variable Sis called the "seed," C is called the "counter," and N the 
"off set." 

The point of this exercise is that there is a public means of generating p and q. 
For all practical purposes, this method prevents cooked values of p and q. If some­
one hands you a panda q, you might wonder where that person got them. How­
ever, if someone hands you a value for S and C that generated the random p and q, 
you can go through this routine yourself. Using a one-way hash function, SHA in 
the standard, prevents someone from working backwards from a p and q to gener­
ate an S and C. 

This security is better than what you get with RSA. In RSA, the prime numbers 
are kept secret. Someone could generate a fake prime or one of a special form that 
makes factoring easier. Unless you know the private key, you won't know that. 
Here, even if you don't know a person's private key, you can confirm that p and q 
have been generated randomly. 

EIGamal Encryption with DSA 

There have been allegations that the government likes the DSA because it is only 
a digital signature algorithm and can't be used for encryption. It is, however, possi­
ble to use the DSA function call to do ElGamal encryption. 

Assume that the DSA algorithm is implemented with a single function call: 

DSAsign (p,q,g,k,x,h,r,s) 

You supply the numbers p, q, g, k, x, and h, and the function returns the signature 
parameters: rands. 

To do ElGamal encryption of message m with public key y, choose a random num­
ber, k, and call 

DSAsign (p,p,g,k,0,0,r,s) 

The value of r returned is a in the ElGamal scheme. Throws away. Then, call 

DSAsi gn (p, p ,Y, k,O ,0, r ,s) 

Rename the value of r to be u; throw s away. Call 

DSAsign (p,p,m,l,u,0,r,s) 

Throw r away. The value of s returned is b in the ElGamal scheme. You now have 
the ciphertext, a and b. 

Decryption is just as easy. Using secret key x, and ciphertext messages a and b, call 

DSAsign (p,p,a,x,0,0,r,s) 
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The valuer is ax mod p. Call that e. Then call 

DSAsi gn (p, p, l ,e ,b ,0, r, s) 

The value s is the plaintext message, m. 
This method will not work with all implementations of DSA. Some may fix the 

values of p and q, or the lengths of some of the other parameters. Still, if the imple­
mentation is general enough, this is a way to encrypt using nothing more than digi­
tal signature function. 

RSA Encryption with DSA 
RSA encryption is even easier. With a modulus n, message m, and public key e, call 

DSAsign (n,n,m,e,0,0,r,s) 

The value of r returned is the ciphertext. 
RSA decryption is the same thing. If dis the private key, then 

DSAsign (n,n,m,d,0,0,r,s) 

returns the plaintext as the value of r. 

Security of DSA 

At 512-bits, DSA wasn't strong enough for long-term security. At 1024 bits, it is. 
The NSA, in its first public interview on the subject, commented to Joe Aber-

nathy of The Houston Chronicle on allegations about a trapdoor in DSS [363]: 

Regarding the alleged trapdoor in the DSS. We find the term trapdoor somewhat 
misleading since it implies that the messages sent by the DSS are encrypted and 
with access via a trapdoor one could somehow decrypt (read) the message without 
the sender's knowledge. 

The DSS does not encrypt any data. The real issue is whether the DSS is sus­
ceptible to someone forging a signature and therefore discrediting the entire sys­
tem. We state categorically that the chances of anyone-including NSA-forging 
a signature with the DSS when it is properly used and implemented is infinitesi­
mally small. 

Furthermore, the alleged trapdoor vulnerability is true for any public key-based 
authentication system, including RSA. To imply somehow that this only affects 
the DSS (a popular argument in the press) is totally misleading. The issue is one of 
implementation and how one goes about selecting prime numbers. We call your 
attention to a recent EUROCRYPT conference which had a panel discussion on the 
issue of trapdoors in the DSS. Included on the panel was one of the Bellcore 
researchers who initially raised the trapdoor allegation, and our understanding is 
that the panel-including the person from Bellcore-concluded that the alleged 
trapdoor was not an issue for the DSS. Furthermore, the general consensus 
appeared to be that the trapdoor issue was trivial and had been overblown in the 
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press. However, to try to respond to the trapdoor allegation, at NIST's request, we 
have designed a prime generation process which will ensure that one can avoid 
selection of the relatively few weak primes which could lead to weakness in using 
the DSS. Additionally, NIST intends to allow for larger modulus sizes up to 1024 
which effectively negates the need to even use the prime generation process to 
avoid weak primes. An additional very important point that is often overlooked is 
that with the DSS the primes are public and therefore can be subject to public 
examination. Not all public key systems provide for this same type of examination. 

The integrity of any information security system requires attention to proper 
implementation. With the myriad of vulnerabilities possible given the differences 
among users, NSA has traditionally insisted on centralized trusted centers as a way 
to minimize risk to the system. While we have designed technical modifications to 
the DSS to meet NIST's requests for a more decentralized approach, we still would 
emphasize that portion of the Federal Register notice for the DSS which states: 

"While it is the intent of this standard to specify general security require­
ments for generating digital signatures, conformance to this standard does 
not assure that a particular implementation is secure. The responsible 
authority in each agency or department shall assure that an overall imple­
mentation provides an acceptable level of security. NIST will be working 
with government users to ensure appropriate implementations." 

Finally, we have read all the arguments purporting insecurities with the DSS, 
and we remain unconvinced of their validity. The DSS has been subjected to 
intense evahation within NSA which led to its being endorsed by our Director of 
Information Systems Security for use in signing unclassified data processed in 
certain intelligence systems and even for signing classified data in selected sys­
tems. We believe that this approval speaks to the lack of any credible attack on 
the integrity provided by the DSS given proper use and implementation. Based on 
the technical and security requirements of the U.S. government for digital signa­
tures, we believe the DSS is the best choice. In fact, the DSS is being used in a 
pilot project for the Defense Message System to assure the authenticity of elec­
tronic messages of vital command and control information. This initial demon­
stration includes participation from the Joint Chiefs of Staff, the military 
services, and Defense Agencies and is being done in cooperation with NIST. 

I'm not going to comment on the trustworthiness of the NSA. Take their com­
ments for what you think they're worth. 

Attacks against k 
Each signature requires a new value of k, and that value must be chosen ran­

domly. If Eve ever recovers a k that Alice used to sign a message, perhaps by exploit­
ing some properties of the random-number generator that generated k, she can 
recover Alice's private key, x. If Eve ever gets two messages signed using the same 
k, even if she doesn't know what it is, she can recover x. And with x, Eve can gen­
erate undetectable forgeries of Alice's signature. In any implementation of the DSA, 
a good random-number generator is essential to the system's security [1468]. 
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Dangers of a Common Modulus 

Even though the DSS does not specify a common modulus to be shared by every­
one, different implementations may. For example, the Internal Revenue Service is 
considering using the DSS for the electronic submission of tax returns. What if they 
require every taxpayer in the country to use a common p and q~ Even though the 
standard doesn't require a common modulus, such an implementation accom­
plishes the same thing. A common modulus too easily becomes a tempting target 
for cryptanalysis. It is still too early to tell much about different DSS implementa­
tions, but there is some cause for concern. 

Subliminal Channel in DSA 

Gus Simmons discovered a subliminal channel in DSA [1468,1469] (see Section 
23.3). This subliminal channel allows someone to embed a secret message in his sig­
nature that can only be read by another person who knows the key. According to 
Simmons, it is a "remarkable coincidence" that the "apparently inherent short­
comings of subliminal channels using the ElGamal scheme can all be overcome" in 
the DSS, and that the DSS "provides the most hospitable setting for subliminal 
communications discovered to date." NIST and NSA have not commented on this 
subliminal channel; no one knows if they even knew about it. Since this subliminal 
channel allows an unscrupulous implementer of DSS to leak a piece of the private 
key with each signature, it is important to never use an implementation of DSS if 
you don't trust the implementer. 

Patents 

David Kravitz, formerly of the NSA, holds a patent on DSA [897]. According to 
NIST [538]: 

NIST intends to make this DSS technique available world-wide on a royalty-free 
basis to the public interest. We believe this technique is patentable and that no 
other patents would apply to the DSS, but we cannot give firm assurances to such 
effect in advance of issuance of the patent. 

Even so, three patent holders claim that the DSA infringes on their patents: 
Diffie-Hellman (see Section 22.1) [718], Merkle-Hellman (see Section 19.2) [720], 
and Schnorr (see Section 21.3) [1398]. The Schnorr patent is the most troublesome. 
The other two patents expire in 1997; the Schnorr patent is valid until 2008. The 
Schnorr algorithm was not developed with government money; unlike the PKP 
patents, the U.S. government has no rights to the Schnorr patent; and Schnorr 
patented his algorithm worldwide. Even if the U.S. courts rule in favor of DSA, it is 
unclear what other courts around the world would do. Is an international company 
going to adopt a standard that may be legal in some countries but infringes on a 
patent in others? This issue will take time to resolve; at the time of this writing it 
isn't even resolved in the United States. 

In June 1993 NIST proposed to give PKP an exclusive patent license to DSA [541]. 
The agreement fell through after public outcry and the standard was issued without 
any deal. NIST said [542]: 
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... NIST has addressed the possible patent infringement claims, and has con­
cluded that there are no valid claims. 

So the standard is official, lawsuits are threatened, and no one knows what to do. 
NIST has said that it would help defend people sued for patent infringement, if they 
were using DSA to satisfy a government contract. Everyone else, it seems, is on 
their own. ANSI has a draft banking standard that uses DSA [60]. NIST is working 
to standardize DSA within the government. Shell Oil has made DSA their interna­
tional standard. I know of no other proposed DSA standards. 

20.2 DSA VARIANTS 

This variant makes computation easier on the signer by not forcing him to compute 
k- 1 [1135]. All the parameters are as in DSA. To sign a message, m, Alice generates 
two random numbers, k and d, both less than q. The signature is 

r = (gk modp) mod q 

s=(H(m)+xr) * dmodq 

t =kdmod q 

Bob verifies the signature by computing 

w= t/s mod q 

u 1 = (H(m) * w) mod q 

U2 = (rw) mod q 

If r = ((gu1 * yu2) mod p) mod q, then the signature is verified. 
This next variant makes computation easier on the verifier [1040,1629]. All the 

parameters are as in DSA. To sign a message, m, Alice generates a random number, 
k, less than q. The signature is 

r = (t mod p) mod q 

s = k * (H(m) + xr)- 1 mod q 

Bob verifies the signature by computing 

u 1 = (H(m) * s) mod q 

u2 = (sr) mod q 

If r = ((gu1 * yu2) mod p) mod q, then the signature is verified. 
Another DSA variant allows for batch verification; Bob can verify signatures in 

batches [1135]. If they are all valid, he is done. If one isn't valid, then he still has to 
find it. Unfortunately, it is not secure; either the signer or the verifier can easily cre­
ate a set of bogus signatures that satisfy the batch criteria [974]. 

There is also a variant for DSA prime generation, one that embeds q and the 
parameters used to generate the primes within p. Whether this scheme reduces 
the security of DSA is still unknown. 
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( 1) Choose an arbitrary sequence of at least 160 bits and call it S. Let g be the 
length of S in bits. 

(2) Compute U = SHA(S) EB SHA ((S + 1) mod 2g), where SHA is the Secure 
Hash Algorithm (see Section 18.7). 

(3) Form q by setting the most significant bit and the least significant bit of 
U to 1. 

(4) Check whether q is prime. 

(5) Let p be the concatenation of q, S, C, and SHA(S). C is set to 32 zero bits. 

(6) p = p - (p mod q) + 1. 

(7) p = p + q. 

(8) If the C inp is 0x7fffffff, go to step (1). 

(9) Check whether pis prime. 

( 10) If pis composite, go to step (7). 

The neat thing about this variant is that you don't have to store the values of C 
and S used to generate p and q; they are embedded within p. For applications with­
out a whole lot of memory, like smart cards, this can be a big deal. 

20.3 GOST DIGITAL SIGNATURE ALGORITHM 

This is a Russian digital signature standard, officially called GOST R 34.10-94 [ 656]. 
The algorithm is very similar to DSA, and uses the following parameters 

p = a prime number, either between 509 and 512 bits long, 
or between 1020 and 1024 bits long. 

q = a 254- to 256-bit prime factor of p - 1. 

a = any number less than p - 1 such that aq mod p = 1. 

x = a number less than q. 

y= axmodp. 

The algorithm also makes use of a one-way hash function: H(x). The standard 
specifies GOST R 34.11-94 (see Section 18.11), a function based on the GOST sym­
metric algorithm (see Section 14.1) [657]. 

The first three parameters, p, q, and a, are public and can be common across a net­
work of users. The private key is x; the public key is y. 

To sign a message, m 

( 1) Alice generates a random number, k, less than q 

(2) Alice generates 

r= (ak modp) mod q 

s = (xr + k(H(m))) mod q 
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If H(m) mod q = 0, then set it equal to 1. If r = 0, then choose another k and 
start again. The signature is two numbers: r mod 2256 ands mod 2256 • She 
sends these to Bob. 

(3) Bob verifies the signature by computing 

v= H(m)q- 2 mod q 

z1 = (sv) mod q 

z2 = ((q-r) * v) mod q 

u = ((a2 1 * y2 2) mod p) mod q 

If u = r, then the signature is verified. 

The difference between this scheme and DSA is that with DSA s = (xr + k- 1(H(m))) 
mod q, which leads to a different verification equation. Curious, though, is that q is 
256 bits. Most Western cryptographers seem satisfied with a q of around 160 bits. 
Perhaps this is just a reflection of the Russian tendency to play it ultrasafe. 

The standard has been in use since the beginning of 1995, and is not classified "for 
special use"-whatever that means. 

20.4 DISCRETE LOGARITHM SIGNATURE SCHEMES 

ElGamal, Schnorr (see Section 21.3), and DSA signature schemes are very similar. In 
fact, they are just three examples of a general digital signature scheme based on the 
Discrete Logarithm Problem. Along with thousands of other signature schemes, 
they are part of the same family [740,741,699, 1184]. 

Choose p, a large prime number, and q, either p - 1 or a large prime factor of p -
1. Then choose g, a number between 1 and p such that gq = 1 (mod p). All these num­
bers are public, and can be common to a group of users. The private key is x, less 
than q. The public key is y = g" mod p. 

To sign a message, m, first choose a random k less than and relatively prime to q. 
If q is also prime, any k less than q works. First compute 

r=i' modp 

The generalized signature equation now becomes 

ak = b + ex mod q 

The coefficients a, b, and c can be any of a variety of things. Each line in Table 20.4 
gives six possibilities. 

To verify the signature, the receiver must confirm that 

ra = gby" mod p 

This is called the verification equation. 
Table 20.5 lists the signature and verifications possible from just the first line of 

potential values for a, b, and c, ignoring the effects of the±. 
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Table 20.4 
Possible Permutations 

of a, b, and c ( r' = r mod q) 

±r' ±s m 
±r'm ±s 1 
±r'm ±ms 1 
±mr' ±r's 1 
±ms ±r's 1 

That's six different signature schemes. Adding the negative signs brings the total 
to 24. Using the other possible values listed for a, b, and c brings the total to 120. 

ElGamal [518,519] and DSA [1154] are essentially based on equation (4). Other 
schemes are based on equation (2) [24, 1629]. Schnorr [1396, 1397] is closely related to 
equation (5), as is another scheme [1183]. And equation (1) can be modified to yield 
the scheme proposed in [1630]. The rest of the equations are new. 

There's more. You can make any of these schemes more DSA-like by defining r as 

r= (gk modp) mod q 

Keep the same signature equation and make the verification equation 

U1 = a-1b mod q 

U2 = a- 1c mod q 

r = (gu1yu2 mod p) mod q 

There are two other possibilities along these lines [740,741]; you can do this with 
each of the 120 schemes, bringing the total to 480 discrete-logarithm-based digital 
signature schemes. 

But wait-there's more. Additional generalizations and variations can generate 
more than 13,000 variants (not all of them terribly efficient) [740,741]. 

One of the nice things about using RSA for digital signatures is a feature called 
message recovery. When you verify an RSA signature you compute m. Then you 
compare the computed m with the message and see if the signature is valid for that 

Table 20.5 
Discrete Logarithm Signature Schemes 

Signature Equation 

( 1) r'k = s + mx mod q 
(2) r'k = m + sx mod q 
(3) sk = r' + mx mod q 
(4) sk = m + r'x mod q 
(5) mk = s + r'x mod q 
(6) mk = r' + sx mod q 

Verification Equation 

r'' = g5y"' mod p 
r'' = g"'y' mod p 
rs = g'ym mod p 
rs = g"'y'' mod p 
~ = g5y'' mod p 
~=g''y' modp 
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message. With the previous schemes, you can't recover m when you compute the 
signature; you need a candidate m that you use in a verification equation. Well, as it 
turns out it is possible to construct a message recovery variant for all the above sig­
nature schemes. 

To sign, first compute 

r=mg1' modp 

and replace m by 1 in the signature equation. Then you can reconstruct the verifi­
cation equation such that m can be computed directly. 

You can do the same with the DSA-like schemes: 

r = (mg1' modp) mod q 

All the variants are equally secure, so it makes sense to choose a scheme that is 
easy to compute with. The requirement to compute inverses slows most of these 
schemes. As it turns out, a scheme in this pile allows computing both the signature 
equation and the verification equation without inverses and also gives message 
recovery. It is called the p-NEW scheme [1184]. 

r = mg-k modp 

s = k - r'x mod q 

And mis recovered (and the signature verified) by 

m = g5y'r mod p 

Some variants sign two and three message blocks at the same time [7 40]; other 
variants can be used for blind signatures [741]. 

This is a remarkable piece of research. All of the various discrete-logarithm-based 
digital signature schemes have been put in one coherent framework. In my opinion 
this finally puts to rest any patent dispute between Schnorr [1398] and DSA [897]: 
DSA is not a derivative of Schnorr, nor even of ElGamal. All three are examples of 
this general construction, and this general construction is unpatented. 

20.5 ONG-SCHNORR-SHAMIR 

This signature scheme uses polynomials modulo n [1219, 1220]. Choose a large inte­
ger n (you need not know the factorization of n). Then choose a random integer, k, 
such that k and n are relatively prime. Calculate h such that 

h = -k- 2 mod n = -(k- 1)2 mod n 

The public key is h and n; k is the private key. 
To sign a message, M, first generate a random number, r, such that rand n are rel­

atively prime. Then calculate: 

S1 = 1/2 * (M/r+r) modn 

S2 = k/2 * (M/r - r) mod n 
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The pair, S1 and S2, is the signature. 
To verify a signature, confirm that 

S12 + h * S? = M (mod n) 

The version of the scheme described here is based on quadratic polynomials. 
When it was first proposed in [ 1217], a$ 100 reward was offered for successful crypt­
analysis. It was proved insecure [1255,18], but its authors were not deterred. They 
proposed a modification of the algorithm based on cubic polynomials, which is also 
insecure [1255]. The authors then proposed a quartic version, which was also broken 
[524,1255]. A variant which fixes these problems is in [1134]. 

20.6 ESIGN 

ESIGN is a digital signature scheme from NTT Japan [1205,583]. It is touted as being 
at least as secure and considerably faster than either RSA or DSA, with similar key 
and signature lengths. 

The private key is a pair of large prime numbers, p and q. The public key is n, when 

n =p2q 

His a hash function that operates on a message, m, such that H(m) is between 0 
and n - l. There is also a security parameter, k, which will be discussed shortly. 

( 1) Alice picks a random number x, where xis less than pq. 

(2) Alice computes: 

w; the least integer that is larger than or equal to 

(H(m) - xk mod n)/pq 

s =x+ ((w/kxk- 1) modp)pq 

(3) Alice sends s to Bob. 

(4) To verify the signature, Bob computes sk mod n. He also computes a, which 
is the least integer larger than or equal to two times the number of bits of 
n divided by 3. If H(m) is less than or equal to sk mod n, and if sk mod n is 
less than H(m) + 2", then the signature is considered valid. 

This algorithm works faster with precomputation. This precomputation can be 
done at any time and has nothing to do with the message being signed. After pick­
ing x, Alice could break step (2) into two partial steps. The first can be precomputed. 

(2a) Alice computes: 

u =xk modn 

v = 1/(kxk - 1) mod p 
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(2b) Alice computes: 

w = the least integer that is larger than or equal to 

(H(m) - u)/pq) 

s =x+ (wvmodp)pq 

For the size of numbers generally used, this precomputation speeds up the signa­
ture process by a factor of 10. Almost all the hard work is done in the precomputa­
tion stage. A discussion of modular arithmetic operations to speed ESIGN can be 
found in [1625,1624]. This algorithm can also be extended to work with elliptic 
curves [1206]. 

Security of ESJGN 
When this algorithm was originally proposed, k was set to 2 [1215]. This was 

quickly broken by Ernie Brickell and John DeLaurentis [261], who then extended 
their attack to k = 3. A modified version of this algorithm [1203] was broken by 
Shamir [1204]. The variant proposed in [1204] was broken in [1553]. ESIGN is the 
current incarnation of this family of algorithms. Another new attack [963] does not 
work against ESIGN. 

The authors currently recommend these values fork: 8, 16, 32, 64, 128, 256, 512, 
and 1024. They also recommend that p and q each be of at least 192 bits, making n 
at least 576 bits long. (I think n should be twice that length.) With these parameters, 
the authors conjecture that ESIGN is as secure as RSA or Rabin. And their analysis 
shows favorable speed comparison to RSA, ElGamal, and DSA [582]. 

Patents 
ESIGN is patented in the United States [1208], Canada, England, France, Germany, 

and Italy. Anyone who wishes to license the algorithm should contact Intellectual 
Property Department, NTT, 1-6 Uchisaiwai-cho, 1-chome, Chiyada-ku, 100 Japan. 

20. 7 CELLULAR AUTOMATA 

A new and novel idea, studied by Papua Guam [665], is the use of cellular automata 
in public-key cryptosystems. This system is still far too new and has not been stud­
ied extensively, but a preliminary examination suggests that it may have a crypto­
graphic weakness similar to one seen in other cases [562]. Still, this is a promising 
area of research. Cellular automata have the property that, even if they are invertible, 
it is impossible to calculate the predecessor of an arbitrary state by reversing the rule 
for finding the successor. This sounds a whole lot like a trapdoor one-way function. 

20.8 OTHER PUBLIC-KEY ALGORITHMS 

Many other public-key algorithms have been proposed and broken over the years. 
The Matsumoto-Imai algorithm [1021] was broken in [450]. The Cade algorithm 
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was first proposed in 1985, broken in 1986 [774], and then strengthened in the same 
year [286]. In addition to these attacks, there are general attacks for decomposing 
polynomials over finite fields [605]. Any algorithm that gets its security from the 
composition of polynomials over a finite field should be looked upon with skepti­
cism, if not outright suspicion. 

The Yagisawa algorithm combines exponentiation mod p with arithmetic mod p 
- 1 [1623]; it was broken in [256]. Another public-key algorithm, Tsujii-Kurosawa­
Itoh-Fujioka-Matsumoto [1548] is insecure [948]. A third system, Luccio-Mazzone 
[993], is insecure [717]. A signature scheme based on birational permutations [1425] 
was broken the day after it was presented [381 ]. Tatsuaki Okamoto has several sig­
nature schemes: one is provably as secure as the Discrete Logarithm Problem, and 
another is provably as secure as the Discrete Logarithm Problem and the Factoring 
Problem [1206]. Similar schemes are in [709]. 

Gustavus Simmons suggested J-algebras as a basis for public-key algorithms 
[1455, 145]. This idea was abandoned after efficient methods for factoring polynomi­
als were invented [951]. Special polynomial semigroups have also been studied 
[1619,962], but so far nothing has come of it. Harald Niederreiter proposed a public­
key algorithm based on shift-register sequences [1166]. Another is based on Lyndon 
words [1476] and another on propositional calculus [817]. And a recent public-key 
algorithm gets its security from the matrix cover problem [82]. Tatsuaki Okamoto 
and Kazuo Ohta compare a number of digital signature schemes in [1212]. 

Prospects for creating radically new and different public-key cryptography algo­
rithms seem dim. In 1988 Whitfield Diffie noted that most public-key algorithms 
are based on one of three hard problems [492,494]: 

1. Knapsack: Given a set of unique numbers, find a subset whose sum is N. 

2. Discrete logarithm: If pis a prime and g and Mare integers, find x such that 
g' = M (modp). 

3. Factoring: If N is the product of two primes, either 

a) factor N, 

b) given integers Mand C, find d such that Md= C (mod N), 

c) given integers e and C, find M such that M" = C (mod N), or 

d) given an integer x, decide whether there exists an integer y such that 
x = y2 (mod N). 

According to Diffie [492,494], the Discrete Logarithm Problem was suggested by J. 
Gill, the Factoring Problem by Knuth, and the knapsack problem by Diffie himself. 

This narrowness in the mathematical foundations of public-key cryptography is 
worrisome. A breakthrough in either the problem of factoring or of calculating dis­
crete logarithms could render whole classes of public-key algorithms insecure. 
Diffie points out [492,494] that this risk is mitigated by two factors: 

1. The operations on which public key cryptography currently depends-mul­
tiplying, exponentiating, and factoring-are all fundamental arithmetic phenom-
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ena. They have been the subject of intense mathematical scrutiny for centuries 
and the increased attention that has resulted from their use in public key cryp­
tosystems has on balance enhanced rather than diminished our confidence. 

2. Our ability to carry out large arithmetic computations has grown steadily 
and now permits us to implement our systems with numbers sufficient in size to 
be vulnerable only to a dramatic breakthrough in factoring, logarithms, or root 
extraction. 

As we have seen, not all public-key algorithms based on these problems are secure. 
The strength of any public-key algorithm depends on more than the computational 
complexity of the problem upon which it is basedi a hard problem does not necessar­
ily imply a strong algorithm. Adi Shamir listed three reasons why this is so [1415]: 

1. Complexity theory usually deals with single isolated instances of a problem. 
A cryptanalyst often has a large collection of statistically related problems to 
solve-several ciphertexts encrypted with the same key. 

2. The computational complexity of a problem is typically measured by its 
worst-case or average-case behavior. To be useful as a cipher, the problem must be 
hard to solve in almost all cases. 

3. An arbitrarily difficult problem cannot necessarily be transformed into a 
cryptosystem, and it must be possible to insert trapdoor information into the 
problem so that a shortcut solution is possible with this information and only 
with this information. 
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CHAPTER 21 

Identification Schemes 

21.1 fEIGE-fIAT-SHAMIR 

Amos Fiat's and Adi Shamir's authentication and digital signature scheme is dis­
cussed in [566,567]. Uriel Feige, Fiat, and Shamir modified the algorithm to a zero­
knowledge proof of identity [544,545]. This is the best-known zero-knowledge proof 
of identity. 

On July 9, 1986 the three authors submitted a U.S. patent application [1427]. 
Because of its potential military applications, the application was reviewed by the 
military. Occasionally the Patent Office responds not with a patent, but with some­
thing called a secrecy order. On January 6, 1987, three days before the end of their 
six-month period, the Patent Office imposed that order at the request of the Army. 
They stated that " ... the disclosure or publication of the subject matter ... would 
be detrimental to the national security .... " The authors were ordered to notify all 
Americans to whom the research had been disclosed that unauthorized disclosure 
could lead to two years' imprisonment, a $10,000 fine, or both. Furthermore, the 
authors had to inform the Commissioner of Patents and Trademarks of all foreign 
citizens to whom the information had been disclosed. 

This was ludicrous. All through the second half of 1986, the authors had pre­
sented the work at conferences throughout Israel, Europe, and the United States. 
The authors weren't even American citizens, and all the work had been done at the 
Weizmann Institute in Israel. 

Word spread through the academic community and the press. Within two days the 
secrecy order was rescindedi Shamir and others believe that the NSA pulled strings 
to rescind the order, although they officially had no comment. Further details of this 
bizarre story are in [936]. 

Simplified Feige-Fiat-Shamir Identification Scheme 
Before issuing any private keys, the arbitrator chooses a random modulus, n, 

which is the product of two large primes. In real life, n should be at least 512 bits 
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long and probably closer to 1024 bits. This n can be shared among a group of 
provers. (Choosing a Blum integer makes computation easier, but it is not required 
for security.) 

To generate Peggy's public and private keys, a trusted arbitrator chooses a num­
ber, v, where vis a quadratic residue mod n. In other words, choose v such that x 2 = 
v (mod n) has a solution and v-i mod n exists. This vis Peggy's public key. Then cal­
culate the smallest s for which s = sqrt (v-1) (mod n). This is Peggy's private key. 

The identification protocol can now proceed. 

( 1) Peggy picks a random r, where r is less then n. She then computes x = 
r2 mod n, and sends x to Victor. 

(2) Victor sends Peggy a random bit, b. 

(3) If b = 0, then Peggy sends Victor r. If b = 1, then Peggy sends Victory= r * s 
modn. 

(4) If b = 0, Victor verifies that x = r2 mod n, proving that Peggy knows sqrt 
(x). If b = 1, Victor verifies that x = y 2 * v mod n, proving that Peggy knows 
sqrt (v-1). 

This is a single round-called an accreditation-of the protocol. Peggy and Victor 
repeat this protocol t times, until Victor is convinced that Peggy knows s. It's a cut­
and-choose protocol. If Peggy doesn't know s, she can pick r such that she can fool 
Victor if he sends her a 0, or she can pick r such that she can fool Victor if he sends 
her a 1. She can't do both. The odds of her fooling Victor once are 50 percent. The 
odds of her fooling him t times are 1 in 2'. 

Another way for Victor to attack the protocol would be trying to impersonate 
Peggy. He could initiate the protocol with another verifier, Valerie. In step ( 1 ), 
instead of choosing a random r, he would just reuse an old r that he saw Peggy use. 
However, the odds of Valerie choosing the same value for bin step (2) that Victor did 
in the pr0tocol with Peggy are 1 in 2. So, the odds of his fooling Valerie are 50 per­
cent. The odds of his fooling her t times are 1 in 21• 

For this to work, Peggy must not reuse an r, ever. If she did, and Victor sent Peggy 
the other random bit in step (2), then he would have both of Peggy's responses. Then, 
from even one of these, he can calculate s and it's all over for Peggy. 

Feige-Fiat-Shamir Identification Scheme 

In their papers [544,545], Feige, Fiat and Shamir show how parallel construction 
can increase the number of accreditations per round and reduce Peggy and Victor's 
interactions. 

First generate n as in the previous example, the product of two large primes. To 
generate Peggy's public and private keys, first choose k different numbers: Vi, 
v2, ••• , vk, where each vi is a quadratic residue mod n. In other words, choose V; such 
that x2 = V; mod n has a solution and V;-1 mod n exists. This string, Vi, v2., .•• , Vk, is 
the public key. Then calculate the smallest S; such that S; = sqrt (v;-i) mod n. This 
string, Si, s2, ••• , sk, is the private key. 
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And the protocol is: 

( 1) Peggy picks a random r, when r is less than n. She then computes x = r2 mod 
n, and sends x to Victor. 

(2) Victor sends Peggy a random binary string k-bits long: bi, b2, ••• , bk. 

(3) Peggy computes y = r * (s1b1 * s2b2 * ... * s/k) mod n. (She multiplies 
together whichever values of s1 that correspond to b1 = 1. If Victor's first bit 
is a 1, then s 1 is part of the product; if Victor's first bit is a 0, then s 1 is not 
part of the product, and so on.) She sends y to Victor. 

(4) Victor verifies that x = y2 * (v/'1 * v2b2 * ... * v/k) mod n. (He multiplies 
together the values of v1 based on the random binary string. If his first bit 
is a 1, then v 1 is part of the product; if his first bit is a 0, then v1 is not part 
of the product, and so on.) 

Peggy and Victor repeat this protocol t times, until Victor is convinced that Peggy 
knows s1, s2, ... , sk. 

The chance that Peggy can fool Victor is 1 in 2ki_ The authors recommend a 1 in 
220 chance of a cheater fooling Victor and suggest that k = 5 and t = 4. If you are more 
paranoid, increase these numbers. 

An Example 
Let's look at this protocol in action with small numbers. 
If n = 35 (the two primes are 5 and 7), then the possible quadratic residues are: 

1: x 2 = 1 (mod 35) has the solutions: x = 1, 6, 29, or 34. 

4: x 2 = 4 (mod 35) has the solutions: x = 2, 12, 23, or 33. 

9: x2 = 9 (mod 35) has the solutions: x = 3, 17, 18, or 32. 

11: x2 = 11 (mod 35) has the solutions: x = 9, 16, 19, or 26. 

14: x2 = 14 (mod 35) has the solutions: x = 7 or 28. 

15: x2 = 15 (mod 35) has the solutions: x = 15 or 20. 

16: x2 = 16 (mod 35) has the solutions: x = 4, 11, 24, or 31. 

21: x2 = 21 (mod 35) has the solutions: x = 14 or 21. 

25: x2 = 25 (mod 35) has the solutions: x = 5 or 30. 

29: x 2 = 29 (mod 35) has the solutions: x = 8, 13, 22 or 27. 

30: x2 = 30 (mod 35) has the solutions: x = 10 or 25. 

The inverses (mod 35) and their square roots are: 

v V- 1 s = sqrt (v-1) 

1 1 1 

4 9 3 

9 4 2 



11 

16 

29 

16 

11 

29 
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4 

9 

8 

Note that 14, 15, 21, 25, and 30 do not have inverses mod 35, because they are 
not relatively prime to 35. This makes sense, because there should be (5 - 1) * 
(7 - 1)/4 quadratic residues mod 35 relatively prime to 35: That is gcd(x,35) = 1 
( see Section 11.3). 

So, Peggy gets the public key consisting of k = 4 values: /4, 11, 16,29). The corre­
sponding private key is /3,4,9,8). Here's one round of the protocol. 

(1) Peggy chooses a random r = 16, computes 162 mod 35 = 11, and sends it to 
Victor. 

(2) Victor sends Peggy a random binary string \1, 1,0, ll-
(3) Peggy computes 16 * ((31) * (41) * (9°) * (81)) mod 35 = 31 and sends it to Victor. 

(4) Victorverifiesthat31 2 * ((41) * (111) * (16°) * (291))mod35= 11. 

Peggy and Victor repeat the protocol t times, each time with a different random r, 
until Victor is satisfied. 

With small values like these, there's no real security. But when n is 512 bits long 
or more, Victor cannot learn anything about Peggy's secret key except the fact that 
she knows it. 

Enhancements 

It is possible to embed identification information into the protocol. Assume that 
I is a binary string representing Peggy's identification: her name, address, social 
security number, hat size, preferred brand of soft drink, and other personal informa­
tion. Use a one-way hash function H(x) to compute H(I,j), where j is a small number 
concatenated onto I. Find a set of js where H(I,j) is a quadratic residue mod n. These 
H(I,j)s become v1, v2, ••. , vk (the js need not be quadratic residues). Peggy's public 
key is now I and the list of js. She sends I and the list of js to Victor before step ( 1) 
of the protocol (or perhaps Victor downloads them from a public bulletin board 
someplace), and Victor generates v 1, v2, ... , vk from H(I,j). 

Now, after Victor successfully completes the protocol with Peggy, he is assured 
that Trent, who knows the factorization of the modulus, has certified the associa­
tion between I and Peggy by giving her the square roots of the vi derived from I. (See 
Section 5.2 for background information.) 

Feige, Fiat, and Shamir include the following implementation remarks [544,545]: 

For nonperfect hash functions, it may be advisable to randomize I by concatenat­
ing it with a long random string, R. This string is chosen by the arbitrator and is 
revealed to Victor along with I. 

In typical implementations, k should be between 1 and 18. Larger values of k can 
reduce the time and communication complexity by reducing the number of rounds. 
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The value n should be at least 512 bits long. (Of course, there has been consid­
erable progress in factoring since then.) 

If each user chooses his own n and publishes it in a public key file, they can dis­
pense with the arbitrator. However, this RSA-like variant makes the scheme con­
siderably less convenient. 

Fiat-Shamir Signature Scheme 
Turning this identification scheme into a signature scheme is basically a matter 

of turning Victor into a hash function. The primary benefit of the Fiat-Shamir digi­
tal signature scheme over RSA is speed: Fiat-Shamir requires only 1 percent to 4 per­
cent of the modular multiplications of RSA. For this protocol, we'll bring back Alice 
and Bob. 

The setup is the same as the identification scheme. Choose n to be the product of 
two large primes. Generate the public key, v 1, v 2, ••• , vk, and the private key, s1, 

s2, ••• , sk, such that si = sqrt (vi-1) mod n. 

( 1) Alice picks t random integers between 1 and n: r 1, r2, ••• , r 1, and computes 
X1, x2, ••• , x 1 such that xi= r? mod n. 

(2) Alice hashes the concatenation of the message and the string of xis to gen­
erate a bit stream: H(m, x 1, x2, ••. , xi). She uses the first k * t bits of this 
string as values of bit, where i goes from 1 to t, and j goes from 1 to k. 

(3) Alice computes y 1, y 2, ... , y 1, where 

(For each i, she multiplies together the values of the s1 based on the random 
b1, t values. If bi, 1 is a 1, then s 1 is multiplied; if bi, 1 is a 0, then s 1 is not 
multiplied.) 

(4) Alice sends Bob m, all the bit values of bi,;, and all the values of Yi· He 
already has Alice's public key: v 1, v2, ••• , vk. 

(5) Bob c:omputes z 1, z2, •.. , 2 1, where 

z1 = y/ * (v/i1 * v/i2 * ... * v/ 11<) mod n 

(Again, Bob multiplies based on the bi, i values.) Also note that zi should be 
equal to xi. 

(6) Bob verifies that the first k * t bits of H(m, z 1, z2, ... , 2 1) are the bi,; values 
that Alice sent him. 

As with the identification scheme, the security of this signature scheme is pro­
portional to 1/21<1_ It also depends on the difficulty of factoring n. Fiat and Shamir 
pointed out that forging a signature is easier when the complexity of factoring n is 
considerably lower than 21<1_ And, because of birthday-type attacks (see Section 18.1 ), 
they recommend that k * t be increased from 20 to at least 72. They suggest k = 9 
and t = 8. 
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Improved Fiat-Shamir Signature Scheme 
Silvio Micali and Adi Shamir improved the Fiat-Shamir protocol in [1088]. They 

chose v1, v2, ... , vk to be the first k prime numbers. So 

V1 = 2, v2 = 3, V3 = 5, and so on. 

This is the public key. 
The private key, s 1, s2, ..• , sk is a random square root, determined by 

S; = sqrt (vi-1) mod n 

In this version, every person must have a different n. The modification makes it 
easier to verify signatures. The time required to generate signatures, and the secu­
rity of those signatures, is unaffected. 

Other Enhancements 
There is also an N-party identification scheme, based on the Fiat-Shamir algo­

rithm [264]. Two other improvements to the Fiat-Shamir scheme are proposed in 
[1218]. Another variant is [1368]. 

Ohta-Okamoto Identification Scheme 
This protocol is a modification of the Feige-Fiat-Shamir identification scheme and 

gets its security from the difficulty of factoring [1198,1199]. The same authors also 
wrote a multisignature scheme (see Section 23.1), by which a number of different 
people can sequentially sign a message [1200]. This scheme has been proposed for 
smart-card implementation [850]. 

Patents 
Fiat-Shamir is patented [1427]. Anyone interested in licensing the algorithm 

should contact Yeda Research and Development, The Weizmann Institute of Sci­
ence, Rehovot 7 6100, Israel. 

21.2 GUILLOU-QUISQUATER 

Feige-Fiat-Shamir was the first practical identity-based protocol. It minimized com­
putation by increasing the number of iterations and accreditations per iteration. For 
some implementations, like smart cards, this is less than ideal. Exchanges with the 
outside world are time-consuming, and the storage required for each accreditation 
can strain the limited resources of the card. 

Louis Guillou and Jean-Jacques Quisquater developed a zero-knowledge identifi­
cation algorithm more suited to applications like these [670,1280]. The exchanges 
between Peggy and Victor and the parallel accreditations in each exchange are 
both kept to an absolute minimum: There is only one exchange of one accredita­
tion for each proof. For the same level of security, the computation required by 
Guillou-Quisquater is greater than by Feige-Fiat-Shamir by a factor of three. And 
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like Feige-Fiat-Shamir, this identification algorithm can be converted to a digital 
signature algorithm. 

Guillou-Quisquater Identification Scheme 
Peggy is a smart card who wants to prove her identity to Victor. Peggy's identity 

consists of a set of credentials: a data string consisting of the card's name, validity 
period, a bank account number, and whatever else the application warrants. This bit 
string is called [. (Actually, the credentials can be a longer string and hashed to a T 
value. This complexity does not modify the protocol in any way.) This is analogous 
to the public key. Other public information, shared by all "Peggys" who could use 
this application, is an exponent v and a modulus n, where n is the product of two 
secret primes. The private key is B, calculated such that [Bv = I (mod n). 

Peggy sends Victor her credentials,[. Now, she wants to prove to Victor that those 
credentials are hers. To do this, she has to convince Victor that she knows B. Here's 
the protocol: 

(I) Peggy picks a random integer r, such that r is between I and n - I. She com­
putes T = rv mod n and sends it to Victor. 

(2) Victor picks a random integer, d, such that dis between zero and v - I. He 
sends d to Peggy. 

(3) Peggy computes D = rBd mod n, and sends it to Victor. 

(4) Victor computes T = Dvld mod n. If T = T (mod n), then the authentication 
succeeds. 

The math isn't that complex: 

r = D7' 1 = (rBdivJd = rvBd7d = rv(!Bv)d = rv = T (mod n) 

since B was constructed to satisfy 

[Bv = I (mod n) 

Guillou-Quisquater Signature Scheme 

This identification can be converted to a signature scheme, also suited for smart­
card implementation [671,672]. 

The public and private key setup is the same as before. Here's the protocol: 

(I) Alice picks a random integer r, such that r is between I and n - I. She com­
putes T = rv mod n. 

(2) Alice computes d = H(M, T), where Mis the message being signed and H(x) 
is a one-way hash function. The d produced by the hash function must be 
between O and v- I [1280]. If the output of the hash function is not within 
this range, it must be reduced modulo v. 
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(3) Alice computes D = rBa mod n. The signature consists of the message, M, 
the two calculated values, d and D, and her credentials, f. She sends this 
signature to Bob. 

(4) Bob computes T = D7a mod n. He then computes d' = H(M,T). If d = d', 
then Alice must know B and the signature is valid. 

Multiple Signatures 

What if many people want to sign the same document? The easy solution has each 
of them signing separately, but this signature scheme can do better than that. Here 
Alice and Bob sign the same document and Carol verifies the signatures, but any 
number of people can be involved in the signature process. As before, Alice and Bob 
have their own unique T and B values: (TA, BA) and ([B, BB). The values n and v are com­
mon to the system. 

( 1) Alice picks a random integer, rA, such that rA is between 1 and n - 1. She 
computes TA= rAv mod n and sends TA to Bob. 

(2) Bob picks a random integer, In, such that rR is between 1 and n - 1. He com­
putes TB= rBv mod n and sends TB to Alice. 

(3) Alice and Bob each compute T = (TATn) mod n. 

(4) Alice and Bob each computed= H(M,T), where Mis the message being 
signed and H(x) is a one-way hash function. The d produced by the hash 
function must be between O and v- 1 [1280]. If the output of the hash func­
tion is not within this range, it must be reduced modulo v. 

(5) Alice computes DA =rABAa modn and sends DA to Bob. 

(6) Bob computes DB= rBBi mod n and sends DR to Alice. 

(7) Alice and Bob each compute D = D ADn mod n. The signature consists of the 
message, M, the two calculated values, d and D, and both of their creden­
tials: !A and [B. 

(8) Carol computes T = !A[B mod n. 

(9) Carol computes T = D7 1 mod n. She then computes d' = H(M, T). If d = d', 
then the multiple signature is valid. 

This protocol can be extended to any number of people. For multiple people to 
sign, they all multiply their individual Ti values together in step (3), and their indi­
vidual D; values together in step (7). To verify a multiple signature, multiply all the 
signers[; values together in step (8). Either all the signatures are valid or there is at 
least one invalid signature. 

21.3 SCHNORR 

Claus Schnorr's authentication and signature scheme [ 1396, 1397] gets its security 
from the difficulty of calculating discrete logarithms. To generate a key pair, first 
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choose two primes, p and q, such that q is a prime factor of p - 1. Then, choose an a 
not equal to 1, such that aCJ = 1 (mod p). All these numbers can be common to a 
group of users and can be freely published. 

To generate a particular public-key/private-key key pair, choose a random num­
ber less than q. This is the private key, s. Then calculate v = a-s mod p. This is the 
public key. 

Authentication Protocol 

( 1) Peggy picks a random number, r, less than q, and computes x = ar mod p. 
This is the preprocessing stage and can be done long before Victor is 
present. 

(2) Peggy sends x to Victor. 

(3) Victor sends Peggy a random number, e, between O and 2' - 1. (I'll discuss t 
in a moment.) 

(4) Peggy computes y = (r + se) mod q and sends y to Victor. 

(5) Victor verifies that x = aYve mod p. 

The security is based on the parameter t. The difficulty of breaking the algorithm 
is about 2'. Schnorr recommended that p be about 512 bits, q be about 140 bits, and 
t be 72. 

Digital Signature Protocol 

Schnorr can also be used as a digital signature protocol on a message, M. The 
public-key/private-key key pair is the same, but we're now adding a one-way hash 
function, H(M). 

( 1) Alice picks a random number, r, less than q, and computes x = a' mod p. 
This computation is the preprocessing stage. 

(2) Alice concatenates Mand x, and hashes the result: 

e=H(M,x) 

(3) Alice computes y = (r + se) mod q. The signature is e and y; she sends these 
to Bob. 

(4) Bob computes x' = aYve mod p. He then confirms that the concatenation of 
M and x' hashes to e. 

e=H(M,x') 

If it does, he accepts the signature as valid. 

In his paper, Schnorr cites these novel features of his algorithm: 

Most of the computation for signature generation can be completed in a prepro­
cessing stage, independent of the message being signed. Hence, it can be done dur-
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ing idle time and not affect the signature speed. An attack against this prepro­
cessing stage is discussed in [475], but I don't think it's practical. 

For the same level of security, the length of signatures is less for Schnorr than 
for RSA. For example, with a 140-bit q, signatures are only 212-bits long, less 
than half the length of RSA signatures. Schnorr's signatures are also much shorter 
than ElGamal signatures. 

Of course, practical considerations may make even fewer bits suitable for a given 
scheme: For example, an identification scheme where the cheater must perform an 
on-line attack in only a few seconds, versus a signature scheme where the cheater 
can calculate for years off-line to come up with a forgery. 

A modification of this algorithm, by Ernie Brickell and Kevin McCurley, enhances 
its security [265]. 

Patents 
Schnorr is patented in the United States [1398] and in many other countries. In 

1993, PKP acquired the worldwide rights to the patent (see Section 25.5). The U.S. 
patent expires on February 19, 2008. 

21.4 CONVERTING IDENTIFICATION SCHEMES TO SIGNATURE 

SCHEMES 

There is a standard method of converting an identification scheme into a signature 
scheme: Replace Victor with a one-way hash function. The message is not hashed 
before it is signed; instead the hashing is incorporated into the signing algorithm. In 
principle, this can be done with any identification scheme. 
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22.1 DIFFIE-HELLMAN 

22 

Diffie-Hellman was the first public-key algorithm ever invented, way back in 1976 
[496]. It gets its security from the difficulty of calculating discrete logarithms in a 
finite field, as compared with the ease of calculating exponentiation in the same 
field. Diffie-Hellman can be used for key distribution-Alice and Bob can use this 
algorithm to generate a secret key-but it cannot be used to encrypt and decrypt 
messages. 

The math is simple. First, Alice and Bob agree on a large prime, n and g, such that 
g is primitive mod n. These two integers don't have to be secret; Alice and Bob can 
agree to them over some insecure channel. They can even be common among a 
group of users. It doesn't matter. 

Then, the protocol goes as follows: 

( 1) Alice chooses a random large integer x and sends Bob 

X=gx modn 

(2) Bob chooses a random large integer y and sends Alice 

Y=gYmodn 

(3) Alice computes 

k= yxmodn 

(4) Bob computes 

k' =XY modn 

Both k and k' are equal to gxy mod n. No one listening on the channel can compute 
that value; they only known, g, X, and Y Unless they can compute the discrete log-
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arithm and recover x or y, they do not solve the problem. So, k is the secret key that 
both Alice and Bob computed independently. 

The choice of g and n can have a substantial impact on the security of this system. 
The number (n - 1)/2 should also be a prime [1253]. And most important, n should 
be large: The security of the system is based on the difficulty of factoring numbers 
the same size as n. You can choose any g, such that g is primitive mod n; there's no 
reason not to choose the smallest g you can-generally a one-digit number. (And 
actually, g does not have to be primitive; it just has to generate a large subgroup of 
the multiplicitive group mod n.) 

Diffie-Hellman with Three or More Parties 
The Diffie-Hellman key-exchange protocol can easily be extended to work with 

three or more people. In this example, Alice, Bob, and Carol together generate a 
secret key. 

( 1) Alice chooses a random large integer x and sends Bob 

X=gxmodn 

(2) Bob chooses a random large integer y and sends Carol 

Y=gY mod n 

(3) Carol chooses a random large integer z and sends Alice 

Z=g 2 modn 

(4) Alice sends Bob 

Z'= zxmod n 

(5) Bob sends Carol 

X'=XYmodn 

(6) Carol sends Alice 

Y'= Y2 modn 

(7) Alice computes 

k = Y'xmodn 

(8) Bob computes 

k =Z'Y mod n 

(9) Carol computes 

k =X' 2 mod n 

The secret key, k, is equal to gxyz mod n, and no one else listening in on the com­
munications can compute that value. The protocol can be easily extended to four or 
more people; just add more people and more rounds of computation. 
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Extended Di/fie-Hellman 
Diffie-Hellman also works in commutitive rings [1253]. Z. Shmuley and Kevin 

McCurley studied a variant of the algorithm where the modulus is a composite 
number [1442,1038]. V. S. Miller and Neal Koblitz extended this algorithm to ellip­
tic curves [1095,867]. Taher ElGamal used the basic idea to develop an encryption 
and digital signature algorithm (see Section 19.6). 

This algorithm also works in the Galois field GF(2k) [1442, 1038]. Some imple­
mentations take this approach [884,1631,1632], because the computation is much 
quicker. Similarly, cryptanalytic computation is equally fast, so it is important to 
carefully choose a field large enough to ensure security. 

Hughes 
This variant of Diffie-Hellman allows Alice to generate a key and send it to 

Bob [745]. 

( 1) Alice chooses a random large integer x and generates 

k =gx modn 

(2) Bob chooses a random large integer y and sends Alice 

Y=gYmodn 

(3) Alice sends Bob 

X= yx modn 

(4) Bob computes 

z =y-1 

k' =X 2 modn 

If everything goes correctly, k = k'. 
The advantage of this protocol over Diffie-Hellman is that k can be computed 

before any interaction, and Alice can encrypt a message using k prior to contacting 
Bob. She can send it to a variety of people and interact with them to exchange the 
key individually later. 

Key Exchange Without Exchanging Keys 
If you have a community of users, each could publish a public key, X =~mod n, 

in a common database. If Alice wants to communicate with Bob, she just has to 
retrieve Bob's public key and generate their shared secret key. She could then 
encrypt a message with that key and send it to Bob. Bob would retrieve Alice's pub­
lic key to generate the shared secret key. 

Each pair of users would have a unique secret key, and no prior communication 
between users is required. The public keys have to be certified to prevent spoofing 
attacks and should be changed regularly, but otherwise this is a pretty clever idea. 
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Patents 
The Diffie-Hellman key-exchange algorithm is patented in the United States [718] 

and Canada [719]. A group called Public Key Partners (PKP) licenses the patent, 
along with other public-key cryptography patents (see Section 25.5 ). The U.S. patent 
will expire on April 29, 1997. 

22.2 STATION-TO-STATION PROTOCOL 

Diffie-Hellman key exchange is vulnerable to a man-in-the-middle attack. One way to 
prevent this problem is to have Alice and Bob sign their messages to each other [500]. 

This protocol assumes that Alice has a certificate with Bob's public key and that 
Bob has a certificate with Alice's public key. These certificates have been signed by 
some trusted authority outside this protocol. Here's how Alice and Bob generate a 
secret key, k. 

( 1) Alice generates a random number, x, and sends it to Bob. 

(2) Bob generates a random number, y. Using the Diffie-Hellman protocol he 
computes their shared key based on x and y: k. He signs x and y, and 
encrypts the signature using k. He then sends that, along with y, to Alice. 

y,E1,(SB(x,y)) 

(3) Alice also computes k. She decrypts the rest of Bob's message and verifies 
his signature. Then she sends Bob a signed message consisting of x and y, 
encrypted in their shared key. 

Ek(SA(x,y)) 

(4) Bob decrypts the message and verifies Alice's signature. 

22.3 SHAMIR'S THREE-PASS PROTOCOL 

This protocol, invented by Adi Shamir but never published, enables Alice and Bob 
to communicate securely without any advance exchange of either secret keys or 
public keys [ 1008]. 

This assumes the existence of a symmetric cipher that is commutative, that is: 

Alice's secret key is A; Bob's secret key is B. Alice wants to send a message, M, to 
Bob. Here's the protocol. 

( 1) Alice encrypts M with her key and sends Bob 

C1=EA(M) 

(2) Bob encrypts C1 with his key and sends Alice 

C2 = EB(EA(M)) 
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(3) Alice decrypts C2 with her key and sends Bob 

C3 = DA(Es(EA(M))) = DA(EA(Es(M))) = Es(M) 

(4) Bob decrypts Ca with his key to recover M. 

One-time pads are commutative and have perfect secrecy, but they will not work 
with this protocol. With a one-time pad, the three ciphertext messages would be: 

C1 =PEBA 

C2 = P EB A EBB 

Ca= P EBB 

Eve, who can record the three messages as they pass between Alice and Bob, sim­
ply XORs them together to retrieve the message: 

C1 EB C2 EB Ca= (P EB A) EB (P EB A EBB) EB (P EBB)= P 

This clearly won't work. 
Shamir (and independently, Jim Omura) described an encryption algorithm that 

will work with this protocol, one similar to RSA. Let p be a large prime for which p 
- 1 has a large prime factor. Choose an encryption key, e, such that e is relatively 
prime top - 1. Calculated such that de = 1 (mod p - 1 ). 

To encrypt a message, calculate 

C=Me modp 

To decrypt a message, calculate 

M= ca modp 

There seems to be no way for Eve to recover M without solving the discrete loga­
rithm problem, but this has never been proved. 

Like Diffie-Hellman, this protocol allows Alice to initiate secure communica­
tion with Bob without knowing any of his keys. For Alice to use a public-key algo­
rithm, she has to know his public key. With Shamir's three-pass protocol, she just 
sends him a ciphertext message. The same thing with a public-key algorithm 
looks like: 

( 1) Alice asks Bob ( or a KDC) for his public key. 

(2) Bob (or the KDC) sends Alice his public key. 

(3) Alice encrypts M with Bob's public key and sends it to Bob. 

Shamir's three-pass protocol will fall to a man-in-the-middle attack. 

22.4 COMSET 

COMSET (COMmunications SETup) is a mutual identification and key exchange 
protocol developed for the RIPE project [1305] (see Section 25.7). Using public-key 
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cryptography, it allows Alice and Bob to identify themselves to each other and also 
to exchange a secret key. 

The mathematical principle behind COMSET is Rabin's scheme [1283] (see Sec­
tion 19.5). The scheme itself was originally proposed in [224]. See [1305] for details. 

22.5 ENCRYPTED KEY EXCHANGE 

The Encrypted Key Exchange (EKE) protocol was designed by Steve Bellovin and 
Michael Merritt [109]. It provides security and authentication on computer net­
works, using both symmetric and public-key cryptography in a novel way: A shared 
secret key is used to encrypt a randomly generated public key. 

The Basic EKE Protocol 

Alice and Bob (two users, a user and the host, or whoever) share a common pass­
word, P. Using this protocol, they can authenticate each other and generate a com­
mon session key, K. 

( 1) Alice generates a random public-key /private-key key pair. She encrypts the 
public key, K', using a symmetric algorithm and P as the key: Ep(K'). She 
sends Bob 

A,Ep(K') 

(2) Bob knows P. He decrypts the message to obtain K'. Then, he generates a 
random session key, K, and encrypts it with the public key he received 
from Alice and P as the key. He sends Alice 

Ep(EK'(K)) 

(3) Alice decrypts the message to obtain K. She generates a random string, RA, 
encrypts it with K, and sends Bob 

EK(RA) 

(4) Bob decrypts the message to obtain RA. He generates another random 
string, RR, encrypts both strings with K, and sends Alice the result. 

EK(RA, RB) 

(5) Alice decrypts the message to obtain RA and Rn. Assuming the RA she 
received from Bob is the same as the one she sent to Bob in step (3), she 
encrypts Rn with Kand sends it to Bob. 

EK(RR) 

(6) Bob decrypts the message to obtain RB. Assuming the RR he received from 
Alice is the same one he sent to Alice in step (4), the protocol is complete. 
Both parties now communicate using K as the session key. 

At step (3 ), both Alice and Bob know K' and K. K is the session key and can be used 
to encrypt all other messages between Alice and Bob. Eve, sitting between Alice and 
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Bob, only knows Ep(K'), Ep(EK·(K)), and some messages encrypted with K. In other pro­
tocols, Eve could make guesses at P (people choose bad passwords all the time, and if 
Eve is clever she can make some good guesses) and then test her guesses. In this pro­
tocol, Eve cannot test her guess without cracking the public-key algorithm as well. 
And if both K' and Kare chosen randomly, this can be an insurmountable problem. 

The challenge-response portion of the protocol, steps (3) through (6), provides val­
idation. Steps (3) through (5) prove to Alice that Bob knows K; steps (4) through (6) 
prove to Bob that Alice knows K. The Kerberos protocol timestamp exchange 
accomplishes the same thing. 

EKE can be implemented with a variety of public-key algorithms: RSA, ElGamal, 
Diffie-Hellman. There are security problems with implementing EKE with a lrnap­
sack algorithm (aside from the inherent insecurity of knapsack algorithms): The 
normal distribution of the ciphertext messages negates the benefits of EKE. 

Implementing EKE with RSA 
The RSA algorithm seems perfect for this application, but there are some subtle 

problems. The authors recommend encrypting only the encryption exponent in step 
( 1) and sending the modulus in the clear. An explanation of the reasoning behind 
this recommendation, as well as other subtleties involved in using RSA, is in [109]. 

Implementing EKE with ElGamal 
Implementing EKE with the ElGamal algorithm is straightforward, and there is 

even a simplification of the basic protocol. Using the notation from Section 19.6, g 
and pare parts of the public key and are common to all users. The private key is a 
random number r. The public key is gr mod p. The message Alice sends to Bob in 
step ( 1) becomes 

Alice, g mod p 

Note that this public key does not have to be encrypted with P. This is not true in 
general, but it is true for the ElGamal algorithm. Details are in [109]. 

Bob chooses a random number, R (for the ElGamal algorithm and independent of 
any random numbers chosen for EKE), and the message he sends to Alice in step (2) 
becomes 

Ep(gR mod p, KgRr mod p) 

Refer back to Section 19.6 for restrictions on choosing the variables for ElGamal. 

Implementing EKE with Di/fie-Hellman 
With the Diffie-Hellman protocol, K is generated automatically. The final proto­

col is even simpler. A value for g and n is set for all users on the network. 

(1) Alice picks a random number, rA, and sends Bob 

A,gAmodn 

With Diffie-Hellman, Alice does not have to encrypt her first message 
with P. 
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(2) Bob picks a random number, rB, and calculates 

K = g'A * rB mod n 

He generates a random string RB, then calculates and sends Alice: 

Er(g'B mod n), EK(RB) 

(3) Alice decrypts the first half of Bob's message to obtain grB mod n. Then she 
calculates K and uses K to decrypt RR. She generates another random 
string, RA, encrypts both strings with K, and sends Bob the result. 

EK(RA, RB) 

(4) Bob decrypts the message to obtain RA and RR. Assuming the RB he received 
from Alice is the same as the one he sent to Alice in step (2), he encrypts RA 
with Kand sends it to Alice. 

EK(RA) 

(5) Alice decrypts the message to maintain RA. Assuming the RA she received 
from Bob is the same as the one she sent to Bob in step (3), the protocol is 
complete. Both parties now communicate using K as the session key. 

Strengthening EKE 

Bellovin and Merritt suggest an enhancement of the challenge-and-response por­
tion of the protocol-to prevent a possible attack if a cryptanalyst recovers an old 
K value. 

Look at the basic EKE protocol. In step (3), Alice generates another random num­
ber, SA, and sends Bob 

EK(RA, SA) 

In step (4), Bob generates another random number, SB, and sends Alice 

E1dRA, RB, SR) 

Alice and Bob now can both calculate the true session key, SA EB SB. This key is 
used for all future messages between Alice and Bob; K is just used as a key­
exchange key. 

Look at the levels of protection EKE provides. A recovered value of S gives Eve no 
information about P, because Pis never used to encrypt anything that leads directly 
to S. A cryptanalytic attack on K is also not feasible; K is used only to encrypt ran­
dom data, and Sis never encrypted alone. 

Augmented EKE 

The EKE protocol suffers from one serious disadvantage: It requires that both par­
ties possess the P. Most password-based authentication systems store a one-way 
hash of the user's password, not the password itself (see Section 3.2). The Aug­
mented EKE (A-EKE) protocol uses a one-way hash of the user's password as the 
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superencryption key in the Diffie-Hellman variant of EKE. The user then sends an 
extra message based on the original password; this message authenticates the newly 
chosen session key. 

Here's how it works. As usual, Alice and Bob want to authenticate each other and 
generate a common key. They agree on some digital signature scheme where any 
number can serve as the private key, and where the public key is derived from the 
private key, rather than being generated along with it. The ElGamal and DSA algo­
rithms work well for this. Alice's password P (or perhaps some simple hash of it) will 
serve as the private key and as P'. 

( 1) Alice picks her random exponent R 0 and transmits 

Ep•(gRA mod n) 

(2) Bob, who knows only P' and cannot derive P from it, chooses Rb and sends 

E/Y(gRA mod n) 

(3) Both Alice and Bob calculate the shared session key K = grA • rs mod n. 
Finally, Alice proves that she knows P itself, and not just P', by sending 

EK(Sp(K)) 

Bob, who knows both Kand P', can decrypt and validate the signature. Only Alice 
could have sent this message, since only she knows P; an intruder who obtains a 
copy of Bob's password file can try guessing at P, but cannot otherwise sign the ses­
sion key. 

The A-EKE scheme does not work with the public-key variant of EKE, since in it 
one party chooses the session key and imposes it on the other. This permits a man­
in-the-middle attack by an attacker who has captured P'. 

Applications of EKE 

Bellovin and Merritt suggest using this protocol for secure public telephones [109]: 

Let us assume that encrypting public telephones are deployed. If someone wishes 
to use one of these phones, some sort of keying information must be provided. 
Conventional solutions ... require that the caller possess a physical key. This is 
undesirable in many situations. EKE permits use of a short, keypad-entered pass­
word, but uses a much longer session key for the call. 

EKE would also be useful with cellular phones. Fraud has been a problem in the 
cellular industry; EKE can defend against it (and ensure the privacy of the call) by 
rendering a phone useless if a PIN has not been entered. Since the PIN is not 
stored within the phone, it is not possible to retrieve one from a stolen unit. 

EKE's primary strength is that both symmetric and public-key cryptography work 
together in a manner that strengthens them both: 

From a general perspective, EKE functions as a privacy amplifier. That is, it can 
be used to strengthen comparatively weak symmetric and asymmetric systems 
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when used together. Consider, for example, the key size needed to maintain secu­
rity when using exponential key exchange. As LaMacchia and Odlyzko have 
shown [934], even modulus sizes once believed to be safe (to wit, 192 bits) are vul­
nerable to an attack requiring only a few minutes of computer time. But their 
attack is not feasible if one must first guess a password before applying it. 

Conversely, the difficulty of cracking exponential key exchange can be used to 
frustrate attempts at password-guessing. Password-guessing attacks are feasible 
because of how rapidly each guess may be verified. If performing such verification 
requires solving an exponential key exchange, the total time, if not the concep­
tual difficulty, increases dramatically. 

EKE is patented [111]. 

22.6 FORTIFIED KEY NEGOTIATION 

This scheme also protects key-negotiation schemes from poorly chosen passwords 
and man-in-the-middle attacks [47,983]. It uses a hash function of two variables that 
has a very special property: It has many collisions on the first variable while having 
effectively no collisions on the second variable. 

H'(x, y) = H(H(k, x) mod 2m, x), 
where H(k, x) is an ordinary hash function on k and x 

Here's the protocol. Alice and Bob share a secret password, P, and have just 
exchanged a secret key, K, using Diffie-Hellman key exchange. They use P to check 
that their two session keys are the same (and that Eve is not attempting a man-in­
the-middle attack), without giving P away to Eve. 

( 1) Alice sends Bob 

H' (P, K) 

(2) Bob computes H' (P, K) and compares his result with what he received from 
Alice. If they match he sends Alice 

H' (H(P, K)) 

(3) Alice computes H' (H(P, K)) and compares her result with what she 
received from Bob. 

If Eve is trying a man-in-the-middle attack, she shares one key, K1, with Alice, and 
another key, K2, with Bob. To fool Bob in step (2), she has to figure out the shared 
password and then send Bob H' * (P, K 2). With a normal hash function she can try 
common passwords until she guesses the correct one, and then successfully infil­
trate the protocol. But with this hash function, many passwords are likely to pro­
duce the same value when hashed with K1• So when she finds a match, she will 
probably have the wrong password, and hence Bob will not be fooled. 
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22. 7 CONFERENCE KEY DISTRIBUTION AND SECRET 

BROADCASTING 

Alice wants to broadcast a message, M, from a single transmitter. However, she 
doesn't want it to be intelligible by every listener. In fact, she only wants a select 
subset of listeners to be able to recover M. Everyone else should get nonsense. 

Alice can share a different key (secret or public) with each listener. She encrypts 
the message in some random key, K. Then she encrypts a copy of K with each of the 
keys of her intended recipients. Finally, she broadcasts the encrypted message and 
then all of the encrypted Ks. Bob, who is listening, either tries to decrypt all the Ks 
with his secret key, looking for one that is correct, or, if Alice doesn't mind every­
one knowing who her message is for, he looks for his name followed by an encrypted 
key. Multiple-key cryptography, previously discussed, also works. 

Another method is suggested in [352]. First, each listener shares a secret key with 
Alice, one that is larger than any possible encrypted message. All of those keys 
should be pairwise prime. She encrypts the message in a random key, K. Then. she 
computes a single integer, R, such that R modulo a secret key is congruent to K 
when that secret key is supposed to decrypt the message, and R modulo a secret key 
is otherwise congruent to zero. 

For example, if Alice wants the secret to be received by Bob, Carol, and Ellen, 
but not by Dave and Frank, she encrypts the message with Kand then computes R 
such that 

R = K(modKn) 

R = K(modKc) 

R = 0 (mod Kv) 

R = K (mod KE) 

R = 0 (mod KF) 

This is a straightforward algebra problem, one that Alice can solve easily. When 
listeners receive the broadcast, they compute the received key modulo their secret 
key. If they were intended to receive the message, they recover the key. Otherwise, 
they recover nothing. 

Yet a third way, using a threshold scheme (see Section 3.7), is suggested in [141]. 
Like the others, every potential receiver gets a secret key. This key is a shadow in a 
yet-uncreated threshold scheme. Alice saves some secret keys for herself, adding 
some randomness to the system. Let's say there are k people out there. 

Then, to broadcast M, Alice encrypts M with key Kand does the following. 

( 1) Alice chooses a random number, j. This number serves to hide the number 
of recipients of the message. It doesn't have to be very large; it can be as 
small as 0. 
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(2) Alice creates a (k + i + 1, 2k + i + 1) threshold scheme, with: 

K as the secret. 

The secret keys of the intended recipients as shadows. 

The secret keys of nonrecipients not as shadows. 

i randomly chosen shadows, not the same as any of the secret 
keys. 

(3) Alice broadcasts k + j randomly chosen shadows, none of which is any of 
the shadows listed in step (2). 

(4) All listeners who receive the broadcast add their shadow to the k + j shad­
ows they received. If adding their shadow allows them to calculate the 
secret, then they have recovered the key. If it does not, then they haven't. 

Another approach can be found in [885,886, 1194]. For yet another approach, 
see [1000]. 

Conference Key Distribution 

This protocol allows a group of n users to agree on a secret key using only insecure 
channels. The group shares two large primes, p and q, and a generator g the same 
size as q. 

(1) User i, where i goes from 1 ton, chooses a random r; less than q, and 
broadcasts 

Z; =g1 modp 

(2) Every user verifies that z/ 1 = 1 (mod p), for all i from 1 ton. 

(3) User i broadcasts 

x 1 = (z; + 1/z 1 _ 1)' 1 mod p 

(4) User i computes 

K = (z )nri * x.11 - I * X· n - 2 * * X· mod p 
1 - I 1 1 + I · · • 1 - 2 

All index computations in the above protocol-i - 1, i - 2, and i + 1-should be 
computed mod n. At the end of the protocol, all honest users have the same K. No 
one else gets anything. However, this protocol falls to a man-in-the-middle attack. 
Another protocol, not quite as pretty, is in [757]. 

Tatebayashi-Matsuzaki-Newman 

This key distribution protocol is suitable for networks [1521]. Alice wants to gen­
erate a session key with Bob using Trent, the KDC. All parties know Trent's public 
key, n. Trent knows the two large primes that n factors to, and hence can easily take 
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cube roots modulo n. A lot of the details are left out of the following protocol, but 
you get the idea. 

( 1) Alice chooses a random number, rA, and sends Trent 

r} modn 

(2) Trent tells Bob that someone wants to exchange a key with him. 

(3) Bob chooses a random number, r3, and sends Trent 

ri' modn 

(4) Trent uses his private key to recover rA and r3 . He sends Alice 

(5) Alice calculates 

(rA EB rB) EB rA = rB 

She uses this r3 to communicate securely with Bob. 

This protocol looks good, but it has a horrible flaw. Carol can listen in on step (3) 
and use that information, with the help of an unsuspecting Trent and another mali­
cious user (Dave), to recover r3 [1472]. 

(1) Carol chooses a random number, rc, and sends Trent 

(2) Trent tells Dave that someone wants to exchange a key with him. 

(3) Dave chooses a random number, rD, and sends Trent 

rD3 modn 

(4) Trent uses his private key to recover re and rD. He sends Carol 

(r3rc) mod n EB rD 

(5) Dave sends rD to Carol. 

(6) Carol uses rc andrD to recover r8 • She uses r3 to eavesdrop on Alice and Bob. 

This is not good. 
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This is a generalization of RSA (see Section 19.3) [217,212]. The modulus, n, is the 
product of two primes, p and q. However, instead of choosing e and d such that ed 
= 1 mod ((p- l)(q- 1)), choose t keys, K;, such that 

K1 * K2 * ... * Kt = 1 mod ((p - 1 )(q - 1)) 

Since 

this is a multiple-key scheme as described in Section 3.5. 
If, for example, there are five keys, a message encrypted with K, and K5 can be 

decrypted with K 1, K2, and K4: 

C = MK3 · Ks mod n 
M = CK1 · K2 · K4 mod n 

One use for this is multisignatures. Imagine a situation where both Alice and Bob 
have to sign a document for it to be valid. Use three keys: K1, K2, and K,. The first 
two are issued one each to Alice and Bob, and the third is made public. 

( 1) First Alice signs Mand sends it to Bob. 

M' = AfK1 mod n 

(2) Bob can recover M from M'. 

M = M'K2 · K3 mod n 

(3) He can also add his signature. 

M" = M'K2 mod n 
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(4) Anyone can verify the signature with K3, the public key. 

M = M"K3 mod n 

Note that a trusted party is needed to set this system up and distribute the keys 
to Alice and Bob. Another scheme with the same problem is [484]. Yet a third 
scheme is [695,830,700], but the effort in verification is proportional to the number 
of signers. Newer schemes [220, 1200] based on zero-knowledge identification 
schemes solve both shortcomings of the previous systems. 

23.2 SECRET-SHARING ALGORITHMS 

Back in Section 3. 7 I discussed the idea behind secret-sharing schemes. The four dif­
ferent algorithms that follow are all particular cases of a general theoretical frame­
work [883]. 

LaGrange Interpolating Polynomial Scheme 
Adi Shamir uses polynomial equations in a finite field to construct a threshold 

scheme [1414]. Choose a prime, p, which is both larger than the number of possible 
shadows and larger than the largest possible secret. To share a secret, generate an 
arbitrary polynomial of degree m - 1. For example, if you want to create a (3,n)­
threshold scheme ( three shadows are necessary to reconstruct M), generate a 
quadratic polynomial 

(ax2 +bx+ M) modp 

where pis a random prime larger than any of the coefficients. The coefficients a and 
b are chosen randomly; they are kept secret and discarded after the shadows are 
handed out. Mis the message. The prime must be made public. 

The shadows are obtained by evaluating the polynomial at n different points: 

k; = F(x1) 

In other words, the first shadow could be the polynomial evaluated at x = 1, the sec­
ond shadow could be the polynomial evaluated at x = 2, and so forth. 

Since the quadratic polynomial has three unknown coefficients, a, b, and M, any 
three shadows can be used to create three equations. Two shadows cannot. One 
shadow cannot. Four or five shadows are redundant. 

For example, let M be 11. To construct a (3, 5 )-threshold scheme, where any three 
of five people can reconstruct M, first generate a quadratic equation (7 and 8 were 
chosen randomly): 

F(x) = (7x2 + 8x + 11) mod 13 

The five shadows are: 

k 1 = F(l) = 7 + 8 + 11 = 0 (mod 13) 

k 2 = F(2) = 28 + 16 + 11 = 3 (mod 13) 

k, = F(3) = 63 + 24 + 11 = 7 (mod 13) 
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.k4 = F(4) = 112 + 32 + 11 = 12 (mod 13) 

.ks= F(5) = 175 + 40 + 11 = 5 (mod 13) 

To reconstruct M from three of the shadows, for example .k2, .k3, and .ks, solve the 
set of linear equations: 

a * 22 + b * 2 + M = 3 (mod 13) 

a * 32 + b * 3 + M = 7 (mod 13) 

a * 52 + b * 5 + M = 5 (mod 13) 

The solution will be a = 7, b = 8, and M = 11. So Mis recovered. 
This sharing scheme can be easily implemented for larger numbers. If you want to 

divide the message into 30 equal parts such that any six can get together and repro­
duce the message, give each of the 30 people the evaluation of a polynomial of 
degree 6. 

F(x) =(ax'+ bx5 + cx4 + dx3 + ex2 + fx + M) mod p 

Six people can solve for the six unknowns (including M); five people cannot learn 
anything about M. 

The most mind-boggling aspect of secret sharing is that if the coefficients are 
picked randomly, five people with infinite computing power can't learn anything 
more than the length of the message (which each of them knows anyway). This is as 
secure as a one-time pad; an attempt at exhaustive search (that is, trying all possible 
sixth shadows) will reveal that any conceivable message could be the secret. This is 
true for all the secret-sharing schemes presented here. 

Vector Scheme 
George Blakley invented a scheme using points in space [182]. The message is 

defined as a point in m-dimensional space. Each shadow is the equation of an 
(m - 1 )-dimensional hyperplane that includes the point. The intersection of any m 
of the hyperplanes exactly determines the point. 

For example, if three shadows are required to reconstruct the message, then it is a 
point in three-dimensional space. Each shadow is a different plane. With one shadow, 
you know the point is somewhere on the plane. With two shadows, you know the 
point is somewhere on the line formed where the two planes intersect. With three 
shadows, you can determine the point exactly: the intersection of the three planes. 

Asmuth-Bloom 
This scheme uses prime numbers [65]. For an (m, n)-threshold scheme, choose a 

large prime, p, greater than M. Then choose n numbers less than p, d 1, d2, ••• , dn, 
such that: 

1. The d values are in increasing order; d; < d; + 1 

2. Each d, is relatively prime to every other d; 

3. d1 * dz * ... * dm > p * dn - m + 2 * dn - m + 3 * ... * dn 
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To distribute the shadows, first choose a random valuer and compute 

M'=M+rp 

The shadows, k, are 

ki=M'moddi 

Any m shadows can get together and reconstruct M using the Chinese remainder 
theorem, but any m - 1 cannot. See [65] for details. 

Karnin-Greene-Hellman 

This scheme uses matrix multiplication [818]. Choose n + 1 m-dimensional vec­
tors, V0, V 1, ••• , V"' such that any possible m * m matrix formed out of those vec­
tors has rank m. The vector U is a row vector of dimension m + 1. 

M is the matrix product U V0 • The shadows are the products U Vi, where i is a 
number from 1 to n. 

Any m shadows can be used to solve the m * m system of linear equations, where 
the unknowns are the coefficients of U. UV 0 can be computed from U. Any m - 1 
shadows cannot solve the system of linear equations and therefore cannot recover 
the secret. 

Advanced Threshold Schemes 
The previous examples illustrate only the simplest threshold schemes: Divide a 

secret into n shadows such that any m can be used to recover the secret. These algo­
rithms can be used to create far more complicated schemes. The following examples 
will use Shamir's algorithm, although any of the others will work. 

To create a scheme in which one person is more important than another, give 
that person more shadows. If it takes five shadows to recreate a secret and one per­
son has three shadows while everyone else has only one, then that person and two 
other people can recreate the secret. Without that person, it takes five to recreate 
the secret. 

Two or more people could get multiple shadows. Each person could have a differ­
ent number of shadows. No matter how the shadows are distributed, any m of them 
can be used to reconstruct the secret. Someone with m - 1 shadows, be it one per­
son or a roomful of people, cannot do it. 

In other types of schemes, imagine a scenario with two hostile delegations. You 
can share the secret so that two people from the 7 in Delegation A and 3 people from 
the 12 in Delegation Bare required to reconstruct the secret. Make a polynomial of 
degree 3 that is the product of a linear expression and a quadratic expression. Give 
everyone from Delegation A a shadow that is the result of an evaluation of the lin­
ear equation; give everyone from Delegation Ba shadow that is the evaluation of the 
quadratic equation. 

Any two shadows from Delegation A can be used to reconstruct the linear equa­
tion, but no matter how many other shadows the group has, they cannot get any 
information about the secret. The same is true for Delegation B: They can get three 
shadows together to reconstruct the quadratic equation, but they cannot get any 
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more information necessary to reconstruct the secret. Only when the two delega­
tions share their equations can they be multiplied to reconstruct the secret. 

In general, any type of sharing scheme that can be imagined can be implemented. 
All you have to do is to envision a system of equations that corresponds to the par­
ticular scheme. Some excellent papers on generalized secret-sharing schemes are 
[1462, 1463, 1464]. 

Sharing a Secret with Cheaters 
This algorithm modifies the standard (m, n)-threshold scheme to detect cheaters 

[1529]. I demonstrate this using the LaGrange scheme, although it works with the 
others as well. 

Choose a prime, p, that is both larger than n and larger than 

(s-l)(m-1)/e+m 

wheres is the largest possible secret and e is the probability of successful cheating. 
You can make e as small as you want; it just makes the computation more complex. 
Construct your shadows as before, except instead of using 1, 2, 3, ... , n for x 1, 

choose random numbers between 1 and p - 1 for x 1• 

Now, when Mallory sneaks into the secret reconstruction meeting with his false 
share, his share has a high probability of not being possible. An impossible secret is, 
of course, a fake secret. See [1529] for the math. 

Unfortunately, while Mallory is exposed as a cheater, he still learns the secret 
(assuming that there are m other valid shares). Another protocol, from [1529,975], 
prevents that. The basic idea is to have a series of k secrets, such that none of the 
participants knows beforehand which is correct. Each secret is larger than the one 
before, except for the real secret. The participants combine their shadows to gener­
ate one secret after the other, until they create a secret that is less than the previous 
secret. That's the correct one. 

This scheme will expose cheaters early, before the secret is generated. There are 
complications when the participants deliver their shadows one at a time; refer to the 
papers for details. Other papers on the detection and prevention of cheaters in 
threshold schemes are [355,114,270]. 

23 .3 SUBLIMINAL CHANNEL 

Ong-Schnorr-Shamir 
This subliminal channel (see Section 4.2), designed by Gustavus Simmons 

[1458, 1459, 1460], uses the Ong-Schnorr-Shamir identification scheme (see Section 
20.5 ). As in the original scheme, the sender (Alice) chooses a public modulus, n, and 
a private key, k, such that n and k are relatively prime. Unlike the original scheme, 
k is shared between Alice and Bob, the recipient of the subliminal message. 

The public key is calculated: 

h =-k 2 modn 
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If Alice wants to send the subliminal message M by means of the innocuous mes­
sage M', she first confirms that M' and n are relatively prime, and that Mand n are 
relatively prime. 

Alice calculates 

S1 = 1/2 * ((M'/M + M)) mod n 

S2 = k/2 * ((M'/M - M)) mod n 

Together, the pair, S1 and S2, is the signature under the traditional Ong-Schnorr­
Shamir scheme and the carrier of the subliminal message. 

Walter the warden (remember him?) can authenticate the message as described by 
the Ong-Schnorr-Shamir signature scheme, but Bob can do better. He can authenti­
cate the message (it is always possible that Walter can make his own messages). He 
confirms that 

S12 - S22/k 2 = M' (mod n) 

If the message is authentic, the receiver can recover the subliminal message using 
this formula: 

M = M'/(S 1 + S2k- 1) mod n 

This works, but remember that the basic Ong-Schnorr-Shamir has been broken. 

EIGamal 
Simmons's second subliminal channel [ 1459], described in [ 1407, 14 73 ], is based 

on the ElGamal signature scheme (see Section 19.6). 
Key generation is the same as the basic ElGamal signature scheme. First choose a 

prime, p, and two random numbers, g and r, such that both g and r are less than p. 
Then calculate 

K=gmodp 

The public key is K, g, and p. The private key is r. Besides Alice, Bob also knows 
r; it is the key that is used to send and read the subliminal message in addition to 
being the key used to sign the innocuous message. 

To send a subliminal message M using the innocuous message M', M and p must 
be all relatively prime to each other, and Mand p - 1 must be relatively prime. Alice 
calculates 

X=gMmodp 

and solves the following equation for Y (using the extended Euclidean algorithm): 

M' = rX + MY mod (p - 1) 

As in the basic ElGamal scheme, the signature is the pair: X and Y. 
Walter can verify the ElGamal signature. He confirms that 

KxxY = gM' (modp) 

Bob can recover the subliminal message. First he confirms that 

(gr)XXY = gM' (modp) 
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If it does, he accepts the message as genuine (not from Walter). 
Then, to recover M, he computes 

M = (Y-1 (M' -rX)) mod (p- 1) 

For example, let p = 11 and g = 2. The private key, r, is chosen to be 8. This 
means the public key, which Walter can use to verify the signature, is g' mod p = 
28 mod 11 = 3. 

To send the subliminal message M = 9, using innocuous message M' = 5, Alice con­
firms that 9 and 11 are relatively prime and that 5 and 11 are relatively prime. She 
also confirms that 9 and 11 - 1 = 10 are relatively prime. They are, so she calculates 

X = gM mod p = 29 mod 11 = 6 

Then, she solves the following equation for Y. 

5 = 8 * 6 + 9 * Y mod 10 

Y = 3, so the signature is the pair, X and Y. 6 and 3. 
Bob confirms that 

(gr)XXY == gM' (modp) 

(28 )663 == 25 (mod 11) 

It does (do the math yourself if you don't trust me), so he then recovers the sublim­
inal message by calculating 

ESIGN 

M = (Y-1 (M' -rX)) mod (p - 1) = 3-1(5 - 8 * 6) mod 10 = 7(7) mod 10 = 
49 mod 10 = 9 

A subliminal channel can be added to ESIGN [1460] (see Section 20.6). 
In ESIGN, the secret key is a pair of large prime numbers, p and q, and the public 

key is n = p 2q. With a subliminal channel, the private key is three primes, p, q, and 
r, and the public key is n, such that 

n = p 2qr 

The variable, r, is the extra piece of information that Bob needs to read the sublimi­
nal message. 

To sign a normal message, Alice first picks a random number, x, such that xis less 
than pqr and computes: 

w, the least integer that is larger than (H(m) - xk mod n)/pqr) 

s = x + ((w/kxk - 1) mod p)pqr 

H(m) is the hash of the message; k is a security parameter. The values is the signature. 
To verify the signature, Bob computes sk mod n. He also computes a, which is the 

least integer larger than the number of bits of n divided by 3. If H(m) is less than or 
equal to sk mod n, and if sk mod n is less than H(m) + 2a, then the signature is con­
sidered valid. 

To send a subliminal message, M, using the innocuous message, M', Alice calcu-
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lates s using Min place of H(m). This means that the message must be smaller than 
p 2qr. She then chooses a random value, u, and calculates 

x' = M' + ur 

Then, use this x' value as the "random number" x to sign M'. This seconds value 
is sent as a signature. 

Walter can verify thats (the seconds) is a valid signature of M'. 
Bob can also authenticate the message in the same way. But, since he also knows 

r, he can calculate 

s = x' + ypqr = M + ur + ypqr "'= M (mod r) 

This implementation of a subliminal channel is far better than the previous two. 
In the Ong-Schnorr-Shamir and ElGamal implementations, Bob has Alice's private 
key. Besides being able to read subliminal messages from Alice, Bob can imperson­
ate Alice and sign normal documents. Alice can do nothing about thisi she must 
trust Bob to set up this subliminal channel. 

The ESIGN scheme doesn't suffer from this problem. Alice's private key is the set 
of three primes: p, q, and r. Bob's secret key is just r. He knows n = p 2qr, but to 
recover p and q he has to factor that number. If the primes are large enough, Bob has 
just as much trouble impersonating Alice as would Walter or anyone else. 

DSA 
There is also a subliminal channel in DSA (see Section 20.1) [1468,1469,1473]. In 

fact, there are several. The simplest subliminal channel involves the choice of k. It 
is supposed to be a 160-bit random number. However, if Alice chooses a particular 
k, then Bob, who also knows Alice's private key, can recover it. Alice can send Bob 
a 160-bit subliminal message in each DSA signaturei everyone else simply verifies 
Alice's signature. Another complication: Since k should be random, Alice and Bob 
need to share a one-time pad and encrypt the subliminal message with the one-time 
pad to generate a k. 

DSA has subliminal channels that do not require Bob to know Alice's private key. 
These also involve choosing particular values of k, but cannot be used to send 160 
bits of information. This scheme, presented in [1468, 1469], allows Alice and Bob to 
exchange one bit of subliminal information per signed message. 

( 1) Alice and Bob agree on a random prime, P ( different from the parameter p in 
the signature scheme). This is their secret key for the subliminal channel. 

(2) Alice signs an innocuous message, M. If she wants to send Bob the sublim­
inal bit, 1, she makes sure the r parameter of the signature is a quadratic 
residue modulo P. If she wants to send him a 0, she makes sure the r param­
eter is a quadratic nonresidue modulo P. She does this by signing the mes­
sage with random k values until she gets a signature with an r with the 
requisite property. Since quadratic residues and quadratic nonresidues are 
equally likely, this shouldn't be too difficult. 

(3) Alice sends the signed message to Bob. 
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(4) Bob verifies the signature to make sure the message is authentic. Then he 
checks whether r is a quadratic residue or a quadratic nonresidue modulo 
P and recovers the subliminal bit. 

Sending multiple bits via this method involves making r either a quadratic 
residue or a quadratic nonresidue modulo a variety of parameters. See [1468, 1469] 
for details. 

This scheme can be easily extended to send multiple subliminal bits per signa­
ture. If Alice and Bob agree on two random primes, P and Q, Alice can send two bits 
by choosing a random k such that r is either a quadratic residue mod P or a 
quadratic nonresidue mod P, and either a quadratic residue mod Q or a quadratic 
nonresidue mod Q. A random value of k has a 25 percent chance of producing an r 
of the correct form. 

Here's how Mallory, an unscrupulous implementer of DSA, can have the algo­
rithm leak 10 bits of Alice's private key every time she signs 2. document. 

( 1) Mallory puts his implementation of DSA in a tamperproof VLSI chip, so 
that no one can examine its inner workings. He creates a 14-bit subliminal 
channel in his implementation of DSA. That is, he chooses 14 random 
primes, and has the chip choose a value of k such that r is either a quadratic 
residue or a quadratic nonresidue modulo each of those 14 primes, depend­
ing on the subliminal message. 

(2) Mallory distributes the chips to Alice, Bob, and everyone else who wants 
them. 

(3) Alice signs a message normally, using her 160-bit private key, x. 

(4) The chip randomly chooses a 10-bit block of x: the first 10 bits, the second 
10 bits, and so on. Since there are 16 possible 10-bit blocks, a 4-bit number 
can identify which block it is. This 4-bit identifier, plus the 10 bits of the 
key, is the 14-bit subliminal message. 

(5) The chip tries random values of k until it finds one that has the correct 
quadratic residue properties to send the subliminal message. The odds of a 
random k being of the correct form are 1 in 16,384. Assuming the chip can 
test 10,000 values of k per second, it will find one in less than two seconds. 
This computation does not involve the message and can be performed off­
line, before Alice wants to sign a message. 

(6) The chip signs the message normally, using the value of k chosen in step (5 ). 

(7) Alice sends the digital signature to Bob, or publishes it on the network, or 
whatever. 

(8) Mallory recovers rand, because he knows the 14 primes, decrypts the sub­
liminal message. 

It's scary that even if Alice knows what is happening, she cannot prove it. As long 
as those 14 secret primes stay secret, Mallory is safe. 
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Foiling the DSA Subliminal Channel 
The subliminal channel relies on the fact that Alice can choose k to transmit 

subliminal information. To foil the subliminal channel, Alice cannot be allowed to 
choose k. However, neither can anyone else; if someone else were allowed to 
choose k, it would allow that person to forge Alice's signature. The only solution is 
for Alice to jointly generate k with another party, call him Bob, in such a way that 
Alice cannot control a single bit of k and Bob cannot know a single bit of k. At the 
end of the protocol, Bob should be able to verify that Alice used the k that they 
jointly generated. 

Here's the protocol [1470,1472,1473]: 

( 1) Alice chooses k' and sends Bob 

u =gk' modp 

(2) Bob chooses k" and sends it to Alice. 

(3) Alice calculates k = k'k" mod (p - 1). She uses k to sign her message, M, 
with the DSA and sends Bob the signature: r and s. 

(4) Bob verifies that 

((uk" mod p) mod q) = r 

If it does, he knows that k was used to sign M. 
After step (4), Bob knows that no subliminal information can be embedded in r. If 

he is a trusted party, he can certify that Alice's signature is subliminal-free. Others 
will have to trust his certification; Bob cannot prove this fact to a third party with a 
transcript of the protocol. 

A surprising result is that if Bob wants to, he can use this protocol to create his 
own subliminal channel. Bob can embed a subliminal message in one of Alice's sig­
natures by choosing k" with certain characteristics. When Simmons discovered this, 
he dubbed it the "Cuckoo's Channel." Details on how the Cuckoo's Channel works, 
and a three-pass protocol for generating k that prevents it, are discussed in 
[1471,1473]. 

Other Schemes 
Any signature scheme can be converted into a subliminal channel [1458, 1460, 

1406]. A protocol for embedding a subliminal channel in the Fiat-Shamir and Feige­
Fiat-Shamir protocols, as well as possible abuses of the subliminal channel, can be 
found in [485]. 

23.4 UNDENIABLE DIGITAL SIGNATURES 

This undeniable signature algorithm (see Section 4.3) is by David Chaum [343,327]. 
First, a large prime, p, and a primitive element, g, are made public, and used by a 
group of signers. Alice has a private key, x, and a public key, g" mod p. 
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To sign a message, Alice computes z = mx mod p. That's all she has to do. 
Verification is a little more complicated. 

( 1) Bob chooses two random numbers, a and b, both less than p, and sends 
Alice: 

c = z"(~)b mod p 

(2) Alice computes t=x 1 mod (p - 1), and sends Bob: 

d=c 1 modp 

(3) Bob confirms that 

d = m"gb (modp) 

If it is, he accepts the signature as genuine. 
Imagine that Alice and Bob went through this protocol, and Bob is now convinced 

that Alice signed the message. Bob wants to convince Carol, so he shows her a tran­
script of the protocol. Dave, however, wants to convince Carol that some other per­
son signed the document. He creates a fake transcript of the protocol. First he 
generates the message in step ( 1 ). Then in step (3) he generates d and the fake trans­
mission from this other person in step (2). Finally, he creates the message in step (2). 
To Carol, both Bob's and Dave's transcripts are identical. She cannot be convinced 
of the signature's validity unless she goes through the protocol herself. 

Of course, if she were watching over Bob's shoulder as he completed the protocol, 
she would be convinced. Carol has to see the steps done in order, just as Bob does. 

There may be a problem with this signature scheme, but I know of no details. 
Please pay attention to the literature before you use it. 

Another protocol not only has a confirmation protocol-Alice can convince Bob 
that her signature is valid-but it also has a disavowal protocol; Alice can use a zero­
knowledge interactive protocol to convince him that the signature is not valid, if it 
is not [329]. 

Like the previous protocol, a group of signers use a shared public large prime, p, 
and a primitive element, g. Alice has a unique private key, x, and a public key, 
~ mod p. To sign a message, Alice computes z = mx mod p. 

To verify a signature: 

( 1) Bob chooses two random numbers, a and b, both less than p, and sends Alice: 

c =magb modp 

(2) Alice chooses a random number, q, less than p, and computes and sends 
to Bob: 

s 1 = cgq mod p, s2 = (cgq)x mod p 

(3) Bob sends Alice a and b, so that Alice can confirm that Bob did not cheat 
in step (1). 
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(4) Alice sends Bob q, so that Bob can use mx and reconstruct s 1 and s2 . If 

s1 = cgq (mod p) 

s2 = (gx)b + '1z0 (mod p) 

then the signature is valid. 

Alice can also disavow a signature, z, for a message, m. See [329] for details. 
Additional protocols for undeniable signatures can be found in [584,344]. Lein 

Harn and Shoubao Yang proposed a group undeniable signature scheme [700]. 

Convertible Undeniable Signatures 
An algorithm for a convertible undeniable signature, which can be verified, dis­

avowed, and also converted to a conventional digital signature is given in [213]. It's 
based on the ElGamal digital signature algorithm. 

Like ElGamal, first choose two primes, p and q, such that q divides p - 1. Now you 
have to create a number, g, less than q. First choose a random number, h, between 2 
and p - 1. Calculate 

g=hip- i)/q modp 

If g equals the 1, choose another random h. If it doesn't, stick with the g you have. 
The private keys are two different random numbers, x and z, both less than q. The 

public keys are p, q, g, y, and u, where 

y=gx modp 

u =g 2 modp 

To compute the convertible undeniable signature of message m (which is actually 
the hash of a message), first choose a random number, t, between 1 and q - 1. Then 
compute 

T=g1modp 

and 

m' = Ttzm mod q. 

Now, compute the standard ElGamal signature on m'. Choose a random number, 
R, such that R is less than and relatively prime top - 1. Then computer= gR mod p, 
and use the extended Euclidean algorithm to compute s, such that 

m' = rx+ Rs (mod q) 

The signature is the ElGamal signature (r, s), and T. 
Here's how Alice verifies her signature to Bob: 

( 1) Bob generates two random numbers, a and b. He computes c = rrmag11 mod 
p and sends that to Alice. 

(2) Alice generates a random number, k, and computes h1 = cgk mod p, and h 2 

= h/ mod p, and sends both of those numbers to Bob. 
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(3) Bob sends Alice a and b. 
(4) Alice verifies that c = yTmagb mod p. She sends k to Bob. 

(5) Bob verifies that h 1 = yTmagb + k mod p, and that h2 = yrarS11u1, + k mod p. 

Alice can convert all of her undeniable signatures to normal signatures by pub­
lishing z. Now, anyone can verify her signature without her help. 

Undeniable signature schemes can be combined with secret-sharing schemes to 
create distributed convertible undeniable signatures [1235]. Someone can sign a 
message, then distribute the ability to confirm that the signature is valid. He might, 
for example, require three out of five people to participate in the protocol in order to 
convince Bob that the signature is valid. Improvements on this notion deleted the 
requirement for a trusted dealer [700, 1369]. 

23.5 DESIGNATED CONFIRMER SIGNATURES 

Here's how Alice can sign a message and Bob can verify it, such that Carol can ver­
ify Alice's signature at some later time to Dave (see Section 4.4) [333]. 

First, a large prime, p, and a primitive element, g, are made public and used by a 
group of users. The product of two primes, n, is also public. Carol has a private key, 
z, and a public key is h = gx mod p. 

In this protocol Alice can sign m such that Bob is convinced that the signature is 
valid, but cannot convince a third party. 

( 1) Alice chooses a random x and computes 

a=~modp 
b =hx modp 

She computes the hash of m, H(m), and the hash of a and b concatenated, 
H(a,b). She then computes 

i = (H(m) E8 H(a, b))113 mod n 

and sends a, b, and j to Bob. 

(2) Bob chooses two random numbers, sand t, both less thanp, and sends Alice 

c=g'Hmodp 

(3) Alice chooses a random q less than p, and sends Bob 

d=gq modp 

e = (cd)x mod p 

(4) Bob sends Alice sand t. 

(5) Alice confirms that 

gsH = c (modp) 

Then she sends Bob q. 
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(6) Bob confirms 

d = gq (modp) 

ejaCJ = a'b 1 (modp) 

H(m) EB H(a, b) = j 1!3 mod n 

If they all check out, he accepts the signature as genuine. 

Bob cannot use a transcript of this proof to convince Dave that the signature is 
genuine, but Dave can conduct a protocol with Alice's designated confirmer, Carol. 
Here's how Carol convinces Dave that a and b constitute a valid signature. 

( 1) Dave chooses a random u and v, both less than p, and sends Carol 

k = g"av modp 

(2) Carol chooses a random w, less than p, and sends Dave 

1 =gwmodp 

y = (kl)2 modp 

(3) Dave sends Carol u and v. 

(4) Carol confirms that 

g"av = k (mod p) 

Then she sends Dave w. 

(5) Dave confirms that 

gw = 1 (modp) 

y/hw = h"bv (mod p) 

If they both check out, he accepts the signature as genuine. 

In another protocol Carol can convert the designated-confirmer protocol into a 
conventional digital signature. See [333] for details. 

23.6 COMPUTING WITH ENCRYPTED DATA 

The Discrete Logarithm Problem 
There is a large prime, p, and a generator, g. Alice has a particular value for x, and 

wants to know e, such that 

ge = x (modp) 

This is a hard problem, and Alice lacks the computational power to compute the 
result. Bob has the power to solve the problem-he represents the government, or a 
large computing organization, or whatever. Here's how Bob can do it without Alice 
revealing x [547,4]: 
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( 1) Alice chooses a random number, r, less than p. 

(2) Alice computes 

x' =xg' modp 

(3) Alice asks Bob to solve 

ge' = x' (modp) 

(5) Bob computes e' and sends it to Alice. 

(6) Alice recovers e by computing 

e = (e' - r) mod (p - 1) 

Similar protocols for the quadratic residuosity problem and for the primitive root 
problem are in [3,4]. (See also Section 4.8.) 

23. 7 FAIR COIN FLIPS 

The following protocols allow Alice and Bob to flip a fair coin over a data network 
(see Section 4.9) [194]. This is an example of flipping a coin into a well (see Section 
4.10). At first, only Bob knows the result of the coin toss and tells it to Alice. Later, 
Alice may check to make sure that Bob told her the correct outcome of the toss. 

Coin Flipping Using Square Roots 
Coin-flip subprotocol: 

( 1) Alice chooses two large primes, p and q, and sends their product, n to Bob. 

(2) Bob chooses a random positive integer, r, such that r is less than n/2. Bob 
computes 

z =r 2 modn 

and sends z to Alice. 

(3) Alice computes the four square roots of z (mod n). She can do this because 
she knows the factorization of n. Let's call them +x, -x, +y, and -y. Call x' 
the smaller of these two numbers: 

xmodn 

-xmodn 

Similarly, call y' the smaller of these two numbers: 

ymodn 

-ymodn 

Note that r is equal either to x' or y'. 

(4) Alice guesses whether r = x' or r = y', and sends her guess to Bob. 
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(5) If Alice's guess is correct, the result of the coin flip is heads. If Alice's guess 
is incorrect, the result of the coin flip is tails. Bob announces the result of 
the coin flip. 

Verification subprotocol: 

(6) Alice sends p and q to Bob. 

(7) Bob computes x' and y' and sends them to Alice. 

(8) Alice calculates r. 

Alice has no way of knowing r, so her guess is real. She only tells Bob one bit of 
her guess in step (4) to prevent Bob from getting both x' and y'. If Bob has both of 
those numbers, he can changer after step (4). 

Coin Flipping Using Exponentiation Modulo p 

Exponentiation modulo a prime number, p, is used as a one-way function in this 
protocol [1306]: 

Coin-flip subprotocol: 

( 1) Alice chooses a prime number, p, in such a way that the factorization of p 
- 1 is known and contains at least one large prime. 

(2) Bob selects two primitive elements, h and t, in GF(p). He sends them to 
Alice. 

(3) Alice checks that h and t are primitive and then chooses a random integer 
x, relatively prime top - 1. She then computes one of the two values: 

y = hx mod p, or y = tx mod p 

She sends y to Bob. 

(4) Bob guesses whether Alice calculated y as a function of h or t, and sends his 
guess to Alice. 

(5) If Bob's guess is correct, the result of the coin flip is heads. If Bob's guess is 
incorrect, the result of the coin flip is tails. Alice announces the result of 
the coin flip. 

Verification subprotocol: 

(6) Alice reveals x to Bob. Bob computes hx mod p and tx mod p, to confirm 
that Alice has played fairly and to verify the result of the toss. He also 
checks that x and p - 1 are relatively prime. 

For Alice to cheat, she has to know two integers, x and x', such that hx 
tx' (mod p). If she knew those values, she would be able to calculate: 

log1h = x'x -1 mod p - 1 and log1h = x- 1x' mod p - 1 

These are hard problems. 
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Alice would be able to do this if she knew log,h, but Bob chooses h and t in step 
(2). Alice has no other recourse except to try to compute the discrete logarithm. 
Alice could also attempt to cheat by choosing an x that is not relatively prime to p 
- 1, but Bob will detect that in step (6). 

Bob can cheat if h and tare not primitive in GF(p), but Alice can easily check that 
after step (2) because she knows the prime factorization of p - 1. 

One nice thing about this protocol is that if Alice and Bob want to flip multiple 
coins, they can use the same values for p, h, and t. Alice just generates a new x, and 
the protocol continues from step (3 ). 

Coin Flipping Using Blum Integers 

Blum integers can be used in a coin-flipping protocol. 

( 1) Alice generates a Blum integer, n, a random x relatively prime to n, x 0 = 
x 2 mod n, and Xi= xa2 mod n. She sends n and x 1 to Bob. 

(2) Bob guesses whether x0 is even or odd. 

(3) Alice sends x to Bob. 

(4) Bob checks that n is a Blum integer (Alice would have to give Bob the fac­
tors of n and proofs of their primality, or execute some zero-knowledge 
protocol to convince him that n is a Blum integer), and he verifies that x 0 = 
x2 mod n and xi = x02 mod n. If all this checks out, Bob wins the flip if he 
guessed correctly. 

It is crucial that n be a Blum integer. Otherwise, Alice may be able to find an x' 0 

such that x'n2 mod n = xc? mod n = Xi, where x' 0 is also a quadratic residue. If x0 were 
even and x.'0 were odd (or vice versa), Alice could freely cheat. 

23.8 ONE-WAY ACCUMUIATORS 

There is a simple one-way accumulator function [116] (see Section 4.12): 

A(x1, y) = x 1 _ ? mod n 

The numbers n (n is the product of two primes) and x 0 must be agreed upon in 
advance. Then, the accumulation of Yi, y2, and y3 would be 

((x0Yi mod n)Y2 mod n)Y3 mod n 

This computation is independent of the order of Yi, y2, and y3 • 

23.9 ALL-OR-NOTHING DISCLOSURE OF SECRETS 

This protocol allows multiple parties (at least two are required for the protocol to 
work) to buy individual secrets from a single seller (see Section 4.13) [1374,1175]. 
First, here's a definition. Take two bit strings, x and y. The fixed bit index (FBI) of x 
and y are the bits where the ith bit of x equals the ith bit of y. 
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For example: 

X = 110101001011 

y = 101010000110 

FBI(x, y) = ( 1, 4, 5, 11) 
(We're reading the bits from right to left, with the right-most bit as 
zero.) 

Now, here's the protocol. Alice is the seller. Bob and Carol are buyers. Alice has 
k n-bit secrets: Si, S2, •.• , Sk. Bob wants to buy secret Sb; Carol wants to buy 
secret Sc. 

(1) Alice generates a public-key/private-key key pair and tells Bob (but not 
Carol) the public key. She generates another public-key/private-key key 
pair and tells Carol (but not Bob) the public key. 

(2) Bob generates kn-bit random numbers, Bi, B2, •.. , B10 and tells them to 
Carol. Carol generates kn-bit random numbers, C1, C2, ... , Ck, and tells 
them to Bob. 

(3) Bob encrypts C1, (remember, S1, is the secret he wants to buy) with the pub­
lic key from Alice. He computes the FBI of Ci, and the result he just 
encrypted. He sends this FBI to Carol. 

Carol encrypts Be (remember, Sc is the secret she wants to buy) with the 
public key from Alice. She computes the FBI of Be and the result she just 
encrypted. She sends this FBI to Bob. 

(4) Bob takes each of then-bit numbers Bi, B2, ••• , B10 and replaces every bit 
whose index is not in the FBI he received from Carol with its complement. 
He sends this new list of n-bit numbers, B'i, B'2, ••. , B\, to Alice. 

Carol takes each of then-bit numbers C 1, C2, ... , Ck, and replaces every 
bit whose index is not in the FBI she received from Bob with its comple­
ment. She sends this new list of n-bit numbers, C'i, C'2, ... , C'k, to Alice. 

(5) Alice decrypts all C'; with Bob's private key, giving her kn-bit numbers: 
C"i, C'\, ... , C"1z. She computes Si E8 C"i, for i = 1 to k, and sends the results 
to Bob. 

Alice decrypts all B'; with Carol's private key, giving her kn-bit num­
bers: B" 1, B'\, ... , B"1z. She computes Si E8 B"i, for i = 1 to k, and sends the 
results to Carol. 

(6) Bob computes Sb by XORing Cb and the bth number he received from 
Alice. 

Carol computes Sc by XORing Be and the cth number she received from 
Alice. 

This is complicated. An example will go a long way to help. 
Alice has the following eight 12-bit secrets for sale: S1 = 1990, S2 = 471, S3 = 3860, 

S4 = 1487, S5 = 2235, S6 = 3751, S7 = 2546, and S8 = 4043. Bob wants to buy S7. Carol 
wants to buy S2 • 
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( 1) Alice uses the RSA algorithm. The key pair she will use with Bob is: n = 
7387, e = 5145, and d = 777. The key pair she will use with Carol is: n = 
2747, e = 1421, and d = 2261. She tells Bob and Carol each their public key. 

(2) Bob generates eight 12-bit random numbers, B 1 = 743, B2 = 1988, B3 = 4001, 
B4 = 2942, B5 = 3421, B6 = 2210, B7 = 2306, and B8 = 222, and tells them to 
Carol. Carol generates eight 12-bit random numbers, C1 = 1708, C2 = 711, 
C'° = 1969, C4 = 3112, C:; = 4014, C6 = 2308, C 7 = 2212, and C8 = 222, and tells 
them to Bob. 

(3) Bob wants to buy S7, so he encrypts C7 with the public key that Alice 
gave him. 

2212" 145 mod 7387 = 5928 

Now: 

2212 = 0100010100100 

5928 = 1011100101000 

So, the FBI of those two numbers is (0, 1, 4, 5, 6). He sends this to Carol. 
Carol wants to buy S2, so she encrypts B 2 with the public key that Alice 

gave her and computes the FBI of B2 with the result of her encryption. She 
sends (0, 1, 2, 6, 9, 10) to Bob. 

(4) Bob takes B1, B 2, ••• , B8, and replaces every bit whose index is not in the 
set (0, 1, 2, 6, 9, 10) with its complement. For example: 

B 2 = 111111000100 = 1988 

B' 2 = 011001111100 = 1660 

He sends B' 1, B' 2, ••• , B' 8, to Alice. 
Carol takes C 1, C2, .•• , C8, and replaces every bit whose index is not in 

the set (0, 1, 4, 5, 6) with its complement. For example: 

C7 = 0100010100100 = 2212 

C' 7 = 1011100101000 = 5928 

She sends C' 1, C' 2, ..• , C' 8, to Alice. 

(5) Alice decrypts all C' 1 with Bob's private key and XORs the results with S1• 

For example, for i = 7: 

5928 777 mod 7387 = 2212i 2546 EB 2212 = 342 

She sends the results to Bob. 
Alice decrypts all B'; with Carol's private key and XO Rs the results with 

S1• For example, for i = 2: 

1660 2261 (mod 2747) = 1988i 471 EB 1988 = 1555 

She sends the results to Carol. 

(6) Bob computes S7 by XORing C7 and the seventh number he received 
from Alice: 
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2212 EB 342 = 2546 

Carol computes S2 by XO Ring B2 and the second number she received from 
Alice. 

1988 EB 1555 = 471 

The protocol works for any number of buyers. If Bob, Carol, and Dave want to buy 
secrets, Alice gives each buyer two public keys, one for each of the others. Each 
buyer gets a set of numbers from each other buyer. Then, they complete the proto­
col with Alice for each of their sets of numbers and XOR all of their final results 
from Alice to get their secret. More details are in [1374,1175]. 

Unfortunately, a pair of dishonest parties can cheat. Alice and Carol, working 
together, can easily find out what secret Bob is getting: If they know the FBI of C1, 
and Bob's encryption algorithm, they can find b such that Cz, has the right FBI. And 
Bob and Carol, working together, can easily get all the secrets from Alice. 

If you assume honest parties, there's an easier protocol [389]. 

( 1) Alice encrypts all of the secrets with RSA and sends them to Bob: 

Ci= S/modn 

(2) Bob chooses his secret Cz,, picks a random r, and sends C' to Alice. 

C' = Cbre mod n 

(3) Alice sends Bob P'. 

P' = C'a mod n 

(4) Bob calculates Sb. 

Sb= P'r 1 mod n 

If the parties may be dishonest, Bob can prove in zero-knowledge that he knows 
some r such that C' = Cz,re mod n and keep b secret until Alice gives him P' in step 
(3) [246]. 

23.10 FAIR AND FAILSAFE CRYPTOSYSTEMS 

Fair Di/fie-Hellman 
Fair cryptosystems are a way to do key escrowing in software (see Section 4.14). 

This example is from Silvio Micali [1084,1085]. It is patented [1086,1087]. 
In the basic Diffie-Hellman scheme, a group of users share a prime, p, and a gen­

erator, g. Alice's private key is s, and her public key is t = gs mod p. 
Here's how to make Diffie-Hellman fair (this example uses five trustees). 

( 1) Alice chooses five integers, s1, s2, s3, s4, and s5, each less than p - 1. Alice's 
private key is 
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s = (s1 + s2 + s3 + s4 + s5) mod p - I 

and her public key is 

t =g' modp 

Alice also computes 

t; = g'i mod p, for i = I to 5 

Alice's public shares are t;, and her private shares are S;. 

(2) Alice sends a private piece and corresponding public piece to each trustee. 
For example, she sends s1 and t 1 to trustee 1. She sends t to the KDC. 

(3) Each trustee verifies that 

ti= g'; modp 

If it does, the trustee signs t; and sends it to the KDC. The trustee stores s1 

in a secure place. 

(4) After receiving all five public pieces, the KDC verifies that 

t = ( t1 * t2 * t3 * t4 * ts) mod p 

If it does, the KDC approves the public key. 

At this point, the KDC knows that the trustees each have a valid piece, and that 
they can reconstruct the private key if required. However, neither the KDC nor any 
four of the trustees working together can reconstruct Alice's private key. 

Micah's papers [1084,1085] also contain a procedure for making RSA fair and for 
combining a threshold scheme with the fair cryptosystem, so that m out of n 
trustees can reconstruct the private key. 

Failsafe Di/fie-Hellman 
Like the previous protocol, a group of users share a prime, p, and a generator, g. 

Alice's private key is s, and her public key is t = gs mod p. 

( 1) The KDC chooses a random number, B, between O and p - 2, and commits 
to B using a bit-commitment protocol (see Section 4.9). 

(2) Alice chooses a random number, A, between O and p - 2. She sends gA mod 
p to the KDC. 

(3) The user "shares" A with each trustee using a verifiable secret-sharing 
scheme (see Section 3.7). 

( 4) The KDC reveals B to Alice. 

(5) Alice verifies the commitment from step ( 1 ). Then she sets her public key as 

t = (gA)gR mod p 

She sets her private key as 

s = (A + B) mod (p - 1) 
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The trustees can reconstruct A. Since the KDC knows B, this is enough to recon­
struct s. And Alice cannot make use of any subliminal channels to send unautho­
rized information. This protocol, discussed in [946,833] is being patented. 

23.11 ZERO-KNOWLEDGE PROOFS OF KNOWLEDGE 

Zero-Knowledge Proof of a Discrete Logarithm 

Peggy wants to prove to Victor that she knows an x that satisfies 

Ax= B (modp) 

where p is a prime, and xis a random number relatively prime top - 1. The num­
bers A, B, and p are public, and x is secret. Here's how Peggy can prove she knows x 
without revealing it (see Section 5.1) [338,337]. 

( 1) Peggy generates t random numbers, r 1, h ... , r 1, where all r1 are less than 
p-1. 

(2) Peggy computes h = Ni mod p, for all values of i, and sends them to Victor. 

(3) Peggy and Victor engage in a coin-flipping protocol to generate t bits: b 1, 

b2, ... , bi. 

(4) For all t bits, Peggy does one of the following: 

a) If bi= 0, she sends Victor r1 

b) If b1 = 1, she sends Victor si = (ri -r 1) mod (p - 1), where j is the lowest 
value for which b1 = 1 

( 5) For all t bits, Victor confirms one of the following: 

a) If bi= 0, that Ni= hi (modp) 

b) If bi= 1, that A' 1 = hh 1- 1 (mod p) 

(6) Peggy sends Victor Z, where 

Z = (x - r1) mod (p - 1) 

(7) Victor confirms that 

A 2 = Bh1- 1 (modp) 

Peggy's probability of successfully cheating is 2-1. 

Zero-Knowledge Proof of the Ability to Break RSA 

Alice knows Carol's private key. Maybe she has broken RSA; maybe she has bro­
ken into Carol's house and stolen the key. Alice wants to convince Bob that she 
knows Carol's key. However, she doesn't want to tell Bob the key or even decrypt 
one of Carol's messages for Bob. Here's a zero-knowledge protocol by which Alice 
convinces Bob that she knows Carol's private key [888]. 

Carol's public key is e, her private key is d, and the RSA modulus is n. 
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( 1) Alice and Bob agree on a random k and an m such that 

km= e (modn) 

They should choose the numbers randomly, using a coin-flip protocol to 
generate k and then computing m. If both k and m are greater than 3, the 
protocol continues. Otherwise, they choose again. 

(2) Alice and Bob generate a random ciphertext, C. Again, they should use a 
coin-flip protocol. 

(3) Alice, using Carol's private key, computes 

M= camodn 

She then computes 

X=Mk modn 

and sends X to Bob. 

(4) Bob confirms that xm mod n = C. If it does, he believes Alice. 

A similar protocol can be used to demonstrate the ability to break a discrete loga­
rithm problem [888]. 

Zero-Knowledge Proof that n Is a Blum Integer 
There are no known truly practical zero-knowledge proofs that n = pq, where p and 

q are primes congruent to 3 modulo 4. However, if you allow n to be of the form prqs, 
where r and s are odd, then the properties which n-iake Blum integers useful in cryp­
tography still hold. And there exists a zero-knowledge proof that n is of that form. 

Assume Alice knows the factorization of the Blum integer n, where n is of the form 
previously discussed. Here's how she can prove to Bob that n is of that form [660]. 

(1) Alice sends Bob a number u which has a Jacobi symbol-1 modulo n. 

(2) Alice and Bob jointly agree on random bits: b 1, b2, ••• , bk. 

(3) Alice and Bob jointly agree on random numbers: x 1, x2, ••• , xk. 

(4) For each i = 1, 2, ... , k, Alice sends Bob a square root modulo n, of one of 
the four numbers: xi, -xi, ux;, -uxi, The square root must have the Jacobi 
symbol h. 

The odds of Alice successfully cheating are one in 2k. 

23.12 BLIND SIGNATURES 

The notion of blind signatures (see Section 5.3) was invented by David Chaum 
[317,323], who also invented their first implementation [318]. It uses the RSA 
algorithm. 
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Bob has a public key, e, a private key, d, and a public modulus, n. Alice wants Bob 
to sign message m blindly. 

( 1) Alice chooses a random value, k, between 1 and n. Then she blinds m by 
computing 

t = mke modn 

(2) Bob signs t 

ta= (mke)a mod n 

(3) Alice unblinds ta by computing 

s = ta/k modn 

(4) And the result is 

s =ma modn 

This can easily be shown 

ta= (mke)a = mc1k (mod n), so ta/k = mdkjk = ma (mod n). 

Chaum invented a family of more complicated blind signature algorithms in 
[320,324], called blind unanticipated signatures. These signatures are more complex 
in construction, but more flexible. 

23.13 OBLIVIOUS TRANSFER 

In this protocol by Michael Rabin [1286], Alice has a 50 percent chance of sending 
Bob two primes, p, and q. Alice will not know whether the transfer is successful. 
(See Section 5.5.) (This protocol can be used to send Bob any message with a 50 per­
cent success rate if p and q reveal an RSA private key.) 

( 1) Alice sends Bob the product of the two primes: n = pq. 

(2) Bob chooses a random x less than n, such that xis relatively prime ton. He 
sends Alice: 

a =x 2 modn 

(3) Alice, knowing p and q, computes the four roots of a: x, n - x, y, and n - y. 
She chooses one of these roots at random and sends it to Bob. 

(4) If Bob receives y or n - y, he can compute the greatest common divisor of x 
+ y and n, which is either p or q. Then, of course, n/p = q. 

If Bob receives x or n - x, he can't compute anything. 

This protocol may have a weakness: It might be the case that Bob can compute 
a number a such that given the square root of a you can calculate a factor of n all 
the time. 
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23.14 SECURE MULTIPARTY COMPUTATION 

This protocol is from [1373]. Alice knows the integer i; Bob knows the integer j. Alice 
and Bob together wish to know whether i :::;; j or if i > j, but neither Alice nor Bob wish 
to reveal the integer each knows. This special case of secure multiparty computation 
(see Section 6.2) is sometimes known as Yao's millionaire problem [1627]. 

For this example, assume that i and j range from 1 to 100. Bob has a public key and 
a private key. 

( 1) Alice chooses a large random number, x, and encrypts it in Bob's public key. 

c = EB(x) 

(2) Alice computes c - i and sends the result to Bob. 

(3) Bob computes the following 100 numbers: 

Yu= DB(c - i + u), for 1 :::;; u:::;; 100 

DB is the decryption algorithm with Bob's private key. 
He chooses a large random prime, p. (The size of p should be somewhat 

smaller than x. Bob doesn't know x, but Alice could easily tell him the size 
of x.) He then computes the following 100 numbers: 

Zu = (Yu modp), for 1:::;; U:::;; 100 

He then verifies that, for all u -:t-v 

and that for all u 

0<Zu<p-1 

If this is not true, Bob chooses another prime and tries again. 

(4) Bob sends Alice this sequence of numbers in this exact order: 

Z I, Z2, ... , Zj, Zj + I + 1, Zj + 2 + 1, ... , Z 100 + 1, p 

(5) Alice checks whether the ith number in the sequence is congruent to 
x mod p. If it is, she concludes that i:::;; j. If it is not, she concludes that i > j. 

(6) Alice tells Bob the conclusion. 

All the verification that Bob goes through in step (3) is to guarantee that no num­
ber appears twice in the sequence generated in step (4). Otherwise, if z" = z1,, Alice 
knows that a :::;; j < b. 

The one drawback to this protocol is that Alice learns the result of the compu­
tation before Bob does. Nothing stops her from completing the protocol up to step 
(5) and then refusing to tell Bob the results in step (6). She could even lie to Bob in 
step (6). 



CHAPTER 23 Special Algorithms for Protocols 

Example of the Protocol 
Assume they're using RSA. Bob's public key is 7 and his private key is 23; n = 55. 

Alice's secret value, i, is 4; Bob's secret value, j, is 2. (Assume that only the values 1, 
2, 3, and 4 are possible for i and j.) 

( 1) Alice chooses x = 39, and c = EB(39) = 19. 

(2) Alice computes c - i = 19 - 4 = 15. She sends 15 to Bob. 

(3) Bob computes the following 4 numbers: 

Y1=DB(l5+1)=26 

Y2=DB(l5+2)=18 

y3=DB(l5+3)=2 

y4=DB(l5+4)=39 

He chooses p = 31 and calculates: 

z 1 = (26 mod 31) = 26 

z2 = (18 mod 31) = 18 

z3 = (2 mod 31) = 2 

Z4=(39mod31)=8 

He does all the verifications and confirms that the sequence is fine. 

(4) Bob sends Alice this sequence of numbers in this exact order: 

26, 18, 2 + 1, 8 + 1, 31 = 26, 18, 3, 9, 31 

(5) Alice checks whether the 4th number in the sequence is congruent to 
x mod p. Since 9 =I= 39 (mod 31 ), then i > j. 

(6) Alice tells Bob. 

This protocol can be used to create far more complicated protocols. A group of 
people can conduct a secret auction over a computer network. They arrange them­
selves in a logical circle, and through individual pairwise comparisons, determine 
which is offering the highest price. In order to prevent people from changing their 
bids in mid-auction, some sort of bit-commitment protocol could also be used. If the 
auction is a Dutch auction, then the highest bidder gets the item for his highest 
price. If it is an English auction, then he gets the item for the second-highest price. 
(This can be determined by a second round of pairwise comparisons.) Similar ideas 
have applications in bargaining, negotiations, and arbitration. 

23.15 PROBABILISTIC ENCRYPTION 

The notion of probabilistic encryption was invented by Shafi Goldwasser and Silvio 
Micali [624]. Although its theory makes it the most secure cryptosystem invented, 
its early implementation was impractical [625]. More recent implementations have 
changed that. 
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The point behind probabilistic encryption is to eliminate any information leaked 
with public-key cryptography. Because a cryptanalyst can always encrypt random 
messages with a public key, he can get some information. Assuming he has cipher­
text C = EK(M) and is trying to recover plaintext message M, he can pick a random 
message M' and encrypt it: C' = EK(M'). If C' = C, then he guessed the correct plain­
text. If it's wrong, he just guesses again. 

Also, no partial information is leaked about the original message. With public-key 
cryptography, sometimes a cryptanalyst can learn things about the bits: The XOR of 
bits 5, 17, and 39 is 1, and so on. With probabilistic encryption, even this type of 
information remains hidden. 

Not a whole lot of information is to be gained here, but there are potential prob­
lems with allowing a cryptanalyst to encrypt random messages with your public 
key. Some information is being leaked to the cryptanalyst every time he encrypts a 
message. No one really knows how much. 

Probabilistic encryption tries to eliminate that leakage. The goal is that no com­
putation on the ciphertext, or on any other trial plain texts, can give the cryptanalyst 
any information about the corresponding plaintext. 

In probabilistic encryption, the encrypting algorithm is probabilistic rather than 
deterministic. In other words, a large number of ciphertexts will decrypt to a given 
plaintext, and the particular ciphertext used in any given encryption is randomly 
chosen. 

C1 = EK(M), C2 = EK(M), C3 = EK(M), ... , Ci= EK(M) 

Af = DK(C1) = DK(C2) = D1dC3) =•··=Did Ci) 

With probabilistic encryption, a cryptanalyst can no longer encrypt random plain­
texts looking for the correct ciphertext. To illustrate, assume the cryptanalyst has 
ciphertext Ci = EK(M). Even if he guesses M correctly, when he encrypts EJ<(M), the 
result will be a completely different C: Ci. He cannot compare Ci and Ci, and so can­
not know that he has guessed the message correctly. 

This is amazingly cool stuff. Even if a cryptanalyst has the public encryption key, 
the plaintext, and the ciphertext, he cannot prove that the ciphertext is the encryp­
tion of the plaintext without the private decryption key. Even if he tries exhaustive 
search, he can only prove that every conceivable plain text is a possible plain text. 

Under this scheme, the ciphertext will always be larger than the plaintext. You 
can't get around this; it's a result of the fact that many ciphertexts decrypt to the 
same plaintexts. The first probabilistic encryption scheme [625] resulted in a cipher­
text so much larger than the plaintext that it was unusable. 

However, Manual Blum and Goldwasser have an efficient implementation of 
probabilistic encryption using the Blum Blum Shub (BBS) random-bit generator 
described in Section 17.9 [199]. 

The BBS generator is based on the theory of quadratic residues. In English, there 
are two primes, p and q, that are congruent to 3 modulo 4. That's the private key. 
Their product, pq = n, is the public key. (Mind your ps and qs; the security of this 
scheme rests in the difficulty of factoring n.) 

To encrypt a message, M, first choose some random x, relatively prime ton. Then 
compute 
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x 0 =x 2 modn 

Use x 0 as the seed of the BBS pseudo-random-bit generator and use the output of 
the generator as a stream cipher. XOR M, one bit at a time, with the output of the 
generator. The generator spits out bits b; (the least-significant bit of x 1, where x 1 = 
X;_/modn),so 

M=M1, M2, M,,, ... , Mt 

C = M1 E8 b1, M2 E8 b2, M3 E8 b3, ... , Mt E8 bt 

where t is the length of the plaintext 

Append the last computed value, x 1, to the end of the message and you're done. 
The only way to decrypt this message is to recover x0 and then set up the same 

BBS generator to XOR with the ciphertext. Because the BBS generator is secure to 
the left, the value x 1 is of no use to the cryptanalyst. Only someone who knows p 
and q can decrypt the message. 

In C, the algorithm to recover x0 from x 1 is: 

int xO (int p, int q, int n, int t, int xt) 
{ 

int a, b, u, v, w, z; 

/* we already know that gcd(p, q) -- 1 */ 
(void)extended_euclidian(p, q, &a, &b); 
u - mode x p ( ( p+ 1 ) / 4 , t , p - 1 ) ; 
v - modexp ((q+l)/4, t, q-1); 
w - modexp (xt%p, u, p); 
z-modexp (xt%q, v, q); 
return (b*q*w + a*p*z) % n; 

Once you ha've x0, decryption is easy. Just set up the BBS generator and XOR the out­
put with the ciphertext. 

You can make this scheme go even faster by using all the known secure bits of X;, 
not just the least significant bit. With this improvement, Blum-Goldwasser proba­
bilistic encryption is faster than RSA while leaking no partial information about the 
plaintext. You can also prove that the difficulty of breaking this scheme is the same 
as the difficulty of factoring n. 

On the other hand, this scheme is totally insecure against a chosen-ciphertext 
attack. From the least significant bits of the right quadratic residues, it is possible to 
calculate the square root of any quadratic residue. If you can do this, then you can 
factor. For details, consult [1570,1571,35,36]. 

23 .16 QUANTUM CRYPTOGRAPHY 

Quantum cryptography taps the natural uncertainty of the quantum world. With it, 
you can create a communications channel where it is impossible to eavesdrop with­
out disturbing the transmission. The laws of physics secure this quantum channel: 
even if the eavesdropper can do whatever he wants, even if the eavesdropper has 
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unlimited computing power, even if P = NP. Charles Bennett, Gilles Brassard, 
Claude Crepeau, and others have expanded on this idea, describing quantum key 
distribution, quantum coin flipping, quantum bit commitment, quantum oblivious 
transfer, and quantum secure multiparty computation. Their work is described in 
[128,129,123,124,125,133,126,394,134,392,243,517,132,130,244,393,396]. The best 
overview of quantum cryptography can be found in [131]; [1651] is another good 
nontechnical overview. A complete bibliography of quantum cryptography is [237]. 

This would still be on the lunatic fringe of cryptography, but Bennett and Brassard 
actually went and built a working model of the thing [127,121,122]. Now we have 
experimental quantum cryptography. 

So sit back, get yourself something to drink, and relax. I'm going to explain what 
this is all about. 

According to quantum mechanics, particles don't actually exist in any single 
place. They exist in several places at once, with probabilities of being in different 
places if someone looks. However, it isn't until a scientist comes along and mea­
sures the particle that it "collapses" into a single location. But you can't measure 
every aspect (for example, position and velocity) of a particle at the same time. If 
you measure one of those two quantities, the very act of measuring it destroys any 
possibility of measuring the other quantity. The quantum world has a fundamental 
uncertainty and there's no way to avoid it. 

That uncertainty can be used to generate a secret key. As they travel, photons 
vibrate in some direction; up and down, left to right, or more likely at some angle. 
Normal sunlight is unpolarized; the photons vibrate every which way. When a large 
group of photons vibrate in the same direction they are polarized. Polarization filters 
allow only photons that are polarized in a certain direction through; the rest are 
blocked. For example, a horizontal polarization filter only allows horizontally polar­
ized photons through. Turn that filter 90 degrees, and only vertically polarized pho­
tons can come through. 

Let's say you have a pulse of horizontally polarized photons. If they try to pass 
through a horizontally polarized filter, they all get through. Slowly turn that filter 
90 degrees; the number of photons getting through gets smaller and smaller, until 
none get through. This is counterintuitive. You'd think that turning the filter just a 
little will block all the photons, since the photons are horizontally polarized. But in 
quantum mechanics, each particle has a probability of suddenly switching its polar­
ization to match the filter. If the angle is a little bit off, it has a high probability. If 
the angle is 90 degrees off it has zero probability. And if the angle is 45 degrees off, 
it has a 50 percent probability of passing through the filter. 

Polarization can be measured in any basis: two directions at right angles. An exam­
ple basis is rectilinear: horizontal and vertical. Another is diagonal: left-diagonal and 
right-diagonal. If a photon pulse is polarized in a given basis and you measure it in the 
same basis, you learn the polarization. If you measure it in the wrong basis, you get 
a random result. We're going to use this property to generate a secret key: 

( 1) Alice sends Bob a string of photon pulses. Each of the pulses is randomly 
polarized in one of four directions: horizontal, vertical, left-diagonal, and 
right-diagonal. 
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For example, Alice sends Bob: 

11 /--\-1-/ 

(2) Bob has a polarization detector. He can set his detector to measure recti­
linear polarization or he can set his detector to measure diagonal polariza­
tion. He can't do both; quantum mechanics won't let him. Measuring one 
destroys any possibility of measuring the other. So, he sets his detectors at 
random, for example: 

x++xxx+x++ 
Now, when Bob sets his detector correctly, he will record the correct polar­
ization. If he sets his detector to measure rectilinear polarization and the 
pulse is polarized rectilinearly, he will learn which way Alice polarized 
the photon. If he sets his detector to measure diagonal polarization and the 
pulse is polarized rectilinearly, he will get a random measurement. He 
won't know the difference. In this example, he might get the result: 

!l-\!\-1-1 

(3) Bob tells Alice, over an insecure channel, what settings he used. 

(4) Alice tells Bob which settings were correct. In our example, the detector 
was correctly set for pulses 2, 6, 7, and 9. 

(5) Alice and Bob keep only those polarizations that were correctly measured. 
In our example, they keep: 

*I***\-*-* 

Using a prearranged code, Alice and Bob each translate those polarization 
measurements into bits. For example, horizontal and left-diagonal might 
equal one, and vertical and right-diagonal might equal zero. In our exam­
ple, they both have: 

0 0 1 1 

So, Alice and Bob have generated four bits. They can generate as many as they like 
using this system. On the average, Bob will guess the correct setting 50 percent of 
the time, so Alice has to send 2n photon pulses to generate n bits. They can use 
these bits as a secret key for a symmetric algorithm or they can guarantee perfect 
secrecy and generate enough bits for a one-time pad. 

The really cool thing is that Eve cannot eavesdrop. Just like Bob, she has to guess 
which type of polarization to measure; and like Bob, half of her guesses will be 
wrong. Since wrong guesses change the polarization of the photons, she can't help 
introducing errors in the pulses as she eavesdrops. If she does, Alice and Bob will end 
up with different bit strings. So, Alice and Bob finish the protocol like this: 

(6) Alice and Bob compare a few bits in their strings. If there are discrepancies, 
they know they are being bugged. If there are none, they discard the bits 
they used for comparison and use the rest. 
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Enhancements to this protocol allow Alice and Bob to use their bits even in the 
presence of Eve [133,134,192]. They could compare only the parity of subsets of the 
bits. Then, if no discrepancies are found, they only have to discard one bit of the sub­
set. This detects eavesdropping with only a 50 percent probability, but if they do 
this with n different subsets Eve's probability of eavesdropping without detection is 
only I in 211• 

There's no such thing as passive eavesdropping in the quantum world. If Eve tries 
to recover all the bits, she will necessarily disrupt the communications. 

Bennett and Brassard built a working model of quantum key distribution and have 
exchanged secure bits on a laser table. The latest I heard, some folks at British Tele­
com were sending bits over a IO-kilometer fiber-optic link [276, 1245, 1533]. They 
figure 50 kilometers is feasible. The mind boggles. 
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It's one thing to design protocols and algorithms, but another thing to field them in 
operational systems. In theory, theory and practice are the same; in practice they are 
different. Often ideas that look good on paper don't work in real life. Maybe the 
bandwidth requirements are too large; maybe the protocol is too slow. Chapter 10 
discusses some of the issues related to using cryptography; this chapter gives exam­
ples of how it has been done in practice. 

24.1 IBM SECRET-KEY MANAGEMENT PROTOCOL 

In the late 1970s IBM developed a complete key management system for communi­
cations and file security on a computer network, using only symmetric cryptogra­
phy [515,1027]. This protocol is less important in the actual mechanisms and more 
in its overall philosophy: By automating the generation, distribution, installation, 
storage, changing, and destruction of keys, the protocol went a long way to ensure 
the security of the underlying cryptographic algorithms. 

This protocol provides three things: secure communications between a server and 
several terminals, secure file storage at the server, and secure communication 
among servers. The protocol doesn't really provide for direct terminal-to-terminal 
communication, although it can be modified to do that. 

Each server on the network is attached to a cryptographic facility, which does all 
of the encrypting and decrypting. Each server has a Master Key, KM0, and two vari­
ants, KM1 and KM 2, both of which are simple variants of KM0. These keys are used 
to encrypt other keys and to generate new keys. Each terminal has a Master Termi­
nal Key, KMT, which is used to exchange keys with other terminals. 

The servers store KMT, encrypted with KM1. All other keys, such as those used to 
encrypt files of keys (called KNF), are stored in encrypted form under KM 2 . The mas­
ter key, KM 0, is stored in some nonvolatile security module. Today that could be 
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either a ROM key or a magnetic card, or it could be typed in by the user (probably as 
a text string and then key crunched). KM 1 and KM 2 are not stored anywhere in the 
system, but are computed from KM 0 whenever they are needed. Session keys, for 
communication among servers, are generated with a pseudo-random process in the 
server. Keys to encrypt files for storage (KNF) are generated in the same manner. 

The heart of the protocol is a tamper-resistant module, called a cryptographic 
facility. At both the server and the terminal, all encryption and decryption takes 
place within this facility. The most important keys, those used to generate the 
actual encryption keys, are stored in this module. These keys can never be read once 
they are stored. And they are tagged by use: A key dedicated for one purpose cannot 
accidentally be used for another. This concept of key control vectors is probably the 
most significant contribution of this system. Donald Davies and William Price dis­
cuss this key management protocol in detail [435]. 

A Variation 
A variation on this scheme of master and session keys can be found in [1478]. It's 

built around network nodes with key notarization facilities that serve local termi­
nals. It is designed to: 

Secure two-way communication between any two terminal users. 

Secure communications using encrypted mail. 

Provide personal file protection. 

Provide a digital signature capability. 

For communication and file transfer among users, the scheme uses keys generated 
in the key notarization facility and sent to the users encrypted under a master key. 
The identities of the users are incorporated with the key, to provide evidence that 
the session key has been used between a particular pair of users. This key notariza­
tion feature is central to the system. Although the system does not use public-key 
cryptography, it has a digital-signature-like capability: A key could have only come 
from a particular source and could only be read at a particular destination. 

24.2 MITRENET 

One of the earliest implementations of public-key cryptography was the experi­
mental system MEMO (MITRE Encrypted Mail Office). MITRE is a DoD contractor, 
a government think tank, and an all-around bunch of smart guys. MEMO was a 
secure electronic mail system for users in the MITRENET network, using public­
key cryptography for key exchange and DES for file encryption. 

In the MEMO system, all public keys are stored in a Public Key Distribution Cen­
ter, which is a separate node on the network. They are stored in an EPROM to prevent 
anyone from changing them. Private keys are generated by users or by the system. 
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For a user to send secure messages, the system first establishes a secure commu­
nications path with the Public Key Distribution Center. The user requests a file of 
all public keys from the Center. If the user passes an identification test using his 
private key, the Center sends this list to the user's workstation. The list is 
encrypted using DES to ensure file integrity. 

The implementation uses DES to encrypt messages. The system generates a ran­
dom DES key for file encryption; the user encrypts the file with the DES key and 
encrypts the DES key with the recipient's public key. Both the DES-encrypted file 
and the public-key-encrypted key are sent to the recipient. 

MEMO makes no provision for lost keys. There is some provision for integrity 
checking of the messages, using checksums. No authentication is built into the 
system. 

The particular public-key implementation used for this system-Diffie-Hellman 
key exchange over GF(2127)-was proven insecure before the system was imple­
mented (see Section 11.6), although it is easy to modify the system to use larger 
numbers. MEMO was intended mainly for experimental purposes and was never 
made operational on the real MITRENET system. 

24.3 ISDN 

Bell-Northern Research developed a prototype secure Integrated Services Digital 
Network (ISDN) telephone terminal [499, 1192,493,500]. As a telephone, it was 
never developed beyond prototype. The resulting product was the Packet Data Secu­
rity Overlay. The terminal uses Diffie-Hellman key exchange, RSA digital signa­
tures, and DES data encryption; it can transmit and receive voice and data at 64 
kilobits per second. 

Keys 

A long-term public-key/private-key key pair is embedded in the phone. The pri­
vate key is stored in a tamper-resistant area of the phone. The public key serves as 
the identification of the phone. These keys are part of the phone itself and cannot be 
altered in any way. 

Additionally, two other public keys are stored in the phone. One of these keys is 
the owner's public key. This key is used to authenticate commands from the owner 
and can be changed via a command signed by the owner. In this way an owner can 
transfer ownership of the phone to someone else. 

The public key of the network is also stored in the phone. This key is used to 
authenticate commands from the network's key management facility and to authen­
ticate calls from other users on the network. This key can also be changed via a signed 
command from the owner. This permits the owner to move his phone from one net­
work to another. 

These keys are considered long-term keys: rarely, if ever, changed. A short-term 
public-key/private-key key pair is also stored on the phone. These are encapsulated 
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in a certificate signed by the key management facility. When two phones set up a 
call, they exchange certificates. The public key of the network authenticates these 
certificates. 

This exchange and verification of certificates only sets up a secure call from 
phone to phone. To set up a secure call from person to person, the protocol has an 
additional piece. The owner's private key is stored on a hardware ignition key, 
which is inserted into the telephone by the owner. This ignition key contains the 
owner's private key, encrypted under a secret password known only by the owner 
(not by the phone, not by the network's key management facility, not by anybody). 
It also contains a certificate signed by the network's key management facility that 
contains the owner's public key and some identifying information (name, company, 
job title, security clearance, favorite pizza toppings, sexual preference, or whatever). 
This is also encrypted. To decrypt this information and enter it into the phone, the 
owner types his secret password on the phone's keypad. After the phone uses this 
information to set up calls, it is erased after the owner removes his ignition key. 

The phone also stores a set of certificates from the network's key management 
facility. These certificates authorize particular users to use particular phones. 

Calling 
A call from Alice to Bob works as follows. 

( 1) Alice inserts her ignition key into the phone and enters her password. 

(2) The phone interrogates the ignition key to determine Alice's identity and 
gives Alice a dial tone. 

(3) The phone checks its set of certificates to ensure that Alice is authorized 
to use the particular phone. 

(4) Alice dials the number; the phone places the call. 

(5) The two telephones use a public-key cryptography key-exchange protocol 
to generate a unique and random session key. All subsequent protocol 
steps are encrypted using this key. 

(6) Alice's phone transmits its certificate and user authentication. 

(7) Bob's phone authenticates the signatures on both the certificate and the 
user authentication using the network's public key. 

(8) Bob's phone initiates a challenge-and-reply sequence. It demands real-time 
signed responses to time-dependent challenges. (This prevents an adver­
sary from using certificates copied from a previous exchange.) One 
response must be signed by Alice's phone's private key; another must be 
signed by Alice's private key. 

(9) Bob's phone rings, unless he is already on the phone. 

( 10) If Bob is home, he inserts his ignition key into the phone. His phone inter­
rogates the ignition key and checks Bob's certificate as in steps (2) and (3). 
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( 11) Bob transmits his certificate and user authentication. 

( 12) Alice's phone authenticates Bob's signatures as in step (7), and initiates a 
challenge-and-reply sequence as in step (8). 

( 13) Both phones display the identity of the other user and phone on their 
displays. 

(14) The secure conversation begins. 

( 15) When one party hangs up, the session key is deleted, as are the certificates 
Bob's phone received from Alice's phone and the certificates Alice's phone 
received from Bob's phone. 

Each DES key is unique to each call. It exists only inside the two phones for the 
duration of the call and is destroyed immediately afterward. If an adversary captures 
one or both of the phones involved in the call, he will not be al.Jle to decrypt any pre­
vious call between the two phones. 

24.4 STU-III 

STU stands for "Secure Telephone Unit," an NSA-designed secure phone. The unit 
is about the size and shape of a conventional telephone, and can be used as such. 
The phones are also tamper-resistant, enough so that they are unclassified if 
unkeyed. They also have a data port and can be used to secure modem traffic as well 
as voice [1133]. 

Whitfield Diffie described the STU-III in [494]: 

To make a call with a STU-III, the caller first places an ordinary call to another 
STU-III, then inserts a key-shaped device containing a cryptographic variable and 
pushes a "go secure" button. After an approximately 15-second wait for crypto­
graphic setup, each phone shows information about the identity and clearance of 
the other party on its display and the call can proceed. 

In an unprecedented move, Walter Deeley, NSA's deputy director for commu­
nications security, announced the STU-III or Future Secure Voice System in an 
exclusive interview given to The New York Times [282]. The objective of the new 
system was primarily to provide secure voice and low-speed data communica­
tions for the U.S. Defense Department and its contractors. The interview didn't 
say much about how it was going to work, but gradually the word began to leak 
out. The new system was using public key. 

The new approach to key management was reported early on [68] and one arti­
cle spoke of phones being "reprogrammed once a year by secure telephone link," 
a turn of phrase strongly suggestive of a certificate passing protocol, similar to 
that described [in Section 24.3], that minimizes the need for phones to talk to the 
key management center. Recent reports have been more forthcoming, speaking of 
a key management system called FIREFLY that [1341] "evolved from public key 
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technology and is used to establish pair-wise traffic encryption keys." Both this 
description and testimony submitted to the U.S. Congress by Lee Neuwirth of 
Cylink [1164] suggest a combination of key exchange and certificates similar to 
that used in the ISDN secure phone and it is plausible that FIREFLY roo is based 
on exponentiation. 

STU-Ills are manufactured by AT&T and GE. Somewhere between 300,000 and 
400,000 have been fielded through 1994. A new version, the Secure Terminal Equip­
ment (STE), will work on ISDN lines. 

24.5 KERBEROS 

Kerberos is a trusted third-party authentication protocol designed for TCP/IP net­
works. A Kerberos service, sitting on the network, acts as a trusted arbitrator. Ker­
beros provides secure network authentication, allowing a person to access different 
machines on the network. Kerberos is based on symmetric cryptography (DES as 
implemented, but other algorithms could be used instead). Kerberos shares a differ­
ent secret key with every entity on the network and knowledge of that secret key 
equals proof of identity. 

Kerberos was originally developed at MIT for Project Athena. The Kerberos model 
is based on Needham-Schroeder's trusted third-party protocol (see Section 3.3) 
[1159]. The original version of Kerberos, Version 4, is specified in [1094,1499]. (Ver­
sions 1 through 3 were internal development versions.) Version 5, modified from 
Version 4, is specified in [876,877,878]. The best overview of Kerberos is [1163]. 
Other survey articles are [1384, 1493], and two good articles on using Kerberos in the 
real world are [781,782]. 

The Kerberos Model 

The basic Kerberos protocol was outlined in Section 3.3. In the Kerberos model, 
there are entities-clients and servers-sitting on the network. Clients can be users, 
but can also be independent software programs that need to do things: download 
files, send messages, access databases, access printers, obtain administrative privi­
leges, whatever. 

Kerberos keeps a database of clients and their secret keys. For a human user, the 
secret key is an encrypted password. Network services requiring authentication, as 
well as clients who wish to use these services, register their secret key with Kerberos. 

Because Kerberos knows everyone's secret key, it can create messages that con­
vince one entity of another entity's identity. Kerberos also creates session keys 
which are given to a client and a server (or to two clients) and no one else. A session 
key is used to encrypt messages between the two parties, after which it is destroyed. 

Kerberos uses DES for encryption. Kerberos Version 4 provided a nonstandard 
mode for authentication. This mode is weak: It fails to detect certain changes to the 
ciphertext (see Section 9.10). Kerberos Version 5 uses CBC mode. 
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1. Request for Ticket-Granting Ticket 
2. Ticket-Granting Ticket 
3. Request for Server Ticket 
4. Server Ticket 
5. Request for Service 

1 

Figure 24.1 Kerberos authentication steps. 

How Kerberos Works 

This section discusses Kerberos Version 5. I will outline the differences between 
Version 4 and Version 5 further on. The Kerberos protocol is straightforward (see 
Figure 24.1). A client requests a ticket for a Ticket-Granting Service (TGS) from Ker­
beros. This ticket is sent to the client, encrypted in the client's secret key. To use a 
particular server, the client requests a ticket for that server from the TGS. Assum­
ing everything is in order, the TGS sends the ticket back to the client. The client 
then presents this ticket to the server along with an authenticator. Again, if there's 
nothing wrong with the client's credentials, the server lets the client have access to 
the service. 

Table 24.1 
Kerberos Table of Abbreviations 

c = client 
s = server 
a = client's network address 
v = beginning and ending validity time for a ticket 
t = timestamp 
Kx = x's secret key 
Kx, Y = session key for x and y 
lmlKx = m encrypted in x's secret key 
Tx, Y = x's ticket to use y 
Ax, Y = authenticator from x to y 
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Credentials 

Kerberos uses two types of credentials: tickets and authenticators. (The rest of 
this section uses the notation used in Kerberos documents-see Table 24.1.) A 
ticket is used to pass securely to the server the identity of the client for whom the 
ticket was issued. It also contains information that the server can use to ensure that 
the client using the ticket is the same client to whom the ticket was issued. An 
authenticator is an additional credential, presented with the ticket. 

A Kerberos ticket takes this form: 

Tc, s = s, /c, a, V, Kc, slKs 

A ticket is good for a single server and a single client. It contains the client's name 
and network address, the server's name, a timestamp, and a session key. This infor­
mation is encrypted with the server's secret key. Once the client gets this ticket, she 
can use it multiple times to access the server-until the ticket expires. The client 
cannot decrypt the ticket (she does not know the server's secret key), but she can 
present it to the server in its encrypted form. No one listening on the network can 
read or modify the ticket as it passes through the network. 

A Kerberos authenticator takes this form: 

Ac. s = /c, t, key)Kc. s 

The client generates it every time she wishes to use a service on the server. The 
authenticator contains the client's name, a timestamp, and an optional additional 
session key, all encrypted with the session key shared between the client and the 
server. Unlike a ticket, it can only be used once. However, since the client can 
generate authenticators as needed (it knows the shared secret key), this is not a 
problem. 

The authenticator serves two purposes. First, it contains some plaintext encrypted 
in the session key. This proves that it also knows the key. Just as important, the 
sealed plaintext includes the timestamp. An eavesdropper who records both the 
ticket and the authenticator can't replay them two days later. 

Kerberos Version 5 Messages 

Kerberos Version 5 has five messages (see Figure 24.1 ): 

1. Client to Kerberos: c, tgs 

2. Kerberos to client: /Kc, tgs)Kc, /Tc, tgs)Ktgs 

3. Client to TGS: /Ac, slKc. tgs, /Tc, tgs)Ktgs 

4. TGS to client: /Kc, sf Kc, tgs, /Tc, s)Ks 

5. Client to server: /Ac, s)Kc, s. {Tc, s)Ks 

These will now be discussed in detail. 
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Getting an Initial Ticket 

The client has one piece of information that proves her identity: her password. 
Obviously we don't want her to send this password over the network. The Kerberos 
protocol minimizes the chance that this password will be compromised, while at 
the same time not allowing a user to properly authenticate herself unless she knows 
the password. 

The client sends a message containing her name and the name of her TGS server 
to the Kerberos authentication server. (There can be many TGS servers.) In reality, 
the user probably just enters her name into the system and the login program sends 
the request. 

The Kerberos authentication server looks up the client in his database. If the 
client is in the database, Kerberos generates a session key to be used between her 
and the TGS. This is called a Ticket Granting Ticket (TGT). Kerberos encrypts that 
session key with the client's secret key. Then it creates a TGT for the client to 
authenticate herself to the TGS, and encrypts that in the TGS's secret key. The 
authentication server sends both of these encrypted messages back to the client. 

The client now decrypts the first message and retrieves the session key. The 
secret key is a one-way hash of her password, so a legitimate user will have no trou­
ble doing this. If the user were an imposter, he would not know the correct password 
and therefore could not decrypt the response from the Kerberos authentication 
server. Access would be denied and he wouldn't be able to get the ticket or the ses­
sion key. 

The client saves the TGT and session key and erases the password and the one­
way hash. This information is erased to reduce the chance of compromise. If an 
adversary manages to copy the client's memory, he will only get the TGT and the 
session key. These are valuable pieces of information, but only during the lifetime 
of the TGT. After the TGT expires, they will be worthless. 

The client can now prove her identity to the TGS for the lifetime of the TGT. 

Getting Server Tickets 

A client has to obtain a separate ticket for each service she wants to use. The TGS 
grants tickets for individual servers. 

When a client needs a ticket that she does not already have, she sends a request to 
the TGS. (In reality, the program would do this automatically, and it would be invis­
ible to the user.) 

The TGS, upon receiving the request, decrypts the TGT with his secret key. Then 
he uses the session key included in the TGT to decrypt the authenticator. Finally, 
he compares the information in the authenticator with the information in the 
ticket, the client's network address with the address the request was sent from, and 
the timestamp with the current time. If everything matches, he allows the request 
to proceed. 

Checking timestamps assumes that all machines have synchronized clocks, at 
least to within several minutes. If the time in the request is too far in the future or 
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the past, the TGS treats the request as an attempt to replay a previous request. The 
TGS should also keep track of all live authenticators, because past requests can have 
timestamps that are still valid. Another request with the same ticket and time­
stamp as one already received can be ignored. 

The TGS responds to a valid request by returning a valid ticket for the client to 
present to the server. The TGS also creates a new session key for the client and the 
server, encrypted with the session key shared by the client and the TGS. Both of 
these messages are then sent back to the client. The client decrypts the message and 
extracts the session key. 

Requesting a Service 

Now the client is ready to authenticate herself to the server. She creates a mes­
sage very similar to the one sent to the TGS (which makes sense, since the TGS is a 
service). 

The client creates an authenticator, consisting of her name and network address, 
and a timestamp, encrypted with the session key for her and the server that the TGS 
generated. The request consists of the ticket received from Kerberos (already 
encrypted with the server's secret key) and the encrypted authenticator. 

The server decrypts and checks the ticket and the authenticator, as discussed pre­
viously, and also checks the client's address and the timestamp. If everything 
checks out, the server knows that, according to Kerberos, the client is who she says 
she is. 

For applications that require mutual authentication, the server sends the client 
back a message consisting of the timestamp, encrypted with the session key. This 
proves that the server knew his ~ecret key and could decrypt the ticket and there­
fore the authenticator. 

The client and the server can encrypt future messages with the shared key, if 
desired. Since only they share this key, they both can assume that a recent message 
encrypted in that key originated with the other party. 

Kerberos Version 4 
The previous sections discussed Kerberos Version 5. In the messages and the con­

struction of the tickets and authenticators, Version 4 is slightly different. 
In Kerberos Version 4, the five messages looked like: 

1. Client to Kerberos: 

2. Kerberos to client: 

3. Client to TGS: 

4. TGS to client: 

5. Client to server: 

C, tgs 

(Kc, tgs, (T,, tgs!Ktgs)K, 

(Ac, s)Kc, /gs, (Tc, tgs)Ktgs, S 

(Kc, s, (Tc slKsJKc, tgs 

(Ac, s)Kc, s, {Tc, JKs 

Tc, s = (s, C, a, V, 1, K,, s!Ks 

Ac, s = (c, a, t)Kc,, 
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Messages 1, 3, and 5 are identical. The double encryption of the ticket in steps 2 
and 4 has been removed in Version 5. The Version 5 ticket adds the possibility of 
multiple addresses, and it replaces a "lifetime" field, 1, with a beginning and ending 
time. The Version 5 authenticator adds the option of including an additional key. 

Security of Kerberos 

Steve Bellovin and Michael Merritt discussed several potential security vulnera­
bilities of Kerberos [108]. Although this paper was written about the Version 4 pro­
tocols, many of their comments also apply to Version 5. 

It may be possible to cache and replay old authenticators. Although timestamps 
are supposed to prevent this, replays can be done during the lifetime of the ticket. 
Servers are supposed to store all valid tickets to prevent replays, but this is not 
always possible. And ticket lifetimes can be long; eight hours is typical. 

Authenticators rely on the fact that all the clocks in the network are more or less 
synchronized. If a host can be fooled about the correct time, then an old authentica­
tor can be replayed without any problem. Most network time protocols are insecure, 
so this can be a serious problem. 

Kerberos is also vulnerable to password-guessing attacks. An intruder can collect 
tickets and then try to decrypt them. Remember that the average user doesn't usu­
ally choose good passwords. If Mallory collects enough tickets, his chances of recov­
ering a password are good. 

Perhaps the most serious attack involves malicious software. The Kerberos proto­
cols rely on the fact that the Kerberos software is trustworthy. There's nothing to 
stop Mallory from surreptitiously replacing all client Kerberos software with aver­
sion that, in addition to completing the Kerberos protocols, records passwords. This 
is a problem with any cryptographic software package on an insecure computer, but 
the widespread use of Kerberos in these environments makes it a particularly tempt­
ing target. 

Enhancements to Kerberos are in the works, including an implementation of 
public-key cryptography and a smart-card interface for key management. 

Licenses 

Kerberos is not in the public domain, but MIT's code is freely available. Actually 
implementing it into a working UNIX environment is another story. Several compa­
nies sell versions of Kerberos, but you can get a good version free from Cygnus Sup­
port, 814 University Ave., Palo Alto, CA, 94301; (415) 322-3811; fax: (415) 322-3270. 

24.6 KRYPTOKNIGHT 

KryptoKnight (Kryptonite-get it?) is an authentication and key distribution system 
designed by IBM. It is a secret-key protocol and uses either DES in CBC mode (see 
Section 9.3) or a modified version of MD5 (see Section 18.5). 

KryptoKnight supports four security services: 



CHAPTER 24 Example Implementations 

User authentication (called single sign-on) 

Two-party authentication 

Key distribution 

Authentication of data origin and content 

From a user's perspective, KryptoKnight is similar to Kerberos. Some differences are: 

KryptoKnight uses a hash function for authentication and encrypting 
tickets. 

KryptoKnight does not rely on synchronized clocks; it uses nonces for 
challenges (see Section 3.3 ). 

If Alice wishes to communicate with Bob, KryptoKnight has the 
option of allowing Alice to send a message to Bob and then for Bob to 
initiate the key exchange protocol. 

KryptoKnight has tickets and authenticators, just like Kerberos. It has TGSs, but 
KryptoKnight calls them authentication servers. KryptoKnight's designers spent con­
siderable effort minimizing the number of messages, lengths of messages, and amount 
of encryption. For further information on KryptoKnight, read [1110,173, 174,175]. 

24.7 SESAME 
SESAME stands for Secure European System for Applications in a Multivendor 
Environment. It's a European Community security project, 50 percent funded by 
RACE (see Section 25. 7), whose primary objective is producing technology for user 
authentication with distributed access control. Think of it as kind of a European 
version of Kerberos. It's a two-part project: Stage one is a basic prototype of the 
architecture, and stage two is a set of commercial projects. The three companies 
with the greatest hand in development are ICL in the United Kingdom, Siemens in 
Germany, and Bull in France. 

SESAME is an authentication and key-exchange system [361, 1248,797, 1043]. It 
uses the Needham-Schroeder protocol, with public-key cryptography to communi­
cate between different security domains. The system is seriously flawed in several 
respects. Instead of using a real encryption algorithm, they use XOR with a 64-bit 
key size. Even worse, they use XOR in CBC mode, which leaves half the plaintext 
unencrypted. In their defense, they planned on using DES until the French govern­
ment complained; they validated the code with DES but then removed it, and expect 
people to add it back. I am unimpressed nonetheless. 

Authentication in SESAME is a function on the first block of a message, not on 
the entire message. This has the effect of authenticating "Dear Sir" and not the body 
of a letter. Key generation consists of two calls to the UNIX rand function, which 
isn't very random. SESAME uses crc32 and MD5 as one-way hash functions. And of 
course, SESAME is vulnerable to Kerberos-like password-guessing. 
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24.8 IBM COMMON CRYPTOGRAPHIC ARCHITECTURE 

The Common Cryptographic Architecture (CCA) was designed and developed by 
IBM to provide cryptographic primitives for confidentiality, integrity, key manage­
ment, and personal identification number (PIN) processing [751,784, 1025, 1026, 
940,752]. Keys are managed by control vectors (CVs) (see Section 8.5). Every key has 
a CV XORed with it and is never separated from the vector unless inside secure 
hardware. The CV is a data structure providing an intuitive understanding of the 
privileges associated with a particular key. 

The individual bits of the CV are defined to have specific meanings for using and 
handling each key managed by CCA. The CV is carried with the encrypted key in 
data structures called key tokens. Internal key tokens are used locally and contain 
keys encrypted under the local master key (MK). External key tokens are used to 
export and import encrypted keys between systems. Keys in external key tokens are 
encrypted under key-encrypting keys (KEK). The KEKs are managed in internal key 
tokens. Keys are separated according to their permitted uses. 

Key length is also specified and enforced using bits in the CV. Single length 
keys are 56 bits and are used for such functions as privacy and message authenti­
cation. Double length keys are 112 bits and are used for key management, PIN 
functions, and other special uses. Keys can be required to be DOUBLE-ONLY in 
which both the left and right halves of the key must be different, DOUBLE in 
which the halves are permitted to be equal by chance, SINGLE-REPLICATED in 
which the left and right halves are equal, or SINGLE which contains only 56 bits. 
The CCA functions specify hardware enforcement of certain key types to be used 
for some operations. 

The CV is checked in a secure hardware processor: It must conform to the per­
mitted CCA rules for each CCA function. If the CV successfully passes the test 
requirements, a variant of the KEK or MK is obtained by the XOR of the KEK or MK 
with the CV, and the plaintext target key is recovered for use internally with the 
CCA function. When new keys are generated, the CV specifies the uses of the gen­
erated key. Those combinations of key types that could be used in attacking the sys­
tem are not generated or imported into a CCA-compliant system. 

CCA uses a combination of public-key cryptography and secret-key cryptography 
for key distribution. The KDC shares a secret master key with each user and 
encrypts session keys using that master key. Master keys are distributed using 
public-key cryptography. 

The system's designers chose this hybrid approach for two reasons. The first is 
performance. Public-key cryptography is computationally intensive; if session keys 
are distributed using public-key cryptography, the system might bog down. The sec­
ond is backwards compatibility; this system can be overlaid on existing secret-key 
schemes with minimal disruption. 

CCA systems are designed to be interoperable. For systems that are non-CCA 
compliant, a Control Vector Translate (CVXLT) function permits keys to be passed 
between the two implementations. Initialization of the CVXLT function requires 
dual control. Two individuals must set up the required translation tables indepen-
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dently. Such dual control provides a high degree of assurance concerning the 
integrity and pedigree of any keys introduced into the system. 

A key of type DATA is provided for compatibility with other systems. A DATA 
key is stored with a CV that identifies the key as a DATA key. DATA keys can have 
broad uses and as such must be regarded with suspicion and used with care. DATA 
keys may not be used for any key management functions. 

The Commercial Data Masking Facility (CDMF) provides an exportable version of 
CCA. It has a special feature that reduces DES keys to an effective 40 bits for export 
(see Section 15.5) [785]. 

24.9 ISO AUTHENTICATION FRAMEWORK 

Public-key cryptography has been recommended for use with the ISO authentica­
tion framework, also known as the X.509 protocols [304]. This framework provides 
for authentication across networks. Although no particular algorithms are specified 
for either security or authentication, the specification recommends RSA. There are 

Version 

Serial Number 

Algorithm Identifier: 

-Algorithm 
- Parameters 

Issuer 

Period of Validity: 

- Not Before Date 
- Not After Date 

Subject 

Subject's Public Key: 

-Algorithm 
- Parameters 
- Public Key 

Signature Figure 24.2 An X.509 certificate. 
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prov1s10ns, however, for multiple algorithms and hash functions. X.509 was ini­
tially issued in 1988. After public review and comment, it was revised in 1993 to 
correct some security problems [1100, 750]. 

Certificates 

The most important part of X.509 is its structure for public-key certificates. Each 
user has a distinct name. A trusted Certification Authority (CA) assigns a unique 
name to each user and issues a signed certificate containing the name and the user's 
public key. Figure 24.2 shows an X.509 certificate [304]. 

The version field identifies the certificate format. The serial number is unique 
within the CA. The next field identifies the algorithm used to sign the certificate, 
together with any necessary parameters. Issuer is the name of the CA. The period of 
validity is a pair of dates; the certificate is valid during the time period between the 
two. Subject is the name of the user. The subject's public key information includes 
the algorithm name, any necessary parameters, and the public key. The last field is 
the CA's signature. 

If Alice wants to communicate with Bob, she first gets his certificate from a data­
base. Then she verifies its authenticity. If both share the same CA, this is easy. Alice 
simply verifies the CA's signature on Bob's certificate. 

If they use different CAs, it's more complicated. Think of a tree structure, with 
different CAs certifying other CAs and users. On the top is one master CA. Each CA 
has a certificate signed by the CA above it, and by the CAs below it. Alice uses these 
certificates to verify Bob's certificate. 

Figure 24.3 illustrates this. Alice's certificate is certified by CAA; Bob's is certified 
by CAB. Alice knows CAA's public key. CAc has a certificate signed by CAA, so Alice 

Bob 

Alice 
Figure 24.3 Sample certification hierarchy. 
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can verify that. CAv has a certificate signed by CAc. CAs has a certificate signed by 
CAv. And Bob's certificate is signed by CAs, By moving up the certification tree to 
a common point, in this case CAv, and then down to Bob, Alice can verify Bob's cer­
tificate. 

Certificates can be stored on databases around the network. Users can send them 
to each other. When a certificate expires, it should be removed from any public 
directories. The issuing CA, however, should maintain a copy of the certificate. 
Should a dispute arise later, it will be required. 

Certificates can also be revoked, either because the user's key has been compro­
mised, the CA's key has been compromised, or because the CA no longer wants to 
certify the user. Each CA must maintain a list of all revoked but not expired certifi­
cates. When Alice receives a new certificate, she should check to see if it has been 
revoked. She can check a database of revoked keys on the network, but more likely 
she will check a locally cached list of revoked certificates. There are certainly pos­
sible abuses to this system; key revocation is probably its weakest part. 

Authentication Protocols 
Alice wants to communicate with Bob. First she goes to a database and obtains 

what is called a certification path from Alice to Bob, and Bob's public key. At this 
point Alice can initiate either a one-way, two-way, or three-way authentication 
protocol. 

The one-way protocol is a single communication from Alice to Bob. It establishes 
the identities of both Alice and Bob and the integrity of any information communi­
cated by Alice to Bob. It also prevents any replay attacks on the communication. 

The two-way protocol adds a reply from Bob. It establishes that Bob, and not an 
imposter, sent the reply. It also establishes the secrecy of both communications and 
prevents replay attacks. 

Both the one-way and two-way protocols use timestamps. A three-way protocol 
adds another message from Alice to Bob and obviates the need for timestamps (and 
therefore authenticated time). 

The one-way protocol is: 

( 1) Alice generates a random number, RA-

(2) Alice constructs a message, M = (TA, RA, Is, d), where TA is Alice's time­
stamp, Is is Bob's identity, and dis an arbitrary piece of data. The data may 
be encrypted with Bob's public key, Es, for security. 

(3) Alice sends (CA, DA(M)) to Bob. (CA is Alice's certificate; DA is Alice's pri­
vate key.) 

(4) Bob verifies CA and obtains EA. He makes sure these keys have not expired. 
(EA is Alice's public key.) 

(5) Bob uses EA to decrypt DA(M). This verifies both Alice's signature and the 
integrity of the signed information. 

(6) Bob checks the Is in M for accuracy. 

(7) Bob checks the TA in Mand confirms that the message is current. 
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(8) As an option, Bob can check RA in M against a database of old random num­
bers to ensure the message is not an old one being replayed. 

The two-way protocol consists of the one-way protocol and then a similar one­
way protocol from Bob to Alice. After executing steps (1) through (8) of the one-way 
protocol, the two-way protocol continues with: 

(9) Bob generates another random number, RB. 

( 10) Bob constructs a message M' = (TB, RB, h RA, d), where TB is Bob's time­
stamp, IA is the identity of Alice and d is arbitrary data. The data may be 
encrypted with Alice's public key, EA, for security. RA is the random num­
ber Alice generated in step ( 1 ). 

(11) Bob sends DB(M') to Alice. 

( 12) Alice uses EB to decrypt DB(M'). This verifies both Bob's signature and the 
integrity of the signed information. 

( 13) Alice checks the IA in M' for accuracy. 

(14) Alice checks the TB in M' and confirms that the message is current. 

( 15) As an option, Alice can check the RB in M' to ensure the message is not an 
old one being replayed. 

The three-way protocol accomplishes the same thing as the two-way protocol, but 
without timestamps. Steps ( 1) through ( 15) are identical to the two-way protocol, 
with TA= TB= 0. 

( 16) Alice checks the received version of RA against the RA she sent to Bob in 
step (3). 

( 17) Alice sends D A(RB) to Bob. 

(18) Bob uses EA to decrypt DA(RB). This verifies both Alice's signature and the 
integrity of the signed information. 

( 19) Bob checks the received version of RB against the RB he sent to Alice in 
step ( 10). 

24.10 PRIVACY-ENHANCED MAIL (PEM) 

PEM is the Internet Privacy-Enhanced Mail standard, adopted by the Internet Archi­
tecture Board (IAB) to provide secure electronic mail over the Internet. It was ini­
tially designed by the Internet Research Task Force (IRTF) Privacy and Security 
Research Group (PSRG), and then handed over to the Internet Engineering Task 
Force (IETF) PEM Working Group. The PEM protocols provide for encryption, 
authentication, message integrity, and key management. 
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The complete PEM protocols were initially detailed in a series of RFCs 
(Requests for Comment) in [977] and then revised in [978]. The third iteration of 
the protocols [979,827,980] is summarized in [177,178]. The protocols were modi­
fied and improved, and the final protocols are detailed in another series of RFCs 
[981,825, 76,802]. Another paper by Matthew Bishop [179] details the changes. 
Reports of attempts to implement PEM include [ 602, 1505, 1522, 74,351, 1366, 
1367]. See also [1394]. 

PEM is an inclusive standard. The PEM procedures and protocols are intended to 
be compatible with a wide range of key-management approaches, including both 
symmetric and public-key schemes to encrypt data-encrypting keys. Symmetric 
cryptography is used for message-text encryption. Cryptographic hash algorithms 
are used for message integrity. Other documents support key-management mecha­
nisms using public-key certificates; algorithms, modes, and associated identifiers; 
and paper and electronic format details and procedures for the key-management 
infrastructure to support these services. 

PEM supports only certain algorithms, but allows for different suites of algorithms 
to be specified later. Messages are encrypted with DES in CBC mode. Authentica­
tion, provided by something called a Message Integrity Check (MIC), uses either 
MD2 or MD5. Symmetric key management can use either DES in ECB mode or 
triple-DES using two keys (called EDE mode). PEM also supports public-key certifi­
cates for key management, using the RSA algorithm (key length up to 1024 bits) and 
the X.509 standard for certificate structure. 

PEM provides three privacy-enhancement services: confidentiality, authentica­
tion, and message integrity. No special processing requirements are imposed on the 
electronic mail system. PEM can be incorporated selectively, by site or by user, 
without affecting the rest of the network. 

PEM Documents 

The specifications for PEM come from four documents: 

RFC 1421: Part I, Message Encryption and Authentication Proce­
dures. This document defines message encryption and authentication 
procedures in order to provide privacy-enhanced mail services for 
electronic mail transfer on the Internet. 
RFC 1422: Part II, Certificate-Based Key Management. This docu­
ment defines a supporting key management architecture and infra­
structure, based on public-key certificate techniques to provide 
keying information to message originators and recipients. 
RFC 1423: Part III, Algorithms, Modes, and Identifiers. This docu­
ment provides definitions, formats, references, and citations for 
cryptographic algorithms, usage modes, and associated identifiers 
and parameters. 
RFC 1424: Part IV, Key Certification and Related Services. This docu­
ment describes three types of service in support of PEM: key certifi­
cation, certificate revocation list (CRL) storage, and CRL retrieval. 
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Certificates 

PEM is compatible with the authentication framework described in [304]; see also 
[826]. PEM is a superset of X.509; it establishes procedures and conventions for a 
key-management infrastructure for use with PEM and with other protocols (from 
both the TCP/IP and OSI suites) in the future. 

The key-management infrastructure establishes a single root for all Internet cer­
tification. The Internet Policy Registration Authority (IPRA) establishes global poli­
cies that apply to all certification under this hierarchy. Beneath the IPRA root are 
Policy Certification Authorities (PCAs), each of which establishes and publishes its 
policies for registering users or organizations. Each PCA is certified by the IPRA. 
Below PCAs, CAs certify users and subordinate organizational entities (such as 
departments, offices, subsidiaries). Initially, the majority of users are expected to be 
registered with some organization. 

Some PCAs are expected to provide certification for users who wish to register 
independent of any organization. For users who wish anonymity while taking 
advantage of PEM privacy facilities, one or more PCAs are expected to be estab­
lished with policies that allow for registration of users who do not wish to disclose 
their identities. 

PEM Messages 
PEM's heart is its message format. Figure 24.4 shows an encrypted message using 

symmetric key management, Figure 24.5 shows an authenticated and encrypted 
message using public-key key management, and Figure 24.6 shows an authenticated 
(but unencrypted) message using public-key key management. 

The first field is "Proc-Type, 11 and identifies the type of processing performed on 
the message. There are three possible types of messages. The "ENCRYPTED" spec-

-----BEGIN PRIVACY-ENHANCED MESSAGE­
Proc-Type: 4,ENCRYPTED 
Content-Domain: RFC822 
DEK-Info: DES-CBC,F8143EDE5960C597 
Originator-ID-Symmetric: schneier@counterpane.com,, 
Recipient-ID-Symmetric: schneier@chinet.com,ptf-kmc,3 
Key-Info: 

DES-ECB,RSA-MD2,9FD3AAD2F2691B9A,B70665BB9BF7CBCDA60195DB94F727D3 
Recipient-ID-Symmetric: pem-dev@tis.com,ptf-kmc,4 
Key-Info: 

DES-ECB,RSA-MDZ,161A3F75DC82EF26,EZEF532C65CBCFF79F83A2658132DB47 
LLrHBOeJzyhP+/fSStdW8okeEnv47jxe7SJ/iN72ohNcUk2jHEUSoHlnvNSIWL9M 
8tEjmF/zxB+bATMtPjCUWbzBLr9wloX!kjHUlBLpvXROUrUzYbkNpk0agV2IzUpk 
J6UiRRGcDSvzrsoK+oNvqu6z7Xs5Xfz5rDqUcMll(lZ6720dcBWGGsDLpTpSCnpot 

dXd/H5LMDWnonNvPCwQUHt~~ 
-----END PRIVACY-ENHANCED MESSAGE-

Figure 24.4 Example of an encapsulated message (symmetric case). 
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-----BEGIN PRIVACY-ENHANCED MESSAGE--­
Proc-Type: 4,ENCRYPTED 
Content-Domain: RFC822 
DEK-Info: DES-CBC,BFF968AA74691AC1 
Originator-Certificate: 

MIIBlTCCAScCAWUwDQYJKoZihvcNAQECBQAwUTELMAkGAlUEBhMCVVMxIDAeBgNV 
BAoTFlJTOSBEYXRhIFNlY3VyaXR5LCBJbmMuMQ8wDQYDVQQLEwZCZXRhIDExDzAN 
BgNVBAsTBk5PVEFSWTAeFw05MTA5MDQxODM4MTdaFw05MzA5MDMxODM4MTZaMEUx 
CzAJBgNVBAYTAlVTMSAwHgYDVQQKExdSUOEgRGFOYSBTZWNlcml0eSwgSW5jljEU 
MBIGAlUEAxMLVGVzdCBVc2VyIDEwWTAKBgRVCAEBAgICAANLADBIAkEAwHZHl7i+ 
yJcqDtjJCowzTdBJrdAiLAnSC+CnnjOJELyuQiBgkGrgih3j8/xOfM+YrsyFlu3F 
LZPVtzlndhYFJQIDAQABMAOGCSqGSib3DQEBAgUAAlkACKrOPqphJYwlj+YPtciq 
iWlFPuN5jJ79Khfg7ASFxskYkEMjRNZV/HZDZQEhtVaU7Jxfzs2wfX5byMp2X3U/ 

5XUXGx7qusDgHQGs7Jk9W8CWlfuSWUgN4w--
Key-Info: RSA, 

I3rRIGXUGWAF8js5wCzRTkdh034PTHdRZY9Tuvm03M+NM7fx6qc5udixps2LngO+ 
wGrtiUm/ovtKdinz6ZQ/aO--

Issuer-Certificate: 
MIIB3DCCAUgCAQowDQYJKoZihvcNAQECBQAwTzELMAkGAlUEBhMCVVMxIDAeBgNV 
BAoTFlJTQSBEYXRhIFNlY3VyaXR5LCBJbmMuMQ8wDQYDVQQLEwZCZXRhIDExDTAL 
BgNVBAsTBFRMQOEwHhcNOTEwOTAxMDgwMDAwWhcNOTiwOTAxMDclOTU5WjBRMQsw 
CQYDVQQGEwJVUzEgMB4GAlUEChMXUlNBIERhdGEgU2VjdXJpdHksIEluYy4xDzAN 
BgNVBAsTBkJldGEgMTEPMAOGAlUECxMGTk9UQVJZMHAwCgYEVQgBAQICArwDYgAw 
XwJYCsnp6lQCxYykNlODwutF/jMJ3kL+3PjYyHOwk+/9rLg6X65B/LD4bJHt05XW 
cqAz/7R7XhjYCmOPcqbdzoACZtilETrKrcJiDYoP+DkZ8klgCk7hQHpbiwIDAQAB 
MAOGCSqGSib3DQEBAgUAA38AAICPv4f9Gx/tY4+p+4DB7MV+tKZnvBoy8zgoMGOx 
dD2jMZ/3HsyWKWgSFOeH/AJB3qr9zosG47pyMnTf3aSy2nB07CMxpUWRBcXUpE+x 
EREZd9++32ofGBIXaialnOgVUnOOzSYgugiQ077nJLDUjOhQehCizEs5wUJ35a5h 

MIC-Info: RSA-MD5,RSA, 
UdFJR8u/TIGhfH65ieewe210W4tooa3vZCvVNGBZirf/7nrgzWDABz8w9NsXSexv 

AjRFbHoNPzBuxwmOAFeAOHJszL4yBvhG 
Recipient-ID-Asymmetric: 

MFExCzAJBgNVBAYTAlVTMSAwHgYDVQQKExdSUOEgRGFOYSBTZWNlcml0eSwgSW5j 
LjEPMAOGAlUECxMGQmVOYSAxMOSwDOYDVOOLEwZOTlRBUlk-, 
66 

Key-Info: RSA, 
06BSlww9CTyHPtS3bMLD+LOhejdvX6QvlHK2ds2s0PEaXhX8EhvVphHYTjwekdWv 

7xOZ3Jx2vTAhOYHMcqqCjA-­
qeWlj/YJ2Uf5ng9yznPbtDOmYloSwiuV9FRYx+gzY+8iXd/NQrXHfi6/MhPfPF3d 

jiqCJAxvld2xgqQimUzoSla4r7k005c/Iua4LqKeq3ciFzEv/MbZhA-­
-----END PRIVACY-ENHANCED MESSAGE-----

Figure 24.5 Example of an encapsulated ENCRYPTED message (asym­
metric case). 
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ifier says that the message is encrypted and signed. The "MIC-ONLY" and "MIC­
CLEAR" specifiers would indicate that the message is signed, but not encrypted. 
MIC-CLEAR messages are not encoded and can be read using non-PEM software. 
MIC-ONLY messages need PEM software to transform them to a human-readable 
form. A PEM message is always signed; it is optionally encrypted. 

The next field, "Content-Domain," specifies the type of mail message. It has 
nothing to do with security. The "DEK-Info" field gives information on the Data 
Exchange Key (DEK), the encryption algorithm used to encrypt the text, and any 
parameters associated with the encryption algorithm. Only DES in CBC mode is 
currently specified, or "DES-CBC." The second subfield specifies the IV. Other algo­
rithms may be specified by PEM in the future; their use will be noted in DEK-Info 
and in other fields that identify algorithms. 

For messages with symmetric key management (see Figure 24.4), the next field is 
"Originator-ID-Symmetric" with three subfields. The first subfield identifies the 
sender by a unique electronic mail address. The second subfield is optional and iden­
tifies the authority that issued the interchange key. The third is an optional Ver­
sion/Expiration subfield. 

Continuing with the symmetric key-management case, each recipient has two 
fields: "Recipient-ID-Symmetric" and "Key-Info." The "Recipient-ID-Symmetric" 
field has three subfields; these identify the receiver in the same way that "Originator­
ID-Symmetric" identified the sender. 

The "Key-Info" field specifies the key-management parameters. This field has four 
subfields. The first subfield gives the algorithm used to encrypt the DEK. Since the 
key management in this message is symmetric, the sender and receiver have to share 
a common key. This is called the Interchange Key (IK), which is used to encrypt the 
DEK. The DEK can be either encrypted using DES in ECB (denoted by "DES-ECB") 
or triple-DES (which would be denoted "DES-EDE"). The second subfield specifies 
the MIC algorithm. It can be either MD2 (denoted by "RSA-MD2") or MDS (which 
would be denoted "RSA-MD5"). The third subfield, the DEK, and the fourth field, 
the MIC, are both encrypted with the IK. 

Figures 24.5 and 24.6 show messages with public-key key management (called 
"asymmetric" in PEM nomenclature). The headers are different. In ENCRYPTED 
messages, after the "DEK-Info" field comes the "Originator-Certificate" field. The 
certificate follows the X.509 standard (see Section 24.9). The next field is "Key-Info" 
with two subfields. The first subfield specifies the public-key algorithm used to 
encrypt the DEK; currently only RSA is supported. The next subfield is the DEK, 
encrypted in the originator's public key. This is an optional field, intended to permit 
the originator to decrypt his own message in the event that it is returned by the mail 
system. The next field "Issuer-Certificate," is the certificate of whomever signed 
the Originator-Certificate. 

Continuing with the asymmetric key-management case, the next field is "MIC­
Info." The first subfield gives the algorithm under which the MIC was computed. 
The second subfield shows the algorithm under which the MIC was signed. The 
third subfield consists of the MIC, signed by the sender's private key. 
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-----BEGIN PRIVACY-ENHANCED MESSAGE-­
Proc-Type: 4,MIC-ONLY 
Content-Domain: RFC822 
Originator-Certificate: 

MI!BlTCCAScCAWUwDQYJKoZ!hvcNAQECBQAwUTELMAkGAlUEBhMCVVMx!DAeBgNV 
BAoTFlJTQSBEYXRh!FNlY3VyaXR5LCBJbmMuM08wDOYDVOOLEwZCZXRhlDExDzAN 
BgNVBAsTBk5PVEFSWTAeFw05MTA5MDQxODM4MTdaFw05MzA5MDMxODM4MTZaMEUx 
CzAJBgNVBAYTAlVTMSAwHgYDVQQKExdSUOEgRGFOYSBTZWNlcml0eSwgSW5jljEU 
MBIGAlUEAxMLVGVzdCBVc2Vy!DEwWTAKBgRVCAEBAg!CAANLADG!AkEAwHZHl7i+ 
yJcqDtjJCowzTdBJrdAiLAnSC+CnnjOJELyuQiBgkGrglh3j8/xOfM+YrsyFlu3F 
LZPVtzlndhYFJQIDAQABMAOGCSqGS!b3DQEBAgUAAlkACKr0PqphJYwlj+YPtclq 
iWlFPuN5jJ79Khfg7ASFxskYkEMjRNZV/HZDZQEhtVaU7Jxfzs2wfX5byMp2X3U/ 

5XUXGx7qusDgHQGs7Jk9W8CWlfuSWUgN4w~~ 
Issuer-Certificate: 

MIIB3DCCAUgCAQowDQYJKoZihvcNAQECBOAwTzELMAkGAlUEBhMCVVMxIDAeBgNV 
BAoTFlJTQSBEYXRhIFNlY3VyaXR5LCBJbmMuMQ8wDQYDVOOLEwZCZXRhIDExDTAL 
BgNVBAsTBFRMQOEwHhcNOTEwOTAxMDgwMDAwWhcNOT!wOTAxMDclOTU5WjBRMQsw 
CQYDVQQGEwJVUzEgMB4GAlUEChMXUlNBIERhdGEgU2VjdXJpdHksIEluYy4xDzAN 
BgNVBAsTBkJldGEgMTEPMAOGAlUECxMGTk9UQVJZMHAwCgYEVQgBAQICArwDYgAw 
XwJYCsnp6lQCxYykNlODwutF/jMJ3kL+3PjYyHOwk+/9rLg6X65B/LD4bJHt05XW 
cqAz/7R7XhjYCmOPcqbdzoACZtilETrKrcJiDYoP+DkZ8klgCk7hQHpbiwIDAQAB 
MAOGCSqGSib3DQEBAgUAA38AAICPv4f9Gx/tY4+p+4DB7MV+tKZnvBoy8zgoMGOx 
d02jMZ/3HsyWKWgSFOeH/AJB3qr9zosG47pyMnTf3aSy2nB07CMxpUWRBcXUpE+x 
EREZd9++32ofGB!Xaialn0gVUn00zSYgugi0077nJLDUjOhQehCizEs5wUJ35a5h 

MIC-Info: RSA-MD5,RSA, 
jV20fH+nnXHUBbnLBkPAad/mSQITDZlbVuxvZAOVRZ5q5+Ejl5bQvqNeqOUNQjr6 

EtE7K2QDeVMCyXsdJlA8fA~~ 
LSBB!Gllc3NhZ2UgZm9y!HVzZSBpbiBOZXNOaW5nlgOKLSBGb2xsb3dpbmcgaXMg 

YSBibGFuayBsaW510gOKDQpUaGlz!GlzIHRoZSBlbmQuDQo~ 
-----END PRIVACY-ENHANCED MESSAGE-

Figure 24.6 Example of an encapsulated MIC-ONLY message (asymmet­
ric case). 

Still continuing with asymmetric key management, the next fields deal with the 
recipients. There are two fields for each recipient: "Recipient-ID-Asymmetric" and 
"Key-Info." The "Recipient-ID-Asymmetric" field has two subfields. The first iden­
tifies the authority that issued the receiver's public key; the second is an optional 
Version/Expiration subfield. The "Key-Info" field specifies the key management 
parameters: The first subfield identifies the algorithm used to encrypt the message 
and the second subfield is the DEK encrypted with the receiver's public key. 

Security of PEM 
RSA keys in PEM can range from 508 bits to 1024 bits. This should be long 

enough for anyone's security needs. A more likely attack would be against the key­
management protocols. Mallory could steal your private key-don't write it down 
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anywhere-or attempt to fool you into accepting a bogus public key. The key certi­
fication provisions of PEM make this unlikely if everyone follows proper proce­
dures, but people have been known to be sloppy. 

A more insidious attack would be for Mallory to modify the PEM implementation 
running on your system. This modified implementation could surreptitiously send 
Mallory all of your mail, encrypted with his public key. It could even send him a 
copy of your private key. If the modified implementation works well, you will never 
know what is happening. 

There's no real way to prevent this kind of attack. You could use a one-way hash 
function and fingerprint the PEM code. Then, each time you run it, you could check 
the fingerprint for modification. But Mallory could modify the fingerprint code at 
the same time he modifies the PEM code. You could fingerprint the fingerprint code, 
but Mallory could modify that as well. If Mallory can get access to your machine, he 
can subvert the security of PEM. 

The moral is that you can never really trust a piece of software if you cannot trust 
the hardware it is running on. For most people, this kind of paranoia is unwarranted. 
For some, it is very real. 

TIS/PEM 
Trusted Information Systems, partially supported by the U.S. government 

Advanced Research Projects Agency, has designed and implemented a reference 
implementation of PEM (TIS/PEM). Developed for UNIX-based platforms, it has 
also been ported to VMS, DOS, and Windows. 

Although the PEM specifications indicate a single certification hierarchy for use 
by the Internet, TIS/PEM supports the existence of multiple certification hierar­
chies. Sites may specify a set of certificates that are to be considered valid, includ­
ing all certificates issued by them. A site need not join the Internet hierarchy in 
order to use TIS/PEM. 

TIS/PEM is currently available to all U.S. and Canadian organizations and citizens 
upon request. It will be distributed in source code form. Interested parties should 
contact: Privacy-Enhanced Mail, Trusted Information Systems, Inc., 3060 Washing­
ton Road (Rte. 97), Glenwood, MD 21738; (301) 854-6889; fax: (301) 854-5363; Inter­
net: pem-info@tis.com. 

RIPEM 
RIPEM is a program, written by Mark Riordan, that implements the PEM proto­

cols. Although technically not public domain, the program is publicly available and 
can be used royalty-free for personal, noncommercial applications. A license for its 
use is included with the documentation. 

The code cannot be exported. Of course, U.S. government laws don't apply out­
side the United States, and some people have ignored the export rules. RIPEM code 
is available on bulletin boards worldwide. Something called RIPEM/SIG, which 
only does digital signatures, is exportable. 
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At this writing, RIPEM is not a complete implementation of the PEM protocols; 
it does not implement certificates for authenticating keys. 

Before writing RIPEM, Riordan wrote a similar program called RPEM. This was 
intended to be a public-domain electronic-mail encryption program. To try to avoid 
patent issues, Riordan used Rabin's algorithm (see Section 19.5). Public Key Partners 
claimed that their patents were broad enough to cover all of public-key cryptogra­
phy and threatened to sue; Riordan stopped distributing the program. 

RPEM isn't really used anymore. It is not compatible with RIPEM. Since RIPEM 
can be used with the full blessing of Public Key Partners, there is no reason to use 
RPEM instead. 

24.11 MESSAGE SECURITY PROTOCOL (MSP) 

The Message Security Protocol (MSP) is the military equivalent of PEM. It was 
developed by the NSA in the late 1980s under the Secure Data Network System 
(SDNS) program. It is an X.400-compatible application-level protocol for securing 
electronic mail. MSP will be used for signing and encrypting messages in the 
Department of Defense's planned Defense Message System (DMS) network. 

The Preliminary Message Security Protocol (PMSP), to be used for "unclassified 
but sensitive" messages, is a version of MSP adapted for use with both X.400 and 
TCP /IP. This protocol is also called Mosaic. 

Like PEM, MSP and PMSP software applications are flexible and designed to 
accommodate a variety of algorithms for security functions including signing, hash­
ing, and encryption. PSMP will work with the Capstone chip (see Section 24.17). 

24.12 PRETTY GOOD PRIVACY (PGP) 

Pretty Good Privacy (PGP) is a freeware electronic-mail security program, originally 
designed by Philip Zimmermann [1652]. It uses IDEA for data encryption, RSA 
(with keys up to 2047 bits) for key management and digital signatures, and MD5 as 
a one-way hash function. 

PGP's random public keys use a probabilistic primality tester, and get their initial 
seeds from measuring the user's keyboard latency while typing. PGP generates ran­
dom IDEA keys using the method delineated in ANSI X9.l 7, Appendix C (see Sec­
tion 8.1) [55], with IDEA as the symmetric algorithm instead of DES. PGP also 
encrypts the user's private key using a hashed pass phrase instead of a password. 

PCP-encrypted messages have layered security. The only thing a cryptanalyst can 
learn about an encrypted message is who the recipient is, assuming he knows the 
recipient's key ID. Only after the recipient decrypts the message does he learn who 
signed the message, if it is signed. Contrast this approach with PEM, which leaves 
quite a bit of information about the sender, recipient, and message in the unen­
crypted header. 
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The most interesting aspect of PGP is its distributed approach to key manage­
ment (see Section 8.12). There are no key certification authorities; PGP instead 
supports a "web of trust." Every user generates and distributes his own public key. 
Users sign each other's public keys, creating an interconnected community of 
PGP users. 

For example, Alice might physically give her public key to Bob. Bob knows Alice, 
so he signs her public key. He then gives the signed key back to her and keeps a copy 
for himself. When Alice wants to communicate with Carol, Alice sends Carol a 
copy of the key Bob signed. Carol, who already has Bob's public key (she got it at 
some other time) and trusts Bob to certify other people's keys, verifies his signature 
on Alice's key and accepts it as valid. Bob has introduced Alice to Carol. 

PGP does not specify a policy for establishing trust; users are free to decide who 
they trust and who they do not. PGP provides mechanisms for associating trust 
with public keys and for using trust. Each user keeps a collection of signed public 
keys in a file called a public-key ring. Each key in the ring has a key legitimacy field 
that indicates the degree to which the particular user trusts the validity of the key. 
The higher the trust level, the more the user believes the key is legitimate. A sig­
nature trust field measures how far the user trusts the signer to certify the public 
keys of other users. And finally, an owner trust field indicates the degree to which 
the particular user trusts the key's owner to sign other public keys; this field is set 
manually by the user. PGP continuously updates these fields as users supply new 
information. 

Figure 24. 7 shows how this model might look for a particular user, Alice. Alice's 
key is at the top, and the owner trust value is ultimate trust. Alice has signed Bob's, 
Carol's, Dave's, Ellen's, and Frank's keys. She trusts Bob and Carol to sign other peo­
ple's public keys, and she partially trusts Dave and Ellen to sign other people's pub­
lic keys. And she trusts Gail to sign other people's public keys, even though she has 
not signed Gail's key herself. 

Two partially trusted signatures may be sufficient to certify a key. Alice believes 
that Kurt's key is legitimate because both Dave and Ellen have signed it. This is not 
automatic in PGP; Alice can set her own paranoia level. 

Just because Alice believes a key to be valid, she does not have to trust it to sign 
other people's keys. She does not trust Frank to sign other people's public keys, even 
though she signed his key herself. And she does not trust Ivan's signature on Mar­
tin's key, or Kurt's signature on Nancy's key. 

Owen's key doesn't fit into the web anywhere; perhaps Alice got it from a key 
server. PGP does not assume that the key is valid; Alice must either declare the key 
valid or decide to trust one of the key's signers. 

Of course, nothing prevents Alice from using keys she does not trust. PGP's job is 
to alert Alice that the key is not trusted, not to prevent communications. 

The weakest link of this whole system is key revocation: It is impossible to guar­
antee that no one will use a compromised key. If Alice's private key is stolen she 
can send out something called a key revocation certificate, but since key distribu­
tion is ad hoc and largely word of mouth there is no guarantee that it will reach 
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Figure 24. 7 PCP trust model. 
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everyone who has her public key on his key ring. And as Alice has to sign the key 
revocation certificate with her private key; if she loses the key altogether she can­
not revoke it. 

The current version of PGP is 2.6.2. A new version of PGP, PGP 3.0, is scheduled 
for release by the end of 1995. Changes in 3.0 include options for triple-DES, SHA, 
and other public-key algorithms, a split of the encryption and signature public­
key/private-key key pairs, enhanced procedures for key revocation, improved key­
ring management functions, an API for integrating PGP in other programs, and a 
completely rewritten code base. 

PGP is available for MS-DOS, UNIX, Macintosh, Amiga, and Atari. It is free for per­
sonal, noncommercial use, and is available from many ftp sites on the Internet. To ftp 
PGP from MIT, telnet to net-dist.mit.edu, log in as getpgp, answer the questions, then 
ftp to net-dist.mit.edu and change to the directory named in the telnet session. It is 
also available from ftp.ox.ac.uk, ftp.dsi.unimi.it, ftp.funet.fi, ftp.demon.co.uk, Com­
puserve, AOL, and elsewhere. For U.S. commercial users, PGP can be bought-com-
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plete with licenses-for about $100 from a company called ViaCrypt, 9033 N 24th 
Ave., Phoenix, AZ, 85021; (602) 944-0773; viacrypt@acm.org. Several shareware front­
ends are available to help integrate PCP into MS-DOS, Microsoft Windows, Macin­
tosh, and UNIX. 

There are several books about PCP [601,1394,1495]. The source code has even 
been published in book form [1653] in an attempt to frustrate the U.S. Department 
of State, which continues to maintain that source code is exportable on paper but 
not electronically. Assuming you trust IDEA, PCP is the closest you're likely to get 
to military-grade encryption. 

24.13 SMART CARDS 

A smart card is a plastic card, the size and shape of a credit card, with an embedded 
computer chip. It's an old idea-the first patents were filed 20 years ago-but prac­
tical limitations made them feasible only five or so years ago. Since then they have 
taken off, mostly in Europe. Many countries use smart cards for pay telephones. 
There are also smart credit cards, smart cash cards, smart everything cards. The U.S. 
credit-card companies are looking at the technology, and within a few years even 
backwards Americans will have smart cards in their wallets. 

A smart card contains a small computer (usually an 8-bit microprocessor), RAM 
(about a quarter kilobyte), ROM (about 6 or 8 kilobytes), and either EPROM or EEP­
ROM (a few kilobytes). Future-generation smart cards will undoubtedly have more 
capacity, but some physical limitations on smart cards make expansion difficult. 
The card has its own operating system, programs, and data. (What it doesn't have is 
power; that comes when the card is plugged in to a reader.) And it is secure. In a 
world where you might not trust someone else's computer or telephone or what­
ever, you can still trust a card that you keep with you in your wallet. 

Smart cards can have different cryptographic protocols and algorithms programmed 
into them. They might be configured as an electronic purse, and be able to spend and 
receive digital cash. They may be able to perform zero-knowledge authentication pro­
tocols; they may have their own encryption keys. They might be able to sign docu­
ments, or unlock applications on a computer. 

Some smart cards are assumed to be tamperproof; this often protects the institu­
tion that issues the cards. A bank wouldn't want you to be able to hack their smart 
card to give yourself more money. 

There is a lot of interest in smart cards, and a lot of information about them is 
available. A good survey article on the cryptography in smart cards is [672]. CARTES 
is a conference held in Paris every October; and CardTech is held in Washington, 
D.C. every April. The proceedings of two other smart-card conferences are [342, 
382]. There are hundreds of smart-card patents, mostly owned by European compa­
nies. An interesting paper on possible future applications-integrity checking, audit 
trails, copy protection, digital cash, secure postage meters-is [1628]. 
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24.14 PUBLIC-KEY CRYPTOGRAPHY STANDARDS (PKCS) 

The Public-Key Cryptography Standards (PKCS) are RSA Data Security, Inc.'s 
attempt to provide an industry standard interface for public-key cryptography. Tra­
ditionally, this sort of thing would be handled by ANSI, but, considering the current 
situation in cryptography politics, RSADSI figured that they had better do it on their 
own. Working with a variety of companies, they developed a series of standards. 
Some are compatible with other standards and some are not. 

These are not standards in the traditional sense of the word; no standards body 
convened and voted on PKCS. According to its own materials, RSADSI will "retain 
sole decision-making authority on what each standard is" and will "publish revised 
standards when appropriate" [803]. 

Even so, there is a lot of good stuff here. If you're not sure what kind of syntax and 
data structures to use when programming public-key cryptography, these standards 
are probably as good as anything else you can come up with. And, since they're not 
really standards, you can tailor them to suit your needs. 

Following is a short description of each PKCS (PKCS #2 and PKCS #4 have been 
incorporated into PKCS #1). 

PKCS #1 [1345] describes a method for RSA encryption and decryption, primarily 
for constructing the digital signatures and digital envelopes described in PKCS #7. For 
digital signatures, the message is hashed and then the hash is encrypted with the pri­
vate key of the signer. Both message and hash are represented together as detailed in 
PKCS #7. For digital envelopes (encrypted messages), the message is first encrypted 
with a symmetric algorithm, and then the message key is encrypted with the public 
key of the recipient. The encrypted message and encrypted key are represented 
together according to the syntax of PKCS #7. Both of these methods are compatible 
with PEM standards. PKCS #1 also describes a syntax, identical to the syntax in X.509 
and PEM, for RSA public and private keys and three signature algorithms-MD2 and 
RSA, MD4 and RSA, and MD5 and RSA-for signing certificates and the like. 

PKCS #3 [1346] describes a method for implementing Diffie-Hellman key 
exchange. 

PKCS #5 [1347] describes a method for encrypting messages with a secret key 
derived from a password. It uses either MD2 or MD5 to derive the key from the pass­
word, and encrypts with DES in CBC mode. The method is intended primarily to 
encrypt private keys when transferring them from one computer system to another, 
but can be used to encrypt messages. 

PKCS #6 [1348] describes a standard syntax for public key certificates. The syntax 
is a superset of an X.509 certificate, so that X.509 certificates can be extracted if nec­
essary. Over and above the X.509 set, additional attributes extend the certification 
process beyond just the public key. These include other information, such as elec­
tronic mail address. 

PKCS # 7 [1349] is a general syntax for data that may be encrypted or signed, such 
as digital envelopes or digital signatures. The syntax is recursive, so that envelopes 
can be nested, or someone can sign some previously encrypted data. The syntax also 
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allows other attributes, such as timestamps, to be authenticated along with the 
message content. PKCS #7 is compatible with PEM so that signed and encrypted 
messages can be converted to PEM messages without any cryptographic operations, 
and vice versa. PKCS #7 can support a variety of architectures-FEM is one-forcer­
tificate-based key management. 

PKCS #8 [1350] describes a syntax for private key information-including a pri­
vate key and a set of attributes-and a syntax for encrypted private keys. PKCS #5 
can be used to encrypt the private key information. 

PKCS #9 [ 1351] defines selected attribute types for PKCS #6 extended certificates, 
PKCS #7 digitally signed messages, and PKCS #8 private-key information. 

PKCS #10 [1352] describes a standard syntax for certification requests. A certifi­
cation comprises a distinguished name, a public key, and (optionally) a set of 
attributes, collectively signed by the person requesting certification. Certification 
requests are sent to a certification authority, who either transforms the request into 
an X.509 public-key certificate or a PKCS #6 certificate. 

PKCS #11 [1353], the Cryptographic Token API Standard, specifies a programming 
interface called "Cryptoki" for portable cryptographic devices of all kinds. Cryptoki 
presents a common logical model, enabling applications to perform cryptographic 
operations on portable devices without knowing details of the underlying technol­
ogy. The standard also defines application profiles: sets of algorithms that a device 
may support. 

PKCS #12 [1354] describes syntax for storing in software a user's public keys, 
protected private keys, certificates, and other related cryptographic information. 
The goal is to standardize on a single key file for use among a variety of applica­
tions. 

These standards are comprehensive, but not exhaustive. Many things are outside 
their scope: the problem of naming, noncryptographic issues surrounding certifica­
tion, key lengths, and conditions on various parameters. What the PKCS provide are 
a format for transferring data based on public-key cryptography and an infrastruc­
ture to support that transfer. 

24.15 UNIVERSAL ELECTRONIC PAYMENT SYSTEM (UEPS) 

The UEPS is a smart-card banking application initially developed for rural South 
Africa, but later adopted by all of that country's major banking groups. About 2 mil­
lion cards were issued in that country by early 1995. It has also been adopted in 
Namibia, and is also being deployed by at least one bank in Russia. 

The system provides a secure debit card suitable for regions where poor telephone 
service make on-line verification impossible. Both customers and merchants have 
cards; customers can use their cards to transfer money to merchants. Merchants can 
then take their cards to a telephone and deposit the money in their bank account; 
customers can take their cards to a telephone and have money moved onto their 
card. There is no intention to provide anonymity, only to prevent fraud. 
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Here is the communications protocol between customer Alice and merchant Bob. 
(Actually, Alice and Bob just plug their cards into a machine and wait for it to com­
plete the transaction.) When Alice first gets her card, she is given a key pair, K1 and 
K2; the bank calculates them from her name and some secret function. Only the 
merchant cards have the secrets necessary to work out these customer keys. 

( 1) Alice sends Bob her name, A, his name, B, and a random number, RA, 
encrypted using DES: first with K2 and then with K 1• She also sends her 
name in the clear. 

A, EK1(EK2(A, B, RA)) 

(2) Bob calculates K1 and K2 from Alice's name. He decrypts the message, con­
firms that A and B are correct, then encrypts Alice's unencrypted second 
message with K2 • 

EK2(A, B, RA) 

Bob does not send this message to Alice; 56 bits of the ciphertext become 
K3 • Bob then sends Alice his name, her name, and another random number, 
Rn, encrypted using DES: first with K, and then with K1. 

EK1(Eg3(B, A, Rn)) 

(3) Alice computes K3 in the same manner Bob did. She decrypts Bob's mes­
sage, confirms that B and A are correct, then encrypts Bob's unencrypted 
message with K3 • 

EK3 (B, A, Ra) 

Alice does not send this message to Bob; 56 bits of the ciphertext become 
K4 • Alice then sends Bob her name, his name, and the digital check, C. This 
check contains the names of the sender and recipient, a date, a check num­
ber, an amount, and two MACs, all encrypted using DES: first with K4 and 
then with K 1• One of the MACs can be verified by Alice's bank, and the 
other can only be verified by the clearing center. Alice debits her account 
by the correct amount. 

EK1(EK4(A, B, C)) 

(4) Bob computes K4 in the same manner Alice did. Assuming all the names 
match and the check is correctly formed, he accepts it for payment. 

A really clever thing about this protocol is that the encryption key for each mes­
sage depends on the previous message. Each message doubles as an authenticator for 
all previous messages. This means that someone can't replay an old message; the 
receiver could never decrypt it. I am impressed with this idea and expect that it will 
see wider use once it becomes widely known. 

Another clever thing about this protocol is that it enforces correct implementa­
tion. If the application developer doesn't implement this protocol correctly, it just 
won't work. 
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Both cards store records of every transaction. When the cards eventually go online 
to communicate with the bank-the merchant to deposit his money and the cus­
tomer to get more money-the bank uploads these records for auditing purposes. 

Tamperproof hardware prevents either participant from messing with the data; 
Alice cannot change the value of her card. Extensive audit trails provide data to 
identify and prosecute fraudulent transactions. There are universal secrets in the 
cards-MAC keys in the customer cards, functions to convert customer names to 
K 1 and K2 in the merchant cards-but these are assumed to be difficult to reverse­
engineer. 

This scheme is not meant to be perfect, only more secure than either paper 
checks or traditional debit cards. The threat of fraud is not from rival militaries, 
but from opportunistic customers and merchants. UEPS protects against that kind 
of abuse. 

The message exchange is an excellent example of a robust protocol: Every mes­
sage names both parties, includes unique information to ensure freshness, and 
depends explicitly on all the messages that came before it. 

24.16 CLIPPER 

The Clipper chip (also known as the MYK-78T) is an NSA-designed, tamper­
resistant VLSI chip designed for encrypting voice conversations; it is one of the two 
chips that implements the U.S. government's Escrowed Encryption Standard (EES) 
[1153]. VLSI Technologies, Inc. manufactures the chip, and Mykotronx, Inc. pro­
grams it. Initially, the Clipper chip will be available in the AT&T Model 3600 Tele­
phone Security Device (see Section 24.18). The chip implements the Skipjack 
encryption algorithm (see Section 13.12), an NSA-designed classified secret-key 
encryption algorithm, in OFB only. 

The most controversial aspect of the Clipper chip, and the entire EES, is the key­
escrow protocol (see Section 4.14). Each chip has a special key, not needed for mes­
sages. This key is used to encrypt a copy of each user's message key. As part of the 
synchronization process, the sending Clipper chip generates and sends a Law Enforce­
ment Access Field (LEAF) to the receiving Clipper chip. The LEAF contains a copy of 
the current session key, encrypted with a special key (called the unit key). This allows 
a government eavesdropper to recover the session key, and then recover the plaintext 
of the conversation. 

According to the director of NIST [812]: 

A "key-escrow" system is envisioned that would ensure that the "Clipper Chip" 
is used to protect the privacy of law-abiding Americans. Each device containing 
the chip will have two unique "keys," numbers that will be needed by authorized 
government agencies to decode messages encoded by the device. When the device 
is manufactured, the two keys would be deposited separately in two "key-escrow" 
databases established by the attorney general. Access to these keys would be lim­
ited to government officials with legal authorization to conduct a wiretap. 
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The government also wants to encourage the sale of telephones with these devices 
abroad; no one knows what might happen to those key-escrow databases. 

Politics aside, the internal structure of the LEAF is worth discussing [812,1154, 
1594,459, 107,462]. The LEAF is a 128-bit string containing enough information to 
allow law enforcement to recover the session key, Ks, assuming the two escrow 
agencies in charge of those key-escrow databases cooperate. The LEAF contains a 
32-bit unit identifier, U, unique to the Clipper chip. It also contains the current 80-
bit session key encrypted with the chip's unique unit key, Ku, and a 16-bit check­
sum, C, called an escrow identifier. This checksum is a function of the session key, 
the IV, and possibly other information. These three fields are encrypted with a fixed 
family key, KF, shared by all interoperable Clipper chips. The family key, the 
encryption modes used, the details of the checksum, and the exact structure of the 
LEAF are all secret. It probably looks something like this: 

Ku is programmed into Clipper chips at the factory. This key is then split (see Sec­
tion 3.6) and stored in two different key-escrow databases, guarded by two different 
escrow agencies. 

For Eve to recover K5 from the LEAF, she first has to decrypt the LEAF with KF and 
recover U. Then she has to take a court order to each escrow agency, who each 
return half of Ku for the given U. Eve XORs the two halves together to recover Ku, 
then she uses Ku to recover Ks, and Ks to eavesdrop on the conversation. 

The checksum is designed to prevent someone from circumventing this scheme; 
the receiving Clipper chip won't decrypt if the checksum doesn't check. However, 
there are only 2 16 possible checksum values, and a bogus LEAF with the right check­
sum but the wrong key can be found in about 42 minutes [187]. This isn't much help 
for Clipper voice conversations. Because the key exchange protocol is not part of the 
Clipper chip, the 42-minute brute-force attack must occur after key exchange; it 
cannot be done before making the telephone call. This attack may work for facsim­
ile transmission or with the Fortezza card (see Section 24.17). 

Supposedly, the Clipper chip will resist reverse-engineering by "a very sophisti­
cated, well-funded adversary" [1154], but rumors are that Sandia National Laborato­
ries successfully reverse-engineered one. Even if those rumors aren't true, I suspect 
that the largest chip manufacturers in the world can reverse-engineer Clipper; it's 
just a matter of time before someone with the right combination of resources and 
ethics comes along. 

Enormous privacy issues are associated with this scheme. Numerous civil lib­
erty advocacy groups are actively campaigning against any key-escrow mechanism 
that gives the government the right to eavesdrop on citizens. But the sneaky thing 
is that this ic.ea never went through Congress; NIST published the Escrowed 
Encryption Standard as a FIPS [ 1153], bypassing that irritating legislative process. 
Right now it looks like the EES is dying a slow and quiet death, but standards have 
a way of creeping up on you. 

Anyway, Table 24.2 lists the different agencies participating in this program. Any­
one want to do a threat analysis on having both escrow agents in the executive 
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branch? Or on having escrow agents who really don't know anything about the wire­
tap requests, and can do no more than blindly approve them? Or on having the gov­
ernment impose a secret algorithm as a commercial standard? 

In any case, implementing Clipper raises enough problems to question its value in 
court. Remember, Clipper only works in OFB mode. Despite what you may have 
been told to the contrary, this does not provide integrity or authentication. Imagine 
that Alice is on trial, and a Clipper-encrypted telephone call is part of the evidence. 
Alice claims that she never made the call; the voice is not hers. The phone's com­
pression algorithm is so bad that it is hard to recognize Alice's voice, but the prose­
cution argues that since only Alice's escrowed key will decipher the call it must 
have been made from her telephone. 

Alice argues that the call was forged like so [984,1339]: Given the ciphertext and 
the plaintext, it is possible to XOR them to get the keystream. This keystream can 
then be XORed with an entirely different plaintext to form a forged ciphertext, 
which can then be converted to forged plaintext when fed into the Clipper decryp­
tor. True or not, this argument could easily put enough doubt in a jury's mind to dis­
regard the telephone call as evidence. 

Another attack, called the Squeeze attack, allows Alice to frame Bob. Here's how 
[575]: Alice calls Bob using Clipper. She saves a copy of his LEAF as well as theses­
sion key. Then, she calls Carol (who she knows is being wiretapped). During the key 
setup, Alice forces the session key to be identical to the one she used with Bob; this 
requires hacking the phone, but it is not hard. Then, instead of sending her LEAF she 
sends Bob's. It's a valid LEAF, so Carol's phone will not notice. Now she can say 
whatever she wants to Carol; when the police decrypt the LEAF, they will find that 
it is Bob's. Even if Bob wasn't framed by Alice, the mere fact that he can claim this 
in court undermines the purpose of the scheme. 

The law enforcement authorities of the United States should not be in the busi­
ness of collecting information in criminal investigations that is useless in court. 
Even if key escrow were a good idea, Clipper is a bad way of implementing it. 

24.17 CAPSTONE 

Capstone (also known as the MYK-80) is the other NSA-developed VLSI crypto­
graphic chip that implements the U.S. government's Escrowed Encryption Standard 
[1153]. Capstone includes the following functions [1155,462]: 

Table 24.2 
EES Participating Agencies 

Justice-System Sponsor and Family Key Agent 
NIST-Program Manager and Escrow Agent 
FBI-Decrypt User and Family Key Agent 
Treasury-Escrow Agent 
NSA-Program Developer 
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The Skipjack algorithm in any of the four basic modes: ECB, CBC, 
CFB, and OFB. 

A public-key Key Exchange Algorithm (KEA), probably Diffie­
Hellman. 

The Digital Signature Algorithm (DSA). 

The Secure Hash Algorithm (SHA). 

A general purpose exponentiation algorithm. 

A general purpose, random-number generator that uses a pure noise 
source. 

Capstone provides the cryptographic functionality needed for secure electronic 
commerce and other computer-based applications. The first application of Capstone 
is in a PCMCIA card called Fortezza. (It was originally called Tessera until a com­
pany called Tessera, Inc. complained.) 

NSA had considered lengthening Capstone's LEAF checksum in production ver­
sions for use in Fortezza cards, in order to foil the brute-force attack against the 
LEAF previously discussed. Instead, they added a feature that reset the card after 10 
incorrect LEAFs. This only increases the time required to find a fake but valid LEAF 
by 10 percent, to 46 minutes. I am not impressed. 

24.18 AT&T MODEL 3600 TELEPHONE SECURITY DEVICE 

(TSD) 

The AT&T Telephone Security Device (TSD) is the Clipper phone. Actually, there 
are four models of the TSD. One contains the Clipper chip, another contains an 
exportable proprietary AT & T encryption algorithm, the third contains a proprietary 
algorithm for domestic use plus the exportable algorithm, and the fourth contains 
the Clipper, domestic, and exportable algorithms. 

TSDs use a different session key for each telephone call. A pair of TSDs generate 
a session key using Diffie-Hellman key exchange, independent of the Clipper chip. 
Since Diffie-Hellman incorporates no authentication, the TSD has two methods to 
thwart a man-in-the-middle attack. 

The first is a screen. The TSD hashes the session key and displays that hash on a 
small screen as four Hex digits. The conversants should confirm that their screens 
show the same digits. The voice quality is good enough that they can recognize each 
other's voice. 

Eve still has a possible attack. Imagine her in the middle of Alice and Bob's con­
versation. She uses one TSD on the line with Alice and a modified TSD on the line 
with Bob; in the middle she bridges the two phone calls. Alice tries to go secure. She 
generates a key as normal, except that Eve is acting as Bob. Eve recovers the key, and 
using the modified TSD, forces the key she generates with Bob to have the same 
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hash value. This attack may not sound very likely, but the TSD uses a variant of the 
interlock protocol to prevent it. 

The TSD generates random numbers using a noise source and a chaotic amplifier 
with digital feedback. This generates a bit stream, which is fed through a post­
whitening filter using the digital signal processor. 

Despite all of this, the TSD manual does not mention security at all. In fact, it 
says [70]: 

AT & T makes no warranty that the TSD will prevent cryptanalytic attack on any 
encrypted transmission by any government agency, its agents, or any third party. 
Furthermore, AT & T makes no warranty that the TSD will prevent any attack on 
any communication by methods which bypass encryption. 
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CHAPTER 25 

Politics 

25.1 NATIONAL SECURITY AGENCY (NSA) 

The NSA is the National Security Agency (once called "No Such Agency" or "Never 
Say Anything," but they've been more open recently), the official security body of 
the U.S. government. President Harry Truman created the agency in 1952 under the 
Department of Defense, and for many years its very existence was kept secret. The 
NSA is concerned with signals intelligence; its mandate is to listen in on and decode 
all foreign communications of interest to the security of the United States. 

The following paragraphs are excerpted from NSA's original charter, signed by 
President Truman in 1952, and classified for many years thereafter [1535]: 

The COMINT mission of the National Security Agency (NSA) shall be to provide 
an effective, unified organization and control of the communications intelligence 
activities of the United States conducted against foreign governments, to provide 
for integrated operational policies and procedures pertaining thereto. As used in 
this directive, the terms "communications intelligence" or "COMINT" shall be 
construed to mean all procedures and methods used in the interception of com­
munications other than foreign press and propaganda broadcasts and the obtain­
ing of information from such communications by other than intended recipients, 
but shall exclude censorship and the production and dissemination of finished 
intelligence. 

The special nature of COMINT actives requires that they be treated in all 
respects as being outside the framework of other or general intelligence activities. 
Orders, directives, policies, or recommendations of any authority of the Executive 
Branch relating to the collection, production, security, handling, dissemination, 
or utilization of intelligence, and/or classified material, shall not be applicable to 
COMINT actives, unless specifically so stated and issued by competent depart­
ment or agency authority represented on the Board. Other National Security 
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Council Intelligence Directives to the Director of Central Intelligence and related 
implementing directives issued by the Director of Central Intelligence shall be 
construed as non-applicable to COMINT activities, unless the National Security 
Council has made its directive specifically applicable to COMINT. 

NSA conducts research in cryptology, both in designing secure algorithms to pro­
tect U.S. communications and in designing cryptanalytic techniques to listen in on 
non-U.S. communications. The NSA is known to be the largest employer of mathe­
maticians in the world; it is also the largest purchaser of computer hardware in the 
world. The NSA probably possesses cryptographic expertise many years ahead of the 
public state of the art (in algorithms, but probably not in protocols) and can 
undoubtedly break many of the systems used in practice. But, for reasons of national 
security, almost all information about the NSA-even its budget-is classified. (Its 
budget is rumored to be $13 billion per year-including military funding of NSA 
projects and personnel-and it is rumored to employ 16,000 people.) 

The NSA uses its power to restrict the public availability of cryptography, so as to 
prevent national enemies from employing encryption methods too strong for the 
NSA to break. James Massey discusses this struggle between academic and military 
research in cryptography [1007]: 

If one regards cryptology as the prerogative of government, one accepts that most 
cryptologic research will be conducted behind closed doors. Without doubt, the 
number of workers engaged today in such secret research in cryptology far 
exceeds that of those engaged in open research in cryptology. For only about 10 
years has there in fact been widespread open research in cryptology. There have 
been, and will continue to be, conflicts between these two research communities. 
Open research is a common quest for knowledge that depends for its vitality on 
the open exchange of ideas via conference presentations and publications in 
scholarly journals. But can a government agency, charged with responsibilities of 
breaking the ciphers of other nations, countenance the publication of a cipher 
that it cannot break? Can a researcher in good conscience publish such a cipher 
that might undermine the effectiveness of his own government's code-breakers? 
One might argue that publication of a provably secure cipher would force all gov­
ernments to behave like Stimson's "gentlemen," but one must be aware that open 
research in cryptography is fraught with political and ethical considerations of a 
severity more than in most scientific fields. The wonder is not that some conflicts 
have occurred between government agencies and open researchers in cryptology, 
but rather that these conflicts (at least those of which we are aware) have been so 
few and so mild. 

James Bamford wrote a fascinating book about the NSA: The Puzzle Palace [79], 
recently updated by Bamford and Wayne Madsen [80]. 

The Commercial COMSEC Endorsement Program (CCEP) 
The Commercial COMSEC Endorsement Program (CCEP), codenamed Overtake, 

is a 1984 NSA initiative to facilitate the development of computer and communica­
tions products with embedded cryptography [85, 1165]. The military had always paid 
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for this kind of thing for themselves, and it was very expensive. The NSA figured 
that if companies could sell equipment to both the military and to corporate users, 
even overseas, costs would go down and everyone would benefit. They would no 
longer endorse equipment as complying with Federal Standard 1027, and then CCEP 
would provide government-endorsed cryptographic equipment [419]. 

NSA developed a series of cryptographic modules for different purposes. Different 
algorithms would be used in the modules for different applications, and manufac­
turers would be able to pull one module out and plug in another depending on the 
customer. There were modules for military use (Type I), modules for "unclassified 
but sensitive" government use (Type II), modules for corporate use (Type III), and 
modules for export (Type IV). Table 25.1 summarizes the different modules, applica­
tions, and names. 

This program is still around, but never became popular outside the government. 
All the modules were tamperproof, all the algorithms were classified, and you had 
to get your keys from NSA. Corporations never really bought into the idea of using 
classified algorithms dictated by the government. You'd think the NSA would have 
learned from this lesson and not even bothered with Clipper, Skipjack, and 
escrowed encryption chips. 

25.2 NATIONAL COMPUTER SECURITY CENTER (NCSC) 

The National Computer Security Center, a branch of the NSA, is responsible for the 
government's trusted computer program. Currently, the center evaluates commer­
cial security products (both hardware and software), sponsors and publishes research, 
develops technical guidelines, and generally provides advice, support, and training. 

The NCSC publishes the infamous "Orange Book" [465]. Its actual title is the 
Department of Defense Trusted Computer System Evaluation Criteria, but that's a 
mouthful to say and the book has an orange cover. The Orange Book attempts to 
define security requirements, gives computer manufacturers an objective way to 
measure the security of their systems, and guides them as to what to build into their 
secure products. It focuses on computer security and doesn't really say a lot about 
cryptography. 

The Orange Book defines four broad divisions of security protection. It also 
defines classes of protection within some of those divisions. They are summarized 
in Table 25.2. 

Application 

Voice/low-speed data 
Computer 
High-speed data 
Next Generation 

Table 25.1 
CCEP Modules 

Type I 

Winster 
Tepache 
Foresee 
Countersign I 

Type II 

Edgeshot 
Bulletproof 
Brushstroke 
Countersign II 
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Sometimes manufacturers say things like "we have C2 security." This is what 
they're talking about. For more information on this, read [1365]. The computer secu­
rity model used in these criteria is called the Bell-LaPadula model [100,101,102,103]. 

The NCSC has published a whole series of books on computer security, sometimes 
called the Rainbow Books (all the covers have different colors). For example, Trusted 
Network Interpretation of the Trusted Computer System Evaluation Criteria [ 1146], 
sometimes called the "Red Book," interprets the Orange Book for networks and net­
work equipment. The Trusted Database Management System Interpretation of the 
Trusted Computer System Evaluation Criteria [1147]-I can't even begin to describe 
the color of that cover-does the same for databases. There are now over 30 of these 
books, some with hideously colored covers. 

For a complete set of the Rainbow Books, write Director, National Security 
Agency, INFOSEC Awareness, Attention: CS 1, 9800 Savage Road, Fort George G. 
Meade, MD 20755-6000; (410) 766-8729. Don't tell them I sent you. 

25.3 NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY 

(NIST) 

The NIST is the National Institute of Standards and Technology, a division of the 
U.S. Department of Commerce. Formerly the NBS (National Bureau of Standards), 
it changed its name in 1988. Through its Computer Systems Laboratory (CSL), NIST 
promotes open standards and interoperability that it hopes will spur the economic 
development of computer-based industries. To this end, NIST issues standards and 
guidelines that it hopes will be adopted by all computer systems in the United 
States. Official standards are published as FIPS (Federal Information Processing 
Standards) publications. 

If you want copies of any FIPS (or any other NIST publication), contact National 
Technical Information Service (NTIS), U.S. Department of Commerce, 5285 Port 
Royal Road, Springfield, VA 22161; (703) 487-4650; or visit gopher://csrc.ncsl.nist.gov. 

When Congress passed the Computer Security Act of 1987, NIST was mandated 
to define standards for ensuring the security of sensitive but unclassified informa-

Table 25.2 
Orange Book Classifications 

D: Minimal Security 
C: Discretionary Protection 

C 1: Discretionary Security Protection 
C2: Controlled Access Protection 

B: Mandatory Protection 
B 1: Labeled Security Protection 
B2: Structured Protection 
B3: Security Domains 

A: Verified Protection 
Al: Verified Design 



25.3 National Institute of Standards and Technology (NIST) 

tion in government computer systems. (Classified information and Warner Amend­
ment data are under the jurisdiction of the NSA.) The Act authorizes NIST to work 
with other government agencies and private industry in evaluating proposed tech­
nology standards. 

NIST issues standards for cryptographic functions. U.S. government agencies are 
required to use them for sensitive but unclassified information. Often the private 
sector adopts these standards as well. NIST issued DES, DSS, SHS, and EES. 

All these algorithms were developed with some help from the NSA, ranging from 
analyzing DES to designing DSS, SHS, and the Skipjack algorithm in EES. Some peo­
ple have criticized NIST for allowing the NSA to have too much control over these 
standards, since the NSA's interests may not coincide with those of NIST. It is 
unclear how much actual influence NSA has on the design and development of the 
algorithms. Given NIST's limited staff, budget, and resources, NSA's involvement is 
probably considerable. NSA has significant resources to contribute, including a 
computer facility second-to-none. 

The official "Memorandum of Understanding" (MOU) between the two agencies 
reads: 

MEMORANDUM OF UNDERSTANDING BETWEEN THE DIRECTOR OF 
THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY AND 
THE DIRECTOR OF THE NATIONAL SECURITY AGENCY CONCERNING 
THE IMPLEMENTATION OF PUBLIC LAW 100-235 

Recognizing that: 
A. Under Section 2 of the Computer Security Act of 1987 (Public Law 100-235), 

(the Act), the National Institute of Standards and Technology (NIST) has the 
responsibility within the Federal Government for: 

1. Developing technical, management, physical, and administrative standards 
and guidelines for the cost-effective security and privacy of sensitive information 
in Federal computer systems as defined in the Act; and, 

2. Drawing on the computer system technical security guidelines of the 
National Security Agency (NSA) in this regard where appropriate. 

B. Under Section 3 of the Act, the NIST is to coordinate closely with other 
agencies and offices, including the NSA, to assure: 

1. Maximum use of all existing and planned programs, materials, studies, and 
reports relating to computer systems security and privacy, in order to avoid 
unnecessary and costly duplication of effort; and, 

2. To the maximum extent feasible, that standards developed by the NIST 
under the Act are consistent and compatible with standards and procedures devel­
oped for the protection of classified information in Federal computer systems. 

C. Under the Act, the Secretary of Commerce has the responsibility, which he 
has delegated to the Director of NIST, for appointing the members of the Com­
puter System Security and Privacy Advisory Board, at least one of whom shall be 
from the NSA. 

Therefore, in furtherance of the purposes of this MOU, the Director of the NIST 
and the Director of the NSA hereby agree as follows: 
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I. The NIST will: 
1. Appoint to the Computer Security and Privacy Advisory Board at least one 

representative nominated by the Director of the NSA. 
2. Draw upon computer system technical security guidelines developed by the 

NSA to the extent that the NIST determines that such guidelines are consistent 
with the requirements for protecting sensitive information in Federal computer 
systems. 

3. Recognize the NSA-certified rating of evaluated trusted systems under the 
Trusted Computer Security Evaluation Criteria Program without requiring addi­
tional evaluation. 

4. Develop telecommunications security standards for protecting sensitive 
unclassified computer data, drawing upon the expertise and products of the 
National Security Agency, to the greatest extent possible, in meeting these 
responsibilities in a timely and cost-effective manner. 

5. Avoid duplication where possible in entering into mutually agreeable 
arrangements with the NSA for the NSA support. 

6. Request the NSA's assistance on all matters related to cryptographic algo­
rithms and cryptographic techniques including but not limited to research, devel­
opment evaluation, or endorsement. 

IL The NSA will: 
1. Provide the NIST with technical guidelines in trusted technology, telecom­

munications security, and personal identification that may be used in cost-effective 
systems for protecting sensitive computer data. 

2. Conduct or initiate research and development programs in trusted technology, 
telecommunications security, cryptographic techniques and personal identification 
methods. 

3. Be responsive to the NIST's requests for assistance in respect to all matters 
related to cryptographic algorithms and cryptographic techniques including but 
not limited to research, development, evaluation, or endorsement. 

4. Establish the standards and endorse products for application to secure sys­
tems covered in 10 USC Section 2315 (the Warner Amendment). 

5. Upon request by Federal agencies, their contractors and other government­
sponsored entities, conduct assessments of the hostile intelligence threat to fed­
eral information systems, and provide technical assistance and recommend 
endorsed products for application to secure systems against that threat. 

III. The NIST and the NSA shall: 
1. Jointly review agency plans for the security and privacy of computer systems 

submitted to NIST and NSA pursuant to section 6(b) of the Act. 
2. Exchange technical standards and guidelines as necessary to achieve the pur­

poses of the Act. 
3. Work together to achieve the purposes of this memorandum with the great­

est efficiency possible, avoiding unnecessary duplication of effort. 
4. Maintain an on-going open dialogue to ensure that each organization 

remains abreast of emerging technologies and issues affecting automated infor­
mation system security in computer-based systems. 
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5. Establish a Technical Working Group to review and analyze issues of 
mutual interest pertinent to protection of systems that process sensitive or other 
unclassified information. The Group shall be composed of six federal employees, 
three each selected by NIST and NSA and to be augmented as necessary by rep­
resentatives of other agencies. Issues may be referred to the group by either the 
NSA Deputy Director for Information Security or the NIST Deputy Director or 
may be generated and addressed by the group upon approval by the NSA DOI or 
NIST Deputy Director. Within days of the referral of an issue to the Group by 
either the NSA Deputy Director for Information Security or the NIST Deputy 
Director, the Group will respond with a progress report and plan for further anal­
ysis, if any. 

6. Exchange work plans on an annual basis on all research and development 
projects pertinent to protection of systems that process sensitive or other unclas­
sified information, including trusted technology, for protecting the integrity and 
availability of data, telecommunications security and personal identification 
methods. Project updates will be exchanged quarterly, and project reviews will be 
provided by either party upon request of the other party. 

7. Ensure the Technical Working Group reviews prior to public disclosure all 
matters regarding technical systems security techniques to be developed for use 
in protecting sensitive information in federal computer systems to ensure they 
are consistent with the national security of the United States. If NIST and NSA 
are unable to resolve such an issue within 60 days, either agency may elect to 
raise the issue to the Secretary of Defense and the Secretary of Commerce. It is 
recognized that such an issue may be referred to the President through the NSC 
for resolution. No action shall be taken on such an issue until it is resolved. 

8. Specify additional operational agreements in annexes to this MOU as they 
are agreed to by NSA and NIST. 

IV. Either party may elect to terminate this MOU upon six months' written 
notice. This MOU is effective upon approval of both signatories. 

/signed/ 

RAYMOND G. KAMMER 
Acting Director, National Institute of Standards and Technology, 24 March 

1989 

W. 0. STUDEMAN 
Vice Admiral, U.S. Navy; Director, National Security Agency, 23 March 1989 

25.4 RSA DATA SECURITY, INC. 

RSA Data Security, Inc. (RSADSI) was founded in 1982 to develop, license, and mar­
ket the RSA patent. It has some commercial products, including a standalone e-mail 
security package, and various cryptographic libraries (available in either source or 
object form). RSADSI also markets the RC2 and RC4 symmetric algorithms (see 
Section 11.8). RSA Laboratories, a research lab associated with RSADSI, performs 
basic cryptographic research and provides consulting services. 
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Anyone interested in either their patents or products should contact Director of 
Sales, RSA Data Security, Inc., 100 Marine Parkway, Redwood City, CA 94065; (415) 
595-8782; fax: (415) 595-1873. 

25.5 PUBLIC KEY PARTNERS 

The five patents in Table 25.3 are held by Public Key Partners (PKP) of Sunnyvale, 
California, a partnership between RSADSI and Caro-Kahn, Inc.-the parent com­
pany of Cylink. (RSADSI gets 65 percent of the profits and Caro-Kahn gets 35 per­
cent.) PKP claims that these patents, and 4,218,582 in particular, apply to all uses of 
public-key cryptography. 

In [574], PKP wrote: 

These patents [4,200,770, 4,218,582, 4,405,829, and 4,424,414] cover all known 
methods of practicing the art of Public Key, including the variations collectively 
known as ElGamal. 

Due to the broad acceptance of RSA digital signatures throughout the interna­
tional community, Public Key Partners strongly endorses its incorporation in a 
digital signature standard. We assure all interested parties that Public Key Part­
ners will comply with all of the policies of ANSI and the IEEE concerning the 
availability of licenses to practice this art. Specifically, in support of any RSA sig­
nature standard which may be adopted, Public Key Partners hereby gives its 
assurance that licenses to practice RSA signatures will be available under reason­
able terms and conditions on a nondiscriminatory basis. 

Whether this is true depends on who you talk to. PKP's licenses have mostly 
been secret, so there is no way to check if the licenses are standard. Although they 
claim to have never denied a license to anyone, at least two companies claim to 
have been denied a license. PKP guards its patents closely, threatening anyone who 
tries to use public-key cryptography without a license. In part, this is a reaction to 
U.S. patent law. If you hold a patent and fail to prosecute an infringement, you can 
lose your patent. There has been much talk about whether the patents are legal, but 
so far it has all been talk. All legal challenges to PKP's patents have been settled 
before judgment. 

Patent# Date 

4,200,770 4/29/80 
4,218,582 8/19/80 
4,405,829 9/20/83 
4,424,414 3/3/84 
4,995,082 2/19/91 

Table 25.3 
Public Key Partners' Patents 

Inventors 

Hellman, Diffie, Merkle 
Hellman, Merkle 
Rivest, Shamir, Adleman 
Hellman, Pohlig 
Schnorr 

Patent Covers 

Diffie- Hellman Key Exchange 
Merkle-Hellman Knapsacks 
RSA 
Pohlig- Hellman 
Schnorr Signatures 



25. 7 RACE Integrity Primitives Evaluation (RIPE) 

I am not going to dispense legal advice in this book. Maybe the RSA patent will not 
hold up in court. Maybe the patents do not apply to the entirety of public-key cryp­
tography. (Honestly, I can't see how they cover ElGamal or elliptic curve cryptosys­
tems.) Perhaps someone will eventually win a suit against PKP or RSADSI. But keep 
in mind that corporations with large legal departments like IBM, Microsoft, Lotus, 
Apple, Novell, Digital, National Semiconductor, AT&T, and Sun have all licensed 
RSA for use in their products rather than fight them in court. And Boeing, Shell Oil, 
DuPont, Raytheon, and Citicorp have all licensed RSA for their own internal use. 

In one case, PKP brought suit against TRW Corporation for using the ElGamal 
algorithm without a license. TRW claimed they did not need a license. PKP and 
TRW reached a settlement in June 1992. The details of the settlement are unknown, 
but they included an agreement by TRW to license the patents. This does not bode 
well. TRW can afford good lawyers; I can only assume that if they thought they 
could win the suit without spending an unreasonable amount of money, they would 
have fought. 

Meanwhile, PKP is having its own internal problems. In June 1994 Caro-Kahn 
sued RSADSI alleging, among other things, that the RSA patent is invalid and unen­
forceable [401]. Both partners are trying to have the partnership dissolved. Are the 
patents valid or not? Will users have to get a license from Caro-Kahn to use the RSA 
algorithm? Who will own the Schnorr patent? The matter will probably be sorted 
out by the time this book sees publication. 

Patents are good for only 17 years, and cannot be renewed. On April 29, 1997, 
Diffie-Hellman key exchange (and the ElGamal algorithm) will enter the public 
domain. On September 20, 2000, RSA will enter the public domain. Mark your 
calendars. 

25.6 INTERNATIONAL ASSOCIATION FOR CRYPTOLOGIC 
REsEARCH (IACR) 

The International Association for Cryptologic Research is the worldwide crypto­
graphic research organization. Its stated purpose is to advance the theory and practice 
of cryptology and related fields. Membership is open to any person. The association 
sponsors two annual conferences, Crypto (held in Santa Barbara in August) and Euro­
crypt (held in Europe in May), and publishes quarterly The fournal of Cryptology and 
the IACR Newsletter. 

The address of the IACR Business Office changes whenever the president does. 
The current address is: IACR Business Office, Aarhus Science Park, Gustav Wieds 
Vej 10, DK-8000 Aarhus C, Denmark. 

25. 7 RACE INTEGRITY PRIMITIVES EVALUATION (RIPE) 

The Research and Development in Advanced Communication Technologies in 
Europe (RACE) program was launched by the European Community to support pre-
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competitive and pre-normative work in communications standards and technolo­
gies to support Integrated Broadband Communication (IBC). As part of that effort, 
RACE established the RACE Integrity Primitives Evaluation (RIPE) to put together 
a portfolio of techniques to meet the anticipated security requirements of IBC. 

Six leading European cryptography research groups made up the RIPE consor­
tium: Center for Mathematics and Computer Science, Amsterdam; Siemens AG; 
Philips Crypto BV; Royal PTT Nederland NV, PTT Research; Katholieke Univer­
siteit Leuven; and Aarhus Universitet. After calls for algorithms in 1989 and 1991 
[1564], 32 submissions from around the world, and a 350 man-month evaluation 
project, the consortium published RIPE Integrity Primitives [1305,1332]. The 
report included an introduction and some basic integrity concepts, and these prim­
itives: MDC-4 (see Section 18.11), RIPE-MD (see Section 18.8), RIPE-MAC (see Sec­
tion 18.14), IBC-HASH, SKID (see Section 3.2), RSA, COMSET (see Section 16.1), 
and RSA key generation. 

25.8 CONDITIONAL ACCESS FOR EUROPE (CAFE) 

Conditional Access for Europe (CAFE) is a project in the European Community's 
ESPRIT program [204,205]. Work began in December 1992 and is scheduled to be 
finished by the end of 1995. The consortium involved consists of groups for social 
and market studies (Cardware, Institut fur Sozialforschung), software and hardware 
manufacturers (DigiCash, Gemplus, Ingenico, Siemens), and cryptographers (CWI 
Amsterdam, PTT Research Netherlands, SPET, Sintef Delab Trondheim, Universi­
ties of Arhus, Hildesheim and Leuven). 

The goal is to develop systems for conditional access, particularly digital payment 
systems. Payment systems must give legal certainty to everybody at all times and 
require as little trust as possible-this certainty should not depend on the tamper­
resistance of any devices. 

The basic device for CAFE is an electronic wallet: a small computer that looks 
something like a pocket calculator. It has a battery, keyboard, screen, and an 
infrared channel for communicating with other wallets. Every user owns and uses 
his own wallet, which administers his rights and guarantees his security. 

A device with a keyboard and screen has an advantage over a smart card; it can 
operate independent of a terminal. A user can directly enter his password and the 
amount of the payment. The user does not have to give his wallet up to complete a 
transaction, unlike tne current situation with credit cards. 

Additional features are: 

Offline transactions. The purpose of the system is to replace small 
cash transactions; an online system would be too cumbersome. 

Loss tolerance. If a user loses his wallet, or if it breaks or is stolen, he 
can recover his money. 

Support for different currencies. 
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An open architecture and open system. A user should be able to pay 
for arbitrary services, such as shopping, telephone, and public trans­
port, by a range of service providers. The system should be interoper­
able between any number of electronic money issuers, and between 
different wallet types and manufacturers. 

Low cost. 

At this writing there is a software version of the system, and the consortium is hard 
at work on a hardware prototype. 

25.9 1S0/IEC 9979 

In the mid-80s, the ISO tried to standardize DES, which by then was already a FIPS 
and an ANSI standard. After some political wrangling, the ISO decided not to stan­
dardize cryptographic algorithms, but instead to register algorithms. Only encryp­
tion algorithms can be registered; hash functions and signature schemes cannot. 
Any national body can submit an algorithm for registration. 

Currently only three algorithms have been submitted (see Table 25.4). A submis­
sion includes information about applications, parameters, implementations, modes, 
and test vectors. A detailed description is optional; it is possible to submit secret 
algorithms for registration. 

The fact that an algorithm is registered does not imply anything about its quality, 
nor is registration an approval of the algorithm by the ISO/IEC. Registration merely 
indicates that a single national body wants to register the algorithm, based on what­
ever criteria that body uses. 

I am not impressed with this idea. Registration obstructs the standardization pro­
cess. Rather than agreeing on a few algorithms, the ISO is allowing any algorithm to 
be registered. With so little control over what is registered, stating that an algorithm 
is "ISO/IEC 9979 Registered" sounds a whole lot better than it is. In any case, the 
registry is maintained by the National Computer Centre Ltd., Oxford Road, Man­
chester, Ml 7ED, United Kingdom. 

Table 25.4 
1S0/IEC 9979 

Registered Algorithms 
Name 

B-CRYPT 
IDEA 
LUC 

Registration Number 

0001 
0002 
0003 
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25.10 PROFESSIONAL, CIVIL LIBERTIES, AND INDUSTRY 
GROUPS 

Electronic Privacy Information Center (EPIC) 
EPIC was established in 1994 to focus public attention on emerging privacy issues 

relating to the National Information Infrastructure, such as the Clipper chip, the 
Digital Telephony proposal, national identity numbers and systems, medical 
records privacy, and the sale of consumer data. EPIC conducts litigation, sponsors 
conferences, produces reports, publishes the EPIC Alert, and leads campaigns on 
privacy issues. Anyone interested in joining should contact Electronic Privacy Infor­
mation Center, 666 Pennsylvania Avenue SE, Suite 301, Washington, D.C. 20003; 
(202) 544-9240; fax: (202) 547-5482; Internet: info@epic.org. 

Electronic Frontier Foundation (EFF) 
The EFF is dedicated to protecting civil rights in cyberspace. With respect to cryp­

tographic policy in the United States, they believe that information and access to 
cryptography are fundamental rights, and therefore should be free of government 
restriction. They organized the Digital Privacy and Security Working Group, a coali­
tion of 50 organizations. The group opposed the Digital Telephony bill and the Clip­
per initiative. The EFF is also helping in a lawsuit against cryptography export 
controls [143]. Anyone interested in joining the EFF should contact Electronic Fron­
tier Foundation, 1001 G Street NW, Suite 950E, Washington, D.C. 20001; (202) 347-
5400; fax: (202) 393-5509; Internet: eff@eff.org. 

Association for Computing Machinery (ACM) 
The ACM is an international computer industry organization. In 1994 the U.S. 

ACM Public Policy Committee produced an excellent report on U.S. cryptography 
policy [935]. This should be required reading for anyone interested in the politics of 
cryptography. It is available via anonymous ftp from info.acm.org in /reports/ 
acm_ crypto / acm_crypto _study. ps. 

Institute of Electrical and Electronics Engineers (IEEE) 
The IEEE is another professional organization. The U.S. office investigates and 

makes recommendations on privacy-related issues including encryption policy, 
identity numbers, and privacy protections on the Internet. 

Software Publishers Association (SPA) 
The SPA is a trade association of over 1000 personal computer software compa­

nies. They have lobbied for relaxation of export controls on cryptography, and main­
tain a list of commercially available foreign cryptography products. 

25.11 SCI.CRYPT 

Sci.crypt is the Usenet newsgroup for cryptology. It is read by an estimated 100,000 
people worldwide. Most of the posts are nonsense, bickering, or both; some are 
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political, and most of the rest are requests for information or basic questions. Occa­
sionally nuggets of new and useful information are posted to this newsgroup. If you 
follow sci.crypt regularly, you will learn how to use something called a kill file. 

Another Usenet newsgroup is sci.crypt.research, a moderated newsgroup devoted 
to discussions about cryptology research. There are fewer posts and they are more 
interesting. 

25 .12 CYPHERPUNKS 

The Cypherpunks are an informal group of people interested in teaching and learn­
ing about cryptography. They also experiment with cryptography and try to put it 
into use. In their opinion, all the cryptographic research in the world doesn't do soci­
ety any good unless it gets used. 

In" A Cypherpunk's Manifesto," Eric Hughes writes [744]: 

We the Cypherpunks are dedicated to building anonymous systems. We are 
defending our privacy with cryptography, with anonymous mail forwarding sys­
tems, with digital signatures, and with electronic money. 

Cypherpunks write code. We know that someone has to write software to 
defend privacy, and since we can't get privacy unless we all do, we're going to 
write it. We publish our code so that our fellow Cypherpunks may practice and 
play with it. Our code is free for all to use, worldwide. We don't care much if you 
don't approve of the software we write. We know that software can't be destroyed 
and that widely dispersed systems can't be shut down. 

People interested in joining the cypherpunks mailing list on the Internet should 
send mail to majordomo@toad.com. The mailing list is archived at ftp.csua. 
berkeley.edu in /pub/cypherpunks. 

25.13 PATENTS 

Software patents are an issue much larger than the scope of this book. Whether 
they're good or bad, they exist. Algorithms, cryptographic algorithms included, can 
be patented in the United States. IBM owned the DES patents [514]. IDEA is 
patented. Almost every public-key algorithm is patented. NIST even has a patent for 
the DSA. Some cryptography patents have been blocked by intervention from the 
NSA, under the authority of the Invention Secrecy Act of 1940 and the National 
Security Act of 1947. This means that instead of a patent, the inventor gets a secrecy 
order and is prohibited from discussing his invention with anybody. 

The NSA has special dispensation when it comes to patents. They can apply for a 
patent and then block its issuance. It's a secrecy order again, but here the NSA is 
both the inventor and the issuer of the order. When, at some later date, the secrecy 
order is removed, the Patent Office issues the patent good for the standard 1 7 years. 
This rather clearly protects the invention while keeping it secret. If someone else 
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invents the same thing, the NSA has already filed for the patent. If no one else 
invents it, then it remains secret. 

Not only does this fly directly in the face of the patent process, which is supposed 
to disclose as well as protect inventions, it allows the NSA to keep a patent for more 
than 17 years. The 17-year clock starts ticking after the patent is issued, not when 
it is filed. How this will change, now that the United States has ratified the CATT 
treaty, is unclear. 

25.14 U.S. EXPORT RULES 

According to the U.S. government, cryptography can be a munition. This means it 
is covered under the same rules as a TOW missile or an Ml Abrams tank. If you sell 
cryptography overseas without the proper export license, then you are an interna­
tional arms smuggler. Unless you think time in a federal penitentiary would look 
good on your resume, pay attention to the rules. 

With the advent of the Cold War in 1949, all of the NATO countries (except Ice­
land), and later Australia, Japan, and Spain, formed CoCom, the Coordinating Com­
mittee for Multilateral Export Controls. This is an unofficial nontreaty organization, 
chartered to coordinate national restrictions on the export of sensitive military tech­
nologies to the Soviet Union, other Warsaw Pact countries, and the People's Repub­
lic of China. Examples of controlled technologies are computers, milling machinery, 
and cryptography. The goal here was to slow technology transfer into those coun­
tries, and thereby keep their militaries inferior. 

Since the end of the Cold War, the CoCom countries realized that many of their 
controls were obsolete. They are supposedly in the process of defining something 
called the "New Forum, 11 another multinational organization designed to stop the 
flow of military technologies to countries the members don't particularly like. 

In any case, U.S. export policy on strategic goods is defined by the Export Admin­
istration Act, the Arms Export Control Act, the Atomic Energy Act, and the 
Nuclear Non-Proliferation Act. The controls established by all this legislation are 
implemented through a number of statutes, none of them coordinated with each 
other. Over a dozen agencies including the military services administer controls; 
often their regulatory programs overlap and contradict. 

Controlled technologies appear on several lists. Cryptography has traditionally 
been classified as a munition and appears on the U.S. Munitions List (USML), 
the International Munitions List (IML), the Commerce Control List (CCL), and the 
International Industrial List (IIL). The Department of State is responsible for 
the USML; it is published as part of the International Traffic in Arms Regulations 
(ITAR) [466,467]. 

Two U.S. government agencies control export of cryptography. One is the Bureau 
of Export Administration (BXA) in the Department of Commerce, authorized by the 
Export Administration Regulations (EAR). The other is the Office of Defense Trade 
Controls (DTC) in the State Department, authorized by the ITAR. As a rule of 
thumb, the Commerce Department's BXA has far less stringent requirements, but 
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State Department's DTC (which takes technical and national security advice from 
the NSA, and always seems to follow that advice) sees all cryptography exports first 
and can refuse to transfer jurisdiction to BXA. 

The ITAR regulates this stuff. (Before 1990 the Office of Defense Trade Controls 
was called the Office of Munitions Controls; presumably this public relations effort 
is designed to help us forget that we're dealing with guns and bombs.) Historically, 
the DTC has been reluctant to grant export licenses for encryption products 
stronger than a certain level-not that they have ever been public about exactly 
what that level is. 

The following sections are excerpted from the ITAR [466,467]: 

§ 120.10 Technical data. 
Technical data means, for purposes of this subchapter: 
(1) Information, other than software as defined in 120.lO(d), which is required 

for the design, development, production, processing, manufacture, assembly, 
operation, repair, maintenance or modification of defense articles. This includes, 
for example, information in the form of blueprints, drawings, photographs, plans, 
instructions and documentation; 

(2) Classified information relating to defense articles and defense services; 
(3) Information covered by an invention secrecy order; 
(4) Software as defined in Sec. 121.8(f) directly related to defense articles; 
(5) This definition does not include information concerning general scientific, 

mathematical or engineering principles commonly taught in schools, colleges and 
universities in the public domain as defined in § 120.11. It also does not include 
basic marketing information on function or purpose or general system descrip­
tions of defense articles. 

§ 120.11 Public domain. 
Public domain means information which is published and which is generally 

accessible or available to the public: 
( 1) Through sales at newsstands and bookstores; 
(2) Through subscriptions which are available without restriction to any indi­

vidual who desires to obtain or purchase the published information; 
(3) Through second class mailing privileges granted by the U.S. Government; 
(4) At libraries open to the public or from which the public can obtain docu­

ments; 
(5) Through patents available at any patent office; 
(6) Through unlimited distribution at a conference, meeting, seminar, trade 

show or exhibition, generally accessible to the public, in the United States; 
(7) Through public release (i.e., unlimited distribution) in any form (e.g., not 

necessarily in published form) after approval by the cognizant U.S. government 
department or agency (see also§ 125.4(b)(l3)). 

(8) Through fundamental research in science and engineering at accredited insti­
tutions of higher learning in the U.S., where the resulting information is ordinarily 
published and shared broadly in the scientific community. Fundamental research is 
defined to mean basic and applied research in science and engineering where the 
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resulting information is ordinarily published and shared broadly within the scien­
tific community, as distinguished from research the results of which are restricted 
for proprietary reasons or specific U.S. Government access and dissemination con­
trols. University research will not be considered fundamental research if: 

(i) The University or its researchers accept other restrictions on publication of 
scientific and technical information resulting from the project or activity, or 

(ii) The research is funded by the U.S. Government and specific access and dis­
semination controls protecting information resulting from the research are appli­
cable. 

§ 120.17 Export. 
Export means: 
(1) Sending or taking defense articles out of the United States in any manner, 

except by mere travel outside of the United States by a person whose personal 
knowledge includes technical data; or 

(2) Transferring registration, control or ownership to a foreign person of any air­
craft, vessel, or satellite covered by the U.S. Munitions List, whether in the 
United States or abroad; or 

(3) Disclosing (including oral or visual disclosure) or transferring in the United 
States any defense articles to an embassy, any agency or subdivision of a foreign 
government (e.g., diplomatic missions); or 

(4) Disclosing (including oral or visual disclosure) or transferring technical data 
to a foreign person, whether in the United States or abroad; or 

(5) Performing a defense service on behalf of, or for the benefit of, a foreign per­
son, whether in the United States or abroad. 

(6) A launch vehicle or payload shall not, by the launching of such vehicle, be 
considered export for the purposes of this subchapter. However, for certain lim­
ited purposes (see§ 126.1 of this subchapter), the controls of this subchapter apply 
to sales and other transfers of defense articles or defense services. 

Part 121-The United States Munitions List 

§ 121.1 General. The United States Munitions List 
Category XIII-Auxiliary Military Equipment 
(1) Cryptographic (including key management) systems, equipment, assem­

blies, modules, integrated circuits, components or software with the capability of 
maintaining secrecy or confidentiality of information or information systems, 
except cryptographic equipment and software as follows: 

(i) Restricted to decryption functions specifically designed to allow the execu­
tion of copy protected software, provided the decryption functions are not user­
accessible. 

(ii) Specifically designed, developed or modified for use in machines for banking 
or money transactions, and restricted to use only in such transactions. Machines 
for banking or money transactions include automatic teller machines, self-service 
statement printers, point of sale terminals or equipment for the encryption of 
interbanking transactions. 
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(iii) Employing only analog techniques to provide the cryptographic processing 
that ensures information security in the following applications .... 

(iv) Personalized smart cards using cryptography restricted for use only in 
equipment or systems exempted from the controls of the USML. 

(v) Limited to access control, such as automatic teller machines, self-service 
statement printers or point of sale terminals, which protects passwords or per­
sonal identification numbers (PIN) or similar data to prevent unauthorized access 
to facilities but does not allow for encryption or files or text, except as directly 
related to the password of PIN protection. 

(vi) Limited to data authentication which calculates a Message Authentication 
Code (MAC) or similar result to ensure no alteration of text has taken place, or 
authenticate users, but does not allow for encryption of data, text or other media 
other than that needed for the authentication. 

(vii) Restricted for fixed data compression or coding techniques. 
(viii) Limited to receiving for radio broadcast, pay television or similar 

restricted audience television of the consumer type, without digital encryption 
and where digital decryption is limited to video, audio or management functions. 

(ix) Software designed or modified to protect against malicious computer dam-
age, (e.g., viruses). 

(2) Cryptographic (including key management) systems, equipment, assem­
blies, modules, integrated circuits, components or software which have the capa­
bility of generating spreading or hopping codes for spread spectrum systems or 
equipment. 

(3) Cryptographic systems, equipment, assemblies, modules, integrated cir­
cuits, components or software. 

§ 125.2 Exports of unclassified technical data. 
(a) General. A license (DSP-5) is required for the export of unclassified techni­

cal data unless the export is exempt from the licensing requirements of this sub­
chapter. In the case of a plant visit, details of the proposed discussions must be 
transmitted to the Office of Defense Trade Controls for an appraisal of the tech­
nical data. Seven copies of the technical data or the details of the discussions 
must be provided. 

(b) Patents. A license issued by the Office of Defense Trade Controls is required 
for the export of technical data whenever the data exceeds that which is used to 
support a domestic filing of a patent application or to support a foreign filing of a 
patent application whenever no domestic application has been filed. Requests for 
the filing of patent applications in a foreign country, and requests for the filing of 
amendments, modifications or supplements to such patents, should follow the 
regulations of the U.S. Patent and Trademark Office in accordance with 37 CFR 
part 5. The export of technical data to support the filing and processing of patent 
applications in foreign countries is subject to regulations issued by the U.S. 
Patent and Trademark Office pursuant to 35 U.S.C. 184. 

(c) Disclosures. Unless otherwise expressly exempted in this subchapter, a 
license is required for the oral, visual or documentary disclosure of technical data 
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by U.S. persons to foreign persons. A license is required regardless of the manner 
in which the technical data is transmitted (e.g., in person, by telephone, corre­
spondence, electronic means, etc.). A license is required for such disclosures by 
U.S. persons in connection with visits to foreign diplomatic missions and con­
sular offices. 

And so on. There's a lot more information in this document. If you're going to try to 
export cryptography, I suggest you get a copy of the entire thing and a lawyer who 
speaks the language. 

In reality, the NSA has control over the export of cryptographic products. If you 
want a Commodity Jurisdiction (CT), you must submit your product to the NSA for 
approval and submit the CJ application to the State Department. After State Depart­
ment approval, the matter moves under the jurisdiction of the Commerce Depart­
ment, which has never cared much about the export of cryptography. However, the 
State Department will never grant a CJ without NSA approval. 

In 1977 an NSA employee named Joseph A. Meyer wrote a letter-unauthorized, 
according to the official story of the incident-to the IEEE, warning them that the 
scheduled presentation of the original RSA paper would violate the ITAR. From The 
Puzzle Palace: 

He had a point. The ITAR did cover any "unclassified information that can be 
used, or adapted for use, in the design, production, manufacture, repair, overhaul, 
processing, engineering, development, operation, maintenance, or reconstruc­
tion" of the listed materials, as well as "any technology which advances the state­
of-the-art or establishes a new art in an area of significant military applicability in 
the United States." And export did include transferring the information both by 
writing and by either oral or visual means, including briefings and symposia in 
which foreign nationals are present. 

But followed literally, the vague, overly broad regulations would seem to 
require that anyone planning to write or speak out publicly on a topic touching 
the Munitions List must first get approval from the State Department-a chilling 
prospect clearly at odds with the First Amendment and one as yet untested by the 
Supreme Court. 

In the end NSA disavowed Meyer's actions and the RSA paper was presented as 
planned. No actions were taken against any of the inventors, although their work 
arguably enhanced foreign cryptography capabilities more than anything released 
since. 

The following statement by NSA discusses the export of cryptography [363]: 

Cryptographic technology is deemed vital to national security interests. This 
includes economic, military, and foreign policy interests. 

We do not agree with the implications from the House Judiciary Committee 
hearing of 7 May 1992 and recent news articles that allege that U.S. export laws 
prevent U.S. firms' manufacture and use of top encryption equipment. We are 
unaware of any case where a U.S. firm has been prevented from manufacturing 
and using encryption equipment within this country or for use by the U.S. firm or 
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its subsidiaries in locations outside the U.S. because of U.S. export restrictions. In 
fact, NSA has always supported the use of encryption by U.S. businesses operat­
ing domestically and overseas to protect sensitive information. 

For export to foreign countries, NSA as a component of the Department of 
Defense (along with the Department of State and the Department of Commerce) 
reviews export licenses for information security technologies controlled by the 
Export Administration Regulations or the International Traffic in Arms Regula­
tions. Similar export control systems are in effect in all the Coordinating Com­
mittee for Multilateral Export Controls (CoCom) countries as well as many 
non-CoCom countries as these technologies are universally considered as sensi­
tive. Such technologies are not banned from export and are reviewed on a case-by­
case basis. As part of the export review process, licenses may be required for these 
systems and are reviewed to determine the effect such export could have on 
national security interests-including economic, military, and political security 
interests. Export licenses are approved or denied based upon the type of equip­
ment involved, the proposed end use and the end user. 

Our analysis indicates that the U.S. leads the world in the manufacture and 
export of information security technologies. Of those cryptologic products 
referred to NSA by the Department of State for export licenses, we consistently 
approve over 90%. Export licenses for information security products under the 
jurisdiction of the Department of Commerce are processed and approved without 
referral to NSA or DoD. This includes products using such techniques as the DSS 
and RSA which provide authentication and access control to computers or net­
works. In fact, in the past NSA has played a major role in successfully advocating 
the relaxation of export controls on RSA and related technologies for authentica­
tion purposes. Such techniques are extremely valuable against the hacker prob­
lem and unauthorized use of resources. 

It is the stated policy of the NSA not to restrict the export of authentication prod­
ucts, only encryption products. If you want to export an authentication-only prod­
uct, approval may merely be a matter of showing that your product cannot easily be 
used for encryption. Furthermore, the bureaucratic procedures are much simpler for 
authentication products than for encryption products. An authentication product 
needs State Department approval only once for a CJ; an encryption product may 
require approval for every product revision or even every sale. 

Without a CJ, you must request export approval every time you wish to export the 
product. The State Department does not approve the export of products with strong 
encryption, even those using DES. Isolated exceptions include export to U.S. sub­
sidiaries for the purposes of communicating to the U.S., exports for some banking 
applications, and export to appropriate U.S. military users. The Software Publishers 
Association (SPA) has been negotiating with the government to ease export license 
restrictions. A 1992 agreement between them and the State Department eased the 
export license rules for two algorithms, RC2 and RC4, as long as the key size is 40 
bits or less. Refer to Section 7.1 for more information. 

In 1993, Rep. Maria Cantwell (D-WA) introduced a bill at the behest of the soft­
ware industry to relax export controls on encryption software. Sen. Patty Murray 
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(D-WA) introduced a companion bill in the Senate. The Cantwell Bill was appended 
to the general export control legislation going through Congress, but was deleted by 
the House Intelligence Committee after a massive lobbying effort by the NSA. 
Whatever the NSA did, it was impressive; the committee voted unanimously to 
delete the wording. I can't remember the last time a bunch of legislators voted unan­
imously to do anything. 

In 1995 Dan Bernstein, with the help of the EFF, sued the U.S. government, 
seeking to bar the government from restricting publication of cryptographic docu­
ments and software [143]. The suit claimed that the export control laws are uncon­
stitutional, an "impermissible prior restraint on speech, in violation of the First 
Amendment." Specifically, the lawsuit charges that the current export control 
process: 

Allows bureaucrats to restrict publication without ever going to 
court. 

Provides too few procedural safeguards for First Amendment rights. 

Requires publishers to register with the government, creating in 
effect a "licensed press." 

Disallows general publication by requiring recipients to be individu­
ally identified. 

Is sufficiently vague that ordinary people cannot know what conduct 
is allowed and what conduct is prohibited. 

Is overbroad because it prohibits conduct that is clearly protected 
(such as speaking to foreigners within the United States). 

Is applied too broadly, by prohibiting export of software that contains 
no cryptography, on the theory that cryptography could be added to it 
later. 

Egregiously violates the First Amendment by prohibiting private 
speech on cryptography because the government wishes its own opin­
ions on cryptography to guide the public instead. 

Exceeds the authority granted by Congress in the export control laws 
in many ways, as well as exceeding the authority granted by the Con­
stitution. 

Everyone anticipates that the case will take several years to settle, and no one has 
any idea how it will come out. 

Meanwhile, the Computer Security and Privacy Advisory Board, an official advi­
sory board to NIST, voted in March 1992 to recommend a national policy review of 
cryptographic issues, including export policy. They said that export policy is 
decided solely by agencies concerned with national security, without input from 
agencies concerned with encouraging commerce. Those agencies concerned with 
national security are doing everything possible to make sure this doesn't change, 
but eventually it has to. 



25.15 Foreign Import and Export of Cryptography 

25.15 FOREIGN IMPORT AND EXPORT OF CRYPTOGRAPHY 

Other countries have their own import and export rules [311]. This summary is 
incomplete and probably out of date. Countries could have rules and ignore them, or 
could have no rules but restrict import, export, and use anyway. 

Australia requires an import certificate for cryptography only upon 
request from the exporting country. 

Canada has no import controls, and export controls are similar to 
those of the United States. The exportation of items from Canada 
may be subject to restriction if they are included on the Export Con­
trol List pursuant to the Export and Import Permits Act. Canada fol­
lows the CoCom regulations in the regulation of cryptographic 
technology. Encryption devices are outlined in category five, part two 
of Canada's export regulations. These provisions are similar to U.S. 
category five in the Export Administration Regulations. 

China has a licensing scheme for importing commodities; exporters 
must file an application with the Ministry of Foreign Trade. Based on 
China's List of Prohibited and Restricted Imports and Exports enacted 
in 1987, China restricts the import and export of voice-encoding 
devices. 

France has no special rules for the import of cryptography, but they 
have rules regarding the sale and use of cryptography in their coun­
try. All products must be certified: Either they must meet a pub­
lished specification, or the company proprietary specification must 
be provided to the government. The government may also ask for 
two units for their own use. Companies must have a license to sell 
cryptography within France; the license specifies the target market. 
Users must have a license to buy and use cryptography; the license 
includes a statement to the effect that users must be prepared to give 
up their keys to the government up to four months after use. This 
restriction may be waived in some cases: for banks, large companies, 
and so on. And there is no use license requirement for cryptography 
exportable from the U.S. 

Germany follows the CoCom guidelines, requiring a license to export 
cryptography. They specifically maintain control of public-domain 
and mass-market cryptography software. 

Israel has import restrictions, but no one seems to know what they are. 

Belgium, Italy, Japan, Netherlands, and the United Kingdom follow 
the CoCom guidelines on cryptography, requiring a license for export. 

Brazil, India, Mexico, Russia, Saudi Arabia, Spain, South Africa, Sweden, 
and Switzerland have no import or export controls on cryptography. 
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25 .16 LEGAL ISSUES 

Are digital signatures real signatures? Will they stand up in court? Some prelimi­
nary legal research has resulted in the opinion that digital signatures would meet 
the requirements of legally binding signatures for most purposes, including com­
mercial use as defined in the Uniform Commercial Code (UCC). A GAO (General 
Accounting Office) decision, made at the request of NIST, opines that digital signa­
tures will meet the legal standards of handwritten signatures [362]. 

The Utah Digital Signature Act went into effect on May 1, 1995, providing a legal 
framework for the use of digital signatures in the judicial system. California has a bill 
pending, while Oregon and Washington are still writing theirs. Texas and Florida are 
right behind. By this book's publication, more states will have followed suit. 

The American Bar Association (EDI and Information Technology Division of the 
Science and Technology Section) produced a model act for states to use for their own 
legislation. The act attempts to incorporate digital signatures into the existing legal 
infrastructure for signatures: the Uniform Commercial Code, the United States Fed­
eral Reserve regulations, common law of contracts and signatures, the United 
Nations Convention on Contracts for the International Sale of Goods, and the 
United Nations Convention on International Bills of Exchange and International 
Promissory Committees. Included in the act are responsibilities and obligations of 
certification authorities, issues of liability, and limits and policies. 

In the United States, laws about signatures, contracts, and commercial transac­
tions are state laws, so this model act is designed for states. The eventual goal is a 
federal act, but if this all begins at the state level there is less chance of the NSA 
mucking up the works. 

Even so, the validity of digital signatures has not been challenged in court; their 
legal status is still undefined. In order for digital signatures to carry the same 
authority as handwritten signatures, they must first be used to sign a legally bind­
ing document, and then be challenged in court by one party. The court would then 
consider the security of the signature scheme and issue a ruling. Over time, as this 
happened repeatedly, a body of precedent rulings would emerge regarding which dig­
ital signature methods and what key sizes are required for a digital signature to be 
legally binding. This is likely to take years. 

Until then, if two people wish to use digital signatures for contracts (or purchase 
requests, or work orders, or whatever), it is recommended that they sign a paper con­
tract in which they agree in the future to be bound by any documents digitally 
signed by them [1099]. This document would specify algorithm, key size, and any 
other parameters; it should also delineate how disputes would be resolved. 
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Afterword 
by Matt Blaze 

One of the most dangerous aspects of cryptology (and, by extension, of this book), is 
that you can almost measure it. Knowledge of key lengths, factoring methods, and 
cryptanalytic techniques makes it possible to estimate (in the absence of a real the­
ory of cipher design) the "work factor" required to break a particular cipher. It's all 
too tempting to misuse these estimates as if they were overall security metrics for 
the systems in which they are used. The real world offers the attacker a richer menu 
of options than mere cryptanalysis. Often more worrisome are protocol attacks, 
Trojan horses, viruses, electromagnetic monitoring, physical compromise, black­
mail and intimidation of key holders, operating system bugs, application program 
bugs, hardware bugs, user errors, physical eavesdropping, social engineering, and 
dumpster diving, to name just a few. 

High-quality ciphers and protocols are important tools, but by themselves make 
poor substitutes for realistic, critical thinking about what is actually being pro­
tected and how various defenses might fail (attackers, after all, rarely restrict them­
selves to the clean, well-defined threat models of the academic world). Ross 
Anderson gives examples of cryptographically strong systems (in the banking indus­
try) that fail when exposed to the threats of the real world [43,44]. Even when the 
attacker has access only to ciphertext, seemingly minor breaches in other parts of 
the system can leak enough information to render good cryptosystems useless. The 
Allies in World War II broke the German Enigma traffic largely by carefully exploit­
ing operator errors [1587]. 

An NSA-employed acquaintance, when asked whether the government can crack 
DES traffic, quipped that real systems are so insecure that they never need to bother. 
Unfortunately, there are no easy recipes for making a system secure, no substitute 
for careful design and critical, ongoing scrutiny. Good cryptosystems have the nice 
property of making life much harder for the attacker than for the legitimate user; 
this is not the case for almost every other aspect of computer and communication 
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security. Consider the following (quite incomplete) "Top Ten Threats to Security in 
Real Systems" list; all are easier to exploit than to prevent. 

1. The sorry state of software. Everyone knows that nobody knows how to 
write software. Modern systems are complex, with hundreds of thousands 
of lines of code; any one of them has the chance to compromise security. 
Fatal bugs may even be far-removed from the security portion of the soft­
ware. 

2. Ineffective protection against denial-of-service attacks. Some crypto­
graphic protocols allow anonymity. It may be especially dangerous to 
deploy anonymous protocols if they increase the opportunities for uniden­
tified vandals to disrupt service; anonymous systems therefore need to be 
especially resistant to denial-of-service attacks. Robust networks can more 
easily support anonymity; consider that hardly anyone worries very much 
about the millions of anonymous entry points to more robust networks 
like the telephone system or the postal service, where it's relatively diffi­
cult (or expensive) for an individual to cause large-scale failures. 

3. No place to store secrets. Cryptosystems protect large secrets with smaller 
ones (keys). Unfortunately, modern computers aren't especially good at pro­
tecting even the smallest secrets. Multi-user networked workstations can 
be broken into and their memories compromised. Standalone, single-user 
machines can be stolen or compromised through viruses that leak secrets 
asynchronously. Remote servers, where there may be no user available to 
enter a passphrase (but see threat #5 ), are an especially hard problem. 

4. Poor random-number generation. Keys and session variables need good 
sources of unpredictable bits. A running computer has a lot of entropy in it 
but rarely provides applications with a convenient or reliable way to 
exploit it. A number of techniques have been proposed for getting true ran­
dom numbers in software (taking advantage of unpredictability in things 
like 1/0 interarrival timing, clock and timer skew, and even air turbulence 
inside disk enclosures), but all these are very sensitive to slight changes in 
the environments in which they are used. 

5. Weak passphrases. Most cryptographic software addresses the key storage 
and key generation problems by relying on user-generated passphrase 
strings, which are presumed to be unpredictable enough to produce good 
key material and are also easy enough to remember that they do not 
require secure storage. While dictionary attacks are a well-known problem 
with short passwords, much less is known about lines of attack against 
user-selected passphrase-based keys. Shannon tells us that English text has 
only just over 1 bit of entropy per character, which would seem to leave 
most passphrases well within reach of brute-force search. Less is known, 
however, about good techniques for enumerating passphrases in order to 
exploit this. Until we have a better understanding of how to attack 
passphrases, we really have no idea how weak or strong they are. 
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6. Mismatched trust. Almost all currently available cryptographic software 
assumes that the user is in direct control over the systems on which it runs 
and has a secure path to it. For example, the interfaces to programs like 
PCP assume that their passphrase input always comes from the user over 
a secure path like the local console. This is not always the case, of course; 
consider the problem of reading your encrypted mail when logged in over a 
network connection. What the system designer assumes is trusted may not 
match the needs or expectations of the real users, especially when software 
can be controlled remotely over insecure networks. 

7. Poorly understood protocol and service interactions. As systems get bigger 
and more complex, benign features frequently come back to haunt us, and 
it's hard to know even where to look when things fail. The Internet worm 
was propagated via an obscure and innocent-looking feature in the send­
mail program; how many more features in how many more programs have 
unexpected consequences just waiting to be discovered? 

8. Unrealistic threat and risks assessment. Security experts tend to focus on 
the threats they know how to model and prevent. Unfortunately, attackers 
focus on what they know how to exploit, and the two are rarely exactly the 
same. Too many "secure" systems are designed without considering what 
the attacker is actually likely to do. 

9. Interfaces that make security expensive and special. If security features are 
to be used, they must be convenient and transparent enough that people 
actually turn them on. It's easy to design encryption mechanisms that 
come only at the expense of performance or ease of use, and even easier to 
design mechanisms that invite mistakes. Security should be harder to turn 
off than on; unfortunately, few systems actually work this way. 

10. Little broad-based demand for security. This is a well-known problem 
among almost everyone who has tied his or her fortune to selling security 
products and services. Until there is widespread demand for transparent 
security, the tools and infrastructure needed to support it will be expensive 
and inaccessible to many applications. This is partly a problem of under­
standing and exposing the threats and risks in real applications and partly 
a problem of not designing systems that include security as a basic feature 
rather than as a later add-on. 

A more complete list and discussion of these kinds of threats could easily fill a 
book of this size and barely scratch the surface. What makes them especially diffi­
cult and dangerous is that there are no magic techniques, beyond good engineering 
and ongoing scrutiny, for avoiding them. The lesson for the aspiring cryptographer 
is to respect the limits of the art. 

Matt Blaze 
New York, NY 





1. DES 

2. LOKI91 

3. IDEA 

4. COST 

5. BLOWFISH 

6. 3-Way 

7. RCS 

8. AS 

9. SEAL 

DES 
#define ENO 0 
#define DEl 1 

typedef struct { 

/* MODE 
/* MODE 

unsigned long ek[32]; 
unsigned long dk[32]; 

} des_ctx; 

PARTV 

encrypt*/ 
decrypt*/ 

extern void deskey(unsigned char*, short); 
/* hexkey[8] MODE 
* Sets the internal key register according to the hexadecimal 
* key contained in the 8 bytes of hexkey, according to the DES, 
* for encryption or decryption according to MODE. 
*/ 

extern void usekey(unsigned long*); 
/* cookedkey[32J 
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* Loads the internal key register with the data in cookedkey. 
*I 

extern 
I* 

void cpkey(unsigned long*); 
cookedkey[32J 

* Copies the 
* located at 
*I 

contents of the internal key register into the storage 
&cookedkey[OJ. 

extern void des(unsigned char*, unsigned char*); 
/* from[BJ to[BJ 
* Encrypts/Decrypts (according to the key currently loaded in the 
* internal key register) one block of eight bytes at address 'from' 
* into the block at address 'to'. They can be the same. 
*/ 

static void scrunch(unsigned char * 
' 

unsigned long 
static void unscrun(unsigned long * unsigned char 
static void desfunc(unsigned long* unsigned long 
static void cookey(unsigned long *); 

static unsigned long Knl[32] OL I; 
static unsigned long KnR[32J OL I; 
static unsigned long Kn3[32J OL ); 
static unsigned char Df_Key[24] = { 

Ox01,0x23,0x45,0x67 ,Ox89,0xab,Oxcd,Oxef, 
Oxfe,Oxdc,Oxba,Ox98,0x76,0x54,0x32,0xl0, 
Ox89,0xab,Oxcd,Oxef,Ox01,0x23,0x45,0x67 } ; 

static unsigned short bytebit[BJ 
0200, 0100, 040, 020, 010, 04, 02, 01 } ; 

static unsigned long bigbyte[24J 
OxBOOOOOL, Ox400000L, Ox200000L, 
OxBOOOOL, Ox40000L, Ox20000L, 
OxBOOO L, Ox4000L, Ox2000L, 
OxBOO L, Ox400 L, 
Ox BO L, Ox40 L, 
OxBL, Ox4L, Ox2 L, 

*); 
*); 
*); 

OxlOOOOOL, 
OxlOOOOL, 
OxlOOOL, 
Ox200L, 
Ox20L, 
Oxll I; 

/* Use the key schedule specified in the Standard (ANSI X3.92-198ll. 

static unsigned char pcl[56J = 
56, 48, 40, 32, 24, 16, 8, 0, 57, 49, 41, 33, 25, 17, 
9' 1 ' 58, 50, 42, 34, 26, 18, 10' 2, 59, 51, 43, 35, 

62, 54, 46, 38, 30, 22, 14, 6, 61, 53, 45, 37, 29, 21, 
13, 5' 60, 52, 44, 36, 28, 20, 12, 4, 27, 19, 11, 3 

static unsigned char totrot[l6J = { 
1,2,4,6,8,10,12,14,15,17 ,19,21,23,25,27,28 } ; 

static unsigned char pc2[48J = 
13, 16, 10, 23, 0, 4, 
22, 18, 11, 3, 25, 7, 
40, 51, 30, 36, 46, 54, 
43, 48, 38, 55, 33, 52, 

2, 27, 14, 5, 20, 9, 
15, 6, 26, 19, 12, 1, 
29, 39, 50, 44, 32, 47, 
45, 41, 49, 35, 28, 31 }; 

) ; 

*I 

OxlOOL, 
Ox 10 L, 
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void deskey(key, edf) 
unsigned char *key; 
short edf; 

/* Thanks to James Gillogly & Phil Karn! */ 

I 
register int i, j, l, m, n; 
unsigned char pclm[56], pcr[56]; 
unsigned long kn[32]; 

for ( j = O; j < 56; j++ l { 
l = pcl[j]; 
m = l & 07; 
pclm[j] = (key[l » 3] & bytebit[m]) O; 
} 

for( = O; i < 16; i++ ) { 
if( edf == DEl ) m = (15 - i) << 1; 
else m = i « 1; 
n = m + 1; 
kn[m] = kn[n] = OL; 
for( j = O; j < 28; j++ ) I 

l = j + totrot[il; 
if( l < 28 ) pcr[j] = pclm[ll; 
else pcr[j] = pclm[l - 28]; 
} 

for( j = 28; j < 56; j++ l I 
l = j + totrot[i]; 
if( l < 56 ) pcr[j] = pclm[ll; 
else pcr[j] = pclm[l - 28]; 
} 

for( j O; j < 24; j++ ) I 

cookey(kn); 
return; 

if( pcr[pc2[j]J ) kn[ml I= bigbyte[jJ; 
if( pcr[pc2[j+24JJ ) kn[nl I= bigbyte[j]; 
} 

static void cookey(rawl) 
register unsigned long *rawl; 
{ 

register unsigned long *cook, *rawO; 
unsigned long dough[32]; 
register int i; 

cook = dough; 
for( = O; i < 16; i++, rawl++ ) I 

rawO = rawl++; 
*cook (*rawO & OxOOfcOOOOL) « 6; 
*cook I= (*rawO & OxOOOOOfcOU « 10; 
*cook I= (*rawl & OxOOfcOOOOU » 10; 
*cook++ I= (*rawl & OxOOOOOfcOL) 
*cook ( *rawO & Ox0003fOOOL) << 12; 
*cook I= (*rawO & Ox0000003fl) << 16; 
*cook I= (*rawl & Ox0003fOOOL) >> 4; 
*cook++ I= (*rawl & Ox0000003fl); 

» 6; 
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usekey(dough); 
return; 

void cpkey(into) 
register unsigned long *into; 
{ 

register unsigned long *from, *endp; 

from= Knl, endp = &Knl[32]; 
while( from< endp ) *into++ *from++; 
return; 

void usekey(from) 
register unsigned long *from; 
{ 

register unsigned long *to, *endp; 

to= Knl, endp = &Knl[32]; 
while( to< endp ) *to++= *from++; 
return; 

void des(inblock, outblock) 
unsigned char *inblock, *outblock; 
{ 

unsigned ;ong work[2]; 

scrunch(inblock, work); 
desfunc(work, Knl); 
unscrun(work, outblock); 
return; 

static void scrunch(outof, into) 
register unsigned char *outof; 
register unsigned long *into; 
{ 

*into (*outof++ & Oxffl) << 24; 
*into I= (*outof++ & Oxffl) << 16; 
*into I= (*outof++ & Oxffl) << 8; 
*into++ I= (*outof++ & Oxffl); 
*into (*outof++ & Oxffl) << 24; 
*into I= (*outof++ & Oxffl) << 16; 
*into I= (*outof++ & Oxffl) << 8; 
*into I= (*outof & Oxffl); 
return; 

static void unscrun(outof, into) 
register unsigned long *outof; 
register unsigned char *into; 
{ 
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*into++= (*outof » 24) & Oxffl; 
*into++= (*outof » 16) & Oxffl; 
*into++= (*outof » 8) & Oxffl; 
*into++= *outof++ & Oxffl; 
*into++= (*outof » 24) & Oxffl; 
*into++= (*outof » 16) & Oxffl; 
*into++= (*outof » 8) & Oxffl; 
*into *outof & Oxffl; 
return; 

static unsigned long SP1[64J = ( 
Ox01010400L, OxOOOOOOOOL, OxOOOlOOOOL, Ox01010404L, 
Ox01010004L, Ox00010404L, Ox00000004L, OxOOOlOOOOL, 
Ox00000400L, Ox01010400L, Ox01010404L, Ox00000400L, 
Ox01000404L, Ox01010004L, OxOlOOOOOOL, Ox00000004L, 
Ox00000404L, Ox01000400L, Ox01000400L, Ox00010400L, 
Ox00010400L, Ox01010000L, Ox01010000L, Ox01000404L, 
Ox00010004L, Ox01000004L, Ox01000004L, Ox00010004L, 
OxOOOOOOOOL, Ox00000404L, Ox00010404L, OxOlOOOOOOL, 
OxOOOlOOOOL, Ox01010404L, Ox00000004L, Ox01010000L, 
Ox01010400L, OxOlOOOOOOL, OxOlOOOOOOL, Ox00000400L, 
Ox01010004L, OxOOOlOOOOL, Ox00010400L, Ox01000004L, 
Ox00000400L, Ox00000004L, Ox01000404L, Ox00010404L, 
Ox01010404L, Ox00010004L, Ox01010000L, Ox01000404L, 
Ox01000004L, Ox00000404L, Ox00010404L, Ox01010400L, 
Ox00000404L, Ox01000400L, Ox01000400L, OxOOOOOOOOL, 
Ox00010004L, Ox00010400L, OxOOOOOOOOL, Ox01010004L } ; 

static unsigned long SP2[64J = ( 
Ox80108020L, Ox80008000L, Ox00008000L, Ox00108020L, 
OxOOlOOOOOL, Ox00000020L, Ox80100020L, Ox80008020L, 
Ox80000020L, Ox80108020L, Ox80108000L, Ox80000000L, 
Ox80008000L, OxOOlOOOOOL, Ox00000020L, Ox80100020L, 
Ox00108000L, Ox00100020L, Ox80008020L, OxOOOOOOOOL, 
Ox80000000L, Ox00008000L, Ox00108020L, Ox80100000L, 
Ox00100020L, Ox80000020L, OxOOOOOOOOL, Ox00108000L, 
Ox00008020L, Cx80108000L, Ox80100000L, Ox00008020L, 
OxOOOOOOOOL, Ox00108020L, Ox80100020L, OxOOlOOOOOL, 
Ox80008020L, Ox80100000L, Ox80108000L, Ox00008000L, 
Ox80100000L, Ox80008000L, Ox00000020L, Ox80108020L, 
Ox00108020L, Ox00000020L, Ox00008000L, Ox80000000L, 
Ox00008020L, Ox80108000L, OxOOlOOOOOL, Ox80000020L, 
Ox00100020L, Ox80008020L, Ox80000020L, Ox00100020L, 
Ox00108000L, OxOOOOOOOOL, Ox80008000L, Ox00008020L, 
Ox80000000L, Ox80100020L, Ox80108020L, Ox00108000L } ; 

static unsigned long SP3[64J = ( 
Ox00000208L, Ox08020200L, OxOOOOOOOOL, Ox08020008L, 
Ox08000200L, OxOOOOOOOOL, Ox00020208L, Ox08000200L, 
Ox00020008L, Ox08000008L, Ox08000008 L, Ox00020000L, 
Ox08020208L, Ox00020008L, Ox08020000L, Ox00000208L, 
Ox08000000L, Ox00000008L, Ox08020200L, Ox00000200 L, 
Ox00020200L, Ox08020000L, Ox08020008 L, Ox00020208L, 
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Ox08000208L, Ox00020200L, Ox00020000L, Ox08000208L, 
Ox00000008L, Ox08020208 L, Ox00000200L, Ox08000000L, 
Ox08020200L, Ox08000000L, Ox00020008 L, Ox00000208L, 
Ox00020000L, Ox08020200L, Ox08000200L, OxOOOOOOOOL, 
Ox00000200L, Ox00020008 L, Ox08020208L, Ox08000200L, 
Ox08000008L, Ox00000200L, OxOOOOOOOOL, Ox08020008L, 
Ox08000208L, Ox00020000L, Ox08000000L, Ox08020208L, 
Ox00000008L, Ox00020208 L, Ox00020200L, Ox08000008L, 
Ox08020000L, Ox08000208 L, Ox00000208L, Ox08020000L, 
Ox00020208L, Ox00000008 L, Ox08020008L, Ox00020200L } ; 

static unsigned long SP4[64J - { 
Ox00802001L, Ox00002081L, Ox00002081L, Ox00000080L, 
Ox00802080L, Ox00800081L, Ox00800001L, Ox00002001L, 
OxOOOOOOOOL, Ox00802000L, Ox00802000L, Ox00802081L, 
Ox00000081L, OxOOOOOOOOL, Ox00800080L, Ox00800001L, 
OxOOOOOOOlL, Ox00002000L, Ox00800000L, Ox00802001L, 
Ox00000080L, Ox00800000L, Ox00002001L, Ox00002080L, 
Ox00800081L, OxOOOOOOOlL, Ox00002080L, Ox00800080L, 
Ox00002000L, Ox00802080L, Ox00802081L, Ox00000081L, 
Ox00800080L, Ox00800001L, Ox00802000L, Ox00802081L, 
Ox00000081L, OxOOOOOOOOL, OxOOOOOOOOL, Ox00802000L, 
Ox00002080L, Ox00800080L, Ox00800081L, OxOOOOOOOlL, 
Ox00802001L, Ox00002081L, Ox00002081L, Ox00000080L, 
Ox00802081L, Ox00000081L, OxOOOOOOOlL, Ox00002000L, 
Ox00800001L, Ox00002001L, Ox00802080L, Ox00800081L, 
Ox00002001L, Ox00002080L, Ox00800000L, Ox00802001L, 
Ox00000080L, Ox00800000L, Ox00002000L, Ox00802080L }; 

static unsigned long SP5[64J - I 
OxOOOOOlOOL, Ox02080100L, Ox02080000L, Ox42000100L, 
Ox00080000L, OxOOOOOlOOL, Ox40000000L, Ox02080000L, 
Ox40080100L, Ox00080000L, Ox02000100L, Ox40080100L, 
Ox42000100L, Ox42080000L, Ox00080100L, Ox40000000L, 
Ox02000000L, Ox40080000L, Ox40080000L, OxOOOOOOOOL, 
Ox40000100L, Ox42080100L, Ox42080100L, Ox02000100L, 
Ox42080000L, Ox40000100L, OxOOOOOOOOL, Ox42000000L, 
Ox02080100L, Ox02000000L, Ox42000000L, Ox00080100L, 
Ox00080000L, Ox42000100L, OxOOOOOlOO L, Ox02000000L, 
Ox40000000L, Ox02080000L, Ox42000100L, Ox40080100L, 
Ox02000100L, Ox40000000L, Ox42080000L, Ox02080100L, 
Ox40080100L, OxOOOOOlOOL, Ox02000000L, Ox42080000L, 
Ox42080100L, Ox00080100L, Ox42000000L, Ox42080100L, 
Ox02080000L, OxOOOOOOOOL, Ox40080000L, Ox42000000L, 
Ox00080100L, Ox02000100L, Ox40000100L, Ox00080000L, 
OxOOOOOOOOL, Ox40080000L, Ox02080100L, Ox40000100L } ; 

static unsigned long SP6[64] - { 
Ox20000010L, Ox20400000L, Ox00004000L, Ox20404010L, 
Ox20400000L, OxOOOOOOlOL, Ox20404010L, Ox00400000L, 
Ox20004000L, Ox00404010L, Ox00400000L, Ox20000010L, 
Ox00400010L, Ox20004000L, Ox20000000L, Ox00004010L, 
OxOOOOOOOOL, Ox00400010L, Ox20004010L, Ox00004000L, 
Ox00404000L, Ox20004010L, OxOOOOOOlOL, Ox20400010L, 
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Ox20400010L, OxOOOOOOOOL, Ox00404010L, Ox20404000L, 
Ox00004010 L, Ox00404000L, Ox20404000L, OxZOOOOOOOL, 
Ox20004000L, OxOOOOOOlOL, Ox20400010L, Ox00404000L, 
Ox20404010L, Ox00400000L, Ox00004010L, Ox20000010L, 
Ox00400000L, Ox20004000L, Ox20000000L, Ox00004010L, 
Ox20000010 L, Ox20404010L, Ox00404000L, Ox20400000L, 
Ox00404010 L, Ox20404000L, OxOOOOOOOOL, Ox20400010L, 
OxOOOOOOlOL, Ox00004000L, Ox20400000L, Ox00404010L, 
Ox00004000L, Ox00400010L, Ox20004010L, OxOOOOOOOOL, 
Ox20404000L, OxZOOOOOOOL, Ox00400010L, Ox20004010L } ; 

static unsigned long SP7[64J ~ I 
OxOOZOOOOOL, Ox04200002L, Ox04000802L, OxOOOOOOOOL, 
OxOOOOOSOOL, Ox04000802L, Ox00200802L, Ox04200800L, 
Ox04200802L, Ox00200000L, OxOOOOOOOOL, Ox04000002L, 
Ox00000002L, Ox04000000L, Ox04200002L, Ox00000802L, 
Ox04000800L, Ox00200802L, Ox00200002L, Ox04000800L, 
Ox04000002L, Ox04200000L, Ox04200800L, Ox00200002L, 
Ox04200000L, OxOOOOOSOOL, Ox00000802L, Ox04200802L, 
Ox00200800L, OxOOOOOOOZL, Ox04000000L, Ox00200800L, 
Ox04000000L, Ox00200800L, Ox00200000L, Ox04000802L, 
Ox04000802L, Ox04200002L, Ox04200002L, OxOOOOOOOZL, 
Ox00200002L, Ox04000000L, Ox04000800L, Ox00200000 L, 
Ox04200800L, Ox00000802L, Ox00200802L, Ox04200800L, 
Ox00000802L, Ox04000002L, Ox04200802L, Ox04200000L, 
Ox00200800L, OxOOOOOOOOL, OxOOOOOOOZL, Ox04200802L, 
OxOOOOOOOOL, Ox00200802L, Ox04200000L, OxOOOOOSOO L, 
Ox04000002L, Ox04000800L, OxOOOOOSOOL, Ox00200002L } ; 

static unsigned long SP8[64J ~ I 
Oxl0001040L, OxOOOOlOOOL, Ox00040000L, Ox10041040L, 
OxlOOOOOOOL, Oxl0001040L, Ox00000040L, OxlOOOOOOOL, 
Ox00040040L, Oxl0040000L, Ox10041040L, Ox00041000L, 
Oxl0041000L, Ox00041040L, OxOOOOlOOOL, Ox00000040L, 
Oxl0040000L, Oxl0000040L, OxlOOOlOOOL, Ox00001040L, 
Ox00041000L, Ox00040040L, Ox10040040L, Ox10041000L, 
Ox00001040L, OxOOOOOOOOL, OxOOOOOOOOL, Ox10040040L, 
Oxl0000040L, OxlOOOlOOOL, Ox00041040 L, Ox00040000L, 
Ox00041040L, Ox00040000L, Ox10041000L, OxOOOOlOOOL, 
Ox00000040L, Oxl0040040L, OxOOOOlOOOL, Ox00041040L, 
OxlOOOlOOOL, Ox00000040L, Oxl0000040L, Ox10040000L, 
Oxl0040040L, OxlOOOOOOOL, Ox00040000L, Ox10001040L, 
OxOOOOOOOOL, Oxl0041040L, Ox00040040L, Ox10000040L, 
Oxl0040000L, OxlOOOlOOOL, Oxl0001040L, OxOOOOOOOOL, 
Oxl0041040L, Ox00041000L, Ox00041000L, Ox00001040L, 
Ox00001040L, Ox00040040L, OxlOOOOOOOL, Ox10041000L }; 

static void desfunc(block, keys) 
register unsigned long *block, *keys; 
{ 

register unsigned long fval, work, right, leftt; 
register int round; 

leftt ~ block[OJ; 
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right= block[l]; 
work= ((leftt >> 4) A right) & OxOfOfOfOfL; 
right A= work; 
leftt A= (work<< 4); 
work= ((leftt >> 16) A right) & OxOOOOffffL; 
right A= work; 
leftt A= (work<< 16); 
work= ((right>> 2) A leftt) & Ox33333333L; 
leftt A= work; 
right A= (work<< 2); 
work= ((right >> 8) A leftt) & OxOOffOOffL; 
leftt A= work; 
right A= (work<< 8); 
right= ((right<< 1) I ((right>> 31) & ll)) & Oxffffffffl; 
work= (leftt A right) & Oxaaaaaaaal; 
leftt A= work; 
right A= work; 
leftt = ((leftt << 1) I ((leftt >> 31) & ll)) & Oxffffffffl; 

for ( round = 0; round < 8; round++ ) I 
work (right<< 28) I (right>> 4); 
work A= *keys++; 
fval SP?[ work & Ox3fLJ; 
fval I= SP5[(work » 8) & Ox3fLJ; 
fval I= SP3[(work » 16) & Ox3fLJ; 
fval I= SPl[ (work » 24) & Ox3fLJ; 
work right A *keys++; 
fval SP8[ work & Ox3fLJ; 
fval SP6[(work » 8) & Ox3fLJ; 
fval SP4[(work » 16) & Ox3fl]; 
fval SP2[(work » 24) & Ox3fLJ; 
l eftt A=fval; 
work (leftt « 28) I (leftt » 4); 
1,ork A= *keys++; 
fval SP?[ work & Ox3fLJ; 
fval I= SP5[(work » 8) & Ox3fLJ; 
fval I= SP3[(work » 16) & Ox3fl]; 
fval I= SPl[ (work » 24) & Ox3fLJ; 
work leftt A *keys++; 
fval SP8[ work & Ox3fLJ; 
fval SP6[(work » 8) & Ox3fLJ; 
fval SP4[ (work » 16) & Ox3fLJ; 
fval SP2[(work » 24) & Ox3fl]; 
right A= fval; 
} 

right= (right<< 31) I (right>> 1); 
work= (leftt A right) & Oxaaaaaaaal; 
leftt A= work; 
right A= work; 
leftt = (leftt << 31) I (leftt >> 1); 
work= ((leftt >> 8) A right) & OxOOffOOffL; 
right A= work; 
leftt A= (work<< 8); 
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work= ((leftt >> 2) A right) & Ox33333333L; 
right A= work; 
leftt A= (work 
work= ((right 
leftt A= work; 
right A= (work 
WO r k = ( ( right 

« 
» 

« 
» 

« 
l eftt A= work; 
right A= (work 
*block++= right; 
*block= leftt; 
return; 

2); 
16) A leftt) & OxOOOOffffL; 

16); 
4) A leftt) & OxOfOfOfOfL; 

4); 

/* Validation sets: 
* 
* Single length key, single-length 

0123 4567 89ab cdef 
0123 4567 89ab cde7 
c957 4425 6a5e d3ld 

plaintext -
* Key 
* Plain 
* Cipher 
* 
**********************************************************************/ 

void des_key(des_ctx *de, unsigned char *key){ 
des key( key, ENO); 
cpkey(dc->ekl; 
deskey(key,DEl); 
cpkey(dc->dk); 

/* Encrypt several blocks in ECB mode. Caller is responsible for 
short blocks. */ 

void des_enc(des_ctx *de, unsigned char *data, int blocks){ 
unsigned long work[2J; 
int i ; 
unsigned char *cp; 

cp = data; 
for C i =O ; i <bl o ck s ; i ++) { 

scrunch(cp,work); 
desfunc(work,dc->ek); 
unscrun(work,cp); 
cp+=S; 

void des_dec(des_ctx *de, unsigned char *data, int blocks){ 
unsigned long work[2]; 
int i; 
unsigned char *cp; 

cp = data; 
for(i=O;i<blocks;i++){ 

scrunch(cp,work); 
desfunc(work,dc->dk); 
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unscrun(work,cp); 
cp+=8; 

void main(void){ 
des_ctx de; 
int i ; 
unsigned long data[lOJ; 
char *cp,key[8J = {Ox01,0x23,0x45,0x67,0x89,0xab,Oxcd,Oxef}; 
char x[8] = l0x01,0x23,0x45,0x67,0x89,0xab,Oxcd,Oxe7}; 

cp = x; 

des_key(&dc,key); 
des_enc(&dc,cp,l); 
printf("Enc(0 .. 7,0 .. 7) = "); 

for(i=O;i<S;i++) printf("%02x " ((unsigned int) cp[iJ)&OxOOff); 
printf("\n"l; 

des_dec(&dc,cp,ll; 

printf("Dec(above,0 .. 7) = "); 
for(i=O;i<S;i++) printf("%02x ",((unsigned int)cp[ill&OxOOffl; 
printf( "\n"); 

cp =(char*) data; 
for(i=O;i<lO;i++)data[i]=i; 

des_enc(&dc,cp,5); /* Enc 5 blocks. */ 
for(i=O;i<lO;i+=2) printf("Block %Old= %08lx %08lx.\n", 

i /2,data[i J ,data[i+l]); 

des_dec(&dc,cp,ll; 
des_dec(&dc,cp+8,4); 
for(i=O;i<lO;i+=2) printf("Block %Old= %08lx %08lx.\n", 

i /2,data[i J ,data[i+ll); 

LOKI91 
#include <stdio.h> 

#define LOKIBLK 
#define ROUNDS 

8 
16 

/* No of bytes in a LOKI data-block 
/* No of LOKI rounds 

*I 
*I 

typedef unsigned long 
*I 

Long; /* type specification for aligned LOKI blocks 

extern Long 
extern char 

1h fdef _STDC_ 

l oki key[2]; 
*loki_lib_ver; 

extern void enloki (char *bl; 

/* 64 bit key used by LOKI routines */ 
/* String with version no. & copyright *I 

/* declare prototypes for library functions */ 
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extern void deloki(char *b); 
extern void setlokikey(char key[LOKIBLKJ); 
#else /* else just declare library functions extern*/ 
extern void enloki(), deloki(), setlokikey(); 
#endif _STDC_ 

char P[32] = { 
31, 23, 15, 7' 30, 22, 14, 6, 
29, 21, 13, 5' 28, 20, 12, 4, 
27, 19, 11, 3, 26, 18, 10, 2, 
25, 17, 9' 1 ' 24, 16, 8, 0 
} ; 

typedef struct 
short gen; 
short exp; 

/* irreducible polynomial used in this field*/ 
/* exponent used to generate this s function*/ 

} sfn_desc; 

sfn_desc sfn[J = { 
{ /* 101110111 *I 375, 31}, 
I I* 110000111 *I 391, 31 l, 
{ I* 110001101 *i l97, 31 l, 
{ I* 110100011 *' I 419, 31}, 
{ I* 110110001 *I 433, 31}, 
{ /* 111000011 *I 451, 31 I, 
{ I* 111010111 *I 471, 31}, 
I /* 111100111 *I 487, 31 I, 
{ 00, 00) } ; 

typedef struct { 
Long loki_subkeys[ROUNDSJ; 

I loki_ctx; 

I* 101111011 *I 379, 31}, 
I* 110001011 *I 395, 31 I, 
I* 110011111 *I 415, 31 l, 
I* 110101001 *I 425, 31 I, 
I* 110111101 */ 445, 31 I, 
I* 111001111 *I 463, 31 I, 
I* 111011101 *I 477, 31)' 
I* 111110011 *I 499, 31 I, 

static Long f(); 
static short s(); 

/* declare LOKI function f */ 
/* declare LOKI S-box fn s */ 

#define ROL12(b) b (Cb<< 12) 
#define ROL13Cb) b (Cb<< 13) 

#ifdef 
#define 

} 

#endif 

void 

LITTLE_ENDIAN 
bswap(cb) { 

register char 
C = cb[OJ; cb[OJ 
C cb[lJ; cb[lJ 
C cb[4J; cb[4] 
C = cb[5J; cb[5J 

C; 

cb[3]; 
cb[2J; 
cb[7J; 
cb[6J; 

setlokikey(loki_ctx *c, char *key) 
{ 

register 
register Long 

i; 
KL, KR; 

Cb » 20) l ; 
Cb» 19Jl; 

cb[3J c; 
cb[2J c· 

' cb[7J c; 
cb[6J c· 

' 

\ 
\ 
\ 
\ 
\ 
\ 
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#ifdef LITTLE_ENDIAN 
bswap(key); 

#endif 

/fi f def 

#endif 
) 

void 
en l oki 
{ 

/fi fdef 

#endi f 

KL= ((Long *)key)[OJ; 
KR= ((Long *)key)[l]; 

for Ci=O; i<ROUNDS; i+=4) 
c->loki_subkeys[iJ = KL; 
ROL12 (KU; 
c->loki_subkeys[i+l] KL; 
ROL13 (KU; 
c->loki_subkeys[i+2] KR; 
ROL12 (KR); 
c->loki_subkeys[i+3J KR; 
ROL13 (KR); 

LITTLE_ENDIAN 
bswap(key); 

(loki_ctx *c, char *b) 

register i; 
register Long L' R; 

LITTLE_ENDIAN 
bswap(b); 

L ((Long *)b)[OJ; 
R ((Long *)b)[l]; 

/* swap bytes round if little-endian */ 

/* Generate the 16 subkeys */ 

/* swap bytes back if little-endian */ 

/* left & right data halves */ 

/* swap bytes round if little-endian */ 

for (i=O; i<ROUNDS; i+=2) { /* Encrypt with the 16 subkeys */ 
LA= f CR, c->loki_subkeys[i]); 
RA= f CL, c->loki_subkeys[i+l]); 

( ( Long *)b)[OJ 
CC Long *)b)[l] 

#ifdef LITTLE_ENDIAN 
bswap(b); 

#end if 
) 

void 

R· 
' L; 

del oki ( l oki_ctx *c, char *b) 
( 

register 
register Long 

#ifdef LITTLE_ENDIAN 

i; 
L, R; 

/* Y swapCLR) */ 

/* swap bytes round if little-endian */ 

/* left & right data halves */ 
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bswap(b); /* swap bytes round if little endian */ 
#endif 

L ((Long *)b)[OJ; /*LR= X XOR K */ 
R ((Long *)b)[l]; 

for (i=ROUNDS; i>O; i-=2) { /* subkeys in reverse order*/ 
L '= f(R, c->loki_subkeys[i-1]); 
R '= f(L, c->loki_subkeys[i-2]); 

((Long *)b)[OJ 
((Long *)b)[l] 

R· 
' L; 

/* y LR XOR K */ 

/fdefine MASK12 OxOfff /* 12 bit mask for expansion E */ 

static Long 
f(r, k) 
register Long r; I* Data value R(i -1) */ 
Long k. 

' 
I* Key K( i) */ 

{ 

Long a, b, c· 
' 

/* 32 bit S-box output, & P output*/ 

a = r ' k· 
' 

I* A=R(i-1) XOR K( i) *I 

/* want to use slow speed/small size version*/ 
b = ((Long)s((a & MASK12)) ) I /* B S(E(R(i-l))'K(i)) */ 

((Long)s(((a >> 8) & MASK12)) << 8) I 
((Long)s(((a >> 16) & MASK12)) << 16) I 
((Long)s((((a >> 24) I (a<< 8)) & MASK12)) << 24); 

perm32(&c, &b, P); /* C = P(S( E(R(i-1)) XOR K(i))) */ 

return(c); /* f returns the result C */ 

static short s(i) 
register Long i; /* return S box value for input */ 
{ 

register short r, c, v, t; 
short exp8(); 

r ((i»8) & Oxc) ( i & 

/* exponentiation routine for GF(2'8) */ 

Ox3); I* row value-top 2 & bottom 2 
C (i»2) & Oxff; /* column value-middle 8 bits 
t (c+((r*l7) ' Oxff)) & Oxff; I* base value for Sfn */ 
V exp8(t, sfn [ r]. exp, sfn[r] .gen); I* Sfn[r] = t 'exp mod gen*/ 
return(v); 

#define MSB Ox80000000L /* MSB of 32-bit word*/ 

perm32(out, in , perm) 
Long *out; /* Output 32-bit block to be permuted *I 

*I 
*I 
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Long 
char 
I 

*in; 
perm[32]; 

/* Input 32-bit block after permutation 
/* Permutation array 

*I 
*I 

Long mask 
register int 
register char 

*out= O; 

MSB; 
i, o, b; 
*p = perm; 

for (o=O; o<32; o++) I 
i =(int)*p++; 
b =(*in>> i) & 01; 
if (bl 

*out I= mask; 
mask »= 1; 

/* mask used to set bit in output 
/* input bit no, output bit no, value*/ 
/* ptr to permutation array */ 

/* clear output block*/ 
/* For each output bit position o */ 

*I 

/* get input bit permuted to output o */ 
/* value of input bit i */ 

/* If the input bit i is set*/ 
/* OR in mask to output i */ 
/* Shift mask to next bit */ 

#define SIZE 256 /* 256 elements in GF(2A8) */ 

short 
short 
short 
( 

mult8(a, b, gen) 
a, b · ' 

/* operands for multiply*/ 
gen; /* irreducible polynomial generating Galois Field*/ 

short product O • ' 
/* result of multiplication*/ 

while(b != 0) I 
if(b&Ol) 

product A= a; 
a<<= 1; /* 
i f ( a >= SIZE ) 

a A= gen; /* 
b »= 1; 

return(product); 

I* 

/* while multiplier is non-zero*/ 

/* add multiplicand if LSB of b set*/ 
shift multiplicand one place*/ 

and modulo reduce if needed*/ 
shift multiplier one place */ 

short expB(base, exponent, gen) 
short base; /* base of exponentiation */ 
short exponent; /* exponent */ 
short gen; /* irreducible polynomial generating Galois Field*/ 
I 

short accum = base; 
short result= 1; 

if (base== 0) 
return(O); 

I* 

I* 

I* superincreasing sequence of base*/ 
result of exponentiation *I 

I* if zero base specified then */ 
the result is "O" ifbase=O *I 

while (exponent != 0) ( /* repeat while exponent non-zero*/ 
if (( exponent & OxOOOl) == OxOOOl) /* multiply if exp 1 */ 

result mult8(result, accum, gen); 
exponent>>= 1; /* shift exponent to next digit*/ 
accum = multB(accum, accum, gen); /* & square */ 

return (result); 
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void loki_key(loki_ctx *c, unsigned char *key)( 
setlokikey(c,key); 

void loki_enc(loki_ctx *c, unsigned char *data, int blocks){ 
unsigned char *cp; 
int i ; 

cp = data; 
for(i=O;i<blocks;i++)( 

enloki (c,cp); 
cp+=8; 

void loki_dec(loki_ctx *c, unsigned char *data, int blocks){ 
unsigned char *cp; 
int i ; 

cp = data; 
for Ci =0; i <bloc ks; i ++ l { 

deloki (c,cp); 
cp+=8; 

void main(void)I 
loki_ctx le; 

IDEA 

unsigned long data[lO]; 
unsigned char *cp; 
unsigned char key[]= 10,1,2,3,4,5,6,7}; 
int i ; 

for(i=O;i<lO;i++) data[i]=i; 

loki_key(&lc,keyl; 

cp = (char *)data; 
loki_enc(&lc,cp,5); 
for(i=O;i<lO;i+=2l printf("Block %Old= %08lx %08lx\n", 

i/2,data[iJ,data[i+lJl; 
loki_dec(&lc,cp,l); 
loki_dec(&lc,cp+8,4); 
for(i=O;i<lO;i+=2l printf("Block %Old= %08lx %08lx\n", 

i/2,data[i],data[i+l]l; 

typedef unsigned char boolean; /* values are TRUE or FALSE*/ 
typedef unsigned char byte; /* values are 0-255 */ 
typedef byte *byteptr; /* pointer to byte*/ 
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typedef char *string;/* pointer to ASCII character string*/ 
typedef unsigned short wordl6; /* values are 0-65535 */ 
typedef unsigned long word32; /* values are 0-4294967295 */ 

fh fndef TRUE 
#define FALSE 0 
#define TRUE ( !FALSE) 
#endif /* if TRUE not already defined*/ 

#ifndef min /* if min macro not already defined*/ 
#define min(a,b) ( (aJ<(bl ? (al : (bl J 
#define max(a,b) ( (al>(b) ? (a) : (bl ) 
#endif /* if min macro not already defined*/ 

#define IDEAKEYSIZE 16 
#define IDEABLOCKSIZE 8 

#define IDEAROUNDS 8 
#define IDEAKEYLEN (6*IDEARDUNDS+4) 

typedef struct{ 
wordl6 ek[IDEAKEYLENJ,dk[IDEAKEYLENJ; 

)idea_ctx; 

/* End includes for IDEA.C */ 
#ifdef IDEA32 /* Use >16-bit temporaries*/ 
#define lowl6(x) ((x) & OxFFFFJ 
typedef unsigned int uintl6;/* at LEAST 16 bits, maybe more*/ 
#else 
#define lowl6(x) (x) /* this is only ever applied to uintl6's */ 
typedef wordl6 uintl6; 
#endif 

#ifdef SMALL_CACHE 
static ui ntl6 
mul(register uintl6 a, register uintl6 bl 
{ 

register word32 p; 

p = (word32Ja * b; 
if ( p) { 

b = l owl6(p); 
a = p»l6; 
return (b - al+ (b < al; 

else if (al ( 
return 1-b; 

else { 
return 1-a; 

I /* mul */ 
#endif /* SMALL CACHE*/ 

static ui ntl6 
mul Inv(uintl6 x) 
{ 
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uintl6 tO, tl; 
uintl6 q, Y; 

if ( X <= 1) 

return x; 
tl = OxlOOOlL / x; 
y = OxlOOOlL % x; 
if(y==l) 

I* 0 and are self-inverse*/ 
/* Since x >= 2, this fits into 16 bits*/ 

return low16(1 tl); 
to 
do 

1 . 
' 
q =XI y; 
X = X % y; 
to += q * t1; 
if(x==l) 

return tO; 
q = y I x; 
Y = Y % x; 
tl += q * tO; 

while (y != ll; 
return low16(1-tl); 

} /* muklnv */ 

static void 
ideaExpandKey(byte const *userkey, wordl6 *EK) 
{ 

int i , j; 

for ( j =O ; j < 8 ; j ++) { 
EK[j] = (userkey[OJ<<B) + userkey[l]; 
userkey += 2; 

for (i=O; j < IDEAKEYLEN; j++) { 
i++; 
EK[i+7J EK[i & 7] << 9 I EK[i+l & 7] >> 7; 
EK+= i & 8; 
i &= 7; 

) /* ideaExpandKey */ 

static void 
idealnvertKey(wordl6 const *EK, word16 DK[IDEAKEYLENJ) 
{ 

int i; 
uint16 tl, t2, t3; 
word16 temp[IDEAKEYLENJ; 
wordl6 *p =temp+ IDEAKEYLEN; 

tl mul Inv(*EK++); 
t2 -*EK++; 
t3 -*EK++; 
*- -p mullnv(*EK++); 
*- -p t3; 
*--p t2; 
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*--p=tl; 

for (i = O; i < IDEAROUNDS-1; i++) I 
tl = *EK++; 

) 

*- -p *EK++; 
*--p=tl; 

tl = mullnv(*EK++); 
t2 = -*EK++; 
t3 = -*EK++; 
*--p = mul Inv(*EK++); 
*--p t2; 
*--p t3; 
*--p tl; 

tl *EK++; 
*- -p *EK++; 
*--p = tl; 

tl mul Inv(*EK++); 
t2 -*EK++; 
t3 -*EK++; 
*--p mul Inv(*EK++); 
*--p t3; 
*--p t2; 
*--p tl; 

/* Copy and destroy temp copy*/ 
memcpy(DK, temp, sizeof(temp)); 
for(i=O;i<IDEAKEYLEN;i++)temp[i]=O; 

l /* ideaTnvertKey */ 

#ifdef SMALL_CACHE 
#define MUL(x,y) (x mul(lowl6(x),y)) 
#else /* !SMALL_CACHE */ 
#ifdef AVOID_JUMPS 
#define MUL(x,y) (x = lowl6(x-l), tl6 = lowl6((y)-l), \ 

t32 = (word32)x*tl6 + x + tl6 + 1, x lowl6(t32), \ 
tl6 = t32>>16, x = (x-tl6) + (x<tl6) ) 

#else/* !AVOID_JUMPS (default)*/ 
#define MUL(x,y) \ 

((tl6 = (y))? \ 

#endif 
#endif 

static void 

(x=l owl6(x)) ? \ 
t32 = (word32)x*tl6, 
x = lowl6(t32), \ 
tl6 = t32»16, \ 
x = (x-tl6)+(x<tl6) \ 

(x = l-tl6) \ 

(x 1 x)) 
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ideaCipher(byte *inbuf, byte *outbuf, word16 *key) 
{ 

register uint16 xl, x2, x3, x4, s2, s3; 
word16 *in, *out; 

#ifndef SMALL~CACHE 

#end if 

register uint16 t16; /* Temporaries needed by MUL macro*/ 
register word32 t32; 

int r = IDEAROUNDS; 

in (word16 *)inbuf; 
xl *in++; x2 *in++; 
x3 *in++; x4 = *in; 

#ifndef HIGHFIRST 

#endif 

xl (xl »8) 
x2 (x2 »8) 
x3 (x3 »8) 
x4 (x4 »8) 

(x1«8); 
(x2«8); 
(x3«8); 
(x4«8); 

do 
MU L( xl, *key++); 
x2 += *key++; 
x3 += *key++; 
MUL(x4, *key++); 

s3 = x3; 
x3A=xl; 
MUL(x3, *key++); 
s2 = x2; 
x2 A= x4; 
x2 += x3; 
MUL(x2, *key++); 
x3 += x2; 

x2 A= s3; x3 A= s2; 
while (--r); 

MUL(xl, *key++); 
x3 += *key++; 
x2 += *key++; 
MUL(x4, *key); 

out= (word16 *)outbuf; 
#ifdef HIGHFIRST 

*out++ xl; 
*out++ = x3; 
*out++ = x2; 
*out= x4; 

#else I* !HIGHFIRST *I 
*out++ (xl »8) (x1«8); 
*out++ = (x3 »8) (x3«8); 
*out++ = (x2 »8) (x2«8); 
*out= (x4 »8) I x4«8); 
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#endif 
} /* ideaCipher */ 

void idea_key(idea_ctx *c, unsigned char *key)I 
ideaExpandKey(key,c->ek); 
idealnvertKey(c->ek,c->dk); 

void idea_enc(idea_ctx *c, unsigned char *data, int blocks){ 
int i ; 
unsigned char *d = data; 

for(i=O;i<blocks;i++){ 
ideaCipher(d,d,c->ek); 
d+=S; 

void idea_dec(idea_ctx *c, unsigned char *data, int blocks){ 
int i ; 
unsigned char *d = data; 

for(i=O;i<blocks;i++){ 
ideaCipher(d,d,c->dk); 
d+=S; 

#include <stdio.h> 

#ifndef BLOCKS 
fh fndef KBYTES 
#define KBYTES 1024 
#endif 
#define BLOCKS (64*KBYTES) 
#endif 

int 
main(void) 
{ /* Test driver for IDEA cipher*/ 

inti, j, k; 
idea_ctx c; 
byte userkey[16]; 
wordl6 EK[IDEAKEYLENJ, DK[IDEAKEYLENJ; 
byte XX[SJ, YY[SJ, ZZ[SJ; 
word32 long_block[lOJ; /* 5 blocks*/ 
long l ; 
char *lbp; 

/* Make a sample user key for testing ... */ 
for ( i =0; i < 16; i ++) 

userkey[i] = i+l; 

idea_key(&c,userkey); 

/* Make a sample plaintext pattern for testing ... */ 
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for (k=O; k<B; k++) 
XX[k] = k; 

idea_enc(&c,XX,l); /*encrypt*/ 

lbp = (unsigned char*) long_block; 
for(i=O;i<lO;i++) long_block[i] = i; 
idea_enc(&c,lbp,5); 
for(i=O;i<lO;i+=2) printf("Block %Old= %08lx %08lx.\n", 

i / 2 , l on g_b l o ck [ i J , l on g_b l o ck [ i + 1 J ) ; 

idea_dec(&c,lbp,3); 
idea_dec(&c,lbp+24,2); 

for(i=O;i<lO;i+=2) printf("Block %Old= %08lx %08lx.\n", 
i / 2 , l on g_b l o ck [ i J , l on g_b l o ck [ i + 1 J ) ; 

return O; 
} /*main*/ 

GOST 

/* normal exit*/ 

typedef unsigned long u4; 
typedef unsigned char byte; 

typedef struct I 
u4 k[BJ; 
/*Constants-boxes -- set up in gost_init(). */ 
char k87[256J, k65[256J, k43[256], k21[256J; 

gost_ctx; 

/* Note: encrypt and decrypt expect full blocks--padding blocks is 
caller's responsibility. All bulk encryption is done in 
ECB mode by these calls. Other modes may be added easily 
enough. */ 

void gost_enc(gost_ctx * u4 *, int); 
void gost_dec(gost_ctx * u4 *, int); 
void gost_key(gost_ctx * u4 *); 
void gost_init(gost_ctx *); 
void gost_destroy(gost_ctx *); 

/fifdef _alpha /* Any other 64 bit machines?*/ 
typedef unsigned int word32; 
/felse 
typedef unsigned long word32; 
/fend if 

kboxinit(gost_ctx *c) 
I 

int i; 

byte kB [16 J { 14, 4' 13, 1 ' 2, 15, 11, 
12, 5' 9' 0' 7 } ; 

byte k7[16J { 15, 1 ' 8, 14, 6, 11, 3, 

8, 3, 10, 6, 

4, 9, 7' 2, 
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13, 12, 0, 5, 10 } ; 
byte k6[16J { 10, 0, 9, 14, 6, 3, 15, 5, 1' 13, 12, 

7' 11, 4, 2, 8 } ; 
byte k5 [16 J 7, 13, 14, 3, 0, 6, 9, 10' 1 ' 2' 8' 

5, 11, 12, 4, 15 } ; 
byte k4[16] 2' 12, 4, 1' 7, 10' 11, 6' 8, 5' 3' 

15, 13, 0, 14, 9 } ; 
byte k3 [16 J ( 12, 1' 10' 15, 9' 2' 6' 8, 0' 13, 3' 

4, 14, 7' 5, 11 } ; 
byte k2 [16 J ( 4' 11, 2' 14, 15, 0' 8' 13, 3' 12, 9' 

7, 5' 10, 6' 1 } ; 
byte k1[16J ( 13, 2' 8, 4' 6' 15, 11 , 1 ' 10, 9' 3' 

14, 5' 0' 12, 7 } ; 

for ( i O· 
' 

i < 256; i++) { 

c->k87[i J kB [ i » 4] « 4 k7 [ i & 15]; 
c->k65[i J k6 [ i » 4] « 4 k5 [ i & 15 J ; 
c->k43[i] k4 [ i » 4] « 4 k3 [ i & 15 J ; 
c->k21[i J k2 [ i » 4] « 4 kl[ i & 15 J ; 

static word32 
f(gost_ctx *c,word32 x) 
{ 

X = c->k87[x>>24 & 255] « 24 c->k65[x>>l6 & 255] « 16 I 
c->k43[x» 8 & 255] « 8 c->k21[x & 255]; 

/* Rotate left 11 bits*/ 
return x«ll I x»(32-11); 

void gostcrypt(gost_ctx *c, word32 *dl( 
register word32 nl, n2; /* As named in the GOST */ 

nl = d[OJ; 
n2=d[1J; 

I* Instead of swapping halves, swap names each round *I 
n2 A= f(c,nl+c->k[OJ); nl A= f(c,n2+c->k[l]); 
n2 A= f(c,nl+c->k[2J); nl A= f(c,n2+c->k[3]); 
n2 A= f(c,nl+c->k[4]); nl A= f(c,n2+c->k[5]); 
n2 A= f(c,nl+c->k[6]); nl A= f(c,n2+c->k[7]); 

n2 A= f(c,nl+c->k[OJ); nl A= f(c,n2+c->k[1J); 
n2 A= f(c,nl+c->k[2]); nl A= f(c,n2+c->k[3]); 
n2 A= f(c,nl+c->k[4]); nl A= f(c,n2+c->k[5]); 
n2 A= f(c,nl+c->k[6]); nl A= f(c,n2+c->k[7J); 

n2 A= f(c,nl+c->k[O]); nl A= f ( c, n 2+c -> k [1 J ) ; 
n2 A= f(c,nl+c->k[2]); nl A= f(c,n2+c->k[3]); 
n2 A= f(c,nl+c->k[4J); nl A= f(c,n2+c->k[5]); 
n2 A= f(c,nl+c->k[6J); nl A= f(c,n2+c->k[7]); 

n2 A= f(c,nl+c->k[7]); nl A= f(c,n2+c->k[6]); 
n2 A= f(c,nl+c->k[5]); nl A- f(c,n2+c->k[4J); 
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void 

n2 A= f(c,nl+c->k[3]); nl A= f(c,n2+c->k[2]); 
n2 A= f(c,nl+c->k[l]); nl A= f(c,n2+c->k[OJ); 

d[OJ = n2; d[l] = nl; 

gostdecrypt(gost_ctx *c, u4 *d)I 
register word32 nl, n2; /* As named in the GOST */ 

nl = d[OJ; n2 = d[ll; 

n2 A= f(c,nl+c->k[OJ); nl A= f(c,n2+c->k[l]); 
n2 A= f(c,nl+c->k[2]); nl A= f(c,n2+c->k[3]); 
n2 A= f(c,nl+c->k[4J); nl A= f(c,n2+c->k[5J); 
n2 A= f(c,nl+c->k[6]); nl A= f(c,n2+c->k[7]); 

n2 A- f(c,nl+c->k[7]); nl A= f(c,n2+c->k[6]); 
n2 A= f(c,nl+c->k[5]); nl A= f(c,n2+c->k[4]); 
n2 A= f(c,nl+c->k[3]); nl A= f(c,n2+c->k[2]); 
n2 A= f(c,nl+c->k[l]); nl A= f(c,nZ+c->k[OJ); 

n2 A= f(c,nl+c->k[7]); nl A= f(c,n2+c->k[6]); 
n2 A= f(c,nl+c->k[5]); nl A= f(c,n2+c->k[4]); 
n2 A= f(c,nl+c->k[3]); nl A= f(c,n2+c->k[2]); 
n2 A= f(c,nl+c->k[l]); nl A= f(c,nZ+c->k[OJ); 

n2 A= f(c,nl+c->k[7]); nl A= f(c,n2+c->k[6]); 
n2 A= f(c,nl+c->k[5]); nl A= f(c,n2+c->k[4]); 
n2 A= f(c,nl+c->k[3]); nl A= f(c,n2+c->k[2J); 
n2 A= f(c,nl+c->k[l]); nl A= f(c,n2+c->k[O]); 

d[OJ = n2; d[ll = nl; 

void gost_enc(gost_ctx *c, u4 *d, int blocks){ 
int i ; 

for(i=O;i<blocks;i++){ 
gostcrypt(c,d); 
d+=2; 

void gost_dec(gost_ctx *c, u4 *d, int blocks){ 
int i ; 

for(i=O;i<blocks;i++){ 
gostdecrypt(c,d); 
d+=2; 

void gost_key(gost_ctx *c, u4 *k){ 
int i ; 
for(i=O;i<S;i++) c >k[i]=k[i]; 
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void gost_init(gost_ctx *c){ 
kboxinit(c); 

void gost_destroy(gost_ctx *c){ 
int i; 
for(i=O;i<B;i++) c >k[i]=O; 

void main(void){ 
gost_ctx gc; 
u4 k[BJ ,data[lOJ; 
int i; 

/* Initialize GOST context.*/ 
gost_init(&gc); 

/* Prepare key--a simple key should be OK, with this many rounds! */ 
for(i=O;i<B;i++) k[il = i; 
gost_key(&gc,k); 

/* Try some test vectors. */ 
data[OJ = O; data[l] = O; 
gostcrypt(&gc,datal; 
printf("Enc of zero vector: %O8lx %O8lx\n",data[OJ,data[l]); 
gostcrypt(&gc,data); 
printf("Enc of above: %O8lx %O8lx\n",data[O],data[l]); 
data[OJ = Oxffffffff; data[ll = Oxffffffff; 
gostcrypt(&gc,data); 
printf("Enc of ones vector: %O8lx %O8lx\n",data[OJ,data[l]); 
gostcrypt(&gc,data); 
printf("Enc of above: %O8lx %O8lx\n",data[OJ,data[l]); 

/* Does gost_dec() properly reverse gost_enc()? Do 
we deal OK with single-block lengths passed in gost_dec( )? 
Do we deal OK with different lengths passed in?*/ 

/* !nit data */ 
for(i=O;i<lO;i++) data[il=i; 

/* Encrypt data as 5 blocks. */ 
gost_enc(&gc,data,5); 

/* Display encrypted data. */ 
for(i=O;i<lO;i+=2) printf("Block %O2d = %O8lx %O8lx\n", 

i / 2, data [ i J, data [ i + 1 J); 

/* Decrypt in different sized chunks. */ 
gost_dec(&gc,data,ll; 
gost_dec(&gc,data+2,4); 
printf( "\n"); 

/* Display decrypted data. */ 
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for(i=O;i<lO;i+=2) printf("Block %02d = %08lx %08lx\n", 
i /2 ,data[i J ,data[i+l] l; 

gost_destroy(&gc); 

BLOWFISH 
#include <math.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 

#ifdef little_endian /* Eg: Intel */ 
#include <alloc.h> 

#endif 

#include <ctype.h> 

#ifdef little_endian /* Eg: Intel*/ 
#include <dir.h> 
#include <bios.h> 

#endif 

#ifdef big_endian 
#include <Types.h> 

#endif 

typedef struct { 
unsigned long S[4][256],P[18]; 

} blf_ctx; 

#define MAXKEYBYTES 56 
// #define little_endian 1 
#define big_endian 1 

/* 448 bits * / 
/* Eg: Intel '/ 

/* Eg: Motorola*/ 

void Blowfish_encipher(blf_ctx *,unsigned long *xl, unsigned long *xr); 
void Blowfish_decipher(blf_ctx *,unsigned long *xl, unsigned long *xrl; 

#define N 16 
#define noErr 0 
#define DATAERROR -1 
#define KEYBYTES 8 

FILE* SubkeyFile; 

unsigned long F(blf_ctx *be, unsigned long x) 
{ 

unsigned short a; 
unsigned short b; 
unsigned short c; 
unsigned short d; 
unsigned long y; 
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d = x & OxOOFF; 
X »= 8; 
c = x & OxOOFF; 
X »= 8; 
b = x & OxOOFF; 
X »= 8; 
a= x & OxOOFF; 
//y = C(S[OJ[aJ + S[l][b]) 'S[2J[cJ) + S[3J[dJ; 
y = bc->S[OJ[a] + bc->S[lJ[bJ; 
y = y' bc->S[2J[c]; 
y = y + bc->S[3J[d]; 

return y; 

void Blowfish_encipher(blf_ctx *c,unsigned long *xl, unsigned long *xr) 
{ 

unsigned long Xl ; 
unsigned long Xr; 
unsigned long temp; 
short i; 

Xl *xl ; 
Xr *xr; 

for ( i = 0; i < N; ++i) 
Xl Xl ' c->P[i]; 
Xr = F(c,Xl) 'Xr; 

temp = Xl; 
Xl X r; 
Xr = temp; 

temp = Xl; 
Xl Xr; 
Xr temp; 

Xr Xr A c->P[NJ; 
Xl Xl A c->P[N + 1]; 

*xl Xl ; 
*xr Xr; 

void Blowfish_decipher(blf_ctx *c, unsigned long *xl, unsigned long *xr) 
{ 

unsigned long Xl ; 
unsigned long Xr; 
unsigned long temp; 
short i ; 

Xl *xl ; 
Xr *xr; 
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for (i = N + l; i > l; --il { 
Xl Xl A c->P[i J; 
Xr = F(c,Xll A Xr; 

/* Exchange Xl and Xr */ 
temp=Xl; 
X l X r; 
Xr = temp; 

/* Exchange Xl and Xr */ 
temp = X l ; 
Xl X r; 
Xr temp; 

Xr Xr A c->P[ll; 
Xl Xl A c->P[OJ; 

*xl Xl; 
*xr Xr; 

short InitializeBlowfish(blf_ctx *c, char key[], short keybytes) 
{ 

short i . 
' short j; 

short k; 
short error; 
short numread; 
unsigned long data; 
unsigned long data l; 
unsigned long datar; 

unsigned long ksO[J = { 
Oxdl310ba6, Ox98dfb5ac, Ox2ffd72db, Oxd0ladfb7, OxbSelafed, Ox6a267e96, 
Oxba7c9045, Oxfl2c7f99, Ox24al9947, Oxb3916cf7, Ox0801 f2e2, Ox858efcl6, 
Ox636920d8, Ox71574e69, Oxa458fea3, Oxf4933d7e, Ox0d95748f, Ox728eb658, 
Ox718bcd58, Ox82154aee, Ox7b54a4ld, Oxc25a59b5, Ox9c30d539, Ox2af26013, 
Oxc5dlb023, Ox286085f0, Oxca417918, Oxb8db38ef, Ox8e79dcb0, Ox603al80e, 
Ox6c9e0e8b, Oxb0le8a3e, Oxd71577cl, Oxbd314b27, Ox78af2fda, Ox55605c60, 
Oxe65525f3, Oxaa55ab94, Ox57489862, Ox63e81440, Ox55ca396a, Ox2aabl0b6, 
Oxb4cc5c34, Oxll4le8ce, Oxal5486af, Ox7c72e993, Oxb3eel411, Ox636fbc2a, 
Ox2ba9c55d, Ox74183lf6, Oxce5c3el6, Ox9b8793le, Oxafd6ba33, Ox6c24cf5c, 
Ox7a325381, Ox28958677, Ox3b8f4898, Ox6b4bb9af, Oxc4bfe8lb, Ox66282193, 
Ox6ld809cc, Oxfb2la991, Ox487cac60, Ox5dec8032, Oxef845d5d, Oxe98575bl, 
Oxdc262302, Oxeb65lb88, Ox23893e81, Oxd396acc5, Ox0f6d6ff3, Ox83f44239, 
Ox2e0b4482, Oxa4842004, Ox69c8f04a, Ox9elf9b5e, Ox2lc66842, Oxf6e96c9a, 
Ox670c9c61, Oxabd388f0, Ox6a5la0d2, Oxd8542f68, Ox960fa728, Oxab5133a3, 
Ox6eef0b6c, Oxl37a3be4, Oxba3bf050, Ox7efb2a98, Oxal fl65ld, Ox39af0176, 
Ox66ca593e, Ox82430e88, Ox8cee8619, Ox456f9fb4, Ox7d84a5c3, Ox3b8b5ebe, 
Oxe06f75d8, Ox85cl2073, Ox40la449f, Ox56cl6aa6, Ox4ed3aa62, Ox363f7706, 
Oxlbfedf72, Ox429b023d, Ox37d0d724, Oxd00al248, Oxdb0fead3, Ox49flc09b, 
Ox075372c9, Ox8099lb7b, Ox25d479d8, Oxf6e8def7, Oxe3fe50la, Oxb6794c3b, 
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Ox976ce0bd, Ox04c006ba, Oxcla94fb6, Ox409f60c4, Ox5e5c9ec2, Oxl96a2463, 
Ox68fb6faf, Ox3e6c53b5, Oxl339b2eb, Ox3b52ec6f, Ox6dfc511 f, Ox9b30952c, 
Oxcc814544, Oxaf5ebd09, Oxbee3d004, Oxde334afd, Ox660f2807, Oxl92e4bb3, 
Oxc0cba857, Ox45c8740f, Oxd20b5f39, Oxb9d3fbdb, Ox5579c0bd, Oxla60320a, 
Oxd6al00c6, Ox402c7279, Ox679f25fe, Oxfblfa3cc, Ox8ea5e9f8, Oxdb3222f8, 
Ox3c7516df, Oxfd616bl5, Ox2f50lec8, Oxad0552ab, Ox323db5fa, Oxfd238760, 
Ox53317b48, Ox3e00df82, Ox9e5c57bb, Oxca6f8ca0, Oxla87562e, Oxdfl769db, 
Oxd542a8f6, Ox287effc3, Oxac6732c6, Ox8c4f5573, Ox695b27b0, Oxbbca58c8, 
Oxel ffa35d, Oxb8f0lla0, Oxl0fa3d98, Oxfd2183b8, Ox4afcb56c, Ox2ddld35b, 
Ox9a53e479, Oxb6f84565, Oxd28e49bc, Ox4bfb9790, Oxelddf2da, Oxa4cb7e33, 
Ox62fbl341, Oxcee4c6e8, Oxef20cada, Ox36774c01, Oxd07e9efe, Ox2bfl lfb4, 
Ox95dbda4d, Oxae909198, Oxeaad8e71, Ox6b93d5a0, Oxd08edld0, Oxafc725e0, 
Ox8e3c5b2f, Ox8e7594b7, Ox8ff6e2fb, Oxf2122b64, Ox8888b812, Ox900df0lc, 
Ox4fad5ea0, Ox688fc3lc, Oxdlcffl91, Oxb3a8clad, Ox2f2f2218, OxbeOel 777, 
Oxea752dfe, Ox8b021 fal, Oxe5a0cc0f, Oxb56f7 4e8, Oxl8acf3d6, Oxce89e299, 
Oxb4a84fe0, Oxfdl3e0b7, Ox7cc43b81, Oxd2ada8d9, Oxl65fa266, Ox80957705, 
Ox93cc7314, Ox2lla1477, Oxe6ad2065, Ox77b5fa86, Oxc75442f5, Oxfb9d35cf, 
OxebcdafOc, Ox7b3e89a0, Oxd64llbd3, Oxaele7e49, Ox00250e2d, Ox207lb35e, 
Ox226800bb, Ox57b8e0af, Ox2464369b, Oxf009b91e, Ox556391ld, Ox59dfa6aa, 
Ox78cl4389, Oxd95a537f, Ox207d5ba2, Ox02e5b9c5, Ox83260376, Ox6295cfa9, 
Oxllc81968, Ox4e734a41, Oxb3472dca, Ox7b14a94a, Oxlb510052, Ox9a532915, 
Oxd60f573f, Oxbc9bc6e4, Ox2b60a476, Ox81e67400, Ox08ba6fb5, Ox57lbe91 f, 
Ox f296ec6b, Ox2a0dd915, Oxb6636521, Oxe7b9f9b6, Oxff34052e, Oxc5855664, 
Ox53b02d5d, Oxa99f8fal, Ox08ba4799, Ox6e85076a}; 
unsigned long ksl[J = { 
Ox4b7a70e9, Oxb5b32944, Oxdb75092e, Oxc4192623, Oxad6ea6b0, Ox49a7df7d, 
Ox9cee60b8, Ox8fedb266, Oxecaa8c71, Ox699a l 7ff, Ox5664526c, Oxc2b19eel, 
Oxl93602a5, Ox75094c29, Oxa0591340, Oxe4183a3e, Ox3f54989a, Ox5b429d65, 
OxGb8fe4d6, Ox99f73fd6, Oxald29c07, Oxefe830f5, Ox4d2d38e6, Oxf0255dcl, 
Ox4cdd2086, Ox8470eb26, Ox6382e9c6, Ox02lecc5e, Ox09686b3f, Ox3ebaefc9, 
Ox3c971814, Ox6b6a70al, Ox687f3584, Ox52a0e286, Oxb79c5305, Oxaa500737, 
Ox3e0784lc, Ox7fdeae5c, Ox8e7d44ec, Ox5716f2b8, Oxb03ada37, Oxf0500c0d, 
Oxf0lclf04, Ox0200b3ff, Oxae0cf5la, Ox3cb574b2, Ox25837a58, Oxdc0921bd, 
Oxdl9113f9, Ox7ca92ff6, Ox94324773, Ox22f54701, Ox3ae5e581, Ox37c2dadc, 
Oxc8b57634, Ox9af3dda7, Oxa9446146, Ox0fd0030e, Oxecc8c73e, Oxa475le41, 
Oxe238cd99, Ox3bea0e2f, Ox3280bbal, Oxl83eb331, Ox4e548b38, Ox4f6db908, 
Ox6f420d03, Oxf60a04bf, Ox2cb81290, Ox24977c79, Ox5679b072, Oxbcaf89af, 
Oxde9a77lf, Oxd9930810, Oxb38bael2, Oxdccf3f2e, Ox551272lf, Ox2e6b7124, 
Ox50ladde6, Ox9f84cd87, Ox7a584718, Ox7408dal7, Oxbc9f9abc, Oxe94b7d8c, 
Oxec7aec3a, Oxdb85ldfa, Ox63094366, Oxc464c3d2, Oxeflcl847, Ox3215d908, 
Oxdd433b37, Ox24c2bal6, Oxl2al4d43, Ox2a65c451, Ox50940002, Oxl33ae4dd, 
Ox7ldff89e, Oxl0314e55, Ox8lac77d6, Ox5flll99b, Ox043556fl, Oxd7a3c76b, 
Ox3clll83b, Ox5924a509, Oxf28fe6ed, Ox97fl fbfa, Ox9ebabf2c, Oxlel53c6e, 
Ox86e34570, Oxeae96fbl, Ox860e5e0a, Ox5a3e2ab3, Ox771 fe7lc, Ox4e3d06fa, 
Ox2965dcb9, Ox99e 71 dOf, Ox803e89d6, Ox5266c825, Ox2e4cc978, Ox9cl0b36a, 
Oxc6150eba, Ox94e2ea78, Oxa5fc3c53, Oxle0a2df4, Oxf2f74ea7, Ox36ld2b3d, 
Oxl939260f, Ox19c27960, Ox5223a708, Oxf71312b6, Oxebadfe6e, Oxeac3lf66, 
Oxe3bc4595, Oxa67bc883, Oxbl7f37dl, Ox018cff28, Oxc332ddef, Oxbe6c5aa5, 
Ox65582185, Ox68ab9802, Oxeecea50f, Oxdb2f953b, Ox2aef7dad, Ox5b6e2f84, 
Oxl52lb628, Ox29076170, Oxecdd4 77 5, Ox619fl510, Oxl3cca830, Oxeb6lbd96, 
Ox0334fele, Oxaa0363cf, Oxb5735c90, Ox4c70a239, Oxd59e9e0b, Oxcbaadel4, 
Oxeecc86bc, Ox60622ca7, Ox9cab5cab, Oxb2f3846e, Ox648bleaf, Oxl9bdf0ca, 
Oxa02369b9, Ox655abb50, Ox40685a32, Ox3c2ab4b3, Ox319ee9d5, Oxc02lb8f7, 
Ox9b540bl9, Ox875fa099, Ox95f7997e, Ox623d7da8, Oxf837889a, Ox97e32d77, 
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Oxlled935f, Ox16681281, Ox0e358829, Oxc7e61fd6, Ox96dedfa 1, Ox7858ba99, 
Ox57f584a5, Oxlb227263, Ox9b83c3ff, Oxlac24696, Oxcdb30aeb, Ox532e3054, 
Ox8fd948e4, Ox6dbc3128, Ox58ebf2ef, Ox34c6ffea, Oxfe28ed61, Oxee7c3c73, 
Ox5d4al4d9, Oxe864b7e3, Ox42105dl4, Ox203e13e0, Ox45eee2b6, Oxa3aaabea, 
Oxdb6c4f15, Oxfacb4fd0, Oxc742f442, Oxef6abbb5, Ox654f3bld, Ox41cd2105, 
Oxd81e799e, Ox86854dc7, Oxe44b476a, Ox3d816250, Oxcf62alf2, Ox5b8d2646, 
Oxfc8883a0, Oxclc7b6a3, Ox7f1524c3, Ox69cb7492, Ox47848a0b, Ox5692b285, 
Ox095bbf00, Oxadl9489d, Ox1462b174, Ox23820e00, Ox58428d2a, Ox0c55f5ea, 
Oxldadf43e, Ox233f7061, Ox3372f092, Ox8d937e41, Oxd65fecfl, Ox6c223bdb, 
Ox7cde3759, Oxcbee7460, Ox4085f2a7, Oxce77326e, Oxa6078084, Ox19f8509e, 
Oxe8efd855, Ox61d99735, Oxa969a7aa, Oxc50c06c2, Ox5a04abfc, Ox800bcadc, 
Ox9e447a2e, Oxc3453484, Oxfdd56705, Ox0ele9ec9, Oxdb73dbd3, Ox105588cd, 
Ox675fda79, Oxe3674340, Oxc5c43465, Ox713e38d8, Ox3d28f89e, Oxf16dff20, 
Ox153e21e7, Ox8fb03d4a, Oxe6e39f2b, Oxdb83adf7}; 
unsigned long ks2[] = { 
Oxe93d5a68, Ox948140f7, Oxf64c261c, Ox94692934, Ox411520f7, Ox7602d4f7, 
Oxbcf46b2e, Oxd4a20068, Oxd40824 71, Ox3320f46a, Ox43b7d4b7, Ox500061af, 
Oxle39f62e, Ox97244546, Ox14214f74, Oxbf8b8840, Ox4d95fcld, Ox96b591af, 
Ox70f4ddd3, Ox66a02f45, Oxbfbc09ec, Ox03bd9785, Ox7fac6dd0, Ox31cb8504, 
Ox96eb27b3, Ox55fd3941, Oxda2547e6, Oxabca0a9a, Ox28507825, Ox530429f4, 
Ox0a2c86da, Oxe9b66dfb, Ox68dc1462, Oxd7486900, Ox680ec0a4, Ox27a18dee, 
Ox4f3ffea2, Oxe887ad8c, Oxb58ce006, Ox7af4d6b6, Oxaacele7c, Oxd3375fec, 
Oxce78a399, Ox406b2a42, Ox20fe9e35, Oxd9f385b9, Oxee39d7ab, Ox3bl24e8b, 
Oxldc9faf7, Ox4b6dl856, Ox26a36631, Oxeae397b2, Ox3a6efa74, Oxdd5b4332, 
Ox6841e7f7, Oxca7820fb, Oxfb0af54e, Oxd8feb397, Ox454056ac, Oxba489527, 
Ox55533a3a, Ox20838d87, Oxfe6ba9b7, Oxd096954b, Ox55a867bc, Oxa 1159a 58, 
Oxcca92963, Ox99eldb33, Oxa62a4a56, Ox3f3125f9, Ox5ef47elc, Ox9029317c, 
Oxfdf8e802, Ox04272f70, Ox80bb155c, Ox05282ce3, Ox95c11548, Oxe4c66d22, 
Ox48c1133f, Oxc70f86dc, Ox07f9c9ee, Ox41041f0f, Ox404779a4, Ox5d886e17, 
Ox325f51eb, Oxd59bc0dl, Oxf2bcc18f, Ox41113564, Ox257b7834, Ox602a9c60, 
Oxdff8e8a3, Oxlf636clb, Ox0e12b4c2, Ox02e1329e, Oxaf664fdl, Oxcad18115, 
Ox6b2395e0, Ox333e92el, Ox3b240b62, Oxeebeb922, Ox85b2a20e, Oxe6ba0d99, 
Oxde720c8c, Ox2da2f728, Oxd0127845, Ox95b794fd, Ox647d0862, Oxe7ccf5f0, 
Ox5449a36f, Ox877d48fa, Oxc39dfd27, Oxf33e8dle, Ox0a476341, Ox992eff7 4, 
Ox3a6f6eab, Oxf4f8fd37, Oxa812dc60, Oxa lebddf8, Ox991be14c, Oxdb6e6b0d, 
Oxc67b5510, Ox6d672c37, Ox2765d43b, Oxdcd0e804, Oxf1290dc7, Oxcc00ffa3, 
Oxb5390f92, 01690fed0b, Ox667b9ffb, Oxcedb7d9c, Oxa091cf0b, Oxd9155ea3, 
Oxbbl32f88, Ox515bad24, Ox7b9479bf, Ox763bd6eb, Ox37392eb3, Oxcc115979, 
Ox8026e297, Oxf42e312d, Ox6842ada7, Oxc66a2b3b, Ox12754ccc, Ox782efl lc, 
Ox6a124237, Oxb79251e7, Ox06albbe6, Ox4bfb6350, Oxla6bl018, Oxllcaedfa, 
Ox3d25bdd8, Oxe2elc3c9, Ox44421659, Ox0a121386, Oxd90cec6e, Oxd5abea2a, 
Ox64af674e, Oxda86a85f, Oxbebfe988, Ox64e4c3fe, Ox9dbc8057, Oxf0f7c086, 
Ox60787bf8, Ox6003604d, Oxdlfd8346, Oxf6381fb0, Ox7745ae04, Oxd736fccc, 
Ox83426b33, Oxf01eab71, Oxb0804187, Ox3c005e5f, Ox77a057be, Oxbde8ae24, 
Ox55464299, Oxbf582e61, Ox4e58f48f, Oxf2ddfda2, Oxf474ef38, Ox8789bdc2, 
Ox5366f9c3, Oxc8b38e74, Oxb475f255, Ox46fcd9b9, Ox7aeb2661, Ox8blddf84, 
Ox846a0e79, Ox915f95e2, Ox466e598e, Ox20b45770, Ox8cd55591, Oxc902de4c, 
Oxb90bacel, Oxbb8205d0, Oxlla86248, Ox7574a99e, Oxb77f19b6, Oxe0a9dc09, 
Ox662d09al, Oxc4324633, Oxe85al f02, Ox09f0be8c, Ox4a99a025, Oxld6efe10, 
Oxlab93dld, Ox0ba5a4df, Oxa186f20f, Ox2868f169, Oxdcb7da83, Ox573906fe, 
Oxale2ce9b, Ox4fcd7f52, Ox50115e01, Oxa70683fa, Oxa002b5c4, Ox0de6d027, 
Ox9af88c27, Ox773f8641, Oxc3604c06, Ox61a806b5, Oxf0177a28, Oxc0f586e0, 
Ox006058aa, Ox30dc7d62, Oxlle69ed7, Ox2338ea63, Ox53c2dd94, Oxc2c21634, 
Oxbbcbee56, Ox90bcb6de, Oxebfc7dal, Oxce591d76, Ox6f05e409, Ox4b7c0188, 
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Ox39720a3d, Ox7c927c24, Ox86e3725f, Ox724d9db9, Oxlacl5bb4, 
Oxed545578, Ox08fca5b5, Oxd83d7cd3, Ox4dad0fc4, Oxle50ef5e, 
Oxa28514d9, Ox6c51133c, Ox6fd5c7e7, Ox56el4ec4, Ox362abfce, 
Oxd79a3234, Ox92638212, Ox670efa8e, Ox406000e01; 
unsigned long ks3[J ~ { 
Ox3a39ce37, Oxd3faf5cf, Oxabc27737, Ox5ac52dlb, Ox5cb0679e, 
Oxd3822740, Ox99bc9bbe, Oxd5118e9d, Oxbf0f7315, Oxd62dlc7e, 
Oxb78clb6b, Ox2lal9045, Oxb26eblbe, Ox6a366eb4, Ox5748ab2f, 
Oxc6a376d2, Ox6549c2c8, Ox530ff8ee, Ox468dde7d, Oxd5730ald, 
Ox2939bbdb, Oxa9ba4650, Oxac9526e8, Oxbe5ee304, Oxalfad5f0, 
Ox63ef8ce2, Ox9a86ee22, Oxc089c2b8, Ox43242ef6, Oxa5le03aa, 
Ox83c06lba, Ox9be96a4d, Ox8fe51550, Oxba645bd6, Ox2826a2f9, 
Ox4ba99586, 8xef5562e9, Oxc72fefd3, Oxf752f7da, Ox3f046f69, 
Ox80e4a915, Ox87b08601, Ox9b09e6ad, Ox3b3ee593, Oxe990fd5a, 
Ox2cf0b7d9, Ox022b8b51, Ox96d5ac3a, Ox017da67d, Oxdlcf3ed6, 
Oxlf9f25cf, Oxadf2b89b, Ox5ad6b472, Ox5a88f54c, Oxe029ac71, 
Ox47b0acfd, Oxed93fa9b, Oxe8d3c48d, Ox283b57cc, Oxf8d56629, 
Ox785f0191, Oxed756055, Oxf7960e44, Oxe3d35e8c, Oxl5056dd4, 
Ox03al6125, Ox0564f0bd, Oxc3eb9el5, Ox3c9057a2, Ox9727laec, 
Oxlb3f6d9b, Oxle632lf5, Oxf59c66fb, Ox26dcf319, Ox7533d928, 
Ox03563482, Ox8aba3cbb, Ox28517711, Oxc20ad9f8, Oxabcc5167, 
Ox4de81751, Ox3830dc8e, Ox379d5862, Ox9320f991, Oxea7a90c2, 
Ox512lce64, Ox774fbe32, Oxa8b6e37e, Oxc3293d46, Ox48de5369, 
Oxa2ae0810, Oxdd6db224, Ox69852dfd, Ox09072166, Oxb39a460a, 
Ox586cdecf, Oxlc20c8ae, Ox5bbef7dd, Oxlb588d40, Oxccd2017f, 
Oxdda26a7e, Ox3a59ff45, Ox3e350a44, Oxbcb4cdd5, Ox72eacea8, 
Ox8d6612ae, Oxbf3c6f47, Oxd29be463, Ox542f5ci9e, Oxaec277lb, 
Ox740e0d8d, Oxe75bl357, Oxf8721671, Oxaf537d5d, Ox4040cb08, 
Ox34d2466a, Ox0115af84, Oxelb00428, Ox95983ald, Ox06b89fb4, 
Ox6f3f3b82, Ox3520ab82, Ox0llald4b, Ox277227f8, Ox611560bl, 
Oxbb3a792b, Ox344525bd, Oxa08839el, Ox5lce794b, Ox2f32c9b7, 
Oxe0lcc87e, Oxbcc7dlf6, Oxcf0lllc3, Oxale8aac7, Oxla908749, 
OxdOdadecb, Oxd50ada38, Ox0339c32a, Oxc6913667, Ox8df9317c, 
Oxf79e59b7, Ox43f5bb3a, Oxf2d519ff, Ox27d9459c, Oxbf97222c, 
Ox0f9lfc71, Ox9b941525, Oxfae59361, Oxceb69ceb, Oxc2a86459, 
Oxb6cl075e, Oxe3056a0c, Oxl0d25065, Oxcb03a442, Oxe0ec6e0e, 
Ox4c98a0be, Ox3278e964, Ox9fl f9532, Oxe0d392df, Oxd3a0342b, 
Oxlb0a7441, Ox4ba3348c, Oxc5be7120, Oxc37632d8, Oxdf359f8d, 
Oxe60b6f47, Ox0fe3flld, Oxe54cda54, Oxledad891, Oxce6279cf, 
Oxl618bl66, Oxfd2cld05, Ox848fd2c5, Oxf6fb2299, Oxf523f357, 
Ox93a83531, Ox56cccd02, Oxacf08162, Ox5a75ebb5, Ox6el63697, 
Oxde966292, Ox8lb949d0, Ox4c5090lb, Ox7lc65614, Oxe6c6c7bd, 
Ox45eld006, Oxc3f27b9a, Oxc9aa53fd, Ox62a80f00, Oxbb25bfe2, 
Ox71126905, Oxb2040222, Oxb6cbcf7c, Oxcd769c2b, Ox53113ec0, 
Ox38abbd60, Ox2547adf0, Oxba38209c, Oxf746ce76, Ox77afalc5, 
Ox85cbfe4e, Ox8ae88dd8, Ox7aaaf9b0, Ox4cf9aa7e, Oxl948c25c, 
Ox0lc36ae4, Oxd6ebelf9, Ox90d4f869, Oxa65cdea0, Ox3f09252d, 
Oxb74e6132, Oxce77e25b, Ox578fdfe3, Ox3ac372e6 I; 

/*Initializes-boxes without file read. */ 
for ( i ~o; i < 2 5 6; i ++) { 

c->S[OJ[i J 
c->S[l][i J 
c >S [2] [ i] 

ksO [ i J ; 
ksl[i]; 
ks 2 [ i J ; 

Oxd39eb8fc, 
Oxbl6le6f8, 
Oxddc6c837, 

Ox4fa33742, 
Oxc700c47b, 
Oxbc946e79, 
Ox4cd04dc6, 
Ox6a2d519a, 
Ox9cf2d0a4, 
Oxa73a3ael, 
Ox77fa0a59, 
Ox9e34d797, 
Ox7c7d2d28, 
Oxe019a5e6, 
Ox79132e28, 
Ox88f46dba, 
Oxa93a072a, 
Oxbl55fdf5, 
Oxccad925f, 
Oxfb3e7bce, 
Ox6413e680, 
Ox6445c0dd, 
Ox6bb4e3bb, 
Oxfa6484bb, 
Oxf64e6370, 
Ox4eb4e2cc, 
Oxce6ea048, 
Oxe7933fdc, 
Oxa0lfbac9, 
Oxd44fbd9a, 
Oxe0bl2b4f, 
Oxl5e6fc2a, 
Oxl2baa8dl, 
Oxl698db3b, 
Ox8971 f2le, 
Ox9b992f2e, 
Oxcd3e7e6f, 
Oxa6327623, 
Ox88d273cc, 
Ox327al40a, 
Ox35bdd2f6, 
Oxl640e3d3, 
Ox20756060, 
Ox02fb8a8c, 
Oxc208e69f, 
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c->S[3J[iJ ks3[iJ; 

j O; 
for ( i = 0; i < N + 2; ++i ) { 

data= OxOOOOOOOO; 
for (k = O; k < 4; ++k) ( 

data= (data<< 8) key[jJ; 
j = j + 1; 
if (j >= keybytes) 

j = O; 

c->P[iJ c->P[iJ 'data; 
I 

datal = OxOOOOOOOO; 
datar = OxOOOOOOOO; 

for ( i = 0; i < N + 2; i += 2) I 
Blowfish_encipher(c,&datal, &datar); 

c->P[iJ = datal; 
c->P[i + 1] = datar; 

for ( i = 0; i < 4; ++i ) { 
for ( j = 0; j < 2 56; j += 2) { 

Blowfish_encipher(c,&datal, &datar); 

c->S[i J[jJ = datal; 
c->S[i J[j + 1] = datar; 

void blf_key(blf_ctx *c, char *k, int len)I 
InitializeBlowfish(c,k,len); 

void blf_enc(blf_ctx *c, unsigned long *data, int blocks)( 
unsigned long *d; 
int i ; 

d = data; 
for(i=O;i<blocks;i++){ 

Blowfish_encipher(c,d,d+l); 
d += 2; 

void blf_dec(blf_ctx *c, unsigned long *data, int blocks)( 
unsigned long *d; 
int i ; 
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d = data; 
for(i=O;i<blocks;i++){ 

Blowfish_decipher(c,d,d+l); 
d += 2; 

void main(void){ 
blf_ctx c; 
char key[]="AAAAA"; 
unsigned long data[lOJ; 
int i ; 

for(i=O;i<lO;i++) data[i] 

blf_key(&c,key,5); 
blf_enc(&c,data,5); 
blf_dec(&c,data,ll; 
blf_dec(&c,data+2,4); 

i. , 

for(i=O;i<lO;i+=2) printf("Block %Old decrypts to: %08lx %08lx.\n", 
i / 2, data [ i J, data [ i + 1 J); 

3-Way 
#define STRT E OxObOb I* round constant of first encryption round *I 
#define STRT_D Oxblbl I* round constant of first decryption round *I 
#define NMBR 11 I* number of rounds is 11 */ 

typedef unsigned long int word32 
/* the program only works correctly if long 

typedef unsigned long u4; 
32bits */ 

typedef unsigned char ul; 

typedef struct I 
u4 k[3J ,ki [3], ercon[NMBR+l] ,drcon[NMBR+l]; 

} twy_ctx; 

/* Note: encrypt and decrypt expect full blocks--padding blocks is 
caller's responsibility. All bulk encryption is done in 
ECB mode by these calls. Other modes may be added easily 
enough. 

/* destroy: Context. */ 
/* Scrub context of all sensitive data. */ 
void twy_destroy(twy_ctx *); 

/* encrypt: Context, ptr to data block,# of blocks. */ 
void twy_enc(twy_ctx *, u4 *, int); 

/* decrypt: Context, ptr to data block,# of blocks. */ 
void twy_dec(twy_ctx *, u4 *, int); 

*I 
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/* key: Context, ptr to key data. */ 
void twy_key(twy_ctx *, u4 *); 

/* ACCO DE-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * / 
/* End of AC code prototypes and structures. 
I* --------------

*I 
*/ 

void mu(word32 *a) 
{ 

/* inverts the order of the bits of a*/ 

int i ; 
word32 b[3J 

b[OJ = b[l] = b[2J = 0 ; 
for( i=O ; i<32 ; i++) 

{ 

b[OJ «= 1 
if(a[OJ&l) 
if(a[l]&l) 
if(a[2]&1) 
a [ 0 J »= 1 
) 

; b[l] «= 1 
b[2] = 1 ; 
b[lJ = 1 ; 
b[OJ = 1 ; 

a [ 1 »= 1 

b[2J «= 1 

; a [ 2 J »= 1 ; 

a[OJ = b[OJ ; 
) 

a[l] = b[l] a[2J = b[2J 

void gamma(word32 *a) /* the nonlinear step*/ 
( 

word32 b[3J 

b[OJ = a[OJ ' (a[ll I (~a[2J)) 
b[ll = a[ll ' (a[2l I (~a[OJ)) 
b[2J = a[2J ' (a[Oll(~a[llll 

a[OJ = b[OJ 
) 

a[ll = b[ll a[ZJ = b[ZJ 

void theta(word32 *a) 
( 

/* the linear step*/ 

word32 b[3]; 

b[OJ = a[OJ ' 

b[ll = a[l] ' 

b[ZJ a[2] A 

a[OJ = b[OJ ; 
) 

(a[OJ»16) ' (a[1]«16) A (a[1]»16) 
(a[1]»24) A (a[ZJ«S) A (a[ZJ»S) 
(a[2J»16) ' (a[OJ«16) ' (a[ZJ»24) 
(a[1]»16) A (a[ZJ«16) ' (a[ZJ»16) 
(a[2]»24) A (a[OJ«S) A (a[OJ»S) 
(a[OJ»16) A (a[1]«16) A (a[OJ»Z4) 
(a[2]»16) A (a[OJ«16) ' (a[OJ»16) 
(a[OJ»24) ' (a[lJ«S) A (a[lJ»S) 
(a[1J»16) ' (a[ZJ«16) ' (a[l]»Z4) 

a[l] = b[l] ; a[ZJ = b[ZJ ; 

void pi_l(word32 *a) 

' (a[ZJ«16) ' 
' (a[OJ«Z4) ' 
' (a[OJ«S) 
' (a[OJ«16) ' 
A (a[1]«24) A 

' (a[l]«S) 
A (a[1]«16) A 

' (a[ZJ«Z4) ' 
' (a[ZJ«S) 
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{ 

a[OJ (a[OJ»lO) A (a[0]«22); 
a[2J (a[2J«ll A (a[2]»31); 
} 

void pi_2(word32 *a) 
I 
a[OJ (a[OJ«l) A (a[OJ»31); 
a[2J (a[2J»lO) A (a[2]«22); 
} 

void rho(word32 *a) 
( 

/* the round function 

theta(a) ; 
pi _l (a) ; 

gamma(a) ; 
pi_2(a) 
} 

void rndcon_gen(word32 strt,word32 *rtab) 

*I 

{ /* generates the round constants*/ 
int i ; 

for(i=O ; i<=NMBR i++ 
I 
rtab[i] = strt 
strt «= 1 ; 
if( strt&OxlOOOO ) strt A= OxllOll 
} 

/* Modified slightly to fit the caller's needs. */ 
void encrypt(twy_ctx *c, word32 *a) 

char i ; 
for( i=O i <NMBR ; i++ 

( 

a[OJ A= c->k[OJ A (c >ercon[i]<<l6) 
a[l] A= c->k[l] 
a[2J A= c->k[2J A c->ercon[i] ; 
rho(a) ; 
} 

a[OJ A= c->k[OJ A (c->ercon[NMBRJ<<l6) 
a[l] A= c->k[l] , 
a[2J A= c->k[2] A c->ercon[NMBRJ ; 
theta(a) 
} 

/* Modified slightly to meet caller's needs. */ 
void decrypt(twy_ctx *c, word32 *a) 
{ 

char i ; 

mu (a) ; 
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for( i-0 ; i<NMBR ; i++ 
( 

a[OJ A_ c->ki [OJ A (c->drcon[i ]«16) 
a[lJ A_ c->ki [lJ , 
a[2J A_ c->ki [2] A c->drcon[i J ; 
rho Ca) ; 
} 

a[OJ A_ c->ki[OJ A (c->drcon[NMBRJ<<l6) 
a[lJ A- c->ki [lJ 
a[2J A_ c->ki [2] A c->drcon[NMBRJ ; 
theta(a) 
mu(a) 
} 

void twy_key(twy_ctx *c, u4 *key){ 
c->ki [OJ c->k[OJ key[OJ; 
c->ki [ll - c->k[l] key[l]; 
c->ki [2] - c->k[2J key[2J; 
theta(c->ki); 
mu(c->ki); 
rndcon_gen(STRT_E,c->ercon); 
rndcon_gen(STRT_D,c->drcon); 

/* Encrypt in ECB mode. */ 
void twy_enc(twy_ctx *c, u4 *data, int blkcnt)( 

u4 *d; 
int i ; 

d - data; 
for ( i -0 ; i <bl kc n t ; i ++) 

encrypt(c,d); 
d +-3; 

/* Decrypt in ECB mode. */ 
void twy_dec(twy_ctx *c, u4 *data, int blkcnt)( 

u4 *d; 
int i ; 

d - data; 
for(i-O;i<bl kcnt;i++) I 

decrypt(c,d); 
d+-3; 

/* Scrub sensitive values from memory before deallocating. */ 
void twy_destroy(twy_ctx *cl( 

int i ; 

for(i-O;i<3;i++) c->k[i] c->ki [i J O • ' 
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void printvec(char *chrs, word32 *d)I 

main () 
I 

printf("%20s: %08lx %08lx %08lx \n",chrs,d[ZJ,d[l],d[O]); 

twy_ctx gc; 
word32 a[9],k[3J; 
int i; 

/* Test vector 1. */ 

k[OJ=k[l]=k[ZJ=O; 
a[OJ=a[ll=a[ZJ=l; 
twy_key ( &gc, k); 

printf("**********\n"); 
printvec("KEY = ",k); 
printvec("PLAIN = ",a); 
encrypt(&gc,a); 
printvec("CIPHER = ",a); 

/* Test vector 2. */ 

k[OJ=6;k[ll=5;k[2]=4; 
a[OJ=3;a[lJ=2;a[2J=l; 
twy_key(&gc,k); 

printf("**********\n"); 
printvec("KEY = ",kl; 
printvec("PLAIN = ",a); 
encrypt(&gc,a); 
pri ntvec( "CIPHER = ",a); 

/* Test vector 3. */ 

k[2J=Oxbcdef012;k[l]=Ox456789ab;k[OJ=Oxdef01234; 
a[2J=Ox01234567;a[l]=Ox9abcdefO;a[OJ=Ox23456789; 
twy_key C &gc, k); 

printf("**********\n"); 
printvec("KEY = ",k); 
printvec("PLAIN =",al; 
encrypt(&gc,a); 
printvec("CIPHER = ",a); 

/* Test vector 4. */ 

k[2J=Oxcab920cd;k[l]=Oxd6144138;k[OJ=Oxd2f05b5e; 
a[2J=Oxad2lecf7;a[l]=Ox83ae9dc4;a[OJ=Ox4059c76e; 
twy_key(&gc,k); 

printf("**********\n"); 
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printvec("KEY = ",kl; 
printvec("PLAIN = ",al; 
encrypt(&gc, a); 
printvec("CIPHER = ",al; 

/* TEST VALUES 

key 00000000 00000000 
plaintext 00000001 00000001 
ciphertext ad2lecf7 83ae9dc4 

00000000 
00000001 
4059c76e 

key 00000004 00000005 00000006 
plaintext 00000001 00000002 00000003 
ciphertext cab920cd d6144138 d2f05b5e 

key bcdef012 456789ab 
plaintext 01234567 9abcdef0 
ciphertext 7cdb76b2 9cdddb6d 

key cab920cd d6144138 
plaintext ad2lecf7 83ae9dc4 
ciphertext 15bl55ed 6bl3fl7c 

*/ 

/* Enc/dee test: */ 
for(i=O;i<9;i++l a[iJ=i; 
twy_enc(&gc,a,3); 

def01234 
23456789 
Oaa55dbb 

d2f05b5e 
4059c76e 
478ea871 

for(i=O;i<9;i+=3) printf("Block %Old encrypts to %08lx %08lx %08lx\n", 
i / 3, a [ i J, a [ i + 1 J, a [ i +2 J l; 

twy_dec(&gc,a,2); 
twy_dec(&gc,a+6,ll; 

for(i=O;i<9;i+=3) printf("Block %Old decrypts to %08lx %08lx %08lx\n", 
i / 3, a [ i J, a [ i + 1 J, a [ i +2 J) ; 

RCS 
#include <stdio.h> 

/* An RC5 context needs to know how many rounds it has, and its subkeys. */ 
typedef struct { 

u4 *xk; 
int nr; 

l rc5_ctx; 

/* Where possible, these should be replaced with actual rotate instructions. 
For Turbo C++, this is done with _lrotl and _lrotr. */ 

#define ROTL32(X,Cl (((Xl<<(Cll I ((Xl>>(32-(Cllll 
#define ROTR32(X,Cl (((Xl>>(Cll I ((Xl<<(32-(CJJ)J 
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/* Function prototypes for dealing with RCS basic operations. */ 
void rc5_init(rc5_ctx *, int); 
void rc5_destroy(rc5_ctx *); 
void rc5_key(rc5_ctx *, ul *, int); 
void rc5_encrypt(rc5_ctx *, u4 * int); 
void rc5_decrypt(rc5_ctx *, u4 *, int); 

/* Function implementations for RC5. */ 

/* Scrub out all sensitive values. */ 
void rc5_destroy(rc5_ctx *c){ 

int i; 
for(i=O;i<(c->nr)*2+2;i++) c->xk[i]=O; 
free(c->xk); 

/* Allocate memory for rc5 context's xk and such. */ 
void rc5_init(rc5_ctx *c, int rounds){ 

c->nr rounds; 
c->xk = (u4 *) malloc(4*(rounds*2+2)); 

void rc5_encrypt(rc5_ctx *c, u4 *data, int blocks){ 
u4 *d,*sk; 
int h,i ,re; 

d = data; 
sk = (c->xk)+2; 
for(h=O;h<blocks;h++){ 

d[OJ += c->xk[OJ; 
d[l] += c->xk[l]; 
for(i=O;i<c->nr*2;i+=2){ 

d[OJ '= d[l]; 
re= d[l] & 31; 
d[OJ = ROTL32(d[OJ, re); 
d[OJ += sk[i]; 

d [l J '= d [ 0 J ; 
re= d[OJ & 31; 
d[l] = ROTL32(d[l], re); 
d[l] += sk[i+l]; 

/*printf("Round %03d %08lx %08lx sk= %08lx %08lx\n",i/2, 
d[OJ ,d[l], sk[i J, sk[i+l]) ;*/ 

d+=2; 

void rc5_decrypt(rc5_ctx *c, u4 *data, int blocks)! 
u4 *d,*sk; 

int h,i,rc; 

d = data; 
sk = (c->xk)+2; 

for(h=O;h<blocks;h++){ 
for(i=c->nr*2-2;i>=O;i-=2) I 
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/*printf("Round %03d: %08lx %08lx sk: %08lx %08lx\n", 
i /2 ,d[OJ ,d[l] ,sk[i J ,sk[i+l]); */ 

d[l] -= sk[i+l]; 
re= d[OJ & 31; 
d[l] = ROTR32(d[l] ,re); 
d [l J A= d [ 0 J ; 

d[OJ -= sk[i J; 
re= d[l] & 31; 
d[OJ = ROTR32(d[OJ ,re); 

d[O] A= d[l]; 
} 

d[OJ c->xk[OJ; 
d[l] c->xk[l]; 

void rc5_key(rc5_ctx *c, ul *key, int keylen){ 
u4 *pk,A,B; /* padded key*/ 
int xk_len, pk_len, i, nurn_steps,rc; 
ul *cp; 

xk_len = c->nr*2 + 2; 
pk_len = keylen/4; 
i f ( ( key l en %4) ! =O) pk_ l en += 1 ; 

pk= (u4 *) rnalloc(pk_len * 4); 
if(pk==NULL) ( 

printf("An error occurred!\n"); 
exit(-1); 

/* Initialize pk -- this should work on Intel machines, anyway .... */ 
for ( i =0 ; i <pk_ l en ; i ++) pk [ i J =0 ; 
cp = (ul *)pk; 
for(i=O;i<keylen;i++) cp[i]=key[i]; 

/* Initialize xk. */ 
c->xk[OJ = Oxb7el5163; /* P32 */ 
for(i=l;i<xk_len;i++) c->xk[i] = c->xk[i-1] + Ox9e3779b9; /* 032 */ 

/* TESTING */ 
A= B = O; 
for(i=O;i<xk_len;i++) 

A= A+ c->xk[i]; 
B = B A c->xk[i]; 

/* Expand key into xk. */ 
if(pk_len>xk_len) nurn_steps 3*pk_len;else nurn_steps = 3*xk_len; 

A= B = O; 
for(i=O;i<nurn_steps;i++)( 

A= c->xk[i%xk_len] ROTL32(c->xk[i%xk_len] +A+ B,3); 
re= (A+Bl & 31; 
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B = pk[i%pk_len] ROTL32(pk[i%pk_len] +A+ B,rc); 

/* Clobber sensitive data before deallocating memory. */ 
for(i=O;i<pk_len;i++) pk[i] =0; 

free(pk); 

void main(void)I 
rc5_ctx c; 
u4 data[SJ; 
char key[] "ABCDE"; 
int i ; 

printf("-------------------------------------------------\n"); 

for(i=O;i<S;i++) data[i] = i; 
rc5_init(&c,10); /* 10 rounds*/ 
rc5_key(&c,key,5); 

rc5_encrypt(&c,data,4); 
printf("Encryptions:\n"); 
for(i=O;i<S;i+=2) printf("Block %Old= %08lx %08lx\n", 

i/2,data[i],data[i+l]); 
rc5_decrypt(&c,data,2); 

rc5_decrypt(&c,data+4,2); 
printf("Decryptions:\n"); 
for(i=O;i<S;i+=2) printf("Block %Old= %08lx %08lx\n", 

i /2,data[i J ,data[i+ll); 

AS 
typedef struct I 

unsigned long rl,r2,r3; 
I a5_ctx; 

static int threshold(rl, r2, r3) 
unsigned int rl; 
unsigned int r2; 
unsigned int r3; 
I 
int total ; 

total = ( ( ( rl » 9) & Oxl) 
( ( ( r2 » 11) & Oxll 
( ( ( r3 » 11) & Oxl) 

if (total > 1) 

return ( 0); 

1) + 
1) + 
1 ) ; 
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else 

return (l); 

unsigned long clock _rl(ctl, 
int ct l ; 
unsigned long r 1 ; 
{ 

unsigned long feedback; 

ctl A_ ((rl >> 9) & Oxl); 
if ( ctl l 
I 

r 1 ) 

feedback - (rl >> 18) A (rl >> 17) • (rl >> 16) A (rl >> 13); 
rl - (rl << 1) & Ox7ffff; 
if (feedback & OxOll 

rl A_ OxOl; 

return (rl); 

unsigned long clock _r2(ctl, 
int ctl; 
unsigned long r2; 
I 
unsigned long feedback; 

ctl A- ((r2 >> 11) & Oxl); 
if ( ctl J 
{ 

r2l 

feedback - (r2 >> 21) A (r2 >> 20) A (r2 >> 16) A (r2 >> 12); 
r2 - (r2 << 1) & Ox3fffff; 
if (feedback & OxOl) 

r2 A_ OxOl; 

return (r2); 

unsigned long cl o ck_ r 3 ( ct l , 
int ct l ; 
unsigned long r3; 
{ 

unsigned long feedback; 

ctl A_ ((r3 >> 11) & Oxl); 
if ( ct l l 
{ 

r3) 

feedback - (r3 >> 22) A (r3 >> 21) A (r3 >> 18) A (r3 >> 17); 
r3 - (r3 << 1) & Ox7fffff; 
if (feedback & OxOl) 

r3 A_ OxOl; 

return ( r3); 
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int keystream(key, frame, alice, bob) 
unsigned char *key; /* 64 bit session key */ 
unsigned long frame; /* 22 bit frame sequence number */ 
unsigned char *al ice; /* 114 bit Alice to Bob key stream*/ 
unsigned char *bob; /* 114 bit Bob to Alice key stream*/ 
{ 

unsigned long rl; 
unsigned long r2; 
unsigned long r3; 
int i; 

/* 19 bit shift register*/ 
/* 22 bit shift register*/ 
/* 23 bit shift register*/ 
/* counter for loops */ 
/* xored with clock enable on each shift register*/ int clock_ctl; 

unsigned char *ptr; /* 
unsigned char byte; /* 
unsigned int bits; 
unsigned int bit; 

current position in keystream */ 
byte of keystream being assembled*/ 

/* number of bits of keystream in byte*/ 
/* bit output from keystream generator*/ 

/* Initialise shift registers from session key*/ 

rl = (key[0J I (key[ll << 8) I (key[2J << 16) ) & 0x7ffff; 
r2 = ((key[2] >> 3) I (key[3] << 5) I (key[4J << 13) (key[5] << 21)) & 

0x3fffff; 
r3 = ((key[5] >> 1) (key[6J << 7) (key[7J << 15) & 0x7fffff; 

/* Merge frame sequence number into shift register state, by xor'ing it 
* into the feedback path 
*I 

for (i=0;i<22;i++) 
{ 

clock_ctl = threshold(rl, r2, r2); 
rl cl ock_rl ( cl ock_ctl, rl); 
r2 = cl ock_r2(cl ock_ctl, r2); 
r3 = cl ock_r3( cl ock_ctl, r3); 
if (frame & 1) 
{ 

rl A= 1; 
r2 A= 1. 

' r3 A= 1. 
' 

frame = frame » 1; 

/* Run shift registers for 100 clock ticks to allow frame number to 
* be diffused into all the bits of the shift registers 
*/ 

for (i=0;i<l00;i++) 
( 

clock_ctl = threshold(rl, r2, r2); 
rl clock_rl(clock_ctl,rl); 
r2 clock_r2(clock_ctl,r2); 
r3 cl ock_r3(cl ock_ctl, r3); 

/* Produce 114 bits of Alice->Bob key stream*/ 
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ptr = alice; 
bits = 0; 
byte= 0; 
for (i=0;i<114;i++) 
{ 

clock_ctl = threshold(rl, r2, r2); 
rl clock_rl(clock_ctl,rl); 
r2 clock_r2(clock_ctl,r2); 
r3 clock_r3(clock_ctl, r3); 

bit= ((rl >> 18) A (r2 >> 21) A (r3 >> 22)) & 0x0l; 
byte= (byte<< 1) I bit; 
bits++; 
if (bits == 8) 
I 

*ptr = byte; 
ptr++; 
bits 0; 
byte= 0; 

if (bits) 
*ptr = byte; 

/* Run shift registers for another 100 bits to hide relationship between 
* Alice->Bob key stream and Bob->Alice key stream. 
*/ 

for (i=0;i<l00;i++) 
I 

cl o ck_ ct l = thresh o l d ( r 1 , r 2 , r 2) ; 
rl clock_rl(clock_ctl, rl); 
r2 clock_r2(clock_ctl, r2); 
r3 clock_r3(clock_ctl, r3); 

/* Produce 114 bits of Bob->Alice key stream*/ 

ptr = bob; 
bits= 0; 
byte = 0; 
for (i=0;i<114;i++) 
I 

clock_ctl = threshold(rl, r2, r2); 
rl cl ock_rl( cl ock_ctl, rl); 
r2 clock_r2(clock_ctl, r2); 
r3 clock_r3(clock_ctl, r3); 

bit= ((rl >> 18) A (r2 >> 21) A (r3 >> 22)) & 0x0l; 
byte= (byte<< 1) I bit; 
bits++; 
if (bits== 8) 
{ 

*ptr = byte; 
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ptr++; 
bits O; 
byte= O; 

if (bits) 
*ptr = byte; 

return (0); 

void a5_key(a5_ctx *c, char *kl{ 
c->rl k[OJ<<lllk[lJ<<3 
c->r2 k[2J<<17lk[3J<<9 
c->r3 k[5]«15 I k[6]«8 

k[2J»5 
k[4J«l 
k[7J 

/* 19 */ 
k[5J>>7; /* 22 */ 

/* 23 */ 

/* Step one bit in AS, return O or 1 as output bit. */ 
int a5_step(a5_ctx *c){ 

int control; 
control = threshold(c->rl,c->r2,c->r3); 
c->rl clock_rl(control ,c->rll; 
c->r2 = clock_r2(control ,c->r2); 
c->r3 = clock_r3(control ,c->r3); 
return( (c->r1Ac->r2Ac->r3)&1); 

/* Encrypts a buffer of len bytes. */ 
void a5_encrypt(a5_ctx *c, char *data, int len){ 

inti,j; 
chart; 

for(i=O;i<len;i++)I 
for(j=O;j<S;j++) t t<<l I a5_step(c); 
data[i JA=t; 

void a5_decrypt(a5_ctx *c, char *data, int len){ 
a5_encrypt(c,data, len); 

void main(void){ 
a5_ctx c; 
char data[lOOJ; 
char key[]= {1,2,3,4,5,6,7,8); 
int i,flag; 

for(i=O;i<lOO;i++) data[i] 

a5_key(&c,key); 
a5_encrypt(&c,data,100); 

a5_key(&c,key); 

i. 
' 
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a5_decrypt(&c,data,l); 
a5_decrypt(&c,data+l,99l; 

flag= 0; 
for(i=0;i<l00;i++) if(data[i]!=i)flag = l; 
if(flag)printf("Decrypt failed\n"); else printf("Decrypt succeeded\n"); 

SEAL 
#undef SEAL_DEBUG 

#define ALG_0K 0 
#define ALG_N0T0K 1 
#define W0RDS_PER SEAL CALL 1024 

typedef struct { 
unsigned long t[520]; /* 512 rounded up to a multiple of 5 + 5*/ 
unsigned long s[265]; /* 256 rounded up to a multiple of 5 + 5*/ 
unsigned long r[20J; /* 16 rounded up to multiple of 5 */ 

unsigned long counter; /* 32-bit synch value. */ 
unsigned long ks_buf[W0RDS_PER_SEAL_CALLJ; 
int ks_pos; 

} seal_ctx; 

#define R0T2(x) ( ( (x) » 2 l I ( (x) « 30 l l 
#define R0T9(x) ( ( (x) » g l I ( (x) « 23 l l 
#define R0TS(x) ( ( (xl » 8l I ( (x) « 24) l 
#define R0T16(x) (((x) » 16) I ((xl « 16ll 
#define R0T24(xl (((x) » 24) I ( (xl « 8l i 
#define R0T27(x) (((x) » 27) I ( (xl « 5 l l 

#define W0RD(cp) ((cp[0J << 24ll(cp[l] << 16ll(cp[2J << 8) l(cp[3])) 

Jfdefine Fl ( x, Y, z) ( ( (x) & (y)) I ( ( ~(x)) & (z))) 

#define F2(x, Y, z) ( ()()A(y)A(z)) 
#define F3(x, Y, zl ( ( (x) & (y)) I ((x) & (z)) I ((y) & (z))) 

#define F4(x, Y, z) ( (x)A(y)A(z) l 

int g(in, i, h l 
unsigned char *in; 
int i ; 
unsigned long *h; 
{ 

unsigned long h0; 
unsigned long h 1; 
unsigned long h2; 
unsigned long h3; 
unsigned long h4; 
unsigned long a; 
unsigned long b· , 
unsigned long c· , 
unsigned long d; 
unsigned long e; 
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unsigned char *kp; 
unsigned long w[SOJ; 
unsigned long temp; 

kp = in; 
hO = WORD(kp); kp += 4; 
hl = WORD(kp); kp += 4; 
h2 = WORD(kp); kp += 4; 
h3 = WORD(kp); kp += 4; 
h 4 = WORD ( k p ) ; k p += 4 ; 

w[OJ = i; 
for (i=l;i<l6;i++) 

w[i] = O; 
for (i=l6;i<SO;i++) 

w[i J = w[i-3JAw[i-8JAw[i-14JAw[i-16]; 

a 170; 
b h 1; 
c h2; 
d h3; 
e h4; 

for (i=O;i<20;i++) 
( 

temp= ROT27(a) + Fl(b, c, d) + e + w[i] + Ox5a827999; 
e = d; 
d c; 
C 

b 
a 

ROT2(b); 
a; 
temp; 

for (i=20;i<40;i++) 
( 

temp= ROT27(a) + F2(b, c, d) + e + w[i] + Ox6ed9ebal; 
e d; 
d c; 
C 

b 
a 

ROT2(b); 
a; 
temp; 

for (i=40;i<60;i++) 
( 

temp= ROT27(a) + F3(b, c, d) + e + w[i] + OxSflbbcdc; 
e d; 
d c; 
C 

b 
a 

ROT2(b); 
a; 
temp; 

for (i=60;i<SO;i++) 
( 

temp= ROT27(a) + F4(b, c, d) + e + w[i] + Oxca62cld6; 
e = d; 
d = c; 
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c ROT2(b); 
b a; 
a= temp; 

) 

h[OJ hO+a; 
h [ 1 J h 1 +b; 
h[2J h2+c; 
h[3J h3+d; 
h[4J h4+e; 

return (ALG_OK); 

unsigned long gamma(a, i) 
unsigned char *a; 
int i ; 
I 
unsigned long h[5]; 

(void) g(a, i/5, h); 
return h[i % 5J; 

i1t seal_init(seal_ctx *result, unsigned char *key) 
{ 

int i; 
unsigned long h[5]; 

for (i=O;i<510;i+=5) 
g(key, i/5, &(result->t[i])); 

/* horrible special case for the end*/ 
g(key, 510/5, h); 
for (i=510;i<512;i++) 

result->t[i J = h[i-510]; 
/* OxlOOO mod 5 is +l, so have horrible special case for the start*/ 
g(key, (-l+Oxl000)/5, h); 
for (i=O;i<4;i++) 

result->s[i J = h[i+l]; 
for (i=4;i<254;i+=5) 

g(key, (i+Oxl000)/5, &(result->s[i])); 
/* horrible special case for the end*/ 
g(key, (254+0xl000)/5, h); 
for (i=254;i<256;i++) 

resul t->s[i J = h[i-254]; 
/* Ox2000 mod 5 is +2, so have horrible special case at the start*/ 
g(key, (-2+0x2000)/5, h); 
for (i=O;i<3;i++) 

result->r[i] = h[i+2]; 
for (i=3;i<l3;i+=5) 

g(key, (i+Ox2000)/5, &(result->r[i])); 
/* horrible special case for the end*/ 
g(key, (13+0x2000)/5, h); 
for (i=l3;i<l6;i++) 

resul t->r[i J = h[i-13]; 
return (ALG_OK); 
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int seal(seal ctx *key, unsigned long in, unsigned long *out) 
{ 

int i. 
' int j; 

int l; 
unsigned long a; 
unsigned long b· 

' unsigned long c· 
' unsigned long d; 

unsigned short p; 
unsigned short q; 
unsigned long nl; 
unsigned long n2; 
unsigned long n3; 
unsigned long n4; 
unsigned long *wp; 

wp = out; 

for (1=0;1<4;1++) 
{ 

a in A key->r[4*l]; 
b ROTS(in) A key->r[4*l+l]; 
c ROT16(in) A key->r[4*l+2]; 
d ROT24(in) A key->r[4*l+3]; 

for (j=O;j<Z;j++) 
{ 

nl 
n2 
n3 
n4 

p = a & Ox7fc; 
b += key->t[p/4]; 
a = ROT9 (a); 

p b & Ox7fc; 
c += key->t[p/4]; 
b ROT9 ( b); 

p c & Ox7fc; 
d += key->t[p/4]; 
c ROT9 ( c); 

p d & Ox7fc; 
a+= key->t[p/4]; 
d = ROT9( d); 

d; 
b · ' a. 
' C; 

p=a&Ox7fc; 
b += key->t[p/4]; 
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a = ROT9 (a); 

p b & Ox7fc; 
c += key->t[p/4]; 
b ROT9 ( b); 

p c & Ox7fc; 
d += key->t[p/4]; 
c = ROT9 ( c); 

p = d & Ox7fc; 
a+= key->t[p/4]; 
d = ROT9( d); 

/* This generates 64 32-bit words, or 256 bytes of keystream. */ 
for (i=O;i<64;i++) 
{ 

p = a & Ox7fc; 
b += key->t[p/4]; 
a = ROT9 (a); 
b '= a; 

q = b & Ox7fc; 
c '= key-)t[q/4]; 
b = ROT9( b); 
C += b; 

p = (p+c) & Ox7fc; 
d += key->t[p/4]; 
c = ROT9 ( c); 
d '= c; 

q = (q+d) & Ox7fc; 
a'= key->t[q/4]; 
d = ROT9 ( d); 
a+= d; 

p = (p+a) & Ox7fc; 
b '= key->t[p/4]; 
a ROT9 (a); 

q (q+b) & Ox7fc; 
c += key-)t[q/4]; 
b = ROT9 ( b); 

p = (p+c) & Ox7fc; 
d '= key->t[p/4]; 
c = ROT9 ( c) ; 

q (q+d) & Ox7fc; 
a+= key->t[q/4]; 
d = ROT9 ( d); 

*wp = b + key->s[4*il; 
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wp++; 
*wp = C A key->s[4*i+l]; 
wp++; 
*wp = d + key->s[4*i+2J; 
wp++; 
*wp = a A key->s[4*i+3]; 
wp++; 

if ( i & 1) 

I 
a += n3; 
C += n4; 

else 
I 

a += nl; 
C += n2; 

return (ALG_OK); 

/* Added call to refill ks_buf and reset counter and ks_pos. */ 
void seal_refill_buffer(seal_ctx *c)I 

seal (c,c->counter,c->ks_buf); 
c->counter++; 
c->ks_pos = O; 

void seal_key(seal_ctx *c, unsigned char *key)I 
seal_init(c,key); 
c->counter = O; /* By default, init to zero. */ 
c->ks_pos = WORDS_PER_SEAL_CALL; 

/* Refill keystream buffer on next call. */ 

/* This encrypts the next w words with SEAL. */ 
void seal_encrypt(seal_ctx *c, unsigned long *data_ptr, int w)I 

int i ; 

for( i=O; i <w; i++) { 
if(c->ks_pos>=WORDS_PER_SEAL_CALL) seal_refill_buffer(c); 
data_ptr[i]A=c->ks_buf[c->ks_pos]; 
c->ks_pos++; 

void seal_decrypt(seal_ctx *c, unsigned long *data_ptr, int w) { 
seal_encrypt(c,data_ptr,w); 

void seal_resynch(seal_ctx *c, unsigned long synch_word)I 
c->counter = synch_word; 
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c->ks_pos = WORDS_PER_SEAL_CALL; 

void main(void)( 
seal_ctx sc; 
unsigned long buf[lOOOJ,t; 
int i ,flag; 
unsigned char key[]= 

(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,l9}; 

printf( "1 \n"); 
seal_key(&sc,key); 

printf( "2\n"); 
for(i=O;i<lOOO;i++) buf[i]=O; 
printf("3\n"); 
seal_encrypt(&sc,buf,1000); 
printf( "4\n"); 
t = O; 
for(i=O;i<lOOO;i++) t = t ' buf[i]; 

printf("XOR of buf is %08lx.\n",t); 

seal_key(&sc,key); 
seal_decrypt(&sc,buf,1); 
seal_decrypt(&sc,buf+l,999); 
flag= O; 
for(i=O;i<lOOO;i++) if(buf[i]!=O)flag=l; 
if(flag) printf("Decrypt failed.\n"); 
else printf("Decrypt succeeded.\n"); 
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cipher, 198-199 
stream ciphers, 197-198 
subliminal-channel signature, 

79 
superpolynomial, 238 
symmetric, 4 
synchronous stream cipher, 

202-203 
TEA, 346 
types, 189 
unconditionally secure, 8 
undeniable digital signatures, 

536-539 
using, 213-229 
vector scheme, 529 
zero-knowledge proofs, 

548-550 
See also Block ciphers; 

Stream ciphers 
All-or- nothing disclosure of 

secrets, 96, 543-546 
voting with a single central 

facility, 128-130 
Alternating stop-and-go genera­

tor, 383,385, 410-411 
American National Standards 

Institute, DES approval, 
267-268 

Anderson, Ross, 391 
ANDOS, see All-or-nothing dis­

closure of secrets 
Anonymous message broadcast, 

137-139 
ANSI X3.105, 267 
ANSI X3.106, 267 
ANSI X9.8, 267 
ANSI X9.l 7,268,359 

key generation, 175 
ANSI X9.19, 267 
ANSI X9.26, 268 
Arbitrated protocol, 23-26 
Arbitration, timestamping, 

75-76 
Arbitrator, 23 

document signing with, 
35-37 

group signatures with, 84-85 
AR hash function, 453 
Arithmetic, modular, 242-245 
Arms Export Control Act, 610 
Asmuth-Bloom scheme, 

529-530 
Association for Computing 

Machinery, 608 

Asymmetric algorithms, see 
Public-key algorithms 

Atomic Energy Act, 610 
Attack, 5 
AT & T Model 3600 Telephone 

Security Device, 594-
595 

Authentication, 2, 52-56 
DASS, 62 
Denning-Sacco protocol, 63 
dictionary attacks, 52 
ISO framework, 574-577 
Kerberos, 60 
message, 56 
Needham -Schroeder protocol, 

58-59 
Neuman-Stubblehine proto­

col, 60-62 
Otway-Rees protocol, 59-60 
protocols, formal analysis, 

65-68 
salt, 52-53 
Schnorr, 511 
SESAME, 572 
SKEY, 53 
SKID, 55-56 
using interlock protocol, 

54-55 
using one-way functions, 52 
using public-key cryptogra­

phy, 53-54 
Wide-Mouth Frog protocol, 

56-57 
Woo-Lam protocol, 63-64 
Yahalom, 57-58 

Authenticators, 568 
Avalanche effect, 2 73 

Backup keys, 181-182 
BAN logic, 66-67 
Barrett's algorithm, 244 
BaseKing, 346 
Basis, polarization measure­

ment, 555 
Battista, Leon, 11 
BBS generator, 417 

add to spelled out, 553-554 
Beacons, 64 
Bellovin, Steve, 518, 520-521, 

571 
Bennett, Charles, 555, 557 
Berlekamp-Massey algorithm, 

380,404 
Bernstein, Dan, 616 
Berson, Tom, 441 
Best affine approximation 

attack, 381 

Beth-Piper stop-and-go genera­
tor, 383-384 

Bias, 425 
Bidirectional message authenti­

cation codes, 45 7 
Biham, Eli, 284-285, 288, 296, 

301, 303, 306, 308, 
311-312, 314,316,319, 
354, 361, 434 

Bilateral stop-and-go generator, 
384-385 

Binary trees, 78 
Biotechnology, as cryptanalysis 

tool, 156-157 
Birthday attack, 165-166, 430 
Bit commitment, 86-88 

using one-way functions, 
87-88 

using pseudo-random­
sequence generators, 88 

using symmetric cryptogra-
phy, 86-87 

Blakley, George, 72, 529 
Blaze, Matt, 346, 364 
Blinding factor, 112 
Blind signatures, 112-115, 

549-550 
patents, 115 
voting with, 126-127 

Blobs, 88 
Block algorithms, 4 
Block chain mode, 206-207 
Block ciphers, 4, 189 

Blowfish, 336-339 
CA-1.1, 327-328 
cascading algorithms, 

367-368 
CAST, 334-335 
CDMF key shortening, 366 
choosing algorithms, 354-355 
combining algorithms, 368 
counter mode, 205-206, 209 
Crab, 342-344 
CRYPTO-MECCANO, 346 
designing, 351 
design theory, 346-351 

Feistel networks, 34 7 
group structure, 348 
S-box, 349-351 
simple relations, 34 7-348 
strength against differential 

and linear cryptanalysis, 
348-349 

weak keys, 348 
double encryption, 35 7-358 
double OFB/counter, 363-364 
doubling length, 363 
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electronic codebook mode, 
189-191,208-210 

encryption speeds, 355 
FEAL, 308-312 
feedback, 193 
COST, 331-334 
IDEA, 319-325 
iterated, 347 
Li-Wang algorithm, 346 
LOKI, 314-316 
Lucifer, 303-304 
Madryga,304-306 
McEliece algorithm, 346 
MME, 325-327 
multiple encryption, 357 
NewDES, 306-308 
Rao-Nam algorithm, 346 
RC2, 318-319 
RCS, 344-346 
REDOC II, 311-313 
REDOC III, 313 
SAFER K-64, 339-341 
security, based on one-way 

hash functions, 353-354 
Skipjack, 328-329 
versus stream ciphers, 210-211 
SXAL8/MBAL, 344 
triple encryption, 358-363 
3-Way, 341-342 
using one-way hash func­

tions, 351-354 
whitening, 366-367 
xDES1, 365-366 

Block length, doubling, 363 
Block replay, 191-193 
Blocks, 4 
Blowfish, 336-339, 354, 

647-654 
Blum, Manuel, 89, 105, 108 
Blum, Blum, and Shub genera­

tor, 417-418 
Blum integers, 253 

coin flipping, 543 
zero-knowledge proofs, 549 

Blum-Micali generator, 416-417 
Boolean functions, in S-boxes, 

350 
Bosselacrs, Antoon, 436, 441 
Boyar, Joan, 369 
Brassard, Gilles, 555, 557 
Broadcasting: 

anony1nous, 137-139 
secret, 523-524 

Brute-force attack, 8, 151-152 
software-based, 154-155 
time and cost estimates, 

152-154 

Bureau of Export Administra­
tion, 610-611 

Burrows, Michael, 66 

CA-1.1, 327-328 
Cade algorithm, 500-501 
Caesar Cipher, 11 
CAFE, 606-607 
CALC, 346 
Cantwell Bill, 615-616 
Capstone, 593-594 
Cascade generators, 405 
Cascades, Gollmann, 387-388 
Cascading: 

multiple block algorithms, 
367-368 

multiple stream ciphers, 
419-420 

Cash, digital, see Digital cash 
Cassells, Ian, 381 
CAST, 334-335 

S-boxes, 349 
CBC, see Cipher block chaining 

mode 
CCEP, 269, 598-599 
CDMF, 366, 574 
Cellhash, 446 
Cellular automata, 500 
Cellular automaton generator, 

414 
Certificates: 

Privacy-Enhanced Mail, 579 
public-key, 185-18 7 
X.509, 574-575 

Certification authority, 186 
Certification path, 5 76 
Certified mail, digital, 122-

123 
Chaining variables, 436 
Chambers, Bill, 385-386 
Characteristics, 286-288 
Chaum, David, 84, 115, 133, 

13 7, 536, 549 
Cheater, 27 

sharing secrets with, 531 
Chess Grandmaster Problem, 

109 
Chinese Lottery, 156-15 7 
Chinese remainder theorem, 

249-250, 470 
Chor-Rivest knapsack, 466 
Chosen-ciphertext attack, 6-7, 

471-472 
Chosen-key attack, 7 
Chosen-plaintext attack, 6-7, 

359 
Chosen-text attack, 7 

Cipher: 
substitution, 10-12 
transposition, 12 

Cipher block chaining mode, 
193-197, 208-210 

DES, 277-278 
error extension, 196 
error propagation, 195-196 
initialization vector, 194 
message authentication 

codes, 456 
padding, 195 
security, 196-197 
self-recovering, 196 
triple encryption, 360-361 

Cipher block chaining of plain­
text difference mode, 208 

Cipher block chaining with 
checksum, 207-208 

Cipher-feedback mode, 
200-202, 208-210 

DES, 277 
error propagation, 201-202 
initialization vector, 201 

Cipher mode: 
choosing, 208-210 
summary, 208-210 

Ciphertext, 1-2 
auto key, 198 
hiding in ciphertext, 22 7-228 
pairs, differential cryptanaly-

sis, 285 
stealing, 191 

Ciphertext-only attack, 5-6 
Cleartext, see Plaintext 
Clipper chip, 591-593 
Clipper key-escrow, 328 
Clipper phone, 594 
Clock-controlled generators, 

381 
Clocking, 381 
CoCom, 610 
Code, 9 
Coefficients, solving for, 248 
Coin flipping, 89-92 

fair, 541-543 
into a well, 92 
key generation, 92 
using Blum integers, 543 
using one-way functions, 90 
using public- key cryptogra-

phy, 90-91 
using square roots, 541-542 

Collision, 166 
Collision-free, 30 
Collision-resistance, 429 
Combination generator, 381 
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Combining function, 381 
Commercial COMSEC Endorse­

ment Program, 269, 
598-599 

Commercial Data Masking 
Facility, 366, 5 7 4 

Common Cryptographic Archi­
tecture, 573-574 

Common modulus, dangers of, 
493 

Common modulus attack, RSA, 
472 

Communications: 
using public-key cryptogra­

phy, 31-34 
using symmetric cryptogra­

phy, 28-29 
Communications channels, 

encryption, 216-220 
Communications Setup, 

517-518 
Complementation property, 281 
Complement keys, DES, 

281-282 
Completely blind signatures, 

112-113 
Complete set of residues, 242 
Complexity-theoretic approach, 

stream ciphers, 415-418 
Complexity theory, 237-242 

algorithms, 237-239 
complexity of problems, 

239-241 
Compression, 226 
Compression function, 431 
Compression permutation, 

273-274 
Compromise, 5 
Compromised keys, 182-183 
Computational complexity, 237 
Computationally secure, 8 
Computer algorithms, 17 
Computer clock, as random-

sequence generator, 424 
Computer Security Act of 1987, 

600-601 
Computing, with encrypted 

data, 85-86, 540-541 
COMSET, 517-518 
Conditional Access for Europe, 

606-607 
Conference key distribution, 524 
Confusion, 237, 346-347 
Congruent, 242 
Connection integer, 403 

feedback with carry shift reg­
isters, maximal-period, 
406-407 

Continued fraction algorithm, 
256 

Contract signing, simultaneous: 
with an arbitrator, 118 
without an arbitrator 

face-to-face, 118-119 
not face-to-face, 119-120 
using cryptography, 

120-122 
Control Vector, 180 
Convertible undeniable signa­

tures, 538-539 
Coppersmith, Don, 94, 266, 

280,283,293,398,457 
Coppersmith's algorithm, 263 
Correlation attack, 380 
Correlation immunity, stream 

ciphers, 380 
Correlations, random-sequence 

generators, 425 
Counter mode, 205-206, 209 
Counting coincidences, 14 
Crab, 342-344 
Credit cards, anonymous, 147 
Crepeau, Claude, 555 
Crypt(l), 414 
CRYPT(3), 296 
Cryptanalysis, 1, 5-8 

differential, see Differential 
cryptanalysis 

FEAL, 311-312 
GOST, 333-334 
IDEA, 323 
linear, 290-293 
LOKI91, 316 
Madryga, 306 
N-Hash, 434-435 
related-key, 290 
Sncfru, 432 
types, 5-7 

Cryptanalysts, 1 
Crypt Breakers Workbench, 

414 
Cryptographers, 1 
Cryptographic algorithm, see 

Cipher 
Cryptographically secure 

pseudo- random, 45 
Cryptographic facility, 562 
Cryptographic mode, 189 
Cryptographic protection, 

databases, 73-74 
Cryptographic protocol, 22 
Cryptography, 1 
CRYPTO-LEGGO, 414 
Cryptologists, 1 
Cryptology, 1 
CRYPTO-MECCANO, 346 

Cryptosystems, 4 
fair, 97 
finite automaton public-key, 

482 
hybrid, 32-34 
security, 234-235 
weak, 97 

Cusick, Thomas, 312 
Cut and choose, 103 
Cypherpunks, 609 

Daemen, Joan, 325,341,349, 
414 

Damgard, Ivan, 446 
Damm, Arvid Gerhard, 13 
Data, encrypted: 

computing with, 85-86, 
540-541 

discrete logarithm problem, 
540-541 

for storage, 220-222 
Databases, cryptographic pro­

tection, 7 3-7 4 
Data complexity, 9 
Data Encryption Algorithm, see 

Data Encryption Stan­
dard 

Data Encryption Standard, 17, 
265-301 

adoption, 267-268 
algorithm, brute-force attack 

efficiency, 152-153 
characteristics, 286-288 
commercial chips, 279 
compared to GOST, 333-334 
compression permutation, 

273-274 
CRYPT(3 ), 296 
decryption, 277 
description, 2 70 
DESX, 295 
development, 265-267 
differential cryptanalysis, 

284-290 
DES variants, 298 

expansion permutation, 
273-275 

final permutation, 2 77 
generalized, 296-297 
hardware and software imple-

mentation, 2 78-2 79 
with independent suhkeys, 

295 
initial permutation, 271 
iterated block cipher, 347 
key transformation, 272-273 
linear cryptanalysis, 290-293 
modes, 277-278 
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multiple, 294-295 
1987 review, 268-269 
1993 review, 269-270 
outline of algorithm, 270-272 
P-boxes 

design criteria, 294 
permutation, 275, 277 

RDES, 297-298 
related-key cryptanalysis, 290 
RIPE-MAC, 457-458 
S-boxes, 349 

alternate, 296-298 
design criteria, 294 
key-dependent, 298, 300, 

354 
substitution, 274-276 

security, 278, 280-285 
algebraic structure, 

282-283 
complement keys, 281-282 
current, 300-301 
key length, 283-284 
number of rounds, 284 
possibly weak keys, 

281-282 
S-box design, 284-285 
semiweak keys, 280-281 
weak keys, 280-281 

snDES, 298-299 
source code, 623-632 
speeds on microprocessors 

and computers, 279 
validation and certification of 

equipment, 268 
Data Exchange Key, 581 
Data Keys, 176 
Davies, Donald, 562 
Davies-Meyer, 448 

abreast, 452 
modified, 449-450 
parallel, 451 
tandem, 451-452 

Davies-Price, 358 
Decoherence, 165 
Decryption, 1 

DES, 277 
key, 3 
key-error detection, 179 
knapsack algorithms, 465 
with a public key, 39 
with symrnetric algorithm, 4 

den Boer, Bert, 434, 436, 441 
Denning-Sacco protocol, 63 
Dense, 378 
Dereferencing keys, 221-222 
Derived sequence attack, 381 
Designated confirmer signa-

tures, 82-83, 539-540 

Desmedt, Yvo, 81 
DES, see Data Encryption Stan­

dard 
Destruction: 

information, 228-229 
of keys, 184-185 

DESX, 295 
Dictionary attack, 52, 171-173 
Differential cryptanalysis, 

284-290 
attacks against 

DES, 288-290 
DES variants, 298 
L ucifcr, 303 

extending to higher-order dif­
ferentials, 293 

strength against, block cipher 
design theory, 348-349 

Differential- linear cryptanal y­
sis, 293 

Diffie, Whitfield, 31, 37, 122, 
216,283,419,461, 501, 
565 

Diffie-Hellman: 
EKE implementation, 

519-520 
extended, 515 
failsafe, 54 7-548 
fair, 546-54 7 
Hughes variant, 515 
key exchange without 

exchanging keys, 515 
patents, 516 
with three or more parties, 514 

Diffie's randomized stream 
cipher, 419 

Diffusion, 237, 346-347 
Digital card, properties, 146 
Digital cash, 139-14 7 

anonymous, 139 
credit cards, 147 
money orders, 140 

double spending problem, 
140-141 

off-line systems, 146 
on-line systems, 145-146 
other protocols, 145-14 7 
perfect crime, 145 
practical, 145 
secret splitting, 142-145 

Digital certified mail, 122-123 
Digital Notary System, 78 
Digital Signature Algorithm, 

17,483-494 
attacks against k, 492 
computation time compari­

son with RSA, 489 
criticisms, 484-486 

dangers of common modulus, 
493 

description, 486-488 
ElGamal encryption with, 

490-491 
patents, 493-494 
prime generation, 488-490 
proposal for NIST standard, 

483-486 
RSA encryption with, 491 
security, 491-492 
speed precomputations, 

487-488 
subliminal channel, 493, 

534-536 
foiling, 536 

variants, 494-495 
Digital signatures, 34-41 

algorithms, 39 
applications, 41 
blind, 112-115, 549-550 
convertible undeniable signa-

tures, 538-539 
converting identification 

schemes to, 512 
definition, 39 
designated confirmer signa-

tures, 82-83, 539-540 
ElGamal, 476-478 
with encryption, 41-44 
entrusted undeniable, 82 
fail-stop, 85 
Fiat-Shamir signature 

scheme, 507-508 
group signatures, 84-85 
Guillou-Quisquater signature 

scheme, 509-510 
improved arbitrated solution, 

76 
key exchange with, 50 
multiple, 39-40 

Guillou-Quisquater, 510 
nonrepudiation, 40 
oblivious, 117 
protocol, 40 
proxy, 83 
public-key algorithms, 

483-502 
Cade algorithm, 500-501 
cellular automata, 500 
Digital Signature Algo-

rithm, see Digital Signa­
ture Algorithm 

discrete logarithm signa­
ture schemes, 496-498 

ESIGN, 499-500 
COST digital signature 

algorithm, 495-496 
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Matsumoto-Imai algo­
rithm, 500 

Ong-Schnorr-Shamir, 
498-499 

public-key cryptography, 
37-38 

attacks against, 43-44 
one-way hash functions 

and, 38-39 
resend attack, foiling, 43 
RSA, 473-474 
Schnorr signature scheme, 

511-512 
subliminal-free, 80 
with symmetric cryptosys­

tems and arbitrator, 
35-37 

terminology, 39 
timestamps, 38 
trees, 37 
undeniable, 81-82, 536-539 

Dining Cryptographers Prob­
lem, 137 

Discrete logarithm, 245 
in finite field, 261-263 
zero-knowledge proofs, 548 

Discrete Logarithm Problem, 
501, 540-541 

Discrete logarithm signature 
schemes, 496-498 

Distributed Authentication 
Security Service, 62 

Distributed convertible undeni­
able signatures, 539 

Distributed key management, 
187 

DNA computing, 163-164 
DNRSG, 387 
DoD key generation, 175 
Double encryption, 357-358 
Double OFB/counter, 363-364 
Double spending problem, 

140-141 
Driver-level encryption, 222-223 
DSA, see Digital Signature 

Algorithm 
Dynamic random-sequence gen­

erator, 387 

E-box, 273 
ECB, see Electronic codebook 

mode 
Electronic checks, 146 
Electronic codebook mode, 

189-191, 208-210 
combined with OFB, 364 

DES, 277-278 
padding, 190-191 
triple encryption, 362-363 

Electronic coins, 146 
Electronic Frontier Foundation, 

608 
Electronic-funds transfer, DES 

adoption, 268 
Electronic Privacy Information 

Center, 608 
ElGamal, 532-533 

EKE implementation, 519 
encryption, 478 

with DSA, 490-491 
patents, 479 
signatures, 476-478 
speed, 478-479 

ElGamal, Taher, 263 
Elliptic curve cryptosystems, 

480-481 
Elliptic curve method, 256 
Ellison, Carl, 362 
Encoding, 226 
Encrypt-decrypt-encrypt mode, 

359 
Encrypted Key Exchange: 

applications, 521-522 
augmented, 520-521 
basic protocol, 518-519 
implementation with 

Diffie-Hellman, 519-520 
ElGamal, 519 
RSA, 519 

strengthening, 520 
Encryption, 1 

communication channels, 
216-220 

combining link-by-link and 
end-to-end, 219-221 

with compression and error 
control, 226 

data, for storage, 220-222 
detection, 226-22 7 
digital signatures with, 41-44 
driver-level versus file-level, 

222-223 
ElGamal, 478 

with DSA, 490-491 
end-to-end, 217-220 
with interleaving, 210-211 
key,3 
knapsack algorithms, 464 
link-by-link, 216-218 
multiple, 357 
with a private key, 39 
probabilistic, 552-554 
RSA, 468 

with DSA, 491 

with symmetric algorithm, 4 
using public key, 5 

End-to-end encryption, 217-220 
combined with link-by-link, 

219-221 
Enigma, 13, 414 
Entropy, 233-234 
Entrusted undeniable signature, 

82 
Error detection: 

during decryption, 179 
during transmission, 178 

Error extension, cipher block 
chaining mode, 196 

Error propagation: 
cipher block chaining mode, 

195-196 
cipher-feedback mode, 

201-202 
output-feedback mode, 204 

Escrow agencies, 592 
Escrowed Encryption Standard, 

97,593 
ESIGN, 499-500, 533-534 
Euclid's algorithm, 245 
Euler totient function, 248-249 
Expansion permutation, 

273-275, 315 
Export: 

of algorithms, 215-216, 
610-616 

foreign, 617 
Exportable Protection Device, 

389 
Export Administration Act, 610 
EXPTIME, 241 
Extended Euclidean algorithm, 

246-248 

Factoring, 255-258 
general number field sieve, 

159-160 
long-range predictions, 162 
public-key encryption algo­

rithms, 158-159 
special number field sieve, 

160-161 
using quadratic sieve, 159 

Factoring Problem, 501 
Failsafe: 

Diffie-Hellman, 547-548 
key escrowing, 98 

Fail-stop digital signatures, 85 
Fair cryptosystems, 97 
Fait-Shamir, 508 
FAPKC0, 482 
FAPKCl, 482 
FAPKC2, 482 
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FEAL, 308-312 
cryptanalysis, 311-312 
description, 308-10 
patents, 311 

Feedback: 
cipher block chaining mode, 

193, 195 
internal, output-feedback 

mode, 203 
Feedback function, 373 
Feedback shift register, 373 
Feedback with carry shift regis-

ters, 402-404 
combining generators, 405, 

410 
maximal-length, tap 

sequences, 408-409 
maximal-period, connection 

integers, 406-407 
Feedforward, cipher block 

chaining mode, 195 
Feige, Uriel, 503-504 
Feige-Fiat-Shamir, 503-508 

enhancements, 506-507 
identification scheme, 

504-505 
simplified, 503-504 

Feistel, Horst, 266, 303 
Feistel network, 34 7 

Blowfish, 33 7 
practically secure, 349 

Fermat's little theorem, 248 
Euler's generalization, 248 

FFT-Hash, 446 
Fiat, Amos, 503-504 
Fiat-Shamir signature scheme, 

507-508 
Fibonacci configuration, 3 73, 

379 
Fibonacci shrinking generator, 

391 
File-level encryption, 222-223 
Filter generator, 381 
Finite field, 254 

discrete logarithms, 261-263 
FIPS PUB 46, 267 
FIPS PUB 74, 267 
FIPS PUB 81, 267 
FIPS PUB 112, 267 
Fish, 391 
Fixed hit index, 543 
Flat keyspace, 176 
Flipping coins, see Coin flipping 
Fortified key negotiation, 522 

Galois configuration, linear 
feedback shift registers, 
378-379 

Galois field, computing in, 
254-255 

Garey, Michael, 241 
Gatekeeper, 2 78 
Geffe generator, 382-383 
General number field sieve, 

159-160, 256 
General Services Administra-

tion, DES adoption, 268 
Generators, 253-254 
Gifford, 392-393 
Gifford, David, 392 
Gill, J., 501 
Global deduction, 8 
Goldwasser, Shafi, 94, 552 
Gollmann, Dieter, 386 
Gollmann cascade, 387-388 
Goodman-McAuley cryptosys-

tem, 466 
Goresky, Mark, 404 
COST, 331-334, 354 

source code, 643-647 
COST digital signature algo-

rithm, 495--496 
COST hash function, 454 
COST R 34.10-94, 495 
Gosudarstvennyi Standard 

Soyuza SSR, 331-334 
Graham-Shamir knapsacks, 465 
Graph isomorphism, 104-105 
Greatest common divisor, 

245-246 
Grossman, Edna, 266 
Group signatures, 84-85 
Group Special Mobile, 389 
Group structure, block ciphers 

design theory, 348 
GSM, 389 
Guillou, Louis, 102, 508 
Guillou-Quisquater: 

identification scheme, 
508-510 

signature scheme, 509-510 
Gutmann, Peter, 353 
Guy, Richard, 159 

Haber, Stuart, 75, 485, 488 
Hamiltonian cycles, 105-106 
Hard drive, encrypted, provid-

ing random access to, 
222 

Hardware: 
DES implementation, 

278-279 
encryption, 223-225 
RSA, 469 

Hash functions, see One-way 
hash functions 

Hash value, 30 
HAVAL, 445-446 
Hellman, Martin, 31-32, 37, 

262, 283, 293, 358-359, 
461-462 

Hiding infonnation from an 
oracle, 86 

Historical terms, 9 
Homophonic substitution 

cipher, 10-11 
Hughes, 515 
Hughes, Eric, 609 
Hughes XPD/KPD, 389-390 
Hybrid cryptosystems, 32-34, 

461 

IBC-Hash, 458 
IBM Common Cryptographic 

Architecture, 573-574 
IBM secret-key management 

protocol, 561-562 
IDEA, 319-325, 354 

cryptanalysis, 323 
description, 320-322 
modes of operation, 323-

325 
overview, 320-321 
patents, 325 
S-boxes, 349 
source code, 637-643 
speed, 322-323 
strength against differential 

cryptanalysis, 348 
variants, 325 

Ideal secrecy, 236 
Identification schemes: 

converting to signature 
schemes, 512 

Feige-Fiat-Shamir, 503-508 
Guillou-Quisquater, 508-

510 
Ohta-Okamoto, 508 
Schnorr authentication and 

signature scheme, 
510-512 

Identity-based cryptosystems, 
115 

Ignition key, 564 
Import, foreign, 617 
Index of coincidence, 14 
Information: 

amount, information theory 
definition, 233 

deduction, 8 
destruction, 228-229 

Information-theoretic approach, 
418 

stream ciphers, 415 
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Information theory, 233-237 
cryptosystem security, 

234-235 
entropy and uncertainty, 

233-234 
in practice, 236-23 7 
rate of the language, 234 
unicity distance, 235-236 

Ingemarsson, Ingemar, 418 
Initialization vector: 

cipher block chaining mode, 
194 

cipher-feedback mode, 201 
output-feedback mode, 204 

Inner-CBC, 360, 363 
Insertion attack, synchronous 

stream ciphers, 203 
Instance deduction, 8 
Institute of Electrical and Elec­

tronics Engineers, 608 
Integrated Services Digital Net-

work, 563-565 
Intcgri ty, 2 
Interactive protocol, 103 
Interchange Key, 581 
Interleave, 210-211 
Interlock protocol, mutual 

authentication usil1g, 
54-55 

Internal feedback, 203 
International Association for 

Cryptologic Research, 
605 

International Standards Organi­
zation: 

authentication framework, 
574-577 

DES adoption, 268 
International Traffic in Arms 

Regulations, 610-614 
Internet, Privacy-Enhanced 

Mail, 577-584 
Introducers, 18 7 
Inverses modulo a number, 

246-248 
IPES,319 
ISDN, 563-565 
ISO 8732, 359 
ISO 9796, 472, 474, 486 
ISO/IEC 9979, 607 
ISO X.509 protocols, 574-577 
Iterated block cipher, 34 7 

Jacobi symbol, 252-253 
J-algebras, 501 
Jam, 414 
Jennings generator, 383-384 

Johnson, David, 241 
Jueneman's methods, 457 

Kaliski, Burt, 342 
Karn, 351-352 
Karn, Phil, 351 
Kamin-Greene- Hellman, 530 
Kcrbcros, 60, 566-5 71 

abbreviations, 567 
authentication steps, 56 7 
credentials, 568 
getting initial ticket, 569 
getting server tickets, 

569-570 
licenses, 5 71 
model, 566 
requesting services, 5 70 
security, 571 
Version 4, 570-571 
Version 5 messages, 568 

Kcrckhoffs, A., 5 
Kerckhoffs's assumption, 7 
Key, 3 

backup, 181-182 
CDMF shortening, 366 
complement, DES, 281-282 
compromised, 182-183 
controlling usage, 180 
dereferencing, 221-222 
destroying, 184-185 
distribution in large net-

works, 177 
genera ting, 170-175 

ANSI X9.l 7 standard, 175 
DoD, 175 
pass phrases, 174-175 
poor choices, 171-1 73 
random keys, 173-174 
reduced keyspaccs, 170-171 

ISDN, 563-564 
lifetime, 183-184 
possibly weak, DES, 281-282 
semiweak, DES, 280-281 
session, 33, 180 
storing, 180-181 
transferring, 176-177 
transmission, error detection, 

178 
updating, 180 
using, 1 79-180 
verification, 178-179 
weak 

block ciphers design theory, 
348 

DES, 280-281 
Key and message broadcast, 

51-52 

Key and message transmission, 
51 

Key Auto-Key, 202 
Keyboard latency, as random­

sequence genera tor, 
424-425 

Key Certification Authority, 43 
Key control vectors, 562 
Key distribution: 

anonymous, 94-95 
conference, 524 

Key Distribution Center, 43-44 
Key-Encryption Keys, 176, 184 
Key escrow, 97-100, 181-182, 

591 
politics, 98-100 

Key exchange, 47-52 
DASS, 62 
Denning-Sacco protocol, 63 
with digital signatures, 50 
interlock protocol, 49-50 
Kerberos, 60 
key and message broadcast, 

51-52 
key and message transmis­

sion, 51 
man-in-the-middle attack, 

48-49 
Needham-Schroeder protocol, 

58-59 
Neuman-Stubblebine proto­

col, 60-62 
Otway-Rees protocol, 59-60 
protocols, formal analysis, 

65-68 
with public-key cryptography, 

48 
with symmetric cryptogra­

phy, 47-48 
Wide-Mouth Frog protocol, 

56-57 
without exchanging keys, 515 
Woo-Lam protocol, 63-64 
Yahalom, 57-58 

Key-exchange algorithms: 
COMSET, 517-518 
conference key distribution 

and secret broadcasting, 
523-525 

Diffie-Hellman, 513-516 
Encrypted Key Exchange, 

518-522 
fortified key negotiation, 522 
Shamir's three-pass protocol, 

516-517 
station-to-station protocol, 

516 



___________________ I_n_d_ex __________ 7-----~ 

Tatebayashi-Matsuzaki­
N ewman, 524-525 

Key generation, using coin flip­
ping, 92 

Key length: 
comparing symmetric and 

public-key, 165-166 
deciding on, 166-16 7 
DES, 283-284 
public-key, 158-165 

DNA computing, 163-164 
quantum computing, 

164-165 
recommended lengths, 

161-163 
symmetric, 151-158 

biotechnology as cryptanal-
ysis tool, 156-157 

brute-force attack, 151-154 
Chinese Lottery, 156-15 7 
neural networks, 155 
software-based brute-force 

attacks, 154-155 
thermodynamic limitations 

on brute-force attacks, 
157-158 

using viruses to spread 
cracking program, 
155-156 

Key management, 169-187 
distributed, 18 7 
public-key, 185-187 

Key negotiation, fortified, 522 
Key notarization, 562 
Key revocation certificate, 585 
Keyspace, 3 

flat, 176 
nonlinear, 175-176 
reduced, 170-1 71 

Keystream generator, 197-198 
counter mode, 206 
periodic, 202 

Khafre, 317-318, 349 
Khufu, 317, 349 
Kilian, Joe, 116 
Kim, Kwangjo, 298,350 
Kinetic Protection Device, 

389-390 
Klapper, Andy, 404 
Klein, Daniel, 53, 171 
Knapsack algorithms, 462-466 

decryption, 465 
encryption, 464 
implementations, 465 
patents, 466 
public key created from pri­

vate key, 464 

security, 465 
superincreasing, 463-464 
variants, 465-466 

Knapsack problem, 501 
Known-plaintext attack, 6-7, 

151,359 
Knudsen, Lars, 8,293,314,316, 

348-349 
Knuth, 393, 501 
Koblitz, Neal, 480 
Konheim, Alan, 266, 280 
Kravitz, David, 493 
Kravitz-Recd, 481 
KryptoKnight, 5 71-5 72 

Lagged Fibonacci generators, 
390 

LaGrange interpolating polyno-
mial scheme, 528-529 

Lai, Xuejia, 319, 449 
Langford, Susan, 293 
Law Enforcement Access Field, 

591 
Legal issues, 618 
Legendre symbol, 251 
Lehmann, 259 
Lehmann algorithm, 259 
Length, shift register, 3 73 
Lenstra, Arjen, 159, 162, 257, 

485,488 
LFSR/FCSR summation/parity 

cascade, 410-411 
Lid!, Rudolph, 481 
Linear complexity: 

profile, 380 
stream ciphers, 380 

Linear congruential generators, 
369-372 

combining,371-372 
constants, 3 70 

Linear consistency test, 381 
Linear cryptanalysis: 

DES, 290-293 
strength against, block cipher 

design theory, 348-349 
Linear error-correcting codes, 

algorithms based on, 480 
Linear feedback shift registers, 

372-379 
Galois, 3 78-3 79 
primitive polynomials mod 2, 

376-377 
software, 3 78-3 79 
stream ciphers using, see 

Stream ciphers 
Linear syndrome algorithm, 

381 

Link-by-link encryption, 
216-218 

combined with end-to-end, 
219-221 

Linking protocol, timestamp-
ing, 76-77 

Li-Wang algorithm, 346 
Local deduction, 8 
Lock-in, 388 
Logarithms, discrete, see Dis­

crete logarithm 
LOKI, 314-316 

S-boxes, 349 
source code, 632-63 7 

LOKI Double-Block, 451 
Low decryption exponent 

attack, RSA, 473 
Low encryption exponent 

attack, RSA, 472-473 
Luby, Michael, 352 
Luby-Racko££, 352-353 

xDES 1, 365 
LUC, 481 
Lucas number, 481 
Luccio-Mazzone, 501 
Lucifer, 266, 303-304 
Lu-Lee cryptosystem, 466 
Lyndon words, 501 

MacGuffin, 346 
Madryga, W. E., 304 
Mafia Fraud, 110 
Magic numbers, 423 
Manasse, Mark, 159,257 
Man-in-the-middle attack, 

48-49 
Masks, REDOC II, 312 
Massey, James, 319,339,386, 

418, 449 
Master Key, 561 
Master Terminal Key, 561 
Matsui, Mitsuru, 290-291 
Matsumoto-Imai algorithm, 500 
Mauborgnc, Joseph, 15 
Maurer, Ueli, 419 
Maurer's randomized stream 

cipher, 419 
Maximal period generator, 369 
MEAL, 344 
McEliece, Robert, 479 
McEliece algorithm, 346, 

479-480 
MD2, 441 
MD3, 446 
MD4, 435-436 
MDS, 436-441 
MDC, 353-354 
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MDC-2, 452-453 
MDC-4, 452-454 
MD-strengthening, 431 
Meet-in-the-middle attack, 358, 

381 
Mental poker, 92-95 
Merkle, Ralph, 34, 316-318, 

358-359, 432, 455, 
461-462 

Merkle's puzzles, 34 
Merritt, Michael, 67, 518, 

520-521, 571 
Message: 

authentication, 56 
broadcasting, 69 
Privacy-Enhanced Mail, 

579-582 
recovery, 497-498 
resending as receipt, 42-43 

Message authentication codes, 
31, 455-459 

bidirectional, 45 7 
CBC-MAC, 456 
IBC-Hash, 458 
Jueneman's methods, 457 
message authenticator algo-

rithm, 456-457 
one-way hash functions as, 

458-459 
RIPE-MAC, 457-458 
stream ciphers, 459 

Message authenticator algo­
rithm, 456-45 7 

Message broadcast, anonymous, 
137-139 

Message Digest, 435-436 
Message Digest Cipher, 353 
Message Integrity Check, 5 78 
Message-meaning rule, 66 
Message Security Protocol, 584 
Meyer, Carl, 266, 278 
Meyer, Joseph A., 614 
Meyer-Schilling, 452 
Micali, Silvio, 94, 508, 546-547, 

552 
Miller, Gary, 259 
Miller, V. S., 480 
Mimic functions, 10 
Minimum-disclosure proofs, 

108 
MITRENET, 562-563 
Miyaguchi, Shoji, 308 
MME, 325-327 
m *n-bit S box, 349 
Modular arithmetic, 242-245 
Modular Multiplication-based 

Block cipher, 325-327 
Modular reduction, 242 

Modulo, inverses, 246-248 
Monoalphabetic cipher, 10 
Montgomery's method, 244 
Moore's Law, 153 
m-sequence, 374 
MSP, 584 
Muller, Winfried, 481 
Multiparty unconditionally 

secure protocols, 13 7 
Multiple-bit generator, 421 
Multiple encryption, 357 

quintuple, 366 
Multiple Identity Fraud, 111 
Multiple-key public-key cryp-

tography, 527-528 
Multiple signatures, 39-40 
Multiplier, 369 
Multispccd inner-product gen­

erator, 386-38 7 
Mush,392 
Mutual shrinking generator, 

392 
MYK-80, 593-594 
Mykotronx Clipper chip, 328 
MYK-78T, 591-593 

Nanoteq, 390 
National Bureau of Standards, 

see National Institute of 
Standards and Technology 

National Computer Security 
Center, 599-600 

National Institute of Standards 
and Technology, 600-603 

DES development, 265-267 
Memorandum of Understand­

ing, 601-603 
National Security Agency, 

597-599 
DES development, 266-267 
export of cryptography, 

614-615 
Memorandum of Understand­

ing, 601-603 
S-box development role, 278, 

280 
Navy Research Laboratory, pro­

tocol analyzer, 67-68 
Needham, Roger, 58, 66, 216 
Needham-Schroeder protocol, 

58-59 
Networks, large, key distribu­

tion, 177 
Neuman-Stubblebine protocol, 

60-62 
Neural networks, breaking algo­

rithms, 155 
NewDES, 306-308 

N-Hash, 433-435 
Nicdcrreiter, Harald, 501 
Niederreiter algorithm, 480 
Niemi cryptosystem, 466 
Nobauer, Wilfried, 481 
Noise, random, using as ran-

dom-sequence generator, 
423-424 

Nonce-verification rule, 66 
Non-Interactive Key Sharing 

systems, 115 
Nonlinear-feedback shift regis-

ters, 412-413 
Nonlinear keyspace, 175-176 
Nonrcpudiation, 2 
Notz, Bill, 266 
NP-complete problem, 240-242 

graph isomorphism, 104 
knapsack algorithms, 462 
McEliece algorithm, 479 
solving, 163-164 

NRL Protocol Analyzer, 67-68 
NSDD-145, 268 
Nuclear Non-Proliferation Act, 

610 
Number field sieve, 256 
Numbers: 

2-adic, 404 
large, 17-18 

Numbertheory,242-255 
Barrett's algorithm, 244 
Blum integers, 253 
Chinese remainder theorem, 

249-250 
Euclid's algorithm, 245 
Euler totient function, 

248-249 
extended Euclidean algo­

rithm, 246-248 
Fermat's little theorem, 248 
Galois field, computing in, 

254-255 
generators, 253-254 
greatest common divisor, 

245-246 
inverses modulo a number, 

246-248 
Jacobi symbol, 252-253 
Legendre symbol, 251 
modular arithmetic, 242-245 
Montgomery's method, 244 
prime numbers, 245 
quadratic residues, 250-251 
solving for coefficients, 248 

Nyberg, Kaisa, 348 

Oblivious transfer, 116-11 7, 
550 
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Oblivous signatures, 117 
OFB, see Output-feedback mode 
Ohta, Kazuo, 146, 501 
Ohta-Okamoto identification 

scheme, 508 
Okamoto, Tatsuaki, 146, 501 
1/p generator, 414 
One-time pad, 15-17 

hiding ciphertext in cipher­
text, 227-228 

One-time tape, 418 
One-way accumulators, 95-96, 

543 
One-way function, 29-30 

authentication using, 52 
bit commitment using, 87-88 
coin flipping using, 90 
trap-door, 158 

One-way hash functions, 30-31, 
351-354 

background, 429-431 
birthday attacks, 165-166, 

430 
choosing, 455 
cipher security, 353-354 
compression function, 431 
encryption speeds, 456 
HAVAL, 445-446 
improved arbitrated solution, 

76 
Karn, 351-352 
length, 430-431 
Luby-Rackoff, 352-353 
MD2, 441 
MD3, 446 
MD4, 435-436 
MD5, 436-441 
MD-strengthening, 431 
message authentication 

codes, 455-459 
Message Digest Cipher, 

353-354 
multiple signatures, 40 
N-Hash, 433-435 
RIPE-MD, 445 
Secure Hash Algorithm, 

442-445 
signing documents with, 

38-39 
Snefru, 432 
as unbiased random-bit gener­

ator, 107 
using public-key algorithms, 

455 
using symmetric block algo­

rithms, 446-455 
AR hash function, 453 
COST hash function, 454 

hash length equals block 
size, 447-449 

LOKI Double-Block, 451 
MDC-2 and MDC-4, 

452-454 
modified Davies-Meyer, 

449-450 
parallel Davies-Meyer, 451 
Preneel- Bossclaers­

Govaerts-Vandewalle, 450 
Quisquater-Girault, 450 
tandem and abreast Davies­

Meyer, 451-452 
Ong-Schnorr-Shamir, 498-499, 

531-532 
Orange Book, 599-600 
Otway-Rees protocol, 59-60 
Outerbridge, Richard, 363 
Outer-CBC, 360 
Output-feedback mode, 

203-205,208-210 
combined with ECB, 364 
DES, 277 
with a nonlinear function, 

208 
Overtake, 598 
Overwriting, 229 

Padding: 
cipher block chaining mode, 

195 
electronic codebook mode, 

190-191 
MD5, 436 
Secure Hash Algorithm, 442 
triple encryption with, 362 

Painvin, Georges, 12 
Pass phrases, 17 4-175 
Passive attack, 27 
Passive cheaters, 2 7 
Patents, 609-61 O; See also spe­

cific algorithms 
P-boxes: 

design criteria, 294 
permutation, 275,277,316 

PEM, see Privacy-Enhanced 
Mail 

Perfect secrecy, 235 
Period, 11 

shift register, 3 73 
Permutation, 237 

key,DES, 272-273 
PES,319,324 
Pike, 391-392 
PKZIP, 394-395 
Plaintext, 1-2 
Plaintext block chaining mode, 

208 

Plaintext feedback mode, 208 
Plaintext pair, right and wrong 

pairs, 287 
Pless genera tor, 413-414 
p-NEW scheme, 498 
Pohlig, Stephen, 262 
Pohlig-Hellman encryption 

scheme, 474 
Polarized photons, 555 
Pollard's Monte Carlo algo­

rithm, 256 
Polyalphabetic substitution 

cipher, 10-11 
Polygram substitution cipher, 

10-11 
Polynomials: 

degree, shift register length, 
374 

dense, 378 
irreducible, 255, 481 
sparse, 378 

Pomerance, Carl, 257 
Powerline System, 466 
Pre-image, 30 
Preneel, Bart, 45 7 
Preneel- Bosselaers-Govaerts-

Vandewallc, 450 
Pretty Good Privacy, 584-587 
Price, William, 562 
Prime numbers, 245 

generation, 258-261 
DSA, 488-490 
practical considerations, 

260-260 
relatively prime, 245 
strong, 261 

Primitive, 253 
Principal square root, 251 
Privacy-Enhanced Mail, 

577-584 
certificates, 579 
documents, 5 78 
messages, 579-582 
RIPEM, 583-584 
security, 582-583 
TIS/PEM, 583 

Private key, 5 
creating public key from, 464 
for public-key cryptography, 

lifetime, 184 
Probabilistic encryption, 

552-554 
Problems: 

complexity, 239-241 
EXPTIME, 241 
hard, 239 
intractable, 239 
PSPACE, 241 
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Problerns (Cont.) 
tractable, 239 
undecidable, 240 
See also NP-complete prob-

lem 
Processing complexity, 9 
Product cipher, 34 7 
Proofs of Membership, 111 
Propagating cipher block chain-

ing mode, 207 
Proposed Encryption Standard, 

319 
Protocols, 21, 47 

adjudicated, 26, 70-71 
all-or-nothing disclosure of 

secrets, 96 
analysis, approaches, 65-66 
anonymous message broad-

cast, 137-139 
arbitrated, 23-26 
attacks against, 2 7 
authentication, 576-577 
authentication and key-

exchange, formal analy­
sis, 65-68 

BAN logic, 66-67 
basic zero-knowledge, 

102-104 
bit commitment, 86-88 
blind signatures, 112-115 
characteristics, 21 
cryptographic, 22 
DASS, 62 
definition, 21 
Denning-Sacco, 63 
digital cash, see Digital cash 
digital certified mail, 122-123 
digital signatures, 40 
distributed, timestamping, 

77-78 
fair coin flips, 89-92 
IBM Common Cryptographic 

Architecture, 573-574 
IBM secret-key management, 

561-562 
identity-based public-key 

cryptography, 115 
interactive, 103 
interlock, 49-50, 54-55 
Kerberos, 60, 566-571 
key escrow, 97-100 
key exchange, 47-52 
KryptoKnight, 571-572 
lessons, 64-65 
mental poker, 92-95 
multiparty unconditionally 

secure, 137 
Needham-Schroeder, 58 

Neuman-Stubblebine, 60-62 
oblivious signatures, 117 
oblivious transfer, 116-117 
one-way accumulators, 95-96 
Otway-Rees, 59-60 
purpose,22-23 
secret splitting, 70-71 
secure circuit evaluation, 13 7 
secure elections, see Secure 

elections 
secure multiparty computa-

tion, 134-137 
self-enforcing, 26-27 
SESAME, 572 
simultaneous contract sign­

ing, 118-122 
simultaneous exchange of 

secrets, 123-124 
subliminal channel, 79-80 
timestamping, 75-79 
types, 24 
Wide-Mouth Frog, 56-57 
Woo-Lam, 63-64 
Yahalom, 57-58 
See also Authentication; 

Zero-knowledge proofs 
Pseudo-Hadamard Transform, 

340 
Pseudo-random function family, 

SEAL, 398-399 
Pseudo-random-number genera­

tor, 78, 416 
Pseudo-random sequence, 

44-45 
Pseudo-random-sequence gener­

ator, 44 
bit commitment using, 88 
generating multiple streams, 

420-421 
linear congruential genera­

tors, 369-3 72 
linear feedback shift registers, 

372-379 
PSPACE, 241 
Public key, 5 

certificates, 185-18 7 
creating from private key, 464 
key length, 158-165 

recommended lengths, 
161-163 

key management, 185-187 
Public-key algorithms, 4-5, 33, 

500-502 
background, 461-462 
based on linear error-correct­

ing codes, 480 
Diffie-Hcllman, 513 
ElGamal, 476-479 

elliptic curve cryptosystcms, 
480-481 

finite automaton cryptosys­
tems, 482 

knapsack algorithms, 
462-466 

LUC, 481 
McEliece, 479-480 
one-way hash functions 

using, 455 
Pohlig-Hellman, 474 
Rabin, 475-476 
RSA, see RSA 
security, 461-462 
strength, 502 

Public-key cryptography: 
attacks against, 43-44 
authentication using, 53-54 
coin flipping using, 90-91 
communications using, 31-34 
identity-based, 115 
key exchange with, 48 
multiple-key, 68-69 
private keys, lifetime, 184 
signing documents with, 

37-38 
one-way hash functions, 

38-39 
versus symmetric cryptogra­

phy, 216-217 
Public-Key Cryptography Stan-

dards, 588-589 
Public Key Partners, 604-605 
Public-key ring, 585 
Purchase-key attack, 7 

Quadratic nonrcsiducs, 251 
Quadratic residues, 250-251 

generator, 417 
Quadratic sieve, 256 

factoring, 159 
Quantum computing, 164-

165 
Quantum cryptography, 

554-557 
Quintuple encryption, 366 
Quisquater, Jean-Jacques, 102, 

508 
Quisquater-Girault, 450 

Rabin, 475-476 
Rabin, Michael, 103, 259, 518, 

550 
Rabin-Miller algorithm, 

259-260 
RACE Integrity Primitives Eval­

uation, 605-606 
Rackoff, Charles, 352 
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Rainbow Books, 600 
Rambutan, 390 
Random keys, 173-17 4 
Random noise, as random-

sequence generator, 
423-424 

Random-number generation, 44 
Random-sequence generators, 

421-428 
biases and correlations, 

425-426 
computer clock, 424 
distilling randomness, 

426-428 
keyboard latency measure­

ment, 424-425 
RAND tables, 422-423 
using random noise, 423-424 

Random sequences, real, 45-46 
Randomized approach, stream 

ciphers, 415 
Randomized stream cipher, 

419 
Randomness, distilling, 

426-428 
RAND tables, 422-423 
Rao-Nam algorithm, 346 
Rate of the language, 234 
RC2, 318-319 
RC4, 319, 397-398 
RCS, 344-346 

source code, 659-662 
RDES, 297-298 
Receipt, resending message as, 

42-43 
REDOC II, 311-313 
REDOC III, 313 
Redundancy, oflanguage,234 
Reeds, Jim, 369 
Related-key cryptanalysis, 290 
Renji, Tao, 482 
Renting Passports, 111 
Replay attacks, 58-59 
Research and Development in 

Advanced Communica­
tion Technologies, 
Integrity Primitives Eval­
uation, 605-606 

Resend attack, foiling, 43 
Residue, 242 

quadratic, 250-251 
reduced set, 248 

Restricted algorithms, 3 
RFC 1421, 578 
RFC 1422, 578 
RFC 1423, 578 
RFC 1424, 578 
Richter, Manficld, 423 

Riordan,Mark, 583-584 
RIPE, 605-606 
RIPEM, 583-584 
RIPE-MAC, 457-458 
RIPE-MD, 445 
Rip van Winkle cipher, 418-419 
Rivest, Ron, 159, 163, 318-319, 

344,397, 435, 440-441, 
444,446,467 

Rivest Cipher, 318 
Robshaw, Matt, 342 
Rogaway, Phil, 398 
ROM key, 181 
ROT13, 11 
Rotor machines, 12-13 
RSA, 17, 466-474 

ability to break, zero-knowl­
edge proofs, 548-549 

attack on encrypting and 
signing with, 473-474 

blind signatures, 548 
chosen ciphertext attack, 

471-472 
common modulus attack, 

472 
compared to DSA, 485 
computation time compari-

son with DSA, 489 
as de facto standard, 485-486 
EKE implementation, 519 
encryption, 468 

with DSA, 491 
in hardware, 469 
low decryption exponent 

attack, 473 
low encryption exponent 

attack, 472-473 
patents, 474 
restrictions on use, 4 73 
security, 470-471 
speed, 469 
standards, 4 7 4 

RSA Data Security, Inc., 295, 
603-604 

RSA Factoring Challenge, 25 7 
RSA generator, 417 
Rubber-hose cryptanalysis, 7 
Rueppel, Ranier, 385-386 
Running-key cipher, 12 

SAFER K-64, 339-341 
SAFER K-128, 341 
Salt, 52-53 
S-boxes: 

alternate, DES, 296-298 
Blowfish, 336 
Boolean functions in, 350 
DES, key-dependent, 298, 300 

design 
criteria, 294 
security questions, 284 
theory, 349-351 

Lucifer, 303 
NSA role, 278, 280 
substitution, 274-276 

Scherbius, Arthur, 13 
Schlafly, Roger, 394 
Schneier, Bruce, 336, 346 
Schnorr, Claus, 418, 446, 510 
Schnorr authentication and sig-

nature scheme, 510-
512 

Schroeder, Michael, 58, 216 
Schwartau, Winn, 300 
Sci.crypt, 608-609 
Scott, Robert, 306 
SEAL, 398-400 

source code, 667-673 
Secrecy: 

ideal, 236 
perfect, 235 

Secrets, simultaneous 
exchange, 123-124 

Secret sharing, 71-73 
without adjudication, 72 
with cheaters, 72 
with disenrollment, 73 
without revealing shares, 73 
schemes with prevention, 73 
verifiable, 73 

Secret-sharing algorithms, 
528-531 

advanced threshold schemes, 
530-531 

Asmuth-Bloom, 529-530 
cheater detection, 531 
Kamin-Greene-Hellman, 530 
LaGrange interpolating poly-

nomial scheme, 528-529 
vectorsche1ne, 529 

Secret splitting, 70-71 
digital cash, 142-145 

Secure and Fast Encryption 
Routine, 339 

Secure circuit evaluation, 13 7 
Secure elections, 125-134 

divided protocols, 133 
multiple-key ciphers, 133 
simplistic voting protocols, 
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