
APPLIED
CRYPTOGRAPHY

BRUCE SCHNEIER

Protocols, Algorithms,
and Source Code in C

20TH ANNIVERSARY EDITION
Bruce Schneier is an
internationally renowned
security technologist,
called a “security guru”
by The Economist. He
is the author of twelve
books—including his
seminal work, Applied
Cryptography: Protocols,
Algorithms, and Source
Code in C, and Secrets
& Lies: Digital Security in

a Networked World as well as hundreds of articles,
essays, and academic papers. His influential
newsletter “Crypto-Gram” and blog “Schneier
on Security” are read by over 250,000 people.
Schneier is a fellow at the Berkman Center for
Internet and Society at Harvard Law School, a
program fellow at the New America Foundation’s
Open Technology Institute, a board member of
the Electronic Frontier Foundation, and an Advisory
Board member of the Electronic Privacy Information
Center. He is also the Chief Technology Officer of
Resilient Systems, Inc. You can read his blog, essays,
and academic papers at www.schneier.com.
He tweets at @schneierblog.

Author Photo © Norbert Schiller

Programming/Security
$70.00 USA / $84.00 CAN

Written by the world’s most
renowned security technologist
this special Anniversary Edition
celebrates 20 years for the
most definitive reference on
cryptography ever published,
Applied Cryptography, Protocols,
Algorithms, and Source Code in C.
Inside security enthusiasts will
find a compelling introduction
by author Bruce Schneider
written specifically for this
keepsake edition.

Included in this edition:

• �Exclusive forward by
Bruce Schneier

• �Ways to defeat the key
escrow mechanism

• Encryption algorithms,
including algorithms from
the former Soviet Union
and South Africa, and the
RC4 stream cipher

• �Protocols for digital
signatures, authentication,
secure elections, digital
cash, and more

• Detailed information
on key management
and cryptographic
implementations

“�This book should be on the shelf of any computer professional
involved in the use or implementation of cryptography.”

— IEEE Software

“�An encyclopedic survey … could well have been subtitled ‘The
Joy of Encrypting’ ... a useful addition to the library of any active
or would-be security practitioner.”

— Cryptologia

“�…the best introduction to cryptography I’ve ever seen…The book
the National Security Agency wanted never to be published…”

 — Wired magazine

“�…easily ranks as one of the most authoritative in its field…”
— PC magazine

“�…monumental…fascinating…comprehensive…the definitive work
on cryptography for computer programmers…”

— Dr. Dobb’s journal

P r a i s e f o r

APPLIED
CRYPTOGRAPHY

Cover Design: Wiley
Cover Painting: Mona Mark

A
P

P
LIED

C

R
Y

P
T

O
G

R
A

P
H

Y

SCHNEIER

20TH
ANNIVERSARY

EDITION

This smart, relevant guide is a must for all

those committed to computer and cyber

security. Bruce Schneier covers general

classes of cryptographic protocols and

then specific techniques, detailing the

inner workings of real-world cryptographic

algorithms including the Data Encryption

Standard and RSA public-key cryptosystems.

This book includes source-code listings and

extensive advice on the practical aspects

of cryptography implementation, such as

the importance of generating truly random

numbers and keeping keys secure. It

describes dozens of cryptography algorithms,

gives practical advice on how to implement

them into cryptographic software, and shows

how they can be used to solve security

problems.

v

Introduction  xiii
xvii

xxi
xxii

xxiv
xxv

_______ _________,.,.%~

Contents

Foreword by Whitfield Diffie
Preface

How TO READ THIS BOOK

ACKNOWLEDGMENTS

About the Author

1 FOUNDATIONS 1
1.1 TERMINOLOGY 1
1.2 STEGANOGRAPHY 9
1.3 SUBSTITUTION CIPHERS AND TRANSPOSITION CIPHERS 10
1.4 SIMPLE XOR 13
1.5 ONE-TIME PADS 15
1.6 COMPUTER ALGORITHMS 17
1. 7 LARGE NUMBERS 17

PART I CRYPTOGRAPHIC PROTOCOLS

2 PROTOCOL BUILDING BLOCKS 21
2.1 INTRODUCTION TO PROTOCOLS 21
2.2 COMMUNICATIONS USING SYMMETRIC CRYPTOGRAPHY 28
2.3 ONE-WAY FUNCTIONS 29
2.4 ONE-WAY HASH FUNCTIONS 30
2.5 COMMUNICATIONS USING PUBLIC-KEY CRYPTOGRAPHY 31
2.6 DIGITAL SIGNATURES 34
2. 7 DIGITAL SIGNATURES WITH ENCRYPTION 41
2.8 RANDOM AND PSEUDO-RANDOM-SEQUENCE GENERATION 44

vi Contents~-..------:s -------

3 BASIC PROTOCOLS 47
3.1 KEY EXCHANGE 47
3.2 AUTHENTICATION 52
3.3 AUTHENTICATION AND KEY EXCHANGE 56
3.4 FORMAL ANALYSIS OF AUTHENTICATION AND KEY-EXCHANGE PROTOCOLS 65
3.5 MULTIPLE-KEY PUBLIC-KEY CRYPTOGRAPHY 68
3.6 SECRET SPLITTING 70
3. 7 SECRET SHARING 71
3.8 CRYPTOGRAPHIC PROTECTION OF DATABASES 73

4 INTERMEDIATE PROTOCOLS 75
4.1 TIMESTAMPING SERVICES 75
4.2 SUBLIMINAL CHANNEL 79
4.3 UNDENIABLE DIGITAL SIGNATURES 81
4.4 DESIGNATED CONFIRMER SIGNATURES 82
4.5 PROXY SIGNATURES 83
4.6 GROUP SIGNATURES 84
4. 7 FAIL-STOP DIGITAL SIGNATURES 85
4.8 COMPUTING WITH ENCRYPTED DATA 85
4.9 BIT COMMITMENT 86

4.10 FAIR COIN FLIPS 89
4.11 MENTAL POKER 92
4.12 ONE-WAY ACCUMULATORS 95
4.13 ALL-OR-NOTHING DISCLOSURE OF SECRETS 96
4.14 KEY ESCROW 97

5 ADVANCED PROTOCOLS 101
5.1 ZERO-KNOWLEDGE PROOFS 101
5.2 ZERO-KNOWLEDGE PROOFS OF IDENTITY 109
5.3 BLIND SIGNATURES 112
5 .4 IDENTITY-BASED PUBLIC-KEY CRYPTOGRAPHY 115
5.5 OBLIVIOUS TRANSFER 116
5.6 OBLIVIOUS SIGNATURES 117
5.7 SIMULTANEOUS CONTRACT SIGNING 118
5.8 DIGITAL CERTIFIED MAIL 122
5.9 SIMULTANEOUS EXCHANGE OF SECRETS 123

6 ESOTERIC PROTOCOLS 125
6.1 SECURE ELECTIONS 125
6.2 SECURE MULTIPARTY COMPUTATION 134
6.3 ANONYMOUS MESSAGE BROADCAST 137
6.4 DIGITAL CASH 139

viiContents_______ _________,.,.%~

PART II CRYPTOGRAPHIC TECHNIQUES

7 KEY LENGTH 151
7.1 SYMMETRIC KEY LENGTH 151
7.2 PUBLIC-KEY KEY LENGTH 158
7.3 COMPARING SYMMETRIC AND PUBLIC-KEY KEY LENGTH 165
7.4 BIRTHDAY ATTACKS AGAINST ONE-WAY HASH FUNCTIONS 165
7.5 How LONG SHOULD A KEY BE? 166
7.6 CAVEAT EMPTOR 168

8 KEY MANAGEMENT 169
8.1 GENERATING KEYS 170
8.2 NONLINEAR KEYSPACES 175
8.3 TRANSFERRING KEYS 176
8.4 VERIFYING KEYS 178
8.5 USING KEYS 179
8.6 UPDATING KEYS 180
8.7 STORING KEYS 180
8.8 BACKUP KEYS 181
8.9 COMPROMISED KEYS 182

8.10 LIFETIME OF KEYS 183
8.11 DESTROYING KEYS 184
8.12 PUBLIC- KEY KEY MANAGEMENT 185

9 ALGORITHM TYPES AND MODES
9.1 ELECTRONIC CODEBOOK MODE 189
9.2 BLOCK REPLAY 191
9.3 CIPHER BLOCK CHAINING MODE 193
9.4 STREAM CIPHERS 197
9.5 SELF-SYNCHRONIZING STREAM CIPHERS

9.6 CIPHER-FEEDBACK MODE 200
9.7 SYNCHRONOUS STREAM CIPHERS 202
9.8 OUTPUT- FEEDBACK MODE 203
9.9 COUNTER MODE 205

9.10 OTHER BLOCK-CIPHER MODES 206
9.11 CHOOSING A CIPHER MODE 208
9.12 INTERLEAVING 210
9.13 BLOCK CIPHERS VERSUS STREAM CIPHERS

10 USING ALGORITHMS 213
10.1 CHOOSING AN ALGORITHM 214

198

210

189

10.2 PUBLIC-KEY CRYPTOGRAPHY VERSUS SYMMETRIC CRYPTOGRAPHY 216
10.3 ENCRYPTING COMMUNICATIONS CHANNELS 216
10.4 ENCRYPTING DATA FOR STORAGE 220
10.5 HARDWARE ENCRYPTION VERSUS SOFTWARE ENCRYPTION 223

viii Contents
~-..------:s -------

10.6 COMPRESSION, ENCODING, AND ENCRYPTION 226
10. 7 DETECTING ENCRYPTION 226
10.8 HIDING CIPHERTEXT IN CIPHERTEXT 227
10.9 DESTROYING INFORMATION 228

PART Ill CRYPTOGRAPHIC ALGORITHMS

11 MATHEMATICAL BACKGROUND 233
11.1 INFORMATION THEORY 233
11.2 COMPLEXITY THEORY 23 7
11.3 NUMBER THEORY 242
11.4 FACTORING 255
11.5 PRIME NUMBER GENERATION 258
11.6 DISCRETE LOGARITHMS IN A FINITE FIELD 261

12 DATA ENCRYPTION STANDARD {DES) 265
12.1 BACKGROUND 265
12.2 DESCRIPTION OF DES 270
12.3 SECURITY OF DES 278
12.4 DIFFERENTIAL AND LINEAR CRYPTANALYSIS 285
12.5 THE REAL DESIGN CRITERIA 293
12.6 DES VARIANTS 294
12. 7 How SECURE Is DES TODAY? 300

13 OTHER BLOCK CIPHERS 303
13.1 LUCIFER 303
13.2 MADRYGA 304
13.3 NEwDES 306
13.4 FEAL 308
13.5 REDOC 311
13.6 LOKI 314
13.7 KHUFU AND KHAFRE 316
13.8 RC2 318
13.9 IDEA 319

13.10 MMB 325
13.11 CA-1.1 327
13.12 SKIPJACK 328

14 STILL OTHER BLOCK CIPHERS 331
14.1 COST 331
14.2 CAST 334
14.3 BLOWFISH 336
14.4 SAFER 339
14.5 3-WAY 341

ixContents_______ _________,.,.%~

14.6 CRAB 342
14.7 SXAL8/MBAL 344
14.8 RCS 344
14.9 OTHER BLOCK ALGORITHMS 346

14.10 THEORY OF BLOCK CIPHER DESIGN 346
14.11 USING ONE-WAY HASH FUNCTIONS 351
14.12 CHOOSING A BLOCK ALGORITHM 354

15 COMBINING BLOCK CIPHERS 357
15 .1 DOUBLE ENCRYPTION 35 7
15.2 TRIPLE ENCRYPTION 358
15.3 DOUBLING THE BLOCK LENGTH 363
15.4 OTHER MULTIPLE ENCRYPTION SCHEMES 363
15.5 CDMF KEY SHORTENING 366
15.6 WHITENING 366
15.7 CASCADING MULTIPLE BLOCK ALGORITHMS 367
15.8 COMBINING MULTIPLE BLOCK ALGORITHMS 368

16 PSEUDO-RANDOM-SEQUENCE
GENERATORS AND STREAM CIPHERS 369

16.1 LINEAR CONGRUENTIAL GENERATORS 369
16.2 LINEAR FEEDBACK SHIFT REGISTERS 372
16.3 DESIGN AND ANALYSIS OF STREAM CIPHERS 379
16.4 STREAM CIPHERS USING LFSRs 381
16.5 AS 389
16.6 HUGHES XPD/KPD 389
16.7 NANOTEQ 390
16.8 RAMBUTAN 390
16.9 ADDITIVE GENERATORS 390

16.10 GIFFORD 392
16.11 ALGORITHM M 393
16.12 PKZIP 394

17 OTHER STREAM CIPHERS AND REAL
RANDOM-SEQUENCE GENERATORS 397

17.1 RC4 397
17.2 SEAL 398
17.3 WAKE 400
1 7.4 FEEDBACK WITH CARRY SHIFT REGISTERS 402
17.5 STREAM CIPHERS USING FCSRs 405
17.6 NONLINEAR-FEEDBACK SHIFT REGISTERS 412
1 7. 7 OTHER STREAM CIPHERS 413
17.8 SYSTEM-THEORETIC APPROACH TO STREAM-CIPHER DESIGN 415
17.9 COMPLEXITY-THEMATIC APPROACH TO STREAM-CIPHER DESIGN 416

17.10 OTHER APPROACHES TO STREAM-CIPHER DESIGN 418

x Contents~-..------:s -------

17.11 CASCADING MULTIPLE STREAM CIPHERS 419
17.12 CHOOSING A STREAM CIPHER 420
17.13 GENERATING MULTIPLE STREAMS FROM A

SINGLE PSEUDO-RANDOM-SEQUENCE GENERATOR 420
17.14 REAL RANDOM-SEQUENCE GENERATORS 421

18 ONE-WAY HASH FUNCTIONS 429
18.1 BACKGROUND 429
18.2 SNEFRU 431
18.3 N-HASH 432
18.4 MD4 435
18.5 MD5 436
18.6 MD2 441
18.7 SECURE HASH ALGORITHM (SHA) 441
18.8 RIPE-MD 445
18.9 HAVAL 445

18 .10 OTHER ONE-WAY HASH FUNCTIONS 446
18.11 ONE-WAY HASH FUNCTIONS USING SYMMETRIC BLOCK ALGORITHMS 446
18.12 USING PUBLIC-KEY ALGORITHMS 455
18.13 CHOOSING A ONE-WAY HASH FUNCTION 455
18.14 MESSAGE AUTHENTICATION CODES 455

19 PUBLIC-KEY ALGORITHMS 461
19.1 BACKGROUND 461
19.2 KNAPSACK ALGORITHMS 462
19.3 RSA 466
19.4 POHLIG-HELLMAN 474
19.5 RABIN 475
19.6 ELGAMAL 476
19.7 McELIECE 479
19.8 ELLIPTIC CURVE CRYPTOSYSTEMS 480
19.9 LUC 481

19.10 FINITE AUTOMATON PUBLIC-KEY CRYPTOSYSTEMS 482

20 PUBLIC-KEY DIGITAL SIGNATURE ALGORITHMS 483
20.1 DIGITAL SIGNATURE ALGORITHM (DSA) 483
20.2 DSA VARIANTS 494
20.3 COST DIGITAL SIGNATURE ALGORITHM 495
20.4 DISCRETE LOGARITHM SIGNATURE SCHEMES 496
20.5 ONG-SCHNORR-SHAMIR 498
20.6 ESIGN 499
20. 7 CELLULAR AUTOMATA 500
20.8 OTHER PUBLIC-KEY ALGORITHMS 500

21 IDENTIFICATION SCHEMES 503
21.1 FEIGE-FIAT-SHAMIR 503

xiContents_______ _________,.,.%~

21.2 GUILLOU-QUISQUATER 508
21.3 SCHNORR 510
21.4 CONVERTING IDENTIFICATION SCHEMES TO SIGNATURE SCHEMES 512

22 KEY-EXCHANGE ALGORITHMS 513
22.1 DIFFIE-HELLMAN 513
22.2 STATION-TO-STATION PROTOCOL 516
22.3 SHAMIR'S THREE-PASS PROTOCOL 516
22.4 COMSET 517
22.5 ENCRYPTED KEY EXCHANGE 518
22.6 FORTIFIED KEY NEGOTIATION 522
22. 7 CONFERENCE KEY DISTRIBUTION AND SECRET BROADCASTING 523

23 SPECIAL ALGORITHMS FOR PROTOCOLS 527
23.1 MULTIPLE-KEY PUBLIC-KEY CRYPTOGRAPHY 527
23.2 SECRET-SHARING ALGORITHMS 528
23.3 SUBLIMINAL CHANNEL 531
23.4 UNDENIABLE DIGITAL SIGNATURES 536
23.5 DESIGNATED CONFIRMER SIGNATURES 539
23.6 COMPUTING WITH ENCRYPTED DATA 540
23.7 FAIR COIN FLIPS 541
23.8 ONE-WAY ACCUMULATORS 543
23.9 ALL-OR-NOTHING DISCLOSURE OF SECRETS 543

23.10 FAIR AND FAILSAFE CRYPTOSYSTEMS 546
23 .11 ZERO- KNOWLEDGE PROOFS OF KNOWLEDGE 548
23.12 BLIND SIGNATURES 549
23.13 OBLIVIOUS TRANSFER 550
23.14 SiCURE MULTIPARTY COMPUTATION 551
23.15 PROBABILISTIC ENCRYPTION 552
23.16 QUANTUM CRYPTOGRAPHY 554

PART IV THE REAL WORLD

24 EXAMPLE IMPLEMENTATIONS 561
24.1 IBM SECRET-KEY MANAGEMENT PROTOCOL 561
24.2 MITRENET 562
24.3 ISDN 563
24.4 STU-III 565
24.5 KERBEROS 566
24.6 KRYPTOKNIGHT 571
24.7 SESAME 572
24.8 IBM COMMON CRYPTOGRAPHIC ARCHITECTURE 573
24.9 ISO AUTHENTICATION FRAMEWORK 574

24.10 PRIVACY-ENHANCED MAIL (PEM) 577
24.11 MESSAGE SECURITY PROTOCOL (MSP) 584

xii Contents
~-..------:s -------

24.12 PRETTY GOOD PRIVACY (PGP) 584
24.13 SMART CARDS 587
24.14 PUBLIC-KEY CRYPTOGRAPHY STANDARDS (PKCS) 588
24.15 UNIVERSAL ELECTRONIC PAYMENT SYSTEM (UEPS) 589
24.16 CLIPPER 591
24.17 CAPSTONE 593
24.18 AT&T MODEL 3600 TELEPHONE SECURITY DEVICE (TSD) 594

25 POLITICS 597
25.1 NATIONAL SECURITY AGENCY (NSA) 597
25.2 NATIONAL COMPUTER SECURITY CENTER (NCSC) 599
25.3 NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (NIST) 600
25.4 RSA DATA SECURITY, INC. 603
25.5 PUBLIC KEY PARTNERS 604
25.6 INTERNATIONAL ASSOCIATION FOR CRYPTOGRAPHIC RESEARCH (IACR) 605
25. 7 RACE INTEGRITY PRIMITIVES EVALUATION (RIPE) 605
25.8 CONDITIONAL ACCESS FOR EUROPE (CAFE) 606
25.9 ISO/IEC 9979 607

25.10 PROFESSIONAL, CIVIL LIBERTIES, AND INDUSTRY GROUPS 608
25.11 SCI.CRYPT 608
25.12 CYPHERPUNKS 609
25.13 PATENTS 609
25.14 U.S. EXPORT RULES 610
25.15 FOREIGN IMPORT AND EXPORT OF CRYPTOGRAPHY 617
25.16 LEGAL ISSUES 618

Afterword by Matt Blaze 619

Source Code 623

References 675

PART V SOURCE CODE

xiii

Introduction

I first wrote Applied Cryptography in 1993. Two years later, I wrote the greatly
expanded second edition. At this vantage point of two decades later, it can be hard to
remember how heady cryptography’s promise was back then. These were the early
days of the Internet. Most of my friends had e-mail, but that was because most of
my friends were techies. Few of us used the World Wide Web. There was nothing yet
called electronic commerce.

Cryptography was being used by the few who cared. We could encrypt our e-mail
with PGP, but mostly we didn’t. We could encrypt sensitive files, but mostly we
didn’t. I don’t remember having the option of a usable full-disk encryption product,
at least one that I would trust to be reliable.

What we did have were ideas—research and engineering ideas—and that was
the point of Applied Cryptography. My goal in writing the book was to collect
all the good ideas of academic cryptography under one cover and in a form that
non-mathematicians could read and use.

What we also had, more important than ideas, was the unshakable belief that
technology trumped politics. You can see it in John Perry Barlow’s 1996 “Declara-
tion of the Independence of Cyberspace,” where he told governments, “You have
no moral right to rule us, nor do you possess any methods of enforcement that we
have reason to fear.” You can see it three years earlier in cypherpunk John Gilmore’s
famous quote: “The Net interprets censorship as damage and routes around it.” You
can see it in the pages of Applied Cryptography. The first paragraph of the Preface,
which I wrote in 1993, says, “There are two kinds of cryptography in this world:
cryptography that will stop your kid sister from reading your files, and cryptography
that will stop major governments from reading your files. This book is about the
latter.”

This was the promise of cryptography. It was the promise behind everything—
from file and e-mail encryption to digital signatures, digital certified mail, secure
election protocols, and digital cash. The math would give us all power and security,

_______ _________,.,.%~

xiv Introduction

because math trumps everything else. It would topple everything from government
sovereignty to the music industry’s attempts at stopping file sharing.

The “natural law” of cryptography is that it’s much easier to use than it is to
break. To take a hand-waving example, think about basic encryption. Adding a sin-
gle bit to a key, say from a 64-bit key to a 65-bit key, adds at most a small amount of
work to encrypt and decrypt. But it doubles the amount of work to break. Or, more
mathematically, encryption and decryption work grows linearly with key length,
but cryptanalysis work grows exponentially. It’s always easier for the communica-
tors than the eavesdropper.

It turned out that this was all true, but less important than we had believed. A
few years later, we realized that cryptography was just math, and that math has no
agency. In order for cryptography to actually do anything, it has to be embedded in
a protocol, written in a programming language, embedded in software, run on an
operating system and computer attached to a network, and used by living people.
All of those things add vulnerabilities and—more importantly—they’re more con-
ventionally balanced. That is, there’s no inherent advantage for the defender over
the attacker. Spending more effort on either results in linear improvements. Even
worse, the attacker generally has an inherent advantage over the defender, at least
today.

So when we learn about the NSA through the documents provided by Edward
Snowden, we find that most of the time the NSA breaks cryptography by circum-
venting it. The NSA hacks the computers doing the encryption and decryption. It
exploits bad implementations. It exploits weak or default keys. Or it “exfiltrates”—
NSA-speak for steals—keys. Yes, it has some mathematics that we don’t know
about, but that’s the exception. The most amazing thing about the NSA as revealed
by Snowden is that it isn’t made of magic.

This doesn’t mean that cryptography is useless: far from it. What cryptography
does is raise both the cost and risk of attack. Data zipping around the Internet unen-
crypted can be collected wholesale with minimal effort. Encrypted data has to be
targeted individually. The NSA—or whoever is after your data—needs to target you
individually and attack your computer and network specifically. That takes time
and manpower, and is inherently risky. No organization has enough budget to do
that to everyone; they have to pick and choose. While ubiquitous encryption won’t
eliminate targeted collection, it does have the potential to make bulk collection
infeasible. The goal is to leverage the economics, the physics, and the math.

There’s one more problem, though—one that the Snowden documents have illus-
trated well. Yes, technology can trump politics, but politics can also trump tech-
nology. Governments can use laws to subvert cryptography. They can sabotage the
cryptographic standards in the communications and computer systems you use.
They can deliberately insert backdoors into those same systems. They can do all
of those, and then forbid the corporations implementing those systems to tell you
about it. We know the NSA does this; we have to assume that other governments
do the same thing.

Never forget, though, that while cryptography is still an essential tool for security,
cryptography does not automatically mean security. The technical challenges of
implementing cryptography are far more difficult than the mathematical challenges

~-..------:s -------

xvIntroduction

of making the cryptography secure. And remember that the political challenges of
being able to implement strong cryptography are just as important as the technical
challenges. Security is only as strong as the weakest link, and the further away you
get from the mathematics, the weaker the links become.

The 1995 world of Applied Cryptography, Second Edition, was very different from
today’s world. That was a singular time in academic cryptography, when I was able
to survey the entire field of research and put everything under one cover. Today,
there’s too much, and the task of compiling it all is just too great. For those who
want a more current book, I recommend Cryptography Engineering¸ which I wrote
in 2010 with Niels Ferguson and Tadayoshi Kohno. But for a review of those heady
times of the mid-1990s, and an introduction to what has become an essential tech-
nology of the Internet, Applied Cryptography still holds up surprisingly well.

—Minneapolis, Minnesota, and Cambridge, Massachusetts, January 2015

_______ _________,.,.%~

xvii_______ _________,.,.%~

Foreword
By Whitfield Diffie

The literature of cryptography has a curious history. Secrecy, of course, has always
played a central role, but until the First World War, important developments appeared
in print in a more or less timely fashion and the field moved forward in much the
same way as other specialized disciplines. As late as 1918, one of the most influential
cryptanalytic papers of the twentieth century, William F. Friedman's monograph The
Index of Coincidence and Its Applications in Cryptography, appeared as a research
report of the private Riverbank Laboratories [577]. And this, despite the fact that the
work had been done as part of the war effort. In the same year Edward H. Hebern of
Oakland, California filed the first patent for a rotor machine [710], the device destined
to be a mainstay of military cryptography for nearly 50 years.

After the First World War, however, things began to change. U.S. Army and Navy
organizations, working entirely in secret, began to make fundamental advances in
cryptography. During the thirties and forties a few basic papers did appear in the
open literature and several treatises on the subject were published, but the latter
were farther and farther behind the state of the art. By the end of the war the transi­
tion was complete. With one notable exception, the public literature had died. That
exception was Claude Shannon's paper "The Communication Theory of Secrecy
Systems," which appeared in the Bell System Technical Journal in 1949 [1432]. It
was similar to Friedman's 1918 paper, in that it grew out of wartime work of Shan­
non's. After the Second World War ended it was declassified, possibly by mistake.

From 1949 until 1967 the cryptographic literature was barren. In that year a dif­
ferent sort of contribution appeared: David Kahn's history, The Codebreakers [794].
It didn't contain any new technical ideas, but it did contain a remarkably complete
history of what had gone before, including mention of some things that the govern­
ment still considered secret. The significance of The Codebreakers lay not just in its
remarkable scope, but also in the fact that it enjoyed good sales and made tens of
thousands of people, who had never given the matter a moment's thought, aware of
cryptography. A trickle of new cryptographic papers began to be written.

xviii Foreword by Whitfield Diffie
~-..------:s -------

At about the same time, Horst Feistel, who had earlier worked on identification
friend or foe devices for the Air Force, took his lifelong passion for cryptography to
the IBM Watson Laboratory in Yorktown Heights, New York. There, he began devel­
opment of what was to become the U.S. Data Encryption Standard; by the early
1970s several technical reports on this subject by Feistel and his colleagues had been
made public by IBM [1482,1484,552].

This was the situation when I entered the field in late 1972. The cryptographic lit­
erature wasn't abundant, but what there was included some very shiny nuggets.

Cryptology presents a difficulty not found in normal academic disciplines: the need
for the proper interaction of cryptography and cryptanalysis. This arises out of the fact
that in the absence of real communications requirements, it is easy to propose a sys­
tem that appears unbreakable. Many academic designs are so complex that the would­
be cryptanalyst doesn't know where to start; exposing flaws in these designs is far
harder than designing them in the first place. The result is that the competitive pro­
cess, which is one strong motivation in academic research, cannot take hold.

When Martin Hellman and I proposed public-key cryptography in 1975 [496], one
of the indirect aspects of our contribution was to introduce a problem that does not
even appear easy to solve. Now an aspiring cryptosystem designer could produce
something that would be recognized as clever-something that did more than just
turn meaningful text into nonsense. The result has been a spectacular increase in
the number of people working in cryptography, the number of meetings held, and
the number of books and papers published.

In my acceptance speech for the Donald E. Fink award-given for the best expos­
itory paper to appear in an IEEE journal-which I received jointly with Hellman in
1980, I told the audience that in writing "Privacy and Authentication," I had an
experience that I suspected was rare even among the prominent scholars who popu­
late the IEEE awards ceremony: I had written the paper I had wanted to study, but
could not find, when I first became seriously interested in cryptography. Had I been
able to go to the Stanford bookstore and pick up a modern cryptography text, I
would probably have learned about the field years earlier. But the only things avail­
able in the fall of 1972 were a few classic papers and some obscure technical reports.

The contemporary researcher has no such problem. The problem now is choosing
where to start among the thousands of papers and dozens of books. The contempo­
rary researcher, yes, but what about the contemporary programmer or engineer who
merely wants to use cryptography? Where does that person turn? Until now, it has
been necessary to spend long hours hunting out and then studying the research lit­
erature before being able to design the sort of cryptographic utilities glibly described
in popular articles.

This is the gap that Bruce Schneier's Applied Cryptography has come to fill.
Beginning with the objectives of communication security and elementary examples
of programs used to achieve these objectives, Schneier gives us a panoramic view of
the fruits of 20 years of public research. The title says it all; from the mundane
objective of having a secure conversation the very first time you call someone to the
possibilities of digital money and cryptographically secure elections, this is where
you'll find it.

xixForeword by Whitfield Diffie_______ _________,.,.%~

Not satisfied that the book was about the real world merely because it went all
the way down to the code, Schneier has included an account of the world in which
cryptography is developed and applied, and discusses entities ranging from the Inter­
national Association for Cryptologic Research to the NSA.

When public interest in cryptography was just emerging in the late seventies and
early eighties, the National Security Agency (NSA), America's official cryptographic
organ, made several attempts to quash it. The first was a letter from a long-time
NSA employee allegedly, avowedly, and apparently acting on his own. The letter
was sent to the IEEE and warned that the publication of cryptographic material was
a violation of the International Traffic in Arms Regulations (ITAR). This viewpoint
turned out not even to be supported by the regulations themselves-which con­
tained an explicit exemption for published material-but gave both the public prac­
tice of cryptography and the 1977 Information Theory Workshop lots of unexpected
publicity.

A more serious attempt occurred in 1980, when the NSA funded the American
Council on Education to examine the issue with a view to persuading Congress to
give it legal control of publications in the field of cryptography. The results fell far
short of NSA's ambitions and resulted in a program of voluntary review of crypto­
graphic papers; researchers were requested to ask the NSA's opinion on whether dis­
closure of results would adversely affect the national interest before publication.

As the eighties progressed, pressure focused more on the practice than the study
of cryptography. Existing laws gave the NSA the power, through the Department of
State, to regulate the export of cryptographic equipment. As business became more
and more international and the American fraction of the world market declined, the
pressure to have a single product in both domestic and offshore markets increased.
Such single products were subject to export control and thus the NSA acquired sub­
stantial influence not only over what was exported, but also over what was sold in
the United States.

As this is written, a new challenge confronts the public practice of cryptography.
The government has augmented the widely published and available Data Encryp­
tion Standard, with a secret algorithm implemented in tamper-resistant chips.
These chips will incorporate a codified mechanism of government monitoring. The
negative aspects of this "key-escrow" program range from a potentially disastrous
impact on personal privacy to the high cost of having to add hardware to products
that had previously encrypted in software. So far key escrow products are enjoying
less than stellar sales and the scheme has attracted widespread negative comment,
especially from the independent cryptographers. Some people, however, see more
future in programming than politicking and have redoubled their efforts to provide
the world with strong cryptography that is accessible to public scrutiny.

A sharp step back from the notion that export control law could supersede the
First Amendment seemed to have been taken in 1980 when the Federal Register
announcement of a revision to ITAR included the statement: " ... provision has
been added to make it clear that the regulation of the export of technical data does
not purport to interfere with the First Amendment rights of individuals." But the
fact that tension between the First Amendment and the export control laws has not

xx Foreword by Whitfield Diffie
~-..------:s -------

gone away should be evident from statements at a conference held by RSA Data
Security. NSA's representative from the export control office expressed the opinion
that people who published cryptographic programs were "in a grey area" with
respect to the law. If that is so, it is a grey area on which the first edition of this book
has shed some light. Export applications for the book itself have been granted, with
acknowledgement that published material lay beyond the authority of the Muni­
tions Control Board. Applications to export the enclosed programs on disk, how­
ever, have been denied.

The shift in the NSA's strategy, from attempting to control cryptographic research
to tightening its grip on the development and deployment of cryptographic prod­
ucts, is presumably due to its realization that all the great cryptographic papers in
the world do not protect a single bit of traffic. Sitting on the shelf, this volume may
be able to do no better than the books and papers that preceded it, but sitting next
to a workstation, where a programmer is writing cryptographic code, it just may.

Whitfield Diffie
Mountain View, CA

xxi_______ _________,.,.%~

Preface

There are two kinds of cryptography in this world: cryptography that will stop your
kid sister from reading your files, and cryptography that will stop major govern­
ments from reading your files. This book is about the latter.

If I take a letter, lock it in a safe, hide the safe somewhere in New York, then tell
you to read the letter, that's not security. That's obscurity. On the other hand, if I
take a letter and lock it in a safe, and then give you the safe along with the design
specifications of the safe and a hundred identical safes with their combinations so
that you and the world's best safecrackers can study the locking mechanism-and
you still can't open the safe and read the letter-that's security.

For many years, this sort of cryptography was the exclusive domain of the mili­
tary. The United States' National Security Agency (NSA), and its counterparts in
the former Soviet Union, England, France, Israel, and elsewhere, have spent billions
of dollars in the very serious game of securing their own communications while try­
ing to break everyone else's. Private individuals, with far less expertise and budget,
have been powerless to protect their own privacy against these governments.

During the last 20 years, public academic research in cryptography has exploded.
While classical cryptography has been long used by ordinary citizens, computer
cryptography was the exclusive domain of the world's militaries since World War IL
Today, state-of-the-art computer cryptography is practiced outside the secured walls
of the military agencies. The layperson can now employ security practices that can
protect against the most powerful of adversaries-security that may protect against
military agencies for years to come.

Do average people really need this kind of security? Yes. They may be planning a
political campaign, discussing taxes, or having an illicit affair. They may be design­
ing a new product, discussing a marketing strategy, or planning a hostile business
takeover. Or they may be living in a country that does not respect the rights of pri­
vacy of its citizens. They may be doing something that they feel shouldn't be illegal,

xxii Preface~-..------:s -------

but is. For whatever reason, the data and communications are personal, private, and
no one else's business.

This book is being published in a tumultuous time. In 1994, the Clinton admin­
istration approved the Escrowed Encryption Standard (including the Clipper chip
and Fortezza card) and signed the Digital Telephony bill into law. Both of these ini­
tiatives try to ensure the government's ability to conduct electronic surveillance.

Some dangerously Orwellian assumptions are at work here: that the government
has the right to listen to private communications, and that there is something
wrong with a private citizen trying to keep a secret from the government. Law
enforcement has always been able to conduct court-authorized surveillance if pos­
sible, but this is the first time that the people have been forced to take active mea­
sures to make themselves available for surveillance. These initiatives are not
simply government proposals in some obscure area; they are preemptive and unilat­
eral attempts to usurp powers that previously belonged to the people.

Clipper and Digital Telephony do not protect privacy; they force individuals to
unconditionally trust that the government will respect their privacy. The same law
enforcement authorities who illegally tapped Martin Luther King Jr.'s phones can
easily tap a phone protected with Clipper. In the recent past, local police authorities
have either been charged criminally or sued civilly in numerous jurisdictions­
Maryland, Connecticut, Vermont, Georgia, Missouri, and Nevada-for conducting
illegal wiretaps. It's a poor idea to deploy a technology that could some day facilitate
a police state.

The lesson here is that it is insufficient to protect ourselves with laws; we need to
protect ourselves with mathematics. Encryption is too important to be left solely to
governments.

This book gives you the tools you need to protect your own privacy; cryptography
products may be declared illegal, but the information will never be.

How TO READ THIS BOOK

I wrote Applied Cryptography to be both a lively introduction to the field of cryp­
tography and a comprehensive reference. I have tried to keep the text readable with­
out sacrificing accuracy. This book is not intended to be a mathematical text.
Although I have not deliberately given any false information, I do play fast and loose
with theory. For those interested in formalism, there are copious references to the
academic literature.

Chapter 1 introduces cryptography, defines many terms, and briefly discusses pre­
computer cryptography.

Chapters 2 through 6 (Part I) describe cryptographic protocols: what people can do
with cryptography. The protocols range from the simple (sending encrypted mes­
sages from one person to another) to the complex (flipping a coin over the telephone)
to the esoteric (secure and anonymous digital money exchange). Some of these pro­
tocols are obvious; others are almost amazing. Cryptography can solve a lot of prob­
lems that most people never realized it could.

xxiiiPreface_______ _________,.,.%~

Chapters 7 through 10 (Part II) discuss cryptographic techniques. All four chapters in
this section are important for even the most basic uses of cryptography. Chapters 7 and
8 are about keys: how long a key should be in order to be secure, how to generate keys,
how to store keys, how to dispose of keys, and so on. Key management is the hardest
part of cryptography and often the Achilles' heel of an otherwise secure system. Chap­
ter 9 discusses different ways of using cryptographic algorithms, and Chapter 10 gives
the odds and ends of algorithms: how to choose, implement, and use algorithms.

Chapters 11 through 23 (Part III) list algorithms. Chapter 11 provides the mathe­
matical background. This chapter is only required if you are interested in public-key
algorithms. If you just want to implement DES (or something similar), you can skip
ahead. Chapter 12 discusses DES: the algorithm, its history, its security, and some
variants. Chapters 13, 14, and 15 discuss other block algorithms; if you want some­
thing more secure than DES, skip to the section on IDEA and triple-DES. If you want
to read about a bunch of algorithms, some of which may be more secure than DES,
read the whole chapter. Chapters 16 and 17 discuss stream algorithms. Chapter 18
focuses on one-way hash functions; MD5 and SHA are the most common, although
I discuss many more. Chapter 19 discusses public-key encryption algorithms, Chap­
ter 20 discusses public-key digital signature algorithms, Chapter 21 discusses public­
key identification algorithms, and Chapter 22 discusses public-key key exchange
algorithms. The important algorithms are RSA, DSA, Fiat-Shamir, and Diffie­
Hellman, respectively. Chapter 23 has more esoteric public-key algorithms and pro­
tocols; the math in this chapter is quite complicated, so wear your seat belt.

Chapters 24 and 25 (Part IV) turn to the real world of cryptography. Chapter 24
discusses some of the current implementations of these algorithms and protocols,
while Chapter 25 touches on some of the political issues surrounding cryptography.
These chapters are by no means intended to be comprehensive.

Also included are source code listings for 10 algorithms discussed in Part III. I was
unable to include all the code I wanted to due to space limitations, and crypto­
graphic source code cannot otherwise be exported. (Amazingly enough, the State
Department allowed export of the first edition of this book with source code, but
denied export for a computer disk with the exact same source code on it. Go figure.)
An associated source code disk set includes much more source code than I could fit
in this book; it is probably the largest collection of cryptographic source code out­
side a military institution. I can only send source code disks to U.S. and Canadian
citizens living in the U.S. and Canada, but hopefully that will change someday. If
you are interested in implementing or playing with the cryptographic algorithms in
this book, get the disk. See the last page of the book for details.

One criticism of this book is that its encyclopedic nature takes away from its
readability. This is true, but I wanted to provide a single reference for those who
might come across an algorithm in the academic literature or in a product. For those
who are more interested in a tutorial, I apologize. A lot is being done in the field;
this is the first time so much of it has been gathered between two covers. Even so,
space considerations forced me to leave many things out. I covered topics that I felt
were important, practical, or interesting. If I couldn't cover a topic in depth, I gave
references to articles and papers that did.

xxiv Preface~-..------:s -------

I have done my best to hunt down and eradicate all errors in this book, but many
have assured me that it is an impossible task. Certainly, the second edition has far
fewer errors than the first. An errata listing is available from me and will be period­
ically posted to the Usenet newsgroup sci.crypt. If any reader finds an error, please
let me know. I'll send the first person to find each error in the book a free copy of the
source code <lisle

Acknowledgments
The list of people who had a hand in this book may seem unending, but all are

worthy of mention. I would like to thank Don Alvarez, Ross Anderson, Dave Balen­
son, Karl Barrus, Steve Bellovin, Dan Bernstein, Eli Biham, Joan Boyar, Karen
Cooper, Whit Diffie, Joan Feigenbaum, Phil Karn, Neal Koblitz, Xuejia Lai, Tom
Leranth, Mike Markowitz, Ralph Merkle, Bill Patton, Peter Pearson, Charles
Pfleeger, Ken Pizzini, Bart Preneel, Mark Riordan, Joachim Schurman, and Marc
Schwartz for reading and editing all or parts of the first edition; Marc Vauclair for
translating the first edition into French; Abe Abraham, Ross Anderson, Dave
Banisar, Steve Bellovin, Eli Biham, Matt Bishop, Matt Blaze, Gary Carter, Jan
Camenisch, Claude Crepeau, Joan Daemen, Jorge Davila, Ed Dawson, Whit Diffie,
Carl Ellison, Joan Feigenbaum, Niels Ferguson, Matt Franklin, Rosario Gennaro,
Dieter Gollmann, Mark Goresky, Richard Graveman, Stuart Haber, Jingman He,
Bob Hogue, Kenneth Iversen, Markus Jakobsson, Burt Kaliski, Phil Karn, John
Kelsey, John Kennedy, Lars Knudsen, Paul Kocher, John Ladwig, Xuejia Lai, Arjen
Lenstra, Paul Leyland, Mike Markowitz, Jim Massey, Bruce McNair, William Hugh
Murray, Roger Needham, Clif Neuman, Kaisa Nyberg, Luke O'Connor, Peter Pear­
son, Rene Peralta, Bart Preneel, Yisrael Radai, Matt Robshaw, Michael Roe, Phil
Rogaway, Avi Rubin, Paul Rubin, Selwyn Russell, Kazue Sako, Mahmoud Salma­
sizadeh, Markus Stadler, Dmitry Titov, Jimmy Upton, Marc Vauclair, Serge Vaude­
nay, Gideon Yuval, Glen Zorn, and several anonymous government employees for
reading and editing all or parts of the second edition; Lawrie Brown, Leisa Condie,
Joan Daemen, Peter Gutmann, Alan Insley, Chris Johnston, John Kelsey, Xuejia Lai,
Bill Leininger, Mike Markowitz, Richard Outerbridge, Peter Pearson, Ken Pizzini,
Colin Plumb, RSA Data Security, Inc., Michael Roe, Michael Wood, and Phil Zim­
mermann for providing source code; Paul MacNerland for creating the figures for
the first edition; Karen Cooper for copyediting the second edition; Beth Friedman for
proofreading the second edition; Carol Kennedy for indexing the second edition; the
readers of sci.crypt and the Cypherpunks mailing list for commenting on ideas,
answering questions, and finding errors in the first edition; Randy Seuss for provid­
ing Internet access; Jeff Duntemann and Jon Erickson for helping me get started;
assorted random Insleys for the impetus, encouragement, support, conversations,
friendship, and dinners; and AT & T Bell Labs for firing me and making this all pos­
sible. All these people helped to create a far better book than I could have created
alone.

Bruce Schneier

xxv

About the Author

BRUCE SCHNEIER is an internationally renowned security technologist, called a
“security guru” by The Economist. He is the author of twelve books — including
his seminal work, Applied Cryptography: Protocols, Algorithms, and Source Code
in C, and Secrets & Lies: Digital Security in a Networked World which has become
a classic as well as hundreds of articles, essays, and academic papers. His influen-
tial newsletter “Crypto-Gram” and blog “Schneier on Security” are read by over
250,000 people. Schneier is a fellow at the Berkman Center for Internet and Society
at Harvard Law School, a program fellow at the New America Foundation’s Open
Technology Institute, a board member of the Electronic Frontier Foundation, and an
Advisory Board member of the Electronic Privacy Information Center. He is also the
Chief Technology Officer of Resilient Systems, Inc. You can read his blog, essays,
and academic papers at www.schneier.com. He tweets at @schneierblog.

_______ _________,.,.%~

-------------=--z~

CHAPTER 1

Foundations

1.1 TERMINOLOGY

Sender and Receiver

Suppose a sender wants to send a message to a receiver. Moreover, this sender
wants to send the message securely: She wants to make sure an eavesdropper can­
not read the message.

Messages and Encryption

A message is plaintext (sometimes called cleartext). The process of disguising a
message in such a way as to hide its substance is encryption. An encrypted message
is ciphertext. The process of turning ciphertext back into plaintext is decryption.
This is all shown in Figure 1.1.

(If you want to follow the ISO 7498-2 standard, use the terms "encipher" and
"decipher." It seems that some cultures find the terms "encrypt" and "decrypt"
offensive, as they refer to dead bodies.)

The art and science of keeping messages secure is cryptography, and it is practiced
by cryptographers. Cryptanalysts are practitioners of cryptanalysis, the art and sci­
ence of breaking ciphertext; that is, seeing through the disguise. The branch of
mathematics encompassing both cryptography and cryptanalysis is cryptology and
its practitioners are cryptologists. Modern cryptologists are generally trained in the­
oretical mathematics-they have to be.

Original
Plaintext I Ciphertext I Plaintext ----•~I Encryption 1 •. Decryption I •

Figure 1.1 Encryption and Decryption.

~-:s ________ C_H_A_P_T_E_R_l __ F_o_u_n_d_a_t_i_on_s _________________ _

Plaintext is denoted by M, for message, or P, for plaintext. It can be a stream of
bits, a text file, a bitmap, a stream of digitized voice, a digital video image ... what­
ever. As far as a computer is concerned, Mis simply binary data. (After this chapter,
this book concerns itself with binary data and computer cryptography.) The plain­
text can be intended for either transmission or storage. In any case, Mis the message
to be encrypted.

Ciphertext is denoted by C. It is also binary data: sometimes the same size as M,
sometimes larger. (By combining encryption with compression, C may be smaller
than M. However, encryption does not accomplish this.) The encryption function E,
operates on M to produce C. Or, in mathematical notation:

E(M)=C

In the reverse process, the decryption function D operates on C to produce M:

D(C)=M

Since the whole point of encrypting and then decrypting a message is to recover
the original plaintext, the following identity must hold true:

D(E(M))=M

Authentication, Integrity, and Nonrepudiation
In addition to providing confidentiality, cryptography is often asked to do other

jobs:

Authentication. It should be possible for the receiver of a message to
ascertain its origin; an intruder should not be able to masquerade as
someone else.

Integrity. It should be possible for the receiver of a message to verify
that it has not been modified in transit; an intruder should not be able
to substitute a false message for a legitimate one.

Nonrepudiation. A sender should not be able to falsely deny later that
he sent a message.

These are vital requirements for social interaction on computers, and are analo­
gous to face-to-face interactions. That someone is who he says he is ... that some­
one's credentials-whether a driver's license, a medical degree, or a passport-are
valid ... that a document purporting to come from a person actually came from that
person These are the things that authentication, integrity, and nonrepudiation
provide.

Algorithms and Keys

A cryptographic algorithm, also called a cipher, is the mathematical function used
for encryption and decryption. (Generally, there are two related functions: one for
encryption and the other for decryption.)

___________________ 1_._l_'n_e_r_m_1_·n_o_l_o_g_y ________ 7~~

If the security of an algorithm is based on keeping the way that algorithm works
a secret, it is a restricted algorithm. Restricted algorithms have historical interest,
but are woefully inadequate by today's standards. A large or changing group of users
cannot use them, because every time a user leaves the group everyone else must
switch to a different algorithm. If someone accidentally reveals the secret, everyone
must change their algorithm.

Even more damning, restricted algorithms allow no quality control or standard­
ization. Every group of users must have their own unique algorithm. Such a group
can't use off-the-shelf hardware or software productsi an eavesdropper can buy the
same product and learn the algorithm. They have to write their own algorithms and
implementations. If no one in the group is a good cryptographer, then they won't
know if they have a secure algorithm.

Despite these major drawbacks, restricted algorithms are enormously popular for
low-security applications. Users either don't realize or don't care about the security
problems inherent in their system.

Modern cryptography solves this problem with a key, denoted by K. This key might
be any one of a large number of values. The range of possible values of the key is called
the keyspace. Both the encryption and decryption operations use this key (i.e., they
are dependent on the key and this fact is denoted by the K subscript), so the functions
now become:

EK(M) = C

DK(C)=M

Those functions have the property that (see Figure 1.2):

DK(EJ<(M)) = M

Some algorithms use a different encryption key and decryption key (see Figure
1.3). That is, the encryption key, K1, is different from the corresponding decryption
key, K2 • In this case:

EK1(M) = C

Dg2(C)=M

DK2(EK1 (M)) = Af

All of the security in these algorithms is based in the key (or keysb none is based
in the details of the algorithm. This means that the algorithm can be published and
analyzed. Products using the algorithm can be mass-produced. It doesn't matter if an

Key

Plaintext ,---~-~ Ciphertext
Encryption

Key

Original
,---~-~ Plaintext

Decryption f------

Figure 1.2 Encryption and decryption with a key.

~"':s;~-------C_H_A_P_T_E_R_I __ F_o_u_n_d_a_t_i_on_s _________________ _

Encryption Decryption
Key Key

Original
Plaintext Ciphertext Plaintext

Encryption Decryption

Figure 1.3 Encryption and decryption with two different keys.

eavesdropper knows your algorithm; if she doesn't know your particular key, she
can't read your messages.

A cryptosystem is an algorithm, plus all possible plaintexts, ciphertexts, and keys.

Symmetric Algorithms
There are two general types of key-based algorithms: symmetric and public-key.

Symmetric algorithms, sometimes called conventional algorithms, are algorithms
where the encryption key can be calculated from the decryption key and vice versa.
In most symmetric algorithms, the encryption key and the decryption key are the
same. These algorithms, also called secret-key algorithms, single-key algorithms, or
one-key algorithms, require that the sender and receiver agree on a key before they
can communicate securely. The security of a symmetric algorithm rests in the key;
divulging the key means that anyone could encrypt and decrypt messages. As long
as the communication needs to remain secret, the key must remain secret.

Encryption and decryption with a symmetric algorithm are denoted by:

E1dM) = C

DK(C)=M

Symmetric algorithms can be divided into two categories. Some operate on the
plaintext a single bit (or sometimes byte) at a time; these are called stream algo­
rithms or stream ciphers. Others operate on the plaintext in groups of bits. The
groups of bits are called blocks, and the algorithms are called block algorithms or
block ciphers. For modern computer algorithms, a typical block size is 64 bits­
large enough to preclude analysis and small enough to be workable. (Before com­
puters, algorithms generally operated on plaintext one character at a time. You can
think of this as a stream algorithm operating on a stream of characters.)

Public-Key Algorithms
Public-key algorithms (also called asymmetric algorithms) are designed so that

the key used for encryption is different from the key used for decryption. Further­
more, the decryption key cannot (at least in any reasonable amount of time) be cal­
culated from the encryption key. The algorithms are called "public-key" because
the encryption key can be made public: A complete stranger can use the encryption
key to encrypt a message, but only a specific person with the corresponding decryp-

____________________ 1._1 __ Ti_er_m_in_o_l_o_g_y _________ 7-~

tion key can decrypt the message. In these systems, the encryption key is often
called the public key, and the decryption key is often called the private key. The pri­
vate key is sometimes also called the secret key, but to avoid confusion with sym­
metric algorithms, that tag won't be used here.

Encryption using public key K is denoted by:

EK(M) = C

Even though the public key and private key are different, decryption with the cor­
responding private key is denoted by:

DK(C)=M

Sometimes, messages will be encrypted with the private key and decrypted with
the public key; this is used in digital signatures (see Section 2.6). Despite the possi­
ble confusion, these operations are denoted by, respectively:

EK(M) = C

DK(C) =M

Cryptanalysis

The whole point of cryptography is to keep the plaintext (or the key, or both)
secret from eavesdroppers (also called adversaries, attackers, interceptors, interlop­
ers, intruders, opponents, or simply the enemy). Eavesdroppers are assumed to have
complete access to the communications between the sender and receiver.

Cryptanalysis is the science of recovering the plaintext of a message without
access to the key. Successful cryptanalysis may recover the plaintext or the key. It
also may find weaknesses in a cryptosystem that eventually lead to the previous
results. (The loss of a key through noncryptanalytic means is called a compromise.)

An attempted cryptanalysis is called an attack. A fundamental assumption in
cryptanalysis, first enunciated by the Dutchman A. Kerckhoffs in the nineteenth
century, is that the secrecy must reside entirely in the key [794]. Kerckhoffs
assumes that the cryptanalyst has complete details of the cryptographic algorithm
and implementation. (Of course, one would assume that the CIA does not make a
habit of telling Mossad about its cryptographic algorithms, but Mossad probably
finds out anyway.) While real-world cryptanalysts don't always have such detailed
information, it's a good assumption to make. If others can't break an algorithm,
even with knowledge of how it works, then they certainly won't be able to break it
without that knowledge.

There are four general types of cryptanalytic attacks. Of course, each of them
assumes that the cryptanalyst has complete knowledge of the encryption algo­
rithm used:

1. Ciphertext-only attack. The cryptanalyst has the ciphertext of several
messages, all of which have been encrypted using the same encryption
algorithm. The cryptanalyst's job is to recover the plaintext of as many
messages as possible, or better yet to deduce the key (or keys) used to

c~-:s.- _______ C_H_A_P_T_E_R_I ___ F_o_u_n_d_a_t1_·o_n_s _________________ _

encrypt the messages, in order to decrypt other messages encrypted with
the same keys.

Given: C1 = Ek(Pi), C2 = Ek(P2), ... C; = El<(P;)

Deduce: Either P 1, P2, ..• P;; k; or an algorithm
to infer P; + 1 from C; + 1 = Ek(P1 + 1)

2. Known-plaintext attack. The cryptanalyst has access not only to the
ciphertext of several messages, but also to the plaintext of those messages.
His job is to deduce the key (or keys) used to encrypt the messages or an
algorithm to decrypt any new messages encrypted with the same key (or
keys).

Given: P1, C 1 = Ek(Pi), P2, C2 = E1<(P2), ... P;, C; = E1AP;)

Deduce: Either k, or an algorithm
to infer P; + 1 from cj +I= Ek(P; + 1)

3. Chosen-plaintext attack. The cryptanalyst not only has access to the
ciphertext and associated plaintext for several messages, but he also
chooses the plaintext that gets encrypted. This is more powerful than a
known-plaintext attack, because the cryptanalyst can choose specific
plaintext blocks to encrypt, ones that might yield more information about
the key. His job is to deduce the key (or keys) used to encrypt the messages
or an algorithm to decrypt any new messages encrypted with the same key
(or keys).

Given: P1, C1 = EdP 1), P2, C2 = E1z(P2), ... P;, C; = Ek(P;),
where the cryptanalyst gets to choose P1, P2, ... P;

Deduce: Either k, or an algorithm to infer P; + 1 from C; + 1 = E1z(P; + 1)

4. Adaptive-chosen-plaintext attack. This is a special case of a chosen­
plaintext attack. Not only can the cryptanalyst choose the plaintext that is
encrypted, but he car. also modify his choice based on the results of previ­
ous encryption. In a chosen-plaintext attack, a cryptanalyst might just be
able to choose one large block of plaintext to be encrypted; in an adaptive­
chosen-plaintext attack he can choose a smaller block of plaintext and
then choose another based on the results of the first, and so forth.

There are at least three other types of cryptanalytic attack.

5. Chosen-ciphertext attack. The cryptanalyst can choose different cipher­
texts to be decrypted and has access to the decrypted plaintext. For exam­
ple, the cryptanalyst has access to a tamperproof box that does automatic
decryption. His job is to deduce the key.

Given: C 1, P1 = Dk(C1), C2, P2 = D1z(C2), ••. C;, P; = D1<(C;)

Deduce: k

__________________ 1_._1_Ti_e_r_m_i_n_o_lo_g_y ________ 7~~

This attack is primarily applicable to public-key algorithms and will be
discussed in Section 19 .3. A chosen-ciphertext attack is sometimes effec­
tive against a symmetric algorithm as well. (Sometimes a chosen-plaintext
attack and a chosen-ciphertext attack are together known as a chosen-text
attack.)

6. Chosen-key attack. This attack doesn't mean that the cryptanalyst can
choose the key; it means that he has some knowledge about the relation­
ship between different keys. It's strange and obscure, not very practical,
and discussed in Section 12.4.

7. Rubber-hose cryptanalysis. The cryptanalyst threatens, blackmails, or tor­
tures someone until they give him the key. Bribery is sometimes referred
to as a purchase-key attack. These are all very powerful attacks and often
the best way to break an algorithm.

Known-plaintext attacks and chosen-plaintext attacks are more common than
you might think. It is not unheard-of for a cryptanalyst to get a plaintext message
that has been encrypted or to bribe someone to encrypt a chosen message. You may
not even have to bribe someone; if you give a message to an ambassador, you will
probably find that it gets encrypted and sent back to his country for consideration.
Many messages have standard beginnings and endings that might be known to the
cryptanalyst. Encrypted source code is especially vulnerable because of the regular
appearance of keywords: #define, struct, else, return. Encrypted executable code has
the same kinds of problems: functions, loop structures, and so on. Known-plaintext
attacks (and even chosen-plaintext attacks) were successfully used against both the
Germans and the Japanese during World War II. David Kahn's books [794,795,796]
have historical examples of these kinds of attacks.

And don't forget Kerckhoffs's assumption: If the strength of your new cryptosys­
tem relies on the fact that the attacker does not know the algorithm's inner work­
ings, you're sunk. If you believe that keeping the algorithm's insides secret
improves the security of your cryptosystem more than letting the academic com­
munity analyze it, you're wrong. And if you think that someone won't disassemble
your code and reverse-engineer your algorithm, you're nai:ve. (In 1994 this hap­
pened with the RC4 algorithm-see Section 17.1.) The best algorithms we have are
the ones that have been made public, have been attacked by the world's best cryp­
tographers for years, and are still unbreakable. (The National Security Agency
keeps their algorithms secret from outsiders, but they have the best cryptographers
in the world working within their walls-you don't. Additionally, they discuss
their algorithms with one another, relying on peer review to uncover any weak­
nesses in their work.)

Cryptanalysts don't always have access to the algorithms, as when the United
States broke the Japanese diplomatic code PURPLE during World War II [794]-but
they often do. If the algorithm is being used in a commercial security program, it is
simply a matter of time and money to disassemble the program and recover the algo­
rithm. If the algorithm is being used in a military communications system, it is sim-

~-:s. ________ C_H_A_P_T_E_R_l __ F_o_u_n_d_a_t1_·o_n_s _________________ _

ply a matter of time and money to buy (or steal) the equipment and reverse-engineer
the algorithm.

Those who claim to have an unbreakable cipher simply because they can't break
it are either geniuses or fools. Unfortunately, there are more of the latter in the
world. Beware of people who extol the virtues of their algorithms, but refuse to
make them public; trusting their algorithms is like trusting snake oil.

Good cryptographers rely on peer review to separate the good algorithms from
the bad.

Security of Algorithms
Different algorithms offer different degrees of security; it depends on how hard

they are to break. If the cost required to break an algorithm is greater than the value
of the encrypted data, then you're probably safe. If the time required to break an
algorithm is longer than the time the encrypted data must remain secret, then
you're probably safe. If the amount of data encrypted with a single key is less than
the amount of data necessary to break the algorithm, then you're probably safe.

I say "probably" because there is always a chance of new breakthroughs in crypt­
analysis. On the other hand, the value of most data decreases over time. It is impor­
tant that the value of the data always remain less than the cost to break the security
protecting it.

Lars Knudsen classified these different categories of breaking an algorithm. In
decreasing order of severity [858]:

1. Total break. A cryptanalyst finds the key, K. such that DI<(C) = P.

2. Global deduction. A cryptanalyst finds an alternate algorithm, A, equiva­
lent to D 1dC), without knowing K.

3. Instance (or local) deduction. A cryptanalyst finds the plaintext of an inter­
cepted ciphertext.

4. Information deduction. A cryptanalyst gains some information about the
key or plaintext. This information could be a few bits of the key, some
information about the form of the plaintext, and so forth.

An algorithm is unconditionally secure if, no matter how much ciphertext a
cryptanalyst has, there is not enough information to recover the plaintext. In point
of fact, only a one-time pad (see Section 1.5) is unbreakable given infinite resources.
All other cryptosystems are breakable in a ciphertext-only attack, simply by trying
every possible key one by one and checking whether the resulting plaintext is mean­
ingful. This is called a brute-force attack (see Section 7.1).

Cryptography is more concerned with cryptosystems that are computationally
infeasible to break. An algorithm is considered computationally secure (sometimes
called strong) if it cannot be broken with available resources, either current or
future. Exactly what constitutes "available resources" is open to interpretation.

You can measure the complexity (see Section 11.1) of an attack in different ways:

_________________ 1_._2_S_t_eg_a_n_o_g_r_ap_h_y ________ 7 __ ~

1. Data complexity. The amount of data needed as input to the attack.

2. Processing complexity. The time needed to perform the attack. This is
often called the work factor.

3. Storage requirements. The amount of memory needed to do the attack.

As a rule of thumb, the complexity of an attack is taken to be the minimum of
these three factors. Some attacks involve trading off the three complexities: A faster
attack might be possible at the expense of a greater storage requirement.

Complexities are expressed as orders of magnitude. If an algorithm has a process­
ing complexity of 2128, then 2 128 operations are required to break the algorithm.
(These operations may be complex and time-consuming.) Still, if you assume that
you have enough computing speed to perform a million operations every second and
you set a million parallel processors against the task, it will still take over 1019 years
to recover the key. That's a billion times the age of the universe.

While the complexity of an attack is constant (until some cryptanalyst finds a bet­
ter attack, of course), computing power is anything but. There have been phenome­
nal advances in computing power during the last half-century and there is no reason
to think this trend won't continue. Many cryptanalytic attacks are perfect for paral­
lel machines: The task can be broken down into billions of tiny pieces and none of
the processors need to interact with each other. Pronouncing an algorithm secure
simply because it is infeasible to break, given current technology, is dicey at best.
Good cryptosystems are designed to be infeasible to break with the computing
power that is expected to evolve many years in the future.

Historical Terms
Historically, a code refers to a cryptosystem that deals with linguistic units:

words, phrases, sentences, and so forth. For example, the word "OCELOT" might be
the ciphertext for the entire phrase "TURN LEFT 90 DEGREES," the word "LOL­
LIPOP" might be the ciphertext for "TURN RIGHT 90 DEGREES," and the words
"BENT EAR" might be the ciphertext for "HOWITZER." Codes of this type are not
discussed in this book; see [794,795]. Codes are only useful for specialized circum­
stances. Ciphers are useful for any circumstance. If your code has no entry for
"ANTEATERS," then you can't say it. You can say anything with a cipher.

1.2 STEGANOGRAPHY

Steganography serves to hide secret messages in other messages, such that the
secret's very existence is concealed. Generally the sender writes an innocuous mes­
sage and then conceals a secret message on the same piece of paper. Historical tricks
include invisible inks, tiny pin punctures on selected characters, minute differences
between handwritten characters, pencil marks on typewritten characters, grilles
which cover most of the message except for a few characters, and so on.

~-:s ________ C_H_A_P_T_E_R_l __ F_o_u_n_d_a_t1_·o_n_s _________________ _

More recently, people are hiding secret messages in graphic images. Replace the
least significant bit of each byte of the image with the bits of the message. The
graphical image won't change appreciably-most graphics standards specify more
gradations of color than the human eye can notice-and the message can be stripped
out at the receiving end. You can store a 64-kilobyte message in a 1024 x 1024 grey­
scale picture this way. Several public-domain programs do this sort of thing.

Peter Wayner's mimic functions obfuscate messages. These functions modify a
message so that its statistical profile resembles that of something else: the classi­
fieds section of The New York Times, a play by Shakespeare, or a newsgroup on the
Internet [1584, 1585]. This type of steganography won't fool a person, but it might
fool some big computers scanning the Internet for interesting messages.

1.3 SUBSTITUTION CIPHERS AND TRANSPOSITION CIPHERS

Before computers, cryptography consisted of character-based algorithms. Different
cryptographic algorithms either substituted characters for one another or transposed
characters with one another. The better algorithms did both, many times each.

Things are more complex these days, but the philosophy remains the same. The
primary change is that algorithms work on bits instead of characters. This is actu­
ally just a change in the alphaLet size: from 26 elements to two elements. Most good
cryptographic algorithms still combine elements of substitution and transposition.

Substitution Ciphers

A substitution cipher is one in which each character in the plaintext is substi­
tuted for another character in the ciphertext. The receiver inverts the substitution
on the ciphertext to recover the plaintext.

In classical cryptography, there are four types of substitution ciphers:

A simple substitution cipher, or monoalphabetic cipher, is one in
which each character of the plaintext is replaced with a correspond­
ing character of ciphertext. The cryptograms in newspapers are sim­
ple substitution ciphers.

A homophonic substitution cipher is like a simple substitution cryp­
tosystem, except a single character of plaintext can map to one of sev­
eral characters of ciphertext. For example, 11 A" could correspond to
either 5, 13, 25, or 56, "B" could correspond to either 7, 19, 31, or 42,
and so on.

A polygram substitution cipher is one in which blocks of characters
are encrypted in groups. For example, "ABA" could correspond to
"RTQ, 11 "ABB" could correspond to "SLL, 11 and so on.

A polyalphabetic substitution cipher is made up of multiple simple
substitution ciphers. For example, there might be five different sim­
ple substitution ciphers used; the particular one used changes with
the position of each character of the plaintext.

1.3 Substitution Ciphers and Transposition Ciphers

The famous Caesar Cipher, in which each plaintext character is replaced by the
character three to the right modulo 26 ("A" is replaced by "D," "B" is replaced by
"E," ... , "W" is replaced by "Z," "X" is replaced by "A," "Y" is replaced by "B,"
and "Z" is replaced by "C") is a simple substitution cipher. It's actually even sim­
pler, because the ciphertext alphabet is a rotation of the plaintext alphabet and not
an arbitrary permutation.

ROT13 is a simple encryption program commonly found on UNIX systems; it is
also a simple substitution cipher. In this cipher, "A" is replaced by "N," "B" is
replaced by "O," and so on. Every letter is rotated 13 places.

Encrypting a file twice with ROT13 restores the original file.

P = ROT13 (ROT13 (P))

ROT13 is not intended for security; it is often used in Usenet posts to hide poten­
tially offensive text, to avoid giving away the solution to a puzzle, and so forth.

Simple substitution ciphers can be easily broken because the cipher does not hide
the underlying frequencies of the different letters of the plaintext. All it takes is
about 25 English characters before a good cryptanalyst can reconstruct the plaintext
[1434]. An algorithm for solving these sorts of ciphers can be found in [578,587,
1600, 78,1475, 1236,880]. A good computer algorithm is [703].

Homophonic substitution ciphers were used as early as 1401 by the Duchy of Man­
tua [794]. They are much more complicated to break than simple substitution ciphers,
but still do not obscure all of the statistical properties of the plaintext language. With
a known-plaintext attack, the ciphers are trivial to break. A ciphertext-only attack is
harder, but only takes a few seconds on a computer. Details are in [1261].

Polygram substitution ciphers are ciphers in which groups of letters are encrypted
together. The Playfair cipher, invented in 1854, was used by the British during
World War I [794]. It encrypts pairs of letters together. Its cryptanalysis is discussed
in [587,1475,880]. The Hill cipher is another example of a polygram substitution
cipher [732]. Sometimes you see Huffman coding used as a cipher; this is an insecure
polygram substitution cipher.

Polyalphabetic substitution ciphers were invented by Leon Battista in 1568 [794].
They were used by the Union army during the American Civil War. Despite the fact
that they can be broken easily [819,577,587,794] (especially with the help of com­
puters), many commercial computer security products use ciphers of this form
[1387, 1390, 1502]. (Details on how to break this encryption scheme, as used in Word­
Perfect, can be found in [135, 139].) The Vigenere cipher, first published in 1586, and
the Beaufort cipher are also examples of polyalphabetic substitution ciphers.

Polyalphabetic substitution ciphers have multiple one-letter keys, each of which
is used to encrypt one letter of the plain text. The first key encrypts the first letter of
the plaintext, the second key encrypts the second letter of the plaintext, and so on.
After all the keys are used, the keys are recycled. If there were 20 one-letter keys,
then every twentieth letter would be encrypted with the same key. This is called the
period of the cipher. In classical cryptography, ciphers with longer periods were sig­
nificantly harder to break than ciphers with short periods. There are computer tech­
niques that can easily break substitution ciphers with very long periods.

~""':S ________ C_H_A_P_T_E_R_l __ F_o_u_n_d_a_t_io_n_s __________________ _

A running-key cipher-sometimes called a book cipher-in which one text is
used to encrypt another text, is another example of this sort of cipher. Even though
this cipher has a period the length of the text, it can also be broken easily [576,794].

Transposition Ciphers
In a transposition cipher the plaintext remains the same, but the order of charac­

ters is shuffled around. In a simple columnar transposition cipher, the plaintext is
written horizontally onto a piece of graph paper of fixed width and the ciphertext is
read off vertically (see Figure 1 .4). Decryption is a matter of writing the ciphertext
vertically onto a piece of graph paper of identical width and then reading the plain­
text off horizontally.

Cryptanalysis of these ciphers is discussed in [587,1475]. Since the letters of the
ciphertext are the same as those of the plain text, a frequency analysis on the cipher­
text would reveal that each letter has approximately the same likelihood as in
English. This gives a very good clue to a cryptanalyst, who can then use a variety of
techniques to determine the right ordering of the letters to obtain the plaintext.
Putting the ciphertext through a second transposition cipher greatly enhances secu­
rity. There are even more complicated transposition ciphers, but computers can
break almost all of them.

The German ADFGVX cipher, used during World War I, is a transposition cipher
combined with a simple substitution. It was a very complex algorithm for its day
but was broken by Georges Painvin, a French cryptanalyst [794].

Although many modern algorithms use transposition, it is troublesome because it
requires a lot of memory and sometimes requires messages to be only certain
lengths. Substitution is far more common.

Rotor Machines
In the 1920s, various mechanical encryption devices were invented to automate

the process of encryption. Most were based on the concept of a rotor, a mechanical
wheel wired to perform a general substitution.

A rotor machine has a keyboard and a series of rotors, and implements a version
of the Vigenere cipher. Each rotor is an arbitrary permutation of the alphabet, has 26
positions, and performs a simple substitution. For example, a rotor might be wired

Plaintext:coMPUTER GRAPHICS MAY BE SLOW BUT AT LEAST IT'S EXPENSIVE.

COMPUTERGR
APHICSMAYB
F:SLOWBUTAT
LEASTITSEX
PENSIVE

Ciphertext: CAELP OP SEE MHLAN PIOSS UCWTI TSBIVEMUTE RATS', YAERB TX

Figure 1.4 Columnar transposition cipher.

_________________ 1_.4 __ S_im_p_l_e_X_O_R ________ 7....,,,,,~

to substitute "F" for "A," "U" for 11B, 11 11L11 for 11 C, 11 and so on. And the output pins
of one rotor are connected to the input pins of the next.

For example, in a 4-rotor machine the first rotor might substitute 11F11 for II A," the
second might substitute 11Y" for 11F, 11 the third might substitute 11E11 for 11Y, 11 and the
fourth might substitute "C" for 11E"; 11C 11 would be the output ciphertext. Then
some of the rotors shift, so next time the substitutions will be different.

It is the combination of several rotors and the gears moving them that makes the
machine secure. Because the rotors all move at different rates, the period for an n­
rotor machine is 26n. Some rotor machines can also have a different number of posi­
tions on each rotor, further frustrating cryptanalysis.

The best-known rotor device is the Enigma. The Enigma was used by the Ger­
mans during World War IL The idea was invented by Arthur Scherbius and Arvid
Gerhard Damm in Europe. It was patented in the United States by Arthur Scherbius
[1383]. The Germans beefed up the basic design considerably for wartime use.

The German Enigma had three rotors, chosen from a set of five, a plugboard that
slightly permuted the plaintext, and a reflecting rotor that caused each rotor to oper­
ate on each plaintext letter twice. As complicated as the Enigma was, it was broken
during World War IL First, a team of Polish cryptographers broke the German
Enigma and explained their attack to the British. The Germans modified their
Enigma as the war progressed, and the British continued to cryptanalyze the new
versions. For explanations of how rotor ciphers work and how they were broken, see
[794,86,448,498,446,880,1315,1587,690]. Two fascinating accounts of how the
Enigma was broken are [735,796].

Further Reading
This is not a book about classical cryptography,, so I will not dwell further on these

subjects. Two excellent precomputer cryptology books are [587,1475]; [448] presents
some modern cryptanalysis of cipher machines. Dorothy Denning discusses many of
these ciphers in [456] and [880] has some fairly complex mathematical analysis of the
same ciphers. Another older cryptography text, which discusses analog cryptogra­
phy, is [99]. An article that presents a good overview of the subject is [579]. David
Kahn's historical cryptography books are also excellent [794,795,796].

1.4 SIMPLE XOR
XOR is exclusive-or operation: 1 /\ 1 in C or EB in mathematical notation. It's a stan­
dard operation on bits:

0EB0=0

0EBl=l

lEB0=l

lEBl=0

Also note that:

aEBa=0

aEBbEBb=a

~-s ________ C_H_A_P_T_E_R_l __ F_o_u_n_d_a_t1_·o_n_s ________________ _

The simple-XOR algorithm is really an embarrassment; it's nothing more than a
Vigenere polyalphabetic cipher. It's here only because of its prevalence in commer­
cial software packages, at least those in the MS-DOS and Macintosh worlds
[1502,1387]. Unfortunately, if a software security program proclaims that it has a
"proprietary" encryption algorithm-significantly faster than DES-the odds are
that it is some variant of this.

/* Usage: crypto key input_file output_file */

void main (int a rgc, char *argv[J)
{

FILE *fi' *fo;
char *cp;
int C;

if ((cp = argv[l]) && *cp!='\O')
if ((fi = fopen(argv[ZJ, "rb")J != NULL)

if ((fo = fopen(argv[3J, "wb"Jl != NULL)
while (Cc= getc(fi)) != EOF) {

if (!*cpl cp= argv[l];
C '= *(cp++);
putc(c,fo);

fcl ose(fo);

fcl ose(fi);

This is a symmetric algorithm. The plaintext is being XORed with a keyword to
generate the ciphertext. Since XORing the same value twice restores the original,
encryption and decryption use exactly the same program:

PfBK=C

CfBK=P

There's no real security here. This kind of encryption is trivial to break, even
without computers [587, 1475]. It will only take a few seconds with a computer.

Assume the plaintext is English. Furthermore, assume the key length is any small
number of bytes. Here's how to break it:

1. Discover the length of the key by a procedure known as counting coinci­
dences [577]. XOR the ciphertext against itself shifted various numbers of
bytes, and count those bytes that are equal. If the displacement is a multi­
ple of the key length, then something over 6 percent of the bytes will be
equal. If it is not, then less than 0.4 percent will be equal (assuming a ran­
dom key encrypting normal ASCII text; other plaintext will have different
numbers). This is called the index of coincidence. The smallest displace­
ment that indicates a multiple of the key length is the length of the key.

__________________ 1_.s __ o_n_e_-_T1_·m_e_P_a_d_s ________ 7.,.,.~

2. Shift the ciphertext by that length and XOR it with itself. This removes
the key and leaves you with plaintext XORed with the plaintext shifted
the length of the key. Since English has 1.3 bits of real information per byte
(see Section 11.1), there is plenty of redundancy for determining a unique
decryption.

Despite this, the list of software vendors that tout this toy algorithm as being
"almost as secure as DES" is staggering [1387]. It is the algorithm (with a 160-bit
repeated "key") that the NSA finally allowed the U.S. digital cellular phone indus­
try to use for voice privacy. An XOR might keep your kid sister from reading your
files, but it won't stop a cryptanalyst for more than a few minutes.

1.5 ONE-TIME PADS

Believe it or not, there is a perfect encryption scheme. It's called a one-time pad, and
was invented in 1917 by Major Joseph Mauborgne and AT&T's Gilbert Vernam
[794]. (Actually, a one-time pad is a special case of a threshold scheme; see Section
3.7.) Classically, a one-time pad is nothing more than a large nonrepeating set of
truly random key letters, written on sheets of paper, and glued together in a pad. In
its original form, it was a one-time tape for teletypewriters. The sender uses each
key letter on the pad to encrypt exactly one plaintext character. Encryption is the
addition modulo 26 of the plaintext character and the one-time pad key character.

Each key letter is used exactly once, for only one message. The sender encrypts
the message and then destroys the used pages of the pad or used section of the tape.
The receiver has an identical pad and uses each key on the pad, in turn, to decrypt
each letter of the ciphertext. The receiver destroys the same pad pages or tape sec­
tion after decrypting the message. New message-new key letters. For example, if
the message is:

ONETIMEPAD

and the key sequence from the pad is

TBFRGFARFM

then the ciphertext is

IPKLPSFHGQ

because

0 +T mod26 =I

N +Bmod26 =P

E + F mod 26 = K

etc.

~"":s;,------------C_H_A_P_T_E_R_l __ F_o_u_n_d_a_t_i_on_s _________________ _

Assuming an eavesdropper can't get access to the one-time pad used to encrypt
the message, this scheme is perfectly secure. A given ciphertext message is equally
likely to correspond to any possible plaintext message of equal size.

Since every key sequence is equally likely (remember, the key letters are gener­
ated randomly), an adversary has no information with which to cryptanalyze the
ciphertext. The key sequence could just as likely be:

POYYAEAAZX

which would decrypt to:

SALMON EGGS

or

BXFGBMTMXM

which would decrypt to:

GREEN FLUID

This point bears repeating: Since every plaintext message is equally possible,
there is no way for the cryptanalyst to determine which plaintext message is the
correct one. A random key sequence added to a nonrandom plaintext message pro­
duces a completely random ciphertext message and no amount of computing power
can change that.

The caveat, and this is a big one, is that the key letters have to be generated ran­
domly. Any attacks against this scheme will be against the method used to generate
the key letters. Using a pseudo-random number generator doesn't count; they
always have nonrandom properties. If you use a real random source-this is much
harder than it might first appear, see Section 17.14-it's secure.

The other important point is that you can never use the key sequence again, ever.
Even if you use a multiple-gigabyte pad, if a cryptanalyst has multiple ciphertexts
whose keys overlap, he can reconstruct the plaintext. He slides each pair of cipher­
texts against each other and counts the number of matches at each position. If they
are aligned right, the proportion of matches jumps suddenly-the exact percentages
depend on the plaintext language. From this point cryptanalysis is easy. It's like the
index of coincidence, but with just two "periods" to compare [904]. Don't do it.

The idea of a one-time pad can be easily extended to binary data. Instead of a one­
time pad consistmg of letters, use a one-time pad of bits. Instead of adding the plain­
text to the one-time pad, use an XOR. To decrypt, XOR the ciphertext with the same
one-time pad. Everything else remains the same and the security is just as perfect.

This all sounds good, but there are a few problems. Since the key bits must be ran­
dom and can never be used again, the length of the key sequence must be equal to
the length of the message. A one-time pad might be suitable for a few short mes­
sages, but it will never work for a 1.544 Mbps communications channel. You can
store 650 megabytes worth of random bits on a CD-ROM, but there are problems.
First, you want exactly two copies of the random bits, but CD-ROMs are cconomi-

___________________ 1._7_L_ar_g_e_N_u_m_b_e_r_s _______ z:-------~

cal only for large quantities. And second, you want to be able to destroy the bits
already used. CD-ROM has no erase facilities except for physically destroying the
entire disk. Digital tape is a much better medium for this sort of thing.

Even if you solve the key distribution and storage problem, you have to make sure
the sender and receiver are perfectly synchronized. If the receiver is off by a bit (or if
some bits are dropped during the transmission), the message won't make any sense.
On the other hand, if some bits are altered during transmission (without any bits
being added or removed-something far more likely to happen due to random noise),
only those bits will be decrypted incorrectly. But on the other hand, a one-time pad
provides no authenticity.

One-time pads have applications in today's world, primarily for ultra-secure low­
bandwidth channels. The hotline between the United States and the former Soviet
Union was (is it still active?) rumored to be encrypted with a one-time pad. Many
Soviet spy messages to agents were encrypted using one-time pads. These messages
are still secure today and will remain that way forever. It doesn't matter how long
the supercomputers work on the problem. Even after the aliens from Andromeda
land with their massive spaceships and undreamed-of computing power, they will
not be able to read the Soviet spy messages encrypted with one-time pads (unless
they can also go back in time and get the one-time pads).

1.6 COMPUTER ALGORITHMS

There are many cryptographic algorithms. These are three of the most common:

DES (Data Encryption Standard) is the most popular computer encryp­
tion algorithm. DES is a U.S. and international standard. It is a sym­
metric algorithm; the same key is used for encryption and decryption.

RSA (named for its creators-Rivest, Shamir, and Adleman) is the
most popular public-key algorithm. It can be used for both encryption
and digital signatures.

DSA (Digital Signature Algorithm, used as part of the Digital Signa­
ture Standard) is another public-key algorithm. It cannot be used for
encryption, but only for digital signatures.

These are the kinds of stuff this book is about.

1. 7 LARGE NUMBERS

Throughout this book, I use various large numbers to describe different things in
cryptography. Because it is so easy to lose sight of these numbers and what they sig­
nify, Table 1.1 gives physical analogues for some of them.

These numbers are order-of-magnitude estimates, and have been culled from a
variety of sources. Many of the astrophysics numbers are explained in Freeman

~""':S _______ C_H_A_P_T_E_R_l __ F_o_u_n_d_a_t1_·o_n_s ________________ _

Physical Analogue

TABLE 1.1
Large Numbers

Odds of being killed by lightning (per day)
Odds of winning the top prize in a U.S. state lottery
Odds of winning the top prize in a U.S. state lottery
and being killed by lightning in the same day

Odds of drowning (in the U.S. per year)
Odds of being killed in an automobile accident
(in the U.S. in 1993)

Odds of being killed in an automobile accident
(in the U.S. per lifetime)

Time until the next ice age
Time until the sun goes nova
Age of the planet
Age of the Universe
Number of atoms in the planet
Number of atoms in the sun
Number of atoms in the galaxy
Number of atoms in the Universe (dark matter excluded)
Volume of the Universe

If the Universe is Closed:
Total lifetime of the Universe

If the Universe is Open:
Time until low-mass stars cool off
Time until planets detach from stars
Time until stars detach from galaxies
Time until orbits decay by gravitational radiation
Time until black holes decay by the Hawking process
Time until all matter is liquid at zero temperature
Time until all matter decays to iron
Time until all matter collapses to black holes

Number

1 in 9 billion (233)

1 in 4,000,000 (222)

1 in 255
1 in 59,000 (216)

1 in 6100 (213)

1 in 88 (27)

14,000 (214) years
109 (230) years
109 (230) years
1010 (234) years
1051 (2170)
1057(2190)
1067 (2223)
1077 (2265)
1Os4 (22so) cm3

1011 (237) years
1018 (261) seconds

1014 (247) years
1015 (2 50) years
1019 (264) years
1020 (267) years
1064 (2213) years
1065 (2216) years
101026 years
101076 years

Dyson's paper, "Time Without End: Physics and Biology in an Open Universe," in
Reviews of Modern Physics, v. 52, n. 3, July 1979, pp. 447-460. Automobile accident
deaths are calculated from the Department of Transportation's statistic of 163
deaths per million people in 1993 and an average lifespan of 69.7 years.

PART I

--------------------=-z~

CHAPTER 2

Protocol Building Blocks

2.1 INTRODUCTION TO PROTOCOLS

The whole point of cryptography is to solve problems. (Actually, that's the whole
point of computers-something many people tend to forget.) Cryptography solves
problems that involve secrecy, authentication, integrity, and dishonest people. You
can learn all about cryptographic algorithms and techniques, but these are academic
unless they can solve a problem. This is why we are going to look at protocols first.

A protocol is a series of steps, involving two or more parties, designed to accom­
plish a task. This is an important definition. A "series of steps" means that the pro­
tocol has a sequence, from start to finish. Every step must be executed in turn, and
no step can be taken before the previous step is finished. "Involving two or more
parties" means that at least two people are required to complete the protocol; one
person alone does not make a protocol. A person alone can perform a series of steps
to accomplish a task (like baking a cake), but this is not a protocol. (Someone else
must eat the cake to make it a protocol.) Finally, "designed to accomplish a task"
means that the protocol must achieve something. Something that looks like a pro­
tocol but does not accomplish a task is not a protocol-it's a waste of time.

Protocols have other characteristics as well:

Everyone involved in the protocol must know the protocol and all of
the steps to follow in advance.

Everyone involved in the protocol must agree to follow it.

The protocol must be unambiguous; each step must be well defined
and there must be no chance of a misunderstanding.

The protocol must be complete; there must be a specified action for
every possible situation.

~"":s;~----C_H_A_P_T_E_R_2 __ P_r_o_to_c_o_l_B_u_1_·1d_1_·n_g_B_lo_c_k_s ______________ _

The protocols in this book are organized as a series of steps. Execution of the pro­
tocol proceeds linearly through the steps, unless there are instructions to branch to
another step. Each step involves at least one of two things: computations by one or
more of the parties, or messages sent among the parties.

A cryptographic protocol is a protocol that uses cryptography. The parties can be
friends and trust each other implicitly or they can be adversaries and not trust one
another to give the correct time of day. A cryptographic protocol involves some
cryptographic algorithm, but generally the goal of the protocol is something beyond
simple secrecy. The parties participating in the protocol might want to share parts
of their secrets to compute a value, jointly generate a random sequence, convince
one another of their identity, or simultaneously sign a contract. The whole point of
using cryptography in a protocol is to prevent or detect eavesdropping and cheating.
If you have never seen these protocols before, they will radically change your ideas
of what mutually distrustful parties can accomplish over a computer network. In
general, this can be stated as:

It should not be possible to do more or learn more than what is spec­
ified in the protocol.

This is a lot harder than it looks. In the next few chapters I discuss a lot of proto­
cols. In some of them it is possible for one of the participants to cheat the other. In
others, it is possible for an eavesdropper to subvert the protocol or learn secret infor­
mation. Some protocols fail because the designers weren't thorough enough in their
requirements definitions. Others fail because their designers weren't thorough
enough in their analysis. Like algorithms, it is much easier to prove insecurity than
it is to prove security.

The Purpose of Protocols

In daily life, there are informal protocols for almost everything: ordering goods
over the telephone, playing poker, voting in an election. No one thinks much about
these protocols; they have evolved over time, everyone knows how to use them, and
they work reasonably well.

These days, more and more human interaction takes place over computer net­
works instead of face-to-face. Computers need formal protocols to do the same
things that people do without thinking. If you moved from one state to another and
found a voting booth that looked completely different from the ones you were used
to, you could easily adapt. Computers are not nearly so flexible.

Many face-to-face protocols rely on people's presence to ensure fairness and secu­
rity. Would you send a stranger a pile of cash to buy groceries for you? Would you
play poker with someone if you couldn't see him shuffle and deal? Would you mail
the government your secret ballot without some assurance of anonymity?

It is nai:ve to assume that people on computer networks are honest. It is nai:ve to
assume that the managers of computer networks are honest. It is even nai:ve to
assume that the designers of computer networks are honest. Most are, but the dis-

_________________ 2_._1_I_n_t_ro_d_u_c_t_i_on_t_o_P_r_o_t_o_co_l_s ______ 7~~

honest few can do a lot of damage. By formalizing protocols, we can examine ways
in which dishonest parties can subvert them. Then we can develop protocols that
are immune to that subversion.

In addition to formalizing behavior, protocols abstract the process of accomplish­
ing a task from the mechanism by which the task is accomplished. A communica­
tions protocol is the same whether implemented on PCs or VAXs. We can examine
the protocol without getting bogged down in the implementation details. When we
are convinced we have a good protocol, we can implement it in everything from
computers to telephones to intelligent muffin toasters.

The Players
To help demonstrate protocols, I have enlisted the aid of several people (see Table

2.1). Alice and Bob are the first two. They will perform all general two-person pro­
tocols. As a rule, Alice will initiate all protocols and Bob will respond. If the proto­
col requires a third or fourth person, Carol and Dave will perform those roles. Other
actors will play specialized supporting roles; they will be introduced later.

Arbitrated Protocols
An arbitrator is a disinterested third party trusted to complete a protocol (see Fig­

ure 2. la). Disinterested means that the arbitrator has no vested interest in the pro­
tocol and no particular allegiance to any of the parties involved. Trusted means that
all people involved in the protocol accept what he says as true, what he does as cor­
rect, and that he will complete his part of the protocol. Arbitrators can help com­
plete protocols between two mutually distrustful parties.

In the real world, lawyers are often used as arbitrators. For example, Alice is sell­
ing a car to Bob, a stranger. Bob wants to pay by check, but Alice has no way of
knowing if the check is good. Alice wants the check to clear before she turns the
title over to Bob. Bob, who doesn't trust Alice any more than she trusts him, doesn't
want to hand over a check without receiving a title.

Alice
Bob
Carol
Dave
Eve
Mallory
Trent
Walter
Peggy
Victor

TABLE 2.1
Dramatis Personae

First participant in all the protocols
Second participant in all the protocols
Participant in the three- and four-party protocols
Participant in the four-party protocols
Eavesdropper
Malicious active attacker
Trusted arbitrator
Warden; he'll be guarding Alice and Bob in some protocols
Prover
Verifier

~-:s _____ C_H_A_P_T_E_R_2 __ P_r_o_to_c_o_l_B_u_1_·1d_1_·n_g_B_lo_c_k_s ______________ _

Trent

Allee ,/"" .. ~ Bob

~ ~---------~ 1iiir
(a) Arbitrated protocol

Alice Bob Trent a ~ liiir . ~ ~, ::. -.
(After the fact)

Evidence

(b) Adjudicated protocol

Alice Bob a
(c) Self-enforcing protocol

Figure 2.1 Types of protocols.

Enter a lawyer trusted by both. With his help, Alice and Bob can use the following
protocol to ensure that neither cheats the other:

(1) Alice gives the title to the lawyer.

(2) Bob gives the check to Alice.

(3) Alice deposits the check.

(4) After waiting a specified time period for the check to clear, the lawyer
gives the title to Bob. If the check does not clear within the specified time
period, Alice shows proof of this to the lawyer and the lawyer returns the
title to Alice.

In this protocol, Alice trusts the lawyer not to give Bob the title unless the check
has cleared, and to give it back to her if the check does not clear. Bob trusts the
lawyer to hold the title until the check clears, and to give it to him once it does. The
lawyer doesn't care if the check clears. He will do his part of the protocol in either
case, because he will be paid in either case.

________________ 2_._1_I_n_tr_o_d_u_c_t_io_n_t_o_P_r_o_to_c_o_l_s ______ 7~~

In the example, the lawyer is playing the part of an escrow agent. Lawyers also act
as arbitrators for wills and sometimes for contract negotiations. The various stock
exchanges act as arbitrators between buyers and sellers.

Bankers also arbitrate protocols. Bob can use a certified check to buy a car from
Alice:

(1) Bob writes a check and gives it to the bank.

(2) After putting enough of Bob's money on hold to cover the check, the bank
certifies the check and gives it back to Bob.

(3) Alice gives the title to Bob and Bob gives the certified check to Alice.

(4) Alice deposits the check.

This protocol works because Alice trusts the banker's certification. Alice trusts
the bank to hold Bob's money for her, and not to use it to finance shaky real estate
operations in mosquito-infested countries.

A notary public is another arbitrator. When Bob receives a notarized document
from Alice, he is convinced that Alice signed the document voluntarily and with her
own hand. The notary can, if necessary, stand up in court and attest to that fact.

The concept of an arbitrator is as old as society. There have always been people­
rulers, priests, and so on-who have the authority to act fairly. Arbitrators have a
certain social role and position in our society; betraying the public trust would jeop­
ardize that. Lawyers who play games with escrow accounts face almost-certain dis­
barment, for example. This picture of trust doesn't always exist in the real world,
but it's the ideal.

This ideal can translate to the computer world, but there are several problems
with computer arbitrators:

It is easier to find and trust a neutral third party if you know who the
party is and can see his face. Two parties suspicious of each other are
also likely to be suspicious of a faceless arbitrator somewhere else on
the network.

The computer network must bear the cost of maintaining an arbitra­
tor. We all know what lawyers charge; who wants to bear that kind of
network overhead?

There is a delay inherent in any arbitrated protocol.

The arbitrator must deal with every transaction; he is a bottleneck in
large-scale implementations of any protocol. Increasing the number
of arbitrators in the implementation can mitigate this problem, but
that increases the cost.

Since everyone on the network must trust the arbitrator, he repre­
sents a vulnerable point for anyone trying to subvert the network.

CHAPTER 2 Protocol Building Blocks

Even so, arbitrators still have a role to play. In protocols using a trusted arbitrator,
the part will be played by Trent.

Adjudicated Protocols
Because of the high cost of hiring arbitrators, arbitrated protocols can be subdi­

vided into two lower-level suhprotocols. One is a nonarbitrated subprotocol, exe­
cuted every time parties want to complete the protocol. The other is an arbitrated
subprotocol, executed only in exceptional circumstances-when there is a dispute.
This special type of arbitrator is called an adjudicator (see Figure 2.1 b).

An adjudicator is also a disinterested and trusted third party. Unlike an arbitrator,
he is not directly involved in every protocol. The adjudicator is called in only to
determine whether a protocol was performed fairly.

Judges are professional adjudicators. Unlike a notary public, a judge is brought in
only if there is a dispute. Alice and Bob can enter into a contract without a judge. A
judge never sees the contract until one of them hauls the other into court.

This contract-signing protocol can be formalized in this way:
Nonarbitrated subprotocol (executed every time):

(1) Alice and Bob negotiate the terms of the contract.

(2) Alice signs the contract.

(3) Bob signs the contract.

Adjudicated subprotocol (executed only in case of a dispute):

(4) Alice and Bob appear before a judge.

(5) Alice presents her evidence.

(6) Bob presents his evidence.

(7) The judge rules on the evidence.

The difference between an adjudicator and an arbitrator (as used in this book) is
that the adjudicator is not always necessary. In a dispute, a judge is called in to adju­
dicate. If there is no di:-pute, using a judge is unnecessary.

There are adjudicated computer protocols. These protocols rely on the parties to
be honesti but if someone suspects cheating, a body of data exists so that a trusted
third party could determine if someone cheated. In a good adjudicated protocol, the
adjudicator could also determine the cheater's identity. Instead of preventing cheat­
ing, adjudicated protocols detect cheating. The inevitability of detection acts as a
preventive and discourages cheating.

Self-Enforcing Protocols
A self-enforcing protocol is the best type of protocol. The protocol itself guaran­

tees fairness (see Figure 2.lc). No arbitrator is required to complete the protocol. No
adjudicator is required to resolve disputes. The protocol is constructed so that there

_________________ 2_._1_I_n_t_ro_d_u_c_t_i_on_t_o_P_r_o_t_o_co_l_s ______ 7_____,,,~

cannot be any disputes. If one of the parties tries to cheat, the other party immedi­
ately detects the cheating and the protocol stops. Whatever the cheating party
hoped would happen by cheating, doesn't happen.

In the best of all possible worlds, every protocol would be self-enforcing. Unfor­
tunately, there is not a self-enforcing protocol for every situation.

Attacks against Protocols

Cryptographic attacks can be directed against the cryptographic algorithms used
in protocols, against the cryptographic techniques used to implement the algo­
rithms and protocols, or against the protocols themselves. Since this section of the
book discusses protocols, I will assume that the cryptographic algorithms and tech­
niques are secure. I will only examine attacks against the protocols.

People can try various ways to attack a protocol. Someone not involved in the pro­
tocol can eavesdrop on some or all of the protocol. This is called a passive attack,
because the attacker does not affect the protocol. All he can do is observe the proto­
col and attempt to gain information. This kind of attack corresponds to a ciphertext­
only attack, as discussed in Section 1. 1. Since passive attacks are difficult to detect,
protocols try to prevent passive attacks rather than detect them. In these protocols,
the part of the eavesdropper will be played by Eve.

Alternatively, an attacker could try to alter the protocol to his own advantage. He
could pretend to be someone else, introduce new messages in the protocol, delete
existing messages, substitute one message for another, replay old messages, inter­
rupt a communications channel, or alter stored information in a computer. These
are called active attacks, because they require active intervention. The form of these
attacks depends on the network.

Passive attackers try to gain information about the parties involved in the protocol.
They collect messages passing among various parties and attempt to cryptanalyze
them. Active attacks, on the other hand, can have much more diverse objectives. The
attacker could be interested in obtaining information, degrading system performance,
corrupting existing information, or gaining unauthorized access to resources.

Active attacks are much more serious, especially in protocols in which the differ­
ent parties don't necessarily trust one another. The attacker does not have to be a
complete outsider. He could be a legitimate system user. He could be the system
administrator. There could even be many active attackers working together. Here,
the part of the malicious active attacker will be played by Mallory.

It is also possible that the attacker could be one of the parties involved in the pro­
tocol. He may lie during the protocol or not follow the protocol at all. This type of
attacker is called a cheater. Passive cheaters follow the protocol, but try to obtain
more information than the protocol intends them to. Active cheaters disrupt the
protocol in progress in an attempt to cheat.

It is very difficult to maintain a protocol's security if most of the parties involved
are active cheaters, but sometimes it is possible for legitimate parties to detect that
active cheating is going on. Certainly, protocols should be secure against passive
cheating.

~ :s~ ____ C_H_A_P_T_E_R_2 __ P_r_o_to_c_o_l_B_u_1_·1d_1_·n_g_B_lo_c_k_s ______________ _

2.2 COMMUNICATIONS USING SYMMETRIC CRYPTOGRAPHY

How do two parties communicate securely? They encrypt their communications, of
course. The complete protocol is more complicated than that. Let's look at what
must happen for Alice to send an encrypted message to Bob.

(1) Alice and Bob agree on a cryptosystem.

(2) Alice and Bob agree on a key.

(3) Alice takes her plaintext message and encrypts it using the encryption
algorithm and the key. This creates a ciphertext message.

(4) Alice sends the ciphertext message to Bob.

(5) Bob decrypts the ciphertext message with the same algorithm and key and
reads it.

What can Eve, sitting between Alice and Bob, learn from listening in on this pro­
tocol? If all she hears is the transmission in step (4), she must try to cryptanalyze the
ciphertext. This passive attack is a ciphertext-only attack; we have algorithms that
are resistant (as far as we know) to whatever computing power Eve could realisti­
cally bring to bear on the problem.

Eve isn't stupid, though. She also wants to listen in on steps (1) and (2). Then, she
would know the algorithm and the key-just as well as Bob. When the message
comes across the communications channel in step (4), all she has to do is decrypt it
herself.

A good cryptosystem is one in which all the security is inherent in knowledge
of the key and none is inherent in knowledge of the algorithm. This is why key
management is so important in cryptography. With a symmetric algorithm, Alice
and Bob can perform step (1) in public, but they must perform step (2) in secret.
The key must remain secret before, during, and after the protocol-as long as the
message must remain secret-otherwise the message will no longer be secure.
(Public-key cryptography solves this problem another way, and will be discussed
in Section 2.5.)

Mallory, an active attacker, could do a few other things. He could attempt to
break the communications path in step (4), ensuring that Alice could not talk to Bob
at all. Mallory could also intercept Alice's messages and substitute his own. If he
knew the key (by intercepting the communication in step (2), or by breaking the
cryptosystem), he could encrypt his own message and send it to Bob in place of the
intercepted message. Bob would have no way of knowing that the message had not
come from Alice. If Mallory didn't know the key, he could only create a replacement
message that would decrypt to gibberish. Bob, thinking the message came from
Alice, might conclude that either the network or Alice had some serious problems.

What about Alice? What can she do to disrupt the protocol? She can give a copy of
the key to Eve. Now Eve can read whatever Bob says. She can reprint his words in
The New York Times. Although serious, this is not a problem with the protocol.
There is nothing to stop Alice from giving Eve a copy of the plaintext at any point

__________________ 2_._3 __ 0_n_e_-_W_a_y_F_u_n_c_t1_·o_n_s _______ 7~~

during the protocol. Of course, Bob could also do anything that Alice could. This
protocol assumes that Alice and Bob trust each other.

In summary, symmetric cryptosystems have the following problems:

Keys must be distributed in secret. They are as valuable as all the
messages they encrypt, since knowledge of the key gives knowledge
of all the messages. For encryption systems that span the world, this
can be a daunting task. Often couriers hand-carry keys to their desti­
nations.

If a key is compromised (stolen, guessed, extorted, bribed, etc.), then
Eve can decrypt all message traffic encrypted with that key. She can
also pretend to be one of the parties and produce false messages to
fool the other party.

Assuming a separate key is used for each pair of users in a network,
the total number of keys increases rapidly as the number of users
increases. A network of n users requires n(n - 1)/2 keys. For example,
10 users require 45 different keys to talk with one another and 100
users require 4950 keys. This problem can be minimized by keeping
the number of users small, but that is not always possible.

2.3 ONE-WAY FUNCTIONS

The notion of a one-way function is central to public-key cryptography. While not
protocols in themselves, one-way functions are a fundamental building block for
most of the protocols discussed in this book.

One-way functions are relatively easy to compute, but significantly harder to
reverse. That is, given x it is easy to compute f(x), but given f(x) it is hard to compute
x. In this context, "hard" is defined as something like: It would take millions of
years to compute x from f(x), even if all the computers in the world were assigned to
the problem.

Breaking a plate is a good example of a one-way function. It is easy to smash a
plate into a thousand tiny pieces. However, it's not easy to put all of those tiny
pieces back together into a plate.

This sounds good, but it's a lot of smoke and mirrors. If we are being strictly math­
ematical, we have no proof that one-way functions exist, nor any real evidence that
they can be constructed [230,530,600,661]. Even so, many functions look and smell
one-way: We can compute them efficiently and, as of yet, know of no easy way to
reverse them. For example, in a finite field x2 is easy to compute, but x 1i2 is much
harder. For the rest of this section, I'm going to pretend that there are one-way func­
tions. I'll talk more about this in Section 11.2.

So, what good are one-way functions? We can't use them for encryption as is. A
message encrypted with the one-way function isn't useful; no one could decrypt it.
(Exercise: Write a message on a plate, smash the plate into tiny bits, and then give
the bits to a friend. Ask your friend to read the message. Observe how impressed

~-:s. _____ C_H_A_P_T_E_R_2 __ P_r_o_to_c_o_l_B_u_1_"ld_1_·n_g_B_lo_c_k_s _______________ _

he is with the one-way function.) For public-key cryptography, we need something
else (although there are cryptographic applications for one-way functions-see
Section 3.2).

A trapdoor one-way function is a special type of one-way function, one with a
secret trapdoor. It is easy to compute in one direction and hard to compute in the
other direction. But, if you know the secret, you can easily compute the function in
the other direction. That is, it is easy to compute f(x) given x, and hard to compute
x given f(x). However, there is some secret information, y, such that given f(x) and y
it is easy to compute x.

Taking a watch apart is a good example of a trap-door one-way function. It is easy
to disassemble a watch into hundreds of minuscule pieces. It is very difficult to put
those tiny pieces back together into a working watch. However, with the secret
information-the assembly instructions of the watch-it is much easier to put the
watch back together.

2.4 ONE-WAY HASH FUNCTIONS

A one-way hash function has many names: compression function, contraction func­
tion, message digest, fingerprint, cryptographic checksum, message integrity check
(MIC), and manipulation detection code (MDC). Whatever you call it, it is central to
modern cryptography. One-way hash functions are another building block for many
protocols.

Hash functions have been used in computer science for a long time. A hash func­
tion is a function, mathematical or otherwise, that takes a variable-length input
string (called a pre-image) and converts it to a fixed-length (generally smaller) output
string (called a hash value). A simple hash function would be a function that takes
pre-image and returns a byte consisting of the XOR of all the input bytes.

The point here is to fingerprint the pre-image: to produce a value that indicates
whether a candidate pre-image is likely to be the same as the real pre-image.
Because hash functions are typically many-to-one, we cannot use them to deter­
mine with certainty that the two strings are equal, but we can use them to get area­
sonable assurance of accuracy.

A one-way hash function is a hash function that works in one direction: It is easy
to compute a hash value from pre-image, but it is hard to generate a pre-image that
hashes to a particular value. The hash function previously mentioned is not one­
way: Given a particular byte value, it is trivial to generate a string of bytes whose
XOR is that value. You can't do that with a one-way hash function. A good one-way
hash function is also collision-free: It is hard to generate two pre-images with the
same hash value.

The hash function is publici there's no secrecy to the process. The security of a
one-way hash function is its one-wayness. The output is not dependent on the input
in any discernible way. A single bit change in the pre-image changes, on the average,
half of the bits in the hash value. Given a hash value, it is computationally unfeasi­
ble to find a pre-image that hashes to that value.

2.5 Communications Using Public-Key Cryptography

Think of it as a way of fingerprinting files. If you want to verify that someone has
a particular file (that you also have), but you don't want him to send it to you, then
ask him for the hash value. If he sends you the correct hash value, then it is almost
certain that he has that file. This is particularly useful in financial transactions,
where you don't want a withdrawal of $100 to turn into a withdrawal of $1000
somewhere in the network. Normally, you would use a one-way hash function
without a key, so that anyone can verify the hash. If you want only the recipient to
be able to verify the hash, then read the next section.

Message Authentication Codes
A message authentication code (MAC), also known as a data authentication code

(DAC), is a one-way hash function with the addition of a secret key (see Section
18.14). The hash value is a function of both the pre-image and the key. The theory
is exactly the same as hash functions, except only someone with the key can verify
the hash value. You can create a MAC out of a hash function or a block encryption
algorithm; there are also dedicated MACs.

2.5 COMMUNICATIONS USING PUBLIC-KEY CRYPTOGRAPHY

Think of a symmetric algorithm as a safe. The key is the combination. Someone
with the combination can open the safe, put a document inside, and close it again.
Someone else with the combination can open the safe and take the document out.
Anyone without the combination is forced to learn safecracking.

In 1976, Whitfield Diffie and Martin Hellman changed that paradigm of cryptog­
raphy forever [496]. (The NSA has claimed knowledge of the concept as early as
1966, but has offered no proof.) They described public-key cryptography. They used
two different keys-one public and the other private. It is computationally hard to
deduce the private key from the public key. Anyone with the public key can encrypt
a message but not decrypt it. Only the person with the private key can decrypt the
message. It is as if someone turned the cryptographic safe into a mailbox. Putting
mail in the mailbox is analogous to encrypting with the public key; anyone can do
it. Just open the slot and drop it in. Getting mail out of a mailbox is analogous to
decrypting with the private key. Generally it's hard; you need welding torches.
However, if you have the secret (the physical key to the mailbox), it's easy to get
mail out of a mailbox.

Mathematically, the process is based on the trap-door one-way functions previ­
ously discussed. Encryption is the easy direction. Instructions for encryption are the
public key; anyone can encrypt a message. Decryption is the hard direction. It's
made hard enough that people with Cray computers and thousands (even millions)
of years couldn't decrypt the message without the secret. The secret, or trapdoor, is
the private key. With that secret, decryption is as easy as encryption.

This is how Alice can send a message to Bob using public-key cryptography:

(1) Alice and Bob agree on a public-key cryptosystem.

~~:s;~----C_H_A_P_T_E_R_2 __ P_r_o_to_c_o_l_B_u_1_·1a_1_·n_g_B_lo_c_k_s _______________ _

(2) Bob sends Alice his public key.

(3) Alice encrypts her message using Bob's public key and sends it to Bob.

(4) Bob decrypts Alice's message using his private key.

Notice how public-key cryptography solves the key-management problem with
symmetric cryptosystems. Before, Alice and Bob had to agree on a key in secret.
Alice could choose one at random, but she still had to get it to Bob. She could hand
it to him sometime beforehand, but that requires foresight. She could send it to him
by secure courier, but that takes time. Public-key cryptography makes it easy. With
no prior arrangements, Alice can send a secure message to Bob. Eve, listening in on
the entire exchange, has Bob's public key and a message encrypted in that key, but
cannot recover either Bob's private key or the message.

More commonly, a network of users agrees on a public-key cryptosystem. Every
user has his or her own public key and private key, and the public keys are all pub­
lished in a database somewhere. Now the protocol is even easier:

(1) Alice gets Bob's public key from the database.

(2) Alice encrypts her message using Bob's public key and sends it to Bob.

(3) Bob then decrypts Alice's message using his private key.

In the first protocol, Bob had to send Alice his public key before she could send
him a message. The second protocol is more like traditional mail. Bob is not
involved in the protocol until he wants to read his message.

Hybrid Cryptosystems

The first public-key algorithms became public at the same time that DES was
being discussed as a proposed standard. This resulted in some partisan politics in the
cryptographic community. As Diffie described it [494]:

The excitement public key cryptosystems provoked in the popular and scientific
press was not matched by corresponding acceptance in the cryptographic estab­
lishment, however. In the same year that public key cryptography was discovered,
the National Security Agency (NSA), proposed a conventional cryptographic sys­
tem, designed by International Business Machines (IBM), as a federal Data
Encryption Standard (DES). Marty Hellman and I criticized the proposal on the
ground that its key was too small, but manufacturers were gearing up to support
the proposed standard and our criticism was seen by many as an attempt to dis­
rupt the standards-making process to the advantage of our own work. Public key
cryptography in its turn was attacked, in sales literature [1125] and technical
papers [849, 1159] alike, more as though it were a competing product than a recent
research discovery. This, however, did not deter the NSA from claiming its share
of the credit. Its director, in the words of the Encyclopedia Britannica [1461],
pointed out that "two-key cryptography had been discovered at the agency a
decade earlier," although no evidence for this claim was ever offered publicly.

2.5 Communications Using Public-Key Cryptography

In the real world, public-key algorithms are not a substitute for symmetric algo­
rithms. They are not used to encrypt messages; they are used to encrypt keys. There
are two reasons for this:

1. Public-key algorithms are slow. Symmetric algorithms are generally at
least 1000 times faster than public-key algorithms. Yes, computers are get­
ting faster and faster, and in 15 years computers will be able to do public­
key cryptography at speeds comparable to symmetric cryptography today.
But bandwidth requirements are also increasing, and there will always be
the need to encrypt data faster than public-key cryptography can manage.

2. Public-key cryptosystems are vulnerable to chosen-plaintext attacks. If C
= E(P), when P is one plaintext out of a set of n possible plaintexts, then a
cryptanalyst only has to encrypt all n possible plaintexts and compare the
results with C (remember, the encryption key is public). He won't be able
to recover the decryption key this way, but he will be able to determine P.

A chosen-plaintext attack can be particularly effective if there are relatively few
possible encrypted messages. For example, if P were a dollar amount less than
$1,000,000, this attack would work; the cryptanalyst tries all million possible dollar
amounts. (Probabilistic encryption solves the problem; see Section 23.15.) Even if P
is not as well-defined, this attack can be very effective. Simply knowing that a
ciphertext does not correspond to a particular plaintext can be useful information.
Symmetric cryptosystems are not vulnerable to this attack because a cryptanalyst
cannot perform trial encryptions with an unknown key.

In most practical implementations public-key cryptography is used to secure and
distribute session keys; those session keys are used with symmetric algorithms to
secure message traffic [879]. This is sometimes called a hybrid cryptosystem.

(1) Bob sends Alice his public key.

(2) Alice generates a random session key, K, encrypts it using Bob's public key,
and sends it to Bob.

En(K)

(3) Bob decrypts Alice's message using his private key to recover the session
key.

Dn(En(K)) = K

(4) Both of them encrypt their communications using the same session key.

Using public-key cryptography for key distribution solves a very important key­
management problem. With symmetric cryptography, the data encryption key sits
around until it is used. If Eve ever gets her hands on it, she can decrypt messages
encrypted with it. With the previous protocol, the session key is created when it is
needed to encrypt communications and destroyed when it is no longer needed. This
drastically reduces the risk of compromising the session key. Of course, the private

~-:s _____ C_H_A_P_T_E_R_2 __ P_ro_t_o_c_o_l_B_u_1_·1a_1_·n_g_B_l_o_c_k_s ______________ __,

key is vulnerable to compromise, but it is at less risk because it is only used once per
communication to encrypt a session key. This is further discussed in Section 3.1.

Merkle's Puzzles

Ralph Merkle invented the first construction of public-key cryptography. In 1974
he registered for a course in computer security at the University of California,
Berkeley, taught by Lance Hoffman. His term paper topic, submitted early in the
term, addressed the problem of "Secure Communication over Insecure Channels"
[1064]. Hoffman could not understand Merkle's proposal and eventually Merkle
dropped the course. He continued to work on the problem, despite continuing fail­
ure to make his results understood.

Merkle's technique was based on "puzzles" that were easier to solve for the
sender and receiver than for an eavesdropper. Here's how Alice sends an encrypted
message to Bob without first having to exchange a key with him.

(1) Bob generates 220, or about a million, messages of the form: 11This is puzzle
number x. This is the secret key number y," where xis a random number
and y is a random secret key. Both x and y are different for each message.
Using a symmetric algorithm, he encrypts each message with a different
20-bit key and sends them all to Alice.

(2) Alice chooses one message at random and performs a brute-force attack to
recover the plaintext. This is a large, but not impossible, amount of work.

(3) Alice encrypts her secret message with the key she recovered and some
symmetric algorithm, and sends it to Bob along with x.

(4) Bob knows which secret key y he encrypts in message x, so he can decrypt
the message.

Eve can break this system, but she has to do far more work than either Alice or
Bob. To recover the message in step (3), she has to perform a brute-force attack
against each of Bob1s 220 messages in step (1); this attack has a complexity of 240 . The
x values won't help Eve either; they were assigned randomly in step (1). In general,
Eve has to expend approximately the square of the effort that Alice expends.

This n to n2 advantage is small by cryptographic standards, but in some circum­
stances it may be enough. If Alice and Bob can try ten thousand keys per second, it
will take them a minute each to perform their steps and another minute to com­
municate the puzzles from Bob to Alice on a 1.544 MB link. If Eve had comparable
computing facilities, it would take her about a year to break the system. Other algo­
rithms are even harder to break.

2.6 DIGITAL SIGNATURES

Handwritten signatures have long been used as proof of authorship of, or at least
agreement with, the contents of a document. What is it about a signature that is so
compelling [1392]?

__________________ 2_._6_D_i0_a1_·t_a_l_S_ig_n_a_t_u_r_es ________ 7 __ ~

1. The signature is authentic. The signature convinces the document's recip­
ient that the signer deliberately signed the document.

2. The signature is unforgeable. The signature is proof that the signer, and no
one else, deliberately signed the document.

3. The signature is not reusable. The signature is part of the document; an
unscrupulous person cannot move the signature to a different document.

4. The signed document is unalterable. After the document is signed, it can­
not be altered.

5. The signature cannot be repudiated. The signature and the document are
physical things. The signer cannot later claim that he or she didn't sign it.

In reality, none of these statements about signatures is completely true. Signa­
tures can be forged, signatures can be lifted from one piece of paper and moved to
another, and documents can be altered after signing. However, we are willing to
live with these problems because of the difficulty in cheating and the risk of
detection.

We would like to do this sort of thing on computers, but there are problems. First,
computer files are trivial to copy. Even if a person's signature were difficult to forge
(a graphical image of a written signature, for example), it would be easy to cut and
paste a valid signature from one document to another document. The mere presence
of such a signature means nothing. Second, computer files are easy to modify after
they are signed, without leaving any evidence of modification.

Signing Documents with Symmetric Cryptosystems and an Arbitrator
Alice wants to sign a digital message and send it to Bob. With the help of Trent

and a symmetric cryptosystem, she can.
Trent is a powerful, trusted arbitrator. He can communicate with both Alice and

Bob (and everyone else who may want to sign a digital document). He shares a secret
key, KA, with Alice, and a different secret key, KB, with Bob. These keys have been
established long before the protocol begins and can be reused multiple times for
multiple signings.

(1) Alice encrypts her message to Bob with KA and sends it to Trent.

(2) Trent decrypts the message with KA.

(3) Trent takes the decrypted message and a statement that he has received
this message from Alice, and encrypts the whole bundle with K8 .

(4) Trent sends the encrypted bundle to Bob.

(5) Bob decrypts the bundle with KB. He can now read both the message and
Trent's certification that Alice sent it.

How does Trent know that the message is from Alice and not from some
imposter? He infers it from the message's encryption. Since only he and Alice share
their secret key, only Alice could encrypt a message using it.

~~:s. _____ C_H_A_P_T_E_R_2 __ P_r_ot_o_c_o_l_B_u_1_·1a_1_·n_g_B_l_o_c_k_s ______________ _

Is this as good as a paper signature? Let's look at the characteristics we want:

1. This signature is authentic. Trent is a trusted arbitrator and Trent knows
that the message came from Alice. Trent's certification serves as proof to
Bob.

2. This signature is unforgeable. Only Alice (and Trent, but everyone trusts
him) knows KA, so only Alice could have sent Trent a message encrypted
with KA. If someone tried to impersonate Alice, Trent would have imme­
diately realized this in step (2) and would not certify its authenticity.

3. This signature is not reusable. If Bob tried to take Trent's certification and
attach it to another message, Alice would cry foul. An arbitrator (it could
be Trent or it could be a completely different arbitrator with access to the
same information) would ask Bob to produce both the message and Alice's
encrypted message. The arbitrator would then encrypt the message with
KA and see that it did not match the encrypted message that Bob gave him.
Bob, of course, could not produce an encrypted message that matches
because he does not know KA.

4. The signed document is unalterable. Were Bob to try to alter the document
after receipt, Trent could prove foul play in exactly the same manner just
described.

5. The signature cannot be repudiated. Even if Alice later claims that she
never sent the message, Trent's certification says otherwise. Remember,
Trent is trusted by everyone; what he says is true.

If Bob wants to show Carol a document signed by Alice, he can't reveal his secret
key to her. He has to go through Trent again:

(1) Bob takes the message and Trent's statement that the message came from
Alice, encrypts them with KB, and sends them back to Trent.

(2) Trent decrypts the bundle with KB.

(3) Trent checks his database and confirms that the original message came
from Alice.

(4) Trent re-encrypts the bundle with the secret key he shares with Carol, Kc,
and sends it to Carol.

(5) Carol decrypts the bundle with Kc. She can now read both the message and
Trent's certification that Alice sent it.

These protocols work, but they're time-consuming for Trent. He must spend his
days decrypting and encrypting messages, acting as the intermediary between every
pair of people who want to send signed documents to one another. He must keep a
database of messages (although this can be avoided by sending the recipient a copy
of the sender's encrypted message). He is a bottleneck in any communications sys­
tem, even if he's a mindless software program.

_________________ 2_._6_D_1_·g_it_a_l_S_ig_n_a_t_u_r_es _______ 7 __ ~

Harder still is creating and maintaining someone like Trent, someone that every­
one on the network trusts. Trent has to be infallible; if he makes even one mistake in
a million signatures, no one is going to trust him. Trent has to be completely secure.
If his database of secret keys ever got out or if someone managed to modify his pro­
gramming, everyone's signatures would be completely useless. False documents pur­
ported to be signed years ago could appear. Chaos would result. Governments would
collapse. Anarchy would reign. This might work in theory, but it doesn't work very
well in practice.

Digital Signature Trees

Ralph Merkle proposed a digital signature scheme based on secret-key cryptogra­
phy, producing an infinite number of one-time signatures using a tree structure
[1067,1068]. The basic idea of this scheme is to place the root of the tree in some
public file, thereby authenticating it. The root signs one message and authenticates
its sub-nodes in the tree. Each of these nodes signs one message and authenticates
its sub-nodes, and so on.

Signing Documents with Public-Key Cryptography
There are public-key algorithms that can be used for digital signatures. In some

algorithms-RSA is an example (see Section 19.3)-either the public key or the pri­
vate key can be used for encryption. Encrypt a document using your private key, and
you have a secure digital signature. In other cases-DSA is an example (see Section
20.1)-there is a separate algorithm for digital signatures that cannot be used for
encryption. This idea was first invented by Diffie and Hellman [496] and further
expanded and elaborated on in other texts [1282, 1328, 1024, 1283,426]. See [1099] for
a good survey of the field.

The basic protocol is simple:

(1) Alice encrypts the document with her private key, thereby signing the doc­
ument.

(2) Alice sends the signed document to Bob.

(3) Bob decrypts the document with Alice's public key, thereby verifying the
signature.

This protocol is far better than the previous one. Trent is not needed to either sign
or verify signatures. (He is needed to certify that Alice's public key is indeed her
public key.) The parties do not even need Trent to resolve disputes: If Bob cannot
perform step (3), then he knows the signature is not valid.

This protocol also satisfies the characteristics we're looking for:

1. The signature is authentic; when Bob verifies the message with Alice's
public key, he knows that she signed it.

2. The signature is unforgeable; only Alice knows her private key.

3. The signature is not reusable; the signature is a function of the document
and cannot be transferred to any other document.

~ :s;~----C_H_A_PT_E_R_2 __ P_r_o_to_c_o_l_B_u_i_ld_1_·n_g_B_l_o_ck_s _____________ _

4. The signed document is unalterable; if there is any alteration to the docu­
ment, the signature can no longer be verified with Alice's public key.

5. The signature cannot be repudiated. Bob doesn't need Alice's help to verify
her signature.

Signing Documents and Timestamps
Actually, Bob can cheat Alice in certain circumstances. He can reuse the docu­

ment and signature together. This is no problem if Alice signed a contract (what's
another copy of the same contract, more or less?), but it can be very exciting if Alice
signed a digital check.

Let's say Alice sends Bob a signed digital check for $100. Bob takes the check to
the bank, which verifies the signature and moves the money from one account to
the other. Bob, who is an unscrupulous character, saves a copy of the digital check.
The following week, he again takes it to the bank (or maybe to a different bank). The
bank verifies the signature and moves the money from one account to the other. If
Alice never balances her checkbook, Bob can keep this up for years.

Consequently, digital signatures often include timestamps. The date and time of
the signature are attached to the message and signed along with the rest of the mes­
sage. The bank stores this timestamp in a database. Now, when Bob tries to cash
Alice's check a second time, the bank checks the timestamp against its database.
Since the bank already cashed a check from Alice with the same timestamp, the
bank calls the police. Bob then spends 15 years in Leavenworth prison reading up on
cryptographic protocols.

Signing Documents with Public-Key Cryptography
and One-Way Hash Functions

In practical implementations, public-key algorithms are often too inefficient to
sign long documents. To save time, digital signature protocols are often imple­
mented with one-way hash functions [432,433]. Instead of signing a document,
Alice signs the hash of the document. In this protocol, both the one-way hash func­
tion and the digital signature algorithm are agreed upon beforehand.

(1) Alice produces a one-way hash of a document.

(2) Alice encrypts the hash with her private key, thereby signing the docu­
ment.

(3) Alice sends the document and the signed hash to Bob.

(4) Bob produces a one-way hash of the document that Alice sent. He then,
using the digital signature algorithm, decrypts the signed hash with Alice's
public key. If the signed hash matches the hash he generated, the signature
is valid.

Speed increases drastically and, since the chances of two different documents hav­
ing the same 160-bit hash are only one in 2160, anyone can safely equate a signature
of the hash with a signature of the document. If a non-one-way hash function were

__________________ 2_.6 __ D_ig_1_·t_al_S1_·g_n_a_tu_r_e_s _______ 7-~

used, it would be an easy matter to create multiple documents that hashed to the
same value, so that anyone signing a particular document would be duped into sign­
ing a multitude of documents.

This protocol has other benefits. First, the signature can be kept separate from the
document. Second, the recipient's storage requirements for the document and sig­
nature are much smaller. An archival system can use this type of protocol to verify
the existence of documents without storing their contents. The central database
could just store the hashes of files. It doesn't have to see the files at all; users submit
their hashes to the database, and the database timestamps the submissions and
stores them. If there is any disagreement in the future about who created a docu­
ment and when, the database could resolve it by finding the hash in its files. This
system has vast implications concerning privacy: Alice could copyright a document
but still keep the document secret. Only if she wished to prove her copyright would
she have to make the document public. (See Section 4.1).

Algorithms and Terminology

There are many digital signature algorithms. All of them are public-key algo­
rithms with secret information to sign documents and public information to verify
signatures. Sometimes the signing process is called encrypting with a private key
and the verification process is called decrypting with a public key. This is mislead­
ing and is only true for one algorithm, RSA. And different algorithms have different
implementations. For example, one-way hash functions and timestamps sometimes
add extra steps to the process of signing and verifying. Many algorithms can be used
for digital signatures, but not for encryption.

In general, I will refer to the signing and verifying processes without any details of
the algorithms involved. Signing a message with private key K is:

SK(M)

and verifying a signature with the corresponding public key is:

V1dM)

The bit string attached to the document when signed (in the previous example,
the one-way hash of the document encrypted with the private key) will be called the
digital signature, or just the signature. The entire protocol, by which the receiver of
a message is convinced of the identity of the sender and the integrity of the message,
is called authentication. Further details on these protocols are in Section 3.2.

Multiple Signatures

How could Alice and Bob sign the same digital document? Without one-way hash
functions, there are two options. One is that Alice and Bob sign separate copies of
the document itself. The resultant message would be over twice the size of the orig­
inal document. The second is that Alice signs the document first and then Bob signs
Alice's signature. This works, but it is impossible to verify Alice's signature without
also verifying Bob's.

~-:s _____ C_H_A_PT_E_R_2 __ P_r_o_to_c_o_l_B_u_i_ld_1_·n_g_B_l_o_ck_s ______________ _

With one-way hash functions, multiple signatures are easy:

(1) Alice signs the hash of the document.

(2) Bob signs the hash of the document.

(3) Bob sends his signature to Alice.

(4) Alice sends the document, her signature, and Bob's signature to Carol.

(5) Carol verifies both Alice's signature and Bob's signature.

Alice and Bob can do steps (1) and (2) either in parallel or in series. In step (5),
Carol can verify one signature without having to verify the other.

Nonrepudiation and Digital Signatures

Alice can cheat with digital signatures and there's nothing that can be done about
it. She can sign a document and then later claim that she did not. First, she signs the
document normally. Then, she anonymously publishes her private key, conve­
niently loses it in a public place, or just pretends to do either one. Alice then claims
that her signature has been compromised and that others are using it, pretending to
be her. She disavows signing the document and any others that she signed using that
private key. This is called repudiation.

Timestamps can limit the effects of this kind of cheating, but Alice can always
claim that her key was compromised earlier. If Alice times things well, she can sign
a document and then successfully claim that she didn't. This is why there is so
much talk about private keys buried in tamper-resistant modules-so that Alice
can't get at hers and abuse it.

Although nothing can be done about this possible abuse, one can take steps to
guarantee that old signatures are not invalidated by actions taken in disputing new
ones. (For example, Alice could "lose" her key to keep from paying Bob for the junk
car he sold her yesterday and, in the process, invalidate her bank account.) The solu­
tion is for the receiver of a signed document to have it timestamped [453].

The general protocol is given in [28]:

(1) Alice signs a message.

(2) Alice generates a header containing some identifying information. She
concatenates the header with the signed message, signs that, and sends it
to Trent.

(3) Trent verifies the outside signature and confirms the identifying informa­
tion. He adds a timestamp to Alice's signed message and the identifying
information. Then he signs it all and sends it to both Alice and Bob.

(4) Bob verifies Trent's signature, the identifying information, and Alice's sig­
nature.

(5) Alice verifies the message Trent sent to Bob. If she did not originate the
message, she speaks up quickly.

2. 7 Digital Signatures with Encryption

Another scheme uses Trent after the fact [209]. After receiving a signed message,
Bob can send a copy to Trent for verification. Trent can attest to the validity of
Alice's signature.

Applications of Digital Signatures

One of the earliest proposed applications of digital signatures was to facilitate the
verification of nuclear test ban treaties [1454, 1467]. The United States and the Soviet
Union (anyone remember the Soviet Union?) permitted each other to put seis­
mometers on the other's soil to monitor nuclear tests. The problem was that each
country needed to assure itself that the host nation was not tampering with the data
from the monitoring nation's seismometers. Simultaneously, the host nation needed
to assure itself that the monitor was sending only the specific information needed
for monitoring.

Conventional authentication techniques can solve the first problem, but only dig­
ital signatures can solve both problems. The host nation can read, but not alter, data
from the seismometer, and the monitoring nation knows that the data has not been
tampered with.

2. 7 DIGITAL SIGNATURES WITH ENCRYPTION

By combining digital signatures with public-key cryptography, we develop a protocol
that combines the security of encryption with the authenticity of digital signatures.
Think of a letter from your mother: The signature provides proof of authorship and
the envelope provides privacy.

(1) Alice signs the message with her private key.

SA(M)

(2) Alice encrypts the signed message with Bob's public key and sends it to Bob.

EB(SA(M))

(3) Bob decrypts the message with his private key.

Ds(Es(SA(M))) = SA(M)

(4) Bob verifies with Alice's public key and recovers the message.

VA(SA(M)) = M

Signing before encrypting seems natural. When Alice writes a letter, she signs it
and then puts it in an envelope. If she put the letter in the envelope unsigned and
then signed the envelope, then Bob might worry if the letter hadn't been covertly
replaced. If Bob showed to Carol Alice's letter and envelope, Carol might accuse Bob
of lying about which letter arrived in which envelope.

In electronic correspondence as well, signing before encrypting is a prudent prac­
tice [48]. Not only is it more secure-an adversary can't remove a signature from an
encrypted message and add his own-but there are legal considerations: If the text

CHAPTER 2 Protocol Building Blocks

to be signed is not visible to the signer when he affixes his signature, then the sig­
nature may have little legal force [1312]. And there are some cryptanalytic attacks
against this technique with RSA signatures (see Section 19.3).

There's no reason Alice has to use the same public-key/private-key key pair for
encrypting and signing. She can have two key pairs: one for encryption and the other
for signatures. Separation has its advantages: she can surrender her encryption key
to the police without compromising her signature, one key can be escrowed (see
Section 4.13) without affecting the other, and the keys can have different sizes and
can expire at different times.

Of course, timestamps should be used with this protocol to prevent reuse of mes­
sages. Timestamps can also protect against other potential pitfalls, such as the one
described below.

Resending the Message as a Receipt

Consider an implementation of this protocol, with the additional feature of con­
firmation messages. Whenever Bob receives a message, he returns it as a confirma­
tion of receipt.

(1) Alice signs a message with her private key, encrypts it with Bob's public
key, and sends it to Bob.

EB(SA(M))

(2) Bob decrypts the message with his private key and verifies the signature
with Alice's public key, thereby verifying that Alice signed the message
and recovering the message.

VA(DB(EB(SA(M)))) = M

(3) Bob signs the message with his private key, encrypts it with Alice's public
key, and sends it back to Alice.

EA(SB(M))

(4) Alice decrypts the message with her private key and verifies the signature
with Bob's public key. If the resultant message is the same one she sent to
Bob, she knows that Bob received the message accurately.

If the same algorithm is used for both encryption and digital-signature verification
there is a possible attack [506]. In these cases, the digital signature operation is the
inverse of the encryption operation: Vx = Ex and Sx = Dx.

Assume that Mallory is a legitimate system user with his own public and private
key. Now, let's watch as he reads Bob's mail. First, he records Alice's message to Bob
in step (1). Then, at some later time, he sends that message to Bob, claiming that it
came from him (Mallory). Bob thinks that it is a legitimate message from Mallory,
so he decrypts the message with his private key and then tries to verify Mallory's
signature by decrypting it with Mallory's public key. The resultant message, which
is pure gibberish, is:

2. 7 Digital Signatures with Encryption

Even so, Bob goes on with the protocol and sends Mallory a receipt:

EM(DB(EM(DA(M))))

Now, all Mallory has to do is decrypt the message with his private key, encrypt it
with Bob's public key, decrypt it again with his private key, and encrypt it with
Alice's public key. Voila! Mallory has M.

It is not unreasonable to imagine that Bob may automatically send Mallory a
receipt. This protocol may be embedded in his communications software, for exam­
ple, and send receipts automatically. It is this willingness to acknowledge the receipt
of gibberish that creates the insecurity. If Bob checked the message for comprehensi­
bility before sending a receipt, he could avoid this security prnblem.

There are enhancements to this attack that allow Mallory to send Bob a different
message from the one he eavesdropped on. Never sign arbitrary messages from other
people or decrypt arbitrary messages and give the results to other people.

Foiling the Resend Attack

The attack just described works because the encrypting operation is the same as
the signature-verifying operation and the decryption operation is the same as the
signature operation. A secure protocol would use even a slightly different operation
for encryption and digital signatures. Using different keys for each operation solves
the problem, as does using different algorithms for each operation; as do time­
stamps, which make the incoming message and the outgoing message different; as
do digital signatures with one-way hash functions (see Section 2.6).

In general, then, the following protocol is secure as the public-key algorithm used:

(1) Alice signs a message.

(2) Alice encrypts the message and signature with Bob's public key (using a
different encryption algorithm than for the signature) and sends it to Bob.

(3) Bob decrypts the message with his private key.

(4) Bob verifies Alice's signature.

Attacks against Public-Key Cryptography

In all these public-key cryptography protocols, I glossed over how Alice gets Bob's
public key. Section 3.1 discusses this in detail, but it is worth mentioning here.

The easiest way to get someone's public key is from a secure database some­
where. The database has to be public, so that anyone can get anyone else's public
key. The database also has to be protected from write-access by anyone except
Trent; otherwise Mallory could substitute any public key for Bob's. After he did
that, Bob couldn't read messages addressed to him, but Mallory could.

Even if the public keys are stored in a secure database, Mallory could still substi­
tute one for another during transmission. To prevent this, Trent can sign each pub­
lic key with his own private key. Trent, when used in this manner, is often known
as a Key Certification Authority or Key Distribution Center (KDC). In practical
implementations, the KDC signs a compound message consisting of the user's

~-:s. _____ C_H_A_PT_E_R_2_, _P_r_o_to_c_o_l_B_u_il_d_i_n_g_B_l_o_ck_s ______________ _

name, his public key, and any other important information about the user. This
signed compound message is stored in the KDC's database. When Alice gets Bob's
key, she verifies the KDC's signature to assure herself of the key's validity.

In the final analysis, this is not making things impossible for Mallory, only more
difficult. Alice still has the KDC's public key stored somewhere. Mallory would
have to substitute his own public key for that key, corrupt the database, and substi­
tute his own keys for the valid keys /all signed with his private key as if he were the
KDC), and then he's in business. But, even paper-based signatures can be forged if
Mallory goes to enough trouble. Key exchange will be discussed in minute detail in
Section 3.1.

2.8 RANDOM AND PSEUDO-RANDOM-SEQUENCE GENERATION

Why even bother with random-number generation in a book on cryptography?
There's already a random-number generator built into most every compiler, a mere
function call away. Why not use that? Unfortunately, those random-number gener­
ators are almost definitely not secure enough for cryptography, and probably not
even very random. Most of them are embarrassingly bad.

Random-number generators are not random because they don't have to be. Most
simple applications, like computer games, need so few random numbers that they
hardly notice. However, cryptography is extremely sensitive to the properties of
random-number generators. Use a poor random-number generator and you start get­
ting weird correlations and strange results [1231, 1238]. If you are depending on your
random-number generator for security, weird correlations and strange results are
the last things you want.

The problem is that a random-number generator doesn't produce a random
sequence. It probably doesn't produce anything that looks even remotely like a ran­
dom sequence. Of course, it is impossible to produce something truly random on a
computer. Donald Knuth quotes John von Neumann as saying: "Anyone who con­
siders arithmetical methods of producing random digits is, of course, in a state of sin"
[863]. Computers are deterministic beasts: Stuff goes in one end, completely pre­
dictable operations occur inside, and different stuff comes out the other end. Put the
same stuff in on two separate occasions and the same stuff comes out both times. Put
the same stuff into two identical computers, and the same stuff comes out of both of
them. A computer can only be in a finite number of states (a large finite number, but
a finite number nonetheless), and the stuff that comes out will always be a deter­
ministic function of the stuff that went in and the computer's current state. That
means that any random-number generator on a computer (at least, on a finite-state
machine) is, by definition, periodic. Anything that is periodic is, by definition, pre­
dictable. And if something is predictable, it can't be random. A true random-number
generator requires some random input; a computer can't provide that.

Pseudo-Random Sequences

The best a computer can produce is a pseudo-random-sequence generator. What's
that? Many people have taken a stab at defining this formally, but I'll hand-wave
here. A pseudo-random sequence is one that looks random. The sequence's period

2.8 Random and Pseudo-Random-Sequence Generation

should be long enough so that a finite sequence of reasonable length-that is, one
that is actually used-is not periodic. If you need a billion random bits, don't choose
a sequence generator that repeats after only sixteen thousand bits. These relatively
short nonperiodic subsequences should be as indistinguishable as possible from
random sequences. For example, they should have about the same number of ones
and zeros, about half the runs (sequences of the same bit) should be of length one,
one quarter of length two, one eighth of length three, and so on. They should not be
compressible. The distribution of run lengths for zeros and ones should be the same
[643,863,99,1357]. These properties can be empirically measured and then com­
pared to statistical expectations using a chi-square test.

For our purposes, a sequence generator is pseudo-random if it has this property:

1. It looks random. This means that it passes all the statistical tests of ran­
domness that we can find. (Start with the ones in [863].)

A lot of effort has gone into producing good pseudo-random sequences on com­
puter. Discussions of generators abound in the academic literature, along with vari­
ous tests of randomness. All of these generators are periodic (there's no escaping
that); but with potential periods of 2256 bits and higher, they can be used for the
largest applications.

The problem is still those weird correlations and strange results. Every pseudo­
random-sequence generator is going to produce them if you use them in a certain
way. And_ that's what a cryptanalyst will use to attack the system.

Cryptographically Secure Pseudo-Random Sequences

Cryptographic applications demand much more of a pseudo-random-sequence
generator than do most other applications. Cryptographic randomness doesn't mean
just statistical randomness, although that's part of it. For a sequence to be crypto­
graphically secure pseudo-random, it must also have this property:

2. It is unpredictable. It must be computationally infeasible to predict what
the next random bit will be, given complete knowledge of the algorithm or
hardware generating the sequence and all of the previous bits in the stream.

Cryptographically secure pseudo-random sequences should not be compress­
ible ... unless you know the key. The key is generally the seed used to set the initial
state of the generator.

Like any cryptographic algorithm, cryptographically secure pseudo-random­
sequence generators are subject to attack. Just as it is possible to break an encryption
algorithm, it is possible to break a cryptographically secure pseudo-random-sequence
generator. Making generators resistant to attack is what cryptography is all about.

Real Random Sequences
Now we're drifting into the domain of philosophers. Is there such a thing as ran­

domness? What is a random sequence? How do you know if a sequence is random? Is
"101110100" more random than "10101010 l "? Quantum mechanics tells us that

~""'s;~ ____ C_H_A_P_T_E_R_2 __ P_r_o_to_c_o_l_B_u_1_·1_d1_·n_g_B_lo_c_k_s ______________ _

there is honest-to-goodness randomness in the real world. But can we preserve that
randomness in the deterministic world of computer chips and finite-state machines?

Philosophy aside, from our point of view a sequence generator is real random if it
has this additional third property:

3. It cannot be reliably reproduced. If you run the sequence generator twice
with the exact same input (at least as exact as humanly possible), you will
get two completely unrelated random sequences.

The output of a generator satisfying these three properties will be good enough for
a one-time pad, key generation, and any other cryptographic applications that
require a truly random sequence generator. The difficulty is in determining whether
a sequence is really random. If I repeatedly encrypt a string with DES and a given
key, I will get a nice, random-looking output; you won't be able to tell that it's non­
random unless you rent time on the NSA's DES cracker.

--------------------z~

CHAPTER 3

Basic Protocols

3.1 KEY EXCHANGE

A common cryptographic technique is to encrypt each individual conversation with a
separate key. This is called a session key, because it is used for only one particular
communications session. As discussed in Section 8.5, session keys are useful because
they only exist for the duration of the communication. How this common session key
gets into the hands of the conversants can be a complicated matter.

Key Exchange with Symmetric Cryptography
This protocol assumes that Alice and Bob, users on a network, each share a secret

key with the Key Distribution Center (KDC) [1260]-Trent in our protocols. These
keys must be in place before the start of the protocol. (The protocol ignores the very
real problem of how to distribute these secret keys; just assume they are in place and
Mallory has no idea what they are.)

(1) Alice calls Trent and requests a session key to communicate with Bob.

(2) Trent generates a random session key. He encrypts two copies of it: one in
Alice's key and the other in Bob's key. Trent sends both copies to Alice.

(3) Alice decrypts her copy of the session key.

(4) Alice sends Bob his copy of the session key.

(5) Bob decrypts his copy of the session key.

(6) Both Alice and Bob use this session key to communicate securely.

This protocol relies on the absolute security of Trent, who is more likely to be a
trusted computer program than a trusted individual. If Mallory corrupts Trent, the
whole network is compromised. He has all of the secret keys that Trent shares with

~""'s;,--------C_H_A_P_T_ER_3 __ B_a_s1_·c_I_Jr_o_t_o_c_o_ls _________________ _

each of the users; he can read all past communications traffic that he has saved, and
all future communications traffic. All he has to do is to tap the communications
lines and listen to the encrypted message traffic.

The other problem with this system is that Trent is a potential bottleneck. He
has to be involved in every key exchange. If Trent fails, that disrupts the entire
system.

Key Exchange with Public-Key Cryptography
The basic hybrid cryptosystem was discussed in Section 2.5. Alice and Bob use

public-key cryptography to agree on a session key, and use that session key to
encrypt data. In some practical implementations, both Alice's and Bob's signed pub­
lic keys will be available on a database. This makes the key-exchange protocol even
easier, and Alice can send a secure message to Bob even if he has never heard of her:

(1) Alice gets Bob's public key from the KDC.

(2) Alice generates a random session key, encrypts it using Bob's public key,
and sends it to Bob.

(3) Bob then decrypts Alice's message using his private key.

(4) Both of them encrypt their communications using the same session key.

Man-in-the-Middle Attack
While Eve cannot do better than try to break the public-key algorithm or attempt

a ciphertext-only attack on the ciphertext, Mallory is a lot more powerful than Eve.
Not only can he listen to messages between Alice and Bob, he can also modify mes­
sages, delete messages, and generate totally new ones. Mallory can imitate Bob when
talking to Alice and imitate Alice when talking to Bob. Here's how the attack works:

(1) Alice sends Bob her public key. Mallory intercepts this key and sends Bob
his own public key.

(2) Bob sends Alice his public key. Mallory intercepts this key and sends Alice
his own public key.

(3) When Alice sends a message to Bob, encrypted in "Bob's" public key, Mal­
lory intercepts it. Since the message is really encrypted with his own pub­
lic key, he decrypts it with his private key, re-encrypts it with Bob's public
key, and sends it on to Bob.

(4) When Bob sends a message to Alice, encrypted in "Alice's" public key,
Mallory intercepts it. Since the message is really encrypted with his own
public key, he decrypts it with his private key, re-encrypts it with Alice's
public key, and sends it on to Alice.

Even if Alice's and Bob's public keys are stored on a database, this attack will
work. Mallory can intercept Alice's database inquiry and substitute his own public

___________________ 3_._1_K_e_y_E_x_c_h_a_n_g_e ________ 7=--~

key for Bob's. He can do the same to Bob and substitute his own public key for
Alice's. Or better yet, he can break into the database surreptitiously and substitute
his key for both Alice's and Bob's. Then he simply waits for Alice and Bob to talk
with each other, intercepts and modifies the messages, and he has succeeded.

This man-in-the-middle attack works because Alice and Bob have no way to ver­
ify that they are talking to each other. Assuming Mallory doesn't cause any notice­
able network delays, the two of them have no idea that someone sitting between
them is reading all of their supposedly secret communications.

Interlock Protocol

The interlock protocol, invented by Ron Rivest and Adi Shamir [132 7], has a good
chance of foiling the man-in-the-middle attack. Here's how it works:

(1) Alice sends Bob her public key.

(2) Bob sends Alice his public key.

(3) Alice encrypts her message using Bob's public key. She sends half of the
encrypted message to Bob.

(4) Bob encrypts his message using Alice's public key. He sends half of the
encrypted message to Alice.

(5) Alice sends the other half of her encrypted message to Bob.

(6) Bob puts the two halves of Alice's message together and decrypts it with
his private key. Bob sends the other half of his encrypted message to Alice.

(7) Alice puts the two halves of Bob's message together and decrypts it with
her private key.

The important point is that half of the message is useless without the other half;
it can't be decrypted. Bob cannot read any part of Alice's message until step (6); Alice
cannot read any part of Bob's message until step (7). There are a number of ways to
do this:

If the encryption algorithm is a block algorithm, half of each block
(e.g., every other bit) could be sent in each half message.

Decryption of the message could be dependent on an initialization
vector (see Section 9.3), which could be sent with the second half of
the message.

The first half of the message could be a one-way hash function of the
encrypted message (see Section 2.4) and the encrypted message itself
could be the second half.

To see how this causes a problem for Mallory, let's review his attempt to subvert
the protocol. He can still substitute his own public keys for Alice's and Bob's in
steps (1) and (2). But now, when he intercepts half of Alice's message in step (3), he

~-:s. _______ C_H_A_P_T_E_R_3 __ B_a_s_ic_P_r_o_t_o_c_o_ls ________________ _

cannot decrypt it with his private key and re-encrypt it with Bob's public key. He
must invent a totally new message and send half of it to Bob. When he intercepts
half of Bob's message to Alice in step (4), he has the same problem. He cannot
decrypt it with his private key and re-encrypt it with Alice's public key. He has to
invent a totally new message and send half of it to Alice. By the time he intercepts
the second halves of the real messages in steps (5) and (6), it is too late for him to
change the new messages he invented. The conversation between Alice and Bob will
necessarily be completely different.

Mallory could possibly get away with this scheme. If he knows Alice and Bob well
enough to mimic both sides of a conversation between them, they might never real­
ize that they are being duped. But surely this is much harder than sitting between
the two of them, intercepting and reading their messages.

Key Exchange with Digital Signatures

Implementing digital signatures during a session-key exchange protocol circum­
vents this man-in-the-middle attack as well. Trent signs both Alice's and Bob's pub­
lic keys. The signed keys include a signed certification of ownership. When Alice
and Bob receive the keys, they each verify Trent's signature. Now they know that
the public key belongs to that other person. The key exchange protocol can then
proceed.

Mallory has serious problems. He cannot impersonate either Alice or Bob because
he doesn't know either of their private keys. He cannot substitute his public key for
either of theirs because, while he has one signed by Trent, it is signed as being Mal­
lory's. All he can do is listen to the encrypted traffic go back and forth or disrupt the
lines of communication and prevent Alice and Bob from talking.

This protocol uses Trent, but the risk of compromising the KDC is less than the
first protocol. If Mallory compromises Trent (breaks into the KDC), all he gets is
Trent's private key. This key enables him only to sign new keys; it does not let him
decrypt any session keys or read any message traffic. To read the traffic, Mallory has
to impersonate a user on the network and trick legitimate users into encrypting
messages with his phony public key.

Mallory can launch that kind of attack. With Trent's private key, he can create
phony signed keys to fool both Alice and Bob. Then, he can either exchange them in
the database for real signed keys, or he can intercept users' database requests and
reply with his phony keys. This enables him to launch a man-in-the-middle attack
and read people's communications.

This attack will work, but remember that Mallory has to be able to intercept and
modify messages. In some networks this is a lot more difficult than passively sitting
on a network reading messages as they go by. On a broadcast channel, such as a radio
network, it is almost impossible to replace one message with another-although the
entire network can be jammed. On computer networks this is easier and seems to
be getting easier every day. Consider IP spoofing, router attacks, and so forth; active
attacks don't necessarily mean someone down a manhole with a datascope, and
they are not limited to three-letter agencies.

__________________ 3_.l __ K_ey_E_x_ch_an_g_e ________ 7__,,,,~

Key and Message Transmission
Alice and Bob need not complete the key-exchange protocol before exchanging

messages. In this protocol, Alice sends Bob the message, M, without any previous
key exchange protocol:

(1) Alice generates a random session key, K, and encrypts Musing K.

E1<(M)

(2) Alice gets Bob's public key from the database.

(3) Alice encrypts K with Bob's public key.

EB(K)

(4) Alice sends both the encrypted message and encrypted session key to Bob.

EK(M), EB(K)
For added security against man-in-the-middle attacks, Alice can sign the

transmission.

(5) Bob decrypts Alice's session key, K, using his private key.

(6) Bob decrypts Alice's message using the session key.

This hybrid system is how public-key cryptography is most often used in a com­
munications system. It can be combined with digital signatures, timestamps, and
any other security protocols.

Key and Message Broadcast

There is no reason Alice can't send the encrypted message to several people. In
this example, Alice will send the encrypted message to Bob, Carol, and Dave:

(1) Alice generates a random session key, K, and encrypts M using K.

EK(M)

(2) Alice gets Bob's, Carol's, and Dave's public keys from the database.

(3) Alice encrypts Kwith Bob's public key, encrypts Kwith Carol's public key,
and then encrypts K with Dave's public key.

EB(K), Ec(K), Ev(K)

(4) Alice broadcasts the encrypted message and all the encrypted keys to any­
body who cares to receive it.

EB(K), Ec(K), Ev(K), EK(M)

(5) Only Bob, Carol, and Dave can decrypt the key, K, each using his or her pri­
vate key.

(6) Only Bob, Carol, and Dave can decrypt Alice's message using K.

This protocol can be implemented on a store-and-forward network. A central
server can forward Alice's message to Bob, Carol, and Dave along with their partic-

~"":s;~------C_H_A_P_T_E_R_3 __ B_a_s1_·c_P_r_o_t_o_c_o_ls ________________ _

ular encrypted key. The server doesn't have to be secure or trusted, since it will not
be able to decrypt any of the messages.

3.2 AUTHENTICATION

When Alice logs into a host computer (or an automatic teller, or a telephone bank­
ing system, or any other type of terminal), how does the host know who she is? How
does the host know she is not Eve trying to falsify Alice's identity? Traditionally,
passwords solve this problem. Alice enters her password, and the host confirms that
it is correct. Both Alice and the host know this secret piece of knowledge and the
host requests it from Alice every time she tries to log in.

Authentication Using One-Way Functions
What Roger Needham and Mike Guy realized is that the host does not need to

know the passwords; the host just has to be able to differentiate valid passwords
from invalid passwords. This is easy with one-way functions [1599,526,1274,1121].
Instead of storing passwords, the host stores one-way functions of the passwords.

(1) Alice sends the host her password.

(2) The host performs a one-way function on the password.

(3) The host compares the result of the one-way function to the value it pre­
viously stored.

Since the host no longer stores a table of everybody's valid password, the threat of
someone breaking into the host and stealing the password list is mitigated. The list
of passwords operated on by the one-way function is useless, because the one-way
function cannot be reversed to recover the passwords.

Dictionary Attacks and Salt

A file of passwords encrypted with a one-way function is still vulnerable. In his
spare time, Mallory compiles a list of the 1,000,000 most common passwords. He
operates on all 1,000,000 of them with the one-way function and stores the results. If
each password is about 8 bytes, the resulting file will be no more than 8 megabytes;
it will fit on a few floppy disks. Now, Mallory steals an encrypted password file. He
compares that file with his file of encrypted possible passwords and sees what
matches.

This is a dictionary attack, and it's surprisingly successful (see Section 8.1). Salt is
a way to make it more difficult. Salt is a random string that is concatenated with
passwords before being operated on by the one-way function. Then, both the salt
value and the result of the one-way function are stored in a database on the host. If
the number of possible salt values is large enough, this practically eliminates a dic­
tionary attack against commonly used passwords because Mallory has to generate
the one-way hash for each possible salt value. This is a simple attempt at an initial­
ization vector (see Section 9.3).

__________________ 3_.2 __ A_u_t_h_e_n_t1_·c_a_t1_·o_n ________ 7_~

The point here is to make sure that Mallory has to do a trial encryption of each
password in his dictionary every time he tries to break another person's password,
rather than just doing one massive precomputation for all possible passwords.

A lot of salt is needed. Most UNIX systems use only 12 bits of salt. Even with
that, Daniel Klein developed a password-guessing program that often cracks 40
percent of the passwords on a given host system within a week [847,848] (see
Section 8.1). David Feldmeier and Philip Karn compiled a list of about 732,000
common passwords concatenated with each of 4096 possible salt values. They
estimate that 30 percent of passwords on any given host can be broken with this
list [561].

Salt isn't a panacea; increasing the number of salt bits won't solve everything.
Salt only protects against general dictionary attacks on a password file, not against
a concerted attack on a single password. It protects people who have the same
password on multiple machines, but doesn't make poorly chosen passwords any
better.

SKEY

SKEY is an authentication program that relies on a one-way function for its secu­
rity. It's easy to explain.

To set up the system, Alice enters a random number, R. The computer computes
f(R), f(f(R)), f(f(f(R))), and so on, about a hundred times. Call these numbers x 1, x2,

x3, ••• , x 100• The computer prints out this list of numbers, and Alice puts it in her
pocket for safekeeping. The computer also stores x 101, in the clear, in a login data­
base next to Alice's name.

The first time Alice wants to log in, she types her name and x 100• The computer
calculates f(x 100) and compares it with x 10u if they match, Alice is authenticated.
Then, the computer replaces x 101 with x 100 in the database. Alice crosses Xiao off
her list.

Every time Alice logs in, she enters the last uncrossed number on her list: X;. The
computer calculates f(x;) and compares it with x; + 1 stored in its database. Eve can't
get any useful information because each number is only used once, and the function
is one-way. Similarly, the database is not useful to an attacker. Of course, when
Alice runs out of numbers on her list, she has to reinitialize the system.

Authentication Using Public-Key Cryptography
Even with salt, the first protocol has serious security problems. When Alice sends

her password to her host, anyone who has access to her data path can read it. She
might be accessing her host through a convoluted transmission path that passes
through four industrial competitors, three foreign countries, and two forward­
thinking universities. Eve can be at any one of those points, listening to Alice's login
sequence. If Eve has access to the processor memory of the host, she can see the
password before the host hashes it.

Public-key cryptography can solve this problem. The host keeps a file of every
user's public key; all users keep their own private keys. Here is a nai:ve attempt at a
protocol. When logging in, the protocol proceeds as follows:

~""':s;~------C_H_A_P_T_E_R_3 __ B_a_s_ic_P_ro_t_o_c_o_ls _________________ _

(1) The host sends Alice a random string.

(2) Alice encrypts the string with her private key and sends it back to the host,
along with her name.

(3) The host looks up Alice's public key in its database and decrypts the mes­
sage using that public key.

(4) If the decrypted string matches what the host sent Alice in the first place,
the host allows Alice access to the system.

No one else has access to Alice's private key, so no one else can impersonate
Alice. More important, Alice never sends her private key over the transmission line
to the host. Eve, listening in on the interaction, cannot get any information that
would enable her to deduce the private key and impersonate Alice.

The private key is both long and non-mnemonic, and will probably be processed
automatically by the user's hardware or communications software. This requires an
intelligent terminal that Alice trusts, but neither the host nor the communications
path needs to be secure.

It is foolish to encrypt arbitrary strings-not only those sent by untrusted third
parties, but under any circumstances at all. Attacks similar to the one discussed in
Section 19.3 can be mounted. Secure proof-of-identity protocols take the following,
more complicated, form:

(1) Alice performs a computation based on some random numbers and her pri­
vate key and sends the result to the host.

(2) The host sends Alice a different random number.

(3) Alice makes some computation based on the random numbers (both the
ones she generated and the one she received from the host) and her private
key, and sends the result to the host.

(4) The host does some computation on the various numbers received from
Alice and her public key to verify that she knows her private key.

(5) If she does, her identity is verified.

If Alice does not trust the host any more than the host trusts Alice, then Alice
will require the host to prove its identity in the same manner.

Step (1) might seem unnecessary and confusing, but it is required to prevent
attacks against the protocol. Sections 21.1 and 21.2 mathematically describe several
algorithms and protocols for proving identity. See also [935].

Mutual Authentication Using the Interlock Protocol

Alice and Bob are two users who want to authenticate each other. Each of them
has a password that the other knows: Alice has PA and Bob has PR, Here's a protocol
that will not work:

(1) Alice and Bob trade public keys.

(2) Alice encrypts PA with Bob's public key and sends it to him.

__________________ 3_.2 __ A_u_th_en_t_i_ca_t_i_on ________ 7.,...~

(3) Bob encrypts PB with Alice's public key and sends it to her.

(4) Alice decrypts what she received in step (2) and verifies that it is correct.

(5) Bob decrypts what he received in step (3) and verifies that it is correct.

Mallory can launch a successful man-in-the-middle attack (see Section 3.1):

(1) Alice and Bob trade public keys. Mallory intercepts both messages. He sub­
stitutes his public key for Bob's and sends it to Alice. Then he substitutes
his public key for Alice's and sends it to Bob.

(2) Alice encrypts PA with "Bob's" public key and sends it to him. Mallory
intercepts the message, decrypts PA with his private key, re-encrypts it
with Bob's public key and sends it on to him.

(3) Bob encrypts PB with "Alice's" public key and sends it to her. Mallory
intercepts the message, decrypts PB with his private key, re-encrypts it
with Alice's public key, and sends it on to her.

(4) Alice decrypts PB and verifies that it is correct.

(5) Bob decrypts PA and verifies that it is correct.

Alice and Bob see nothing different. However, Mallory knows both PA and PB.
Donald Davies and Wyn Price describe how the interlock protocol (described in

Section 3.1) can defeat this attack [435]. Steve Bellovin and Michael Merritt discuss
ways to attack this protocol [110]. If Alice is a user and Bob is a host, Mallory can pre­
tend to be Bob, complete the beginning steps of the protocol with Alice, and then
drop the connection. True artistry demands Mallory do this by simulating line noise
or network failure, but the final result is that Mallory has Alice's password. He can
then connect with Bob and complete the protocol, thus getting Bob's password, too.

The protocol can be modified so that Bob gives his password before Alice, under
the assumption that the user's password is much more sensitive than the host's
password. This falls to a more complicated attack, also described in [110].

SKID
SKID2 and SKID3 are symmetric cryptography identification protocols developed

for RACE's RIPE project [1305] (See Section 25. 7). They use a MAC (see Section 2.4)
to provide security and both assume that both Alice and Bob share a secret key, K.

SKID2 allows Bob to prove his identity to Alice. Here's the protocol:

(1) Alice chooses a random number, RA. (The RIPE document specifies a 64-bit
number). She sends it to Bob.

(2) Bob chooses a random number, RB. (The RIPE document specifies a 64-bit
number). He sends Alice:

RB,HK(RA,RB,B)

HK is the MAC. (The RIPE document suggests the RIPE-MAC function­
see Section 18.14.) Bis Bob's name.

~""':s;~------C_H_A_P_T_E_R_3 __ B_a_s_ic_P_ro_t_o_c_o_ls ________________ _

(3) Alice computes HK(RA,RB,B) and compares it with what she received from
Bob. If the results are identical, then Alice knows that she is communicat­
ing with Bob.

SKID3 provides mutual authentication between Alice and Bob. Steps (1) through (3)
are identical to SKID2, and then the protocol proceeds with:

(4) Alice sends Bob:

HK(RR,A)

A is Alice's name.

(5) Bob computes HK(RR,A), and compares it with what he received from Alice.
If the results are identical, then Bob knows that he is communicating with
Alice.

This protocol is not secure against a man-in-the-middle attack. In general, a man-in­
the-middle attack can defeat any protocol that doesn't involve a secret of some kind.

Message Authentication
When Bob receives a message from Alice, how does he know it is authentic? If

Alice signed her message, this is easy. Alice's digital signature is enough to convince
anyone that the message is authentic.

Symmetric cryptography provides some authentication. When Bob receives a
message from Alice encrypted in their shared key, he knows it is from Alice. No one
else knows their key. However, Bob has no way of convincing a third party of this
fact. Bob can't show the message to Trent and convince him that it came from Alice.
Trent can be convinced that the message came from either Alice or Bob (since no
one else shared their secret key), but he has no way of knowing which one.

If the message is unencrypted, Alice could also use a MAC. This also convinces
Bob that the message is authentic, but has the same problems as symmetric cryp­
tography solutions.

3.3 AUTHENTICATION AND KEY EXCHANGE

These protocols combine authentication with key exchange to solve a general com­
puter problem: Alice and Bob are on opposite ends of a network and want to talk
securely. How can Alice and Bob exchange a secret key and at the same time each
be sure that he or she is talking to the other and not to Mallory? Most of the proto­
cols assume that Trent shares a different secret key with each participant, and that
all of these keys are in place before the protocol begins.

The symbols used in these protocols are summarized in Table 3.1.

Wide-Mouth Frog
The Wide-Mouth Frog protocol [283,284] is probably the simplest symmetric key­

management protocol that uses a trusted server. Both Alice and Bob share a secret

_______________ 3_._3_A_u_t_h_en_t1_·c_a_t1_·o_n_a_n_d_K_e_y_E_x_ch_an_g_e ____ Z: __ ~

A
B
EA
EB
I
K

TABLE 3.1
Symbols used in authentication and key exchange protocols

Alice's name
Bob's name
Encryption with a key Trent shares with Alice
Encryption with a key Trent shares with Bob
Index number

L
TA,TB
RA,RB

A random session key
Lifetime
A timestamp
A random number, sometimes called a nonce, chosen by Alice and Bob
respectively

key with Trent. The keys are just used for key distribution and not to encrypt any
actual messages between users. Just by using two messages, Alice transfers a session
key to Bob:

(1) Alice concatenates a times tamp, Bob's name, and a random session key
and encrypts the whole message with the key she shares with Trent. She
sends this to Trent, along with her name.

A,EA(TA,B,K)

(2) Trent decrypts the message from Alice. Then he concatenates a new time­
stamp, Alice's name, and the random session key; he encrypts the whole
message with the key he shares with Bob. Trent sends to Bob:

EB(TB,A,K)

The biggest assumption made in this protocol is that Alice is competent enough
to generate good session keys. Remember that random numbers aren 1t easy to gen­
erate; it might be more than Alice can be trusted to do properly.

Yahalom
In this protocol, both Alice and Bob share a secret key with Trent [283,284].

(1) Alice concatenates her name and a random number, and sends it to Bob.

A,RA

(2) Bob concatenates Alice's name, Alice's random number, his own random
number, and encrypts it with the key he shares with Trent. He sends this
to Trent, along with his name.

B,EB(A,RA,RB)

(3) Trent generates two messages. The first consists of Bob's name, a random
session key, Alice's random number, and Bob's random number, all
encrypted with the key he shares with Alice. The second consists of

~""'s;,--------C_H_A_P_T_E_R_3 __ B_a_s_ic_P_ro_t_o_c_o_ls ________________ _

Alice's name and the random session key, encrypted with the key he
shares with Bob. He sends both messages to Alice.

EA(B,K,RA,RB),EB(A,K)

(4) Alice decrypts the first message, extracts K. and confirms that RA has the
same value as it did in step (1). Alice sends Bob two messages. The first is
the message received from Trent, encrypted with Bob's key. The second is
RB, encrypted with the session key.

EB(A,K),EK(RB)

(5) Bob decrypts the message encrypted with his key, extracts K. and confirms
that RB has the same value as it did in step (2).

At the end, Alice and Bob are each convinced that they are talking to the other and
not to a third party. The novelty here is that Bob is the first one to contact Trent,
who only sends one message to Alice.

Needham-Schroeder

This protocol, invented by Roger Needham and Michael Schroeder [1159], also uses
symmetric cryptography and Trent.

(1) Alice sends a message to Trent consisting of her name, Bob's name, and a
random number.

A,B,RA

(2) Trent generates a random session key. He encrypts a message consisting of
a random session key and Alice's name with the secret key he shares with
Bob. Then he encrypts Alice's random value, Bob's name, the key, and the
encrypted message with the secret key he shares with Alice. Finally, he
sends her the encrypted message:

EA(RA,B,K,EB(K,A))

(3) Alice decrypts the message and extracts K. She confirms that RA is the
same value that she sent Trent in step (1). Then she sends Bob the message
that Trent encrypted in his key.

ER(K.A)

(4) Bob decrypts the message and extracts K. He then generates another ran­
dom value, RB. He encrypts the message with Kand sends it to Alice.

EK(RB)

(5) Alice decrypts the message with K. She generates RR - 1 and encrypts it
with K. Then she sends the message back to Bob.

EK(RB - 1)
(6) Bob decrypts the message with Kand verifies that it is RB - 1.

All of this fussing around with RA and RB and RB - 1 is to prevent replay attacks.
In this attack, Mallory can record old messages and then use them later in an
attempt to subvert the protocol. The presence of RA in step (2) assures Alice that

________________ 3_.3 __ A_u_t_h_e_n_t_ic_a_t_io_n_a_n_d_K_ey_E_x_c_h_a_n_g_e ____ 7_~

Trent's message is legitimate and not a replay of a response from a previous execu­
tion of the protocol. When Alice successfully decrypts RB and sends Bob RB - l in
step (5), Bob is ensured that Alice's messages are not replays from an earlier execu­
tion of the protocol.

The major security hole in this protocol is that old session keys are valuable. If
Mallory gets access to an old K, he can launch a successful attack [461]. All he has
to do is record Alice's messages to Bob in step (3). Then, once he has K, he can pre­
tend to be Alice:

(1) Mallory sends Bob the following message:

EB(K,A)

(2) Bob extracts K, generates RB, and sends Alice:

EK(RB)

(3) Mallory intercepts the message, decrypts it with K, and sends Bob:

EK(RB - l)

(4) Bob verifies that "Alice's" message is R 13 - l.

Now, Mallory has Bob convinced that he is Alice.
A stronger protocol, using timestamps, can defeat this attack [461,456]. A time­

stamp is added to Trent's message in step (2) encrypted with Bob's key: EB(K,A, T).
Timestamps require a secure and accurate system clock-not a trivial problem in
itself.

If the key Trent shares with Alice is ever compromised, the consequences are
drastic. Mallory can use it to obtain session keys to talk with Bob (or anyone else he
wishes to talk to). Even worse, Mallory can continue to do this even after Alice
changes her key [90].

Needham and Schroeder attempted to correct these problems in a modified ver­
sion of their protocol [1160]. Their new protocol is essentially the same as the
Otway-Rees protocol, published in the same issue of the same journal.

Otway-Rees

This protocol also uses symmetric cryptography [1224].

(1) Alice generates a message consisting of an index number, her name, Bob's
name, and a random number, all encrypted in the key she shares with
Trent. She sends this message to Bob along with the index number, her
name, and his name:

I,A,B,EA(RA,I,A,B)

(2) Bob generates a message consisting of a new random number, the index
number, Alice's name, and Bob's name, all encrypted in the key he shares
with Trent. He sends it to Trent, along with Alice's encrypted message, the
index number, her name, and his name:

I,A,B,EA(RA,I,A,B),EB(RB,I,A,B)

~""'s,--------C_H_A_P_T_E_R_3 __ B_a_s_ic_P_r_o_t_o_c_o_ls ________________ _

(3) Trent generates a random session key. Then he creates two messages. One
is Alice's random number and the session key, encrypted in the key he
shares with Alice. The other is Bob's random number and the session key,
encrypted in the key he shares with Bob. He sends these two messages,
along with the index number, to Bob:

I,EA(RA,K),EB(RB,K)

(4) Bob sends Alice the message encrypted in her key, along with the index
number:

I,EA(RA,K)

(5) Alice decrypts the message to recover her key and random number. She
then confirms that both have not changed in the protocol.

Assuming that all the random numbers match, and the index number hasn't
changed along the way, Alice and Bob are now convinced of each other's identity,
and they have a secret key with which to communicate.

Kerberos
Kerberos is a variant of Needham-Schroeder and is discussed in detail in Section

24.5. In the basic Kerberos Version 5 protocol, Alice and Bob each share keys with
Trent. Alice wants to generate a session key for a conversation with Bob.

(1) Alice sends a message to Trent with her identity and Bob's identity.

A,B

(2) Trent generates a message with a timestamp, a lifetime, L, a random ses­
sion key, and Alice's identity. He encrypts this in the key he shares with
Bob. Then he takes the timestamp, the lifetime, the session key, and Bob's
identity, and encrypts these in the key he shares with Alice. He sends both
encrypted messages to Alice.

EA(T,L,K,B),EB(T,L,K,A)

(3) Alice generates a message with her identity and the timestamp, encrypts it
in K, and sends it to Bob. Alice also sends Bob the message encrypted in
Bob's key from Trent.

EK(A, T),EB(T,L,K,A)

(4) Bob creates a message consisting of the timestamp plus one, encrypts it in
K, and sends it to Alice.

EK(T+ 1)

This protocol works, but it assumes that everyone's clocks are synchronized with
Trent's clock. In practice, the effect is obtained by synchronizing clocks to within a
few minutes of a secure time server and detecting replays within the time interval.

Neuman-Stubblebine
Whether by system faults or by sabotage, clocks can become unsynchronized. If

the clocks get out of sync, there is a possible attack against most of these protocols

______________ 3_._3_A_u_th_en_t_i_c_a_t1_·o_n_a_n_d_K_e_y_E_x_c_h_a_n_g_e ____ 7 __ ~

[644]. If the sender's clock is ahead of the receiver's clock, Mallory can intercept a
message from the sender and replay it later when the timestamp becomes current at
the receiver's site. This attack is called suppress-replay and can have irritating
consequences.

This protocol, first presented in [820] and corrected in [1162] attempts to counter
the suppress-replay attack. It is an enhancement to Yahalom and is an excellent
protocol.

(l) Alice concatenates her name and a random number and sends it to Bob.

A,RA

(2) Bob concatenates Alice's name, her random number, and a timestamp, and
encrypts with the key he shares with Trent. He sends it to Trent along with
his name and a new random number.

B,RB,EB(A,RA, TB)

(3) Trent generates a random session key. Then he creates two messages. The
first is Bob's name, Alice's random number, a random session key, and the
timestamp, all encrypted with the key he shares with Alice. The second is
Alice's name, the session key, and the timestamp, all encrypted with the
key he shares with Bob. He sends these both to Alice, along with Bob's ran­
dom number.

EA(B,RA,K, TB),EA(A,K, TB),RB

(4) Alice decrypts the message encrypted with her key, extracts K, and con­
firms that RA has the same value as it did in step (1). Alice sends Bob two
messages. The first is the message received from Trent, encrypted with
Bob's key. The second is RB, encrypted with the session key.

EB(A,K, TB),EdRB)

(5) Bob decrypts the message encrypted with his key, extracts K, and confirms
that TB and RB have the same value they did in step (2).

Assuming both random numbers and the timestamp match, Alice and Bob are
convinced of one another's identity and share a secret key. Synchronized clocks are
not required because the timestamp is only relative to Bob's clock; Bob only checks
the timestamp he generated himself.

One nice thing about this protocol is that Alice can use the message she received
from Trent for subsequent authentication with Bob, within some predetermined
time limit. Assume that Alice and Bob completed the above protocol, communi­
cated, and then terminated the connection. Alice and Bob can reauthenticate in
three steps, without having to rely on Trent.

(1) Alice sends Bob the message Trent sent her in step (3) and a new random
number.

EB(A,K, TB),R' A

~-
5
_______ C_H_A_P_T_E_R_3 __ B_a_s_ic_P_ro_t_o_c_o_ls ________________ _

(2) Bob sends Alice another new random number, and Alice's new random
number encrypted in their session key.

R'B,EK(R'A)

(3) Alice sends Bob his new random number, encrypted in their session key.

EK(R'B)
The new random numbers prevent replay attacks.

DASS
The Distributed Authentication Security Service (DASS) protocols, developed at

Digital Equipment Corporation, also provide for mutual authentication and key
exchange [604, 1519, 1518]. Unlike the previous protocols, DASS uses both public­
key and symmetric cryptography. Alice and Bob each have a private key. Trent has
signed copies of their public keys.

(1) Alice sends a message to Trent, consisting of Bob's name.

B

(2) Trent sends Alice Bob's public key, K8 , signed with Trent's private key, T
The signed message includes Bob's name.

Sr(B,KB)

(3) Alice verifies Trent's signature to confirm that the key she received is actu­
ally Bob's public key. She generates a random session key, and a random
public-key/private-key key pair: Kr. She encrypts a timestamp with K.
Then she signs a key lifetime, L, her name, and Kr with her private key, KA.
Finally, she encrypts K with Bob's public key, and signs it with Kr. She
sends all of this to Bob.

EK(TA),SKA(L,A,Kp),SKp(EKB(K))

(4) Bob sends a message to Trent (this may be a different Trent), consisting of
Alice's name.

A

(5) Trent sends Bob Alice's public key, signed in Trent's private key. The
signed message includes Alice's name.

Sr(A,KA)

(6) Bob verifies Trent's signature to confirm that the key he received is actu­
ally Alice's public key. He then verifies Alice's signature and recovers Kr.
He verifies the signature and uses his private key to recover K. Then he
decrypts TA to make sure this is a current message.

(7) If mutual authentication is required, Bob encrypts a new timestamp with
K, and sends it to Alice.

EK(TB)

(8) Alice decrypts T8 with K to make sure that the message is current.

SPX, a product by DEC, is based on DASS. Additional information can be found
in [34].

______________ 3_._3_A_u_th_e_n_t_ic_a_t_io_n_a_n_d_K_e_y_Ex_ch_a_n_g_e ____ 7 __ ~

Denning-Sacco

This protocol also uses public-key cryptography [461]. Trent keeps a database of
everyone's public keys.

(1) Alice sends a message to Trent with her identity and Bob's identity:

A,B

(2) Trent sends Alice Bob's public key, K8, signed with Trent's private key, T.
Trent also sends Alice her own public key, KA, signed with his private key.

Sy(B,KB),Sy(A,KA)

(3) Alice sends Bob a random session key and a timestamp, signed in her pri­
vate key and encrypted in Bob's public key, along with both signed public
keys.

EB(SA(K, TA)),Sr(B,KB),Sy(A,KA)

(4) Bob decrypts Alice's message with his private key and then verifies Alice's
signature with her public key. He checks to make sure that the times tamp
is still valid.

At this point both Alice and Bob have K, and can communicate securely.
This looks good, but it isn't. After completing the protocol with Alice, Bob can

then masquerade as Alice [5]. Watch:

(1) Bob sends his name and Carol's name to Trent

B,C

(2) Trent sends Bob both Bob's and Carol's signed public keys.

Sy(B,KB),Sy(C,Kc)

(3) Bob sends Carol the signed session key and timestamp he previously
received from Alice, encrypted with Carol's public key, along with Alice's
certificate and Carol's certificate.

Ec(SA(K, TA)),Sr(A,KA),S-r(C,Kc)

(4) Carol decrypts Alice's message with her private key and then verifies
Alice's signature with her public key. She checks to make sure that the
timestamp is still valid.

Carol now thinks she is talking to Alice; Bob has successfully fooled her. In fact,
Bob can fool everyone on the network until the timestamp expires.

This is easy to fix. Add the names inside the encrypted message in step (3):

EB(SA(A,B,K, TA)),S-r(A,KA),Sr(B,KB)

Now Bob can't replay the old message to Carol, because it is clearly meant for
communication between Alice and Bob.

Woo-Lam

This protocol also uses public-key cryptography [1610, 1611]:

~-:s. _______ C_H_A_P_T_ER_3 __ B_a_s1_·c_P_r_o_t_o_c_o_ls ________________ _

(1) Alice sends a message to Trent with her identity and Bob's identity:

A,B

(2) Trent sends Alice Bob's public key, KB, signed with Trent's private key, T

Sr(KR)

(3) Alice verifies Trent's signature. Then she sends Bob her name and a ran­
dom number, encrypted with Bob's public key.

EKB(A,RA)

(4) Bob sends Trent his name, Alice's name, and Alice's random number
encrypted with Trent's public key, Kr.

A,B,EKy(RA)

(5) Trent sends Bob Alice's public key, KA, signed with Trent's private key. He
also sends him Alice's random number, a random session key, Alice's
name, and Bob's name, all signed with Trent's private key and encrypted
with Bob's public key.

Sr(KA),EKB(Sr(RA,K,A,B))

(6) Bob verifies Trent's signatures. Then he sends Alice the second part of
Trent's message from step (5) and a new random number-all encrypted in
Alice's public key.

EKA(Sr(RA,K,A,B),RR)

(7) Alice verifies Trent's signature and her random number. Then she sends
Bob the second random number, encrypted in the session key.

EK(RB)

(8) Bob decrypts his random number and verifies that it unchanged.

Other Protocols
There are many other protocols in the literature. The X.509 protocols are dis­

cussed in Section 24.9, KryptoKnight is discussed in Section 24.6, and Encrypted
Key Exchange is discussed in Section 22.5.

Another new public-key protocol is Kuperee [694]. And work is being done on pro­
tocols that use beacons, a trusted node on a network that continuously broadcasts
authenticated nonces [783].

Lessons Learned
There are some important lessons in the previous protocols, both those which

have been broken and those which have not:

Many protocols failed because the designers tried to be too clever. They
optimized their protocols by leaving out important pieces: names, random
numbers, and so on. The remedy is to make everything explicit [43,44].

Trying to optimize is an absolute tar pit and depends a whole lot on
the assumptions you make. For example: If you have authenticated
time, you can do a whole lot of things you can't do if you don't.

__________________ 3_._4_F_o_r_m_a_l_A_n_a_ly_s_is ________ 7 __ ~

The protocol of choice depends on the underlying communications archi­
tecture. Do you want to minimize the size of messages or the number of
messages? Can all parties talk with each other or can only a few of them?

It's questions like these that led to the development of formal methods for ana­
lyzing protocols.

3.4 FORMAL ANALYSIS OF AUTHENTICATION AND KEY­

EXCHANGE PROTOCOLS

The problem of establishing secure session keys between pairs of computers (and
people) on a network is so fundamental that it has led to a great deal of research.
Some of the research focused on the development of protocols like the ones dis­
cussed in Sections 3.1, 3.2, and 3.3. This, in turn, has led to a greater and more inter­
esting problem: the formal analysis of authentication and key-exchange protocols.
People have found flaws in seemingly secure protocols years after they were pro­
posed, and researchers wanted tools that could prove a protocol's security from the
start. Although much of this work can apply to general cryptographic protocols, the
emphasis in research is almost exclusively on authentication and key exchange.

There are four basic approaches to the analysis of cryptographic protocols [1045]:

1. Model and verify the protocol using specification languages and verifica­
tion tools not specifically designed for the analysis of cryptographic pro­
tocols.

2. Develop expert systems that a protocol designer can use to develop and
investigate different scenarios.

3. Model the requirements of a protocol family using logics for the analysis of
knowledge and belief.

4. Develop a formal method based on the algebraic term-rewriting properties
of cryptographic systems.

A full discussion on these four approaches and the research surrounding them is
well beyond the scope of this book. See [1047,1355] for a good introduction to the
topic; I am only going to touch on the major contributions to the field.

The first approach treats a cryptographic protocol as any other computer program
and attempts to prove correctness. Some researchers represent a protocol as a finite­
state machine [1449,1565], others use extensions of first-order predicate calculus
[822], and still others use specification languages to analyze protocols [1566]. How­
ever, proving correctness is not the same as proving security and this approach fails
to detect many flawed protocols. Although it was widely studied at first, most of the
work in this area has been redirected as the third approach gained popularity.

The second approach uses expert systems to determine if a protocol can reach an
undesirable state (the leaking of a key, for example). While this approach better
identifies flaws, it neither guarantees security nor provides techniques for develop-

~-s _______ C_H_A_P_T_E_R_3 __ B_a_s1_·c_P_r_o_t_o_c_o_ls _________________ _

ing attacks. It is good at determining whether a protocol contains a given flaw, but
is unlikely to discover unknown flaws in a protocol. Examples of this approach can
be found in [987,1521]; [1092] discusses a rule-based system developed by the U.S.
military, called the Interrogator.

The third approach is by far the most popular, and was pioneered by Michael Bur­
rows, Martin Abadi, and Roger Needham. They developed a formal logic model for
the analysis of knowledge and belief, called BAN logic [283,284]. BAN logic is the
most widely used logic for analyzing authentication protocols. It assumes that
authentication is a function of integrity and freshness, and uses logical rules to
trace both of those attributes through the protocol. Although many variants and
extensions have been proposed, most protocol designers still refer back to the orig­
inal work.

BAN logic doesn't provide a proof of security; it can only reason about authenti­
cation. It has a simple, straightforward logic that is easy to apply and still useful for
detecting flaws. Some of the statements in BAN logic include:

Alice believes X. (Alice acts as though X is true.)
Alice sees X. (Someone has sent a message containing X to Alice, who can read

and repeat X-possibly after decrypting it.)
Alice said X. (At some time, Alice sent a message that includes the statement

X. It is not known how long ago the message was sent or even that it was sent dur­
ing the current run of the protocol. It is known that Alice believed X when she
said it.)

X is fresh. (X has not been sent in a message at any time before the current run
of the protocol.)

And so on. BAN logic also provides rules for reasoning about belief in a protocol.
These rules can then be applied to the logical statements about the protocol to prove
things or answer questions about the protocol. For example, one rule is the message­
meaning rule:

IF Alice believes that Alice and Bob share a secret key, K, and Alice sees X,
encrypted under K, and Alice did not encrypt X under K, THEN Alice believes
that Bob once said X.

Another rule is the nonce-verification rule:

IF Alice believes that X could have been uttered only recently and that Bob once
said X, THEN Alice believes that Bob believes X.

There are four steps in BAN analysis:

(1) Convert the protocol into idealized form, using the statements previously
described.

(2) Add all assumptions about the initial state of the protocol.

_________________ 3_._4_F_o_r_m_a_l_A_n_a_ly_s_is ________ 7--:;;,,'~

(3) Attach logical formulas to the statements: assertions about the state of the
system after each statement.

(4) Apply the logical postulates to the assertions and assumptions to discover
the beliefs held by the parties in the protocol.

The authors of BAN logic "view the idealized protocols as clearer and more com­
plete specifications than traditional descriptions found in the literature "
[283,284]. Others are not so impressed and criticize this step because it may not
accurately reflect the real protocol [1161,1612]. Further debate is in [221,1557].
Other critics try to show that BAN logic can deduce characteristics about proto­
cols that are obviously false [1161]-see [285, 1509] for a rebuttal-and that BAN
logic deals only with trust and not security [1509]. More debate is in [1488,
706,1002].

Despite these criticisms, BAN logic has been a success. It has found flaws in sev­
eral protocols, including Needham-Schroeder and an early draft of a CCITT X.509
protocol [303]. It has uncovered redundancies in many protocols, including Yaha­
lom, Needham-Schroeder, and Kerberos. Many published papers use BAN logic to
make claims about their protocol's security [40, 1162, 73].

Other logic systems have been published, some designed as extensions to BAN
logic [645,586, 1556,828] and others based on BAN to correct perceived weaknesses
[1488, 1002]. The most successful of these is GNY [645], although it has some short­
comings [40]. Probabalistic beliefs were added to BAN logic, with mixed success,
by [292,474]. Other formal logics are [156,798,288]; [1514] attempts to combine the
features of several logics. And [1124,1511] present logics where beliefs can change
over time.

The fourth approach to the analysis of cryptographic protocols models the proto­
col as an algebraic system, expresses the state of the participants' knowledge about
the protocol, and then analyzes the attainability of certain states. This approach has
not received as much attention as formal logics, but that is changing. It was first
used by Michael Merritt [1076], who showed that an algebraic model can be used to
analyze cryptographic protocols. Other approaches are in [473, 1508, 1530, 1531, 1532,
1510,1612].

The Navy Research Laboratory's (NRL) Protocol Analyzer is probably the most
successful application of these techniques [1512,823,1046,1513]; it has been used to
discover both new and known flaws in a variety of protocols [1044,1045,1047]. The
Protocol Analyzer defines the following actions:

Accept (Bob, Alice, M, N). (Bob accepts the message Mas from Alice
during Bob's local round N.)

Learn (Eve, M). (Eve learns M.)

Send (Alice, Bob, Q, M). (Alice sends M to Bob in response to
query, Q.)

Request (Bob, Alice, Q, N). (Bob sends Q to Alice during Bob's local
round N.)

~-:s _______ C_H_A_P_T_E_R_3 __ B_a_s1_·c_P_r_o_t_o_c_o_ls _________________ _

From these actions, requirements can be specified. For example:

If Bob accepted message M from Alice at some point in the past, then
Eve did not learn M at some point in the past.

If Bob accepted message M from Alice in Bob's local round N, then
Alice sent M to Bob as a response to a query in Bob's local round N.

To use the NRL Protocol Analyzer, a protocol must be specified using the previ­
ous constructs. Then, there are four phases of analysis: defining transition rules for
honest participants, describing operations available to all-honest and dishonest­
participants, describing the basic building blocks of the protocol, and describing the
reduction rules. The point of all this is to show that a given protocol meets its
requirements. Tools like the NRL Protocol Analyzer could eventually lead to a pro­
tocol that can be proven secure.

While much of the work in formal methods involves applying the methods to
existing protocols, there is some push towards using formal methods to design the
protocols in the first place. Some preliminary steps in this direction are [711]. The
NRL Protocol Analyzer also attempts to do this [1512,222,1513].

The application of formal methods to cryptographic protocols is still a fairly new
idea and it's really hard to figure out where it is headed. At this point, the weakest
link seems to be the formalization process.

3.5 MULTIPLE-KEY PUBLIC-KEY CRYPTOGRAPHY

Public-key cryptography uses two keys. A message encrypted with one key can be
decrypted with the other. Usually one key is private and the other is public. How­
ever, let's assume that Alice has one key and Bob has the other. Now Alice can
encrypt a message so that only Bob can decrypt it, and Bob can encrypt a message so
that only Alice can read it.

This concept was generalized by Colin Boyd [217]. Imagine a variant of public-key
cryptography with three keys: KA, KB, and Kc, distributed as shown in Table 3.2.

Alice can encrypt a message with KA so that Ellen, with Kn and Kc, can decrypt it.
So can Bob and Carol in collusion. Bob can encrypt a message so that Frank can read

TABLE 3.2
Three-Key Key Distribution

Alice KA
Bob KB
Carol Kc
Dave KA and KB
Ellen KB and Kc
Frank Kc and KA

3.5 Multiple-Key Public-Key Cryptography

it, and Carol can encrypt a message so that Dave can read it. Dave can encrypt a
message with KA so that Ellen can read it, with KB so that Frank can read it, or with
both KA and KB so that Carol can read it. Similarly, Ellen can encrypt a message so
that either Alice, Dave, or Frank can read it. All the possible combinations are sum­
marized in Table 3.3; there are no other ones.

This can be extended ton keys. If a given subset of the keys is used to encrypt the
message, then the other keys are required to decrypt the message.

Broadcasting a Message
Imagine that you have 100 operatives out in the field. You want to be able to send

messages to subsets of them, but don't know which subsets in advance. You can
either encrypt the message separately for each person or give out keys for every pos­
sible combination of people. The first option requires a lot of messages; the second
requires a lot of keys.

Multiple-key cryptography is much easier. We'll use three operatives: Alice, Bob,
and Carol. You give Alice KA and KB, Bob KB and Kc, and Carol Kc and KA. Now you
can talk to any subset you want. If you want to send a message so that only Alice
can read it, encrypt it with Kc. When Alice receives the message, she decrypts it
with KA and then KB. If you want to send a message so that only Bob can read it,
encrypt it with KA; so that only Carol can read it, with KB. If you want to send a mes­
sage so that both Alice and Bob can read it, encrypt it with KA and Kc, and so on.

This might not seem exciting, but with 100 operatives it is quite efficient. Indi­
vidual messages mean a shared key with each operative (100 keys total) and each
message. Keys for every possible subset means 2 100 - 2 different keys (messages to all
operatives and messages to no operatives are excluded). This scheme needs only one
encrypted message and 100 different keys. The drawback of this scheme is that you
also have to broadcast which subset of operatives can read the message, otherwise
each operative would have to try every combination of possible keys looking for the
correct one. Even just the names of the intended recipients may be significant. At
least for the straightforward implementation of this, everyone gets a really large
amount of key data.

There are other techniques for message broadcasting, some of which avoid the
previous problem. These are discussed in Section 22.7.

TABLE 3.3
Three-Key Message Encryption

Encrypted with Keys: Must be Decrypted with Keys:

KA
KB
Kc
KA and KB
KA and Kc
KB and Kc

KB and Kc
KA and Kc
KA and KB
Kc
KB
KA

~""s,--------C_H_A_P_T_E_R_3 __ B_a_s1_·c_P_r_o_t_o_c_o_ls ________________ _

3.6 SECRET SPLITTING

Imagine that you've invented a new, extra gooey, extra sweet, cream filling or a
burger sauce that is even more tasteless than your competitors'. This is important;
you have to keep it secret. You could tell only your most trusted employees the
exact mixture of ingredients, but what if one of them defects to the competition?
There goes the secret, and before long every grease palace on the block will be mak­
ing burgers with sauce as tasteless as yours.

This calls for secret splitting. There are ways to take a message and divide it up
into pieces [551]. Each piece by itself means nothing, but put them together and the
message appears. If the message is the recipe and each employee has a piece, then
only together can they make the sauce. If any employee resigns with his single piece
of the recipe, his information is useless by itself.

The simplest sharing scheme splits a message between two people. Here's a pro­
tocol in which Trent can split a message between Alice and Bob:

(1) Trent generates a random-bit string, R, the same length as the message, M.

(2) Trent XORs M with R to generate S.

MffiR=S

(3) Trent gives R to Alice and S to Bob.

To reconstruct the message, Alice and Bob have only one step to do:

(4) Alice and Bob XOR their pieces together to reconstruct the message:

RffiS=M

This technique, if done properly, is absolutely secure. Each piece, by itself, is
absolutely worthless. Essentially, Trent is encrypting the message with a one-time
pad and giving the ciphertext to one person and the pad to the other person. Section
1.5 discusses one-time pads; they have perfect security. No amount of computing
power can determine the message from one of the pieces.

It is easy to extend this scheme to more people. To split a message among more
than two people, XOR more random-bit strings into the mixture. In this example,
Trent divides up a message into four pieces:

(1) Trent generates three random-bit strings, R, S, and T, the same length as
the message, M.

(2) Trent XORs M with the three strings to generate U:

MffiRffiSffiT=U

(3) Trent gives R to Alice, S to Bob, T to Carol, and U to Dave.

Alice, Bob, Carol, and Dave, working together, can reconstruct the message:

(4) Alice, Bob, Carol, and Dave get together and compute:

RffiSffiTffi U=M

___________________ 3_._7_S_e_c_re_t_S_h_a_r_in_g ________ 7 __ ~

This is an adjudicated protocol. Trent has absolute power and can do whatever he
wants. He can hand out gibberish and claim that it is a valid piece of the secret; no
one will know it until they try to reconstruct the secret. He can hand out a piece to
Alice, Bob, Carol, and Dave, and later tell everyone that only Alice, Carol, and Dave
are needed to reconstruct the secret, and then fire Bob. But since this is Trent's
secret to divide up, this isn't a problem.

However, this protocol has a problem: If any of the pieces gets lost and Trent isn't
around, so does the message. If Carol, who has a piece of the sauce recipe, goes to
work for the competition and takes her piece with her, the rest of them are out of
luck. She can't reproduce the recipe, but neither can Alice, Bob, and Dave working
together. Her piece is as critical to the message as every other piece combined. All
Alice, Bob, or Dave know is the length of the message-nothing more. This is true
because R, S, T, U, and Mall have the same length; seeing anyone of them gives the
length of M. Remember, M isn't being split in the normal sense of the word; it is
being XORed with random values.

3. 7 SECRET SHARING

You're setting up a launch program for a nuclear missile. You want to make sure
that no single raving lunatic can initiate a launch. You want to make sure that no
two raving lunatics can initiate a launch. You want at least three out of five officers
to be raving lunatics before you allow a launch.

This is easy to solve. Make a mechanical launch controller. Give each of the five
officers a key and require that at least three officers stick their keys in the proper
slots before you'll allow them to blow up whomever we're blowing up this week. (If
you're really worried, make the slots far apart and require the officers to insert the
keys simultaneously-you wouldn't want an officer who steals two keys to be able
to vaporize Toledo.)

We can get even more complicated. Maybe the general and two colonels are
authorized to launch the missile, but if the general is busy playing golf then five
colonels are required to initiate a launch. Make the launch controller so that it
requires five keys. Give the general three keys and the colonels one each. The gen­
eral together with any two colonels can launch the missile; so can the five colonels.
However, a general and one colonel cannot; neither can four colonels.

A more complicated sharing scheme, called a threshold scheme, can do all of this
and more-mathematically. At its simplest level, you can take any message (a secret
recipe, launch codes, your laundry list, etc.) and divide it into n pieces, called shad­
ows or shares, such that any m of them can be used to reconstruct the message.
More precisely, this is called an (m,n)-threshold scheme.

With a (3,4)-threshold scheme, Trent can divide his secret sauce recipe among
Alice, Bob, Carol, and Dave, such that any three of them can put their shadows
together and reconstruct the message. If Carol is on vacation, Alice, Bob, and Dave
can do it. If Bob gets run over by a bus, Alice, Carol, and Dave can do it. However, if
Bob gets run over by a bus while Carol is on vacation, Alice and Dave can't recon­
struct the message by themselves.

~"":s,------------C_H_A_P_T_E_R_3 __ B_a_s1_·c_P_r_o_t_o_c_o_ls _________________ _

General threshold schemes are even more versatile. Any sharing scenario you can
imagine can be modeled. You can divide a message among the people in your build­
ing so that to reconstruct it, you need seven people from the first floor and five peo­
ple from the second floor, unless there is someone from the third floor involved, in
which case you only need that person and three people from the first floor and two
people from the second floor, unless there is someone from the fourth floor
involved, in which case you need that person and one person from the third floor, or
that person and two people from the first floor and one person from the second floor,
unless there is ... well, you get the idea.

This idea was invented independently by Adi Shamir [1414] and George Blakley
[182] and studied extensively by Gus Simmons [1466]. Several different algorithms
are discussed in Section 23.2.

Secret Sharing with Cheaters
There are many ways to cheat with a threshold scheme. Here are just a few of them.
Scenario 1: Colonels Alice, Bob, and Carol are in a bunker deep below some iso-

lated field. One day, they get a coded message from the president: "Launch the mis­
siles. We're going to eradicate the last vestiges of neural network research in the
country." Alice, Bob, and Carol reveal their shadows, but Carol enters a random
number. She's actually a pacifist and doesn't want the missiles launched. Since
Carol doesn't enter the correct shadow, the secret they recover is the wrong secret.
The missiles stay in their silos. Even worse, no one knows why. Alice and Bob, even
if they work together, cannot prove that Carol's shadow is invalid.

Scenario 2: Colonels Alice and Bob are sitting in the bunker with Mallory. Mal­
lory has disguised himself as a colonel and none of the others is the wiser. The
same message comes in from the president, and everyone reveals their shadows.
"Bwa-ha-ha!" shouts Mallory. "I faked that message from the president. Now I
know both of your shadows." He races up the staircase and escapes before anyone
can catch him.

Scenario 3: Colonels Alice, Bob, and Carol are sitting in the bunker with Mallory,
who is again disguised. (Remember, Mallory doesn't have a valid shadow.) The same
message comes in from the president and everyone reveals their shadows. Mallory
reveals his shadow only after he has heard the other three. Since only three shadows
are needed to reconstruct the secret, he can quickly create a valid shadow and
reveals that. Now, not only does he know the secret, but no one realizes that he isn't
part of the scheme.

Some protocols that handle these sorts of cheaters are discussed in Section 23.2.

Secret Sharing without Trent
A bank wants its vault to open only if three out of five officers enter their keys.

This sounds like a basic (3,5)-threshold scheme, but there's a catch. No one is to
know the entire secret. There is no Trent to divide the secret up into five pieces.
There are protocols by which the five officers can create a secret and each get a
piece, such that none of the officers knows the secret until they all reconstruct it.
I'm not going to discuss these protocols in this book; see [756] for details.

3.8 Cryptographic Protection of Databases

Sharing a Secret without Revealing the Shares
These schemes have a problem. When everyone gets together to reconstruct their

secret, they reveal their shares. This need not be the case. If the shared secret is a pri­
vate key (to a digital signature, for example), then n shareholders can each complete
a partial signature of the document. After the nth partial signature, the document
has been signed with the shared private key and none of the shareholders learns any
other shares. The point is that the secret can be reused, and you don't need a trusted
processor to handle it. This concept is explored further by Yvo Desmedt and Yair
Frankel [483,484].

Verifiable Secret Sharing
Trent gives Alice, Bob, Carol, and Dave each a share or at least he says he does.

The only way any of them know if they have a valid share is to try to reconstruct the
secret. Maybe Trent sent Bob a bogus share or Bob accidentally received a bad share
through communications error. Verifiable secret sharing allows each of them to
individually verify that they have a valid share, without having to reconstruct the
secret [558,1235].

Secret-Sharing Schemes with Prevention
A secret is divided up among 50 people so that any 10 can get together and recon­

struct the secret. That's easy. But, can we implement the same secret-sharing
scheme with the added constraint that 20 people can get together and prevent the
others from reconstructing the secret, no matter how many of them there are? As it
turns out, we can [153].

The math is complicated, but the basic idea is that everyone gets two shares: a
"yes" share and a "no" share. When it comes time to reconstruct the secret, people
submit one of their shares. The actual share they submit depends on whether they
wish the secret reconstructed. If there are m or more "yes" shares and fewer than n
"no" shares, the secret can be reconstructed. Otherwise, it cannot.

Of course, nothing prevents a sufficient number of "yes" people from going off in
a corner without the "no" people (assuming they know who they are) and recon­
structing the secret. But in a situation where everyone submits their shares into a
central computer, this scheme will work.

Secret Sharing with Disenrollment
You've set up your secret-sharing system and now you want to fire one of your

shareholders. You could set up a new scheme without that person, but that's time­
consuming. There are methods for coping with this system. They allow a new
sharing scheme to be activated instantly once one of the participants becomes
untrustworthy [1004].

3 .8 CRYPTOGRAPHIC PROTECTION OF DATABASES

The membership database of an organization is a valuable commodity. On the one
hand, you want to distribute the database to all members. You want them to com-

~-:s. _______ C_H_A_P_T_E_R_3 __ B_a_s_ic_P_ro_t_o_c_o_ls _________________ _

municate with one another, exchange ideas, and invite each other over for cucum­
ber sandwiches. On the other hand, if you distribute the membership database to
everyone, copies are bound to fall into the hands of insurance salesmen and other
annoying purveyors of junk mail.

Cryptography can ameliorate this problem. We can encrypt the database so that it
is easy to extract the address of a single person but hard to extract a mailing list of
all the members.

The scheme, from [550,549], is straightforward. Choose a one-way hash function
and a symmetric encryption algorithm. Each record of the database has two fields.
The index field is the last name of the member, operated on by the one-way hash
function. The data field is the full name and address of the member, encrypted
using the last name as the key. Unless you know the last name, you can't decrypt
the data field.

Searching a specific last name is easy. First, hash the last name and look for the
hashed value in the index field of the database. If there is a match, then that last
name is in the database. If there are several matches, then there are several people
in the database with the last name. Finally, for each matching entry, decrypt the full
name and address using the last name as the key.

In [550] the authors use this system to protect a dictionary of 6000 Spanish verbs.
They report minimal performance degradation due to the encryption. Additional
complications in [549] handle searches on multiple indexes, but the idea is the
same. The primary problem with this system is that it's impossible to search for
people when you don't know how to spell their name. You can try variant spellings
until you find the correct one, but it isn't practical to scan through everyone whose
name begins with "Sch" when looking for "Schneier."

This protection isn't perfect. It is possible for a particularly persistent insurance
salesperson to reconstruct the membership database through brute-force by trying
every possible last name. If he has a telephone database, he can use it as a list of pos­
sible last names. This might take a few weeks of dedicated number crunching, but
it can be done. It makes his job harder and, in the world of junk mail, "harder"
quickly becomes "too expensive."

Another approach, in [185], allows statistics to be compiled on encrypted data.

---------------------,,,,z~

CHAPTER 4

Intermediate Protocols

4.1 TIMESTAMPING SERVICES

In many situations, people need to certify that a document existed on a certain date.
Think about a copyright or patent dispute: The party that produces the earliest copy
of the disputed work wins the case. With paper documents, notaries can sign and
lawyers can safeguard copies. If a dispute arises, the notary or the lawyer testifies
that the letter existed on a certain date.

In the digital world, it's far more complicated. There is no way to examine a digi­
tal document for signs of tampering. It can be copied and modified endlessly with­
out anyone being the wiser. It's trivial to change the date stamp on a computer file.
No one can look at a digital document and say: "Yes, this document was created
before November 4, 1952."

Stuart Haber and W. Scott Stornetta at Bellcore thought about the problem [682,
683,92]. They wanted a digital timestamping protocol with the following properties:

The data itself must be timestamped, without any regard to the phys­
ical medium on which it resides.

It must be impossible to change a single hit of the document without
that change being apparent.

It must he impossible to timestamp a document with a date and time
different from the present one.

Arbitrated Solution
This protocol uses Trent, who has a trusted timestamping service, and Alice, who

wishes to timestamp a document.

(1) Alice transmits a copy of the document to Trent.

~-s; ______ C_H_A_P_T_E_R_4 __ I_n_t_e_rm_e_d_1_·a_t_e_P_r_o_to_c_o_l_s _______________ _

(2) Trent records the date and time he received the document and retains a
copy of the document for safekeeping.

Now, if anyone calls into question Alice's claim of when the document was cre­
ated, she just has to call up Trent. He will produce his copy of the document and ver­
ify that he received the document on the date and time stamped.

This protocol works, but has some obvious problems. First, there is no privacy.
Alice has to give a copy of the document to Trent. Anyone listening in on the com­
munications channel could read it. She could encrypt it, but still the document has
to sit in Trent's database. Who knows how secure that database is?

Second, the database itself would have to be huge. And the bandwidth require­
ments to send large documents to Trent would be unwieldy.

The third problem has to do with the potential errors. An error in transmission, or
an electromagnetic bomb detonating somewhere in Trent's central computers,
could completely invalidate Alice's claim of a timestamp.

And fourth, there might not be someone as honest as Trent to run the time­
stamping service. Maybe Alice is using Bob's Timestamp and Taco Stand. There is
nothing to stop Alice and Bob from colluding and timestamping a document with
any time that they want.

Improved Arbitrated Solution
One-way hash functions and digital signatures can clear up most of these prob-

lems easily:

(1) Alice produces a one-way hash of the document.

(2) Alice transmits the hash to Trent.

(3) Trent appends the date and time he received the hash onto the hash and
then digitally signs the result.

(4) Trent sends the signed hash with timestamp back to Alice.

This solves every problem but the last. Alice no longer has to worry about revealing
the contents of her document; the hash is sufficient. Trent no longer has to store
copies of the document (or even of the hash), so the massive storage requirements and
security problems are solved (remember, one-way hash functions don't have a key).
Alice can immediately examine the signed timestamped hash she receives in step (4),
so she will immediately catch any transmission errors. The only problem remaining
is that Alice and Trent can still collude to produce any timestamp they want.

Linking Protocol

One way to solve this problem is to link Alice's timestamp with timestamps pre­
viously generated by Trent. These timestamps will most probably be generated for
people other than Alice. Since the order that Trent receives the different timestamp
requests can't be known in advance, Alice's timestamp must have occurred after

__________________ 4_._1_T_1_·m_es_t_a_m_p_1_·n_g_Se_r_v_i_ce_s _______ 7.,,.~

the previous one. And since the request that came after is linked with Alice's
timestamp, then hers must have occurred before. This sandwiches Alice's request
in time.

If A is Alice's name, the hash value that Alice wants timestamped is Hw and the
previous time stamp is Tn _ 1, then the protocol is:

(1) Alice sends Trent Hn and A.

(2) Trent sends back to Alice:

Tn = SK(n,A,Hn,tnJn - 1,Hn - I, Tn - 1,Ln)

where Ln consists of the following hashed linking information:

Ln = H(In - 1,Hn - !, Tn - 1,Ln - i)

SK indicates that the message is signed with Trent's private key. Alice's
name identifies her as the originator of the request. The parameter n indi­
cates the sequence of the request: This is the nth timestamp Trent has
issued. The parameter tn is the time. The additional information is the
identification, original hash, time, and hashed timestamp of the previous
document Trent stamped.

(3) After Trent stamps the next document, he sends Alice the identification of
the originator of that document: In+ 1•

If someone challenges Alice's timestamp, she just contacts the originators of the
previous and following documents: In_ 1 and I11 + 1. If their documents are called into
question, they can get in touch with In_ 2 and In+ 2, and so on. Every person can show
that their document was timestamped after the one that came before and before the
one that came after.

This protocol makes it very difficult for Alice and Trent to collude and produce a
document stamped with a different time than the actual one. Trent cannot forward­
date a document for Alice, since that would require knowing in advance what doc­
ument request came before it. Even if he could fake that, he would have to know
what document request came before that, and so on. He cannot back-date a docu­
ment, because the timestamp must be embedded in the timestamps of the docu­
ment issued immediately after, and that document has already been issued. The
only possible way to break this scheme is to invent a fictitious chain of documents
both before and after Alice's document, long enough to exhaust the patience of any­
one challenging the timestamp.

Distributed Protocol
People die; timestamps get lost. Many things could happen between the time­

stamping and the challenge to make it impossible for Alice to get a copy of In_ 1's
timestamp. This problem could be alleviated by embedding the previous 10 people's
timestamps into Alice's, and then sending Alice the identities of the next 10 people.
Alice has a greater chance of finding people who still have their timestamps.

~""':s.,-------C_H_A_P_T_ER_4 __ In_t_e_rm_e_d_i_a_te_P_ro_t_o_c_o_ls _______________ _

Along a similar line, the following protocol does away with Trent altogether.

(1) Using H11 as input, Alice generates a string of random values using a cryp­
tographically secure pseudo-random-number generator:

Vi, V2, Vi, ... vk
(2) Alice interprets each of these values as the identification, I, of another per­

son. She sends H 11 to each of these people.

(3) Each of these people attaches the date and time to the hash, signs the
result, and sends it back to Alice.

(4) Alice collects and stores all the signatures as the timestamp.

The cryptographically secure pseudo-random-number generator in step (1) pre­
vents Alice from deliberately choosing corrupt Is as verifiers. Even if she makes triv­
ial changes in her document in an attempt to construct a set of corrupt Is, her
chances of getting away with this are negligible. The hash function randomizes the
Is; Alice cannot force them.

This protocol works because the only way for Alice to fake a timestamp would be
to convince all of the k people to cooperate. Since she chose them at random in step
(1), the odds against this are very high. The more corrupt society is, the higher a
number k should be.

Additionally, there should be some mechanism for dealing with people who can't
promptly return the timestamp. Some subset of k is all that would be required for a
valid timestamp. The details depend on the implementation.

Further Work

Further improvements to timestamping protocols are presented in [92]. The authors
use binary trees to increase the number of timestamps that depend on a given time­
stamp, reducing even further the possibility that someone could create a chain of fic­
titious timestamps. They also recommend publishing a hash of the day's timestamps
in a public place, such as a newspaper. This serves a function similar to sending the
hash to random people in the distributed protocol. In fact, a timestamp has appeared
in every Sunday's New York Times since 1992.

These timestamping protocols are patented [684,685,686]. A Bellcore spin-off com­
pany called Surety Technologies owns the patents and markets a Digital Notary Sys­
tem to support these protocols. In their first version, clients send "certify" requests
to a central coordinating server. Following Merkle's technique of using hash func­
tions to build trees [1066], the server builds a tree of hash values whose leaves are all
the requests received during a given second, and sends back to each requester the list
of hash values hanging off the path from its leaf to the root of the tree. The client soft­
ware stores this locally, and can issue a Digital Notary "certificate" for any file that
has been certified. The sequence of roots of these trees comprises the "Universal Val­
idation Record" that will be available electronically at multiple repository sites (and
also published on CD-ROM). The client software also includes a "validate" function,
allowing the user to test whether a file has been certified in exactly its current form

________________ 4._2_S_u_b_l_im_in_a_l_C_h_a_n_n_e_l ______ z:---~

(by querying a repository for the appropriate tree root and comparing it against a hash
value appropriately recomputed from the file and its certificate). For information
contact Surety Technologies, 1 Main St., Chatham, NJ, 07928; (201) 701-0600; Fax:
(201) 701-0601.

4.2 SUBLIMINAL CHANNEL

Alice and Bob have been arrested and are going to prison. He's going to the men's
prison and she's going to the women's prison. Walter, the warden, is willing to let
Alice and Bob exchange messages, but he won't allow them to be encrypted. Walter
expects them to coordinate an escape plan, so he wants to be able to read everything
they say.

Walter also hopes to deceive either Alice or Bob. He wants one of them to accept
a fraudulent message as a genuine message from the other. Alice and Bob go along
with this risk of deception, otherwise they cannot communicate at all, and they
have to coordinate their plans. To do this they have to deceive the warden and find
a way of communicating secretly. They have to set up a subliminal channel, a covert
communications channel between them in full view of Walter, even though the
messages themselves contain no secret information. Through the exchange of per­
fectly innocuous signed messages they will pass secret information back and forth
and fool Walter, even though Walter is watching all the communications.

An easy subliminal channel might be the number of words in a sentence. An odd
number of words in a sentence might correspond to "1," while an even number of
words might correspond to "0." So, while you read this seemingly innocent para­
graph, I have sent my operatives in the field the message "101." The problem with
this technique is that it is mere steganography (see Section 1.2); there is no key and
security depends on the secrecy of the algorithm.

Gustavus Simmons invented the concept of a subliminal channel in a conventional
digital signature algorithm [1458,1473]. Since the subliminal messages are hidden in
what looks like normal digital signatures, this is a form of obfuscation. Walter sees
signed innocuous messages pass back and forth, but he completely misses the infor­
mation being sent over the subliminal channel. In fact, the subliminal-channel sig­
nature algorithm is indistinguishable from a normal signature algorithm, at least to
Walter. Walter not only cannot read the subliminal message, but he also has no idea
that one is even present.

In general the protocol looks like this:

(1) Alice generates an innocuous message, pretty much at random.

(2) Using a secret key shared with Bob, Alice signs the innocuous message in
such a way that she hides her subliminal message in the signature. (This is
the meat of the subliminal channel protocol; see Section 23.3.)

(3) Alice sends this signed message to Bob via Walter.

(4) Walter reads the innocuous message and checks the signature. Finding
nothing amiss, he passes the signed message to Bob.

~""'s~----C_H_A_P_T_ER_4 __ In_t_e_r_m_e_d_i_a_te_P_ro_t_o_c_o_ls _______________ _

(5) Bob checks the signature on the innocuous message, confirming that the
message came from Alice.

(6) Bob ignores the innocuous message and, using the secret key he shares
with Alice, extracts the subliminal message.

What about cheating? Walter doesn't trust anyone and no one trusts him. He can
always prevent communication, but he has no way of introducing phony messages.
Since he can't generate any valid signatures, Bob will detect his attempt in step (5).
And since he does not know the shared key, he can't read the subliminal messages.
Even more important, he has no idea that the subliminal messages are there. Signed
messages using a digital signature algorithm look no different from signed messages
with subliminal messages embedded in the signature.

Cheating between Alice and Bob is more problematic. In some implementations
of a subliminal channel, the secret information Bob needs to read the subliminal
message is the same information Alice needs to sign the innocuous message. If this
is the case, Bob can impersonate Alice. He can sign messages purporting to come
from her, and there is nothing Alice can do about it. If she is to send him subliminal
messages, she has to trust him not to abuse her private key.

Other subliminal channel implementations don't have this problem. A secret key
shared by Alice and Bob allows Alice to send Bob subliminal messages, but it is not
the same as Alice's private key and does not allow Bob to sign messages. Alice need
not trust Bob not to abuse her private key.

Applications of Subliminal Channel
The most obvious application of the subliminal channel is in a spy network. If

everyone sends and receives signed messages, spies will not be noticed sending sub­
liminal messages in signed documents. Of course, the enemy's spies can do the
same thing.

Using a subliminal channel, Alice could safely sign a document under threat. She
would, when signing the document, imbed the subliminal message, saying, "I am
being coerced." Other applications are more subtle. A company can sign documents
and embed subliminal messages, allowing them to be tracked throughout the docu­
ments' lifespans. The government can "mark" digital cash. A malicious signature
program can leak secret information in its signatures. The possibilities are endless.

Subliminal-Free Signatures

Alice and Bob are sending signed messages to each other, negotiating the terms of
a contract. They use a digital signature protocol. However, this contract negotiation
has been set up as a cover for Alice's and Bob's spying activities. When they use the
digital signature algorithm, they don't care about the messages they are signing.
They are using a subliminal channel in the signatures to send secret information to
each other. The counterespionage service, however, doesn't know that the contract
negotiations and the use of signed messages are just cover-ups. This concern has led
people to create subliminal-free signature schemes. These digital signature schemes
cannot be modified to contain a subliminal channel. See [480,481] for details.

________________ 4_.3 __ U_n_d_e_n_i_a_b_le_D_ig_1_·t_al_S_1_·g_n_a_tu_r_e_s _____ 7 ___ ~

4.3 UNDENIABLE DIGITAL SIGNATURES

Normal digital signatures can be copied exactly. Sometimes this property is useful,
as in the dissemination of public announcements. Other times it could be a prob­
lem. Imagine a digitally signed personal or business letter. If many copies of that
document were floating around, each of which could be verified by anyone, this
could lead to embarrassment or blackmail. The best solution is a digital signature
that can be proven valid, but that the recipient cannot show to a third party without
the signer's consent.

The Alice Software Company distributes DEW (Do-Everything-Word). To ensure
that their software is virus-free, they include a digital signature with each copy.
However, they want only legitimate buyers of the software, not software pirates, to
be able to verify the signature. At the same time, if copies of DEW are found to con­
tain a virus, the Alice Software Company should be unable to deny a valid signature.

Undeniable signatures [343,327] are suited to these sorts of tasks. Like a normal
digital signature, an undeniable signature depends on the signed document and the
signer's private key. But unlike normal digital signatures, an undeniable signature
cannot be verified without the signer's consent. Although a better name for these
signatures might be something like "nontransferable signatures," the name comes
from the fact that if Alice is forced to either acknowledge or deny a signature-per­
haps in court-she cannot falsely deny her real signature.

The mathematics are complicated, but the basic idea is simple:

(1) Alice presents Bob with a signature.

(2) Bob generates a random number and sends it to Alice.

(3) Alice does a calculation using the random number and her private key and
sends Bob the result. Alice could only do this calculation if the signature is
valid.

(4) Bob confirms this.

There is also an additional protocol so that Alice can prove that she did not sign a
document, and cannot falsely deny a signature.

Bob can't turn around and convince Carol that Alice's signature is valid, because
Carol doesn't know that Bob's numbers are random. He could have easily worked
the protocol backwards on paper, without any help from Alice, and then shown
Carol the result. Carol can be convinced that Alice's signature is valid only if she
completes the protocol with Alice herself. This might not make much sense now,
but it will once you see the mathematics in Section 23.4.

This solution isn't perfect. Yvo Desmedt and Moti Yung show that it is possible,
in some applications, for Bob to convince Carol that Alice's signature is valid [489].

For instance, Bob buys a legal copy of DEW. He can validate the signature on the
software package whenever he wants. Then, Bob convinces Carol that he's a sales­
man from the Alice Software Company. He sells her a pirated copy of DEW. When
Carol tries to validate the signature with Bob, he simultaneously validates the signa-

~~s _____ C_H_A_P_TE_R_4_I_n_t_e_rm_e_d_i_a_te_P_ro_t_o_c_o_ls ______________ _

ture with Alice. When Carol sends him the random number, he then sends it on to
Alice. When Alice replies, he then sends the reply on to Carol. Carol is convinced
that she is a legitimate buyer of the software, even though she isn't. This attack is an
instance of the chess grandmaster problem and is discussed in detail in Section 5.2.

Even so, undeniable signatures have a lot of applications; in many instances Alice
doesn't want anyone to be able to verify her signature. She might not want personal
correspondence to be verifiable by the press, be shown and verified out of context,
or even to be verified after things have changed. If she signs a piece of information
she sold, she won't want someone who hasn't paid for the information to be able to
verify its authenticity. Controlling who verifies her signature is a way for Alice to
protect her personal privacy.

A variant of undeniable signatures separates the relation between signer and mes­
sage from the relation between signer and signature [910]. In one signature scheme,
anyone can verify that the signer actually created the signature, but the cooperation
of the signer is required to verify that the signature is valid for the message.

A related notion is an entrusted undeniable signature [1229]. Imagine that Alice
works for Toxins, Inc., and sends incriminating documents to a newspaper using an
undeniable signature protocol. Alice can verify her signature to the newspaper
reporter, but not to anyone else. However, CEO Bob suspects that Alice is the source
of the documents. He demands that Alice run the disavowal protocol to clear her
name, and Alice refuses. Bob maintains that the only reason Alice has to refuse is
that she is guilty, and fires her.

Entrusted undeniable signatures are like undeniable signatures, except that the
disavowal protocol can only be run by Trent. Bob cannot demand that Alice run the
disavowal protocol; only Trent can. And if Trent is the court system, then he will
only run the protocol to resolve a formal dispute.

4.4 DESIGNATED CONFIRMER SIGNATURES

The Alice Software Company is doing a booming business selling DEW-so good, in
fact, that Alice is spending more time verifying undeniable signatures than writing
new features.

Alice would like a way to designate one particular person in the company to be in
charge of signature verification for the whole company. Alice, or any other pro­
grammer, would be able to sign documents with an undeniable protocol. But the
verifications would all be handled by Carol.

As it turns out, this is possible with designated confirmer signatures [333, 1213].
Alice can sign a document such that Bob is convinced the signature is valid, but he
cannot convince a third party; at the same time Alice can designate Carol as the
future confirmer of her signature. Alice doesn't even need to ask Carol's permission
beforehand; she just has to use Carol's public key. And Carol can still verify Alice's
signature if Alice is out of town, has left the company, or just upped and died.

Designated confirmer signatures are kind of a compromise between normal digi­
tal signatures and undeniable signatures. There are certainly instances where Alice
might want to limit who can verify her signature. On the other hand, giving Alice

___________________ 4_.s __ P_r_o_x_y_S_ig_n_a_tu_r_e_s ________ 7_,,,~

complete control undermines the enforceability of signatures: Alice might refuse to
cooperate in either confirming or denying, she might claim the loss of keys for con­
firming or denying, or she might just be unavailable. Designated confirmer signa­
tures can give Alice the protection of an undeniable signature while not letting her
abuse that protection. Alice might even prefer it that way: Designated confirmer
signatures can help prevent false applications, protect her if she actually does lose
her key, and step in if she is on vacation, in the hospital, or even dead.

This idea has all sorts of possible applications. Carol can set herself up as a notary
public. She can publish her public key in some directory somewhere, and people can
designate her as a confirmer for their signatures. She can charge a small fee for con­
firming signatures for the masses and make a nice living.

Carol can be a copyright office, a government agency, or a host of other things.
This protocol allows organizations to separate the people who sign documents from
the people who help verify signatures.

4.5 PROXY SIGNATURES

Designated confirmer signatures allows a signer to designate someone else to verify
his signature. Alice, for instance, needs to go on a business trip to someplace which
doesn't have very good computer network access-to the jungles of Africa, for exam­
ple. Or maybe she is incapacitated after major surgery. She expects to receive some
important e-mail, and has instructed her secretary Bob to respond accordingly. How
can Alice give Bob the power to sign messages for her, without giving him her pri­
vate key?

Proxy signatures is a solution [1001]. Alice can give Bob a proxy, such that the fol-
lowing properties hold:

Distinguishability. Proxy signatures are distinguishable from normal
signatures by anyone.

Unforgeability. Only the original signer and the designated proxy
signer can create a valid proxy signature.

Proxy signer's deviation. A proxy signer cannot create a valid proxy
signature not detected as a proxy signature.

Verifiability. From a proxy signature, a verifier can be convinced of
the original signer's agreement on the signed message.

Identifiability. An original signer can determine the proxy signer's
identity from a proxy signature.

Undeniability. A proxy signer cannot disavow an accepted proxy sig­
nature he created.

In some cases, a stronger form of identifiability is required-that anyone can
determine the proxy signer's identity from the proxy signature. Proxy signature
schemes, based on different digital signature schemes, are in [1001].

~""s;~-----C_H_A_P_T_E_R_4_I_n_t_e_rm_e_d_1_·a_t_e_P_r_o_t_o_co_l_s ________________ _

4.6 GROUP SIGNATURES

David Chaum introduces this problem in [330]:

A company has several computers, each connected to the local network. Each
department of that company has its own printer (also connected to the network)
and only persons of that department are allowed to use their department's printer.
Before printing, therefore, the printer must be convinced that the user is working
in that department. At the same time, the company wants privacy; the user's
name may not be revealed. If, however, someone discovers at the end of the day
that a printer has been used too often, the director must be able to discover who
misused that printer, and send him a bill.

The solution to this problem is called a group signature. Group signatures have
the following properties:

Only members of the group can sign messages.

The receiver of the signature can verify that it is a valid signature
from the group.

The receiver of the signature cannot determine which member of the
group is the signer.

In the case of a dispute, the signature can be "opened" to reveal the
identity of the signer.

Group Signatures with a Trusted Arbitrator

This protocol uses a trusted arbitrator:

(1) Trent generates a large pile of public-key/private-key key pairs and gives
every member of the group a different list of unique private keys. No keys
on any list are identical. (If there are n members of the group, and each
member gets m key pairs, then there are n * m total key pairs.)

(2) Trent publishes the master list of all public keys for the group, in random
order. Trent keeps a secret record of which keys belong to whom.

(3) When group members want to sign a document, he chooses a key at ran­
dom from his personal list.

(4) When someone wants to verify that a signature belongs to the group, he
looks on the master list for the corresponding public key and verifies the
signature.

(5) In the event of a dispute, Trent knows which public key corresponds to
which group member.

The problem with this protocol is that it requires a trusted party. Trent knows
everyone's private keys and can forge signatures. Also, m must be long enough to
preclude attempts to analyze which keys each member uses.

______________ 4_.8 __ C_o_m_p_u_t1_·n_g_w_1_·t_h_E_n_c_r_y_p_te_d_D_a_t_a ____ 7-,,,~

Chaum [330] lists a number of other protocols, some in which Trent is unable to
fake signatures and others in which Trent is not even required. Another protocol
[348] not only hides the identity of the signer, but also allows new members to join
the group. Yet another protocol is [1230].

4. 7 FAIL-STOP DIGITAL SIGNATURES

Let's say Eve is a very powerful adversary. She has vast computer networks and
rooms full of Cray computers-orders of magnitude more computing power than
Alice. All of these computers chug away, day and night, trying to break Alice's pri­
vate key. Finally-success. Eve can now impersonate Alice, forging her signature on
documents at will.

Fail-stop digital signatures, introduced by Birgit Pfitzmann and Michael Waidner
[1240], prevent this kind of cheating. If Eve forges Alice's signatures after a brute-force
attack, then Alice can prove they are forgeries. If Alice signs a document and then dis­
avows the signature, claiming forgery, a court can verify that it is not a forgery.

The basic idea behind fail-stop signatures is that for every possible public key,
many possible private keys work with it. Each of these private keys yields many dif­
ferent possible signatures. However, Alice has only one private key and can com­
pute just one signature. Alice doesn't know any of the other private keys.

Eve wants to break Alice's private key. (Eve could also be Alice, trying to compute
a second private key for herself.) She collects signed messages and, using her array of
Cray computers, tries to recover Alice's private key. Even if she manages to recover
a valid private key, there are so many possible private keys that it is far more likely
that she has a different one. The probability of Eve's recovering the proper private
key can be made so small as to be negligible.

Now, when Eve forges a signed document using the private key she generated, it
will have a different signature than if Alice signs the document herself. When Alice
is hauled off to court, she can produce two different signatures for the same message
and public key (corresponding to her private key and to the private key Eve created)
to prove forgery. On the other hand, if Alice cannot produce the two different signa­
tures, there is no forgery and Alice is still bound by her signature.

This signature scheme protects against Eve breaking Alice's signature scheme by
sheer computational power. It does nothing against Mallory's much more likely
attack of breaking into Alice's house and stealing her private key or Alice's attack of
signing a document and then conveniently losing her private key. To protect against
the former, Alice should buy herself a good guard dog; that kind of thing is beyond
the scope of cryptography.

Additional theory and applications of fail-stop signatures can be found in [1239,
1241, 730,731].

4.8 COMPUTING WITH ENCRYPTED DATA

Alice wants to know the solution to some function f(x), for some particular value of
x. Unfortunately, her computer is broken. Bob is willing to compute f(x) for her, but

~""':s;~-----C_H_A_PT_E_R_4_I_n_t_e_r_m_e_d_1_·a_t_e_P_r_o_t_o_c_ol_s _______________ _

Alice isn't keen on letting Bob know her x. How can Alice let Bob compute f(x) for
her without telling him x?

This is the general problem of computing with encrypted data, also called hiding
information from an oracle. (Bob is the oracle; he answers questions.) There are
ways to do this for certain functions; they are discussed in Section 23.6.

4.9 BIT COMMITMENT

The Amazing Alice, magician extraordinaire, will now perform a mystifying feat of
mental prowess. She will guess the card Bob will choose before he chooses it! Watch
as Alice writes her prediction on a piece of paper. Marvel as Alice puts that piece of
paper in an envelope and seals it shut. Thrill as Alice hands that sealed envelope to
a random member of the audience. "Pick a card, Bob, any card." He looks at it and
shows it to Alice and the audience. It's the seven of diamonds. Alice now takes the
envelope back from the audience. She rips it open. The prediction, written before
Bob chose his card, says "seven of diamonds"! Applause.

To make this work, Alice had to switch envelopes at the end of the trick. How­
ever, cryptographic protocols can provide a method immune from any sleight of
hand. Why is this useful? Here's a more mundane story:

Stockbroker Alice wants to convince investor Bob that her method of picking
winning stocks is sound.

BoB: "Pick five stocks for me. If they are all winners, I'll give you my business."
ALICE: "If I pick five stocks for you, you could invest in them without paying me. Why

don't I show you the stocks I picked last month?"
BoB: "How do I know you didn't change last month's picks after you knew their out­

come? If you tell me your picks now, I'll know that you can't change them. I
won't invest in those stocks until after I've purchased your method. Trust me."

ALICE: "I'd rather show you my picks from last month. I didn't change them. Trust me."

Alice wants to commit to a prediction (i.e., a bit or series of bits) but does not
want to reveal her prediction until sometime later. Bob, on the other hand, wants
to make sure that Alice cannot change her mind after she has committed to her
prediction.

Bit Commitment Using Symmetric Cryptography

This bit-commitment protocol uses symmetric cryptography:

(1) Bob generates a random-bit string, R, and sends it to Alice.

R

(2) Alice creates a message consisting of the bit she wishes to commit to, b (it
can actually be several bits), and Bob's random string. She encrypts it with
some random key, K, and sends the result back to Bob.

EK(R,b)

__________________ 4_.9 __ B_i_t_C_o_m_m_i_tm_e_n_t _______ 7__,,~

That is the commitment portion of the protocol. Bob cannot decrypt the message,
so he does not know what the bit is.

When it comes time for Alice to reveal her bit, the protocol continues:

(3) Alice sends Bob the key.

(4) Bob decrypts the message to reveal the bit. He checks his random string to
verify the bit's validity.

If the message did not contain Bob's random string, Alice could secretly decrypt
the message she handed Bob with a variety of keys until she found one that gave her
a bit other than the one she committed to. Since the bit has only two possible val­
ues, she is certain to find one after only a few tries. Bob's random string prevents her
from using this attack; she has to find a new message that not only has her bit
inverted, but also has Bob's random string exactly reproduced. If the encryption
algorithm is good, the chance of her finding this is minuscule. Alice cannot change
her bit after she commits to it.

Bit Commitment Using One-Way Functions

This protocol uses one-way functions:

(1) Alice generates two random-bit strings, R 1 and R 2 •

R1,R2

(2) Alice creates a message consisting of her random strings and the bit she
wishes to commit to (it can actually be several bits).

(R1,R2,b)

(3) Alice computes the one-way function on the message and sends the result,
as well as one of the random strings, to Bob.

H(R1,R2,b),R1

This transmission from Alice is evidence of commitment. Alice's one-way func­
tion in step (3) prevents Bob from inverting the function and determining the bit.

When it comes time for Alice to reveal her bit, the protocol continues:

(4) Alice sends Bob the original message.

(R1,R2,b)

(5) Bob computes the one-way function on the message and compares it and
R 1, with the value and random string he received in step (3). If they match,
the bit is valid.

The benefit of this protocol over the previous one is that Bob does not have to
send any messages. Alice sends Bob one message to commit to a bit and another
message to reveal the bit.

Bob's random string isn't required because the result of Alice's commitment is a
message operated on by a one-way function. Alice cannot cheat and find another

~~:s _____ C_H_A_P_TE_R_4_I_n_t_e_rm_e_d_i_a_te_P_ro_t_o_c_o_ls _______________ _

message (R1,R2',b'), such that H(R 1,R2',b') = H(R 1,R2,b). By sending Bob R1 she is
committing to the value of b. If Alice didn't keep R 2 secret, then Bob could com­
pute both H(R1,R2,b) and H(R1,R2,b') and see which was equal to what he received
from Alice.

Bit Commitment Using Pseudo-Random-Sequence Generators
This protocol is even easier [1137]:

(1) Bob generates a random-bit string and sends it to Alice.

RB
(2) Alice generates a random seed for a pseudo-random-bit generator. Then, for

every bit in Bob's random-bit string, she sends Bob either:

(a) the output of the generator if Bob's bit is 0, or

(b) the XOR of output of the generator and her bit, if Bob's bit is 1.

When it comes time for Alice to reveal her bit, the protocol continues:

(3) Alice sends Bob her random seed.

(4) Bob completes step (2) to confirm that Alice was acting fairly.

If Bob's random-bit string is long enough, and the pseudo-random-bit generator is
unpredictable, then there is no practical way Alice can cheat.

Blobs
These strings that Alice sends to Bob to commit to a bit are sometimes called

blobs. A blob is a sequence of bits, although there is no reason in the protocols why
it has to be. As Gilles Brassard said, "They could be made out of fairy dust if this
were useful" [236]. Blobs have these four properties:

1. Alice can commit to blobs. By committing to a blob, she is committing to
a bit.

2. Alice can open any blob she has committed to. When she opens a blob, she
can convince Bob of the value of the bit she committed to when she com­
mitted to the blob. Thus, she cannot choose to open any blob as either a
zero or a one.

3. Bob cannot learn how Alice is able to open any unopened blob she has
committed to. This is true even after Alice has opened other blobs.

4. Blobs do not carry any information other than the bit Alice committed to.
The blobs themselves, as well as the process by which Alice commits to and
opens them, are uncorrelated to anything else that Alice might wish to keep
secret from Bob.

__________________ 4_._1_0_F_a_i_r_C_o_i_n_F_l_ip_s ________ 7_,,~

4.10 FAIR COIN FLIPS

It's story time with Joe Kilian [831]:

Alice and Bob wanted to flip a fair coin, but had no physical coin to flip. Alice
offered a simple way of flipping a fair coin mentally.

"First, you think up a random bit, then I'll think up a random bit. We'll then
exclusive-or the two bits together," she suggested.

"But what if one of us doesn't flip a coin at random?" Bob asked.
"It doesn't matter. As long as one of the bits is truly random, the exclusive-or

of the bits should be truly random," Alice replied, and after a moment's reflec­
tion, Bob agreed.

A short while later, Alice and Bob happened upon a book on artificial intelli­
gence, lying abandoned by the roadside. A good citizen, Alice said, "One of us
must pick this book up and find a suitable waste receptacle." Bob agreed, and
suggested they use their coin-flipping protocol to determine who would have to
throw the book away.

"If the final bit is a 0, then you will pick the book up, and if it is a 1, then I
will," said Alice. "What is your bit?"

Bob replied, "1."
"Why, so is mine," said Alice, slyly, "I guess this isn't your lucky day."
Needless to say, this coin-flipping protocol had a serious bug. While it is true

that a truly random bit, x, exclusive-ORed with any independently distributed
bit, y, will yield a truly random bit, Alice's protocol did not ensure that the two
bits were distributed independently. In fact, it is not hard to verify that no men­
tal protocol can allow two infinitely powerful parties to flip a fair coin. Alice
and Bob were in trouble until they received a letter from an obscure graduate
student in cryptography. The information in the letter was too theoretical to be
of any earthly use to anyone, but the envelope the letter came in was extremely
handy.

The next time Alice and Bob wished to flip a coin, they played a modified ver­
sion of the original protocol. First, Bob decided on a bit, but instead of announc­
ing it immediately, he wrote it down on a piece of paper and placed the paper in
the envelope. Next, Alice announced her bit. Finally, Alice and Bob took Bob's
bit out of the envelope and computed the random bit. This bit was indeed truly
random whenever at least one of them played honestly. Alice and Bob had a
working protocol, the cryptographer's dream of social relevance was fulfilled,
and they all lived happily ever after.

Those envelopes sound a lot like bit-commitment blobs. When Manuel Blum
introduced the problem of flipping a fair coin over a modem [194], he solved it using
a bit-commitment protocol:

(1) Alice commits to a random bit, using any of the bit-commitment schemes
listed in Section 4.9.

~ s;~----C_H_A_P_T_ER_4 __ In_t_e_rm_e_d_i_a_te_P_ro_t_o_c_o_ls _______________ _

(2) Bob tries to guess the bit.

(3) Alice reveals the bit to Bob. Bob wins the flip if he correctly guessed the bit.

In general, we need a protocol with these properties:

Alice must flip the coin before Bob guesses.

Alice must not be able to re-flip the coin after hearing Bob's guess.

Bob must not be able to know how the coin landed before making his
guess.

There are several ways in which we can do this.

Coin Flipping Using One-Way Functions
If Alice and Bob can agree on a one-way function, this protocol is simple:

(1) Alice chooses a random number, x. She computes y = f(x), where f(x) is the
one-way function.

(2) Alice sends y to Bob.

(3) Bob guesses whether xis even or odd and sends his guess to Alice.

(4) If Bob's guess is correct, the result of the coin flip is heads. If Bob's guess is
incorrect, the result of the coin flip is tails. Alice announces the result of
the coin flip and sends x to Bob.

(5) Bob confirms that y = f(x).

The security of this protocol rests in the one-way function. If Alice can find x and
x', such that x is even and x' is odd, and y = f(x) = f(x'), then she can cheat Bob every
time. The least significant bit of f(x) must also be uncorrelated with x. If not, Bob can
cheat Alice at least some of the time. For example, if f(x) produces even numbers 75
percent of the time if xis even, Bob has an advantage. (Sometimes the least significant
bit is not the best one to use in this application, because it can be easier to compute.)

Coin Flipping Using Public-Key Cryptography
This protocol works with either public-key cryptography or symmetric cryptog­

raphy. The only requirement is that the algorithm commute. That is:

DK1(EK2(EK1(M))) = EK2(M)

In general, this property is not true for symmetric algorithms, but it is true for
some public-key algorithms (RSA with identical moduli, for example). This is the
protocol:

(1) Alice and Bob each generate a public-key/private-key key pair.

(2) Alice generates two messages, one indicating heads and the other indicating
tails. These messages should contain some unique random string, so that

_________________ 4_._l_0_F_a_i_r_C_o_in_F_Ji_·p_s ________ Z:_,,~

she can verify their authenticity later in the protocol. Alice encrypts both
messages with her public key and sends them to Bob in a random order.

EA(Mi), EA(M2)

(3) Bob, who cannot read either message, chooses one at random. (He can sing
"eeny meeny miney moe," engage a malicious computer intent on sub­
verting the protocol, or consult the I Ching-it doesn't matter.) He
encrypts it with his public key and sends it back to Alice.

EB(EA(M))
Mis either M1 or M2.

(4) Alice, who cannot read the message sent back to her, decrypts it with her
private key and then sends it back to Bob.

DA(EB(EA(M))) = EB(Mi) if M = M 1, or

ER(M2) if Af = M2

(5) Bob decrypts the message with his private key to reveal the result of the
coin flip. He sends the decrypted message to Alice.

Dn(En(Mi)) = M1 or DB(ER(M2)) = M2

(6) Alice reads the result of the coin flip and verifies that the random string is
correct.

(7) Both Alice and Bob reveal their key pairs so that both can verify that the
other did not cheat.

This protocol is self-enforcing. Either party can immediately detect cheating by
the other, and no trusted third party is required to participate in either the actual
protocol or any adjudication after the protocol has been completed. To see how this
works, let's try to cheat.

If Alice wanted to cheat and force heads, she has three potential ways of affecting
the outcome. First, she could encrypt two "heads" messages in step (2). Bob would
discover this when Alice revealed her keys at step (7). Second, she could use some
other key to decrypt the message in step (4). This would result in gibberish, which
Bob would discover in step (5). Third, she could lie about the validity of the message
in step (6). Bob would also discover this in step (7), when Alice could not prove that
the message was not valid. Of course, Alice could refuse to participate in the proto­
col at any step, at which point Alice's attempted deception would be obvious to Bob.

If Bob wanted to cheat and force "tails, 11 his options are just as poor. He could
incorrectly encrypt a message at step (3), but Alice would discover this when she
looked at the final message at step (6). He could improperly perform step (5), but this
would also result in gibberish, which Alice would discover at step (6). He could
claim that he could not properly perform step (5) because of some cheating on the
part of Alice, but this form of cheating would be discovered at step (7). Finally, he
could send a "tails" message to Alice at step (5), regardless of the message he
decrypted, but Alice would immediately be able to check the message for authen­
ticity at step (6).

~""':s;~----C_H_A_P_T_ER_4_I_n_t_e_rm_e_d_i_a_te_P_ro_t_o_c_o_ls _______________ _

Flipping Coins into a Well
It is interesting to note that in all these protocols, Alice and Bob don't learn the

result of the coin flip at the same time. Each protocol has a point where one of the par­
ties (Alice in the first two protocols and Bob in the last one) knows the result of the
coin flip but cannot change it. That party can, however, delay disclosing the result to
the other party. This is known as flipping coins into a well. Imagine a well. Alice is
next to the well and Bob is far away. Bob throws the coin and it lands in the well. Alice
can now look into the well and see the result, but she cannot reach down to change it.
Bob cannot see the result until Alice lets him come close enough to look.

Key Generation Using Coin Flipping
A real application for this protocol is session-key generation. Coin-flipping proto­

cols allow Alice and Bob to generate a random session key such that neither can
influence what the session key will be. And assuming that Alice and Bob encrypt
their exchanges, this key generation is secure from eavesdropping as well.

4.11 MENTAL POKER

A protocol similar to the public-key fair coin flip protocol allows Alice and Bob to
play poker with each other via electronic mail. Instead of Alice making and encrypt­
ing two messages, one for heads and one for tails, she makes 52 messages, M1,

M2, .•• , M52, one for each card in the deck. Bob chooses five messages at random,
encrypts them with his public key, and then sends them back to Alice. Alice
decrypts the messages and sends them back to Bob, who decrypts them to determine
his hand. He then chooses five more messages at random and sends them back to
Alice as he received them; she decrypts these and they become her hand. During the
game, additional cards can be dealt to either player by repeating the procedure. At
the end of the game, Alice and Bob both reveal their cards and key pairs so that each
can be assured that the other did not cheat.

Mental Poker with Three Players
Poker is more fun with more players. The basic mental poker protocol can easily

be extended to three or more players. In this case, too, the cryptographic algorithm
must be commutative.

(1) Alice, Bob, and Carol each generate a public-key/private-key key pair.

(2) Alice generates 52 messages, one for each card in the deck. These messages
should contain some unique random string, so that she can verify their
authenticity later in the protocol. Alice encrypts all the messages with her
public key and sends them to Bob.

EA(Mn)
(3) Bob, who cannot read any of the messages, chooses five at random. He

encrypts them with his public key and sends them back to Alice.

EB(EA(Mn))

___________________ 4_._1_1_M_en_ta_l_P_o_k_e_r ________ z:~~

(4) Bob sends the other 47 messages to Carol.

EA(M11)

(5) Carol, who cannot read any of the messages, chooses five at random. She
encrypts them with her public key and sends them to Alice.

Ec(EA(Mn))

(6) Alice, who cannot read any of the messages sent back to her, decrypts
them with her private key and then sends them back to Bob or Carol
(depending on where they came from).

DA(EB(EA(Mn))) = EB(Mn)

DA(Ec(EA(M11))) = Ec(Mn)

(7) Bob and Carol decrypt the messages with their keys to reveal their hands.

DB(En(Mn)) = Mn

Dc(Ec(Mn)) = Mn

(8) Carol chooses five more messages at random from the remaining 42. She
sends them to Alice.

EA(Mn)

(9) Alice decrypts the messages with her private key to reveal her hand.

DA(EA(Mn)) = Mn

(10) At the end of the game Alice, Bob, and Carol all reveal their hands and all
of their keys so that everyone can make sure that no one has cheated.

Additional cards can be dealt in the same manner. If Bob or Carol wants a card,
either one can take the encrypted deck and go through the protocol with Alice. If
Alice wants a card, whoever currently has the deck sends her a random card.

Ideally, step (10) would not be necessary. All players shouldn't be required to reveal
their hands at the end of the protocol; only those who haven't folded. Since step (10) is
part of the protocol designed only to catch cheaters, perhaps there are improvements.

In poker, one is only interested in whether the winner cheated. Everyone else can
cheat as much as they want, as long as they still lose. (Actually, this is not really
true. Someone can, while losing, collect data on another player's poker style.) So,
let's look at cases in which different players win.

If Alice wins, she reveals her hand and her keys. Bob can use Alice's private key to
confirm that Alice performed step (2) correctly-that each of the 52 messages corre­
sponded to a different card. Carol can confirm that Alice is not lying about her hand
by encrypting the cards with Alice's public key and verifying that they are the same
as the encrypted messages she sent to her in step (8).

If either Bob or Carol wins, the winner reveals his hand and keys. Alice can con­
firm that the cards are legitimate by checking her random strings. She can also con­
firm that the cards are the ones dealt by encrypting the cards with the winner's
public key and verifying that they are the same as the encrypted messages she
received in step (3) or (5).

~""':s;~----C_H_A_P_T_ER_4 __ In_t_e_rm_e_d_i_a_te_P_ro_t_o_c_o_ls _______________ _

This protocol isn't secure against collusion among malicious players. Alice and
another player can effectively gang up on the third and together swindle that player
out of everything without raising suspicion. Therefore, it is important to check all
the keys and random strings every time the players reveal their hands. And if you're
sitting around the virtual table with two people who never reveal their hands when­
ever one of them is the dealer (Alice, in the previous protocol), stop playing.

Understand that while this is all interesting theory, actually implementing it on
a computer is an arduous task. A Spare implementation with three players on sepa­
rate workstations takes eight hours to shuffle a deck of cards, let alone play an
actual game [513].

Attacks against Poker Protocols
Cryptographers have shown that a small amount of information is leaked by these

poker protocols if the RSA public-key algorithm is used [453,573]. Specifically, if the
binary representation of the card is a quadratic residue (see Section 11.3), then the
encryption of the card is also a quadratic residue. This property can be used to
"mark" some cards-all the aces, for example. This does not reveal much about the
hands, but in a game such as poker even a tiny bit of information can be an advan­
tage in the long run.

Shafi Goldwasser and Silvio Micali [624] developed a two-player mental-poker
protocol that fixes this problem, although its complexity makes it far more theoret­
ical than practical. A general n-player poker protocol that eliminates the problem of
information leakage was developed in [389].

Other research on poker protocols can be found in [573,1634,389]. A compli­
cated protocol that allows players to not reveal their hands can be found in [390].
Don Coppersmith discusses two ways to cheat at mental poker using the RSA
algorithm [370].

Anonymous Key Distribution
While it is unlikely that anyone is going to use this protocol to play poker via

modem, Charles Pfleeger discusses a situation in which this type of protocol would
come in handy [1244].

Consider the problem of key distribution. If we assume that people cannot gener­
ate their own keys (they might have to be of a certain form, or have to be signed by
some organization, or something similar), we have to set up a Key Distribution Cen­
ter to generate and distribute keys. The problem is that we have to figure out some
way of distributing keys such that no one, including the server, can figure out who
got which key.

This protocol solves the problem:

(1) Alice generates a public-key /private-key key pair. For this protocol, she
keeps both keys secret.

(2) The KDC generates a continuous stream of keys.

(3) The KDC encrypts the keys, one by one, with its own public key.

_________________ 4_._1_2 __ O_n_e_-_W_a_y_A_c_c_u_m_u_l_a_t_o_rs ______ 7 __ ~

(4) The KDC transmits the encrypted keys, one by one, onto the network.

(5) Alice chooses a key at random.

(6) Alice encrypts the chosen key with her public key.

(7) Alice waits a while (long enough so the server has no idea which key she
has chosen) and sends the double-encrypted key back to the KDC.

(8) The KDC decrypts the double-encrypted key with its private key, leaving
a key encrypted with Alice's public key.

(9) The server sends the encrypted key back to Alice.

(10) Alice decrypts the key with her private key.

Eve, sitting in the middle of this protocol, has no idea what key Alice chose. She
sees a continuous stream of keys go by in step (4). When Alice sends the key back to
the server in step (7), it is encrypted with her public key, which is also secret during
this protocol. Eve has no way of correlating it with the stream of keys. When the
server sends the key back to Alice in step (9), it is also encrypted with Alice's public
key. Only when Alice decrypts the key in step (10) is the key revealed.

If you use RSA, this protocol leaks information at the rate of one bit per message.
It's the quadratic residues again. If you're going to distribute keys in this manner,
make sure this leakage isn't enough to matter. Also, the stream of keys from the
KDC must be great enough to preclude a brute-force attack. Of course, if Alice can't
trust the KDC, then she shouldn't be getting keys from it. A malicious KDC could
presumably keep records of every key it generates. Then, it could search them all to
determine which is Alice's.

This protocol also assumes that Alice is going to act fairly. There are things she
can do, using RSA, to get more information than she might otherwise. This is not a
problem in our scenario, but can be in other circumstances.

4.12 ONE-WAY ACCUMULATORS

Alice is a member of Cabal, Inc. Occasionally she has to meet with other members
in dimly lit restaurants and whisper secrets back and forth. The problem is that the
restaurants are so dimly lit that she has trouble knowing if the person across the
table from her is also a member.

Cabal Inc. can choose from several solutions. Every member can carry a member­
ship list. This has two problems. One, everyone now has to carry a large database,
and two, they have to guard that membership list pretty carefully. Alternatively, a
trusted secretary could issue digitally signed ID cards. This has the added advantage
of allowing outsiders to verify members (for discounts at the local grocery store, for
example), but it requires a trusted secretary. Nobody at Cabal, Inc. can be trusted to
that degree.

A novel solution is to use something called a one-way accumulator [116]. This is
sort of like a one-way hash function, except that it is commutative. That is, it is pos­
sible to hash the database of members in any order and get the same value. More-

~ s;~-----C_H_A_PT_E_R_4_I_n_t_e_r_m_e_d_1_·a_t_e_P_r_o_t_o_co_l_s ________________ _

over, it is possible to add members into the hash and get a new hash, again without
regard to order.

So, here's what Alice does. She calculates the accumulation of every member's
name other than herself. Then she saves that single value along with her own name.
Bob, and every other member, does the same. Now, when Alice and Bob meet in the
dimly lit restaurant, they simply trade accumulations and names with each other.
Alice confirms that Bob's name added to his accumulation is equal to Alice's name
added to her accumulation. Bob does the same. Now they both know that the other
is a member. And at the same time, neither can figure out the identities of any other
member.

Even better, nonmembers can be given the accumulation of everybody. Now Alice
can verify her membership to a nonmember (for membership discounts at their local
counterspy shop, perhaps) without the nonmember being able to figure out the
entire membership list.

New members can be added just by sending around the new names. Unfortu­
nately, the only way to delete a member is to send everyone a new list and have
them recompute their accumulations. But Cabal, Inc. only has to do that if a mem­
ber resigns; dead members can remain on the list. (Oddly enough, this has never
been a problem.)

This is a clever idea, and has applications whenever you want the same effect as
digital signatures without a centralized signer.

4.13 ALL-OR-NOTHING DISCLOSURE OF SECRETS

Imagine that Alice is a former agent of the former Soviet Union, now unemployed.
In order to make money, Alice sells secrets. Anyone who is willing to pay the price
can buy a secret. She even has a catalog. All her secrets are listed by number, with
tantalizing titles: "Where is Jimmy Hoffa?", "Who is secretly controlling the Trilat­
eral Commission?", "Why does Boris Yeltsin always look like he swallowed a live
frog?", and so on.

Alice won't give away two secrets for the price of one or even partial information
about any of the secrets. Bob, a potential buyer, doesn't want to pay for random
secrets. He also doesn't want to tell Alice which secrets he wants. It's none of
Alice's business, and besides, Alice could then add "what secrets Bob is interested
in" to her catalog.

A poker protocol won't work in this case, because at the end of the protocol Alice
and Bob have to reveal their hands to each other. There are also tricks Bob can do to
learn more than one secret.

The solution is called all-or-nothing disclosure of secrets (ANDOS) [246] because,
as soon as Bob has gained any information whatsoever about one of Alice's secrets,
he has wasted his chance to learn anything about any of the other secrets.

There are several ANDOS protocols in the cryptographic literature. Some of them
are discussed in Section 23.9.

__________________ 4_.1_4 __ K_e_y_E_s_c_ro_w _________ z:---~

4.14 KEY ESCROW

This excerpt is from Silvio Micah's introduction to the topic [1084]:

Currently, court-authorized line tapping is an effective method for securing crim­
inals to justice. More importantly, in our opinion, it also prevents the further
spread of crime by deterring the use of ordinary communication networks for
unlawful purposes. Thus, there is a legitimate concern that widespread use of
public-key cryptography may be a big boost for criminal and terrorist organiza­
tions. Indeed, many bills propose that a proper governmental agency, under cir­
cumstances allowed by law, should be able to obtain the clear text of any
communication over a public network. At the present time, this requirement
would translate into coercing citizens to either (1) using weak cryptosystems­
i.e., cryptosystems that the proper authorities (but also everybody else!) could
crack with a moderate effort-or (2) surrendering, a priori, their secret key to the
authority. It is not surprising that such alternatives have legitimately alarmed
many concerned citizens, generating as reaction the feeling that privacy should
come before national security and law enforcement.

Key escrow is the heart of the U.S. government's Clipper program and its Escrowed
Encryption Standard. The challenge here is to develop a cryptosystem that both pro­
tects individual privacy but at the same time allows for court-authorized wiretaps.

The Escrowed Encryption Standard gets its security from tamperproof hardware.
Each encryption chip has a unique ID number and secret key. This key is split into
two pieces and stored, along with the ID number, by two different escrow agencies.
Every time the chip encrypts a data file, it first encrypts the session key with this
unique secret key. Then it transmits this encrypted session key and its ID number
over the communications channel. When some law enforcement agency wants to
decrypt traffic encrypted with one of these chips, it listens for the ID number, col­
lects the appropriate keys from the escrow agencies, XORs them together, decrypts
the session key, and then uses the session key to decrypt the message traffic. There
are more complications to make this scheme work in the face of cheaters; see Sec­
tion 24.16 for details. The same thing can be done in software, using public-key
cryptography [77, 1579, 1580, 1581].

Micali calls his idea fair cryptosystems [1084, 1085]. (The U.S. government report­
edly paid Micali $1,000,000 for the use of his patents [1086,1087] in their Escrowed
Encryption Standard; Banker's Trust then bought Micah's patent.) In these cryp­
tosystems, the private key is broken up into pieces and distributed to different
authorities. Like a secret sharing scheme, the authorities can get together and recon­
struct the private key. However, the pieces have the additional property that they
can be individually verified to be correct, without reconstructing the private key.

Alice can create her own private key and give a piece to each of n trustees. None of
these trustees can recover Alice's private key. However, each trustee can verify that
his piece is a valid piece of the private key; Alice cannot send one of the trustees a

~-..:s~ _____ C_H_A_PT_E_R_4_I_n_t_e_r_m_e_d_1_·a_t_e_P_r_o_t_o_c_ol_s _______________ _

random-bit string and hope to get away with it. If the courts authorize a wiretap, the
relevant law enforcement authorities can serve a court order on then trustees to sur­
render their pieces. With all n pieces, the authorities reconstruct the private key and
can wiretap Alice's communications lines. On the other hand, Mallory has to corrupt
all n trustees in order to be able to reconstruct Alice's key and violate her privacy.

Here's how the protocol works:

(1) Alice creates her private-key /public-key key pair. She splits the private key
into several public pieces and private pieces.

(2) Alice sends a public piece and corresponding private piece to each of the
trustees. These messages must be encrypted. She also sends the public key
to the KDC.

(3) Each trustee, independently, performs a calculation on its public piece and
its private piece to confirm that they are correct. Each trustee stores the
private piece somewhere secure and sends the public piece to the KDC.

(4) The KDC performs another calculation on the public pieces and the public
key. Assuming that everything is correct, it signs the public key and either
sends it back to Alice or posts it in a database somewhere.

If the courts order a wiretap, then each of the trustees surrenders his or her piece
to the KDC, and the KDC can reconstruct the private key. Before this surrender, nei­
ther the KDC nor any individual trustee can reconstruct the private key; all the
trustees are required to reconstruct the key.

Any public-key cryptography algorithm can be made fair in this manner. Some
particular algorithms are discussed in Section 23.10. Micali's paper [1084,1085] dis­
cusses ways to combine this with a threshold scheme, so that a subset of the
trustees (e.g., three out of five) is required to reconstruct the private key. He also
shows how to combine this with oblivious transfer (see Section 5.5) so that the
trustees do not know whose private key is being reconstructed.

Fair cryptosystems aren't perfect. A criminal can exploit the system, using a sub­
liminal channel (see Section 4.2) to embed another secret key into his piece. This
way, he can communicate securely with someone else using this subliminal key
without having to worry about court-authorized wiretapping. Another protocol,
called failsafe key escrowing, solves this problem [946,833]. Section 23.10 describes
the algorithm and protocol.

The Politics of Key Escrow

Aside from the government's key-escrow plans, several commercial key-escrow
proposals are floating around. This leads to the obvious question: What are the
advantages of key-escrow for the user?

Well, there really aren't any. The user gains nothing from key escrow that he
couldn't provide himself. He can already back up his keys if he wants (see Section
8.8). Key-escrow guarantees that the police can eavesdrop on his conversations or

___________________ 4_.1_4_K_ey_E_sc_r_o_w ________ 7____,.~

read his data files even though they are encrypted. It guarantees that the NSA can
eavesdrop on his international phone calls-without a warrant-even though they
are encrypted. Perhaps he will be allowed to use cryptography in countries that now
ban it, but that seems to be the only advantage.

Key escrow has considerable disadvantages. The user has to trust the escrow
agents' security procedures, as well as the integrity of the people involved. He has to
trust the escrow agents not to change their policies, the government not to change
its laws, and those with lawful authority to get his keys to do so lawfully and
responsibly. Imagine a major terrorist attack in New York; what sorts of limits on
the police would be thrown aside in the aftermath?

It is hard to imagine escrowed encryption schemes working as their advocates
imagine without some kind of legal pressure. The obvious next step is a ban on the
use of non-escrowed encryption. This is probably the only way to make a commercial
system pay, and it's certainly the only way to get technologically sophisticated crim­
inals and terrorists to use it. It's not clear how difficult outlawing non-escrowed cryp­
tography will be, or how it will affect cryptography as an academic discipline. How
can I research software-oriented cryptography algorithms without having software
non-escrowed encryption devices in my possession; will I need a special license?

And there are legal questions. How do escrowed keys affect users' liability, should
some encrypted data get out? If the U.S. government is trying to protect the escrow
agencies, will there be the implicit assumption that if the secret was compromised
by either the user or the escrow agency, then it must have been the user?

What if a major key-escrow service, either government or commercial, had its
entire escrowed key database stolen? What if the U.S. government tried to keep this
quiet for a while? Clearly, this would have an impact on users' willingness to use
key escrow. If it's not voluntary, a couple of scandals like this would increase polit­
ical pressure to either make it voluntary, or to add complex new regulations to the
industry.

Even more dangerous is a scandal where it becomes public that political opponent
of the current administration, or some outspoken critic of some intelligence or
police agencies has been under surveillance for years. This could raise public senti­
ment strongly against escrowed encryption.

If signature keys are escrowed as well as encryption keys, there are additional
issues. Is it acceptable for the authorities to use signature keys to run operations
against suspected criminals? Will the authenticity of signatures based on escrowed
keys be accepted in courts? What recourse do users have if the authorities actually
do use their signature keys to sign some unfavorable contract, to help out a state­
supported industry, or just to steal money?

The globalization of cryptography raises an additional set of questions. Will key­
escrow policies be compatible across national borders? Will multi-national corpora­
tions have to keep separate escrowed keys in every country to stay in compliance
with the various local laws? Without some kind of compatibility, one of the supposed
advantages of key-escrow schemes (international use of strong encryption) falls apart.

What if some countries don't accept the security of escrow agencies on faith? How
do users do business there? Are their digital contracts upheld by their courts, or is

~---:s.~ ____ C_H_A_P_T_ER_4 __ In_t_e_rm_e_d_i_a_te_P_ro_t_o_c_o_ls _______________ _

the fact that their signature key is held in escrow in the U.S. going to allow them to
claim in Switzerland that someone else could have signed this electronic contract?
Or will there be special waivers for people who do business in such countries?

And what about industrial espionage? There is no reason to believe that countries
which currently conduct industrial espionage for their important or state-run com­
panies will refrain from doing so on key-escrowed encryption systems. Indeed, since
virtually no country is going to allow other countries to oversee its intelligence
operations, widespread use of escrowed encryption will probably increase the use of
wiretaps.

Even if countries with good civil rights records use key escrow only for the legiti­
mate pursuit of criminals and terrorists, it's certain to be used elsewhere to keep
track of dissidents, blackmail political opponents, and so on. Digital communica­
tions offer the opportunity to do a much more thorough job of monitoring citizens'
actions, opinions, purchases, and associations than is possible in an analog world.

It's not clear how this will affect commercial key escrow, except that 20 years
from now, selling Turkey or China a ready-made key-escrow system may look a lot
like selling shock batons to South Africa in 1970, or building a chemical plant for
Iraq in 1980. Even worse, effortless and untraceable tapping of communications may
tempt a number of governments into tracking many of their citizens' communica­
tions, even those which haven't generally tried to do so before. And there's no guar­
antee that liberal democracies will be immune to this temptation.

-----------------------~z~

CHAPTER 5

Advanced Protocols

5.1 ZERO-KNOWLEDGE PROOFS

Here's another story:

ALICE: "I know the password to the Federal Reserve System computer, the ingredients
in McDonald's secret sauce, and the contents of Volume 4 of Knuth."

BoB: "No, you don't."
ALICE: "Yes, I do."

BOB: "Do not!"
ALICE: "Do too!"

BOB: "Prove it!"
ALICE: "All right. I'll tell you." She whispers in Bob's ear.

BoB: "That's interesting. Now I know it, too. I'm going to tell The Washington
Post."

ALICE: "Oops."

Unfortunately, the usual way for Alice to prove something to Bob is for Alice to
tell him. But then he knows it, too. Bob can then tell anyone else he wants to and
Alice can do nothing about it. (In the literature, different characters are often used
in these protocols. Peggy is usually cast as the prover and Victor is the verifier.
These names appear in the upcoming examples, instead of Alice and Bob.)

Using one-way functions, Peggy could perform a zero-knowledge proof [626]. This
protocol proves to Victor that Peggy does have a piece of information, but it does not
give Victor any way to know what the information is.

These proofs take the form of interactive protocols. Victor asks Peggy a series of
questions. If Peggy knows the secret, she can answer all the questions correctly. If
she does not, she has some chance-SO percent in the following examples-of
answering correctly. After 10 or so questions, Victor will be convinced that Peggy
knows the secret. Yet none of the questions or answers gives Victor any information
about Peggy's information-only about her knowledge of it.

~-:s ______ C_H_A_P_T_E_R_S __ A_d_v_a_n_c_e_d_P_r_o_t_o_c_o_ls ________________ _

Basic Zero-Knowledge Protocol

Jean-Jacques Quisquater and Louis Guillou explain zero-knowledge with a story
about a cave [1281]. The cave, illustrated in Figure 5.1, has a secret. Someone who
knows the magic words can open the secret door between C and D. To everyone
else, both passages lead to dead ends.

Peggy knows the secret of the cave. She wants to prove her knowledge to Victor,
but she doesn't want to reveal the magic words. Here's how she convinces him:

(1) Victor stands at point A.

(2) Peggy walks all the way into the cave, either to point C or point D.

(3) After Peggy has disappeared into the cave, Victor walks to point B.

(4) Victor shouts to Peggy, asking her either to:

(a) come out of the left passage or

(b) come out of the right passage.

(5) Peggy complies, using the magic words to open the secret door if she has to.

(6) Peggy and Victor repeat steps (1) through (5) n times.

Assume that Victor has a camcorder and records everything he sees. He records
Peggy disappearing into the cave, he records when he shouts out where he wants
Peggy to come out from, and he records Peggy coming out. He records all n trials. If
he showed this recording to Carol, would she believe that Peggy knew the magic
words to open the door? No. What if Peggy and Victor had agreed beforehand what
Victor would call out, and Peggy would make sure that she went into that path.
Then she could come out where Victor asked her every time, without knowing the
magic words. Or maybe they couldn't do that. Peggy would go into one of the pas­
sages and Victor would call out a random request. If Victor guessed right, great; if he
didn't, they would edit that trial out of the camcorder recording. Either way, Victor

.. A
.

. .

B ..

.
cl o . Figure 5.1 The zero-knowledge cave .

________________ 5_.1 __ Z_e_ro_-_K_n_o_w_l_e_d_g_e_P_r_o_of_s ______ 7--=--~

can get a recording showing exactly the same sequence of events as in a real proof
where Peggy knew the magic words.

This shows two things. One, it is impossible for Victor to convince a third party
of the proof's validity. And two, it proves that the protocol is zero-knowledge. In the
case where Peggy did not know the magic words, Victor will obviously not learn
anything from watching the recording. But since there is no way to distinguish a real
recording from a faked recording, Victor cannot learn anything from the real proof­
it must be zero knowledge.

The technique used in this protocol is called cut and choose, because of its simi­
larity to the classic protocol for dividing anything fairly:

(1) Alice cuts the thing in half.

(2) Bob chooses one of the halves for himself.

(3) Alice takes the remaining half.

It is in Alice's best interest to divide fairly in step (1), because Bob will choose
whichever half he wants in step (2). Michael Rabin was the first person to use the
cut-and-choose technique in cryptography [1282]. The concepts of interactive pro­
tocol and zero-knowledge were formalized later [626,627].

The cut-and-choose protocol works because there is no way Peggy can repeat­
edly guess which side Victor will ask her to come out of. If Peggy doesn't know the
secret, she can only come out the way she came in. She has a 50 percent chance of
guessing which side Victor will ask in each round (sometimes called an accredita­
tion) of the protocol, so she has a 50 percent chance of fooling him. The chance of
her fooling him in two rounds is 25 percent, and the chance of her fooling him all
n times is 1 in 211• After 16 rounds, Peggy has a 1 in 65,536 chance of fooling Vic­
tor. Victor can safely assume that if all 16 of Peggy's proofs are valid, then she
must know the secret words to open the door between points C and D. (The cave
analogy isn't perfect. Peggy can simply walk in one side and out the other; there's
no need for any cut-and-choose protocol. However, mathematical zero knowledge
requires it.)

Assume that Peggy knows some information, and furthermore that the informa­
tion is the solution to a hard problem. The basic zero-knowledge protocol consists
of several rounds.

(1) Peggy uses her information and a random number to transform the hard
problem into another hard problem, one that is isomorphic to the original
problem. She then uses her information and the random number to solve
this new instance of the hard problem.

(2) Peggy commits to the solution of the new instance, using a bit-commitment
scheme.

(3) Peggy reveals to Victor the new instance. Victor cannot use this new prob­
lem to get any information about the original instance or its solution.

~""':s;~-----C_H_A_P_T_E_R_5 __ A_d_v_a_n_c_e_d_P_r_o_t_o_c_o_ls _______________ _

(4) Victor asks Peggy either to:

(a) prove to him that the old and new instances are isomorphic (i.e., two
different solutions to two related problems), or

(b) open the solution she committed to in step (2) and prove that it is a
solution to the new instance.

(5) Peggy complies.

(6) Peggy and Victor repeat steps (1) through (5) n times.

Remember the camcorder in the cave protocol? You can do the same thing here.
Victor can make a transcript of the exchange between him and Peggy. He cannot use
this transcript to convince Carol, because he can always collude with Peggy to build
a simulator that fakes Peggy's knowledge. This argument can be used to prove that
the proof is zero-knowledge.

The mathematics behind this type of proof is complicated. The problems and the
random transformation must be chosen carefully, so that Victor does not get any
information about the solution to the original problem, even after many iterations
of the protocol. Not all hard problems can be used for zero-knowledge proofs, but a
lot of them can.

Graph Isomorphism

An example might go a long way to explain this concept; this one comes from
graph theory [619,622]. A graph is a network of lines connecting different points. If
two graphs are identical except for the names of the points, they are called isomor­
phic. For an extremely large graph, finding whether two graphs are isomorphic can
take centuries of computer time; it's one of those NP-complete problems discussed
in Section 11.1.

Assume that Peggy knows the isomorphism between the two graphs, G1 and G2•

The following protocol will convince Victor of Peggy's knowledge:

(1) Peggy randomly permutes G1 to produce another graph, H, that is isomor­
phic to G1. Because Peggy knows the isomorphism between Hand G1, she
also knows the isomorphism between H and G2 • For anyone else, finding
an isomorphism between G1 and H or between G2 and H is just as hard as
finding an isomorphism between G1 and G2 .

(2) Peggy sends H to Victor.

(3) Victor asks Peggy either to:

(a) prove that Hand G 1 are isomorphic, or

(b) prove that Hand G2 are isomorphic.

(4) Peggy complies. She either:

(a) proves that H and G1 are isomorphic, without proving that H and G2

are isomorphic, or

(b) proves that Hand G2 are isomorphic, without proving that Hand G1

are isomorphic.

(5) Peggy and Victor repeat steps (1) through (4) n times.

_________________ s_.1_Z_er_o_-K_n_o_w_le_d_g_e_P_r_o_o_fs ______ 7 __ ~

If Peggy does not know an isomorphism between G 1 and G2, she cannot create
graph H which is isomorphic to both. She can create a graph that is either isomorphic
to G 1 or one that is isomorphic to G2• Like the previous example, she has only a 50
percent chance of guessing which proof Victor will ask her to perform in step (3).

This protocol doesn't give Victor any useful information to aid him in figuring out
an isomorphism between G1 and G2• Because Peggy generates a new graph H for each
round of the protocol, he can get no information no matter how many rounds they
go through the protocol. He won't be able to figure out an isomorphism between G 1

and G2 from Peggy's answers.
In each round, Victor receives a new random permutation of H, along with an iso­

morphism between Hand either G1 or G2• Victor could just as well have generated
this by himself. Because Victor can create a simulation of the protocol, it can be
proven to be zero-knowledge.

Hamiltonian Cycles
A variant of this example was first presented by Manuel Blum [196]. Peggy knows

a circular, continuous path along the lines of a graph that passes through each point
exactly once. This is called a Hamiltonian cycle. Finding a Hamiltonian cycle is
another hard problem. Peggy has this piece of information-she probably got it by
creating the graph with a certain Hamiltonian cycle-and this is what she wants to
convince Victor that she knows.

Peggy knows the Hamiltonian cycle of a graph, G. Victor knows G, but not the
Hamiltonian cycle. Peggy wants to prove to Victor that she knows this Hamiltonian
cycle without revealing it. This is how she does it:

(1) Peggy randomly permutes G. She moves the points around and changes their
labels to make a new graph, H. Since G and Hare topologically isomorphic
(i.e., the same graph), if she knows the Hamiltonian cycle of G then she can
easily find the Hamiltonian cycle of H. If she didn't create H herself, deter­
mining the isomorphism between two graphs would be another hard prob­
lem; it could also take centuries of computer time. She then encrypts H to
get H'. (This has to be a probabilistic encryption of each line in H, that is, an
encrypted O or an encrypted 1 for each line in H.)

(2) Peggy gives Victor a copy of H'.

(3) Victor asks Peggy either to:
(a) prove to him that H' is an encryption of an isomorphic copy of G, or
(b) show him a Hamiltonian cycle for H.

(4) Peggy complies. She either:
(a) proves that H' is an encryption of an isomorphic copy of G by revealing

the permutations and decrypting everything, without showing a
Hamiltonian cycle for either G or H, or

(b) shows a Hamiltonian cycle for H by decrypting only those lines that
constitute a Hamiltonian cycle, without proving that G and H are
topologically isomorphic.

(5) Peggy and Victor repeat steps (1) through (4) n times.

~- 5 ______ C_H_A_P_T_E_R_5 __ A_d_v_a_n_c_e_d_P_r_o_to_c_o_l_s _______________ _

If Peggy is honest, she can provide either proof in step (4) to Victor. However, if
she does not know a Hamiltonian cycle for G, she cannot create an encrypted graph
H' which can meet both challenges. The best she can do is to create a graph that is
either isomorphic to G or one that has the same number of points and lines and a
valid Hamiltonian cycle. While she has a 50 percent chance of guessing which proof
Victor will ask her to perform in step (3), Victor can repeat the protocol enough
times to convince himself that Peggy knows a Hamiltonian cycle for G.

Parallel Zero-Knowledge Proofs

The basic zero-knowledge protocol involves n exchanges between Peggy and Vic­
tor. Why not do them all in parallel:

(1) Peggy uses her information and n random numbers to transform the hard
problem into n different isomorphic problems. She then uses her informa­
tion and the random numbers to solve then new hard problems.

(2) Peggy commits to the solution of then new hard problems.

(3) Peggy reveals to Victor the n new hard problems. Victor cannot use these
new problems to get any information about the original problems or its
solutions.

(4) For each of then new hard problems, Victor asks Peggy either to:

(a) prove to him that the old and new problems are isomorphic, or

(b) open the solution she committed to in step (2) and prove that it is a
solution to the new problem.

(5) Peggy complies for each of then new hard problems.

Unfortunately, it's not that simple. This protocol does not have the same zero­
knowledge properties as the previous protocol. In step (4), Victor can choose the
challenges as a one-way hash of all the values committed to in the second step, thus
making the transcript nonsimulatable. It is still zero-knowledge, but of a different
sort. It seems to be secure in practice, but no one knows how to prove it. We do
know that in certain circumstances, certain protocols for certain problems can be
run in parallel while retaining their zero-knowledge property [247,106,546,616].

Noninteractive Zero-Knowledge Proofs

Carol can't be convinced because the protocol is interactive, and she is not involved
in the interaction. To convince Carol, and anyone else who may be interested, we
need a noninteractive protocol.

Protocols have been invented for noninteractive zero-knowledge proofs [477,
198,478,197]. These protocols do not require any interaction; Peggy could publish
them and thereby prove to anyone who takes the time to check that the proof
is valid.

The basic protocol is similar to the parallel zero-knowledge proof, but a one-way
hash function takes the place of Victor:

_________________ 5._1_Z_er_o_-K_n_ow_le_d_g_e_P_r_o_of_s ______ 7 __ ~

(1) Peggy uses her information and n random numbers to transform the hard
problem into n different isomorphic problems. She then uses her informa­
tion and the random numbers to solve then new hard problems.

(2) Peggy commits to the solution of then new hard problems.

(3) Peggy uses all of these commitments together as a single input to a one­
way hash function. (After all, the commitments are nothing more than bit
strings.) She then saves the first n bits of the output of this one-way hash
function.

(4) Peggy takes then bits generated in step (3). For each ith new hard problem
in turn, she takes the ith bit of those n bits and:

(a) if it is a 0, she proves that the old and new problems are isomorphic, or

(b) if it is a 1, she opens the solution she committed to in step (2) and
proves that it is a solution to the new problem.

(5) Peggy publishes all the commitments from step (2) as well as the solutions
in step (4).

(6) Victor or Carol or whoever else is interested, verifies that steps (1) through
(5) were executed properly.

This is amazing: Peggy can publish some data that contains no information about
her secret, but can be used to convince anyone of the secret's existence. The proto­
col can also be used for digital signature schemes, if the challenge is set as a one-way
hash of both the initial messages and the message to be signed.

This works because the one-way hash function acts as an unbiased random-bit
generator. For Peggy to cheat, she has to be able to predict the output of the one-way
hash function. (Remember, if she doesn't know the solution to the hard problem,
she can do either (a) or (b) of step (4), but not both.) If she somehow knew what the
one-way hash function would ask her to do, then she could cheat. However, there is
no way for Peggy to force the one-way function to produce certain bits or to guess
which bits it will produce. The one-way function is, in effect, Victor's surrogate in
the protocol-randomly choosing one of two proofs in step (4).

In a noninteractive protocol, there must be many more iterations of the chal­
lenge/reply sequence. Peggy, not Victor, picks the hard problems using random
numbers. She can pick different problems, hence different commitment vectors, till
the hash function produces something she likes. In an interactive protocol, 10 iter­
ations-a probability of 1 in 2 10 (1 in 1024) that Peggy can cheat-may be fine. How­
ever, that's not enough for noninteractive zero-knowledge proofs. Remember that
Mallory can always do either (a) or (b) of step (4). He can try to guess which he will
be asked to do, go through steps (1) through (3), and see if he guessed right. If he
didn't, he can try again-repeatedly. Making 1024 guesses is easy on a computer. To
prevent this brute-force attack, noninteractive protocols need 64 iterations, or even
128 iterations, to be valid.

This is the whole point of using a one-way hash function: Peggy cannot predict the
output of the hash function because she cannot predict its input. The commitments
which are used as the input are only known after she solves the new problems.

~-:s. ______ C_H_A_P_T_E_R_S __ A_d_v_a_n_c_e_d_P_r_o_t_o_c_o_ls ________________ _

Generalities
Blum proved that any mathematical theorem can be converted into a graph such

that the proof of that theorem is equivalent to proving a Hamiltonian cycle in the
graph. The general case that any NP statement has a zero-knowledge proof, assum­
ing one-way functions and therefore good encryption algorithms, was proved in
[620]. Any mathematical proof can be converted into a zero-knowledge proof. Using
this technique, a researcher can prove to the world that he knows the proof of a par­
ticular theorem without revealing what that solution is. Blum could have published
these results without revealing them.

There are also minimum-disclosure proofs [590]. In a minimum-disclosure proof,
the following properties hold:

1. Peggy cannot cheat Victor. If Peggy does not know the proof, her chances
of convincing Victor that she knows the proof are negligible.

2. Victor cannot cheat Peggy. He doesn't get the slightest hint of the proof,
apart from the fact that Peggy knows the proof. In particular, Victor cannot
demonstrate the proof to anyone else without proving it himself from
scratch.

Zero-knowledge proofs have an additional condition:

3. Victor learns nothing from Peggy that he could not learn by himself with­
out Peggy, apart from the fact that Peggy knows the proof.

There is considerable mathematical difference between proofs that are only
minimum-disclosure and those that are zero-knowledge. That distinction is be­
yond the scope of this book, but more sophisticated readers are welcome to peruse
the references. The concepts were introduced in [626,619,622]. Further elaboration
on their ideas, based on different mathematical assumptions, were developed in
[240,319,239].

There are also different kinds of zero-knowledge proofs:

Perfect. There is a simulator that gives transcripts identically dis­
tributed to real transcripts (the Hamiltonian cycle and graph isomor­
phism examples).

Statistical. There is a simulator that gives transcripts identically dis­
tributed to real transcripts, except for some constant number of
exceptions.

Computational. There is a simulator that gives transcripts indistin­
guishable from real transcripts.

No-use. A simulator may not exist, but we can prove that Victor will
not learn any polynomial amount of information from the proof (the
parallel example).

5.2 Zero-Knowledge Proofs of Identity

Over the years, extensive work, both theoretical and applied, has been done on
minimum-disclosure and zero-knowledge proofs. Mike Burmester and Yvo Desmedt
invented broadcast interactive proofs, where one prover can broadcast a zero­
knowledge interactive proof to a large group of verifiers [280]. Cryptographers proved
that everything that can be proven with an interactive proof can also be proven with
a zero-knowledge interactive proof [753,137].

A good survey article on the topic is [548]. For additional mathematical details,
variations, protocols, and applications, consult [590,619,240,319,620,113,241,1528,
660,238,591,617,510,592,214, 104,216,832,97,939,622,482,615,618,215,476, 71]. A lot
has been written on this subject.

5.2 ZERO-KNOWLEDGE PROOFS OF IDENTITY

In the real world, we often use physical tokens as proofs of identity: passports, driver's
licenses, credit cards, and so on. The token contains something that links it to a per­
son: a picture, usually, or a signature, but it could almost as easily be a thumbprint, a
retinal scan, or a dental x-ray. Wouldn't it be nice to do the same thing digitally?

Using zero-knowledge proofs as proofs of identity was first proposed by Uriel
Feige, Amos Fiat, and Adi Shamir [566,567]. Alice's private key becomes a function
of her "identity." Using a zero-knowledge proof, she proves that she knows her pri­
vate key and therefore proves her identity. Algorithms for this can be found in Sec­
tion 23.11.

This idea is quite powerful. It allows a person to prove his identity without any
physical token. However, it's not perfect. Here are some abuses.

The Chess Grandmaster Problem
Here's how Alice, who doesn't even know the rules to chess, can defeat a grand­

master. (This is sometimes called the Chess Grandmaster Problem.) She challenges
both Gary Kasparov and Anatoly Karpov to a game, at the same time and place, but
in separate rooms. She plays white against Kasparov and black against Karpov. Nei­
ther grandmaster knows about the other.

Karpov, as white, makes his first move. Alice records the move and walks into the
room with Kasparov. Playing white, she makes the same move against Kasparov.
Kasparov makes his first move as black. Alice records the move, walks into the
room with Karpov, and makes the same move. This continues, until she wins one
game and loses the other, or both games end in a draw.

In reality, Kasparov is playing Karpov and Alice is simply acting as the middleman,
mimicking the moves of each grandmaster on the other's board. However, if neither
Karpov nor Kasparov knows about the other's presence, each will be impressed with
Alice's play.

This kind of fraud can be used against zero-knowledge proofs of identity [485,120].
While Alice is proving her identity to Mallory, Mallory can simultaneously prove to
Bob that he is Alice.

~""':s;c------C_H_A_P_T_E_R_S __ A_d_v_a_n_c_e_d_P_r_o_t_o_c_o_ls ________________ _

The Mafia Fraud

When discussing his zero-knowledge identification protocol, Adi Shamir [1424]
said: "I could go to a Mafia-owned store a million successive times and they will
still not be able to misrepresent themselves as me."

Here's how the Mafia can. Alice is eating at Bob's Diner, a Mafia-owned restau­
rant. Carol is shopping at Dave's Emporium, an expensive jewelry store. Bob and
Carol are both members of the Mafia and are communicating by a secret radio link.
Alice and Dave are unaware of the fraud.

At the end of Alice's meal, when she is ready to pay and prove her identity to Bob,
Bob signals Carol that the fraud is ready to begin. Carol chooses some expensive dia­
monds and gets ready to prove her identity to Dave. Now, as Alice proves her iden­
tity to Bob, Bob radios Carol and Carol performs the same protocol with Dave.
When Dave asks a question in the protocol, Carol radios the question back to Bob,
and Bob asks it of Alice. When Alice answers, Bob radios the correct answer to
Carol. Actually, Alice is just proving her identity to Dave, and Bob and Carol are
simply sitting in the middle of the protocol passing messages back and forth. When
the protocol finishes, Alice has proved herself to Dave and has purchased some
expensive diamonds (which Carol disappears with).

The Terrorist Fraud

If Alice is willing to collaborate with Carol, they can also defraud Dave. In this pro­
tocol, Carol is a well-known terrorist. Alice is helping her enter the country. Dave is
the immigration officer. Alice and Carol are connected by a secret radio link.

When Dave asks Carol questions as part of the zero-knowledge protocol, Carol
radios them back to Alice, who answers them herself. Carol recites these answers to
Dave. In reality, Alice is proving her identity to Dave, with Carol acting as a com­
munications path. When the protocol finishes, Dave thinks that Carol is Alice and
lets her into the country. Three days later, Carol shows up at some government
building with a minivan full of explosives.

Suggested Solutions

Both the Mafia and Terrorist frauds are possible because the conspirators can
communicate via a secret radio. One way to prevent this requires all identifications
to take place inside Faraday cages, which block all electromagnetic radiation. In the
terrorist example, this assures immigration officer Dave that Carol was not receiv­
ing her answers from Alice. In the Mafia example, Bob could simply build a faulty
Faraday cage in his restaurant, but jeweler Dave would have a working one; Bob and
Carol would not be able to communicate. To solve the Chess Grandmaster Problem,
Alice should be forced to sit in her seat until the end of a game.

Thomas Beth and Yvo Desmedt proposed another solution, one using accurate
clocks [148]. If each step in the protocol must take place at a given time, no time
would be available for the conspirators to communicate. In the Chess Grandmaster
Problem, if every move in each game must be made as a clock strikes one minute,
then Alice will have no time to run from room to room. In the Mafia story, Bob and
Carol will have no time to pass questions and answers to one another.

5.2 Zero-Knowledge Proofs of Identity

The Multiple Identity Fraud
There are other possible abuses to zero-knowledge proofs of identity, also dis­

cussed in [485,120]. In some implementations, there is no check when an individual
registers a public key. Hence, Alice can have several private keys and, therefore, sev­
eral identities. This can be a great help if she wants to commit tax fraud. Alice can
also commit a crime and disappear. First, she creates and publishes several identi­
ties. One of them she doesn't use. Then, she uses that identity once and commits a
crime so that the person who identifies her is the witness. Then, she immediately
stops using that identity. The witness knows the identity of the person who com­
mitted the crime, but if Alice never uses that identity again-she's untraceable.

To prevent this, there has to be some mechanism by which each person has only
one identity. In [120] the authors suggest the bizarre idea of tamperproof babies who
are impossible to clone and contain a unique number as part of their genetic code.
They also suggested having each baby apply for an identity at birth. (Actually, the
parents would have to do this as the baby would be otherwise occupied.) This could
easily be abused; parents could apply for multiple identities at the child's birth. In
the end, the uniqueness of an individual is based on trust.

Renting Passports
Alice wants to travel to Zaire, but that government won't give her a visa. Carol

offers to rent her identity to Alice. (Bob offered first, but there were some obvious
problems.) Carol sells Alice her private key and Alice goes off to Zaire pretending to
be Carol.

Carol has not only been paid for her identity, but now she has a perfect alibi. She
commits a crime while Alice is in Zaire. "Carol" has proved her identity in Zaire;
how could she commit a crime back home?

Of course, Alice is free to commit crimes as well. She does so either before she
leaves or after she returns, near Carol's home. First she identifies herself as Carol
(she has Carol's private key, so she can easily do that), then she commits a crime and
runs away. The police will come looking for Carol. Carol will claim she rented her
identity to Alice, but who would believe such a nonsensical story?

The problem is that Alice isn't really proving her identity; she is proving that she
knows a piece of secret information. It is the link between that information and the
person it belongs to that is being abused. The tamperproof baby solution would pro­
tect against this type of fraud, as would a police state where all citizens would have
to prove their identity very frequently (at the end of each day, at each street corner,
etc.). Biometric methods-fingerprints, retinal scanning, voiceprints, and so on­
may help solve this problem.

Proofs of Membership
Alice wants to prove to Bob that she is a member of some super-secret organiza­

tion, but she does not want to reveal her identity. This problem is similar but dif­
ferent to proving identity, and has also been studied [887,906,907,1201,1445]. Some
solutions are related to the problem of group signatures (see Section 4.6).

~""'s,-------C_H_A_P_T_E_R_S __ A_d_v_a_n_c_e_d_P_r_o_t_o_c_o_ls ________________ _

5.3 BLIND SIGNATURES

An essential feature of digital signature protocols is that the signer knows what he
is signing. This is a good idea, except when we want the reverse.

We might want people to sign documents without ever seeing their contents.
There are ways that a signer can almost, but not exactly, know what he is signing.
But first things first.

Completely Blind Signatures
Bob is a notary public. Alice wants him to sign a document, but does not want him

to have any idea what he is signing. Bob doesn't care what the document says; he is
just certifying that he notarized it at a certain time. He is willing to go along with this.

(1) Alice takes the document and multiplies it by a random value. This ran-
dom value is called a blinding factor.

(2) Alice sends the blinded document to Bob.

(3) Bob signs the blinded document.

(4) Alice divides out the blinding factor, leaving the original document signed
by Bob.

This protocol only works if the signature function and multiplication are com­
mutative. If they are not, there are other ways to modify the document other than
by multiplying. Some relevant algorithms appear in Section 23.12. For now, assume
that the operation is multiplication and all the math works.

Can Bob cheat? Can he collect any information about the document that he is
signing? If the blinding factor is truly random and makes the blinded document

· truly random, he cannot. The blinded document Bob signs in step (2) looks nothing
like the document Alice began with. The blinded document with Bob's signature on
it in step (3) looks nothing like the signed document at the end of step (4). Even if
Bob got his hands on the document, with his signature, after completing the proto­
col, he cannot prove (to himself or to anyone else) that he signed it in that particu­
lar protocol. He knows that his signature is valid. He can, like anyone else, verify his
signature. However, there is no way for him to correlate any information he
received during the signing protocol with the signed document. If he signed a mil­
lion documents using this protocol, he would have no way of knowing in which
instance he signed which document.

The properties of completely blind signatures are:

1. Bob's signature on the document is valid. The signature is a proof that Bob
signed the document. It will convince Bob that he signed the document if
it is ever shown to him. It also has all of the other properties of digital sig­
natures discussed in Section 2.6.

2. Bob cannot correlate the signed document with the act of signing the doc­
ument. Even if he keeps records of every blind signature he makes, he can­
not determine when he signed any given document.

__________________ 5_._3_B_l_in_d_S_i6_an_a_t_u_r_es ________ 7 __ ~

Eve, who is in the middle, watching this protocol, has even less information
than Bob.

Blind Signatures
With the completely blind signature protocol, Alice can have Bob sign anything:

"Bob owes Alice a million dollars," "Bob owes Alice his first-born child," "Bob owes
Alice a bag of chocolates." The possibilities are endless. This protocol isn't useful in
many applications.

However, there is a way that Bob can know what he is signing, while still main­
taining the useful properties of a blind signature. The heart of this protocol is the
cut-and-choose technique. Consider this example. Many people enter this country
every day, and the Department of Immigration wants to make sure they are not
smuggling cocaine. The officials could search everyone, but instead they use a
probabilistic solution. They will search one-tenth of the people coming in. One
person in ten has his belongings inspected; the other nine get through untouched.
Chronic smugglers will get away with their misdeeds most of the time, but they
have a 10 percent chance of getting caught. And if the court system is effective, the
penalty for getting caught once will more than wipe out the gains from the other
nine times.

If the Department of Immigration wants to increase the odds of catching smug­
glers, they have to search more people. If they want to decrease the odds, they have
to search fewer people. By manipulating the probabilities, they control how suc­
cessful the protocol is in catching smugglers.

The blind signature protocol works in a similar manner. Bob will be given a large
pile of different blinded documents. He will open, that is examine, all but one and
then sign the last.

Think of the blinded document as being in an envelope. The process of blinding
the document is putting the document in an envelope and the process of removing
the blinding factor is opening the envelope. When the document is in an envelope,
nobody can read it. The document is signed by having a piece of carbon paper in the
envelope: When the signer signs the envelope, his signature goes through the carbon
paper and signs the document as well.

This scenario involves a group of counterintelligence agents. Their identities
are secret; not even the counterintelligence agency knows who they are. The
agency's director wants to give each agent a signed document stating: "The bearer
of this signed document, (insert agent's cover name here), has full diplomatic
immunity." Each of the agents has his own list of cover names, so the agency can't
just hand out signed documents. The agents do not want to send their cover names
to the agency; the enemy might have corrupted the agency's computer. On the
other hand, the agency doesn't want to blindly sign any document an agent gives
it. A clever agent might substitute a message like: "Agent (name) has retired and
collects a million-dollar-a-year pension. Signed, Mr. President." In this case, blind
signatures could be useful.

Assume that all the agents have 10 possible cover names, which they have chosen
themselves and which no one else knows. Also assume that the agents don't care

~-:s. ______ C_H_A_PT_E_R_5 __ A_d_v_a_n_c_e_d_P_r_o_t_oc_o_l_s _______________ _

under which cover name they are going to get diplomatic immunity. Also assume
that the agency's computer is the Agency's Large Intelligent Computing Engine, or
ALICE, and that our particular agent is the Bogota Operations Branch: BOB.

(I) BOB prepares n documents, each using a different cover name, giving him-
self diplomatic immunity.

(2) BOB blinds each of these documents with a different blinding factor.

(3) BOB sends then blinded documents to ALICE.

(4) ALICE chooses n - I documents at random and asks BOB for the blinding
factors for each of those documents.

(5) BOB sends ALICE the appropriate blinding factors.

(6) ALICE opens (i.e., she removes the blinding factor) n - I documents and
makes sure they are correct-and not pension authorizations.

(7) ALICE signs the remaining document and sends it to BOB.

(8) Agent removes the blinding factor and reads his new cover name: "The
Crimson Streak." The signed document gives him diplomatic immunity
under that name.

This protocol is secure against BOB cheating. For him to cheat, he would have to
predict accurately which document ALICE would not examine. The odds of him
doing this are I in n-not very good. ALICE knows this and feels confident signing
a document that she is not able to examine. With this one document, the protocol
is the same as the previous completely blinded signature protocol and maintains all
of its properties of anonymity.

There is a trick that makes BOB's chance of cheating even smaller. In step (4),
ALICE randomly chooses n/2 of the documents to challenge, and BOB sends her the
appropriate blinding factors in step (5). In step (7), ALICE multiplies together all of
the unchallenged documents and signs the mega-document. In step (8), BOB strips
off all the blinding factors. ALICE's signature is acceptable only if it is a valid signa­
ture of the product of n/2 identical documents. To cheat BOB has to be able to guess
exactly which subset ALICE will challenge; the odds are much smaller than the
odds of guessing which one document ALICE won't challenge.

BOB has another way to cheat. He can generate two different documents, one that
ALICE is willing to sign and one that ALICE is not. Then he can find two different
blinding factors that transform each document into the same blinded document. That
way, if ALICE asks to examine the document, BOB gives her the blinding factor that
transforms it into the benign document. If ALICE doesn't ask to see the document and
signs it, he uses the blinding factor that transforms it into the malevolent document.
While this is theoretically possible, the mathematics of the particular algorithms
involved make the odds of BO B's being able to find such a pair negligibly small. In fact,
it can be made as small as the odds of Bob being able to produce the signature on an
arbitrary message himself. This issue is discussed further in Section 23.12.

5.4 Identity-Based Public-Key Cryptography

Patents
Chaum has patents for several flavors of blind signatures (see Table 5.1).

5.4 IDENTITY-BASED PuBLIC-KEY CRYPTOGRAPHY

Alice wants to send a secure message to Bob. She doesn't want to get his public key
from a key server; she doesn't want to verify some trusted third party's signature on
his public-key certificate; and she doesn't even want to store Bob's public key on her
own computer. She just wants to send him a secure message.

Identity-based cryptosystems, sometimes called Non-Interactive Key Sharing
(NIKS) systems, solve this problem [1422]. Bob's public key is based on his name and
network address (or telephone number, or physical street address, or whatever).
With normal public-key cryptography, Alice needs a signed certificate that associ­
ates Bob's public key with his identity. With identity-based cryptography, Bob's pub­
lic key is his identity. This is a really cool idea, and about as ideal as you can get for
a mail system: If Alice knows Bob's address, she can send him secure mail. It makes
the cryptography about as transparent as possible.

The system is based on Trent issuing private keys to users based on their identity.
If Alice's private key is compromised, she has to change some aspect of her identity
to get another one. A serious problem is designing a system in such a way that a col­
lusion of dishonest users cannot forge a key.

A lot of work has been done on the mathematics of these sorts of schemes-most
of it in Japan-which turn out to be infuriatingly complicated to make secure. Many
of the proposed solutions involve Trent choosing a random number for each user­
in my opinion this defeats the real point of the system. Some of the algorithms
discussed in Chapters 19 and 20 can be identity-based. For details, algorithms,
and cryptanalysis, see [191, 1422,891, 1022, 1515, 1202, 1196,908,692,674, 1131, 1023,
1516,1536, 1544,63, 1210,314,313, 1545, 1539,1543,933, 1517, 748, 1228]. An algorithm
that does not rely on any random numbers is [1035]. The system discussed in
[1546,1547,1507] is insecure against a chosen-public-key attack; so is the system
proposed as NIKS-TAS [1542,1540,1541,993,375,1538]. Honestly, nothing proposed
so far is both practical and secure.

U.S. PATENT#

4,759,063
4,759,064
4,914,698
4,949,380
4,991,210

TABLE 5.1
Chaum' s Blind Signature Patents

DATE TITLE

7/19/88 Blind Signature Systems [323]
7/19/88 Blind Unanticipated Signature Systems [324]
3/3/90 One-Show Blind Signature Systems [326]
8/14/90 Returned-Value Blind Signature Systems [328]
2/5/91 Unpredictable Blind Signature Systems [331]

~""s,-------C_H_A_PT_E_R_S __ A_d_v_a_n_c_e_d_P_r_o_to_c_o_l_s _______________ _

5. 5 OBLIVIOUS TRANSFER

Cryptographer Bob is desperately trying to factor a 500-bit number, n. He knows it's
the product of five 100-bit numbers, but nothing more. (This is a problem. If he can't
recover the key he'll have to work overtime and he'll miss his weekly mental poker
game with Alice.)

What do you know? Here comes Alice now:

"I happen to know one factor of the number," she says, "and I'll sell it to you for
$100. That's a dollar a bit." To show she's serious, she uses a bit-commitment
scheme and commits to each bit individually.

Bob is interested, but has only $50. Alice is unwilling to lower her price and
offers to sell Bob half the bits for half the price. "It'll save you a considerable
amount of work," she says.

"But how do I know that your number is actually a factor of nl If you show me
the number and let me verify that it is a factor, then I will agree to your terms,"
says Bob.

They are at an impasse. Alice cannot convince Bob that her number is a factor
of n without revealing it, and Bob is unwilling to buy 50 bits of a number that
could very well be worthless.

This story, stolen from Joe Kilian [831], introduces the concept of oblivious trans­
fer. Alice transmits a group of messages to Bob. Bob receives some subset of those
messages, but Alice has no idea which ones he receives. This doesn't completely
solve the problem, however. After Bob has received a random half of the bits, Alice
has to convince him that the bits she sent are part of a factor of n, using a zero­
knowledge proof.

In the following protocol, Alice will send Bob one of two messages. Bob will
receive one, and Alice will not know which.

(1) Alice generates two public-key/private-key key pairs, or four keys in all.
She sends both public keys to Bob.

(2) Bob chooses a key in a symmetric algorithm (DES, for example). He chooses
one of Alice's public keys and encrypts his DES key with it. He sends the
encrypted key to Alice without telling her which of her public keys he used
to encrypt it.

(3) Alice decrypts Bob's key twice, once with each of her private keys. In one of
the cases, she uses the correct key and successfully decrypts Bob's DES key.
In the other case, she uses the wrong key and only manages to generate a
meaningless pile of bits that nonetheless look like a random DES key. Since
she does not know the correct plaintext, she has no idea which is which.

(4) Alice encrypts both of her messages, each with a different one of the DES
keys she generated in the previous step (one real and one meaningless) and
sends both of them to Bob.

(5) Bob gets one of Alice's messages encrypted with the proper DES key and
the other one encrypted with the gibberish DES key. When Bob decrypts

_________________ 5_._6 __ O_b_ll_·v_i_ou_s_S_ig_n_a_t_u_re_s _______ 7..,.,~

each of them with his DES key, he can read one of them; the other just
looks like gibberish to him.

Bob now has one of the two messages from Alice and Alice does not know which
one he was able to read successfully. Unfortunately, if the protocol stopped here it
would be possible for Alice to cheat. Another step is necessary.

(6) After the protocol is complete and both possible results of the transfer are
known, Alice must give Bob her private keys so that he can verify that she
did not cheat. After all, she could have encrypted the same message with
both keys in step (4).

At this point, of course, Bob can figure out the second message.
The protocol is secure against an attack by Alice because she has no way of know­

ing which of the two DES keys is the real one. She encrypts them both, but Bob only
successfully recovers one of them-until step (6). It is secure against an attack by
Bob because, before step (6), he cannot get Alice's private keys to determine the DES
key that the other message was encrypted in. This may still seem like nothing more
than a more complicated way to flip coins over a modem, but it has extensive impli­
cations when used in more complicated protocols.

Of course, nothing stops Alice from sending Bob two completely useless mes­
sages: "Nyah Nyah" and "You sucker." This protocol guarantees that Alice sends
Bob one of two messages; it does nothing to ensure that Bob wants to receive either
of them.

Other oblivious transfer protocols are found in the literature. Some of them are
noninteractive, meaning that Alice can publish her two messages and Bob can learn
only one of them. He can do this on his own; he doesn't have to communicate with
Alice [105].

No one really cares about being able to do oblivious transfer in practice, but the
notion is an important building block for other protocols. Although there are many
types of oblivious transfer-I have two secrets and you get one; I haven secrets and
you get one; I have one secret which you get with probability 1/2; and so on-they
are all equivalent [245,391,395].

5.6 OBLIVIOUS SIGNATURES

Honestly, I can't think of a good use for these, but there are two kinds [346]:

1. Alice has n different messages. Bob can choose one of the n messages for
Alice to sign, and Alice will have no way of knowing which one she signed.

2. Alice has one message. Bob can choose one of n keys for Alice to use in
signing the message, and Alice will have no way of knowing which key
she used.

It's a neat idea; I'm sure it has a use somewhere.

~-s; ______ C_H_A_P_T_E_R_5 __ A_d_v_a_n_c_e_d_P_r_o_t_o_c_o_ls ________________ _

5. 7 SIMULTANEOUS CONTRACT SIGNING

Contract Signing with an Arbitrator
Alice and Bob want to enter into a contract. They've agreed on the wording, but

neither wishes to sign unless the other signs as well. Face to face, this is easy: Both
sign together. Over a distance, they could use an arbitrator.

(1) Alice signs a copy of the contract and sends it to Trent.

(2) Bob signs a copy of the contract and sends it to Trent.

(3) Trent sends a message to both Alice and Bob indicating that the other has
signed the contract.

(4) Alice signs two copies of the contract and sends them to Bob.

(5) Bob signs both copies of the contract, keeps one for himself, and sends the
other to Alice.

(6) Alice and Bob both inform Trent that they each have a copy of the contract
signed by both of them.

(7) Trent tears up his two copies of the contract with only one signature each.

This protocol works because Trent prevents either of the parties from cheating. If
Bob were to refuse to sign the contract in step (5), Alice could appeal to Trent for a
copy of the contract already signed by Bob. If Alice were to refuse to sign in step (4),
Bob could do the same. When Trent indicates that he received both contracts in step
(3), both Alice and Bob know that the other is bound by the contract. If Trent does
not receive both contracts in steps (1) and (2), he tears up the one he received and
neither party is bound.

Simultaneous Contract Signing without an Arbitrator (Face-to-Face)

If Alice and Bob were sitting face-to-face, they could sign the contract this way
[1244]:

(1) Alice signs the first letter of her name and passes the contract to Bob.

(2) Bob signs the first letter of his name and passes the contract to Alice.

(3) Alice signs the second letter of her name and passes the contract to Bob.

(4) Bob signs the second letter of his name and passes the contract to Alice.

(5) This continues until both Alice and Bob have signed their entire names.

If you ignore the obvious problem with this protocol (Alice has a longer name
than Bob), it works just fine. After signing only one letter, Alice knows that no judge
will bind her to the terms of the contract. But the letter is an act of good faith, and
Bob responds with a similar act of good faith.

After each party has signed several letters, a judge could probably be convinced
that both parties had signed the contract. The details are murky, though. Surely

________________ 5_.7 __ S_im_u_l_ta_n_eo_u_s_C_o_n_t_ra_c_t_S_1_·g_n_in_g _____ Z:____,,~

they are not bound after only the first letter; just as surely they are bound after they
sign their entire names. At what point in the protocol do they become bound? After
signing one-half of their names? Two-thirds of their names? Three-quarters?

Since neither Alice nor Bob is certain of the exact point at which she or he is
bound, each has at least some fear that she or he is bound throughout the protocol.
At no point can Bob say: "You signed four letters and I only signed three. You are
bound but I am not." Bob has no reason not to continue with the protocol. Fur­
thermore, the longer they continue, the greater the probability that a judge will
rule that they are bound. Again, there is no reason not to continue with the proto­
col. After all, they both wanted to sign the contract; they just didn't want to sign
before the other one.

Simultaneous Contract Signing without an Arbitrator (Not Face-to-Face)

This protocol uses the same sort of uncertainty [138]. Alice and Bob alternate tak­
ing baby steps toward signing until both have signed.

In the protocol, Alice and Bob exchange a series of signed messages of the form: "I
agree that with probability p, I am bound by this contract."

The recipient of this message can take it to a judge and, with probability p, the
judge will consider the contract to be signed.

(1) Alice and Bob agree on a date by which the signing protocol should be com­
pleted.

(2) Alice and Bob decide on a probability difference that they are willing to
live with. For example, Alice might decide that she is not willing to be
bound with a greater probability than 2 percent over Bob's probability. Call
Alice's difference a; call Bob's difference b.

(3) Alice sends Bob a signed message with p = a.

(4) Bob sends Alice a signed message with p =a+ b.

(5) Let p be the probability of the message Alice received in the previous step
from Bob. Alice sends Bob a signed message with p' = p + a or 1, whichever
is smaller.

(6) Let p be the probability of the message Bob received in the previous step
from Alice. Bob sends Alice a signed message with p' = p + b or 1,
whichever is smaller.

(7) Alice and Bob continue alternating steps (5) and (6) until both have
received messages with p = 1 or until the date agreed to in step (1) has
passed.

As the protocol proceeds, both Alice and Bob agree to be bound to the contract
with a greater and greater probability. For example, Alice might define her a as 2
percent and Bob might define his b as 1 percent. (It would be nice if they had cho­
sen larger increments; we will be here for a while.) Alice's first message might
state that she is bound with 2 percent probability. Bob might respond that he is

~-:s~ _____ C_H_A_P_T_E_R_5 __ A_d_v_a_n_c_e_d_P_r_o_t_o_c_ol_s _______________ _

bound with 3 percent probability. Alice's next message might state that she is
bound with 5 percent probability and so on, until both are bound with 100 percent
probability.

If both Alice and Bob complete the protocol by the completion date, all is well.
Otherwise, either party can take the contract to the judge, along with the other
party's last signed message. The judge then randomly chooses a value between O and
1 before seeing the contract. If the value is less than the probability the other party
signed, then both parties are bound. If the value is greater than the probability, then
both parties are not bound. (The judge then saves the value, in case he has to rule on
another matter regarding the same contract.) This is what is meant by being bound
to the contract with probability p.

That's the basic protocol, but it can have more complications. The judge can rule
in the absence of one of the parties. The judge's ruling either binds both or neither
party; in no situation is one party bound and the other one not. Furthermore, as long
as one party is willing to have a slightly higher probability of being bound than the
other (no matter how small), the protocol will terminate.

Simultaneous Contract Signing without an Arbitrator
(Using Cryptography)

This cryptographic protocol uses the same baby-step approach [529]. DES is used
in the description, although any symmetric algorithm will do.

(1) Both Alice and Bob randomly select 2n DES keys, grouped in pairs. The
pairs are nothing special; they are just grouped that way for the protocol.

(2) Both Alice and Bob generate n pairs of messages, L; and R;: "This is the left
half of my ith signature" and "This is the right half of my ith signature,"
for example. The identifier, i, runs from 1 ton. Each message will probably
also include a digital signature of the contract and a timestamp. The con­
tract is considered signed if the other party can produce both halves, L; and
R;, of a single signature pair.

(3) Both Alice and Bob encrypt their message pairs in each of the DES key
pairs, the left message with the left key in the pair and the right message
with the right key in the pair.

(4) Alice and Bob send each other their pile of 2n encrypted messages, making
clear which messages are which halves of which pairs.

(5) Alice and Bob send each other every key pair using the oblivious transfer
protocol for each pair. That is, Alice sends Bob either the key used to
encrypt the left message or the key used to encrypt the right message, inde­
pendently, for each of then pairs. Bob does the same. They can either alter­
nate sending halves or one can send 100 and then the other-it doesn't
matter. Now both Alice and Bob have one key in each key pair, but neither
knows which halves the other one has.

(6) Both Alice and Bob decrypt the message halves that they can, using the
keys they received. They make sure that the decrypted messages are valid.

______________ s_._7 __ S1_·m_u_lt_a_n_e_o_u_s_C_on_tr_a_c_t_S_ig_n_1_·n_g _____ 7 ___ ~

(7) Alice and Bob send each other the first bits of all 2n DES keys.

(8) Alice and Bob repeat step (7) for the second bits of all 2n DES keys, the
third bits, and so on, until all the bits of all the DES keys have been trans­
ferred.

(9) Alice and Bob decrypt the remaining halves of the message pairs and the
contract is signed.

(10) Alice and Bob exchange the private keys used during the oblivious transfer
protocol in step (5) and each verifies that the other did not cheat.

Why do Alice and Bob have to go through all this world Let's assume Alice wants
to cheat and see what happens. In steps (4) and (5), Alice could disrupt the protocol
by sending Bob nonsense bit strings. Bob would catch this in step (6), when he tried
to decrypt whatever half he received. Bob could then stop safely, before Alice could
decrypt any of Bob's message pairs.

If Alice were very clever, she could only disrupt half the protocol. She could send
one half of each pair correctly, but send a gibberish string for the other half. Bob has
only a 50 percent chance of receiving the correct half, so half the time Alice could
cheat. However, this only works if there is one key pair. If there were only two pairs,
this sort of deception would succeed 25 percent of the time. That is why n should be
large. Alice has to guess correctly the outcome of n oblivious transfer protocols; she
has a 1 in 2n chance of doing this. If n = IO, Alice has a 1 in 1024 chance of deceiv­
ing Bob.

Alice could also send Bob random bits in step (8). Perhaps Bob won't know that
she is sending him random bits until he receives the whole key and tries to decrypt
the message halves. But again, Bob has probability on his side. He has already
received half of the keys, and Alice does not know which half. If n is large enough,
Alice is sure to send him a nonsense bit to a key he has already received and he will
know immediately that she is trying to deceive him.

Maybe Alice will just go along with step (8) until she has enough bits of the keys to
mount a brute-force attack and then stop transmitting bits. DES has a 56-bit-long key.
If she receives 40 of the 56 bits, she only has to try 216, or 65,536, keys in order to read
the message-a task certainly within the realm of a computer's capabilities. But Bob
will have exactly the same number of bits of her keys (or, at worst, one bit less), so he
can do the same thing. Alice has no real choice but to continue the protocol.

The basic point is that Alice has to play fairly, because the odds of fooling Bob are
just too small. At the end of the protocol, both parties have n signed message pairs,
any one of which is sufficient for a valid signature.

There is one way Alice can cheat; she can send Bob identical messages in Step (5).
Bob can't detect this until after the protocol is finished, but he can use a transcript
of the protocol to convince a judge of Alice's duplicity.

There are two weaknesses with protocols of this type [138]. First, it's a problem if
one of the parties has significantly more computing power than the other. If, for
example, Alice can mount a brute-force attack faster than Bob can, then she can stop
sending bits early in step (8), and figure out Bob's keys herself. Bob, who cannot do
the same in a reasonable amount of time, will not be happy.

~-:s;~ _____ C_H_A_P_T_E_R_5 __ A_d_v_a_n_c_e_d_P_r_o_t_o_c_o_ls ________________ _

Second, it's a problem if one of the parties stops the protocol early. If Alice
abruptly stops the protocol, both face similar computational efforts, but Bob does
not have any real legal recourse. If, for example, the contract specifies that she do
something in a week, and Alice terminates the protocol at a point when Bob would
have to spend a year's worth of computing power before she is really committed,
that's a problem. The real difficulty here is the lack of a near-term deadline by
which the process cleanly terminates with either both or neither party bound.

These problems also apply to the protocols in Sections 5.8 and 5.9.

5.8 DIGITAL CERTIFIED MAIL

The same simultaneous oblivious transfer protocol used for contract signing works,
with some modifications, for computer certified mail [529]. Suppose Alice wants to
send a message to Bob, but she does not want him to read it without signing a
receipt. Surly postal workers handle this process in real life, but the same thing can
be done with cryptography. Whitfield Diffie first discussed this problem in [490].

At first glance, the simultaneous contract-signing protocol can do this. Alice sim­
ply encrypts her message with a DES key. Her half of the protocol can be something
like: "This is the left half of the DES key: 32f5, 11 and Bob's half can be something
like: "This is the left half of my receipt." Everything else stays the same.

To see why this won't work, remember that the protocol hinges on the fact that
the oblivious transfer in step (5) keeps both parties honest. Both of them know that
they sent the other party a valid half, but neither knows which. They don't cheat in
step (8) because the odds of getting away with it are miniscule. If Alice is sending
Bob not a message but half of a DES key, Bob can't check the validity of the DES key
in step (6). Alice can still check the validity of Bob's receipt, so Bob is still forced to
be honest. Alice can freely send Bob some garbage DES key, and he won't know the
difference until she has a valid receipt. Tough luck, Bob.

Getting around this problem requires some adjustment of the protocol:

(1) Alice encrypts her message using a random DES key, and sends the mes­
sage to Bob.

(2) Alice generates n pairs of DES keys. The first key of each pair is generated
at random; the second key of each pair is the XOR of the first key and the
message encryption key.

(3) Alice encrypts a dummy message with each of her 2n keys.

(4) Alice sends the whole pile of encrypted messages to Bob, making sure he
knows which messages are which halves of which pairs.

(5) Bob generates n pairs of random DES keys.

(6) Bob generates a pair of messages that indicates a valid receipt. "This is the
left half of my receipt" and "this is the right half of my receipt" are good
candidates, with the addition of some kind of random-bit string. He makes
n receipt pairs, each numbered. As with the previous protocol, the receipt

5. 9 Simultaneous Exchange of Secrets

is considered valid if Alice can produce both halves of a receipt (with the
same number) and all of her encryption keys.

(7) Bob encrypts each of his message pairs with DES key pairs, the ith message
pair with the ith key pair, the left message with the left key in the pair, and
the right message with the right key in the pair.

(8) Bob sends his pile of message pairs to Alice, making sure that Alice knows
which messages are which halves of which pairs.

(9) Alice and Bob send each other every key pair using the oblivious transfer
protocol. That is, Alice sends Bob either the key used to encrypt the left
message or the key used to encrypt the right message, for each of then pairs.
Bob does the same. They can either alternate sending halves or one can send
n and then the other-it doesn't matter. Now both Alice and Bob have one
key in each key pair, but neither knows which halves the other has.

(10) Both Alice and Bob decrypt the halves they can and make sure that the
decrypted messages are valid.

(11) Alice and Bob send each other the first bits of all 2n DES keys. (If they are
worried about Eve being able to read these mail messages, then they should
encrypt their transmissions to each other.)

(12) Alice and Bob repeat step (11) for the second bits of all 2n DES keys, the
third bits, and so on, until all the bits of all the DES keys have been
transferred.

(13) Alice and Bob decrypt the remaining halves of the message pairs. Alice has
a valid receipt from Bob, and Bob can XOR any key pair to get the original
message encryption key.

(14) Alice and Bob exchange the private keys used during the oblivious transfer
protocol and each verifies that the other did not cheat.

Steps (5) through (8) for Bob, and steps (9) through (12) for both Alice and Bob, are
the same as the contract-signing protocol. The twist is all of Alice's dummy mes­
sages. They give Bob some way of checking the validity of her oblivious transfer in
step (10), which forces her to stay honest during steps (11) through (13). And, as with
the simultaneous contract-signing protocol, both a left and a right half of one of
Alice's message pairs are required to complete the protocol.

5. 9 SIMULTANEOUS EXCHANGE OF SECRETS

Alice knows secret A; Bob knows secret B. Alice is willing to tell Bob A, if Bob tells
her B. Bob is willing to tell Alice B, if Alice tells him A. This protocol, observed in
a schoolyard, does not work:

(1) Alice: "I'll tell if you tell me first."

(2) Bob: "I'll tell if you tell me first."

~--:s.~ _____ C_H_A_PT_E_R_5 __ A_d_v_a_n_c_e_d_P_r_o_t_oc_o_l_s _______________ _

(3) Alice: "No, you first."

(4) Bob: "Oh, all right." Bob whispers.

(5) Alice: "Ha! I won't tell you."

(6) Bob: "That's not fair."

Cryptography can make it fair. The previous two protocols are implementations
of this more general protocol, one that lets Alice and Bob exchange secrets simulta­
neously [529]. Rather than repeat the whole protocol, I'll sketch the modifications
to the certified mail protocol.

Alice performs steps (1) through (4) using A as the message. Bob goes through sim­
ilar steps using B as his message. Alice and Bob perform the oblivious transfer in
step (9), decrypt the halves they can in step (10), and go through the iterations in
steps (11) and (12). If they are concerned about Eve, they should encrypt their mes­
sages. Finally, both Alice and Bob decrypt the remaining halves of the message pairs
and XOR any key pair to get the original message encryption key.

This protocol allows Alice and Bob to exchange secrets simultaneously, but says
nothing about the quality of the secrets exchanged. Alice could promise Bob the
solution to the Minotaur's labyrinth, but actually send him a map of Boston's sub­
way system. Bob will get whatever secret Alice sends him. Other protocols are
[1286, 195,991, 1524, 705,753,259,358,415].

-------------------------z:~~

CHAPTER 6

Esoteric Protocols

6 .1 SECURE ELECTIONS

Computerized voting will never be used for general elections unless there is a pro­
tocol that both maintains individual privacy and prevents cheating. The ideal pro­
tocol has, at the very least, these six requirements:

1. Only authorized voters can vote.

2. No one can vote more than once.

3. No one can determine for whom anyone else voted.

4. No one can duplicate anyone else's vote. (This turns out to be the hardest
requirement.)

5. No one can change anyone else's vote without being discovered.

6. Every voter can make sure that his vote has been taken into account in the
final tabulation.

Additionally, some voting schemes may have the following requirement:

7. Everyone knows who voted and who didn't.

Before describing the complicated voting protocols with these characteristics,
let's look at some simpler protocols.

Simplistic Voting Protocol # 1

(1) Each voter encrypts his vote with the public key of a Central Tabulating
Facility (CTF).

(2) Each voter sends his vote in to the CTF.

(3) The CTF decrypts the votes, tabulates them, and makes the results public.

~...,s _______ C_H_A_P_T_E_R_6 __ E_so_t_e_r_ic_P_ro_t_o_c_o_ls ________________ _

This protocol is rife with problems. The CTF has no idea where the votes are
from, so it doesn't even know if the votes are coming from eligible voters. It has no
idea if eligible voters are voting more than once. On the plus side, no one can change
anyone else's vote; but no one would bother trying to modify someone else's vote
when it is far easier to vote repeatedly for the result of your choice.

Simplistic Voting Protocol #2

(1) Each voter signs his vote with his private key.

(2) Each voter encrypts his signed vote with the CTF's public key.

(3) Each voter sends his vote to a CTF.

(4) The CTF decrypts the votes, checks the signatures, tabulates the votes,
and makes the results public.

This protocol satisfies properties one and two: Only authorized voters can vote
and no one can vote more than once-the CTF would record votes received in step
(3). Each vote is signed with the voter's private key, so the CTF knows who voted,
who didn't, and how often each voter voted. If a vote comes in that isn't signed by
an eligible voter, or if a second vote comes in signed by a voter who has already
voted, the facility ignores it. No one can change anyone else's vote either, even if
they intercept it in step (3), because of the digital signature.

The problem with this protocol is that the signature is attached to the vote; the
CTF knows who voted for whom. Encrypting the votes with the CTF's public key
prevents anyone from eavesdropping on the protocol and figuring out who voted for
whom, but you have to trust the CTF completely. It's analogous to having an elec­
tion judge staring over your shoulder in the voting booth.

These two examples show how difficult it is to achieve the first three require­
ments of a secure voting protocol, let alone the others.

Voting with Blind Signatures
We need to somehow dissociate the vote from the voter, while still maintaining

authentication. The blind signature protocol does just that.

(1) Each voter generates 10 sets of messages, each set containing a valid vote
for each possible outcome (e.g., if the vote is a yes or no question, each set
contains two votes, one for "yes" and the other for "no"). Each message
also contains a randomly generated identification number, large enough to
avoid duplicates with other voters.

(2) Each voter individually blinds all of the messages (see Section 5.3) and
sends them, with their blinding factors, to the CTF.

(3) The CTF checks its database to make sure the voter has not submitted his
blinded votes for signature previously. It opens nine of the sets to check that
they are properly formed. Then it individually signs each message in the set.
It sends them back to the voter, storing the name of the voter in its database.

__________________ 6_._l_S_e_c_u_r_e_E_l_ec_t_i_on_s ________ z:=~

(4) The voter unblinds the messages and is left with a set of votes signed by
the CTF. (These votes are signed but unencrypted, so the voter can easily
see which vote is "yes" and which is "no.")

(5) The voter chooses one of the votes (ah, democracy) and encrypts it with the
CTF's public key.

(6) The voter sends his vote in.

(7) The CTF decrypts the votes, checks the signatures, checks its database for
a duplicate identification number, saves the serial number, and tabulates
the votes. It publishes the results of the election, along with every serial
number and its associated vote.

A malicious voter, call him Mallory, cannot cheat this system. The blind signa­
ture protocol ensures that his votes are unique. If he tries to send in the same vote
twice, the CTF will notice the duplicate serial number in step (7) and throw out the
second vote. If he tries to get multiple votes signed in step (2), the CTF will discover
this in step (3). Mallory cannot generate his own votes because he doesn't know the
facility's private key. He can't intercept and change other people's votes for the same
reason.

The cut-and-choose protocol in step (3) is to ensure that the votes are unique.
Without that step, Mallory could create a set of votes that are the same except for
the identification number, and have them all validated.

A malicious CTF cannot figure out how individuals voted. Because the blind sig­
nature protocol prevents the facility from seeing the serial numbers on the votes
before they are cast, the CTF cannot link the blinded vote it signed with the vote
eventually cast. Publishing a list of serial numbers and their associated votes allows
voters to confirm that their vote was tabulated correctly.

There are still problems. If step (6) is not anonymous and the CTF can record who
sent in which vote, then it can figure out who voted for whom. However, if it
receives votes in a locked ballot box and then tabulates them later, it cannot. Also,
while the CTF may not be able to link votes to individuals, it can generate a large
number of signed, valid votes and cheat by submitting those itself. And if Alice dis­
covers that the CTF changed her vote, she has no way to prove it. A similar proto­
col, which tries to correct these problems, is [1195,1370].

Voting with Two Central Facilities

One solution is to divide the CTF in two. Neither party would have the power to
cheat on its own.

The following protocol uses a Central Legitimization Agency (CLA) to certify vot­
ers and a separate CTF to count votes [1373].

(1) Each voter sends a message to the CLA asking for a validation number.

(2) The CLA sends the voter back a random validation number. The CLA
maintains a list of validation numbers. The CLA also keeps a list of the
validation numbers' recipients, in case someone tries to vote twice.

~~:s ______ C_H_A_P_T_ER_6_E_so_t_e_n_·c_P_r_o_t_o_c_o_ls _______________ _

(3) The CLA sends the list of validation numbers to the CTF.

(4) Each voter chooses a random identification number. He creates a message
with that number, the validation number he received from the CLA, and
his vote. He sends this message to the CTF.

(5) The CTF checks the validation number against the list it received from the
CLA in step (3). If the validation number is there, the CTF crosses it off (to
prevent someone from voting twice). The CTF adds the identification
number to the list of people who voted for a particular candidate and adds
one to the tally.

(6) After all votes have been received, the CTF publishes the outcome, as well
as the lists of identification numbers and for whom their owners voted.

Like the previous protocol, each voter can look at the lists of identification num­
bers and find his own. This gives him proof that his vote was counted. Of course, all
messages passing among the parties in the protocol should be encrypted and signed
to prevent someone from impersonating someone else or intercepting transmissions.

The CTF cannot modify votes because each voter will look for his identification
string. If a voter doesn't find his identification string, or finds his identification
string in a tally other than the one he voted for, he will immediately know there was
foul play. The CTF cannot stuff the ballot box because it is being watched by the
CLA. The CLA knows how many voters have been certified and their validation
numbers, and will detect any modifications.

Mallory, who is not an eligible voter, can try to cheat by guessing a valid valida­
tion number. This threat can be minimized by making the number of possible vali­
dation numbers much larger than the number of actual validation numbers:
100-digit numbers for a million voters, for example. Of course, the validation num­
bers must be generated randomly.

Despite this, the CLA is still a trusted authority in some respects. It can certify
ineligible voters. It can certify eligible voters multiple times. This risk could be
minimized by having the CLA publish a list of certified voters (but not their valida­
tion numbers). If the number of voters on this list is less than the number of votes
tabulated, then something is awry. However, if more voters were certified than
votes tabulated, it probably means that some certified people didn't bother voting.
Many people who are registered to vote don't bother to cast ballots.

This protocol is vulnerable to collusion between the CLA and the CTF. If the two of
them got together, they could correlate databases and figure out who voted for whom.

Voting with a Single Central Facility
A more complex protocol can be used to overcome the danger of collusion

between the CLA and the CTF [1373]. This protocol is identical to the previous one,
with two modifications:

The CLA and the CTF are one organization, and

ANDOS (see Section 4.13) is used to anonymously distribute valida­
tion numbers in step (2).

___________________ 6_.l __ S_e_cu_r_e_E_le_c_t_io_n_s ________ 7 __ ~

Since the anonymous key distribution protocol prevents the CTF from knowing
which voter got which validation number, there is no way for the CTF to correlate
validation numbers with votes received. The CTF still has to be trusted not to give
validation numbers to ineligible voters, though. You can also solve this problem
with blind signatures.

Improved Voting with a Single Central Facility

This protocol also uses ANDOS [1175]. It satisfies all six requirements of a good
voting protocol. It doesn't satisfy the seventh requirement, but has two properties
additional to the six listed at the beginning of the section:

7. A voter can change his mind (i.e., retract his vote and vote again) within a
given period of time.

8. If a voter finds out that his vote is miscounted, he can identify and correct
the problem without jeopardizing the secrecy of his ballot.

Here's the protocol:

(1) The CTF publishes a list of all legitimate voters.

(2) Within a specified deadline, each voter tells the CTF whether he intends
to vote.

(3) The CTF publishes a list of voters participating in the election.

(4) Each voter receives an identification number, I, using an ANDOS protocol.

(5) Each voter generates a public-key /private-key key pair: k, d. If vis the vote,
he generates the following message and sends it to the CTF:

I,Ek(I,v)
This message must be sent anonymously.

(6) The CTF acknowledges receipt of the vote by publishing:

Ek(I,v)

(7) Each voter sends the CTF:

I,d

(8) The CTF decrypts the votes. At the end of the election, it publishes the
results of the election and, for each different vote, the list of all Ek(I, v) val­
ues that contained that vote.

(9) If a voter observes that his vote is not properly counted, he protests by
sending the CTF:

I,E1JI,v),d

(10) If a voter wants to change his vote (possible, in some elections) from v to
v', he sends the CTF:

I,Ek(I, v'),d

A different voting protocol uses blind signatures instead of ANDOS, but is essen­
tially the same [585]. Steps (1) through (3) are preliminary to the actual voting. Their

~ :s;c--------C_H_A_P_T_E_R_6 __ E_s_o_te_r_ic_P_ro_t_o_c_o_ls ________________ _

purpose is to find out and publicize the total number of actual voters. Although
some of them probably will not participate, it reduces the ability of the CTF to add
fraudulent votes.

In step (4), it is possible for two voters to get the same identification number. This
possibility can be minimized by having far more possible identification numbers
than actual voters. If two voters submit votes with the same identification tag, the
CTF generates a new identification number, I', chooses one of the two votes, and
publishes:

I',Ek(I,v)

The owner of that vote recognizes it and sends in a second vote, by repeating step
(5), with the new identification number.

Step (6) gives each voter the capability to check that the CTF received his vote
accurately. If his vote is miscounted, he can prove his case in step (9). Assuming a
voter's vote is correct in step (6), the message he sends in step (9) constitutes a proof
that his vote is miscounted.

One problem with the protocol is that a corrupt CTF could allocate the votes of
people who respond in step (2) but who do not actually vote. Another problem is the
complexity of the ANDOS protocol. The authors recommend dividing a large popu­
lation of voters into smaller populations, such as election districts.

Another, more serious problem is that the CTF can neglect to count a vote. This
problem cannot be resolved: Alice claims that the CTF intentionally neglected to
count her vote, but the CTF claims that the voter never voted.

Voting without a Central Tabulating Facility
The following protocol does away with the CTF entirely; the voters watch each

other. Designed by Michael Merritt [452, 1076,453], it is so unwieldy that it cannot
be implemented practically for more than a handful of people, but it is useful to
learn from nevertheless.

Alice, Bob, Carol, and Dave are voting yes or no (0 or 1) on a particular issue.
Assume each voter has a public and private key. Also assume that everyone knows
everyone else's public keys.

(1) Each voter chooses his vote and does the following:

(a) He attaches a random string to his vote.

(b) He encrypts the result of step (a) with Dave's public key.

(c) He encrypts the result of step (b) with Carol's public key.

(d) He encrypts the result of step (c) with Bob's public key.

(e) He encrypts the result of step (d) with Alice's public key.

(f) He attaches a new random string to the result of step (e) and encrypts
it with Dave's public key. He records the value of the random string.

(g) He attaches a new random string to the result of step (f) and encrypts it
with Carol's public key. He records the value of the random string.

___________________ 6._1 __ Se_c_u_r_e_E_l_ec_t_io_n_s ________ 7_~

(h) He attaches a new random string to the result of step (g) and encrypts
it with Bob's public key. He records the value of the random string.

(i) He attaches a new random string to the result of step (h) and encrypts
it with Alice's public key. He records the value of the random string.

If E is the encryption function, R1 is a random string, and V is the vote, his
message looks like:

EA(Rs,EB(R4,Ec(R3,Ev(R2,EA(EB(Ec(En(V,R1))))))))
Each voter saves the intermediate results at each point in the calculation.
These results will be used later in the protocol to confirm that his vote is
among those being counted.

(2) Each voter sends his message to Alice.

(3) Alice decrypts all of the votes with her private key and then removes all of
the random strings at that level.

(4) Alice scrambles the order of all the votes and sends the result to Bob.
Each vote now looks like this:

EB(R4,Ec(R,,Ev(R2,EA(E13(Ec(Ev(V,R1)))))))
(5) Bob decrypts all of the votes with his private key, checks to see that his

vote is among the set of votes, removes all the random strings at that level,
scrambles all the votes, and then sends the result to Carol.

Each vote now looks like this:

Ec(R,,Ev(R2,EA(E13(Ec(Ev(V,R1))))))
(6) Carol decrypts all of the votes with her private key, checks to see that her

vote is among the set of votes, removes all the random strings at that level,
scrambles all the votes, and then sends the result to Dave.

Each vote now looks like this:

Ev(R2,EA(E13(Ec(Ev(V,R1)))))
(7) Dave decrypts all of the votes with his private key, checks to see that his

vote is among the set of votes, removes all the random strings at that level,
scrambles all the votes, and sends them to Alice.

Each vote now looks like this:

EA(EB(Ec(Ev(V,Ri))))
(8) Alice decrypts all the votes with her private key, checks to see that her

vote is among the set of votes, signs all the votes, and then sends the result
to Bob, Carol, and Dave.

Each vote now looks like this:

SA(EB(Ec(Ev(V,R 1))))

(9) Bob verifies and deletes Alice's signatures. He decrypts all the votes with
his private key, checks to see that his vote is among the set of votes, signs
all the votes, and then sends the result to Alice, Carol, and Dave.

Each vote now looks like this:

SR(EdEv(V,Ri)))

~""'S _______ C_H_A_P_T_ER_6 __ E_so_t_e_r_ic_P_ro_t_o_c_o_ls ________________ _

(10) Carol verifies and deletes Bob's signatures. She decrypts all the votes with
her private key, checks to see that her vote is among the set of votes, signs
all the votes, and then sends the result to Alice, Bob, and Dave.

Each vote now looks like this:

Sc(Ev(V,R1))

(11) Dave verifies and deletes Carol's signatures. He decrypts all the votes with
his private key, checks to see that his vote is among the set of votes, signs
all the votes, and then sends the result to Alice, Bob, and Carol.

Each vote now looks like this:

Sv(V,Ri)

(12) All verify and delete Dave's signature. They check to make sure that their
vote is among the set of votes (by looking for their random string among
the votes).

(13) Everyone removes the random strings from each vote and tallies the votes.

Not only does this protocol work, it is also self-adjudicating. Alice, Bob, Carol,
and Dave will immediately know if someone tries to cheat. No CTF or CLA is
required. To see how this works, let's try to cheat.

If someone tries to stuff the ballot, Alice will detect the attempt in step (3) when
she receives more votes than people. If Alice tries to stuff the ballot, Bob will notice
in step (4).

More devious is to substitute one vote for another. Since the votes are encrypted
with various public keys, anyone can create as many valid votes as needed. The
decryption protocol has two rounds: round one consists of steps (3) through (7), and
round two consists of steps (8) through (11). Vote substitution is detected differently
in the different rounds.

If someone substitutes one vote for another in round two, his actions are discov­
ered immediately. At every step the votes are signed and sent to all the voters. If one
(or more) of the voters noticed that his vote is no longer in the set of votes, he
immediately stops the protocol. Because the votes are signed at every step, and
because everyone can backtrack through the second round of the protocol, it is easy
to detect who substituted the votes.

Substituting one vote for another during round one of the protocol is more subtle.
Alice can't do it in step (3), because Bob, Carol, or Dave will detect it in step (5), (6),
or (7). Bob could try in step (5). If he replaces Carol's or Dave's vote (remember, he
doesn't know which vote corresponds to which voter), Carol or Dave will notice in
step (6) or (7). They wouldn't know who tampered with their vote (although it would
have had to be someone who had already handled the votes), but they would know
that their vote was tampered with. If Bob is lucky and picks Alice's vote to replace,
she won't notice until the second round. Then, she will notice her vote missing in
step (8). Still, she would not know who tampered with her vote. In the first round, the
votes are shuffled from one step to the other and unsigned; it is impossible for any­
one to backtrack through the protocol to determine who tampered with the votes.

__________________ 6_.1 __ S_e_c_u_r_e_E_l_ec_t_i_on_s ________ 7.,,,.~

Another form of cheating is to try to figure out who voted for whom. Because of
the scrambling in the first round, it is impossible for someone to backtrack
through the protocol and link votes with voters. The removal of the random
strings during the first round is also crucial to preserving anonymity. If they are
not removed, the scrambling of the votes could be reversed by re-encrypting the
emerging votes with the scrambler's public key. As the protocol stands, the confi­
dentiality of the votes is secure.

Even more strongly, because of the initial random string, R 1, even identical votes
are encrypted differently at every step of the protocol. No one knows the outcome
of the vote until step (11).

What are the problems with this protocol? First, the protocol has an enormous
amount of computation. The example described had only four voters and it was
complicated. This would never work in a real election, with tens of thousands of
voters. Second, Dave learns the results of the election before anyone else does.
While he still can't affect the outcome, this gives him some power that the others
do not have. On the other hand, this is also true with centralized voting schemes.

The third problem is that Alice can copy anyone else's vote, even though she does
not know what it is beforehand. To see why this could be a problem, consider a
three-person election between Alice, Bob, and Eve. Eve doesn't care about the result
of the election, but she wants to know how Alice voted. So she copies Alice's vote,
and the result of the election is guaranteed to be equal to Alice's vote.

Other Voting Schemes

Many complex secure election protocols have been proposed. They come in two
basic flavors. There are mixing protocols, like "Voting without a Central Tabulating
Facility," where everyone's vote gets mixed up so that no one can associate a vote
with a voter.

There are also divided protocols, where individual votes are divided up among dif­
ferent tabulating facilities such that no single one of them can cheat the voters
[360,359,118,115]. These protocols only protect the privacy of voters to the extent
that different "parts" of the government (or whoever is administering the voting) do
not conspire against the voter. (This idea of breaking a central authority into differ­
ent parts, who are only trusted when together, comes from [316].)

One divided protocol is [13 71]. The basic idea is that each voter breaks his vote into
several shares. For example, if the vote were "yes" or "no," a 1 could indicate "yes"
and a O could indicate "no"; the voter would then generate several numbers whose
sum was either O or 1. These shares are sent to tabulating facilities, one to each, and
are also encrypted and posted. Each center tallies the shares it receives (there are pro­
tocols to verify that the tally is correct) and the final vote is the sum of all the tallies.
There are also protocols to ensure that each voter's shares add up to O or 1.

Another protocol, by David Chaum [322], ensures that voters who attempt to dis­
rupt the election can be traced. However, the election must then be restarted with­
out the interfering voter; this approach is not practical for large-scale elections.

Another, more complex, voting protocol that solves some of these problems can
be found in [770,771]. There is even a voting protocol that uses multiple-key ciphers

~-s _______ C_H_A_P_T_ER_6 __ E_so_t_e_r_ic_P_r_o_t_o_c_o_ls ________________ _

[219]. Yet another voting protocol, which claims to be practical for large-scale elec­
tions, is in [585]. And [347] allows voters to abstain.

Voting protocols work, but they make it easier to buy and sell votes. The incen­
tives become considerably stronger as the buyer can be sure that the seller votes as
promised. Some protocols are designed to be receipt-free, so that it is impossible for
a voter to prove to someone else that he voted in a certain way [117, 1170,1372].

6.2 SECURE MULTIPARTY COMPUTATION

Secure multiparty computation is a protocol in which a group of people can get
together and compute any function of many variables in a special way. Each partic­
ipant in the group provides one or more variables. The result of the function is
known to everyone in the group, but no one learns anything about the inputs of any
other members other than what is obvious from the output of the function. Here are
some examples:

Protocol #1
How can a group of people calculate their average salary without anyone learning

the salary of anyone else?

(1) Alice adds a secret random number to her salary, encrypts the result with
Bob's public key, and sends it to Bob.

(2) Bob decrypts Alice's result with his private key. He adds his salary to what
he received from Alice, encrypts the result with Carol's public key, and
sends it to Carol.

(3) Carol decrypts Bob's result with her private key. She adds her salary to
what she received from Bob, encrypts the result with Dave's public key,
and sends it to Dave.

(4) Dave decrypts Carol's result with his private key. He adds his salary to
what he received from Carol, encrypts the result with Alice's public key,
and sends it to Alice.

(5) Alice decrypts Dave's result with her private key. She subtracts the ran­
dom number from step (1) to recover the sum of everyone's salaries.

(6) Alice divides the result by the number of people (four, in this case) and
announces the result.

This protocol assumes that everyone is honest; they may be curious, but they
follow the protocol. If any participant lies about his salary, the average will be
wrong. A more serious problem is that Alice can misrepresent the result to every­
one. She can subtract any number she likes in step (5), and no one would be the
wiser. Alice could be prevented from doing this by requiring her to commit to her
random number using any of the bit-commitment schemes from Section 4.9, but
when she revealed her random number at the end of the protocol Bob could learn
her salary.

_______________ 6_._2_S_e_c_u_r_e_M_u_lt_ip_a_r_ty_C_o_m_p_u_ta_t_io_n _____ 7_~

Protocol #2
Alice and Bob are at a restaurant together, having an argument over who is older.

They don't, however, want to tell the other their age. They could each whisper their
age into the ear of a trusted neutral party (the waiter, for example), who could com­
pare the numbers in his head and announce the result to both Alice and Bob.

The above protocol has two problems. One, your average waiter doesn't have the
computational ability to handle situations more complex than determining which
of two numbers is greater. And two, if Alice and Bob were really concerned about
the secrecy of their information, they would be forced to drown the waiter in a bowl
of vichyssoise, lest he tell the wine steward.

Public-key cryptography offers a far less violent solution. There is a protocol by
which Alice, who knows a value a, and Bob, who knows a value b, can together
determine if a < b, so that Alice gets no additional information about b and Bob gets
no additional information about a. And, both Alice and Bob are convinced of the
validity of the computation. Since the cryptographic algorithm used is an essential
part of the protocol, details can be found in Section 23 .14.

Of course, this protocol doesn't protect against active cheaters. There's nothing to
stop Alice (or Bob, for that matter) from lying about her age. If Bob were a computer
program that blindly executed the protocol, Alice could learn his age (is the age of a
computer program the length of time since it was written or the length of time since
it started running?) by repeatedly executing the protocol. Alice might give her age as
60. After learning that she is older, she could execute the protocol again with her age
as 30. After learning that Bob is older, she could execute the protocol again with her
age as 45, and so on, until Alice discovers Bob's age to any degree of accuracy she
wishes.

Assuming that the participants don't actively cheat, it is easy to extend this pro­
tocol to multiple participants. Any number of people can find out the order of their
ages by a sequence of honest applications of the protocol; and no participant can
learn the age of another.

Protocol #3
Alice likes to do kinky things with teddy bears. Bob has erotic fantasies about

marble tables. Both are pretty embarrassed by their particular fetish, but would love
to find a mate who shared in their ... um ... lifestyle.

Here at the Secure Multiparty Computation Dating Service, we've designed a pro­
tocol for people like them. We've numbered an astonishing list of fetishes, from
"aardvarks" to "zoot suits." Discreetly separated by a modem link, Alice and Bob
can participate in a secure multiparty protocol. Together, they can determine
whether they share the same fetish. If they do, they might look forward to a lifetime
of bliss together. If they don't, they can part company secure in the knowledge that
their particular fetish remains confidential. No one, not even the Secure Multiparty
Computation Dating Service, will ever know.

Here's how it works:

(1) Using a one-way function, Alice hashes her fetish into a seven-digit string.

(2) Alice uses the seven-digit string as a telephone number, calls the number,

~-s;~ ______ C_H_A_P_T_E_R_6 __ E_s_o_te_r_ic_P_ro_t_o_c_o_ls ________________ _

and leaves a message for Bob. If no one answers or the number is not in ser­
vice, Alice applies a one-way function to the telephone number until she
finds someone who can play along with the protocol.

(3) Alice tells Bob how many times she had to apply the one-way hash func­
tion to her fetish.

(4) Bob hashes his fetish the same number of times that Alice did. He also uses
the seven-digit string as a telephone number, and asks the person at the
other end whether there were any messages for him.

Note that Bob has a chosen-plaintext attack. He can hash common fetishes and
call the resulting telephone numbers, looking for messages for him. This protocol
only really works if there are enough possible plaintext messages for this to be
impractical.

There's also a mathematical protocol, one similar to Protocol #2. Alice knows a,
Bob knows b, and together they will determine whether a = b, such that Bob does
not learn anything additional about a and Alice does not learn anything additional
about b. Details are in Section 23.14.

Protocol #4
This is another problem for secure multiparty computation [1373]: A council of

seven meets regularly to cast secret ballots on certain issues. (All right, they rule the
world-don't tell anyone I told you.) All council members can vote yes or no. In
addition, two parties have the option of casting "super votes": S-yes and S-no. They
do not have to cast super votes; they can cast regular votes if they prefer. If no one
casts any super votes, then the majority of votes decides the issue. In the case of a
single or two equivalent super votes, all regular votes are ignored. In the case of two
contradicting super votes, the majority of regular votes decides. We want a protocol
that securely performs this style of voting.

Two examples should illustrate the voting process. Assume there are five regular
voters, N 1 through N 5, and two super voters: S1 and S2 • Here's the vote on issue #1:

S1
S-yes

S1
no

Nz
no

N,
yes

Ns
yes

In this instance the only vote that matters is Si's, and the result is "yes."
Here is the vote on issue #2:

S1
S-yes

S1
S-no

Nz
no

N,
yes

Ns
yes

Here the two super votes cancel and the majority of regular "no" votes decide
the issue.

If it isn't important to hide the knowledge of whether the super vote or the regu­
lar vote was the deciding vote, this is an easy application of a secure voting protocol.
Hiding that knowledge requires a more complicated secure multiparty computation
protocol.

________________ 6_.3 __ A_n_o_n_y_m_o_u_s_M_e_ss_a_g_e_B_r_o_a_d_c_a_s_t _____ z:-~

This kind of voting could occur in real life. It could be part of a corporation's orga­
nizational structure, where certain people have more power than others, or it could
be part of the United Nations's procedures, where certain nations have more power
than others.

Multiparty Unconditionally Secure Protocols

This is just a simple case of a general theorem: Any function of n inputs can be
computed by a set of n players in a way that will let all learn the value of the func­
tion, but any set of less than n/2 players will not get any additional information that
does not follow from their own inputs and the value of the output information. For
details, sec [136,334,1288,621].

Secure Circuit Evaluation

Alice has her input, a. Bob has his input, b. Together they wish to compute some
general function, f(a,b), such that Alice learns nothing about Bob's input and Bob
learns nothing about Alice's input. The general problem of secure multiparty com­
putation is also called secure circuit evaluation. Here, Alice and Bob can create an
arbitrary Boolean circuit. This circuit accepts inputs from Alice and from Bob and
produces an output. Secure circuit evaluation is a protocol that accomplishes three
things:

1. Alice can enter her input without Bob's being able to learn it.

2. Bob can enter his input without Alice's being able to learn it.

3. Both Alice and Bob can calculate the output, with both parties being sure
the output is correct and that neither party has tampered with it.

Details on secure circuit evaluation can be found in [831].

6.3 ANONYMOUS MESSAGE BROADCAST

You can't go out to dinner with a bunch of cryptographers without raising a ruckus.
In [321], David Chaum introduced the Dining Cryptographers Problem:

Three cryptographers are sitting down to dinner at their favorite three-star restau­
rant. Their waiter informs them that arrangements have been made with the
maitre d'hotel for the bill to be paid anonymously. One of the cryptographers
might be paying for the dinner, or it might have been the NSA. The three cryp­
tographers respect each other's right to make an anonymous payment, but they
wonder if the NSA is paying.

How do the cryptographers, named Alice, Bob, and Carol, determine if one of them
is paying for dinner, while at the same time preserving the anonymity of the payer?

Chaum goes on to solve the problem:

Each cryptographer flips an unbiased coin behind his menu, between him and the
cryptographer to his right, so that only the two of them can see the outcome. Each

~""'s;~------C_H_A_P_T_ER_6 __ E_s_o_te_r_i_c_P_r_o_to_c_o_l_s _________________ _

cryptographer then states aloud whether the two coins he can see-the one he
flipped and the one his left-hand neighbor flipped-fell on the same side or on dif­
ferent sides. If one of the cryptographers is the payer, he states the opposite of
what he sees. An odd number of differences uttered at the table indicates that a
cryptographer is paying; an even number of differences indicates that NSA is pay­
ing (assuming that the dinner was paid for only once). Yet, if a cryptographer is
paying, neither of the other two learns anything from the utterances about which
cryptographer it is.

To see that this works, imagine Alice trying to figure out which other cryptogra­
pher paid for dinner (assuming that neither she nor the NSA paid). If she sees two
different coins, then either both of the other cryptographers, Bob and Carol, said,
"same" or both said, "different." (Remember, an odd number of cryptographers say­
ing "different" indicates that one of them paid.) If both said, "different," then the
payer is the cryptographer closest to the coin that is the same as the hidden coin (the
one that Bob and Carol flipped). If both said, "same," then the payer is the cryptog­
rapher closest to the coin that is different from the hidden coin. However, if Alice
sees two coins that are the same, then either Bob said, "same" and Carol said, "dif­
ferent," or Bob said, "different" and Carol said, "same." If the hidden coin is the
same as the two coins she sees, then the cryptographer who said, "different" is the
payer. If the hidden coin is different from the two coins she sees, then the cryptog­
rapher who said, "same" is the payer. In all of these cases, Alice needs to know the
result of the coin flipped between Bob and Carol to determine which of them paid.

This protocol can be generalized to any number of cryptographers; they all sit in a
ring and flip coins among them. Even two cryptographers can perform the protocol. Of
course, they know who paid, but someone watching the protocol could tell only if one
of the two paid or if the NSA paid; they could not tell which cryptographer paid.

The applications of this protocol go far beyond sitting around the dinner table.
This is an example of unconditional sender and recipient untraceability. A group of
users on a network can use this protocol to send anonymous messages.

(1) The users arrange themselves into a circle.

(2) At regular intervals, adjacent pairs of users flip coins between them, using
some fair coin flip protocol secure from eavesdroppers.

(3) After every flip, each user announces either "same" or "different."

If Alice wishes to broadcast a message, she simply starts inverting her statement
in those rounds corresponding to a 1 in the binary representation of her message. For
example, if her message were "1001," she would invert her statement, tell the truth,
tell the truth, and then invert her statement. Assuming the result of her flips were
11 different," 11 same," 11 same," 11 same," she would say "same," "same," "same,"
11 different."

If Alice notices that the overall outcome of the protocol doesn't match the mes­
sage she is trying to send, she knows that someone else is trying to send a message
at the same time. She then stops sending the message and waits some random num-

_________________ 6_.4 __ D_i_g1_·t_al_C_as_h ________ 7 __ ~

her of rounds before trying again. The exact parameters have to be worked out based
on the amount of message traffic on this network, but the idea should be clear.

To make things even more interesting, these messages can be encrypted in
another user's public keys. Then, when everyone receives the message (a real imple­
mentation of this should add some kind of standard message-beginning and
message-ending strings), only the intended recipient can decrypt and read it. No one
else knows who sent it. No one else knows who could read it. Traffic analysis,
which traces and compiles patterns of people's communications even though the
messages themselves may be encrypted, is useless.

An alternative to flipping coins between adjacent parties would be for them to
keep a common file of random bits. Maybe they could keep them on a CD-ROM, or
one member of the pair could generate a pile of them and send them to the other
party (encrypted, of course). Alternatively, they could agree on a cryptographically
secure pseudo-random-number generator between them, and they could each gener­
ate the same string of pseudo-random bits for the protocol.

One problem with this protocol is that while a malicious participant cannot read
any messages, he can disrupt the system unobserved by lying in step (3). There is a
modification to the previous protocol that detects disruption [1578,1242]; the prob­
lem is called "The Dining Cryptographers in the Disco."

6.4 DIGITAL CASH

Cash is a problem. It's annoying to carry, it spreads germs, and people can steal it
from you. Checks and credit cards have reduced the amount of physical cash flow­
ing through society, but the complete elimination of cash is virtually impossible.
It'll never happen; drug dealers and politicians would never stand for it. Checks and
credit cards have an audit trail; you can't hide to whom you gave money.

On the other hand, checks and credit cards allow people to invade your privacy to
a degree never before imagined. You might never stand for the police following you
your entire life, but the police can watch your financial transactions. They can see
where you buy your gas, where you buy your food, who you call on the telephone­
all without leaving their computer terminals. People need a way to protect their
anonymity in order to protect their privacy.

Happily, there is a complicated protocol that allows for authenticated but untrace­
able messages. Lobbyist Alice can transfer digital cash to Congresscritter Bob so that
newspaper reporter Eve does not know Alice's identity. Bob can then deposit that
electronic money into his bank account, even though the bank has no idea who Alice
is. But if Alice tries to buy cocaine with the same piece of digital cash she used to
bribe Bob, she will be detected by the bank. And if Bob tries to deposit the same piece
of digital cash into two different accounts, he will be detected-but Alice will remain
anonymous. Sometimes this is called anonymous digital cash to differentiate it from
digital money with an audit trail, such as credit cards.

A great social need exists for this kind of thing. With the growing use of the Inter­
net for commercial transactions, there is more call for network-based privacy and

~-:s. _______ C_H_A_P_T_E_R_6 __ E_s_o_te_r_ic_P_ro_t_o_c_o_ls ________________ _

anonymity in business. (There are good reasons people are reluctant to send their
credit card numbers over the Internet.) On the other hand, banks and governments
seem unwilling to give up the control that the current banking system's audit trail
provides. They'll have to, though. All it will take for digital cash to catch on is for
some trustworthy institution to be willing to convert the digits to real money.

Digital cash protocols are very complex. We'll build up to one, a step at a time. For
more formal details, read [318,339,325,335,340]. Realize that this is just one digital
cash protocol; there are others.

Protocol #1
The first few protocols are physical analogies of cryptographic protocols. This first

protocol is a simplified physical protocol for anonymous money orders:

(1) Alice prepares 100 anonymous money orders for $ 1000 each.

(2) Alice puts one each, and a piece of carbon paper, into 100 different
envelopes. She gives them all to the bank.

(3) The bank opens 99 envelopes and confirms that each is a money order for
$1000.

(4) The bank signs the one remaining unopened envelope. The signature goes
through the carbon paper to the money order. The bank hands the unopened
envelope back to Alice, and deducts $ 1000 from her account.

(5) Alice opens the envelope and spends the money order with a merchant.

(6) The merchant checks for the bank's signature to make sure the money
order is legitimate.

(7) The merchant takes the money order to the bank.

(8) The bank verifies its signature and credits $1000 to the merchant's account.

This protocol works. The bank never sees the money order it signed, so when the
merchant brings it to the bank, the bank has no idea that it was Alice's. The bank is
convinced that it is valid, though, because of the signature. The bank is confident
that the unopened money order is for $1000 (and not for $100,000 or $100,000,000)
because of the cut-and-choose protocol (see Section 5.1). It verifies the other 99
envelopes, so Alice has only a 1 percent chance of cheating the bank. Of course, the
bank will make the penalty for cheating great enough so that it isn't worth that
chance. If the bank refuses to sign the last check (if Alice is caught cheating) with­
out penalizing Alice, she will continue to try until she gets lucky. Prison terms are
a better deterrent.

Protocol #2
The previous protocol prevents Alice from writing a money order for more than

she claims to, but it doesn't prevent Alice from photocopying the money order and
spending it twice. This is called the double spending problem; to solve it, we need a
complication:

_________________ 6_.4 __ D_ig_i_ta_l_C_a_s_h ________ z:---~

(1) Alice prepares 100 anonymous money orders for $ 1000 each. On each
money order she includes a different random uniqueness string, one long
enough to make the chance of another person also using it negligible.

(2) Alice puts one each, and a piece of carbon paper, into 100 different
envelopes. She gives them all to the bank.

(3) The bank opens 99 envelopes and confirms that each is a money order for
$1000.

(4) The bank signs the one remaining unopened envelope. The signature goes
through the carbon paper to the money order. The bank hands the unopened
envelope back to Alice and deducts $1000 from her account.

(5) Alice opens the envelope and spends the money order with a merchant.

(6) The merchant checks for the bank's signature to make sure the money
order is legitimate.

(7) The merchant takes the money order to the bank.

(8) The bank verifies its signature and checks its database to make sure a
money order with the same uniqueness string has not been previously
deposited. If it hasn't, the bank credits $1000 to the merchant's account.
The bank records the uniqueness string in a database.

(9) If it has been previously deposited, the bank doesn't accept the money order.

Now, if Alice tries to spend a photocopy of the money order, or if the merchant
tries to deposit a photocopy of the money order, the bank will know about it.

Protocol #3
The previous protocol protects the bank from cheaters, but it doesn't identify

them. The bank doesn't know if the person who bought the money order (the bank
has no idea it's Alice) tried to cheat the merchant or if the merchant tried to cheat
the bank. This protocol corrects that:

(1) Alice prepares 100 anonymous money orders for $1000 each. On each of
the money orders she includes a different random uniqueness string, one
long enough to make the chance of another person also using it negligible.

(2) Alice puts one each, and a piece of carbon paper, into 100 different
envelopes. She gives them all to the bank.

(3) The bank opens 99 envelopes and confirms that each is a money order for
$1000 and that all the random strings are different.

(4) The bank signs the one remaining unopened envelope. The signature goes
through the carbon paper to the money order. The bank hands the unopened
envelope back to Alice and deducts $1000 from her account.

(5) Alice opens the envelope and spends the money order with a merchant.

(6) The merchant checks for the bank's signature to make sure the money
order is legitimate.

~""'s;,,--------C_H_A_PT_E_R_6 __ E_s_o_te_r_ic_P_r_o_to_c_o_l_s ________________ _

(7) The merchant asks Alice to write a random identity string on the money
order.

(8) Alice complies.

(9) The merchant takes the money order to the bank.

(10) The bank verifies the signature and checks its database to make sure a
money order with the same uniqueness string has not been previously
deposited. If it hasn't, the bank credits $ 1000 to the merchant's account. The
bank records the uniqueness string and the identity string in a database.

(11) If the uniqueness string is in the database, the bank refuses to accept the
money order. Then, it compares the identity string on the money order
with the one stored in the database. If it is the same, the bank knows that
the merchant photocopied the money order. If it is different, the bank
knows that the person who bought the money order photocopied it.

This protocol assumes that the merchant cannot change the identity string once
Alice writes it on the money order. The money order might have a series of little
squares, which the merchant would require Alice to fill in with either Xs or Os. The
money order might be made out of paper that tears if erased.

Since the interaction between the merchant and the bank takes place after Alice
spends the money, the merchant could be stuck with a bad money order. Practical
implementations of this protocol might require Alice to wait near the cash register
during the merchant-bank interaction, much the same way as credit-card purchases
are handled today.

Alice could also frame the merchant. She could spend a copy of the money order
a second time, giving the same identity string in step (7). Unless the merchant keeps
a database of money orders it already received, he would be fooled. The next proto­
col eliminates that problem.

Protocol #4
If it turns out that the person who bought the money order tried to cheat the mer­

chant, the bank would want to know who that person was. To do that requires mov­
ing away from a physical analogy and into the world of cryptography.

The technique of secret splitting can be used to hide Alice's name in the digital
money order.

(1) Alice prepares n anonymous money orders for a given amount.
Each of the money orders contains a different random uniqueness string,

X, one long enough to make the chance of two being identical negligible.
On each money order, there are also n pairs of identity bit strings, I 1,

I2, ••• , I11• (Yes, that's n different pairs on each check.) Each of these pairs is
generated as follows: Alice creates a string that gives her name, address, and
any other piece of identifying information that the bank wants to see. Then,
she splits it into two pieces using the secret splitting protocol (see Section
3.6). Then, she commits to each piece using a bit-commitment protocol.

_________________ 6_.4_D_ig_it_a_l_C_a_s_h _______ 7~~

For example, {,7 consists of two parts: I_,7L and {i 7R. Each part is a bit­
committed packet that Alice can be asked to open and whose proper open­
ing can be instantly verified. Any pair (e.g., I37L and I37 R' but not 1371 and 138),

reveals Alice's identity.
Each of the money orders looks like this:

Amount
Uniqueness String: X
Identity Strings: ! 1 ,Ii

I2 ~ (I21 ,

(2) Alice blinds all n money orders, using a blind signature protocol. She gives
them all to the bank.

(3) The bank asks Alice to unblind n - 1 of the money orders at random and
confirms that they are all well formed. The bank checks the amount, the
uniqueness string, and asks Alice to reveal all of the identity strings.

(4) If the bank is satisfied that Alice did not make any attempts to cheat, it
signs the one remaining blinded money order. The bank hands the blinded
money order back to Alice and deducts the amount from her account.

(5) Alice unblinds the money order and spends it with a merchant.
(6) The merchant verifies the bank's signature to make sure the money order

is legitimate.

(7) The merchant asks Alice to randomly reveal either the left half or the right
half of each identity string on the money order. In effect, the merchant
gives Alice a random n-bit selector string, b1, b2, ••• , bn. Alice opens either
the left or right half of I;, depending on whether bi is a O or a 1.

(8) Alice complies.

(9) The merchant takes the money order to the bank.
(10) The bank verifies the signature and checks its database to make sure a

money order with the same uniqueness string has not been previously
deposited. If it hasn't, the bank credits the amount to the merchant's
account. The bank records the uniqueness string and all of the identity
information in a database.

(11) If the uniqueness string is in the database, the bank refuses to accept the
money order. Then, it compares the identity string on the money order
with the one stored in the database. If it is the same, the bank knows that
the merchant copied the money order. If it is different, the bank knows
that the person who bought the money order photocopied it. Since the sec­
ond merchant who accepted the money order handed Alice a different
selector string than did the first merchant, the bank finds a bit position
where one merchant had Alice open the left half and the other merchant
had Alice open the right half. The bank XORs the two halves together to
reveal Alice's identity.

~~s ______ C_H_A_P_T_ER_6_E_so_t_e_n_·c_P_r_o_t_o_c_o_ls _______________ _

This is quite an amazing protocol, so let's look at it from various angles.
Can Alice cheat? Her digital money order is nothing more than a string of bits, so

she can copy it. Spending it the first time won't be a problem; she'll just complete
the protocol and everything will go smoothly. The merchant will give her a random
n-bit selector string in step (7) and Alice will open either the left half or right half of
each l; in step (8). In step (10), the bank will record all of this data, as well as the
money order's uniqueness string.

When she tries to use the same digital money order a second time, the merchant
(either the same merchant or a different merchant) will give her a different random
selector string in step (7). Alice must comply in step (8); not doing so will immedi­
ately alert the merchant that something is suspicious. Now, when the merchant
brings the money order to the bank in step (10), the bank would immediately notice
that a money order with the same uniqueness string was already deposited. The
bank then compares the opened halves of the identity strings. The odds that the two
random selector strings are the same is 1 in 2n; it isn't likely to happen before the
next ice age. Now, the bank finds a pair with one half opened the first time and the
other half opened the second time. It XORs the two halves together, and out pops
Alice's name. The bank knows who tried to spend the money order twice.

Note that this protocol doesn't keep Alice from trying to cheat; it detects her
cheating with almost certainty. Alice can't prevent her identity from being revealed
if she cheats. She can't change either the uniqueness string or any of the identity
strings, because then the bank's signature will no longer be valid. The merchant will
immediately notice that in step (6).

Alice could try to sneak a bad money order past the bank, one on which the iden­
tity strings don't reveal her name; or better yet, one whose identity strings reveal
someone else's name. The odds of her getting this ruse past the bank in step (3) are
1 inn. These aren't impossible odds, but if you make the penalty severe enough,
Alice won't try it. Or, you could increase the number of redundant money orders
that Alice makes in step (1).

Can the merchant cheat? His chances are even worse. He can't deposit the money
order twice; the bank will notice the repeated use of the selector string. He can't
fake blaming Alice; only she can open any of the identity strings.

Even collusion between Alice and the merchant can't cheat the bank. As long as
the bank signs the money order with the uniqueness string, the bank is assured of
only having to make good on the money order once.

What about the bank? Can it figure out that the money order it accepted from the
merchant was the one it signed for Alice? Alice is protected by the blind signature
protocol in steps (2) through (5). The bank cannot make the connection, even if it
keeps complete records of every transaction. Even more strongly, there is no way for
the bank and the merchant to get together to figure out who Alice is. Alice can walk
in the store and, completely anonymously, make her purchase.

Eve can cheat. If she can eavesdrop on the communication between Alice and the
merchant, and if she can get to the bank before the merchant does, she can deposit
the digital cash first. The bank will accept it and, even worse, when the merchant
tries to deposit the cash he will be identified as a cheater. If Eve steals and spends

__________________ 6_.4 __ D_i_g1_·t_al_C_as_h ________ 7 __ ~

Alice's cash before Alice can, then Alice will be identified as a cheater. There's no
way to prevent this; it is a direct result of the anonynimity of the cash. Both Alice
and the merchant have to protect their bits as they would paper money.

This protocol lies somewhere between an arbitrated protocol and a self-enforcing
protocol. Both Alice and the merchant trust the bank to make good on the money
orders, but Alice does not have to trust the bank with knowledge of her purchases.

Digital Cash and the Perfect Crime

Digital cash has its dark side, too. Sometimes people don't want so much privacy.
Watch Alice commit the perfect crime [1575]:

(1) Alice kidnaps a baby.

(2) Alice prepares 10,000 anonymous money orders for $1000 (or as many as
she wants for whatever denomination she wants).

(3) Alice blinds all 10,000 money orders, using a blind signature protocol. She
sends them to the authorities with the threat to kill the baby unless the
following instructions are met:

(a) Have a bank sign all 10,000 money orders.

(b) Publish the results in a newspaper.

(4) The authorities comply.

(5) Alice buys a newspaper, unblinds the money orders, and starts spending
them. There is no way for the authorities to trace the money orders to her.

(6) Alice frees the baby.

Note that this situation is much worse than any involving physical tokens-cash,
for example. Without physical contact, the police have less opportunity to appre­
hend the kidnapper.

In general, though, digital cash isn't a good deal for criminals. The problem is that
the anonymity only works one way: The spender is anonymous, but the merchant
is not. Moreover, the merchant cannot hide the fact that he received money. Digital
cash will make it easy for the government to determine how much money you
made, but impossible to determine what you spent it on.

Practical Digital Cash

A Dutch company, DigiCash, owns most of the digital cash patents and has
implemented digital cash protocols in working products. Anyone interested should
contact DigiCash BV, Kruislaan 419, 1098 VA Amsterdam, Netherlands.

Other Digital Cash Protocols

There are other digital cash protocols; see [707,1554,734,1633,973]. Some of
them involve some pretty complicated mathematics. Generally, the various digi­
tal cash protocols can be divided into various categories. On-line systems require
the merchant to communicate with the bank at every sale, much like today's

~-:s. ______ C_H_A_P_T_ER_6 __ E_so_t_e_r_ic_P_r_o_t_o_c_o_ls _______________ _

credit-card protocols. If there is a problem, the bank doesn't accept the cash and
Alice cannot cheat.

Off-line systems, like Protocol #4, require no communication between the mer­
chant and the bank until after the transaction between the merchant and the cus­
tomer. These systems do not prevent Alice from cheating, but instead detect her
cheating. Protocol #4 detected her cheating by making Alice's identity known if she
tried to cheat. Alice knows that this will happen, so she doesn't cheat.

Another way is to create a special smart card (see Section 24.13) containing a tam­
perproof chip called an observer [332,341,387]. The observer chip keeps a mini data­
base of all the pieces of digital cash spent by that smart card. If Alice attempts to
copy some digital cash and spend it twice, the imbedded observer chip would detect
the attempt and would not allow the transaction. Since the observer chip is tamper­
proof, Alice cannot erase the mini-database without permanently damaging the
smart card. The cash can wend its way through the economy; when it is finally
deposited, the bank can examine the cash and determine who, if anyone, cheated.

Digital cash protocols can also be divided along another line. Electronic coins
have a fixed value; people using this system will need several coins in different
denominations. Electronic checks can be used for any amount up to a maximum
value and then returned for a refund of the unspent portion.

Two excellent and completely different off-line electronic coin protocols are
[225,226,227] and [563,564,565]. A system called NetCash, with weaker anonymity
properties, has also been proposed [1048,1049]. Another new system is [289].

In [1211], Tatsuaki Okamoto and Kazuo Ohta list six properties of an ideal digital
cash system:

1. Independence. The security of the digital cash is not dependent on any
physical location. The cash can be transferred through computer networks.

2. Security. The digital cash cannot be copied and reused.

3. Privacy (Untraceability). The privacy of the user is protected; no one can
trace the relationship between the user and his purchases.

4. Off-line Payment. When a user pays for a purchase with electronic cash,
the protocol between the user and the merchant is executed off-line. That
is, the shop does not need to be linked to a host to process the user's
payment.

5. Transferability. The digital cash can be transferred to other users.

6. Divisibility. A piece of digital cash in a given amount can be subdivided
into smaller pieces of cash in smaller amounts. (Of course, everything has
to total up properly in the end.)

The protocols previously discussed satisfy properties 1, 2, 3, and 4, but not 5 and
6. Some on-line digital cash systems satisfy all properties except 4 [318,413,
1243]. The first off-line digital cash system that satisfies properties 1, 2, 3, and 4,
similar to the one just discussed, was proposed in [339]. Okamoto and Ohta pro­
posed a system that satisfies properties 1 through 5 [1209]; they also proposed a sys-

__________________ 6_._4_D_ig_it_a_l_C_a_s_h ________ 7----=--~

tern that satisfies properties 1 through 6 as well, but the data requirement for a sin­
gle purchase is approximately 200 megabytes. Another off-line divisible coin system
is described in [522].

The digital cash scheme proposed in [1211], by the same authors, satisfies proper­
ties 1 through 6, without the enormous data requirements. The total data transfer for
a payment is about 20 kilobytes, and the protocol can be completed in several sec­
onds. The authors consider this the first ideal untraceable electronic cash system.

Anonymous Credit Cards
This protocol [988] uses several different banks to protect the identity of the cus­

tomer. Each customer has an account at two different banks. The first bank knows
the person's identity and is willing to extend him credit. The second bank knows
the customer only under a pseudonym (similar to a numbered Swiss bank account).

The customer can withdraw funds from the second bank by proving that the
account is his. However, the bank does not know the person and is unwilling to
extend him credit. The first bank knows the customer and transfers funds to the sec­
ond bank-without knowing the pseudonym. The customer then spends these
funds anonymously. At the end of the month, the second bank gives the first bank a
bill, which it trusts the bank to pay. The first bank passes the bill on to the cus­
tomer, which it trusts the customer to pay. When the customer pays, the first bank
transfers additional funds to the second bank. All transactions are handled through
an intermediary, which acts sort of like an electronic Federal Reserve: settling
accounts among banks, logging messages, and creating an audit trail.

Exchanges between the customer, merchant, and various banks are outlined in
[988]. Unless everyone colludes against the customer, his anonymity is assured.
However, this is not digital cash; it is easy for the bank to cheat. The protocol allows
customers to keep the advantages of credit cards without giving up their privacy.

PART II

-----------------------z:-----~

CHAPTER 7

Key Length

7 .1 SYMMETRIC KEY LENGTH

The security of a symmetric cryptosystem is a function of two things: the strength
of the algorithm and the length of the key. The former is more important, but the
latter is easier to demonstrate.

Assume that the strength of the algorithm is perfect. This is extremely difficult to
achieve in practice, but easy enough for this example. By perfect, I mean that there
is no better way to break the cryptosystem other than trying every possible key in a
brute-force attack.

To launch this attack, a cryptanalyst needs a small amount of ciphertext and the
corresponding plaintext; a brute-force attack is a known-plaintext attack. For a
block cipher, the cryptanalyst would need a block of ciphertext and corresponding
plaintext: generally 64 bits. Getting this plaintext and ciphertext is easier than you
might imagine. A cryptanalyst might get a copy of a plaintext message by some
means and intercept the corresponding ciphertext. He may know something about
the format of the ciphertext: For example, it is a WordPerfect file, it has a standard
electronic-mail message header, it is a UNIX directory file, it is a TIFF image, or it
is a standard record in a customer database. All of these formats have some prede­
fined bytes. The cryptanalyst doesn't need much plaintext to launch this attack.

Calculating the complexity of a brute-force attack is easy. If the key is 8 bits long,
there are 28, or 256, possible keys. Therefore, it will take 256 attempts to find the
correct key, with a 50 percent chance of finding the key after half of the attempts. If
the key is 56 bits long, then there are 256 possible keys. Assuming a supercomputer
can try a million keys a second, it will take 2285 years to find the correct key. If the
key is 64 bits long, then it will take the same supercomputer about 585,000 years to
find the correct key among the 264 possible keys. If the key is 128 bits long, it will
take 1025 years. The universe is only 1010 years old, so 1025 years is a long time. With
a 2048-bit key, a million million-attempts-per-second computers working in paral-

~-:s _______ C_H_A_P_T_ER_7_K_e_y_L_en_g_t_h _______________ _

lel will spend 10597 years finding the key. By that time the universe will have long
collapsed or expanded into nothingness.

Before you rush to invent a cryptosystem with an 8-kilobyte key, remember the
other side to the strength question: The algorithm must be so secure that there is no
better way to break it than with a brute-force attack. This is not as easy as it might
seem. Cryptography is a subtle art. Cryptosystems that look perfect are often
extremely weak. Strong cryptosystems, with a couple of minor changes, can become
weak. The warning to the amateur cryptographer is to have a healthy, almost para­
noid, suspicion of any new algorithm. It is best to trust algorithms that professional
cryptographers have scrutinized for years without cracking them and to be suspi­
cious of algorithm designers' grandiose claims of security.

Recall an important point from Section 1.1: The security of a cryptosystem
should rest in the key, not in the details of the algorithm. Assume that any crypt­
analyst has access to all the details of your algorithm. Assume he has access to as
much ciphertext as he wants and can mount an intensive ciphertext-only attack.
Assume that he can mount a plaintext attack with as much data as he needs. Even
assume that he can mount a chosen-plaintext attack. If your cryptosystem can
remain secure, even in the face of all that knowledge, then you've got something.

That warning aside, there is still plenty of room in cryptography to maneuver. In
reality, this kind of security isn't really necessary in many situations. Most adver­
saries don't have the knowledge and computing resources of a major government,
and even the ones who do probably aren't that interested in breaking your cryp­
tosystem. If you're plotting to overthrow a major government, stick with the tried
and true algorithms in the back of the book. The rest of you, have fun.

Time and Cost Estimates for Brute-Force Attack
Remember that a brute-force attack is typically a known-plaintext attack; it

requires a small amount of ciphertext and corresponding plaintext. If you assume
that a brute-force attack is the most efficient attack possible against an algorithm­
a big assumption-then the key must be long enough to make the attack infeasible.
How long is that?

Two parameters determine the speed of a brute-force attack: the number of keys
to be tested and the speed of each test. Most symmetric algorithms accept any fixed­
length bit pattern as the key. DES has a 56-bit key; it has 256 possible keys. Some
algorithms discussed in this book have a 64-bit key; these have 264 possible keys.
Others have a 128-bit key.

The speed at which each possible key can be tested is also a factor, but a less
important one. For the purposes of this analysis, I will assume that each different
algorithm can be tested in the same amount of time. The reality may be that one
algorithm may be tested two, three, or even ten times faster than another. But since
we are looking for key lengths that are millions of times more difficult to crack than
would be feasible, small differences due to test speed are irrelevant.

Most of the debate in the cryptologic community about the efficiency of brute­
force attacks has centered on the DES algorithm. In 1977, Whitfield Diffie and Mar­
tin Hellman [497] postulated the existence of a special-purpose DES-cracking

_________________ 7_.1 __ S_y_m_m_e_tr_i_c_K_e_y_L_e_n_g_t_h ______ 7 __ ~

machine. This machine consisted of a million chips, each capable of testing a mil­
lion keys per second. Such a machine could test 256 keys in 20 hours. If built to
attack an algorithm with a 64-bit key, it could test all 264 keys in 214 days.

A brute-force attack is tailor-made for parallel processors. Each processor can test
a subset of the keyspace. The processors do not have to communicate among them­
selves; the only communication required at all is a single message signifying suc­
cess. There are no shared memory requirements. It is easy to design a machine with
a million parallel processors, each working independent of the others.

More recently, Michael Wiener decided to design a brute-force cracking machine
[1597, 1598]. (He designed the machine for DES, but the analysis holds for most any
algorithm.) He designed specialized chips, boards, and racks. He estimated prices.
And he discovered that for $1 million, someone could build a machine that could
crack a 56-bit DES key in an average of 3.5 hours (results guaranteed in 7 hours). And
that the price/speed ratio is linear. Table 7.1 generalizes these numbers to a variety
of key lengths. Remember Moore's Law: Computing power doubles approximately
every 18 months. This means costs go down a factor of 10 every five years; what cost
$1 million to build in 1995 will cost a mere $100,000 in the year 2000. Pipelined
computers might do even better [724].

For 56-bit keys, these numbers are within the budgets of most large companies
and many criminal organizations. The military budgets of most industrialized
nations can afford to break 64-bit keys. Breaking an 80-bit key is still beyond the
realm of possibility, but if current trends continue that will change in only 30 years.

Of course, it is ludicrous to estimate computing power 35 years in the future.
Breakthroughs in some science-fiction technology could make these numbers look
like a joke. Conversely, physical limitations unknown at the present time could
make them unrealistically optimistic. In cryptography it is wise to be pessimistic.
Fielding an algorithm with an 80-bit key seems extremely short-sighted. Insist on at
least 112-bit keys.

Table 7.1
Average Time Estimates for a Hardware Brute-Force Attack in 1995

LENGTH OF KEY IN BITS

Cost 40 56 64 80 112 128

$100 K 2 seconds 35 hours 1 year 70,000 years 1014 years 1019 years
$1 M .2 seconds 3.5 hours 37 days 7000 years 1013 years 1018 years
$10M .02 seconds 21 minutes 4 days 700 years 1012 years 1017 years
$100M 2 milliseconds 2 minutes 9 hours 70 years 1011 years 1016 years
$1 G .2 milliseconds 13 seconds 1 hour 7 years 1010 years 1010 years
$10 G .02 milliseconds 1 second 5.4 minutes 245 days 109 years 1014 years
$100G 2 microseconds .1 second 32 seconds 24 days 108 years 1013 years
$1 T .2 microseconds .01 second 3 seconds 2.4 days 107 years 1012 years
$10 T .02 microseconds 1 millisecond .3 second 6 hours 106 years 1011 years

~""':s;~-------C_H_A_P_T_ER_7_K_ey_L_en_g_t_h _________________ _

If an attacker wants to break a key badly enough, all he has to do is spend money.
Consequently, it seems prudent to try to estimate the minimum "value" of a key:
How much value can be trusted to a single key before it makes economic sense to
try to break? To give an extreme example, if an encrypted message is worth $1.39,
then it wouldn't make much financial sense to set a $IO-million cracker to the task
of recovering the key. On the other hand, if the plaintext message is worth $100 mil­
lion, then decrypting that single message would justify the cost of building the
cracker. Also, the value of some messages decreases rapidly with time.

Software Crackers
Without special-purpose hardware and massively parallel machines, brute-force

attacks are significantly harder. A software attack is about a thousand times slower
than a hardware attack.

The real threat of a software-based brute-force attack is not that it is certain, but
that it is "free." It costs nothing to set up a microcomputer to test possible keys
whenever it is idle. If it finds the correct key-great. If it doesn't, then nothing is
lost. It costs nothing to set up an entire microcomputer network to do that. A recent
experiment with DES used the collective idle time of 40 workstations to test 234

keys in a single day [603]. At this speed, it will take four million days to test all keys,
but if enough people try attacks like this, then someone somewhere will get lucky.
As was said in [603]:

The crux of the software threat is sheer bad luck. Imagine a university computer
network of 512 workstations, networked together. On some campuses this would
be a medium-sized network. They could even be spread around the world, coordi­
nating their activity through electronic mail. Assume each workstation is capable
of running [the algorithm] at a rate of 15,000 encryptions per second Allow-
ing for the overhead of testing and changing keys, this comes down to ... 8192
tests per second per machine. To exhaust [a 56-bit] keyspace with this setup
would take 545 years (assuming the network was dedicated to the task twenty­
four hours per day). Notice, however, that the same calculations give our hypo­
thetical student hackers one chance in 200,000 of cracking a key in one day. Over
a long weekend their odds increase to one chance in sixty-six thousand. The faster
their hardware, or the more machines involved, the better their chance becomes.
These are not good odds for earning a living from horse racing, but they're not the
stuff of good press releases either. They are much better odds than the Govern­
ment gives on its lotteries, for instance. "One-in-a-million"? "Couldn't happen
again in a thousand years"? It is no longer possible to say such things honestly. Is
this an acceptable ongoing risk?

Using an algorithm with a 64-bit key instead of a 56-bit key makes this attack 256
times more difficult. With a 40-bit key, the picture is far more bleak. A network of
400 computers, each capable of performing 32,000 encryptions per second, can com­
plete a brute-force attack against a 40-bit key in a single day. (In 1992, the RC2 and
RC4 algorithms were approved for export with a 40-bit key-see Section 13.8.)

A 128-bit key makes a brute-force attack ridiculous even to contemplate. Indus­
try experts estimate that by 1996 there will be 200 million computers in use world-

_________________ 7_.1_S_y_m_m_e_t_n_·c_K_e_y_L_e_n_g_th ______ z:~~

wide. This estimate includes everything from giant Cray mainframes to subnote­
books. If every one of those computers worked together on this brute-force attack,
and each computer performed a million encryptions per second every second, it
would still take a million times the age of the universe to recover the key.

Neural Networks
Neural nets aren't terribly useful for cryptanalysis, primarily because of the shape

of the solution space. Neural nets work best with problems that have a continuity
of solutions, some better than others. This allows a neural net to learn, proposing
better and better solutions as it does. Breaking an algorithm provides for very little
in the way of learning opportunities: You either recover the key or you don't. (At
least this is true if the algorithm is any good.) Neural nets work well in structured
environments where there is something to learn, but not in the high-entropy, seem­
ingly random world of cryptography.

Viruses
The greatest difficulty in getting millions of computers to work on a brute-force

attack is convincing millions of computer owners to participate. You could ask
politely, but that's time-consuming and they might say no. You could try breaking
into their machines, but that's even more time-consuming and you might get
arrested. You could also use a computer virus to spread the cracking program more
efficiently over as many computers as possible.

This is a particularly insidious idea, first presented in [1593]. The attacker writes
and lets loose a computer virus. This virus doesn't reformat the hard drive or delete
files; it works on a brute-force cryptanalysis problem whenever the computer is idle.
Various studies have shown that microcomputers are idle between 70 percent and 90
percent of the time, so the virus shouldn't have any trouble finding time to work on
its task. If it is otherwise benign, it might even escape notice while it does its work.

Eventually, one machine will stumble on the correct key. At this point there are
two ways of proceeding. First, the virus could spawn a different virus. It wouldn't do
anything but reproduce and delete any copies of the cracking virus it finds but
would contain the information about the correct key. This new virus would simply
propagate through the computer world until it lands on the computer of the person
who wrote the original virus.

A second, sneakier approach would be for the virus to display this message on the
screen:

There is a serious bug in this computer.
Please call 1-800-123-4567 and read the
following 64-bit number to the operator:

xxxx xxxx xxxx xxxx

There is a $100 reward for the first
person to report this bug.

How efficient is this attack? Assume the typical infected computer tries a thou­
sand keys per second. This rate is far less than the computer's maximum potential,

~""'s;~-------C_H_A_P_T_ER_7_K_ey_L_e_n_gt_h _________________ _

because we assume it will be doing other things occasionally. Also assume that the
typical virus infects 10 million machines. This virus can break a 56-bit key in 83
days and a 64-bit key in 58 years. You might have to bribe the antiviral software
makers, but that's your problem. Any increase in computer speeds or the virus infec­
tion rate would, of course, make this attack more efficient.

The Chinese Lottery

The Chinese Lottery is an eclectic, but possible, suggestion for a massively paral­
lel cryptanalysis machine [1278]. Imagine that a brute-force, million-test-per-second
cracking chip was built into every radio and television sold. Each chip is programmed
to test a different set of keys automatically upon receiving a plaintext/ciphertext pair
over the airwaves. Every time the Chinese government wants to break a key, it
broadcasts the data. All the radios and televisions in the country start chugging away.
Eventually, the correct key will appear on someone's display, somewhere in the
country. The Chinese government pays a prize to that person; this makes sure that
the result is reported promptly and properly, and also helps the sale of radios and tele­
visions with the cracking chips.

If every man, woman, and child in China owns a radio or television, then the cor­
rect key to a 56-bit algorithm will appear in 61 seconds. If only 1 in 10 Chinese owns
a radio or television-closer to reality-the correct key will appear in 10 minutes.
The correct key for a 64-bit algorithm will appear in 4.3 hours-43 hours if only 1 in
10 owns a radio or television.

Some modifications are required to make this attack practical. First, it would be
easier to have each chip try random keys instead of a unique set of keys. This would
make the attack about 39 percent slower-not much in light of the numbers we're
working with. Also, the Chinese Communist party would have to mandate that
every person listen to or watch a certain show at a certain time, just to make sure
that all of the radios and televisions are operating when the plaintext/ciphertext pair
is broadcast. Finally, everyone would have to be instructed to call a Central-Party­
Whatever-It's-Called if a key ever shows up on their screen, and then to read off the
string of numbers appearing there.

Table 7.2 shows the effectiveness of the Chinese Lottery for different countries and
different key lengths. China would clearly be in the best position to launch such an
attack if they have to outfit every man, woman, and child with their own television
or radio. The United States has fewer people but a lot more equipment per capita.
The state of Wyoming could break a 56-bit key all by itself in less than a day.

Biotechnology

If biochips are possible, then it would be foolish not to use them as a distributed
brute-force cryptanalysis tool. Consider a hypothetical animal, unfortunately called
a "DESosaur" [1278]. It consists of biological cells capable of testing possible keys.
The plaintext/ciphertext pair is broadcast to the cells via some optical channel
(these cells are transparent, you see). Solutions are carried to the DESosaur's speech
organ via special cells that travel through the animal's circulatory system.

The typical dinosaur had about 1014 cells (excluding bacteria). If each of them can
perform a million encryptions per second (granted, this is a big if), breaking a 56-bit

_______________ 7_.1 __ Sy_m_m_e_t_n_·c_K_e_y_L_en_g_t_h ______ 7_~

Table 7.2
Brute-Force Cracking Estimates for Chinese Lottery

Country Population # of Televisions/Radios

China 1,190,431,000 257,000,000
U.S. 260,714,000 739,000,000
Iraq 19,890,000 4,730,000
Israel 5,051,000 3,640,000
Wyoming 470,000 1,330,000
Winnemucca, NV 6,100 17,300

(All data is from the 1995 World Almanac and Book of Facts.)

TIME TO BREAK

56-bit

280 seconds
97 seconds
4.2 hours
5.5 hours
15 hours
48 days

64-bit

20 hours
6.9 hours
44 days
58 days
160 days
34 years

key would take seven ten-thousandths of a second. Breaking a 64-bit key would take
less than two tenths of a second. Breaking a 128-bit key would still take 1011 years,
though.

Another biological approach is to use genetically engineered cryptanalytic algae
that are capable of performing brute-force attacks against cryptographic algorithms
[1278]. These organisms would make it possible to construct a distributed machine
with more processors because they could cover a larger area. The plaintext/cipher­
text pair could be broadcast by satellite. If an organism found the result, it could
induce the nearby cells to change color to communicate the solution back to the
satellite.

Assume the typical algae cell is the size of a cube 10 microns on a side (this is
probably a large estimate), then 1015 of them can fill a cubic meter. Pump them into
the ocean and cover 200 square miles (518 square kilometers) of water to a meter
deep (you figure out how to do it-I'm just the idea man), and you'd have 1023 (over
a hundred billion gallons) of them floating in the ocean. (For comparison, the Exxon
Valdez spilled 10 million gallons of oil.) If each of them can try a million keys per
second, they will recover the key for a 128-bit algorithm in just over 100 years. (The
resulting algae bloom is your problem.) Breakthroughs in algae processing speed,
algae diameter, or even the size puddle one could spread across the ocean, would
reduce these numbers significantly.

Don't even ask me about nanotechnology.

Thermodynamic Limitations
One of the consequences of the second law of thermodynamics is that a certain

amount of energy is necessary to represent information. To record a single bit by
changing the state of a system requires an amount of energy no less than kT, where
Tis the absolute temperature of the system and k is the Boltzman constant. (Stick
with mei the physics lesson is almost over.)

Given that k = 1.38* 10-16 erg/°Kelvin, and that the ambient temperature of the
universe is 3.2°K, an ideal computer running at 3.2°K would consume 4.4* 10-16 ergs
every time it set or cleared a bit. To run a computer any colder than the cosmic
background radiation would require extra energy to run a heat pump.

~-:s. _______ C_H_A_P_T_ER_7_K_e_y_L_en_g_t_h ________________ _

Now, the annual energy output of our sun is about 1.21 * 1041 ergs. This is enough
to power about 2. 7 * 1056 single bit changes on our ideal computer; enough state
changes to put a 187-bit counter through all its values. If we built a Dyson sphere
around the sun and captured all of its energy for 32 years, without any loss, we could
power a computer to count up to 2192. Of course, it wouldn't have the energy left
over to perform any useful calculations with this counter.

But that's just one star, and a measly one at that. A typical supernova releases
something like 1051 ergs. (About a hundred times as much energy would be released
in the form of neutrinos, but let them go for now.) If all of this energy could be chan­
neled into a single orgy of computation, a 219-bit counter could be cycled through
all of its states.

These numbers have nothing to do with the technology of the devices; they are
the maximums that thermodynamics will allow. And they strongly imply that
brute-force attacks against 256-bit keys will be infeasible until computers are built
from something other than matter and occupy something other than space.

7.2 PUBLIC-KEY KEY LENGTH

One-way functions were discussed in Section 2.3. Multiplying two large primes is a
one-way function; it's easy to multiply the numbers to get a product but hard to fac­
tor the product and recover the two large primes (see Section 11.3). Public-key cryp­
tography uses this idea to make a trap-door one-way function. Actually, that's a lie;
factoring is conjectured to be a hard problem (see Section 11.4). As far as anyone
knows, it seems to be. Even if it is, no one can prove that hard problems are actually
hard. Most everyone assumes that factoring is hard, but it has never been mathe­
matically proven one way or the other.

This is worth dwelling on. It is easy to imagine that 50 years in the future we will
all sit around, reminiscing about the good old days when people used to think fac­
toring was hard, cryptography was based on factoring, and companies actually made
money from this stuff. It is easy to imagine that future developments in number the­
ory will make factoring easier or that developments in complexity theory will make
factoring trivial. There's no reason to believe this will happen-and most people
who know enough to have an opinion will tell you that it is unlikely-but there's
also no reason to believe it won't.

In any case, today's dominant public-key encryption algorithms are based on the
difficulty of factoring large numbers that are the product of two large primes. (Other
algorithms are based on something called the Discrete Logarithm Problem, but for
the moment assume the same discussion applies.) These algorithms are also sus­
ceptible to a brute-force attack, but of a different type. Breaking these algorithms
does not involve trying every possible key; breaking these algorithms involves try­
ing to factor the large number (or taking discrete logarithms in a very large finite
field-a similar problem). If the number is too small, you have no security. If the
number is large enough, you have security against all the computing power in the
world working from now until the sun goes nova-given today's understanding of

_______________ 7_._2_P_u_b_Ji_·c_-K_e_y_K_e_y_Le_n_g_th ______ 7__,,.~

the mathematics. Section 11.3 discusses factoring in more mathematical detail;
here I will limit the discussion to how long it takes to factor numbers of various
lengths.

Factoring large numbers is hard. Unfortunately for algorithm designers, it is get­
ting easier. Even worse, it is getting easier faster than mathematicians expected. In
1976 Richard Guy wrote: "I shall be surprised if anyone regularly factors numbers of
size 1080 without special form during the present century" [680]. In 1977 Ron Rivest
said that factoring a 125-digit number would take 40 quadrillion years [599]. In 1994
a 129-digit number was factored [66]. If there is any lesson in all this, it is that mak­
ing predictions is foolish.

Table 7.3 shows factoring records over the past dozen years. The fastest factoring
algorithm during the time was the quadratic sieve (see Section 11.3).

These numbers are pretty frightening. Today it is not uncommon to see 512-bit
numbers used in operational systems. Factoring them, and thereby completely com­
promising their security, is well in the range of possibility: A weekend-long worm
on the Internet could do it.

Computing power is generally measured in mips-years: a one-million-instruction­
per-second (mips) computer running for one year, or about 3* 1013 instructions. By
convention, a 1-mips machine is equivalent to the DEC VAX 11/780. Hence, a mips­
year is a VAX 11/780 running for a year, or the equivalent. (A 100 MHz Pentium is
about a 50 mips machine; a 1800-node Intel Paragon is about 50,000.)

The 1983 factorization of a 71-digit number required 0.1 mips-years; the 1994 fac­
torization of a 129-digit number required 5000. This dramatic increase in comput­
ing power resulted largely from the introduction of distributed computing, using the
idle time on a network of wm::kstations. This trend was started by Bob Silverman
and fully developed by Arjen Lenstra and Mark Manasse. The 1983 factorization
used 9.5 CPU hours on a single Cray X-MP; the 1994 factorization took 5000 mips­
years and used the idle time on 1600 computers around the world for about eight
months. Modern factoring methods lend themselves to this kind of distributed
implementation.

The picture gets even worse. A new factoring algorithm has taken over from the
quadratic sieve: the general number field sieve. In 1989 mathematicians would have

Year

1983
1985
1988
1989
1993
1994

Table 7.3
Factoring Using the Quadratic Sieve

of decimal How many times harder to
digits factored factor a 512-bit number

71 >20 million
80 >2 million
90 250,000
100 30,000
120 500
129 100

~"":S. _______ C_H_A_PT_E_R_7_K_e_y_L_en_g_t_h _________________ _

told you that the general number field sieve would never be practical. In 1992 they
would have told you that it was practical, but only faster than the quadratic sieve for
numbers greater than 130 to 150 digits or so. Today it is known to be faster than the
quadratic sieve for numbers well below 116 digits [472,635]. The general number
field sieve can factor a 512-bit number over 10 times faster than the quadratic sieve.
The algorithm would require less than a year to run on an 1800-node Intel Paragon.
Table 7.4 gives the number of mips-years required to factor numbers of different
sizes, given current implementations of the general number field sieve [1190].

And the general number field sieve is still getting faster. Mathematicians keep
coming up with new tricks, new optimizations, new techniques. There's no reason to
think this trend won't continue. A related algorithm, the special number field sieve,
can already factor numbers of a certain specialized form-numbers not generally
used for cryptography-much faster than the general number field sieve can factor
general numbers of the same size. It is not unreasonable to assume that the general
number field sieve can be optimized to run this fast [1190]; it is possible that the NSA
already knows how to do this. Table 7.5 gives the number of mips-years required for
the special number field sieve to factor numbers of different lengths [1190].

At a European Institute for System Security workshop in 1991, the participants
agreed that a 1024-bit modulus should be sufficient for long-term secrets through
2002 [150]. However, they warned: "Although the participants of this workshop feel
best qualified in their respective areas, this statement [with respect to lasting secu­
rity] should be taken with caution." This is good advice.

The wise cryptographer is ultra-conservative when choosing public-key key
lengths. To determine how long a key you need requires you to look at both the
intended security and lifetime of the key, and the current state-of-the-art of factor­
ing. Today you need a 1024-bit number to get the level of security you got from a
512-bit number in the early 1980s. If you want your keys to remain secure for 20
years, 1024 bits is likely too short.

Even if your particular secrets aren't worth the effort required to factor your mod­
ulus, you may be at risk. Imagine an automatic banking system that uses RSA for
security. Mallory can stand up in court and say: "Did you read in the newspaper in
1994 that RSA-129 was broken, and that 512-bit numbers can be factored by any

Table 7.4
Factoring Using the General

Number Field Sieve
of bits

512
768
1024
1280
1536
2048

Mips-years required to factor

30,000
2* 108

3 * 1011

1 * 1014

3 * 1016

3* 1020

________________ 7._2_P_u_b_l_ic_-_K_e_y_K_e_y_L_e_n_g_th ______ 7...,,.,.~

Table 7.5
Factoring Using the Special

Number Field Sieve

of bits Mips-years required to factor

512
768
1024
1280
1536
2048

<200
100,000
3* 107

3* 109

2* 1011

4* 1014

organization willing to spend a few million dollars and wait a few months? My bank
uses 512-bit numbers for security and, by the way, I didn't make these seven with­
drawals." Even if Mallory is lying, the judge will probably put the onus on the bank
to prove it.

Why not use 10,000-bit keys? You can, but remember that you pay a price in com­
putation time as your keys get longer. You want a key long enough to be secure, but
short enough to be computationally usable.

Earlier in this section I called making predictions foolish. Now I am about to
make some. Table 7.6 gives my recommendations for public-key lengths, depending
on how long you require the key to be secure. There are three key lengths for each
year, one secure against an individual, one secure against a major corporation, and
the third secure against a major government.

Here are some assumptions from [66]:

We believe that we could acquire 100 thousand machines without superhuman or
unethical efforts. That is, we would not set free an Internet worm or virus to find
resources for us. Many organizations have several thousand machines each on the
net. Making use of their facilities would require skillful diplomacy, but should
not be impossible. Assuming the 5 mips average power, and one year elapsed
time, it is not too unreasonable to embark on a project which would require half
a million mips years.

The project to factor the 129-digit number harnessed an estimated 0.03 percent of
the total computing power of the Internet [1190], and they didn't even try very hard.
It isn't unreasonable to assume that a well-publicized project can harness 2 percent
of the world's computing power for a year.

Assume a dedicated cryptanalyst can get his hands on 10,000 mips-years, a large
corporation can get 107 mips-years, and that a large government can get 109 mips­
years. Also assume that computing power will increase by a factor of 10 every five
years. And finally, assume that advances in factoring mathematics allow us to fac­
tor general numbers at the speeds of the special number field sieve. (This isn't pos­
sible yet, but the breakthrough could occur at any time.) Table 7.6 recommends
different key lengths for security during different years.

~-:s _______ C_H_A_P_T_ER_7_K_e_y_L_en_g_t_h ________________ _

Table 7.6
Recommended Public-key Key Lengths (in bits)

Year

1995
2000
2005
2010
2015

vs. Individual

768
1024
1280
1280
1536

vs. Corporation

1280
1280
1536
1536
2048

vs. Government

1536
1536
2048
2048
2048

Remember to take the value of the key into account. Public keys are often used to
secure things of great value for a long time: the bank's master key for a digital cash
system, the key the government uses to certify its passports, or a notary public's dig­
ital signature key. It probably isn't worth the effort to spend months of computing
time to break an individual's private key, but if you can print your own money with
a broken key the idea becomes more attractive. A 1024-bit key is long enough to
sign something that will be verified within the week, or month, or even a few years.
But you don't want to stand up in court 20 years from now with a digitally signed
document and have the opposition demonstrate how to forge documents with the
same signature.

Making predictions beyond the near future is even more foolish. Who knows what
kind of advances in computing, networking, and mathematics are going to happen
by 2020? However, if you look at the broad picture, in every decade we can factor
numbers twice as long as in the previous decade. This leads to Table 7.7.

On the other hand, factoring technology may reach its Omega point long before
2045. Twenty years from now, we may be able to factor anything. I think that is
unlikely, though.

Not everyone will agree with my recommendations. The NSA has mandated 512-
bit to 1024-bit keys for their Digital Signature Standard (see Section 20.1)-far less
than I recommend for long-term security. Pretty Good Privacy (see Section 24.12)
has a maximum RSA key length of 2047 bits. Arjen Lenstra, the world's most sue-

Table 7 .7
Long-range

Factoring Predictions

Year Key Length (in bits)

1995 1024
2005 2048
2015 4096
2025 8192
2035 16,384
2045 32,768

_______________ 7._2_P_u_b_l_ic_-_K_ey_K_e_y_L_e_n_g_th ______ 7-,.,,,~

cessful factorer, refuses to make predictions past 10 years [949]. Table 7.8 gives Ron
Rivest's key-length recommendations, originally made in 1990, which I consider
much too optimistic [1323]. While his analysis looks fine on paper, recent history
illustrates that surprises regularly happen. It makes sense to choose your keys to be
resilient against future surprises.

Low estimates assume a budget of $25,000, the quadratic sieve algorithm, and a
technology advance of 20 percent per year. Average estimates assume a budget of
$25 million, the general number field sieve algorithm, and a technology advance of
33 percent per year. High estimates assume a budget of $25 billion, a general
quadratic sieve algorithm running at the speed of the special number field sieve, and
a technology advance of 45 percent per year.

There is always the possibility that an advance in factoring will surprise me as
well, but I factored that into my calculations. But why trust me? I just proved my
own foolishness by making predictions.

DNA Computing
Now it gets weird. In 1994 Leonard M. Adleman actually demonstrated a method

for solving an NP-complete problem (see Section 11.2) in a biochemistry laboratory,
using DNA molecules to represent guesses at solutions to the problem [17]. (That's
"solutions" meaning "answers," not meaning "liquids containing solutes." Termi­
nology in this field is going to be awkward.) The problem that Adleman solved was
an instance of the Directed Hamiltonian Path problem: Given a map of cities con­
nected by one-way roads, find a path from City A to City Z that passes exactly once
through all other cities on the map. Each city was represented by a different random
20-base string of DNA; with conventional molecular biology techniques, Adleman
synthesized 50 picomols (30 million million molecules) of the DNA string repre­
senting each city. Each road was also represented by a 20-base DNA string, but these
strings were not chosen randomly: They were cleverly chosen so that the "begin­
ning" end of the DNA string representing the road from City P to City K ("Road
PK") would tend to stick to the DNA string representing City P, and the end of Road
PK would tend to stick to City K.

Table 7.8
Rivest's Optimistic Key-length

Recommendations (in bits)

Year

1990
1995
2000
2005
2010
2015
2020

Low Average High

398 515 1289
405 542 1399
422 572 1512
439 602 1628
455 631 1754
472 661 1884
489 677 2017

~-:s. _______ C_H_A_P_T_E_R_7_K_ey_L_en_g_t_h ________________ _

Adleman synthesized 50 picomols of the DNA representing each road, mixed
them all together with the DNA representing all the cities, and added a ligase
enzyme, which links together the ends of DNA molecules. The clever relationship
between the road DNA strings and the city DNA strings causes the ligase to link the
road DNA strings together in a legal fashion. That is, the "exit" end of the road from
P to K will always be linked to the "entrance" end of some road that originates at
City K, never to the "exit" end of any road and never to the "entrance" end of a road
that originates at some city other than K. After a carefully limited reaction time, the
ligase has built a large number of DNA strings representing legal but otherwise ran­
dom multiroad paths within the map.

From this soup of random paths, Adleman can find the tiniest trace-perhaps
even a single molecule-of the DNA that represents the answer to the problem.
Using common techniques of molecular biology, he discards all the DNA strings
representing paths that are too long or too short. (The number of roads in the desired
path must equal the number of cities minus one.) Next he discards all the DNA
strings that do not pass through City A, then those that miss City B, and so forth. If
any DNA survives this screening, it is examined to find the sequence of roads that
it represents: This is the solution to the directed Hamiltonian path problem.

By definition, an instance of any NP-complete problem can be transformed, in
polynomial time, into an instance of any other NP-complete problem, and therefore
into an instance of the directed Hamiltonian path problem. Since the 1970s, cryptol­
ogists have been trying to use NP-complete problems for public-key cryptography.

While the instance that Adleman solved was very modest (seven cities on his
map, a problem that can be solved by inspection in a few minutes), the technique is
in its infancy and has no forbidding obstacles keeping it from being extended to
larger problems. Thus, arguments about the security of cryptographic protocols
based on NP-complete problems, arguments that heretofore have begun, "Suppose
an adversary has a million processors, each of which can perform a million tests
each second," may soon have to be replaced with, "Suppose an adversary has a thou­
sand fermentation vats, each 20,000 liters in capacity."

Quantum Computing
Now, it gets even weirder. The underlying principle behind quantum computing

involves Einstein's wave-particle duality. A photon can simultaneously exist in a
large number of states. A classic example is that a photon behaves like a wave when
it encounters a partially silvered mirror; it is both reflected and transmitted, just as
an ocean wave striking a seawall with a small opening in it will both reflect off the
wall and pass through it. However, when a photon is measured, it behaves like a par­
ticle and only a single state can be detected.

In [1443], Peter Shor outlines a design for a factoring machine based on quantum
mechanical principles. Unlike a classical computer, which can be thought of as hav­
ing a single, fixed state at a given time, a quantum computer has an internal wave
function, which is a superposition of a combination of the possible basis states.
Computations transform the wave function, altering the entire set of states in a sin­
gle operation. In this way, a quantum computer is an improvement over classical
finite-state automata: It uses quantum properties to allow it to factor in polynomial

7.4 Birthday Attacks against One-way Hash Functions

time, theoretically allowing one to break cryptosystems based on factoring or the
discrete logarithm problem.

The consensus is that quantum computers are compatible with the fundamental
laws of quantum mechanics. However, it is unlikely that a quantum factoring
machine will be built in the foreseeable future ... if ever. One major obstacle is the
problem of decoherence, which causes superimposed waveforms to lose their dis­
tinctness and makes the computer fail. Decoherence will make a quantum com­
puter running at 1 ° Kelvin fail after just one nanosecond. Additionally, an enormous
number of gates would be required to build a quantum factoring device; this may
render the machine impossible to build. Shor's design requires a complete modular
exponentiator. No internal clock can be used, so millions or possibly billions of
individual gates would be required to factor cryptographically significant numbers.
If n quantum gates have some minimum probability p of failure, the average num­
ber of trials required per successful run is (1/(1 - p))11 • The number of gates required
presumably grows polynomially with the length (in bits) of the number, so the num­
ber of trials required would be superexponential with the length of the numbers
used-worse than factoring by trial division!

So, while quantum factorization is an area of great academic excitement, it is
extremely unlikely that it will be practical in the foreseeable future. But don't say I
didn't warn you.

7 .3 COMPARING SYMMETRIC AND PUBLIC-KEY KEY LENGTH

A system is going to be attacked at its weakest point. If you are designing a system
that uses both symmetric and public-key cryptography, the key lengths for each
type of cryptography should be chosen so that it is equally difficult to attack the sys­
tem via each mechanism. It makes no sense to use a symmetric algorithm with a
128-bit key together with a public-key algorithm with a 386-bit key, just as it makes
no sense to use a symmetric algorithm with a 56-bit key together with a public-key
algorithm with a 1024-bit key.

Table 7.9 lists public-key modulus lengths whose factoring difficulty roughly
equals the difficulty of a brute-force attack for popular symmetric key lengths.

This table says that if you are concerned enough about security to choose a sym­
metric algorithm with a 112-bit key, you should choose a modulus length for your
public-key algorithm of about 1792 bits. In general, though, you should choose a
public-key length that is more secure than your symmetric-key length. Public keys
generally stay around longer, and are used to protect more information.

7 .4 BIRTHDAY ATTACKS AGAINST ONE-WAY HASH

FUNCTIONS

There are two brute-force attacks against a one-way hash function. The first is the
most obvious: Given the hash of message, H(M), an adversary would like to be able
to create another document, M', such that H(M) = H(M'). The second attack is more

~...,.s _______ C_H_A_P_T_E_R_7_K_e_y_L_e_n_g_th ________________ _

Table 7.9
Symmetric and Public-key Key Lengths

with Similar Resistances to Brute-Force Attacks

Symmetric Public-key
Key Length Key Length

56 bits 384 bits
64 bits 512 bits
80 bits 768 bits
112 bits 1792 bits
128 bits 2304 bits

subtle: An adversary would like to find two random messages, M, and M', such that
H(M) = H(M'). This is called a collision, and it is a far easier attack than the first one.

The birthday paradox is a standard statistics problem. How many people must be
in a room for the chance to be greater than even that one of them shares your birth­
day? The answer is 253. Now, how many people must there be for the chance to be
greater than even that at least two of them will share the same birthday? The answer
is surprisingly low: 23. With only 23 people in the room, there are still 253 different
pairs of people in the room.

Finding someone with a specific birthday is analogous to the first attack; finding
two people with the same random birthday is analogous to the second attack. The
second attack is commonly known as a birthday attack.

Assume that a one-way hash function is secure and the best way to attack it is by
using brute force. It produces an m-bit output. Finding a message that hashes to a
given hash value would require hashing 2m random messages. Finding two messages
that hash to the same value would only require hashing 2m12 random messages. A
machine that hashes a million messages per second would take 600,000 years to find
a second message that matched a given 64-bit hash. The same machine could find a
pair of messages that hashed to the same value in about an hour.

This means that if you are worried about a birthday attack, you should choose a
hash-value twice as long as you otherwise might think you need. For example, if you
want to drop the odds of someone breaking your system to less than 1 in 280, use a
160-bit one-way hash function.

7 .5 How LONG SHOULD A KEY BE?

There's no single answer to this question; it depends on the situation. To determine
how much security you need, you must ask yourself some questions. How much is
your data worth? How long does it need to be secure? What are your adversaries'
resources?

A customer list might be worth $1000. Financial data for an acrimonious divorce
case might be worth $10,000. Advertising and marketing data for a large corporation

_______________ 7_._5_H_o_w_L_o_n_g_S_h_o_u_ld_a_K_e_y_B_e! _____ 7 ___ ~

might be worth $1 million. The master keys for a digital cash system might be
worth billions.

In the world of commodities trading, secrets only need to be kept for minutes. In
the newspaper business, today's secrets are tomorrow's headlines. Product develop­
ment information might need to remain secret for a year or two. U.S. Census data
are required by law to remain secret for 100 years.

The guest list for your sister's surprise birthday party is only interesting to your
nosy relatives. Corporate trade secrets are interesting to rival companies. Military
secrets are interesting to rival militaries.

You can even specify security requirements in these terms. For example:

The key length must be such that there is a probability of no more than 1 in 232

that an attacker with $100 million to spend could break the system within one
year, even assuming technology advances at a rate of 30 percent per annum over
the period.

Table 7.10, taken partially from [150], estimates the secrecy requirements for sev­
eral kinds of information:

Future computing power is harder to estimate, but here is a reasonable rule of
thumb: The efficiency of computing equipment divided by price doubles every 18
months and increases by a factor of 10 every five years. Thus, in 50 years the
fastest computers will be 10 billion times faster than today's! Remember, too, that
these numbers only relate to general-purpose computers; who knows what kind of
specialized cryptosystem-breaking equipment will be developed in the next 50
years?

Assuming that a cryptographic algorithm will be in use for 30 years, you can get
some idea how secure it must be. An algorithm designed today probably will not see
general use until 2000, and will still be used in 2025 to encrypt messages that must
remain secret until 2075 or later.

Table 7.10
Security Requirements for Different Information

Type of Traffic

Tactical military information
Product announcements, mergers, interest rates
Long-term business plans
Trade secrets (e.g., recipe for Coca-Cola)
H-bomb secrets
Identities of spies
Personal affairs
Diplomatic embarrassments
U.S. census data

Lifetime

minutes/hours
days/weeks

years
decades

>40 years
>50 years
>50 years
>65 years
100 years

Minimum
Key Length

56-64 bits
64 bits
64 bits
112 bits
128 bits
128 bits
128 bits

at least 128 bits
at least 128 bits

~""'S _______ C_H_A_PT_E_R_7_K_e_y_L_en_g_t_h _________________ _

7.6 CAVEAT EMPTOR

This entire chapter is a whole lot of nonsense. The very notion of predicting com­
puting power 10 years in the future, let alone 50 years is absolutely ridiculous.
These calculations are meant to be a guide, nothing more. If the past is any guide,
the future will be vastly different from anything we can predict.

Be conservative. If your keys are longer than you imagine necessary, then fewer
technological surprises can harm you.

-----------------------z---o,,,~

CHAPTER 8

Key Management

Alice and Bob have a secure communications system. They play mental poker,
simultaneously sign contracts, even exchange digital cash. Their protocols are
secure. Their algorithms are top-notch. Unfortunately, they buy their keys from
Eve's "Keys-R-Us," whose slogan is "You can trust us: Security is the middle name
of someone our ex-mother-in-law's travel agent met at the Kwik-E-Mart."

Eve doesn't have to break the algorithms. She doesn't have to rely on subtle flaws
in the protocols. She can use their keys to read all of Alice's and Bob's message traf­
fic without lifting a cryptanalytic finger.

In the real world, key management is the hardest part of cryptography. Designing
secure cryptographic algorithms and protocols isn't easy, but you can rely on a large
body of academic research. Keeping the keys secret is much harder.

Cryptanalysts often attack both symmetric and public-key cryptosystems
through their key management. Why should Eve bother going through all the trou­
ble of trying to break the cryptographic algorithm if she can recover the key because
of sloppy key storage procedures? Why should she spend $10 million building a
cryptanalysis machine if she can spend $1000 bribing a clerk? Spending a million
dollars to buy a well-placed communications clerk in a diplomatic embassy can be
a bargain. The Walkers sold U.S. Navy encryption keys to the Soviets for years. The
CIA's director of counterintelligence went for less than $2 million, wife included.
That's far cheaper than building massive cracking machines and hiring brilliant
cryptanalysts. Eve can steal the keys. She can arrest or abduct someone who knows
the keys. She can seduce someone and get the keys that way. (The Marines who
guarded the U.S. Embassy in Moscow were not immune to that attack.) It's a whole
lot easier to find flaws in people than it is to find them in cryptosystems.

Alice and Bob must protect their key to the same degree as all the data it encrypts.
If a key isn't changed regularly, this can be an enormous amount of data. Unfortu­
nately, many commercial products simply proclaim "We use DES" and forget about
everything else. The results are not very impressive.

~""'s~------C_H_A_P_T_E_R_8 __ K_e_y_M_a_n_a_g_e_m_e_n_t ________________ _

For example, the DiskLock program for Macintosh (version 2.1), sold at most soft­
ware stores, claims the security of DES encryption. It encrypts files using DES. Its
implementation of the DES algorithm is correct. However, DiskLock stores the DES
key with the encrypted file. If you know where to look for the key, and want to read
a file encrypted with DiskLock's DES, recover the key from the encrypted file and
then decrypt the file. It doesn't matter that this program uses DES encryption-the
implementation is completely insecure.

Further information on key management can be found in [457,98,1273,1225,
775,357]. The following sections discuss some of the issues and solutions.

8.1 GENERATING KEYS

The security of an algorithm rests in the key. If you're using a cryptographically
weak process to generate keys, then your whole system is weak. Eve need not
cryptanalyze your encryption algorithm; she can cryptanalyze your key generation
algorithm.

Reduced Keyspaces

DES has a 56-bit key. Implemented properly, any 56-bit string can be the key;
there are 256 (1016) possible keys. Norton Discreet for MS-DOS (versions 8.0 and ear­
lier) only allows ASCII keys, forcing the high-order bit of each byte to be zero. The
program also converts lowercase letters to uppercase (so the fifth bit of each byte is
always the opposite of the sixth bit) and ignores the low-order bit of each byte,
resulting in only 240 possible keys. These poor key generation procedures have made
its DES ten thousand times easier to break than a proper implementation.

Table 8.1 gives the number of possible keys with various constraints on the input
strings. Table 8.2 gives the time required for an exhaustive search through all of
those keys, given a million attempts per second. Remember, there is very little time
differential between an exhaustive search for 8-byte keys and an exhaustive search
of 4-, 5-, 6-, 7-, and 8-byte keys.

All specialized brute-force hardware and parallel implementations will work here.
Testing a million keys per second (either with one machine or with multiple
machines in parallel), it is feasible to crack lowercase-letter and lowercase-letter-

Table 8.1
Number of Possible Keys of Various Keyspaces

Lowercase letters (26):
Lowercase letters and digits (36):
Alphanumeric characters (62):
Printable characters (95):
ASCII characters (128):
8-bit ASCII characters (256):

4-Byte 5-Byte 6-Byte 7-Byte

460,000 1.2• 107 3.1 * 108 8.0* 109

1,700,000 6.0 * 107 2.2 * 109 7 .8 * 1010

l.5•10 7 9.2•10 8 5.7•10 10 3.5•10 12

8.1 * 107

2.7• 108

4.3* 109

7.7* 109

3.4• 1010

l.1•1012

7.4.1011
4.4• 1012

2.8• 1014

7.0* lQLi

5.6* 1014

7.2* 1016

8-Byte

2.1 * 1011

2.8* 1012

2.2* 1014

6.6* 1015

7.2* 1016
1.8 * 1019

__________________ 8_._l_G_en_e_r_a_t1_·n_g_K_e_y_s ________ 7,,,,.~

Table 8.2
Exhaustive Search of Various Keyspaces (assume one million attempts per second)

4-Byte 5-Byte 6-Byte 7-Byte 8-Byte

Lowercase letters (26): .5 seconds 12 seconds 5 minutes 2.2 hours 2.4 days
Lowercase letters and digits (36): 1.7 seconds 1 minute 36 minutes 22 hours 33 days
Alphanumeric characters (62): 15 seconds 15 minutes 16 hours 41 days 6.9 years
Printable characters (95): 1.4 minutes 2.1 hours 8.5 days 2.2 years 210 years
ASCII characters (128): 4.5 minutes 9.5 hours 51 days 18 years 2300 years
8-bit ASCII characters (256): 1.2 hours 13 days 8.9 years 2300 years 580,000 years

and-number keys up to 8 bytes long, alphanumeric-character keys up to 7 bytes
long, printable character and ASCII-character keys up to 6 bytes long, and 8-bit­
ASCII-character keys up to 5 bytes long.

And remember, computing power doubles every 18 months. If you expect your keys
to stand up against brute-force attacks for 10 years, you'd better plan accordingly.

Poor Key Choices
When people choose their own keys, they generally choose poor ones. They're far

more likely to choose "Barney" than "*9 (hH/A." This is not always due to poor
security practices; "Barney" is easier to remember than "*9 (hH/A." The world's
most secure algorithm won't help much if the users habitually choose their spouse's
names for keys or write their keys on little pieces of paper in their wallets. A smart
brute-force attack doesn't try all possible keys in numerical order; it tries the obvi­
ous keys first.

This is called a dictionary attack, because the attacker uses a dictionary of com­
mon keys. Daniel Klein was able to crack 40 percent of the passwords on the aver­
age computer using this system [847,848]. No, he didn't try one password after
another, trying to login. He copied the encrypted password file and mounted the
attack offline. Here's what he tried:

1. The user's name, initials, account name, and other relevant personal infor­
mation as a possible password. All in all, up to 130 different passwords
were tried based on this information. For an account name klone with
a user named "Daniel V. Klein," some of the passwords that would be
tried were: klone, klone0, klonel, klonel23, dvk, dvkdvk, dklein, DKlein
leinad, nielk, dvklein, danielk, DvkkvD, DANIEL-KLEIN, (klone), KleinD,
and so on.

2. Words from various databases. These included lists of men's and women's
names (some 16,000 in all); places (including variations so that "spain,"
"spanish," and "spaniard" would all be considered); names of famous
people; cartoons and cartoon characters; titles, characters, and locations
from films and science fiction stories; mythical creatures (garnered from
Bullfinch's Mythology and dictionaries of mythical beasts); sports (includ-

~"':S,--------C_H_A_P_T_E_R_8 __ K_e_y_M_a_n_a_g_e_m_e_n_t ________________ _

ing team names, nicknames, and specialized terms); numbers (both as
numerals-"2001," and written out-"twelve"); strings of letters and num­
bers ("a," "aa," "aaa," "aaaa," etc.); Chinese syllables (from the Pinyin
Romanization of Chinese, an international standard system of writing Chi­
nese on an English keyboard); the King James Bible; biological terms; collo­
quial and vulgar phrases (such as "fuckyou," "ibmsux," and "deadhead");
keyboard patterns (such as "qwerty," "asdf," and "zxcvbn"); abbreviations
(such as "roygbiv"-the colors in the rainbow, and "ooottafagvah"-a
mnemonic for remembering the 12 cranial nerves); machine names
(acquired from /etc/hosts); characters, plays, and locations from Shake­
speare; common Yiddish words; the names of asteroids; and a collection of
words from various technical papers Klein previously published. All told,
more than 60,000 separate words were considered per user (with any inter­
and intra-dictionary duplicates being discarded).

3. Variations on the words from step 2. This included making the first letter
uppercase or a control character, making the entire word uppercase, revers­
ing the word (with and without the aforementioned capitalization), chang­
ing the letter 'o' to the digit '0' (so that the word "scholar" would also be
checked as "scholar"), changing the letter 'l' to the digit 'l' (so that the
word "scholar" would also be checked as "scholar"), and performing sim­
ilar manipulation to change the letter 'z' into the digit '2', and the letter's'
into the digit '5'. Another test was to make the word into a plural (irre­
spective of whether the word was actually a noun), with enough intelli­
gence built in so that "dress" became "dresses," "house" became
"houses," and "daisy" became "daisies." Klein did not consider plural­
ization rules exclusively, though, so that "datum" forgivably became
"datums" (not "data"), while "sphynx" became "sphynxs" (and not
"sphynges"). Similarly, the suffixes "-ed," "-er," and "-ing" were added to
transform words like "phase" into "phased," "phaser," and "phasing."
These additional tests added another 1,000,000 words to the list of possible
passwords that were tested for each user.

4. Various capitalization variations on the words from step 2 that were not
considered in step 3. This included all single-letter capitalization varia­
tions (so that "michael" would also be checked as "mlchael," "miChael,"
"micHael," "michAel," etc.), double-letter capitalization variations
("Michael," "MiChael," "MicHael," ... , "mIChael," "mlcHael," etc.),
triple-letter variations, etc. The single-letter variations added roughly
another 400,000 words to be checked per user, while the double-letter vari­
ations added another 1,500,000 words. Three-letter variations would have
added at least another 3,000,000 words per user had there been enough
time to complete the tests. Tests of four-, five-, and six-letter variations
were deemed to be impracticable without much more computational
horsepower to carry them out.

5. Foreign language words on foreign users. The specific test that was per­
formed was to try Chinese language passwords on users with Chinese

___________________ 8_.1 __ G_e_n_e_r_a_t1_·n_g_K_ey_s ________ 7_~

names. The Pinyin Romanization of Chinese syllables was used, combin­
ing syllables together into one-, two-, and three-syllable words. Because no
tests were done to determine whether the words actually made sense, an
exhaustive search was initiated. Since there are 298 Chinese syllables in
the Pinyin system, there are 158,404 two-syllable words, and slightly more
than 16,000,000 three-syllable words. A similar mode of attack could as
easily be used with English, using rules for building pronounceable non­
sense words.

6. Word pairs. The magnitude of an exhaustive test of this nature is stagger­
ing. To simplify the test, only words of three or four characters in length
from /usr/dict/words were used. Even so, the number of word pairs is
about ten million.

A dictionary attack is much more powerful when it is used against a file of keys and
not a single key. A single user may be smart enough to choose good keys. If a thousand
people each choose their own key as a password to a computer system, the odds are
excellent that at least one person will choose a key in the attacker's dictionary.

Random Keys
Good keys are random-bit strings generated by some automatic process. If the key

is 64 bits long, every possible 64-bit key must be equally likely. Generate the key
bits from either a reliably random source (see Section 17.14) or a cryptographically
secure pseudo-random-bit generator (see Chapters 16 and 17.) If these automatic
processes are unavailable, flip a coin or roll a die.

This is important, but don't get too caught up in arguing about whether random
noise from audio sources is more random than random noise from radioactive decay.
None of these random-noise sources will be perfect, but they will probably be good
enough. It is important to use a good random-number generator for key generation,
but it is far more important to use good encryption algorithms and key management
procedures. If you are worried about the randomness of your keys, use the key­
crunching technique described below.

Some encryption algorithms have weak keys: specific keys that are less secure
than the other keys. I advise testing for these weak keys and generating a new one if
you discover one. DES has only 16 weak keys out of 256, so the odds of generating
any of these keys are incredibly small. It has been argued that a cryptanalyst would
have no idea that a weak key is being used and therefore gains no advantage from
their accidental use. It has also been argued that not using weak keys gives a crypt­
analyst information. However, testing for the few weak keys is so easy that it seems
imprudent not to do so.

Generating keys for public-key cryptography systems is harder, because often the
keys must have certain mathematical properties (they may have to be prime, be a
quadratic residue, etc.). Techniques for generating large random prime numbers are
discussed in Section 11.5. The important thing to remember from a key manage­
ment point of view is that the random seeds for those generators must be just that:
random.

~""'s:--------C_H_A_P_T_E_R_8 __ K_e_y_M_a_n_a_g_e_m_e_n_t ________________ _

Generating a random key isn't always possible. Sometimes you need to remember
your key. (See how long it takes you to remember 2Se8 56£2 e8ba c820). If you have
to generate an easy-to-remember key, make it obscure. The ideal would be some­
thing easy to remember, but difficult to guess. Here are some suggestions:

Word pairs separated by a punctuation character, for example "tur­
tle *moose" or "zorch!splat"

Strings of letters that are an acronym of a longer phrase; for
example, "Mein Luftkissenfahrzeug ist voller Aale!" generates the key
"MLivA!"

Pass Phrases
A better solution is to use an entire phrase instead of a word, and to convert that

phrase into a key. These phrases are called pass phrases. A technique called key
crunching converts the easy-to-remember phrases into random keys. Use a one-way
hash function to transform an arbitrary-length text string into a pseudo-random-bit
string.

For example, the easy-to-remember text string:

My name is Ozymandias, king of kings. Look on my works, ye mighty, and despair.

might crunch into this 64-bit key:

e6cl 4398 5ae9 Oa9b

Of course, it can be difficult to type an entire phrase into a computer with the
echo turned off. Clever suggestions to solve this problem would be appreciated.

If the phrase is long enough, the resulting key will be random. Exactly what "long
enough" means is open to interpretation. Information theory tells us that standard
English has about 1.3 bits of information per character (see Section 11.1). For a 64-
bit key, a pass phrase of about 49 characters, or 10 normal English words, should be
sufficient. As a rule of thumb, figure that you need five words for each 4 bytes of key.
That's a conservative assumption, since it doesn't take into account case, spacing,
and punctuation.

This technique can even be used to generate private keys for public-key cryp­
tography systems: The text string could be crunched into a random seed, and that
seed could be fed into a deterministic system that generates public-key/private­
key key pairs.

If you are choosing a pass phrase, choose something unique and easy-to-remember.
Don't choose phrases from literature-the example from "Ozymandias" is a bad one.
Both the complete works of Shakespeare and the dialogue from Star Wars are avail­
able on-line and can be used in a dictionary attack. Choose something obscure, but
personal. Include punctuation and capitalization; if you can, include numbers and
non-alphanumeric symbols. Poor or improper English, or even a foreign language,
makes the pass phrase less susceptible to a dictionary attack. One suggestion is to
use a phrase that is "shocking nonsense": something offensive enough that you are
likely to remember and unlikely to write down.

_________________ 8_.2 __ N_o_n_l_in_ea_r_K_ey_s_p_a_c_e_s ______ 7 __ ~

Despite everything written here, obscurity is no substitute for true randomness.
The best keys are random keys, difficult as they are to remember.

X9.17 Key Generation
The ANSI X9.l 7 standard specifies a method of key generation (see Figure 8.1) [55].

This does not generate easy-to-remember keys; it is more suitable for generating ses­
sion keys or pseudo-random numbers within a system. The cryptographic algorithm
used to generate keys is triple-DES, but it could just as easily be any algorithm.

Let EK(X) be triple-DES encryption of X with key K. This is a special key reserved
for secret key generation. V0 is a secret 64-bit seed. Tis a timestamp. To generate the
random key Ri, calculate:

Ri = EK(EK(Ti) EB Vi)

To generate Vi+ 1, calculate:

vi+ 1 = EK(EK(Ti) EB Kl
To turn Ri into a DES key, simply adjust every eighth bit for parity. If you need a

64-bit key, use it as is. If you need a 128-bit key, generate a pair of keys and con­
catenate them together.

DoD Key Generation
The U.S. Department of Defense recommends using DES in OFB mode (see Sec­

tion 9.8) to generate random keys [1144]. Generate a DES key from system interrupt
vectors, system status registers, and system counters. Generate an initialization
vector from the system clock, system ID, and date and time. For the plaintext, use
an externally generated 64-bit quantity: eight characters typed in by a system
administrator, for example. Use the output as your key.

8.2 NONLINEAR KEYSPACES

Imagine that you are a military cryptography organization, building a piece of cryp­
tography equipment for your troops. You want to use a secure algorithm, but you are

T; Encrypt

Encrypt V; + 1

V;----.i-++--+1 Encrypt ,---~------•R;

Figure 8.1 ANSI X9.17 key generation.

~~s _______ C_H_A_P_T_E_R_8 __ K_e_y_M_a_n_a_g_e_m_e_n_t ________________ _

worried about the equipment falling into enemy hands. The last thing you want is
for your enemy to be able to use the equipment to protect their secrets.

If you can put your algorithm in a tamperproof module, here's what you can do.
You can require keys of a special and secret form; all other keys will cause the mod­
ule to encrypt and decrypt using a severely weakened algorithm. You can make it so
that the odds of someone, not knowing this special form but accidentally stumbling
on a correct key, are vanishingly small.

This is called a nonlinear keyspace, because all the keys are not equally strong.
(The opposite is a linear, or flat, keyspace.) An easy way to do this is to create the
key as two parts: the key itself and some fixed string encrypted with that key. The
module decrypts the string with the key; if it gets the fixed string it uses the key nor­
mally, if not it uses a different, weak algorithm. If the algorithm has a 128-bit key
and a 64-bit block size, the overall key is 192 bits; this gives the algorithm an effec­
tive key of 2128, but makes the odds of randomly choosing a good key one in 264 •

You can be even subtler. You can design an algorithm such that certain keys are
stronger than others. An algorithm can have no weak keys-keys that are obviously
very poor-and can still have a nonlinear keyspace.

This only works if the algorithm is secret and the enemy can't reverse-engineer
it, or if the difference in key strength is subtle enough that the enemy can't figure
it out. The NSA did this with the secret algorithms in their Overtake modules (see
Section 25.1). Did they do the same thing with Skipjack (see Section 13.12)? No
one knows.

8.3 TRANSFERRING KEYS

Alice and Bob are going to use a symmetric cryptographic algorithm to communicate
securely; they need the same key. Alice generates a key using a random-key genera­
tor. Now she has to give it to Bob-securely. If Alice can meet Bob somewhere (a back
alley, a windowless room, or one of Jupiter's moons), she can give him a copy of the
key. Otherwise, they have a problem. Public-key cryptography solves the problem
nicely and with a minimum of prearrangement, but these techniques are not always
available (see Section 3.1). Some systems use alternate channels known to be secure.
Alice could send Bob the key with a trusted messenger. She could send it by certified
mail or via an overnight delivery service. She could set up another communications
channel with Bob and hope no one is eavesdropping on that one.

Alice could send Bob the symmetric key over their communications channel­
the one they are going to encrypt. This is foolish; if the channel warrants encryp­
tion, sending the encryption key in the clear over the same channel guarantees that
anyone eavesdropping on the channel can decrypt all communications.

The X9.l 7 standard [55] specifies two types of keys: key-encryption keys and data
keys. Key-Encryption Keys encrypt other keys for distribution. Data Keys encrypt
message traffic. These key-encrypting keys have to be distributed manually
(although they can be secured in a tamperproof device, like a smart card), but only
seldomly. Data keys are distributed more often. More details are in [75]. This two­
tiered key concept is used a lot in key distribution.

__________________ 8_.3 __ I_ra_n_s_f_er_r_in_g_K_e_y_s _______ 7,_~

Another solution to the distribution problem splits the key into several different
parts (see Section 3.6) and sends each of those parts over a different channel. One
part could be sent over the telephone, one by mail, one by overnight delivery ser­
vice, one by carrier pigeon, and so on. (see Figure 8.2). Since an adversary could col­
lect all but one of the parts and still have no idea what the key is, this method will
work in all but extreme cases. Section 3.6 discusses schemes for splitting a key into
several parts. Alice could even use a secret sharing scheme (see Section 3. 7), allow­
ing Bob to reconstruct the key if some of the shares are lost in transmission.

Alice sends Bob the key-encryption key securely, either by a face-to-face meeting
or the splitting technique just discussed. Once Alice and Bob both have the key­
encryption key, Alice can send Bob daily data keys over the same communications
channel. Alice encrypts each data key with the key-encryption key. Since the
amount of traffic being encrypted with the key-encryption key is low, it does not
have to be changed as often. However, since compromise of the key-encryption key
could compromise every message encrypted with every key that was encrypted with
the key-encryption key, it must be stored securely.

Key Distribution in Large Networks
Key-encryption keys shared by pairs of users work well in small networks, but can

quickly get cumbersome if the networks become large. Since every pair of users
must exchange keys, the total number of key exchanges required in an n-person net­
work is n(n - 1)/2.

In a six-person network, 15 key exchanges are required. In a 1000-person network,
nearly 500,000 key exchanges are required. In these cases, creating a central key
server (or servers) makes the operation much more efficient.

Alternatively, any of the symmetric-cryptography or public-key-cryptography
protocols in Section 3.1 provides for secure key distribution.

SENDER
Separates

Key

RECEIVER
Reassembles

Key

Figure 8.2 Key distribution via parallel channels.

~""':s;~------C_H_A_P_T_E_R_8 __ K_e_y_M_a_n_a_g_e_m_e_n_t ________________ _

8.4 VERIFYING KEYS

When Bob receives a key, how does he know it came from Alice and not from some­
one pretending to be Alice? If Alice gives it to him when they are face-to-face, it's easy.
If Alice sends her key via a trusted courier, then Bob has to trust the courier. If the key
is encrypted with a key-encryption key, then Bob has to trust the fact that only Alice
has that key. If Alice uses a digital signature protocol to sign the key, Bob has to trust
the public-key database when he verifies that signature. (He also has to trust that Alice
has kept her key secure.) If a Key Distribution Center (KDC) signs Alice's public key,
Bob has to trust that his copy of the KDC's public key has not been tampered with.

In the end, someone who controls the entire network around Bob can make him
think whatever he likes. Mallory could send an encrypted and signed message pur­
porting to be from Alice. When Bob tried to access the public-key database to verify
Alice's signature, Mallory could substitute his own public key. Mallory could
invent his own false KDC and exchange the real KDC's public key for his own cre­
ation. Bob wouldn't be the wiser.

Some people have used this argument to claim that public-key cryptography is
useless. Since the only way for Alice and Bob to ensure that their keys have not been
tampered with is to meet face-to-face, public-key cryptography doesn't enhance
security at all.

This view is nai:ve. It is theoretically true, but reality is far more complicated.
Public-key cryptography, used with digital signatures and trusted KDCs, makes it
much more difficult to substitute one key for another. Bob can never be absolutely
certain that Mallory isn't controlling his entire reality, but Bob can be confident
that doing so requires more resources than most real-world Mallorys have access to.

Bob could also verify Alice's key over the telephone, where he can hear her voice.
Voice recognition is a really good authentication scheme. If it's a public key, he can
safely recite it in public. If it's a secret key, he can use a one-way hash function to
verify the key. Both PCP (see Section 24.12) and the AT&T TSD (see Section 24.18)
use this kind of key verification.

Sometimes, it may not even be important to verify exactly whom a public key
belongs to. It may be necessary to verify that it belongs to the same person to whom
it belonged last year. If someone sends a signed withdrawal message to a bank, the
bank does not have to be concerned with who withdraws the money, only whether
it is the same person who deposited the money in the first place.

Error Detection during Key Transmission
Sometimes keys get garbled in transmission. Since a garbled key can mean

megabytes of undecryptable ciphertext, this is a problem. All keys should be trans­
mitted with some kind of error detection and correction bits. This way errors in
transmission can be easily detected and, if required, the key can be resent.

One of the most widely used methods is to encrypt a constant value with the
key, and to send the first 2 to 4 bytes of that ciphertext along with the key. At the
receiving end, do the same thing. If the encrypted constants match, then the key
has been transmitted without error. The chance of an undetected error ranges
from one in 2 16 to one in 232 •

___________________ 8_.5 __ u_s_in_g_K_ey_s ________ 7---.,,,,~~

Key-error Detection during Decryption

Sometimes the receiver wants to check if a particular key he has is the correct
symmetric decryption key. If the plaintext message is something like ASCII, he can
try to decrypt and read the message. If the plaintext is random, there are other tricks.

The nai:ve approach is to attach a verification block: a known header to the plain­
text message before encryption. At the receiving end, Bob decrypts the header and
verifies that it is correct. This works, but it gives Eve a known plaintext to help
cryptanalyze the system. It also makes attacks against short-key ciphers like DES
and all exportable ciphers easy. Precalculate the checksum once for each key, then
use that checksum to determine the key in any message you intercept after that.
This is a feature of any key checksum that doesn't include random or at least differ­
ent data in each checksum. It's very similar in concept to using salt when generat­
ing keys from passphrases.

Here's a better way to do this [821]:

(1) Generate an IV (not the one used for the message).

(2) Use that IV to generate a large block of bits: say, 512.

(3) Hash the result.

(4) Use the same fixed bits of the hash, say 32, for the key checksum.

This gives Eve some information, but very little. If she tries to use the low 32 bits
of the final hash value to mount a brute-force attack, she has to do multiple encryp­
tions plus a hash per candidate key; brute-force on the key itself would be quicker.

She also gets no known-plaintext values to try out, and even if she manages to
choose our random value for us, she never gets a chosen-plaintext out of us, since it
goes through the hash function before she sees it.

8.5 USING KEYS

Software encryption is scary. Gone are the days of simple microcomputers under the
control of single programs. Now there's Macintosh System 7, Windows NT, and
UNIX. You can't tell when the operating system will suspend the encryption appli­
cation in progress, write everything to disk, and take care of some pressing task.
When the operating system finally gets back to encrypting whatever is being
encrypted, everything will look just fine. No one will ever realize that the operating
system wrote the encryption application to disk, and that it wrote the key along
with it. The key will sit on the disk, unencrypted, until the computer writes over
that area of memory again. It could be minutes or it could be months. It could even
be never; the key could still be sitting there when an adversary goes over the hard
drive with a fine-tooth comb. In a preemptive, multitasking environment, you can
set your encryption operation to a high enough priority so it will not be interrupted.
This would mitigate the risk. Even so, the whole thing is dicey at best.

Hardware implementations are safer. Many encryption devices are designed to
erase the key if tampered with. For example, the IBM PS/2 encryption card has an

~-:s. _______ C_H_A_P_T_E_R_8 __ K_e_y_M_a_n_a_g_e_m_e_n_t ________________ _

epoxy unit containing the DES chip, battery, and memory. Of course, you have to
trust the hardware manufacturer to implement the feature properly.

Some communications applications, such as telephone encryptors, can use ses­
sion keys. A session key is a key that is just used for one communications session­
a single telephone conversation-and then discarded. There is no reason to store the
key after it has been used. And if you use some key-exchange protocol to transfer the
key from one conversant to the other, the key doesn't have to be stored before it is
used either. This makes it far less likely that the key might be compromised.

Controlling Key Usage

In some applications it may be desirable to control how a session key is used.
Some users may need session keys only for encryption or only for decryption. Ses­
sion keys might only be authorized for use on a certain machine or at a certain time.
One scheme to handle these sorts of restrictions attaches a Control Vector (CV) to
the key; the control vector specifies the uses and restrictions for that key (see Sec­
tion 24.1) [1025,1026]. This CV is hashed and XORed with a master key; the result
is used as an encryption key to encrypt the session key. The resultant encrypted ses­
sion key is then stored with the CV. To recover the session key, hash the CV and
XOR it with the master key, and use the result to decrypt the encrypted session key.

The advantages of this scheme are that the CV can be of arbitrary length and that
it is always stored in the clear with the encrypted key. This scheme assumes quite
a bit about tamperproof hardware and the inability of users to get at the keys
directly. This system is discussed further in Sections 24.1 and 24.8.

8.6 UPDATING KEYS

Imagine an encrypted data link where you want to change keys daily. Sometimes it's
a pain to distribute a new key every day. An easier solution is to generate a new key
from the old key; this is sometimes called key updating.

All it takes is a one-way function. If Alice and Bob share the same key and they
both operate on it using the same one-way function, they will get the same result.
Then they can take the bits they need from the results to create the new key.

Key updating works, but remember that the new key is only as secure as the old
key was. If Eve managed to get her hands on the old key, she can perform the key
updating function herself. However, if Eve doesn't have the old key and is trying a
ciphertext-only attack on the encrypted traffic, this is a good way for Alice and Bob
to protect themselves.

8.7 STORING KEYS

The least complex key storage problem is that of a single user, Alice, encrypting
files for later use. Since she is the only person involved, she is the only person
responsible for the key. Some systems take the easy approach: The key is stored in
Alice's brain and never on the system. Alice is responsible for remembering the key
and entering it every time she needs a file encrypted or decrypted.

_________________ 8._8_B_a_c_k_up_K_e_ys _______ 7 __ ~

An example of this system is IPS [881]. Users can either directly enter the 64-bit
key or enter the key as a longer character string. The system then generates a 64-bit
key from the character string using a key-crunching technique.

Another solution is to store the key in a magnetic stripe card, plastic key with an
embedded ROM chip (called a ROM key), or smart card [556,557,455]. A user could
then enter his key into the system by inserting the physical token into a special
reader in his encryption box or attached to his computer terminal. While the user
can use the key, he does not know it and cannot compromise it. He can use it only
in the way and for the purposes indicated by the control vector.

A ROM key is a very clever idea. People understand physical keys, what they sig­
nify and how to protect them. Putting a cryptographic key in the same physical
form makes storing and protecting that key more intuitive.

This technique is made more secure by splitting the key into two halves, storing
one half in the terminal and the other half in the ROM key. The U.S. government's
STU-III secure telephone works this way. Losing the ROM key does not compro­
mise the cryptographic key-change that key and everything is back to normal. The
same is true with the loss of the terminal. This way, compromising either the ROM
key or the system does not compromise the cryptographic key-an adversary must
have both parts.

Hard-to-remember keys can be stored in encrypted form, using something similar
to a key-encryption key. For example, an RSA private key could be encrypted with a
DES key and stored on disk. To recover the RSA key, the user has to type in the DES
key to a decryption program.

If the keys are generated deterministically (with a cryptographically secure pseudo­
random-sequence generator), it might be easier to regenerate the keys from an easy­
to-remember password every time they are required.

Ideally, a key should never appear unencrypted outside the encryption device.
This isn't always possible, but it is a worthy goal.

8.8 BACKUP KEYS

Alice is the chief financial officer at Secrets, Ltd.-"We don't tell you our motto."
Like any good corporate officer, she follows the company's security guidelines and
encrypts all her data. Unfortunately, she ignores the company's street-crossing
guidelines and gets hit by a truck. What does the company's president, Bob, do?

Unless Alice left a copy of her key, he's in deep trouble. The whole point of
encryption is to make files unrecoverable without the key. Unless Alice was a
moron and used lousy encryption software, her files are gone forever.

Bob can avoid this in several ways. The simplest is sometimes called key escrow
(see Section 4.14): He requires all employees to write their keys on paper and give
them to the company's security officer, who will lock them in a safe somewhere (or
encrypt them all with a master key). Now, when Alice is bowled over on the Inter­
state, Bob can ask his security officer for her key. Bob should make sure to have the
combination to the safe himself as well; otherwise, if the se.curity officer is run over
by another truck, Bob will be out of luck again.

~-:s ______ C_H_A_P_T_E_R_8 __ K_e_y_M_a_n_a_g_em_e_n_t _______________ _

The problem with this key management system is that Bob has to trust his secu­
rity officer not to misuse everyone's keys. Even more significantly, all the employ­
ees have to trust the security officer not to misuse their keys. A far better solution
is to use a secret-sharing protocol (see Section 3. 7).

When Alice generates a key, she also divides up that key into some number of
pieces. She then sends each piece-encrypted, of course-to a different company
officer. None of those pieces alone is the key, but someone can gather all the pieces
together and reconstruct the key. Now Alice is protected against any one malicious
person, and Bob is protected against losing all of Alice's data after her run-in with
the truck. Or, she could just store the different pieces, encrypted with each of the
officer's different public keys, on her own hard disk. That way, no one gets involved
with key management until it becomes necessary.

Another backup scheme [188] uses smart cards (see Section 24.13) for the tempo­
rary escrow of keys. Alice can put the key to secure her hard drive onto the smart
card and give it to Bob while she is away. Bob can use the card to get into Alice's hard
drive, but because the key is stored in the card Bob cannot learn it. And the system
is bilaterally auditable: Bob can verify that the key will open Alice's drive, and when
Alice returns she can verify if Bob has used the key and how many times.

Such a scheme makes no sense for data transmission. On a secure telephone, the
key should exist for the length of the call and no longer. For data storage, as just
described, key escrow can be a good idea. I've lost about one key every five years,
and my memory is better than most. If 200 million people were using cryptography,
that same rate would equal 40 million lost keys per year. I keep copies of my house
keys with a neighbor because I may lose mine. If house keys were like cryptographic
keys, and I lost them, I could never get inside and recover my possessions, ever
again. Just as I keep off-site backups of my data, it makes sense to keep backups of
my data-encryption keys.

8.9 COMPROMISED KEYS

All of the protocols, techniques, and algorithms in this book are secure only if the
key (the private key in a public-key system) remains secret. If Alice's key is lost,
stolen, printed in the newspaper, or otherwise compromised, then all her security
is gone.

If the compromised key was for a symmetric cryptosystem, Alice has to change
her key and hope the actual damage was minimal. If it was a private key, she has big­
ger problems; her public key is probably on servers all over the network. And if Eve
gets access to Alice's private key, she can impersonate her on the network: reading
encrypted mail, signing correspondence, entering into contracts, and so forth. Eve
can, effectively, become Alice.

It is vital that news of a private key's compromise propagate quickly throughout
the network. Any databases of public keys must immediately be notified that a par­
ticular private key has been compromised, lest some unsuspecting person encrypt a
message in that compromised key.

________________ 8_.l_O_L_1_fe_t_im_e_o_f_K_ey_s _______ 7 __ ~

One hopes Alice knows when her key was compromised. If a KDC is managing
the keys, Alice should notify it that her key has been compromised. If there is no
KDC, then she should notify all correspondents who might receive messages from
her. Someone should publicize the fact that any message received after her key was
lost is suspect, and that no one should send messages to Alice with the associated
public key. The application should be using some sort of timestamp, and then users
can determine which messages are legitimate and which are suspect.

If Alice doesn't know exactly when her key was compromised, things are more
difficult. Alice may want to back out of a contract because the person who stole the
key signed it instead of her. If the system allows this, then anyone can back out of a
contract by claiming that his key was compromised before it was signed. It has to be
a matter for an adjudicator to decide.

This is a serious problem and brings to light the dangers of Alice tying all of her
identity to a single key. It would be better for Alice to have different keys for differ­
ent applications-just as she has different physical keys in her pocket for different
locks. Other solutions to this problem involve biometrics, limits on what can be
done with a key, time delays, and countersigning.

These procedures and tips are hardly optimal, but are the best we can do. The
moral of the story is to protect keys, and protect private keys above all else.

8.10 LIFETIME OF KEYS

No encryption key should be used for an indefinite period. It should expire auto­
matically like passports and licenses. There are several reasons for this:

The longer a key is used, the greater the chance that it will be com­
promised. People write keys down; people lose them. Accidents hap­
pen. If you use the same key for a year, there's a far greater chance of
compromise than if you use it for a day.

The longer a key is used, the greater the loss if the key is compro­
mised. If a key is used only to encrypt a single budgetary document on
a file server, then the loss of the key means only the compromise of
that document. If the same key is used to encrypt all the budgetary
information on the file server, then its loss is much more devastating.

The longer a key is used, the greater the temptation for someone to
spend the effort necessary to break it-even if that effort is a brute­
force attack. Breaking a key shared between two military units for a
day would enable someone to read and fabricate messages between
those units for that day. Breaking a key shared by an entire military
command structure for a year would enable that same person to read
and fabricate messages throughout the world for a year. In our
budget-conscious, post-Cold War world, which key would you choose
to attack?

~-s ______ C_HA_PT_E_R_8 __ K_e_y_M_a_n_a_g_em_e_n_t ______________ _

It is generally easier to do cryptanalysis with more ciphertext
encrypted with the same key.

For any cryptographic application, there must be a policy that determines the per­
mitted lifetime of a key. Different keys may have different lifetimes. For a connection­
based system, like a telephone, it makes sense to use a key for the length of the
telephone call and to use a new one with each call.

Systems on dedicated communications channels are not as obvious. Keys should
have relatively short lifetimes, depending on the value of the data and the amount
of data encrypted during a given period. The key for a gigabit-per-second communi­
cations link might have to be changed more often than the key for a 9600-baud
modem link. Assuming there is an efficient method of transferring new keys, ses­
sion keys should be changed at least daily.

Key-encryption keys don't have to be replaced as frequently. They are used only
occasionally (roughly once per day) for key exchange. This generates little cipher­
text for a cryptanalyst to work with, and the corresponding plaintext has no partic­
ular form. However, if a key-encryption key is compromised, the potential loss is
extreme: all communications encrypted with every key encrypted with the key­
encryption key. In some applications, key-encryption keys are replaced only once a
month or once a year. You have to balance the inherent danger in keeping a key
around for a while with the inherent danger in distributing a new one.

Encryption keys used to encrypt data files for storage cannot be changed often.
The files may sit encrypted on disk for months or years before someone needs them
again. Decrypting them and re-encrypting them with a new key every day doesn't
enhance security in any way; it just gives a cryptanalyst more to work with. One
solution might be to encrypt each file with a unique file key, and then encrypt all
the file keys with a key-encryption key. The key-encryption key should then be
either memorized or stored in a secure location, perhaps in a safe somewhere. Of
course, losing this key would mean losing all the individual file keys.

Private keys for public-key cryptography applications have varying lifetimes,
depending on the application. Private keys used for digital signatures and proofs of
identity may have to last years (even a lifetime). Private keys used for coin-flipping
protocols can be discarded immediately after the protocol is completed. Even if a
key's security is expected to last a lifetime, it may be prudent to change the key
every couple of years. The private keys in many networks arc good only for two
years; after that the user must get a new private key. The old key would still have to
remain secret, in case the user needed to verify a signature from that period. But the
new key would be used to sign new documents, reducing the number of signed doc­
uments a cryptanalyst would have for an attack.

8.11 DESTROYING KEYS

Given that keys must be replaced regularly, old keys must be destroyed. Old keys
are valuable, even if they are never used again. With them, an adversary can read old
messages encrypted with those keys [65].

________________ 8_._12 __ P_u_b_l_ic_-_k_ey_K_e_y_l_v1a_n_a_g_em_e_n_t _____ 7"'7~

Keys must be destroyed securely (see Section 10.9). If the key is written on paper,
the paper should be shredded or burned. Be careful to use a high-quality shredder;
many lousy shredders are on the market. Algorithms in this book are secure against
brute-force attacks costing millions of dollars and taking millions of years. If an adver­
sary can recover your key by taking a bag of shredded documents from your trash and
paying 100 unemployed workers in some backwater country ten cents per hour for a
year to piece the shredded pages together, that would be $26,000 well spent.

If the key is in a hardware EEPROM, the key should be overwritten multiple
times. If the key is in a hardware EPROM or PROM, the chip should be smashed
into tiny bits and scattered to the four winds. If the key is stored on a computer disk,
the actual bits of the storage should be overwritten multiple times (see Section 10.9)
or the disk should be shredded.

A potential problem is that, in a computer, keys can be easily copied and stored in
multiple locations. Any computer that does its own memory management, con­
stantly swapping programs in and out of memory, exacerbates the problem. There is
no way to ensure that successful key erasure has taken place in the computer, espe­
cially if the computer's operating system controls the erasure process. The more
paranoid among you should consider writing a special erasure program that scans all
disks looking for copies of the key's bit pattern on unused blocks and then erases
those blocks. Also remember to erase the contents of any temporary, or "swap," files.

8.12 PUBLIC-KEY KEY MANAGEMENT

Public-key cryptography makes key management easier, but it has its own unique
problems. Each person has only one public key, regardless of the number of people
on the network. If Alice wants to send a message to Bob, she has to get Bob's public
key. She can go about this several ways:

She can get it from Bob.

She can get it from a centralized database.

She can get it from her own private database.

Section 2.5 discussed a number of possible attacks against public-key cryptogra­
phy, based on Mallory substituting his key for Bob's. The scenario is that Alice
wants to send a message to Bob. She goes to the public-key database and gets Bob's
public key. But Mallory, who is sneaky, has substituted his own key for Bob's. (If
Alice asks Bob directly, Mallory has to intercept Bob's transmission and substitute
his key for Bob's.) Alice encrypts her message in Mallory's key and sends it to Bob.
Mallory intercepts the message, decrypts it, and reads it. He re-encrypts it with
Bob's real key and sends it on to Bob. Neither Alice nor Bob is the wiser.

Public-key Certificates
A public-key certificate is someone's public key, signed by a trustworthy person.

Certificates are used to thwart attempts to substitute one key for another [879]. Bob's

~-..:s;~------C_H_A_P_T_E_R_8 __ K_e_y_M_a_n_a_g_e_m_e_n_t ________________ _

certificate, in the public-key database, contains a lot more than his public key. It con­
tains information about Bob-his name, address, and so on-and it is signed by some­
one Alice trusts: Trent (usually known as a certification authority, or CA). By signing
both the key and the information about Bob, Trent certifies that the information
about Bob is correct and that the public key belongs to Bob. Alice checks Trent's sig­
nature and then uses the public key, secure in the knowledge that it is Bob's and no
one else's. Certificates play an important role in a number of public-key protocols
such as PEM [825] (see Section 24.10) and X.509 [304] (see Section 24.9).

A complicated noncryptographic issue surrounds this type of system. What is the
meaning of certification? Or, to put it another way, who is trusted to issue certifi­
cates to whom? Anyone may sign anyone else's certificate, but there needs to be
some way to filter out questionable certificates: for example, certificates for employ­
ees of one company signed by the CA of another company. Normally, a certification
chain transfers trust: A single trusted entity certifies trusted agents, trusted agents
certify company CAs, and company CAs certify their employees.

Here are some more things to think about:

What level of trust in someone's identity is implied by his certificate?

What are the relationships between a person and the CA that certified
his public key, and how can those relationships be implied by the cer­
tificate?

Who can be trusted to be the "single trusted entity" at the top of the
certification chain?

How long can a certification chain be?

Ideally, Bob would follow some kind of authentication procedure before the CA
signs his certificate. Additionally, some kind of timestamp or an indication of the
certificate's validity period is important to guard against compromised keys [461].

Timestamping is not enough. Keys may be invalidated before they have expired,
either through compromise or for administrative reasons. Hence, it is important the
CA keep a list of invalid certificates, and for users to regularly check that list. This
key revocation problem is still a difficult one to solve.

And one public-key/private-key pair is not enough. Certainly any good imple­
mentation of public-key cryptography needs separate keys for encryption and digi­
tal signatures. This separation allows for different security levels, expiration times,
backup procedures, and so on. Someone might sign messages with a 2048-bit key
stored on a smart card and good for t\A.renty years, while they might use a 768-bit key
stored in the computer and good for six months for encryption.

And a single pair of encryption and signature keys isn't enough, either. A private
key authenticates a relationship as well as an identity, and people have more than
one relationship. Alice might want to sign one document as Alice the individual,
another as Alice, vice-president of Monolith, Inc., and a third as Alice, president of
her community organization. Some of these keys are more valuable than others, so
they can be better protected. Alice might have to store a backup of her work key

_______________ 8_._1_2_P_u_b_l_i_c-_k_e_y_K_e_y_M_a_n_a_g_e_m_e_n_t _____ 7 __ ~

with the company's security officer; she doesn't want the company to have a copy of
the key she signed her mortgage with. Just as Alice has multiple physical keys in her
pocket, she is going to have multiple cryptographic keys.

Distributed Key Management
In some situations, this sort of centralized key management will not work. Per­

haps there is no CA whom Alice and Bob both trust. Perhaps Alice and Bob trust
only their friends. Perhaps Alice and Bob trust no one.

Distributed key management, used in PGP (see Section 24.12), solves this prob­
lem with introducers. Introducers are other users of the system who sign their
friends' public keys. For example, when Bob generates hiE> public key, he gives
copies to his friends: Carol and Dave. They know Bob, so they each sign Bob's key
and give Bob a copy of the signature. Now, when Bob presents his key to a stranger,
Alice, he presents it with the signatures of these two introducers. If Alice also
knows and trusts Carol, she has reason to believe that Bob's key is valid. If she
knows and trusts Carol and Dave a little, she has reason to believe that Bob's key is
valid. If she doesn't know either Carol or Dave, she has no reason to trust Bob's key.

Over time, Bob will collect many more introducers. If Alice and Bob travel in sim­
ilar circles, the odds are good that Alice will know one of Bob's introducers. To pre­
vent against Mallory's substituting one key for another, an introducer must be sure
that Bob's key belongs to Bob before he signs it. Perhaps the introducer should
require the key be given face-to-face or verified over the telephone.

The benefit of this mechanism is that there is no CA that everyone has to trust.
The down side is that when Alice receives Bob's public key, she has no guarantee
that she will know any of the introducers and therefore no guarantee that she will
trust the validity of the key.

------------------------z:-~

CHAPTER

Algorithm Types
and Modes

9

There are two basic types of symmetric algorithms: block ciphers and stream ciphers.
Block ciphers operate on blocks of plaintext and ciphertext-usually of 64 bits but
sometimes longer. Stream ciphers operate on streams of plaintext and ciphertext one
bit or byte (sometimes even one 32-bit word) at a time. With a block cipher, the same
plaintext block will always encrypt to the same ciphertext block, using the same key.
With a stream cipher, the same plaintext bit or byte will encrypt to a different bit or
byte every time it is encrypted.

A cryptographic mode usually combines the basic cipher, some sort of feedback,
and some simple operations. The operations are simple because the security is a
function of the underlying cipher and not the mode. Even more strongly, the cipher
mode should not compromise the security of the underlying algorithm.

There are other security considerations: Patterns in the plaintext should be con­
cealed, input to the cipher should be randomized, manipulation of the plaintext by
introducing errors in the ciphertext should be difficult, and encryption of more than
one message with the same key should be possible. These will be discussed in detail
in the next sections.

Efficiency is another consideration. The mode should not be significantly less effi­
cient than the underlying cipher. In some circumstances it is important that the
ciphertext be the same size as the plaintext.

A third consideration is fault-tolerance. Some applications need to parallelize
encryption or decryption, while others need to be able to preprocess as much as pos­
sible. In still others it is important that the decrypting process be able to recover
from bit errors in the ciphertext stream, or dropped or added bits. As we will see, dif­
ferent modes have different subsets of these characteristics.

9 .1 ELECTRONIC CODEBOOK MODE

Electronic codebook (ECB) mode is the most obvious way to use a block cipher: A
block of plaintext encrypts into a block of ciphertext. Since the same block of plain-

CHAPTER 9 Algorithm Types and Modes

text always encrypts to the same block of ciphertext, it is theoretically possible to
create a code book of plaintexts and corresponding ciphertexts. However, if the
block size is 64 bits, the code book will have 264 entries-much too large to pre­
compute and store. And remember, every key has a different code book.

This is the easiest mode to work with. Each plaintext block is encrypted indepen­
dently. You don't have to encrypt a file linearly; you can encrypt the 10 blocks in the
middle first, then the blocks at the end, and finally the blocks in the beginning. This
is important for encrypted files that are accessed randomly, like a database. If a data­
base is encrypted with ECB mode, then any record can be added, deleted, encrypted,
or decrypted independently of any other record-assuming that a record consists of
a discrete number of encryption blocks. And processing is parallizeable; if you have
multiple encryption processors, they can encrypt or decrypt different blocks with­
out regard for each other.

The problem with ECB mode is that if a cryptanalyst has the plain text and cipher­
text for several messages, he can start to compile a code book without knowing the
key. In most real-world situations, fragments of messages tend to repeat. Different
messages may have bit sequences in common. Computer-generated messages, like
electronic mail, may have regular structures. Messages may be highly redundant or
have long strings of zeros or spaces.

If a cryptanalyst learns that the plaintext block "5e08lbc5" encrypts to the cipher­
text block "7 ea593a4," he can immediately decrypt that ciphertext block whenever
it appears in another message. If the encrypted messages have a lot of redundancies,
and these tend to show up in the same places in different messages, a cryptanalyst
can get a lot of information. He can mount statistical attacks on the underlying
plaintext, irrespective of the strength of the block cipher.

This vulnerability is greatest at the beginning and end of messages, where well­
defined headers and footers contain information about the sender, receiver, date,
and so on. This problem is sometimes called stereotyped beginnings and stereotyped
endings.

On the plus side, there is no security risk in encrypting multiple messages with
the same key. In fact, each block can be looked at as a separate message encrypted
with the same key. Bit errors in the ciphertext, when decrypted, will cause the
entire plaintext block to decrypt incorrectly but will not affect the rest of the plain­
text. However, if a ciphertext bit is accidentally lost or added, all subsequent cipher­
text will decrypt incorrectly unless there is some kind of frame structure to realign
the block boundaries.

Padding
Most messages don't divide neatly into 64-bit (or whatever size) encryption

blocks; there is usually a short block at the end. ECB requires 64-bit blocks. Padding
is the way to deal with this problem.

Pad the last block with some regular pattern-zeros, ones, alternating ones and
zeros-to make it a complete block. If you need to delete the padding after decryp­
tion, add the number of padding bytes as the last byte of the last block. For example,

________________ 9_._2_B_lo_c_k_R_e_p_la_y _______ 7_,,,,,~

assume the block size is 64 bits and the last block consists of 3 bytes (24 bits). Five
bytes of padding are required to make the last block 64 bits; add 4 bytes of zeros and
a final byte with the number 5. After decryption, delete the last 5 bytes of the last
decryption block. For this method to work correctly, every message must be padded.
Even if the plaintext ends on a block boundary, you have to pad one complete block.
Otherwise, you can use an end-of-file character to denote the final plaintext byte,
and then pad after that character.

Figure 9 .1 is an alternative, called ciphertext stealing [402]. Pn _ 1 is the last full
plaintext block and Pn is the final, short, plaintext block. Cn _ 1 is the last full cipher­
text block and Cn is the final, short, ciphertext block. C' is just an intermediate
result and is not part of the transmitted ciphertext.

9.2 BLOCK REPIAY

A more serious problem with ECB mode is that an adversary could modify encrypted
messages without knowing the key, or even the algorithm, in such a way as to fool
the intended recipient. This problem was first discussed in [291].

To illustrate the problem, consider a money transfer system that moves money
between accounts in different banks. To make life easier for the bank's computer
systems, banks agree on a standard message format for money transfer that looks
like this:

Bank One: Sending
Bank Two: Receiving
Depositor's Name
Depositor's Account
Amount of Deposit

1.5 blocks
1.5 blocks
6 blocks
2 blocks
1 block

A block corresponds to an 8-byte encryption block. The messages are encrypted
using some block algorithm in ECB mode.

Encryption Decryption

C' cn-1

c,, C' C'

Figure 9.1 Ciphertext stealing in ECB mode.

CHAPTER 9 Algorithm Types and Modes

Mallory, who is listening on the communications line between two banks, Bank
of Alice and Bank of Bob, can use this information to get rich. First, he sets up his
computer to record all of the encrypted messages from Bank of Alice to Bank of Bob.
Then, he transfers $100 from Bank of Alice to his account in Bank of Bob. Later, he
does it again. Using his computer, he examines the recorded messages looking for a
pair of identical messages. These messages are the ones authorizing the $100 trans­
fers to his account. If he finds more than one pair of identical messages (which is
most likely in real life), he does another money transfer and records those results.
Eventually he can isolate the message that authorized his money transaction.

Now he can insert that message into the communications link at will. Every time
he sends the message to Bank of Bob, another $100 will be credited to his account.
When the two banks reconcile their transfers (probably at the end of the day), they
will notice the phantom transfer authorizationsi but if Mallory is clever, he will
have already withdrawn the money and headed for some banana republic without
extradition laws. And he probably did his scam with dollar amounts far larger than
$100, and with lots of different banks.

At first glance, the banks could easily prevent this by adding a timestamp to their
messages.

Date/Time Stamp:
Bank One: Sending
Bank Two: Receiving
Depositor's Name
Depositor's Account
Amount of Deposit

1 block
1.5 blocks
1.5 blocks
6 blocks
2 blocks
1 block

Two identical messages would be easy to spot using this system. Still, using a
technique called block replay, Mallory can still get rich. Figure 9.2 shows that Mal­
lory can pick out the eight ciphertext blocks that correspond to his own name and
account number: blocks 5 through 12. A diabolical laugh is appropriate at this point,
because Mallory is now ready.

He intercepts random messages from Bank of Alice to Bank of Bob and replaces
blocks 5 through 12 in the message with the bytes that correspond to his name and

Block Number

1 2 I 3 I 4 5 I 6 I 7 I 8 I 9 I 10 11 I 12 13

Time- Sending I Receiving Depositor's Depositor's
Amount stamp Bank Bank Name Account

Field

Figure 9.2 Encryption blocks for an example record.

_______________ 9_._3_C_1_·p_h_er_B_lo_c_k_C_h_m_·n_in_g_M_o_d_e _____ 7 __ ~

account number. Then he sends them on to Bank of Bob. He doesn't have to know
who the original depositor was; he doesn't even have to know what the amount was
(although, he could correlate the messages he doctored with the various deposits
into his account and determine the encrypted blocks corresponding to some dollar
amount). He simply changes the name and account numbers to his own and
watches his account balance grow. (I suppose Mallory has to be careful not to mod­
ify a withdrawal message, but assume for the moment that each is a different length
or something.)

This will take longer than a day for the banks to catch. When they reconcile their
transfers at the end of the day, everything will match. It probably won't be until one
of the legitimate depositors notices that his deposits are not being credited, or when
someone flags unusual activity in Mallory's account, that the banks will figure out
the scam. Mallory isn't stupid, and by then he will have closed his account, changed
his name, and bought a villa in Argentina.

Banks can minimize the problem by changing their keys frequently, but this only
means that Mallory is going to have to work more quickly. Adding a MAC, however,
will also solve the problem. Even so, this is a fundamental problem with ECB mode.
Mallory can remove, repeat, or interchange blocks at will. The solution is a tech­
nique called chaining.

9. 3 CIPHER BLOCK CHAINING MODE

Chaining adds a feedback mechanism to a block cipher: The results of the encryp­
tion of previous blocks are fed back into the encryption of the current block. In
other words, each block is used to modify the encryption of the next block. Each
ciphertext block is dependent not just on the plaintext block that generated it but
on all the previous plaintext blocks.

In cipher block chaining (CBC) mode, the plaintext is XORed with the previous
ciphertext block before it is encrypted. Figure 9.3a shows CBC encryption in action.
After a plaintext block is encrypted, the resulting ciphertext is also stored in a feed­
back register. Before the next plaintext block is encrypted, it is XORed with the
feedback register to become the next input to the encrypting routine. The resulting
ciphertext is again stored in the feedback register, to be XORed with the next plain­
text block, and so on until the end of the message. The encryption of each block
depends on all the previous blocks.

Decryption is just as straightforward (see Figure 9.3b). A ciphertext block is
decrypted normally and also saved in a feedback register. After the next block is
decrypted, it is XORed with the results of the feedback register. Then the next cipher­
text block is stored in the feedback register, and so on, until the end of the message.

Mathematically, this looks like:

C; = EK(P; E8 C; - i)

P, = C; - I E8 DJ((C;)

CHAPTER 9 Algorithm Types and Modes

pi-I P; P; + I C;-1 C; C;+ I

-t j
!

7
C;_1 C;+l P;_ 1 P;+ 1

(a) CBC Encryption (b) CBC Decryption

Figure 9.3 Cipher block chaining mode.

Initialization Vector
CBC mode forces identical plaintext blocks to encrypt to different ciphertext

blocks only when some previous plaintext block is different. Two identical mes­
sages will still encrypt to the same ciphertext. Even worse, two messages that begin
the same will encrypt in the same way up to the first difference.

Some messages have a common header: a letterhead, or a "From" line, or what­
ever. While block replay would still be impossible, this identical beginning might
give a cryptanalyst some useful information.

Prevent this by encrypting random data as the first block. This block of random
data is callc'd the initialization vector (IV), initializing variable, or initial chaining
value. The IV has no meaning; it's just there to make each message unique. When
the receiver decrypts this block, he just uses it to fill the feedback register and oth­
erwise ignores it. A times tamp often makes a good IV. Otherwise, use some random
bits from someplace.

With the addition of IVs, identical plaintext messages encrypt to different cipher­
text messages. Thus, it is impossible for an eavesdropper to attempt block replay,
and more difficult for him to build a code book. While the IV should be unique for
each message encrypted with the same key, it is not an absolute requirement.

The IV need not be secret; it can be transmitted in the clear with the ciphertext.
If this seems wrong, consider the following argument. Assume that we have a mes­
sage of several blocks: B1, B2, ••. , B1• B1 is encrypted with the IV. B2 is encrypted
using the ciphertext of B1 as the IV. B3 is encrypted using the ciphertext of B2 as the
IV, and so on. So, if there are n blocks, there are n-1 exposed "IVs," even if the orig­
inal IV is kept secret. So there's no reason to keep the IV secret; the IV is just a
dummy ciphertext block-you can think of it as B0 to start the chaining.

_______________ 9_.3 __ C_ip_h_er_B_l_o_c_k_C_h_a_1_·n_in_g_M_o_d_e _____ 7 __ ~

Padding
Padding works just like ECB mode, but in some applications the ciphertext has to

be exactly the same size as the plain text. Perhaps a plain text file has to be encrypted
and then replaced in the exact same memory location. In this case, you have to
encrypt the last short block differently. Assume the last block has j bits. After
encrypting the last full block, encrypt the ciphertext again, select the left-most j bits
of the encrypted ciphertext, and XOR that with the short block to generate the
ciphertext. Figure 9.4 illustrates this.

The weakness here is that while Mallory cannot recover the last plaintext block,
he can change it systematically by changing individual bits in the ciphertext. If the
last few bits of the ciphertext contain essential information, this is a weakness. If
the last bits simply contain housekeeping information, it isn't a problem.

Ciphertext stealing is a better way (see Figure 9.5) [402]. Pn _ 1 is the last full plain­
text block, and Pn is the final, short, plaintext block. Cn _ 1 is the last full ciphertext
block, and Cn is the final, short, ciphertext block. C' is just an intermediate result
and is not part of the transmitted ciphertext. The benefit of this method is that all
the bits of the plaintext message go through the encryption algorithm.

Error Propagation
CBC mode can be characterized as feedback of the ciphertext at the encryption

end and feedforward of the ciphertext at the decryption end. This has implications
having to do with errors. A single bit error in a plaintext block will affect that
ciphertext block and all subsequent ciphertext blocks. This isn't significant because
decryption will reverse that effect, and the recovered plaintext will have the same
single error.

Ciphertext errors are more common. They can easily result from a noisy commu­
nications path or a malfunction in the storage medium. In CBC mode, a single-bit
error in the ciphertext affects one block and one bit of the recovered plaintext. The

Select
Leftmost

J bits

Pn (}-bits long)

C" (}-bits long)

Figure 9.4 Encrypting the last short block in CBC mode.

CHAPTER 9 Algorithm Types and Modes

• ¥ en-I j 1 en-

Ek Lr Dk Dk

I e,, I qi

~
en-2 _.

e,, C' I en-I I ' P,,-1

Figure 9.5 Ciphertext stealing in CBC mode.

block containing the error is completely garbled. The subsequent block has a I-bit
error in the same bit position as the error.

This property of taking a small ciphertext error and converting it into a large
plain text error is called error extension. It is a major annoyance. Blocks after the sec­
ond are not affected by the error, so CBC mode is self-recovering. Two blocks are
affected by an error, but the system recovers and continues to work correctly for all
subsequent blocks. CBC is an example of a block cipher being used in a self­
synchronizing manner, but only at the block level.

While CBC mode recovers quickly from bit errors, it doesn't recover at all from
synchronization errors. If a bit is added or lost from the ciphertext stream, then all
subsequent blocks are shifted one bit out of position and decryption will generate
garbage indefinitely. Any cryptosystem that uses CBC mode must ensure that the
block structure remains intact, either by framing or by storing data in multiple­
block-sized chunks.

Security Problems
Some potential problems are caused by the structure of CBC. First, because a

ciphertext block affects the following block in a simple way, Mallory can add blocks
to the end of an encrypted message without being detected. Sure, it will probably
decrypt to gibberish, but in some situations this is undesirable.

If you are using CBC, you should structure your plain text so that you know where
the message ends and can detect the addition of extra blocks.

Second, Mallory can alter a ciphertext block to introduce controlled changes in
the following decrypted plaintext block. For example, if Mallory toggles a single
ciphertext bit, the entire block will decrypt incorrectly, but the following block will
have a I-bit error in the corresponding bit position. There are situations where this
is desirable. The entire plaintext message should include some kind of controlled
redundancy or authentication.

Finally, although plaintext patterns are concealed by chaining, very long mes­
sages will still have patterns. The birthday paradox predicts that there will be iden-

__________________ 9._4 __ St_r_e_am __ C_ip_h_e_r_s _______ 7~~

tical blocks after 2m/2 blocks, where m is the block size. For a 64-bit block size, that's
about 34 gigabytes. A message has to be pretty long before this is a problem.

9.4 STREAM CIPHERS

Stream ciphers convert plaintext to ciphertext 1 bit at a time. The simplest imple­
mentation of a stream cipher is shown in Figure 9.6. A keystream generator (some­
times called a running-key generator) outputs a stream of bits: k 1, k 2, k,, ... , k;.
This keystream (sometimes called a running key) is XORed with a stream of plain­
text bits, p 1, p 2, p3, •.. , Pi, to produce the stream of ciphertext bits.

Ci= p1 EB R;

At the decryption end, the ciphertext bits are XORed with an identical keystream
to recover the plaintext bits.

p; = c, EB k;

Since

Pi EB k1 EB ki = Pi

this works nicely.
The system's security depends entirely on the insides of the keystream generator.

If the keystream generator outputs an endless stream of zeros, the ciphertext will
equal the plain text and the whole operation will be worthless. If the keystream gen­
erator spits out a repeating 16-bit pattern, the algorithm will be a simple XOR with
negligible security (see Section 1.4). If the keystream generator spits out an endless
stream cf random (not pseudo-random, but real random-see Section 2.8) bits, you
have a one-time pad and perfect security.

The reality of stream cipher security lies somewhere between the simple XOR
and the one-time pad. The keystream generator generates a bit stream that looks
random, but is actually a deterministic stream that can be flawlessly reproduced at
decryption time. The closer the keystream generator's output is to random, the
harder time a cryptanalyst will have breaking it.

Keystream
Generator

Keystream K ;

Plaintext

Keystream
Generator

Keystream K ;

Plaintext Ciphertext
P; -----t-+-+--------------i--,c-+------ P;

Encrypt
C;

Decrypt

Figure 9.6 Stream cipher.

CHAPTER 9 Algorithm Types and Modes

If, however, the keystream generator produces the same bit stream every time it
is turned on, the resulting cryptosystem will be trivial to break. An example will
show why.

If Eve has a ciphertext and associated plaintext, she can XOR the plaintext and
the ciphertext to recover the keystream. Or, if she has two different ciphertexts
encrypted with the same keystream, she can XOR them together and get two plain­
text messages XORed with each other. This is easy to break, and then she can XOR
one of the plaintexts with the ciphertext to get the keystream.

Now, whenever she intercepts another ciphertext message, she has the keystream
bits necessary to decrypt it. In addition, she can decrypt and read any old ciphertext
messages she has previously intercepted. When Eve gets a single plaintext/cipher­
text pair, she can read everything.

This is why all stream ciphers have keys. The output of the keystream generator
is a function of the key. Now, if Eve gets a plaintext/ciphertext pair, she can only
read messages encrypted with a single key. Change the key, and the adversary is
back to square one. Stream ciphers are especially useful to encrypt never-ending
streams of communications traffic: a T-1 link between two computers, for example.

A keystream generator has three basic parts (see Figure 9. 7). The internal state
describes the current state of the keystream generator. Two keystream generators,
with the same key and the same internal state, will produce the same keystream.
The output function takes the internal state and generates a keystream bit. The
next-state function takes the internal state and generates a new internal state.

9.5 SELF-SYNCHRONIZING STREAM CIPHERS

For a self-synchronizing stream cipher, each keystream bit is a function of a fixed
number of previous ciphertext bits [1378]. The military calls this ciphertext auto
key (CTAK). The basic idea was patented in 1946 [667].

KEY K

Figure 9. 7 Inside a keystream generator.

9.5 Self-synchronizing Stream Ciphers

Figure 9.8 shows a self-synchronizing stream cipher. The internal state is a func­
tion of the previous n ciphertext bits. The cryptographic complexity is in the output
function, which takes the internal state and generates a keystream bit.

Since the internal state depends wholly on the previous n ciphertext bits, the
decryption keystream generator will automatically synchronize with the encryp­
tion keystream generator after receiving n ciphertext bits.

In smart implementations of this mode, each message begins with a random
header n bits long. That header is encrypted, transmitted, and then decrypted. The
decryption will be incorrect, but after those n bits both keystream generators will be
synchronized.

The down side of a self-synchronizing stream cipher is error propagation. For each
ciphertext bit garbled in transmission, the decryption keystream generator will
incorrectly produce n keystream bits. Therefore, for each ciphertext error, there will
be n corresponding plaintext errors, until the garbled bit works its way out of the
internal state.

Security Problems
Self-synchronizing stream ciphers are also vulnerable to a playback attack. First

Mallory records some ciphertext bits. Then, at a later time, he substitutes this
recording into current traffic. After some initial garbage while the receiving end
resynchronizes, the old ciphertext will decrypt as normal. The receiving end has no
way of knowing that this is not current data, but old data being replayed. Unless
timestamps are used, Mallory can convince a bank to credit his account again and
again, by replaying the same message (assuming the key hasn't been changed, of
course). Other weaknesses in this type of scheme could be exploited in the cases of
very frequent resynchronization [408].

Figure 9.8 A self-synchronizing keystream generator.

CHAPTER 9 Algorithm Types and Modes

9 .6 CIPHER-FEEDBACK MODE

Block ciphers can also be implemented as a self-synchronizing stream cipher; this is
called cipher-feedback (CFB) mode. With CBC mode, encryption cannot begin until
a complete block of data is received. This is a problem in some network applica­
tions. In a secure network environment, for example, a terminal must be able to
transmit each character to the host as it is entered. When data has to be processed
in byte-sized chunks, CBC mode just won't do.

In CFB mode, data can be encrypted in units smaller than the block size. The fol­
lowing example will encrypt one ASCII character at a time (this is called 8-bit CFB),
but nothing is sacred about the number eight. You can encrypt data one bit at a time
using 1-bit CFB, although using one complete encryption of a block cipher for a sin­
gle bit seems like a whole lot of work; a stream cipher might be a better idea.
(Reducing the number of rounds of the block cipher to speed things up is not rec­
ommended [1269].) You can also use 64-bit CFB, or any n-bit CFB where n is less
than or equal to the block size.

Figure 9.9 shows 8-bit CFB mode working with a 64-bit block algorithm. A block
algorithm in CFB mode operates on a queue the size of the input block. Initially, the
queue is filled with an IV, as in CBC mode. The queue is encrypted and the left-most
eight bits of the result are XORed with the first 8-bit character of the plaintext to
become the first 8-bit character of the ciphertext. This character can now be trans­
mitted. The same eight bits are also moved to the right-most eight bit positions of
the queue, and all the other bits move eight to the left. The eight left-most bits are
discarded. Then the next plaintext character is encrypted in the same manner.
Decryption is the reverse of this process. On both the encryption and the decryption
side, the block algorithm is used in its encryption mode.

If the block size of the algorithm is n, then n-bit CFB looks like (see Figure 9.10):

Shift Register Shift Register

KEY K Encrypt ti
1 KEY K

(a) Encipherment (b) Deciphering

Figure 9.9 8-bit cipher-feedback mode.

_______________ 9_._6_C_i_ph_e_r_-f_e_ed_b_a_c_k_M_o_d_e ______ 7,,,,,~

Ci-I C I C;_ 1

C; = P; EB EK(C; _ i)

P; = C; EB EK(C; - i)

Figure 9.10 n-bit CFB with an n-bit
algorithm.

Like CBC mode, CFB mode links the plaintext characters together so that the
ciphertext depends on all the preceding plaintext.

Initialization Vector
To initialize the CFB process, the input to the block algorithm must be initialized

with an IV. Like the IV used in CBC mode, it need not be secret.
The IV must be unique, though. (This is different from the IV in CBC mode,

which should be unique but does not have to be.) If the IV in CFB is not unique, a
cryptanalyst can recover the corresponding plain text. The IV must be changed with
every message. It can be a serial number, which increments after each message and
does not repeat during the lifetime of the key. For data encrypted for storage, it can
be a function of the index used to look up the data.

Error Propagation
With CFB mode, an error in the plaintext affects all subsequent ciphertext and

reverses itself at decryption. An error in the ciphertext is more interesting. The first
effect of a single-bit error in the ciphertext is to cause a single error in the plaintext.
After that, the error enters the shift register, where it causes ciphertext to be garbled
until it falls off the other end of the register. In 8-bit CFB mode, 9 bytes of decrypted
plaintext are garbled by a single-bit error in the ciphertext. After that, the system
recovers and all subsequent ciphertext is decrypted correctly. In general, in n-bit
CFB a single ciphertext error will affect the decryption of the current and following
m/n-1 blocks, where m is the block size.

One subtle problem with this kind of error propagation is that if Mallory knows the
plaintext of a transmission, he can toggle bits in a given block and make it decrypt to
whatever he wants. The next block will decrypt to garbage, but the damage may
already be done. And he can change the final bits of a message without detection.

CFB is self-recovering with respect to synchronization errors as well. The error
enters the shift register, where it garbles 8 bytes of data until it falls off the other

~""'s;,------C_H_A_P_T_E_R_9 __ A_lg_o_r_i_th_m_Ty_p_e_s_a_n_d_M_o_d_e_s ____________ _

end. CFB is an example of block cipher being used as a self-synchronizing stream
cipher (at the block level).

9. 7 SYNCHRONOUS STREAM CIPHERS

In a synchronous stream cipher the keystream is generated independent of the mes­
sage stream. The military calls this Key Auto-Key (KAK). On the encryption side, a
keystream generator spits out keystream bits, one after the other. On the decryption
side, another keystream generator spits out the identical keystream bits, one after
the other. This works, as long as the two keystream generators are synchronized. If
one of them skips a cycle or if a ciphertext bit gets lost during transmission, then
every ciphertext character after the error will decrypt incorrectly.

If this happens, the sender and receiver must resynchronize their keystream gen­
erators before they can proceed. Frustrating matters even further, they must do this
in such a way as to ensure that no part of the keystream is repeated, so the obvious
solution of resetting the keystream generator to an earlier state won't work.

On the plus side, synchronous ciphers do not propagate transmission errors. If a
bit is garbled during transmission, which is far more likely than a bit being lost alto­
gether, then only the garbled bit will be decrypted incorrectly. All preceding and
subsequent bits will be unaffected.

Since a keystream generator must generate the same output on both the encryp­
tion and decryption ends, it must be deterministic. Because it is implemented in a
finite-state machine (i.e., a computer), the sequence will eventually repeat. These
keystream generators are called periodic. Except for one-time pads, all keystream
generators are periodic.

The keystream generator must have a long period, one far longer than the number
of bits the generator will output between key changes. If the period is less than the
plaintext, then different parts of the plaintext will be encrypted the same way-a
severe weakness. If a cryptanalyst knows a piece of the plaintext, he can recover a
piece of the keystream and use that to recover more of the plain text. Even if the ana­
lyst only has the ciphertext, he can XOR the sections encrypted with the same
keystream and get the XOR of plaintext with plain text. This is just the simple XOR
algorithm with a very long key.

How long a period is long enough depends on the application. A keystream gener­
ator encrypting a continuous T-1 link will encrypt 237 bits per day. The keystream
generator's period must be orders of magnitude larger than that, even if the key is
changed daily. If the period is long enough, you might only have to change the key
weekly or even monthly.

Synchronous stream ciphers also protect against any insertions and deletions in
the ciphertext, because these cause a loss of synchronization and will be immedi­
ately detected. They do not, however, fully protect against bit toggling. Like block
ciphers in CFB mode, Mallory can toggle individual bits in the stream. If he knows
the plaintext, he can make those bits decrypt to whatever he wants. Subsequent bits
will decrypt correctly, so in certain applications Mallory can still do considerable
damage.

_______________ 9_.8 __ o_u_tp_u_t_-f_e_ed_b_a_c_k_M_o_d_e ______ 7 _~

Insertion Attack
Synchronous stream ciphers are vulnerable to an insertion attack [93]. Mallory

has recorded a ciphertext stream, but does not know the plaintext or the keystream
used to encrypt the plaintext.

Original plaintext:
Original keystream:
Original ciphertext:

Pi P2 p3 p,
k1 kz k3 k,
C1 Cz C3 C4

Mallory inserts a single known bit, p', into the plain text after p 1 and then manages
to get the modified plaintext encrypted with the same keystream. He records the
resultant new ciphertext:

New plaintext:
Original keystream:
Updated ciphertext:

P1 p' P1 p3 P,
k1 kz k1 k, ks
C1 c'2 c'1 c'4 e's

Assuming he knows the value of p', he can determine the entire plaintext after
that bit from the original ciphertext and new ciphertext:

k2 = c'2 El) p', and then P1 = C1 El) k1
k3 = c'3 El) P1, and then p3 = C1 El) k3
k4 = c'4 El) p3 , and then p, = c4 \B k4

Mallory doesn't even have to know the exact pos1t10n in which the bit was
inserted; he can just compare the original and updated ciphertexts to see where they
begin to differ. To protect against this attack, never use the same keystream to
encrypt two different messages.

9.8 OUTPUT-FEEDBACK MODE

Output-feedback (OFB} mode is a method of running a block cipher as a syn­
chronous stream cipher. It is similar to CFB mode, except that n bits of the previous
output block are moved into the right-most positions of the queue (see Figure 9 .11).
Decryption is the reverse of this process. This is called n-bit OFB. On both the
encryption and the decryption sides, the block algorithm is used in its encryption
mode. This is sometimes called internal feedback, because the feedback mechanism
is independent of both the plaintext and the ciphertext streams [291].

If n is the block size of the algorithm, then n-bit OFB looks like (see Figure 9.12):

C; = P; EB S;; S; = EK(S; - i)

P; = C; EB S;; S; = EK(S; - i)

S; is the state, which is independent of either the plaintext or the ciphertext.
One nice feature of OFB mode is that most of the work can occur offline, before

the plaintext message even exists. When the message finally arrives, it can be
XORed with the output of the algorithm to produce the ciphertext.

CHAPTER 9 Algorithm Types and Modes

Shift Register Shift Register

,----~--""" h
KEY K KEYK

/

Left-most byte Left-most byte

(a) Encipherment (b) Deciphering

Figure 9.11 8-bit output-feedback mode.

Initialization Vector
The OFB shift register must also be initially loaded with an IV. It should be unique

but does not have to be secret.

Error Propagation
OFB mode has no error extension. A single-bit error in the ciphertext causes a

single-bit error in the recovered plaintext. This can be useful in some digitized ana­
log transmissions, like digitized voice or video, where the occasional single-bit error
can be tolerated but error extension cannot.

On the other hand, a loss of synchronization is fatal. If the shift registers on the
encryption end and the decryption end are not identical, then the recovered plain­
text will be gibberish. Any system that uses OFB mode must have a mechanism for
detecting a synchronization loss and a mechanism to fill both shift registers with a
new (or the same) IV to regain synchronization.

Figure 9.12 n-bit OFB with an n-bit
algorithm.

___________________ 9_.9 __ C_o_u_n_t_e_r_M_o_d_e ________ 7-----.,,~

Security Problems with OFB

An analysis of OFB mode [588,430,431,789] demonstrates that OFB should be
used only when the feedback size is the same as the block size. For example, you
should only use a 64-bit algorithm in 64-bit OFB mode. Even though the U.S. gov­
ernment authorizes other feedback sizes for DES [1143], avoid them.

OFB mode XORs a keystream with the text. This keystream will eventually
repeat. It is important that it does not repeat with the same key; otherwise, there is
no security. When the feedback size equals the block size, the block cipher acts as a
permutation of m-bit values (where m is the block length) and the average cycle
length is 2m - 1. For a 64-bit block length, this is a very long number. When the feed­
back size n is less than the block length, the average cycle length drops to around
2m12• For a 64-bit block cipher, this is only 232-not long enough.

Stream Ciphers in OFB

A stream cipher can also run in OFB mode. In this case, the key affects the next­
state function (see Figure 9.13). The output function does not depend on the key;
very often it is something simple like a single bit of the internal state or the XOR
of multiple bits of the internal state. The cryptographic complexity is in the next­
state function; this function is key-dependent. This method is also called internal
feedback [291], because the feedback mechanism is internal to the key generation
algorithm.

In a variant of this mode, the key determines just the initial state of the keystream
generator. After the key sets the internal state of the generator, the generator runs
undisturbed from then on.

9.9 COUNTER MODE

Block ciphers in counter mode use sequence numbers as the input to the algorithm
[824,498,715]. Instead of using the output of the encryption algorithm to fill the reg­
ister, the input to the register is a counter. After each block encryption, the counter

K;

Figure 9.13 A keystream generator
in output-feedback mode.

CHAPTER 9 Algorithm Types and Modes

increments by some constant, typically one. The synchronization and error propa­
gation characteristics of this mode are identical to those of OFB. Counter mode
solves the OFB mode problem of n-bit output where n is less than the block length.

Nothing is sacred about the counter; it does not have to count through all the
possible inputs in order. You can use any of the random-sequence generators in
Chapters 16 and 17, whether cryptographically secure or not, as input to the block
algorithm.

Stream Ciphers in Counter Mode
Stream ciphers in counter mode have simple next-state functions and compli­

cated output functions dependent on the key. This technique, illustrated in Figure
9.14, was suggested in [498,715]. The next-state function can be something as sim­
ple as a counter, adding one to the previous state.

With a counter mode stream cipher, it is possible to generate the ith key bit, ki,
without first generating all the previous key bits. Simply set the counter manually
to the ith internal state and generate the bit. This is useful to secure random-access
data files; you can decrypt a specific block of data without decrypting the entire file.

9 .10 OTHER BLOCK-CIPHER MODES

Block Chaining Mode

To use a block algorithm in block chaining (BC) mode, simply XOR the input to
the block cipher with the XOR of all the previous ciphertext blocks. As with CBC,
an IV starts the process.

Mathematically, this looks like:

C1 = EK(Pi EB Fi); F1 + I = Fi EB Ci

P, = Fi EB DK(C;); Fi+ I = F; EB C;

Like CBC, BC's feedback process extends errors in the plaintext. The primary
problem with BC is that because the decryption of a ciphertext block depends on all

Internal State ----~

KEYK

K;

Figure 9.14 A keystream generator
in counter mode.

_______________ 9_.1_0_O_th_e_r_B_l_o_ck_-c_ip_h_e_r_M_o_d_es _____ 7 ___ ~

the previous ciphertext blocks, a single error in the ciphertext will result in the
incorrect decryption of all subsequent ciphertext blocks.

Propagating Cipher Block Chaining Mode

Propagating cipher block chaining (PCBC} [1080] mode is similar to CBC mode,
except that both the previous plaintext block and the previous ciphertext block are
XORed with the current plaintext block before encryption (or after decryption) (see
Figure 9.15).

C; = EK(P; EB cj _ 1 EB P; _ i)

pi= C; - I E8 P; - I E8 DK(C;)

PCBC was used in Kerberos version 4 (see Section 24.5) to perform both encryp­
tion and integrity checking in one pass. In PCBC mode, an error in the ciphertext
will result in incorrect decryption of all blocks that follow. This means that check­
ing a standard block at the end of a message will ensure the integrity of the entire
message.

Unfortunately, there is a problem with this mode [875]. Swapping two ciphertext
blocks results in the incorrect decryption of the two corresponding plaintext blocks,
but due to the nature of the XOR with the plaintext and the ciphertext, the errors
cancel. So if the integrity checker looks only at the last few blocks of the decrypted
plain text, it could be fooled into accepting a partially garbled message. Although no
one has figured out how to exploit this weakness, Kerberos version 5 switched to
CBC mode after the flaw was discovered.

Cipher Block Chaining with Checksum
Cipher block chaining with checksum (CBCC} is a CBC variant [1618]. Keep a

running XOR of all the plaintext blocks, and XOR that with the last plaintext block
before encryption. CBCC ensures that any change made to any ciphertext block

Figure 9.15 Propagating cipher block chain­
ing mode.

CHAPTER 9 Algorithm Types and Modes

changes the decrypted output of the last block. If the last block contains any sort of
integrity check or a constant, then the integrity of the decrypted plaintext can be
checked with very little additional overhead.

Output Feedback with a Nonlinear Function
Output feedback with a nonlinear function (OFBNLF) [777] is a variant of both

OFB and ECB where the key changes with every block:

CJ= EKi(Pi); K = EK(Ki - i)

pi= DK)Ci); Ki= EK(Ki - i)

A single bit error in the ciphertext propagates to only one plaintext block. How­
ever, if a single bit is lost or added, then there is infinite error extension. With a
block algorithm that has a complicated key scheduling algorithm, like DES, this
mode is slow. I know of no cryptanalysis of this mode.

More Modes
Other modes are possible, although they are not extensively used. Plaintext block

chaining (PBC) is like CBC except the previous plaintext block is XORed with the
plain text block instead of with the ciphertext block. Plaintext feedback (PFB) is like
CFB, except the plain text, not the ciphertext, is used for feedback. These two modes
allow chosen-plaintext attacks in order to resist known-plaintext attacks. There is
also cipher block chaining of plaintext difference (CBCPD). I'm sure it gets even
weirder.

If a cryptanalyst has a brute-force keysearch machine, then he can recover the key
if he can guess one of the plain text blocks. Some of these stranger modes amount to
light encryption before applying the encryption algorithm: for example, XO Ring the
text with a fixed secret string or permuting the text. Almost anything nonstandard
will frustrate this sort of cryptanalysis.

9 .11 CHOOSING A CIPHER MODE

If simplicity and speed are your main concerns, ECB is the easiest and fastest mode
to use a block cipher. It is also the weakest. Besides being vulnerable to replay
attacks, an algorithm in ECB mode is the easiest to cryptanalyze. I don't recommend
ECB for message encryption.

For encrypting random data, such as other keys, ECB is a good mode to use. Since
the data is short and random, none of the shortcomings of ECB matter for this
application.

For normal plain text, use CBC, CFB, or OFB. Which mode you choose depends on
your specific requirements. Table 9.1 gives a summary of the security and efficiency
of the various modes.

CBC is generally best for encrypting files. The increase in security is significant;
and while there are sometimes bit errors in stored data, there are almost never syn­
chronization errors. If your application is software-based, CBC is almost always the
best choice.

_________________ 9_.1_1 __ C_h_o_o_s1_·n_g_a_C_ip_h_e_r_M_o_d_e ______ 7_,,,~

Table 9.1
Summary of Block Cipher Modes

ECB:

Security:
- Plaintext patterns are not concealed.
- Input to the block cipher is not randomized; it is the
same as the plaintext.
+ More than one message can be encrypted with the same
key.
- Plaintext is easy to manipulate; blocks can be removed,
repeated, or interchanged.

Efficiency:
+ Speed is the same as the block cipher.
- Ciphertext is up to one block longer than the plaintext,
due to padding.
- No preprocessing is possible.
+ Processing is parallelizable.

Fault-tolerance:
- A ciphertext error affects one full block of plaintext.
- Synchronization error is unrecoverable.

CFB:

Security:
+ Plaintext patterns are concealed.
+ Input to the block cipher is randomized.
+ More than one message can be encrypted with the same
key, provided that a different IV is used.
+/- Plaintext is somewhat difficult to manipulate; blocks
can be removed from the beginning and end of the mes­
sage, bits of the first block can be changed, and repetition
allows some controlled changes.

Efficiency:
+ Speed is the same as the block cipher.
- Ciphertext is the same size as the plaintext, not count­
ing the IV.
+/- Encryption is not parallelizable; decryption is paral­
lelizable and has a random-access property.
- Some preprocessing is possible before a block is seen; the
previous ciphertext block can be encrypted.
+/- Encryption is not parallelizable; decryption is paral­
lelizable and has a random-access property.

Fault-tolerance:
- A ciphertext error affects the corresponding bit of plain­
text and the next full block.
+ Synchronization errors of full block sizes are recover­
able. 1-bit CFB can recover from the addition or loss of
single bits.

CBC:

Security:
+ Plaintext patterns are concealed by XORing with previ­
ous ciphertext block.
+ Input to the block cipher is randomized by XO Ring with
the previous ciphertext block.
+ More than one message can be encrypted with the same
key.
+/- Plaintext is somewhat difficult to manipulate; blocks
can be removed from the beginning and end of the mes­
sage, bits of the first block can be changed, and repetition
allows some controlled changes.

Efficiency:
+ Speed is the same as the block cipher.
- Ciphertext is up to one block longer than the plaintext,
not counting the IV.
- No preprocessing is possible.
+/- Encryption is not parallelizable; decryption is paral­
lelizable and has a random-access property.

Fault-tolerance:
- A ciphertext error affects one full block of plaintext and
the corresponding bit in the next block.
- Synchronization error is unrecoverable.

OFB/Counter:

Security:
+ Plaintext patterns are concealed.
+ Input to the block cipher is randomized.
+ More than one message can be encrypted with the same
key, provided that a different IV is used.
- Plaintext is very easy to manipulate; any change in
ciphertext directly affects the plaintext.

Efficiency:
+ Speed is the same as the block cipher.
- Ciphertext is the same size as the plaintext, not count­
ing the IV.
+ Processing is possible before the message is seen.
-/ + OFB processing is not parallelizable; counter process­
ing is parallelizable.

Fault-tolerance:
+ A ciphertext error affects only the corresponding bit of
plain text.
- Synchronization error is unrecoverable.

~ :s;;=-----C_H_A_P_TE_R_9 __ A_l_g_or_i_th_m_Ty_p_e_s_a_n_d_M_o_de_s ____________ _

CFB-specifically 8-bit CFB-is generally the mode of choice for encrypting
streams of characters when each character has to be treated individually, as in a link
between a terminal and a host. OFB is most often used in high-speed synchronous
systems where error propagation is intolerable. OFB is also the mode of choice if pre­
processing is required.

OFB is the mode of choice in a error-prone environment, because it has no error
extension.

Stay away from the weird modes. One of the four basic modes-ECB, CBC, OFB,
and CFB-is suitable for almost any application. These modes are not overly com­
plex and probably do not reduce the security of the system. While it is possible that
a complicated mode might increase the security of a system, most likely it just
increases the complexity. None of the weird modes has any better error propagation
or error recovery characteristics.

9.12 INTERLEAVING

With most modes, encryption of a bit (or block) depends on the encryption of the
previous bits (or blocks). This can often make it impossible to parallelize encryp­
tion. For example, consider a hardware box that does encryption in CBC mode. Even
if the box contains four encryption chips, only one can work at any time. The next
chip needs the results of the previous chip before it starts working.

The solution is to interleave multiple encryption streams. (This is not multiple
encryption; that's covered in Sections 15.1 and 15.2). Instead of a single CBC chain,
use four. The first, fifth, and every fourth block thereafter are encrypted in CBC
mode with one IV. The second, sixth, and every fourth block thereafter are encrypted
in CBC mode with another IV, and so on. The total IV is much longer than it would
have been without interleaving.

Think of it as encrypting four different messages with the same key and four dif­
ferent IVs. These messages are all interleaved.

This trick can also be used to increase the overall speed of hardware encryption. If
you have three encryption chips, each capable of encrypting data at 33 megabits/sec­
ond, you can interleave them to encrypt a single 100 megabit/second data channel.

Figure 9.16 shows three parallel streams interleaved in CFB mode. The idea can
also work in CBC and OFB modes, and with any number of parallel streams. Just
remember that each stream needs its own IV. Don't share.

9 .13 BLOCK CIPHERS VERSUS STREAM CIPHERS

Although block and stream ciphers are very different, block ciphers can be imple­
mented as stream ciphers and stream ciphers can be implemented as block ciphers.
The best definition of the difference I've found is from Rainer Rueppel [1362]:

Block ciphers operate on data with a fixed transformation on large blocks of plain­
text data; stream ciphers operate with a time-varying transformation on individ­
ual plaintext digits.

9.13 Block Ciphers versus Stream Ciphers

Figure 9.16 Interleaving three CFB encryptions.

In the real world, block ciphers seem to be more general (i.e., they can be used in
any of the four modes) and stream ciphers seem to be easier to analyze mathemati­
cally. There is a large body of theoretical work on the analysis and design of stream
ciphers-most of it done in Europe, for some reason. They have been used by the
world's militaries since the invention of electronics. This seems to be changing;
recently a whole slew of theoretical papers have been written on block cipher
design. Maybe soon there will be a theory of block cipher design as rich as our cur­
rent theory of stream cipher design.

Otherwise, the differences between stream ciphers and block ciphers are in the
implementation. Stream ciphers that only encrypt and decrypt data one bit at a time
are not really suitable for software implementation. Block ciphers can be easier to
implement in software, because they often avoid time-consuming bit manipula­
tions and they operate on data in computer-sized blocks. On the other hand, stream
ciphers can be more suitable for hardware implementation because they can be
implemented very efficiently in silicon.

These are important considerations. It makes sense for a hardware encryption
device on a digital communications channel to encrypt the individual bits as they
go by. This is what the device sees. On the other hand, it makes no sense for a soft­
ware encryption device to encrypt each individual bit separately. There are some
specific instances where bit- and byte-wise encryption might be necessary in a com­
puter system-encrypting the li:ilk between the keyboard and the CPU, for exam­
ple-but generally the encryption block should be at least the width of the data bus.

----------------------------0,z~

Using
Algorithms

CHAPTER 10

Think of security-data security, communications security, information security,
whatever-as a chain. The security of the entire system is only as strong as the
weakest link. Everything has to be secure: cryptographic algorithms, protocols, key
management, and more. If your algorithms are great but your random-number gen­
erator stinks, any smart cryptanalyst is going to attack your system through the
random-number generation. If you patch that hole but forget to securely erase a
memory location that contains the key, a cryptanalyst will break your system via
that route. If you do everything right and accidentally e-mail a copy of your secure
files to The Wall Street [ournal, you might as well not have bothered.

It's not fair. As the designer of a secure system, you have to think of every possi­
ble means of attack and protect against them all, but a cryptanalyst only has to find
one hole in your security and exploit it.

Cryptography is only a part of security, and 0ften a very small part. It is the math­
ematics of making a system secure, which is different from actually making a sys­
tem secure. Cryptography has its "size queens": people who spend so much time
arguing about how long a key should be that they forget about everything else. If the
secret police want to know what is on your computer, it is far easier for them to
break into your house and install a camera that can record what is on your computer
screen than it is for them to cryptanalze your hard drive.

Additionally, the traditional view of computer cryptography as "spy versus spy"
technology is becoming increasingly inappropriate. Over 99 percent of the cryptog­
raphy used in the world is not protecting military secrets; it's in applications such
as bank cards, pay-TV, road tolls, office building and computer access tokens, lot­
tery terminals, and prepayment electricity meters [43,44]. In these applications, the
role of cryptography is to make petty crime slightly more difficult; the paradigm of
the well-funded adversary with a rabbit warren of cryptanalysts and roomsful of
computers just doesn't apply.

~-:s ______ C_H_A_P_TE_R_lO __ U_s1_·n_g_A_l_g_o_n_·t_h_m_s _______________ _

Most of those applications have used lousy cryptography, but successful attacks
against them had nothing to do with cryptanalysis. They involved crooked employ­
ees, clever sting operations, stupid implementations, integration blunders, and ran­
dom idiocies. (I strongly recommend Ross Anderson's paper, "Why Cryptosytems
Fail" [44]; it should be required reading for anyone involved in this field.) Even the
NSA has admitted that most security failures in its area of interest are due to fail­
ures in implementation, and not failures in algorithms or protocols [1119]. In these
instances it didn't matter how good the cryptography was; the successful attacks
bypassed it completely.

10 .1 CHOOSING AN ALGORITHM

When it comes to evaluating and choosing algorithms, people have several alter­
natives:

They can choose a published algorithm, based on the belief that a
published algorithm has been scrutinized by many cryptographers; if
no one has broken the algorithm yet, then it must be pretty good.

They can trust a manufacturer, based on the belief that a well-known
manufacturer has a reputation to uphold and is unlikely to risk that
reputation by selling equipment or programs with inferior algo­
rithms.

They can trust a private consultant, based on the belief that an impar­
tial consultant is best equipped to make a reliable evaluation of dif­
ferent algorithms.

They can trust the government, based on the belief that the govern­
ment is trustworthy and wouldn't steer its citizens wrong.

They can write their own algorithms, based on the belief that their
cryptographic ability is second-to-none and that they should trust
nobody but themselves.

Any of these alternatives is problematic, but the first seems to be the most sensi­
ble. Putting your trust in a single manufacturer, consultant, or government is ask­
ing for trouble. Most people who call themselves security consultants (even those
from big-name firms) usually don't know anything about encryption. Most security
product manufacturers are no better. The NSA has some of the world's best cryp­
tographers working for it, but they're not telling all they know. They have their own
interests to further which are not congruent with those of their citizens. And even
if you're a genius, writing your own algorithm and then using it without any peer
review is just plain foolish.

The algorithms in this book are public. Most have appeared in the open literature
and many have been cryptanalyzed by experts in the field. I list all published results,
both positive and negative. I don't have access to the cryptanalysis done by any of

_________________ 1_0_._1_C_h_o_o_s_i_n_g_a_n_A_lg_o_r_it_h_m ______ 7-:;;;,"~

the myriad military security organizations in the world (which are probably better
than the academic institutions-they've been doing it longer and are better funded),
so it is possible that these algorithms are easier to break than it appears. Even so, it
is far more likely that they are more secure than an algorithm designed and imple­
mented in secret in some corporate basement.

The hole in all this reasoning is that we don't know the abilities of the various
military cryptanalysis organizations.

What algorithms can the NSA break? For the majority of us, there's really no way
of knowing. If you are arrested with a DES-encrypted computer hard drive, the FBI
is unlikely to introduce the decrypted plaintext at your trial; the fact that they can
break an algorithm is often a bigger secret than any information that is recovered.
During WWII, the Allies were forbidden from using decrypted German Ultra traffic
unless they could have plausibly gotten the information elsewhere. The only way to
get the NSA to admit to the ability to break a given algorithm is to encrypt some­
thing so valuable that its public dissemination is worth the admission. Or, better
yet, create a really funny joke and send it via encrypted e-mail to shady characters
in shadowy countries. NSA employees are people, too; I doubt even they can keep a
good joke secret.

A good working assumption is that the NSA can read any message that it chooses,
but that it cannot read all messages that it chooses. The NSA is limited by
resources, and has to pick and choose among its various targets. Another good
assumption is that they prefer breaking knuckles to breaking codes; this preference
is so strong that they will only resort to breaking codes when they wish to preserve
the secret that they have read the message.

In any case, the best most of us can do is to choose among public algorithms that
have withstood a reasonable amount of public scrutiny and cryptanalysis.

Algorithms for Export
Algorithms for export out of the United States must be approved by the U.S. gov­

ernment (actually, by the NSA-see Section 25.1). It is widely believed that these
export-approved algorithms can be broken by the NSA. Although no one has admit­
ted this on the record, these are some of the things the NSA is rumored to privately
suggest to companies wishing to export their cryptographic products:

Leak a key bit once in a while, embedded in the ciphertext.

"Dumb down" the effective key to something in the 30-bit range. For
example, while the algorithm might accept a 100-bit key, most of
those keys might be equivalent.

Use a fixed IV, or encrypt a fixed header at the beginning of each
encrypted message. This facilitates a known-plaintext attack.

Generate a few random bytes, encrypt them with the key, and then
put both the plaintext and the ciphertext of those random bytes at the
beginning of the encrypted message. This also facilitates a known­
plaintext attack.

~--s ______ C_H_A_P_T_E_R_I_0_U_s1_·n_g_A_l_g_o_n_·th_m_s ______________ _

NSA gets a copy of the source code, but the algorithm's details remain secret from
everyone else. Certainly no one advertises any of these deliberate weaknesses, but
beware if you buy a U.S. encryption product that has been approved for export.

10.2 PUBLIC-KEY CRYPTOGRAPHY VERSUS SYMMETRIC

CRYPTOGRAPHY

Which is better, public-key cryptography or symmetric cryptography? This question
doesn't make any sense, but has been debated since public-key cryptography was
invented. The debate assumes that the two types of cryptography can be compared
on an equal footing. They can't.

Needham and Schroeder [1159] pointed out that the number and length of mes­
sages are far greater with public-key algorithms than with symmetric algorithms.
Their conclusion was that the symmetric algorithm was more efficient than the
public-key algorithm. While true, this analysis overlooks the significant security
benefits of public-key cryptography.

Whitfield Diffie writes [492,494]:

In viewing public-key cryptography as a new form of cryptosystem rather than a
new form of key management, I set the stage for criticism on grounds of both secu­
rity and performance. Opponents were quick to point out that the RSA system ran
about one-thousandth as fast as DES and required keys about ten times as large.
Although it had been obvious from the beginning that the use of public key sys­
tems could be limited to exchanging keys for conventional [symmetric] cryptogra­
phy, it was not immediately clear that this was necessary. In this context, the
proposal to build hybrid systems [879] was hailed as a discovery in its own right.

Public-key cryptography and symmetric cryptography are different sorts of animals;
they solve different sorts of problems. Symmetric cryptography is best for encrypting
data. It is orders of magnitude faster and is not susceptible to chosen-ciphertext
attacks. Public-key cryptography can do things that symmetric cryptography can't; it
is best for key management and a myriad of protocols discussed in Part I.

Other primitives were discussed in Part I: one-way hash functions, message
authentication codes, and so on. Table 10.1 lists different types of algorithms and
their properties [804].

10.3 ENCRYPTING COMMUNICATIONS CHANNELS

This is the classic Alice and Bob problem: Alice wants to send Bob a secure message.
What does she do? She encrypts the message.

In theory, this encryption can take place at any layer in the OSI (Open Systems
Interconnect) communications model. (See the OSI security architecture standard for
more information [305].) In practice, it takes place either at the lowest layers (one and
two) or at higher layers. If it takes place at the lowest layers, it is called link-by-link

10.3 Encrypting Communications Channels

Algorithm

Symmetric encryption algorithms

Public-key encryption algorithms

Digital signature algorithms

Key-agreement algorithms

One-way hash functions

Message authentication codes

Table 10.1
Classes of Algorithms

Confidentiality Authentication

Yes No

Yes No

No Yes

Yes Optional

No No

No Yes

Key
Integrity Management

No Yes

No Yes

Yes No

No Yes

Yes No

Yes No

encryption; everything going through a particular data link is encrypted. If it takes
place at higher layers, it is called end-to-end encryption; the data are encrypted selec­
tively and stay encrypted until they are decrypted by the intended final recipient.
Each approach has its own benefits and drawbacks.

Link-by-Link Encryption
The easiest place to add encryption is at the physical layer (see Figure 10.1). This

is called link-by-link encryption. The interfaces to the physical layer are generally
standardized and it is easy to connect hardware encryption devices at this point.
These devices encrypt all data passing through them, including data, routing infor­
mation, and protocol information. They can be used on any type of digital commu­
nication link. On the other hand, any intelligent switching or storing nodes between
the sender and the receiver need to decrypt the data stream before processing it.

This type of encryption is very effective. Because everything is encrypted, a crypt­
analyst can get no information about the structure of the information. He has no
idea who is talking to whom, how long the messages they are sending are, what
times of day they communicate, and so on. This is called traffic-flow security: the
enemy is not only denied access to the information, but also access to the knowl­
edge of where and how much information is flowing.

Security does not depend on any traffic management techniques. Key manage­
ment is also simple; only the two endpoints of the line need a common key, and
they can change their key independently from the rest of the network.

Node 1 Node 2 Node3 Node 4

Figure 10.1 Link encryption.

~--:s. ______ C_H_A_P_T_ER_l_0_U_s1_·n_g_A_lg_o_r_it_h_m_s _______________ _

Imagine a synchronous communications line, encrypted using 1-bit CFB. After
initialization, the line can run indefinitely, recovering automatically from bit or
synchronization errors. The line encrypts whenever messages are sent from one end
to the other; otherwise it just encrypts and decrypts random data. Eve has no idea
when messages are being sent and when they are not; she has no idea when mes­
sages begin and end. All she sees is an endless stream of random-looking bits.

If the communications line is asynchronous, the same 1-bit CFB mode can be
used. The difference is that the adversary can get information about the rate of
transmission. If this information must be concealed, make some provision for pass­
ing dummy messages during idle times.

The biggest problem with encryption at the physical layer is that each physical
link in the network needs to be encrypted: Leaving any link unencrypted jeopar­
dizes the security of the entire network. If the network is large, the cost may quickly
become prohibitive for this kind of encryption.

Additionally, every node in the network must be protected, since it processes
unencrypted data. If all the network's users trust one another, and all nodes are in
secure locations, this may be tolerable. But this is unlikely. Even in a single corpora­
tion, information might have to be kept secret within a department. If the network
accidentally misroutes information, anyone can read it. Table 10.2 summarizes the
pros and cons of link-by-link encryption.

End-to-End Encryption

Another approach is to put encryption equipment between the network layer and
the transport layer. The encryption device must understand the data according to
the protocols up to layer three and encrypt only the transport data units, which are
then recombined with the unencrypted routing information and sent to lower lay­
ers for transmission.

This approach avoids the encryption/decryption problem at the physical layer. By
providing end-to-end encryption, the data remains encrypted until it reaches its
final destination (see Figure 10.2). The primary problem with end-to-end encryption
is that the routing information for the data is not encrypted; a good cryptanalyst can

Table 10.2
Link-by-Link Encryption: Advantages and Disadvantages

Advantages:
Easier operation, since it can be made transparent to the user. That is, everything

is encrypted before being sent over the link.
Only one set of keys per link is required.
Provides traffic-flow security, since any routing information is encrypted.
Encryption is online.

Disadvantages:
Data is exposed in the intermediate nodes.

10.3 Encrypting Communications Channels

Node 1 Node 2 Node 3 Node 4

p >----+--- p
Link 1 Link 2 Link 3

Figure 10.2 End-to-end encryption.

learn much from who is talking to whom, at what times and for how long, without
ever knowing the contents of those conversations. Key management is also more
difficult, since individual users must make sure they have common keys.

Building end-to-end encryption equipment is difficult. Each particular communi­
cations system has its own protocols. Sometimes the interfaces between the levels
are not well-defined, making the task even more difficult.

If encryption takes place at a high layer of the communications architecture, like
the applications layer or the presentation layer, then it can be independent of the
type of communication network used. It is still end-to-end encryption, but the
encryption implementation does not have to bother about line codes, synchroniza­
tion between modems, physical interfaces, and so forth. In the early days of elec­
tromechanical cryptography, encryption and decryption took place entirely offline;
this is only one step removed from that.

Encryption at these high layers interacts with the user software. This software is
different for different computer architectures, and so the encryption must be opti­
mized for different computer systems. Encryption can occur in the software itself or
in specialized hardware. In the latter case, the computer will send the data to the
specialized hardware for encryption before sending it to lower layers of the commu­
nication architecture for transmission. This process requires some intelligence and
is not suitable for dumb terminals. Additionally, there may be compatibility prob­
lems with different types of computers.

The major disadvantage of end-to-end encryption is that it allows traffic analysis.
Traffic analysis is the analysis of encrypted messages: where they come from, where
they go to, how long they are, when they are sent, how frequent or infrequent they
are, whether they coincide with outside events like meetings, and more. A lot of
good information is buried in that data, and a cryptanalyst will want to get his hands
on it. Table 10.3 presents the positive and negative aspects of end-to-end encryption.

Combining the Two

Table 10.4, primarily from [1244], compares link-by-link and end-to-end encryp­
tion. Combining the two, while most expensive, is the most effective way of secur­
ing a network. Encryption of each physical link makes any analysis of the routing
information impossible, while end-to-end encryption reduces the threat of unen­
crypted data at the various nodes in the network. Key management for the two

~""':s:-------C_H_A_P_TE_R_l_O_U_s1_·n_g_A_l_g_o_n_·t_h_m_s _______________ _

Table 10.3
End-to-End Encryption: Advantages and Disadvantages

Advantages:
Higher secrecy level.

Disadvantages:
Requires a more complex key-management system.
Traffic analysis is possible, since routing information is not encrypted.
Encryption is offline.

schemes can be completely separate: The network managers can take care of
encryption at the physical level, while the individual users have responsibility for
end-to-end encryption.

10.4 ENCRYPTING DATA FOR STORAGE

Encrypting data for storage and later retrieval can also be thought of in the Alice and
Bob model. Alice is still sending a message to Bob, but in this case "Bob" is Alice at
some future time. However, the problem is fundamentally different.

In communications channels, messages in transit have no intrinsic value. If Bob
doesn't receive a particular message, Alice can always resend it. This is not true for
data encrypted for storage. If Alice can't decrypt her message, she can't go back in
time and re-encrypt it. She has lost it forever. This means that encryption applica­
tions for data storage should have some mechanisms to prevent unrecoverable
errors from creeping into the ciphertext.

The encryption key has the same value as the message, only it is smaller. In effect,
cryptography converts large secrets into smaller ones. Being smaller, they can be eas­
ily lost. Key management procedures should assume that the same keys will be used
again and again, and that data may sit on a disk for years before being decrypted.

Furthermore, the keys will be around for a long time. A key used on a communi­
cations link should, ideally, exist only for the length of the communication. A key
used for data storage might be needed for years, and hence must be stored securely
for years.

Other problems particular to encrypting computer data for storage were listed
in [357]:

The data may also exist in plaintext form, either on another disk, in
another computer, or on paper. There is much more opportunity for a
cryptanalyst to perform a known-plaintext attack.

In database applications, pieces of data may be smaller than the block
size of most algorithms. This will cause the ciphertext to be consid­
erably larger than the plaintext.

________________ 10_._4_E_n_c_r_y_p_t1_·n_g_D_a_ta_fo_r_S_t_o_ra_g_e _____ 7 __ ~

Table 10.4
Comparing Link-by-Link and End-to-End Encryption

LINK-BY-LINK ENCRYPTION

Security within Hosts
Message exposed in

sending host
Message exposed in

intermediate nodes

Role of User
Applied by sending host
Invisible to user
Host maintains encryption
One facility for all users
Can be done in hardware
All or no messages encrypted

Implementation Concerns
Requires one key per

host pair
Requires encryption hardware

or software at each host
Provides node authentication

END-TO-END ENCRYPTION

Message encrypted in sending
host

Message encrypted in
intermediate nodes

Applied by sending process
User applies encryption
User must find algorithm
User selects encryption
More easily done in software
User chooses to encrypt or

not, for each message

Requires one key per user
pair

Requires encryption hardware
or software at each node

Provides user authentication

The speed of 1/0 devices demands fast encryption and decryption, and
will probably require encryption hardware. In some applications, spe­
cial high-speed algorithms may be required.

Safe, long-term storage for keys is required.

Key management is much more complicated, since different people
need access to different files, different portions of the same file, and so
forth.

If the encrypted files are not structured as records and fields, such as text files,
retrieval is easier: The entire file is decrypted before use. If the encrypted files are
database files, this solution is problematic. Decrypting the entire database to access
a single record is inefficient, but encrypting records independently might be suscep­
tible to a block-replay kind of attack.

In addition, you must make sure the unencrypted file is erased after encryption
(see Section 10.9). For further details and insights, consult [425,569].

Dereferencing Keys
When encrypting a large hard drive, you have two options. You can encrypt all the

data using a single key. This gives a cryptanalyst a large amount of ciphertext to

~-:s ______ C_H_A_P_T_E_R_lo __ u_s1_·n_g_A_lg_o_r_it_h_m_s _______________ _

analyze and makes it impossible to allow multiple users to see only parts of the
drive. Or, you can encrypt each file with a different key, forcing users to memorize
a different key for each file.

The solution is to encrypt each file with a separate key, and to encrypt the keys
with another key known by the users. Each user only has to remember that one key.
Different users can have different subsets of the file-encryption keys encrypted with
their key. And there can even be a master key under which every file-encryption key
is encrypted. This is even more secure because the file-encryption keys are random
and less susceptible to a dictionary attack.

Driver-Level vs. File-Level Encryption

There are two ways to encrypt a hard drive: at the file level and at the driver level.
Encryption at the file level means that every file is encrypted separately. To use a
file that's been encrypted, you must first decrypt the file, then use it, and then re­
encrypt it.

Driver-level encryption maintains a logical drive on the user's machine that has all
data on it encrypted. If done well, this can provide security that, beyond choosing
good passwords, requires little worry on the part of the user. The driver must be con­
siderably more complex than a simple file-encryption program, however, because it
must deal with the issues of being an installed device driver, allocation of new sec­
tors to files, recycling of old sectors from files, random-access read and update
requests for any data on the logical disk, and so on.

Typically, the driver prompts the user for a password before starting up. This is
used to generate the master decryption key, which may then be used to decrypt
actual decryption keys used on different data.

Providing Random Access to an Encrypted Drive

Most systems expect to be able to access individual disk sectors randomly. This
adds some complication for using many stream ciphers and block ciphers in any
chaining mode. Several solutions are possible.

Use the sector address to generate a unique IV for each sector being encrypted or
decrypted. The drawback is that each sector will always be encrypted with the same
IV. Make sure this is not a security problem.

For the master key, generate a pseudo-random block as large as one sector. (You
can do this by running an algorithm in OFB mode, for example.) To encrypt any sec­
tor, first XOR in this pseudo-random block, then encrypt normally with a block
cipher in ECB mode. This is called ECB+OFB (see Section 15.4).

Since CBC and CFB are error-recovering modes, you can use all but the first block
or two in the sector to generate the IV for that sector. For example, the IV for sector
3001 may be the hash of the all but the first 128 bits of the sector's data. After gen­
erating the IV, encrypt normally in CBC mode. To decrypt the sector, you use the
second 64-bit block of the sector as an IV, and decrypt the remainder of the sector.
Then, using the decrypted data, you regenerate the IV and decrypt the first 128 bits.

You can use a block cipher with a large enough block size that it can encrypt the
whole sector at once. Crab (see Section 14.6) is an example.

10.5 Hardware Encryption versus Software Encryption

10.5 HARDWARE ENCRYPTION VERSUS SOFTWARE

ENCRYPTION

Hardware
Until very recently, all encryption products were in the form of specialized hard­

ware. These encryption/decryption boxes plugged into a communications line and

Table 10.5
Comparing File-Level and Driver-Level Encryption

FILE- LEVEL ENCRYPTION

Benefits:
Ease of implementation and use.
Flexible.
Relatively small performance penalty.
Users can move files between different

machines without problems.
Users can back files up without

problems.

Security Issues:
Potential leakage through security­

unconscious programs. (Program
may write file to disk for temporary
storage, for example.)

Bad implementations may always re­
encrypt with same key for same
password.

Usability Problems:
User has to figure out what to do.
There may be different passwords for

different files.
Manual encryption of selected files is

the only access control.

DRIVER-LEVEL ENCRYPTION

Temporary files, work files, and so
forth can be kept on the secure
drive.

It's harder to forget to re-encrypt
something on this kind of system.

Lots of things can go wrong with a
device-driver or memory-resident
program.

Bad implementations will allow
chosen-plaintext, or even chosen­
ciphertext attacks.

If whole system is master-keyed
under one password, loss of that
password means that the attacker
gets everything.

A more limited set of ciphers can
reasonably be used for this kind
of application. For example, OFB
stream ciphers would not work.

There will be a performance penalty.
The driver may interact in weird

ways with Windows, OS/2 DOS
emulation, device drivers, and so on.

~-:s. ______ C_H_A_P_TE_R_l_0_U_s1_·n_g_A_l_g_o_n_·t_h_m_s _______________ _

encrypted all the data going across that line. Although software encryption is becom­
ing more prevalent today, hardware is still the embodiment of choice for military and
serious commercial applications. The NSA, for example, only authorizes encryption
in hardware. There are several reasons why this is so.

The first is speed. As we will see in Part III, encryption algorithms consist of many
complicated operations on plaintext bits. These are not the sorts of operations that
are built into your run-of-the-mill computer. The two most common encryption
algorithms, DES and RSA, run inefficiently on general-purpose processors. While
some cryptographers have tried to make their algorithms more suitable for software
implementation, specialized hardware will always win a speed race.

Additionally, encryption is often a computation-intensive task. Tying up the
computer's primary processor for this is inefficient. Moving encryption to another
chip, even if that chip is just another processor, makes the whole system faster.

The second reason is security. An encryption algorithm running on a generalized
computer has no physical protection. Mallory can go in with various debugging
tools and surreptitiously modify the algorithm without anyone ever realizing it.
Hardware encryption devices can be securely encapsulated to prevent this. Tamper­
proof boxes can prevent someone from modifying a hardware encryption device.
Special-purpose VLSI chips can be coated with a chemical such that any attempt to
access their interior will result in the destruction of the chip's logic. The U.S. gov­
ernment's Clipper and Capstone chips (see Sections 24.16 and 24.17) are designed to
be tamperproof. The chips can be designed so that it is impossible for Mallory to
read the unencrypted key.

IBM developed a cryptographic system for encrypting data and communications
on mainframe computers [515,1027]. It includes tamper-resistant modules to hold
keys. This system is discussed in Section 24.1.

Electromagnetic radiation can sometimes reveal what is going on inside a piece of
electronic equipment. Dedicated encryption boxes can be shielded, so that they leak
no compromising information. General-purpose computers can be shielded as well,
but it is a far more complex problem. The U.S. military calls this TEMPEST; it's a
subject well beyond the scope of this book.

The final reason for the prevalence of hardware is the ease of installation. Most
encryption applications don't involve general-purpose computers. People may wish
to encrypt their telephone conversations, facsimile transmissions, or data links. It is
cheaper to put special-purpose encryption hardware in the telephones, facsimile
machines, and modems than it is to put in a microprocessor and software.

Even when the encrypted data comes from a computer, it is easier to install a ded­
icated hardware encryption device than it is to modify the computer's system soft­
ware. Encryption should be invisible; it should not hamper the user. The only way
to do this in software is to write encryption deep into the operating system. This
isn't easy. On the other hand, even a computer neophyte can plug an encryption box
between his computer and his external modem.

The three basic kinds of encryption hardware on the market today are: self­
contained encryption modules (that perform functions such as password verification

10.5 Hardware Encryption versus Software Encryption

and key management for banks), dedicated encryption boxes for communications
links, and boards that plug into personal computers.

Some encryption boxes are designed for certain types of communications links,
such as T-1 encryption boxes that are designed not to encrypt synchronization bits.
There are different boxes for synchronous and asynchronous communications lines.
Newer boxes tend to accept higher bit rates and are more versatile.

Even so, many of these devices have some incompatibilities. Buyers should be
aware of this and be well-versed in their particular needs, lest they find themselves
the owners of encryption equipment unable to perform the task at hand. Pay atten­
tion to restrictions in hardware type, operating system, applications software, net­
work, and so forth.

PC-board encryptors usually tncrypt everything written to the hard disk and can
be configured to encrypt everything sent to the floppy disk and serial port as well.
These boards are not shielded against electromagnetic radiation or physical inter­
ference, since there would be no benefit in protecting the boards if the computer
remained unaffected.

More companies are starting to put encryption hardware into their communications
equipment. Secure telephones, facsimile machines, and n1odems are all available.

Internal key management for these devices is generally secure, although there are
as many different schemes as there are equipment vendors. Some schemes are more
suited for one situation than another, and buyers should know what kind of key
management is incorporated into the encryption box and what they are expected to
provide themselves.

Software

Any encryption algorithm can be implemented in software. The disadvantages are
in speed, cost, and ease of modification (or manipulation). The advantages are in
flexibility and portability, ease of use, and ease of upgrade. The algorithms written
in C at the end of this book can be implemented, with little modification, on any
computer. They can be inexpensively copied and installed on many machines. They
can be incorporated into larger applications, such as communications programs or
word processors.

Software encryption programs are popular and are available for all major operating
systems. These are meant to protect individual files; the user generally has to man­
ually encrypt and decrypt specific files. It is important that the key management
scheme be secure: The keys should not be stored on disk anywhere (or even written
to a place in memory from where the processor swaps out to disk). Keys and unen­
crypted files should be erased after encryption. Many programs are sloppy in this
regard, and a user has to choose carefully.

Of course, Mallory can always replace the software encryption algorithm with
something lousy. But for most users, that isn't a problem. If Mallory can break into
our office and modify our encryption program, he can also put a hidden camera on the
wall, a wiretap on the telephone, and a TEMPEST detector down the street. If Mallory
is that much more powerful than the user, the user has lost the game before it starts.

~~:s ______ C_H_A_P_TE_R_l_0_U_s1_·n_g_A_l_g_o_n_·t_h_m_s _______________ _

10. 6 COMPRESSION, ENCODING, AND ENCRYPTION

Using a data compression algorithm together with an encryption algorithm makes
sense for two reasons:

Cryptanalysis relies on exploiting redundancies in the plaintext; com­
pressing a file before encryption reduces these redundancies.

Encryption is time-consuming; compressing a file before encryption
speeds up the entire process.

The important thing to remember is to compress before encryption. If the encryp­
tion algorithm is any good, the ciphertext will not be compressible; it will look like
random data. (This makes a reasonable test of an encryption algorithm; if the cipher­
text can be compressed, then the algorithm probably isn't very good.)

If you are going to add any type of transmission encoding or error detection and
recovery, remember to add that after encryption. If there is noise in the communi­
cations path, decryption's error-extension properties will only make that noise
worse. Figure 10.3 summarizes these steps.

10. 7 DETECTING ENCRYPTION

How does Eve detect an encrypted file? Eve is in the spy business, so this is an
important question. Imagine that she's eavesdropping on a network where messages
are flying in all directions at high speeds; she has to pick out the interesting ones.
Encrypted files are certainly interesting, but how does she know they are encrypted?

Generally, she relies on the fact that most popular encryption programs have
well-defined headers. Electronic-mail messages encrypted with either PEM or PGP
(see Sections 24.10 and 24.12) are easy to identify for that reason.

Other file encryptors just produce a ciphertext file of seemingly random bits. How
can she distinguish it from any other file of seemingly random bits? There is no sure
way, but Eve can try a number of things:

Examine the file. ASCII text is easy to spot. Other file formats, such as
TIFF, TeX, C, Postscript, G3 facsimile, or Microsoft Excel, have stan-

Data

-.1 Compress ~I Encrypt ~~C-~-~-~-~I~ Error
Control

Repeat
Requests

I Decrypt 1-. Uncompress

Figure 10.3 Encryption with compression and error control.

10.8 Hiding Ciphertext in Ciphertext

<lard identifying characteristics. Executable code is detectable, as well.
UNIX files often have "magic numbers" that can be detected.

Try to uncompress the file, using the major compression algorithms.
If the file is compressed (and not encrypted), this should yield the
original file.

Try to compress the file. If the file is ciphertext (and the algorithm is
good), then the probability that the file can be appreciably compressed
by a general-purpose compression routine is small. (By appreciably, I
mean more than 1 or 2 percent.) If it is something else (a binary image
or a binary data file, for example) it probably can be compressed.

Any file that cannot be compressed and is not already compressed is probably
ciphertext. (Of course, it is possible to specifically make ciphertext that is com­
pressible.) Identifying the algorithm is a whole lot harder. If the algorithm is good,
you can't. If the algorithm has some slight biases, it might be possible to recognize
those biases in the file. However, the biases have to be pretty significant or the file
has to be pretty big in order for this to work.

10.8 HIDING CIPHERTEXT IN CIPHERTEXT

Alice and Bob have been sending encrypted messages to each other for the past year.
Eve has been collecting them all, but she cannot decrypt any of them. Finally, the
secret police tire of all this unreadable ciphertext and arrest the pair. "Give us your
encryption keys," they demand. Alice and Bob refuse, but then they notice the
thumbscrews. What can they do?

Wouldn't it be nice to be able to encrypt a file such that there are two possible
decryptions, each with a different key. Alice could encrypt a real message to Bob in
one of the keys and some innocuous message in the other key. If Alice were caught,
she could surrender the key to the innocuous message and keep the real key secret.

The easiest way to do this is with one-time pads. Let P be the plaintext, D the
dummy plaintext, C the ciphertext, K the real key, and K' the dummy key. Alice
encrypts P:

PEBK=C

Alice and Bob share K, so Bob can decrypt C:

CEBK=P

If the secret police ever force them to surrender their key, they don't surrender K,
but instead surrender:

K' = C EB D

The police then recover the dummy plaintext:

C EB K' = D

~--:s. ______ C_H_A_P_T_ER_l_0_U_s1_·n_g_A_lg_o_r_it_h_m_s _______________ _

Since these are one-time pads and K is completely random, there is no way to
prove that K' was not the real key. To make matters more convincing, Alice and Bob
should concoct some mildly incriminating dummy messages to take the place of the
really incriminating real messages. A pair of Israeli spies once did this.

Alice could take P and encrypt it with her favorite algorithm and key K to get C.
Then she takes C and XORs it with some piece of mundane plaintext-Pride and
Prejudice for example, to get K'. She stores both C and the XOR on her hard disk.
Now, when the secret police interrogate her, she can explain that she is an amateur
cryptographer and that K' is a merely one-time pad for C. The secret police might
suspect something, but unless they know K they cannot prove that Alice's explana­
tion isn't valid.

Another method is to encrypt P with a symmetric algorithm and K, and D with
K'. Intertwine bits (or bytes) of the ciphertext to make the final ciphertexts. If the
secret police demand the key, Alice gives them K' and says that the alternating bits
(or bytes) are random noise designed to frustrate cryptanalysis. The trouble is the
explanation is so implausible that the secret police will probably not believe her
(especially considering it is suggested in this book).

A better way is for Alice to create a dummy message, D, such that the concatena­
tion of P and D, compressed, is about the same size as D. Call this concatenation P'.
Alice then encrypts P' with whatever algorithm she and Bob share to get C. Then
she sends C to Bob. Bob decrypts C to get P', and then P and D. Then they both com­
pute C EB D = K'. This K' becomes the dummy one-time pad they use in case the
secret police break their doors down. Alice has to transmit D so that hers and Bob's
alibis match.

Another method is for Alice to take an innocuous message and run it through
some error-correcting code. Then she can introduce errors that correspond to the
secret encrypted message. On the receiving end, Bob can extract the errors to recon­
struct the secret message and decrypt it. He can also use the error-correcting code to
recover the innocuous message. Alice and Bob might be hard pressed to explain to
the secret police why they consistently get a 30 percent bit-error rate on an otherwise
noise-free computer network, but in some circumstances this scheme can work.

Finally, Alice and Bob can use the subliminal channels in their digital signature
algorithms (see Sections 4.2 and 23.3). This is undetectable, works great, but has the
drawback of only allowing 20 or so characters of subliminal text to be sent per
signed innocuous message. It really isn't good for much more than sending keys.

10.9 DESTROYING INFORMATION

When you delete a file on most computers, the file isn't really deleted. The only
thing deleted is an entry in the disk's index file, telling the machine that the file is
there. Many software vendors have made a fortune selling file-recovery software
that recovers files after they have been deleted.

And there's yet another worry: Virtual memory means your computer can read
and write memory to disk any time. Even if you don't save it, you never know when

________________ 1_0._9_D_e_st_r_o_y_in_g_I_n_f_o_rm_a_t1_·o_n ______ 7 __ ~

a sensitive document you are working on is shipped off to disk. This means that
even if you never save your plaintext data, your computer might do it for you. And
driver-level compression programs like Stacker and DoubleSpace can make it even
harder to predict how and where information is stored on a disk.

To erase a file so that file-recovery software cannot read it, you have to physically
write over all of the file's bits on the disk. According to the National Computer
Security Center [1148]:

Overwriting is a process by which unclassified data are written to storage loca­
tions that previously held sensitive data To purge the ... storage media, the
DoD requires overwriting with a pattern, then its complement, and finally with
another pattern; e.g., overwrite first with OOll 0101, followed by 1100 1010, then
1001 Oll 1. The number of times an overwrite must be accomplished depends on
the storage media, sometimes on its sensitivity, and sometimes on different DoD
component requirements. In any case, a purge is not complete until a final over­
write is made using unclassified data.

You may have to erase files or you may have to erase entire drives. You should
also erase all unused space on your hard disk.

Most commercial programs that claim to implement the DoD standard over­
write three times: first with all ones, then with all zeros, and finally with a repeat­
ing one-zero pattern. Given my general level of paranoia, I recommend overwriting
a deleted file seven times: the first time with all ones, the second time with all
zeros, and five times with a cryptographically secure pseudo-random sequence.
Recent developments at the National Institute of Standards and Technology with
electron-tunneling microscopes suggest even that might not be enough. Honestly,
if your data is sufficiently valuable, assume that it is impossible to erase data com­
pletely off magnetic media. Burn or shred the media; it's cheaper to buy media new
than to lose your secrets.

PART III

-----------------------------z~

Mathematical
Background

11.1 INFORMATION THEORY

CHAPTER 1 1

Modern information theory was first published in 1948 by Claude Elmwood Shan­
non [1431,1432]. (His papers have been reprinted by the IEEE Press [1433].) For a
good mathematical treatment of the topic, consult [593]. In this section, I will just
sketch some important ideas.

Entropy and Uncertainty
Information theory defines the amount of information in a message as the mini­

mum number of bits needed to encode all possible meanings of that message,
assuming all messages are equally likely. For example, the day-of-the-week field in
a database contains no more than 3 bits of information, because the information can
be encoded with 3 bits:

000 ~ Sunday
001 ~ Monday
010 ~ Tuesday
011 ~ Wednesday
100 ~ Thursday
101 ~ Fri day
110 ~ Saturday
111 is unused

If this information were represented by corresponding ASCII character strings, it
would take up more memory space but would not contain any more information.
Similarly, the "sex" field of a database contains only 1 bit of information, even
though it might be stored as one of two 6-byte ASCII strings: "MALE" or "FEMALE."

Formally, the amount of information in a message Mis measured by the entropy
of a message, denoted by H(M). The entropy of a message indicating sex is 1 bit; the
entropy of a message indicating the day of the week is slightly less than 3 bits. In

CHAPTER 11 Mathematical Background

general, the entropy of a message measured in bits is log2 n, in which n is the num­
ber of possible meanings. This assumes that each meaning is equally likely.

The entropy of a message also measures its uncertainty. This is the number of
plaintext bits needed to be recovered when the message is scrambled in ciphertext
in order to learn the plain text. For example, if the ciphertext block "QHP * SM" is
either "MALE" or "FEMALE," then the uncertainty of the message is 1. A cryptan­
alyst has to learn only one well-chosen bit to recover the message.

Rate of a Language
For a given language, the rate of the language is

r=H(M)/N

in which N is the length of the message. The rate of normal English takes various
values between 1.0 bits/letter and 1.5 bits/letter, for large values of N. Shannon, in
[1434], said that the entropy depends on the length of the text. Specifically he indi­
cated a rate of 2.3 bits/letter for 8-letter chunks, but the rate drops to between 1.3
and 1.5 for 16-letter chunks. Thomas Cover used a gambling estimating technique
and found an entropy of 1.3 bits/character [386]. (I'll use 1.3 in this book.) The abso­
lute rate of a language is the maximum number of bits that can be coded in each
character, assuming each character sequence is equally likely. If there are L charac­
ters in a language, the absolute rate is:

R = log2 L

This is the maximum entropy of the individual characters.
For English, with 26 letters, the absolute rate is log2 26, or about 4. 7 bits/letter. It

should come as no surprise to anyone that the actual rate of English is much less
than the absolute rate; natural language is highly redundant.

The redundancy of a language, denoted D, is defined by:

D=R-r

Given that the rate of English is 1.3, the redundancy is 3.4 bits/letter. This means
that each English character carries 3.4 bits of redundant information.

An ASCII message that is nothing more than printed Inglish has 1.3 bits of infor­
mation per byte of message. This means it has 6. 7 bits of redundant information,
giving it an overall redundancy of 0.84 bits of information per bit of ASCII text, and
an entropy of 0.16 bits of information per bit of ASCII text. The same message in
BAUDOT, at 5 bits per character, has a redundancy of 0. 7 4 bits per bit and an
entropy of 0.26 bits per bit. Spacing, punctuation, numbers, and formatting modify
these results.

Security of a Cryptosystem

Shannon defined a precise mathematical model of what it means for a cryptosystem
to be secure. The goal of a cryptanalyst is to determine the key K, the plaintext P, or
both. However, he may be satisfied with some probabilistic information about P:
whether it is digitized audio, German text, spreadsheet data, or something else.

~----------------1_1_.1 __ In_f_o_r_m_a_t_io_n_T_n_e_o_ry _______ 7---..-~

In most real-world cryptanalysis, the cryptanalyst has some probabilistic infor­
mation about P before he even starts. He probably knows the language of the plain­
text. This language has a certain redundancy associated with it. If it is a message to
Bob, it probably begins with "Dear Bob." Certainly "Dear Bob" is more probable
than "e8T&g [,m." The purpose of cryptanalysis is to modify the probabilities asso­
ciated with each possible plaintext. Eventually one plaintext will emerge from the
pile of possible plaintexts as certain (or at least, very probable).

There is such a thing as a cryptosystem that achieves perfect secrecy: a cryp­
tosystem in which the ciphertext yields no possible information about the plaintext
(except possibly its length). Shannon theorized that it is only possible if the number
of possible keys is at least as large as the number of possible messages. In other
words, the key must be at least as long as the message itself, and no key can be
reused. In still other words, the one-time pad (see Section 1.5) is the only cryptosys­
tem that achieves perfect secrecy.

Perfect secrecy aside, the ciphertext unavoidably yields some information about the
corresponding plaintext. A good cryptographic algorithm keeps this information to a
minimum; a good cryptanalyst exploits this information to determine the plaintext.

Cryptanalysts use the natural redundancy of language to reduce the number of
possible plaintexts. The more redundant the language, the easier it is to cryptana­
lyze. This is the reason that many real-world cryptographic implementations use a
compression program to reduce the size of the text before encrypting it. Compres­
sion reduces the redundancy of a message as well as the work required to encrypt
and decrypt.

The entropy of a cryptosystem is a measure of the size of the keyspace, K. It is
approximated by the base two logarithm of the number of keys:

H(K) = log2 K

A cryptosystem with a 64-bit key has an entropy of 64 bits; a cryptosystem with
a 56-bit key has an entropy of 56 bits. In general, the greater the entropy, the harder
it is to break a cryptosystem.

Unicity Distance

For a message of length n, the number of different keys that will decipher a cipher­
text message to some intelligible plaintext in the same language as the original
plaintext (such as an English text string) is given by the following formula [712,95]:

2HIK) - nD _ 1

Shannon [1432] defined the unicity distance, U, also called the unicity point, as an
approximation of the amount of ciphertext such that the sum of the real informa­
tion (entropy) in the corresponding plaintext plus the entropy of the encryption key
equals the number of ciphertext bits used. He then went on to show that ciphertexts
longer than this distance are reasonably certain to have only one meaningful decryp­
tion. Ciphertexts significantly shorter than this are likely to have multiple, equally
valid decryptions and therefore gain security from the opponent's difficulty in
choosing the correct one.

CHAPTER 11 Mathematical Baclzground

For most symmetric cryptosystems, the unicity distance is defined as the entropy
of the cryptosystem divided by the redundancy of the language.

U=H(K)/D

Unicity distance does not make deterministic predictions, but gives probabilistic
results. Unicity distance estimates the minimum amount of ciphertext for which it
is likely that there is only a single intelligible plaintext decryption when a brute- .
force attack is attempted. Generally, the longer the unicity distance, the better the
cryptosystem. For DES, with a 56-bit key, and an ASCII English message, the unicity
distance is about 8.2 ASCII characters or 66 bits. Table 11.1 gives the unicity dis­
tances for varying key lengths. The unicity distances for some classical cryptosys­
tems are found in [445].

Unicity distance is not a measure of how much ciphertext is required for crypt­
analysis, but how much ciphertext is required for there to be only one reasonable
solution for cryptanalysis. A cryptosystem may be computationally infeasible to
break even if it is theoretically possible to break it with a small amount of cipher­
text. (The largely esoteric theory of relativized cryptography is relevant here
[230,231,232,233,234,235].) The unicity distance is inversely proportional to the
redundancy. As redundancy approaches zero, even a trivial cipher can be unbreak­
able with a ciphertext-only attack.

Shannon defined a cryptosystem whose unicity distance is infinite as one that has
ideal secrecy. Note that an ideal cryptosystem is not necessarily a perfect cryp­
tosystem, although a perfect cryptosystem would necessarily be an ideal cryptosys­
tem. If a cryptosystem has ideal secrecy, even successful cryptanalysis will leave
some uncertainty about whether the recovered plaintext is the real plain text.

Information Theory in Practice
While these concepts have great theoretical value, actual cryptanalysis seldom

proceeds along these lines. Unicity distance guarantees insecurity if it's too small
but does not guarantee security if it's high. Few practical algorithms are absolutely
impervious to analysis; all manner of characteristics might serve as entering wedges

Table 11.1
Unicity Distances of ASCII Text Encrypted
with Algorithms with Varying Key Lengths

Key Length (in bits) Unicity Distance (in characters)

40 5.9
56 8.2
64 9.4
80 11.8
128 18.8
256 37.6

________________ 1_1_.2 __ C_o_m_p_l_ex_1_·ty_T_n_eo_r_y ______ 7-~

to crack some encrypted messages. However, similar information theory considera­
tions are occasionally useful, for example, to determine a recommended key change
interval for a particular algorithm. Cryptanalysts also employ a variety of statistical
and information theory tests to help guide the analysis in the most promising direc­
tions. Unfortunately, most literature on applying information theory to cryptanaly­
sis remains classified, including the seminal 1940 work of Alan Turing.

Confusion and Diffusion

The two basic techniques for obscuring the redundancies in a plaintext message
are, according to Shannon, confusion and diffusion [1432].

Confusion obscures the relationship between the plaintext and the ciphertext.
This frustrates attempts to study the ciphertext looking for redundancies and sta­
tistical patterns. The easiest way to do this is through substitution. A simple sub­
stitution cipher, like the Caesar Cipher, is one in which every identical letter of
plain text is substituted for a single letter of ciphertext. Modern substitution ciphers
are more complex: A long block of plaintext is substituted for a different block of
ciphertext, and the mechanics of the substitution change with each bit in the plain­
text or key. This type of substitution is not necessarily enough; the German Enigma
is a complex substitution algorithm that was broken during World War II.

Diffusion dissipates the redundancy of the plaintext by spreading it out over the
ciphertext. A cryptanalyst looking for those redundancies will have a harder time
finding them. The simplest way to cause diffusion is through transposition (also
called permutation). A simple transposition cipher, like columnar transposition,
simply rearranges the letters of the plaintext. Modern ciphers do this type of per­
mutation, but they also employ other forms of diffusion that can diffuse parts of the
message throughout the entire message.

Stream ciphers rely on confusion alone, although some feedback schemes add dif­
fusion. Block algorithms use both confusion and diffusion. As a general rule, diffu­
sion alone is easily cracked (although double transposition ciphers hold up better
than many other pencil-and-paper systems).

11. 2 COMPLEXITY THEORY

Complexity theory provides a methodology for analyzing the computational com­
plexity of different cryptographic techniques and algorithms. It compares crypto­
graphic algorithms and techniques and determines their security. Information
theory tells us that all cryptographic algorithms (except one-time pads) can be bro­
ken. Complexity theory tells us whether they can be broken before the heat death
of the universe.

Complexity of Algorithms

An algorithm's complexity is determined by the computational power needed to
execute it. The computational complexity of an algorithm is often measured by two
variables: T (for time complexity) and S (for space complexity, or memory require-

CHAPTER 11 Mathematical Background

ment). Both T and Sare commonly expressed as functions of n, where n is the size
of the input. (There are other measures of complexity: the number of random bits,
the communications bandwidth, the amount of data, and so on.)

Generally, the computational complexity of an algorithm is expressed in what is
called "big O" notation: the order of magnitude of the computational complexity.
It's just the term of the complexity function which grows the fastest as n gets larger;
all lower-order terms are ignored. For example, if the time complexity of a given
algorithm is 4n 2 + 7n + 12, then the computational complexity is on the order of n2,

expressed O(n2).

Measuring time complexity this way is system-independent. You don't have to
know the exact timings of various instructions or the number of bits used to repre­
sent different variables or even the speed of the processor. One computer might be
50 percent faster than another and a third might have a data path twice as wide, but
the order-of-magnitude complexity of an algorithm remains the same. This isn't
cheating; when you're dealing with algorithms as complex as the ones presented
here, the other stuff is negligible (is a constant factor) compared to the order-of­
magnitude complexity.

This notation allows you to see how the input size affects the time and space
requirements. For example, if T= O(n), then doubling the input size doubles the run­
ning time of the algorithm. If T= 0(2n), then adding one bit to the input size doubles
the running time of the algorithm (within a constant factor).

Generally, algorithms are classified according to their time or space complexities.
An algorithm is constant if its complexity is independent of n: 0(1). An algorithm is
linear, if its time complexity is O(n). Algorithms can also be quadratic, cubic, and so
on. All these algorithms are polynomial; their complexity is O(nm), when mis a con­
stant. The class of algorithms that have a polynomial time complexity are called
polynomial-time algorithms.

Algorithms whose complexities are O(tfl111), where tis a constant greater than 1 and
f(n) is some polynomial function of n, are called exponential. The subset of expo­
nential algorithms whose complexities are O(d 1111), where c is a constant and f(n) is
more than constant but less than linear, is called superpolynomial.

Ideally, a cryptographer would like to be able to say that the best algorithm to
break this encryption algorithm is of exponential-time complexity. In practice, the
strongest statements that can be made, given the current state of the art of compu­
tational complexity theory, are of the form "all known cracking algorithms for this
cryptosystem are of superpolynomial-time complexity." That is, the cracking algo­
rithms that we know are of superpolynomial-time complexity, but it is not yet pos­
sible to prove that no polynomial-time cracking algorithm could ever be discovered.
Advances in computational complexity may some day make it possible to design
algorithms for which the existence of polynomial-time cracking algorithms can be
ruled out with mathematical certainty.

As n grows, the time complexity of an algorithm can make an enormous differ­
ence in whether the algorithm is practical. Table 11.2 shows the running times for
different algorithm classes in which n equals one million. The table ignores con­
stants, but also shows why ignoring constants is reasonable.

,__ _______________ 1_1_._2_C_o_m_p_le_x_it_y_T_n_e_o_r_y ______ z:-----~

Table 11.2
Running Times of Different Classes of Algorithms

of Operations Time at
Class Complexity for n = 106 106 O/S

Constant 0(1) 1 1 µsec.
Linear O(n) 106 1 sec.
Quadratic O(n2) 1012 11.6 days
Cubic O(n') 101s 32,000 yrs.
Exponential 0(2 11)

10301,030 10301,006 times the age
of the universe

Assuming that the unit of "time" for our computer is a microsecond, the com­
puter can complete a constant algorithm in a microsecond, a linear algorithm in a
second, and a quadratic algorithm in 11.6 days. It would take 32,000 years to com­
plete a cubic algorithm; not terribly practical, but a computer built to withstand the
next ice age would deliver a solution eventually. Performing the exponential algo­
rithm is futile, no matter how well you extrapolate computing power, parallel pro­
cessing, or contact with superintelligent aliens.

Look at the problem of a brute-force attack against an encryption algorithm. The
time complexity of this attack is proportional to the number of possible keys, which
is an exponential function of the key length. If n is the length of the key, then the
complexity of a brute-force attack is 0(2 11). Section 12.3 discusses the controversy
surrounding a 56-bit key for DES instead of a 112-bit key. The complexity of a brute­
force attack against a 56-bit key is 256; against a 112-bit key the complexity is 2112.
The former is possible; the latter isn't.

Complexity of Problems
Complexity theory also classifies the inherent complexity of problems, not just

the complexity of particular algorithms used to solve problems. (Excellent intro­
ductions to this topic are [600,211, 1226]; see also [1096,2 7,739].) The theory looks at
the minimum time and space required to solve the hardest instance of a problem on
a theoretical computer known as a Turing machine. A Turing machine is a finite­
state machine with an infinite read-write memory tape. It turns out that a Turing
machine is a realistic model of computation.

Problems that can be solved with polynomial-time algorithms are called tractable,
because they can usually be solved in a reasonable amount of time for reasonable­
sized inputs. (The exact definition of "reasonable" depends on the circumstance.)
Problems that cannot be solved in polynomial time are called intractable, because
calculating their solution quickly becomes infeasible. Intractable problems are
sometimes just called hard. Problems that can only be solved with algorithms that
are superpolynomial are computationally intractable, even for relatively small val­
ues of n.

CHAPTER 11 Mathematical Background

It gets worse. Alan Turing proved that some problems are undecidable. It is im­
possible to devise any algorithm to solve them, regardless of the algorithm's time
complexity.

Problems can be divided into complexity classes, which depend on the complex­
ity of their solutions. Figure 11.1 shows the more important complexity classes and
their presumed relationships. (Unfortunately, not much about this material has
been proved mathematically.)

On the bottom, the class P consists of all problems that can be solved in polyno­
mial time. The class NP consists of all problems that can be solved in polynomial
time only on a nondf,terministic Turing machine: a variant of a normal Turing
machine that can make guesses. The machine guesses the solution to the problem­
either by making "lucky guesses" or by trying all guesses in parallel-and checks its
guess in polynomial time.

NP's relevance to cryptography is this: Many symmetric algorithms and all public­
key algorithms can be cracked in nondeterministic polynomial time. Given a
ciphertext C, the cryptanalyst simply guesses a plaintext, X, and a key, k, and in
polynomial time runs the encryption algorithm on inputs X and k and checks
whether the result is equal to C. This is important theoretically, because it puts an
upper bound on the complexity of cryptanalysis for these algorithms. In practice, of
course, it is a deterministic polynomial-time algorithm that the cryptanalyst seeks.
Furthermore, this argument is not applicable to all classes of ciphersi in particular,
it is not applicable to one-time pads-for any C, there are many X, k pairs that yield
C when run through the encryption algorithm, but most of these Xs are nonsense,
not legitimate plaintexts.

EXPTIME

PSPACE

NP

Figure 11.1 Complexity classes.

_________________ 11_._2_C_o_m_p_le_x_i_ty_Th_eo_r_y ______ 7----..-~

The class NP includes the class P, because any problem solvable in polynomial
time on a deterministic Turing machine is also solvable in polynomial time on a
nondeterministic Turing machine; the guessing stage can simply be omitted.

If all NP problems are solvable in polynomial time on a deterministic machine,
then P =NP.Although it seems obvious that some NP problems are much harder
than others (a brute-force attack against an encryption algorithm versus encrypt­
ing a random block of plaintext), it has never been proven that P -:f. NP (or that
P = NP). However, most people working in complexity theory believe that they
are unequal.

Stranger still, specific problems in NP can be proven to be as difficult as any prob­
lem in the class. Steven Cook [365] proved that the Satisfiability problem (given a
propositional Boolean formula, is there a way to assign truth values to the variables
that makes the formula true?) is NP-complete. This means that, if Satisfiability is
solvable in polynomial time, then P =NP.Conversely, if any problem in NP can be
proven not to have a deterministic polynomial-time algorithm, the proof will show
that Satisfiability does not have a deterministic polynomial-time algorithm either.
No problem is harder than Satisfiability in NP.

Since Cook's seminal paper was published, a huge number of problems have been
shown to be equivalent to Satisfiability; hundreds are listed in [600], and some
examples follow. By equivalent, I mean that these problems are also NP-complete;
they are in NP and also as hard as any problem in NP. If their solvability in deter­
ministic polynomial time were resolved, the P versus NP question would be solved.
The question of whether P = NP is the central unsolved question of computational
complexity theory, and no one expects it to be solved anytime soon. If someone
showed that P = NP, then most of this book would be irrelevant: As previously
explained, many classes of ciphers are trivially breakable in nondeterministic poly­
nomial time. If P = NP, they are breakable by feasible, deterministic algorithms.

Further out in the complexity hierarchy is PSPACE. Problems in PSPACE can be
solved in polynomial space, but not necessarily polynomial time. PSPACE includes
NP, but some problems in PSPACE are thought to be harder than NP. Of course, this
isn't proven either. There is a class of problems, the so-called PSPACE-complete
problems, with the property that, if any one of them is in NP then PSPACE = NP and
if any one of them is in P then PSPACE = P.

And finally, there is the class of problems called EXPTIME. These problems are
solvable in exponential time. The EXPTIME-complete problems can actually be
proven not to be solvable in deterministic polynomial time. It has been shown that
P does not equal EXPTIME.

NP-Complete Problems

Michael Garey and David Johnson compiled a list of over 300 NP-complete prob-
lems [600]. Here are just a few of them:

Traveling Salesman Problem. A traveling salesman has to visit n dif­
ferent cities using only one tank of gas (there is a maximum distance
he can travel). Is there a route that allows him to visit each city

CHAPTER 11 Mathematical Background

exactly once on that single tank of gas? (This is a generalization of the
Hamiltonian Cycle problem-see Section 5.1.)

Three-Way Marriage Problem. In a room are n men, n women, and n
clergymen (priests, rabbis, whatever). There is also a list of acceptable
marriages, which consists of one man, one woman, and one clergy­
man willing to officiate. Given this list of possible triples, is it possi­
ble to arrange n marriages such that everyone is either marrying one
person or officiating at one marriage?

Three-Satisfiability. There is a list of n logical statements, each with
three variables. For example: if (x and y) then z, (x and w) or (not z), if
((not u and not x) or (z and (u or not x))) then (not z and u) or x), and so
on. Is there a truth assignment for all the variables that satisfies all
the statements? (This is a special case of the Satisfiability problem
previously mentioned.)

11. 3 NUMBER THEORY

This isn't a book on number theory, so I'm just going to sketch a few ideas that
apply to cryptography. If you want a detailed mathematical text on number theory,
consult one of these books: [1430, 72, 1171, 12,959,681,742,420]. My two favorite
books on the mathematics of finite fields are [971,1042]. See also [88,1157,
1158, 1060].

Modular Arithmetic
You all learned modular arithmetic in school; it was called "clock arithmetic."

Remember these word problems? If Mildred says she'll be home by 10:00, and she's
13 hours late, what time does she get home and for how many years does her father
ground her? That's arithmetic modulo 12. Twenty-three modulo 12 equals 11.

(10 + 13) mod 12 = 23 mod 12 = 11 mod 12

Another way of writing this is to say that 23 and 11 are equivalent, modulo 12:

23 == 11 (mod 12)

Basically, a== b (mod n) if a= b + kn for some integer k. If a is non-negative and b
is between O and n, you can think of b as the remainder of a when divided by n.
Sometimes, b is called the residue of a, modulo n. Sometimes a is called congruent
to b, modulo n (the triple equals sign, ==, denotes congruence). These are just differ­
ent ways of saying the same thing.

The set of integers from Oto n - 1 form what is called a complete set of residues
modulo n. This means that, for every integer a, its residue modulo n is some num­
ber from O to n - 1.

The operation a mod n denotes the residue of a, such that the residue is some inte­
ger from O to n - 1. This operation is modular reduction. For example, 5 mod 3 = 2.

This definition of mod may be different from the definition used in some pro­
gramming languages. For example, PASCAL's modulo operator sometimes returns a

_________________ 1_1._3_N_u_m_b_e_r_T_h_e_o_ry _______ 7...,,.,.~

negative number. It returns a number between -(n - 1) and n - 1. In C, the % oper­
ator returns the remainder from the division of the first expression by the second;
this can be a negative number if either operand is negative. For all the algorithms in
this book, make sure you add n to the result of the modulo operator if it returns a
negative number.

Modular arithmetic is just like normal arithmetic: It's commutative, associative,
and distributive. Also, reducing each intermediate result modulo n yields the same
result as doing the whole calculation and then reducing the end result modulo n.

(a+ b) mod n == ((a mod n) + (b mod n)) mod n

(a - b) mod n == ((a mod n) - (b mod n)) mod n

(a*b) mod n == ((a mod n)*(b mod n)) mod n

(a*(b + c)) mod n == (((a* b) mod n) + ((a*c) mod n)) mod n

Cryptography uses computation mod n a lot, because calculating discrete loga­
rithms and square roots mod n can be hard problems. Modular arithmetic is also eas­
ier to work with on computers, because it restricts the range of all intermediate
values and the result. For a k-bit modulus, n, the intermediate results of any addi­
tion, subtraction, or multiplication will not be more than 2k-bits long. So we can
perform exponentiation in modular arithmetic without generating huge intermedi­
ate results. Calculating the power of some number modulo some number,

ax modn,

is just a series of multiplications and divisions, but there are speedups. One kind of
speedup aims to minimize the number of modular multiplications; another kind
aims to optimize the individual modular multiplications. Because the operations
are distributive, it is faster to do the exponentiation as a stream of successive mul­
tiplications, taking the modulus every time. It doesn't make much difference now,
but it will when you're working with 200-bit numbers.

For example, if you want to calculate a8 mod n, don't use the nai:ve approach and
perform seven multiplications and one huge modular reduction:

(a*a*a*a*a*a*a*a) mod n

Instead, perform three smaller multiplications and three smaller modular reductions:

((a2 mod n)2 mod n)2 mod n

By the same token,

a16 mod n == (((a2 mod n)2 mod n)2 mod n)2 mod n

Computing ax mod n, where x is not a power of 2, is only slightly harder. Binary
notation expresses x as a sum of powers of 2: 25 is 11001 in binary, so 25 == 24 + 23 +
2°. So

a25 mod n == (a*a24) mod n == (a*a8 *a 16) mod n
== (a*((a2)2)2*(((a2)2)2)2) mod n == ((((a2*a)2)2)2*a) mod n

CHAPTER 11 Mathematical Background

With judicious storing of intermediate results, you only need six multiplications:

(((((((a2 mod n)*a) mod n)2 mod n)2 mod n)2 mod n)*a) mod n

This is called addition chaining [863], or the binary square and multiply method.
It uses a simple and obvious addition chain based on the binary representation. In C,
it looks like:

unsigned long qe2(unsigned long x, unsigned long y, unsigned long n) (
unsigned long s,t,u;
int i;

s = 1; t = x; u = y;

while (u) (
if(u&l) s = (S*t)%n;
u»= 1;
t = (t*t)%n;

return(s);

Another, recursive, algorithm is:

unsigned long fast_exp(unsigned long x, unsigned long y, unsigned long NJ (
unsigned long tmp;

if(y==l) return(x % N);
if ((y&l)==O) {

else

tmp = fast_exp(x,y/2,N);
return ((tmp*tmp)%N);

tmp = fast_exp(x,(y-1)/2,N);
tmp = (tmp•tmp)%N;
tmp = (tmp•x)%N;
return (tmp);

This technique reduces the operation to, on the average, 1.5 * k operations, if k is
the length of the number x in bits. Finding the calculation with the fewest opera­
tions is a hard problem (it has been proven that the sequence must contain at least
k - 1 operations), but it is not too hard to get the number of operations down to
1.1 * k or better, as k grows.

An efficient way to do modular reductions many times using the same n is Mont­
gomery's method [1111]. Another method is called Barrett's algorithm [87]. The soft­
ware performance of these two algorithms and the algorithm previously discussed is
in [210]: The algorithm I've discussed is the best choice for singular modular reduc­
tions; Barrett's algorithm is the best choice for small arguments; and Montgomery's
method is the best choice for general modular exponentiations. (Montgomery's
method can also take advantage of small exponents, using something called mixed
arithmetic.)

__________________ 1_1_.3_N_u_m_b_e_r_T_n_e_o_ry _______ z:~~

The inverse of exponentiation modulo n is calculating a discrete logarithm. I'll
discuss this shortly.

Prime Numbers
A prime number is an integer greater than 1 whose only factors are 1 and itself:

No other number evenly divides it. Two is a prime number. So are 73, 2521,
2365347734339, and 2756839 - 1. There are an infinite number of primes. Cryptog­
raphy, especially public-key cryptography, uses large primes (512 bits and even
larger) often.

Evangelos Kranakis wrote an excellent book on number theory, prime numbers,
and their applications to cryptography [896]. Paulo Ribenboim wrote two excellent
references on prime numbers in general [1307, 1308].

Greatest Common Divisor
Two numbers are relatively prime when they share no factors in common other

than 1. In other words, if the greatest common divisor of a and n is equal to 1. This
is written:

gcd(a,n) = 1

The numbers 15 and 28 are relatively prime, 15 and 27 are not, and 13 and 500 are.
A prime number is relatively prime to all other numbers except its multiples.

One way to compute the greatest common divisor of two numbers is with Euclid's
algorithm. Euclid described the algorithm in his book, Elements, written around 300
B.C. He didn't invent it. Historians believe the algorithm could be 200 years older. It
is the oldest nontrivial algorithm that has survived to the present day, and it is still
a good one. Knuth describes the algorithm and some modern modifications [863].

In C:

/* returns gcd of x and y *I

int gcd (int x, int y)

int g;

if (X < 0)

X ~ -x;
if (y < 0)

y ~ -y;
if (X + y -- 0)

ERROR;
g ~ y;
while (X > 0)

g ~ X;

X ~ y % X;

y ~ g;

return g;

CHAPTER 11 Mathematical Background

This algorithm can be generalized to return the gcd of an array of m numbers:

/* returns the gcd of xl, x2 ... xm */

int multiple_gcd (int m, int *x)
{

size_t i;
int g;

if(m<l)
return O;

g = x[OJ;
for (i=l; i<m; ++i) {

g = gcd(g, x[i]);
/* optimization, since for random x[i], g==l 60% of the time: */

if(g==l)
return l;

return g;

Inverses Modulo a Number

Remember inverses? The multiplicative inverse of 4 is 1/4, because 4* 1/4 = 1. In
the modulo world, the problem is more complicated:

4*x == 1 (mod 7)

This equation is equivalent to finding an x and k such that

4x= 7k + 1

where both x and k are integers.
The general problem is finding an x such that

1 = (a*x) mod n

This is also written as

a-1 == x (mod n)

The modular inverse problem is a lot more difficult to solve. Sometimes it has a
solution, sometimes not. For example, the inverse of 5, modulo 14, is 3. On the
other hand, 2 has no inverse modulo 14.

In general, a- 1 == x (mod n) has a unique solution if a and n are relatively prime. If
a and n are not relatively prime, then a- 1 == x (mod n) has no solution. If n is a prime
number, then every number from 1 ton - 1 is relatively prime ton and has exactly
one inverse modulo n in that range.

So far, so good. Now, how do you go about finding the inverse of a modulo n?
There are a couple of ways. Euclid's algorithm can also compute the inverse of a
number modulo n. Sometimes this is called the extended Euclidean algorithm.

Here's the algorithm in C++:

#define isEven(x) ((x & OxOl) == 0)

_________________ 1_1._3_N_u_m_b_e_r_T_n_e_o_ry _______ 7...,,,..~

(x & OxOll #define isOdd(x)
#define swap(x,y) (x A= Y, YA= x, x A= y)

void ExtBinEuclid(int *u, int *v, int *ul, int *u2, int *u3)
(

// warning: u and v will be swapped if u < v
int k, tl, t2, t3;

if (*u < *v) swap(*u,*v);
for Ck= O; isEven(*u) && isEven(*v); ++k) {

*u >>= l; *v >>= l;

*ul = l; *u2 = O; *u3 = *u; tl
do {

do
if (isEven(*u3)) {

*v; t2 *u-1; t3 *v;

if (isOdd(*ul) I I is0dd(*u2))
*ul += *v; *u2 += *u;

*ul >>= l; *u2 >>= l; *u3 >>= l;

if (isEven(t3) 11 *u3 < t3) {

swap(*ul,tl); swap(*u2,t2); swap(*u3,t3);

while (isEven(*u3)l;
while (*ul < tl I I *uZ < tZ)

*ul += *v; *u2 += *u;

*ul -= tl; *uZ -= t2; *u3 t3;
while (t3 > O);

while (*ul >= *v && *uZ >= *u) {
*ul *v; *uZ *u;

*ul <<= k; *uZ <<= k; *u3 <<= k;

main(int argc, char **argv) {
int a, b, gcd;

if (a rgc < 3)
cerr « "Usage: xeucl id u v" « endl;
return -1;

int u = atoi(argv[l]);
int v = atoi(argv[ZJ);
if C u <= 0 I I v <= 0)

}

cerr << "Arguments must be positive!"<< endl;
return -2;

// warning: u and v will be swapped if u < v
ExtBinEuclid(&u, &v, &a, &b, &gcd);
cout <<a<<"*"<< u << "+ (-"

<< b << ") *" << v << "=" << gcd << endl;
if (gcd == 1)

CHAPTER 11 Mathematical Background

cout << "the inverse of" << v << "mod " << u << " is:
« u - b « end l ;

return O;

I'm not going to prove that it works or give the theory behind it. Details can be
found in [863], or in any of the number theory texts previously listed.

The algorithm is iterative and can be slow for large numbers. Knuth showed that
the average number of divisions performed by the algorithm is:

.843*log2 (n) + 1.47

Solving for Coefficients

Euclid's algorithm can be used to solve this class of problems: Given an array of m
variables x 1, x2, ... x,w find an array of m coefficients, u 1, u2 •.. u,w such that

Fermat's Little Theorem
If m is a prime, and a is not a multiple of m, then Fermat's little theorem says

am - 1 = 1 (mod m)

(Pierre de Fermat, pronounced "Fair-ma," was a French mathematician who lived
from 1601 to 1665. This theorem has nothing to do with his last theorem.)

The Euler Totient Function
There is another method for calculating the inverse modulo n, but it's not always

possible to use it. The reduced set of residues mod n is the subset of the complete
set of residues that is relatively prime ton. For example, the reduced set of residues
mod 12 is jl,5,7,11). If n is prime, then the reduced set of residues mod n is the set
of all numbers from 1 to n - 1. The number O is never part of the reduced set of
residues for any n not equal to 1.

The Euler totient function, also called the Euler phi function and written as cp(n),
is the number of elements in the reduced set of residues modulo n. In other words,
cp(n) is the number of positive integers less than n that are relatively prime ton (for
any 11 greater than 1). (Leonhard Euler, pronounced "Oiler," was a Swiss mathe­
matician who lived from 1707 to 1783.)

If 11 is prime, then cp(n) = n - 1. If n = pq, where p and q are prime, then cp(11) =
(p - l)(q - 1). These numbers appear in some public-key algorithms; this is why.

According to Euler's generalization of Fermat's little theorem, if gcd(a,n) = 1, then

a¢ln) mod 11 = 1

Now it is easy to compute a- 1 mod n:

X = a¢1n) - 1 mod TI

For example, what is the inverse of 5, modulo 7? Since 7 is prime, cp(7) = 7 - 1 = 6.
So, the inverse of 5, modulo 7, is

_________________ 1_1._3_N_u_m_b_e_r_T_n_e_o_ry _______ 7..,,,.~

56 - t mod 7 = 55 mod 7 = 3

Both methods for calculating inverses can be extended to solve for x in the general
problem (if gcd(a,n) = 1):

(a*x) mod n = b

Using Euler's generalization, solve

x = (b*a~lnl - t) mod n

Using Euclid's algorithm, solve

x = (b*(a-t mod n)) mod n

In general, Euclid's algorithm is faster than Euler's generalization for calculating
inverses, especially for numbers in the 500-bit range. If gcd(a,n) t: 1, all is not lost. In
this general case, (a*x) mod n = b, can have multiple solutions or no solution.

Chinese Remainder Theorem
If you know the prime factorization of n, then you can use something called the

Chinese remainder theorem to solve a whole system of equations. The basic version
of this theorem was discovered by the first-century Chinese mathematician, Sun Tse.

In general, if the prime factorization of n is Pt* p 2 * ... * Pt, then the system of equa­
tions

(x mod p;) = a;, where i = 1, 2, ... , t

has a unique solution, x, where xis less than n. (Note that some primes can appear
more than once. For example, Pt might be equal to p 2.) In other words, a number (less
than the product of some primes) is uniquely identified by its residues mod those
primes.

For example, use 3 and 5 as primes, and 14 as the number. 14 mod 3 = 2, and 14
mod 5 = 4. There is only one number less than 3*5 = 15 which has those residues:
14. The two residues uniquely determine the number.

So, for an arbitrary a< p and b < q (where p and q are prime), there exists a unique
x, where xis less than pq, such that

x = a (modp), andx = b (mod q)

To find this x, first use Euclid's algorithm to find u, such that

u*q = 1 (modp)

Then compute:

x = (((a - b)*u) mod p)*q + b

Here is the Chinese remainder theorem in C:

/* r is the number of elements in arrays m and u;
mis the array of (pairwise relatively prime) moduli
u is the array of coefficients

CHAPTER 11 Mathematical Background

return value is n such than n u[kJ%m[kJ (k~O .. r-1) and
n < m[OJ*m[l]* ... *m[r-1]

*I

/* totient() is left as an exercise to the reader. */

int chinese_remainder (size_t r, int *m, int *u)
I

size_t i;
int modulus;
int n;

modulus~ l;
f Or (i ~o; i < r; ++i)

modulus *~ m[i J;

n O;
for (i ~o; i < r; ++i) i

n +~ u[i] * modexp(modulus / m[i], totient(m[i]l,
m [i J) ;

n %~ modulus;

return n;

The converse of the Chinese remainder theorem can also be used to find the solu­
tion to the problem: if p and q are primes, and p is less than q, then there exists a
unique x less than pq, such that

a= x (modp), and b = x (mod q)

If a ~ b mod p, then

x = (((a - (b mod p))*u) mod p)*q + b

If a< b modp, then

x =(((a+ p - (b modp))*u) modp)*q + b

Quadratic Residues
If p is prime, and a is greater than O and less than p, then a is a quadratic residue

modp if

x2 = a (mod p), for some x

Not all values of a satisfy this property. For a to be a quadratic residue modulo n,
it must be a quadratic residue modulo all the prime factors of n. For example, if p =
7, the quadratic residues are 1, 2, and 4:

12 = 1 = 1 (mod 7)

22 = 4 = 4 (mod 7)

32 = 9 = 2 (mod 7)

_________________ 1_1._3_N_u_m_b_e_r_T_n_e_o_ry _______ 7~~

42 = 16 == 2 (mod 7)

52 = 25 == 4 (mod 7)

62 = 36 == 1 (mod 7)

Note that each quadratic residue appears twice on this list.
There are no values of x which satisfy any of these equations:

x2 == 3 (mod 7)

x2 == 5 (mod 7)

x2 == 6 (mod 7)

The quadratic nonresidues modulo 7, the numbers that are not quadratic residues,
are 3, 5, and 6.

Although I will not do so here, it is easy to prove that, when p is odd, there are
exactly (p - 1)/2 quadratic residues mod p and the same number of quadratic non­
residues mod p. Also, if a is a quadratic residue mod p, then a has exactly two square
roots, one of them between O and (p - 1)/2, and the other between (p - 1)/2 and
(p - 1). One of these square roots is also a quadratic residue mod p; this is called the
principal square root.

If n is the product of two primes, p and q, there are exactly (p - 1)(q - 1)/4
quadratic residues mod n. A quadratic residue mod n is a perfect square modulo n.
This is because to be a square mod n, the residue must be a square mod p and a
square mod q. For example, there are 11 quadratic residues mod 35: 1, 4, 9, 11, 14,
15, 16, 21, 25, 29, and 30. Each quadratic residue has exactly four square roots.

Legendre Symbol

The Legendre symbol, written L(a,p), is defined when a is any integer and pis a
prime greater than 2. It is equal to 0, 1, or -1.

L(a,p) = 0 if a is divisible by p.

L(a,p) = 1 if a is a quadratic residue mod p.

L(a,p) = -1 is a is a quadratic nonresidue mod p.

One way to calculate L(a,p) is:

L(a,p) = air - 1112 mod p

Or you can use the following algorithm:

1. If a= 1, then L(a,p) = 1

2. If a is even, then L(a,p) = L(a/2,p)*(-l)IP 2
- 11/8

3. If a is odd (and* 1), then L(a,p) = L(p mod a,a)*(-1)1" - 1l·lr- 1l/4

Note that this is also an efficient way to determine whether a is a quadratic residue
mod p (when p is prime).

CHAPTER 11 Mathematical Background

Jacobi Symbol
The Jacobi symbol, written J(a,n), is a generalization of the Legendre symbol to

composite moduli; it is defined for any integer a and any odd integer n. The function
shows up in primality testing. The Jacobi symbol is a function on the set of reduced
residues of the divisors of n and can be calculated by several formulas [1412]. This is
one method:

Definition 1: J(a,n) is only defined if n is odd.

Definition 2: J(O,n) = 0.

Definition 3: If n is prime, then the Jacobi symbol J(a,n) = 0 if n divides a.

Definition 4: If n is prime, then the Jacobi symbol J(a,nl = 1 if a is a
quadratic residue modulo n.

Definition 5: If n is prime, then the Jacobi symbol J(a,n) = -1 if a is a
quadratic nonresidue modulo n.

Definition 6: If n is composite, then the Jacobi symbol J(a,n) = J(a,pi)
* ... * J(a,pm), where p 1 ••• Pm is the prime factorization of n.

The following algorithm computes the Jacobi symbol recursively:

Rule 1: J(l,n) = 1

Rule 2: J(a•b,n) = J(a,n)•J(b,n)

Rule 3: J(2,n) = 1 if (n2 - 1)/8 is even, and -1 otherwise

Rule 4: J(a,n) = J((a mod n),n)

Rule 5: J(a,bi * b2) = J(a,bi)• J(a,h)

Rule 6: If the greatest common divisor of a and b = 1, and a and b are
odd:

Rule 6a: J(a,b) = J(b,a) if (a - l)(b - 1)/4 is even

Rule 6b: J(a,b) =-J(b,a) if (a - l)(b - 1)/4 is odd

Here is the algorithm in C:

/* This algorithm computes the Jacobi symbol recursively*/

int jacobi(int a, int bl
(

int g;

assert(odd(bl);

if (a >= bl a %= b; !* by Rule 4 */
if (a== 0) return O; I* by Definition 2 */
if (a== ll return 1; !* by Rule 1 */

if (a< 0)
if (((b-1)/2 % 2 == 0l

________________ 1_1_.3 __ N_u_m_be_r_T_n_e_o_ry _______ 7 __ ~

return jacobi(-a,bl;
else

return -jacobi(-a,bl;

if (a% 2 == 0l /* a is even*/
if (((b*b - ll/Sl % 2 == 0l

return +jacobi(a/2, bl
else

return -jacobi(a/2, bl/* by Rule 3 and Rule 2 */
g=gcd(a,bl;

assert(odd(all; /* this is guaranteed by the (a% 2 0l
test*/

if (g == al /* a exactly divides b */
return 0; /* by Rules 5 and 4, and Definition 2 */

else if (g != ll
return jacobi(g,bl * jacobi(a/g, bl;/* by Rule 2 */

else if (((a-ll*(b-ll/4l % 2 == 0l
return +jacobi(b,al; /* by Rule 6a */

else
return -jacobi(b,al; /* by Rule 6b */

If n is known to be prime beforehand, simply compute alln - 11121 mod n instead of
running the previous algorithm; in this case J(a,n) is equivalent to the Legendre
symbol.

The Jacobi symbol cannot be used to determine whether a is a quadratic residue
mod n (unless n is prime, of course). Note that, if J(a,n) = 1 and n is composite, it is
not necessarily true that a is a quadratic residue modulo n. For example:

J(7,143) = J(7,ll)*J(7,13) = (-1)(-1) = 1

However, there is no integer x such that x2 = 7 (mod 143).

Blum Integers
If p and q are two primes, and both are congruent to 3 modulo 4, then n = pq is

sometimes called a Blum integer. If n is a Blum integer, each quadratic residue has
exactly four square roots, one of which is also a square; this is the principal square
root. For example, the principal square root of 139 mod 43 7 is 24. The other three
square roots are 185, 252, and 413.

Generators
If p is a prime, and g is less than p, then g is a generator mod p if

for each b from 1 top - 1, there exists some a where ga = b (mod p).

Another way of saying this is that g is primitive with respect top.
For example, if p = 11, 2 is a generator mod 11:

210 = 1024 = 1 (mod 11)

2 1 =2=2(modll)

CHAPTER 11 Mathematical Background

28 = 256 = 3 (mod 11)

22 =4 = 4 (mod 11)

24 = 16 = 5 (mod 11)

29 = 512 = 6 (mod 11)

27 = 128 = 7 (mod 11)

23 = 8 = 8 (mod 11)

26 = 64 = 9 (mod 11)

25 = 32 = 10 (mod 11)

Every number from 1 to 10 can be expressed as 2a (mod p).
For p = 11, the generators are 2, 6, 7, and 8. The other numbers are not generators.

For example, 3 is not a generator because there is no solution to

3" = 2 (mod 11)

In general, testing whether a given number is a generator is not an easy problem. It
is easy, however, if you know the factorization of p - 1. Let q1, q2, ••• , qn be the dis­
tinct prime factors of p - 1. To test whether a number g is a generator mod p, calculate

glP - ll/q mod p

for all values of q = q1, q2, ... , qn.
If that number equals 1 for some value of q, then g is not a generator. If that value

does not equal 1 for any values of q, then g is a generator.
For example, let p = 11. The prime factors of p - 1 = 10 are 2 and 5. To test whether

2 is a generator:

2111 - 1115 (mod 11) = 4

2 111 - 1112 (mod 11) = 10

Neither result is 1, so 2 is a generator.
To test whether 3 is a generator:

3111 - 1115 (mod 11) = 9

3111 - 1112 (mod 11) = 1

Therefore, 3 is not a generator.
If you need to find a generator mod p, simply choose a random number from 1 to

p - 1 and test whether it is a generator. Enough of them will be, so you'll probably
find one fast.

Computing in a Galois Field

Don't be alarmed; that's what we were just doing. If n is prime or the power of a
large prime, then we have what mathematicians call a finite field. In honor of that
fact, we use p instead of n. In fact, this type of finite field is so exciting that mathe­
maticians gave it its own name: a Galois field, denoted as GF(p). (Evariste Galois
was a French mathematician who lived in the early nineteenth century and did a lot
of work in number theory before he was killed at age 20 in a duel.)

__________________ 1_1_.4 __ F_a_ct_o_n_·n_g ________ 7~~

In a Galois field, addition, subtraction, multiplication, and division by nonzero
elements are all well-defined. There is an additive identity, 0, and a multiplicative
identity, 1. Every nonzero number has a unique inverse (this would not be true if p
were not prime). The commutative, associative, and distributive laws are true.

Arithmetic in a Galois field is used a great deal in cryptography. All of the num­
ber theory worksi it keeps numbers a finite size, and division doesn't have any
rounding errors. Many cryptosystems are based on GF(p), where pis a large prime.

To make matters even more complicated, cryptographers also use arithmetic
modulo irreducible polynomials of degree n whose coefficients are integers modulo
q, where q is prime. These fields are called GF(qn). All arithmetic is done modulo
p(x), where p(x) is an irreducible polynomial of degree n.

The mathematical theory behind this is far beyond the scope of the book,
although I will describe some cryptosystems that use it. If you want to try to work
more with this, GF(2·') has the following elements: 0, 1, x, x + 1, x2, x2 + 1, x2 + x, x2

+ x + 1. There is an algorithm for computing inverses in GF(2n) that is suitable for
parallel implementation [421].

When talking about polynomials, the term "prime" is replaced by "irreducible." A
polynomial is irreducible if it cannot be expressed as the product of two other poly­
nomials (except for 1 and itself, of course). The polynomial x2 + 1 is irreducible over
the integers. The polynomial x 3 + 2x2 +xis noti it can he expressed as x(x + 1)(x + 1).

A polynomial that is a generator in a given field is called primitive; all its coeffi­
cients are relatively prime. We'll see primitive polynomials again when we talk
about linear-feedback shift registers (see Section 16.2).

Computation in GF(2n) can be quickly implemented in hardware with linear­
feedback shift registers. For that reason, computation over GF(2n) is often quicker
than computation over GF(p). Just as exponentiation is much more efficient m
GF(2n), so is calculating discrete logarithms [180,181,368,379]. If you want to learn
more about this, read [140].

For a Galois field GF(2n), cryptographers like to use the trinomial p(x) = xn + x + 1
as the modulus, because the long string of zeros between the xn and x coefficients
makes it easy to implement a fast modular multiplication [183]. The trinomial
must be primitive, otherwise the math does not work. Values of n less than 1000
[1649, 1648] for which xn + x + 1 is primitive are:

1, 3, 4, 6, 9, 15, 22, 28, 30, 46, 60, 63, 127, 153, 172, 303, 471, 532,
865,900

There exists a hardware implementation of GF(2 127) where p(x) = x 127 + x + 1
[1631,1632,1129]. Efficient hardware architectures for implementing exponentia­
tion in GF(2n) are discussed in [147].

11.4 f ACTORING

Factoring a number means finding its prime factors.

10 = 2*5

60 = 2*2*3*5

CHAPTER 11 Mathematical Background

252601 = 41 *61 * 101

2113 - 1 = 3391 *23279*65993* 1868569* 1066818132868207

The factoring problem is one of the oldest in number theory. It's simple to factor
a number, but it's time-consuming. This is still true, but there have been some
major advances in the state of the art.

Currently, the best factoring algorithm is:

Number field sieve (NFS) [953] (see also [952,16,279]). The general num­
ber field sieve is the fastest-known factoring algorithm for numbers
larger than 110 digits or so [472,635]. It was impractical when originally
proposed, but that has changed due to a series of improvements over the
last few years [953]. The NFS is still too new to have broken any factor­
ing records, but this will change soon. An early version was used to fac­
tor the ninth Fermat number: 2512 + 1 [955,954].

Other factoring algorithms have been supplanted by the NFS:

Quadratic sieve (QS) [1257,1617,1259]. This is the fastest-known algo­
rithm for numbers less than 110 decimal digits long and has been used
extensively [440]. A faster version of this algorithm is called the multi­
ple polynomial quadratic sieve [1453,302]. The fastest version of this
algorithm is called the double large prime variation of the multiple poly­
nomial quadratic sieve.

Elliptic curve method (ECM) [957,1112,1113]. This method has been
used to find 43-digit factors, but nothing larger.

Pollard's Monte Carlo algorithm [1254,248]. (This algorithm also appears
in volume 2, page 370 of Knuth [863].)

Continued fraction algorithm. See [1123,1252,863]. This algorithm isn't
even in the running.

Trial division. This is the oldest factoring algorithm and consists of test­
ing every prime number less than or equal to the square root of the can­
didate number.

See [251] for a good introduction to these different factoring algorithms, except for
the NFS. The best discussion of the NFS is [953]. Other, older references are [505,
1602, 1258]. Information on parallel factoring can be found in [250].

If n is the number being factored, the fastest QS variants have a heuristic asymp­
totic run time of:

ell + O(l)l(ln (n)lll/2!(1n (In (n)l)il/2)

The NFS is much faster, with a heuristic asymptotic time estimate of:
elL923 + O(l)l(ln (n)l1I /3l11n (In (n)l)l2/3)

In 1970, the big news was the factoring of a 41-digit hard number [1123]. (A "hard"
number is one that does not have any small factors and is not of a special form that

___________________ 1_1_.4 __ F_a_ct_o_n_·n_g ________ 7--=-~

allows it to be factored more easily.) Ten years later, factoring hard numbers twice
that size took a Cray computer just a few hours [440].

In 1988, Carl Pomerance designed a modular factoring machine, using custom
VLSI chips [1259]. The size of the number you would be able to factor depends on
how large a machine you can afford to build. He never built it.

In 1993, a 120-digit hard number was factored using the quadratic sieve; the cal­
culation took 825 mips-years and was completed in three months real time [463].
Other results are [504].

Today's factoring attempts use computer networks [302,955]. In factoring a 116-
digit number, Arjen Lenstra and Mark Manasse used 400 mips-years-the spare
time on an array of computers around the world for a few months.

In March 1994, a 129-digit (428-bit) number was factored using the double large
prime variation of the multiple polynomial QS [66] by a team 0£ mathematicians led
by Lenstra. Volunteers on the Internet carried out the computation: 600 people and
1600 machines over the course of eight months, probably the largest ad hoc multi­
processor ever assembled. The calculation was the equivalent of 4000 to 6000 mips­
years. The machines communicated via electronic mail, sending their individual
results to a central repository where the final steps of analysis took place. This com­
putation used the QS and five-year-old theory; it would have taken one-tenth the
time using the NFS [949]. According to [66]: "We conclude that commonly used 512-
bit RSA moduli are vulnerable to any organization prepared to spend a few million
dollars and to wait a few months." They estimate that factoring a 512-bit number
would be 100 times harder using the same technology, and only 10 times harder
using the NFS and current technology [949].

To keep up on the state of the art of factoring, RSA Data Security, Inc. set up the
RSA Factoring Challenge in March 1991 [532]. The challenge consists of a list of
hard numbers, each the product of two primes of roughly equal size. Each prime was
chosen to be congruent to 2 modulo 3. There are 42 numbers in the challenge, one
each of length 100 digits through 500 digits in steps of 10 digits (plus one additional
number, 129 digits long). At the time of writing, RSA-100, RSA-110, RSA-120, and
RSA-129 have been factored, all using the QS. RSA-130 might be next (using the
NFS), or the factoring champions might skip directly to RSA-140.

This is a fast-moving field. It is difficult to extrapolate factoring technology
because no one can predict advances in mathematical theory. Before the NFS was
discovered, many people conjectured that the QS was asymptotically as fast as any
factoring method could be. They were wrong.

Near-term advances in the NFS are likely to come in the form of bringing down
the constant: 1.923. Some numbers of a special form, like Fermat numbers, have a
constant more along the lines of 1.5 [955,954]. If the hard numbers used in public­
key cryptography had that kind of constant, 1024-bit numbers could be factored
today. One way to lower the constant is to find better ways of representing numbers
as polynomials with small coefficients. The problem hasn't been studied very exten­
sively yet, but it is probable that advances are coming [949].

For the most current results from the RSA Factoring Challenge, send e-mail to
challenge-info@rsa.com.

CHAPTER 11 Mathematical Background

Square Roots Modulo n

If n is the product of two primes, then the ability to calculate square roots mod n
is computationally equivalent to the ability to factor n [1283,35,36,193]. In other
words, someone who knows the prime factors of n can easily compute the square
roots of a number mod n, but for everyone else the computation has been proven to
be as hard as computing the prime factors of n.

11.5 PRIME NUMBER GENERATION

Public-key algorithms need prime numbers. Any reasonably sized network needs
lots of them. Before discussing the mathematics of prime number generation, I will
answer a few obvious questions.

1. If everyone needs a different prime number, won't we run out? No. In fact,
there are approximately 10151 primes 512 bits in length or less. For numbers
near n, the probability that a random number is prime is approximately
one in ln n. So the total number of primes less than n is n/(ln n). There are
only 1077 atoms in the universe. If every atom in the universe needed a bil­
lion new primes every microsecond from the beginning of time until now,
you would only need 10109 primes; there would still be approximately 10151

512-bit primes left.

2. What if two people accidentally pick the same prime number? It won't
happen. With over 10151 prime numbers to choose from, the odds of that
happening are significantly less than the odds of your computer sponta­
neously combusting at the exact moment you win the lottery.

3. If someone creates a database of all primes, won't he be able to use that
database to break public-key algorithms? Yes, but he can't do it. If you
could store one gigabyte of information on a drive weighing one gram, then
a list of just the 512-bit primes would weigh so much that it would exceed
the Chandrasekhar limit and collapse into a black hole ... so you couldn't
retrieve the data anyway.

But if factoring numbers is so hard, how can generating prime numbers be easy?
The trick is that the yes/no question, "Is n prime?" is a much easier question to
answer than the more complicated question, "What are the factors of n!"

The wrong way to find primes is to generate random numbers and then try to fac­
tor them. The right way is to generate random numbers and test if they are prime.
There are several probabilistic primality tests; tests that determine whether a num­
ber is prime with a given degree of confidence. Assuming this "degree of confi­
dence" is large enough, these sorts of tests are good enough. I've heard primes
generated in this manner called "industrial-grade primes": These are numbers that
are probably prime with a controllably small chance of error.

Assume a test is set to fail once in 250 tries. This means that there is a 1 in 1015

chance that the test falsely indicates that a composite number is prime. (The test

________________ 1_1_.s __ P_n_·m_e_N_u_m_b_er_G_e_n_e_ra_t_io_n _____ 7 __ ~

will never falsely indicate that a prime number is composite.) If for some reason you
need more confidence that the number is prime, you can set the failure level even
lower. On the other hand, if you consider that the odds of the number being com­
posite are 300 million times less than the odds of winning top prize in a state lot­
tery, you might not worry about it so much.

Overviews of recent developments in the field can be found in [1256,206]. Other
important papers are [1490,384,11,19,626,651,911].

Solovay-Strassen
Robert Solovay and Volker Strassen developed a probabilistic primality testing

algorithm [1490]. Their algorithm uses the Jacobi symbol to test if pis prime:

(1) Choose a random number, a, less than p.

(2) If the gcd(a,p) cf. 1, then p fails the test and is composite.
(3) Calculate;= aiP - 1112 mod p.

(4) Calculate the Jacobi symbol J(a,p).

(5) If; cf. J(a,p), then pis definitely not prime.

(6) If ; = J(a,p), then the likelihood that p is not prime is no more than 50
percent.

A number a that does not indicate that p is definitely not prime is called a wit­
ness. If pis composite, the odds of a random a being a witness is no less than 50 per­
cent. Repeat this test t times, with t different random values for a. The odds of a
composite number passing all t tests is no more than one in 21•

Lehmann
Another, simpler, test was developed independently by Lehmann [945]. Here it

tests if p is prime:

(1) Choose a random number a less than p.

(2) Calculate alv - 1112 mod p.

(3) If alv - 1112 =Is 1 or -1 (mod p), then pis definitely not prime.

(4) If atv - 1112 = 1 or -1 (mod p), then the likelihood that p is not prime is no
more than 50 percent.

Again, the odds of a random a being a witness to p's compositeness is no less than
50 percent. Repeat this test t times. If the calculation equals l or -1, but does not
always equal 1, then pis probably prime with an error rate of 1 in 21•

Rabin-Miller
The algorithm everyone uses-it's easy-was developed by Michael Rabin, based

in part on Gary Miller's ideas [1093, 1284]. Actually, this is a simplified version of
the algorithm recommended in the DSS proposal [1149, 1154].

CHAPTER 11 Mathematical Background

Choose a random number, p, to test. Calculate b, where b is the number of times
2 divides p - 1 (i.e., 21, is the largest power of 2 that divides p - 1). Then calculate m,
such that p = 1 + 2b* m.

(1) Choose a random number, a, such that a is less than p.

(2) Set j = 0 and set z = am modp.

(3) If z = 1, or if z = p - 1, then p passes the test and may be prime.

(4) If j > 0 and z = 1, then pis not prime.

(5) Set j = j + 1. If j <band z =I=-p - 1, set z = z2 mod p and go back to step (4). If
z = p - 1, then p passes the test and may be prime.

(6) If j =band z =I=-p - 1, then pis not prime.

The odds of a composite passing decreases faster with this test than with previous
ones. Three-quarters of the possible values of a are guaranteed to be witnesses. This
means that a composite number will slip through t tests no more than ¼1 of the time,
where t is the number of iterations. Actually, these numbers are very pessimistic.
For most random numbers, something like 99 .9 percent of the possible a values are
witnesses [96].

There are even better estimations [417]. For n-bit candidate primes (where n is more
than 100), the odds of error in one test are less than 1 in 4n2 1kl211i 121• And for a 256-bit
n, the odds of error in six tests are less than 1 in 2 51 . More theory is in [418].

Practical Considerations
In real-world implementations, prime generation goes quickly.

(1) Generate a random n-bit number, p.

(2) Set the high-order and low-order bit to 1. (The high-order bit ensures that
the prime is of the required length and the low-order bit ensures that it
is odd.)

(3) Check to make sure pis not divisible by any small primes: 3, 5, 7, 11, and
so on. Many implementations test p for divisibility by all primes less than
256. The most efficient is to test for divisibility by all primes less than
2000 [949]. You can do this efficiently using a wheel [863].

(4) Perform the Rabin-Miller test for some random a. If p passes, generate
another random a and go through the test again. Choose a small value of a
to make the calculations go quicker. Do five tests [651]. (One might seem
like enough, but do five.) If p fails one of the tests, generate another p and
try again.

Another option is not to generate a random p each time, but to incrementally
search through numbers starting at a random point until you find a prime.

Step (3) is optional, but it is a good idea. Testing a random odd p to make sure it is
not divisible by 3, 5, and 7 eliminates 54 percent of the odd numbers before you get

11. 6 Discrete Logarithms in a Finite Field

to step (4). Testing against all primes less than 100 eliminates 76 percent of the odd
numbers; testing against all primes less than 256 eliminates 80 percent. In general,
the fraction of odd candidates that is not a multiple of any prime less than n is
1.12/ln n. The larger then you test up to, the more precomputation is required
before you get to the Rabin-Miller test.

One implementation of this method on a Spare II was able to find 256-bit primes
in an average of 2.8 seconds, 512-bit primes in an average of 24.0 seconds, 768-bit
primes in an average of 2.0 minutes, and 1024-bit primes in an average of 5.1 min­
utes [918].

Strong Primes

If n is the product of two primes, p and q, it may be desirable to use strong primes
for p and q. These are prime numbers with certain properties that make the product
n difficult to factor by specific factoring methods. Among the properties suggested
have been [1328,651]:

The greatest common divisor of p - 1 and q - 1 should be small.

Both p - 1 and q - 1 should have large prime factors, respectively p' and q'.

Both p' - 1 and q' - 1 should have large prime factors.

Both p + 1 and q + 1 should have large prime factors.

Both (p - 1)/2 and (q - 1)/2 should be prime [182]. (Note that if this
condition is true, then so are the first two.)

Whether strong primes are necessary is a subject of debate. These properties were
designed to thwart some older factoring algorithms. However, the fastest factoring
algorithms have as good a chance of factoring numbers that meet these criteria as
they do of factoring numbers that do not [831].

I recommend against specifically generating strong primes. The length of the
primes is much more important than the structure. Moreover, structure may be
damaging because it is less random.

This may change. New factoring techniques may be developed that work better
on numbers with certain properties than on numbers without them. If so, strong
primes may be required once again. Check current theoretical mathematics journals
for updates.

11.6 DISCRETE LOGARITHMS IN A FINITE FIELD

Modular exponentiation is another one-way function used frequently in cryptogra­
phy. Evaluating this expression is easy:

ax modn

The inverse problem of modular exponentiation is that of finding the discrete log­
arithm of a number. This is a hard problem:

CHAPTER 11 Mathematical Background

Find x where ax= b (mod n).

For example:

lf3x= 15modl7,thenx=6

Not all discrete logarithms have solutions (remember, the only valid solutions are
integers). It's easy to see that there is no solution, x, to the equation

3x = 7 (mod 13)

It's far more difficult to solve these problems using 1024-bit numbers.

Calculating Discrete Logarithms in a Finite Group

There are three main groups whose discrete logarithms are of interest to cryp-
tographers:

The multiplicative group of prime fields: GF(p)

The multiplicative group of finite fields of characteristic 2: GF(211)

Elliptic curve groups over finite fields F: EC(F)

The security of many public-key algorithms is based on the problem of finding
discrete logarithms, so the problem has been extensively studied. A good compre­
hensive overview of the problem, and the best solutions at the time, can be found in
[1189,1039]. The best current article on the topic is [934].

If p is the modulus and is prime, then the complexity of finding discrete logarithms
in GF(p) is essentially the same as factoring an integer n of about the same size, when
n is the product of two approximately equal-length primes [1378,934]. This is:

ell + O(J))lln (p))l 1/2I(1n tin (p)))ll/2)

The number field sieve is faster, with an heuristic asymptotic time estimate of
el!.923 + Oll)llln iPl(l 1/3I11n (In ir))(i2/3I

Stephen Pohlig and Martin Hellman found a fast way of computing discrete loga­
rithms in GF(p) if p - 1 has only small prime factors [1253]. For this reason, only
fields where p - 1 has at least one large factor are used in cryptography. Another
algorithm [14] computes discrete logarithms at a speed comparable to factoring; it
has been expanded to fields of the form GF(p11) [716]. This algorithm was criticized
[727] for having some theoretical problems. Other articles [1588] show how difficult
the problem really is.

Computing discrete logarithms is closely related to factoring. If you can solve the
discrete logarithm problem, then you can factor. (The converse has never been
proven to be true.) Currently, there are three methods for calculating discrete loga­
rithms in a prime field [370,934,648]: the linear sieve, the Gaussian integer scheme,
and the number field sieve.

The preliminary, extensive computing has to be done only once per field. After­
ward, individual logarithms can be quickly calculated. This can be a security disad-

11.6 Discrete Logarithms in a Finite Field

vantage for systems based on these fields. It is important that different applications
use different prime fields. Multiple users in the same application can use a common
field, though.

In the world of extension fields, GF(211) hasn't been ignored by researchers. An
algorithm was proposed in [727]. Coppersmith's algorithm makes finding discrete
logarithms in fields such as GF(2 127) reasonable and finding them in fields around
GF(2400) possible [368]. This was based on work in [180]. The precomputation stage
of this algorithm is enormous, but otherwise it is nice and efficient. A practical
implementation of a less efficient version of the same algorithm, after a seven-hour
precomputation period, found discrete logs in GF(2 127) in several seconds each
[1130, 180]. (This particular field, once used in some cryptosystems [142, 1631, 1632],
is insecure.) For surveys of some of these results, consult [1189,1039].

More recently, the precomputations for GF(2227), GF(23 n), and GF(2401) are done,
and significant progress has been made towards GF(2s03). These calculations are
being executed on an nCube-2 massively parallel computer with 1024 processors
[649,650]. Computing discrete logarithms in GF(2593) is still barely out of reach.

Like discrete logarithms in a prime field, the precomputation required to cal­
culate discrete logarithms in a polynomial field has to be done only once. Taher
ElGamal [520] gives an algorithm for calculating discrete logs in the field GF(p2).

-------------------------z:---~

CHAPTER

Data Encryption
Standard (DES)

12.1 BACKGROUND

12

The Data Encryption Standard (DES), known as the Data Encryption Algorithm
(DEA) by ANSI and the DEA-1 by the ISO, has been a worldwide standard for 20
years. Although it is showing signs of old age, it has held up remarkably well against
years of cryptanalysis and is still secure against all but possibly the most powerful
of adversaries.

Development of the Standard
In the early 1970s, nonmilitary cryptographic research was haphazard. Almost no

research papers were published in the field. Most people knew that the military used
special coding equipment to communicate, hut few understood the science of cryp­
tography. The National Security Agency (NSA) had considerable knowledge, but
they did not even publicly admit their own existence.

Buyers didn't know what they were buying. Several small companies made and
sold cryptographic equipment, primarily to overseas governments. The equipment
was all different and couldn't interoperate. No one really knew if any of it was
secure; there was no independent body to certify the security. As one government
report said [441]:

The intricacies of relating key variations and working principles to the real
strength of the encryption/decryption equipment were, and are, virtually
unknown to almost all buyers, and informed decisions as to the right type of on­
line, off-line, key generation, etc., which will meet buyers' security needs, have
been most difficult to make.

In 1972, the National Bureau of Standards (NBS), now the National Institute of
Standards and Technology (NIST), initiated a program to protect computer and com­
munications data. As part of that program, they wanted to develop a single, standard

CHAPTER 12 Data Encryption Standard (DES)

cryptographic algorithm. A single algorithm could be tested and certified, and dif­
ferent cryptographic equipment using it could interoperate. It would also be cheaper
to implement and readily available.

In the May 15, 1973 Federal Register, the NBS issued a public request for propos-
als for a standard cryptographic algorithm. They specified a series of design criteria:

The algorithm must provide a high level of security.

The algorithm must be completely specified and easy to understand.

The security of the algorithm must reside in the keyi the security
should not depend on the secrecy of the algorithm.

The algorithm must be available to all users.

The algorithm must be adaptable for use in diverse applications.

The algorithm must be economically implementable in electronic
devices.

The algorithm must be efficient to use.

The algorithm must be able to be validated.

The algorithm must be exportable.

Public response indicated that there was considerable interest in a cryptographic
standard, but little public expertise in the field. None of the submissions came close
to meeting the requirements.

The NBS issued a second request in the August 27, 1974 Federal Register. Even­
tually they received a promising candidate: an algorithm based on one developed by
IBM during the early 1970s, called Lucifer (see Section 13.1). IBM had a team work­
ing on cryptography at both Kingston and Yorktown Heights, including Roy Adler,
Don Coppersmith, Horst Feistel, Edna Grossman, Alan Konheim, Carl Meyer, Bill
Notz, Lynn Smith, Walt Tuchman, and Bryant Tuckerman.

The algorithm, although complicated, was straightforward. It used only simple
logical operations on small groups of bits and could be implemented fairly effi­
ciently in hardware.

The NBS requested the NSA's help in evaluating the algorithm's security and
determining its suitability as a federal standard. IBM had already filed for a patent
[514], but was willing to make its intellectual property available to others for man­
ufacture, implementation, and use. Eventually, the NBS worked out the terms of
agreement with IBM and received a nonexclusive, royalty-free license to make, use,
and sell equipment that implemented the algorithm.

Finally, in the March 17, 1975 Federal Register, the NBS published both the
details of the algorithm and IBM's statement granting a nonexclusive, royalty-free
license for the algorithm, and requested comment [536]. Another notice, in the
August 1, 1975 Federal Register, again requested comments from agencies and the
general public.

And there were comments [721,497, 1120]. Many were wary of the NSA's "invisi­
ble hand" in the development of the algorithm. They were afraid that the NSA had

___________________ 12_._1_B_ac_k_g_r_o_u_n_d ________ 7 __ ~

modified the algorithm to install a trapdoor. They complained that the NSA reduced
the key size from the original 128-bits to 56-bits (see Section 13.1). They complained
about the inner workings of the algorithm. Much of NSA's reasoning became clear
in the early 1990s, but in the 1970s this seemed mysterious and worrisome.

In 1976, the NBS held two workshops to evaluate the proposed standard. The
first workshop discussed the mathematics of the algorithm and the possibility of a
trapdoor [1139]. The second workshop discussed the possibility of increasing the
algorithm's key length [229]. The algorithm's designers, evaluators, implementors,
vendors, users, and critics were invited. From all reports, the workshops were
lively [1118].

Despite criticism, the Data Encryption Standard was adopted as a federal standard
on November 23, 1976 [229] and authorized for use on all unclassified govern­
ment communications. The official description of the standard, PIPS PUB 46, "Data
Encryption Standard," was published on January 15, 1977 and became effective six
months later [1140]. PIPS PUB 81, "DES Modes of Operation," was published in
1980 [1143]. PIPS PUB 74, "Guidelines for Implementing and Using the NBS Data
Encryption Standard," was published in 1981 [1142]. NBS also published PIPS PUB
112, specifying DES for password encryption [1144], and PIPS PUB 113, specifying
DES for computer data authentication [1145]. (PIPS stands for Federal Information
Processing Standard.)

These standards were unprecedented. Never before had an NSA-evaluated algo­
rithm been made public. This was probably the result of a misunderstanding
between NSA and NBS. The NSA thought DES was hardware-only. The standard
mandated a hardware implementation, but NBS published enough details so that
people could write DES software. Off the record, NSA has characterized DES as one
of their biggest mistakes. If they knew the details would be released so that people
could write software, they would never have agreed to it. DES did more to galvanize
the field of cryptanalysis than anything else. Now there was an algorithm to study:
one that the NSA said was secure. It is no accident that the next government stan­
dard algorithm, Skipjack (see Section 13.12), was classified.

Adoption of the Standard
The American National Standards Institute (ANSI) approved DES as a private­

sector standard in 1981 (ANSI X3.92) [50]. They called it the Data Encryption Algo­
rithm (DEA). ANSI published a standard for DEA modes of operation (ANSI X3.106)
[52], similar to the NBS document, and a standard for network encryption that uses
DES (ANSI X3.105) [51].

Two other groups within ANSI, representing retail and wholesale banking, devel­
oped DES-based standards. Retail banking involves transactions between financial
institutions and private individuals, and wholesale banking involves transactions
between financial institutions.

ANSI's Financial Institution Retail Security Working Group developed a standard
for the management and security of PINs (ANSI X9.8) [53] and another DES-based
standard for the authentication of retail financial messages (ANSI X9.19) [56]. The
group has a draft standard for secure key distribution (ANSI X9.24) [58].

CHAPTER 12 Data Encryption Standard (DES)

ANSI's Financial Institution Wholesale Security Working Group developed its
own set of standards for message authentication (ANSI X9.9) [54], key management
(ANSI X9.l 7) [55,1151], encryption (ANSI X9.23) [57], and secure personal and node
authentication (ANSI X9.26) [59].

The American Bankers Association develops voluntary standards for the financial
industry. They published a standard recommending DES for encryption [l], and
another standard for managing cryptographic keys [2].

Before the Computer Security Act of 1987, the General Services Administration
(GSA) was responsible for developing federal telecommunications standards. Since
then, that responsibility transferred to NIST. The GSA published three standards
that used DES: two for general security and interoperability requirements (Federal
Standard 1026 [662] and Federal Standard 1027 [663]), and one for Group 3 facsimile
equipment (Federal Standard 1028) [664].

The Department of the Treasury wrote policy directives requiring that all
electronic-funds transfer messages be authenticated with DES [468,470]. They also
wrote DES-based criteria that all authentication devices must meet [469].

The ISO first voted to approve DES-they called it the DEA-1-as an interna­
tional standard, then decided not to play a role in the standardization of cryptogra­
phy. However, in 1987 the International Wholesale Financial Standards group of ISO
used DES in an international authentication standard [758] and for key management
[761]. DES is also specified in an Australian banking standard [1497].

Validation and Certification of DES Equipment
As part of the DES standard, NIST validates implementations of DES. This vali­

dation confirms that the implementation follows the standard. Until 1994, NIST
only validated hardware and firmware implementations-until then the standard
prohibited software implementations. As of March 1995, 73 different implementa­
tions had been validated.

NIST also developed a program to certify that authentication equipment conformed
to ANSI X9.9 and FIPS 113. As of March, 1995, 33 products had been validated. The
Department of the Treasury has an additional certification procedure. NIST also has
a program to confirm that equipment conforms to ANSI X9.l 7 for wholesale key
management [1151]; four products have been validated as of March, 1995.

1987
The terms of the DES standard stipulate that it be reviewed every five years. In

1983 DES was recertified without a hitch. In the March 6, 1987 Federal Register,
NBS published a request for comments on the second five-year review. NBS offered
three alternatives for consideration [1480,1481]: reaffirm the standard for another
five years, withdraw the standard, or revise the applicability of the standard.

NBS and NSA reviewed the standard. NSA was more involved this time. Because
of an executive directive called NSDD-145, signed by Reagan, NSA had veto power
over the NBS in matters of cryptography. Initially, the NSA announced that it would
not recertify the standard. The problem was not that DES had been broken, or even
that it was suspected of having been broken. It was simply increasingly likely that
it would soon be broken.

,-.-________________ 1_2_.1_B_ac_k_g_ro_u_n_d ________ 7..,,,,,~

In its place, the NSA proposed the Commercial COMSEC Endorsement Program
(CCEP), which would eventually provide a series of algorithms to replace DES [85].
These NSA-designed algorithms would not be made public, and would only be avail­
able in tamper-proof VLSI chips (see Section 25.1).

This announcement wasn't well received. People pointed out that business
(especially the financial industry) uses DES extensively, and that no adequate
alternative is available. Withdrawal of the standard would leave many organiza­
tions with no data protection. After much debate, DES was reaffirmed as a U.S.
government standard until 1992 [1141]. According to the NBS, DES would not be
certified again [1480].

1993

Never say "not." In 1992, there was still no alternative for DES. The NBS, now
called NIST, again solicited comments on DES in the Federal Register [540]:

The purpose of this notice is to announce the review to assess the continued ade­
quacy of the standard to protect computer data. Comments from industry and the
public are invited on the following alternatives for FIPS 46-1. The costs (impacts)
and benefits of these alternatives should be included in the comments:

-Reaffirm the standard for another five (5) years. The National Institute of
Standards and Technology would continue to validate equipment that imple­
ments the standard. FIPS 46-1 would continue to be the only approved method
for protecting unclassified computer data.
-Withdraw the standard. The National Institute of Standards and Technology
would no longer continue to support the standard. Organizations could con­
tinue to utilize existing equipment that implements the standard. Other stan­
dards could be issued by NIST as a replacement for the DES.
-Revise the applicability and/or implementation statements for the standard.
Such revisions could include changing the standard to allow the use of imple­
mentations of the DES in software as well as hardware; to allow the iterative
use of the DES in specific applications; to allow the use of alternative algo­
rithms that are approved and registered by NIST.

The comment period closed on December 10, 1992. According to Raymond Kam-
mer, then the acting director of NIST [813]:

Last year, NIST formally solicited comments on the recertification of DES. After
reviewing those comments, and the other technical inputs that I have received, I
plan to recommend to the Secretary of Commerce that he recertify DES for
another five years. I also plan to suggest to the Secretary that when we announce
the recertification we state our intention to consider alternatives to it over the
next five years. By putting that announcement on the table, we hope to give peo­
ple an opportunity to comment on orderly technological transitions. In the mean­
time, we need to consider the large installed base of systems that rely upon this
proven standard.

Even though the Office of Technology Assessment quoted NIST's Dennis
Branstead as saying that the useful lifetime of DES would end in the late 1990s

CHAPTER 12 Data Encryption Standard (DES)

[1191], the algorithm was recertified for another five years [1150]. Software imple­
mentations of DES were finally allowed to be certified.

Anyone want to guess what will happen in 1998?

12.2 DESCIDPTION OF DES

DES is a block cipher; it encrypts data in 64-bit blocks. A 64-bit block of plaintext
goes in one end of the algorithm and a 64-bit block of ciphertext comes out the other
end. DES is a symmetric algorithm: The same algorithm and key are used for both
encryption and decryption (except for minor differences in the key schedule).

The key length is 56 bits. (The key is usually expressed as a 64-bit number, but
every eighth bit is used for parity checking and is ignored. These parity bits are the
least-significant bits of the key bytes.) The key can be any 56-bit number and can be
changed at any time. A handful of numbers are considered weak keys, but they can
easily be avoided. All security rests within the key.

At its simplest level, the algorithm is nothing more than a combination of the two
basic techniques of encryption: confusion and diffusion. The fundamental building
block of DES is a single combination of these techniques (a substitution followed by
a permutation) on the text, based on the key. This is known as a round. DES has 16
rounds; it applies the same combination of techniques on the plaintext block 16
times (see Figure 12.1).

The algorithm uses only standard arithmetic and logical operations on numbers of
64 bits at most, so it was easily implemented in late 1970s hardware technology.
The repetitive nature of the algorithm makes it ideal for use on a special-purpose
chip. Initial software implementations were clumsy, but current implementations
are better.

Outline of the Algorithm
DES operates on a 64-bit block of plaintext. After an initial permutation, the

block is broken into a right half and a left half, each 32 bits long. Then there are 16
rounds of identical operations, called Function f, in which the data are combined
with the key. After the sixteenth round, the right and left halves are joined, and a
final permutation (the inverse of the initial permutation) finishes off the algorithm.

In each round (see Figure 12.2), the key bits are shifted, and then 48 bits are
selected from the 56 bits of the key. The right half of the data is expanded to 48 bits
via an expansion permutation, combined with 48 bits of a shifted and permuted key
via an XOR, sent through 8 S-boxes producing 32 new bits, and permuted again.
These four operations make up Function f. The output of Function f is then com­
bined with the left half via another XOR. The result of these operations becomes the
new right half; the old right half becomes the new left half. These operations are
repeated 16 times, making 16 rounds of DES.

If Bi is the result of the ith iteration, L1 and R1 are the left and right halves of Bi, Ki
is the 48-bit key for round i, and f is the function that does all the substituting and
permuting and XO Ring with the key, then a round looks like:

_________________ 12_._2_D_es_c_n_·p_t1_·o_n_o_f_D_E_S ______ 7~~

Plaintext

Ciphertext Figure 12.1 DES.

L;=R;-1

Ri = Li - I E8 f (Ri - I, Ki)

The Initial Permutation
The initial permutation occurs before round l; it transposes the input block as

described in Table 12.1. This table, like all the other tables in this chapter, should be
read left to right, top to bottom. For example, the initial permutation moves bit 58
of the plaintext to bit position 1, bit 50 to bit position 2, bit 42 to bit position 3, and
so forth.

The initial permutation and the corresponding final permutation do not affect
DES's security. (As near as anyone can tell, its primary purpose is to make it easier
to load plaintext and ciphertext data into a DES chip in byte-sized pieces. Remem­
ber that DES predates 16-bit or 32-bit microprocessor busses.) Since this bit-wise
permutation is difficult in software (although it is trivial in hardware), many soft­
ware implementations of DES leave out both the initial and final permutations.
While this new algorithm is no less secure than DES, it does not follow the DES
standard and should not be called DES.

CHAPTER 12 Data Encryption Standard (DES)

R;~ I Key

Shift Shift
~- ~--_ ~---r-~ ~----,_----~-~

Expansion Permutation Compression Permutation

S-Box Substitution

P-Box Permutation

Key

Figure 12.2 One round of DES.

The Key Transformation
Initially, the 64-bit DES key is reduced to a 56-bit key by ignoring every eighth bit.

This is described in Table 12.2. These bits can be used as parity check to ensure the
key is error-free. After the 56-bit key is extracted, a different 48-bit subkey is gener­
ated for each of the 16 rounds of DES. These subkeys, K;, are determined in the fol­
lowing manner.

First, the 56-bit key is divided into two 28-bit halves. Then, the halves are circu­
larly shifted left by either one or two bits, depending on the round. This shift is
given in Table 12.3.

Table 12.1
Initial Permutation

58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7

12.2 Description of DES
z~

Table 12.2
Key Permutation

57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4

After being shifted, 48 out of the 56 bits are selected. Because this operation per­
mutes the order of the bits as well as selects a subset of bits, it is called a compres­
sion permutation. This operation provides a subset of 48 bits. Table 12.4 defines the
compression permutation (also called the permuted choice). For example, the bit in
position 33 of the shifted key moves to position 35 of the output, and the bit in posi­
tion 18 of the shifted key is ignored.

Because of the shifting, a different subset of key bits is used in each subkey. Each
bit is used in approximately 14 of the 16 subkeys, although not all bits are used
exactly the same number of times.

The Expansion Permutation
This operation expands the right half of the data, R;, from 32 bits to 48 bits.

Because this operation changes the order of the bits as well as repeating certain bits,
it is known as an expansion permutation. This operation has two purposes: It makes
the right half the same size as the key for the XOR operation and it provides a longer
result that can be compressed during the substitution operation. However, neither
of those is its main cryptographic purpose. By allowing one bit to affect two substi­
tutions, the dependency of the output bits on the input bits spreads faster. This is
called an avalanche effect. DES is designed to reach the condition of having every bit
of the ciphertext depend on every bit of the plaintext and every bit of the key as
quickly as possible.

Figure 12.3 defines the expansion permutation. This is sometimes called the E­
box. For each 4-bit input block, the first and fourth bits each represent two bits of
the output block, while the second and third bits each represent one bit of the out­
put block. Table 12.5 shows which output positions correspond to which input posi­
tions. For example, the bit in position 3 of the input block moves to position 4 of the
output block, and the bit in position 21 of the input block moves to positions 30 and
32 of the output block.

Although the output block is larger than the input block, each input block gener­
ates a unique output block.

Round 1
Number 1

Table 12.3
Number of Key Bits Shifted per Round

2 3 4 5 6 7 8 9 10 11 12 13
1 2 2 2 2 2 2 1 2 2 2 2

14
2

15
2

16
1

CHAPTER 12 Data Encryption Standard (DES)

Table 12.4
Compression Permutation

14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32

The S-Box Substitution

After the compressed key is XORed with the expanded block, the 48-bit result
moves to a substitution operation. The substitutions are performed by eight substi­
tution boxes, or S-boxes. Each S-box has a 6-bit input and a 4-bit output, and there are
eight different S-boxes. (The total memory requirement for the eight DES S-boxes is
256 bytes.) The 48 bits are divided into eight 6-bit sub-blocks. Each separate block is
operated on by a separate S-box: The first block is operated on by S-box 1, the second
block is operated on by S-box 2, and so on. See Figure 12.4.

Each S-box is a table of 4 rows and 16 columns. Each entry in the box is a 4-bit
number. The 6 input bits of the S-box specify under which row and column number
to look for the output. Table 12.6 shows all eight S-boxes.

The input bits specify an entry in the S-box in a very particular manner. Consider
an S-box input of 6 bits, labeled b 1, b2, b3, b4, b5, and b6• Bits b, and b6 are combined
to form a 2-bit number, from O to 3, which corresponds to a row in the table. The
middle 4 bits, b2 through b5, are combined to form a 4-bit number, from O to :5,
which corresponds to a column in the table.

For example, assume that the input to the sixth S-box (i.e., bits 31 through 36 of
the XOR function) is 110011. The first and last bits combine to form 11, which cor-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 1112 1314 15 16 17 18 19 20 21 22 23 24

Figure 12.3 Expansion permutation.

12.2 Description of DES
z~

Table 12.5
Expansion Permutation

32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9,
8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,

16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25,
24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1

responds to row 3 of the sixth S-box. The middle 4 bits combine to form 1001, which
corresponds to the column 9 of the same S-box. The entry under row 3, column 9 of
S-box 6 is 14. (Remember to count rows and columns from 0 and not from 1.) The
value 1110 is substituted for 110011.

It is, of course, far easier to implement the S-boxes in software as 64-entry arrays. It
takes some rearranging of the entries to do this, but that's not hard. (Don't just change
the indexing without rearranging the entries. The S-boxes are designed very carefully.)
However, this way of describing the S-boxes helps visualize how they work. Each
S-box can be viewed as a substitution function on a 4-bit entry: b2 through b5 go in,
and a 4-bit result comes out. Bits b1 and b6 come from neighboring blocks; they select
one out of four substitution functions available in the particular S-box.

The S-box substitution is the critical step in DES. The algorithm's other opera­
tions are linear and easy to analyze. The S-boxes are nonlinear and, more than any­
thing else, give DES its security.

The result of this substitution phase is eight 4-bit blocks which are recombined
into a single 32-bit block. This block moves to the next step: the P-box permutation.

The P-Box Permutation
The 32-bit output of the S-box substitution is permuted according to a P-box. This

permutation maps each input bit to an output position; no bits are used twice and
no bits are ignored. This is called a straight permutation or just a permutation. Table
12. 7 shows the position to which each bit moves. For example, bit 21 moves to bit
4, while bit 4 moves to bit 31.

32-Bit Output

Figure 12.4 S-box substitution.

CHAPTER 12 Data Encryption Standard (DES)

Table 12.6
S-Boxes

S-box 1:
14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,

15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13,

S-box 2:
15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,

13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9,

S-box 3:
10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,

1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12,

S-box 4:
7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,

13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14,

S-box 5:
2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,

14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,

11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3,

S-box 6:
12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
9, 14, 15, 5, 2, 8. 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13,

S-box 7:
4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,

13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12,

S-box 8:
13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,

1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11

__________________ 1_2_.2 __ D_e_s_c_n_·p_t1_·o_n_o_f_D_E_S _______ z:-,.,,~

16, 7, 20,
2, 8, 24,

Table 12.7
P-Box Permutation

21, 29, 12, 28,
14, 32, 27, 3,

17,
9,

1,
19,

15, 23, 26, 5,
13, 30, 6, 22,

18, 31,
11, 4,

10,
25

Finally, the result of the P-box permutation is XORed with the left half of the ini­
tial 64-bit block. Then the left and right halves are switched and another round
begins.

The Final Permutation

The final permutation is the inverse of the initial permutation and is described in
Table 12.8. Note that the left and right halves are not exchanged after the last round
of DES; instead the concatenated block R16L16 is used as the input to the final per­
mutation. There's nothing going on here; exchanging the halves and shifting around
the permutation would yield exactly the same result. This is so that the algorithm
can be used to both encrypt and decrypt.

Decrypting DES

After all the substitutions, permutations, XORs, and shifting around, you might
think that the decryption algorithm is completely different and just as confusing as
the encryption algorithm. On the contrary, the various operations were chosen to
produce a very useful property: The same algorithm works for both encryption and
decryption.

With DES it is possible to use the same function to encrypt or decrypt a block.
The only difference is that the keys must be used in the reverse order. That is, if the
encryption keys for each round are K1, K2, K3, ••• , K16, then the decryption keys are
K16, K1s, K 14, ••• , K 1• The algorithm that generates the key used for each round is
circular as well. The key shift is a right shift and the number of positions shifted is
0,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1.

Modes of DES

FIPS PUB 81 specifies four modes of operation: ECB, CBC, OFB, and CFB (see
Chapter 9) [1143]. The ANSI banking standards specify ECB and CBC for encryption,
and CBC and n-bit CFB for authentication [52].

In the software world, certification is usually not an issue. Because of its simplic­
ity, ECB is most often used in off-the-shelf commercial software products, although

Table 12.8
Final Permutation

40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31,
38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29,
36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27,
34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25

CHAPTER 12 Data Encryption Standard (DES)

it is the most vulnerable to attack. CBC is used occasionally, even though it is just
slightly more complicated than ECB and provides much more security.

Hardware and Software Implementations of DES
Much has been written on efficient hardware and software implementations of

the algorithm [997,81,533,534,437,738,1573,176,271,1572]. At this writing, the
recordholder for the fastest DES chip is a prototype developed at Digital Equipment
Corporation [512]. It supports ECB and CBC modes and is based on a GaAs gate
array of 50,000 transistors. Data can be encrypted and decrypted at a rate of 1 giga­
bit per second, which translates to 16.8 million blocks per second. This is impres­
sive. Table 12.9 gives the specifications for some commercial DES chips. Seeming
discrepancies between clock speed and data rate are due to pipelining within the
chip; a chip might have multiple DES engines working in parallel.

The most impressive DES chip is VLSI's 6868 (formerly called "Gatekeeper"). Not
only can it perform DES encryption in only 8 clock cycles (prototypes in the lab can
do it in 4 clock cycles), but it can also do ECB triple-DES in 25 clock cycles, and OFB
or CBC triple-DES in 35 clock cycles. This sounds impossible to me, too, but I
assure you it works.

A software implementation of DES on an IBM 3090 mainframe can perform
32,000 DES encryptions per second. Most microcomputers are slower, but impres­
sive nonetheless. Table 12.10 [603,793] gives actual results and estimates for various
Intel and Motorola microprocessors.

12.3 SECURITY OF DES

People have long questioned the security of DES [458]. There has been much spec­
ulation on the key length, number of iterations, and design of the S-boxes. The
S-boxes were particularly mysterious-all those constants, without any apparent
reason as to why or what they're for. Although IBM claimed that the inner workings
were the result of 17 man-years of intensive cryptanalysis, some people feared that
the NSA embedded a trapdoor into the algorithm so they would have an easy means
of decrypting messages.

The U.S. Senate Select Committee on Intelligence, with full top-secret clear­
ances, investigated the matter in 1978. The findings of the committee are classified,
but an unclassified summary of those findings exonerated the NSA from any
improper involvement in the algorithm's design [1552]. "It was said to have con­
vinced IBM that a shorter key was adequate, to have indirectly assisted in the devel­
opment of the S-box structures and to have certified that the final DES algorithm
was, to the best of their knowledge, free of any statistical or mathematical weak­
nesses" [435]. However, since the government never made the details of the inves­
tigation public, many people remained unconvinced.

Tuchman and Meyer, two of the IBM cryptographers who designed DES, said the
NSA did not alter the design [841]:

Their basic approach was to look for strong substitution, permutation, and key
scheduling functions IBM has classified the notes containing the selection

12.3 Security of DES
z~

Table 12.9
Commercial DES Chips

Manufacturer Chip Year Clock Data Rate

AMD Am9518 1981 3MHz 1.3 MByte/s
AMD Am9568 4MHz 1.5 MByte/s
AMD AmZ8068 1982 4MHz 1. 7 MByte/s
AT&T Tl000A 1985 1.9 MByte/s
CE-Infosys SuperCrypt 1992 20MHz 12.5 MByte/s

CE99C003
CE-Infosys SuperCrypt 1994 30MHz 20.0 MByte/s

CE99C003A
Cryptech Cryl2Cl02 1989 20MHz 2.8 MByte/s
Newbridge CA20C03A 1991 25MHz 3.85 MByte/s
Newbridge CA20C03W 1992 8MHz 0.64 MByte/s
Newbridge CA95C68/18/09 1993 33MHz 14.67 MByte/s
Pijnenburg PCClO0 2.5 MByte/s
Semaphore Roadrunner284 40MHz 35.5 MByte/s

Communications
VLSI Technology VM007 1993 32MHz 200.0 MByte/s
VLSI Technology VM009 1993 33MHz 14.0 MByte/s
VLSI Technology 6868 1995 32MHz 64.0 MByte/s
Western Digital WD2001 /2002 1984 3MHz 0.23 MByte/s

Table 12.10
DES Speeds on Different Microprocessors and Computers

Processor Speed (in MHz) DES Blocks (per second)

8088
68000
80286
68020
68030
80386
68030
68040
68040
80486

Sun ELC
HyperSparc
RS6000-350
Spare 10/52
DEC Alpha 4000/610
HP 9000/887

4.7
7.6
6
16
16
25
50
25
40
66

125

370
900

1,100
3,500
3,900
5,000
10,000
16,000
23,000
43,000

26,000
32,000
53,000
84,000
154,000
196,000

Availability

N
N
N
N
y

y

y

y

y

y

y

y

y

y

y

N

CHAPTER 12 Data Encryption Standard (DES)

criteria at the request of the NSA "The NSA told us we had inadvertently
reinvented some of the deep secrets it uses to make its own algorithms," explains
Tuchman.

Later in the article, Tuchman is quoted: "We developed the DES algorithm
entirely within IBM using IBMers. The NSA did not dictate a single wire!" Tuch­
man reaffirmed this when he spoke on the history of DES at the 1992 National
Computer Security Conference.

On the other hand, Coppersmith wrote [373,374]: "The National Security Agency
(NSA) also provided technical advice to IBM." And Konheim has been quoted as say­
ing: "We sent the S-boxes off to Washington. They came back and were all different.
We ran our tests and they passed." People have pointed to this as evidence that the
NSA put a trapdoor in DES.

NSA, when questioned regarding any imposed weakness in DES, said [363]:

Regarding the Data Encryption Standard (DES), we believe that the public record
from the Senate Committee for Intelligence's investigation in 1978 into NSA's
role in the development of the DES is responsive to your question. That commit­
tee report indicated that NSA did not tamper with the design of the algorithm in
any way and that the security afforded by the DES was more than adequate for at
least a 5-10 year time span for the unclassified data for which it was intended. In
short, NSA did not impose or attempt to impose any weakness on the DES.

Then why did they modify the S-boxes? Perhaps it was to ensure that IBM did not
put a trapdoor in DES. The NSA had no reason to trust IBM's researchers, and would
be lax in their duty if they did not make absolutely sure that DES was free of trap­
doors. Dictating the S-boxes is one way they could make sure.

Very recently some new cryptanalysis results have shed some light on this issue,
but for many years this has been the subject of much speculation.

Weak Keys
Because of the way the initial key is modified to get a subkey for each round of the

algorithm, certain initial keys are weak keys [721,427]. Remember that the initial
value is split into two halves, and each half is shifted independently. If all the bits in
each half are either O or 1, then the key used for any cycle of the algorithm is the
same for all the cycles of the algorithm. This can occur if the key is entirely ls,
entirely Os, or if one half of the key is entirely ls and the other half is entirely Os.
Also, two of the weak keys have other properties that make them less secure [427].

The four weak keys are shown in hexadecimal notation in Table 12.11. (Remem­
ber that every eighth bit is a parity bit.)

Additionally, some pairs of keys encrypt plaintext to the identical ciphertext. In
other words, one key in the pair can decrypt messages encrypted with the other key
in the pair. This is due to the way in which DES generates subkeys; instead of gen­
erating 16 different subkeys, these keys generate only two different subkeys. Each of
these subkeys is used eight times in the algorithm. These keys are called semiweak
keys, and are shown in hexadecimal notation in Table 12.12.

_________________ 12_._3_S_e_c_ur_i_ty_o_f_D_E_S _______ z:~~

Table 12.11
DES Weak Keys

Weak Key Value (with parity bits)

0101 0101 0101 0101
lFlF lFlF 0E0E 0E0E
E0E0 E0E0 FlFl FlFl
FEFE FEFE FEFE FEFE

Actual Key

0000000 0000000
0000000 FFFFFFF
FFFFFFF 0000000
FFFFFFF FFFFFFF

Some keys produce only four subkeys, each used four times in the algorithm.
These possibly weak keys are listed in Table 12.13.

Before condemning DES for having weak keys, consider that this list of 64 keys is
minuscule compared to the total set of 72,057,594,037,927,936 possible keys. If you
select a random key, the odds of picking one of these keys is negligible. If you are
truly paranoid, you could always check for weak keys during key generation. Some
people don't think it's worth the bother. Others say that it's so easy to check, there's
no reason not to.

There is further analysis on weak and semiweak keys in [1116], and additional key
patterns have been investigated for weaknesses. None have been found.

Complement Keys
Take the bit-wise complement of a key; that is, replace all the Os with ls and the

ls with Os. Now, if the original key encrypts a block of plaintext, then the comple­
ment of the key will encrypt the complement of the plaintext block into the com­
plement of the ciphertext block.

If x' is the complement of x, then the identity is as follows:

E1<(P) = C

EK'(P') = C'

This isn't anything mysterious. The subkeys are XO Red with the right half after the
expansion permutation in every round. This complementation property is a direct
result of that fact.

Table 12.12
DES Semiweak Key Pairs

0lFE 0lFE 0lFE 0lFE and FE0l FE0l FE0l FE0l
lFE0 lFE0 0EFl 0EFl and E0lF E0lF FlOE FlOE
0lE0 0lE0 0lFl 0lFl and E00l E00l FlOl Fl0l
lFFE lFFE 0EFE 0EFE and FElF FElF FE0E FE0E
0llF 0llF 0lOE 0lOE and lF0l lF0l 0E0l 0E0l
E0FE E0FE FIFE FIFE and FEE0 FEE0 FEFl FEFl

IF
01
IF
01
EO
FE
FE
EO
FE
EO
EO
FE
FE
EO
FE
EO
01
IF
IF
01
IF
01
01
IF

CHAPTER 12 Data Encryption Standard (DES)

Table 12.13
DES Possibly Weak Keys

IF 01 01 OE OE 01 01 EO 01 01 EO Fl 01 01
IF IF 01 01 OE OE 01 FE IF 01 EO FE OE 01
01 01 IF OE 01 01 OE FE 01 IF EO FE 01 OE
01 IF IF 01 01 OE OE EO IF IF EO Fl OE OE
EO 01 01 Fl Fl 01 01 FE 01 01 FE FE 01 01
FE 01 01 FE FE 01 01 EO IF 01 FE Fl OE 01
EO IF 01 FE Fl OE 01 EO 01 IF FE Fl 01 OE
FE IF 01 Fl FE OE 01 FE IF IF FE FE OE OE
EO 01 IF FE Fl 01 OE IF FE 01 EO OE FE 01
FE 01 IF Fl FE 01 OE 01 FE IF EO 01 FE OE
EO IF IF Fl Fl OE OE IF EO 01 FE OE Fl 01
FE IF IF FE FE OE OE 01 EO IF FE 01 Fl OE
IF EO 01 FE OE Fl 01 01 01 EO EO 01 01 Fl
IF FE 01 Fl OE FE 01 IF IF EO EO OE OE Fl
01 EO IF FE 01 Fl OE IF 01 FE EO OE 01 FE
01 FE IF Fl 01 FE OE 01 IF FE EO 01 OE FE
EO EO 01 01 Fl Fl 01 IF 01 EO FE OE 01 Fl
FE EO 01 OE FE FO 01 01 IF EO FE 01 OE Fl
EO FE 01 OE Fl FE 01 01 01 FE FE 01 01 FE
FE FE 01 01 FE FE 01 IF IF FE FE OE OE FE
EO EO IF OE Fl Fl OE FE FE EO EO FE FE Fl
FE EO IF 01 FE Fl OE EO FE FE EO Fl FE FE
EO FE IF 01 Fl FE OE FE EO EO FE FE Fl Fl
FE FE IF OE FE FE OE EO EO FE FE Fl Fl FE

What this means is that a chosen-plaintext attack against DES only has to test
half the possible keys: 255 keys instead of 256 [1080]. Eli Biham and Adi Shamir
showed [172] that there is a known-plaintext attack of the same complexity, requir­
ing at least 233 known plaintexts.

It is questionable whether this is a weakness, since most messages don't have com­
plement blocks of plaintext (in random plaintext, the odds against it are extremely
high) and users can be warned not to use complement keys.

Algebraic Structure

All possible 64-bit plaintext blocks can be mapped onto all possible 64-bit cipher­
text blocks in 264 ! different ways. The DES algorithm, with its 56-bit key, gives us
256 (approximately 1017) of these mappings. Using multiple encryption, it seems pos­
sible to reach a larger portion of those possible mappings. However, this is only true
if the DES operation does not have certain algebraic structures.

Fl
Fl
Fl
Fl
FE
FE
FE
FE
Fl
Fl
FE
FE
Fl
Fl
Fl
Fl
FE
FE
FE
FE
Fl
Fl
FE
FE

_________________ 12_._3_S_e_cu_r_i_ty_o_f_D_E_S _______ 7_,,~

If DES were closed, then for any Ki and K2 there would always be a K3 such that

EK2(EKi(P)) = EK)P)

In other words, the DES encryption operation would form a group, and encrypting a
set of plaintext blocks with Ki followed by K2 would be identical to encrypting the
blocks with K,. Even worse, DES would be vulnerable to a meet-in-the-middle
known-plaintext attack that runs in only 228 steps [807].

If DES were pure, then for any Ki, K2, and K3 there would always be a K4 such that

EK3(EK2(EK1(P))) = EK4(P)

Triple encryption would be useless. (Note that a closed cipher is necessarily pure,
but a pure cipher is not necessarily closed.)

An early theoretical paper by Don Coppersmith gave some hints, but it wasn't
enough [377]. Various cryptographers wrestled with this question [588,427,431,
527,723,789]. Cycling experiments gathered "overwhelming evidence" that DES is
not a group [807,371,808, 1116,809], but it wasn't until 1992 that cryptographers
proved that DES is not a group [293]. Coppersmith said that the IBM team knew it
all along.

Key Length

IBM's original submission to NBS had a 112-bit key. By the time the DES became
a standard, that was reduced to a 56-bit key. Many cryptographers argued for the
longer key. Their arguments centered on the possibility of a brute-force attack (see
Section 7.1).

In 1976 and 1977, Diffie and Hellman argued that a special-purpose DES-cracking
parallel computer could recover the key in a day and cost $20 million. In 1981,
Diffie upped this to a two-day search time and a cost of $50 million [491]. Diffie and
Hellman argued then that this was out of reach for everybody except organizations
like the NSA, but that by 1990 DES would be totally insecure [714].

Hellman [716] presented another argument against the small key size: By trading
memory space for time, it would be possible to speed up the searching process. He
suggested the possibility of computing and storing 256 possible results of encrypting
a single plaintext block under every possible key. Then, to break an unknown key,
all that would be required would be for the cryptanalyst to insert the plaintext block
into the encryption stream, recover the resulting ciphertext, and look the key up.
Hellman pegged the cost of this cracking machine at $5 million.

Arguments for and against the existence of a DES-cracker lurking in some gov­
ernment basement somewhere have continued. Several people pointed out that the
mean time between failures for the DES chips would never be high enough to ensure
that the machine would work. This objection was shown to be superfluous in
[1278]. Others suggested ways to speed the process even further and to reduce the
effects of chip failures.

Meanwhile, hardware implementations of DES slowly approached the million­
encryptions-per-second requirement of Diffie and Hellman's special-purpose ma­
chine. In 1984 DES chips capable of performing 256,000 encryptions per second had

CHAPTER 12 Data Encryption Standard (DES)

been produced [533,534]. By 1987 chips performing 512,000 encryptions per second
were being developed, and a version capable of checking over a million keys per sec­
ond was feasible [738,1573]. And in 1993 Michael Wiener designed a $1 million
machine that could complete a brute-force attack against DES in an average of 3.5
hours (see Section 7.1).

No one has publicly admitted building this machine, although it is a reasonable
assumption that someone has. A million dollars is not a lot of money to a large-or
even a medium-sized-country.

It was not until 1990 that two Israeli mathematicians, Biham and Shamir, discov­
ered differential cryptanalysis, a technique that put to rest the question of key
length. Before we discuss that technique, let's turn to some other design criticisms
of DES.

Number of Rounds
Why 16 rounds? Why not 32? After five rounds every ciphertext bit is a function

of every plaintext bit and every key bit [1078,1080], and after eight rounds the
ciphertext was essentially a random function of every plaintext bit and every key bit
[880]. (This is called the avalanche effect.) So why not stop after eight rounds?

Over the years, variants of DES with a reduced number of rounds have been suc­
cessfully attacked. DES with three or four rounds was easily broken in 1982 [49].
DES with six rounds fell some years later [336]. Biham and Shamir's differential
cryptanalysis explained this as well: DES with any number of rounds fewer than 16
could be broken with a known-plaintext attack more efficiently than by a brute­
force attack. Certainly brute-force is a much more likely attack, but it is interesting
that the algorithm has exactly 16 rounds.

Design of the S-Boxes

In addition to being accused of reducing the key length, NSA was also accused of
modifying the contents of the S-boxes. When pressed for design justification for the
S-boxes, the NSA indicated that elements of the algorithm's design were "sensitive"
and would not be made public. Many cryptographers were concerned that the NSA­
designed S-boxes hid a trapdoor, making it possible for them to easily cryptanalyze
the algorithm.

Since then, considerable effort has gone into analyzing the design and operation of
the S-boxes. In the mid-1970s, Lexar Corporation [961,721] and Bell Laboratories
[1120] examined the operation of the S-boxes. Neither analysis revealed any weak­
nesses, although both found inexplicable features. The S-boxes had more features in
common with a linear transformation than one would expect if they were chosen at
random. The Bell Laboratories team stated that the S-boxes may have hidden trap­
doors, and the Lexar report concluded with:

Structures have been found in DES that were undoubtedly inserted to strengthen
the system against certain types of attack. Structures have also been found that
appear to weaken the system.

12.4 Differential and Linear Cryptanalysis

On the other hand, this report also warned:

... the problem [of the search for structure in the S-boxes] is complicated by the
ability of the human mind to find apparent structure in random data, which is
really not structure at all.

At the second workshop on DES, the National Security Agency revealed several
design criteria behind the S-boxes [229]. This did nothing to quell people's suspi­
cions, and the debate continued [228,422,714, 1506, 1551].

Various oddities about the S-boxes appeared in the literature. The last three out­
put bits of the fourth S-box can be derived in the same way as the first by comple­
menting some of the input bits [436,438]. Two different, but carefully chosen, inputs
to S-boxes can produce the same output [436]. It is possible to obtain the same out­
put of a single DES round by changing bits in only three neighboring S-boxes [487].
Shamir noticed that the S-boxes entries appeared to be somewhat imbalanced, but
wasn't about to turn that imbalance into an attack [1423]. (He mentioned a feature
of the fifth S-box, but it took another eight years before linear cryptanalysis
exploited that feature.) Other researchers showed that publicly known design prin­
ciples could be used to generate S-boxes with the observed characteristics [266].

Additional Results

There were other attempts to cryptanalyze DES. One cryptographer looked at non­
randomness based on spectral tests [559]. Others analyzed sequences of linear fac­
tors, but their attack failed after eight rounds [1297,336,531]. A 1987 unpublished
attack by Donald Davies exploited the way the expansion permutation repeats bits
into adjacent S-boxes; this attack is also impractical after eight rounds [172,429].

12.4 DIFFERENTIAL AND LINEAR CRYPTANALYSIS

Differential Cryptanalysis

In 1990, Eli Biham and Adi Shamir introduced differential cryptanalysis [167,168,
171,172]. This is a new method of cryptanalysis, heretofore unknown to the public.
Using this method, Biham and Shamir found a chosen-plaintext attack against DES
that was more efficient than brute force.

Differential cryptanalysis looks specifically at ciphertext pairs: pairs of cipher­
texts whose plain texts have particular differences. It analyzes the evolution of these
differences as the plaintexts propagate through the rounds of DES when they are
encrypted with the same key.

Simply, choose pairs of plaintexts with a fixed difference. The two plaintexts can
be chosen at random, as long as they satisfy particular difference conditions; the
cryptanalyst does not even have to know their values. (For DES, the term "differ­
ence" is defined using XOR. This can be different for different algorithms.) Then,
using the differences in the resulting ciphertexts, assign different probabilities to

CHAPTER 12 Data Encryption Standard (DES)

different keys. As you analyze more and more ciphertext pairs, one key will emerge
as the most probable. This is the correct key.

The details are more complicated. Figure 12.5 is the DES round function. Imagine
a pair of inputs, X and X', that have the difference ~- The outputs, Y and Y' are
known, and therefore so is the difference, ~y Both the expansion permutation and
the P-box are known, so Mand ~Care known.Band B' are not known, but their
difference ~B is known and equal to M. (When looking at the difference, the XOR­
ing of Ki with A and A' cancels out.) So far, so good. Here's the trick: For any given
M, not all values of ~C are equally likely. The combination of M and ~C suggests
values for bits of A XOR Ki and A' XOR Ki. Since A and A' are known, this gives us
information about K.

Look at the last round of DES. (Differential cryptanalysis ignores the initial and
final permutation. They have no effect on the attack, except to make it harder to
explain.) If we can identify K16, then we have 48 bits of the key. (Remember, the sub­
key in each round consists of 48 bits of the 56-bit key.) The other 8 bits we can get
by brute force. Differential cryptanalysis will get us K16•

Certain differences in plaintext pairs have a high probability of causing certain
differences in the resulting ciphertext pairs. These are called characteristics. Char­
acteristics extend over a number of rounds and essentially define a path through
these rounds. There is an input difference, a difference at each round, and an output
difference-with a specific probability.

You can find these characteristics by generating a table where the rows represent
the possible input XORs (the XOR of two different sets of input bits), the columns

E(X}

L'iA

L'iB

S-Box

L'iC

Figure 12.5 DES round function.

12.4 Differential and Linear Cryptanalysis

represent the possible output XORs, and the entries represent the number of times
a particular output XOR occurs for a given input XOR. You can generate such a table
for each of DES's eight S-boxes.

For example, Figure 12.6a is a one-round characteristic. The input difference of
the left side is L; it could be anything. The input difference of the right side is 0. (The
two inputs have the same right-hand side, so their difference is 0.) Since there is no
difference going in to the round function, then there is no difference coming out of
the round function. Therefore, the output difference of the left side is L EBO= L, and
the output difference of the right side is 0. This is a trivial characteristic, and is true
with probability 1.

Figure 12.6b is a less obvious characteristic. Again, the input difference to the left
side is arbitrary: L. The input difference to the right side is 0x60000000; the two
inputs differ in only the second and third bits. With a probability of '¼4, the output
difference of the round function is L EB 0x00808200. This means that the output dif­
ference of the left side is L EB 0x00808200 and the output difference of the right side
is 0x60000000-with probability'¼ •.

Different characteristics can be joined. And, assuming the rounds are indepen­
dent, the probabilities can be multiplied. Figure 12. 7 joins the two characteristics
previously described. The input difference to the left side is 0x00808200 and the
input difference to the right side is 0x60000000. At the end of the first round the
input difference and the output of the round function cancel out, leaving an output
difference of 0. This feeds into the second round; the final output difference of the
left side is 0x60000000 and the final output difference of the right side is 0. This
two-round characteristic has a probability of '¼4.

A plaintext pair that satisfies the characteristic is a right pair. A plaintext pair
which does not is a wrong pair. A right pair will suggest the correct round key (for
the last round of the characteristic); a wrong pair will suggest a random round key.

~=L ~=0

~f • A • 0 cE= K,A • 0 j
~=Leo

With Probability 1

(a)

~=0

Figure 12.6 DES characteristics.

~=L ~=X

f~• AeY cE=K'AeX j
X= 60000000
Y= 00808200

With Probability ~:

(b)

~=X

CHAPTER 12 Data Encryption Standard (DES}
.,L.:::=_ _____ ..::::~-------------------------------',-

ti.= y

L'l.=X

ti. =X

ti.= y

K;+I

ti.= 0

X = 60000000
Y = 00808200

With Probability !!

ti.= X

Figure 12. 7 A two-round DES character­
istic.

To find the correct round key, simply collect enough guesses so that one subkey is
suggested more often than all the others. In effect, the correct subkey will rise out
of all the random alternatives.

So, the basic differential attack on n-round DES will recover the 48-bit subkey
used in round n, and the remaining 8 key bits are obtained by brute-force guessing.

There are still considerable problems. First, there is a negligible chance of success
until you reach some threshold. That is, until you accumulate sufficient data you
can't tell the correct subkey from all the noise. And the attack isn't practical: You
have to use counters to assign different probabilities to 248 possible subkeys, and too
much data is required to make this work.

At this point, Biham and Shamir tweaked their attack. Instead of a using a 15-
round characteristic on 16-round DES, they used a 13-round characteristic and some
tricks to get the last few rounds. A shorter characteristic with a higher probability
worked better. And they used some clever mathematics to obtain 56-bit key candi­
dates which could be tested immediately, eliminating the need for counters. This
attack succeeds as soon as a right pair is found; this avoids the threshold and gives a
linear success probability. If you have 1000 times fewer pairs, then you have 1000
times smaller chance of success. This sounds terrible, but it is a lot better than the
threshold. There is always some chance of immediate success.

The results are most interesting. Table 12.14 is a summary of the best differential
attack against DES with varying numbers of rounds [172]. The first column is the
number of rounds. The next two columns are the numbers of chosen plaintexts or
known plaintexts that must be examined for the attack, and the fourth column is

12.4 Differential and Linear Cryptanalysis

Table 12.14
Differential Cryptanalysis Attacks against DES

No. of Chosen Known Analyzed Complexity
Rounds Plain texts Plain texts Plain texts of Analysis

8 214 238 4 29

9 224 244 2 232t

10 224 243 214 21s

11 231 247 2 232t

12 231 247 221 221

13 239 2s2 2 232t

14 239 2s1 229 229

15 247 256 27 237

16 247 2ss 236 237

tThe complexity of the analysis can be greatly reduced for these variants by
using about four times as many plaintexts with the clique method.

the number of those plaintexts actually analyzed. The last column is the complex­
ity of analysis, after the required plaintexts are found.

The best attack against full 16-round DES requires 247 chosen plaintexts. This can
be converted to a known plaintext attack, but that requires 255 known plaintexts.
And 237 DES operations are required during analysis.

Differential cryptanalysis works against DES and other similar algorithms with
constant S-boxes. The attack is heavily dependent on the structure of the S-boxesi
the ones in DES just happen to be optimized against differential cryptanalysis. And
the attack works against DES in any of its operating modes-ECB, CBC, CFB, and
OFB-with the same complexity [172].

DES's resistance can be improved by increasing the number of rounds. Chosen­
plaintext differential cryptanalysis DES with 17 or 18 rounds takes about the same
time as a brute-force search [160]. At 19 rounds or more, differential cryptanalysis
becomes impossible because it requires more than 264 chosen plaintexts: Remem­
ber, DES has a 64-bit block size, so it only has 264 possible plaintext blocks. (In gen­
eral, you can prove that an algorithm is resistant to differential cryptanalysis by
showing that the amount of plaintext required to mount such an attack is greater
than the amount of plaintext possible.)

Here are a few important points. First, this attack is largely theoretical. The enor­
mous time and data requirements to mount a differential cryptanalytic attack put it
beyond the reach of almost everyone. To get the requisite data for this attack against
a full DES, you have to encrypt a 1.5 megabits-per-second data stream of chosen
plaintext for almost three years. Second, this is primarily a chosen-plaintext attack.
It can be converted to a known-plaintext attack, but you have to sift through all of
the plaintext-ciphertext pairs looking for the useful ones. For full 16-round DES,
this makes the attack slightly less efficient than brute force (the differential crypt-

CHAPTER 12 Data Encryption Standard (DES)

analytic attack requires 255·1 operations, and brute force requires 255). The consensus
is that DES, when implemented properly, is still secure against differential crypt­
analysis.

Why is DES so resistant to differential cryptanalysis? Why are the S-boxes opti­
mized to make this attack as difficult as possible? Why are there as many rounds as
required, but no more? Because the designers knew about it. IBM's Don Copper­
smith recently wrote [373,374]:

The design took advantage of certain cryptanalytic techniques, most prominently
the technique of "differential cryptanalysis," which were not known in the pub­
lished literature. After discussions with NSA, it was decided that disclosure of the
design consideration would reveal the technique of differential cryptanalysis, a
powerful technique that can be used against many ciphers. This in turn would
weaken the competitive advantage the United States enjoyed over other countries
in the field of cryptography.

Adi Shamir responded to this, challenging Coppersmith to say that he hadn't found
any stronger attacks against DES since then. Coppersmith has chosen to remain
silent on that question [1426].

Related-Key Cryptanalysis

Table 12.3 showed the number of bits the DES key is rotated after each round: 2
bits after each round, except for 1 bit after rounds 1, 2, 9, and 16. Why?

Related-key cryptanalysis is similar to differential cryptanalysis, but it exam­
ines the difference between keys. The attack is different from any previously dis­
cussed: The cryptanalyst chooses a relationship between a pair of keys, but does
not know the keys themselves. Data is encrypted with both keys. In the known­
plaintext version, the cryptanalyst knows the plaintext and ciphertext of data
encrypted with the two keys. In the chosen-plaintext version, the cryptanalyst
gets to choose the plaintext encrypted with the two keys.

A modified DES, where the key is rotated two bits after every round, is less secure.
Related-key cryptanalysis can break that variant using 217 chosen-key chosen plain­
texts or 233 chosen-key known plaintexts [158,163].

This attack is not at all practical, but it is interesting for three reasons. One, it is
the first cryptanalytic attack against DES's subkey-generation algorithm. Two, this
attack is independent of the number of rounds of the cryptographic algorithm; it's
just as effective against DES with 16 rounds, 32 rounds, or 1000 rounds. And three,
DES is impervious to this attack. The variability in the rotation thwarts related-key
cryptanalysis.

Linear Cryptanalysis

Linear cryptanalysis is another type of cryptanalytic attack, invented by Mitsuru
Matsui [1016, 1015, 1017]. This attack uses linear approximations to describe the
action of a block cipher (in this case, DES.)

This means that if you XOR some of the plaintext bits together, XOR some
ciphertext bits together, and then XOR the result, you will get a single bit that is the

12.4 Differential and Linear Cryptanalysis

XOR of some of the key bits. This is a linear approximation and will hold with some
probability p. If p * ½, then this bias can be exploited. Use collected plaintexts and
associated ciphertexts to guess the values of the key bits. The more data you have,
the more reliable the guess. The greater the bias, the greater the success rate with
the same amount of data.

How do you identify good linear approximations for DES? Find good 1-round lin­
ear approximations and join them together. (Again, ignore the initial and final per­
mutations; they don't affect the attack.) Look at the S-boxes. There are 6 input bits
and 4 output bits. The input bits can be combined using XOR in 63 useful ways
(26 - 1), and the output bits can be combined in 15 useful ways. Now, for each S-box
you can evaluate the probability that for a randomly chosen input, an input XOR
combination equals some output XOR combination. If there is a combination with
a high enough bias, then linear cryptanalysis may work.

If the linear approximations are unbiased, then they would hold for 32 of the 64
possible inputs. I'll spare you the pages of tables, but the most biased S-box is S-box
5. In fact, the second input bit is equal to the XOR of all 4 output bits for only 12
inputs. This translates to a probability of ½6, or a bias of ¾6, and is the most extreme
bias in all the S-boxes. (Shamir noted this in [1423], but could not find a way to
exploit it.)

Figure 12.8 shows how to turn this into an attack against the DES round function.
The input bit into S-box 5 is h 6 • (I am numbering the bits from left to right and from
1 to 64. Matsui ignores this convention with DES and numbers his bits from right

E(X)

8-Boxes

y

K;. 26

Figure 12.8 A 1-round linear ap­
proximation for DES.

CHAPTER 12 Data Encryption Standard (DES)

to left and from Oto 63. It's enough to drive you mad.) The 4 output bits from S-box
5 are c 17, c18, c 19, and c20 • We can trace h 6 backwards from the input to the S-box. The
bit a26 is XORed with a bit from the subkey Ki, 26 to obtain b26. And bit X1 7 goes
through the expansion permutation to become a26. After the S-box, the 4 output bits
go through the P-box to become 4 output bits of the round function: Y3, ¥8, ¥ 14, and
Y25 • This means that with probability ½ - '!k

X17 EB Y3 EB Ys EB Y14 EB Y2s = Ki,26

Linear approximations for different rounds can be joined in a manner similar to that
discussed under differential cryptanalysis. Figure 12.9 is a 3-round approximation
with a probability of½+ .0061. The individual approximations are of varying quality:
The last is very good, the first is pretty good, and the middle is bad. But together the
three 1-round approximations give a very good three-round approximation.

The basic attack is to use the best linear approximation for 16-round DES. It
requires 247 known plaintext blocks, and will result in 1 key bit. That's not very use­
ful. If you interchange the role of plain text and ciphertext and use decryption as well
as encryption, you can get 2 key bits. That's still not very useful.

B 17

K; _ 1.26

B 17

B 17

17 B
K;,2

17 3

17 A

17
K;+ 1,26

17

A 17

A= [3, 8, 14, 25) B = [8, 14, 25)

With Probability ~ + 6.1 x 1 o-3

Figure 12.9 A 3-round linear approximation for DES.

-··' ________________ 1_2_.s __ T_h_e_R_e_a_l_D_es_i_gn_C_r_i_te_r_ia ______ 7 __ ~

There are refinements. Use a 14-round linear approximation for rounds 2 through
15. Guess the 6 subkey bits relevant to S-box 5 for the first and last rounds (12 key
bits in all). Effectively you are doing 2 12 linear cryptanalyses in parallel and picking
the correct one based on probabilities. This recovers the 12 bits plus the b26, and
reversing plain text and ciphertext recovers another 13 bits. To get the remaining 30
bits, use exhaustive search. There are other tricks, but that's basically it.

Against full 16-round DES, this attack can recover the key with an average of 243

known plain texts. A software implementation of this attack recovered a DES key in
50 days using 12 HP9000/735 workstations [1019]. That is the most effective attack
against DES at the time of this writing.

Linear cryptanalysis is heavily dependent on the structure of the S-boxes and the
S-boxes in DES are not optimized against this attack. In fact, the ordering of the
S-boxes chosen for DES lies among the 9 percent to 16 percent that offer the least
protection against linear cryptanalysis [1018]. According to Don Coppersmith
[373,374], resistance to linear cryptanalysis "was not part of the design criteria of
DES." Either they didn't know about linear cryptanalysis or they knew about some­
thing else even more powerful whose resistance criteria took precedence.

Linear cryptanalysis is newer than differential cryptanalysis, and there may be
more performance improvements in the coming years. Some ideas are proposed in
[12 70,811], but it is not clear that they can be used effectively against full DES. They
work very well against reduced round variants, however.

Future Directions
Some work has been done to try to extend the concept of differential cryptanaly­

sis to higher-order differentials [702,161,927,858,860]. Lars Knudsen uses something
called partial differentials to attack 6-round DES; it requires 32 chosen plaintexts
and 20,000 encryptions [860]. It is still too new to know if these extensions will
make it easier to attack full 16-round DES.

Another avenue of attack is differential-linear cryptanalysis: combining differen­
tial and linear cryptanalysis. Susan Langford and Hellman have an attack on 8-
round DES that recovers 10 key bits with an 80 percent probability of success with
512 chosen plaintexts and a 95 percent probability of success with 768 chosen
plaintexts [938]. After the attack, a brute-force search of the remaining keyspace
(246 possible keys) is required. While this attack is comparable in time to previous
attacks, it requires far less plaintext. However, it doesn't seem to extend easily to
more rounds.

But this attack is still new and work continues. It is possible that there may be a
breakthrough some time during the next few years. Maybe there are benefits in
combining this attack with higher-order differential cryptanalysis. Who knows?

12. 5 THE REAL DESIGN CRITERIA

After differential cryptanalysis became public, IBM published the design criteria for
the S-boxes and the P-box [373,374]. The criteria for the S-boxes are:

CHAPTER 12 Data Encryption Standard (DES)

Each S-box has 6 input bits and 4 output bits. (This was the largest
size that could be accommodated in a single chip with 1974 technol­
ogy.)

No output bit of an S-box should be too close to a linear function of
the input bits.

If you fix the left-most and right-most bits of an S-box and vary the 4
middle bits, each possible 4-bit output is attained exactly once.

If two inputs to an S-box differ in exactly 1 bit, the outputs must dif­
fer in at least 2 bits.

If two inputs to an S-box differ in the 2 middle bits exactly, the out­
puts must differ in at least 2 bits.

If two inputs to an S-box differ in their first 2 bits and are identical in
their last 2 bits, the two outputs must not be the same.

For any nonzero 6-bit difference between inputs, no more than 8 of
the 32 pairs of inputs exhibiting that difference may result in the
same output difference.

A criterion similar to the previous one, but for the case of three active
S-boxes.

The criteria for the P-box are:

The 4 output bits from each S-box in round i are distributed so that 2
of them affect the middle-bits of S-boxes at round i + 1 and the other
2 affect end bits.

The 4 output bits from each S-box affect six different S-boxes; no 2
affect the same S-box.

If the output bit from one S-box affects a middle bit of another S-box,
then an output bit from that other S-box cannot affect a middle bit of
the first S-box.

The paper goes on to discuss the criteria. Generating S-boxes is pretty easy today,
but was a complicated task in the early 1970s. Tuchman has been quoted as saying
that they ran computer programs for months cooking up the S-boxes.

12.6 DES VARIANTS

Multiple DES

Some DES implementations use triple-DES (see Figure 12.10) [55]. Since DES is
not a group, then the resultant ciphertext is much harder to break using exhaustive
search: 2112 attempts instead of 256 attempts. See Section 15.2 for more details.

__________________ 1_2_.6 __ D_E_S_V_a_r_ia_n_t_s _______ 7 __ ~

Encipher

Plaintext

Decipher

Figure 12.10 Triple-DES.

DES with Independent Subkeys
Another variation is to use a different subkey for each round, instead of generat­

ing them from a single 56-bit key [851]. Since 48 key bits are used in each of 16
rounds, this means that the key length for this variant is 768 bits. This variant
would drastically increase the difficulty of a brute-force attack against the algo­
rithm; that attack would have a complexity of 2768 .

However, a meet-in-the-middle attack (see Section 15.1) would be possible. This
would reduce the complexity of attack to 2384; still long enough for any conceivable
security needs.

Although independent subkeys foil linear cryptanalysis, this variant is suscepti­
ble to differential cryptanalysis and can be broken with 261 chosen plaintexts (see
Table 12.15) [167,172]. It would seem that any modification of the key schedule can­
not make DES much stronger.

DESX
DESX is a DES variant from RSA Data Security, Inc. that has been included in the

MailSafe electronic mail security program since 1986 and the BSAFE toolkit since
1987. DESX uses a technique called whitening (see Section 15.6) to obscure the
inputs and outputs to DES. In addition to a 56-bit DES key, DESX has an additional
64-bit whitening key. These 64 bits are XO Red to the plaintext before the first round
of DES. An additional 64 bits, computed as a one-way function of the entire 120-bit
DES key, is XORed to the ciphertext after the last round [155]. Whitening makes
DESX much stronger than DES against a brute-force attack; the attack requires
(2120)/n operations with n known plaintexts. It also improves security against differ­
ential and linear cryptanalysis; the attacks require 261 chosen plaintexts and 260

known plaintexts, respectively [1338].

CHAPTER 12 Data Encryption Standard (DES)

CRYPT(3)

CRYPT(3) is a DES variant found on UNIX systems. It is primarily used as a one­
way function for passwords, but sometimes can also be used for encryption. The dif­
ference between CRYPT(3) and DES is that CRYPT(3) has a key-dependent expansion
permutation with 212 possible permutations. This was done primarily so that off-the­
shelf DES chips could not be used to construct a hardware password-cracker.

Generalized DES
Generalized DES (GDES) was designed both to speed up DES and to strengthen

the algorithm [1381,1382]. The overall block size increases while the amount of
computation remains constant.

Figure 12.11 is a block diagram of GDES. GDES operates on variable-sized blocks
of plaintext. Encryption blocks are divided up into q 32-bit sub-blocks; the exact
number depends on the total block size (this was variable in the design, but must be
fixed for each implementation). In general, q equals the block size divided by 32.

Function f is calculated once per round on the right-most block. The result is
XO Red with all the other parts, which are then rotated to the right. GDES has a vari­
able number of rounds, n. There is a slight modification to the last round, so that the
encryption and decryption processes differ only in the order of the subkeys (just like
DES). In fact, if q = 2 and n = 16, this is DES.

Biham and Shamir [167,168] showed that, using differential cryptanalysis, GDES
with q = 8 and n = 16 is breakable with only six chosen plaintexts. If independent
subkeys are also used, 16 chosen plaintexts are required. GDES with q = 8 and n =
22 is breakable with 48 chosen plaintexts, and GDES with q = 8 and n = 31 requires
only 500,000 chosen plaintexts to break. Even GDES with q = 8 and n = 64 is weaker
than DES; 249 chosen plaintexts are required to break it. In fact, any GDES scheme
that is faster than DES is also less secure (see Table 12.15).

A variant of this scheme recently appeared [1591]. It is probably no more secure
than the original GDES. In general, any large block DES variant that is faster than
DES is probably also less secure than DES.

DES with Alternate S-Boxes
Other DES modifications centered around the S-boxes. Some designs made the

order of the S-boxes variable. Other designers varied the contents of the S-boxes them­
selves. Biham and Shamir showed [170,172] that the design of the S-boxes, and even
the order of the S-boxes themselves, were optimized against differential cryptanalysis:

The replacement of the order of the eight DES S-boxes (without changing their
value) also makes DES much weaker: DES with 16 rounds of a particular replaced
order is breakable in about 238 steps DES with random S-boxes is shown to be
very easy to break. Even a minimal change of one entry of one of the DESS-boxes
can make DES easier to break.

The DESS-boxes were not optimized against linear cryptanalysis. There are bet­
ter S-boxes than the ones that come with DES, but blindly choosing new S-boxes
isn't a good idea.

__________________ 12_._6_D_E_S_v'._a_n_·a_n_ts ________ 7 ____ ~

Figure 12.11 GDES.

Table 12.15 [167,169] lists some modifications to DES and the number of chosen
plaintexts required for differential cryptanalysis. One change not listed, combining
the left and right halves using addition mod 24 instead of XOR, is 217 times harder to
break than DES [689].

RDES
RDES is a variant that replaces swapping the left and right halves at the end of

each round with a key-dependent swap [893]. The swappings are fixed, depending
solely on the key. This means that the 15 key-dependent swaps occur with 215 pos­
sible instances, and that the variant is not resistant to differential cryptanalysis
[816,894,112]. RDES has a large number of weak keys. In fact, almost every key is
weaker than a typical DES key. This variant should not be used.

A better idea is to swap only within the right half, at the beginning of each round.
Another better idea is to make the swapping dependent on the input data and not a
static function of the key. There are a number of possible variants [813,815]. In

CHAPTER 12 Data Encryption Standard (DES)

Table 12.15
Differential Cryptanalysis Attacks against DES Variants

Modified Operation

Full DES (no modification)
P permutation

Identity permutation
Order of S-boxes
Replace XORs by additions
S-boxes:

Random
Random permutations
One entry
Uniform tables

Elimination of the E Expansion
Order of E and subkey XOR
GDES (width q = 8):

16 rounds
64 rounds

Chosen Plaintexts
247

Cannot strengthen
219
238

239, 231

21s_220
2"3-241

233

226

226

244

6, 16
249 (independent key)

RDES-1, there is a data-dependent swap of the 16-bit words at the beginning of each
round. In RDES-2, there is a data-dependent swap of the bytes at the beginning of
each round after the 16-bit swappings as in RDES-1. And so on through RDES-4.
RDES-1 is secure against both differential cryptanalysis [815] and linear cryptanaly­
sis [1136]. Presumably RDES-2 and greater are as well.

s0 DES
A group of Korean researchers, led by Kwangjo Kim, has attempted to find a set of

S-boxes that are optimally secure against both linear and differential cryptanalysis.
Their first attempt, known as s2DES, was presented in [834] and shown to be worse
than DES against differential cryptanalysis in [855,858]. Their next attempt, s3DES,
was presented in [839] and shown to be worse than DES against linear cryptanalysis
[856,1491,1527,858,838]. Biham suggested a minor change to make s3DES secure
against both linear and differential cryptanalysis [165]. The group went back to their
computers and developed better techniques for S-box design [835,837]. They pro­
posed s4DES [836] and then s5DES [838,944].

Table 12.16 gives the s3DES S-boxes with S-box 1 and S-box 2 reversed, which are
secure against both differential and linear cryptanalysis. Sticking this variant in a
triple-DES mix is sure to irritate cryptanalysts.

DES with Key-Dependent S-Boxes

Linear and differential cryptanalysis work only if the analyst knows the composi­
tion of the S-boxes. If the S-boxes are key-dependent and chosen by a cryptographi­
cally strong method, then linear and differential cryptanalysis are much more
difficult. Remember though, that randomly generated S-boxes have very poor differ­
ential and linear characteristics; even if they are secret.

12.6 DES Variants
z~

Table 12.16
s3DES S-Boxes (with S-box 1 and S-box 2 reversed)

S-box 1:
13 14 0 3 10 4 7 9 11 8 12 6 1 15 2 5
8 2 11 13 4 1 14 7 5 15 0 3 10 6 9 12

14 9 3 10 0 7 13 4 8 5 6 15 11 12 1 2
1 4 14 7 11 13 8 2 6 3 5 10 12 0 15 9

S-box 2:
15 8 3 14 4 2 9 5 0 11 10 1 13 7 6 12
6 15 9 5 3 12 10 0 13 8 4 11 14 2 1 7
9 14 5 8 2 4 15 3 10 7 6 13 1 11 12 0

10 5 3 15 12 9 0 6 1 2 8 4 11 14 7 13

S-box 3:
13 3 11 5 14 8 0 6 4 15 1 12 7 2 10 9
4 13 1 8 7 2 14 11 15 10 12 3 9 5 0 6
6 5 8 11 13 14 3 0 9 2 4 1 10 7 15 12
1 11 7 2 8 13 4 14 6 12 10 15 3 0 9 5

S-box 4:
9 0 7 11 12 5 10 6 15 3 1 14 2 8 4 13
5 10 12 6 0 15 3 9 8 13 11 1 7 2 14 4

10 7 9 12 5 0 6 11 3 14 4 2 8 13 15 1
3 9 15 0 6 10 5 12 14 2 1 7 13 4 8 11

S-box 5:
5 15 9 10 0 3 14 4 2 12 7 1 13 6 8 11
6 9 3 15 5 12 0 10 8 7 13 4 2 11 14 1

15 0 10 9 3 5 4 14 8 11 1 7 6 12 13 2
12 5 0 6 15 10 9 3 7 2 14 11 8 1 4 13

S-box 6:
4 3 7 10 9 0 14 13 15 5 12 6 2 11 1 8

14 13 11 4 2 7 1 8 9 10 5 3 15 0 12 6
13 0 10 9 4 3 7 14 1 15 6 12 8 5 11 2
1 7 4 14 11 8 13 2 10 12 3 5 6 15 0 9

S-box 7:
4 10 15 12 2 9 1 6 11 5 0 3 7 14 13 8

10 15 6 0 5 3 12 9 1 8 11 13 14 4 7 2
2 12 9 6 15 10 4 1 5 11 3 0 8 7 14 13

12 6 3 9 0 5 10 15 2 13 4 14 7 11 1 8

S-box 8:
13 10 0 7 3 9 14 4 2 15 12 1 5 6 11 8
2 7 13 1 4 14 11 8 15 12 6 10 9 5 0 3
4 13 14 0 9 3 7 10 1 8 2 11 15 5 12 6
8 11 7 14 2 4 13 1 6 5 9 0 12 15 3 10

CHAPTER 12 Data Encryption Standard (DES}

Here is a method to use 48 additional key bits to generate S-boxes that are resis­
tant to both linear and differential cryptanalysis [165].

(1) Rearrange the DESS-boxes: 24673158.

(2) Select 16 of the remaining key bits. If the first bit is 1, swap the first two
rows of S-box 1 with the last two rows of S-box 1. If the second bit is a 1,
swap the first eight columns of S-box 1 with the second eight columns of
S-box 1. Do the same to S-box 2 with the third and fourth key bits. Do the
same with S-boxes 3 through 8.

(3) Take the remaining 32 key bits. XOR the first four with every entry of
S-box 1, the second four with every entry of S-box 2, and so on.

The complexity of a differential cryptanalysis attack against this system is 251; the
complexity of a linear cryptanalysis attack is 253. The complexity of exhaustive
search is 2 102•

What is neat about this DES variant is that it can be implemented in existing
hardware. Several DES chip vendors sell DES chips with loadable S-boxes. This
S-box generation method can be done outside the chip and then loaded in. Differen­
tial and linear cryptanalysis require so much known or chosen plaintext as to be
unworkable, and a brute-force attack is inconceivable-with no speed penalties.

12.7 How SECURE Is DES TooAv?

The answer is both easy and hard. The easy answer just looks at key length (see Sec­
tion 7.1). A brute-force DES-cracking machine that can find a key in an average of
3.5 hours cost only $1 million in 1993 [1597,1598]. DES is so widespread that it is
naive to pretend that the NSA and its counterparts haven't built such a machine.
And remember, that cost will drop by a factor of 5 every 10 years. DES will only
become less secure as time goes on.

The hard answer tries to estimate cryptanalytic techniques. Differential crypt­
analysis was known by the NSA long before the mid-1970s, when DES first became
a standard. It is naive to pretend that the NSA theoreticians have been idle since
then; almost certainly they have developed newer cryptanalytic techniques that can
be applied against DES. But there are no facts, only rumors.

Winn Schwartau writes that the NSA had built a massively parallel DES-cracking
machine as early as the mid-1980s [1404]. At least one such machine was built by
Harris Corp. with a Cray Y-MP as a front end. Supposedly there are a series of algo­
rithms that can reduce the complexity of a DES brute-force search by several orders
of magnitude. Contextual algorithms, based on the inner workings of DES, can scrap
sets of possible keys based on partial solutions. Statistical algorithms reduce the
effective key size even further. And other algorithms choose likely keys-words,
printable ASCII, and so on (see Section 8.1)-to test. The rumor is that the NSA can
crack DES in 3 to 15 minutes, depending on how much preprocessing they can do.
And these machines cost only $50,000 each, in quantity.

__________________ 12_._6_D_E_S_-V:_a_n_·a_n_t_s _______ z:-----~

A different rumor is that if the NSA has a large amount of plaintext and cipher­
text, its experts can perform some kind of statistical calculation and then go out to
an array of optical disks and retrieve the key.

These are just rumors, but they don't give me a warm, fuzzy feeling about DES. It
has just been too big a target for too long. Almost any change to DES will be more
annoying; maybe the resultant cipher will be easier to break, but the NSA might not
have the resources to devote to the problem.

My recommendation is to use Biham's construction for key-dependent S-boxes. It
is easy to implement in software and in hardware chips that have loadable S-boxes,
and has no performance penalty over DES. It increases the algorithm's resistance to
a brute-force attack, makes differential and linear cryptanalysis harder, and gives
the NSA something at least as strong as DES-but different-to worry about.

----------------------------z~

CHAPTER 13

Other Block Ciphers

13 .1 LUCIFER

In the late 1960s, led by Horst Feistel and later by Walt Tuchman, IBM initiated a
research program in computer cryptography called Lucifer. Lucifer is also the name
of a block algorithm that came out of that program in the early 1970s [1482,1484].
In fact, there are at least two different algorithms with that name [552, 1492]. And
[552] leaves some gaps in the specification of the algorithm. All this has led to more
than a little confusion.

Lucifer is a substitution-permutation network, with building blocks similar to
DES. In DES, the output of the function f is XORed with the input of the previous
round to form the input of the next round. Lucifer's S-boxes have 4-bit inputs and
4-bit outputs; the input of the S-boxes is the bit-permuted output of the S-boxes of
the previous round; the input of the S-boxes of the first round is the plaintext. A key
bit is used to choose the actual S-box from two possible S-boxes. (Lucifer represents
this as a single T-box with 9 bits in and 8 bits out.) Unlike DES, there is no swapping
between rounds and no block halves are used. Lucifer has 16 rounds, 128-bit blocks,
and a key schedule simpler than DES.

Using differential cryptanalysis against the first incarnation of Lucifer, Biham and
Shamir [170,172] showed that Lucifer, with 32-bit blocks and 8 rounds, can be bro­
ken with 40 chosen plain texts and 229 steps; the same attack can break Lucifer with
128-bit blocks and 8 rounds with 60 chosen plaintexts and 253 steps. Another differ­
ential cryptanalytic attack breaks 18-round, 128-bit Lucifer with 24 chosen plain­
texts in 221 steps. All of these attacks used the strong DESS-boxes. Using differential
cryptanalysis against the second incarnation, they found the S-boxes to be much
weaker than DES. Further analysis showed that over half the possible keys are inse­
cure [112]. Related-key cryptanalysis can break 128-bit Lucifer, with any number of
rounds, with 233 chosen-key chosen plaintexts, or with 265 chosen-key known plain­
texts [158]. The second incarnation of Lucifer is even weaker [170,172,112].

~-:s _____ C_H_A_P_T_E_R_l_3_0_th_e_r_B_l_o_ck_C_ip_h_er_s _____________ _

Some people feel that Lucifer is more secure than DES because of the longer key
length and lack of published results. This is clearly not the case.

Lucifer is the subject of several U.S. patents: [553,554,555,1483]. They have all
expired.

13.2 MADRYGA

W. E. Madryga proposed this block algorithm in 1984 [999]. It is efficient for soft­
ware: It has no irritating permutations and all its operations work on bytes.

His design objectives are worth repeating:

1. The plaintext cannot be derived from the ciphertext without using the key.
(This just means that the algorithm is secure.)

2. The number of operations required to determine the key from a sample of
plaintext and ciphertext should be statistically equal to the product of the
operations in an encryption times the number of possible keys. (This
means that no plaintext attack should be better than brute force.)

3. Knowledge of the algorithm should not defeat the strength of the cipher.
(All the security should rest in the key.)

4. A one-bit change of the key should produce a radical change in the cipher­
text using the same plaintext, and a 1-bit change of the plaintext should
produce a radical change in the ciphertext using the same key. (This is the
avalanche effect.) -

5. The algorithm should contain a noncommutative combination of substi­
tution and permutation.

6. The algorithm should include substitutions and permutations under the
control of both the input data and the key.

7. Redundant bit groups in the plaintext should be totally obscured in the
ciphertext.

8. The length of the ciphertext should be the same length as the plaintext.

9. There should be no simple relationships between any possible keys and
ciphertext effects.

10. Any possible key should produce a strong cipher. (There should be no
weak keys.)

11. The length of the key and the text should be adjustable to meet varying
security requirements.

12. The algorithm should be efficiently implementable in software on large
mainframes, minicomputers, and microcomputers, and in discrete logic.
(In fact, the functions used in the algorithm are limited to XOR and bit­
shifting.)

DES had already met objectives one through nine, but the next three were new.
Assuming that the best way to break the algorithm was through brute force, a

_________________ 13_._2_M_a_d_ry_g_a ____________ 7 ~

variable-length key would surely silence those who thought 56 bits was too low.
They could implement this algorithm with any key length they desired. And, for
anyone who has ever attempted to implement DES in software, an algorithm that
took software implementations into account would be welcomed.

Description of Madryga
Madryga consists of two nested cycles. The outer cycle repeats eight times

(although this could be increased if security warrants) and consists of an applica­
tion of the inner cycle to the plaintext. The inner cycle transforms plaintext to
ciphertext and repeats once for each 8-bit block (byte) of the plaintext. Thus, the
algorithm passes through the entire plaintext eight successive times.

An iteration of the inner cycle operates on a 3-byte window of data, called the
working frame (see Figure 13.1). This window advances 1 byte for each iteration.
(The data are considered circular when dealing with the last 2 bytes.) The first 2
bytes of the working frame are together rotated a variable number of positions,
while the last byte is XORed with some key bits. As the working frame advances,
all bytes are successively rotated and XORed with key material. Successive rota­
tions overlap the results of a previous XOR and rotation, and data from the XOR is
used to influence the rotation. This makes the entire process reversible.

Because every byte of data influences the 2 bytes to its left and the 1 byte to its
right, after eight passes every byte of the ciphertext is dependent on 16 bytes to the
left and 8 bytes to the right.

When encrypting, each iteration of the inner cycle starts the working frame at the
next-to-last byte of the plaintext and advances circularly through to the third-to-last

Text i 1 I 2 I 3 I .. 4 I s I 6 I TL-2

Moving WF(1) WF(2)
Working
Frame 8 bits 8 bits

I ROT

Transposition I Rotate Target

16bits

Translation

Key

XOR

Key Hash

--
~ 8b1ts ,

I

11-1 ___.__R_o_ta_te_C_o_un_t___,

3bits

Translate Target

Bbits _,,,
\ XOR _,,,

I KL I

KL

Figure 13.1 One iteration of Madryga.

TL-1 TL

~..,_:s,----------C_H_A_PT_E_R_l3 __ 0_th_e_r_B_l_o_ck_C_1_·p_h_e_rs _______________ _

byte of the plaintext. First, the entire key is XORed with a random constant and
then rotated to the left 3 bits. The low-order 3 bits of the low-order byte of the work­
ing frame are saved; they will control the rotation of the other 2 bytes. Then, the
low-order byte of the working frame is XORed with the low-order byte of the key.
Next, the concatenation of the 2 high-order bytes are rotated to the left the variable
number of bits (0 to 7). Finally, the working frame is shifted to the right 1 byte and
the whole process repeats.

The point of the random constant is to turn the key into a pseudo-random
sequence. The length of this constant must be equal to the length of the key and
must be the same for everyone who wishes to communicate with one another. For
a 64-bit key, Madryga recommends the constant 0x0fle2d3c4b5a6978.

Decryption reverses this process. Each iteration of the inner cycle starts the work­
ing frame at the third-to-last byte of the ciphertext and advances in the reverse
direction circularly through to the second-to-last byte of the ciphertext. Both the
key and the 2 ciphertext bytes are shifted to the right. And the XOR is done before
the rotations.

Cryptanalysis of Madryga

Researchers at Queensland University of Technology [675] examined Madryga,
along with several other block ciphers. They observed that the algorithm didn't
exhibit the plaintext-ciphertext avalanche effect. Additionally, many ciphertexts
had a higher percentage of ones than zeros.

Although I know of no formal analysis of the algorithm, it doesn't look terribly
secure. A cursory review by Eli Biham led to the following observations [160]:

The algorithm consists only of linear operations (rotations and XOR), which are
slightly modified depending on the data.

There is nothing like the strength of DES's S-boxes.
The parity of all the bits of the plaintext and the ciphertext is a constant,

depending only on the key. So, if you have one plaintext and its corresponding
ciphertext, you can predict the parity of the ciphertext for any plaintext.

None of this is damning in itself, but it doesn't leave me with a good feeling about
the algorithm. I do not recommend Madryga.

13.3 NEwDES

NewDES was designed in 1985 by Robert Scott as a possible DES replacement
[1405,364]. The algorithm is not a DES variant, as its name might imply. It operates
on 64-bit blocks of plaintext, but it has a 120-bit key. NewDES is simpler than DES,
with no initial or final permutations. All operations are on entire bytes. (Actually,
NewDES isn't anything like a new version of DES; the name is unfortunate.)

The plaintext block is divided into eight 1-byte sub-blocks: B0, B1, ... , B6, B7•

Then the sub-blocks go through 17 rounds. Each round has eight steps. In each step,
one of the sub-blocks is XORed with some key material (there is one exception),

_______________ 1_3._3_N_e_w_D_E_S _______ 7 __ ~

substituted with another byte via an f function, and then XORed with another sub­
block to become that sub-block. The 120-bit key is divided into 15 key sub-blocks:
K0, K1, ••• , K13, K14• The process is easier to understand visually than to describe.
Figure 13.2 shows the NewDES encryption algorithm.

The £-function is derived from the Declaration of Independence. See [1405] for
details.

Scott showed that every bit of the plaintext block affects every bit of the cipher­
text block after only 7 rounds. He also analyzed the f function and found no obvious
problems. NewDES has the same complementation property that DES has [364]: If

Round l
KO

Kl

Round 2

Round 16

Round 17
Kil

BO Bl 82 83

BO Bl 82 83

Figure 13.2 NewDES.

84 85 86 87

K6

(Rounds 3-15)

KlO

84 85 86 87

~..,_:s.,----------C_H_A_P_T_E_R_l_3_0_th_e_r_B_l_o_ck_C_i_ph_er_s ______________ _

EK(P) = C, then EK(P') = C'. This reduces the work required for a brute-force attack
from 2 120 steps to 2 119 steps. Biham noticed that any change of a full byte, applied to
all the key and data bytes, leads to another complementation property [160]. This
reduces a brute-force attack further to 2112 steps.

This is not damning, but Biham's related-key cryptanalytic attack can break
NewDES with 233 chosen-key chosen-plaintexts in 248 steps [160]. While this
attack is time-consuming and largely theoretical, it shows that New DES is weaker
than DES.

13.4 FEAL

FEAL was designed by Akihiro Shimizu and Shoji Miyaguchi from NTT Japan
[1435]. It uses a 64-bit block and a 64-bit key. The idea was to make a DES-like algo­
rithm with a stronger round function. Needing fewer rounds, the algorithm would
run faster. Unfortunately, reality fell far short of the design goals.

Description of FEAL

Figure 13.3 is a block diagram of one round of FEAL. The encryption process starts
with a 64-bit block of plaintext. First, the data block is XORed with 64 key bits. The

64 bits

Plaintext

(KB, K9, K10, K11)
-----{(K12, K13, K14, K15)}

64bits
32bits .--------~-------~

LO {R 8} RO {LS}

LO {R 8 l r,• --------r~'----14-------~ KO {K 7 l
H ROILS}

=========,;;;:7~;;;;:::==:::::;;~~~-K I {K 6}

L I {R 7} 1-++--------i f ,__ ______ --<RI {L 7}

--===----::::.. __

L 7 {RI} fr_:_-_____ dJ_f_"""_""~========-=-:T+-1R 7 {: 17} {KO}

R8{LO}_ .. ,LS\RO}

64bits (K12, K13, K14, K15)
1-++----{(K8, K9, K10, K11)}

{}:Deciphering
Ciphertext

Figure 13.3 One round of PEAL.

_________________ 13_.4_F_E_A_L ________ z:---~

data block is then split into a left half and a right half. The left half is XORed with
the right half to form a new right half. The left and new right halves go through n
rounds (four, initially). In each round the right half is combined with 16 bits of key
material (using function f) and XORed with the left half to form the new right half.
The original right half (before the round) forms the new left half. After n rounds
(remember not to switch the left and right halves after the nth round) the left half is
again XO Red with the right half to form a new right half, and then the left and right
halves are concatenated together to form a 64-bit whole. The data block is XORed
with another 64 bits of key material, and the algorithm terminates.

Function f takes the 32 bits of data and 16 bits of key material and mixes them
together. First the data block is broken up into 8-bit chunks, then the chunks are
XORed and substituted with each other. Figure 13.4 is a block diagram of function f.
The two functions S0 and S1, are defined as:

S0(a,b) = rotate left two bits ((a+ b) mod 256)

S1(a,b) = rotate left two bits ((a+ b + 1) mod 256)

The same algorithm can be used for decryption. The only difference is: When
decrypting, the key material must be used in the reverse order.

Figure 13.5 is a block diagram of the key-generating function. First the 64-bit key
is divided into two halves. The halves are XO Red and operated on by function f1" as
indicated in the diagram. Figure 13.6 is a block diagram of function fk. The two 32-
bit inputs are broken up into 8-bit blocks and combined and substituted as shown.
S0 and S1 are defined as just shown. The 16-bit key blocks are then used in the
encryption/ decryption algorithm.

On a 10 megahertz 80286 microprocessor, an assembly-language implementation
of FEAL-32 can encrypt data at a speed of 220 kilobits per second. FEAL-64 can
encrypt data at a speed of 120 kilobits per second [1104].

f (a, b)

Figure 13.4 Function f.

r---r---- b
16bits

a
32bits

~-:s _____ C_H_A_P_T_E_R_l_3_0_th_e_r_B_l_o_ck_C_i_p_h_er_s ______________ _

32bits

I ~

Key Block
64bits

Figure 13.5 Key processing part of FEAL.

a 32bits

32bits

fK(a.b)

32bits

j

b
32bits

Y = S,,(X., X2) = Rot2((X,+X 2J mod256)
Y = Sl(X., X2) = Rot2((X,+X,+ I) mod256)
Y. output 8 bits, X 1X 2 (8 bits): inputs,
Rot2(YJ: a 2-bit left rotation on B=bit data Y

Figure 13.6 Function fK-

________________ 13_.s __ RE_D_O_C ________ z~

Cryptanalysis of FEAL
FEAL-4, FEAL with four rounds, was successfully cryptanalyzed with a chosen­

plaintext attack in [201] and later demolished in [1132]. This latter attack, by Sean
Murphy, was the first published differential-cryptanalysis attack and required only
20 chosen plaintexts. The designers retaliated with 8-round FEAL [1436, 143 7, 1108]
which Biham and Shamir cryptanalyzed at the SECURICOM '89 conference [1424].
Another chosen-plaintext attack, using only 10,000 blocks, against FEAL-8 [610]
forced the designers to throw up their hands and define FEAL-N [1102, 1104], with a
variable number of rounds (greater than 8, of course).

Biham and Shamir used differential cryptanalysis against FEAL-N; they could break
it more quickly than by brute force (with fewer than 264 chosen plaintext encryptions)
for N less than 32 [169]. FEAL-16 required 228 chosen plaintexts or 2465 known plain­
texts to break. FEAL-8 required 2000 chosen plaintexts or 2375 known plaintexts to
break. FEAL-4 could be broken with just eight carefully selected chosen plaintexts.

The FEAL designers also defined FEAL-NX, a modification of FEAL, that accepts
128-bit keys (see Figure 13.7) [1103, 1104]. Biham and Shamir showed that FEAL-NX
with a 128-bit key is just as easy to break as FEAL-Nwith a 64-bit key, for any value
of N [169]. Recently FEAL-N(X)S has been proposed, which strengthens FEAL with
a dynamic swapping function [1525].

There's more. Another attack against FEAL-4, requiring only 1000 known plain­
texts, and against FEAL-8, requiring only 20,000 known plaintexts, was published in
[1520]. Other attacks are in [1549,1550]. The best attack is by Mitsuru Matsui and
Atshuiro Yamagishi [1020]. This is the first use of linear cryptanalysis, and can break
FEAL-4 with 5 known plaintexts, FEAL-6 with 100 known plaintexts and FEAL-8
with 2 15 known plaintexts. Further refinements are in [64]. Differential-linear crypt­
analysis can break FEAL-8 with only 12 chosen plaintexts [62]. Whenever someone
discovers a new cryptanalytic attack, he always seems to try it out on FEAL first.

Patents
FEAL is patented in the United States [1438] and has patents pending in England,

France, and Germany. Anyone wishing to license the algorithm should contact the
Intellectual Property Department, NTT, 1-6 Uchisaiwai-cho, 1-chome, Chiyoda-ku,
100 Japan.

13.5 REDOC

REDOC II is another block algorithm, designed by Michael Wood for Cryptech, Inc.
[1613,400]. It has a 20-byte (160-bit) key and an 80-bit block.

REDOC II performs all of its manipulations-permutations, substitutions, and
key XORs-on bytes; the algorithm is efficient in software. REDOC II uses variable
function tables. Unlike DES, which has a fixed (albeit optimized for security) set of
permutation and substitution tables, REDOC II uses a key-dependent and plaintext­
dependent set of tables (S-boxes, actually). REDOC II has 10 rounds; each round is a
complicated series of manipulations on the block.

~-s; _____ C_H_A_P_T_ER_l_3_0_th_e_r_B_l_o_ck_C_ip_h_e_r_s ______________ _

32bits

A1

<K2.K3)

A2

(K4,K6) -
-

AN/2+2

iKN+4, KN+Sl

K2(r-l):lefthalfof Br(16bits)
K2(r-l)+I :righthalfof Br(16bits)
Number of iterations is (N/2)+4

I - -- -

Key Block (KL IKR: 128 bits)

Parity Bit Processing

Q1 32 bits 32 bits

D1 B1

Q2

D2
B2

Q3

--::-~-=-I: - --• - - BN/2+
DN/2+2

QN/2+

32bits

Qr= KRI EB KR2• r = 1. 4. 7 ..
Qr=KRI, r=2.5.8 ..
Qr= KR2, r = 3, 6. 9, .

Figure 13. 7 FEAL-NX key schedule.

Another unique feature in the design is the use of masks. These are numbers
derived from the key table that are used to select the tables in a given function
within a given round. Both the value of the data and the masks are used together to
select the function tables.

Assuming that brute force is the most efficient means of attack, REDOC II is very
secure: 2160 operations are required to recover the key. Thomas Cusick cryptana­
lyzed 1 round of REDOC II, but he was unable to extend the attack to multiple
rounds [400]. Using differential cryptanalysis, Biham and Shamir were able to sue-

_______________ 1_3_.S_R_E_D_O_C _______ _z-~~

cessfully cryptanalyze 1 round of REDOC II with 2300 chosen-plaintexts [170]. This
attack cannot be extended to multiple rounds, but they were able to obtain three
mask values after 4 rounds. I know of no other cryptanalysis.

REDOC Ill
REDOC III is a streamlined version of REDOC II, also designed by Michael Wood

[1615]. It operates on an 80-bit block. The key length is variable and can be as large
as 2560 bytes (20,480 bits). The algorithm consists solely of XORing key bytes with
message bytes; there are no permutations or substitutions.

(1) Create a key table of 256 10-byte keys, using the secret key.

(2) Create two 10-byte mask blocks, M 1 and M2• M 1 is the XOR of the first 128
10-byte keys; M2 is the XOR of the second 128 10-byte keys.

(3) To encrypt a 10-byte block:

(a) XOR the first byte of the data block with the first byte of M 1• Select a
key from the key table computed in step (1). Use the computed XOR
as the index into the table. XOR each byte in the data block with the
corresponding byte in the chosen key, except for the first data byte.

(b) XOR the second byte of the data block with the second byte of M1•

Select a key from the key table computed in step (1). Use the computed
XOR as the index into the table. XOR each byte in the data block with
the corresponding byte in the chosen key, except for the second data
byte.

(c) Continue with the entire block (bytes 3 through 10), until each byte
has been used to select a key from the key table after XORing it with
the corresponding M1 value. Then XOR each byte with the key except
for the byte used to select the key.

(d) Repeat steps (a) through (c) with M2 •

The algorithm is easy and fast. On a 33 megahertz 80386, the algorithm encrypts
data at 2.75 megabits per second. Wood estimates that a VLSI-pipelined design, with
a 64-bit data path, woud encrypt data at over 1.28 gigabits per second with a 20
megahertz clock.

REDOC III is not secure [1440]. It is vulnerable to differential cryptanalysis. Only
about 223 chosen plaintexts are required to reconstruct both masks.

Patents and Licenses
Both REDOC versions are patented in the United States [1614]. Foreign patents

are pending. Anyone interested in licensing either REDOC II or REDOC III should
contact Michael C. Wood, Delta Computec, Inc., 6647 Old Thompson Rd., Syra­
cuse, NY 13211.

~""'s;~-----C_H_A_P_TE_R_l3 __ 0_th_e_r_B_l_o_c_k_C_1_·p_h_e_rs _______________ _

13.6 LOKI

LOKI is Australian and was first presented in 1990 as a potential alternative to DES
[273]. It uses a 64-bit block and a 64-bit key. The general structure of the algorithm
and key schedule were based on [274,275], and the design of the S-boxes was based
on [1247].

Using differential cryptanalysis, Biham and Shamir were able to break LOKI with
11 or fewer rounds faster than by brute force [170]. Furthermore, there is an 8-bit
complementation property, which reduces the complexity of a brute-force attack by
a factor of 256 [170,916,917].

Lars Knudsen showed that LOKI, with 14 rounds or fewer, is vulnerable to dif­
ferential cryptanalysis [852,853]. Additionally, if LOKI is implemented with alter­
nate S-boxes, the resulting cipher will probably be vulnerable to differential
cryptanalysis.

LOK/91

In response to these attacks, LO Ki's designers went back to the drawing board and
revised their algorithm. The result is LOKI91 [272]. (The previous version of LOKI
was renamed LOKI89.)

To make the algorithm more resistant to differential cryptanalysis and to remove
the complementation property, the following changes were made to the original
design:

1. The subkey generation algorithm was changed so that the halves were
swapped every second round, not every round.

2. The subkey generation algorithm was changed so that the rotation of the
left subkey alternated between 12 and 13 bits to the left.

3. The initial and final XOR of the block with the key were eliminated.

4. The S-box function was altered to flatten out their XOR profile (to improve
their resistance to differential cryptanalysis), and to eliminate any value of
x such that f(x) = 0, where f is the combination of the E-, S-, and P-boxes.

Description of LOKl91

The mechanics of LOKI91 are similar to DES (see Figure 13.8). The data block is
then divided into a left half and a right half and goes through 16 rounds, much like
DES. In each round, the right half is first XORed with a piece of the key, then sent
through an expansion permutation (see Table 13.1).

The 48-bit output is divided into four 12-bit blocks, and each block is sent through
an S-box substitution. The S-box substitution is as follows: Take each 12-bit input;
use the 2 left-most bits and the 2 right-most bits to form the number r, and the 8
innermost bits and form the number c. The output of the S-box, 0, is as follows:

O(r,c) = (c + ((r* 17) EB 0xff) & 0xff)31 mod Pr

_________________ 13_.6_L_O_K_I ________ 7..._,,~

Plaintext

L 32 R 32

Ciphertext

Figure 13.8 LOKI91.

Pr is given in Table 13.2.

K(2)

32

K(3)

32

K(4)

32

K(IS)

32

K(l6)

32

Key K
KR 32

ROL 12

ROL13

Then, the four 8-bit outputs are recombined to form a single 32-bit number and
sent through the permutation described in Table 13.3. Finally, the right half is
XO Red with the left half to become the new left half, and the left half becomes the
new right halt. After 16 rounds, the block is again XORed with the key to produce
the ciphertext.

The subkeys are generated from the key in a straightforward manner. The 64-bit
key is split into a left half and a right half. In each round, the subkey is the left half.
This left half is then rotated 12 or 13 bits to the left, and then every two rounds the
left and right halves are exchanged. As with DES, the same algorithm can be used for
both encryption and decryption, with some modification in how the subkeys are used.

Table 13.1
Expansion Permutation

4, 3, 2, 1, 32, 31, 20, 29, 28, 27, 26, 25,
28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17,
20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9,
12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1

~-s _____ C_H_A_P_T_ER_1_3_0_th_e_r_B_l_o_ck_C_ip_h_e_r_s ______________ _

Table 13.2
P,

r: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
P,: 375, 379, 391, 395, 397, 415, 419, 425, 433, 445, 451, 463, 471, 477, 487, 499

Cryptanalysis of LOK/91

Knudsen attempted to cryptanalyze LOKI91 [854,858], but found it secure against
differential cryptanalysis. However, he found a related-key chosen-plaintext attack
that reduces the complexity of a brute-force search by almost a factor of four. This
attack exploits a weakness in the key schedule and may also apply if the algorithm
is used as a one-way hash function (see Section 18.11).

Another attack on related keys can break LOKI91 with 232 chosen-key chosen
plaintexts, or 248 chosen-key known plaintexts [158]. The attack is independent of
the number of rounds of the algorithm. (In the same paper, Biham breaks LOKI89
with 2 17 chosen-key chosen plaintexts or 233 known-key known plaintexts using
related-key cryptanalysis.) It's easy to make LOKI91 resistant to this attack; avoid
the simple key schedule.

Patents and Licenses
LOKI is not patented. Anyone can implement the algorithm and use it. The

source code implementation in this book is copyrighted by the University of New
South Wales. Anyone interested in using this implementation (or their other imple­
mentation, which is several orders of magnitude faster) in a commercial product
should contact Director CITRAD, Department of Computer Science, University
College, UNSW, Australian Defense Force Academy, Canberra ACT 2600, Aus­
tralia; FAX: +61 6 268 85 81.

13. 7 KHUFU AND KHAFRE

In 1990 Ralph Merkle proposed two algorithms. The basic design principles behind
them are [1071]:

1. DES's 56-bit key size is too small. Considering the negligible cost of increas­
ing the key size (computer memory is cheap and plentiful), it should be
increased.

2. DES's extensive use of permutations, while suitable for hardware imple­
mentations, is very difficult to implement in software. The faster software

32, 24,
28, 20,

16, 8, 31, 23,
12, 4, 27, 19,

Table 13.3
P-Box Permutation

15, 7, 30, 22,
11, 3, 26, 18,

14, 6, 29, 21,
10, 2, 25, 17,

13, 5,
9, 1

________________ 1_3._7_K_h_u_fu_a_n_d_K_h_a_fr_e ______ 7 __ ~

implementations of DES implement the permutations by table lookup.
Table lookup can provide the same "diffusion" characteristics as permuta­
tion and can be much more flexible.

3. The S-boxes in DES are small, with only 64 4-bit entries per box. Now that
memory is larger, S-boxes should grow. Moreover, all eight S-boxes are
used simultaneously. While this is suitable for hardware, it seems like an
unreasonable restriction in software. A larger S-box size and sequential
(rather than parallel) S-box usage should be employed.

4. The initial and final permutations in DES are widely viewed as crypto­
graphically pointless and should be discarded.

5. All the faster implementations of DES precompute the keys for each
round. Given this fact, there is no reason not to make this computation
more complicated.

6. Unlike DES, the S-box design criteria should be public.

To this list, Merkle would probably now add "resistant to differential cryptanaly­
sis and to linear attacks," but those attacks were still unknown at the time.

Khufu
Khufu is a 64-bit block cipher. The 64-bit plain text is first divided into two 32-bit

halves, Land R. First, both halves are XORed with some key material. Then, they
are subjected to a series of rounds similar to DES. In each round, the least significant
byte of L is used as the input to an S-box. Each S-box has 8 input bits and 32 output
bits. The selected 32-bit entry in the S-box is then XO Red with R. Lis then rotated
some multiple of 8 bits, Land R are swapped, and the round ends. The S-box itself
is not static, but changes every 8 rounds. Finally, after the last round, L and R are
XORed with more key material, and then combined to form the ciphertext block.

Although parts of the key are XORed with the encryption block at the beginning
and end of the algorithm, the primary purpose of the key is to generate the S-boxes.
These S-boxes are secret and, in essence, part of the key. Khufu calls for a total key
size of 512 bits (64 bytes) and gives an algorithm for generating S-boxes from the key.
The number of rounds for the algorithm is left open. Merkle mentioned that 8-round
Khufu is susceptible to a chosen-plaintext attack and recommended 16, 24, or 32
rounds [1071]. (He restricted the choice of rounds to a multiple of eight.)

Because Khufu has key-dependent and secret S-boxes, it is resistant to differential
cryptanalysis. There is a differential attack against 16-round Khufu that recovers the
key after 231 chosen plaintexts [611], but it cannot be extended to more rounds. If
brute-force is the best way to attack Khufu, it is impressively secure. A 512-bit key
gives a complexity of 2512-inconceivable under any circumstances.

Khafre
Khafre is the second of two cryptosystems proposed by Merkle [1071]. (Khufu and

Khafre are names of Egyptian pharaohs.) It is similar in design to Khufu, except that
it was designed for applications without precomputation time. The S-boxes are not

~--:s. ______ C_H_A_P_T_ER_l_3_0_th_e_r_B_l_o_c_k_C_1_·p_h_e_rs _______________ _

key-dependent. Instead, Khafre uses fixed S-boxes. And the key is XORed with the
encryption block not only before the first round and after the last round, but also
after every 8 rounds of encryption.

Merkle speculated that key sizes of 64- or 128-bits would be used for Khafre and
that more rounds of encryption would be required for Khafre than for Khufu. This,
combined with the fact that each round of Khafre is more complex than for Khufu,
makes Khafre slower. In compensation, Khafre does not require any precomputation
and will encrypt small amounts of data more quickly.

In 1990 Biham and Shamir turned their differential cryptanalysis techniques
against Khafre [170]. They were able to break 16-round Khafre with a chosen­
plaintext attack using about 1500 different encryptions. It took about an hour, using
their personal computer. Converting that to a known-plain text attack would require
about 238 encryptions. Khafre with 24 rounds can be broken by a chosen-plaintext
attack using 253 encryptions, and a known-plaintext attack using 259 encryptions.

Patents
Both Khufu and Khafre are patented [1072]. Source code for the algorithms are

in the patent. Anyone interested in licensing either or both algorithms should con­
tact Director of Licensing, Xerox Corporation, P.O. Box 1600, Stamford, CT,
06904-1600.

13.8 RC2

RC2 is a variable-key-size encryption algorithm designed by Ron Rivest for RSA
Data Security, Inc. (RSADSI). Apparently, "RC" stands for "Ron's Code," although
it officially stands for "Rivest Cipher." (RC3 was broken at RSADSI during devel­
opment; RCl never got further than Rivest's notebook.) It is proprietary, and its
details have not been published. Don't think for a minute that this helps security.
RC2 has already appeared in commercial products. As far as I know, RC2 has not
been patented and is only protected as a trade secret.

RC2 is a variable-key-size 64-bit block cipher, designed to be a replacement for
DES. According to the company, software implementations of RC2 are three times
faster than DES. The algorithm accepts a variable-length key, from O bytes to the
maximum string length the computer system supports; encryption speed is inde­
pendent of key size. This key is preprocessed to yield a key-dependent table of 128
bytes. So the number of effectively different keys is 21024 . RC2 has no S-boxes [805];
the two operations are "mix" and "mash," and one is chosen in each round. Accord­
ing to their literature [1334]:

... RC2 is not an iterative block cipher. This suggests that RC2 offers more pro­
tection against differential and linear cryptanalysis than other block ciphers
which have relied for their security on copying the design of DES.

RSADSI's refusal to make RC2 public casts doubt on their claims. They are will­
ing to provide details of the algorithm to most anyone willing to sign a nondisclo-

_______________ 1_3_.9_I_D_E_A ________ 7 ~

sure agreement, and have claimed to allow cryptanalysts to publish any negative
results they find. I don't know of any cryptanalyst outside the employ of the com­
pany who studied it, since it would amount to doing their analysis work for them.

Still, Ron Rivest is not the usual snake-oil peddler. He's a respected and compe­
tent cryptographer. I would put a fair degree of trust in the algorithm, even though I
haven't personally inspected the code. RC4, once the proprietary intellectual prop­
erty of RSADSI, was posted to the Internet (see Section 17.1), and it's probably just
a matter of time before RC2 is posted as well.

An agreement between the Software Publishers Association (SPA) and the U.S.
government gave RC2 and RC4 (see Section 17.1) special export status (see Section
25.14). Products that implement one of these two algorithms have a much simpler
export approval process, provided that the keys are no more than 40 bits long.

Is a 40-bit key enough? There are a total of one trillion possible keys. Assuming
that brute force is the most efficient method of cryptanalysis (a big assumption, con­
sidering that the algorithm has never been published), and assuming that a brute­
force cryptanalysis chip can test one million keys per second, it will take him 12. 7
days to find the correct key. One thousand machines working in parallel can pro­
duce the key in twenty minutes.

RSA Data Security, Inc., maintains that while encryption and decryption are
quick, exhaustive key search is not. A significant amount of time is spent setting up
the key schedule. While this time is negligible when encrypting and decrypting
messages, it is not when trying every possible key.

The U.S. government would never allow export of any algorithm it couldn't, at
least in theory, break. They could create a magnetic tape or CD of a specific plain­
text block encrypted with every possible key. To break a given message, they could
just run the tape and compare the ciphertext blocks in the message with the cipher­
text blocks on the tape. If there is a match, they could try the candidate key and see
if the message makes any sense. If they choose a common plaintext block (all zeros,
the ASCII characters for a space, etc.), this method should work. The storage
requirement for a 64-bit plaintext block encrypted with all 1012 possible keys is 8
terabytes-certainly possible.

For information on licensing RC2, contact RSADSI (see Section 25.4).

13.9 IDEA
The first incarnation of the IDEA cipher, by Xuejia Lai and James Massey, surfaced
in 1990 [929]. It was called PES (Proposed Encryption Standard). The next year, after
Biham and Shamir's demonstrated differential cryptanalysis, the authors strength­
ened their cipher against the attack and called the new algorithm IPES (Improved
Proposed Encryption Standard) [931,924]. IPES changed its name to IDEA (Interna­
tional Data Encryption Algorithm) in 1992 [925].

IDEA is based on some impressive theoretical foundations and, although crypt­
analysis has made some progress against reduced-round variants, the algorithm still
seems strong. In my opinion, it is the best and most secure block algorithm avail­
able to the public at this time.

~-:s. _____ C_H_A_P_T_E_R_l_3_0_th_e_r_B_l_o_ck_C_i_ph_er_s ______________ _

The future of IDEA is not yet clear. There has been no rush to adopt it as a replace­
ment to DES, partly because it is patented and must be licensed for commercial
applications, and partly because people are still waiting to see how well the algo­
rithm fares during the coming years of cryptanalysis. Its current claim to fame is
that it is part of PGP (see Section 24.12).

Overview of IDEA

IDEA is a block cipheri it operates on 64-bit plaintext blocks. The key is 128 bits
long. The same algorithm is used for both encryption and decryption.

As with all the other block ciphers we've seen, IDEA uses both confusion and dif­
fusion. The design philosophy behind the algorithm is one of "mixing operations
from different algebraic groups." Three algebraic groups are being mixed, and they
are all easily implemented in both hardware and software:

XOR

Addition modulo 216

Multiplication modulo 2 16 + 1. (This operation can be viewed as
IDEA's S-box.)

All these operations (and these are the only operations in the algorithm-there are
no bit-level permutations) operate on 16-bit sub-blocks. This algorithm is even effi­
cient on 16-bit processors.

Description of IDEA

Figure 13.9 is an overview of IDEA. The 64-bit data block is divided into four 16-
bit sub-blocks: X 1, X 2, X.,, and X 4 . These four sub-blocks become the input to the first
round of the algorithm. There are eight rounds total. In each round the four sub­
blocks are XORed, added, and multiplied with one another and with six 16-bit sub­
keys. Between rounds, the second and third sub-blocks are swapped. Finally, the
four sub-blocks are combined with four subkeys in an output transformation.

In each round, the sequence of events is as follows:

(1) Multiply X 1 and the first subkey.

(2) Add X2 and the second subkey.

(3) Add X 3 and the third subkey.

(4) Multiply X4 and the fourth subkey.

(5) XOR the results of steps (1) and (3).

(6) XOR the results of steps (2) and (4).

(7) Multiply the results of step (5) with the fifth subkey.

(8) Add the results of steps (6) and (7).

(9) Multiply the results of step (8) with the sixth subkey.

(10) Add the results of steps (7) and (9).

________________ 13_.9_I_D_E_A ________ 7 __ ~

one
round

seven
more

rounds 1
Z1 (9l-i Z2<9l

Yi Y2

Figure 13.9 IDEA.

Output Transformation

X; : 16-bit plaintext sub-block

Y;: 16-bitciphertextsub-block

Z; (rJ: 16-bit key sub-block

EB: bil-by-bit exclusive-or (XOR) of 16-bit sub-blocks

EE: addition modulo216 of 16-bit integers

0: multiplication modulo 216 + 1 of 16-bit integers

with the zero sub-block corresponding to 216

(11) XOR the results of steps (1) and (9).

(12) XOR the results of steps (3) and (9).

(13) XOR the results of steps (2) and (10).

(14) XOR the results of steps (4) and (10).

The output of the round is the four sub-blocks that are the results of steps (11),
(12), (13), and (14). Swap the two inner blocks (except for the last round) and that's
the input to the next round.

After the eighth round, there is a final output transformation:

(1) Multiply X1 and the first subkey.

~-s; _____ C_H_A_P_T_ER_l_3_0_th_e_r_B_l_o_ck_C_ip_h_e_r_s ______________ _

(2) Add X2 and the second subkey.

(3) Add X 3 and the third sub key.

(4) Multiply X4 and the fourth subkey.

Finally, the four sub-blocks are reattached to produce the ciphertext.
Creating the subkeys is also easy. The algorithm uses 52 of them (six for each of

the eight rounds and four more for the output transformation). First, the 128-bit key
is divided into eight 16-bit subkeys. These are the first eight subkeys for the algo­
rithm (the six for the first round, and the first two for the second round). Then, the
key is rotated 25 bits to the left and again divided into eight subkeys. The first four
are used in round 2; the last four are used in round 3. The key is rotated another 25
bits to the left for the next eight subkeys, and so on until the end of the algorithm.

Decryption is exactly the same, except that the subkeys are reversed and slightly
different. The decryption subkeys are either the additive or multiplicative inverses
of the encryption subkeys. (For the purposes of IDEA, the all-zero sub-block is con­
sidered to represent 216 = -1 for multiplication modulo 216 + l; thus the multiplica­
tive inverse of 0 is 0.) Calculating these takes some doing, but you only have to do
it once for each decryption key. Table 13.4 shows the encryption subkeys and the
corresponding decryption subkeys.

Speed of IDEA

Current software implementations of IDEA are about twice as fast as DES. IDEA
on a 33 megahertz 386 machine encrypts data at 880 kilobits per second, and 2400
kilobits per second on a 66 megahertz 486 machine. You might think IDEA should
be faster, but multiplications aren't cheap. To multiply two 32-bit numbers on a 486
requires 40 clock cycles (10 on a Pentium).

A VLSI implementation of PES encrypts data at 55 megabits per second at 25
megahertz [208,398]. Another VLSI chip developed at ETH Zurich, consisting of
251,000 transistors on a chip 107.8 square millimeters, encrypts data using the

Round

1st
2nd
3rd
4th
5th
6th
7th
8th
output
transformation

Table 13.4
IDEA Encryption and Decryption Subkeys
Encryption Subkeys
Z1ll) zll zll zp1 Zsll) zll
z 1121 zp1 z 3121 z 4121 z 5121 z 6121
Z1l31 Z2l31 z3131 z4131 Zsl31 z6131
Z1141 Zl 1 Z3141 Z4141 Zs141 Z6141
Z1IS) Z2IS) Z)SI zll ZslS) z615)
Z1l6I Z2l6I Z3l6I z416J Zsl61 z6161
zp1 zp1 z3171 zp1 zs171 zti
zi131 z21s1 Z31s1 zpi Zsl81 z61s1
z1191 z2191 zl1 zl1

Decryption Subkeys
Z1l9) - 1 -Z2l9) -Z)91 z419) - 1 Zsl8) z618)
z 11s1 - 1 _z 31s1 _z 21s1 z 41s1-1 zs171 zti
zp1 - 1 -ztl -Z2l7) zpi - 1 Zsl6) z616)
Z/61 - 1 -Zll -Z2l6) z416) - 1 Zs(S) z615)
Z1IS) - 1 -Z3IS) -zll Zll - 1 Zsl4) z614)
Z1l4)-1 -zl1-z214) z414) - 1 Zsl3) Zll
Z1l3) - 1 -z313) -z213) zpi - 1 Zsl2) z612)
z1121 - 1 -z3121 -zPI zp1 - 1 Zsll) Zll
z1111 - 1 -zl1 -zi1 z)11 - 1

_________________ 13_.9 __ ID_E_A ________ z~~

IDEA algorithm at a 177 megabit-per-second data rate when clocked at 25 mega­
hertz [926,207,397].

Cryptanalysis of IDEA
IDEA's key length is 128 bits-over twice as long as DES. Assuming that a brute­

force attack is the most efficient, it would require 2128 (1038) encryptions to recover
the key. Design a chip that can test a billion keys per second and throw a billion of
them at the problem, and it will still take 1013 years-that's longer than the age of
the universe. An array of 1024 such chips can find the key in a day, but there aren't
enough silicon atoms in the universe to build such a machine. Now we're getting
somewhere-although I'd keep my eye on the dark matter debate.

Perhaps brute force isn't the best way to attack IDEA. The algorithm is still too
new for any definitive cryptanalytic results. The designers have done their best to
make the algorithm immune to differential cryptanalysis; they defined the concept
of a Markov cipher and showed that resistance to differential cryptanalysis can be
modeled and quantified [931,925]. (Figure 13.10 shows the original PES algorithm to
be contrasted with the IDEA algorithm of Figure 13.9 which was strengthened
against differential cryptanalysis. It's amazing how a few subtle changes can make
such a big difference.) In [925], Lai argued (he gave evidence, not a proof) that IDEA
is immune to differential cryptanalysis after only 4 of its 8 rounds. According to
Biham, his related-key cryptanalytic attack doesn't work against IDEA, either [160].

Willi Meier examined the three algebraic operations of IDEA, and pointed out that
while they are incompatible, there are instances where they can be simplified in
such a way as to facilitate cryptanalysis some percentage of the time [1050]. His
attack is more efficient than brute-force for 2-round IDEA (242 operations), but less
efficient for 3-round IDEA or higher. Normal IDEA, with 8 rounds, is safe.

Joan Daemen discovered a class of weak keys for IDEA [406,409]. These are not
weak keys in the sense of the DES weak keys; that is, the encryption function is self­
inverse. They are weak in the sense that if they are used, an attacker can easily iden­
tify them in a chosen-plaintext attack. For example, a weak key is (in hex):

0000, 0000, 0xO0, 0000, 0000, 000x,xxxx,xO00

The number at the positions of "x" can be any number. If this key is used, the bit­
wise XOR of certain plaintext pairs guarantees the bit-wise XOR of the resultant
ciphertext pairs.

In any case, the chance of accidentally generating one of these weak keys is very
small: one in 296 • There is no danger if you choose keys at random. And it is easy to
modify IDEA so that it doesn't have any weak keys: XOR every subkey with the
value 0x0dae [409].

I know of no other cryptanalytic results against IDEA, although many people
have tried.

IDEA Modes of Operation and Variants
IDEA can work within any block cipher mode discussed in Chapter 9. Any dou­

ble-IDEA implementation would be susceptible to the same meet-in-the-middle

~-s _____ C_H_A_P_T_E_R_l_3_0_th_e_r_B_l_o_ck_C_i_p_h_er_s ______________ _

one
round

seven
more
rounds

Z, 191-{iz,<9>•
Y1 Y2

Figure 13.10 PBS.

Output Transformation

X; : 16-bit plaintext sub-block

Y; : 16-bit ciphertext sub-block

Z; (r): 16-bit key sub-block

EB: bit-by-bit exclusive-or (XOR) of 16-bit sub-blocks

EE: addition modulo 2160f 16-bit integers

Q: multiplication modulo 216 + 1 of 16-bit integers

with the zero sub-block corresponding to 216

attack as DES (see Section 15.1). However, because IDEA's key length is more than
double DES's, the attack is impractical. It would require a storage space of 64*2 128

bits, or 1039 bytes. Maybe there's enough matter in the universe to create a memory
device that large, but I doubt it.

If you're worried about parallel universes as well, use a triple-IDEA implementa­
tion (see Section 15.2):

C = EK3(DK2(EK1(P)))

It is immune to the meet-in-the-middle attack.
There's also no reason why you can't implement IDEA with independent subkeys,

especially if you have key-management tools to handle the longer key. IDEA needs
a total of 52 16-bit keys, for a total key length of 832 bits. This variant is definitely
more secure, but no one knows by how much.

________________ 1_3_.1_0_M_M_B ________ 7..,..~

A nai:ve variation might double the block size. The algorithm would work just as
well with 32-bit sub-blocks instead of 16-bit sub-blocks, and a 256-bit key. Encryp­
tion would be quicker and security would increase 232 times. Or would it? The the­
ory behind the algorithm hinges on the fact that 2 16 + 1 is prime; 232 + 1 is not.
Perhaps the algorithm could be modified to work, but it would have very different
security properties. Lai says it would be difficult to make it work [926].

While IDEA appears to be significantly more secure than DES, it isn't always easy
to substitute one for the other in an existing application. If your database and mes­
sage templates are hardwired to accept a 64-bit key, it may be impossible to imple­
ment IDEA's 128-bit key.

For those applications, generate a 128-bit key by concatenating the 64-bit key
with itself. Remember that IDEA is weakened considerably by this modification.

If you are more concerned with speed than security, you might consider a variant
of IDEA with fewer rounds. Currently the best attack against IDEA is faster than
brute force only for 2.5 rounds or less [1050]; 4 round IDEA would be twice as fast
and, as far as I know, just as secure.

Caveat Emptor
IDEA is a relatively new algorithm, and many questions remain. Is IDEA a group?

(Lai thinks not [926].) Are there any still-undiscovered ways of breaking this cipher?
IDEA has a firm theoretical basis, but time and time again secure-looking algo­
rithms have fallen to new forms of cryptanalysis. Several academic and military
groups have cryptanalyzed IDEA. None of them has gone public about any successes
they might have had. One might-someday.

Patents and Licenses
IDEA is patented in Europe and the United States [1012, 1013]. The patent is held

by Ascom-Tech AG. No license fee is required for non-commercial use. Commercial
users interested in licensing the algorithm should contact Ascom Systec AG, Dept
CMVV, Gewerbepark, CH-5506, Magenwil, Switzerland; +41 64 56 59 83; Fax: +41
64 56 59 90; idea@ascom.ch.

13.10 MMB

A complaint against IDEA, that it uses a 64-bit encryption block, was addressed by
Joan Daemen in an algorithm called MMB (Modular Multiplication-based Block
cipher) [385,405,406]. MMB is based on the same basic theory as IDEA: mixing oper­
ations of different algebraic groups. MMB is an iterative algorithm that mainly con­
sists of linear steps (XOR and key applications) and the parallel applications of four
large nonlinear invertible substitutions. These substitutions are determined by a
multiplication modulo 232 - 1 with constant factors. The result is an algorithm that
has both a 128-bit key and a 128-bit block size.

MMB operates on 32-bit sub-blocks of text (x0, x1, x2, x3) and 32-bit sub-blocks of
key (k0, k 1, k 2, k3). This makes the algorithm well suited for implementation on
modern, 32-bit processors. A nonlinear function, f, is applied six times alternating
with XORing. Here it is (all index operations are mod 4):

~-s _____ C_H_A_P_T_ER_l_3_0_th_e_r_B_l_o_ck_C_ip_h_e_r_s ____________ _

X; = X; EB k;, for i = 0 to 3

f(xo,X1,X2,X3)

x; = X; EB k; + 1, for i = 0 to 3

f(xo,X1,X2,X3)

x; = x; EB k; + 2, for i = 0 to 3

f(xo,X1,X2,X3)

X; = X; EB k;, for i = 0 to 3

f(xo,X1,X2,X3)

x; = x; EB k; + 1, for i = 0 to 3

f(xo,X1,X2,X3)

x; = x; EB k; + 2, for i = 0 to 3

f(xo,X1,X2,X3)

The function f has three steps:

(1) X; = C; * X;, for i = 0 to 3 (If the input to the multiplication is all 1 s, the out­
put is also all ls.)

(2) If the least significant bit of x0 = 1, then x0 = x0 EB C. If the least significant
byte of x3 = 0, then x3 = X3 EB C.

(3) X; = X; _ 1 EB X; EB X; + 1, for i = 0 to 3

All index operations are mod 4. The multiplication operation in step (1) is modulo
232 - 1. For the purposes of the algorithm, if the second operand is 232 - 1, then the
result is 232 - 1. The various constants are:

C = 2aaaaaaa

c0 = 025£1 cdb

C1 = 2 * Co

C2 = 23 * Co

C3 = 27 * Co

The constant C is the "simplest" constant with a high ternary weight, a least­
significant bit of zero, and no circular symmetry. The constant c0 has certain other
characteristics. The constants c1, c2, and c3 are shifted versions of c0, preventing
attacks based on symmetry. See [405] for more details.

Decryption is the reverse process. Steps (2) and (3) are their own inverse. Step (1)
uses C;- 1 instead of c;. The value of c0- 1 is 0dad4694.

Security of MMB

The design of MMB ensures that each round has considerable diffusion indepen­
dent of the key. In IDEA, the amount of diffusion is to some extent dependent on the
particular subkeys. MMB was also designed not to have any weak keys as IDEA has.

________________ 13_._11_C_A_-1_.1 _______ z:--~

MMB is dead [402]. Although no cryptanalysis has been published, this is true for
several reasons. First, it was not designed to be resistant to linear cryptanalysis. The
multiplication factors were chosen to be resistant to differential cryptanalysis, but
the algorithm's authors were unaware of linear cryptanalysis.

Second, Eli Biham has an effective chosen-key attack [160], which exploits the
fact that all rounds are identical and that the key schedule is just a cyclic shift by 32
bits. Third, even though MMB would be very efficient in software, the algorithm
would be less efficient than DES in hardware.

Daemen suggests that anyone interested in improving MMB should first do an
analysis of modular multiplication with respect to linear cryptanalysis and choose a
new multiplication factor, and then make the constant C different for each round
[402]. Then, improve the key scheduling by adding constants to the round keys to
remove the bias. He's not going to do it; he designed 3-Way instead (see Section 14.5).

13.11 CA-1.1

CA is a block cipher built on cellular automata, designed by Howard Gutowitz
[677,678,679]. It encrypts plaintext in 384-bit blocks and has a 1088-bit key (it's
really two keys, a 1024-bit key and a 64-bit key). Because of the nature of cellular
automata, the algorithm is most efficient when implemented in massively parallel
integrated circuits.

CA-1.1 uses both reversible and irreversible cellular automaton rules. Under a
reversible rule, each state of the lattice comes from a unique predecessor state,
while under an irreversible rule, each state can have many predecessor states. Dur­
ing encryption, irreversible rules are iterated backward in time. To go backward
from a given state, one of the possible predecessor states is selected at random. This
process can be repeated many times. Backward iteration thus serves to mix random
information with the message information. CA-1.1 uses a particular kind of par­
tially linear irreversible rule, which is such that a random predecessor state for any
given state can be rapidly built. Reversible rules are also used for some stages of
encryption.

The reversible rules (simple parallel permutations on sub-blocks of the state) are
nonlinear. The irreversible rules are derived entirely from information in the key,
while the reversible rules depend both on key information and on the random infor­
mation inserted during the stages of encryption with irreversible rules.

CA-1.1 is built around a block-link structure. That is, the processing of the mes­
sage block is partially segregated from the processing of the stream of random infor­
mation inserted during encryption. This random information serves to link stages of
encryption together. It can also be used to chain together a ciphertext stream. The
information in the link is generated as part of encryption.

Because CA-1.1 is a new algorithm, it is too early to make any pronouncements on
its security. Gutowitz discusses some possible attacks, including differential crypt­
analysis, but is unable to break the algorithm. As an incentive, Gutowitz has offered
a $1000 prize to "the first person who develops a tractable procedure to break CA-1.1."

~--s;; _____ C_H_A_P_T_ER_l_3_0_th_e_r_B_l_o_ck_C_ip_h_e_r_s ______________ _

CA-1.1 is patented [678], but is available free for non-commercial use. Anyone
interested in either licensing the algorithm or in the cryptanalysis prize should con­
tact Howard Gutowitz, ESPCI, Laboratoire d'Electronique, 10 rue Vauquelin, 75005
Paris, France.

13 .12 SKIP JACK

Skipjack is the NSA-developed encryption algorithm for the Clipper and Capstone
chips (see Sections 24.16 and 24.17). Since the algorithm is classified Secret, its details
have never been published. It will only be implemented in tamperproof hardware.

The algorithm is classified Secret, not because that enhances its security, but
because the NSA doesn't want Skipjack being used without the Clipper key-escrow
mechanism. They don't want the algorithm implemented in software and spread
around the world.

Is Skipjack secure? If the NSA wants to produce a secure algorithm, they presum­
ably can. On the other hand, if the NSA wants to design an algorithm with a trap­
door, they can do that as well.

Here's what has been published [1154,462].

It's an iterative block cipher.

The block size is 64 bits.

It has an 80-bit key.

It can be used in ECB, CBC, 64-bit OFB, or 1-, 8-, 16-, 32- or 64-bit CFB
modes.

There are 32 rounds of processing per single encrypt or decrypt oper­
ation.

NSA started the design in 1985 and completed the evaluation in 1990.

The documentation for the Mykotronx Clipper chip says that the latency for the
Skipjack algorithm is 64 clock cycles. This means that each round consists of two
clock cycles: presumably one for the S-box substitution and another for the final
XOR at the end of the round. (Remember: permutations take no time in hardware.)
The Mykotronx documentation calls this two-clock-cycle operation a "G-box, 11 and
the whole thing a "shift." (Some part of the G-box is called an "F-table, 11 probably a
table of constants but maybe a table of functions.)

I heard a rumor that Skipjack uses 16 S-boxes, and another that the total memory
requirement for storing the S-boxes is 128 bytes. It is unlikely that both of these
rumors are true.

Another rumor implies that Skipjack's rounds, unlike DES's, do not operate on
half of the block size. This, combined with the notion of "shifts," an inadvertent
statement made at Crypto '94 that Skipjack has II a 48-bit internal structure, 11

implies that it is similar in design to SHA (see Section 18. 7) but with four 16-bit sub­
blocks: three sub-blocks go through a key-dependent one-way function to produce

_________________ 1_3_.1_2_S_k_ip_j_ac_k ___________ 7 ~

16 bits, which are XO Red with the remaining sub-block; then the whole block is cir­
cularly shifted 16 bits to become the input to the next round, or shift. This also
implies 128 bytes of S-box data. I suspect that the S-boxes are key-dependent.

The structure of Skipjack is probably similar to DES. The NSA realizes that their
tamperproof hardware will be reverse-engineered eventually; they won't risk any
advanced cryptographic techniques.

The fact that the NSA is planning to use the Skipjack algorithm to encrypt their
Defense Messaging System (DMS) implies that the algorithm is secure. To convince
the skeptics, NIST allowed a panel of "respected experts from outside the govern­
ment ... access to the confidential details of the algorithm to assess its capabilities
and publicly report its findings" [812].

The preliminary report of these experts [262] (there never was a final report, and
probably never will be) concluded that:

Under an assumption that the cost of processing power is halved every 18
months, it will be 36 years before the difficulty of breaking Skipjack by exhaus­
tive search will be equal to the difficulty of breaking DES today. Thus, there is no
significant risk that Skipjack will be broken by exhaustive search in the next
30-40 years.

There is no significant risk that Skipjack can be broken through a shortcut
method of attack, including differential cryptanalysis. There are no weak keys;
there is no complementation property. The experts, not having time to evaluate
the algorithm to any great extent, instead evaluated NSA's own design and evalu­
ation process.

The strength of Skipjack against a cryptanalytic attack does not depend on the
secrecy of the algorithm.

Of course, the panelists did not look at the algorithm long enough to come to any
conclusions themselves. All they could do was to look at the results that the NSA
showed to them.

One unanswered question is whether the Skipjack keyspace is flat (see Section
8.2). Even if Skipjack has no weak keys in the DES sense, some artifact of the key­
scheduling process could make some keys stronger than others. Skipjack could have
270 strong keys, far more than DES; the odds of choosing one of those strong keys at
random would still be about 1 in 1000. Personally, I think the Skipjack keyspace is
flat, but the fact that no one has ever said this publicly is worrisome.

Skipjack is patented, but the patent is being withheld from distribution by a patent
secrecy agreement [I 122]. The patent will only be issued when and if the Skipjack
algorithm is successfully reverse-engineered. This gives the government the best of
both worlds: the protection of a patent and the confidentiality of a trade secret.

------------------------✓------~

CHAPTER 14

Still Other Block Ciphers

14.1 GOST
GOST is a block algorithm from the former Soviet Union [655,1393]. "GOST" is an
acronym for "Gosudarstvennyi Standard," or Government Standard, sort of similar
to a PIPS, except that it can (and does) refer to just about any kind of standard. (Actu­
ally, the full name is Gosudarstvennyi Standard Soyuza SSR, or Government Stan­
dard of the Union of Soviet Socialist Republics.) This standard is number 28147-89.
The Government Committee for Standards of the USSR authorized the standard,
whoever they were.

I don't know whether GOST 28147-89 was used for classified traffic or just for
civilian encryption. A remark at its beginning states that the algorithm "satisfies all
cryptographic requirements and not limits the grade of information to be pro­
tected." I have heard claims that it was initially used for very high-grade communi­
cations, including classified military communications, but I have no confirmation.

Description of GOST
GOST is a 64-bit block algorithm with a 256-bit key. GOST also has some addi­

tional key material that will be discussed later. The algorithm iterates a simple
encryption algorithm for 32 rounds.

To encrypt, first break the text up into a left half, L, and a right half, R. The sub­
key for round i is K1. A round, i, of GOST is:

Li= R; -1

R; = Li - I E8 f(Ri - I, Ki)

Figure 14.1 is a single round of GOST. Function f is straightforward. First, the
right half and the ith subkey are added modulo 232 . The result is broken into eight
4-bit chunks, and each chunk becomes the input to a different S-box. There are eight
different S-boxes in GOST; the first 4 bits go into the first S-box, the second 4 bits go

CHAPTER 14 Still Other Block Ciphers

R;_ 1 Choose One Subkey

S-Box Substitution

Left Circular Shift

Figure 14.1 One round of COST.

into the second S-box, and so on. Each S-box is a permutation of the numbers 0
through 15. For example, an S-box might be:

7, 10, 2, 4, 15, 9, 0, 3, 6, 12, 5, 13, 1, 8, 11

In this case, if the input to the S-box is 0, the output is 7. If the input is 1, the out­
put is 10, and so on. All eight S-boxes are different; these are considered additional
key material. The S-boxes are to be kept secret.

The outputs of the eight S-boxes are recombined into a 32-bit word, then the
entire word undergoes an 11-bit left circular shift. Finally, the result XORed to the
left half to become the new right half, and the right half becomes the new left half.
Do this 32 times and you're done.

The subkeys are generated simply. The 256-bit key is divided into eight 32-bit
blocks: k 1, k 2, ••• , k 8• Each round uses a different subkey, as shown in Table 14.1.
Decryption is the same as encryption with the order of the k;s reversed.

The COST standard does not discuss how to generate the S-boxes, only that they
are somehow supplied [655]. This has led to speculation that some Soviet organiza­
tion would supply good S-boxes to those organizations it liked and bad S-boxes to
those organizations it wished to eavesdrop on. This may very well be true, but fur­
ther conversations with a COST chip manufacturer within Russia offered another
alternative. He generated the S-box permutations himself, using a random-number
generator.

________________ 1_4_.l_G_O_ST ________ z:-~

Table 14.1
Use of GOST Subkeys in Different Rounds

Round: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Subkey: 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Round: 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Subkey: 1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1

More recently, a set of S-boxes used in an application for the Central Bank of the
Russian Federation surfaced. These S-boxes are also used in the GOST one-way
hash function (see section 18.11) [657].They are listed in Table 14.2.

Cryptanalysis of GOST

These are the major differences between DES and GOST.

DES has a complicated procedure for generating the subkeys from the
keys. GOST has a very simple procedure.

DES has a 56-bit key; GOST has a 256-bit key. If you add in the secret
S-box permutations, GOST has a total of about 610 bits of secret
information.

Table 14.2
GOST S-Boxes

S-box 1:
4 10 9 2 13 8 0 14 6 11 1 12 7 15 5 3

S-box 2:
14 11 4 12 6 13 15 10 2 3 8 1 0 7 5 9

S-box 3:
5 8 1 13 10 3 4 2 14 15 12 7 6 0 9 11

S-box 4:
7 13 10 1 0 8 9 15 14 4 6 12 11 2 5 3

S-box 5:
6 12 7 1 5 15 13 8 4 10 9 14 0 3 11 2

S-box 6:
4 11 10 0 7 2 1 13 3 6 8 5 9 12 15 14

S-box 7:
13 11 4 1 3 15 5 9 0 10 14 7 6 8 2 12

S-box 8:
1 15 13 0 5 7 10 4 9 2 3 14 6 11 8 12

CHAPTER 14 Still Other Block Ciphers

The S-boxes in DES have 6-bit inputs and 4-bit outputs; the S-boxes
in GOST have 4-bit inputs and outputs. Both algorithms have eight
S-boxes, but an S-box in GOST is one-fourth the size of an S-box in
DES.

DES has an irregular permutation, called a P-box; GOST uses an 11-
bit left circular shift.

DES has 16 rounds; GOST has 32 rounds.

If there is no better way to break GOST other than brute force, it is a very secure
algorithm. GOST has a 256-bit key-longer if you count the secret S-boxes. Against
differential and linear cryptanalysis, GOST is probably stronger than DES. Although
the random S-boxes in GOST are probably weaker than the fixed S-boxes in DES,
their secrecy adds to GOST's resistance against differential and linear attacks. Also,
both of these attacks depend on the number of rounds: the more rounds, the more
difficult the attack. GOST has twice as many rounds as DES; this alone probably
makes both differential and linear cryptanalysis infeasible.

The other parts of GOST are either on par or worse than DES. GOST doesn't have
the same expansion permutation that DES has. Deleting this permutation from
DES weakens it by reducing the avalanche effect; it is reasonable to believe that
GOST is weaker for not having it. GOST's use of addition instead is no less secure
than DES's XOR.

The greatest difference between them seems to be GOST's cyclic shift instead of a
permutation. The DES permutation increases the avalanche effect. In GOST a change
in one input bit affects one S-box in one round, which then affects two S-boxes in the
next round, three the round after that, and so on. GOST requires 8 rounds before a sin­
gle change in an input affects every output bit; DES only requires 5 rounds. This is cer­
tainly a weakness. But remember: GOST has 32 rounds to DES's 16.

GOST's designers tried to achieve a balance between efficiency and security. They
modified DES's basic design to create an algorithm that is better suited for software
implementation. They seem to have been less sure of their algorithm's security, and
have tried to compensate by making the key length very large, keeping the S-boxes
secret, and doubling the number of iterations. Whether their efforts have resulted in
an algorithm more secure than DES remains to be seen.

14.2 CAST

CAST was designed in Canada by Carlisle Adams and Stafford Tavares [10, 7]. They
claim that the name refers to their design procedure and should conjure up images
of randomness, but note the authors' initials. The example CAST algorithm uses a
64-bit block size and a 64-bit key.

The structure of CAST should be familiar. The algorithm uses six S-boxes with an
8-bit input and a 32-bit output. Construction of these S-boxes is implementation­
dependent and complicated; see the references for details.

_________________ 14_.3_C_A_ST ________ z:--,,,~

To encrypt, first divide the plaintext block into a left half and a right half. The
algorithm has 8 rounds. In each round the right half is combined with some key
material using function f and then XORed with the left half to form the new right
half. The original right half (before the round) becomes the new left half. After 8
rounds (don't switch the left and right halves after the eighth round), the two halves
are concatenated to form the ciphertext.

Function f is simple:

(1) Divide the 32-bit input into four 8-bit quarters: a, b, c, d.

(2) Divide the 16-bit subkey into two 8-bit halves: e, f.
(3) Process a through S-box 1, b through S-box 2, c through S-box 3, d through

S-box 4. e through S-box 5, and f through S-box 6.

(4) XOR the six S-box outputs together to get the final 32-bit output.

Alternatively, the 32-bit input can be XO Red with 32 bits of key, divided into four
8-bit quarters, processed through the S-boxes, and then XORed together [7]. N
rounds of this appears to be as secure as N + 2 rounds of the other option.

The 16-bit subkey for each round is easily calculated from the 64-bit key. If k 1,

k 2, ••• , ks are the 8 bytes of the key, then the subkeys for each round are:

Round 1: k1, k2

Round 2: k3, k4

Round 3: ks, k6

Round 4: k1, ks

Round 5: k4, k3

Round 6: k2, k1

Round 7: ks, k1

Round 8: k6, ks

The strength of this algorithm lies in its S-boxes. CAST does not have fixed S-boxes;
new ones are constructed for each application. Design criteria are in [10]; bent func­
tions are the S-box columns, selected for a number of desirable S-box properties
(see Section 14.10). Once a set of S-boxes has been constructed for a given imple­
mentation of CAST, they are fixed for all time. The S-boxes are implementation­
dependent, but not key-dependent.

It was shown in [10] that CAST is resistant to differential cryptanalysis and in
[728] that CAST is resistant to linear cryptanalysis. There is no known way to break
CAST other than brute force.

Northern Telecom is using CAST in their Entrust security software package for
Macintoshes, PCs, and UNIX workstations. The particular S-boxes they chose are
not public. The Canadian government is evaluating CAST as a new encryption stan­
dard. CAST is patent-pending.

CHAPTER 14 Still Other Block Ciphers

14. 3 BLOWFISH

Blowfish is an algorithm of my own design, intended for implementation on large
microprocessors [1388, 1389]. The algorithm is unpatented, and the C code in the
back of this book is in the public domain. I designed Blowfish to meet the following
design criteria.

1. Fast. Blowfish encrypts data on 32-bit microprocessors at a rate of 26 clock
cycles per byte.

2. Compact. Blowfish can run in less than SK of memory.

3. Simple. Blowfish uses only simple operations: addition, XORs, and table
lookups on 32-bit operands. Its design is easy to analyze which makes it
resistant to implementation errors [1391].

4. Variably Secure. Blowfish's key length is variable and can be as long as
448 bits.

Blowfish is optimized for applications where the key does not change often, like a
communications link or an automatic file encryptor. It is significantly faster than
DES when implemented on 32-bit microprocessors with large data caches, such as
the Pentium and the PowerPC. Blowfish is not suitable for applications, such as
packet switching, with frequent key changes, or as a one-way hash function. Its
large memory requirement makes it infeasible for smart card applications.

Description of Blowfish
Blowfish is a 64-bit block cipher with a variable-length key. The algorithm con­

sists of two parts: key expansion and data encryption. Key expansion converts a key
of up to 448 bits into several subkey arrays totaling 4168 bytes.

Data encryption consists of a simple function iterated 16 times. Each round con­
sists of a key-dependent permutation, and a key- and data-dependent substitution.
All operations are additions and XORs on 32-bit words. The only additional opera­
tions are four indexed array data lookups per round.

Blowfish uses a large number of subkeys. These keys must be precomputed before
any data encryption or decryption.

The P-array consists of 18 32-bit subkeys:

Four 32-bit S-boxes have 256 entries each:

S1,0, S1,1, ... , Suss

S2,0, S2,1, ... , S2,2ss

s3,o, s3,1, ... , s3.2ss

s4,o, s4,1, ... , s4.2ss

The exact method used to calculate these subkeys will be described later in this
section.

_________________ 14_.3 __ Bl_o_wf_1_·sh __________ 7 ~

p 32 Bits
I

Plaintext

64 Bits
32 Bits 32 Bits

32 Bits

13 More Iterations

>-------, F >----------11~

Pis -----•-H
32 Bits 32 Bits

64 Bits

[Ciphertext] Figure 14.2 Blowfish.

Blowfish is a Feistel network (see Section 14.10) consisting of 16 rounds. The
input is a 64-bit data element, x. To encrypt:

Divide x into two 32-bit halves: xL, xR

Fori=ltol6:

XL= XL EB P;

xR = F(xL) EB xR

Swap xL and xR

Swap xL and xR (Undo the last swap.)

XR =XR EB P17

XL= XL EB Pis

Recombine xL and xR

CHAPTER 14 Still Other Block Ciphers

8 Bits S-Box 1 32 Bits

8 Bits S-Box 2 32 Bits

32 Bits

8 Bits S-Box 3 32 Bits

32 Bits

8 Bits S-Box 4 >-3_2_B_its __ ~

Figure 14.3 Function F.

Function F is as follows (see Figure 14.3):

Divide xL into four eight-bit quarters:
a, b, c, and d F(xL) = ((Si,a + S2,b mod 232) EB S3,c) + S4,d mod 232

Decryption is exactly the same as encryption, except that Pi, P2, ••• , Pis are used
in the reverse order.

Implementations of Blowfish that require the fastest speeds should unroll the
loop and ensure that all subkeys are stored in cache. See [568] for details.

The subkeys are calculated using the Blowfish algorithm. The exact method
follows.

(1) Initialize first the P-array and then the four S-boxes, in order, with a fixed
string. This string consists of the hexadecimal digits of n.

(2) XOR Pi with the first 32 bits of the key, XOR P2 with the second 32-bits of
the key, and so on for all bits of the key (up to Pis). Repeatedly cycle
through the key bits until the entire P-array has been XO Red with key bits.

(3) Encrypt the all-zero string with the Blowfish algorithm, using the subkeys
described in steps (1) and (2).

(4) Replace Pi and P2 with the output of step (3).

(5) Encrypt the output of step (3) using the Blowfish algorithm with the mod­
ified subkeys.

(6) Replace P3 and P4 with the output of step (5).

(7) Continue the process, replacing all elements of the P-array, and then all
four S-boxes in order, with the output of the continuously changing Blow­
fish algorithm.

________________ 1_4_.4_S_A_F_ER ________ 7 ___ ~

In total, 521 iterations are required to generate all required subkeys. Applica­
tions can store the subkeys-there's no need to execute this derivation process
multiple times.

Security of Blowfish
Serge Vaudenay examined Blowfish with known S-boxes and r rounds; a differen­

tial attack can recover the P-array with 28'+ 1 chosen plaintexts [1568]. For certain
weak keys that generate bad S-boxes (the odds of getting them randomly are 1 in 214),

the same attack requires only 24' + 1 chosen plain texts to recover the P-array. With
unknown S-boxes this attack can detect whether a weak key is being used, but can­
not determine what it is (neither the S-boxes nor the P-array). This attack only
works against reduced-round variants; it is completely ineffective against 16-round
Blowfish.

Of course, the discovery of weak keys is significant, even though they seem
impossible to exploit. A weak key is one in which two entries for a given S-box are
identical. There is no way to check for weak keys before doing the key expansion. If
you are worried, you have to do the key expansion and check for identical S-box
entries. I don't think this is necessary, though.

I know of no successful cryptanalysis against Blowfish. To be safe, do not imple­
ment Blowfish with a reduced number of rounds.

Kent Marsh Ltd. has incorporated Blowfish in their FolderBolt security product for
Microsoft Windows and Macintosh. It is also part of Nautilus and PGPfone.

14.4 SAFER
SAFER K-64 stands for Secure And Fast Encryption Routine with a Key of 64 bits
[1009]. James Massey produced this nonproprietary algorithm for Cylink Corp. and
it is incorporated into some of their products. The government of Singapore is plan­
ning to use this algorithm-with a 128-bit key [1010]-for a wide variety of applica­
tions. There are no patent, copyright, or other restrictions on its use.

The algorithm has a block and key size of 64 bits. It is not a Feistel network like
DES (see Section 14.10), but an iterated block cipher: The same function is applied
for some number of rounds. Each round uses two 64-bit subkeys, and the algorithm
only uses operations on bytes.

Description of SAFER K-64
The plaintext block is divided into eight byte-length sub-blocks: B1, B2, ••• , B7,

B8• Then the sub-blocks go through r rounds. Finally, an output transformation is
applied to the sub-blocks. Each round uses two subkeys: K2; _ 1 and K2;.

Figure 14.4 shows one round of SAFER K-64. First, sub-blocks are either XORed or
added with bytes of subkey K2; _ 1• Then, the eight sub-blocks are subjected to one of
two nonlinear transformations:

y = 45x mod 257. (If x = 128, then y = 0.)

y = log45 x. (If x = 0, then y = 128.)

CHAPTER 14 Still Other Block Ciphers

These are operations in the finite field GF(257), and 45 is a primitive element in
that field. In practical implementations of SAFER K-64, it is quicker to implement
this in a lookup table than to calculate new results all the time.

Then, sub-blocks are either XORed or added with bytes of subkey K2r. The results
of this operation are fed through three layers of linear operations designed to
increase the avalanche effect. Each operation is called a Pseudo-Hadamard Trans­
form (PHT). If the inputs to a PHT are a1 and a2, then the outputs are:

b1 = (2a1 + a2) mod 256

b2 = (a1 + a2) mod 256

After r rounds, there is a final output transformation. This is the same as the first
step of each round. B1, B4, B5, and B8 are XORed with the corresponding bytes of the
last subkey, and B2, B3, B6, and B7 are added to the corresponding bytes of the last
subkey. The result is the ciphertext.

Round Input (8 Bytes)
1 2 3 4 5 6 7 8

i i i i i i i i
xor add add xor xor add add xor I-K2i-l

add xor xor add add xor xor add -K 2;

2-PHT

2-PHT

2-PHT

2 3 4 5 6 7 8

Round Output (8 Bytes)

Figure 14.4 One round of SAFER.

_________________ 1_4_.5_3_-_w_a_y ________ z:-~

Decryption is the reverse process: the output transformation (with subtraction
instead of addition), then r reverse rounds. The Inverse PHT (IPHT) is:

a 1 = (bi - b2) mod 256

a2 =(-bi+ 2b2) mod 256

Massey recommends 6 rounds, but you can increase that if you want greater
security.

Generating subkeys is easy. The first subkey, K 1, is simply the user key. Subse­
quent subkeys are generated by the following procedure:

K; + 1 = (K1 <<< 3i) + C;

The symbol "<<<" is a left circular shift or a left rotation. The rotation is byte by
byte, and C; is a round constant. If C;; is the jth byte of the ith round constant, then
you can calculate all of the round constants by the formula

C;; = 4545'[19i + ii mod 256) mod 257 mod 25 7

Generally, these values are stored in a table.

SAFER K-128

This alternate key schedule was developed by the Ministry of Home Affairs in
Singapore, and then incorporated into SAFER by Massey [1010]. It uses two keys, Ka
and Kb, each 64-bits long. The trick is to generate two subkey sequences in parallel,
and then alternate subkeys from each sequence. This means that if you choose Ka =
Kb, then the 128-bit key is compatible with the 64-bit key Ka.

Security of SAFER K-64

Massey showed that SAFER K-64 is immune to differential cryptanalysis after 8
rounds and is adequately secure against the attack after 6 rounds. After only 3
rounds linear cryptanalysis is ineffective against this algorithm [1010].

Knudsen found a weakness in the key schedule: For virtually every key, there
exists at least one (and sometimes as many as nine) other key that encrypts some
different plaintext to identical ciphertexts [862]. The number of different plaintexts
that encrypt to identical ciphertexts after 6 rounds is anywhere from 222 to 228 •

While this attack may not impact SAFER's security when used as an encryption
algorithm, it greatly reduces its security when used as a one-way hash function. In
any case, Knudsen recommends at least 8 rounds.

SAFER was designed for Cylink, and Cylink is tainted by the NSA [80]. I recom­
mend years of intense cryptanalysis before using SAFER in any form.

14.5 3-WAY

3-Way is a block cipher designed by Joan Daemen [402,410]. It has a 96-bit block
length and key length, and is designed to be very efficient in hardware.

CHAPTER 14 Still Other Block Ciphers

3-Way is not a Feistel network, but it is an iterated block cipher. 3-Way can have
n rounds; Daemen recommends 11.

Description of 3-Way

The algorithm is simple to describe. To encrypt a plaintext block, x:

For i = 0 to n - 1

x=xXORKi

x= theta (x)

X= pi - 1 (x)

x=gamma (x)

X= pi- 2 (x)

X = X E9 Kn
x = theta (x)

The functions are:

theta(x) is a linear substitution function-basically a bunch of circu­
lar shifts and XORs.

pi-l(x) and pi-2(x) are simple permutations.

gamma(x) is a nonlinear substitution function. This is the step that
gives 3-Way its name; it is the parallel execution of the substitution
step on 3-bit blocks of the input.

Decryption is similar to encryption, except that the bits of the input have to be
reversed and the bits of the output have to be reversed. Code to implement 3-Way
can be found in the back of this book.

So far, there has been no successful cryptanalysis of 3-Way. The algorithm is
unpatented.

14.6 CRAB

This algorithm was developed by Burt Kaliski and Matt Robshaw of RSA Laborato­
ries [810]. The idea behind Crab is to use techniques from one-way hash functions
to make a fast encryption algorithm. Hence, Crab is very similar to MDS, and this
section assumes you are familiar with Section 18.5.

Crab has a very large block: 1024 bytes. Since Crab is presented more as a research
contribution than a real algorithm, no definitive key-generation routines are pre­
sented. The authors suggest a method that could turn an 80-bit key into three req­
uisite subkeys, although the algorithm could easily accept variable-length keys.

Crab uses two sets of large subkeys:

A permutatiop of the numbers O through 255: Pa, P1, P2, . .. , P255.

A 2048-entry array of 32-bit numbers: Sa, S1, S2, ... , S2a41.

_________________ 14_._6_C_ra_b _______ -------c7'7 ~

These subkeys must all be calculated before encryption or decryption.
To encrypt a 1024-byte block X:

(1) Divide X into 256 32-bit sub-blocks: X 0, X 1, X 2, .•• , X 255 •

(2) Permute the sub-blocks of X according to P

(3) For r = 0 to 3
For g = 0 to 63

A = X14i;i «< 2r

B = Xl4g + 11 «< 2,

C = X14i; + 21 <« 2r

D = X14g + 31 <« 2r

For step s = 0 to 7

A= A EB (B + t(B,C,D) + S512r + sg + s)

TEMP=D

D=C

C=B

B =A«< 5

A=TEMP

Xl4gl <« 2r = A

x(4g + I)<« 2r = B

Xl4g + 21 <« 2r = C

Xl4g + 31 <« 2, = D

(4) Recombine X 0, X1, X 2, ..• , X255 to form the ciphertext.

The functions f,(B,C,D) are similar to those used in MD5:

f0(B,C,D) =(BA C) v ((--, B) I\ D)

f 1(B,C,D) =(BAD) v (CA(--, D))

f2(B,C,D) = B EB C EB D

f,(B,C,D) = C EB (B v (--, D))

Decryption is the reverse process.
Generating the subkeys is a large task. Here is how the permutation array, P,

could be generated from an 80-bit key, K.

(1) Initialize K0, K1, K2, ... , K9 with the 10 bytes of K.

(2) For i = IO to 255

K; = K; _ 2 EB K _ 6 EB K; _ 1 EB K - 10

(3) For i = 0 to 255, Pi= i

CHAPTER 14 Still Other Block Ciphers

(4) m=0

(5) For j = 0 to 1

For i = 256 to 1 step -1

m = (K256 _; + K257 _ ;) modi

K2s7 - ; = K2s7 - ; <<< 3

Swap P; and P; _ 1

The S-array of 2048 32-bit words could be generated in a similar manner, either
from the same 80-bit key or from another key. The authors caution that these
details should "be viewed as motivational; there may very well be alternative
schemes which are both more efficient and offer improved security" [810].

Crab was proposed as a testbed of new ideas and not as a working algorithm. It
uses many of the same techniques as MDS. Biham has argued that a very large block
size makes an algorithm easier to cryptanalyze [160]. On the other hand, Crab may
make efficient use of a very large key. In such a case, "easier to cryptanalyze" might
not mean much.

14.7 SXALS/MBAL

This is a 64-bit block algorithm from Japan [769]. SXAL8 is the basic algorithm;
MBAL is an expanded version with a variable block length. Since MBAL does some
clever things internally, the authors claim that they can get adequate security with
only a few rounds. With a block length of 1024 bytes, MBAL is about 70 times faster
than DES. Unfortunately, [1174] shows that MBAL is susceptible to differential
cryptanalysis, and [865] shows that it is susceptible to linear cryptanalysis.

14.8 RCS

RCS is a block cipher with a variety of parameters: block size, key size, and num­
ber of rounds. It was invented by Ron Rivest and analyzed by RSA Laboratories
[1324, 1325].

There are three operations: XOR, addition, and rotations. Rotations are constant­
time operations on most processors and variable rotations are a nonlinear function.
These rotations, which depend on both the key and the data, are the interesting
operation.

RCS has a variable-length block, but this example will focus on a 64-bit data
block. Encryption uses 2r + 2 key-dependent 32-bit words-S 0, S1, S2, ... , S2r + 1-

where r is the number of rounds. We'll generate those words later. To encrypt, first
divide the plaintext block into two 32-bit words: A and B. (RCS assumes a little­
endian convention for packing bytes into words: The first byte goes into the low­
order bit positions of register A, etc.) Then:

A =A+ S0

B = B + S1

________________ 1_4._B_R_C_s _______ z--~

For i =Ito r:

A= ((A EBB)<« B) + S2;

B = ((B EB A)«< A)+ S2; + I

The output is in the registers A and B.
Decryption is just as easy. Divide the plaintext block into two words, A and B,

and then:

For i = r down to 1:

B = ((B - S2; + 1) »> A) EB A

A= ((A - S2;) »> B) EBB

B = B- S1

A =A- So

The symbol ">>>" is a right circular shift. Of course, all addition and subtraction
are mod 232 •

Creating the array of keys is more complicated, but also straightforward. First,
copy the bytes of the key into an array, L, of c 32-bit words, padding the final word
with zeros if necessary. Then, initialize an array, S, using a linear congruential gen­
erator mod 232:

So= P

for i = 1 to 2(r + 1) - 1:

S; = (S; _ 1 + Q) mod 232

P = 0xb 7 e 15163 and Q = 0x9e3 779b9; these constants are based on the binary rep­
resentation of e and phi.

Finally, mix L into S:

i=f=O

A=B=O

do 3n times (where n is the maximum of 2(r + 1) and c):

A= S; = (S; +A+ B) <« 3

B =Li= (L; + A + B) «< (A + B)

i = (i + 1) mod 2(r + 1)

i = (i + I) mod c

RCS is actually a family of algorithms. We just defined RCS with a 32-bit word
size and 64-bit block; there's no reason why the same algorithm can't have a 64-bit
word size and 128-bit block size. For w= 64, P and Qare 0xb7e151628aed2a6b and
0x9e3 779b97f4a7cl5, respectively. Rivest designates particular implementations of
RCS as RCS-w/r/b, where w is the word size, r is the number of rounds, and bis the
length of the key in bytes.

RCS is new, but RSA Laboratories has spent considerable time analyzing it with
a 64-bit block. After 5 rounds, the statistics look very good. After 8 rounds, every

CHAPTER 14 Still Other Block Ciphers

plaintext bit affects at least one rotation. There is a differential attack that requires
224 chosen plaintexts for 5 rounds, 245 for 10 rounds, 253 for 12 rounds, and 268 for 15
rounds. Of course, there are only 264 possible chosen plaintexts, so this attack won't
work for 15 or more rounds. Linear cryptanalysis estimates indicate that it is secure
after 6 rounds. Rivest recommends at least 12 rounds, and possibly 16 [1325]. This
number may change.

RSADSI is in the process of patenting RCS, and the name is trademarked. The com­
pany claims that license fees will be very small, but you'd better check with them.

14.9 OTHER BLOCK ALGORITHMS

There is an algorithm called CRYPTO-MECCANO in the literature [301]; it is inse­
cure. Four Japanese cryptographers presented an algorithm based on chaotic maps at
Eurocrypt '91 [687,688]; Biham cryptanalyzed the algorithm at the same conference
[157]. Another algorithm relies on subsets of a particular set of random codes [693].
There are several algorithms based on the theory of error-correcting codes: a variant
of the McEliece algorithm (see Section 19. 7) [786, 1290], the Rao-Nam algorithm
[1292,733, 1504, 1291, 1056, 1057, 1058, 1293], variants of the Rao-Nam algorithm
[464,749,1503], and the Li-Wang algorithm [964,1561]-they are all insecure. CALC
is insecure [1109]. An algorithm called TEA, for Tiny Encryption Algorithm, is too
new to comment on [1592]. Vino is another algorithm [503]. MacGuffin, a block
algorithm by Matt Blaze and me, is also insecure [189]; it was broken at the same
conference it was proposed. BaseKing, similar in design philosophy as 3-way but
with a 192-bit block [402], is too new to comment on.

There are many more block algorithms outside the cryptology community. Some
are used by various government and military organizations. I have no information
about any of those. There are also dozens of proprietary commercial algorithms.
Some might be good; most are probably not. If companies do not feel that their inter­
ests are served by making their algorithms public, it is best to assume they're right
and avoid the algorithm.

14 .10 THEORY OF BLOCK CIPHER DESIGN

In Section 11. 1, I described Shannon's principles of confusion and diffusion. Fifty
years after these principles were first written, they remain the cornerstone of good
block cipher design.

Confusion serves to hide any relationship between the plaintext, the ciphertext,
and the key. Remember how linear and differential cryptanalysis can exploit even
a slight relationship between these three things? Good confusion makes the rela­
tionship statistics so complicated that even these powerful cryptanalytic tools
won't work.

Diffusion spreads the influence of individual plain text or key bits over as much of
the ciphertext as possible. This also hides statistical relationships and makes crypt­
analysis more difficult.

______________ 1_4._1_0_T_1l_e_o_ry_of_B_l_o_ck_C_ip_h_e_r_D_es_ig_n ____ z:---~

Confusion alone is enough for security. An algorithm consisting of a single key­
dependent lookup table of 64 bits of plaintext to 64 bits of ciphertext would be
plenty strong. The problem is that large lookup tables require lots of memory to
implement: 1020 bytes of memory for the table just mentioned. The whole point of
block cipher design is to create something that looks like a large lookup table, but
with much smaller memory requirements.

The trick is to repeatedly mix confusion (with much smaller tables) and diffusion
in a single cipher in different combinations. This is called a product cipher. Some­
times a block cipher that incorporates layers of substitution and permutation is
called a substitution-permutation network, or even an SP network.

Look back at function f of DES. The expansion permutation and P-box perform
diffusion; the S-boxes perform confusion. The expansion permutation and P-box are
linear; the S-boxes are nonlinear. Each operation is pretty simple on its own;
together they work pretty well.

DES also illustrates a few more principles of block cipher design. The first is the
idea of an iterated block cipher. This simply means taking a simple round function
and iterating it multiple times. Two-round DES isn't very strong; it takes 5 rounds
before all of the output bits are dependent on all of the input bits and all of the key
bits [1078,1080]. Sixteen-round DES is strong; 32-round DES is even stronger.

Feistel Networks

Most block algorithms are Feistel networks. This idea dates from the early 1970s
[552,553]. Take a block of length n and divide it into two halves of length n/2: Land
R. Of course, n must be even. You can define an iterated block cipher where the out­
put of the ith round is determined from the output of the previous round:

L; = R; _ I

R; = L; _ 1 EB f(R; -1,K,)

K; is the subkey used in the ith round and f is an arbitrary round function.
You've seen this concept in DES, Lucifer, FEAL, Khufu, Khafre, LOKI, COST,

CAST, Blowfish, and others. Why is it such a big deal? The function is guaranteed
to be reversible. Because XOR is used to combine the left half with the output of the
round function, it is necessarily true that

L; - 1 EB f(R; - 1,K;) EB f(R; - 1,K;) = L; - 1

A cipher that uses this construction is guaranteed to be invertible as long as the
inputs to fin each round can be reconstructed. It doesn't matter what f is; f need not
be invertible. We can design f to be as complicated as we please, and we don't have
to implement two different algorithms-one for encryption and another for decryp­
tion. The structure of a Feistel network takes care of all this automatically.

Simple Relations
DES has the property that if EK(P) = C, then EK'(P') = C', where P', C', and K' are the

bit-wise complements of P, C, and K. This property reduces the complexity of a

CHAPTER 14 Still Other Block Ciphers

brute-force attack by a factor of two. LOKI has complementation properties that
reduce the complexity of a brute-force attack by a factor of 256.

A simple relation can be defined as [857]:

If EK(P) = C, then EtiK! (g(P,K)) = h(C,K)

where f, g, and hare simple functions. By simple I mean that they are easy to com­
pute, much easier than an iteration of the block cipher. In DES, f is the bit-wise
complement of K, g is the bit-wise complement of P, and h is the bit-wise comple­
ment of C. This is a result of XORing the key into part of the text.

In a good block cipher, there are no simple relations. Methods for finding some of
these weaknesses are in [917].

Group Structure
When discussing an algorithm, the question of whether it is a group arises. The

elements of the group are the ciphertext blocks with each possible key, and the
group operation is composition. Looking at an algorithm's group structure is an
attempt to get a handle on just how much extra scrambling happens under multiple
encryption.

The useful question is, however, not whether an algorithm is actually a group, but
just how close to a group it is. If it were only lacking one element, it wouldn't be a
group; but double encryption would be-statistically speaking-a waste of time.
The work on DES showed that DES is very far away from being a group. There are
still some interesting questions about the semigroup that DES encryption generates.
Does it contain the identity: That is, does it even generate a group? To put it another
way, does some combination of encryption (not decryption) operations eventually
generate the identity function? If so, how long is the shortest such combination?

The goal is to estimate the size of the keyspace for a theoretical brute-force attack,
and the result is a greatest lower bound on the keyspace entropy.

Weak Keys
In a good block cipher, all keys are equally strong. Algorithms with a small num­

ber of weak keys, like DES, are generally no problem. The odds of picking one at ran­
dom are very small, and it's easy to test for and discard them. However, these weak
keys can sometimes be exploited if the block cipher is used as a one-way hash func­
tion (see Section 18.11).

Strength against Differential and Linear Cryptanalysis

The study of differential and linear cryptanalysis has shed significant light on the
theory of good block cipher design. The inventors of IDEA introduced the concept
of differentials, a generalization of the basic idea of characteristics [931]. They
argued that block ciphers can be designed to resist this attack; IDEA is the result of
that work [931]. This concept was further formalized in [1181,1182], when Kaisa
Nyberg and Lars Knudsen showed how to make block ciphers provably secure
against differential cryptanalysis. This theory has extensions to higher-order differ­
entials [702,161,927,858,860] and partial differentials [860]. Higher-order differen-

_____________ 1_4_.1_o __ T_'h_e_or_y_o_f_B_l_o_c_k_C_1_·p_h_er_D_e_s1_·g_n ____ 7 __ ~

tials seem to apply only to ciphers with a small number of rounds, but partial dif­
ferentials combine nicely with differentials.

Linear cryptanalysis is newer, and is still being improved. Notions of key ranking
[1019] and multiple approximations [811,812] have been defined. Other work that
extends the idea of linear cryptanalysis can be found in [1270]; [938] tries to combine
linear and differential cryptanalysis into one attack. It is unclear what design tech­
niques will protect against these sorts of attacks.

Knudsen has made some progress, considering some necessary (but not perhaps
sufficient) criteria for what he calls practically secure Feistel networks: ciphers that
resist both linear and differential cryptanalysis [857]. Nyberg introduced in linear
cryptanalysis an analogy to the concept of differentials from differential cryptanaly­
sis [1180].

Interestingly enough, there seems to be a duality between differential and linear
cryptanalysis. This duality becomes apparent both in the design of techniques to
construct good differential characteristics and linear approximations [164, 1018], and
also in the design criteria for making algorithms that are secure against both attacks
[307]. Exactly where this line of research will lead is still unknown. As a start,
Daemen has developed an algorithm-design strategy based on linear and differential
cryptanalysis [402].

S-Box Design
The strength of various Feistel networks-and specifically their resistance to dif­

ferential and linear cryptanalysis-is tied directly to their S-boxes. This has
prompted a spate of research on what constitutes a good S-box.

An S-box is simply a substitution: a mapping of m-bit inputs ton-bit outputs. Pre­
viously I talked about one large lookup table of 64-bit inputs to 64-bit outputs; that
would be a 64*64-bit S-box. An S-box with an m-bit input and an n-bit output is
called a m*n-bit S-box. S-boxes are generally the only nonlinear step in an algo­
rithm; they are what give a block cipher its security. In general, the bigger they are,
the better.

DES has eight different 6 * 4-bit S-boxes. Khufu and Khafre have a single 8 * 32-bit
S-box, LOKI has a 12*8-bit S-box, and both Blowfish and CAST have 8*32-bit
S-boxes. In IDEA the modular multiplication step is effectively the S-box; it is a
16*16-bit S-box. The larger this S-box, the harder it is to find useful statistics to
attack using either differential or linear cryptanalysis [653,729, 1626]. Also, while
random S-boxes are usually not optimal to protect against differential and linear
attacks, it is easier to find strong S-boxes if the S-boxes are larger. Most random
S-boxes are nonlinear, nondegenerate, and have strong resistance to linear crypt­
analysis-and the fraction that does not goes down rapidly as the number of input
bits decreases [1185,1186,1187].

The size of m is more important than the size of n. Increasing the size of n
reduces the effectiveness of differential cryptanalysis, but greatly increases the
effectiveness of linear cryptanalysis. In fact, if n :2: 2m - m, then there is definitely a
linear relation of the input and output bits of the S-box. And if n :2: 211', then there is
a linear relation of only the output bits [164].

CHAPTER 14 Still Other Block Ciphers

Much of this work involves the study of Boolean functions [94,1098,1262,1408].
In order to be secure, the Boolean functions used in S-boxes must satisfy specific
conditions. They should not be linear or affine, nor even close to linear or affine
[9, 1177, 1178, 1188]. There should be a balance of zeros and ones, and no correlations
between different combinations of bits. The output bits should behave indepen­
dently when any single input bit is complemented. These design criteria are also
related to the study of bent functions: functions which can be shown to be optimally
nonlinear. Although their definition is simple and natural, their study is very com­
plicated [1344,1216,947,905, 1176, 1271,295,296,297, 149,349,471,298].

One property that seems very important is the avalanche effect: how many out­
put bits of an S-box change when some subset of the input bits are changed. It's easy
to impose conditions on Boolean functions so that they satisfy certain avalanche cri­
teria, but constructing them is a harder task. The strict avalanche criteria (SAC)
guarantees that exactly half of the output bits change when one input bit changes
[1586]. See also [982,571,1262,399]. One paper attempts to look at all these criteria
in terms of information leakage [1640].

A few years ago cryptographers proposed choosing S-boxes so that the difference
distribution table for each S-box is uniform. This would provide immunity against
differential cryptanalysis by smoothing out the differentials in any particular round
[6,443,444,1177]. LOKI is an example of this design. However, this approach can
sometimes aid in differential cryptanalysis [172]. Actually, a better approach is mak­
ing sure that the maximum differential is as small as possible. Kwangjo Kim pro­
posed five criteria for the construction of S-boxes [834], similar to the design criteria
for the DESS-boxes.

Choosing good S-boxes is not an easy task; there are many competing ideas on
how to do it. Four general approaches can be identified.

1. Choose randomly. It is clear that small random S-boxes are insecure, but
large random S-boxes may be good enough. Random S-boxes with eight or
more inputs are quite strong [1186, 1187]. Twelve-bit S-boxes are better.
Even more strength is added if the S-boxes are both random and key­
dependent. IDEA uses both large and key-dependent S-boxes.

2. Choose and test. Some ciphers generate random S-boxes and then test
them for the requisite properties. See [9,729] for examples of this approach.

3. Man-made. This technique uses little mathematics: S-boxes are generated
using more intuitive techniques. Bart Preneel stated that " ... theoretically
interesting criteria are not sufficient [for choosing Boolean functions for
S-boxes] ... " and that" ... ad hoc design criteria are required" [1262].

4. Math-made. Generate S-boxes according to mathematical principles so
that they have proven security against differential and linear cryptanalysis,
and good diffusive properties. See [1179] for an excellent example of this
approach.

There has been some call for a combination of the "math-made" and "man-made'
approaches [1334], but the real debate seems to be between randomly chosen

_______________ 1_4_._1 _1 _U_s1_·n_g_O_n_e-_~_ay_H_a_s_h_F_u_n_c_t_io_n_s ____ z:---~

S-boxes and S-boxes with certain properties. Certainly the latter approach has the
advantage of being optimal against known attacks-linear and differential crypt­
analysis-but it offers unknown protection against unknown attacks. The designers
of DES knew about differential cryptanalysis, and its S-boxes were optimized
against it. They did not seem to know about linear cryptanalysis, and the DES
S-boxes are very weak against it [1018]. Randomly selected S-boxes in DES would be
weaker against differential cryptanalysis and stronger against linear cryptanalysis.

On the other hand, random S-boxes may not be optimal against these attacks, but
they can be made sufficiently large and therefore sufficiently resistant. Also, they
are more likely to be sufficiently resistant against unknown attacks. The debate is
still raging, but my personal feeling is that S-boxes should be as large as possible,
random, and key-dependent.

Designing a Block Cipher

It is easy to design a block cipher. If you think of a 64-bit block cipher as a per­
mutation of the 64-bit numbers, it is clear that almost all of those permutations are
secure. What is difficult is to design a block cipher that is not only secure, but can
also be easily described and simply implemented.

It's easy to design a block cipher if you have sufficient memory for 48 * 32 S-boxes.
It's hard to design an insecure DES variant if you iterate it for 128 rounds. If the
length of your key is 512 bits, you really don't care if there are key-complementation
properties.

The real trick-and the reason that real-world block cipher design is very diffi­
cult-is to design a block cipher with the smallest possible key, the smallest possi­
ble memory requirement, and the fastest possible running time.

14.11 USING ONE-WAY HASH FUNCTIONS

The simplest way to encrypt with a one-way function is to hash the previous cipher­
text block concatenated with the key, then XOR the result with the current plain­
text block:

C; = P; EB H(K,C; _ i)

P; = C; EB H(K,C; _ i)

Set the block length equal to the output of the one-way hash function. This, in
effect uses the one-way function as a block cipher in CFB mode. A similar con­
struction can use the one-way function in OFB mode:

C; = P; EB S;; S; = H(K,C; _ 1)

P; = C; EB S;; S; = H(K,C; _ 1)

The security of this scheme depends on the security of the one-way function.

Karn

This method, invented by Phil Karn and placed in the public domain, makes an
invertible encryption algorithm out of certain one-way hash functions.

CHAPTER 14 Still Other Block Ciphers

The algorithm operates on plaintext and ciphertext in 32-byte blocks. The key can
be any length, although certain key lengths will be more efficient for certain one­
way hash functions. For the one-way hash functions MD4 and MDS, 96-byte keys
work best.

To encrypt, first split the plaintext into two 16-byte halves: Pi and P,. Then, split
the key into two 48-byte halves: Ki and Kr-

p = P1,P,

K= K1,K,

Append Ki to Pi and hash it with a one-way hash function, then XOR the result of
the hash with P, to produce C,, the right half of the ciphertext. Then, append K, to
C, and hash it with the one-way hash function. XOR the result with Pi to produce
Ci. Finally, append C, to Ci to produce the ciphertext.

C, = P, EB H(P1,Ki)

Ci= Pi EB H(Cr,K,)

C = Ci,C,

To decrypt, simply reverse the process. Append K, to C" hash and XOR with Ci to
produce P1. Append K1 to P1, hash and XOR with C, to produce P,.

P1 = C1 EB H(CnK,)

P, = C, EB H(P1,Ki)

P = Pi,P,
The overall structure of Karn is the same as many of the other block algorithms

discussed in this section. It has only two rounds, because the complexity of the algo­
rithm is embedded in the one-way hash function. And since the key is used only as
the input to the hash function, it cannot be recovered even using a chosen-plain text
attack-assuming, of course, that the one-way hash function is secure.

Luby-Racko//
Michael Luby and Charles Rackoff showed that Karn is not secure [992]. Consider

two single-block messages: AB and AC. If a cryptanalyst knows both the plaintext
and the ciphertext of the first message, and knows the first half of the plaintext of
the second message, then he can easily compute the entire second message. This
known-plaintext attack is useful only in certain circumstances, but it is a major
security problem.

A three-round encryption algorithm avoids this problem [992, 1643, 1644]. It uses
three different hash functions: H 1, H 2, and H3 • Further work shows that H 1 can equal
H 2, or that H 2 can equal H3, but not both [1193]. Also, H 1, H 2, and H3 cannot be based
on iterating the same basic function [1643]. Anyway, assuming that H(k,x) behaves
like a pseudo-random function, here is a three-round version:

(1) Divide the key into two halves: Ki and K,.

(2) Divide the plaintext block into two halves: L0 and R0 •

_______________ 1_4_. _11 __ U_s_i_n_g_O_n_e-_W_ay_H_a_s_h_F_u_n_c_t_io_n_s ____ z:--~

(3) Append K1 to L0 and hash it. XOR the result of the hash with Ro to pro­
duce R 1:

R1 = Ro EB H(K1,L0)

(4) Append K, to R 1 and hash it. XOR the result of the hash with L0 to pro­
duce L1:

L1 = Lo EB H(K,,Ri)

(5) Append K1 to L 1 and hash it. XOR the result of the hash with R 1 to pro­
duce R2 :

R2 = R1 EB H(K1,Li)
(6) Append L 1 to R2 to generate the message.

Message Digest Cipher (MDC)

MDC, invented by Peter Gutmann [676], is a means of turning one-way hash
functions into a block cipher that runs in CFB mode. The cipher runs almost as fast
as the hash function and is at least as secure as the hash function. The rest of this
section assumes you are familiar with Chapter 18.

Hash functions such as MD5 and SHA use a 512-bit text block to transform an
input value (128 bits with MD5, and 160 bits with SHA) into an output value of
equal size. This transformation is not reversible, but it is perfect for CFB mode: The
same operation is used for both encryption and decryption.

Let's look at MDC with SHA. MDC has a 160-bit block size and a 512-bit key. The
hash function is run "sideways," with the old hash state as the input plain text block
(160 bits) and the 512-bit hash input as a key (see Figure 14.5). Normally, when
using the hash to simply hash some input, the 512-bit input to the hash is varied as
each new 512-bit block is hashed. But in this case the 512-bit input becomes an
unchanging key.

MDC can be used with any one-way hash function: MD4, MD5, Snefru, and oth­
ers. It is unpatented. Anyone can use it at any time, in any way, royalty-free [676].

However, I don't trust this construction. It is possible to attack the hash function
in a way that hash functions are not designed to withstand. It is not important for
hash functions to be able to resist a chosen-plaintext attack, where a cryptanalyst
chooses several of those starting 160-bit values, has them "encrypted" by the same
512-bit "key," and uses this to learn some information about the 512-bit key used.
Since the designers didn't have to worry about this, it seems like a bad idea to count
on your cipher being able to resist this attack.

Security of Ciphers Based on One-Way Hash Functions

While these constructions can be secure, they depend on the choice of the under­
lying one-way hash function. A good one-way hash function doesn't necessarily
make a secure encryption algorithm. Cryptographic requirements are different. For
example, linear cryptanalysis is not a viable attack against one-way hash functions,
but works against encryption algorithms. A one-way hash function such as SHA
could have linear characteristics which, while not affecting its security as a one-

CHAPTER 14 Still Other Block Ciphers

Message
Block

l
Input_. Hash

Value Function

(a) Hash Function

Output
Value

Key

l
Hash

Function

Plaintext --------11 •=~---~--. Ciphertext

(b) Hash Function as a Block
Cipher in CFB

Figure 14.5 Message Digest Cipher (MDC).

way hash function, could make it insecure in an encryption algorithm such as
MDC. I know of no cryptanalytic analysis of particular one-way hash functions as
block ciphers; wait for such analysis before you trust any of them.

14 .12 CHOOSING A BLOCK ALGORITHM

It's a tough decision. DES is almost certainly insecure against the major governments
of the world unless you only encrypt very small chunks of data for a single key. It's
probably all right against anyone else, but that is changing soon. Brute-force DES key
search machines will quickly become economical for all sorts of organizations.

Biham's key-dependent S-boxes for DES should be secure for at least a few years
against all but the most well-funded adversaries, and possibly even from them. If
you need security that lasts decades or fear the cryptanalytic efforts of major gov­
ernments, use triple-DES with three independent keys.

The other algorithms aren't worthless. I like Blowfish because it is fast and I wrote
it. 3-WAY looks good, and GOST is probably okay. The problem with any recom­
mendation is that the NSA almost certainly has an array of impressive cryptanalytic
techniques that are still classified, and I don't know which algorithms they can break
with them. Table 14.3 gives timing measurements for some algorithms. These are
meant for comparison purposes only.

My favorite algorithm is IDEA. Its 128-bit key, combined with its resistance to
any public means of cryptanalysis, gives me a warm, fuzzy feeling about the algo­
rithm. The algorithm has been analyzed by a lot of different groups, and no serious
results have been announced yet. Barring extraordinary cryptanalytic news tomor­
row, I am betting on IDEA today.

_______________ 1_4_.1_2 __ C_h_o_o_s_in_g_a_B_l_o_ck_A_l_g_o_n_·th_m _____ z: __ ~

Table 14.3
Encryption Speeds of Some Block Ciphers on a 33 MHz 486SX

Algorithm

Blowfish (12 rounds)
Blowfish (16 rounds)
Blowfish (20 rounds)
DES
FEAL-8
FEAL-16
FEAL-32
GOST
IDEA
Khufu (16 rounds)
Khufu (24 rounds)
Khufu (32 rounds)
Luby-Racko££ (using MD4)
Luby-Racko££ (using MD5)
Luby-Racko££ (using SHA)
Lucifer

Encryption Speed
(Kilobytes/second)

182
135
110
35

300
161
91
53
70

221
153
115
47
34
11
52

Algorithm

MDC (using MD4)
MDC (using MD5)
MDC (using SHA)
NewDES
REDOC II
REDOC III
RC5-32/8
RC5-32/12
RC5-32/16
RC5-32/20
SAFER (6 rounds)
SAFER (8 rounds)
SAFER (10 rounds)
SAFER (12 rounds)
3-Way
Triple-DES

Encryption Speed
(Kilobytes/second)

186
135
23

233
1

78
127
86
65
52
81
61
49
41
25
12

------------------------z:----~

Combining
Block Ciphers

CHAPTER 15

There are many ways to combine block algorithms to get new algorithms. The
impetus behind these schemes is to try to increase security without going through
the trouble of designing a new algorithm. DES is a secure algorithm; it has been
cryptanalyzed for a good 20 years and the most practical way to break it is still brute
force. However, the key is too short. Wouldn't it be nice to use DES as a building
block for another algorithm with a longer key? We'd have the best of both worlds:
the assurance of two decades of cryptanalysis plus a long key.

Multiple encryption is one combination technique: using an algorithm to encrypt
the same plaintext block multiple times with multiple keys. Cascading is like mul­
tiple encryption, but uses different algorithms. There are other techniques.

Encrypting a plaintext block twice with the same key, whether with the same
algorithm or a different one, is not smart. For the same algorithm, it does not affect
the complexity of a brute-force search. (Remember, you assume a cryptanalyst
knows the algorithm including the number of encryptions used.) For different algo­
rithms, it may or may not. If you are going to use any of the techniques in this chap­
ter, make sure the multiple keys are different and independent.

15 .1 DOUBLE ENCRYPTION

A nai"ve way of improving the security of a block algorithm is to encrypt a block
twice with two different keys. First encrypt a block with the first key, then encrypt
the resulting ciphertext with the second key. Decryption is the reverse process.

C = EK2(EK1(P))

p = DK1(DK2(C))

If the block algorithm is a group (see Section 11.3), then there is always a K3

such that

CHAPTER 15 Combining Block Ciphers

If this is not the case, the resultant doubly-encrypted ciphertext block should be
much harder to break using an exhaustive search. Instead of 2n attempts (where n is
the bit length of the key), it would require 221] attempts. If the algorithm is a 64-bit algo­
rithm, the doubly-encrypted ciphertext would require 2128 attempts to find the key.

This turns out not to be true for a known-plaintext attack. Merkle and Hellman
[1075] developed a time-memory trade-off that could break this double-encryption
scheme in 21] + 1 encryptions, not in 221] encryptions. (They showed this for DES, but
the result can be generalized to any block algorithm.) The attack is called a meet-in­
the-middle attack; it works by encrypting from one end, decrypting from the other,
and matching the results in the middle.

In this attack, the cryptanalyst knows P1, C1, P2, and C2, such that

C1 = EK2(EK1(Pi))

C2 = EK2(EK1(P2))

For each possible K, he computes EK(Pi) and stores the result in memory. After col­
lecting them all, he computes DK(Ci) for each Kand looks for the same result in
memory. If he finds it, it is possible that the current key is K2 and the key in mem­
ory is K1• He tries encrypting P2 with K1 and K2; if he gets C2 he can be pretty sure
(with a probability of success of 1 in 22m - 21], where m is the block size) that he has
both K1 and K2 • If not, he keeps looking. The maximum number of encryption trials
he will probably have to run is 2 * 21], or 2n + 1. If the probability of error is too large,
he can use a third ciphertext block to get a probability of success of 1 in 23m - 21].
There are still other optimizations [912].

This attack requires a lot of memory: 21] blocks. For a 56-bit algorithm, this trans­
lates to 256 64-bit blocks, or 1017 bytes. This is still considerably more memory stor­
age than one could comfortably comprehend, but it's enough to convince the most
paranoid of cryptographers that double encryption is not worth anything.

For a 128-bit key, the amount of memory required is an enormous 1039 bytes. If we
assume that a way exists to store a bit of information on a single atom of aluminum,
the memory device required to launch this attack would be a cube of solid alu­
minum over a kilometer on a side. And then you need some place to put it! The
meet-in-the middle attack seems infeasible for keys this size.

Another double-encryption method, sometimes called Davies-Price, is a variant
of CBC [435].

C; = EK1(P; EB EK2(C; - ill
P; = DK1(C;) EB EK2(C; - i)

They claim "no special virtue of this mode," but it seems to be vulnerable to the
same meet-in-the-middle attacks as other double-encryption modes.

15. 2 TRIPLE ENCRYPTION

Triple Encryption with Two Keys
A better idea, proposed by Tuchman in [1551], operates on a block three times with

two keys: with the first key, then with the second key, and finally with the first key

__________________ 1_5_._2_T'_r_ip_l_e_E_n_c_r_y_p_t1_·o_n _______ z:..,.,~

again. He suggested that the sender first encrypt with the first key, then decrypt with
the second key, and finally encrypt with the first key. The receiver decrypts with the
first key, then encrypts with the second key, and finally decrypts with the first key.

C = E1<1(DK2(EK1(P)))

p = DK1(EK2(DK1(C)))

This is sometimes called encrypt-decrypt-encrypt (EDE} mode [55]. If the block
algorithm has an n-bit key, then this scheme has a 2n-bit key. The curious encrypt­
decrypt-encrypt pattern was designed by IBM to preserve compatibility with con­
ventional implementations of the algorithm: Setting the two keys equal to each
other is identical to encrypting once with the key. There is no security inherent in
the encrypt-decrypt-encrypt pattern, but this mode has been adopted to improve the
DES algorithm in the X9.l 7 and ISO 8732 standards [55,761].

K1 and K2 alternate to prevent the meet-in-the-middle attack previously described.
If C = EK2(EK1(EK1(P))), then a cryptanalyst could precompute EK1(EK1(P))) for every
possible K1 and then proceed with the attack. It only requires 2n + 2 encryptions.

Triple encryption with two keys is not susceptible to the same meet-in-the­
middle attack described earlier. But Merkle and Hellman developed another time­
memory trade-off that could break this technique in 211 - 1 steps using 211 blocks of
memory [1075].

For each possible K2, decrypt O and store the result in memory. Then, decrypt 0
with each possible K1 to get P. Triple-encrypt P to get C, and then decrypt C with K1.

If that decryption is a decryption of O with a K2 (stored in memory), the K1 K 2 pair is
a possible candidate. Check if it is right. If it's not, keep looking.

This is a chosen-plaintext attack, requiring an enormous amount of chosen plain­
text to mount. It requires 2n time and memory, and 2m chosen plaintexts. It is not
very practical, but it is a weakness.

Paul van Oorschot and Michael Wiener converted this to a known-plaintext
attack, requiring p known plain texts. This example assumes EDE mode.

(1) Guess the first intermediate value, a.

(2) Tabulate, for each possible K1, the second intermediate value, b, when the
first intermediate value is a, using known plaintext:

b =DK1(C)

where C is the resulting ciphertext from a known plaintext.

(3) Look up in the table, for each possible K2, elements with a matching sec­
ond intermediate value, b:

b = EK2(a)

(4) The probability of success is p/m, where pis the number of known plaintexts
and m is the block size. If there is no match, try another a and start again.

The attack requires 211 + rn/p time and p memory. For DES, this is 2120/p [1558]. For
p greater than 256, this attack is faster than exhaustive search.

CHAPTER 15 Combining Block Ciphers

Triple Encryption with Three Keys
If you are going to use triple encryption, I recommend three different keys. The

key length is longer, but key storage is usually not a problem. Bits are cheap.

C = EK,,(DK2(EK1(P)))

p = DK1(EK2(DK)C)))

The best time-memory trade-off attack takes 2211 steps and requires 211 blocks of
memory; it's a meet-in-the-middle attack [1075]. Triple encryption, with three inde­
pendent keys, is as secure as one might naively expect double encryption to be.

Triple Encryption with Minimum Key (TEMK)

There is a secure way of using triple encryption with two keys that prevents the
previous attack, called Triple Encryption with Minimum Key (TEMK) [858]. The
trick is to derive three keys from two: X 1 and X2 :

K1 = Ex1(Dx2(Ex1(Ti)))

K2 = Ex1(Dx2(Ex1(T2)))

Ki= Ex1(Dx2(Ex1(T3)))

T1, T2, and T3 are constants, which do not have to be secret. This is a special con­
struction that guarantees that for any particular pair of keys, the best attack is a
known-plaintext attack.

Triple-Encryption Modes

It's not enough to just specify triple encryption; there arc several ways to do it.
The decision of which to use affects both security and efficiency.

Here are two possible triple-encryption modes:

Inner-CBC: Encrypt the entire file in CBC mode three different times
(see Figure 15.la). This requires three different IVs.

C; = EK)S; EB C; _ 1); S; = DK2(T; EB S; - i); T; = EK1(P; EB T; - i)

P; = T; - J EB Dl(l(T;); T; = S; - 1 EB EK2(S;); S; = C; - 1 EB DK3(C;)

C0, S0, and T0 are IVs.
Outer-CBC: Triple-encrypt the entire file in CBC mode (see Figure 15.lb). This
requires one IV.

C; = El()DK2(EK1(P; EB C; - 1)))

P; = C; _ 1 EB DK1(EK2(DK3(C;)))
Both modes require more resources than single encryption: more hardware or

more time. However, given three encryption chips, the throughput of inner-CBC is
no slower than single encryption. Since the three CBC encryptions are independent,
three chips can be kept busy all the time, each feeding back into itself.

On the other hand, outer-CBC feedback is outside the three encryptions. This
means that even with three chips, the throughput is only one-third that of single

__________________ 1_s._2 __ Tr_i_p_le_E_n_cr_y_p_t1_·o_n _______ 7=-~

(a) Inner CBC (b) Outer CBC

Figure 15.1 Triple encryption in CBC mode.

encryption. To get the same throughput with outer-CBC, you need to interleave IVs
(see Section 9.12):

C; = EK3(DK2(EK1(P; Ef> C; - 3)))

In this case C0, C_1, and C_2 are IVs. This doesn't help software implementations
any, unless you have a parallel machine.

Unfortunately, the simpler mode is also the least secure. Biham analyzed various
modes with respect to chosen-ciphertext differential cryptanalysis and found that
inner-CBC is only slightly more secure than single encryption against a differential
attack. If you think of triple encryption as a single larger algorithm, then inner feed­
backs allow the introduction of external and known information into the inner
workings of the algorithm; this facilitates cryptanalysis. The differential attacks
require enormous amounts of chosen ciphertext to mount and are not very practi­
cal, but the results should be enough to give the most paranoid pause. Another anal­
ysis against meet-in-the-middle and brute-force attacks concludes that they are all
equally secure [806].

There are other modes, as well. You can encrypt the entire file once in ECB, then
twice in CBC; or once in CBC, once in ECB, and once in CBC; or twice in CBC and
once in ECB. Biham showed that these variants are no more secure than single DES
against a chosen-plaintext differential cryptanalysis attack [162]. And he doesn't

CHAPTER 15 Combining Block Ciphers

have high hopes for any other variants. If you are going to use triple encryption, use
modes with outer feedback.

Variants on Triple Encryption
Before there were proofs that DES does not form a group, several schemes were

proposed for multiple encryption. One way to guarantee that triple encryption
doesn't reduce to single encryption is to change the effective block size. One simple
method is to add a bit of padding. Pad the text with a string of random bits, half a
block in length, between the first and second and between the second and third
encryptions (see Figure 15.2). If pis the padding function, then:

C = EK3(p(EK2(p(EK1(P)))))

This padding not only disrupts patterns, but also overlaps encrypted blocks like
bricks. It only adds one block to the length of the message.

Another technique, proposed by Carl Ellison, is to use some kind of keyless per­
mutation function between the three encryptions. The permutation could work on
large blocks-8 kilobytes or so-and would effectively give this variant a block size
of 8 kilobytes. Assuming that the permutation is fast, this variant is not much
slower than basic triple encryption.

C = EK3(T(EK2(T(EK1(P)))))

T collects a block of input (up to 8 kilobytes in length) and uses a pseudo-random­
number generator to transpose it. A 1-bit change in the input causes 8 changed out­
put bytes after the first encryption, up to 64 changed output bytes after the second
encryption, and up to 512 changed output bytes after the third encryption. If each
block algorithm is in CBC mode, as originally proposed, then the effect of a single

I Plaintext

Enc~pt-QQQQQ
IPADI

Enc~pt-QQQQQ
IPADI

Enc~pt-QQQQQ
I Ciphertext • • • •

Figure 15.2 Triple encryption with padding.

15.4 Other Multiple Encryption Schemes

changed input bit is likely to be the entire 8 kilobyte block, even in blocks other
than the first.

The most recent variant of this scheme responded to Biham's attack on inner­
CBC by including a whitening pass to hide plain text patterns. That pass is a stream
XOR with a cryptographically secure random-number generator called R below. The
Ton either side of it prevents the cryptanalyst from knowing a priori which key was
used to encrypt any given byte on input to the last encryption. The second encryp­
tion is labelled nE (encryption with one of n different keys, used cyclically):

C = EK3(R(T(nEK2(T(EK1(R))))))

All encryptions are in ECB mode and keys are provided at least for the n + 2
encryption keys and the cryptographically secure random-number generator.

This scheme was proposed with DES, but works with any block algorithm. I know
of no analysis of the security of this scheme.

15.3 DOUBLING THE BLOCK LENGTH

There is some argument in the academic community whether a 64-bit block is long
enough. On the one hand, a 64-bit block length only diffuses plaintext over 8 bytes
of ciphertext. On the other hand, a longer block length makes it harder to hide pat­
terns securely; there is more room to make mistakes.

Some propose doubling the block length of an algorithm using multiple encryp­
tions [299]. Before implementing any of these, look for the possibility of meet-in­
the-middle attacks. Richard Outerbridge's scheme [300], illustrated in Figure 15.3, is
no more secure than single-block, two-key triple encryption [859].

However, I advise against this sort of thing. It isn't faster than conventional triple
encryption: six encryptions are still required to encrypt two blocks of data. We
know the characteristics of triple encryption; constructions like this often have hid­
den problems.

15.4 OTHER MULTIPLE ENCRYPTION SCHEMES

The problem with two-key triple encryption is that it only doubles the size of the
keyspace, but it requires three encryptions per block of plaintext. Wouldn't it be
nice to find some clever way of combining two encryptions that would double the
size of the keyspace?

Double OFB/Counter
This method uses a block algorithm to generate two keystreams, which are then

used to encrypt the plaintext.

S; = EK1(S; - I EB Ii); I1 = I1 + 1

T; = EK2(T; - I EB I2); I2 = I2 + 1

C; = P; EB S; EB T;

CHAPTER 15 Combining Block Ciphers

Left
Half

Left
Half

Right
Half

Plaintext

Ciphertext

Left
Half

Right
Half

Right
Half

~------------------------

Figure 15.3 Doubling the block length.

Si and Ti are internal variables, and 11 and 12 are counters. Two copies of the block
algorithm run in a kind of hybrid OFB/counter mode, and the plain text, S" and Ti are
XORed together. The two keys, K1 and K2, are independent. I know of no cryptanal­
ysis of this variant.

ECB+OFB
This method was designed for encrypting multiple messages of a fixed length, for

example, disk blocks [186,188]. Use two keys: K1 and K2 • First, use the algorithm and
K1 to generate a mask of the required block length. This mask will be used repeat­
edly to encrypt messages with the same keys. Then, XOR the plaintext message
with the mask. Finally, encrypt the XORed plaintext with the algorithm and K2 in
ECB mode.

This mode has not been analyzed outside the paper in which it was proposed.
Clearly it is at least as strong as a single ECB encryption and may be as strong as two
passes with the algorithm. Possibly, a cryptanalyst could search for the two keys
independently, if several known plaintext files are encrypted with the same key.

To thwart analysis of identical blocks in the same positions of different messages,
you can add an IV. Unlike an IV in any other mode, here the IV is XO Red with every
block of the message before ECB encryption.

Matt Blaze designed this mode for his UNIX Cryptographic File System (CFS). It
is a nice mode because the latency is only one encryption in ECB mode; the mask
can be generated once and stored. In CFS, DES is the block algorithm.

15.4 Other Multiple Encryption Schemes

xDESi

In [1644,1645], DES is used as a building block for a series of block algorithms
with both larger key sizes and larger block sizes. These constructions do not depend
on DES in any way and can be used with any block algorithm.

The first, xDES 1, is simply a Luby-Racko££ construction with the block cipher as
the underlying function (see Section 14.11). The block size is twice the size of the
underlying block cipher and the key size is three times the size of the underlying
block cipher. In each of 3 rounds, encrypt the right half with the block algorithm
and one of the keys, XOR the result with the left half, and swap the two halves.

This is faster than conventional triple encryption, since three encryptions encrypt
a block twice as large as the underlying algorithm. But there is also a simple meet­
in-the-middle attack that finds the key with a table the size of 2k, where k is the key
size of the underlying algorithm. Encrypt the right half of a plaintext block with all
possible values of K,, XOR the left half of the plaintext, and store these values in a
table. Then, encrypt the right half of the ciphertext with all possible values of K, and
look for a match in the table. If you find one, the key pair K 1 and K, are possible can­
didates for the right key. Repeat the attack a few times, and only one candidate will
remain. This shows that xDES 1 is not an ideal solution. Even worse, there is a cho­
sen plaintext attack that proves xDES 1 is not much stronger than the underlying
block cipher [858].

xDES 2 extends this idea to a 5-round algorithm with a block size 4 times that of
the underlying block cipher and a key size 10 times that of the underlying block
cipher. Figure 15.4 is one round of xDES 2; each of the four sub-blocks are the size of
the underlying block ciphers and all 10 keys are independent.

This scheme is also faster than triple encryption: Ten encryptions are used to
encrypt a block four times the size of the underlying block cipher. However, it is
vulnerable to differential cryptanalysis [858] and should not be used. The scheme is
even vulnerable if DES with independent round keys is used.

Figure 15.4 One round ofxDES 2.

CHAPTER 15 Combining Block Ciphers

For i 2 3, xDES; is probably too big to be useful as a block algorithm. For example,
the block size for xDES 3 is 6 times that of the underlying cipher, the key size is 21
times, and 21 encryptions are required to encrypt a block 6 times that of the under­
lying block cipher. Triple encryption is faster.

Quintuple Encryption

If triple encryption isn't secure enough-perhaps you need to encrypt triple­
encryption keys using an even stronger algorithm-then higher multiples might be
in order. Quintuple encryption is very strong against meet-in-the-middle attacks.
(Similar arguments to the ones used with double encryption can show that quadru­
ple encryption provides minimal security improvements over triple encryption.)

C = EK1(DK2(EK3(DK2(EK1(P)))))

p = DK1(EK2(DK'l(EK2(DK1(C)))))

This construction is backwards compatible with triple encryption if K2 = K3, and
is backwards compatible with single encryption if K1 = K2 = K3 • Of course, it would
be even stronger if all five keys were independent.

15.5 CDMF KEY SHORTENING

This method was designed by IBM for their Commercial Data Masking Facility or
CDMF (see Section 24.8) to shrink a 56-bit DES key to a 40-bit key suitable for
export [785]. It assumes that the original DES key includes the parity bits.

(1) Zero the parity bits: bits 8, 16, 24, 32, 40, 48, 56, 64.

(2) Encrypt the output of step (1) with DES and the key 0xc408b0540bale0ae,
and XOR the result with the output of step (1).

(3) Take the output of step (2) and zero the following bits: 1, 2, 3, 4, 8, 16, 17,
18, 19, 20,24,32,33,34,35,36, 40,48, 49, 50, 51, 52, 56, 64.

(4) Encrypt the output of step (3) with DES and the following key:
0xef2c04lce6382fe6. This key is then used for message encryption.

Remember that this method shortens the key length, and thereby weakens the
algorithm.

15.6 WHITENING

Whitening is the name given to the technique of XORing some key material with
the input to a block algorithm, and XORing some other key material with the out­
put. This was first done in the DESX variant developed by RSA Data Security, Inc.,
and then (presumably independently) in Khufu and Khafre. (Rivest named this tech­
nique; it's a nonstandard usage of the word.)

15. 7 Cascading Multiple Block Algorithms

The idea is to prevent a cryptanalyst from obtaining a plaintext/ciphertext pair for
the underlying algorithm. The technique forces a cryptanalyst to guess not only the
algorithm key, but also one of the whitening values. Since there is an XOR both
before and after the block algorithm, this technique is not susceptible to a meet-in­
the-middle attack.

C = K3 EB EK2(P EB K1)

P = K1 EB DK2(C EB K3)

If K1 = K3, then a brute-force attack requires 2n + m/p operations, where n is the key
size, m is the block size, and p is the number of known plaintexts. If K1 and K3 are
different, then a brute-force attack requires 2n + m + 1 operations with three known
plaintexts. Against differential and linear cryptanalysis, these measures only pro­
vide a few key bits of protection. But computationally this is a very cheap way to
increase the security of a block algorithm.

15. 7 CASCADING MULTIPLE BLOCK ALGORITHMS

What about encrypting a message once with Algorithm A and key KA, then again
with Algorithm B and key KB? Maybe Alice and Bob have different ideas about
which algorithms are secure: Alice wants to use Algorithm A and Bob wants to use
Algorithm B. This technique is sometimes called cascading, and can be extended far
beyond only two algorithms and keys.

Pessimists have said that there is no guarantee that the two algorithms will work
together to increase security. There may be subtle interactions between the two
algorithms that actually decrease security. Even triple encryption with three differ­
ent algorithms may not be as secure as you think. Cryptography is a black art; if you
don't know what you are doing, you can easily get into trouble.

Reality is much rosier. The previous warnings are true only if the different keys
are related to each other. If all of the multiple keys are independent, then the resul­
tant cascade is at least as difficult to break as the first algorithm in the cascade
[1033]. If the second algorithm is vulnerable to a chosen-plaintext attack, then the
first algorithm might facilitate that attack and make the second algorithm vulnera­
ble to a known-plaintext attack when used in a cascade. This potential attack is not
limited to encryption algorithms: If you let someone else specify any algorithm
which is used on your message before encryption, then you had better be sure that
your encryption will withstand a chosen-plaintext attack. (Note that the most com­
mon algorithm used for compressing and digitizing speech to modem speeds, used
before any encryption, is CELP-designed by the NSA.)

This can be better phrased: Using a chosen-plaintext attack, a cascade of ciphers
is at least as hard to break as any of its component ciphers [858]. A previous result
showed that the cascade is at least as difficult to break as the strongest algorithm,
but that result is based on some unstated assumptions [528]. Only if the algorithms
commute, as they do in the case of cascaded stream ciphers (or block ciphers in OFB
mode), is the cascade at least as strong as the strongest algorithm.

CHAPTER 15 Combining Block Ciphers

If Alice and Bob do not trust each other's algorithms, they can use a cascade. If
these are stream algorithms, the order doesn't matter. If they are block algorithms,
Alice can first use Algorithm A and then use Algorithm B. Bob, who trusts Algo­
rithm B more, can use Algorithm B followed by Algorithm A. They might even add
a good stream cipher between the two algorithms; it can't hurt and could very well
increase security.

Remember that the keys for each algorithm in the cascade must be independent.
If Algorithm A has a 64-bit key and Algorithm B has a 128-bit key, then the resul­
tant cascade must have a 192-bit key. If you don't use independent keys, then the
pessimists are much more likely to be right.

15.8 COMBINING MULTIPLE BLOCK ALGORITHMS

Here's another way to combine multiple block algorithms, one that is guaranteed to
be at least as secure as both algorithms. With two algorithms (and two independent
keys):

(1) Generate a random-bit string, R, the same size as the message M.

(2) Encrypt R with the first algorithm.

(3) Encrypt M EB R with the second algorithm.

(4) The ciphertext message is the results of steps (2) and (3).

Assuming the random-bit string is indeed random, this method encrypts M with
a one-time pad and then encrypts both the pad and the encrypted message with each
of the two algorithms. Since both are required to reconstruct M, a cryptanalyst must
break both algorithms. The drawback is that the ciphertext is twice the size of the
plain text.

This method can be extended to multiple algorithms, but the ciphertext expands
with each additional algorithm. It's a good idea, but I don't think it's very practical.

------------------------z~

CHAPTER

Pseudo-Random­
Sequence Generators
and Stream Ciphers
16.1 LINEAR CONGRUENTIAL GENERATORS

16

Linear congruential generators are pseudo-random-sequence generators of the form

Xn = (aXn _ 1 + b) mod m

in which Xn is the nth number of the sequence, and Xn _ 1 is the previous number of
the sequence. The variables a, b, and m are constants: a is the multiplier, b is the
increment, and m is the modulus. The key, or seed, is the value of X 0•

This generator has a period no greater than m. If a, b, and m are properly chosen,
then the generator will be a maximal period generator (sometimes called maximal
length) and have period of m. (For example, b should be relatively prime to m.)
Details on choosing constants to ensure maximal period can be found in [863,942].
Another good article on linear congruential generators and their theory is [1446].

Table 16.1, taken from [1272], gives a list of good constants for linear congruential
generators. They all produce maximal period generators and even more important,
pass the spectral test for randomness for dimensions 2, 3, 4, 5, and 6 [385,863]. They
are organized by the largest product that does not overflow a specific word length.

The advantage of linear congruential generators is that they are fast, requiring few
operations per bit.

Unfortunately, linear congruential generators cannot be used for cryptography;
they are predictable. Linear congruential generators were first broken by Jim Reeds
[1294, 1295, 1296] and then by Joan Boyar [1251]. She also broke quadratic generators:

Xn = (aXn _ i2 + bXn _ 1 + c) mod m

and cubic generators:

Xn = (aXn _ 13 + bXn _ 12 + cXn - 1 + d) mod m

Other researchers extended Boyar's work to break any polynomial congruential
generator [923,899,900]. Truncated linear congruential generators were also broken

CHAPTER 16 Pseudo-Random-Sequence Generators

Table 16.1
Constants for Linear Congruential Generators

Overflow At: a b m

220 106 1283 6075
221 211 1663 7875
222 421 1663 7875
2n 430 2531 11979

936 1399 6655
1366 1283 6075

224 171 11213 53125
859 2531 11979
419 6173 29282
967 3041 14406

22s 141 28411 134456
625 6571 31104
1541 2957 14000
1741 2731 12960
1291 4621 21870
205 29573 139968

226 421 17117 81000
1255 6173 29282
281 28411 134456

227 1093 18257 86436
421 54773 259200
1021 24631 116640
1021 25673 121500

228 1277 24749 117128
741 66037 312500

2041 25673 121500
229 2311 25367 120050

1807 45289 214326
1597 51749 244944
1861 49297 233280
2661 36979 175000
4081 25673 121500
3661 30809 145800

230 3877 29573 139968
3613 45289 214326
1366 150889 714025

231 8121 28411 134456
4561 51349 243000
7141 54773 259200

232 9301 49297 233280
4096 150889 714025

2"" 2416 374441 1771875
234 17221 107839 510300

36261 66037 312500
235 84589 45989 217728

16.1 Linear Congruential Generators

[581,705,580], as were truncated linear congruential generators with unknown
parameters [1500,212]. The preponderance of evidence is that congruential genera­
tors aren't useful for cryptography.

Linear congruential generators remain useful for noncryptographic applications,
however, such as simulations. They are efficient and show good statistical behavior
with respect to most reasonable empirical tests. Considerable information on linear
congruential generators and their implementations can be found in [942].

Combining Linear Congruential Generators
Various people examined the combination of linear congruential generators

[1595,941]. The results are no more cryptographically secure, but the combinations
have longer periods and perform better in some randomness tests.

Use this generator for 32-bit computers [941]:

static long sl - 1 ; /* A "long" must be 32 bits long. */ static long s2 -

#define MODMULT(a,b,c,m,sl q - s/a; s - b*(s-a*ql - c*q; if (s<Ol s+-m ;
/* MODMULT(a,b,c,m,sl computes s*b mod m, provided that m-a*b+c and O <- c <
m. * I

/* combinedLCG returns a pseudorandom real value in the range
* (0,1). It combines linear congruential generators with
* periods of 2'1-85 and 231-249, and has a period that is the
* product of these two prime numbers. */

double combinedLCG (void l
I

long q ;
long z ;

M0DMULT (53668, 40014, 12211, 2147483563L, sl)
MODMULT (52774, 40692, 3791, 2147483399L, s2)
z - sl - s2 ;
if (z < 1 l

z +- 2147483562 ,
return z * 4.656613e-10

/* In general, call initLCG before using combinedLCG. */
void initLCG (long lnitSl, long InitS2)
I

sl InitSl
s2 InitS2

This generator works as long as the machine can represent all integers between
-2 31 + 85 and 231 - 85. The variables, s1 and s2, are global; they hold the current state
of the generator. Before the first call, they must be initialized. The variable s1 needs
an initial value between 1 and 2147483562; the variable s2 needs an initial value
between 1 and 2147483398. The generator has a period somewhere in the neighbor­
hood of 1018 .

CHAPTER 16 Pseudo-Random-Sequence Generators

If you only have a 16-bit computer, use this generator instead:

static int sl
static int s2
static int s3

/* An "int" must be 16 bits long. */

#define MODMULT(a,b,c,m,s) q = s/a; s = b*(s-a*ql - c*q; if
Cs<O) s+=m

/* combined LCG returns a pseudorandom real value in the
range
* (0,1). It combines linear congruential generators with
* periods of 215-405, 215-1041, and 215-1111, and has a period
* that is the product of these three prime numbers. */

double combinedLCG (void)
{

int q ;
int z ;

MODMULT 206,157, 21, 32363, sl)
MODMULT 217, 146, 45, 31727, s2)
MODMULT 222, 142, 133, 31657, s3)
z = sl - s2 ;
if (z > 706)

z -= 32362
z += s3 ;
if(z<l)

z += 32362
return z * 3.0899e-5

/* In general, call initLCG before using combinedLCG. */
void initLCG C int lnitSl, int InitS2, InitS3)
{

sl lnitSl
s2 InitS2
s3 InitS3

This generator works as long as the machine can represent all integers between
-32363 and 32363. The variables, Si, s2, and s3, are global; they hold the current state
of the generator. Before the first call, they must be initialized. The variable s1 needs
an initial value between 1 and 32362. The variable s2 needs an initial value between
1 and 31726. The variable s3 needs an initial value between 1 and 31656. This gen­
erator has a period of 1.6* 1013•

For both of these generators, the constant term b in the linear congruence is 0.

16.2 LINEAR FEEDBACK SHIFT REGISTERS

Shift register sequences are used in both cryptography and coding theory. There is a
wealth of theory about them; stream ciphers based on shift registers have been the
workhorse of military cryptography since the beginnings of electronics.

16.2 Linear Feedback Shift Registers

A feedback shift register is made up of two parts: a shift register and a feedback
function (see Figure 16.1). The shift register is a sequence of bits. (The length of a
shift register is figured in bits; if it is n bits long, it is called an n-bit shift register.)
Each time a bit is needed, all of the bits in the shift register are shifted 1 bit to the
right. The new left-most bit is computed as a function of the other bits in the regis­
ter. The output of the shift register is 1 bit, often the least significant bit. The period
of a shift register is the length of the output sequence before it starts repeating.

Cryptographers have liked stream ciphers made up of shift registers: They are
easily implemented in digital hardware. I will only touch on the mathematical the­
ory. Ernst Selmer, the Norwegian government's chief cryptographer, worked out
the theory of shift register sequences in 1965 [1411]. Solomon Golomb, an NSA
mathematician, wrote a book with Selmer's results and some of his own [643]. See
also [970,971,1647].

The simplest kind of feedback shift register is a linear feedback shift register, or
LFSR (see Figure 16.2). The feedback function is simply the XOR of certain bits in
the register; the list of these bits is called a tap sequence. Sometimes this is called a
Fibonacci configuration. Because of the simple feedback sequence, a large body of
mathematical theory can be applied to analyzing LFSRs. Cryptographers like to ana­
lyze sequences to convince themselves that they are random enough to be secure.
LFSRs are the most common type of shift registers used in cryptography.

Figure 16.3 is a 4-bit LFSR tapped at the first and fourth bit. If it is initialized with
the value 1111, it produces the following sequence of internal states before repeating:

1 1 1 1

0 1 1 1

1 0 1 1

0 101

101 0

1 1 0 1

0 1 1 0

0 0 1 1

100 1

I I I I I I
Feedback Function

Figure 16.1 Feedback shift register.

CHAPTER 16 Pseudo-Random-Sequence Generators

Shift Register

Figure 16.2 Linear feedback shift register.

0100

0010

0001

1000

1 100

1 1 1 0

Output Bit

The output sequence is the string of least significant bits:

1 1 1 1 0 1 0 1 1 0 0 1 0 0 0

An n-bit LFSR can be in one of 2n - 1 internal states. This means that it can, in
theory, generate a 211 - 1-bit-long pseudo-random sequence before repeating. (It's
2n - 1 and not 211 because a shift register filled with zeros will cause the LFSR to out­
put a neverending stream of zeros-this is not particularly useful.) Only LFSRs with
certain tap sequences will cycle through all 211 - 1 internal states; these are the
maximal-period LFSRs. The resulting output sequence is called an m-sequence.

In order for a particular LFSR to be a maximal-period LFSR, the polynomial
formed from a tap sequence plus the constant 1 must be a primitive polynomial
mod 2. The degree of the polynomial is the length of the shift register. A primitive
polynomial of degree n is an irreducible polynomial that divides x 2n - 1 + 1, but not
xa + 1 for any d that divides 2n - 1 (see Section 11.3). For the mathematical theory
behind all this, consult [643,1649,1648].

Output Bit

Figure 16.3 4-bit LFSR.

16.2 Linear Feedback Shift Registers

In general, there is no easy way to generate primitive polynomials mod 2 for a
given degree. The easiest way is to choose a random polynomial and test whether it
is primitive. This is complicated-something like testing random numbers for pri­
mality-but many mathematical software packages do this. See [970,971] for some
methods.

Table 16.2 lists some, but by no means all, primitive polynomials mod 2 of vary­
ing degrees [1583,643,1649,1648,1272,691]. For example, the listing (32, 7, 5, 3, 2,
1, 0) means that the following polynomial is primitive modulo 2:

x' 2 + x 7 + x5 + x' + x2 + x + 1

It's easy to turn this into a maximal-period LFSR. The first number is the length of
the LFSR. The last number is always O and can be ignored. All the numbers, except
the 0, specify the tap sequence, counting from the left of the shift register. That is,
low degree terms in the polynomial correspond to taps near the left-hand side of the
register.

To continue the example, the listing (32, 7, 5, 3, 2, 1, 0) means that if you take a
32-bit shift register and generate the new bit by XORing the thirty-second, seventh,
fifth, third, second, and first bits together (see Figure 16.4), the resultant LFSR will
be maximal length; it will cycle through 232 - 1 values before repeating.

The C code for this LFSR looks like:

intLFSR(){
static unsigned long ShiftRegister ~ l;
/* Anything but 0. */
ShiftRegister ~ ((((ShiftRegister >> 31)

A (ShiftRegister >> 6)
A (ShiftRegister >> 4)
A (ShiftRegister >> 2)
A (ShiftRegi ster » 1)

A ShiftRegister))
& OxOOOOOOOl)
« 31)

I (ShiftRegister >> 1) ;
return ShiftRegister & OxOOOOOOOl;

Figure 16.4 32-bit long maximal-length LFSR.

Output Bit

CHAPTER 16 Pseudo-Random-Sequence Generators

(1, 0)
(2, 1, 0)
(3, 1, 0)
(4, 1, O)
(5, 2, O)
(6, 1, O)
(7, 1, 0)
(7, 3, 0)
(8, 4, 3, 2, 0)
(9, 4, O)
(10, 3, 0)
(11, 2, 0)
(12, 6, 4, 1, 0)
(13, 4, 3, 1, 0)
(14, 5, 3, 1, 0)
(15, 1, 0)
(16, 5, 3, 2, O)
(17, 3, 0)
(17, 5, 0)
(17, 6, 0)
(18, 7, 0)
(18, 5, 2, 1, 0)
(19, 5, 2, 1, O)
(20, 3, 0)
(21, 2, 0)
(22, 1, 0)
(23, 5, 0)
(24, 4, 3, 1, 0)
(25, 3, 0)
(26, 6, 2, 1, 0)
(27, 5, 2, 1, O)
(28, 3, 0)
(29, 2, 0)
(30, 6, 4, 1, 0)
(31, 3, 0)
(31, 6, 0)
(31, 7, 0)
(31, 13, 0)
(32, 7, 6, 2, 0)
(32, 7, 5, 3, 2, 1, 0)
(33, 13, 0)
(33, 16, 4, 1, 0)
(34, 8, 4, 3, 0)
(34, 7, 6, 5, 2, 1, O)
(35, 2, 0)

Table 16.2
Some Primitive Polynomials Mod 2

(36, 11, 0)
(36, 6, 5, 4, 2, 1, 0)
(37, 6, 4, 1, 0)
(37, 5, 4, 3, 2, 1, 0)
(38, 6, 5, 1, O)
(39, 4, O)
(40, 5, 4, 3, 0)
(41, 3, 0)
(42, 7, 4, 3, 0)
(42, 5, 4, 3, 2, 1, 0)
(43, 6, 4, 3, 0)
(44, 6, 5, 2, O)
(45, 4, 3, 1, 0)
(46, 8, 7, 6, 0)
(46, 8, 5, 3, 2, 1, 0)
(47, 5, 0)
(48, 9, 7, 4, 0)
(48, 7, 5, 4, 2, 1, 0)
(49, 9, 0)
(49, 6, 5, 4, 0)
(50, 4, 3, 2, 0)
(51, 6, 3, 1, 0)
(52, 3, O)
(53, 6, 2, 1, 0)
(54, 8, 6, 3, O)
(54, 6, 5, 4, 3, 2, 0)
(55, 24, 0)
(55, 6, 2, 1, 0)
(56, 7, 4, 2, 0)
(57, 7. O)
(57, 5, 3, 2, O)
(58, 19, 0)
(58, 6, 5, 1, 0)
(59, 7, 4, 2, 0)
(59, 6, 5, 4, 3, 1, 0)
(60, 1, 0)
(61, 5, 2, 1, Oj
(62, 6, 5, 3, Oj
(63, 1, 0)
(64, 4, 3, 1, 0)
(65, 18, 0)
(65, 4, 3, 1, Oj
(66, 9, 8, 6, Oj
(66, 8, 6, 5, 3, 2, Oj
(67, 5, 2, 1, Oj

(68, 9, Oj
(68, 7, 5, 1, 0)
(69, 6, 5, 2, 0)
(70, 5, 3, 1, 0)
(71, 6, Oj
(71, 5, 3, 1, 0)
(72, 10, 9, 3, Oj
(72, 6, 4, 3, 2, 1, 0)
(73, 25, 0)
(73, 4, 3, 2, 0)
(74, 7, 4, 3, 0)
(75, 6, 3, 1, Oj
(76, 5, 4, 2, 0)
(77, 6, 5, 2, Oj
(78, 7, 2, 1, Oj
(79, 9, 0)
(79, 4, 3, 2, Oj
(80, 9, 4, 2, Oj
(80, 7, 5, 3, 2, 1, O)
(81, 4, Oj
(82, 9, 6, 4, Oj
(82, 8, 7, 6, 1, 0)
(83, 7, 4, 2, 0)
(84, 13, Oj
(84, 8, 7, 5, 3, 1, O)
(85, 8, 2, 1, 0)
(86, 6, 5, 2, 0)
(87, 13, 0)
(87, 7, 5, 1, 0)
(88, 11, 9, 8, 0)
(88, 8, 5, 4, 3, 1, 0)
(89, 38, Oj
(89, 51, Oj
(89, 6, 5, 3, Oj
(90, 5, 3, 2, 0)
(91, 8, 5, 1, 0)
(91, 7, 6, 5, 3, 2, O)
(92, 6, 5, 2, Oj
(93, 2, 0)
(94, 21, 0)
(94, 6, 5, 1, 0)
(95, 11, 0)
(95, 6, 5, 4, 2, 1, 0)
(96, 10, 9, 6, Oj
(96, 7, 6, 4, 3, 2, 0)

(97, 6, Oj
(98, 11, 0)
(98, 7, 4, 3, 1, 0)
(99, 7, 5, 4, O)
(100, 37, Oj
(100, 8, 7, 2, 0)
(101, 7, 6, 1, 0)
(102,6530)
(103, 9, 9)
(104, 11, 10, 1, 0)
(105, 16, 0)
(106, 15, Oj
(107, 9, 7, 4, 0)
(108, 31, Oj
(109, 5, 4, 2, 0)
(110, 6, 4, 1, 0)
(111, 10, Oj
(111, 49, Oj
(113, 9, Oj
(113, 15, 0)
(113, 30, Oj
(114, 11, 2, 1, Oj
(115, 8, 7, 5, 0)
(116, 6, 5, 2, 0)
(117, 5, 2, 1, Oj
(118, 33, Oj
(119, 8, Oj
(119, 45, Oj
(120, 9, 6, 2, 0)
(121, 18, 0)
(122, 6, 2, 1, Oj
(123, 2, Oj
(124, 37, Oj
(125, 7, 6, 5, 0)
(126, 7, 4, 2, 0)
(127, 1, 0)
(127, 7, Oj
(127, 63, Oj
(128, 7, 2, 1, 0)
(129, 5, Oj
(130, 3, 0)
(131, 8, 3, 2, 0)
(132, 29, Oj
(133, 9, 8, 2, Oj
(134, 57, Oj

(135,11,0)
(135, 16, 0)
(135, 22, 0)
(136, 8, 3, 2, 0)
(137, 21, 0)
(138, 8, 7, 1, 0)
(139, 8, 5, 3, 0)
(140, 29, 0)
(141, 13, 6, 1, 0)
(142, 21, 0)
(143, 5, 3, 2, 0)
(144, 7, 4, 2, 0)
(145, 52, 0)
(145, 69, 0)
(146, 5, 3, 2, 0)
(147, 11, 4, 2, 0)
(148, 27, 0)
(149, 10, 9, 7, 0)
(150, 53, 0)
(151, 3, 0)
(151, 9, 0)
(151, 15, 0)
(151, 31, 0)
(151, 39, 0)
(151,43,0)
(151, 46, 0)
(151, 51, 0)
(151, 63, 0)
(151, 66, 0)
(151, 67, 0)
(151, 70, 0)

16.2 Linear Feedback Shift Registers

Table 16.2 (Cont.)
Some Primitive Polynomials Mod 2

(152, 6, 3, 2, 0)
(153, 1,0)
(153, 8, 0)
(154, 9, 5, 1, 0)
(155, 7, 5, 4, 0)
(156, 9, 5, 3, 0)
(157, 6, 5, 2, 0)
(158, 8, 6, 5, 0)
(159, 31, 0)
(159, 34, 0)
(159, 40, 0)
(160, 5, 3, 2, 0)
(161, 18, 0)
(161, 39, 0)
(161, 60, 0)
(162, 8, 7, 4, 0)
(163, 7, 6, 3, 0)
(164, 12, 6, 5, 0)
(165, 9, 8, 3, 0)
(166, 10, 3, 2, 0)
(167, 6, 0)
(170, 23, 0)
(172, 2, 0)
(174, 13, 0)
(175, 6, 0)
(175, 16, 0)
(175, 18, 0)
(175, 57, 0)
(177, 8, 0)
(177, 22, O)
(177, 88, 0)

(178, 87, 0)
(183, 56, O)
(194, 87, 0)
(198, 65, 0)
(201, 14, 0)
(201, 17, 0)
(201, 59, 0)
(201, 79, 0)
(202, 55, 0)
(207, 43, 0)
(212, 105, 0)
(218, 11, 0)
(218, 15, 0)
(218, 71, 0)
(218, 83, 0)
(225, 32, 0)
(225, 74, 0)
(225, 88, 0)
(225, 97, 0)
(225, 109, 0)
(231, 26, 0)
(231, 34, 0)
(234, 31, 0)
(234, 103, 0)
(236, 5, 0)
(250, 103, 0)
(255, 52, 0)
(255, 56, 0)
(255, 82, 0)
(258, 83, 0)
(266, 47, 0)

(270, 133, 0)
(282, 35, 0)
(282, 43, 0)
(286, 69, 0)
(286, 73, 0)
(294, 61, 0)
(322, 67, 0)
(333, 2, 0)
(350, 53, 0)
(366, 29, 0)
(378, 43, 0)
(378, 107, 0)
(390, 89, 0)
(462, 73, 0)
(521, 32, 0)
(521, 48, 0)
(521, 158, 0)
(521, 168, 0)
(607, 105, 0)
(607, 147, 0)
(607, 273, 0)
(1279, 216, 0)
(1279, 418, 0)
(2281, 715, 0)
(2281, 915, 0)
(2281, 1029, 0)
(3217, 67, 0)
(3217, 576, 0)
(4423, 271, 0)
(9689, 84, 0)

The code is a little more complicated when the shift register is longer than the com­
puter's word size, but not significantly so.

Note that all of these listings have an odd number of coefficients. I have provided
such a large table because LFSRs are often used for stream-cipher cryptography and
I wanted many examples so that different people would pick different primitive
polynomials. Since, if p(x) is primitive, then so is xnp(1/x); each entry on the table is
actually two primitive polynomials.

For example, if (a, b, 0) is primitive, then (a, a - b, 0) is also primitive. If (a, b, c,
d, 0) is primitive, then (a, a - d, a - c, a - b, 0) is also primitive. Mathematically:

if x" + xz, + 1 is primitive, so is x" + x" - b + 1

if x" + xb + x" + xc1 + 1 is primitive, so is x" + x" - c1 + x" - c + x" - b + 1

CHAPTER 16 Pseudo-Random-Sequence Generators

Primitive trinomials are fastest in software, because only two bits of the shift reg­
ister have to be XORed to generate each new bit. Actually, all the feedback polyno­
mials listed in Table 16.2 are sparse, meaning that they only have a few coefficients.
Sparseness is always a source of weakness, sometimes enough to break the algo­
rithm. It is far better to use dense primitive polynomials, those with a lot of coeffi­
cients, for cryptographic applications. If you use dense polynomials, and especially
if you make them part of the key, you can live with much shorter LFSRs.

Generating dense primitive polynomials modulo 2 is not easy. In general, to gen­
erate primitive polynomials of degree k you need to know the factorization of 2k - 1.
Three good references for finding primitive polynomials are [652, 1285, 1287].

LFSRs are competent pseudo-random-sequence generators all by themselves, but
they have some annoying nonrandom properties. Sequential bits are linear, which
makes them useless for encryption. For an LFSR of length n, the internal state is the
next n output bits of the generator. Even if the feedback scheme is unknown, it can
be determined from only 2n output bits of the generator, by using the highly effi­
cient Berlekamp-Massey algorithm [1082,1083]: see Section 16.3.

Also, large random numbers generated from sequential bits of this sequence are
highly correlated and, for certain types of applications, not very random at all. Even
so, LFSRs are often used as building blocks in encryption algorithms.

LFSRs in Software
LFSRs are slow in software, but they're faster in assembly language than in C. One

solution is to run 16 LFSRs (or 32, depending on your computer's word size) in paral­
lel. This scheme uses an array of words that is the length of the LFSR, with each bit
position in the words representing a different LFSR. Assuming all the feedback poly­
nomials are the same, this can run pretty quickly. In general, the best way to update
shift registers is to multiply the current state by suitable binary matrices [901].

It is also possible to modify the LFSR's feedback scheme. The resultant generator
is no better cryptographically, but it still has a maximal period and is easy to imple­
ment in software [1272]. Instead of using the bits in the tap sequence to generate the
new left-most bit, each bit in the tap sequence is XORed with the output of the gen­
erator and replaced; then the output of the generator becomes the new left-most bit
(see Figure 16.5). This is sometimes called a Galois configuration.

In C, this looks like:

#define mask Ox80000057

static unsigned long ShiftRegister=l;
void seed_LFSR (unsigned long seed)
{

if (seed== 0) /* avoid calamity*/
seed= l;

ShiftRegister = seed;

int modified_LFSR (void)
{

16.3 Design and Analysis of Stream Ciphers

Figure 16.5 Galois LFSR.

if (ShiftRegister & OxOOOOOOOlJ {
ShiftRegister - ((ShiftRegister 'mask>> 1) I

Ox8000000;
return l;

else I
ShiftRegister >>- l;
return O;

The savings here is that all the XORs can be done as a single operation. This can
also be parallelized, and the different feedback polynomials can be different. The
Galois configuration can also be faster in hardware, especially in custom VLSI imple­
mentations. In general, if you are using hardware that is good at shifts, use a Fibonacci
configuration; if you can exploit parallelism, use a Galois configuration.

16.3 DESIGN AND ANALYSIS OF STREAM CIPHERS

Most practical stream-cipher designs center around LFSRs. In the early days of elec­
tronics, they were very easy to build. A shift register is nothing more than an array
of bit memories and the feedback sequence is just a series of XOR gates. Even in
VLSI circuitry, a LFSR-based stream cipher can give you a lot of security with only
a few logic gates.

The problem with LFSRs is that they are very inefficient in software. You want to
avoid sparse feedback polynomials-they facilitate correlation attacks [1051, 1090,
350]-and dense feedback polynomials are inefficient. Any stream cipher outputs a
bit at a time; you have to iterate the algorithm 64 times to encrypt what a single
iteration of DES can encrypt. In fact, a simple LFSR algorithm like the shrinking
generator described later is no faster in software than DES.

This branch of cryptography is fast-paced and very politically charged. Most
designs are secret; a majority of military encryptions systems in use today are based
on LFSRs. In fact, most Cray computers (Cray 1, Cray X-MP, Cray Y-MP) have a
rather curious instruction generally known as "population count." It counts the 1
bits in a register and can be used both to efficiently calculate the Hamming distance

CHAPTER 16 Pseudo-Random-Sequence Generators

between two binary words and to implement a vectorized version of a LFSR. I've
heard this called the canonical NSA instruction, demanded by almost all computer
contracts.

On the other hand, an astonishingly large number of seemingly complex shift­
register-based generators have been cracked. And certainly military cryptanalysis
institutions such as the NSA have cracked a lot more. Sometimes it's amazing to see
the simple ones proposed again and again.

Linear Complexity
Analyzing stream ciphers is often easier than analyzing block ciphers. For exam­

ple, one important metric used to analyze LFSR-based generators is linear complex­
ity, or linear span. This is defined as the length, n, of the shortest LFSR that can
mimic the generator output. Any sequence generated by a finite-state machine over
a finite field has a finite linear complexity [1006]. Linear complexity is important
because a simple algorithm, called the Berlekamp-Massey algorithm, can generate
this LFSR after examining only 2n bits of the keystream [1005]. Once you've gener­
ated this LFSR, you've broken the stream cipher.

This idea has extensions from fields to rings [1298], and when the output sequence
is viewed as numbers over fields of odd characteristic [842]. A further enhancement
is the notion of a linear complexity profile, which measures the linear complexity of
the sequence as it gets longer and longer [1357,1168,411,1582]. Another algorithm
for computing linear complexity is useful only in very specialized circumstances
[597,595,596, 1333]. A generalization of linear complexity is in [776]. There is also the
notion of sphere complexity [502] and 2-adic complexity [844].

In any case, remember that a high linear complexity does not necessarily indicate
a secure generator, but a low linear complexity indicates an insecure one [1357, 1249].

Correlation Immunity
Cryptographers try to get a high linear complexity by combining the output of

several output sequences in some nonlinear manner. The danger here is that one or
more of the internal output sequences-often just outputs of individual LFSRs-can
be correlated with the combined keystream and attacked using linear algebra. Often
this is called a correlation attack or a divide-and-conquer attack. Thomas Siegen­
thaler has shown that correlation immunity can be precisely defined, and that there
is a trade-off between correlation immunity and linear complexity [1450].

The basic idea behind a correlation attack is to identify some correlation between
the output of the generator and the output of one of its internal pieces. Then, by
observing the output sequence, you can obtain information about that internal out­
put. Using that information and other correlations, collect information about the
other internal outputs until the entire generator is broken.

Correlation attacks and variations such as fast correlation attacks-these offer a
trade-off between computational complexity and effectiveness-have been success­
fully applied to a number of LFSR-based keystream generators [1451,278,1452,572,
1636, 1051, 1090,350,633, 1054, 1089,995]. Some interesting new ideas along these
lines are in [46,1641].

_______________ 1_6_.4 __ S_tr_e_a_m_C_i_p_h_er_s_U_s1_·n_g_L_F_S_R_s _____ 7 __ ~

Other Attacks
There are other general attacks against keystream generators. The linear consistency

test attempts to identify some subset of the encryption key using matrix techniques
[1638]. There is also the meet-in-the-middle consistency attack [39,41]. The linear syn­
drome algorithm relies on being able to write a fragment of the output sequence as a
linear equation [1636,1637]. There is the best affine approximation attack [502] and the
derived sequence attack [42]. The techniques of differential cryptanalysis have even
been applied to stream ciphers [501], as has linear cryptanalysis [631].

16.4 STREAM CIPHERS USING LFSRs

The basic approach to designing a keystream generator using LFSRs is simple. First
you take one or more LFSRs, generally of different lengths and with different feed­
back polynomials. (If the lengths are all relatively prime and the feedback polynomi­
als are all primitive, the whole generator is maximal length.) The key is the initial
state of the LFSRs. Every time you want a bit, shift the LFSRs once (this is sometimes
called clocking). The output bit is a function, preferably a nonlinear function, of
some of the bits of the LFSRs. This function is called the combining function, and the
whole generator is called a combination generator. (If the output bit is a function of
a single LFSR, the generator is called a filter generator.) Much of the theoretical back­
ground for this kind of thing was laid down by Selmer and Neal Zierler [1647].

Complications have been added. Some generators have LFSRs clocked at different
rates; sometimes the clocking of one generator depends on the output of another.
These are all electronic versions of pre-WWII cipher machine ideas, and are called
clock-controlled generators [641]. Clock control can be feedforward, where the out­
put of one LFSR controls the clocking of another, or feedback, where the output of
one LFSR controls its own clocking.

Although these generators are, at least in theory, susceptible to embedding and
probabilistic correlation attacks [634,632], many are secure for now. Additional the­
ory on clock-controlled shift registers is in [89].

Ian Cassells, once the head of pure mathematics at Cambridge and a former
Bletchly Park cryptanalyst, said that "cryptography is a mixture of mathematics and
muddle, and without the muddle the mathematics can be used against you." What
he meant was that in stream ciphers, you need some kind of mathematical struc­
ture-such as a LFSR-to guarantee maximal-length and other properties, and then
some complicated nonlinear muddle to stop someone from getting at the register
and solving it. This advice also holds true for block algorithms.

What follows is a smattering of LFSR-based keystream generators that have
appeared in the literature. I don't know if any of them have been used in actual cryp­
tographic products. Most of them are of theoretical interest only. Some have been
broken; some may still be secure.

Since LFSR-based ciphers are generally implemented in hardware, electronics
logic symbols will be used in the figures. In the text, EB is XOR, /\ is AND, v is OR,
and -, is NOT.

CHAPTER 16 Pseudo-Random-Sequence Generators

Geffe Generator

This keystream generator uses three LFSRs, combined in a nonlinear manner (see
Figure 16.6) [606]. Two of the LFSRs are inputs into a multiplexer, and the third
LFSR controls the output of the multiplexer. If a 1, a2, and a3 are the outputs of the
three LFSRs, the output of the Geffe generator can be described by:

b = (a1 /\ a2) EB((--, ai) I\ a3)

If the LFSRs have lengths n 1, n 2, and n 3, respectively, then the linear complexity
of the generator is

(n1 + 1)n2 + n1n3

The period of the generator is the least common multiple of the periods of the
three generators. Assuming the degrees of the three primitive feedback polynomials
are relatively prime, the period of this generator is the product of the periods of the
three LFSRs.

Although this generator looks good on paper, it is cryptographically weak and falls
to a correlation attack [829, 1638]. The output of the generator equals the output of
LFSR-2 75 percent of the time. So, if the feedback taps are known, you can guess the
initial value for LFSR-2 and generate the output sequence of that register. Then you
can count the number of times the output of the LFSR-2 agrees with the output of the
generator. If you guessed wrong, the two sequences will agree about 50 percent of the
time; if you guessed right, the two sequences will agree about 75 percent of the time.

Similarly, the output of the generator equals the output of LFSR-3 about 75 per­
cent of the time. With those correlations, the keystream generator can be easily
cracked. For example, if the primitive polynomials only have three terms each, and
the largest LFSR is of length n, it only takes a segment of the output sequence 3 7n­
bits long to reconstruct the internal states of all three LFSRs [1639].

Generalized Geffe Generator
Instead of choosing between two LFSRs, this scheme chooses between k LFSRs, as

long ask is a power of 2. There are k + 1 LFSRs total (see Figure 16.7). LFSR-1 must
be clocked log2k times faster than the other k LFSRs.

LFSR-2

LFSR-3

LFSR-1

..

2-to-1
Multiplexer

Select

Figure 16.6 Geffe generator.

i---• bro

_______________ 1_6_.4 __ S_tr_e_am __ C_ip_h_e_r_s_U_s_in_g_L_F_SR_s ____ 7 __ ~

Even though this scheme is more complex than the Geffe generator, the same
kind of correlation attack is possible. I don't recommend this generator.

Jennings Generator

This scheme uses a multiplexer to combine two LFSRs [778,779,780]. The multi­
plexer, controlled by LFSR-1, selects 1 bit of LFSR-2 for each output bit. There is
also a function that maps the output of LFSR-2 to the input of the multiplexer (see
Figure 16.8).

The key is the initial state of the two LFSRs and the mapping function. Although
this generator has great statistical properties, it fell to Ross Anderson's meet-in-the­
middle consistency attack [39] and the linear consistency attack [1638,442]. Don't
use this generator.

Beth-Piper Stop-and-Go Generator

This generator, shown in Figure 16.9, uses the output of one LFSR to control the
clock of another LFSR [151]. The clock input of LFSR-2 is controlled by the output
of LFSR-1, so that LFSR-2 can change its state at time t only if the output of LFSR-1
was 1 at time t - 1.

No one has been able to prove results about this generator's linear complexity in
the general case. However, it falls to a correlation attack [1639].

Alternating Stop-and-Go Generator

This generator uses three LFSRs of different length. LFSR-2 is clocked when the
output of LFSR-1 isl; LFSR-3 is clocked when the output of LFSR-1 is 0. The output
of the generator is the XOR of LFSR-2 and LFSR-3 (see Figure 16.10) [673].

This generator has a long period and large linear complexity. The authors found a
correlation attack against LFSR-1, but it does not substantially weaken the genera­
tor. There have been other attempts at keystream generators along these lines [1534,
1574,1477].

I LFSR-n + 1 I ~ n-to-1

I I
Multiplexer

LFSR-3 ~

h(t)

I LFSR-2 I ~ Select

LFSR-1 J

Figure 16. 7 Generalized Geffe generator.

CHAPTER 16 Pseudo-Random-Sequence Generators

Multiplexer h(t)

Figure 16.8 fennings generator.

Bilateral Stop-and-Go Generator
This generator uses two LFSRs, both of length n (see Figure 16.11) [1638]. The out­

put of the generator is the XOR of the outputs of each LFSR. If the output of LFSR-2
at time t - 1 is O and the output at time t - 2 is 1, then LFSR-2 does not clock at
time t. Conversely, if the output of LFSR-1 at time t - 1 is O and the output at t - 2
is 1, and if LFSR-1 clocked at time t, then LFSR-2 does not clock at time t.

The linear complexity of this system is roughly equal to the period. According to
[1638], "no evident key redundancy has been observed in this system."

Threshold Generator
This generator tries to get around the security problems of the previous generators

by using a variable number of LFSRs [277]. The theory is that if you use a lot of
LFSRs, it's harder to break the cipher.

This generator is illustrated in Figure 16.12. Take the output of a large number of
LFSRs (use an odd number of them). Make sure the lengths of all the LFSRs are rel­
atively prime and all the feedback polynomials are primitive: maximize the period.
If more than half the output bits are 1, then the output of the generator is 1. If more
than half the output bits are 0, then the output of the generator is 0.

LFSR-2

LFSR-1

LFSR-3

Clock _..,_ _________ __.

Figure 16.9 Beth-Piper stop-and-go generator.

_______________ 1_6_.4 __ S_tr_e_am __ C_ip_h_e_r_s_U_s_in_g_L_F_SR_s ____ z-~

LFSR-2
LFSR-1

LFSR-3

'1)(1)----~

Figure 16.10 Alternating stop-and-go generator.

With three LFSRs, the output generator can be written as:

b = (a1 /\ a2) EB (a1 /\ a3) EB (a2 /\ a3)

This is very similar to the Geffe generator, except that it has a larger linear com­
plexity of

where n 1, n 2, and n3 are the lengths of the first, second, and third LFSRs.
This generator isn't great. Each output bit of the generator yields some informa­

tion about the state of the LFSRs-0.189 bit to be exact-and the whole thing falls
to a correlation attack. I don't recommend using it.

Self-Decimated Generators
Self-decimated generators are generators that control their own clock. Two have

been proposed, one by Rainer Rueppel (see Figure 16.13) [1359] and another by Bill

(b(t) ------; <b A (I)

a(r+n-2) Q(I)

n-stage LFSR-2

[)--+ C(I)

n-stage LFSR-1

b(r+n-2) bui

Figure 16.11 Bilateral stop-and-go generator.

CHAPTER 16 Pseudo-Random-Sequence Generators

LFSR-1

LFSR-2

LFSR-3

LFSR-n

Majority
Function

Figure 16.12 Threshold generator.

b(I)

Chambers and Dieter Gollmann [308] (see Figure 16.14). In Rueppel's generator,
when the output of the LFSR is 0, the LFSR is clocked d times. When the output of
the LFSR is 1, the LFSR is clocked k times. Chambers's and Gollmann's generator is
more complicated, but the idea is the same. Unfortunately, both generators are inse­
cure [1639], although some modifications have been proposed that may correct the
problems [1362].

Multispeed Inner-Product Generator

This generator, by Massey and Rueppel [1014], uses two LFSRs clocked at two dif­
ferent speeds (see Figure 16.15). LFSR-2 is clocked d times as fast as LFSR-1. The
individual bits of the two LFSRs are ANDed together and then XORed with each
other to produce the final output bit of the generator.

Although this generator has high linear complexity and it possesses excellent sta­
tistical properties, it still falls to a linear consistency attack [1639]. If n 1 is the length
of LFSR-1, n 2 is the length of the LFSR-2, and dis the speed multiple between the
two, then the internal state of the generator can be recovered from an output
sequence of length

n1 + n2 + log2d

Summation Generator
More work by Rainer Rueppel, this generator adds the output of two LFSRs (with

carry) [1358, 1357]. This operation is highly nonlinear. Through the late 1980s, this

0: Clock d times
1: Clock k times LFSR

Figure 16.13 Rueppel's self-decimated generator.

1---e----• bro

_______________ 1_6_.4 __ S_tr_e_a_m_C_i_p_h_er_s_U_s1_·n_g_L_F_S_R_s _____ 7 ___ ~

0: Clock d times
1: Clock k times

f----- • b(tJ

Figure 16.14 Chambers's and Gollmann's self-decimated generator.

generator was the security front-runner, but it fell to a correlation attack [1053,
1054,1091]. And it has been shown that this is an example of a feedback with carry
shift register (see Section 17.4), and can be broken [844].

DNRSG
That stands for" dynamic random-sequence generator" [1117]. The idea is to have

two different filter generators-threshold, summation, or whatever-fed by a single
set of LFSRs and controlled by another LFSR.

First clock all the LFSRs. If the output of LFSR-0 is 1, then compute the output of
the first filter generator. If the output of LFSR-0 is 0, then compute the output of the
second filter generator. The final output is the first output XOR the second.

Gollmann Cascade
The Gollmann cascade (see Figure 16.16), described in [636,309], is a strengthened

version of a stop-and-go generator. It consists of a series of LFSRs, with the clock of
each controlled by the previous LFSR. If the output of LFSR-1 is 1 at time t - l, then
LFSR-2 clocks. If the output of LFSR-2 is 1 at time t - l, then LFSR-3 clocks, and so
on. The output of the final LFSR is the output of the generator. If all the LFSRs have
the same length, n, the linear complexity of a system with k LFSRs is

n(2" - 1)1' - I

/ -stage LFSR-1

d·dl n -stage LFSR-2

Figure 16.15 Multispeed inner-product generator.

CHAPTER 16 Pseudo-Random-Sequence Generators

Cascades are a cool idea: They are conceptually very simple and they can be used
to generate sequences with huge periods, huge linear complexities, and good statis­
tical properties. They are vulnerable to an attack called lock-in [640]. This is a tech­
nique by which a cryptanalyst reconstructs the input to the last shift register in the
cascade, then proceeds to break the cascade register by register. This is a serious
problem in some situations and weakens the effective key length of the algorithm,
but precautions can be taken to minimize the attack.

Further analysis has indicated that the sequence approaches random as k gets
larger [637,638,642,639]. Based on recent attacks on short Gollmann cascades
[1063], I recommend using a k of at least 15. You're better off using more LFSRs of
shorter length than fewer LFSRs of longer length.

Shrinking Generator

The shrinking generator [378] uses a different form of clock control than the pre­
vious generators. Take two LFSRs: LFSR-1 and LFSR-2. Clock both of them. If the
output of LFSR-1 is 1, then the output of the generator is LFSR-2. If the output of
LFSR-1 is 0, discard the two bits, clock both LFSRs, and try again.

This idea is simple, reasonably efficient, and looks secure. If the feedback polyno­
mials are sparse, the generator is vulnerable, but no other problems have been
found. Even so, it's new. One implementation problem is that the output rate is not
regular; if LFSR-1 has a long string of zeros then the generator outputs nothing. The
authors suggest buffering to solve this problem [378]. Practical implementation of
the shrinking generator is discussed in [901].

Self-Shrinking Generator

The self-shrinking generator [1050] is a variant of the shrinking generator.
Instead of using two LFSRs, use pairs of bits from a single LFSR. Clock a LFSR
twice. If the first bit in the pair is 1, the output of the generator is the second bit.
If the first bit is 0, discard both bits and try again. While the self-shrinking gener­
ator requires about half the memory space as the shrinking generator, it is also
half the speed.

While the self-shrinking generator also seems secure, it still has some unexplained
behavior and unknown properties. This is a very new generator; give it some time.

1

l~FsR-1~ I ...
Figure 16.16 Gollmann cascade.

~---------------1_6_.5_A_5 ________ z:-~

16.5 A5

AS is the stream cipher used to encrypt GSM (Group Special Mobile). That's the
non-American standard for digital cellular mobile telephones. It is used to encrypt
the link from the telephone to the base station. The rest of the link is unencrypted;
the telephone company can easily eavesdrop on your conversations.

A lot of strange politics surrounds this one. Originally it was thought that
GSM's cryptography would prohibit export of the phones to some countries. Now
some officials are discussing whether AS might harm export sales, implying that
it is so weak as to be an embarrassment. Rumor has it that the various NATO
intelligence agencies had a catfight in the mid-1980s over whether GSM encryp­
tion should be strong or weak. The Germans wanted strong cryptography, as they
were sitting near the Soviet Union. The other countries overruled them, and AS is
a French design.

We know most of the details. A British telephone company gave all the docu­
mentation to Bradford University without remembering to get them to sign a
nondisclosure agreement. It leaked here and there, and was eventually posted to the
Internet. A paper describing AS is [1622]; there is also code at the back of this book.

AS consists of three LFSRs; the register lengths are 19, 22, and 23; all the feedback
polynomials are sparse. The output is the XOR of the three LFSRs. AS uses variable
clock control. Each register is clocked based on its own middle bit, XO Red with the
inverse threshold function of the middle bits of all three registers. Usually, two of
the LFSRs clock in each round.

There is a trivial attack requiring 240 encryptions: Guess the contents of the first
two LFSRs, then try to determine the third LFSR from the keystream. (Whether this
attack is actually feasible is under debate, but a hardware key search machine cur­
rently under design should resolve the matter soon [45].)

Nonetheless, it is becoming clear that the basic ideas behind AS are good. It is
very efficient. It passes all known statistical tests; its only known weakness is that
its registers are short enough to make exhaustive search feasible. Variants of AS
with longer shift registers and denser feedback polynomials should be secure.

16.6 HUGHES XPD/KPD

This algorithm is brought to you by Hughes Aircraft Corp. They put it in army tac­
tical radios and direction-finding equipment for sale to foreign militaries. It was
designed in 1986 and called XPD, for Exportable Protection Device. Later it was
renamed KPD-Kinetic Protection Device-and declassified [1037, 1036].

The algorithm uses a 61-bit LFSR. There are 210 different primitive feedback poly­
nomials, which were approved by the NSA. The key selects one of these polynomi­
als (they are all stored in ROM somewhere), as well as the initial state of the LFSR.

It has eight different nonlinear filters, each of which has six taps from the LFSR
and which produces 1 bit. The bits combine to generate a byte, which is used to
encrypt or decrypt the datastream.

CHAPTER 16 Pseudo-Random-Sequence Generators

This algorithm looks pretty impressive, but I doubt it is. The NSA allows export,
so there must be some attack on the order of 240 or less. What is it?

16. 7 NANOTEQ

Nanoteq is a South African electronics company. This is their algorithm that has
been fielded by the South African police to encrypt their fax transmissions, and pre­
sumably for other uses as well.

The algorithm is described, more or less, in [902,903]. It uses a 127-bit LFSR with
a fixed feedback polynomial; the key is the initial state of the feedback register. The
127 bits of the register are reduced to a single keystream bit using 25 primitive cells.
Each cell has five inputs and one output:

f(x1,X2,X3,X4,X5) = X1 + X2 + (x1 + X3) (x2 + X4 + Xs) + (x1 + X4) (x2 + X3) + Xs

Each input of the function is XORed with some bit of the key. There is also a
secret permutation that depends on the particular implementation, and is not de­
tailed in the papers. This algorithm is only available in hardware.

Is this algorithm secure? I doubt it. During the transition to majority rule, embar­
rassing faxes from one police station to another would sometimes turn up in the lib­
eral newspapers. These could easily have been the results of U.S., U.K., or Soviet
intelligence efforts. Ross Anderson took some initial steps towards cryptanalyzing
this algorithm in [46]; I expect more results to come soon.

16.8 RAMBUTAN

Rambutan is a British algorithm, designed by the Communications Electronics
Security Group (one of the aliases used by GCHQ). It is only sold as a hardware mod­
ule and is approved for the protection of classified material up to "Confidential."
The algorithm itself is secret, and the chip is not generally commercially available.

Rambutan has a 112-bit key (plus parity bits) and can operate in three modes: ECB,
CBC, and 8-bit CFB. This strongly indicates that it is a block algorithm, but rumors
point elsewhere. Supposedly, it is a LFSR stream cipher. It has five shift registers,
each one of a different length around 80 bits. The feedback polynomials are fairly
sparse, with only about 10 taps each. Each shift register provides four inputs to a very
large and complex nonlinear function which eventually spits out a single bit.

Why call it Rambutan? Perhaps, like the fruit, it's spiny and forbidding on the out­
side but soft and yielding inside. On the other hand, maybe that's not the reason.

16. 9 ADDITIVE GENERATORS

Additive generators (sometimes called lagged Fibonacci generators) are extremely
efficient because they produce random words instead of random bits [863]. They are
not secure on their own, but can be used as building blocks for secure generators.

_________________ 16_._9_A_d_d_it_i_ve_G_e_n_e_ra_t_o_r_s ______ 7_,,,,~

The initial state of the generator is an array of n-bit words: 8-bit words, 16-bit
words, 32-bit words, whatever: X1, X2, X 3, ••• , Xm. This initial state is the key. The
ith word of the generator is

X; = (X; _ a + X; _ b + X; _ c + ... + X; _ ml mod 2n

If the coefficients a, b, c, ... , m are chosen right, the period of this generator is at
least 2n - 1. One of the requirements on the coefficients is that the least significant
bit forms a maximal-length LFSR.

For example, (55,24,0) is a primitive polynomial mod 2 from Table 16.2. This
means that the following additive generator is maximal length.

X, = (X; _ 55 + X; _ 24) mod 2n

This works because the primitive polynomial has three coefficients. If it has more
than three, you need some additional requirements to make it maximal length. See
[249] for details.

Fish
Fish is an additive generator based on techniques used in the shrinking generator

[190]. It produces a stream of 32-bit words which can be XORed with a plaintext
stream to produce ciphertext, or XORed with a ciphertext stream to produce plain­
text. The algorithm is named as it is because it is a Fibonacci shrinking generator.

First, use these two additive generators. The key is the initial values of these
generators.

A;= (A; - s5 +A;_ 24) mod 232

B; = (B; - 52 +Bi_ 19) mod 232

These sequences are shrunk, as a pair, depending on the least significant bit of B;:
if it is 1, use the pair; if it is 0, ignore the pair. C1 is the sequence of used words from
Ai, and D1 is the sequence of used words from Bi. These words are used in pairs-C 2,,

C2 1 + 1, D2 1, and D2 1 + 1-to generate two 32-bit output words: K2 1 and K2 1 + 1-

E21 = C21 EB (D21 /\ D2 1 + i)

F21 = D21 + 1 /\ (E21 A C2; + i)

K21 = E2; EB F2;

K2; + 1 = C2; + 1 EB F2 1

This algorithm is fast. On a 33 megahertz 486, a C implementation of Fish
encrypts data at 15 megabits per second. Unfortunately, it is also insecure; an attack
has a work factor of about 240 [45].

Pike
Pike is a leaner, meaner version of Fish, brought to you by Ross Anderson, the

man who broke Fish [45]. It uses three additive generators. For example:

A; = (A; - 55 + A; _ 24) mod 232

CHAPTER 16 Pseudo-Random-Sequence Generators

B1 = (B1 _ s1 + B1 _ 7) mod 232

C1 = (C1 - ss + C1 _ 19) mod 232

To generate the keystream word, look at the addition carry bits. If all three agree
(all are O or all are 1), then clock all three generators. If they do not, just clock the
two generators that agree. Save the carry bits for next time. The final output is the
XOR of the three generators.

Pike is faster than Fish, since on the average 2. 75 steps will be required per output
rather than 3. It is far too new to trust, but looks good so far.

Mush
Mush is a mutual shrinking generator. It's easy to explain [1590]. Take two addi­

tive generators: A and B. If the carry bit of A is set, clock B. If the carry bit of B is
set, clock A. Clock A. and set the carry bit if there is a carry. Clock B, and set the
carry bit if there is a carry. The final output is the XOR of the output of A and B.

The easiest generators to use are the ones from Fish:

Ai= (A1 - 55 +A;_ 24) mod 232

B; = (B; - s2 + B1 _ 19) mod 232

On the average, three generator iterations are required to produce one output
word. And if the coefficients of the additive generators are chosen correctly and are
relatively prime, the output sequence will be maximal length. I know of no suc­
cessful attacks, but remember that this algorithm is very new.

16.10 GIFFORD

David Gifford invented a stream cipher and used it to encrypt news wire reports in
the Boston area from 1984 until 1988 [608,607,609]. The algorithm has a single
8-byte register: b0, b1, •.. , b7. The key is the initial state of the register. The algorithm
works in OFB; the plaintext does not affect the algorithm at all. (See Figure 16.17).

To generate a key byte k;, concatenate b0 and b2 and concatenate b4 and b7• Multi­
ply the two together to get a 32-bit number. The third byte from the left is k;.

To update the register, take b 1 and sticky right shift it 1 bit. This means the left­
most bit is both shifted and also remains in place. Take b7 and shift it 1 bit to the
left; there should be a O in the right-most bit position. Take the XOR of the modified
b 1, the modified b7, and b0 . Shift the original register 1 byte to the right and put this
byte in the left-most position.

This algorithm remained secure throughout its life, but was broken in 1994 [287].
It turns out that the feedback polynomial isn't primitive and can be attacked that
way-oops.

________________ 1_6_.1_1_A_l_go_r_it_h_m_M _______ 7_~

Discard

Figure 16.17 Gifford.

16.11 ALGORITHM M

The name is from Knuth [863]. It's a method for combining multiple pseudo-random
streams that increases their security. One generator's output is used to select a
delayed output from the other generator [996, 1003]. In C:

#define ARR_SIZE (8192) /* for example - the larger the better
*/

static unsigned char delay[ARR SIZE

unsigned char prngA(void J
long prngB(void J ;

void init_algM(void
{

long i ;

for (i = 0 ; i < ARR_SIZE i++)
delay[i] = prngA()

I* in it_a l gM * /

unsigned char algM(void)
{

long j,v;

CHAPTER 16 Pseudo-Random-Sequence Generators

j ~ prngB(l % ARR_SIZE , /* get the delay[] index*/
v ~ delay[j] ; /* get the value to return*/
delay[j] ~ prngA(l /* replace it*/

return (v l ;
/* algM */

This has strength in that if prngA were truly random, one could not learn any­
thing about prngB (and could therefore not cryptanalyze it). If prngA were of the
form that it could be cryptanalyzed only if its output were available in order (i.e.,
only if prngB were cryptanalyzed first) and otherwise it was effectively truly ran­
dom, then the combination would be secure.

16.12 PKZIP

Roger Schlafly designed the encryption algorithm built into the PKZIP data com­
pression program. It's a stream cipher that encrypts data one byte at a time. At least,
this is the algorithm in version 2.04g. I can't speak for later versions, but unless
there is some announcement you can probably assume that they are identical.

The algorithm uses three 32-bit variables, initialized as follows:

Ka= 305419896

Ki= 591751049

K2 = 878082192

It has an 8-bit key, K,, derived from K2 • Here is the algorithm (all symbols are stan-
dard C notation):

Ci= Pi I\ K3

K0 = crc32 (K0, P;)

Ki= Ki+ (Ko&. 0x000000ff)

Ki= K 1 * 134775813 + 1

K2 = crc32 (K2, Ki » 24)

K3 = ((K2 I 2) * ((K2 I 2) /\ 1)) » 8

The function crc32 takes the previous value and a byte, XORs them, and calcu­
lates the next value by the CRC polynomial denoted by 0xedb88320. In practice, a
256-entry table can be precomputed and the crc32 calculation becomes:

crc32 (a, b) =(a» 8) /\ table [(a&. 0xff) EB b]

The table is precomputed by the original definition of crc32:

table [i] = crc32 (i, 0)

To encrypt a plaintext stream, first loop the key bytes through the encryption
algorithm to update the keys. Ignore the ciphertext output in this step. Then
encrypt the plain text, one byte at a time. Twelve random bytes are prepended to the

_________________ 1_6._12 __ PK_Z_I_P __________ 7 ~

plaintext, but that's not really important. Decryption is similar to encryption,
except that C1 is used in the second step of the algorithm instead of Pi.

Security of PKZIP

Unfortunately, it's not that great. An attack requires 40 to 200 bytes of known
plaintext and has a time complexity of about 227 [166]. You can do it in a few hours
on your personal computer. If the compressed file has any standard headers, getting
the known plaintext is no problem. Don't use the built-in encryption in PKZIP.

----------------------------=-z~

CHAPTER

Other Stream Ciphers
and Real Random­
Sequence Generators
17.1 RC4

17

RC4 is a variable-key-size stream cipher developed in 1987 by Ron Rivest for RSA
Data Security, Inc. For seven years it was proprietary, and details of the algorithm
were only available after signing a nondisclosure agreement.

In September, 1994 someone posted source code to the Cypherpunks mailing
list-anonymously. It quickly spread to the Usenet newsgroup sci.crypt, and via the
Internet to ftp sites around the world. Readers with legal copies of RC4 confirmed
compatibility. RSA Data Security, Inc. tried to put the genie back into the bottle,
claiming that it was still a trade secret even though it was public; it was too late. It
has since been discussed and dissected on Usenet, distributed at conferences, and
taught in cryptography courses.

RC4 is simple to describe. The algorithm works in OFB: The keystream is inde­
pendent of the plaintext. It has a 8 * 8 S-box: S0, S1, •.• , S255 • The entries are a per­
mutation of the numbers O through 255, and the permutation is a function of the
variable-length key. It has two counters, i and j, initialized to zero.

To generate a random byte, do the following:

i = (i + 1) mod 256

j = (j + Si) mod 256

swap S; and Si

t =(Si+ Si) mod 256

K=S1

The byte K is XO Red with the plain text to produce ciphertext or XORed with the
ciphertext to produce plaintext. Encryption is fast-about 10 times faster than DES.

Initializing the S-box is also easy. First, fill it linearly: S0 = 0, S1 = 1, ... , S255 = 255.
Then fill another 256-byte array with the key, repeating the key as necessary to fill
the entire array: K0, K1, ... , K255 . Set the index j to zero. Then:

~-s _____ C_H_A_P_T_E_R_l_7 __ 0_t_h_er_S_tr_e_a_m_C_ip_h_e_r_s _____________ _

for i = 0 to 255:

j = (j + S; + K1) mod 256

swap S; and S;

And that's it. RSADSI claims that the algorithm is immune to differential and
linear cryptanalysis, doesn't seem to have any small cycles, and is highly non­
linear. (There are no public cryptanalytic results. RC4 can be in about 2 1700

(256! x 256 2) possible states: an enormous number.) The S-box slowly evolves with
use: i ensures that every element changes and j ensures that the elements change
randomly. The algorithm is simple enough that most programmers can quickly
code it from memory.

It should be possible to generalize this idea to larger S-boxes and word sizes. The
previous version is 8-bit RC4. There's no reason why you can't define 16-bit RC4
with a 16 * 16 S-box (lOOK of memory) and a 16-bit word. You'd have to iterate the
initial setup a lot more times-65,536 to keep with the stated design-but the
resulting algorithm should be faster.

RC4 has special export status if its key length is 40 bits or under (see Section 13.8).
This special export status has nothing to do with the secrecy of the algorithm,
although RSA Data Security, Inc. has hinted for years that it does. The name is
trademarked, so anyone who writes his own code has to call it something else. Var­
ious internal documents by RSA Data Security, Inc. have not yet been made public
[1320, 133 7].

So, what's the deal with RC4? It's no longer a trade secret, so presumably anyone
can use it. However, RSA Data Security, Inc. will almost certainly sue anyone who
uses unlicensed RC4 in a commercial product. They probably won't win, but they
will certainly make it cheaper for a company to license than fight.

RC4 is in dozens of commercial cryptography products, including Lotus Notes,
Apple Computer's AOCE, and Oracle Secure SQL. It is part of the Cellular Digital
Packet Data specification [37].

17.2 SEAL

SEAL is a software-efficient stream cipher designed at IBM by Phil Rogaway and
Don Coppersmith [1340]. The algorithm was optimized for 32-bit processors: To run
well it needs eight 32-bit registers and a cache of a few kilobytes. Using a relatively
slow operation, SEAL preprocesses the key operation into a set of tables. These
tables are then used to speed up encryption and decryption.

Pseudo-random Function Family
One novel feature of SEAL is that is isn't really a traditional stream cipher: it is a

pseudo-random function family. Given a 160-bit key k, and a 32-bit n, SEAL stretches
n into an L-bit string k(n). L can take any value less than 64 kilobytes. SEAL is sup­
posed to enjoy the property that if k is selected at random, then k(n) should be com­
putationally indistinguishable from a random L-bit function of n.

________________ 17_.2 __ SE_A_L ________ 7-=--~

The practical effect of SEAL being a pseudo-random function family is that it is
useful in applications where traditional stream ciphers are not. With most stream
ciphers you generate a sequence of bits in one direction: Knowing the key and a posi­
tion i, the only way to determine the ith bit generated is to generate all the bits up
until the ith one. But a pseudo-random function family is different: You get easy
access at any desired position in the key stream. This is very useful.

Imagine you need to secure a hard drive. You want to encrypt each and every 512-
byte sector. With a pseudo-random function family like SEAL, you can encrypt the
contents of sector n by XORing it with k(n). It is as though the entire disk is XORed
with a long pseudo-random string, where any piece of that long string can be com­
puted without any trouble.

A pseudo-random function family also simplifies the synchronization problem
encountered with standard stream ciphers. Suppose you send encrypted messages
over a channel that sometimes drops messages. With a pseudo-random function fam­
ily, you can encrypt under k the nth message you transmit, Xm as n together with the
XOR of x 11 and k(n). The receiver doesn't need to store any state to recover xw nor does
he need to worry about lost messages affecting the message decryption process.

Description of SEAL

The inner loop of SEAL is shown by Figure 17.1. Three key-derived tables, called
R, S, and T, drive the algorithm. The preprocessing step maps the key k, to these
tables using a procedure based on SHA (see Section 18.7). The 2-kilobyte table, T, is
a 9 * 32 bit S-box.

SEAL also uses four 32-bit registers, A, B, C, and D, whose initial values are deter­
mined by n and the k-derived tables Rand T. These registers get modified over sev­
eral iterations, each one involving 8 rounds. In each round 9 bits of a first register
(either A, B, C, or D) are used to index into table T. The value retrieved from Tis
then added to or XO Red with the contents of a second register: again one of A, B, C,
or D. The first register is then circularly shifted by nine positions. In some rounds
the second register is further modified by adding or XO Ring it with the (now shifted)
first register. After 8 rounds of this, A, B, C, and D are added to the keystream, each
masked first by adding or XORing it with a certain word from S. The iteration is
completed by adding to A and C additional values dependent on n, n 1, n 2, n 3, n 4i

exactly which one depends on the parity of the iteration number.
The important ideas in this design seem to be:

1. Use a large, secret, key-derived S-box (T).

2. Alternate arithmetic operations which don't commute (addition and XOR).

3. Use an internal state maintained by the cipher which is not directly man­
ifest in the data stream (the n1 values which modify A and Cat the end of
each iteration).

4. Vary the round function according to the round number, and vary the iter­
ation function according to the iteration number.

~~:s. _____ C_H_A_P_T_E_R_l_7 __ O_t_h_er_S_tr_e_am __ C_ip_h_e_r_s ______________ _

Make
a~ Tables

160 (SHA)

T f-------------------------------•••---

R

s

6

Initialize n ------7'~-----+-___.I

32

Figure 17.1 The inner loop of SEAL.

SEAL requires about five elementary machine operations to encrypt each byte of
text. It runs at 58 megabits per second on a SO megahertz 486 machine. This is prob­
ably the fastest software algorithm in the book.

On the other hand, SEAL must preprocess its key into internal tables. These tables
total roughly 3 kilobytes in size, and their calculation takes about 200 SHA compu­
tations. Thus, SEAL is not appropriate to use in situations where you don't have the
time to perform the key setup or you don't have the memory to store the tables.

Security of SEAL

SEAL is a new algorithm and has yet to be subjected to any published cryptanaly­
sis. This suggests caution. However, SEAL seems to be well thought through. Its
peculiarities do, in the end, make a good deal of sense. And Don Coppersmith is gen­
erally regarded as the world's cleverest cryptanalyst.

Patents and Licenses

SEAL is being patented [380]. Anyone wishing to license SEAL should contact the
Director of Licenses, IBM Corporation, 500 Columbus Ave., Thurnwood, NY, 10594.

17.3 WAKE

WAKE is the Word Auto Key Encryption algorithm, invented by David Wheeler
[1589]. It produces a stream of 32-bit words which can be XORed with a plaintext

________________ 1_7_.3_W_A_K_E ________ 7_~

stream to produce ciphertext, or XORed with a ciphertext stream to produce plain­
text. And it's fast.

WAKE works in CFB; the previous ciphertext word is used to generate the next
key word. It also uses an S-box of 256 32-bit values. This S-box has a special prop­
erty: The high-order byte of all the entries is a permutation of all possible bytes, and
the low-order 3 bytes are random.

First, generate the S-box entries, S;, from the key. Then initialize four registers
with the key (or with another key): a0, b0, c0, and d0 • To generate a 32-bit keystream
word, Ki:

K;=di

The ciphertext word C1, is the plaintext word, P; XORed with K;.
Then, update the four registers:

a;+ 1 = M(a;,d;)

bi+ 1 = M(bi,ai + 1)
C;+ 1 =M(c;,b1+ i)

di+!= M(d;,Ci + i)

Function M is

M(x,y) = (x + y) » 8 EB Six+ y) "'255

This is shown in Figure 17.2. The operation» is a right shift, not a rotation. The
low-order 8 bits of x + y are the input into the S-box. Wheeler gives a procedure for

D f------..1 M

C

B

A

K

P-----+r+-------------~---C

Figure 17.2 Wake.

~-:s. _____ C_H_A_P_T_E_R_l_7 __ O_t_h_er_S_tr_e_a_m_C_ip_h_er_s ______________ _

generating the S-box, but it isn't really complete. Any algorithm to generate random
bytes and a random permutation will work.

WAKE's biggest asset is that it is fast. However, it's insecure against a chosen­
plaintext or chosen-ciphertext attack. It is being used in the current version of Dr.
Solomon's Anti-Virus program.

1 7 .4 FEEDBACK WITH CARRY SHIFT REGISTERS

A feedback with carry shift register, or FCSR, is similar to a LFSR. Both have a shift
register and a feedback function; the difference is that a FCSR also has a carry reg­
ister (see Figure 17.3). Instead of XORing all the bits in the tap sequence, add the
bits together and add in the contents of the carry register. The result mod 2
becomes the new bit. The result divided by 2 becomes the new content of the carry
register.

Figure 17.4 is an example of a 3-bit FCSR tapped at the first and second bit. Its ini­
tial value is 001, and the initial contents of the carry register is 0. The output bit is
the right-most bit of the shift register.

Shift Register Carry Register

0 0 1 0

100 0

0 1 0 0

1 0 1 0

1 1 0 0

1 1 1 0

0 1 1 1

Shift Register

Sum Mod 2
bn-1

r----'--------7._J
I•-----~ Sum

Sum Div 2

Figure 17.3 Feedback with carry shift register.

1 0 1

0 1 0

0 0 1

000

100

17.4 Feedback with Carry Shift Registers

1

1

1

1

0

Note that the final internal state (including the contents of the carry register) is
the same as the second internal state. The sequence cycles at this point, and has a
period of 10.

There are a few things to note here. First, the carry register is not a single bit; it is
a number. The size of the carry register must be at least log2t, where tis the number
of taps. There are only two taps in the previous example, so the carry register only
has to be 1 bit wide. If there were four taps, the carry register would have to be 2 bits
wide, and could be either 0, 1, 2, or 3.

Second, there is an initial transient before the FCSR settles down into its repeat­
ing period. In the previous example, only one state never repeated. For larger and
more complicated FCSRs, there may be more.

Third, the maximum period of a FCSR is not 211 - 1, where n is the length of the
shift register. The maximum period is q - 1, where q is the connection integer. This
number gives the taps and is defined by:

q = 2qi + 22q2 + 24q4 + ... + 2nq11 - 1

(Yes, the q;s are numbered from left to right.) And even worse, q has to be a prime
for which 2 is a primitive root. The rest of this discussion assumes q is of this form.

In this example, q = 2*0 + 4* 1 + 8* 1 - 1 = 11. And 11 is a prime with 2 as a prim­
itive root. So the maximum period is 10.

Not all initial states give you the maximum period. For example, look at the
FCSR when the initial value is 101 and the carry register is set to 4.

Sum Mod 2 Output Bit

Sum

Sum Div 2

Figure 17.4 3-bit FCSR.

~""'s;,------C_H_A_P_T_E_R_l_7 __ 0_t_h_er_S_tr_e_a_m_C_ip_h_e_r_s ______________ _

Shift Register

1 0 1

1 1 0

1 1 1

1 1 1

Carry Register

4

2

1

1

At this point the register spits out a neverending stream of ls.
Any initial state will result in one of four things. First, it is part of the maximum

period. Second, it will fall into the maximum period after an initial transient. Third,
it will fall into a sequence of all zeros after an initial transient. Fourth, it will fall
into a sequence of all ones after an initial transient.

There is a mathematical formula for determining what will happen to a given ini­
tial state, but it's much easier to just test it. Run the FCSR for a while. (If m is the
initial memory, and t is the number of taps, then log2(t) + log 2(m) + 1 steps are
enough.) If it degenerates into a neverending stream of Os or ls within n bits, where
n is the length of the FCSR, don't use it. If it doesn't, then use it. Since the initial
state of a FCSR corresponds to the key of the stream cipher, this means that a FCSR­
based generator will have a set of weak keys.

Table 17.1 lists all connection integers less than 10,000 for which 2 is a primitive
root. These all have maximum period q - I. To turn one of these numbers into a tap
sequence, calculate the binary expansion of q + 1. For example, 9949 would trans­
late to taps on bits 1, 2, 3, 4, 6, 7, 9, 10, and 13, because

9950 = 21c, + 2 10 + 29 + 27 + 26 + 24 + 23 + 22 + 2 1

Table 17.2 lists all the 4-tap tap sequences that result in a maximal-length FCSR
for shift register lengths of 32 bits, 64 bits, and 128 bits. Each of the four values, a,
b, c, and d, combine to generate q, a prime for which 2 is primitive.

q = 2" + 2b + 2c + 2d - 1

Any of these tap sequences can be used to create a FCSR with period q - I.
The idea of using FCSRs for cryptography is still very new; it is being pioneered

by Andy Klapper and Mark Goresky [844,845,654,843,846]. Just as the analysis of
LFSRs is based on the addition of primitive polynomials mod 2, analysis of FCSRs is
based on addition over something called the 2-adic numbers. The theory is well
beyond the scope of this book, but there seems to be a 2-adic analog for everything.
Just as you can define linear complexity, you can define 2-adic complexity. There is
even a 2-adic analog to the Berlekamp-Massey algorithm. What this means is that
the list of potential stream ciphers has just doubled-at least. Anything you can do
with a LFSR you can do with a FCSR.

There are further enhancements to this sort of idea, ones that involve multiple
carry registers. The analysis of these sequence generators is based on addition over
the ramified extensions of the 2-adic numbers [845,846].

_______________ 1_7_.s __ S_tr_e_a_m_C_ip_h_e_r_s_U_s1_·n_g_F_C_SR_s _____ Z:""~

17 .5 STREAM CIPHERS USING FCSRs

There aren't any FCSR stream ciphers in the literature; the theory is still too new.
In the interests of getting the ball rolling, I propose some here. I am taking two dif­
ferent tacks: I am proposing FCSR stream ciphers that are identical to previously
proposed LFSR generators, and I am proposing stream ciphers that use both FCSRs
and LFSRs. The security of the former can probably be analyzed using 2-adic num­
bers; the latter cannot be analyzed using algebraic techniques-they can probably
only be analyzed indirectly. In any case, it is important to choose LFSRs and FCSRs
whose periods are relatively prime.

All this will come later. Right now I know of no implementation or analysis of any
of these ideas. Wait some years and scan the literature before you trust any of them.

Cascade Generators

There are two ways to use FCSRs in a cascade generator:

FCSR Cascade. The Gollmann cascade with FCSRs instead of LFSRs.

LFSR/FCSR Cascade. The Gollmann cascade with the generators
alternating between LFSRs and FCSRs.

FCSR Combining Generators

These generators use a variable number of LFSRs and/or FCSRs, and a variety of
functions to combine them. The XOR operation destroys the algebraic properties of
FCSRs, so it makes sense to use it to combine them. The generator, shown in Figure
17.5, uses a variable number of FCSRs. Its output is the XOR of the outputs of the
individual FCSRs.

Other generators along similar lines are:

FCSR Parity Generator. All registers are FCSRs and the combining
function is XOR.

LFSR/FCSR Parity Generator. Registers are a mix of LFSRs and
FCSRs and the combining function is XOR.

FCSR Threshold Generator. All registers are FCSRs and the combin­
ing function is the majority function.

LFSR/FCSR Threshold Generator. Registers are a mix of LFSRs and
FCSRs and the combining function is the majority function.

FCSR Summation Generator. All registers are FCSRs and the com­
bining function is addition with carry.

LFSR/FCSR Summation Generator. Registers are a mix of LFSRs and
FCSRs and the combining function is addition with carry.

~s
CHAPTER 17 Other Stream Ciphers

Table 17.1
Connection Integers for Maximal-period FCSRs

2 653 1549 2477 3539
5 659 1571 2531 3547
11 661 1619 2539 3557
13 677 1621 2549 3571
19 701 1637 2557 3581
29 709 1667 2579 3613
37 757 1669 2621 3637
53 773 1693 2659 3643
59 787 1733 2677 3659
61 797 1741 2683 3677
67 821 1747 2693 3691
83 827 1787 2699 3701
101 829 1861 2707 3709
107 853 1867 2741 3733
131 859 1877 2789 3779
139 877 1901 2797 3797
149 883 1907 2803 3803
163 907 1931 2819 3851
173 941 1949 2837 3853
179 947 1973 2843 3877
181 1019 1979 2851 3907
197 1061 1987 2861 3917
211 1091 1997 2909 3923
227 1109 2027 2939 3931
269 1117 2029 2957 3947
293 1123 2053 2963 3989
317 1171 2069 3011 4003
347 1187 2083 3019 4013
349 1213 2099 3037 4019
373 1229 2131 3067 4021
379 1237 2141 3083 4091
389 1259 2213 3187 4093
419 1277 2221 3203 4099
421 1283 2237 3253 4133
443 1291 2243 3299 4139
461 1301 2267 3307 4157
467 1307 2269 3323 4219
491 1373 2293 3347 4229
509 1381 2309 3371 4243
523 1427 2333 3413 4253
541 1451 2339 3461 4259
547 1453 2357 3467 4261
557 1483 2371 3469 4283
563 1493 2389 3491 4349
587 1499 2437 3499 4357
613 1523 2459 3517 4363
619 1531 2467 3533 4373

17.5 Stream Ciphers Using FCSRs
z~

Table 17.1 (Cont.)
Connection Integers for Maximal-period FCSRs

4397 5693 6781 7717 8861
4451 5701 6803 7757 8867
4483 5717 6827 7789 8923
4493 5741 6829 7829 8933
4507 5749 6869 7853 8963
4517 5779 6883 7877 8971
4547 5813 6899 7883 9011
4603 5827 6907 7901 9029
4621 5843 6917 7907 9059
4637 5851 6947 7933 9173
4691 5869 6949 7949 9181
4723 5923 6971 8053 9203
4787 5939 7013 8069 9221
4789 5987 7019 8093 9227
4813 6011 7027 8117 9283
4877 6029 7043 8123 9293
4933 6053 7069 8147 9323
4957 6067 7109 8171 9341
4973 6101 7187 8179 9349
4987 6131 7211 8219 9371
5003 6173 7219 8221 9397
5011 6197 7229 8237 9419
5051 6203 7237 8243 9421
5059 6211 7243 8269 9437
5077 6229 7253 8291 9467
5099 6269 7283 8293 9491
5107 6277 7307 8363 9533
5147 6299 7331 8387 9539
5171 6317 7349 8429 9547
5179 6323 7411 8443 9587
5189 6373 7451 8467 9613
5227 6379 7459 8539 9619
5261 6389 7477 8563 9629
5309 6397 7499 8573 9643
5333 6469 7507 8597 9661
5387 6491 7517 8627 9677
5443 6547 7523 8669 9733
5477 6619 7541 8677 9749
5483 6637 7547 8693 9803
5501 6653 7549 8699 9851
5507 6659 7573 8731 9859
5557 6691 7589 8741 9883
5563 6701 7603 8747 9901
5573 6709 7621 8803 9907
5651 6733 7643 8819 9923
5659 6763 7669 8821 9941
5683 6779 7691 8837 9949

~s
CHAPTER 17 Other Stream Ciphers

Table 17.2
Tap Sequences for Maximal-length FCSRs

(32, 6, 3, 2) (64, 24, 19, 2) (64, 59, 28, 2) (96, 55, 53, 2)
(32, 7, 5, 2) (64, 25, 3, 2) (64, 59, 38, 2) (96, 56, 9, 2)
(32, 8, 3, 2) (64, 25, 4, 2) (64, 59, 44, 2) (96, 56, 51, 2)
(32, 13, 8, 2) (64, 25, 11, 2) (64, 60, 49, 2) (96, 57, 3, 2)
(32, 13, 12, 2) (64, 25, 19, 2) (64, 61, 51, 2) (96, 57, 17, 2)
(32, 15, 6, 2) (64, 27, 5, 2) (64, 63, 8, 2) (96, 57, 47, 2)
(32, 16, 2, 1) (64, 27, 16, 2) (64, 63, 13, 2) (96, 58, 35, 2)
(32, 16, 3, 2) (64, 27, 22, 2) (64, 63, 61, 2) (96, 59, 46, 2)
(32, 16, 5, 2) (64, 28, 19, 2) (96, 60, 29, 2)
(32, 17, 5, 2) (64, 28, 25, 2) (96, 15, 5, 2) (96, 60, 41, 2)
(32, 19, 2, 1) (64, 29, 16, 2) (96, 21, 17, 2) (96, 60, 45, 2)
(32, 19, 5, 2) (64, 29, 28, 2) (96, 25, 19, 2) (96, 61, 17, 2)
(32, 19, 9, 2) (64, 31, 12, 2) (96, 25, 20, 2) (96, 63, 20, 2)
(32, 19, 12, 2) (64, 32, 21, 2) (96, 29, 15, 2) (96, 65, 12, 2)
(32, 19, 17, 2) (64, 35, 29, 2) (96, 29, 17, 2) (96, 65, 39, 2)
(32, 20, 17, 2) (64, 36, 7, 2) (96, 30, 3, 2) (96, 65, 51, 2)
(32, 21, 9, 2) (64, 37, 2, 1) (96, 32, 21, 2) (96, 67, 5, 2)
(32, 21, 15, 2) (64, 37, 11, 2) (96, 32, 27, 2) (96, 67, 25, 2)
(32, 23, 8, 2) (64, 39, 4, 2) (96, 33, 5, 2) (96, 67, 34, 2)
(32, 23, 21, 2) (64, 39, 25, 2) (96, 35, 17, 2) (96, 68, 5, 2)
(32, 25, 5, 2) (64, 41, 5, 2) (96, 35, 33, 2) (96, 68, 19, 2)
(32, 25, 12, 2) (64, 41, 11, 2) (96, 39, 21, 2) (96, 69, 17, 2)
(32, 27, 25, 2) (64, 41, 27, 2) (96, 40, 25, 2) (96, 69, 36, 2)
(32, 29, 19, 2) (64, 43, 21, 2) (96, 41, 12, 2) (96, 70, 23, 2)
(32, 29, 20, 2) (64, 43, 28, 2) (96, 41, 27, 2) (96, 71, 6, 2)
(32, 30, 3, 2) (64, 45, 28, 2) (96, 41, 35, 2) (96, 71, 40, 2)
(32, 30, 7, 2) (64, 45, 41, 2) (96, 42, 35, 2) (96, 72, 53, 2)
(32, 31, 5, 2) (64, 47, 5, 2) (96, 43, 14, 2) (96, 73, 32, 2)
(32, 31, 9, 2) (64, 47, 21, 2) (96, 44, 23, 2) (96, 77, 27, 2)
(32, 31, 30, 2) (64, 47, 30, 2) (96, 45, 41, 2) (96, 77, 31, 2)

(64, 49, 19, 2) (96, 47, 36, 2) (96, 77, 32, 2)
(64, 3, 2, 1) (64, 49, 20, 2) (96, 49, 31, 2) (96, 77, 33, 2)
(64, 14, 3, 2) (64, 52, 29, 2) (96, 51, 30, 2) (96, 77, 71, 2)
(64, 15, 8, 2) (64, 53, 8, 2) (96, 53, 17, 2) (96, 78, 39, 2)
(64, 17, 2, 1) (64, 53, 43, 2) (96, 53, 19, 2) (96, 79, 4, 2)
(64, 17, 9, 2) (64, 56, 39, 2) (96, 53, 32, 2) (96, 81, 80, 2)
(64, 17, 16, 2) (64, 56, 45, 2) (96, 53, 48, 2) (96, 83, 14, 2)
(64, 19, 2, 1) (64, 59, 5, 2) (96, 54, 15, 2) (96, 83, 26, 2)
(64, 19, 18, 2) (64, 59, 8, 2) (96, 55, 44, 2) (96, 83, 54, 2)

____________ 1_7._5_St_re_a_m_C_1_·ph_e_rs_U_s_in_g_F_C_S_R_s ___ ~7~

(96, 83, 60, 2)
(96, 83, 65, 2)
(96, 83, 78, 2)
(96, 84, 65, 2)
(96, 85, 17, 2)
(96, 85, 31, 2)
(96, 85, 76, 2)
(96, 85, 79, 2)
(96, 86, 39, 2)
(96, 86, 71, 2)
(96, 87, 9, 2)
(96, 87, 44, 2)
(96, 87, 45, 2)
(96, 88, 19, 2)
(96, 88, 35, 2)
(96, 88, 43, 2)
(96, 88, 79, 2)
(96, 89, 35, 2)
(96, 89, 51, 2)
(96, 89, 69, 2)
(96, 89, 87, 2)
(96, 92, 51, 2)
(96, 92, 71, 2)
(96, 93, 32, 2)
(96, 93, 39, 2)
(96, 94, 35, 2)
(96, 95, 4, 2)
(96, 95, 16, 2)
(96, 95, 32, 2)
(96, 95, 44, 2)
(96, 95, 45, 2)

(128, 5, 4, 2)
(128, 15, 4, 2)
(128, 21, 19, 2)
(128, 25, 5, 2)
(128, 26, 11, 2)
(128, 27, 25, 2)

Table 17 .2 (Cont.)
Tap Sequences for Maximal-length FCSRs

(128, 31, 25, 2)
(128, 33, 21, 2)
(128, 35, 22, 2)
(128, 37, 8, 2)
(128, 41, 12, 2)
(128, 42, 35, 2)
(128, 43, 25, 2)
(128, 43, 42, 2)
(128, 45, 17, 2)
(128, 45, 27, 2)
(128, 49, 9, 2)
(128, 51, 9, 2)
(128, 54, 51, 2)
(128, 55, 45, 2)
(128, 56, 15, 2)
(128, 56, 19, 2)
(128, 56, 55, 2)
(128, 57, 21, 2)
(128, 57, 37, 2)
(128, 59, 29, 2)
(128, 59, 49, 2)
(128, 60, 57, 2)
(128, 61, 9, 2)
(128, 61, 23, 2)
(128, 61, 52, 2)
(128, 63, 40, 2)
(128, 63, 62, 2)
(128, 67, 41, 2)
(128, 69, 33, 2)
(128, 71, 53, 2)
(128, 72, 15, 2)
(128, 72, 41, 2)
(128, 73, 5, 2)
(128, 73, 65, 2)
(128, 73, 67, 2)
(128, 75, 13, 2)
(128, 80, 39, 2)
(128, 80, 53, 2)

(128, 81, 55, 2)
(128, 82, 67, 2)
(128, 83, 60, 2)
(128, 83, 61, 2)
(128, 83, 77, 2)
(128, 84, 15, 2)
(128, 84, 43, 2)
(128, 85, 63, 2)
(128, 87, 57, 2)
(128, 87, 81, 2)
(128, 89, 81, 2)
(128, 90, 43, 2)
(128, 91, 9, 2)
(128, 91, 13, 2)
(128, 91, 44, 2)
(128, 92, 35, 2)
(128, 95, 94, 2)
(128, 96, 23, 2)
(128, 96, 61, 2)
(128, 97, 25, 2)
(128, 97, 68, 2)
(128, 97, 72, 2)
(128, 97, 75, 2)
(128, 99, 13, 2)
(128, 99, 14, 2)
(128, 99, 26, 2)
(128, 99, 54, 2)
(128, 99, 56, 2)
(128, 99, 78, 2)
(128, 100, 13, 2)
(128, 100, 39, 2)
(128, 101, 44, 2)
(128, 101, 97, 2)
(128, 103, 46, 2)
(128, 104, 13, 2)
(128, 104, 19, 2)
(128, 104, 35, 2)
(128, 105, 7, 2)

(128, 105, 11, 2)
(128, 105, 31, 2)
(128, 105, 48, 2)
(128, 107, 40, 2)
(128, 107, 62, 2)
(128, 107, 102, 2)
(128, 108, 35, 2)
(128, 108, 73, 2)
(128, 108, 75, 2)
(128, 108, 89, 2)
(128, 109, 11, 2)
(128, 109, 108, 2)
(128, 110, 23, 2)
(128, 111, 61, 2)
(128, 113, 59, 2)
(128, 114, 83, 2)
(118, 115, 73, 2)
(128, 117, 105, 2)
(128, 119, 30, 2)
(128, 119, 101, 2)
(128, 120, 9, 2)
(128, 120, 27, 2)
(128, 120, 37, 2)
(128, 120, 41, 2)
(128, 120, 79, 2)
(128, 120, 81, 2)
(128, 121, 5, 2)
(128, 121, 67, 2)
(128, 121, 95, 2)
(128, 121, 96, 2)
(128, 123, 40, 2)
(128, 123, 78, 2)
(128, 124, 41, 2)
(128, 124, 69, 2)
(128, 124, 81, 2)
(128, 125, 33, 2)
(128, 125, 43, 2)
(128, 127, 121, 2)

~---:s. _____ C_H_A_P_T_E_R_l_7 __ O_t_h_e_r_S_tr_e_a_m_C_ip_h_er_s ______________ _

I Register-1 I ..

I Register-2 I ..
Combining

I Register-3 I .. Function

I Register-n I ..

Figure 17.5 Combining Generators.

LFSR/FCSR Summation/Parity Cascade
The theory is that addition with carry destroys the algebraic properties of LFSRs,

and that XOR destroys the algebraic properties of FCSRs. This generator combines
those ideas, as used in the LFSR/FCSR Summation Generator and the LFSR/FCSR
Parity Generator just listed, with the Gollmann cascade.

The generator is a series of arrays of registers, with the clock of each array con­
trolled by the output of the previous array. Figure 17.6 is one stage of this generator.
The first array of LFSRs is clocked and the results are combined using addition with
carry. If the output of this combining function is 1, then the next array (of FCSRs) is
clocked and the output of those FCSRs is combined with the output of the previous
combining function using XOR. If the output of the first combining function is 0,
then the array of FCSRs is not clocked and the output is simply added to the carry
from the previous round. If the output of this second combining function is 1, then
the third array of LFSRs is clocked, and so on.

This generator uses a lot of registers: n*m, where n is the number of stages and m
is the number of registers per stage. I recommend n = 10 and m = 5.

Alternating Stop-and-Go Generators

These generators are stop-and-go generators with FCSRs instead of some LFSRs.
Additionally, the XOR operation can be replaced with an addition with carry (see
Figure 17. 7).

FCSR Stop-and-Go Generator. Register-I, Register-2, and Register-3
are FCSRs. The combining operation is XOR.

FCSR/LFSR Stop-and-Go Generator. Register-I is a FCSR, and Regis­
ters-2 and -3 are LFSRs. The combining operation is addition with
carry.

_______________ 1_7_.5_S_t_r_ea_m_C_1_·p_h_e_rs_U_s1_·n_g_F_C_S_R_s _____ 7 __ ~

LFSR

LFSR

Adder
with

Carry

Figure 17.6 Concoction Generator.

FCSR

XOR

FCSR

LFSR/FCSR Stop-and-Go Generator. Register-I is a LFSR, and Regis­
ters-2 and -3 are FCSRs. The combining operation is XOR.

Shrinking Generators

There are four basic generator types using FCSRs:

FCSR Shrinking Generator. A shrinking generator with FCSRs
instead of LFSRs.

FCSR/LFSR Shrinking Generator. A shrinking generator with a LFSR
shrinking a FCSR.

LFSR/FCSR Shrinking Generator: A shrinking generator with a FCSR
shrinking a LFSR.

Register-2

Figure 17. 7 Alternating stop-and-go generators.

Combining
Function

~...,.:S _____ C_H_A_P_T_E_R_l_7 __ O_t_h_er_S_tr_e_am __ C_ip_h_e_r_s ______________ _

FCSR Self-Shrinking Generator. A self-shrinking generator with a
FCSR instead of a LFSR.

1 7 .6 NONLINEAR-FEEDBACK SHIFT REGISTERS

It is easy to imagine a more complicated feedback sequence than the ones used in
LFSRs or FCSRs. The problem is that there isn't any mathematical theory that can
analyze them. You'll get something, but who knows what it is? In particular, here
are some problems with nonlinear-feedback shift register sequences.

There may be biases, such as more ones than zeros or fewer runs than
expected, in the output sequence.

The maximum period of the sequence may be much lower than
expected.

The period of the sequence might be different for different starting
values.

The sequence may appear random for a while, but then "dead end"
into a single value. (This can easily be solved by XORing the nonlin­
ear function with the rightmost bit.)

On the plus side, if there is no theory to analyze nonlinear-feedback shift registers
for security, there are few tools to cryptanalyze stream ciphers based on them. We
can use nonlinear-feedback shift registers in stream-cipher design, but we have to be
careful.

In a nonlinear-feedback shift register, the feedback function can be anything you
want (see Figure 17.8).

~______,~. i.------~

+------~

Figure 17.8 A nonlinear-feedback shift register (probably insecure).

_________________ 1_7_.7 __ O_t_h_er_S_tr_e_a_m_C_ip_h_e_r_s ______ 7""""~

Figure 17.9 3-bit nonlinear feedback shift register.

Figure 17.9 is a 3-bit shift register with the following feedback function: The new
bit is the first bit times the second bit. If it is initialized with the value 110, it pro­
duces the following sequence of internal states:

1 1 0

0 1 1

1 0 1

0 1 0

0 0 1

000

000

And so on forever.
The output sequence is the string of least significant bits:

0 1 1 0 1 0 0 0 0 0 0 0

This isn't terribly useful.
It gets even worse. If the initial value is 100, it produces 010, 001, then repeats for­

ever at 000. If the initial value is 111, it repeats itself forever right from the start.
Some work has been done on computing the linear complexity of the product of

two LFSRs [1650, 726, 1364,630,658,659]. A construction that involved computing
LFSRs over a field of odd characteristic [310] is insecure [842].

17. 7 OTHER STREAM CIPHERS

Many other stream ciphers have appeared in the literature here and there. Here are
some of them.

Pless Generator
This generator is designed around the capabilities of the J-K flip-flop [1250]. Eight

LFSRs drive four J-K flip-flops; each flip-flop acts as a nonlinear combiner for two~ c

~-..:s.::-------C_H_A_P_T_ER_l_7 __ 0_t_h_e_r_S_tr_e_a_m_C_1_·p_h_e_r_s _______________ _

the LFSRs. To avoid the problem that knowledge of an output of the flip-flop identi­
fies both the source and value of the next output bit, clock the four flip-flops and
then interleave the outputs to yield the final keystream.

This algorithm has been cryptanalyzed by attacking each of the four flip-flops
independently [1356]. Additionally, combining J-K flip-flops is cryptographically
weak; generators of this type succumb to correlation attacks [1451].

Cellular Automaton Generator

In [1608, 1609], Steve Wolfram proposed using a one-dimensional cellular automa­
ton as a pseudo-random-number generator. Cellular automata is not the subject of
this book, but Wolfram's generator consisted of a one-dimensional array of bits, a 1,

a2, a3, •.. , a1<, ... , aw and an update function:

a;_= ak _ 1 EB (ak v ak + i)

The bit is extracted from one of the ak values; which one really doesn't matter.
The generator's behavior appears to be quite random. However, there is a known­

plaintext attack against these generators [1052]. This attack works on a PC with val­
ues of n up to 500 bits. Additionally, Paul Bardell proved that the output of a cellular
automaton can also be generated by a linear-feedback shift register of equal length
and is therefore no more secure [83].

1/p Generator
This generator was proposed, and then cryptanalyzed, in [193]. If the internal state

of the generator at time t is Xu then

x(+ 1 = bx(mod p

The output of the generator is the least significant bit of xt div p, where div is the
truncated integer division. For maximum period, the constants b and p should be
chosen so that pis prime and bis a primitive root mod p. Unfortunately, this gen­
erator isn't secure. (Note that for b = 2, an FCSR with a connection integer p outputs
the reverse of this sequence.)

crypt(l)

The original UNIX encryption algorithm, crypt(1), is a stream cipher based on the
same ideas as the Enigma. This is a 256-element, single-rotor substitution cipher
with a reflector. Both the rotor and the reflector are generated from the key. This
algorithm is far simpler than the World War II German Enigma and, for a skilled
cryptanalyst, very easy to break [1576, 1299]. A public-domain UNIX program,
called Crypt Breakers Workbench (CBW), can be used to break files encrypted with
crypt(l).

Other Schemes

Another generator is based on the knapsack problem (see Section 19.2) [1363].
CRYPTO-LEGGO is insecure [301]. Joan Daemen has developed SubStream, Jam,
and StepRightUp [402]; they are all too new to comment on. Many other algorithms

17. 8 System-Theoretic Approach to Stream-Cipher Design

are described in the literature, and even more are kept secret and incorporated
into equipment.

17 .8 SYSTEM-THEORETIC APPROACH TO STREAM-CIPHER

DESIGN

In practice, stream-cipher design is a lot like block-cipher design. It involves more
mathematical theory, but in the end a cryptographer proposes a design and then
tries to analyze it.

According to Rainer Rueppel, there are four different approaches to the construc-
tion of stream ciphers [1360, 1362]:

System-theoretic approach. Try to make sure that each design creates
a difficult and unknown problem for the cryptanalyst, using a set of
fundamental design principles and criteria.

Information-theoretic approach. Try to keep the cryptanalyst in the
dark about the plaintext. No matter how much work the cryptanalyst
invests, he will never get a unique solution.

Complexity-theoretic approach. Try to base the cryptosystem on, or
make it equivalent to, some known and difficult problem such as fac­
toring or taking discrete logarithms.

Randomized approach. Try to generate an unmanageably large prob­
lem by forcing the cryptanalyst to examine lots of useless data in his
attempts at cryptanalysis.

The approaches differ in their assumptions about the capabilities and opportuni­
ties of the cryptanalyst, the definition of cryptographic success, and the notion of
security. Most of the research in this field is theoretical, but there are some good
stream ciphers among the impractical ones.

The system-theoretic approach was used in all the stream ciphers previously
listed; it produces most of the stream ciphers that are practical enough to be used in
the real world. A cryptographer designs keystream generators that have testable
security properties-period, distribution of bit patterns, linear complexity, and so
on-and not ciphers based on mathematical theory. The cryptographer also studies
various cryptanalytic techniques against these generators and makes sure the gen­
erators are immune to these attacks.

Over the years, the approach has resulted in a set of design criteria for stream
ciphers [1432,99,1357,1249]. These were discussed by Rueppel in [1362], in which
he details the theory behind them.

Long period, no repetitions.

Linear complexity criteria-large linear complexity, linear complex­
ity profile, local linear complexity, and so forth.

~-s; _____ C_H_A_P_T_E_R_l_7 __ 0_th_er_St_r_e_am __ C_ip_h_e_r_s ______________ _

Statistical criteria such as ideal k-tuple distributions.

Confusion-every keystream bit must be a complex transformation
of all or most of the key bits.

Diffusion-redundancies in substructures must be dissipated into
long-range statistics.

Nonlinearity criteria for Boolean functions like mth-order correlation
immunity, distance to linear functions, avalanche criterion, and so on.

This list of design criteria is not unique for stream ciphers designed by the
system-theoretic approach; it is true for all stream ciphers. It is even true for all
block ciphers. The unique point about the system-theoretic approach is that stream
ciphers are designed to satisfy these goals directly.

The major problem with these cryptosystems is that nothing can be proven about
their security; the design criteria have never been proved to be either necessary or
sufficient for security. A keystream generator may satisfy all the design principles,
but could still turn out to be insecure. Another could turn out to be secure. There is
still some magic to the process.

On the other hand, breaking each of these keystream generators is a different
problem for a cryptanalyst. If enough different generators are out there, it may not
be worth the cryptanalyst's time to try to break each one. He may better achieve
fame and glory by figuring out better ways to factor large numbers or calculating dis­
crete logarithms.

1 7. 9 COMPLEXITY-THEORETIC APPROACH TO STREAM­

CIPHER DESIGN

Rueppel also delineated a complexity-theoretic approach to stream-cipher design.
Here, a cryptographer attempts to use complexity theory to prove that his genera­
tors are secure. Consequently, the generators tend to be more complicated, based on
the same sorts of hard problems as public-key cryptography. And like public-key
algorithms, they tend to be slow and cumbersome.

Shamir's Pseudo-Random-Number Generator

Adi Shamir used the RSA algorithm as a pseudo-random-number generator [1417].
While Shamir showed that predicting the output of the pseudo-random-number gen­
erator is equivalent to breaking RSA, potential biases in the output were demon­
strated in [1401,200].

Blum-Micali Generator
This generator gets its security from the difficulty of computing discrete loga­

rithms [200]. Let g be a prime and p be an odd prime. A key x0, starts off the process:

x 1 + 1 = gx1 mod p

The output of the generator is 1 if xi< (p - 1)/2, and O otherwise.

17.9 Complexity-Theoretic Approach to Stream-Cipher Design

If p is large enough so that computing discrete logarithms mod p is infeasible,
then this generator is secure. Additional theoretical results can be found in [1627,
986,985,123 7,896,799].

RSA
This RSA generator [35,36] is a modification of [200]. The initial parameters are a

modulus N which is the product of two large primes p and q, an integer e which is
relatively prime to (p - 1) (q - 1), and a random seed x0, where x0 is less than N.

xi+ 1 = xf mod N

The output of the generator is the least significant bit of xi. The security of this
generator is based on the difficulty of breaking RSA. If N is large enough, then the
generator is secure. Additional theory can be found in [1569,1570,1571,30,354].

Blum, Blum, and Shub
The simplest and most efficient complexity-theoretic generator is called the

Blum, Blum, and Shub generator, after its inventors. Mercifully, we shall abbreviate
it to BBS, although it is sometimes called the quadratic residue generator [193].

The theory behind the BBS generator has to do with quadratic residues modulo n
(see Section 11.3). Here's how it works.

First find two large prime numbers, p and q, which are congruent to 3 modulo 4.
The product of those numbers, n, is a Blum integer. Choose another random integer,
x, which is relatively prime ton. Compute

x 0 =x 2 modn

That's the seed for the generator.
Now you can start computing bits. The ith pseudo-random bit is the least signifi­

cant bit of x1, where

x 1 = x 1 _ 12 mod n

The most intriguing property of this generator is that you don't have to iterate
through all i - 1 bits to get the ith bit. If you know p and q, you can compute the ith
bit directly.

b . h 1 . 'f' b' f h (2i)mo<l((p-l)(q-ll)
1 1s t e east s1gn1 1cant 1t o x 1, w ere xi= x 0 ·

This property means you can use this cryptographically strong pseudo-random-bit
generator as a stream cryptosystem for a random-access file.

The security of this scheme rests on the difficulty of factoring n. You can make n
public, so anyone can generate bits using the generator. However, unless a cryptan­
alyst can factor n, he can never predict the output of the generator-not even with a
statement like: "The next bit has a 51 percent chance of being a 1."

More strongly, the BBS generator is unpredictable to the left and unpredictable to
the right. This means that given a sequence generated by the generator, a cryptana­
lyst cannot predict the next bit in the sequence nor the previous bit in the sequence.
This is not security based on some complicated bit generator that no one under­
stands, but the mathematics behind factoring n.

~..,_:s.,----------C_H_A_P_T_E_R_l_7 __ O_t_h_er_S_tr_e_am __ C_ip_h_e_r_s ______________ _

This algorithm is slow, but there are speedups. As it turns out, you can use more
than the least significant bit of each X; as a pseudo-random bit. According to [1569,
15 70, 15 71,35,36], if n is the length of x 1, the least significant log 2n bits of x 1 can be
used. The BBS generator is comparatively slow and isn't useful for stream ciphers.
However, for high-security applications, such as key generation, this generator is
the best of the lot.

17 .10 OTHER APPROACHES TO STREAM-CIPHER DESIGN

In an information-theoretic approach to stream ciphers, the cryptanalyst is assumed
to have unlimited time and computing power. The only practical stream cipher that
is secure against an adversary like this is a one-time pad (see Section 1.5). Since bits
would be impractical on a pad, this is sometimes called a one-time tape. Two mag­
netic tapes, one at the encryption end and the other at the decryption end, would
have the same random keystream on them. To encrypt, simply XOR the plaintext
with the bits on the tape. To decrypt, XOR the ciphertext with the bits on the other,
identical, tape. You never use the same keystream bits twice. Since the keystream
bits are truly random, no one can predict the keystream. If you burn the tapes when
you are through with them, you've got perfect secrecy (assuming no one else has
copies of the tape).

Another information-theoretic stream cipher, developed by Claus Schnorr,
assumes that the cryptanalyst only has access to a limited number of ciphertext bits
[1395]. The results are highly theoretical and have no practical value, at least not yet.
For more details, consult [1361,1643,1193].

In a randomized stream cipher, the cryptographer tries to ensure that the crypt­
analyst has an infeasibly large problem to solve. The objective is to increase the
number of bits the cryptanalyst has to work with, while keeping the secret key
small. This can be done by making use of a large public random string for encryption
and decryption. The key would specify which parts of the large random string are to
be used for encryption and decryption. The cryptanalyst, not knowing the key, is
forced to pursue a brute-force search through the random string. The security of this
sort of cipher can be expressed by the average number of bits a cryptanalyst must
examine before the chances of determining the key improve over pure guessing.

Rip van Winkle Cipher

James Massey and Ingemar Ingemarsson proposed the Rip van Winkle cipher
[1011], so named because the receiver has to receive 2n bits of ciphertext before
attempting decryption. The algorithm, illustrated in Figure 17.10, is simple to
implement, provably secure, and completely impractical. Simply XOR the plain text
with the keystream, and delay the keystream by O to 20 years-the exact delay is
part of the key. In Massey's words: "One can easily guarantee that the enemy crypt­
analyst will need thousands of years to break the cipher, if one is willing to wait mil­
lions of years to read the plaintext." Further work on this idea can be found in
[1577, 755].

17.11 Cascading Multiple Stream Ciphers

Random
Bit Stream -------------- Channel

Plaintext
Bit Stream

Delay

0-20years

(multi­
plexed)

(Length is secret and dependent on key)

Figure 17.10 Rip van Winkle cipher.

Diffie's Randomized Stream Cipher

Delay

Plaintext

This scheme was first proposed by Whitfield Diffie [1362]. The data are 2n random
sequences. The key is k, a random n-bit string. To encrypt a message, Alice uses the
kth random string as a one-time pad. She then sends the ciphertext plus the 2n ran­
dom strings over 2n + 1 different communications channels.

Bob knows k, so he can easily choose which one-time pad to decrypt the message
with. Eve has no choice but to examine the random sequences one at a time until
she finds the correct one-time pad. Any attack must examine an expected number
of bits which is in 0(2n). Rueppel points out that if you send n random strings
instead of 2n, and if the key is used to specify a linear combination of those random
strings, the security is the same.

Maurer's Randomized Stream Cipher

Ueli Maurer described a scheme based on XORing the plaintext with several large
public random-bit sequences [1034, 1029, 1030]. The key is the set of starting positions
within each sequence. This turns out to be provably almost secure, with a calculable
probability of being broken based on how much memory the attacker has at his dis­
posal, without regard to the amount of computing power he has. Maurer claims that
this scheme would be practical with about 100 different sequences of 1020 random bits
each. Digitizing the face of the moon might be one way to get this many bits.

1 7 .11 CASCADING MULTIPLE STREAM CIPHERS

If performance is no issue, there's no reason not to choose multiple stream ciphers
and cascade them. Simply XOR the output of each generator with the plaintext to
get the ciphertext. Ueli Maurer's result (see Section 15. 7) says that if the generators
have independent keys, then the security of the cascade is at least as secure as the
strongest algorithm in the cascade. It is probably much more secure than that.

Stream ciphers can be combined in all the same ways as block ciphers (see Chap­
ter 15). Stream ciphers can be cascaded (see Section 15.7) with other stream ciphers,
or together with block ciphers.

~""'s,------C_H_A_P_T_E_R_l_7 __ 0_t_h_er_S_tr_e_a_m_C_ip_h_e_r_s ______________ _

A clever trick is to use one algorithm, either a block or stream algorithm, to fre­
quently rekey a fast stream algorithm (which could even be a block algorithm in
OFB mode). The fast algorithm could be weak, since a cryptanalyst would never see
very much plaintext encrypted with any one key.

There's a trade-off between the size of the fast algorithm's internal state (which
may impact security) and how often you can afford to rekey. The rekey needs to be
relatively fast; algorithms that have a long key setup routine aren't suitable for this
kind of application. And the rekeying should be independent of the internal state of
the fast algorithm.

1 7 .12 CHOOSING A STREAM CIPHER

If the study of stream ciphers offers any lessons, it's that new types of attacks are
invented with alarming regularity. Classically, stream ciphers have been based on
considerable mathematical theory. This theory can be used to prove good properties
about the cipher, but can also be used to find new attacks against the cipher. I worry
about any stream cipher based solely on LFSRs for this reason.

I prefer stream ciphers that are designed more along the lines of block ciphers:
nonlinear transformations, large S-boxes, and so on. RC4 is my favorite, and SEAL
is a close second. I would be very interested in seeing cryptanalytic results against
my generators that combine LFSRs and FCSRs; this seems to be a very fruitful area
of stream-cipher research to mine for actual designs. Or, you can use a block cipher
in OFB or CFB to get a stream cipher.

Table 17.3 gives some timing measurements for some algorithms. These are
meant for comparison purposes only.

1 7 .13 GENERATING MULTIPLE STREAMS FROM A SINGLE
PSEUDO-RANDOM-SEQUENCE GENERATOR

If you need to encrypt multiple channels of communications in a single box­
a multiplexer, for example-the easy solution is to use a different pseudo-random­
sequence generator for each stream. This has two problems: It requires more hard­
ware, and all the different generators have to be synchronized. It would be simpler
to use a single generator.

Table 17.3
Encryption Speeds of Some

Stream Ciphers on a 33MHz 486SX
Algorithm Encryption Speed (Kilobytes/Second)

AS 5
PIKE 62
RC4 164
SEAL 381

17.14 Real Random-Sequence Generators

One solution is to clock the generator multiple times. If you want three indepen­
dent streams, clock the generator three times and send 1 bit into each stream. This
technique works, but you may have trouble clocking the generator as fast as you
would like. For example, if you can only clock the generator three times as fast as
the data stream, you can only create three streams. Another way is to use the same
sequence for each channel-perhaps with a variable time delay. This is insecure.

A really clever idea [1489], patented by the NSA, is shown in Figure 17.11. Dump
the output of your favorite generator into an m-bit simple shift register. At each
clock pulse, shift the register one to the right. Then, for each output stream, AND
the register with a different m-bit control vector viewed as a unique identifier for
the desired output stream, then XOR all the bits together to get the output bit for
that stream. If you want several output streams in parallel, you need a separate con­
trol vector and an XOR/ AND logic array for each output stream.

There are some things to watch out for. If any of the streams are linear combina­
tions of other streams, then the system can be broken. But if you are clever, this is
an easy and secure way to solve the problem.

1 7 .14 REAL RANDOM-SEQUENCE GENERATORS

Sometimes cryptographically secure pseudo-random numbers are not good enough.
Many times in cryptography, you want real random numbers. Key generation is a
prime example. It's fine to generate random cryptographic keys based on a pseudo-

Control
Vector 1

i
Bitwise
AND

Stream 1

Generator

Control
Vector 2

Bitwise
AND

Stream 2

Figure 17.11 Multiple-bit generator.

m-Bit
Output Control

Vector n

i
Bitwise
AND

Stream n

~""':S _____ C_H_A_P_T_E_R_l_7 __ O_t_h_er_S_tr_e_am __ C_ip_h_e_r_s ______________ _

random sequence generator, but if an adversary gets a copy of that generator and the
master key, the adversary can create the same keys and break your cryptosystem, no
matter how secure your algorithms are. A random-sequence generator's sequences
cannot be reproduced. No one, not even you, can reproduce the bit sequence out of
those generators.

There is a large philosophical debate over whether any of these techniques actu­
ally produces real random bits. I am not going to address that debate. The point here
is to produce bits that have the same statistical properties as random bits and are not
reproducible.

The important thing about any real random-sequence generator is that it be
tested. There is a wealth of literature on this topic. Tests of randomness can be
found in [863,99]. Maurer showed that all these tests can be derived from trying to
compress the sequence [1031, 1032]. If you can compress a random sequence, then it
is not truly random.

Anyhow, what we have here is a whole lot of black magic. The primary point is to
generate a sequence of bits that your adversary is unlikely to guess. It doesn't sound
like much, but it's harder than you think. I can't prove that any of these techniques
generates random bits. These techniques produce a sequence of bits that cannot be
easily reproduced. For some details, see [1375,1376,511].

RAND Tables
Back in 1955, when computers were still new, the Rand Corporation published a

book that contained a million random digits [1289]. Their method is described in
the book:

The random digits in the book were produced by rerandomization of a basic table
generated by an electronic roulette wheel. Briefly, a random frequency pulse
source, providing on the average about 100,000 pulses per second, was gated about
once per second by a constant frequency pulse. Pulse standardization circuits
passed the pulses through a 5-place binary counter. In principle the machine was
a 32-place roulette wheel which made, on the average, about 3000 revolutions per
trial and produced one number per second. A binary-to-decimal converter was
used which converted 20 of the 32 numbers (the other twelve were discarded) and
retained only the final digit of two-digit numbers; this final digit was fed into an
IBM punch to produce finally a punched card table of random digits.

The book goes on to discuss the results of various randomness tests on the data.
It also suggests how to use the book to find a random number:

The lines of the digit table are numbered from 00000 to 19999. In any use of the
table, one should first find a random starting position. A common procedure for
doing this is to open the book to an unselected page of the digit table and blindly
choose a five-digit number; this number with the first digit reduced modulo 2 deter­
mines the starting line; the two digits to the right of the initially selected five-digit
number are reduced modulo 50 to determine the starting column in the starting
line. To guard against the tendency of books to open repeatedly at the same page
and the natural tendency of a person to choose a number toward the center of the

17.14 Real Random-Sequence Generators

page: every five-digit number used to determine a starting position should be
marked and not used a second time for this purpose.

The meat of the book is the "Table of Random Digits." It lists them in 5-digit
groups-"10097 32533 76520 13586 ... "-50 on a line and 50 lines on a page. The
table goes on for 400 pages and, except for a particularly racy section on page 283
which reads "69696," makes for a boring read. The book also includes a table of
100,000 normal deviates.

The interesting thing about the RAND book is not its million random digits, but
that they were created before the computer revolution. Many cryptographic algo­
rithms use arbitrary constants-so-called "magic numbers." Choosing magic num­
bers from the RAND tables ensures that they haven't been specially chosen for
some nefarious reason. Khafre does this, for example.

Using Random Noise

The best way to collect a large number of random bits is to tap the natural ran­
domness of the real world. Often this method requires specialized hardware, but you
can play tricks with computers.

Find an event that happens regularly but randomly: atmospheric noise peaking at
a certain threshold, a toddler falling while learning to walk, or some such. Measure
the time interval between one event and the next event. Record it. Measure the time
interval between the second event and the third event. Record it as well. If the first
time interval is greater than the second, output 1 as the bit. If the second time inter­
val is greater than the first, output O as the event. Do it again for the next event.

Throw a dart at the New York Stock Exchange closing prices in your local news­
paper. Compare the closing price of the stock you hit with the closing price of the
stock directly above it. If the one you hit is more, output O; if it less, output 1.

Hook a Geiger counter up to your computer, count emissions over a fixed time
interval, and keep the least significant bit. Or measure the time between successive
ticks. (Since the radioactive source is decaying, the average time between successive
ticks is continuously getting longer. You want to choose a source with the half life
long enough to make this negligible-like plutonium. Or, if you're worried about
your health, you can apply appropriate statistical corrections.)

G. B. Agnew proposed a real random-bit generator, suitable for integration into a
VLSI device [21]. It is a metal insulator semiconduction capacitor (MISC). Two of
them are placed in close proximity, and the random bit is a function of the differ­
ence in charge between the two. Another random-number generator generates a ran­
dom-bit stream based on the frequency instability in a free-running oscillator [535].
A commercial chip from AT & T generates random numbers from the same phe­
nomenon [67]. M. Gude built a random-number generator that collected random
bits from physical phenomena, such as radioactive decay [668,669]. Manfield
Richter developed a random-number generator based on thermal noise from a semi­
conductor diode [1309].

Supposedly the time intervals between successive 2e4 light emissions from a
trapped mercury atom are random. Use that. Better yet, find a semiconductor com­
pany that makes random-number-generation chips; they are out there.

~""':s;~----C_H_A_P_T_E_R_l_7 __ 0_t_h_er_S_tr_e_a_m_C_ip_h_e_r_s ______________ _

There is also a random-number generator that uses the computer's disk drive
[439]. It measures the time required to read a disk block and uses the variation in
that time as a random number source. It filters the timing data to remove structure
that comes from quantization, then applies a fast Fourier transform to vectors of the
numbers. This removes bias and correlation. Finally, it uses the spectral angles for
frequencies in (0, 1r), normalized to the unit interval, as the random bits. A large part
of the variation in disk rotation speed is caused by air turbulence, so there is ran­
domness in the system. There are caveats, though. If you keep too many bits of the
output, you are using the fast Fourier transform as a random-number generator and
risk predictability. And it's best to read the same disk block over and over, so that
your filtering doesn't have to remove structure that comes from the disk-scheduler.
An implementation of this system was able to collect about 100 bits per minute
[439].

Using the Computer's Clock
If you want a single random bit (or even a few), take the least significant bit from

any clock register. This might not be terribly random in a UNIX system because of
various potential synchronizations, but it works on some personal computers.

Beware of getting too many bits this way. Executing the same subroutine several
times in succession could easily skew bits generated in this manner. For example, if
each bit generation subroutine takes an even number of clock ticks to execute, you
will get an endless stream of the same bit out of the generator. If each subroutine
takes an odd number of clock ticks to execute, you will get an endless stream of
alternating bits out of the generator. Even if the resonance isn't this obvious, the
resultant bit stream will be far from random.

One random-number generator works this way [918]:

Our truly random number generator ... works by setting an alarm and then
incrementing a counter register rapidly in the CPU until an interrupt occurs. The
contents of the register are then XORed with the contents of an output buffer byte
(truncating the register's data to 8 bits). After each byte of the output buffer is
filled, the buffer is further processed by doing a right, circular shift of each char­
acter by 2 bits. This has the effect of moving the most active (and random) least
significant bits into the most significant positions. The entire process is then
repeated 3 times. Finally each character of the buffer has been touched by the two
most random bits of the counter register after interrupts. That is 4n interrupts
have occurred where n is the number of desired random bytes.

This method is very sensitive to the randomness of system interrupts and the
granularity of the clock. The output looked pretty good when tested on real UNIX
machines.

Measuring Keyboard Latency

People's typing patterns are both random and nonrandom. They are nonrandom
enough that they can be used as a means of identification, but they are random
enough that they can be used to generate random bits. Measure the time between

17.14 Real Random-Sequence Generators

successive keystrokes, then take the least significant bits of those measurements.
These bits are going to be pretty random. This technique may not work on a UNIX
terminal, since the keystrokes pass through filters and other mechanisms before
they get to your program, but it will work on most personal computers.

Ideally, you only want to collect one random bit per keystroke. Collecting more
may skew the results, depending on how good a typist is sitting at the keyboard.
This technique is limited, though. While it's easy to have someone type 100 words
or so when it is time to generate a key, it isn't reasonable to ask the typist to type a
100,000-word essay to generate a keystream for a one-time pad.

Biases and Correlations
A major problem with all these systems is that there could be nonrandomness in

the generated sequence. The underlying physical processes might be random, but
many kinds of measuring instruments are between the digital part of the computer
and the physical process. Those instruments could easily introduce problems.

A way to eliminate bias, or skew, is to XOR several bits together. If a random bit
is biased toward Oby a factor e, then the probability of 0 can be written as:

P(0) = .5 + e

XORing two of these bits together yields:

P(0) = (.5 + e)2 + (.5 - e)2 = .5 + 2e 2

By the same calculation, XO Ring 4 bits together yields:

P(0) = .5 + 8e4

XO Ring m bits will exponentially converge to an equal probability of 0 and 1. If you
know the maximum bias you are willing to accept for your application, you can cal­
culate how many bits you need to XOR together to get random bits below that bias.

An even better method is to look at the bits in pairs. If the 2 bits are the same, dis­
card them and look at the next pair. If the 2 bits are different, take the first bit as the
output of the generator. This eliminates bias completely. Other techniques for reduc­
ing bias use transition mappings, compression, and fast Fourier transforms [511].

The potential problem with both methods is that if there is a correlation between
adjacent bits, then these methods will increase the bias. One way to correct this is
to use multiple random sources. Take four different random sources and XOR the
bits together; or take two random sources, and look at those bits in pairs.

For example, take a radioactive source and hook a Geiger counter to your com­
puter. Take a pair of noisy diodes and record as an event every time the noise
exceeds a certain peak. Measure atmospheric noise. Get a random bit from each and
XOR them together to produce the random bit. The possibilities are endless.

The mere fact that a random-number generator has a bias does not necessarily
mean that it is unusable. It just means that it is less secure. For example, consider
the problem of Alice generating a triple-DES 168-bit key. All she has is a random-bit
generator with a bias toward 0: It produces 55 percent Os and 45 percent ls. This
means that there are only 0.99277 bits of entropy per key bit, as opposed to 1 bit of

~"":s;:-------C_H_A_P_T_E_R_l_7 __ 0_t_h_er_S_tr_e_a_m_C_ip_h_e_r_s ______________ _

entropy if the generator were perfect. Mallory, trying to break the key, can optimize
his brute-force search to try the most probable key first (000 ... 0), and work toward
the least probable key (111 ... 1). Because of the bias, Mallory can expect to find the
key in 2109 attempts. If there were no bias, Mallory would expect to make 2111

attempts. The resultant key is less secure, but not appreciably so.

Distilling Randomness

In general, the best way to generate random numbers is to find a whole lot of
seemingly random events and distill randomness from them. This randomness can
then be stored in a pool or reservoir that applications can draw on as needed. One­
way hash functions are ready-made for the job; they're fast, so you can shovel quite
a bit through them without worrying too much about performance or the actual ran­
domness of each observation. Hash almost anything you can find that has at least
some randomness. Try:

A copy of every keystroke

Mouse commands

The sector number, time of day, and seek latency for every disk oper­
ation

Actual mouse position

Number of current scanline of monitor

Contents of the actually displayed image

Contents of FATs, kernel tables, and so on

Access/modify times of /dev/tty

CPU load

Arrival times of network packets

Input from a microphone

/dev/audio without a microphone attached

If your system uses separate crystal oscillators for its CPU and time-of-day clocks,
try reading the time of day in a tight loop. On some (but not all) systems this will
reflect the random phase jitter between the two oscillators.

Since much of the randomness in these events is in their timing, use the most
finely grained time-of-day clock you can find. A standard PC uses an Intel 8254
clock chip (or equivalent) driven at 1.1931818 megahertz, so reading the counter
register directly gives you 838-nanosecond resolution. To avoid skewing the results,
avoid taking your event samples on a timer interrupt.

Here is the process in C with MD5 (see Section 18.5) as the hash function:

char Randpool [16];

/* Call early and call often on a wide variety of random or semi­
* random system events to churn the randomness pool.

17.14 Real Random-Sequence Generators

* The exact format and length of randevent doesn't matter as long as
* its contents are at least somewhat unpredictable.
*!

void churnrand(char *randevent,unsigned int randlen)
I

MD5_CTX md5;
MD5Init(&md5);
MD 5 Update (&md 5, Rand pool , size of (Rand pool)) ;
MD5Update(&md5,randevent,randlen);
MD5Final (Randpool ,&md5);

After calling churnrand() enough to build up sufficient randomness in Randpool,
you can now generate random bits from it. MDS again comes in handy, this time as
a counter-mode pseudo-random byte-stream generator.

long Randcnt;
void genrand(char *buf,unsigned int buflen)
I

MD5_CTX md5;
char tmp[l6J;
unsigned int n;

while(buflen !~ 0) i
/* Hash the pool with a counter*/
MD5Init(&md5);
MD5 Update (&md 5, Rand pool , size of (Rand pool)) ;
MD5Update(&md5,(unsigned char *)&Randcnt,sizeof(Randcnt));
MD5Fi na l (tmp, &md5);
Randcnt++; /* Increment counter*/

/* Copy 16 bytes or requested amount, whichever is less,
* to the user's buffer*/
n ~ (buflen < 16) ? buflen : 16;
memcpy(buf,tmp,n);
buf +~ n;
buflen -~ n;

The hash function is crucial here for several reasons. First, it provides an easy way
to generate an arbitrary amount of pseudo-random data without having to call
churnrand() each time. In effect, the system degrades gracefully from perfect to prac­
tical randomness when the demand exceeds the supply. In this case it becomes the­
oretically possible to use the result from one genrand() call to determine a previous
or subsequent result. But this requires inverting MDS, which is computationally
infeasible.

This is important since the routine doesn't know what each caller will do with
the random data it returns. One call might generate a random number for a protocol
that is sent in the clear, perhaps in response to a direct request by an attacker. The
very next call might generate a secret key for an unrelated session that the attacker

~-:s _____ C_H_A_P_T_E_R_l_7 __ 0_t_h_er_S_tr_e_a_m_C_ip_h_e_r_s ______________ _

wishes to penetrate. Obviously, it is very important that an attacker not be able to
deduce the secret key from the nonce.

One problem remains. There must be sufficient randomness in the Randpool[]
array before the first call to genrand(). If the system has been running for a while
with a local user typing on the keyboard, no problem. But what about a standalone
system that reboots automatically without seeing any keyboard or mouse input?

This is a tough one. A partial solution would require the operator to type for a
while after the very first reboot, and to create a seed file on disk before shutting
down to carry the randomness in Randseed[] across reboots. But do not save the
Randseed[] array directly. An attacker who steals this file could determine all of the
results from genrand() after the last call to churnrand() prior to the file being created.

The fix to this problem is to hash the Randseed[] array before storing it, perhaps
by just calling genrand(). When the system reboots, you read in the seed file, pass it
to churnrand(), then promptly destroy it. Unfortunately, this does not deal with the
threat of someone stealing the seed file between reboots and using it to guess future
values of the genrand() function. I see no solution to this problem other than to wait
until enough external random events have taken place after a reboot before allowing
genrand() to produce results.

-----------------------z~

CHAPTER 18

One-Way
Hash Functions

18.1 BACKGROUND

A one-way hash function, H(M), operates on an arbitrary-length pre-image message,
M. It returns a fixed-length hash value, h.

h = H(M), where h is of length m

Many functions can take an arbitrary-length input and return an output of fixed
length, but one-way hash functions have additional characteristics that make them
one-way [1065]:

Given M, it is easy to compute h.

Given h, it is hard to compute M such that H(M) = h.

Given M, it is hard to find another message, M', such that H(M) = H(M').

If Mallory could do the hard things, he would undermine the security of every pro­
tocol that uses the one-way hash function. The whole point of the one-way hash
function is to provide a "fingerprint" of M that is unique. If Alice signed M by using
a digital signature algorithm on H(M), and Bob could produce M', another message
different from M where H(M) = H(M'), then Bob could claim that Alice signed M'.

In some applications, one-wayness is insufficient; we need an additional require­
ment called collision-resistance.

It is hard to find two random messages, Mand M', such that H(M) = H(M').

Remember the birthday attack from Section 7.4? It is not based on finding another
message M', such that H(M) = H(M'), but based on finding two random messages, M
and M', such that H(M) = H(M').

~-:s. _____ C_H_A_P_T_E_R_l_8 __ 0_n_e-_vV:_a_y_H_a_s_h_F_u_n_c_t1_·o_n_s ______________ _

The following protocol, first described by Gideon Yuval [1635], shows how-if
the previous requirement were not true-Alice could use the birthday attack to
swindle Bob.

(1) Alice prepares two versions of a contract: one is favorable to Bob; the other
bankrupts him.

(2) Alice makes several subtle changes to each document and calculates the
hash value for each. (These changes could be things like: replacing SPACE
with SPACE-BACKSPACE-SPACE, putting a space or two before a carriage
return, and so on. By either making or not making a single change on each
of 32 lines, Alice can easily generate 232 different documents.)

(3) Alice compares the hash values for each change in each of the two docu­
ments, looking for a pair that matches. (If the hash function only outputs a
64-bit value, she would usually find a matching pair with 232 versions of
each.) She reconstructs the two documents that hash to the same value.

(4) Alice has Bob sign the version of the contract that is favorable to him,
using a protocol in which he only signs the hash value.

(5) At some time in the future, Alice substitutes the contract Bob signed with
the one that he didn't. Now she can convince an adjudicator that Bob
signed the other contract.

This is a big problem. (One moral is to always make a cosmetic change to any doc­
ument you sign.)

Other similar attacks could be mounted assuming a successful birthday attack.
For example, an adversary could send an automated control system (on a satellite,
perhaps) random message strings with random signature strings. Eventually, one of
those random messages will have a valid signature. The adversary would have no
idea what the command would do, but if his only objective was to tamper with the
satellite, this would do it.

Length of One-Way Hash Functions
Hash functions of 64 bits are just too small to survive a birthday attack. Most

practical one-way hash functions produce 128-bit hashes. This forces anyone
attempting the birthday attack to hash 264 random documents to find two that hash
to the same value, not enough for lasting security. NIST, in its Secure Hash Standard
(SHS), uses a 160-bit hash value. This makes the birthday attack even harder, requir­
ing 280 random hashes.

The following method has been proposed to generate a longer hash value than a
given hash function produces.

(1) Generate the hash value of a message, using a one-way hash function listed
in this book.

~----------------18_.2 __ Sn_e_f_ru _______ --,,7 ~

(2) Prepend the hash value to the message.

(3) Generate the hash value of the concatenation of the message and the hash
value.

(4) Create a larger hash value consisting of the hash value generated in step (1)
concatenated with the hash value generated in step (3).

(5) Repeat steps (1) through (3) as many times as you wish, concatenating as
you go.

Although this method has never been proved to be either secure or insecure, var­
ious people have some serious reservations about it [1262,859].

Overview of One-Way Hash Functions

It's not easy to design a function that accepts an arbitrary-length input, let alone
make it one-way. In the real world, one-way hash functions are built on the idea of
a compression function. This one-way function outputs a hash value of length n
given an input of some larger length m [1069,414]. The inputs to the compression
function are a message block and the output of the previous blocks of text (see Fig­
ure 18.1). The output is the hash of all blocks up to that point. That is, the hash of
block M 1 is

h=f(M,,h-1)

This hash value, along with the next message block, becomes the next input to the
compression function. The hash of the entire message is the hash of the last block.

The pre-image should contain some kind of binary representation of the length of
the entire message. This technique overcomes a potential security problem result­
ing from messages with different lengths possibly hashing to the same value
[1069,414]. This technique is sometimes called MD-strengthening [930].

Various researchers have theorized that if the compression function is secure,
then this method of hashing an arbitrary-length pre-image is also secure-but noth­
ing has been proved [1138, 1070,414].

A lot has been written on the design of one-way hash functions. For more mathe­
matical information, consult [1028,793,791,1138,1069,414,91,858,1264]. Bart Pre­
neel's thesis [1262] is probably the most comprehensive treatment of one-way hash
functions.

M; ----1:~l.__~-~-~-~~-io_~_Y__.,__-~ .. - h;
h;-1 - Figure 18.1 One-way function.

~--s _____ C_H_A_P_TE_R_l_S_O_n_e-_W_ay_H_a_s_h_F_u_n_c_t_io_n_s _____________ ~.

18.2 SNEFRU

Snefru is a one-way hash function designed by Ralph Merkle [1070]. (Snefru, like
Khufu and Khafre, was an Egyptian pharaoh.) Snefru hashes arbitrary-length mes­
sages into either 128-bit or 256-bit values.

First the message is broken into chunks, each 512-m in length. (The variable mis
the length of the hash value.) If the output is a 128-bit hash value, then the chunks
are each 384 bits long; if the output is a 256-bit hash value, then the chunks are each
256 bits long.

The heart of the algorithm is function H, which hashes a 512-bit value into an m­
bit value. The first m bits of H's output are the hash of the block; the rest are dis­
carded. The next block is appended to the hash of the previous block and hashed
again. (The initial block is appended to a string of zeros.) After the last block (if the
message isn't an integer number of blocks long, zeros are used to pad the last block),
the first m bits are appended to a binary representation of the length of the message
and hashed one final time.

Function His based on E, which is a reversible block-cipher function that operates
on 512-bit blocks. His the last m bits of the output of E XORed with the first m bits
of the input of E.

The security of Snefru resides in function E, which randomizes data in several
passes. Each pass is composed of 64 randomizing rounds. In each round a different
byte of the data is used as an input to an S-box; the output word of the S-box is
XORed with two neighboring words of the message. The S-boxes are constructed in
a manner similar to those in Khafre (see Section 13. 7). Some rotations are thrown in,
too. Originally Snefru was designed with two passes.

Cryptanalysis of Snefru
Using differential cryptanalysis, Biham and Shamir demonstrated the insecurity

of two-pass Snefru (128-bit hash value) [172]. Their attack finds pairs of messages
that hash to the same value within minutes.

On 128-bit Snefru, their attacks work better than brute force for four passes or
less. A birthday attack against Snefru takes 264 operations; differential cryptanalysis
can find a pair of messages that hash to the same value in 2285 operations for three­
pass Snefru and 2445 operations for four-pass Snefru. Finding a message that hashes
to a given value by brute force requires 2128 operations; differential cryptanalysis
takes 256 operations for three-pass Snefru and 288 operations for four-pass Snefru.

Although Biham and Shamir didn't analyze 256-bit hash values, they extended
their analysis to 224-bit hash values. Compared to a birthday attack that requires
2112 operations, they can find messages that hash to the same value in 212·5 opera­
tions for two-pass Snefru, 233 operations for three-pass Snefru, and 281 operations for
four-pass Snefru.

Currently, Merkle recommends using Snefru with at least eight passes [1073].
However, with this many passes the algorithm is significantly slower than either
MDS or SHA.

~---------------1_8_.3_N_-_H_a_sh ________ 7...,,.,~

18.3 N-HASH

N-Hash is an algorithm invented by researchers at Nippon Telephone and Tele­
graph, the same people who invented FEAL, in 1990 [1105, 1106]. N-Hash uses 128-
bit message blocks, a complicated randomizing function similar to FEAL's, and
produces a 128-bit hash value.

The hash of each 128-bit block is a function of the block and the hash of the pre­
vious block.

H 0 = I, where I is a random initial value

H; = g(M;,H 1 _ 1) EB M 1 EB H1-1

The hash of the entire message is the hash of the last message block. The random
initial value, I, can be any value determined by the user (even all zeros).

The function g is a complicated one. Figure 18.2 is an overview of the algorithm.
Initially, the 128-bit hash of the previous message block, H; _ 1, has its 64-bit left half

EX G : Exchange of left and right half

v: 1010 ... 1010inbinary(128bits)

PS : Processing stage

Vj = 6 IIAJ J 11 6 IIAJ 211 6 IIAJ 311 6 IIAJ 4

(II: concatenation)

6 : 000 ... 0 in binary (24 bits)

Ajk = 4•(i - I)+ k I k =1,2,3,4, Ajk : 8-bits long)

hi -1 ------<-

128 bits

Figure 18.2 Outline of N-Hash.

M;
128bits

--,
V I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Vg I
I

I .__,.,_.-+-I~~--~ I
I I
L.. __________ J

t-t-t---h;
128bits

~-:s. _____ C_H_A_P_T_E_R_l_8 __ 0_n_e-_W_a_y_H_as_h_F_u_n_c_t1_·o_n_s ______________ _

and 64-bit right half swapped; it is then XORed with a repeating one/zero pattern (128
bits worth), and then XO Red with the current message block, M 1• This value then cas­
cades into N (N = 8 in the figures) processing stages. The other input to the processing
stage is the previous hash value XORed with one of eight binary constant values.

One processing stage is given in Figure 18.3. The message block is broken into
four 32-bit values. The previous hash value is also broken into four 32-bit values.
The function f is given in Figure 18.4. Functions S0 and S1 are the same as they were
in FEAL.

S0(a,b) = rotate left two bits ((a+ b) mod 256)

Si(a,b) = rotate left two bits ((a+ b + 1) mod 256)

The output of one processing stage becomes the input to the next processing
stage. After the last processing stage, the output is XO Red with the M 1 and H 1 _ 1, and
then the next block is ready to be hashed.

Cryptanalysis of N-Hash

Bert den Boer discovered a way to produce collisions in the round function of
N-Hash [1262]. Biham and Shamir used differential cryptanalysis to break 6-round

Input: X =X I IIX 2IIX 3IIX 4
X 1 X 2

P=P 1IIP2IIP311P 4
32bits 32bits I
I

L -

fp, fp2 t P3 Tp4
32 bits 32 bits 32 bits 32 bits

Output: Y =Y 1IIY 2IIY 3IIY 4

Y=PS(X,P)

____ J

Figure 18.3 One processing stage of N-Hash.

________________ 18_._4_M_D_4 ________ 7 ___ ~

8bits

X

32bits
p ------+-l

32bits

8bits 8bits

32bits

f (x,P)

8 bits

Y = So(X 1.X2) = Rot2((X 1 +X 2)mlld 2561

Y = S1 (X 1. X21 = Rot2(1X1 +X2 + I) mod 256)

Y (8 bits): output, X1 /X2 (8 bits): inputs
Rot2(TJ : a 2-bit left rotation on the 8-bit data T

Figure 18.4 Function f.

N-Hash [169,172]. Their particular attack (there certainly could be others) works for
any N that is divisible by 3, and is more efficient than the birthday attack for any N
less than 15.

The same attack can find pairs of messages that hash to the same value for 12-
round N-Hash in 256 operations, compared to 264 operations for a brute-force attack.
N-hash with 15 rounds is safe from differential cryptanalysis: The attack requires 272

operations.
The algorithm's designers recommend using N-Hash with at least 8 rounds [1106].

Given the proven insecurity of N-Hash and FEAL (and its speed with 8 rounds), I
recommend using another algorithm entirely.

18.4 MD4

MD4 is a one-way hash function designed by Ron Rivest [1318,1319,1321]. MD
stands for Message Digest; the algorithm produces a 128-bit hash, or message digest,
of the input message.

In [1319], Rivest outlined his design goals for the algorithm:

Security. It is computationally infeasible to find two messages that
hashed to the same value. No attack is more efficient than brute force.
Direct Security. MD4's security is not based on any assumption, like the
difficulty of factoring.

~~:s _____ C_H_A_P_T_E_R_l_8 __ o_n_e_-_w_a_y_H_a_s_h_F_u_n_c_t1_·o_n_s ______________ _

Speed. MD4 is suitable for high-speed software implementations. It is
based on a simple set of bit manipulations on 32-bit operands.
Simplicity and Compactness. MD4 is as simple as possible, without large
data structures or a complicated program.
Favor Little-Endian Architectures. MD4 is optimized for microprocessor
architectures (specifically Intel microprocessors); larger and faster com­
puters make any necessary translations.

After the algorithm was first introduced, Bert den Boer and Antoon Bosselaers
successfully cryptanalyzed the last two of the algorithm's three rounds [202]. In an
unrelated cryptanalytic result, Ralph Merkle successfully attacked the first two
rounds [202]. Eli Biham discussed a differential cryptanalysis attack against the first
two rounds of MD4 [159]. Even though these attacks could not be extended to the
full algorithm, Rivest strengthened the algorithm. The result is MD5.

18.5 MD5

MD5 is an improved version of MD4 [1386,1322]. Although more complex than
MD4, it is similar in design and also produces a 128-bit hash.

Description of MD5
After some initial processing, MD5 processes the input text in 512-bit blocks,

divided into 16 32-bit sub-blocks. The output of the algorithm is a set of four 32-bit
blocks, which concatenate to form a single 128-bit hash value.

First, the message is padded so that its length is just 64 bits short of being a mul­
tiple of 512. This padding is a single 1-bit added to the end of the message, followed
by as many zeros as are required. Then, a 64-bit representation of the message's
length (before padding bits were added) is appended to the result. These two steps
serve to make the message length an exact multiple of 512 bits in length (required
for the rest of the algorithm), while ensuring that different messages will not look
the same after padding.

Four 32-bit variables are initialized:

A= 0x01234567

B = 0x89abcdef

C = 0xfedcba98

D = 0x76543210

These are called chaining variables.
Now, the main loop of the algorithm begins. This loop continues for as many 512-

bit blocks as are in the message.
The four variables are copied into different variables: a gets A, b gets B, c gets C,

and d gets D.
The main loop has four rounds (MD4 had only three rounds), all very similar. Each

round uses a different operation 16 times. Each operation performs a nonlinear func-

_________________ 18_._S_M_D_5 ________ 7-.,,~

Message Block

A ~------, • I

B-,-~-----,
c--~---, D---1~

Figure 18.5 MDS main loop.

tion on three of a, b, c, and d. Then it adds that result to the fourth variable, a sub­
block of the text and a constant. Then it rotates that result to the right a variable
number of bits and adds the result to one of a, b, c, or d. Finally the result replaces
one of a, b, c, or d. See Figures 18.5 and 18.6.

There are four nonlinear functions, one used in each operation (a different one for
each round).

F(X, Y,Z) = (X A Y) v ((-, X) AZ)

G(X, Y,Z) = (X AZ) v (YA(-, Z))

H(X, Y,Z) = X EBY EB Z

I(X, Y,Z) = Y EB (Xv(-, Z))

(EB is XOR, A is AND, vis OR, and-, is NOT.)
These functions are designed so that if the corresponding bits of X, Y, and Z are

independent and unbiased, then each bit of the result will also be independent and
unbiased. The function Fis the bit-wise conditional: If X then Y else Z. The function
His the bit-wise parity operator.

If Mi represents the jth sub-block of the message (from Oto 15), and <«s repre-
sents a left circular shift of s bits, the four operations are:

FF(a,b,c,d,Mi,s,ti) denotes a= b +((a+ F(b,c,d) +Mt+ ti)«< s)

GG(a,b,c,d,M"s,t 1) denotes a= b +((a+ G(b,c,d) +Mt+ ti)<« s)

HH(a,b,c,d,Mps,ti) denotes a= b +((a+ H(b,c,d) +Mi+ t,) «< s)

Il(a,b,c,d,Mt,s,t,) denotes a= b +((a+ I(b,c,d) +Mi+ ti)«< s)

~-:s. ____ C_H_AP_T_E_R_l_8_0_n_e_-_W_a_y_H_a_s_h_F_u_n_ct_io_n_s ____________ _

a

h

C

d

Figure 18.6 One MD5 operation.

The four rounds (64 steps) look like:

Round 1:
FF (a, b, c, d, M0, 7, 0xd76aa478)

FF (d, a, b, c, M 1, 12, 0xe8c7b756)

FF (c, d, a, b, M2, 17, 0x242070db)

FF (b, c, d, a, M3, 22, 0xclbdceee)

FF (a, b, c, d, M4, 7, 0xf57c0faf)

FF (d, a, b, c, M5, 12, 0x4787c62a)

FF (c, d, a, b, Mr,, 17, 0xa8304613)

FF (b, c, d, a, M7, 22, 0xfd469501)

FF (a, b, c, d, M8, 7, 0x698098d8)

FF (d, a, b, c, M9, 12, 0x8b44f7af)

FF (c, d, a, b, M 10, 17, 0xffffSbbl)

FF (b, c, d, a, M 11, 22, 0x895cd7be)

FF (a, b, c, d, M 12, 7, 0x6b901122)

FF (d, a, b, c, M 13, 12, 0xfd987193)

FF (c, d, a, b, M 14, 17, 0xa679438e)

FF (b, c, d, a, M 15, 22, 0x49b40821)

_________________ 18_.S_M_D_5 ________ 7 ~

Round 2:

GG (a, b, c, d, M1, 5, 0xf6le2562)

GG (d, a, b, c, M6, 9, 0xc040b340)

GG (c, d, a, b, M 11, 14, 0x265e5a51)

GG (b, c, d, a, M0, 20, 0xe9b6c7aa)

GG (a, b, c, d, Ms, 5, 0xd62fl05d)

GG (d, a, b, c, M 10, 9, 0x02441453)

GG (c, d, a, b, M 15, 14, 0xd8ale681)

GG (b, c, d, a, M4, 20, 0xe7d3fbc8)

GG (a, b, c, d, M9, 5, 0x2lelcde6)

GG (d, a, b, c, M 14, 9, 0xc33707d6)

GG (c, d, a, b, M3, 14, 0xf4d50d87)

GG (b, c, d, a, M8, 20, 0x455al4ed)

GG (a, b, c, d, M 13, 5, 0xa9e3e905)

GG (d, a, b, c, M2, 9, 0xfcefa3f8)

GG (c, d, a, b, M7, 14, 0x676f02d9)

GG (b, c, d, a, M 12, 20, 0x8d2a4c8a)

Round 3:

HH (a, b, c, d, Ms, 4, 0xfffa3942)

HH (d, a, b, c, M8, 11, 0x877lf681)

HH (c, d, a, b, Mll, 16, 0x6d9d6122)

HH (b, c, d, a, M 14, 23, 0xfde5380c)

HH (a, b, c, d, M 1, 4, 0xa4beea44)

HH (d, a, b, c, M4, 11, 0x4bdecfa9)

HH (c, d, a, b, M7, 16, 0xf6bb4b60)

HH (b, c, d, a, M 10, 23, 0xbebfbc70)

HH (a, b, c, d, M 13, 4, 0x289b7ec6)

HH (d, a, b, c, M0, 11, 0xeaal27fa)

HH (c, d, a, b, M3, 16, 0xd4ef3085)

HH (b, c, d, a, M6, 23, 0x0488ld05)

HH (a, b, c, d, M9, 4, 0xd9d4d039)

HH (d, a, b, c, M 12, 11, 0xe6db99e5)

HH (c, d, a, b, M1s, 16, 0xlfa27cf8)

HH (b, c, d, a, M2, 23, 0xc4ac5665)

~""'s;~---C_H_A_P_T_E_R_l_8_0_n_e_-W_a_y_H_a_s_h_F_u_n_c_t1_·o_n_s _____________ _

Round 4:

II (a, b, c, d, M 0, 6, 0xf4292244)

II (d, a, b, c, M 7, 10, 0x432aff97)

II (c, d, a, b, M 14, 15, 0xab9423a7)

II (b, c, d, a, M5, 21, 0xfc93a039)

II (a, b, c, d, M 12, 6, 0x655b59c3)

II (d, a, b, c, M3, 10, 0x8f0ccc92)

II (c, d, a, b, M 10, 15, 0xffeff47d)

II (b, c, d, a, M 1, 21, 0x85845ddl)

II (a, b, c, d, M8, 6, 0x6fa87e4f)

II (d, a, b, c, M15, 10, 0xfe2ce6e0)

II (c, d, a, b, M 6, 15, 0xa3014314)

II (b, c, d, a, M 13, 21, 0x4e08llal)

II (a, b, c, d, M4, 6, 0xf7537e82)

II (d, a, b, c, M 11, 10, 0xbd3af235)

II (c, d, a, b, M2, 15, 0x2ad7d2bb)

II (b, c, d, a, M 9, 21, 0xeb86d391)

Those constants, t;, were chosen as follows:

In step i, t, is the integer part of 2·'2 •abs(sin(i)), where i is in radians.

After all of this, a, b, c, and dare added to A, B, C, D, respectively, and the algo­
rithm continues with the next block of data. The final output is the concatenation
of A, B, C, and D.

Security of MD5

Ron Rivest outlined the improvements of MD5 over MD4 [1322]:

1. A fourth round has been added.

2. Each step now has a unique additive constant.

3. The function Gin round 2 was changed from ((X A Y) v (X AZ) v (YA Z)) to
((X AZ) v (YA-, Z)) to make G less symmetric.

4. Each step now adds in the result of the previous step. This promotes a
faster avalanche effect.

5. The order in which message sub-blocks are accessed in rounds 2 and 3 is
changed, to make these patterns less alike.

6. The left circular shift amounts in each round have been approximately
optimized, to yield a faster avalanche effect. The four shifts used in each
round are different from the ones used in other rounds.

______________ 1_8_.7 __ S_ec_u_r_e_H_a_s_h_A_l_g_or_i_th_m_(S_H_A_) ____ 7 ~

Tom Berson attempted to use differential cryptanalysis against a single round of
MD5 [144], but his attack is ineffective against all four rounds. A more successful
attack by den Boer and Bosselaers produces collisions using the compression func­
tion in MD5 [203, 1331, 1336]. This does not lend itself to attacks against MD5 in
practical applications, and it does not affect the use of MD5 in Luby-Rackoff-like
encryption algorithms (see Section 14.11). It does mean that one of the basic design
principles of MD5-to design a collision-resistant compression function-has been
violated. Although it is true that "there seems to be a weakness in the compression
function, but it has no practical impact on the security of the hash function" [1336],
I am wary of using MD5.

18.6 MD2

MD2 is another 128-bit one-way hash function designed by Ron Rivest [801, 1335]. It,
along with MDS, is used in the PEM protocols (see Section 24.10). The security of
MD2 is dependent on a random permutation of bytes. This permutation is fixed, and
depends on the digits of n. S0, S1, S2, •.. , S255 is the permutation. To hash a message M:

(1) Pad the message with i bytes of value i so that the resulting message is a
multiple of 16 bytes long.

(2) Append a 16-byte checksum to the message.

(3) Initialize a 48-byte block: X 0, X1, X2, .•• , X47 . Set the first 16 bytes of X to
be 0, the second 16 bytes of X to be the first 16 bytes of the message, and
the third 16 bytes of X to be the XOR of the first 16 bytes of X and the sec­
ond 16 bytes of X.

(4) This is the compression function:

t = 0

For j = 0 to 17

Fork= 0 to 47

t =Xk XOR St

Xk=t
t = (t + j) mod 256

(5) Set the second 16 bytes of X to be the second 16 bytes of the message, and
the third 16 bytes of X to be the XOR of the first 16 bytes of X and the sec­
ond 16 bytes of X. Do step (4). Repeat steps (5) and (4) with every 16 bytes
of the message, in turn.

(6) The output is the first 16 bytes of X.

Although no weaknesses in MD2 have been found (see [1262]), it is slower than
most other suggested hash functions.

~-:s~ ____ C_H_A_P_T_E_R_l_8 __ 0_n_e-_W_a_y_H_as_h_F_u_n_c_t1_·o_n_s ______________ _

18. 7 SECURE HASH ALGORITHM (SHA)

NIST, along with the NSA, designed the Secure Hash Algorithm (SHA) for use with
the Digital Signature Standard (see Section 20.2) [1154]. (The standard is the Secure
Hash Standard (SHS); SHA is the algorithm used in the standard.)
According to the Federal Register [539]:

And

A Federal Information Processing Standard (FIPS) for Secure Hash Standard (SHS)
is being proposed. This proposed standard specified a Secure Hash Algorithm
(SHA) for use with the proposed Digital Signature Standard Additionally, for
applications not requiring a digital signature, the SHA is to be used whenever a
secure hash algorithm is required for Federal applications.

This Standard specifies a Secure Hash Algorithm (SHA), which is necessary to
ensure the security of the Digital Signature Algorithm (DSA). When a message of
any length< 264 bits is input, the SHA produces a 160-bit output called a message
digest. The message digest is then input to the DSA, which computes the signa­
ture for the message. Signing the message digest rather than the message often
improves the efficiency of the process, because the message digest is usually
much smaller than the message. The same message digest should be obtained by
the verifier of the signature when the received version of the message is used as
input to SHA. The SHA is called secure because it is designed to be computa­
tionally infeasible to recover a message corresponding to a given message digest,
or to find two different messages which produce the same message digest. Any
change to a message in transit will, with a very high probability, result in a dif­
ferent message digest, and the signature will fail to verify. The SHA is based on
principles similar to those used by Professor Ronald L. Rivest of MIT when
designing the MD4 message digest algorithm [1319], and is closely modelled after
that algorithm.

SHA produces a 160-bit hash, longer than MD5.

Description of SHA
First, the message is padded to make it a multiple of 512 bits long. Padding is

exactly the same as in MD5: First append a one, then as many zeros as necessary to
make it 64 bits short of a multiple of 512, and finally a 64-bit representation of the
length of the message before padding.

Five 32-bit variables (MD5 has four variables, but this algorithm needs to produce
a 160-bit hash) are initialized as follows:

A= 0x67452301

B = 0xefcdab89

C = 0x98badcfe

D = 0xl0325476

E = 0xc3d2elf0

______________ 1_8_._7_S_e_cu_r_e_H_a_s_h_A_l_g_o_n_·th_m_(_S_H_A_) ____ 7..,...~

The main loop of the algorithm then begins. It processes the message 512 bits at
a time and continues for as many 512-bit blocks as are in the message.

First the five variables are copied into different variables: a gets A, b gets B, c gets
C, d gets D, and e gets E.

The main loop has four rounds of 20 operations each (MD5 has four rounds of 16
operations each). Each operation performs a nonlinear function on three of a, b, c, d,
and e, and then does shifting and adding similar to MD5.

SHA's set of nonlinear functions is:

ft(X, Y,Z) = (X A Y) v ((---, X) AZ), fort= 0 to 19.

ft(X, Y,Z) = X E8 Y E8 Z, fort= 20 to 39.

ft(X, Y,Z) = (X A Y) v (X AZ) v (YA Z), fort= 40 to 59.

ft(X, Y,Z) = X E8 Y E8 Z, fort= 60 to 79.

Four constants are used in the algorithm:

Kt= Ox5a827999, fort= 0 to 19.

Kt= Ox6ed9ebal, fort= 20 to 39.

Kt= Ox8flbbcdc, fort= 40 to 59.

Kt= Oxca62cld6, fort= 60 to 79.

(If you wonder where those numbers came from: Ox5a827999 = 2112/4, Ox6ed9ebal
= 3112/4, Ox8flbbcdc = 5112/4, and Oxca62cld6 = 10112/4; all times 232 .)

The message block is transformed from 16 32-bit words (Mo to M 15) to 80 32-bit
words (W0 to W 79) using the following algorithm:

Wt = Mt, for t = O to 15

Wt= (Wt -3 E8 Wt - s E8 Wt_ 14 E8 Wt_ 16) <<< L fort= 16 to 79.

(As an interesting aside, the original SHA specification did not have the left cir­
cular shift. The change "corrects a technical flaw that made the standard less secure
than had been thought" [543]. The NSA has refused to elaborate on the exact nature
of the flaw.)

If tis the operation number (from Oto 79), Wt represents the tth sub-block of the
expanded message, and <<< s represents a left circular shift of s bits, then the main
loop looks like:

FOR t = 0 to 79

TEMP= (a«< 5) + ft(b,c,d) + e +Wt+ Kt

e=d

d=c

c = b «< 30

b=a

a=TEMP

~""s;,-----C_H_A_P1_·E_R_l8 __ o_n_e-_vV:_ay_H_a_s_h_F_u_n_c_t_io_n_s _____________ _

a; - I a;

Figure 18. 7 One SHA operation.

Figure 18. 7 shows one operation. Shifting the variables accomplishes the same
thing as MDS does by using different variables in different locations.

After all of this, a, b, c, d, and e are added to A, B, C, D, and E respectively, and
the algorithm continues with the next block of data. The final output is the con­
catenation of A, B, C, D, and E.

Security of SHA
SHA is very similar to MD4, but has a 160-bit hash value. The main changes are

the addition of an expand transformation and the addition of the previous step's out­
put into the next step for a faster avalanche effect. Ron Rivest made public the
design decisions behind MDS, but SHA's designers did not. Here are Rivest's MDS
improvements to MD4 and how they compare with SHA's:

1. "A fourth round has been added." SHA does this, too. However, in SHA the
fourth round uses the same f function as the second round.

2. "Each step now has a unique additive constant." SHA keeps the MD4
scheme where it reuses the constants for each group of 20 rounds.

3. "The function Gin round 2 was changed from ((X A Y) v (X AZ) v (Y /\ Z))
to ((X /\ Z) v (Y /\-, (Z))) to make G less symmetric." SHA uses the MD4
version: ((X /\ Y) v (X /\ Z) v (Y /\ Z)).

________________ 1_8_.9_H_A_V:_'A_L _______ 7~~

4. "Each step now adds in the result of the previous step. This promotes a
faster avalanche effect." This change has been made in SHA as well. The
difference in SHA is that a fifth variable is added, and not b, c, or d, which
is already used in ft- This subtle change makes the den Boer-Bosselaers
attack against MD5 impossible against SHA.

5. "The order in which message sub-blocks are accessed in rounds 2 and 3 is
changed, to make these patterns less alike." SHA is completely different,
since it uses a cyclic error-correcting code.

6. "The left circular shift amounts in each round have been approximately
optimized, to yield a faster avalanche effect. The four shifts used in each
round are different from the ones used in other rounds." SHA uses a con­
stant shift amount in each round. This shift amount is relatively prime to
the word size, as in MD4.

This leads to the following comparison: SHA is MD4 with the addition of an
expand transformation, an extra round, and better avalanche effect; MD5 is MD4
with improved bit hashing, an extra round, and better avalanche effect.

There are no known cryptographic attacks against SHA. Because it produces a
160-bit hash, it is more resistant to brute-force attacks (including birthday attacks)
than 128-bit hash functions covered in this chapter.

18.8 RIPE-MD

RIPE-MD was developed for the European Community's RIPE project [1305] (see
Section 25.7). The algorithm is a variation of MD4, designed to resist known crypt­
analytic attacks, and produce a 128-bit hash value. The rotations and the order of
the message words are modified. Additionally, two instances of the algorithm, dif­
fering only in the constants, run in parallel. After each block, the output of both
instances are added to the chaining variables. This seems to make the algorithm
highly resistant to cryptanalysis.

18.9 HAVAL

HAVAL is a variable-length one-way hash function [1646]. It is a modification of
MD5. HAVAL processes messages in blocks of 1024 bits, twice those of MD5. It has
eight 32-bit chaining variables, twice those of MD5. It has a variable number of
rounds, from three to five (each of which has 16 steps), and it can produce a hash
length of 128, 160, 192, 224, or 256 bits.

HAVAL replaces MD5's simple nonlinear functions with highly nonlinear 7-
variable functions, each of which satisfies the strict avalanche criterion. Each round
uses a single function, but in every step a different permutation is applied to the
inputs. It has a new message order and every step (except those in the first round)
uses a different additive constant. The algorithm also has two rotations.

~"""s;~ ___ C_H_A_P_TE_R_l_8_0_n_e-_W_ay_H_a_s_h_F_u_n_c_t_io_n_s ______________ _

The core of the algorithm is

TEMP= (f(j,A,B, C,D,E,F, G) «< 7) + (H «< 11) + M[il[r(j)] + K(j)

H = G; G = F; F = E; E = D; D = C; C = B; B = A; A= TEMP

The variable number of rounds and variable-length output mean there are 15 ver­
sions of this algorithm. Den Boer's and Bosselaers's attack against MD5 [203] does
not apply to HA VAL because of the rotation of H.

18.10 OTHER ONE-WAY HASH FUNCTIONS

MD3 is yet another hash function designed by Ron Rivest. It had several flaws and
never really made it out of the laboratory, although a description was recently pub­
lished in [1335].

A group of researchers at the University of Waterloo have proposed a one-way
hash function based on iterated exponentiation in GF(2"9') [22]. In this scheme, a
message is divided into 593-bit blocks; beginning with the first block, the blocks are
successively exponentiated. Each exponent is the result of the computation with
the previous block; the first exponent is given by an IV.

Ivan Damgard designed a one-way hash function based on the knapsack problem
(see Section 19.2) [414]; it can be broken in about 2' 2 operations [290,1232, 787].

Steve Wolfram's cellular automata [1608] have been proposed as a basis for one­
way hash functions. An early implementation [414] is insecure [1052,404]. Another
one-way hash function, Cellhash [384,404], and an improved version, Subhash
[384,402,405], are based on cellular automata; both are designed for hardware. Boog­
nish mixes the design principles of Cellhash with those of MD4 [402,407].
StepRightUp can be implemented as a hash function as well [402].

Claus Schnorr proposed a one-way hash function based on the discrete Fourier
transform, called FFT-Hash, in the summer of 1991 [1399]; it was broken a few
months later by two independent groups [403,84]. Schnorr proposed a revised ver­
sion, called FFT-Hash II (the previous version was renamed FFT-Hash I) [1400],
which was broken a few weeks later [1567]. Schnorr has proposed further modifica­
tions [1402,1403] but, as it stands, the algorithm is much slower than the others in
this chapter. Another hash function, called SL2 [1526], is insecure [315].

Additional theoretical work on constructing one-way hash functions from one­
way functions and one-way permutations can be found in [412,1138,1342].

18.11 ONE-WAY HASH FUNCTIONS USING SYMMETRIC

BLOCK ALGORITHMS

It is possible to use a symmetric block cipher algorithm as a one-way hash function.
The idea is that if the block algorithm is secure, then the one-way hash function
will also be secure.

______________ 1_8_._11 __ S_ym_m_et_n_·c_B_l_o_ck_A_l_go_r_it_h_m_s _____ 7...,...~

The most obvious method is to encrypt the message with the algorithm in CBC
or CFB mode, a fixed key, and IV; the last ciphertext block is the hash value. These
methods are described in various standards using DES: both modes in [1143], CFB in
[1145], CBC in [55,56,54]. This just isn't good enough for one-way hash functions,
although it will work for a MAC (see Section 18.14) [29].

A cleverer approach uses the message block as the key, the previous hash value as
the input, and the current hash value as the output.

The actual hash functions proposed are even more complex. The block size is usu­
ally the key length, and the size of the hash value is the block size. Since most block
algorithms are 64 bits, several schemes are designed around a hash that is twice the
block size.

Assuming the hash function is correct, the security of the scheme is based on the
security of the underlying block function. There are exceptions, though. Differential
cryptanalysis is easier against block functions in hash functions than against block
functions used for encryption: The key is known, so several tricks can be applied;
only one right pair is needed for success; and you can generate as much chosen
plaintext as you want. Some work on these lines is [1263,858,1313].

What follows is a summary of the various hash functions that have appeared in
the literature [925, 1465, 1262]. Statements about attacks against these schemes
assume that the underlying block cipher is secure; that is, the best attack against
them is brute force.

One useful measure for hash functions based on block ciphers is the hash rate, or
the number of n-bit messages blocks, where n is the block size of the algorithm, pro­
cessed per encryption. The higher the hash rate, the faster the algorithm. (This mea­
sure was given the opposite definition in [1262], but the definition given here is
more intuitive and is more widely used. This can be confusing.)

Schemes Where the Hash Length Equals the Block Size

The general scheme is as follows (see Figure 18.8):

H 0 = IH, where IH is a random initial value

H; = EA(B) EB C

where A, B, and C can be either M;, H; _ 1, (M; EB H; _ i), or a constant (assumed to be OJ.
H0 is some random initial value: IH. The message is divided up into block-size chunks,
M;, and processed individually. And there is some kind of MD-strengthening, perhaps
the same padding procedure used in MD5 and SHA.

:_~LJ:i~y I .l.
~rypt .

Figure 18.8 General hash function where the
hash length equals the block size.

~ :s;c-------C_H_A_P_T_E_R_l_8 __ o_n_e_-W_a_y_H_a_sh_F_u_n_c_t1_·o_n_s ______________ _

Table 18.1
Secure Hash Functions Where the
Block Length Equals the Hash Size

H; =EH;_ l(MJ EB Mj
H; = EHi- l(M; EB H; - i) EB M; EB H, - I

Hi= EH;_ l(MJ EB H; - I EB M;
H; = EH;_ 1(Mi EB Hi_ i) EB Mi
Hi= EM (H; - i) EB H; - I

1

Hi= EMAM; EB H; - i) EB M; EB H; - I

H; = EM;(Hi-1) EB Mi EB Hi- I
H; = EM(M; EB H; - i) EB H; - I

1

Hi= EM; EB H; - l(M;) EB M;
H; = EM, EB H· l(H; - 1) EB H; - I

1 1 -

H; = EMi EB Hj - l(Mi) EB H; - I

H; = EM; EB H; - l(H; - i) EB M;

The three different variables can take on one of four possible values, so there are
64 total schemes of this type. Bart Preneel studied them all [1262].

Fifteen are trivially weak because the result does not depend on one of the inputs.
Thirty-seven are insecure for more subtle reasons. Table 18.1 lists the 12 secure
schemes remaining: The first 4 are secure against all attacks (see Figure 18.9) and
the last 8 are secure against all but a fixed-point attack, which is not really worth
worrying about.

The first scheme was described in [1028]. The third scheme was described in
[1555,1105,1106] and was proposed as an ISO standard [766]. The fifth scheme was
proposed by Carl Meyer, but is commonly called Davies-Meyer in the literature
[1606, 1607,434, 1028]. The tenth scheme was proposed as a hash-function mode for
LOKI [273].

The first, second, third, fourth, ninth, and eleventh schemes have a hash rate of l;
the key length equals the block length. The others have a rate of k/n, where k is the
key length. This means that if the key length is shorter than the block length, then
the message block can only be the length of the key. It is not recommended that the
message block be longer than the key length, even if the encryption algorithm's key
length is longer than the block length.

If the block algorithm has a DES-like complementation property and DES-like
weak keys, there is an additional attack that is possible against all 12 schemes. The
attack isn't very dangerous and not really worth worrying about. However, you can
solve it by fixing bits 2 and 3 of the key to "01" or "10" [1081, 1107]. Of course, this
reduces the length of k from 56 bits to 54 bits (in DES, for example) and decreases
the hash rate.

The following schemes, proposed in the literature, have been shown to be insecure.

_______________ 18_._1_1_S_y_m_m_e_tr_ic_B_l_o_c_k_A_l_g_or_i_th_m_s ____ 7 __ ~

H;_1

i
M;r LJfu'.J

I ·1 Encrypt

H;_ 1----~---~

M;
Encrypt

• lf;

H;_1

M;
Encrypt

H;_1 _____ _

Key

Encrypt

H;

Figure 18.9 The four secure hash functions where the block length equals the
hash size.

This scheme [1282] was broken in [369]:

H; = EM,(H; - 1)

Davies and Price proposed a variant which cycles the entire message through the
algorithm twice [432,433]. Coppersmith's attack works on this variant with not
much larger computational requirements [369].

Another scheme [432,458] was shown insecure in [1606]:

H,=EMEllH l(H;-1)
1 1 -

This scheme was shown insecure in [1028] (c is a constant):

H; = Ec(M; EB H; _ i) EB M; EB H; _ 1

Modified Davies-Meyer

Lai and Massey modified the Davies-Meyer technique to work with the IDEA
cipher [930,925]. IDEA has a 64-bit block size and 128-bit key size. Their scheme is

H0 = IH, where IH is a random initial value

H; =EH;_ 1,M;(H; - d
This function hashes the message in blocks of 64 bits and produces a 64-bit hash

value (See Figure 18.10).
No known attack on this scheme is easier than brute force.

~-:s _____ C_H_A_P_T_E_R_l_8 __ 0_n_e_-_VV:_ay_H_a_s_h_F_u_n_c_t1_·o_n_s ______________ _

Hi-I

Figure 18.10 Modified Davies-Meyer.

Preneel-Bosselaers-Govaerts-Vandewalle

This hash function, first proposed in [1266], produces a hash value twice the block
length of the encryption algorithm: A 64-bit algorithm produces a 128-bit hash.

With a 64-bit block algorithm, the scheme produces two 64-bit hash values, G;
and H;, which are concatenated to produce the 128-bit hash. With most block algo­
rithms, the block size is 64 bits. Two adjacent message blocks, L; and R;, each the
size of the block length, are hashed together.

G0 = le, where his a random initial value

H 0 = lH, where lH is another random initial value

G; = EL; Ell H; - l(R; EB G; - i) EB R; EB G; - I EB H; - I

H; = EL; Ell R;(H; - I EB G; - i) EB L; EB G; - 1 EB H; - 1

Lai demonstrates attacks against this scheme that, in some instances, make the
birthday attack trivially solvable [925,926]. Preneel [1262] and Coppersmith [372]
also have successful attacks against this scheme. Do not use it.

Quisquater-Girault
This scheme, first proposed in [1279], generates a hash that is twice the block

length and has a hash rate of 1. It has two hash values, G; and H;, and two blocks, L1

and R1, are hashed together.

G0 = le, where le is a random initial value

H 0 = lH, where lH is another random initial value

W; = Ei;(G1 _ 1 EB R1) EB R1 EB H; _ 1

G; = ER;(W; EB L,) EB G; _ 1 EB H; _ 1 EB L;

Hi = W; EB G; - I

This scheme appeared in a 1989 draft ISO standard [764], but was dropped in a
later version [765]. Security problems with this scheme were identified in [1107,925,
1262,372]. (Actually, the version in the proceedings was strengthened after the ver­
sion presented at the conference was attacked.) In some instances the birthday
attack is solvable with a complexity of 239, not 264, through brute force. Do not use
this scheme.

______________ 1_8_.1_1 __ Sy_m_m_e_t_n_·c_B_l_o_c_k_A_l_g_o_n_·th_m_s _____ 7____,,.~

LOKI Double-Block

This algorithm is a modification of Quisquater-Girault, specifically designed to
work with LOKI [273]. All parameters are as in Quisquater-Girault.

G0 = Ic;, where Ic; is a random initial value

H 0 = IH, where IH is another random initial value

wi =EL;'® ci _ 1 (G; _ 1 EB R;) EB Ri EB H; _ 1

Gi =ER;'® Hi_ l(W; EB L;) EB Gi - 1 EB Hi - I EB L;

Hi = Wi EB G; _ 1

Again, in some instances the birthday attack is trivially solvable [925,926, 1262,
372,736]. Do not use this scheme.

Parallel Davies-Meyer

This is yet another attempt at an algorithm with a hash rate of 1 that produces a
hash twice the block length [736].

G0 = le;, where Ic is a random initial value

H 0 = IH, where IH is another random initial value

G; = EL '® R (Gi - I EB Li) EB Li EB Hi - I
1 1

H; = EdHi - 1 EB R;) EB Ri EB Hi - 1

Unfortunately, this scheme isn't secure either [928,861]. As it turns out, a
double-length hash function with a hash rate of 1 cannot be more secure than
Davies-Meyer [861].

Tandem and Abreast Davies-Meyer

Another way around the inherent limitations of a block cipher with a 64-bit key
uses an algorithm, like IDEA (see Section 13.9), with a 64-bit block and a 128-bit key.
These two schemes produce a 128-bit hash value and have a hash rate of½ [930,925].

Encrypt

Key

M
l

Key

Encrypt

Figure 18.11 Tandem Davies-Meyer.

~..,_:s.,----------C_H_A_P_T_E_R_l_8 __ o_n_e_-_W_ay_H_a_s_h_F_u_n_c_t1_·o_n_s ______________ _

In this first scheme, two modified Davies-Meyer functions work in tandem (see
Figure 18.11).

G0 = Ic, where Ic is some random initial value

H 0 = IH, where IH is some other random initial value

wi = Eci - l'MAHj - i)

Gi = Gi - 1 EB EM;,w;(Gi - i)

Hi = W; EB H; - I

The following scheme uses two modified Davies-Meyer functions side-by-side
(see Figure 18.12).

G0 = Ic, where Ic is some random initial value

H 0 = IH, where IH is some other random initial value

Gi = Gi - I EB EMi,Hi _ 1(-,Gi - 1)

Hi= Hi - I EB Ec;i _ l'MAHi - 1)

In both schemes, the two 64-bit hash values G; and H; are concatenated to produce
a single 128-bit hash.

As far as anyone knows, these algorithms have ideal security for a 128-bit hash
function: Finding a message that hashes to a given hash value requires 2128 attempts,
and finding two random messages that hash to the same value requires 264 attempts­
assuming that there is no better way to attack the block algorithm than by using
brute force.

MDC-2 and MDC-4

MDC-2 and MDC-4 were first developed at IBM [1081,1079]. MDC-2, sometimes
called Meyer-Schilling, is under consideration as an ANSI and ISO standard [61,765];
a variant was proposed in [762]. MDC-4 is specified for the RIPE project [1305] (see
Section 25. 7). The specifications use DES as the block function, although in theory
any encryption algorithm could be used.

Hi-I
Encrypt

Hi

Mi

Gi-1

Key

Gi Encrypt

Figure 18.12 Abreast Davies-Meyer.

______________ 1_8_._11 __ S_ym_m_et_n_·c_B_l_o_ck_A_l_go_r_it_h_m_s _____ 7_~

G;-1 i
Key

Encrypt

Encrypt

Key

H;_ 1--~t
Figure 18.13 MDC-2.

G;

r----+-- H;

MDC-2 has a hash rate of ½, and produces a hash value twice the length of the
block size. It is shown in Figure 18.13. MDC-4 also produces a hash value twice the
length of the block size, and has a hash rate of¼ (see Figure 18.14).

These schemes have been analyzed in [925, 1262]. They are secure against current
computing power, but they are not nearly as secure as the designers have estimated.
If the block algorithm is DES, they have been looked at with respect to differential
cryptanalysis [1262].

Both MDC-2 and MDC-4 are patented [223].

AR Hash Function

The AR hash function was developed by Algorithmic Research, Ltd. and has been
distributed by the ISO for information purposes only [767]. Its basic structure is a
variant of the underlying block cipher (DES in the reference) in CBC mode. The last
two ciphertext blocks and a constant are XORed to the current message block and
encrypted by the algorithm. The hash is the last two ciphertext blocks computed.
The message is processed twice, with two different keys, so the hash function has a
hash rate of ½. The first key is 0x0000000000000000, the second key is 0x2a4152
2f4446502a, and c is 0x0123456789abcdef. The result is compressed to a single 128-
bit hash value. See [750] for the details.

H; = EK(M; EB H; _ 1 EB H; _ 2 EB c) EB M;

This sounds interesting, but it is insecure. After considerable preprocessing, it is
possible to find collisions for this hash function easily [416].

~""'s;,------C_H_A_P_T_ER_l_S_O_n_e_-W_a_y_H_a_s_h_F_u_n_c_t_io_n_s _____________ _

f----+- • G;

Figure 18.14 MDC-4.

GOST Hash Function
This hash function comes from Russia, and is specified in the standard GOST R

34.11-94 [657]. It uses the GOST block algorithm (see Section 14.1), although in the­
ory it could use any block algorithm with a 64-bit block size and a 256-bit key. The
function produces a 256-bit hash value.

The compression function, H; = f(M;,H; _ i) (both operands are 256-bit quantities) is
defined as follows:

(1) Generate four GOST encryption keys by some linear mixing of M;, H; _ 1,

and some constants.

(2) Use each key to encrypt a different 64 bits of H; _ 1 in ECB mode. Store the
resulting 256 bits into a temporary variable, S.

(3) H; is a complex, although linear, function of S, M;, and H; _ 1•

The final hash of M is not the hash of the last block. There are actually three
chaining variables: Hn is the hash of the last message block, Z is the sum mod 2256 of
all the message blocks, and Lis the length of the message. Given those variables and
the padded last block, M', the final hash value is:

H = f(Z E8 M',f(L,f(M',Hn)))

The documentation is a bit confusing (and in Russian), but I think all that is cor­
rect. In any case, this hash function is specified for use with the Russian Digital Sig­
nature Standard (see Section 20.3).

18.14 Message Authentication Codes

Other Schemes
Ralph Merkle proposed a scheme using DES, but it's slow; it only processes seven

message bits per iteration and each iteration involves two DES encryptions [1065,
1069]. Another scheme [1642,1645] is insecure [1267]; it was once proposed as an
ISO standard.

18.12 USING PuBLIC-KEY ALGORITHMS

It is possible to use a public-key encryption algorithm in a block chaining mode as
a one-way hash function. If you then throw away the private key, breaking the hash
would be as difficult as reading the message without the private key.

Here's an example using RSA. If Mis the message to be hashed, n is the product of
two primes p and q, and e is another large number relatively prime to (p - l)(q - 1),
then the hash function, H(M), would be

H(M) = Me mod n

An even easier solution would be to use a single strong prime as the modulus
p. Then:

H(M) = Me mod p

Breaking this problem is probably as difficult as finding the discrete logarithm of
e. The problem with this algorithm is that it's far slower than any others discussed
here. I don't recommend it for that reason.

18.13 CHOOSING A ONE-WAY HASH FUNCTION

The contenders seem to be SHA, MD5, and constructions based on block ciphers;
the others really haven't been studied enough to be in the running. I vote for SHA.
It has a longer hash value than MD5, is faster than the various block-cipher con­
structions, and was developed by the NSA. I trust the NSA's abilities at cryptanaly­
sis, even if they don't make their results public.

Table 18.2 gives timing measurements for some hash functions. They are meant
for comparison purposes only.

18.14 MESSAGE AUTHENTICATION CODES

A message authentication code, or MAC, is a key-dependent one-way hash function.
MACs have the same properties as the one-way hash functions discussed previously,
but they also include a key. Only someone with the identical key can verify the hash.
They are very useful to provide authenticity without secrecy.

MACs can be used to authenticate files between users. They can also be used by
a single user to determine if his files have been altered, perhaps by a virus. A user
could compute the MAC of his files and store that value in a table. If the user used

~""S ____ C_H_A_PT_E_R_l8 __ 0_n_e-_W_ay_H_a_s_b_F_u_n_c_t_io_n_s _____________ ~

Table 18.2
Speeds of Some Hash Functions on a 33 MHz 486SX

Algorithm

Abreast Davies-Meyer (with IDEA)
Davies-Meyer (with DES)
COST Hash
HAVAL (3 passes)
HAVAL (4 passes)
HAVAL (5 passes)
MD2
MD4
MD5
N-HASH (12 rounds)
N-HASH (15 rounds)
RIPE-MD
SHA
SNEFRU (4 passes)
SNEFRU (8 passes)

Hash Length

128
64

256
variable
variable
variable

128
128
128
128
128
128
160
128
128

Encryption Speed
(kilobytes/second)

22
9

11
168
118
95
23

236
174
29
24

182
75
48
23

instead a one-way hash function, then the virus could compute the new hash value
after infection and replace the table entry. A virus could not do that with a MAC,
because the virus does not know the key.

An easy way to turn a one-way hash function into a MAC is to encrypt the hash
value with a symmetric algorithm. Any MAC can be turned into a one-way hash
function by making the key public.

CBC-MAC
The simplest way to make a key-dependent one-way hash function is to encrypt a

message with a block algorithm in CBC or CFB modes. The hash is the last encrypted
block, encrypted once more in CBC or CFB modes. The CBC method is specified in
ANSI X9.9 [54], ANSI X9.19 [56], ISO 8731-1 [759], ISO 9797 [763], and an Australian
standard [1496]. Differential cryptanalysis can break this scheme with reduced-round
DES or FEAL as the underlying block algorithms [1197].

The potential security problem with this method is that the receiver must have
the key, and that key allows him to generate messages with the same hash value as
a given message by decrypting in the reverse direction.

Message Authenticator Algorithm (MAA)
This algorithm is an ISO standard [760]. It produces a 32-bit hash, and was

designed for mainframe computers with a fast multiply instruction [428].

18.14 Message Authentication Codes

V = V <<< 1

e=vEBw
x = ((((e + y) mod 232) v A/\ C) * (x EB M;)) mod 232 - 1

y = ((((e + x) mod 232) v B /\ D) * (y EB Mi)) mod 232 - 2

Iterate these for each message block, Mi, and the resultant hash is the XOR of x and
y. The variables v and e are determined from the key. A, B, C, and D are constants.

This algorithm is probably in wide use, but I can't believe it is all that secure. It
was designed a long time ago, and isn't very complicated.

Bidirectional MAC
This MAC produces a hash value twice the length of the block algorithm [978].

First, compute the CBC-MAC of the message. Then, compute the CBC-MAC of the
message with the blocks in reverse order. The bidirectional MAC value is simply
the concatenation of the two. Unfortunately, this construction is insecure [1097].

Jueneman 's Methods
This MAC is also called a quadratic congruential manipulation detection code

(QCMDC) [792,789]. First, divide the message into m-bit blocks. Then:

H 0 = IH, where IH is the secret key

Hi= (Hi_ 1 + M;)2 mod p, where p is a prime less than 2m - 1
and+ denotes integer addition

Jueneman suggests n = 16 and p = 231 - 1. In [792] he also suggests that an addi­
tional key be used as H 1, with the actual message starting at H2 •

Because of a variety of birthday-type attacks discovered in conjunction with Don
Coppersmith, Jueneman suggested computing the QCMDC four times, using the
result of one iteration as the IV for the next iteration, and then concatenating the
results to obtain a 128-bit hash value [793]. This was further strengthened by doing
the four iterations in parallel and cross-linking them [790,791]. This scheme was
broken by Coppersmith [376].

Another variant [432,434] replaced the addition operation with an XOR and used
message blocks significantly smaller than p. H 0 was also set, making it a keyless
one-way hash function. After this scheme was attacked [612], it was strengthened as
part of the European Open Shop Information-TeleTrust project [1221], quoted in
CCITT X.509 [304], and adopted in ISO 10118 [764,765]. Unfortunately, Copper­
smith has broken this scheme as well [376]. There has been some research using
exponents other than 2 [603], but none of it has been promising.

RIPE-MAC

RIPE-MAC was invented by Bart Preneel [1262] and adopted by the RIPE project
[1305] (see Section 18.8). It is based on ISO 9797 [763], and uses DES as a block
encryption function. RIPE-MAC has two flavors: one using normal DES, called

~~:s. _____ C_H_A_P_T_E_R_l_8 __ o_n_e_-_W_ay_H_a_s_h_F_u_n_c_t1_·o_n_s ______________ _

RIPE-MACl, and another using triple-DES for even greater security, called RIPE­
MAC3. RIPE-MACl uses one DES encryption per 64-bit message block; RIPE-MAC3
uses three.

The algorithm consists of three parts. First, the message is expanded to a length
that is a multiple of 64 bits. Next, the expanded message is divided up into 64-bit
blocks. A keyed compression function is used to hash these blocks, under the con­
trol of a secret key, into a single block of 64 bits. This is the step that uses either
DES or triple-DES. Finally, the output of this compression is subjected to another
DES-based encryption with a different key, derived from the key used in the com­
pression. See [1305] for details.

/BC-Hash
IBC-Hash is another MAC adopted by the RIPE project [1305] (see Section 18.8). It

is interesting because it is provably secure; the chance of successful attack can be
quantified. Unfortunately, every message must be hashed with a different key. The
chosen level of security puts constraints on the maximum message size that can be
hashed-something no other function in this chapter does. Given these considera­
tions, the RIPE report recommends that IBC-Hash be used only for long, infre­
quently sent messages.

The heart of the function is

h = ((Mi modp) + v) mod 2n

The secret key is the pair p and v, where pis an n-bit prime and vis a random num­
ber less than 2n. The Mi values are derived by a carefully specified padding procedure.
The probabilities of breaking both the one-wayness and the collision-resistance can
be quantified, and users can choose their security level by changing the parameters.

One-Way Hash Function MAC
A one-way hash function can also be used as a MAC [1537]. Assume Alice and Bob

share a key K, and Alice wants to send Bob a MAC for message M. Alice concate­
nates Kand M, and computes the one-way hash of the concatenation: H(K,M). This
hash is the MAC. Since Bob knows K, he can reproduce Alice's result. Mallory, who
does not know K, can't.

This method works with MD-strengthening techniques, but has serious prob­
lems. Mallory can always add new blocks to the end of the message and compute a
valid MAC. This attack can be thwarted if you put the message length at the begin­
ning, but Preneel is suspicious of this scheme [1265]. It is better to put the key at the
end of the message, H(M,K), but this has some problems as well [1265]. If His one­
way but not collision-free, Mallory can forge messages. Still better is H(K,M,K), or
H(K1,M,K2), where K1 and K2 are different [1537]. Preneel is still suspicious [1265].

The following constructions seem secure:

H(K1, H(K2,M))

H(K, H(K,M))

H(K,p,M,K), where p pads K to a full message block.

18.14 Message Authentication Codes

CSPRNG

Shift Register 1

Message Stream

Shift Register 2

Figure 18.15 Stream cipher MAC.

The best approach is to concatenate at least 64 bits of the key with each message
block. This makes the one-way hash function less efficient, because the message
blocks are smaller, but it is much more secure [1265].

Alternatively, use a one-way hash function and a symmetric algorithm. Hash the
file, then encrypt the hash. This is more secure than first encrypting the file and
then hashing the encrypted file, but it is vulnerable to the same attack as the H(M,K)
approach [1265].

Stream Cipher MAC
This MAC scheme uses stream ciphers (see Figure 18.15) [932]. A cryptographi­

cally secure pseudo-random-bit generator demultiplexes the message stream into
two substreams. If the output bit of the bit generator k,, is 1, then the current mes­
sage bit m 1, is routed to the first substream; if the k; is 0, the m 1 is routed to the sec­
ond substream. The substreams are each fed into a different LFSR (see Section 16.2).
The output of the MAC is simply the final states of the shift registers.

Unfortunately, this method is not secure against small changes in the message
[1523]. For example, if you alter the last bit of the message, then only 2 bits in the
corresponding MAC value need to be altered to create a fake MAC; this can be done
with reasonable probability. The author presents a more secure, and more compli­
cated, alternative.

--------------------------------..-z~

CHAPTER 19

Public-Key Algorithms

19.1 BACKGROUND

The concept of public-key cryptography was invented by Whitfield Diffie and Mar­
tin Hellman, and independently by Ralph Merkle. Their contribution to cryptogra­
phy was the notion that keys could come in pairs-an encryption key and a
decryption key-and that it could be infeasible to generate one key from the other
(see Section 2.5). Diffie and Hellman first presented this concept at the 1976
National Computer Conference [495]; a few months later, their seminal paper "New
Directions in Cryptography" was published [496]. (Due to a glacial publishing pro­
cess, Merkle's first contribution to the field didn't appear until 1978 [1064].)

Since 1976, numerous public-key cryptography algorithms have been proposed.
Many of these are insecure. Of those still considered secure, many are impractical.
Either they have too large a key or the ciphertext is much larger than the plaintext.

Only a few algorithms are both secure and practical. These algorithms are gener­
ally based on one of the hard problems discussed in Section 11.2. Of these secure and
practical public-key algorithms, some are only suitable for key distribution. Others
are suitable for encryption (and by extension for key distribution). Still others are
only useful for digital signatures. Only three algorithms work well for both encryp­
tion and digital signatures: RSA, ElGamal, and Rabin. All of these algorithms are
slow. They encrypt and decrypt data much more slowly than symmetric algorithms;
usually that's too slow to support bulk data encryption.

Hybrid cryptosystems (see Section 2.5) speed things up: A symmetric algorithm
with a random session key is used to encrypt the message, and a public-key algo­
rithm is used to encrypt the random session key.

Security of Public-Key Algorithms

Since a cryptanalyst has access to the public key, he can always choose any mes­
sage to encrypt. This means that a cryptanalyst, given C = EK(P), can guess the value

~-:s. _____ C_H_A_P_T_E_R_l_9_P_u_b_l_ic_-_K_e_y_A_l_g_or_i_th_m_s _____________ _

of P and easily check his guess. This is a serious problem if the number of possible
plaintext messages is small enough to allow exhaustive search, but can be solved by
padding messages with a string of random bits. This makes identical plaintext mes­
sages encrypt to different ciphertext messages. (For more about this concept, see
Section 23.15.)

This is especially important if a public-key algorithm is used to encrypt a session
key. Eve can generate a database of all possible session keys encrypted with Bob's
public key. Sure, this requires a large amount of time and memory, but for a 40-bit
exportable key or a 56-bit DES key, it's a whole lot less time and memory than
breaking Bob's public key. Once Eve has generated the database, she will have his
key and can read his mail at will.

Public-key algorithms are designed to resist chosen-plaintext attacks; their secu­
rity is based both on the difficulty of deducing the secret key from the public key
and the difficulty of deducing the plaintext from the ciphertext. However, most
public-key algorithms are particularly susceptible to a chosen-ciphertext attack (see
Section 1.1).

In systems where the digital signature operation is the inverse of the encryption
operation, this attack is impossible to prevent unless different keys are used for
encryption and signatures.

Consequently, it is important to look at the whole system and not just at the indi­
vidual parts. Good public-key protocols are designed so that the various parties can't
decrypt arbitrary messages generated by other parties-the proof-of-identity proto­
cols are a good example (see Section 5.2).

19 .2 KNAPSACK ALGORITHMS

The first algorithm for generalized public-key encryption was the knapsack algo­
rithm developed by Ralph Merkle and Martin Hellman [713,107 4]. It could only be
used for encryption, although Adi Shamir later adapted the system for digital signa­
tures [1413]. Knapsack algorithms get their security from the knapsack problem, an
NP-complete problem. Although this algorithm was later found tc be insecure, it is
worth examining because it demonstrates how an NP-complete problem can be
used for public-key cryptography.

The knapsack problem is a simple one. Given a pile of items, each with different
weights, is it possible to put some of those items into a knapsack so that the knap­
sack weighs a given amount? More formally: Given a set of values M 1, M2, •.. , Mw
and a sum S, compute the values of b1 such that

s = b1Mt + b2M2 +,,, + bnMn

Tl1e values of b1 can be either zero or one. A one indicates that the item is in the
knapsack; a zero indicates that it isn't.

For example, the items might have weights of 1, 5, 6, 11, 14, and 20. You could
pack a knapsack that weighs 22; use weights 5, 6, and 11. You could not pack a knap­
sack that weighs 24. In general, the time required to solve this problem seems to
grow exponentially with the number of items in the pile.

_________________ 1_9_.2 __ K_n_a_p_sa_c_k_A_lg_o_r_it_h_m_s _____ _____,7,,,,~

The idea behind the Merkle-Hellman knapsack algorithm is to encode a message
as a solution to a series of knapsack problems. A block of plaintext equal in length
to the number of items in the pile would select the items in the knapsack (plain text
bits corresponding to the b values), and the ciphertext would be the resulting sum.
Figure 19.1 shows a plaintext encrypted with a sample knapsack problem.

The trick is that there are actually two different knapsack problems, one solvable
in linear time and the other believed not to be. The easy knapsack can be modified
to create the hard knapsack. The public key is the hard knapsack, which can easily
be used to encrypt but cannot be used to decrypt messages. The private key is the
easy knapsack, which gives an easy way to decrypt messages. People who don't
know the private key are forced to try to solve the hard knapsack problem.

Superincreasing Knapsacks

What is the easy knapsack problem? If the list of weights is a superincreasing
sequence, then the resulting knapsack problem is easy to solve. A superincreasing
sequence is a sequence in which every term is greater than the sum of all the previ­
ous terms. For example, jl,3,6,13,27,52! is a superincreasing sequence, but jl,3,4,9,
15,25) is not.

The solution to a superincreasing knapsack is easy to find. Take the total weight
and compare it with the largest number in the sequence. If the total weight is less
than the number, then it is not in the knapsack. If the total weight is greater than or
equal to the number, then it is in the knapsack. Reduce the weight of the knapsack
by the value and move to the next largest number in the sequence. Repeat until fin­
ished. If the total weight has been brought to zero, then there is a solution. If the
total weight has not, there isn't.

For example, consider a total knapsack weight of 70 and a sequence of weights of
!2,3,6, 13,27,52). The largest weight, 52, is less than 70, so 52 is in the knapsack. Sub­
tracting 52 from 70 leaves 18. The next weight, 27, is greater than 18, so 27 is not in
the knapsack. The next weight, 13, is less than 18, so 13 is in the knapsack. Sub­
tracting 13 from 18 leaves 5. The next weight, 6, is greater than 5, so 6 is not in the
knapsack. Continuing this process will show that both 2 and 3 are in the knapsack
and the total weight is brought to 0, which indicates that a solution has been found.
Were this a Merkle-Hellman knapsack encryption block, the plaintext that resulted
from a ciphertext value of 70 would be 110101.

Non-superincreasing, or normal, knapsacks are hard problems; they have no
known quick algorithm. The only known way to determine which items are in the

Plaintext: 111 0 0 1 0 10 1 1 0 000 0 0 0 011 0 0 0

Knapsack: 1 56111420 156111420 156111420 1 56111420

Ciphertext: 1+5+6+20= 5+11+14= 0= 5+6=

32 30 0 11

Figure 19.1 Encryption with knapsacks.

~-s; _____ C_H_A_P_T_ER_l_9_P_u_b_l_ic_-_K_e_y_A_l_g_o_n_·t_h_m_s ______________ _

knapsack is to methodically test possible solutions until you stumble on the correct
one. The fastest algorithms, taking into account the various heuristics, grow expo­
nentially with the number of possible weights in the knapsack. Add one item to the
sequence of weights, and it takes twice as long to find the solution. This is much
more difficult than a superincreasing knapsack where, if you add one more weight
to the sequence, it simply takes another operation to find the solution.

The Merkle-Hellman algorithm is based on this property. The private key is a
sequence of weights for a superincreasing knapsack problem. The public key is a
sequence of weights for a normal knapsack problem with the same solution. Merkle
and Hellman developed a technique for converting a superincreasing knapsack prob­
lem into a normal knapsack problem. They did this using modular arithmetic.

Creating the Public Key from the Private Key
Without going into the number theory, this is how the algorithm works: To get a

normal knapsack sequence, take a superincreasing knapsack sequence, for example
[2,3,6, 13,27,52), and multiply all of the values by a number n, mod m. The modulus
should be a number greater than the sum of all the numbers in the sequence: for
example, 105. The multiplier should have no factors in common with the modulus:
for example, 31. The normal knapsack sequence would then be

2 * 31 mod 105 = 62

3 * 31 mod 105 = 93

6 * 31 mod 105 = 81

13 * 31 mod 105 = 88

27 * 31 mod 105 = 102

52 * 31 mod 105 = 3 7

The knapsack would then be (62,93,81,88,102,37l.
The superincreasing knapsack sequence is the private key. The normal knapsack

sequence is the public key.

Encryption
To encrypt a binary message, first break it up into blocks equal to the number of

items in the knapsack sequence. Then, allowing a one to indicate the item is present
and a zero to indicate that the item is absent, compute the total weights of the lrnap­
sacks-one for every message block.

For example, if the message were 0l 1000110101101110 in binary, encryption
using the previous knapsack would proceed like this:

message = 011000 110101 101110

011000 corresponds to 93 + 81 = 17 4

110101 corresponds to 62 + 93 + 88 + 37 = 280

101110 corresponds to 62 + 81 + 88 + 102 = 333

The ciphertext would be

174,280,333

________________ 19_._2_K_n_a_p_s_a_ck_A_l_g_or_i_th_m_s ______ 7 __ ~

Decryption

A legitimate recipient of this message knows the private key: the original super­
increasing knapsack, as well as the values of n and m used to transform it into a nor­
mal knapsack. To decrypt the message, the recipient must first determine n- 1 such
that n(n- 1) = 1 (mod m). Multiply each of the ciphertext values by n- 1 mod m, and
then partition with the private knapsack to get the plaintext values.

In our example, the superincreasing knapsack is (2,3,6, 13,27,52), m is equal to
105, and n is equal to 31. The ciphertext message is 174,280,333. In this case n- 1 is
equal to 61, so the ciphertext values must be multiplied by 61 mod 105.

174 * 61 mod 105 = 9 = 3 + 6, which corresponds to 011000

280 * 61 mod 105 = 70 = 2 + 3 + 13 + 52, which corresponds to 110101

333 * 61 mod 105 = 48 = 2 + 6 + 13 + 27, which corresponds to 101110

The recovered plaintext is 011000 110101 101110.

Practical Implementations
With a knapsack sequence of only six items, it's not hard to solve the problem

even if it isn't superincreasing. Real knapsacks should contain at least 250 items.
The value for each term in the superincreasing knapsack should be somewhere
between 200 and 400 bits long, and the modulus should be somewhere between 100
to 200 bits long. Real implementations of the algorithm use random-sequence gen­
erators to produce these values.

With knapsacks like that, it's futile to try to solve them by brute force. If a com­
puter could try a million possibilities per second, trying all possible knapsack values
would take over 1046 years. Even a million machines working in parallel wouldn't
solve this problem before the sun went nova.

Security of Knapsacks
It wasn't a million machines that broke the knapsack cryptosystem, but a pair of

cryptographers. First a single bit of plaintext was recovered [725]. Then, Shamir
showed that knapsacks can be broken in certain circumstances [1415, 1416]. There
were other results-[1428,38,754,516,488]-but no one could break the general
Merkle-Hellman system. Finally, Shamir and Zippel [1418,1419,1421] found flaws
in the transformation that allowed them to reconstruct the superincreasing knap­
sack from the normal knapsack. The exact arguments are beyond the scope of this
book, but a nice summary of them can be found in [1233, 1244]. At the conference
where the results were presented, the attack was demonstrated on stage using an
Apple II computer [492,494].

Knapsack Variants

Since the original Merkle-Hellman scheme was broken, many other knapsack sys­
tems have been proposed: multiple iterated knapsacks, Graham-Shamir knapsacks,
and others. These have all been analyzed and broken, generally using the same cryp­
tographic techniques, and litter the cryptographic highway [260,253,269,921, 15,919,
920,922,366,254,263,255]. Good overviews of these systems and their cryptanalyses
can be found in [267,479,257,268].

~-:s _____ C_H_A_P_T_ER_l_9_P_u_b_l_ic_-_K_e_y_A_l_g_o_n_·t_h_m_s ______________ _

Other algorithms have been proposed that use ideas similar to those used in lrnap­
sack cryptosystems, but these too have been broken. The Lu-Lee cryptosystem
[990,13] was broken in [20,614,873]; a modification [507] is also insecure [1620].
Attacks on the Goodman-McAuley cryptosystem are in [646,647,267,268]. The
Pieprzyk cryptosystem [1246] can be broken by similar attacks. The Niemi cryp­
tosystem [1169], based on modular knapsacks, was broken in [345,788]. A newer
multistage knapsack [747] has not yet been broken, but I am not optimistic. Another
variant is [294].

While a variation of the knapsack algorithm is currently secure-the Chor-Rivest
knapsack [356], despite a "specialized attack" [743]-the amount of computation
required makes it far less useful than the other algorithms discussed here. A variant,
called the Powerline System, is not secure [958]. Most important, considering the
ease with which all the other variations fell, it doesn't seem prudent to trust them.

Patents

The original Merkle-Hellman algorithm is patented in the United States [720] and
worldwide (see Table 19.1). Public Key Partners (PKP) licenses the patent, along
with other public-key cryptography patents (see Section 25.5). The U.S. patent will
expire on August 19, 1997.

19.3 RSA

Soon after Merkle's knapsack algorithm came the first full-fledged public-key algo­
rithm, one that works for encryption and digital signatures: RSA [1328, 1329]. Of all
the public-key algorithms proposed over the years, RSA is by far the easiest to
understand and implement. (Martin Gardner published an early description of the
algorithm in his "Mathematical Games" column in Scientific American [599].) It is

Table 19.1
Foreign Merkle-Hellman Knapsack Patents

Country Number Date of Issue

Belgium 871039 5 Apr 1979
Netherlands 7810063 10 Apr 1979
Crea t Britain 2006580 2 May 1979
Germany 2843583 10 May 1979
Sweden 7810478 14 May 1979
France 2405532 8 Jun 1979
Germany 2843583 3 Jun 1982
Germany 2857905 15 Jul 1982
Canada 1128159 20 Jul 1982
Crea t Britain 2006580 18 Aug 1982
Switzerland 63416114 14 Jan 1983
Italy 1099780 28 Sep 1985

________________ 1_9._3_R_SA ________ 7-=--~

also the most popular. Named after the three inventors-Ron Rivest, Adi Shamir,
and Leonard Adleman-it has since withstood years of extensive cryptanalysis.
Although the cryptanalysis neither proved nor disproved RSA's security, it does sug­
gest a confidence level in the algorithm.

RSA gets its security from the difficulty of factoring large numbers. The public
and private keys are functions of a pair of large (100 to 200 digits or even larger)
prime numbers. Recovering the plaintext from the public key and the ciphertext is
conjectured to be equivalent to factoring the product of the two primes.

To generate the two keys, choose two random large prime numbers, p and q. For
maximum security, choose p and q of equal length. Compute the product:

n=pq

Then randomly choose the encryption key, e, such that e and (p - 1)(q - 1) are rela­
tively prime. Finally, use the extended Euclidean algorithm to compute the decryp­
tion key, d, such that

ed == 1 mod (p - 1)(q - 1)

In other words,

d = e- 1 mod ((p- l)(q- 1))

Note that d and n are also relatively prime. The numbers e and n are the public
key; the number dis the private key. The two primes, p and q, are no longer needed.
They should be discarded, but never revealed.

To encrypt a message m, first divide it into numerical blocks smaller than n (with
binary data, choose the largest power of 2 less than n). That is, if both p and q are
100-digit primes, then n will have just under 200 digits and each message block, m,,
should be just under 200 digits long. (If you need to encrypt a fixed number of
blocks, you can pad them with a few zeros on the left to ensure that they will always
be less than n.) The encrypted message, c, will be made up of similarly sized mes­
sage blocks, C;, of about the same length. The encryption formula is simply

C;=m/ modn

To decrypt a message, take each encrypted block C; and compute

m; = c/ mod n

Since

C·d = (m·e)d =med= m.klp- IJlq - 11 + 1 = m-m-klp - lllq- 11 = m * 1 = m. all
1 1 1 1 1 1 l lJ

(modn)

the formula recovers the message. This is summarized in Table 19.2.
The message could just as easily have been encrypted with d and decrypted with

e; the choice is arbitrary. I will spare you the number theory that proves why this
works; most current texts on cryptography cover it in detail.

A short example will probably go a long way to making this clearer. If p = 47 and
q = 71, then

~..,_:s,----------C_H_A_P_T_ER_l_9_P_u_b_l_ic_-_K_e_y_A_l_g_o_n_·t_h_m_s ______________ _

Public Key:

Table 19.2
RSA Encryption

n product of two primes, p and q (p and q must remain secret)
e relatively prime to (p - l)(q - 1)

Private Key:
d e-1 mod((p-l)(q-l))

Encrypting:
c=memodn

Decrypting:
m = ca modn

n = pq=3337

The encryption key, e, must have no factors in common with

(p - l)(q - 1) = 46 * 70 = 3220

Choose e (at random) to be 79. In that case

d = 79-1 mod 3220 = 1019

This number was calculated using the extended Euclidean algorithm (see Section
11.3). Publish e and n, and keep d secret. Discard p and q.

To encrypt the message

m = 6882326879666683

first break it into small blocks. Three-digit blocks work nicely in this case. The mes­
sage is split into six blocks, m" in which

m1 = 688
m 2 = 232

ill3 = 687
ill4 = 966
mi= 668

m6 = 003

The first block is encrypted as

688 79 mod 3337 = 1570 = c1

Performing the same operation on the subsequent blocks generates an encrypted
message:

C = 1570 2756 2091 2276 2423 158

Decrypting the message requires performing the same exponentiation using the
decryption key of 1019, so

________________ 1_9._3_R_S_A ________ 7...,,,..~

15701019 mod 3337 = 688 = m1

The rest of the message can be recovered in this manner.

RSA in Hardware
Much has been written on the subject of hardware implementations of RSA [1314,

1474, 1456, 1316, 1485,874, 1222,87, 1410, 1409, 1343,998,367, 1429,523, 772]. Good sur­
vey articles are [258,872]. Many different chips perform RSA encryption [1310,252,
1101, 1317,874,69, 737,594, 1275, 1563,509, 1223]. A partial list of currently available
RSA chips, from [150,258], is listed in Table 19.3. Not all are available on the open
market.

Speed of RSA
In hardware, RSA is about 1000 times slower than DES. The fastest VLSI hard­

ware implementation for RSA with a 512-bit modulus has a throughput of 64 kilo­
bits per second [258]. There are also chips that perform 1024-bit RSA encryption.
Currently chips are being planned that will approach 1 megabit per second using a
512-bit modulus; they will probably be available in 1995. Manufacturers have also
implemented RSA in smart cards; these implementations are slower.

In software, DES is about 100 times faster than RSA. These numbers may change
slightly as technology changes, but RSA will never approach the speed of symmet­
ric algorithms. Table 19.4 gives sample software speeds of RSA [918].

Software Speedups
RSA encryption goes much faster if you're smart about choosing a value of e. The

three most common choices are 3, 17, and 6553 7 (216 + 1). (The binary representation
of 65537 has only two ones, so it takes only 17 multiplications to exponentiate.)
X.509 recommends 65537 [304], PEM recommends 3 [76], and PKCS #1 (see Section
24.14) recommends 3 or 65537 [1345]. There are no security problems with using

Table 19.3
Existing RSA Chips

Clock Cycles
Clock Baud Rate Per 512 Bit Bits per Number of

Company Speed Per 512 Bits Encryption Technology Chip Transistors

Alpha Techn. 25MHz 13 K .98M 2 micron 1024 180,000
AT&T 15 MHz 19 K .4M 1.5 micron 298 100,000
British Telecom 10MHz 5.1 K lM 2.5 micron 256
Business Sim. Ltd. 5MHz 3.8 K .67M Gate Array 32
Calmos Syst. Inc. 20MHz 28 K .36M 2 micron 593 95,000
CNET 25MHz 5.3 K 2.3M 1 micron 1024 100,000
Cryptech 14MHz 17 K .4M Gate Array 120 33,000
Cylink 30MHz 6.8 K 1.2M 1.5 micron 1024 150,000
GEC Marconi 25MHz 10.2 K .67M 1.4 micron 512 160,000
Pijnenburg 25MHz 50 K .256M 1 micron 1024 400,000
Sandia 8MHz 10 K .4M 2 micron 272 86,000
Siemens 5MHz 8.5 K .3M 1 micron 512 60,000

~-s _____ C_H_A_P_T_E_R_l_9_P_u_b_l_ic_-_K_e_y_A_l_g_or_i_th_m_s _____________ _

Table 19.4
RSA Speeds for Different Modulus Lengths

with an 8-bit Public Key (on a SPARC II)
512 bits 768 bits 1,024 bits

Encrypt 0.03 sec 0.05 sec 0.08 sec
Decrypt 0.16 sec 0.48 sec 0.93 sec
Sign 0.16 sec 0.52 sec 0.97 sec
Verify 0.02 sec 0.07 sec 0.08 sec

any of these three values fore (assuming you pad messages with random values-see
later section), even if a whole group of users uses the same value for e.

Private key operations can be speeded up with the Chinese remainder theorem if
you save the values of p and q, and additional values such as d mod (p - 1), d mod
(q - 1), and q- 1 mod p [1283,1276]. These additional numbers can easily be calcu­
lated from the private and public keys.

Security of RSA

The security of RSA depends wholly on the problem of factoring large numbers.
Technically, that's a lie. It is conjectured that the security of RSA depends on the
problem of factoring large numbers. It has never been mathematically proven that
you need to factor n to calculate m from c and e. It is conceivable that an entirely
different way to cryptanalyze RSA might be discovered. However, if this new way
allows the cryptanalyst to deduce d, it could also be used as a new way to factor
large numbers. I wouldn't worry about it too much.

It is also possible to attack RSA by guessing the value of (p - 1)(q - 1). This attack
is no easier than factoring n [1616].

For the ultraskeptical, some RSA variants have been proved to be as difficult as
factoring (see Section 19.5). Also look at [36], which shows that recovering even cer­
tain bits of information from an RSA-encrypted ciphertext is as hard as decrypting
the entire message.

Factoring n is the most obvious means of attack. Any adversary will have the
public key, e, and the modulus, n. To find the decryption key, d, he has to factor n.
Section 11.4 discusses the current state of factoring technology. Currently, a 129-
decimal-digit modulus is at the edge of factoring technology. So, n must be larger
than that. Read Section 7.2 on public key length.

It is certainly possible for a cryptanalyst to try every possible d until he stumbles on
the correct one. This brute-force attack is even less efficient than trying to factor n.

From time to time, people claim to have found easy ways to break RSA, but to
date no such claim has held up. For example, in 1993 a draft paper by William Payne
proposed a method based on Fermat's little theorem [1234]. Unfortunately, this
method is also slower than factoring the modulus.

There's another worry. Most common algorithms for computing primes p and q
are probabilistic; what happens if p or q is composite? Well, first you can make the
odds of that happening as small as you want. And if it does happen, the odds are that

________________ 1_9._3_R_SA ________ 7 ___ ~

encryption and decryption won't work properly-you'll notice right away. There are
a few numbers, called Carmichael numbers, which certain probabilistic primality
algorithms will fail to detect. These are exceedingly rare, but they are insecure [746].
Honestly, I wouldn't worry about it.

Chosen Ciphertext Attack against RSA

Some attacks work against the implementation of RSA. These are not attacks
against the basic algorithm, but against the protocol. It's important to realize that
it's not enough to use RSA. Details matter.

Scenario 1: Eve, listening in on Alice's communications, manages to collect a
ciphertext message, c, encrypted with RSA in her public key. Eve wants to be able
to read the message. Mathematically, she wants m, in which

m=ca

To recover m, she first chooses a random number, r, such that r is less than n. She
gets Alice's public key, e. Then she computes

x=re modn

y=xc modn
t = r- 1 mod n

If x = re mod n, then r = ~ mod n.
Now, Eve gets Alice to sign y with her private key, thereby decrypting y. (Alice

has to sign the message, not the hash of the message.) Remember, Alice has never
seen y before. Alice sends Eve

u =yd modn

Now, Eve computes

tu mod n = r 1yd mod n = c 1~ca mod n = ca mod n = m

Eve now has m.
Scenario 2: Trent is a computer notary public. If Alice wants a document nota­

rized, she sends it to Trent. Trent signs it with an RSA digital signature and sends it
~ck. (No one-way hash functions are used here; Trent encrypts the entire message
with his private key.)

Mallory wants Trent to sign a message he otherwise wouldn't. Maybe it has a
phony timestamp; maybe it purports to be from another person. Whatever the rea­
son, Trent would never sign it if he had a choice. Let's call this message m'.

First, Mallory chooses an arbitrary value x and computes y = x" mod n. He can eas­
ily get e; it's Trent's public key and must be public to verify his signatures. Then he
computes m = ym' mod n, and sends m to Trent to sign. Trent returns m'd mod n.
Now Mallory calculates (ma mod n)x- 1 mod n, which equals n'd mod n and is the sig­
nature of m'.

Actually, Mallory can use several methods to accomplish these same things
[423,458,486]. The weakness they all exploit is that exponentiation preserves the
multiplicative structure of the input. That is:

(xm)a mod n = ~ma mod n

~..,_s,------C_H_A_P_T_ER_l_9_P_u_b_l_ic_-_K_e_y_A_l_g_o_n_·t_h_m_s ______________ _

Scenario 3: Eve wants Alice to sign m 3 • She generates two messages, m 1 and m 2,

such that

m3 == m 1m 2 (mod n)

If Eve can get Alice to sign m 1 and m 2, she can calculate m 3:

m/ = (m/ mod n)(ml mod n)

Moral: Never use RSA to sign a random document presented to you by a stranger.
Always use a one-way hash function first. The ISO 9796 block format prevents this
attack.

Common Modulus Attack on RSA

A possible RSA implementation gives everyone the same n, but different values
for the exponents e and d. Unfortunately, this doesn't work. The most obvious prob­
lem is that if the same message is ever encrypted with two different exponents (both
having the same modulus), and those two exponents are relatively prime (which
they generally would be), then the plaintext can be recovered without either of the
decryption exponents [1457].

Let m be the plaintext message. The two encryption keys are e1 and e2 • The com­
mon modulus is n. The two ciphertext messages are:

C1 =me 1 modn

c2 =m"2 modn

The cryptanalyst knows n, e1, e2, c1, and c2 . Here's how he recovers m.
Since e1 and e2 are relatively prime, the extended Euclidean algorithm can find r

and s, such that

re 1 + se2 = 1

Assuming r is negative (either r ors has to be, so just call the negative oner), then
the extended Euclidean algorithm can be used again to calculate c1- 1• Then

(c1-1)-r * C2' = m mod TI

There are two other, more subtle, attacks against this type of system. One attack
uses a probabilistic method for factoring n. The other uses a deterministic algorithm
for calculating someone's secret key without factoring the modulus. Both attacks
are described in detail in [449].

Moral: Don't share a common n among a group of users.

Low Encryption Exponent Attack against RSA

RSA encryption and signature verification are faster if you use a low value for e,
but that can also be insecure [704]. If you encrypt e(e + 1)/2 linearly dependent mes­
sages with different public keys having the same value of e, there is an attack
against the system. If there are fewer than that many messages, or if the messages
are unrelated, there is no problem. If the messages are identical, then e messages are
enough. The easiest solution is to pad messages with independent random values.

_________________ 19_._3_R_SA _______ ______,,,7 ~

This also ensures that me mod n -:t-me. Most real-world RSA implementations-FEM
and PGP (see Sections 24.10 and 24.12), for example-do this.

Moral: Pad messages with random values before encrypting them; make sure m is
about the same size as n.

Low Decryption Exponent Attack against RSA
Another attack, this one by Michael Wiener, will recover d, when dis up to one

quarter the size of n and e is less than n [1596]. This rarely occurs if e and dare cho­
sen at random, and cannot occur if e has a small value.

Moral: Choose a large value for d.

Lessons Learned

Judith Moore lists several restrictions on the use of RSA, based on the success of
these attacks [1114, 1115]:

Knowledge of one encryption/decryption pair of exponents for a given
modulus enables an attacker to factor the modulus.

Knowledge of one encryption/decryption pair of exponents for a given
modulus enables an attacker to calculate other encryption/
decryption pairs without having to factor n.

A common modulus should not be used in a protocol using RSA in a
communications network. (This should be obvious from the previous
two points.)

Messages should be padded with random values to prevent attacks on
low encryption exponents.

The decryption exponent should be large.

Remember, it is not enough to have a secure cryptographic algorithm. The entire
cryptosystem must be secure, and the cryptographic protocol must be secure. A fail­
ure in any of those three areas makes the overall system insecure.

Attack on Encrypting and Signing with RSA

It makes sense to sign a message before encrypting it (see Section 2. 7), but not
everyone follows this practice. With RSA, there is an attack against protocols that
encrypt before signing [48].

Alice wants to send a message to Bob. First she encrypts it with Bob's public key;
then she signs it with her private key. Her encrypted and signed message looks like:

(meB mod nB)dA mod nA

Here's how Bob can claim that Alice sent him m' and not m. Realize that since
Bob knows the factorization of nB (it's his modulus), he can calculate discrete loga­
rithms with respect to nB. Therefore, all he has to do is to find an x such that

~-:s _____ C_H_A_P_T_ER_l_9_P_u_b_l_ic_-_K_e_y_A_l_g_o_n_·t_h_m_s ______________ _

Then, if he can publish xeB as his new public exponent and keep nB as his modu­
lus, he can claim that Alice sent him message m' encrypted in this new exponent.

This is a particularly nasty attack in some circumstances. Note that hash func­
tions don't solve the problem. However, forcing a fixed encryption exponent for
every user does.

Standards
RSA is a de facto standard in much of the world. The ISO almost, but not quite,

created an RSA digital-signature standard; RSA is in an information annex to ISO
9796 [762]. The French banking community standardized on RSA [525], as have the
Australians [1498]. The United States currently has no standard for public-key
encryption, because of pressure from the NSA and patent issues. Many U.S. compa­
nies use PKCS (see Section 24.14), written by RSA Data Security, Inc. A draft ANSI
banking standard specifies RSA [61].

Patents
The RSA algorithm is patented in the United States [1330], but not in any other

country. PKP licenses the patent, along with other public-key cryptography patents
(see Section 25.5). The U.S. patent will expire on September 20, 2000.

19.4 POHLIG-HELLMAN

The Pohlig-Hellman encryption scheme [1253] is similar to RSA. It is not a sym­
metric algorithm, because different keys are used for encryption and decryption. It
is not a public-key scheme, because the keys are easily derivable from each other;
both the encryption and decryption keys must be kept secret.

Like RSA,

where

C =Pemodn

P= ca modn

ed = 1 (mod some complicated number)

Unlike RSA, n is not defined in terms of two large primes, it must remain part of
the secret key. If someone had e and n, they could calculated. Without knowledge
of e or d, an adversary would be forced to calculate

e = logpC mod n

We have already seen that this is a hard problem.

Patents
The Pohlig-Hellman algorithm is patented in the United States [722] and also in

Canada. PKP licenses the patent, along with other public-key cryptography patents
(see Section 25.5).

__________________ 19_._5_R_a_b_in ________ ---=-z~

19.5 RABIN

Rabin's scheme [1283,1601] gets its security from the difficulty of finding square
roots modulo a composite number. This problem is equivalent to factoring. Here is
one implementation of this scheme.

First choose two primes, p and q, both congruent to 3 mod 4. These primes are the
private key; the product n = pq is the public key.

To encrypt a message, M (M must be less than n), simply compute

C=M 2 modn

Decrypting the message is just as easy, but slightly more annoying. Since the
receiver knows p and q, he can solve the two congruences using the Chinese
remainder theorem. Compute

m1 =err+ 1114 mod p

m2 = (p - C1P + 1114) mod p

m 3 = C1q + 1114 mod q

ill4 = (q - Ciq + 1114) mod q

Then choose an integer a= q(q- 1 mod p) and a integer b = p(p- 1 mod q). The four
possible solutions are:

M1 = (am 1 + bm 3) mod n

M2 = (am 1 + bm 4) mod n

M3 = (am2 + bm") mod n

M4 = (am 2 + bm 4) mod n

One of those four results, M1, M2, M3, or M4, equals M. If the message is English
text, it should be easy to choose the correct M1• On the other hand, if the message is
a random-bit stream (say, for key generation or a digital signature), there is no way
to determine which M 1 is correct. One way to solve this problem is to add a known
header to the message before encrypting.

Williams
Hugh Williams redefined Rabin's schemes to eliminate these shortcomings [1601].

In his scheme, p and q are selected such that

p = 3 mod 8

q = 7 mod 8

and

N=pq

Also, there is a small integer, S, such that J(S,N) = -1. (J is the Jacobi symbol-see
Section 11.3). N and S are public. The secret key is k, such that

k= 1/2 * (1/4 * (p-1) * (q-1)+ 1)

~-..:s.,----------C_H_A_P_TE_R_l_9_P_u_b_l_ic_-_K_e_y_A_l_g_o_n_·t_h_m_s ______________ _

To encrypt a message M, compute c1 such that J(M,N) = (-l)c1. Then, compute M'
= (Sci * M) mod N. Like Rabin's scheme, C = M'2 mod N. And c2 = M' mod 2. The final
ciphertext message is the triple:

(C, C1, C2)

To decrypt C, the receiver computes M" using

ck== ±M" (mod N)

The proper sign of M" is given by c2 • Finally,

M = (sci * (-l)ci * M") mod N

Williams refined this scheme further in [1603, 1604, 1605]. Instead of squaring the
plaintext message, cube it. The large primes must be congruent to 1 mod 3; other­
wise the public and private keys are the same. Even better, there is only one unique
decryption for each encryption.

Both Rabin and Williams have an advantage over RSA in that they are provably as
secure as factoring. However, they are completely insecure against a chosen­
ciphertext attack. If you are going to use these schemes in instances where an
attacker can mount this attack (for example, as a digital signature algorithm where
an attacker can choose messages to be signed), be sure to use a one-way hash func­
tion before signing. Rabin suggested another way of defeating this attack: Append a
different random string to each message before hashing and signing. Unfortunately,
once you add a one-way hash function to the system it is no longer provably as
secure as factoring [628], although adding hashing cannot weaken the system in any
practical sense.

Other Rabin variants are [972,909,696,697, 1439,989]. A two-dimensional variant
is in [866,889].

19 .6 ELGAMAL

The ElGamal scheme [518,519] can be used for both digital signatures and encryp­
tion; it gets its security from the difficulty of calculating discrete logarithms in a
finite field.

To generate a key pair, first choose a prime, p, and two random numbers, g and x,
such that both g and x are less than p. Then calculate

y=gx modp

The public key is y, g, and p. Both g and p can be shared among a group of users.
The private key is x.

EIGamal Signatures
To sign a message, M, first choose a random number, k, such that k is relatively

prime top - 1. Then compute

a =gk modp

_________________ 19_._6_E_IG_a_m_al _______ --,,,.7 ~

and use the extended Euclidean algorithm to solve for b in the following equation:

M = (xa + kb) mod (p - 1)

The signature is the pair: a and b. The random value, k, must be kept secret.
To verify a signature, confirm that

y"ab mod p = gM mod p

Each ElGamal signature or encryption requires a new value of k, and that value
must be chosen randomly. If Eve ever recovers a k that Alice used, she can recover
Alice's private key, x. If Eve ever gets two messages signed or encrypted using the
same k, even if she doesn't know what it is, she can recover x.

This is summarized in Table 19.5.
For example, choose p = 11 and g = 2. Choose private key x = 8. Calculate

y = gx mod p = 2 8 mod 11 = 3

The public key is y = 3, g = 2, and p = 11.
To authenticate M = 5, first choose a random number k = 9. Confirm that gcd(9,10)

= 1. Compute

a = gk mod p = 29 mod 11 = 6

and use the extended Euclidean algorithm to solve for b:

M =(ax+ kb) mod (p - 1)

5 = (8 * 6 + 9 * b) mod 10

The solution is b = 3, and the signature is the pair: a= 6 and b = 3.

Table 19.5
EIGamal Signatures

Public Key:
p prime (can be shared among a group of users)
g < p (can be shared among a group of users)
y =gxmodp

Private Key:
X <p

Signing:
k choose at random, relatively prime top - 1
a (signature)= gk mod p
b (signature) such that M = (xa + kb) mod (p - 1)

Verifying:
Accept as valid if y"ab mod p = gM mod p

~"""s;~ ____ C_H_A_P_T_ER_l_9_P_u_b_l_ic_-_K_e_y_A_l_g_o_n_·t_h_m_s ______________ _

To verify a signature, confirm that

y"al' modp =gM modp

3663 mod 11 = 25 mod 11

A variant of ElGamal for signatures is in [1377]. Thomas Beth invented a variant
of the ElGamal scheme suitable for proofs of identity [146]. There are variants for
password authentication [312], and for key exchange [773]. And there are thousands
more (see Section 20.4).

EIGamal Encryption

A modification of ElGamal can encrypt messages. To encrypt message M, first
choose a random k, such that k is relatively prime top - l. Then compute

a =gk modp

b =ykMmodp

The pair, a and b, is the ciphertext. Note that the ciphertext is twice the size of the
plain text.

To decrypt a and b, compute

M= b/axmodp

Since ax= gkx (modp), and b/ax = ykM/ax = gxkM/gxk = M (modp), this all works
(see Table 19.6). This is really the same as Diffie-Hellman key exchange (see Section
22.1), except that y is part of the key, and the encryption is multiplied by yk.

Speed

Table 19.7 gives sample software speeds of ElGamal [918].

Table 19.6
EIGamal Encryption

Public Key:
p prime (can be shared among a group of users)
g < p (can be shared among a group of users)
y =gx modp

Private Key:
X <p

Encrypting:
k choose at random, relatively prime top - l.
a (ciphertext) = gk mod p
b (ciphertext) = ykM mod p

Decrypting:
M (plaintext) = bf ax mod p

__________________ 1_9_.7_M_cE_l_i_ec_e ________ 7 __ ~

Patents
ElCamal is unpatented. But, before you go ahead and implement the algorithm,

realize that PKP feels that this algorithm is covered under the Diffie-Hellman patent
[718]. However, the Diffie-Hellman patent will expire on April 29, 1997, making
ElCamal the first public-key cryptography algorithm suitable for encryption and
digital signatures unencumbered by patents in the United States. I can hardly wait.

19. 7 McELIECE

In 1978 Robert McEliece developed a public-key cryptosystem based on algebraic
coding theory [1041]. The algorithm makes use of the existence of a class of error­
correcting codes, known as Goppa codes. His idea was to construct a Coppa code
and disguise it as a general linear code. There is a fast algorithm for decoding Coppa
codes, but the general problem of finding a code word of a given weight in a linear
binary code is NP-complete. A good description of this algorithm can be found in
[1233]; see also [1562]. Following is just a quick summary.

Let dH(x,y) denote the Hamming distance between x and y. The numbers n, k, and
t are system parameters.

The private key has three parts: G' is a k * n generator matrix for a Coppa code
that can correct t errors. P is an n * n permutation matrix. S is a k * k nonsingular
matrix.

The public key is a k * n matrix G: G = SG'P.
Plaintext messages are strings of k bits, in the form of k-element vectors over CF(2).
To encrypt a message, choose a random n-element vector over CF(2), z, with Ham-

ming distance less than or equal to t.

c=mG+z

To decrypt the ciphertext, first compute c' = cP--1. Then, using the decoding algo­
rithm for the Coppa code, find m' such that dH(m'G, c') is less than or equal to t.
Finally, compute m = m'S- 1•

In his original paper, McEliece suggested that n = 1024, t = 50, and k = 524. These
are the minimum values required for security.

Table 19.7
ElGamal Speeds for Different

Modulus Lengths with a 160-bit
Exponent (on a SPARC II)

512 bits 768 bits 1024 bits

Encrypt 0.33 sec 0.80 sec 1.09 sec
Decrypt 0.24 sec 0.58 sec 0.77 sec
Sign 0.25 sec 0.47 sec 0.63 sec
Verify 1.37 sec 5.12 sec 9.30 sec

~~:s. _____ C_H_A_P_T_ER_l_9_P_u_b_l_ic_-_K_e_y_A_l_g_o_n_·t_h_m_s ______________ _

Although the algorithm was one of the first public-key algorithms, and there were
no successful cryptanalytic results against the algorithm, it has never gained wide
acceptance in the cryptographic community. The scheme is two to three orders of
magnitude faster than RSA, but has some problems. The public key is enormous: 2 19

bits long. The data expansion is large: The ciphertext is twice as long as the plain text.
Some attempts at cryptanalysis of this system can be found in [8,943,1559,306].

None of these were successful in the general case, although the similarity between
the McEliece algorithm and knapsacks worried some.

In 1991, two Russian cryptographers claimed to have broken the McEliece system
with some parameters [882]. Their paper contained no evidence to substantiate their
claim, and most cryptographers discount the result. Another Russian attack, one
that cannot be used directly against the McEliece system, is in [1447,1448]. Exten­
sions to McEliece can be found in [424,1227,976].

Other Algorithms Based on Linear Error-Correcting Codes
The Niederreiter algorithm [1167] is closely related to the McEliece algorithm, and

assumes that the public key is a random parity-check matrix of an error-correcting
code. The private key is an efficient decoding algorithm for this matrix.

Another algorithm, used for identification and digital signatures, is based on
syndrome decoding [1501]; see [306] for comments. An algorithm based on error­
correcting codes [1621] is insecure [698,33,31,1560,32].

19 .8 ELLIPTIC CURVE CRYPTOSYSTEMS

Elliptic curves have been studied for many years and there is an enormous amount
of literature on the subject. In 1985, Neal Ko blitz and V. S. Miller independently pro­
posed using them for public-key cryptosystems [867,1095]. They did not invent a
new cryptographic algorithm with elliptic curves over finite fields, but they imple­
mented existing public-key algorithms, like Diffie-Hellman, using elliptic curves.

Elliptic curves are interesting because they provide a way of constructing "ele­
ments" and "rules of combining" that produce groups. These groups have enough
familiar properties to build cryptographic algorithms, but they don't have certain
properties that may facilitate cryptanalysis. For example, there is no good notion of
"smooth" with elliptic curves. That is, there is no set of small elements in terms of
which a random element has a good chance of being expressed by a simple algo­
rithm. Hence, index calculus discrete logarithm algorithms do not work. See [1095]
for more details.

Elliptic curves over the finite field GF(2n) are particularly interesting. The arith­
metic processors for the underlying field are easy to construct and are relatively sim­
ple to implement for n in the range of 130 to 200. They have the potential to provide
faster public-key cryptosystems with smaller key sizes. Many public-key algo­
rithms, like Diffie-Hellman, ElGamal, and Schnorr, can be implemented in elliptic
curves over finite fields.

The mathematics here are complex and beyond the scope of this book. Those
interested in this topic are invited to read the two references previously mentioned,

________________ 19_._9_Lu_c _______ 7 __ ~

and the excellent book by Alfred Menezes [1059]. Two analogues of RSA work in
elliptic curves [890,454]. Other papers are [23,119, 1062,869, 152,871,892,25,895,353,
1061,26,913,914,915]. Elliptic curve cryptosystems with small key lengths are dis­
cussed in [701]. Next Computer Inc.'s Fast Elliptic Encryption (FEE) algorithm also
uses elliptic curves [388]. FEE has the nice feature that the private key can be any
easy-to-remember string. There are proposed public-key cryptosystems using hyper­
elliptic curves [868,870, 1441, 1214].

19.9 LUC

Some cryptographers have developed generalizations of RSA that use various per­
mutation polynomials instead of exponentiation. A variation called Kravitz-Reed,
using irreducible binary polynomials [898], is insecure [451,589]. Winfried Muller
and Wilfried Ni:ibauer use Dickson polynomials [1127,1128,965]. Rudolph Lidl and
Muller generalized this approach in [966, 1126] (a variant is called the Reidi scheme),
and Ni:ibauer looked at its security in [1172, 1173]. (Comments on prime generation
with Lucas functions are in [969,967,968,598].) Despite all of this prior art, a group
of researchers from New Zealand managed to patent this scheme in 1993, calling it
LUC [1486,521, 1487].

The nth Lucas number, V11(P, 1), is defined as

Vn(P, 1) = PVn - i(P, 1) - Vn - 2 (P,1)

There's a lot more theory to Lucas numbers; I'm ignoring all of it. A good theoret­
ical treatment of Lucas sequences is in [1307, 1308]. A particularly nice description
of the mathematics of LUC is in [1494, 708].

In any case, to generate a public-key/private-key key pair, first choose two large
primes, p and q. Calculate n, the product of p and q. The encryption key, e, is a ran­
dom number that is relatively prime top - 1, q - 1, p + 1, and q + 1.

There are four possible decryption keys,

d = e-1 mod (lcm((p + 1), (q + 1)))

d = e-1 mod (lcm((p + 1), (q - 1)))

d = e-1 mod (lcm((p - 1), (q + 1)))

d = e-1 mod (lcm((p- 1), (q- 1)))

where lcm is the least common multiple.
The public key is d and n; the private key is e and n. Discard p and q.
To encrypt a message, P (P must be less than n), calculate

C = Ve(P, 1) (mod n)

And to decrypt:

P = Va(P, 1) (mod n), with the proper d

At best, LUC is no more secure than RSA. And recent, still-unpublished results
show how to break LUC in at least some implementations. I just don't trust it.

~-:s _____ C_H_A_P_T_ER_l_9_P_u_b_l_ic_-_K_e_y_A_l_g_o_n_·t_h_m_s ______________ _

19 .10 FINITE AUTOMATON PUBLIC-KEY CRYPTOSYSTEMS

Chinese cryptographer Tao Renji has developed a public-key algorithm based on
finite automata [1301, 1302, 1303, 1300, 1304,666]. Just as it is hard to factor the prod­
uct of two large primes, it is also hard to factor the composition of two finite
automata. This is especially so if one or both of them is nonlinear.

Much of this research took place in China in the 1980s and was published in Chi­
nese. Renji is starting to write in English. His main result was that certain nonlin­
ear automata (the quasilinear automata) possess weak inverses if, and only if, they
have a certain echelon matrix structure. This property disappears if they are com­
posed with another automaton (even a linear one). In the public-key algorithm, the
secret key is an invertible quasilinear automaton and a linear automaton, and the
corresponding public key can be derived by multiplying them out term by term.
Data is encrypted by passing it through the public automaton, and decrypted by
passing it through the inverses of its components (in some cases provided they have
been set to a suitable initial state). This scheme works for both encryption and dig­
ital signatures.

The performance of such systems can be summed up by saying that like McEliece's
system, they run much faster than RSA, but require longer keys. The keylength
thought to give similar security to 512-bit RSA is 2792 bits, and to 1024-bit RSA is
4152 bits. For the former case, the system encrypts data at 20,869 bytes/sec and
decrypts data at 17,117 bytes/sec, running on a 33 MHz 80486.

Renji has published three algorithms. The first is FAPKC0. This is a weak system
which uses linear components, and is primarily illustrative. Two serious systems,
FAPKCl and FAPKC2, use one linear and one nonlinear component each. The latter
is more complex, and was developed in order to support identity-based operation.

As for their strength, quite a lot of work has been done on them in China (where
there are now over 30 institutes publishing cryptography and security papers). One
can see from the considerable Chinese language literature that the problem has been
studied.

One possible attraction of FAPKCl and FAPKC2 is that they are not encumbered
by any U.S. patents. Thus, once the Diffie-Hellman patent expires in 1997, they will
unquestionably be in the public domain.

------------------------z:---~

CHAPTER

Public-Key Digital
Signature Algorithms

20.1 DIGITAL SIGNATURE ALGORITHM (DSA)

20

In August 1991, The National Institute of Standards and Technology (NIST) pro­
posed the Digital Signature Algorithm (DSA) for use in their Digital Signature Stan­
dard (DSS). According to the Federal Register [538]:

And:

A Federal Information Processing Standard (FIPS) for Digital Signature Standard
(DSS) is being proposed. This proposed standard specifies a public-key digital sig­
nature algorithm (DSA) appropriate for Federal digital signature applications. The
proposed DSS uses a public key to verify to a recipient the integrity of data and
identity of the sender of the data. The DSS can also be used by a third party to
ascertain the authenticity of a signature and the data associated with it.

This proposed standard adopts a public-key signature scheme that uses a pair of
transformations to generate and verify a digital value called a signature.

This proposed FIPS is the result of evaluating a number of alternative digital sig­
nature techniques. In making the selection NIST has followed the mandate con­
tained in section 2 of the Computer Security Act of 1987 that NIST develop
standards to " ... assure the cost-effective security and privacy of Federal infor­
mation and, among technologies offering comparable protection, on selecting the
option with the most desirable operating and use characteristics."

Among the factors that were considered during this process were the level of
security provided, the ease of implementation in both hardware and software, the
ease of export from the U.S., the applicability of patents, impact on national secu­
rity and law enforcement and the level of efficiency in both the signing and veri­
fication functions. A number of techniques were deemed to provide appropriate
protection for Federal systems. The technique selected has the following desirable
characteristics:

CHAPTER 20 Public-Key Digital Signature Algorithms

NIST expects it to be available on a royalty-free basis. Broader use of this
technique resulting from public availability should be an economic benefit to
the government and the public.

The technique selected provides for efficient implementation of the signature
operations in smart card applications. In these applications the signing opera­
tions are performed in the computationally modest environment of the smart
card while the verification process is implemented in a more computationally
rich environment such as a personal computer, a hardware cryptographic
module, or a mainframe computer.

Before it gets too confusing, let me review the nomenclature: DSA is the algo­
rithm; the DSS is the standard. The standard employs the algorithm. The algorithm
is part of the standard.

Reaction to the Announcement
NIST's announcement created a maelstrom of criticisms and accusations. Unfor­

tunately, it was more political than academic. RSA Data Security, Inc., purveyors of
the RSA algorithm, led the criticism against DSS. They wanted RSA, and not
another algorithm, used as the standard. RSADSI makes a lot of money licensing the
RSA algorithm, and a royalty-free digital signature standard would directly affect
their bottom line. (Note: DSA is not necessarily free of patent infringements; I'll dis­
cuss that later.)

Before the algorithm was announced, RSADSI campaigned against a "common
modulus," which might have given the government the ability to forge signatures.
When the algorithm was announced without this common modulus, they attacked
it on other grounds [154], both in letters to NIST and statements to the press. (Four
letters to NIST appeared in [1326]. When reading them, keep in mind that at least
two of the authors, Rivest and Hellman, had a financial interest in DSS's not being
approved.)

Many large software companies that already licensed the RSA algorithm came out
against the DSS. In 1982, the government had solicited public-key algorithms for a
standard [537]. After that, there wasn't a peep out of NIST for nine years. Companies
such as IBM, Apple, Novell, Lotus, Northern Telecom, Microsoft, DEC, and Sun had
already spent large amounts of money implementing the RSA algorithm. They were
not interested in losing their investment.

In all, NIST received 109 comments by the end of the first comment period on
February 28, 1992.

Let's look at the criticisms against DSA, one by one.

1. DSA cannot be used for encryption or key distribution.
True, but not the point of the standard. This is a signature standard. NIST

should have a standard for public-key encryption. NIST is committing a
grave injustice to the American people by not implementing a public-key

20.1 Digital Signature Algorithm (DSA)

encryption standard. It is suspicious that this proposed digital signature
standard cannot be used for encryption. (As it turns out, though, it can-see
Section 23.3.) That does not mean that a signature standard is useless.

2. DSA was developed by the NSA, and there may be a trapdoor in the algo­
rithm.

Much of the initial comments were just paranoia: "NIST's denial of
information with no apparent justification does not inspire confidence in
DSS, but intensifies concern that there is a hidden agenda, such as laying
the groundwork for a national public-key cryptosystem that is in fact vul­
nerable to being broken by NIST and/or NSA" [154]. One serious question
about the security of DSA was raised by Arjen Lenstra and Stuart Haber at
Bellcore. This will be discussed later.

3. DSA is slower than RSA [800].
True, more or less. Signature generation speeds are the same, but signa­

ture verification can be 10 to 40 times slower with DSA. Key generation,
however, is faster. But key generation is irrelevant; a user rarely does it. On
the other hand, signature verification is the most common operation.

The problem with this criticism is that there are many ways to play with
the test parameters, depending on the results you want. Precomputations
can speed up DSA signature generation, but don't always apply. Proponents
of RSA use numbers optimized to make their calculations easier; propo­
nents of DSA use their own optimizations. In any case, computers are get­
ting faster all the time. While there is a speed difference, it will not be
noticeable in most applications.

4. RSA is a de facto standard.
Here are two examples of this complaint. From Robert Follett, the pro-

gram director of standards at IBM [570]:

IBM is concerned that NIST has proposed a standard with a different
digital signature scheme rather than adopting the international stan­
dard. We have been convinced by users and user organizations that the
international standards using RSA will be a prerequisite to the sales of
security products in the very near future.

From Les Shroyer, vice president and director, corporate MIS and
telecommunications, at Motorola [1444]:

We must have a single, robust, politically-accepted digital signature
standard that is usable throughout the world, between both U.S. and
non-U.S., and Motorola and non-Motorola entities. The lack of other
viable digital signature technology for the last eight years has made
RSA a de facto standard Motorola and many other companies ...
have committed millions of dollars to RSA. We have concern over the
interoperability and support of two different standards, as that situation
will lead to added costs, delays in deployment, and complication

CHAPTER 20 Public-Key Digital Signature Algorithms

Many companies wanted NIST to adopt the ISO 9796, the international
digital signature standard that uses RSA [762]. While this is a valid com­
plaint, it is not a sufficient justification to make it a standard. A royalty­
free standard would better serve the U.S. public interest.

5. The DSA selection process was not public; sufficient time for analysis has
not been provided.

First NIST claimed that they designed the DSA; then they admitted that
NSA helped them. Finally, they confirmed that NSA designed the algo­
rithm. This worries many people; the NSA doesn't inspire trust. Even so,
the algorithm is public and available for analysis; and NIST extended the
time for analysis and comment.

6. DSA may infringe on other patents.
It may. This will be discussed in the section on patent issues.

7. The key size is too small.
This was the only valid criticism of DSS. The original implementation

set the modulus at 512 bits [1149]. Since the algorithm gets its security
from the difficulty of computing discrete logs in that modulus, this wor­
ried most cryptographers. There have since been advances in the problem
of calculating discrete logarithms in a finite field, and 512 bits is too short
for long-term security (see Section 7.2). According to Brian LaMacchia and
Andrew Odlyzko, " ... even 512-bit primes appear to offer only marginal
security ... " [934]. In response to this criticism, NIST made the key size
variable, from 512 bits to 1024 bits. Not great, but better.

On May 19, 1994, the standard was finally issued [1154]. The issuing statement
said [542]:

This standard is applicable to all Federal departments and agencies for the protec­
tion of unclassified information This standard shall be used in designing and
implementing public-key based signature schemes which Federal departments
and agencies operate or which are operated for them under contract. Adoption and
use of this standard is available to private and commercial organizations.

Before you run out and implement this standard in your next product, read the
section on patent issues below.

Description of DSA

DSA is a variant of the Schnorr and ElGamal signature algorithms, and is fully
described in [1154]. The algorithm uses the following parameters:

p = a prime number L bits long, when L ranges from 512 to 1024 and is a
multiple of 64. (In the original standard, the size of p was fixed at 512
bits [1149]. This was the source of much criticism and was changed by
NIST [1154].)

20.1 Digital Signature Algorithm (DSA)

q = a 160-bit prime factor of p - 1.

g = h 1P - JJ/q mod p, where h is any number less than p - 1 such that
hiP - IJ/q mod p is greater than 1.

x = a number less than q.

y=gxmodp.

The algorithm also makes use of a one-way hash function: H(m). The standard
specifies the Secure Hash Algorithm, discussed in Section 18.7.

The first three parameters, p, q, and g, are public and can be common across a net­
work of users. The private key is x; the public key is y.

To sign a message, m:

(1) Alice generates a random number, k, less than q.

(2) Alice generates

r = (gk mod p) mod q

s = (k-1 (H(m) + xr)) mod q

The parameters r and s are her signature; she sends these to Bob.

(3) Bob verifies the signature by computing

w= s-1 mod q

u 1 = (H(m) * w) mod q

u2 = (rw) mod q

v = ((gu1 * yu2) mod p) mod q

If v = r, then the signature is verified.

Proofs for the mathematical relationships are found in [1154]. Table 20.1 provides
a summary.

Speed Precomputations

Table 20.2 gives sample software speeds of DSA [918].
Real-world implementations of DSA can often be speeded up through precompu­

tations. Notice that the valuer does not depend on the message. You can create a
string of random k values, and then precompute r values for each of them. You can
also precompute k- 1 for each of those k values. Then, when a message comes along,
you can compute s for a given r and k- 1.

This precomputation speeds up DSA considerably. Table 20.3 is a comparison of
DSA and RSA computation times for a particular smart card implementation
[1479].

CHAPTER 20 Public-Key Digital Signature Algorithms

Table 20.1
DSA Signatures

Public Key:
p 512-bit to 1024-bit prime (can be shared among a group of users)
q 160-bit prime factor of p - 1 (can be shared among a group of users)
g = h 1P - ll/q mod p, where his less than p - 1 and h 1P - ll/q mod p > 1 (can be shared

among a group of users)
y = gx mod p (a p-bit number)

Private Key:
x < q (a 160-bit number)

Signing:
k choose at random, less than q
r (signature)= (g1' mod p) mod q
s (signature)= (k-1 (H(m) + xr)) mod q

Verifying:
w = s- 1 mod q
u 1 (H(m) * w) mod q
u2 = (rw) mod q
v = ((g111 * yu2) mod p) mod q
If v = r, then the signature is verified.

DSA Prime Generation

Lenstra and Haber pointed out that certain moduli are much easier to crack than
others [950]. If someone forced a network to use one of these "cooked" moduli, then
their signatures would be easier to forge. This isn't a problem for two reasons: These
moduli are easy to detect and they are so rare that the chances of using one when
choosing a modulus randomly are almost negligible-smaller, in fact, than the
chances of accidentally generating a composite number using a probabilistic prime
generation routine.

In [1154] NIST recommended a specific method for generating the two primes, p
and q, where q divides p - 1. The prime pis L bits long, between 512 and 1024 bits

Table 20.2
DSA Speeds for Different Modulus Lengths

with a 160-bit Exponent (on a SPARC II)

Sign
Verify

512 bits

0.20 sec
0.35 sec

768 bits

0.43 sec
0.80 sec

1024 bits

0.57 sec
1.27 sec

20.1 Digital Signature Algorithm (DSA)

Table 20.3
Comparison of RSA and DSA Computation Times

Global Computations
Key Generation
Precomputation
Signature
Verification

DSA

Off-card (P)
14 sec
14 sec
.03 sec
16 sec

1-5 sec off-card (P)

RSA

N/A
Off-card (S)

N/A
15 sec
1.5 sec

1-3 sec off-card (P)

DSA with
Common p, q, g

Off-card (P)
4 sec
4 sec

.03 sec
10 sec

Off-card computations were performed on an 80386 33 mHz, personal computer. (P) indi­
cates public parameters off-card and IS) indicates secret parameters off-card. Both algorithms
use a 512-bit modulus.

long, in some multiple of 64 bits. The prime q is 160 bits long. Let L - 1 = 160n + b,
where Lis the length of p, and n and bare two numbers and bis less than 160.

(1) Choose an arbitrary sequence of at least 160 bits and call it S. Let g be the
length of S in bits.

(2) Compute U = SHA(S) EB SHA ((S + 1) mod 2g), where SHA is the Secure
Hash Algorithm (see Section 18.7).

(3) Form q by setting the most significant bit and the least significant bit
of U to 1.

(4) Check whether q is prime.

(5) If q is not prime, go back to step (1).

(6) Let C = 0 and N = 2.

(7) Fork= 0, 1, ... , n, let Vk = SHA ((S + N + k) mod 2g)

(8) Let W be the integer

w =Vo+ 216ov1 + ... + 2160[n - 11vn - I+ 2160n(vn mod 21,)

and let

X= w+2L- 1

Note that Xis an L-bit number.

(9) Let p = X - ((X mod 2q) - 1). Note that pis congruent to 1 mod 2q.

(10) Ifp<2L- 1, thengotostep(l3).

(11) Check whether p is prime.

(12) If pis prime, go to step (15).

(13) Let C = C + 1 and N = N + n + 1.

CHAPTER 20 Public-Key Digital Signature Algorithms

(14) If C = 4096, then go to step (1). Otherwise, go to step (7).

(15) Save the value of Sand the value of C used to generate p and q.

In [1154], the variable Sis called the "seed," C is called the "counter," and N the
"off set."

The point of this exercise is that there is a public means of generating p and q.
For all practical purposes, this method prevents cooked values of p and q. If some­
one hands you a panda q, you might wonder where that person got them. How­
ever, if someone hands you a value for S and C that generated the random p and q,
you can go through this routine yourself. Using a one-way hash function, SHA in
the standard, prevents someone from working backwards from a p and q to gener­
ate an S and C.

This security is better than what you get with RSA. In RSA, the prime numbers
are kept secret. Someone could generate a fake prime or one of a special form that
makes factoring easier. Unless you know the private key, you won't know that.
Here, even if you don't know a person's private key, you can confirm that p and q
have been generated randomly.

EIGamal Encryption with DSA

There have been allegations that the government likes the DSA because it is only
a digital signature algorithm and can't be used for encryption. It is, however, possi­
ble to use the DSA function call to do ElGamal encryption.

Assume that the DSA algorithm is implemented with a single function call:

DSAsign (p,q,g,k,x,h,r,s)

You supply the numbers p, q, g, k, x, and h, and the function returns the signature
parameters: rands.

To do ElGamal encryption of message m with public key y, choose a random num­
ber, k, and call

DSAsign (p,p,g,k,0,0,r,s)

The value of r returned is a in the ElGamal scheme. Throws away. Then, call

DSAsi gn (p, p ,Y, k,O ,0, r ,s)

Rename the value of r to be u; throw s away. Call

DSAsign (p,p,m,l,u,0,r,s)

Throw r away. The value of s returned is b in the ElGamal scheme. You now have
the ciphertext, a and b.

Decryption is just as easy. Using secret key x, and ciphertext messages a and b, call

DSAsign (p,p,a,x,0,0,r,s)

20.1 Digital Signature Algorithm (DSA)

The valuer is ax mod p. Call that e. Then call

DSAsi gn (p, p, l ,e ,b ,0, r, s)

The value s is the plaintext message, m.
This method will not work with all implementations of DSA. Some may fix the

values of p and q, or the lengths of some of the other parameters. Still, if the imple­
mentation is general enough, this is a way to encrypt using nothing more than digi­
tal signature function.

RSA Encryption with DSA
RSA encryption is even easier. With a modulus n, message m, and public key e, call

DSAsign (n,n,m,e,0,0,r,s)

The value of r returned is the ciphertext.
RSA decryption is the same thing. If dis the private key, then

DSAsign (n,n,m,d,0,0,r,s)

returns the plaintext as the value of r.

Security of DSA

At 512-bits, DSA wasn't strong enough for long-term security. At 1024 bits, it is.
The NSA, in its first public interview on the subject, commented to Joe Aber-

nathy of The Houston Chronicle on allegations about a trapdoor in DSS [363]:

Regarding the alleged trapdoor in the DSS. We find the term trapdoor somewhat
misleading since it implies that the messages sent by the DSS are encrypted and
with access via a trapdoor one could somehow decrypt (read) the message without
the sender's knowledge.

The DSS does not encrypt any data. The real issue is whether the DSS is sus­
ceptible to someone forging a signature and therefore discrediting the entire sys­
tem. We state categorically that the chances of anyone-including NSA-forging
a signature with the DSS when it is properly used and implemented is infinitesi­
mally small.

Furthermore, the alleged trapdoor vulnerability is true for any public key-based
authentication system, including RSA. To imply somehow that this only affects
the DSS (a popular argument in the press) is totally misleading. The issue is one of
implementation and how one goes about selecting prime numbers. We call your
attention to a recent EUROCRYPT conference which had a panel discussion on the
issue of trapdoors in the DSS. Included on the panel was one of the Bellcore
researchers who initially raised the trapdoor allegation, and our understanding is
that the panel-including the person from Bellcore-concluded that the alleged
trapdoor was not an issue for the DSS. Furthermore, the general consensus
appeared to be that the trapdoor issue was trivial and had been overblown in the

CHAPTER 20 Public- Key Digital Signature Algorithms

press. However, to try to respond to the trapdoor allegation, at NIST's request, we
have designed a prime generation process which will ensure that one can avoid
selection of the relatively few weak primes which could lead to weakness in using
the DSS. Additionally, NIST intends to allow for larger modulus sizes up to 1024
which effectively negates the need to even use the prime generation process to
avoid weak primes. An additional very important point that is often overlooked is
that with the DSS the primes are public and therefore can be subject to public
examination. Not all public key systems provide for this same type of examination.

The integrity of any information security system requires attention to proper
implementation. With the myriad of vulnerabilities possible given the differences
among users, NSA has traditionally insisted on centralized trusted centers as a way
to minimize risk to the system. While we have designed technical modifications to
the DSS to meet NIST's requests for a more decentralized approach, we still would
emphasize that portion of the Federal Register notice for the DSS which states:

"While it is the intent of this standard to specify general security require­
ments for generating digital signatures, conformance to this standard does
not assure that a particular implementation is secure. The responsible
authority in each agency or department shall assure that an overall imple­
mentation provides an acceptable level of security. NIST will be working
with government users to ensure appropriate implementations."

Finally, we have read all the arguments purporting insecurities with the DSS,
and we remain unconvinced of their validity. The DSS has been subjected to
intense evahation within NSA which led to its being endorsed by our Director of
Information Systems Security for use in signing unclassified data processed in
certain intelligence systems and even for signing classified data in selected sys­
tems. We believe that this approval speaks to the lack of any credible attack on
the integrity provided by the DSS given proper use and implementation. Based on
the technical and security requirements of the U.S. government for digital signa­
tures, we believe the DSS is the best choice. In fact, the DSS is being used in a
pilot project for the Defense Message System to assure the authenticity of elec­
tronic messages of vital command and control information. This initial demon­
stration includes participation from the Joint Chiefs of Staff, the military
services, and Defense Agencies and is being done in cooperation with NIST.

I'm not going to comment on the trustworthiness of the NSA. Take their com­
ments for what you think they're worth.

Attacks against k
Each signature requires a new value of k, and that value must be chosen ran­

domly. If Eve ever recovers a k that Alice used to sign a message, perhaps by exploit­
ing some properties of the random-number generator that generated k, she can
recover Alice's private key, x. If Eve ever gets two messages signed using the same
k, even if she doesn't know what it is, she can recover x. And with x, Eve can gen­
erate undetectable forgeries of Alice's signature. In any implementation of the DSA,
a good random-number generator is essential to the system's security [1468].

20.1 Digital Signature Algorithm (DSA)

Dangers of a Common Modulus

Even though the DSS does not specify a common modulus to be shared by every­
one, different implementations may. For example, the Internal Revenue Service is
considering using the DSS for the electronic submission of tax returns. What if they
require every taxpayer in the country to use a common p and q~ Even though the
standard doesn't require a common modulus, such an implementation accom­
plishes the same thing. A common modulus too easily becomes a tempting target
for cryptanalysis. It is still too early to tell much about different DSS implementa­
tions, but there is some cause for concern.

Subliminal Channel in DSA

Gus Simmons discovered a subliminal channel in DSA [1468,1469] (see Section
23.3). This subliminal channel allows someone to embed a secret message in his sig­
nature that can only be read by another person who knows the key. According to
Simmons, it is a "remarkable coincidence" that the "apparently inherent short­
comings of subliminal channels using the ElGamal scheme can all be overcome" in
the DSS, and that the DSS "provides the most hospitable setting for subliminal
communications discovered to date." NIST and NSA have not commented on this
subliminal channel; no one knows if they even knew about it. Since this subliminal
channel allows an unscrupulous implementer of DSS to leak a piece of the private
key with each signature, it is important to never use an implementation of DSS if
you don't trust the implementer.

Patents

David Kravitz, formerly of the NSA, holds a patent on DSA [897]. According to
NIST [538]:

NIST intends to make this DSS technique available world-wide on a royalty-free
basis to the public interest. We believe this technique is patentable and that no
other patents would apply to the DSS, but we cannot give firm assurances to such
effect in advance of issuance of the patent.

Even so, three patent holders claim that the DSA infringes on their patents:
Diffie-Hellman (see Section 22.1) [718], Merkle-Hellman (see Section 19.2) [720],
and Schnorr (see Section 21.3) [1398]. The Schnorr patent is the most troublesome.
The other two patents expire in 1997; the Schnorr patent is valid until 2008. The
Schnorr algorithm was not developed with government money; unlike the PKP
patents, the U.S. government has no rights to the Schnorr patent; and Schnorr
patented his algorithm worldwide. Even if the U.S. courts rule in favor of DSA, it is
unclear what other courts around the world would do. Is an international company
going to adopt a standard that may be legal in some countries but infringes on a
patent in others? This issue will take time to resolve; at the time of this writing it
isn't even resolved in the United States.

In June 1993 NIST proposed to give PKP an exclusive patent license to DSA [541].
The agreement fell through after public outcry and the standard was issued without
any deal. NIST said [542]:

CHAPTER 20 Public-Key Digital Signature Algorithms

... NIST has addressed the possible patent infringement claims, and has con­
cluded that there are no valid claims.

So the standard is official, lawsuits are threatened, and no one knows what to do.
NIST has said that it would help defend people sued for patent infringement, if they
were using DSA to satisfy a government contract. Everyone else, it seems, is on
their own. ANSI has a draft banking standard that uses DSA [60]. NIST is working
to standardize DSA within the government. Shell Oil has made DSA their interna­
tional standard. I know of no other proposed DSA standards.

20.2 DSA VARIANTS

This variant makes computation easier on the signer by not forcing him to compute
k- 1 [1135]. All the parameters are as in DSA. To sign a message, m, Alice generates
two random numbers, k and d, both less than q. The signature is

r = (gk modp) mod q

s=(H(m)+xr) * dmodq

t =kdmod q

Bob verifies the signature by computing

w= t/s mod q

u 1 = (H(m) * w) mod q

U2 = (rw) mod q

If r = ((gu1 * yu2) mod p) mod q, then the signature is verified.
This next variant makes computation easier on the verifier [1040,1629]. All the

parameters are as in DSA. To sign a message, m, Alice generates a random number,
k, less than q. The signature is

r = (t mod p) mod q

s = k * (H(m) + xr)- 1 mod q

Bob verifies the signature by computing

u 1 = (H(m) * s) mod q

u2 = (sr) mod q

If r = ((gu1 * yu2) mod p) mod q, then the signature is verified.
Another DSA variant allows for batch verification; Bob can verify signatures in

batches [1135]. If they are all valid, he is done. If one isn't valid, then he still has to
find it. Unfortunately, it is not secure; either the signer or the verifier can easily cre­
ate a set of bogus signatures that satisfy the batch criteria [974].

There is also a variant for DSA prime generation, one that embeds q and the
parameters used to generate the primes within p. Whether this scheme reduces
the security of DSA is still unknown.

20.3 Cost Digital Signature Algorithm

(1) Choose an arbitrary sequence of at least 160 bits and call it S. Let g be the
length of S in bits.

(2) Compute U = SHA(S) EB SHA ((S + 1) mod 2g), where SHA is the Secure
Hash Algorithm (see Section 18.7).

(3) Form q by setting the most significant bit and the least significant bit of
U to 1.

(4) Check whether q is prime.

(5) Let p be the concatenation of q, S, C, and SHA(S). C is set to 32 zero bits.

(6) p = p - (p mod q) + 1.

(7) p = p + q.

(8) If the C inp is 0x7fffffff, go to step (1).

(9) Check whether pis prime.

(10) If pis composite, go to step (7).

The neat thing about this variant is that you don't have to store the values of C
and S used to generate p and q; they are embedded within p. For applications with­
out a whole lot of memory, like smart cards, this can be a big deal.

20.3 GOST DIGITAL SIGNATURE ALGORITHM

This is a Russian digital signature standard, officially called GOST R 34.10-94 [656].
The algorithm is very similar to DSA, and uses the following parameters

p = a prime number, either between 509 and 512 bits long,
or between 1020 and 1024 bits long.

q = a 254- to 256-bit prime factor of p - 1.

a = any number less than p - 1 such that aq mod p = 1.

x = a number less than q.

y= axmodp.

The algorithm also makes use of a one-way hash function: H(x). The standard
specifies GOST R 34.11-94 (see Section 18.11), a function based on the GOST sym­
metric algorithm (see Section 14.1) [657].

The first three parameters, p, q, and a, are public and can be common across a net­
work of users. The private key is x; the public key is y.

To sign a message, m

(1) Alice generates a random number, k, less than q

(2) Alice generates

r= (ak modp) mod q

s = (xr + k(H(m))) mod q

CHAPTER 20 Public-Key Digital Signature Algorithms

If H(m) mod q = 0, then set it equal to 1. If r = 0, then choose another k and
start again. The signature is two numbers: r mod 2256 ands mod 2256 • She
sends these to Bob.

(3) Bob verifies the signature by computing

v= H(m)q- 2 mod q

z1 = (sv) mod q

z2 = ((q-r) * v) mod q

u = ((a2 1 * y2 2) mod p) mod q

If u = r, then the signature is verified.

The difference between this scheme and DSA is that with DSA s = (xr + k- 1(H(m)))
mod q, which leads to a different verification equation. Curious, though, is that q is
256 bits. Most Western cryptographers seem satisfied with a q of around 160 bits.
Perhaps this is just a reflection of the Russian tendency to play it ultrasafe.

The standard has been in use since the beginning of 1995, and is not classified "for
special use"-whatever that means.

20.4 DISCRETE LOGARITHM SIGNATURE SCHEMES

ElGamal, Schnorr (see Section 21.3), and DSA signature schemes are very similar. In
fact, they are just three examples of a general digital signature scheme based on the
Discrete Logarithm Problem. Along with thousands of other signature schemes,
they are part of the same family [740,741,699, 1184].

Choose p, a large prime number, and q, either p - 1 or a large prime factor of p -
1. Then choose g, a number between 1 and p such that gq = 1 (mod p). All these num­
bers are public, and can be common to a group of users. The private key is x, less
than q. The public key is y = g" mod p.

To sign a message, m, first choose a random k less than and relatively prime to q.
If q is also prime, any k less than q works. First compute

r=i' modp

The generalized signature equation now becomes

ak = b + ex mod q

The coefficients a, b, and c can be any of a variety of things. Each line in Table 20.4
gives six possibilities.

To verify the signature, the receiver must confirm that

ra = gby" mod p

This is called the verification equation.
Table 20.5 lists the signature and verifications possible from just the first line of

potential values for a, b, and c, ignoring the effects of the±.

20.4 Discrete Logarithm Signature Schemes

Table 20.4
Possible Permutations

of a, b, and c (r' = r mod q)

±r' ±s m
±r'm ±s 1
±r'm ±ms 1
±mr' ±r's 1
±ms ±r's 1

That's six different signature schemes. Adding the negative signs brings the total
to 24. Using the other possible values listed for a, b, and c brings the total to 120.

ElGamal [518,519] and DSA [1154] are essentially based on equation (4). Other
schemes are based on equation (2) [24, 1629]. Schnorr [1396, 1397] is closely related to
equation (5), as is another scheme [1183]. And equation (1) can be modified to yield
the scheme proposed in [1630]. The rest of the equations are new.

There's more. You can make any of these schemes more DSA-like by defining r as

r= (gk modp) mod q

Keep the same signature equation and make the verification equation

U1 = a-1b mod q

U2 = a- 1c mod q

r = (gu1yu2 mod p) mod q

There are two other possibilities along these lines [740,741]; you can do this with
each of the 120 schemes, bringing the total to 480 discrete-logarithm-based digital
signature schemes.

But wait-there's more. Additional generalizations and variations can generate
more than 13,000 variants (not all of them terribly efficient) [740,741].

One of the nice things about using RSA for digital signatures is a feature called
message recovery. When you verify an RSA signature you compute m. Then you
compare the computed m with the message and see if the signature is valid for that

Table 20.5
Discrete Logarithm Signature Schemes

Signature Equation

(1) r'k = s + mx mod q
(2) r'k = m + sx mod q
(3) sk = r' + mx mod q
(4) sk = m + r'x mod q
(5) mk = s + r'x mod q
(6) mk = r' + sx mod q

Verification Equation

r'' = g5y"' mod p
r'' = g"'y' mod p
rs = g'ym mod p
rs = g"'y'' mod p
~ = g5y'' mod p
~=g''y' modp

CHAPTER 20 Public-Key Digital Signature Algorithms

message. With the previous schemes, you can't recover m when you compute the
signature; you need a candidate m that you use in a verification equation. Well, as it
turns out it is possible to construct a message recovery variant for all the above sig­
nature schemes.

To sign, first compute

r=mg1' modp

and replace m by 1 in the signature equation. Then you can reconstruct the verifi­
cation equation such that m can be computed directly.

You can do the same with the DSA-like schemes:

r = (mg1' modp) mod q

All the variants are equally secure, so it makes sense to choose a scheme that is
easy to compute with. The requirement to compute inverses slows most of these
schemes. As it turns out, a scheme in this pile allows computing both the signature
equation and the verification equation without inverses and also gives message
recovery. It is called the p-NEW scheme [1184].

r = mg-k modp

s = k - r'x mod q

And mis recovered (and the signature verified) by

m = g5y'r mod p

Some variants sign two and three message blocks at the same time [7 40]; other
variants can be used for blind signatures [741].

This is a remarkable piece of research. All of the various discrete-logarithm-based
digital signature schemes have been put in one coherent framework. In my opinion
this finally puts to rest any patent dispute between Schnorr [1398] and DSA [897]:
DSA is not a derivative of Schnorr, nor even of ElGamal. All three are examples of
this general construction, and this general construction is unpatented.

20.5 ONG-SCHNORR-SHAMIR

This signature scheme uses polynomials modulo n [1219, 1220]. Choose a large inte­
ger n (you need not know the factorization of n). Then choose a random integer, k,
such that k and n are relatively prime. Calculate h such that

h = -k- 2 mod n = -(k- 1)2 mod n

The public key is h and n; k is the private key.
To sign a message, M, first generate a random number, r, such that rand n are rel­

atively prime. Then calculate:

S1 = 1/2 * (M/r+r) modn

S2 = k/2 * (M/r - r) mod n

________________ 2_0_.6_E_S_IG_N _______ 7--,,,~

The pair, S1 and S2, is the signature.
To verify a signature, confirm that

S12 + h * S? = M (mod n)

The version of the scheme described here is based on quadratic polynomials.
When it was first proposed in [1217], a$ 100 reward was offered for successful crypt­
analysis. It was proved insecure [1255,18], but its authors were not deterred. They
proposed a modification of the algorithm based on cubic polynomials, which is also
insecure [1255]. The authors then proposed a quartic version, which was also broken
[524,1255]. A variant which fixes these problems is in [1134].

20.6 ESIGN

ESIGN is a digital signature scheme from NTT Japan [1205,583]. It is touted as being
at least as secure and considerably faster than either RSA or DSA, with similar key
and signature lengths.

The private key is a pair of large prime numbers, p and q. The public key is n, when

n =p2q

His a hash function that operates on a message, m, such that H(m) is between 0
and n - l. There is also a security parameter, k, which will be discussed shortly.

(1) Alice picks a random number x, where xis less than pq.

(2) Alice computes:

w; the least integer that is larger than or equal to

(H(m) - xk mod n)/pq

s =x+ ((w/kxk- 1) modp)pq

(3) Alice sends s to Bob.

(4) To verify the signature, Bob computes sk mod n. He also computes a, which
is the least integer larger than or equal to two times the number of bits of
n divided by 3. If H(m) is less than or equal to sk mod n, and if sk mod n is
less than H(m) + 2", then the signature is considered valid.

This algorithm works faster with precomputation. This precomputation can be
done at any time and has nothing to do with the message being signed. After pick­
ing x, Alice could break step (2) into two partial steps. The first can be precomputed.

(2a) Alice computes:

u =xk modn

v = 1/(kxk - 1) mod p

CHAPTER 20 Public-Key Digital Signature Algorithms

(2b) Alice computes:

w = the least integer that is larger than or equal to

(H(m) - u)/pq)

s =x+ (wvmodp)pq

For the size of numbers generally used, this precomputation speeds up the signa­
ture process by a factor of 10. Almost all the hard work is done in the precomputa­
tion stage. A discussion of modular arithmetic operations to speed ESIGN can be
found in [1625,1624]. This algorithm can also be extended to work with elliptic
curves [1206].

Security of ESJGN
When this algorithm was originally proposed, k was set to 2 [1215]. This was

quickly broken by Ernie Brickell and John DeLaurentis [261], who then extended
their attack to k = 3. A modified version of this algorithm [1203] was broken by
Shamir [1204]. The variant proposed in [1204] was broken in [1553]. ESIGN is the
current incarnation of this family of algorithms. Another new attack [963] does not
work against ESIGN.

The authors currently recommend these values fork: 8, 16, 32, 64, 128, 256, 512,
and 1024. They also recommend that p and q each be of at least 192 bits, making n
at least 576 bits long. (I think n should be twice that length.) With these parameters,
the authors conjecture that ESIGN is as secure as RSA or Rabin. And their analysis
shows favorable speed comparison to RSA, ElGamal, and DSA [582].

Patents
ESIGN is patented in the United States [1208], Canada, England, France, Germany,

and Italy. Anyone who wishes to license the algorithm should contact Intellectual
Property Department, NTT, 1-6 Uchisaiwai-cho, 1-chome, Chiyada-ku, 100 Japan.

20. 7 CELLULAR AUTOMATA

A new and novel idea, studied by Papua Guam [665], is the use of cellular automata
in public-key cryptosystems. This system is still far too new and has not been stud­
ied extensively, but a preliminary examination suggests that it may have a crypto­
graphic weakness similar to one seen in other cases [562]. Still, this is a promising
area of research. Cellular automata have the property that, even if they are invertible,
it is impossible to calculate the predecessor of an arbitrary state by reversing the rule
for finding the successor. This sounds a whole lot like a trapdoor one-way function.

20.8 OTHER PUBLIC-KEY ALGORITHMS

Many other public-key algorithms have been proposed and broken over the years.
The Matsumoto-Imai algorithm [1021] was broken in [450]. The Cade algorithm

_______________ 20_._8_O_th_e_r_P_u_b_l_ic_-_K_ey_A_l_go_r_it_h_m_s ____ 7 ___ ~

was first proposed in 1985, broken in 1986 [774], and then strengthened in the same
year [286]. In addition to these attacks, there are general attacks for decomposing
polynomials over finite fields [605]. Any algorithm that gets its security from the
composition of polynomials over a finite field should be looked upon with skepti­
cism, if not outright suspicion.

The Yagisawa algorithm combines exponentiation mod p with arithmetic mod p
- 1 [1623]; it was broken in [256]. Another public-key algorithm, Tsujii-Kurosawa­
Itoh-Fujioka-Matsumoto [1548] is insecure [948]. A third system, Luccio-Mazzone
[993], is insecure [717]. A signature scheme based on birational permutations [1425]
was broken the day after it was presented [381]. Tatsuaki Okamoto has several sig­
nature schemes: one is provably as secure as the Discrete Logarithm Problem, and
another is provably as secure as the Discrete Logarithm Problem and the Factoring
Problem [1206]. Similar schemes are in [709].

Gustavus Simmons suggested J-algebras as a basis for public-key algorithms
[1455, 145]. This idea was abandoned after efficient methods for factoring polynomi­
als were invented [951]. Special polynomial semigroups have also been studied
[1619,962], but so far nothing has come of it. Harald Niederreiter proposed a public­
key algorithm based on shift-register sequences [1166]. Another is based on Lyndon
words [1476] and another on propositional calculus [817]. And a recent public-key
algorithm gets its security from the matrix cover problem [82]. Tatsuaki Okamoto
and Kazuo Ohta compare a number of digital signature schemes in [1212].

Prospects for creating radically new and different public-key cryptography algo­
rithms seem dim. In 1988 Whitfield Diffie noted that most public-key algorithms
are based on one of three hard problems [492,494]:

1. Knapsack: Given a set of unique numbers, find a subset whose sum is N.

2. Discrete logarithm: If pis a prime and g and Mare integers, find x such that
g' = M (modp).

3. Factoring: If N is the product of two primes, either

a) factor N,

b) given integers Mand C, find d such that Md= C (mod N),

c) given integers e and C, find M such that M" = C (mod N), or

d) given an integer x, decide whether there exists an integer y such that
x = y2 (mod N).

According to Diffie [492,494], the Discrete Logarithm Problem was suggested by J.
Gill, the Factoring Problem by Knuth, and the knapsack problem by Diffie himself.

This narrowness in the mathematical foundations of public-key cryptography is
worrisome. A breakthrough in either the problem of factoring or of calculating dis­
crete logarithms could render whole classes of public-key algorithms insecure.
Diffie points out [492,494] that this risk is mitigated by two factors:

1. The operations on which public key cryptography currently depends-mul­
tiplying, exponentiating, and factoring-are all fundamental arithmetic phenom-

CHAPTER 20 Public-Key Digital Signature Algorithms

ena. They have been the subject of intense mathematical scrutiny for centuries
and the increased attention that has resulted from their use in public key cryp­
tosystems has on balance enhanced rather than diminished our confidence.

2. Our ability to carry out large arithmetic computations has grown steadily
and now permits us to implement our systems with numbers sufficient in size to
be vulnerable only to a dramatic breakthrough in factoring, logarithms, or root
extraction.

As we have seen, not all public-key algorithms based on these problems are secure.
The strength of any public-key algorithm depends on more than the computational
complexity of the problem upon which it is basedi a hard problem does not necessar­
ily imply a strong algorithm. Adi Shamir listed three reasons why this is so [1415]:

1. Complexity theory usually deals with single isolated instances of a problem.
A cryptanalyst often has a large collection of statistically related problems to
solve-several ciphertexts encrypted with the same key.

2. The computational complexity of a problem is typically measured by its
worst-case or average-case behavior. To be useful as a cipher, the problem must be
hard to solve in almost all cases.

3. An arbitrarily difficult problem cannot necessarily be transformed into a
cryptosystem, and it must be possible to insert trapdoor information into the
problem so that a shortcut solution is possible with this information and only
with this information.

---------------------------------z~

CHAPTER 21

Identification Schemes

21.1 fEIGE-fIAT-SHAMIR

Amos Fiat's and Adi Shamir's authentication and digital signature scheme is dis­
cussed in [566,567]. Uriel Feige, Fiat, and Shamir modified the algorithm to a zero­
knowledge proof of identity [544,545]. This is the best-known zero-knowledge proof
of identity.

On July 9, 1986 the three authors submitted a U.S. patent application [1427].
Because of its potential military applications, the application was reviewed by the
military. Occasionally the Patent Office responds not with a patent, but with some­
thing called a secrecy order. On January 6, 1987, three days before the end of their
six-month period, the Patent Office imposed that order at the request of the Army.
They stated that " ... the disclosure or publication of the subject matter ... would
be detrimental to the national security " The authors were ordered to notify all
Americans to whom the research had been disclosed that unauthorized disclosure
could lead to two years' imprisonment, a $10,000 fine, or both. Furthermore, the
authors had to inform the Commissioner of Patents and Trademarks of all foreign
citizens to whom the information had been disclosed.

This was ludicrous. All through the second half of 1986, the authors had pre­
sented the work at conferences throughout Israel, Europe, and the United States.
The authors weren't even American citizens, and all the work had been done at the
Weizmann Institute in Israel.

Word spread through the academic community and the press. Within two days the
secrecy order was rescindedi Shamir and others believe that the NSA pulled strings
to rescind the order, although they officially had no comment. Further details of this
bizarre story are in [936].

Simplified Feige-Fiat-Shamir Identification Scheme
Before issuing any private keys, the arbitrator chooses a random modulus, n,

which is the product of two large primes. In real life, n should be at least 512 bits

CHAPTER 21 Identification Schemes

long and probably closer to 1024 bits. This n can be shared among a group of
provers. (Choosing a Blum integer makes computation easier, but it is not required
for security.)

To generate Peggy's public and private keys, a trusted arbitrator chooses a num­
ber, v, where vis a quadratic residue mod n. In other words, choose v such that x 2 =
v (mod n) has a solution and v-i mod n exists. This vis Peggy's public key. Then cal­
culate the smallest s for which s = sqrt (v-1) (mod n). This is Peggy's private key.

The identification protocol can now proceed.

(1) Peggy picks a random r, where r is less then n. She then computes x =
r2 mod n, and sends x to Victor.

(2) Victor sends Peggy a random bit, b.

(3) If b = 0, then Peggy sends Victor r. If b = 1, then Peggy sends Victory= r * s
modn.

(4) If b = 0, Victor verifies that x = r2 mod n, proving that Peggy knows sqrt
(x). If b = 1, Victor verifies that x = y 2 * v mod n, proving that Peggy knows
sqrt (v-1).

This is a single round-called an accreditation-of the protocol. Peggy and Victor
repeat this protocol t times, until Victor is convinced that Peggy knows s. It's a cut­
and-choose protocol. If Peggy doesn't know s, she can pick r such that she can fool
Victor if he sends her a 0, or she can pick r such that she can fool Victor if he sends
her a 1. She can't do both. The odds of her fooling Victor once are 50 percent. The
odds of her fooling him t times are 1 in 2'.

Another way for Victor to attack the protocol would be trying to impersonate
Peggy. He could initiate the protocol with another verifier, Valerie. In step (1),
instead of choosing a random r, he would just reuse an old r that he saw Peggy use.
However, the odds of Valerie choosing the same value for bin step (2) that Victor did
in the pr0tocol with Peggy are 1 in 2. So, the odds of his fooling Valerie are 50 per­
cent. The odds of his fooling her t times are 1 in 21•

For this to work, Peggy must not reuse an r, ever. If she did, and Victor sent Peggy
the other random bit in step (2), then he would have both of Peggy's responses. Then,
from even one of these, he can calculate s and it's all over for Peggy.

Feige-Fiat-Shamir Identification Scheme

In their papers [544,545], Feige, Fiat and Shamir show how parallel construction
can increase the number of accreditations per round and reduce Peggy and Victor's
interactions.

First generate n as in the previous example, the product of two large primes. To
generate Peggy's public and private keys, first choose k different numbers: Vi,
v2, ••• , vk, where each vi is a quadratic residue mod n. In other words, choose V; such
that x2 = V; mod n has a solution and V;-1 mod n exists. This string, Vi, v2., .•• , Vk, is
the public key. Then calculate the smallest S; such that S; = sqrt (v;-i) mod n. This
string, Si, s2, ••• , sk, is the private key.

__________________ 2_1_._1_F_e_ig_e_-_F_ia_t_-S_h_a_m_ir _______ 7--=--~

And the protocol is:

(1) Peggy picks a random r, when r is less than n. She then computes x = r2 mod
n, and sends x to Victor.

(2) Victor sends Peggy a random binary string k-bits long: bi, b2, ••• , bk.

(3) Peggy computes y = r * (s1b1 * s2b2 * ... * s/k) mod n. (She multiplies
together whichever values of s1 that correspond to b1 = 1. If Victor's first bit
is a 1, then s 1 is part of the product; if Victor's first bit is a 0, then s 1 is not
part of the product, and so on.) She sends y to Victor.

(4) Victor verifies that x = y2 * (v/'1 * v2b2 * ... * v/k) mod n. (He multiplies
together the values of v1 based on the random binary string. If his first bit
is a 1, then v 1 is part of the product; if his first bit is a 0, then v1 is not part
of the product, and so on.)

Peggy and Victor repeat this protocol t times, until Victor is convinced that Peggy
knows s1, s2, ... , sk.

The chance that Peggy can fool Victor is 1 in 2ki_ The authors recommend a 1 in
220 chance of a cheater fooling Victor and suggest that k = 5 and t = 4. If you are more
paranoid, increase these numbers.

An Example
Let's look at this protocol in action with small numbers.
If n = 35 (the two primes are 5 and 7), then the possible quadratic residues are:

1: x 2 = 1 (mod 35) has the solutions: x = 1, 6, 29, or 34.

4: x 2 = 4 (mod 35) has the solutions: x = 2, 12, 23, or 33.

9: x2 = 9 (mod 35) has the solutions: x = 3, 17, 18, or 32.

11: x2 = 11 (mod 35) has the solutions: x = 9, 16, 19, or 26.

14: x2 = 14 (mod 35) has the solutions: x = 7 or 28.

15: x2 = 15 (mod 35) has the solutions: x = 15 or 20.

16: x2 = 16 (mod 35) has the solutions: x = 4, 11, 24, or 31.

21: x2 = 21 (mod 35) has the solutions: x = 14 or 21.

25: x2 = 25 (mod 35) has the solutions: x = 5 or 30.

29: x 2 = 29 (mod 35) has the solutions: x = 8, 13, 22 or 27.

30: x2 = 30 (mod 35) has the solutions: x = 10 or 25.

The inverses (mod 35) and their square roots are:

v V- 1 s = sqrt (v-1)

1 1 1

4 9 3

9 4 2

11

16

29

16

11

29

CHAPTER 21 Identification Schemes

4

9

8

Note that 14, 15, 21, 25, and 30 do not have inverses mod 35, because they are
not relatively prime to 35. This makes sense, because there should be (5 - 1) *
(7 - 1)/4 quadratic residues mod 35 relatively prime to 35: That is gcd(x,35) = 1
(see Section 11.3).

So, Peggy gets the public key consisting of k = 4 values: /4, 11, 16,29). The corre­
sponding private key is /3,4,9,8). Here's one round of the protocol.

(1) Peggy chooses a random r = 16, computes 162 mod 35 = 11, and sends it to
Victor.

(2) Victor sends Peggy a random binary string \1, 1,0, ll-
(3) Peggy computes 16 * ((31) * (41) * (9°) * (81)) mod 35 = 31 and sends it to Victor.

(4) Victorverifiesthat31 2 * ((41) * (111) * (16°) * (291))mod35= 11.

Peggy and Victor repeat the protocol t times, each time with a different random r,
until Victor is satisfied.

With small values like these, there's no real security. But when n is 512 bits long
or more, Victor cannot learn anything about Peggy's secret key except the fact that
she knows it.

Enhancements

It is possible to embed identification information into the protocol. Assume that
I is a binary string representing Peggy's identification: her name, address, social
security number, hat size, preferred brand of soft drink, and other personal informa­
tion. Use a one-way hash function H(x) to compute H(I,j), where j is a small number
concatenated onto I. Find a set of js where H(I,j) is a quadratic residue mod n. These
H(I,j)s become v1, v2, ••. , vk (the js need not be quadratic residues). Peggy's public
key is now I and the list of js. She sends I and the list of js to Victor before step (1)
of the protocol (or perhaps Victor downloads them from a public bulletin board
someplace), and Victor generates v 1, v2, ... , vk from H(I,j).

Now, after Victor successfully completes the protocol with Peggy, he is assured
that Trent, who knows the factorization of the modulus, has certified the associa­
tion between I and Peggy by giving her the square roots of the vi derived from I. (See
Section 5.2 for background information.)

Feige, Fiat, and Shamir include the following implementation remarks [544,545]:

For nonperfect hash functions, it may be advisable to randomize I by concatenat­
ing it with a long random string, R. This string is chosen by the arbitrator and is
revealed to Victor along with I.

In typical implementations, k should be between 1 and 18. Larger values of k can
reduce the time and communication complexity by reducing the number of rounds.

__________________ 2_1_._1_F_e_ig_e_-_F1_·a_t_-S_h_a_m_ir _______ 7 __ ~

The value n should be at least 512 bits long. (Of course, there has been consid­
erable progress in factoring since then.)

If each user chooses his own n and publishes it in a public key file, they can dis­
pense with the arbitrator. However, this RSA-like variant makes the scheme con­
siderably less convenient.

Fiat-Shamir Signature Scheme
Turning this identification scheme into a signature scheme is basically a matter

of turning Victor into a hash function. The primary benefit of the Fiat-Shamir digi­
tal signature scheme over RSA is speed: Fiat-Shamir requires only 1 percent to 4 per­
cent of the modular multiplications of RSA. For this protocol, we'll bring back Alice
and Bob.

The setup is the same as the identification scheme. Choose n to be the product of
two large primes. Generate the public key, v 1, v 2, ••• , vk, and the private key, s1,

s2, ••• , sk, such that si = sqrt (vi-1) mod n.

(1) Alice picks t random integers between 1 and n: r 1, r2, ••• , r 1, and computes
X1, x2, ••• , x 1 such that xi= r? mod n.

(2) Alice hashes the concatenation of the message and the string of xis to gen­
erate a bit stream: H(m, x 1, x2, ••. , xi). She uses the first k * t bits of this
string as values of bit, where i goes from 1 to t, and j goes from 1 to k.

(3) Alice computes y 1, y 2, ... , y 1, where

(For each i, she multiplies together the values of the s1 based on the random
b1, t values. If bi, 1 is a 1, then s 1 is multiplied; if bi, 1 is a 0, then s 1 is not
multiplied.)

(4) Alice sends Bob m, all the bit values of bi,;, and all the values of Yi· He
already has Alice's public key: v 1, v2, ••• , vk.

(5) Bob c:omputes z 1, z2, •.. , 2 1, where

z1 = y/ * (v/i1 * v/i2 * ... * v/ 11<) mod n

(Again, Bob multiplies based on the bi, i values.) Also note that zi should be
equal to xi.

(6) Bob verifies that the first k * t bits of H(m, z 1, z2, ... , 2 1) are the bi,; values
that Alice sent him.

As with the identification scheme, the security of this signature scheme is pro­
portional to 1/21<1_ It also depends on the difficulty of factoring n. Fiat and Shamir
pointed out that forging a signature is easier when the complexity of factoring n is
considerably lower than 21<1_ And, because of birthday-type attacks (see Section 18.1),
they recommend that k * t be increased from 20 to at least 72. They suggest k = 9
and t = 8.

CHAPTER 21 Identification Schemes

Improved Fiat-Shamir Signature Scheme
Silvio Micali and Adi Shamir improved the Fiat-Shamir protocol in [1088]. They

chose v1, v2, ... , vk to be the first k prime numbers. So

V1 = 2, v2 = 3, V3 = 5, and so on.

This is the public key.
The private key, s 1, s2, ..• , sk is a random square root, determined by

S; = sqrt (vi-1) mod n

In this version, every person must have a different n. The modification makes it
easier to verify signatures. The time required to generate signatures, and the secu­
rity of those signatures, is unaffected.

Other Enhancements
There is also an N-party identification scheme, based on the Fiat-Shamir algo­

rithm [264]. Two other improvements to the Fiat-Shamir scheme are proposed in
[1218]. Another variant is [1368].

Ohta-Okamoto Identification Scheme
This protocol is a modification of the Feige-Fiat-Shamir identification scheme and

gets its security from the difficulty of factoring [1198,1199]. The same authors also
wrote a multisignature scheme (see Section 23.1), by which a number of different
people can sequentially sign a message [1200]. This scheme has been proposed for
smart-card implementation [850].

Patents
Fiat-Shamir is patented [1427]. Anyone interested in licensing the algorithm

should contact Yeda Research and Development, The Weizmann Institute of Sci­
ence, Rehovot 7 6100, Israel.

21.2 GUILLOU-QUISQUATER

Feige-Fiat-Shamir was the first practical identity-based protocol. It minimized com­
putation by increasing the number of iterations and accreditations per iteration. For
some implementations, like smart cards, this is less than ideal. Exchanges with the
outside world are time-consuming, and the storage required for each accreditation
can strain the limited resources of the card.

Louis Guillou and Jean-Jacques Quisquater developed a zero-knowledge identifi­
cation algorithm more suited to applications like these [670,1280]. The exchanges
between Peggy and Victor and the parallel accreditations in each exchange are
both kept to an absolute minimum: There is only one exchange of one accredita­
tion for each proof. For the same level of security, the computation required by
Guillou-Quisquater is greater than by Feige-Fiat-Shamir by a factor of three. And

__________________ 2_1._2 __ G_u_il_l_ou_-Q_w_·s_q_u_a_te_r _______ 7--=--~

like Feige-Fiat-Shamir, this identification algorithm can be converted to a digital
signature algorithm.

Guillou-Quisquater Identification Scheme
Peggy is a smart card who wants to prove her identity to Victor. Peggy's identity

consists of a set of credentials: a data string consisting of the card's name, validity
period, a bank account number, and whatever else the application warrants. This bit
string is called [. (Actually, the credentials can be a longer string and hashed to a T
value. This complexity does not modify the protocol in any way.) This is analogous
to the public key. Other public information, shared by all "Peggys" who could use
this application, is an exponent v and a modulus n, where n is the product of two
secret primes. The private key is B, calculated such that [Bv = I (mod n).

Peggy sends Victor her credentials,[. Now, she wants to prove to Victor that those
credentials are hers. To do this, she has to convince Victor that she knows B. Here's
the protocol:

(I) Peggy picks a random integer r, such that r is between I and n - I. She com­
putes T = rv mod n and sends it to Victor.

(2) Victor picks a random integer, d, such that dis between zero and v - I. He
sends d to Peggy.

(3) Peggy computes D = rBd mod n, and sends it to Victor.

(4) Victor computes T = Dvld mod n. If T = T (mod n), then the authentication
succeeds.

The math isn't that complex:

r = D7' 1 = (rBdivJd = rvBd7d = rv(!Bv)d = rv = T (mod n)

since B was constructed to satisfy

[Bv = I (mod n)

Guillou-Quisquater Signature Scheme

This identification can be converted to a signature scheme, also suited for smart­
card implementation [671,672].

The public and private key setup is the same as before. Here's the protocol:

(I) Alice picks a random integer r, such that r is between I and n - I. She com­
putes T = rv mod n.

(2) Alice computes d = H(M, T), where Mis the message being signed and H(x)
is a one-way hash function. The d produced by the hash function must be
between O and v- I [1280]. If the output of the hash function is not within
this range, it must be reduced modulo v.

CHAPTER 21 Identification Schemes

(3) Alice computes D = rBa mod n. The signature consists of the message, M,
the two calculated values, d and D, and her credentials, f. She sends this
signature to Bob.

(4) Bob computes T = D7a mod n. He then computes d' = H(M,T). If d = d',
then Alice must know B and the signature is valid.

Multiple Signatures

What if many people want to sign the same document? The easy solution has each
of them signing separately, but this signature scheme can do better than that. Here
Alice and Bob sign the same document and Carol verifies the signatures, but any
number of people can be involved in the signature process. As before, Alice and Bob
have their own unique T and B values: (TA, BA) and ([B, BB). The values n and v are com­
mon to the system.

(1) Alice picks a random integer, rA, such that rA is between 1 and n - 1. She
computes TA= rAv mod n and sends TA to Bob.

(2) Bob picks a random integer, In, such that rR is between 1 and n - 1. He com­
putes TB= rBv mod n and sends TB to Alice.

(3) Alice and Bob each compute T = (TATn) mod n.

(4) Alice and Bob each computed= H(M,T), where Mis the message being
signed and H(x) is a one-way hash function. The d produced by the hash
function must be between O and v- 1 [1280]. If the output of the hash func­
tion is not within this range, it must be reduced modulo v.

(5) Alice computes DA =rABAa modn and sends DA to Bob.

(6) Bob computes DB= rBBi mod n and sends DR to Alice.

(7) Alice and Bob each compute D = D ADn mod n. The signature consists of the
message, M, the two calculated values, d and D, and both of their creden­
tials: !A and [B.

(8) Carol computes T = !A[B mod n.

(9) Carol computes T = D7 1 mod n. She then computes d' = H(M, T). If d = d',
then the multiple signature is valid.

This protocol can be extended to any number of people. For multiple people to
sign, they all multiply their individual Ti values together in step (3), and their indi­
vidual D; values together in step (7). To verify a multiple signature, multiply all the
signers[; values together in step (8). Either all the signatures are valid or there is at
least one invalid signature.

21.3 SCHNORR

Claus Schnorr's authentication and signature scheme [1396, 1397] gets its security
from the difficulty of calculating discrete logarithms. To generate a key pair, first

_________________ 2_1_.3_S_c_h_n_o_rr _______ ~7~

choose two primes, p and q, such that q is a prime factor of p - 1. Then, choose an a
not equal to 1, such that aCJ = 1 (mod p). All these numbers can be common to a
group of users and can be freely published.

To generate a particular public-key/private-key key pair, choose a random num­
ber less than q. This is the private key, s. Then calculate v = a-s mod p. This is the
public key.

Authentication Protocol

(1) Peggy picks a random number, r, less than q, and computes x = ar mod p.
This is the preprocessing stage and can be done long before Victor is
present.

(2) Peggy sends x to Victor.

(3) Victor sends Peggy a random number, e, between O and 2' - 1. (I'll discuss t
in a moment.)

(4) Peggy computes y = (r + se) mod q and sends y to Victor.

(5) Victor verifies that x = aYve mod p.

The security is based on the parameter t. The difficulty of breaking the algorithm
is about 2'. Schnorr recommended that p be about 512 bits, q be about 140 bits, and
t be 72.

Digital Signature Protocol

Schnorr can also be used as a digital signature protocol on a message, M. The
public-key/private-key key pair is the same, but we're now adding a one-way hash
function, H(M).

(1) Alice picks a random number, r, less than q, and computes x = a' mod p.
This computation is the preprocessing stage.

(2) Alice concatenates Mand x, and hashes the result:

e=H(M,x)

(3) Alice computes y = (r + se) mod q. The signature is e and y; she sends these
to Bob.

(4) Bob computes x' = aYve mod p. He then confirms that the concatenation of
M and x' hashes to e.

e=H(M,x')

If it does, he accepts the signature as valid.

In his paper, Schnorr cites these novel features of his algorithm:

Most of the computation for signature generation can be completed in a prepro­
cessing stage, independent of the message being signed. Hence, it can be done dur-

CHAPTER 21 Identification Schemes

ing idle time and not affect the signature speed. An attack against this prepro­
cessing stage is discussed in [475], but I don't think it's practical.

For the same level of security, the length of signatures is less for Schnorr than
for RSA. For example, with a 140-bit q, signatures are only 212-bits long, less
than half the length of RSA signatures. Schnorr's signatures are also much shorter
than ElGamal signatures.

Of course, practical considerations may make even fewer bits suitable for a given
scheme: For example, an identification scheme where the cheater must perform an
on-line attack in only a few seconds, versus a signature scheme where the cheater
can calculate for years off-line to come up with a forgery.

A modification of this algorithm, by Ernie Brickell and Kevin McCurley, enhances
its security [265].

Patents
Schnorr is patented in the United States [1398] and in many other countries. In

1993, PKP acquired the worldwide rights to the patent (see Section 25.5). The U.S.
patent expires on February 19, 2008.

21.4 CONVERTING IDENTIFICATION SCHEMES TO SIGNATURE

SCHEMES

There is a standard method of converting an identification scheme into a signature
scheme: Replace Victor with a one-way hash function. The message is not hashed
before it is signed; instead the hashing is incorporated into the signing algorithm. In
principle, this can be done with any identification scheme.

------------------------z:-~

CHAPTER

Key-Exchange
Algorithms

22.1 DIFFIE-HELLMAN

22

Diffie-Hellman was the first public-key algorithm ever invented, way back in 1976
[496]. It gets its security from the difficulty of calculating discrete logarithms in a
finite field, as compared with the ease of calculating exponentiation in the same
field. Diffie-Hellman can be used for key distribution-Alice and Bob can use this
algorithm to generate a secret key-but it cannot be used to encrypt and decrypt
messages.

The math is simple. First, Alice and Bob agree on a large prime, n and g, such that
g is primitive mod n. These two integers don't have to be secret; Alice and Bob can
agree to them over some insecure channel. They can even be common among a
group of users. It doesn't matter.

Then, the protocol goes as follows:

(1) Alice chooses a random large integer x and sends Bob

X=gx modn

(2) Bob chooses a random large integer y and sends Alice

Y=gYmodn

(3) Alice computes

k= yxmodn

(4) Bob computes

k' =XY modn

Both k and k' are equal to gxy mod n. No one listening on the channel can compute
that value; they only known, g, X, and Y Unless they can compute the discrete log-

CHAPTER 22 Key-Exchange Algorithms

arithm and recover x or y, they do not solve the problem. So, k is the secret key that
both Alice and Bob computed independently.

The choice of g and n can have a substantial impact on the security of this system.
The number (n - 1)/2 should also be a prime [1253]. And most important, n should
be large: The security of the system is based on the difficulty of factoring numbers
the same size as n. You can choose any g, such that g is primitive mod n; there's no
reason not to choose the smallest g you can-generally a one-digit number. (And
actually, g does not have to be primitive; it just has to generate a large subgroup of
the multiplicitive group mod n.)

Diffie-Hellman with Three or More Parties
The Diffie-Hellman key-exchange protocol can easily be extended to work with

three or more people. In this example, Alice, Bob, and Carol together generate a
secret key.

(1) Alice chooses a random large integer x and sends Bob

X=gxmodn

(2) Bob chooses a random large integer y and sends Carol

Y=gY mod n

(3) Carol chooses a random large integer z and sends Alice

Z=g 2 modn

(4) Alice sends Bob

Z'= zxmod n

(5) Bob sends Carol

X'=XYmodn

(6) Carol sends Alice

Y'= Y2 modn

(7) Alice computes

k = Y'xmodn

(8) Bob computes

k =Z'Y mod n

(9) Carol computes

k =X' 2 mod n

The secret key, k, is equal to gxyz mod n, and no one else listening in on the com­
munications can compute that value. The protocol can be easily extended to four or
more people; just add more people and more rounds of computation.

_________________ 2_2._1_D_1_ff_i_e-_H_e_ll_m_a_n _______ 7-~

Extended Di/fie-Hellman
Diffie-Hellman also works in commutitive rings [1253]. Z. Shmuley and Kevin

McCurley studied a variant of the algorithm where the modulus is a composite
number [1442,1038]. V. S. Miller and Neal Koblitz extended this algorithm to ellip­
tic curves [1095,867]. Taher ElGamal used the basic idea to develop an encryption
and digital signature algorithm (see Section 19.6).

This algorithm also works in the Galois field GF(2k) [1442, 1038]. Some imple­
mentations take this approach [884,1631,1632], because the computation is much
quicker. Similarly, cryptanalytic computation is equally fast, so it is important to
carefully choose a field large enough to ensure security.

Hughes
This variant of Diffie-Hellman allows Alice to generate a key and send it to

Bob [745].

(1) Alice chooses a random large integer x and generates

k =gx modn

(2) Bob chooses a random large integer y and sends Alice

Y=gYmodn

(3) Alice sends Bob

X= yx modn

(4) Bob computes

z =y-1

k' =X 2 modn

If everything goes correctly, k = k'.
The advantage of this protocol over Diffie-Hellman is that k can be computed

before any interaction, and Alice can encrypt a message using k prior to contacting
Bob. She can send it to a variety of people and interact with them to exchange the
key individually later.

Key Exchange Without Exchanging Keys
If you have a community of users, each could publish a public key, X =~mod n,

in a common database. If Alice wants to communicate with Bob, she just has to
retrieve Bob's public key and generate their shared secret key. She could then
encrypt a message with that key and send it to Bob. Bob would retrieve Alice's pub­
lic key to generate the shared secret key.

Each pair of users would have a unique secret key, and no prior communication
between users is required. The public keys have to be certified to prevent spoofing
attacks and should be changed regularly, but otherwise this is a pretty clever idea.

CHAPTER 22 Key-Exchange Algorithms

Patents
The Diffie-Hellman key-exchange algorithm is patented in the United States [718]

and Canada [719]. A group called Public Key Partners (PKP) licenses the patent,
along with other public-key cryptography patents (see Section 25.5). The U.S. patent
will expire on April 29, 1997.

22.2 STATION-TO-STATION PROTOCOL

Diffie-Hellman key exchange is vulnerable to a man-in-the-middle attack. One way to
prevent this problem is to have Alice and Bob sign their messages to each other [500].

This protocol assumes that Alice has a certificate with Bob's public key and that
Bob has a certificate with Alice's public key. These certificates have been signed by
some trusted authority outside this protocol. Here's how Alice and Bob generate a
secret key, k.

(1) Alice generates a random number, x, and sends it to Bob.

(2) Bob generates a random number, y. Using the Diffie-Hellman protocol he
computes their shared key based on x and y: k. He signs x and y, and
encrypts the signature using k. He then sends that, along with y, to Alice.

y,E1,(SB(x,y))

(3) Alice also computes k. She decrypts the rest of Bob's message and verifies
his signature. Then she sends Bob a signed message consisting of x and y,
encrypted in their shared key.

Ek(SA(x,y))

(4) Bob decrypts the message and verifies Alice's signature.

22.3 SHAMIR'S THREE-PASS PROTOCOL

This protocol, invented by Adi Shamir but never published, enables Alice and Bob
to communicate securely without any advance exchange of either secret keys or
public keys [1008].

This assumes the existence of a symmetric cipher that is commutative, that is:

Alice's secret key is A; Bob's secret key is B. Alice wants to send a message, M, to
Bob. Here's the protocol.

(1) Alice encrypts M with her key and sends Bob

C1=EA(M)

(2) Bob encrypts C1 with his key and sends Alice

C2 = EB(EA(M))

_______________ 2_2_.4_C_O_M_SE_T _______ 7..,,.~

(3) Alice decrypts C2 with her key and sends Bob

C3 = DA(Es(EA(M))) = DA(EA(Es(M))) = Es(M)

(4) Bob decrypts Ca with his key to recover M.

One-time pads are commutative and have perfect secrecy, but they will not work
with this protocol. With a one-time pad, the three ciphertext messages would be:

C1 =PEBA

C2 = P EB A EBB

Ca= P EBB

Eve, who can record the three messages as they pass between Alice and Bob, sim­
ply XORs them together to retrieve the message:

C1 EB C2 EB Ca= (P EB A) EB (P EB A EBB) EB (P EBB)= P

This clearly won't work.
Shamir (and independently, Jim Omura) described an encryption algorithm that

will work with this protocol, one similar to RSA. Let p be a large prime for which p
- 1 has a large prime factor. Choose an encryption key, e, such that e is relatively
prime top - 1. Calculated such that de = 1 (mod p - 1).

To encrypt a message, calculate

C=Me modp

To decrypt a message, calculate

M= ca modp

There seems to be no way for Eve to recover M without solving the discrete loga­
rithm problem, but this has never been proved.

Like Diffie-Hellman, this protocol allows Alice to initiate secure communica­
tion with Bob without knowing any of his keys. For Alice to use a public-key algo­
rithm, she has to know his public key. With Shamir's three-pass protocol, she just
sends him a ciphertext message. The same thing with a public-key algorithm
looks like:

(1) Alice asks Bob (or a KDC) for his public key.

(2) Bob (or the KDC) sends Alice his public key.

(3) Alice encrypts M with Bob's public key and sends it to Bob.

Shamir's three-pass protocol will fall to a man-in-the-middle attack.

22.4 COMSET

COMSET (COMmunications SETup) is a mutual identification and key exchange
protocol developed for the RIPE project [1305] (see Section 25.7). Using public-key

CHAPTER 22 Key-Exchange Algorithms

cryptography, it allows Alice and Bob to identify themselves to each other and also
to exchange a secret key.

The mathematical principle behind COMSET is Rabin's scheme [1283] (see Sec­
tion 19.5). The scheme itself was originally proposed in [224]. See [1305] for details.

22.5 ENCRYPTED KEY EXCHANGE

The Encrypted Key Exchange (EKE) protocol was designed by Steve Bellovin and
Michael Merritt [109]. It provides security and authentication on computer net­
works, using both symmetric and public-key cryptography in a novel way: A shared
secret key is used to encrypt a randomly generated public key.

The Basic EKE Protocol

Alice and Bob (two users, a user and the host, or whoever) share a common pass­
word, P. Using this protocol, they can authenticate each other and generate a com­
mon session key, K.

(1) Alice generates a random public-key /private-key key pair. She encrypts the
public key, K', using a symmetric algorithm and P as the key: Ep(K'). She
sends Bob

A,Ep(K')

(2) Bob knows P. He decrypts the message to obtain K'. Then, he generates a
random session key, K, and encrypts it with the public key he received
from Alice and P as the key. He sends Alice

Ep(EK'(K))

(3) Alice decrypts the message to obtain K. She generates a random string, RA,
encrypts it with K, and sends Bob

EK(RA)

(4) Bob decrypts the message to obtain RA. He generates another random
string, RR, encrypts both strings with K, and sends Alice the result.

EK(RA, RB)

(5) Alice decrypts the message to obtain RA and Rn. Assuming the RA she
received from Bob is the same as the one she sent to Bob in step (3), she
encrypts Rn with Kand sends it to Bob.

EK(RR)

(6) Bob decrypts the message to obtain RB. Assuming the RR he received from
Alice is the same one he sent to Alice in step (4), the protocol is complete.
Both parties now communicate using K as the session key.

At step (3), both Alice and Bob know K' and K. K is the session key and can be used
to encrypt all other messages between Alice and Bob. Eve, sitting between Alice and

________________ 22_._5_E_n_c_r_y_p_te_d_K_e_y_E_x_c_h_a_n_g_e ______ 7,,,,,~

Bob, only knows Ep(K'), Ep(EK·(K)), and some messages encrypted with K. In other pro­
tocols, Eve could make guesses at P (people choose bad passwords all the time, and if
Eve is clever she can make some good guesses) and then test her guesses. In this pro­
tocol, Eve cannot test her guess without cracking the public-key algorithm as well.
And if both K' and Kare chosen randomly, this can be an insurmountable problem.

The challenge-response portion of the protocol, steps (3) through (6), provides val­
idation. Steps (3) through (5) prove to Alice that Bob knows K; steps (4) through (6)
prove to Bob that Alice knows K. The Kerberos protocol timestamp exchange
accomplishes the same thing.

EKE can be implemented with a variety of public-key algorithms: RSA, ElGamal,
Diffie-Hellman. There are security problems with implementing EKE with a lrnap­
sack algorithm (aside from the inherent insecurity of knapsack algorithms): The
normal distribution of the ciphertext messages negates the benefits of EKE.

Implementing EKE with RSA
The RSA algorithm seems perfect for this application, but there are some subtle

problems. The authors recommend encrypting only the encryption exponent in step
(1) and sending the modulus in the clear. An explanation of the reasoning behind
this recommendation, as well as other subtleties involved in using RSA, is in [109].

Implementing EKE with ElGamal
Implementing EKE with the ElGamal algorithm is straightforward, and there is

even a simplification of the basic protocol. Using the notation from Section 19.6, g
and pare parts of the public key and are common to all users. The private key is a
random number r. The public key is gr mod p. The message Alice sends to Bob in
step (1) becomes

Alice, g mod p

Note that this public key does not have to be encrypted with P. This is not true in
general, but it is true for the ElGamal algorithm. Details are in [109].

Bob chooses a random number, R (for the ElGamal algorithm and independent of
any random numbers chosen for EKE), and the message he sends to Alice in step (2)
becomes

Ep(gR mod p, KgRr mod p)

Refer back to Section 19.6 for restrictions on choosing the variables for ElGamal.

Implementing EKE with Di/fie-Hellman
With the Diffie-Hellman protocol, K is generated automatically. The final proto­

col is even simpler. A value for g and n is set for all users on the network.

(1) Alice picks a random number, rA, and sends Bob

A,gAmodn

With Diffie-Hellman, Alice does not have to encrypt her first message
with P.

CHAPTER 22 Key-Exchange Algorithms

(2) Bob picks a random number, rB, and calculates

K = g'A * rB mod n

He generates a random string RB, then calculates and sends Alice:

Er(g'B mod n), EK(RB)

(3) Alice decrypts the first half of Bob's message to obtain grB mod n. Then she
calculates K and uses K to decrypt RR. She generates another random
string, RA, encrypts both strings with K, and sends Bob the result.

EK(RA, RB)

(4) Bob decrypts the message to obtain RA and RR. Assuming the RB he received
from Alice is the same as the one he sent to Alice in step (2), he encrypts RA
with Kand sends it to Alice.

EK(RA)

(5) Alice decrypts the message to maintain RA. Assuming the RA she received
from Bob is the same as the one she sent to Bob in step (3), the protocol is
complete. Both parties now communicate using K as the session key.

Strengthening EKE

Bellovin and Merritt suggest an enhancement of the challenge-and-response por­
tion of the protocol-to prevent a possible attack if a cryptanalyst recovers an old
K value.

Look at the basic EKE protocol. In step (3), Alice generates another random num­
ber, SA, and sends Bob

EK(RA, SA)

In step (4), Bob generates another random number, SB, and sends Alice

E1dRA, RB, SR)

Alice and Bob now can both calculate the true session key, SA EB SB. This key is
used for all future messages between Alice and Bob; K is just used as a key­
exchange key.

Look at the levels of protection EKE provides. A recovered value of S gives Eve no
information about P, because Pis never used to encrypt anything that leads directly
to S. A cryptanalytic attack on K is also not feasible; K is used only to encrypt ran­
dom data, and Sis never encrypted alone.

Augmented EKE

The EKE protocol suffers from one serious disadvantage: It requires that both par­
ties possess the P. Most password-based authentication systems store a one-way
hash of the user's password, not the password itself (see Section 3.2). The Aug­
mented EKE (A-EKE) protocol uses a one-way hash of the user's password as the

_______________ 2_2_._5_E_n_c_ry_p_t_e_d_K_e_y_E_x_c_h_a_n_g_e _____ z:--,,,,~

superencryption key in the Diffie-Hellman variant of EKE. The user then sends an
extra message based on the original password; this message authenticates the newly
chosen session key.

Here's how it works. As usual, Alice and Bob want to authenticate each other and
generate a common key. They agree on some digital signature scheme where any
number can serve as the private key, and where the public key is derived from the
private key, rather than being generated along with it. The ElGamal and DSA algo­
rithms work well for this. Alice's password P (or perhaps some simple hash of it) will
serve as the private key and as P'.

(1) Alice picks her random exponent R 0 and transmits

Ep•(gRA mod n)

(2) Bob, who knows only P' and cannot derive P from it, chooses Rb and sends

E/Y(gRA mod n)

(3) Both Alice and Bob calculate the shared session key K = grA • rs mod n.
Finally, Alice proves that she knows P itself, and not just P', by sending

EK(Sp(K))

Bob, who knows both Kand P', can decrypt and validate the signature. Only Alice
could have sent this message, since only she knows P; an intruder who obtains a
copy of Bob's password file can try guessing at P, but cannot otherwise sign the ses­
sion key.

The A-EKE scheme does not work with the public-key variant of EKE, since in it
one party chooses the session key and imposes it on the other. This permits a man­
in-the-middle attack by an attacker who has captured P'.

Applications of EKE

Bellovin and Merritt suggest using this protocol for secure public telephones [109]:

Let us assume that encrypting public telephones are deployed. If someone wishes
to use one of these phones, some sort of keying information must be provided.
Conventional solutions ... require that the caller possess a physical key. This is
undesirable in many situations. EKE permits use of a short, keypad-entered pass­
word, but uses a much longer session key for the call.

EKE would also be useful with cellular phones. Fraud has been a problem in the
cellular industry; EKE can defend against it (and ensure the privacy of the call) by
rendering a phone useless if a PIN has not been entered. Since the PIN is not
stored within the phone, it is not possible to retrieve one from a stolen unit.

EKE's primary strength is that both symmetric and public-key cryptography work
together in a manner that strengthens them both:

From a general perspective, EKE functions as a privacy amplifier. That is, it can
be used to strengthen comparatively weak symmetric and asymmetric systems

CHAPTER 22 Key-Exchange Algorithms

when used together. Consider, for example, the key size needed to maintain secu­
rity when using exponential key exchange. As LaMacchia and Odlyzko have
shown [934], even modulus sizes once believed to be safe (to wit, 192 bits) are vul­
nerable to an attack requiring only a few minutes of computer time. But their
attack is not feasible if one must first guess a password before applying it.

Conversely, the difficulty of cracking exponential key exchange can be used to
frustrate attempts at password-guessing. Password-guessing attacks are feasible
because of how rapidly each guess may be verified. If performing such verification
requires solving an exponential key exchange, the total time, if not the concep­
tual difficulty, increases dramatically.

EKE is patented [111].

22.6 FORTIFIED KEY NEGOTIATION

This scheme also protects key-negotiation schemes from poorly chosen passwords
and man-in-the-middle attacks [47,983]. It uses a hash function of two variables that
has a very special property: It has many collisions on the first variable while having
effectively no collisions on the second variable.

H'(x, y) = H(H(k, x) mod 2m, x),
where H(k, x) is an ordinary hash function on k and x

Here's the protocol. Alice and Bob share a secret password, P, and have just
exchanged a secret key, K, using Diffie-Hellman key exchange. They use P to check
that their two session keys are the same (and that Eve is not attempting a man-in­
the-middle attack), without giving P away to Eve.

(1) Alice sends Bob

H' (P, K)

(2) Bob computes H' (P, K) and compares his result with what he received from
Alice. If they match he sends Alice

H' (H(P, K))

(3) Alice computes H' (H(P, K)) and compares her result with what she
received from Bob.

If Eve is trying a man-in-the-middle attack, she shares one key, K1, with Alice, and
another key, K2, with Bob. To fool Bob in step (2), she has to figure out the shared
password and then send Bob H' * (P, K 2). With a normal hash function she can try
common passwords until she guesses the correct one, and then successfully infil­
trate the protocol. But with this hash function, many passwords are likely to pro­
duce the same value when hashed with K1• So when she finds a match, she will
probably have the wrong password, and hence Bob will not be fooled.

22. 7 Conference Key Distribution and Secret Broadcasting

22. 7 CONFERENCE KEY DISTRIBUTION AND SECRET

BROADCASTING

Alice wants to broadcast a message, M, from a single transmitter. However, she
doesn't want it to be intelligible by every listener. In fact, she only wants a select
subset of listeners to be able to recover M. Everyone else should get nonsense.

Alice can share a different key (secret or public) with each listener. She encrypts
the message in some random key, K. Then she encrypts a copy of K with each of the
keys of her intended recipients. Finally, she broadcasts the encrypted message and
then all of the encrypted Ks. Bob, who is listening, either tries to decrypt all the Ks
with his secret key, looking for one that is correct, or, if Alice doesn't mind every­
one knowing who her message is for, he looks for his name followed by an encrypted
key. Multiple-key cryptography, previously discussed, also works.

Another method is suggested in [352]. First, each listener shares a secret key with
Alice, one that is larger than any possible encrypted message. All of those keys
should be pairwise prime. She encrypts the message in a random key, K. Then. she
computes a single integer, R, such that R modulo a secret key is congruent to K
when that secret key is supposed to decrypt the message, and R modulo a secret key
is otherwise congruent to zero.

For example, if Alice wants the secret to be received by Bob, Carol, and Ellen,
but not by Dave and Frank, she encrypts the message with Kand then computes R
such that

R = K(modKn)

R = K(modKc)

R = 0 (mod Kv)

R = K (mod KE)

R = 0 (mod KF)

This is a straightforward algebra problem, one that Alice can solve easily. When
listeners receive the broadcast, they compute the received key modulo their secret
key. If they were intended to receive the message, they recover the key. Otherwise,
they recover nothing.

Yet a third way, using a threshold scheme (see Section 3.7), is suggested in [141].
Like the others, every potential receiver gets a secret key. This key is a shadow in a
yet-uncreated threshold scheme. Alice saves some secret keys for herself, adding
some randomness to the system. Let's say there are k people out there.

Then, to broadcast M, Alice encrypts M with key Kand does the following.

(1) Alice chooses a random number, j. This number serves to hide the number
of recipients of the message. It doesn't have to be very large; it can be as
small as 0.

CHAPTER 22 Key-Exchange Algorithms

(2) Alice creates a (k + i + 1, 2k + i + 1) threshold scheme, with:

K as the secret.

The secret keys of the intended recipients as shadows.

The secret keys of nonrecipients not as shadows.

i randomly chosen shadows, not the same as any of the secret
keys.

(3) Alice broadcasts k + j randomly chosen shadows, none of which is any of
the shadows listed in step (2).

(4) All listeners who receive the broadcast add their shadow to the k + j shad­
ows they received. If adding their shadow allows them to calculate the
secret, then they have recovered the key. If it does not, then they haven't.

Another approach can be found in [885,886, 1194]. For yet another approach,
see [1000].

Conference Key Distribution

This protocol allows a group of n users to agree on a secret key using only insecure
channels. The group shares two large primes, p and q, and a generator g the same
size as q.

(1) User i, where i goes from 1 ton, chooses a random r; less than q, and
broadcasts

Z; =g1 modp

(2) Every user verifies that z/ 1 = 1 (mod p), for all i from 1 ton.

(3) User i broadcasts

x 1 = (z; + 1/z 1 _ 1)' 1 mod p

(4) User i computes

K = (z)nri * x.11 - I * X· n - 2 * * X· mod p
1 - I 1 1 + I · · • 1 - 2

All index computations in the above protocol-i - 1, i - 2, and i + 1-should be
computed mod n. At the end of the protocol, all honest users have the same K. No
one else gets anything. However, this protocol falls to a man-in-the-middle attack.
Another protocol, not quite as pretty, is in [757].

Tatebayashi-Matsuzaki-Newman

This key distribution protocol is suitable for networks [1521]. Alice wants to gen­
erate a session key with Bob using Trent, the KDC. All parties know Trent's public
key, n. Trent knows the two large primes that n factors to, and hence can easily take

22. 7 Conference Key Distribution and Secret Broadcasting

cube roots modulo n. A lot of the details are left out of the following protocol, but
you get the idea.

(1) Alice chooses a random number, rA, and sends Trent

r} modn

(2) Trent tells Bob that someone wants to exchange a key with him.

(3) Bob chooses a random number, r3, and sends Trent

ri' modn

(4) Trent uses his private key to recover rA and r3 . He sends Alice

(5) Alice calculates

(rA EB rB) EB rA = rB

She uses this r3 to communicate securely with Bob.

This protocol looks good, but it has a horrible flaw. Carol can listen in on step (3)
and use that information, with the help of an unsuspecting Trent and another mali­
cious user (Dave), to recover r3 [1472].

(1) Carol chooses a random number, rc, and sends Trent

(2) Trent tells Dave that someone wants to exchange a key with him.

(3) Dave chooses a random number, rD, and sends Trent

rD3 modn

(4) Trent uses his private key to recover re and rD. He sends Carol

(r3rc) mod n EB rD

(5) Dave sends rD to Carol.

(6) Carol uses rc andrD to recover r8 • She uses r3 to eavesdrop on Alice and Bob.

This is not good.

-----------------------~z~

CHAPTER

Special Algorithms
for Protocols

23.1 MULTIPLE-KEY PuBLIC-KEY CRYPTOGRAPHY

23

This is a generalization of RSA (see Section 19.3) [217,212]. The modulus, n, is the
product of two primes, p and q. However, instead of choosing e and d such that ed
= 1 mod ((p- l)(q- 1)), choose t keys, K;, such that

K1 * K2 * ... * Kt = 1 mod ((p - 1)(q - 1))

Since

this is a multiple-key scheme as described in Section 3.5.
If, for example, there are five keys, a message encrypted with K, and K5 can be

decrypted with K 1, K2, and K4:

C = MK3 · Ks mod n
M = CK1 · K2 · K4 mod n

One use for this is multisignatures. Imagine a situation where both Alice and Bob
have to sign a document for it to be valid. Use three keys: K1, K2, and K,. The first
two are issued one each to Alice and Bob, and the third is made public.

(1) First Alice signs Mand sends it to Bob.

M' = AfK1 mod n

(2) Bob can recover M from M'.

M = M'K2 · K3 mod n

(3) He can also add his signature.

M" = M'K2 mod n

CHAPTER 23 Special Algorithms for Protocols

(4) Anyone can verify the signature with K3, the public key.

M = M"K3 mod n

Note that a trusted party is needed to set this system up and distribute the keys
to Alice and Bob. Another scheme with the same problem is [484]. Yet a third
scheme is [695,830,700], but the effort in verification is proportional to the number
of signers. Newer schemes [220, 1200] based on zero-knowledge identification
schemes solve both shortcomings of the previous systems.

23.2 SECRET-SHARING ALGORITHMS

Back in Section 3. 7 I discussed the idea behind secret-sharing schemes. The four dif­
ferent algorithms that follow are all particular cases of a general theoretical frame­
work [883].

LaGrange Interpolating Polynomial Scheme
Adi Shamir uses polynomial equations in a finite field to construct a threshold

scheme [1414]. Choose a prime, p, which is both larger than the number of possible
shadows and larger than the largest possible secret. To share a secret, generate an
arbitrary polynomial of degree m - 1. For example, if you want to create a (3,n)­
threshold scheme (three shadows are necessary to reconstruct M), generate a
quadratic polynomial

(ax2 +bx+ M) modp

where pis a random prime larger than any of the coefficients. The coefficients a and
b are chosen randomly; they are kept secret and discarded after the shadows are
handed out. Mis the message. The prime must be made public.

The shadows are obtained by evaluating the polynomial at n different points:

k; = F(x1)

In other words, the first shadow could be the polynomial evaluated at x = 1, the sec­
ond shadow could be the polynomial evaluated at x = 2, and so forth.

Since the quadratic polynomial has three unknown coefficients, a, b, and M, any
three shadows can be used to create three equations. Two shadows cannot. One
shadow cannot. Four or five shadows are redundant.

For example, let M be 11. To construct a (3, 5)-threshold scheme, where any three
of five people can reconstruct M, first generate a quadratic equation (7 and 8 were
chosen randomly):

F(x) = (7x2 + 8x + 11) mod 13

The five shadows are:

k 1 = F(l) = 7 + 8 + 11 = 0 (mod 13)

k 2 = F(2) = 28 + 16 + 11 = 3 (mod 13)

k, = F(3) = 63 + 24 + 11 = 7 (mod 13)

________________ 2_3_.2 __ S_e_cr_e_t_-S_h_a_r_in_g_A_lg_o_r_it_h_m_s _____ 7 __ ~

.k4 = F(4) = 112 + 32 + 11 = 12 (mod 13)

.ks= F(5) = 175 + 40 + 11 = 5 (mod 13)

To reconstruct M from three of the shadows, for example .k2, .k3, and .ks, solve the
set of linear equations:

a * 22 + b * 2 + M = 3 (mod 13)

a * 32 + b * 3 + M = 7 (mod 13)

a * 52 + b * 5 + M = 5 (mod 13)

The solution will be a = 7, b = 8, and M = 11. So Mis recovered.
This sharing scheme can be easily implemented for larger numbers. If you want to

divide the message into 30 equal parts such that any six can get together and repro­
duce the message, give each of the 30 people the evaluation of a polynomial of
degree 6.

F(x) =(ax'+ bx5 + cx4 + dx3 + ex2 + fx + M) mod p

Six people can solve for the six unknowns (including M); five people cannot learn
anything about M.

The most mind-boggling aspect of secret sharing is that if the coefficients are
picked randomly, five people with infinite computing power can't learn anything
more than the length of the message (which each of them knows anyway). This is as
secure as a one-time pad; an attempt at exhaustive search (that is, trying all possible
sixth shadows) will reveal that any conceivable message could be the secret. This is
true for all the secret-sharing schemes presented here.

Vector Scheme
George Blakley invented a scheme using points in space [182]. The message is

defined as a point in m-dimensional space. Each shadow is the equation of an
(m - 1)-dimensional hyperplane that includes the point. The intersection of any m
of the hyperplanes exactly determines the point.

For example, if three shadows are required to reconstruct the message, then it is a
point in three-dimensional space. Each shadow is a different plane. With one shadow,
you know the point is somewhere on the plane. With two shadows, you know the
point is somewhere on the line formed where the two planes intersect. With three
shadows, you can determine the point exactly: the intersection of the three planes.

Asmuth-Bloom
This scheme uses prime numbers [65]. For an (m, n)-threshold scheme, choose a

large prime, p, greater than M. Then choose n numbers less than p, d 1, d2, ••• , dn,
such that:

1. The d values are in increasing order; d; < d; + 1

2. Each d, is relatively prime to every other d;

3. d1 * dz * ... * dm > p * dn - m + 2 * dn - m + 3 * ... * dn

CHAPTER 23 Special Algorithms for Protocols

To distribute the shadows, first choose a random valuer and compute

M'=M+rp

The shadows, k, are

ki=M'moddi

Any m shadows can get together and reconstruct M using the Chinese remainder
theorem, but any m - 1 cannot. See [65] for details.

Karnin-Greene-Hellman

This scheme uses matrix multiplication [818]. Choose n + 1 m-dimensional vec­
tors, V0, V 1, ••• , V"' such that any possible m * m matrix formed out of those vec­
tors has rank m. The vector U is a row vector of dimension m + 1.

M is the matrix product U V0 • The shadows are the products U Vi, where i is a
number from 1 to n.

Any m shadows can be used to solve the m * m system of linear equations, where
the unknowns are the coefficients of U. UV 0 can be computed from U. Any m - 1
shadows cannot solve the system of linear equations and therefore cannot recover
the secret.

Advanced Threshold Schemes
The previous examples illustrate only the simplest threshold schemes: Divide a

secret into n shadows such that any m can be used to recover the secret. These algo­
rithms can be used to create far more complicated schemes. The following examples
will use Shamir's algorithm, although any of the others will work.

To create a scheme in which one person is more important than another, give
that person more shadows. If it takes five shadows to recreate a secret and one per­
son has three shadows while everyone else has only one, then that person and two
other people can recreate the secret. Without that person, it takes five to recreate
the secret.

Two or more people could get multiple shadows. Each person could have a differ­
ent number of shadows. No matter how the shadows are distributed, any m of them
can be used to reconstruct the secret. Someone with m - 1 shadows, be it one per­
son or a roomful of people, cannot do it.

In other types of schemes, imagine a scenario with two hostile delegations. You
can share the secret so that two people from the 7 in Delegation A and 3 people from
the 12 in Delegation Bare required to reconstruct the secret. Make a polynomial of
degree 3 that is the product of a linear expression and a quadratic expression. Give
everyone from Delegation A a shadow that is the result of an evaluation of the lin­
ear equation; give everyone from Delegation Ba shadow that is the evaluation of the
quadratic equation.

Any two shadows from Delegation A can be used to reconstruct the linear equa­
tion, but no matter how many other shadows the group has, they cannot get any
information about the secret. The same is true for Delegation B: They can get three
shadows together to reconstruct the quadratic equation, but they cannot get any

________________ 2_3_.3 __ S_u_bl_im_i_n_al_C_h_an_n_e1 ______ 7~~

more information necessary to reconstruct the secret. Only when the two delega­
tions share their equations can they be multiplied to reconstruct the secret.

In general, any type of sharing scheme that can be imagined can be implemented.
All you have to do is to envision a system of equations that corresponds to the par­
ticular scheme. Some excellent papers on generalized secret-sharing schemes are
[1462, 1463, 1464].

Sharing a Secret with Cheaters
This algorithm modifies the standard (m, n)-threshold scheme to detect cheaters

[1529]. I demonstrate this using the LaGrange scheme, although it works with the
others as well.

Choose a prime, p, that is both larger than n and larger than

(s-l)(m-1)/e+m

wheres is the largest possible secret and e is the probability of successful cheating.
You can make e as small as you want; it just makes the computation more complex.
Construct your shadows as before, except instead of using 1, 2, 3, ... , n for x 1,

choose random numbers between 1 and p - 1 for x 1•

Now, when Mallory sneaks into the secret reconstruction meeting with his false
share, his share has a high probability of not being possible. An impossible secret is,
of course, a fake secret. See [1529] for the math.

Unfortunately, while Mallory is exposed as a cheater, he still learns the secret
(assuming that there are m other valid shares). Another protocol, from [1529,975],
prevents that. The basic idea is to have a series of k secrets, such that none of the
participants knows beforehand which is correct. Each secret is larger than the one
before, except for the real secret. The participants combine their shadows to gener­
ate one secret after the other, until they create a secret that is less than the previous
secret. That's the correct one.

This scheme will expose cheaters early, before the secret is generated. There are
complications when the participants deliver their shadows one at a time; refer to the
papers for details. Other papers on the detection and prevention of cheaters in
threshold schemes are [355,114,270].

23 .3 SUBLIMINAL CHANNEL

Ong-Schnorr-Shamir
This subliminal channel (see Section 4.2), designed by Gustavus Simmons

[1458, 1459, 1460], uses the Ong-Schnorr-Shamir identification scheme (see Section
20.5). As in the original scheme, the sender (Alice) chooses a public modulus, n, and
a private key, k, such that n and k are relatively prime. Unlike the original scheme,
k is shared between Alice and Bob, the recipient of the subliminal message.

The public key is calculated:

h =-k 2 modn

CHAPTER 23 Special Algorithms for Protocols

If Alice wants to send the subliminal message M by means of the innocuous mes­
sage M', she first confirms that M' and n are relatively prime, and that Mand n are
relatively prime.

Alice calculates

S1 = 1/2 * ((M'/M + M)) mod n

S2 = k/2 * ((M'/M - M)) mod n

Together, the pair, S1 and S2, is the signature under the traditional Ong-Schnorr­
Shamir scheme and the carrier of the subliminal message.

Walter the warden (remember him?) can authenticate the message as described by
the Ong-Schnorr-Shamir signature scheme, but Bob can do better. He can authenti­
cate the message (it is always possible that Walter can make his own messages). He
confirms that

S12 - S22/k 2 = M' (mod n)

If the message is authentic, the receiver can recover the subliminal message using
this formula:

M = M'/(S 1 + S2k- 1) mod n

This works, but remember that the basic Ong-Schnorr-Shamir has been broken.

EIGamal
Simmons's second subliminal channel [1459], described in [1407, 14 73], is based

on the ElGamal signature scheme (see Section 19.6).
Key generation is the same as the basic ElGamal signature scheme. First choose a

prime, p, and two random numbers, g and r, such that both g and r are less than p.
Then calculate

K=gmodp

The public key is K, g, and p. The private key is r. Besides Alice, Bob also knows
r; it is the key that is used to send and read the subliminal message in addition to
being the key used to sign the innocuous message.

To send a subliminal message M using the innocuous message M', M and p must
be all relatively prime to each other, and Mand p - 1 must be relatively prime. Alice
calculates

X=gMmodp

and solves the following equation for Y (using the extended Euclidean algorithm):

M' = rX + MY mod (p - 1)

As in the basic ElGamal scheme, the signature is the pair: X and Y.
Walter can verify the ElGamal signature. He confirms that

KxxY = gM' (modp)

Bob can recover the subliminal message. First he confirms that

(gr)XXY = gM' (modp)

________________ 2_3_.3_S_u_b_l_im_in_a_l_C_h_a_n_n_e1 ______ 7_~

If it does, he accepts the message as genuine (not from Walter).
Then, to recover M, he computes

M = (Y-1 (M' -rX)) mod (p- 1)

For example, let p = 11 and g = 2. The private key, r, is chosen to be 8. This
means the public key, which Walter can use to verify the signature, is g' mod p =
28 mod 11 = 3.

To send the subliminal message M = 9, using innocuous message M' = 5, Alice con­
firms that 9 and 11 are relatively prime and that 5 and 11 are relatively prime. She
also confirms that 9 and 11 - 1 = 10 are relatively prime. They are, so she calculates

X = gM mod p = 29 mod 11 = 6

Then, she solves the following equation for Y.

5 = 8 * 6 + 9 * Y mod 10

Y = 3, so the signature is the pair, X and Y. 6 and 3.
Bob confirms that

(gr)XXY == gM' (modp)

(28)663 == 25 (mod 11)

It does (do the math yourself if you don't trust me), so he then recovers the sublim­
inal message by calculating

ESIGN

M = (Y-1 (M' -rX)) mod (p - 1) = 3-1(5 - 8 * 6) mod 10 = 7(7) mod 10 =
49 mod 10 = 9

A subliminal channel can be added to ESIGN [1460] (see Section 20.6).
In ESIGN, the secret key is a pair of large prime numbers, p and q, and the public

key is n = p 2q. With a subliminal channel, the private key is three primes, p, q, and
r, and the public key is n, such that

n = p 2qr

The variable, r, is the extra piece of information that Bob needs to read the sublimi­
nal message.

To sign a normal message, Alice first picks a random number, x, such that xis less
than pqr and computes:

w, the least integer that is larger than (H(m) - xk mod n)/pqr)

s = x + ((w/kxk - 1) mod p)pqr

H(m) is the hash of the message; k is a security parameter. The values is the signature.
To verify the signature, Bob computes sk mod n. He also computes a, which is the

least integer larger than the number of bits of n divided by 3. If H(m) is less than or
equal to sk mod n, and if sk mod n is less than H(m) + 2a, then the signature is con­
sidered valid.

To send a subliminal message, M, using the innocuous message, M', Alice calcu-

CHAPTER 23 Special Algorithms for Protocols

lates s using Min place of H(m). This means that the message must be smaller than
p 2qr. She then chooses a random value, u, and calculates

x' = M' + ur

Then, use this x' value as the "random number" x to sign M'. This seconds value
is sent as a signature.

Walter can verify thats (the seconds) is a valid signature of M'.
Bob can also authenticate the message in the same way. But, since he also knows

r, he can calculate

s = x' + ypqr = M + ur + ypqr "'= M (mod r)

This implementation of a subliminal channel is far better than the previous two.
In the Ong-Schnorr-Shamir and ElGamal implementations, Bob has Alice's private
key. Besides being able to read subliminal messages from Alice, Bob can imperson­
ate Alice and sign normal documents. Alice can do nothing about thisi she must
trust Bob to set up this subliminal channel.

The ESIGN scheme doesn't suffer from this problem. Alice's private key is the set
of three primes: p, q, and r. Bob's secret key is just r. He knows n = p 2qr, but to
recover p and q he has to factor that number. If the primes are large enough, Bob has
just as much trouble impersonating Alice as would Walter or anyone else.

DSA
There is also a subliminal channel in DSA (see Section 20.1) [1468,1469,1473]. In

fact, there are several. The simplest subliminal channel involves the choice of k. It
is supposed to be a 160-bit random number. However, if Alice chooses a particular
k, then Bob, who also knows Alice's private key, can recover it. Alice can send Bob
a 160-bit subliminal message in each DSA signaturei everyone else simply verifies
Alice's signature. Another complication: Since k should be random, Alice and Bob
need to share a one-time pad and encrypt the subliminal message with the one-time
pad to generate a k.

DSA has subliminal channels that do not require Bob to know Alice's private key.
These also involve choosing particular values of k, but cannot be used to send 160
bits of information. This scheme, presented in [1468, 1469], allows Alice and Bob to
exchange one bit of subliminal information per signed message.

(1) Alice and Bob agree on a random prime, P (different from the parameter p in
the signature scheme). This is their secret key for the subliminal channel.

(2) Alice signs an innocuous message, M. If she wants to send Bob the sublim­
inal bit, 1, she makes sure the r parameter of the signature is a quadratic
residue modulo P. If she wants to send him a 0, she makes sure the r param­
eter is a quadratic nonresidue modulo P. She does this by signing the mes­
sage with random k values until she gets a signature with an r with the
requisite property. Since quadratic residues and quadratic nonresidues are
equally likely, this shouldn't be too difficult.

(3) Alice sends the signed message to Bob.

________________ 2_3_.3 __ s_u_bl_im_i_n_al_C_h_an_n_e1 ______ 7 _____ ~

(4) Bob verifies the signature to make sure the message is authentic. Then he
checks whether r is a quadratic residue or a quadratic nonresidue modulo
P and recovers the subliminal bit.

Sending multiple bits via this method involves making r either a quadratic
residue or a quadratic nonresidue modulo a variety of parameters. See [1468, 1469]
for details.

This scheme can be easily extended to send multiple subliminal bits per signa­
ture. If Alice and Bob agree on two random primes, P and Q, Alice can send two bits
by choosing a random k such that r is either a quadratic residue mod P or a
quadratic nonresidue mod P, and either a quadratic residue mod Q or a quadratic
nonresidue mod Q. A random value of k has a 25 percent chance of producing an r
of the correct form.

Here's how Mallory, an unscrupulous implementer of DSA, can have the algo­
rithm leak 10 bits of Alice's private key every time she signs 2. document.

(1) Mallory puts his implementation of DSA in a tamperproof VLSI chip, so
that no one can examine its inner workings. He creates a 14-bit subliminal
channel in his implementation of DSA. That is, he chooses 14 random
primes, and has the chip choose a value of k such that r is either a quadratic
residue or a quadratic nonresidue modulo each of those 14 primes, depend­
ing on the subliminal message.

(2) Mallory distributes the chips to Alice, Bob, and everyone else who wants
them.

(3) Alice signs a message normally, using her 160-bit private key, x.

(4) The chip randomly chooses a 10-bit block of x: the first 10 bits, the second
10 bits, and so on. Since there are 16 possible 10-bit blocks, a 4-bit number
can identify which block it is. This 4-bit identifier, plus the 10 bits of the
key, is the 14-bit subliminal message.

(5) The chip tries random values of k until it finds one that has the correct
quadratic residue properties to send the subliminal message. The odds of a
random k being of the correct form are 1 in 16,384. Assuming the chip can
test 10,000 values of k per second, it will find one in less than two seconds.
This computation does not involve the message and can be performed off­
line, before Alice wants to sign a message.

(6) The chip signs the message normally, using the value of k chosen in step (5).

(7) Alice sends the digital signature to Bob, or publishes it on the network, or
whatever.

(8) Mallory recovers rand, because he knows the 14 primes, decrypts the sub­
liminal message.

It's scary that even if Alice knows what is happening, she cannot prove it. As long
as those 14 secret primes stay secret, Mallory is safe.

CHAPTER 23 Special Algorithms for Protocols

Foiling the DSA Subliminal Channel
The subliminal channel relies on the fact that Alice can choose k to transmit

subliminal information. To foil the subliminal channel, Alice cannot be allowed to
choose k. However, neither can anyone else; if someone else were allowed to
choose k, it would allow that person to forge Alice's signature. The only solution is
for Alice to jointly generate k with another party, call him Bob, in such a way that
Alice cannot control a single bit of k and Bob cannot know a single bit of k. At the
end of the protocol, Bob should be able to verify that Alice used the k that they
jointly generated.

Here's the protocol [1470,1472,1473]:

(1) Alice chooses k' and sends Bob

u =gk' modp

(2) Bob chooses k" and sends it to Alice.

(3) Alice calculates k = k'k" mod (p - 1). She uses k to sign her message, M,
with the DSA and sends Bob the signature: r and s.

(4) Bob verifies that

((uk" mod p) mod q) = r

If it does, he knows that k was used to sign M.
After step (4), Bob knows that no subliminal information can be embedded in r. If

he is a trusted party, he can certify that Alice's signature is subliminal-free. Others
will have to trust his certification; Bob cannot prove this fact to a third party with a
transcript of the protocol.

A surprising result is that if Bob wants to, he can use this protocol to create his
own subliminal channel. Bob can embed a subliminal message in one of Alice's sig­
natures by choosing k" with certain characteristics. When Simmons discovered this,
he dubbed it the "Cuckoo's Channel." Details on how the Cuckoo's Channel works,
and a three-pass protocol for generating k that prevents it, are discussed in
[1471,1473].

Other Schemes
Any signature scheme can be converted into a subliminal channel [1458, 1460,

1406]. A protocol for embedding a subliminal channel in the Fiat-Shamir and Feige­
Fiat-Shamir protocols, as well as possible abuses of the subliminal channel, can be
found in [485].

23.4 UNDENIABLE DIGITAL SIGNATURES

This undeniable signature algorithm (see Section 4.3) is by David Chaum [343,327].
First, a large prime, p, and a primitive element, g, are made public, and used by a
group of signers. Alice has a private key, x, and a public key, g" mod p.

23.4 Undeniable Digital Signatures

To sign a message, Alice computes z = mx mod p. That's all she has to do.
Verification is a little more complicated.

(1) Bob chooses two random numbers, a and b, both less than p, and sends
Alice:

c = z"(~)b mod p

(2) Alice computes t=x 1 mod (p - 1), and sends Bob:

d=c 1 modp

(3) Bob confirms that

d = m"gb (modp)

If it is, he accepts the signature as genuine.
Imagine that Alice and Bob went through this protocol, and Bob is now convinced

that Alice signed the message. Bob wants to convince Carol, so he shows her a tran­
script of the protocol. Dave, however, wants to convince Carol that some other per­
son signed the document. He creates a fake transcript of the protocol. First he
generates the message in step (1). Then in step (3) he generates d and the fake trans­
mission from this other person in step (2). Finally, he creates the message in step (2).
To Carol, both Bob's and Dave's transcripts are identical. She cannot be convinced
of the signature's validity unless she goes through the protocol herself.

Of course, if she were watching over Bob's shoulder as he completed the protocol,
she would be convinced. Carol has to see the steps done in order, just as Bob does.

There may be a problem with this signature scheme, but I know of no details.
Please pay attention to the literature before you use it.

Another protocol not only has a confirmation protocol-Alice can convince Bob
that her signature is valid-but it also has a disavowal protocol; Alice can use a zero­
knowledge interactive protocol to convince him that the signature is not valid, if it
is not [329].

Like the previous protocol, a group of signers use a shared public large prime, p,
and a primitive element, g. Alice has a unique private key, x, and a public key,
~ mod p. To sign a message, Alice computes z = mx mod p.

To verify a signature:

(1) Bob chooses two random numbers, a and b, both less than p, and sends Alice:

c =magb modp

(2) Alice chooses a random number, q, less than p, and computes and sends
to Bob:

s 1 = cgq mod p, s2 = (cgq)x mod p

(3) Bob sends Alice a and b, so that Alice can confirm that Bob did not cheat
in step (1).

CHAPTER 23 Special Algorithms for Protocols

(4) Alice sends Bob q, so that Bob can use mx and reconstruct s 1 and s2 . If

s1 = cgq (mod p)

s2 = (gx)b + '1z0 (mod p)

then the signature is valid.

Alice can also disavow a signature, z, for a message, m. See [329] for details.
Additional protocols for undeniable signatures can be found in [584,344]. Lein

Harn and Shoubao Yang proposed a group undeniable signature scheme [700].

Convertible Undeniable Signatures
An algorithm for a convertible undeniable signature, which can be verified, dis­

avowed, and also converted to a conventional digital signature is given in [213]. It's
based on the ElGamal digital signature algorithm.

Like ElGamal, first choose two primes, p and q, such that q divides p - 1. Now you
have to create a number, g, less than q. First choose a random number, h, between 2
and p - 1. Calculate

g=hip- i)/q modp

If g equals the 1, choose another random h. If it doesn't, stick with the g you have.
The private keys are two different random numbers, x and z, both less than q. The

public keys are p, q, g, y, and u, where

y=gx modp

u =g 2 modp

To compute the convertible undeniable signature of message m (which is actually
the hash of a message), first choose a random number, t, between 1 and q - 1. Then
compute

T=g1modp

and

m' = Ttzm mod q.

Now, compute the standard ElGamal signature on m'. Choose a random number,
R, such that R is less than and relatively prime top - 1. Then computer= gR mod p,
and use the extended Euclidean algorithm to compute s, such that

m' = rx+ Rs (mod q)

The signature is the ElGamal signature (r, s), and T.
Here's how Alice verifies her signature to Bob:

(1) Bob generates two random numbers, a and b. He computes c = rrmag11 mod
p and sends that to Alice.

(2) Alice generates a random number, k, and computes h1 = cgk mod p, and h 2

= h/ mod p, and sends both of those numbers to Bob.

23.5 Designated Confirmer Signatures

(3) Bob sends Alice a and b.
(4) Alice verifies that c = yTmagb mod p. She sends k to Bob.

(5) Bob verifies that h 1 = yTmagb + k mod p, and that h2 = yrarS11u1, + k mod p.

Alice can convert all of her undeniable signatures to normal signatures by pub­
lishing z. Now, anyone can verify her signature without her help.

Undeniable signature schemes can be combined with secret-sharing schemes to
create distributed convertible undeniable signatures [1235]. Someone can sign a
message, then distribute the ability to confirm that the signature is valid. He might,
for example, require three out of five people to participate in the protocol in order to
convince Bob that the signature is valid. Improvements on this notion deleted the
requirement for a trusted dealer [700, 1369].

23.5 DESIGNATED CONFIRMER SIGNATURES

Here's how Alice can sign a message and Bob can verify it, such that Carol can ver­
ify Alice's signature at some later time to Dave (see Section 4.4) [333].

First, a large prime, p, and a primitive element, g, are made public and used by a
group of users. The product of two primes, n, is also public. Carol has a private key,
z, and a public key is h = gx mod p.

In this protocol Alice can sign m such that Bob is convinced that the signature is
valid, but cannot convince a third party.

(1) Alice chooses a random x and computes

a=~modp
b =hx modp

She computes the hash of m, H(m), and the hash of a and b concatenated,
H(a,b). She then computes

i = (H(m) E8 H(a, b))113 mod n

and sends a, b, and j to Bob.

(2) Bob chooses two random numbers, sand t, both less thanp, and sends Alice

c=g'Hmodp

(3) Alice chooses a random q less than p, and sends Bob

d=gq modp

e = (cd)x mod p

(4) Bob sends Alice sand t.

(5) Alice confirms that

gsH = c (modp)

Then she sends Bob q.

CHAPTER 23 Special Algorithms for Protocols

(6) Bob confirms

d = gq (modp)

ejaCJ = a'b 1 (modp)

H(m) EB H(a, b) = j 1!3 mod n

If they all check out, he accepts the signature as genuine.

Bob cannot use a transcript of this proof to convince Dave that the signature is
genuine, but Dave can conduct a protocol with Alice's designated confirmer, Carol.
Here's how Carol convinces Dave that a and b constitute a valid signature.

(1) Dave chooses a random u and v, both less than p, and sends Carol

k = g"av modp

(2) Carol chooses a random w, less than p, and sends Dave

1 =gwmodp

y = (kl)2 modp

(3) Dave sends Carol u and v.

(4) Carol confirms that

g"av = k (mod p)

Then she sends Dave w.

(5) Dave confirms that

gw = 1 (modp)

y/hw = h"bv (mod p)

If they both check out, he accepts the signature as genuine.

In another protocol Carol can convert the designated-confirmer protocol into a
conventional digital signature. See [333] for details.

23.6 COMPUTING WITH ENCRYPTED DATA

The Discrete Logarithm Problem
There is a large prime, p, and a generator, g. Alice has a particular value for x, and

wants to know e, such that

ge = x (modp)

This is a hard problem, and Alice lacks the computational power to compute the
result. Bob has the power to solve the problem-he represents the government, or a
large computing organization, or whatever. Here's how Bob can do it without Alice
revealing x [547,4]:

__________________ 2_3_.7 __ F_a1_·r_C_o_1_·n_F_l_ip_s _______ 7~~

(1) Alice chooses a random number, r, less than p.

(2) Alice computes

x' =xg' modp

(3) Alice asks Bob to solve

ge' = x' (modp)

(5) Bob computes e' and sends it to Alice.

(6) Alice recovers e by computing

e = (e' - r) mod (p - 1)

Similar protocols for the quadratic residuosity problem and for the primitive root
problem are in [3,4]. (See also Section 4.8.)

23. 7 FAIR COIN FLIPS

The following protocols allow Alice and Bob to flip a fair coin over a data network
(see Section 4.9) [194]. This is an example of flipping a coin into a well (see Section
4.10). At first, only Bob knows the result of the coin toss and tells it to Alice. Later,
Alice may check to make sure that Bob told her the correct outcome of the toss.

Coin Flipping Using Square Roots
Coin-flip subprotocol:

(1) Alice chooses two large primes, p and q, and sends their product, n to Bob.

(2) Bob chooses a random positive integer, r, such that r is less than n/2. Bob
computes

z =r 2 modn

and sends z to Alice.

(3) Alice computes the four square roots of z (mod n). She can do this because
she knows the factorization of n. Let's call them +x, -x, +y, and -y. Call x'
the smaller of these two numbers:

xmodn

-xmodn

Similarly, call y' the smaller of these two numbers:

ymodn

-ymodn

Note that r is equal either to x' or y'.

(4) Alice guesses whether r = x' or r = y', and sends her guess to Bob.

CHAPTER 23 Special Algorithms for Protocols

(5) If Alice's guess is correct, the result of the coin flip is heads. If Alice's guess
is incorrect, the result of the coin flip is tails. Bob announces the result of
the coin flip.

Verification subprotocol:

(6) Alice sends p and q to Bob.

(7) Bob computes x' and y' and sends them to Alice.

(8) Alice calculates r.

Alice has no way of knowing r, so her guess is real. She only tells Bob one bit of
her guess in step (4) to prevent Bob from getting both x' and y'. If Bob has both of
those numbers, he can changer after step (4).

Coin Flipping Using Exponentiation Modulo p

Exponentiation modulo a prime number, p, is used as a one-way function in this
protocol [1306]:

Coin-flip subprotocol:

(1) Alice chooses a prime number, p, in such a way that the factorization of p
- 1 is known and contains at least one large prime.

(2) Bob selects two primitive elements, h and t, in GF(p). He sends them to
Alice.

(3) Alice checks that h and t are primitive and then chooses a random integer
x, relatively prime top - 1. She then computes one of the two values:

y = hx mod p, or y = tx mod p

She sends y to Bob.

(4) Bob guesses whether Alice calculated y as a function of h or t, and sends his
guess to Alice.

(5) If Bob's guess is correct, the result of the coin flip is heads. If Bob's guess is
incorrect, the result of the coin flip is tails. Alice announces the result of
the coin flip.

Verification subprotocol:

(6) Alice reveals x to Bob. Bob computes hx mod p and tx mod p, to confirm
that Alice has played fairly and to verify the result of the toss. He also
checks that x and p - 1 are relatively prime.

For Alice to cheat, she has to know two integers, x and x', such that hx
tx' (mod p). If she knew those values, she would be able to calculate:

log1h = x'x -1 mod p - 1 and log1h = x- 1x' mod p - 1

These are hard problems.

23.9 All-or-Nothing Disclosure of Secrets

Alice would be able to do this if she knew log,h, but Bob chooses h and t in step
(2). Alice has no other recourse except to try to compute the discrete logarithm.
Alice could also attempt to cheat by choosing an x that is not relatively prime to p
- 1, but Bob will detect that in step (6).

Bob can cheat if h and tare not primitive in GF(p), but Alice can easily check that
after step (2) because she knows the prime factorization of p - 1.

One nice thing about this protocol is that if Alice and Bob want to flip multiple
coins, they can use the same values for p, h, and t. Alice just generates a new x, and
the protocol continues from step (3).

Coin Flipping Using Blum Integers

Blum integers can be used in a coin-flipping protocol.

(1) Alice generates a Blum integer, n, a random x relatively prime to n, x 0 =
x 2 mod n, and Xi= xa2 mod n. She sends n and x 1 to Bob.

(2) Bob guesses whether x0 is even or odd.

(3) Alice sends x to Bob.

(4) Bob checks that n is a Blum integer (Alice would have to give Bob the fac­
tors of n and proofs of their primality, or execute some zero-knowledge
protocol to convince him that n is a Blum integer), and he verifies that x 0 =
x2 mod n and xi = x02 mod n. If all this checks out, Bob wins the flip if he
guessed correctly.

It is crucial that n be a Blum integer. Otherwise, Alice may be able to find an x' 0

such that x'n2 mod n = xc? mod n = Xi, where x' 0 is also a quadratic residue. If x0 were
even and x.'0 were odd (or vice versa), Alice could freely cheat.

23.8 ONE-WAY ACCUMUIATORS

There is a simple one-way accumulator function [116] (see Section 4.12):

A(x1, y) = x 1 _ ? mod n

The numbers n (n is the product of two primes) and x 0 must be agreed upon in
advance. Then, the accumulation of Yi, y2, and y3 would be

((x0Yi mod n)Y2 mod n)Y3 mod n

This computation is independent of the order of Yi, y2, and y3 •

23.9 ALL-OR-NOTHING DISCLOSURE OF SECRETS

This protocol allows multiple parties (at least two are required for the protocol to
work) to buy individual secrets from a single seller (see Section 4.13) [1374,1175].
First, here's a definition. Take two bit strings, x and y. The fixed bit index (FBI) of x
and y are the bits where the ith bit of x equals the ith bit of y.

CHAPTER 23 Special Algorithms for Protocols

For example:

X = 110101001011

y = 101010000110

FBI(x, y) = (1, 4, 5, 11)
(We're reading the bits from right to left, with the right-most bit as
zero.)

Now, here's the protocol. Alice is the seller. Bob and Carol are buyers. Alice has
k n-bit secrets: Si, S2, •.• , Sk. Bob wants to buy secret Sb; Carol wants to buy
secret Sc.

(1) Alice generates a public-key/private-key key pair and tells Bob (but not
Carol) the public key. She generates another public-key/private-key key
pair and tells Carol (but not Bob) the public key.

(2) Bob generates kn-bit random numbers, Bi, B2, •.. , B10 and tells them to
Carol. Carol generates kn-bit random numbers, C1, C2, ... , Ck, and tells
them to Bob.

(3) Bob encrypts C1, (remember, S1, is the secret he wants to buy) with the pub­
lic key from Alice. He computes the FBI of Ci, and the result he just
encrypted. He sends this FBI to Carol.

Carol encrypts Be (remember, Sc is the secret she wants to buy) with the
public key from Alice. She computes the FBI of Be and the result she just
encrypted. She sends this FBI to Bob.

(4) Bob takes each of then-bit numbers Bi, B2, ••• , B10 and replaces every bit
whose index is not in the FBI he received from Carol with its complement.
He sends this new list of n-bit numbers, B'i, B'2, ••. , B\, to Alice.

Carol takes each of then-bit numbers C 1, C2, ... , Ck, and replaces every
bit whose index is not in the FBI she received from Bob with its comple­
ment. She sends this new list of n-bit numbers, C'i, C'2, ... , C'k, to Alice.

(5) Alice decrypts all C'; with Bob's private key, giving her kn-bit numbers:
C"i, C'\, ... , C"1z. She computes Si E8 C"i, for i = 1 to k, and sends the results
to Bob.

Alice decrypts all B'; with Carol's private key, giving her kn-bit num­
bers: B" 1, B'\, ... , B"1z. She computes Si E8 B"i, for i = 1 to k, and sends the
results to Carol.

(6) Bob computes Sb by XORing Cb and the bth number he received from
Alice.

Carol computes Sc by XORing Be and the cth number she received from
Alice.

This is complicated. An example will go a long way to help.
Alice has the following eight 12-bit secrets for sale: S1 = 1990, S2 = 471, S3 = 3860,

S4 = 1487, S5 = 2235, S6 = 3751, S7 = 2546, and S8 = 4043. Bob wants to buy S7. Carol
wants to buy S2 •

23.9 All-or-Nothing Disclosure of Secrets

(1) Alice uses the RSA algorithm. The key pair she will use with Bob is: n =
7387, e = 5145, and d = 777. The key pair she will use with Carol is: n =
2747, e = 1421, and d = 2261. She tells Bob and Carol each their public key.

(2) Bob generates eight 12-bit random numbers, B 1 = 743, B2 = 1988, B3 = 4001,
B4 = 2942, B5 = 3421, B6 = 2210, B7 = 2306, and B8 = 222, and tells them to
Carol. Carol generates eight 12-bit random numbers, C1 = 1708, C2 = 711,
C'° = 1969, C4 = 3112, C:; = 4014, C6 = 2308, C 7 = 2212, and C8 = 222, and tells
them to Bob.

(3) Bob wants to buy S7, so he encrypts C7 with the public key that Alice
gave him.

2212" 145 mod 7387 = 5928

Now:

2212 = 0100010100100

5928 = 1011100101000

So, the FBI of those two numbers is (0, 1, 4, 5, 6). He sends this to Carol.
Carol wants to buy S2, so she encrypts B 2 with the public key that Alice

gave her and computes the FBI of B2 with the result of her encryption. She
sends (0, 1, 2, 6, 9, 10) to Bob.

(4) Bob takes B1, B 2, ••• , B8, and replaces every bit whose index is not in the
set (0, 1, 2, 6, 9, 10) with its complement. For example:

B 2 = 111111000100 = 1988

B' 2 = 011001111100 = 1660

He sends B' 1, B' 2, ••• , B' 8, to Alice.
Carol takes C 1, C2, .•• , C8, and replaces every bit whose index is not in

the set (0, 1, 4, 5, 6) with its complement. For example:

C7 = 0100010100100 = 2212

C' 7 = 1011100101000 = 5928

She sends C' 1, C' 2, ..• , C' 8, to Alice.

(5) Alice decrypts all C' 1 with Bob's private key and XORs the results with S1•

For example, for i = 7:

5928 777 mod 7387 = 2212i 2546 EB 2212 = 342

She sends the results to Bob.
Alice decrypts all B'; with Carol's private key and XO Rs the results with

S1• For example, for i = 2:

1660 2261 (mod 2747) = 1988i 471 EB 1988 = 1555

She sends the results to Carol.

(6) Bob computes S7 by XORing C7 and the seventh number he received
from Alice:

CHAPTER 23 Special Algorithms for Protocols

2212 EB 342 = 2546

Carol computes S2 by XO Ring B2 and the second number she received from
Alice.

1988 EB 1555 = 471

The protocol works for any number of buyers. If Bob, Carol, and Dave want to buy
secrets, Alice gives each buyer two public keys, one for each of the others. Each
buyer gets a set of numbers from each other buyer. Then, they complete the proto­
col with Alice for each of their sets of numbers and XOR all of their final results
from Alice to get their secret. More details are in [1374,1175].

Unfortunately, a pair of dishonest parties can cheat. Alice and Carol, working
together, can easily find out what secret Bob is getting: If they know the FBI of C1,
and Bob's encryption algorithm, they can find b such that Cz, has the right FBI. And
Bob and Carol, working together, can easily get all the secrets from Alice.

If you assume honest parties, there's an easier protocol [389].

(1) Alice encrypts all of the secrets with RSA and sends them to Bob:

Ci= S/modn

(2) Bob chooses his secret Cz,, picks a random r, and sends C' to Alice.

C' = Cbre mod n

(3) Alice sends Bob P'.

P' = C'a mod n

(4) Bob calculates Sb.

Sb= P'r 1 mod n

If the parties may be dishonest, Bob can prove in zero-knowledge that he knows
some r such that C' = Cz,re mod n and keep b secret until Alice gives him P' in step
(3) [246].

23.10 FAIR AND FAILSAFE CRYPTOSYSTEMS

Fair Di/fie-Hellman
Fair cryptosystems are a way to do key escrowing in software (see Section 4.14).

This example is from Silvio Micali [1084,1085]. It is patented [1086,1087].
In the basic Diffie-Hellman scheme, a group of users share a prime, p, and a gen­

erator, g. Alice's private key is s, and her public key is t = gs mod p.
Here's how to make Diffie-Hellman fair (this example uses five trustees).

(1) Alice chooses five integers, s1, s2, s3, s4, and s5, each less than p - 1. Alice's
private key is

23.10 Fair and Failsafe Cryptosystems

s = (s1 + s2 + s3 + s4 + s5) mod p - I

and her public key is

t =g' modp

Alice also computes

t; = g'i mod p, for i = I to 5

Alice's public shares are t;, and her private shares are S;.

(2) Alice sends a private piece and corresponding public piece to each trustee.
For example, she sends s1 and t 1 to trustee 1. She sends t to the KDC.

(3) Each trustee verifies that

ti= g'; modp

If it does, the trustee signs t; and sends it to the KDC. The trustee stores s1

in a secure place.

(4) After receiving all five public pieces, the KDC verifies that

t = (t1 * t2 * t3 * t4 * ts) mod p

If it does, the KDC approves the public key.

At this point, the KDC knows that the trustees each have a valid piece, and that
they can reconstruct the private key if required. However, neither the KDC nor any
four of the trustees working together can reconstruct Alice's private key.

Micah's papers [1084,1085] also contain a procedure for making RSA fair and for
combining a threshold scheme with the fair cryptosystem, so that m out of n
trustees can reconstruct the private key.

Failsafe Di/fie-Hellman
Like the previous protocol, a group of users share a prime, p, and a generator, g.

Alice's private key is s, and her public key is t = gs mod p.

(1) The KDC chooses a random number, B, between O and p - 2, and commits
to B using a bit-commitment protocol (see Section 4.9).

(2) Alice chooses a random number, A, between O and p - 2. She sends gA mod
p to the KDC.

(3) The user "shares" A with each trustee using a verifiable secret-sharing
scheme (see Section 3.7).

(4) The KDC reveals B to Alice.

(5) Alice verifies the commitment from step (1). Then she sets her public key as

t = (gA)gR mod p

She sets her private key as

s = (A + B) mod (p - 1)

CHAPTER 23 Special Algorithms for Protocols

The trustees can reconstruct A. Since the KDC knows B, this is enough to recon­
struct s. And Alice cannot make use of any subliminal channels to send unautho­
rized information. This protocol, discussed in [946,833] is being patented.

23.11 ZERO-KNOWLEDGE PROOFS OF KNOWLEDGE

Zero-Knowledge Proof of a Discrete Logarithm

Peggy wants to prove to Victor that she knows an x that satisfies

Ax= B (modp)

where p is a prime, and xis a random number relatively prime top - 1. The num­
bers A, B, and p are public, and x is secret. Here's how Peggy can prove she knows x
without revealing it (see Section 5.1) [338,337].

(1) Peggy generates t random numbers, r 1, h ... , r 1, where all r1 are less than
p-1.

(2) Peggy computes h = Ni mod p, for all values of i, and sends them to Victor.

(3) Peggy and Victor engage in a coin-flipping protocol to generate t bits: b 1,

b2, ... , bi.

(4) For all t bits, Peggy does one of the following:

a) If bi= 0, she sends Victor r1

b) If b1 = 1, she sends Victor si = (ri -r 1) mod (p - 1), where j is the lowest
value for which b1 = 1

(5) For all t bits, Victor confirms one of the following:

a) If bi= 0, that Ni= hi (modp)

b) If bi= 1, that A' 1 = hh 1- 1 (mod p)

(6) Peggy sends Victor Z, where

Z = (x - r1) mod (p - 1)

(7) Victor confirms that

A 2 = Bh1- 1 (modp)

Peggy's probability of successfully cheating is 2-1.

Zero-Knowledge Proof of the Ability to Break RSA

Alice knows Carol's private key. Maybe she has broken RSA; maybe she has bro­
ken into Carol's house and stolen the key. Alice wants to convince Bob that she
knows Carol's key. However, she doesn't want to tell Bob the key or even decrypt
one of Carol's messages for Bob. Here's a zero-knowledge protocol by which Alice
convinces Bob that she knows Carol's private key [888].

Carol's public key is e, her private key is d, and the RSA modulus is n.

_________________ 2_3_.1_2 __ B_li_n_d_S_ig_n_a_t_u_re_s _______ 7~~

(1) Alice and Bob agree on a random k and an m such that

km= e (modn)

They should choose the numbers randomly, using a coin-flip protocol to
generate k and then computing m. If both k and m are greater than 3, the
protocol continues. Otherwise, they choose again.

(2) Alice and Bob generate a random ciphertext, C. Again, they should use a
coin-flip protocol.

(3) Alice, using Carol's private key, computes

M= camodn

She then computes

X=Mk modn

and sends X to Bob.

(4) Bob confirms that xm mod n = C. If it does, he believes Alice.

A similar protocol can be used to demonstrate the ability to break a discrete loga­
rithm problem [888].

Zero-Knowledge Proof that n Is a Blum Integer
There are no known truly practical zero-knowledge proofs that n = pq, where p and

q are primes congruent to 3 modulo 4. However, if you allow n to be of the form prqs,
where r and s are odd, then the properties which n-iake Blum integers useful in cryp­
tography still hold. And there exists a zero-knowledge proof that n is of that form.

Assume Alice knows the factorization of the Blum integer n, where n is of the form
previously discussed. Here's how she can prove to Bob that n is of that form [660].

(1) Alice sends Bob a number u which has a Jacobi symbol-1 modulo n.

(2) Alice and Bob jointly agree on random bits: b 1, b2, ••• , bk.

(3) Alice and Bob jointly agree on random numbers: x 1, x2, ••• , xk.

(4) For each i = 1, 2, ... , k, Alice sends Bob a square root modulo n, of one of
the four numbers: xi, -xi, ux;, -uxi, The square root must have the Jacobi
symbol h.

The odds of Alice successfully cheating are one in 2k.

23.12 BLIND SIGNATURES

The notion of blind signatures (see Section 5.3) was invented by David Chaum
[317,323], who also invented their first implementation [318]. It uses the RSA
algorithm.

CHAPTER 23 Special Algorithms for Protocols

Bob has a public key, e, a private key, d, and a public modulus, n. Alice wants Bob
to sign message m blindly.

(1) Alice chooses a random value, k, between 1 and n. Then she blinds m by
computing

t = mke modn

(2) Bob signs t

ta= (mke)a mod n

(3) Alice unblinds ta by computing

s = ta/k modn

(4) And the result is

s =ma modn

This can easily be shown

ta= (mke)a = mc1k (mod n), so ta/k = mdkjk = ma (mod n).

Chaum invented a family of more complicated blind signature algorithms in
[320,324], called blind unanticipated signatures. These signatures are more complex
in construction, but more flexible.

23.13 OBLIVIOUS TRANSFER

In this protocol by Michael Rabin [1286], Alice has a 50 percent chance of sending
Bob two primes, p, and q. Alice will not know whether the transfer is successful.
(See Section 5.5.) (This protocol can be used to send Bob any message with a 50 per­
cent success rate if p and q reveal an RSA private key.)

(1) Alice sends Bob the product of the two primes: n = pq.

(2) Bob chooses a random x less than n, such that xis relatively prime ton. He
sends Alice:

a =x 2 modn

(3) Alice, knowing p and q, computes the four roots of a: x, n - x, y, and n - y.
She chooses one of these roots at random and sends it to Bob.

(4) If Bob receives y or n - y, he can compute the greatest common divisor of x
+ y and n, which is either p or q. Then, of course, n/p = q.

If Bob receives x or n - x, he can't compute anything.

This protocol may have a weakness: It might be the case that Bob can compute
a number a such that given the square root of a you can calculate a factor of n all
the time.

23.14 Secure Multiparty Computation

23.14 SECURE MULTIPARTY COMPUTATION

This protocol is from [1373]. Alice knows the integer i; Bob knows the integer j. Alice
and Bob together wish to know whether i :::;; j or if i > j, but neither Alice nor Bob wish
to reveal the integer each knows. This special case of secure multiparty computation
(see Section 6.2) is sometimes known as Yao's millionaire problem [1627].

For this example, assume that i and j range from 1 to 100. Bob has a public key and
a private key.

(1) Alice chooses a large random number, x, and encrypts it in Bob's public key.

c = EB(x)

(2) Alice computes c - i and sends the result to Bob.

(3) Bob computes the following 100 numbers:

Yu= DB(c - i + u), for 1 :::;; u:::;; 100

DB is the decryption algorithm with Bob's private key.
He chooses a large random prime, p. (The size of p should be somewhat

smaller than x. Bob doesn't know x, but Alice could easily tell him the size
of x.) He then computes the following 100 numbers:

Zu = (Yu modp), for 1:::;; U:::;; 100

He then verifies that, for all u -:t-v

and that for all u

0<Zu<p-1

If this is not true, Bob chooses another prime and tries again.

(4) Bob sends Alice this sequence of numbers in this exact order:

Z I, Z2, ... , Zj, Zj + I + 1, Zj + 2 + 1, ... , Z 100 + 1, p

(5) Alice checks whether the ith number in the sequence is congruent to
x mod p. If it is, she concludes that i:::;; j. If it is not, she concludes that i > j.

(6) Alice tells Bob the conclusion.

All the verification that Bob goes through in step (3) is to guarantee that no num­
ber appears twice in the sequence generated in step (4). Otherwise, if z" = z1,, Alice
knows that a :::;; j < b.

The one drawback to this protocol is that Alice learns the result of the compu­
tation before Bob does. Nothing stops her from completing the protocol up to step
(5) and then refusing to tell Bob the results in step (6). She could even lie to Bob in
step (6).

CHAPTER 23 Special Algorithms for Protocols

Example of the Protocol
Assume they're using RSA. Bob's public key is 7 and his private key is 23; n = 55.

Alice's secret value, i, is 4; Bob's secret value, j, is 2. (Assume that only the values 1,
2, 3, and 4 are possible for i and j.)

(1) Alice chooses x = 39, and c = EB(39) = 19.

(2) Alice computes c - i = 19 - 4 = 15. She sends 15 to Bob.

(3) Bob computes the following 4 numbers:

Y1=DB(l5+1)=26

Y2=DB(l5+2)=18

y3=DB(l5+3)=2

y4=DB(l5+4)=39

He chooses p = 31 and calculates:

z 1 = (26 mod 31) = 26

z2 = (18 mod 31) = 18

z3 = (2 mod 31) = 2

Z4=(39mod31)=8

He does all the verifications and confirms that the sequence is fine.

(4) Bob sends Alice this sequence of numbers in this exact order:

26, 18, 2 + 1, 8 + 1, 31 = 26, 18, 3, 9, 31

(5) Alice checks whether the 4th number in the sequence is congruent to
x mod p. Since 9 =I= 39 (mod 31), then i > j.

(6) Alice tells Bob.

This protocol can be used to create far more complicated protocols. A group of
people can conduct a secret auction over a computer network. They arrange them­
selves in a logical circle, and through individual pairwise comparisons, determine
which is offering the highest price. In order to prevent people from changing their
bids in mid-auction, some sort of bit-commitment protocol could also be used. If the
auction is a Dutch auction, then the highest bidder gets the item for his highest
price. If it is an English auction, then he gets the item for the second-highest price.
(This can be determined by a second round of pairwise comparisons.) Similar ideas
have applications in bargaining, negotiations, and arbitration.

23.15 PROBABILISTIC ENCRYPTION

The notion of probabilistic encryption was invented by Shafi Goldwasser and Silvio
Micali [624]. Although its theory makes it the most secure cryptosystem invented,
its early implementation was impractical [625]. More recent implementations have
changed that.

________________ 2_3_.1_5 __ P_r_o_b_ab_1_·J_is_t1_·c_E_n_c_r_y_p_t1_·0_n _____ z:-7'~

The point behind probabilistic encryption is to eliminate any information leaked
with public-key cryptography. Because a cryptanalyst can always encrypt random
messages with a public key, he can get some information. Assuming he has cipher­
text C = EK(M) and is trying to recover plaintext message M, he can pick a random
message M' and encrypt it: C' = EK(M'). If C' = C, then he guessed the correct plain­
text. If it's wrong, he just guesses again.

Also, no partial information is leaked about the original message. With public-key
cryptography, sometimes a cryptanalyst can learn things about the bits: The XOR of
bits 5, 17, and 39 is 1, and so on. With probabilistic encryption, even this type of
information remains hidden.

Not a whole lot of information is to be gained here, but there are potential prob­
lems with allowing a cryptanalyst to encrypt random messages with your public
key. Some information is being leaked to the cryptanalyst every time he encrypts a
message. No one really knows how much.

Probabilistic encryption tries to eliminate that leakage. The goal is that no com­
putation on the ciphertext, or on any other trial plain texts, can give the cryptanalyst
any information about the corresponding plaintext.

In probabilistic encryption, the encrypting algorithm is probabilistic rather than
deterministic. In other words, a large number of ciphertexts will decrypt to a given
plaintext, and the particular ciphertext used in any given encryption is randomly
chosen.

C1 = EK(M), C2 = EK(M), C3 = EK(M), ... , Ci= EK(M)

Af = DK(C1) = DK(C2) = D1dC3) =•··=Did Ci)

With probabilistic encryption, a cryptanalyst can no longer encrypt random plain­
texts looking for the correct ciphertext. To illustrate, assume the cryptanalyst has
ciphertext Ci = EK(M). Even if he guesses M correctly, when he encrypts EJ<(M), the
result will be a completely different C: Ci. He cannot compare Ci and Ci, and so can­
not know that he has guessed the message correctly.

This is amazingly cool stuff. Even if a cryptanalyst has the public encryption key,
the plaintext, and the ciphertext, he cannot prove that the ciphertext is the encryp­
tion of the plaintext without the private decryption key. Even if he tries exhaustive
search, he can only prove that every conceivable plain text is a possible plain text.

Under this scheme, the ciphertext will always be larger than the plaintext. You
can't get around this; it's a result of the fact that many ciphertexts decrypt to the
same plaintexts. The first probabilistic encryption scheme [625] resulted in a cipher­
text so much larger than the plaintext that it was unusable.

However, Manual Blum and Goldwasser have an efficient implementation of
probabilistic encryption using the Blum Blum Shub (BBS) random-bit generator
described in Section 17.9 [199].

The BBS generator is based on the theory of quadratic residues. In English, there
are two primes, p and q, that are congruent to 3 modulo 4. That's the private key.
Their product, pq = n, is the public key. (Mind your ps and qs; the security of this
scheme rests in the difficulty of factoring n.)

To encrypt a message, M, first choose some random x, relatively prime ton. Then
compute

CHAPTER 23 Special Algorithms for Protocols

x 0 =x 2 modn

Use x 0 as the seed of the BBS pseudo-random-bit generator and use the output of
the generator as a stream cipher. XOR M, one bit at a time, with the output of the
generator. The generator spits out bits b; (the least-significant bit of x 1, where x 1 =
X;_/modn),so

M=M1, M2, M,,, ... , Mt

C = M1 E8 b1, M2 E8 b2, M3 E8 b3, ... , Mt E8 bt

where t is the length of the plaintext

Append the last computed value, x 1, to the end of the message and you're done.
The only way to decrypt this message is to recover x0 and then set up the same

BBS generator to XOR with the ciphertext. Because the BBS generator is secure to
the left, the value x 1 is of no use to the cryptanalyst. Only someone who knows p
and q can decrypt the message.

In C, the algorithm to recover x0 from x 1 is:

int xO (int p, int q, int n, int t, int xt)
{

int a, b, u, v, w, z;

/* we already know that gcd(p, q) -- 1 */
(void)extended_euclidian(p, q, &a, &b);
u - mode x p ((p+ 1) / 4 , t , p - 1) ;
v - modexp ((q+l)/4, t, q-1);
w - modexp (xt%p, u, p);
z-modexp (xt%q, v, q);
return (b*q*w + a*p*z) % n;

Once you ha've x0, decryption is easy. Just set up the BBS generator and XOR the out­
put with the ciphertext.

You can make this scheme go even faster by using all the known secure bits of X;,
not just the least significant bit. With this improvement, Blum-Goldwasser proba­
bilistic encryption is faster than RSA while leaking no partial information about the
plaintext. You can also prove that the difficulty of breaking this scheme is the same
as the difficulty of factoring n.

On the other hand, this scheme is totally insecure against a chosen-ciphertext
attack. From the least significant bits of the right quadratic residues, it is possible to
calculate the square root of any quadratic residue. If you can do this, then you can
factor. For details, consult [1570,1571,35,36].

23 .16 QUANTUM CRYPTOGRAPHY

Quantum cryptography taps the natural uncertainty of the quantum world. With it,
you can create a communications channel where it is impossible to eavesdrop with­
out disturbing the transmission. The laws of physics secure this quantum channel:
even if the eavesdropper can do whatever he wants, even if the eavesdropper has

_______________ 2_3_.1_6 __ Q_u_a_n_t_um __ C_ry_p_t_o_gr_a_p_h_y _____ 7__,,,,,~

unlimited computing power, even if P = NP. Charles Bennett, Gilles Brassard,
Claude Crepeau, and others have expanded on this idea, describing quantum key
distribution, quantum coin flipping, quantum bit commitment, quantum oblivious
transfer, and quantum secure multiparty computation. Their work is described in
[128,129,123,124,125,133,126,394,134,392,243,517,132,130,244,393,396]. The best
overview of quantum cryptography can be found in [131]; [1651] is another good
nontechnical overview. A complete bibliography of quantum cryptography is [237].

This would still be on the lunatic fringe of cryptography, but Bennett and Brassard
actually went and built a working model of the thing [127,121,122]. Now we have
experimental quantum cryptography.

So sit back, get yourself something to drink, and relax. I'm going to explain what
this is all about.

According to quantum mechanics, particles don't actually exist in any single
place. They exist in several places at once, with probabilities of being in different
places if someone looks. However, it isn't until a scientist comes along and mea­
sures the particle that it "collapses" into a single location. But you can't measure
every aspect (for example, position and velocity) of a particle at the same time. If
you measure one of those two quantities, the very act of measuring it destroys any
possibility of measuring the other quantity. The quantum world has a fundamental
uncertainty and there's no way to avoid it.

That uncertainty can be used to generate a secret key. As they travel, photons
vibrate in some direction; up and down, left to right, or more likely at some angle.
Normal sunlight is unpolarized; the photons vibrate every which way. When a large
group of photons vibrate in the same direction they are polarized. Polarization filters
allow only photons that are polarized in a certain direction through; the rest are
blocked. For example, a horizontal polarization filter only allows horizontally polar­
ized photons through. Turn that filter 90 degrees, and only vertically polarized pho­
tons can come through.

Let's say you have a pulse of horizontally polarized photons. If they try to pass
through a horizontally polarized filter, they all get through. Slowly turn that filter
90 degrees; the number of photons getting through gets smaller and smaller, until
none get through. This is counterintuitive. You'd think that turning the filter just a
little will block all the photons, since the photons are horizontally polarized. But in
quantum mechanics, each particle has a probability of suddenly switching its polar­
ization to match the filter. If the angle is a little bit off, it has a high probability. If
the angle is 90 degrees off it has zero probability. And if the angle is 45 degrees off,
it has a 50 percent probability of passing through the filter.

Polarization can be measured in any basis: two directions at right angles. An exam­
ple basis is rectilinear: horizontal and vertical. Another is diagonal: left-diagonal and
right-diagonal. If a photon pulse is polarized in a given basis and you measure it in the
same basis, you learn the polarization. If you measure it in the wrong basis, you get
a random result. We're going to use this property to generate a secret key:

(1) Alice sends Bob a string of photon pulses. Each of the pulses is randomly
polarized in one of four directions: horizontal, vertical, left-diagonal, and
right-diagonal.

CHAPTER 23 Special Algorithms for Protocols

For example, Alice sends Bob:

11 /--\-1-/

(2) Bob has a polarization detector. He can set his detector to measure recti­
linear polarization or he can set his detector to measure diagonal polariza­
tion. He can't do both; quantum mechanics won't let him. Measuring one
destroys any possibility of measuring the other. So, he sets his detectors at
random, for example:

x++xxx+x++
Now, when Bob sets his detector correctly, he will record the correct polar­
ization. If he sets his detector to measure rectilinear polarization and the
pulse is polarized rectilinearly, he will learn which way Alice polarized
the photon. If he sets his detector to measure diagonal polarization and the
pulse is polarized rectilinearly, he will get a random measurement. He
won't know the difference. In this example, he might get the result:

!l-\!\-1-1

(3) Bob tells Alice, over an insecure channel, what settings he used.

(4) Alice tells Bob which settings were correct. In our example, the detector
was correctly set for pulses 2, 6, 7, and 9.

(5) Alice and Bob keep only those polarizations that were correctly measured.
In our example, they keep:

*I***\-*-*

Using a prearranged code, Alice and Bob each translate those polarization
measurements into bits. For example, horizontal and left-diagonal might
equal one, and vertical and right-diagonal might equal zero. In our exam­
ple, they both have:

0 0 1 1

So, Alice and Bob have generated four bits. They can generate as many as they like
using this system. On the average, Bob will guess the correct setting 50 percent of
the time, so Alice has to send 2n photon pulses to generate n bits. They can use
these bits as a secret key for a symmetric algorithm or they can guarantee perfect
secrecy and generate enough bits for a one-time pad.

The really cool thing is that Eve cannot eavesdrop. Just like Bob, she has to guess
which type of polarization to measure; and like Bob, half of her guesses will be
wrong. Since wrong guesses change the polarization of the photons, she can't help
introducing errors in the pulses as she eavesdrops. If she does, Alice and Bob will end
up with different bit strings. So, Alice and Bob finish the protocol like this:

(6) Alice and Bob compare a few bits in their strings. If there are discrepancies,
they know they are being bugged. If there are none, they discard the bits
they used for comparison and use the rest.

_______________ 2_3_.1_6 __ Q_u_a_n_t_u_m_C_ry_p_t_o_gr_a_p_h_y _____ z:--~

Enhancements to this protocol allow Alice and Bob to use their bits even in the
presence of Eve [133,134,192]. They could compare only the parity of subsets of the
bits. Then, if no discrepancies are found, they only have to discard one bit of the sub­
set. This detects eavesdropping with only a 50 percent probability, but if they do
this with n different subsets Eve's probability of eavesdropping without detection is
only I in 211•

There's no such thing as passive eavesdropping in the quantum world. If Eve tries
to recover all the bits, she will necessarily disrupt the communications.

Bennett and Brassard built a working model of quantum key distribution and have
exchanged secure bits on a laser table. The latest I heard, some folks at British Tele­
com were sending bits over a IO-kilometer fiber-optic link [276, 1245, 1533]. They
figure 50 kilometers is feasible. The mind boggles.

PART IV

------------------------z----~

CHAPTER

Example
Implementations

24

It's one thing to design protocols and algorithms, but another thing to field them in
operational systems. In theory, theory and practice are the same; in practice they are
different. Often ideas that look good on paper don't work in real life. Maybe the
bandwidth requirements are too large; maybe the protocol is too slow. Chapter 10
discusses some of the issues related to using cryptography; this chapter gives exam­
ples of how it has been done in practice.

24.1 IBM SECRET-KEY MANAGEMENT PROTOCOL

In the late 1970s IBM developed a complete key management system for communi­
cations and file security on a computer network, using only symmetric cryptogra­
phy [515,1027]. This protocol is less important in the actual mechanisms and more
in its overall philosophy: By automating the generation, distribution, installation,
storage, changing, and destruction of keys, the protocol went a long way to ensure
the security of the underlying cryptographic algorithms.

This protocol provides three things: secure communications between a server and
several terminals, secure file storage at the server, and secure communication
among servers. The protocol doesn't really provide for direct terminal-to-terminal
communication, although it can be modified to do that.

Each server on the network is attached to a cryptographic facility, which does all
of the encrypting and decrypting. Each server has a Master Key, KM0, and two vari­
ants, KM1 and KM 2, both of which are simple variants of KM0. These keys are used
to encrypt other keys and to generate new keys. Each terminal has a Master Termi­
nal Key, KMT, which is used to exchange keys with other terminals.

The servers store KMT, encrypted with KM1. All other keys, such as those used to
encrypt files of keys (called KNF), are stored in encrypted form under KM 2 . The mas­
ter key, KM 0, is stored in some nonvolatile security module. Today that could be

CHAPTER 24 Example Implementations

either a ROM key or a magnetic card, or it could be typed in by the user (probably as
a text string and then key crunched). KM 1 and KM 2 are not stored anywhere in the
system, but are computed from KM 0 whenever they are needed. Session keys, for
communication among servers, are generated with a pseudo-random process in the
server. Keys to encrypt files for storage (KNF) are generated in the same manner.

The heart of the protocol is a tamper-resistant module, called a cryptographic
facility. At both the server and the terminal, all encryption and decryption takes
place within this facility. The most important keys, those used to generate the
actual encryption keys, are stored in this module. These keys can never be read once
they are stored. And they are tagged by use: A key dedicated for one purpose cannot
accidentally be used for another. This concept of key control vectors is probably the
most significant contribution of this system. Donald Davies and William Price dis­
cuss this key management protocol in detail [435].

A Variation
A variation on this scheme of master and session keys can be found in [1478]. It's

built around network nodes with key notarization facilities that serve local termi­
nals. It is designed to:

Secure two-way communication between any two terminal users.

Secure communications using encrypted mail.

Provide personal file protection.

Provide a digital signature capability.

For communication and file transfer among users, the scheme uses keys generated
in the key notarization facility and sent to the users encrypted under a master key.
The identities of the users are incorporated with the key, to provide evidence that
the session key has been used between a particular pair of users. This key notariza­
tion feature is central to the system. Although the system does not use public-key
cryptography, it has a digital-signature-like capability: A key could have only come
from a particular source and could only be read at a particular destination.

24.2 MITRENET

One of the earliest implementations of public-key cryptography was the experi­
mental system MEMO (MITRE Encrypted Mail Office). MITRE is a DoD contractor,
a government think tank, and an all-around bunch of smart guys. MEMO was a
secure electronic mail system for users in the MITRENET network, using public­
key cryptography for key exchange and DES for file encryption.

In the MEMO system, all public keys are stored in a Public Key Distribution Cen­
ter, which is a separate node on the network. They are stored in an EPROM to prevent
anyone from changing them. Private keys are generated by users or by the system.

________________ 2_4_.3_I_S_D_N ________ 7 __ ~

For a user to send secure messages, the system first establishes a secure commu­
nications path with the Public Key Distribution Center. The user requests a file of
all public keys from the Center. If the user passes an identification test using his
private key, the Center sends this list to the user's workstation. The list is
encrypted using DES to ensure file integrity.

The implementation uses DES to encrypt messages. The system generates a ran­
dom DES key for file encryption; the user encrypts the file with the DES key and
encrypts the DES key with the recipient's public key. Both the DES-encrypted file
and the public-key-encrypted key are sent to the recipient.

MEMO makes no provision for lost keys. There is some provision for integrity
checking of the messages, using checksums. No authentication is built into the
system.

The particular public-key implementation used for this system-Diffie-Hellman
key exchange over GF(2127)-was proven insecure before the system was imple­
mented (see Section 11.6), although it is easy to modify the system to use larger
numbers. MEMO was intended mainly for experimental purposes and was never
made operational on the real MITRENET system.

24.3 ISDN

Bell-Northern Research developed a prototype secure Integrated Services Digital
Network (ISDN) telephone terminal [499, 1192,493,500]. As a telephone, it was
never developed beyond prototype. The resulting product was the Packet Data Secu­
rity Overlay. The terminal uses Diffie-Hellman key exchange, RSA digital signa­
tures, and DES data encryption; it can transmit and receive voice and data at 64
kilobits per second.

Keys

A long-term public-key/private-key key pair is embedded in the phone. The pri­
vate key is stored in a tamper-resistant area of the phone. The public key serves as
the identification of the phone. These keys are part of the phone itself and cannot be
altered in any way.

Additionally, two other public keys are stored in the phone. One of these keys is
the owner's public key. This key is used to authenticate commands from the owner
and can be changed via a command signed by the owner. In this way an owner can
transfer ownership of the phone to someone else.

The public key of the network is also stored in the phone. This key is used to
authenticate commands from the network's key management facility and to authen­
ticate calls from other users on the network. This key can also be changed via a signed
command from the owner. This permits the owner to move his phone from one net­
work to another.

These keys are considered long-term keys: rarely, if ever, changed. A short-term
public-key/private-key key pair is also stored on the phone. These are encapsulated

CHAPTER 24 Example Implementations

in a certificate signed by the key management facility. When two phones set up a
call, they exchange certificates. The public key of the network authenticates these
certificates.

This exchange and verification of certificates only sets up a secure call from
phone to phone. To set up a secure call from person to person, the protocol has an
additional piece. The owner's private key is stored on a hardware ignition key,
which is inserted into the telephone by the owner. This ignition key contains the
owner's private key, encrypted under a secret password known only by the owner
(not by the phone, not by the network's key management facility, not by anybody).
It also contains a certificate signed by the network's key management facility that
contains the owner's public key and some identifying information (name, company,
job title, security clearance, favorite pizza toppings, sexual preference, or whatever).
This is also encrypted. To decrypt this information and enter it into the phone, the
owner types his secret password on the phone's keypad. After the phone uses this
information to set up calls, it is erased after the owner removes his ignition key.

The phone also stores a set of certificates from the network's key management
facility. These certificates authorize particular users to use particular phones.

Calling
A call from Alice to Bob works as follows.

(1) Alice inserts her ignition key into the phone and enters her password.

(2) The phone interrogates the ignition key to determine Alice's identity and
gives Alice a dial tone.

(3) The phone checks its set of certificates to ensure that Alice is authorized
to use the particular phone.

(4) Alice dials the number; the phone places the call.

(5) The two telephones use a public-key cryptography key-exchange protocol
to generate a unique and random session key. All subsequent protocol
steps are encrypted using this key.

(6) Alice's phone transmits its certificate and user authentication.

(7) Bob's phone authenticates the signatures on both the certificate and the
user authentication using the network's public key.

(8) Bob's phone initiates a challenge-and-reply sequence. It demands real-time
signed responses to time-dependent challenges. (This prevents an adver­
sary from using certificates copied from a previous exchange.) One
response must be signed by Alice's phone's private key; another must be
signed by Alice's private key.

(9) Bob's phone rings, unless he is already on the phone.

(10) If Bob is home, he inserts his ignition key into the phone. His phone inter­
rogates the ignition key and checks Bob's certificate as in steps (2) and (3).

_________________ 24_._4_S_T_U_-I_II _______ 7 ___ ~

(11) Bob transmits his certificate and user authentication.

(12) Alice's phone authenticates Bob's signatures as in step (7), and initiates a
challenge-and-reply sequence as in step (8).

(13) Both phones display the identity of the other user and phone on their
displays.

(14) The secure conversation begins.

(15) When one party hangs up, the session key is deleted, as are the certificates
Bob's phone received from Alice's phone and the certificates Alice's phone
received from Bob's phone.

Each DES key is unique to each call. It exists only inside the two phones for the
duration of the call and is destroyed immediately afterward. If an adversary captures
one or both of the phones involved in the call, he will not be al.Jle to decrypt any pre­
vious call between the two phones.

24.4 STU-III

STU stands for "Secure Telephone Unit," an NSA-designed secure phone. The unit
is about the size and shape of a conventional telephone, and can be used as such.
The phones are also tamper-resistant, enough so that they are unclassified if
unkeyed. They also have a data port and can be used to secure modem traffic as well
as voice [1133].

Whitfield Diffie described the STU-III in [494]:

To make a call with a STU-III, the caller first places an ordinary call to another
STU-III, then inserts a key-shaped device containing a cryptographic variable and
pushes a "go secure" button. After an approximately 15-second wait for crypto­
graphic setup, each phone shows information about the identity and clearance of
the other party on its display and the call can proceed.

In an unprecedented move, Walter Deeley, NSA's deputy director for commu­
nications security, announced the STU-III or Future Secure Voice System in an
exclusive interview given to The New York Times [282]. The objective of the new
system was primarily to provide secure voice and low-speed data communica­
tions for the U.S. Defense Department and its contractors. The interview didn't
say much about how it was going to work, but gradually the word began to leak
out. The new system was using public key.

The new approach to key management was reported early on [68] and one arti­
cle spoke of phones being "reprogrammed once a year by secure telephone link,"
a turn of phrase strongly suggestive of a certificate passing protocol, similar to
that described [in Section 24.3], that minimizes the need for phones to talk to the
key management center. Recent reports have been more forthcoming, speaking of
a key management system called FIREFLY that [1341] "evolved from public key

CHAPTER 24 Example Implementations

technology and is used to establish pair-wise traffic encryption keys." Both this
description and testimony submitted to the U.S. Congress by Lee Neuwirth of
Cylink [1164] suggest a combination of key exchange and certificates similar to
that used in the ISDN secure phone and it is plausible that FIREFLY roo is based
on exponentiation.

STU-Ills are manufactured by AT&T and GE. Somewhere between 300,000 and
400,000 have been fielded through 1994. A new version, the Secure Terminal Equip­
ment (STE), will work on ISDN lines.

24.5 KERBEROS

Kerberos is a trusted third-party authentication protocol designed for TCP/IP net­
works. A Kerberos service, sitting on the network, acts as a trusted arbitrator. Ker­
beros provides secure network authentication, allowing a person to access different
machines on the network. Kerberos is based on symmetric cryptography (DES as
implemented, but other algorithms could be used instead). Kerberos shares a differ­
ent secret key with every entity on the network and knowledge of that secret key
equals proof of identity.

Kerberos was originally developed at MIT for Project Athena. The Kerberos model
is based on Needham-Schroeder's trusted third-party protocol (see Section 3.3)
[1159]. The original version of Kerberos, Version 4, is specified in [1094,1499]. (Ver­
sions 1 through 3 were internal development versions.) Version 5, modified from
Version 4, is specified in [876,877,878]. The best overview of Kerberos is [1163].
Other survey articles are [1384, 1493], and two good articles on using Kerberos in the
real world are [781,782].

The Kerberos Model

The basic Kerberos protocol was outlined in Section 3.3. In the Kerberos model,
there are entities-clients and servers-sitting on the network. Clients can be users,
but can also be independent software programs that need to do things: download
files, send messages, access databases, access printers, obtain administrative privi­
leges, whatever.

Kerberos keeps a database of clients and their secret keys. For a human user, the
secret key is an encrypted password. Network services requiring authentication, as
well as clients who wish to use these services, register their secret key with Kerberos.

Because Kerberos knows everyone's secret key, it can create messages that con­
vince one entity of another entity's identity. Kerberos also creates session keys
which are given to a client and a server (or to two clients) and no one else. A session
key is used to encrypt messages between the two parties, after which it is destroyed.

Kerberos uses DES for encryption. Kerberos Version 4 provided a nonstandard
mode for authentication. This mode is weak: It fails to detect certain changes to the
ciphertext (see Section 9.10). Kerberos Version 5 uses CBC mode.

__________________ 2_4_.5 __ K_e_r_be_r_o_s ________ 7~~

1. Request for Ticket-Granting Ticket
2. Ticket-Granting Ticket
3. Request for Server Ticket
4. Server Ticket
5. Request for Service

1

Figure 24.1 Kerberos authentication steps.

How Kerberos Works

This section discusses Kerberos Version 5. I will outline the differences between
Version 4 and Version 5 further on. The Kerberos protocol is straightforward (see
Figure 24.1). A client requests a ticket for a Ticket-Granting Service (TGS) from Ker­
beros. This ticket is sent to the client, encrypted in the client's secret key. To use a
particular server, the client requests a ticket for that server from the TGS. Assum­
ing everything is in order, the TGS sends the ticket back to the client. The client
then presents this ticket to the server along with an authenticator. Again, if there's
nothing wrong with the client's credentials, the server lets the client have access to
the service.

Table 24.1
Kerberos Table of Abbreviations

c = client
s = server
a = client's network address
v = beginning and ending validity time for a ticket
t = timestamp
Kx = x's secret key
Kx, Y = session key for x and y
lmlKx = m encrypted in x's secret key
Tx, Y = x's ticket to use y
Ax, Y = authenticator from x to y

~""'s,-----C_H_A_P_T_ER_2_4 __ E_x_a __ m_p_l_e_I_m_p_l_e_m_e_n_t_a_t_io_n_s _____________ _

Credentials

Kerberos uses two types of credentials: tickets and authenticators. (The rest of
this section uses the notation used in Kerberos documents-see Table 24.1.) A
ticket is used to pass securely to the server the identity of the client for whom the
ticket was issued. It also contains information that the server can use to ensure that
the client using the ticket is the same client to whom the ticket was issued. An
authenticator is an additional credential, presented with the ticket.

A Kerberos ticket takes this form:

Tc, s = s, /c, a, V, Kc, slKs

A ticket is good for a single server and a single client. It contains the client's name
and network address, the server's name, a timestamp, and a session key. This infor­
mation is encrypted with the server's secret key. Once the client gets this ticket, she
can use it multiple times to access the server-until the ticket expires. The client
cannot decrypt the ticket (she does not know the server's secret key), but she can
present it to the server in its encrypted form. No one listening on the network can
read or modify the ticket as it passes through the network.

A Kerberos authenticator takes this form:

Ac. s = /c, t, key)Kc. s

The client generates it every time she wishes to use a service on the server. The
authenticator contains the client's name, a timestamp, and an optional additional
session key, all encrypted with the session key shared between the client and the
server. Unlike a ticket, it can only be used once. However, since the client can
generate authenticators as needed (it knows the shared secret key), this is not a
problem.

The authenticator serves two purposes. First, it contains some plaintext encrypted
in the session key. This proves that it also knows the key. Just as important, the
sealed plaintext includes the timestamp. An eavesdropper who records both the
ticket and the authenticator can't replay them two days later.

Kerberos Version 5 Messages

Kerberos Version 5 has five messages (see Figure 24.1):

1. Client to Kerberos: c, tgs

2. Kerberos to client: /Kc, tgs)Kc, /Tc, tgs)Ktgs

3. Client to TGS: /Ac, slKc. tgs, /Tc, tgs)Ktgs

4. TGS to client: /Kc, sf Kc, tgs, /Tc, s)Ks

5. Client to server: /Ac, s)Kc, s. {Tc, s)Ks

These will now be discussed in detail.

____________________ 2_4_.s __ K_e_rb_e_r_o_s _________ 7"7'"~

Getting an Initial Ticket

The client has one piece of information that proves her identity: her password.
Obviously we don't want her to send this password over the network. The Kerberos
protocol minimizes the chance that this password will be compromised, while at
the same time not allowing a user to properly authenticate herself unless she knows
the password.

The client sends a message containing her name and the name of her TGS server
to the Kerberos authentication server. (There can be many TGS servers.) In reality,
the user probably just enters her name into the system and the login program sends
the request.

The Kerberos authentication server looks up the client in his database. If the
client is in the database, Kerberos generates a session key to be used between her
and the TGS. This is called a Ticket Granting Ticket (TGT). Kerberos encrypts that
session key with the client's secret key. Then it creates a TGT for the client to
authenticate herself to the TGS, and encrypts that in the TGS's secret key. The
authentication server sends both of these encrypted messages back to the client.

The client now decrypts the first message and retrieves the session key. The
secret key is a one-way hash of her password, so a legitimate user will have no trou­
ble doing this. If the user were an imposter, he would not know the correct password
and therefore could not decrypt the response from the Kerberos authentication
server. Access would be denied and he wouldn't be able to get the ticket or the ses­
sion key.

The client saves the TGT and session key and erases the password and the one­
way hash. This information is erased to reduce the chance of compromise. If an
adversary manages to copy the client's memory, he will only get the TGT and the
session key. These are valuable pieces of information, but only during the lifetime
of the TGT. After the TGT expires, they will be worthless.

The client can now prove her identity to the TGS for the lifetime of the TGT.

Getting Server Tickets

A client has to obtain a separate ticket for each service she wants to use. The TGS
grants tickets for individual servers.

When a client needs a ticket that she does not already have, she sends a request to
the TGS. (In reality, the program would do this automatically, and it would be invis­
ible to the user.)

The TGS, upon receiving the request, decrypts the TGT with his secret key. Then
he uses the session key included in the TGT to decrypt the authenticator. Finally,
he compares the information in the authenticator with the information in the
ticket, the client's network address with the address the request was sent from, and
the timestamp with the current time. If everything matches, he allows the request
to proceed.

Checking timestamps assumes that all machines have synchronized clocks, at
least to within several minutes. If the time in the request is too far in the future or

CHAPTER 24 Example Implementations

the past, the TGS treats the request as an attempt to replay a previous request. The
TGS should also keep track of all live authenticators, because past requests can have
timestamps that are still valid. Another request with the same ticket and time­
stamp as one already received can be ignored.

The TGS responds to a valid request by returning a valid ticket for the client to
present to the server. The TGS also creates a new session key for the client and the
server, encrypted with the session key shared by the client and the TGS. Both of
these messages are then sent back to the client. The client decrypts the message and
extracts the session key.

Requesting a Service

Now the client is ready to authenticate herself to the server. She creates a mes­
sage very similar to the one sent to the TGS (which makes sense, since the TGS is a
service).

The client creates an authenticator, consisting of her name and network address,
and a timestamp, encrypted with the session key for her and the server that the TGS
generated. The request consists of the ticket received from Kerberos (already
encrypted with the server's secret key) and the encrypted authenticator.

The server decrypts and checks the ticket and the authenticator, as discussed pre­
viously, and also checks the client's address and the timestamp. If everything
checks out, the server knows that, according to Kerberos, the client is who she says
she is.

For applications that require mutual authentication, the server sends the client
back a message consisting of the timestamp, encrypted with the session key. This
proves that the server knew his ~ecret key and could decrypt the ticket and there­
fore the authenticator.

The client and the server can encrypt future messages with the shared key, if
desired. Since only they share this key, they both can assume that a recent message
encrypted in that key originated with the other party.

Kerberos Version 4
The previous sections discussed Kerberos Version 5. In the messages and the con­

struction of the tickets and authenticators, Version 4 is slightly different.
In Kerberos Version 4, the five messages looked like:

1. Client to Kerberos:

2. Kerberos to client:

3. Client to TGS:

4. TGS to client:

5. Client to server:

C, tgs

(Kc, tgs, (T,, tgs!Ktgs)K,

(Ac, s)Kc, /gs, (Tc, tgs)Ktgs, S

(Kc, s, (Tc slKsJKc, tgs

(Ac, s)Kc, s, {Tc, JKs

Tc, s = (s, C, a, V, 1, K,, s!Ks

Ac, s = (c, a, t)Kc,,

_________________ 2_4_.6 __ K_ry_p_t_o_K_n_ig_h_t _______ 7 __ ~

Messages 1, 3, and 5 are identical. The double encryption of the ticket in steps 2
and 4 has been removed in Version 5. The Version 5 ticket adds the possibility of
multiple addresses, and it replaces a "lifetime" field, 1, with a beginning and ending
time. The Version 5 authenticator adds the option of including an additional key.

Security of Kerberos

Steve Bellovin and Michael Merritt discussed several potential security vulnera­
bilities of Kerberos [108]. Although this paper was written about the Version 4 pro­
tocols, many of their comments also apply to Version 5.

It may be possible to cache and replay old authenticators. Although timestamps
are supposed to prevent this, replays can be done during the lifetime of the ticket.
Servers are supposed to store all valid tickets to prevent replays, but this is not
always possible. And ticket lifetimes can be long; eight hours is typical.

Authenticators rely on the fact that all the clocks in the network are more or less
synchronized. If a host can be fooled about the correct time, then an old authentica­
tor can be replayed without any problem. Most network time protocols are insecure,
so this can be a serious problem.

Kerberos is also vulnerable to password-guessing attacks. An intruder can collect
tickets and then try to decrypt them. Remember that the average user doesn't usu­
ally choose good passwords. If Mallory collects enough tickets, his chances of recov­
ering a password are good.

Perhaps the most serious attack involves malicious software. The Kerberos proto­
cols rely on the fact that the Kerberos software is trustworthy. There's nothing to
stop Mallory from surreptitiously replacing all client Kerberos software with aver­
sion that, in addition to completing the Kerberos protocols, records passwords. This
is a problem with any cryptographic software package on an insecure computer, but
the widespread use of Kerberos in these environments makes it a particularly tempt­
ing target.

Enhancements to Kerberos are in the works, including an implementation of
public-key cryptography and a smart-card interface for key management.

Licenses

Kerberos is not in the public domain, but MIT's code is freely available. Actually
implementing it into a working UNIX environment is another story. Several compa­
nies sell versions of Kerberos, but you can get a good version free from Cygnus Sup­
port, 814 University Ave., Palo Alto, CA, 94301; (415) 322-3811; fax: (415) 322-3270.

24.6 KRYPTOKNIGHT

KryptoKnight (Kryptonite-get it?) is an authentication and key distribution system
designed by IBM. It is a secret-key protocol and uses either DES in CBC mode (see
Section 9.3) or a modified version of MD5 (see Section 18.5).

KryptoKnight supports four security services:

CHAPTER 24 Example Implementations

User authentication (called single sign-on)

Two-party authentication

Key distribution

Authentication of data origin and content

From a user's perspective, KryptoKnight is similar to Kerberos. Some differences are:

KryptoKnight uses a hash function for authentication and encrypting
tickets.

KryptoKnight does not rely on synchronized clocks; it uses nonces for
challenges (see Section 3.3).

If Alice wishes to communicate with Bob, KryptoKnight has the
option of allowing Alice to send a message to Bob and then for Bob to
initiate the key exchange protocol.

KryptoKnight has tickets and authenticators, just like Kerberos. It has TGSs, but
KryptoKnight calls them authentication servers. KryptoKnight's designers spent con­
siderable effort minimizing the number of messages, lengths of messages, and amount
of encryption. For further information on KryptoKnight, read [1110,173, 174,175].

24.7 SESAME
SESAME stands for Secure European System for Applications in a Multivendor
Environment. It's a European Community security project, 50 percent funded by
RACE (see Section 25. 7), whose primary objective is producing technology for user
authentication with distributed access control. Think of it as kind of a European
version of Kerberos. It's a two-part project: Stage one is a basic prototype of the
architecture, and stage two is a set of commercial projects. The three companies
with the greatest hand in development are ICL in the United Kingdom, Siemens in
Germany, and Bull in France.

SESAME is an authentication and key-exchange system [361, 1248,797, 1043]. It
uses the Needham-Schroeder protocol, with public-key cryptography to communi­
cate between different security domains. The system is seriously flawed in several
respects. Instead of using a real encryption algorithm, they use XOR with a 64-bit
key size. Even worse, they use XOR in CBC mode, which leaves half the plaintext
unencrypted. In their defense, they planned on using DES until the French govern­
ment complained; they validated the code with DES but then removed it, and expect
people to add it back. I am unimpressed nonetheless.

Authentication in SESAME is a function on the first block of a message, not on
the entire message. This has the effect of authenticating "Dear Sir" and not the body
of a letter. Key generation consists of two calls to the UNIX rand function, which
isn't very random. SESAME uses crc32 and MD5 as one-way hash functions. And of
course, SESAME is vulnerable to Kerberos-like password-guessing.

_______________ 2_4_.9 __ I_S_O_A_u_t_h_e_n_t1_·c_a_t1_·o_n_Fr_a_m_e_w_o_r_k ____ 7 __ ~

24.8 IBM COMMON CRYPTOGRAPHIC ARCHITECTURE

The Common Cryptographic Architecture (CCA) was designed and developed by
IBM to provide cryptographic primitives for confidentiality, integrity, key manage­
ment, and personal identification number (PIN) processing [751,784, 1025, 1026,
940,752]. Keys are managed by control vectors (CVs) (see Section 8.5). Every key has
a CV XORed with it and is never separated from the vector unless inside secure
hardware. The CV is a data structure providing an intuitive understanding of the
privileges associated with a particular key.

The individual bits of the CV are defined to have specific meanings for using and
handling each key managed by CCA. The CV is carried with the encrypted key in
data structures called key tokens. Internal key tokens are used locally and contain
keys encrypted under the local master key (MK). External key tokens are used to
export and import encrypted keys between systems. Keys in external key tokens are
encrypted under key-encrypting keys (KEK). The KEKs are managed in internal key
tokens. Keys are separated according to their permitted uses.

Key length is also specified and enforced using bits in the CV. Single length
keys are 56 bits and are used for such functions as privacy and message authenti­
cation. Double length keys are 112 bits and are used for key management, PIN
functions, and other special uses. Keys can be required to be DOUBLE-ONLY in
which both the left and right halves of the key must be different, DOUBLE in
which the halves are permitted to be equal by chance, SINGLE-REPLICATED in
which the left and right halves are equal, or SINGLE which contains only 56 bits.
The CCA functions specify hardware enforcement of certain key types to be used
for some operations.

The CV is checked in a secure hardware processor: It must conform to the per­
mitted CCA rules for each CCA function. If the CV successfully passes the test
requirements, a variant of the KEK or MK is obtained by the XOR of the KEK or MK
with the CV, and the plaintext target key is recovered for use internally with the
CCA function. When new keys are generated, the CV specifies the uses of the gen­
erated key. Those combinations of key types that could be used in attacking the sys­
tem are not generated or imported into a CCA-compliant system.

CCA uses a combination of public-key cryptography and secret-key cryptography
for key distribution. The KDC shares a secret master key with each user and
encrypts session keys using that master key. Master keys are distributed using
public-key cryptography.

The system's designers chose this hybrid approach for two reasons. The first is
performance. Public-key cryptography is computationally intensive; if session keys
are distributed using public-key cryptography, the system might bog down. The sec­
ond is backwards compatibility; this system can be overlaid on existing secret-key
schemes with minimal disruption.

CCA systems are designed to be interoperable. For systems that are non-CCA
compliant, a Control Vector Translate (CVXLT) function permits keys to be passed
between the two implementations. Initialization of the CVXLT function requires
dual control. Two individuals must set up the required translation tables indepen-

CHAPTER 24 Example Implementations

dently. Such dual control provides a high degree of assurance concerning the
integrity and pedigree of any keys introduced into the system.

A key of type DATA is provided for compatibility with other systems. A DATA
key is stored with a CV that identifies the key as a DATA key. DATA keys can have
broad uses and as such must be regarded with suspicion and used with care. DATA
keys may not be used for any key management functions.

The Commercial Data Masking Facility (CDMF) provides an exportable version of
CCA. It has a special feature that reduces DES keys to an effective 40 bits for export
(see Section 15.5) [785].

24.9 ISO AUTHENTICATION FRAMEWORK

Public-key cryptography has been recommended for use with the ISO authentica­
tion framework, also known as the X.509 protocols [304]. This framework provides
for authentication across networks. Although no particular algorithms are specified
for either security or authentication, the specification recommends RSA. There are

Version

Serial Number

Algorithm Identifier:

-Algorithm
- Parameters

Issuer

Period of Validity:

- Not Before Date
- Not After Date

Subject

Subject's Public Key:

-Algorithm
- Parameters
- Public Key

Signature Figure 24.2 An X.509 certificate.

_______________ 2_4_.9 __ IS_O_A_u_th_e_n_t_ic_a_t_io_n_Fr_a_m_ew_o_rk _____ 7,,,.~

prov1s10ns, however, for multiple algorithms and hash functions. X.509 was ini­
tially issued in 1988. After public review and comment, it was revised in 1993 to
correct some security problems [1100, 750].

Certificates

The most important part of X.509 is its structure for public-key certificates. Each
user has a distinct name. A trusted Certification Authority (CA) assigns a unique
name to each user and issues a signed certificate containing the name and the user's
public key. Figure 24.2 shows an X.509 certificate [304].

The version field identifies the certificate format. The serial number is unique
within the CA. The next field identifies the algorithm used to sign the certificate,
together with any necessary parameters. Issuer is the name of the CA. The period of
validity is a pair of dates; the certificate is valid during the time period between the
two. Subject is the name of the user. The subject's public key information includes
the algorithm name, any necessary parameters, and the public key. The last field is
the CA's signature.

If Alice wants to communicate with Bob, she first gets his certificate from a data­
base. Then she verifies its authenticity. If both share the same CA, this is easy. Alice
simply verifies the CA's signature on Bob's certificate.

If they use different CAs, it's more complicated. Think of a tree structure, with
different CAs certifying other CAs and users. On the top is one master CA. Each CA
has a certificate signed by the CA above it, and by the CAs below it. Alice uses these
certificates to verify Bob's certificate.

Figure 24.3 illustrates this. Alice's certificate is certified by CAA; Bob's is certified
by CAB. Alice knows CAA's public key. CAc has a certificate signed by CAA, so Alice

Bob

Alice
Figure 24.3 Sample certification hierarchy.

CHAPTER 24 Example Implementations

can verify that. CAv has a certificate signed by CAc. CAs has a certificate signed by
CAv. And Bob's certificate is signed by CAs, By moving up the certification tree to
a common point, in this case CAv, and then down to Bob, Alice can verify Bob's cer­
tificate.

Certificates can be stored on databases around the network. Users can send them
to each other. When a certificate expires, it should be removed from any public
directories. The issuing CA, however, should maintain a copy of the certificate.
Should a dispute arise later, it will be required.

Certificates can also be revoked, either because the user's key has been compro­
mised, the CA's key has been compromised, or because the CA no longer wants to
certify the user. Each CA must maintain a list of all revoked but not expired certifi­
cates. When Alice receives a new certificate, she should check to see if it has been
revoked. She can check a database of revoked keys on the network, but more likely
she will check a locally cached list of revoked certificates. There are certainly pos­
sible abuses to this system; key revocation is probably its weakest part.

Authentication Protocols
Alice wants to communicate with Bob. First she goes to a database and obtains

what is called a certification path from Alice to Bob, and Bob's public key. At this
point Alice can initiate either a one-way, two-way, or three-way authentication
protocol.

The one-way protocol is a single communication from Alice to Bob. It establishes
the identities of both Alice and Bob and the integrity of any information communi­
cated by Alice to Bob. It also prevents any replay attacks on the communication.

The two-way protocol adds a reply from Bob. It establishes that Bob, and not an
imposter, sent the reply. It also establishes the secrecy of both communications and
prevents replay attacks.

Both the one-way and two-way protocols use timestamps. A three-way protocol
adds another message from Alice to Bob and obviates the need for timestamps (and
therefore authenticated time).

The one-way protocol is:

(1) Alice generates a random number, RA-

(2) Alice constructs a message, M = (TA, RA, Is, d), where TA is Alice's time­
stamp, Is is Bob's identity, and dis an arbitrary piece of data. The data may
be encrypted with Bob's public key, Es, for security.

(3) Alice sends (CA, DA(M)) to Bob. (CA is Alice's certificate; DA is Alice's pri­
vate key.)

(4) Bob verifies CA and obtains EA. He makes sure these keys have not expired.
(EA is Alice's public key.)

(5) Bob uses EA to decrypt DA(M). This verifies both Alice's signature and the
integrity of the signed information.

(6) Bob checks the Is in M for accuracy.

(7) Bob checks the TA in Mand confirms that the message is current.

______________ 2_4_.1_0_P_r_iv_a_c_y_-E_n_h_a_n_c_ed_M_a_il_(_P_E_M_) ____ 7_~

(8) As an option, Bob can check RA in M against a database of old random num­
bers to ensure the message is not an old one being replayed.

The two-way protocol consists of the one-way protocol and then a similar one­
way protocol from Bob to Alice. After executing steps (1) through (8) of the one-way
protocol, the two-way protocol continues with:

(9) Bob generates another random number, RB.

(10) Bob constructs a message M' = (TB, RB, h RA, d), where TB is Bob's time­
stamp, IA is the identity of Alice and d is arbitrary data. The data may be
encrypted with Alice's public key, EA, for security. RA is the random num­
ber Alice generated in step (1).

(11) Bob sends DB(M') to Alice.

(12) Alice uses EB to decrypt DB(M'). This verifies both Bob's signature and the
integrity of the signed information.

(13) Alice checks the IA in M' for accuracy.

(14) Alice checks the TB in M' and confirms that the message is current.

(15) As an option, Alice can check the RB in M' to ensure the message is not an
old one being replayed.

The three-way protocol accomplishes the same thing as the two-way protocol, but
without timestamps. Steps (1) through (15) are identical to the two-way protocol,
with TA= TB= 0.

(16) Alice checks the received version of RA against the RA she sent to Bob in
step (3).

(17) Alice sends D A(RB) to Bob.

(18) Bob uses EA to decrypt DA(RB). This verifies both Alice's signature and the
integrity of the signed information.

(19) Bob checks the received version of RB against the RB he sent to Alice in
step (10).

24.10 PRIVACY-ENHANCED MAIL (PEM)

PEM is the Internet Privacy-Enhanced Mail standard, adopted by the Internet Archi­
tecture Board (IAB) to provide secure electronic mail over the Internet. It was ini­
tially designed by the Internet Research Task Force (IRTF) Privacy and Security
Research Group (PSRG), and then handed over to the Internet Engineering Task
Force (IETF) PEM Working Group. The PEM protocols provide for encryption,
authentication, message integrity, and key management.

CHAPTER 24 Example Implementations

The complete PEM protocols were initially detailed in a series of RFCs
(Requests for Comment) in [977] and then revised in [978]. The third iteration of
the protocols [979,827,980] is summarized in [177,178]. The protocols were modi­
fied and improved, and the final protocols are detailed in another series of RFCs
[981,825, 76,802]. Another paper by Matthew Bishop [179] details the changes.
Reports of attempts to implement PEM include [602, 1505, 1522, 74,351, 1366,
1367]. See also [1394].

PEM is an inclusive standard. The PEM procedures and protocols are intended to
be compatible with a wide range of key-management approaches, including both
symmetric and public-key schemes to encrypt data-encrypting keys. Symmetric
cryptography is used for message-text encryption. Cryptographic hash algorithms
are used for message integrity. Other documents support key-management mecha­
nisms using public-key certificates; algorithms, modes, and associated identifiers;
and paper and electronic format details and procedures for the key-management
infrastructure to support these services.

PEM supports only certain algorithms, but allows for different suites of algorithms
to be specified later. Messages are encrypted with DES in CBC mode. Authentica­
tion, provided by something called a Message Integrity Check (MIC), uses either
MD2 or MD5. Symmetric key management can use either DES in ECB mode or
triple-DES using two keys (called EDE mode). PEM also supports public-key certifi­
cates for key management, using the RSA algorithm (key length up to 1024 bits) and
the X.509 standard for certificate structure.

PEM provides three privacy-enhancement services: confidentiality, authentica­
tion, and message integrity. No special processing requirements are imposed on the
electronic mail system. PEM can be incorporated selectively, by site or by user,
without affecting the rest of the network.

PEM Documents

The specifications for PEM come from four documents:

RFC 1421: Part I, Message Encryption and Authentication Proce­
dures. This document defines message encryption and authentication
procedures in order to provide privacy-enhanced mail services for
electronic mail transfer on the Internet.
RFC 1422: Part II, Certificate-Based Key Management. This docu­
ment defines a supporting key management architecture and infra­
structure, based on public-key certificate techniques to provide
keying information to message originators and recipients.
RFC 1423: Part III, Algorithms, Modes, and Identifiers. This docu­
ment provides definitions, formats, references, and citations for
cryptographic algorithms, usage modes, and associated identifiers
and parameters.
RFC 1424: Part IV, Key Certification and Related Services. This docu­
ment describes three types of service in support of PEM: key certifi­
cation, certificate revocation list (CRL) storage, and CRL retrieval.

______________ 2_4_.1_0_P_r_iv_a_c_y_-E_n_h_a_n_c_ed_M_a_il_(P_E_M_) ____ 7 __ ~

Certificates

PEM is compatible with the authentication framework described in [304]; see also
[826]. PEM is a superset of X.509; it establishes procedures and conventions for a
key-management infrastructure for use with PEM and with other protocols (from
both the TCP/IP and OSI suites) in the future.

The key-management infrastructure establishes a single root for all Internet cer­
tification. The Internet Policy Registration Authority (IPRA) establishes global poli­
cies that apply to all certification under this hierarchy. Beneath the IPRA root are
Policy Certification Authorities (PCAs), each of which establishes and publishes its
policies for registering users or organizations. Each PCA is certified by the IPRA.
Below PCAs, CAs certify users and subordinate organizational entities (such as
departments, offices, subsidiaries). Initially, the majority of users are expected to be
registered with some organization.

Some PCAs are expected to provide certification for users who wish to register
independent of any organization. For users who wish anonymity while taking
advantage of PEM privacy facilities, one or more PCAs are expected to be estab­
lished with policies that allow for registration of users who do not wish to disclose
their identities.

PEM Messages
PEM's heart is its message format. Figure 24.4 shows an encrypted message using

symmetric key management, Figure 24.5 shows an authenticated and encrypted
message using public-key key management, and Figure 24.6 shows an authenticated
(but unencrypted) message using public-key key management.

The first field is "Proc-Type, 11 and identifies the type of processing performed on
the message. There are three possible types of messages. The "ENCRYPTED" spec-

-----BEGIN PRIVACY-ENHANCED MESSAGE­
Proc-Type: 4,ENCRYPTED
Content-Domain: RFC822
DEK-Info: DES-CBC,F8143EDE5960C597
Originator-ID-Symmetric: schneier@counterpane.com,,
Recipient-ID-Symmetric: schneier@chinet.com,ptf-kmc,3
Key-Info:

DES-ECB,RSA-MD2,9FD3AAD2F2691B9A,B70665BB9BF7CBCDA60195DB94F727D3
Recipient-ID-Symmetric: pem-dev@tis.com,ptf-kmc,4
Key-Info:

DES-ECB,RSA-MDZ,161A3F75DC82EF26,EZEF532C65CBCFF79F83A2658132DB47
LLrHBOeJzyhP+/fSStdW8okeEnv47jxe7SJ/iN72ohNcUk2jHEUSoHlnvNSIWL9M
8tEjmF/zxB+bATMtPjCUWbzBLr9wloX!kjHUlBLpvXROUrUzYbkNpk0agV2IzUpk
J6UiRRGcDSvzrsoK+oNvqu6z7Xs5Xfz5rDqUcMll(lZ6720dcBWGGsDLpTpSCnpot

dXd/H5LMDWnonNvPCwQUHt~~
-----END PRIVACY-ENHANCED MESSAGE-

Figure 24.4 Example of an encapsulated message (symmetric case).

CHAPTER 24 Example Implementations

-----BEGIN PRIVACY-ENHANCED MESSAGE--­
Proc-Type: 4,ENCRYPTED
Content-Domain: RFC822
DEK-Info: DES-CBC,BFF968AA74691AC1
Originator-Certificate:

MIIBlTCCAScCAWUwDQYJKoZihvcNAQECBQAwUTELMAkGAlUEBhMCVVMxIDAeBgNV
BAoTFlJTOSBEYXRhIFNlY3VyaXR5LCBJbmMuMQ8wDQYDVQQLEwZCZXRhIDExDzAN
BgNVBAsTBk5PVEFSWTAeFw05MTA5MDQxODM4MTdaFw05MzA5MDMxODM4MTZaMEUx
CzAJBgNVBAYTAlVTMSAwHgYDVQQKExdSUOEgRGFOYSBTZWNlcml0eSwgSW5jljEU
MBIGAlUEAxMLVGVzdCBVc2VyIDEwWTAKBgRVCAEBAgICAANLADBIAkEAwHZHl7i+
yJcqDtjJCowzTdBJrdAiLAnSC+CnnjOJELyuQiBgkGrgih3j8/xOfM+YrsyFlu3F
LZPVtzlndhYFJQIDAQABMAOGCSqGSib3DQEBAgUAAlkACKrOPqphJYwlj+YPtciq
iWlFPuN5jJ79Khfg7ASFxskYkEMjRNZV/HZDZQEhtVaU7Jxfzs2wfX5byMp2X3U/

5XUXGx7qusDgHQGs7Jk9W8CWlfuSWUgN4w--
Key-Info: RSA,

I3rRIGXUGWAF8js5wCzRTkdh034PTHdRZY9Tuvm03M+NM7fx6qc5udixps2LngO+
wGrtiUm/ovtKdinz6ZQ/aO--

Issuer-Certificate:
MIIB3DCCAUgCAQowDQYJKoZihvcNAQECBQAwTzELMAkGAlUEBhMCVVMxIDAeBgNV
BAoTFlJTQSBEYXRhIFNlY3VyaXR5LCBJbmMuMQ8wDQYDVQQLEwZCZXRhIDExDTAL
BgNVBAsTBFRMQOEwHhcNOTEwOTAxMDgwMDAwWhcNOTiwOTAxMDclOTU5WjBRMQsw
CQYDVQQGEwJVUzEgMB4GAlUEChMXUlNBIERhdGEgU2VjdXJpdHksIEluYy4xDzAN
BgNVBAsTBkJldGEgMTEPMAOGAlUECxMGTk9UQVJZMHAwCgYEVQgBAQICArwDYgAw
XwJYCsnp6lQCxYykNlODwutF/jMJ3kL+3PjYyHOwk+/9rLg6X65B/LD4bJHt05XW
cqAz/7R7XhjYCmOPcqbdzoACZtilETrKrcJiDYoP+DkZ8klgCk7hQHpbiwIDAQAB
MAOGCSqGSib3DQEBAgUAA38AAICPv4f9Gx/tY4+p+4DB7MV+tKZnvBoy8zgoMGOx
dD2jMZ/3HsyWKWgSFOeH/AJB3qr9zosG47pyMnTf3aSy2nB07CMxpUWRBcXUpE+x
EREZd9++32ofGBIXaialnOgVUnOOzSYgugiQ077nJLDUjOhQehCizEs5wUJ35a5h

MIC-Info: RSA-MD5,RSA,
UdFJR8u/TIGhfH65ieewe210W4tooa3vZCvVNGBZirf/7nrgzWDABz8w9NsXSexv

AjRFbHoNPzBuxwmOAFeAOHJszL4yBvhG
Recipient-ID-Asymmetric:

MFExCzAJBgNVBAYTAlVTMSAwHgYDVQQKExdSUOEgRGFOYSBTZWNlcml0eSwgSW5j
LjEPMAOGAlUECxMGQmVOYSAxMOSwDOYDVOOLEwZOTlRBUlk-,
66

Key-Info: RSA,
06BSlww9CTyHPtS3bMLD+LOhejdvX6QvlHK2ds2s0PEaXhX8EhvVphHYTjwekdWv

7xOZ3Jx2vTAhOYHMcqqCjA-­
qeWlj/YJ2Uf5ng9yznPbtDOmYloSwiuV9FRYx+gzY+8iXd/NQrXHfi6/MhPfPF3d

jiqCJAxvld2xgqQimUzoSla4r7k005c/Iua4LqKeq3ciFzEv/MbZhA-­
-----END PRIVACY-ENHANCED MESSAGE-----

Figure 24.5 Example of an encapsulated ENCRYPTED message (asym­
metric case).

______________ 2_4_.1_0_P_r_iv_a_c_y_-E_n_h_a_n_c_ed_M_a_i_l _(P_E_M_) ____ 7-~

ifier says that the message is encrypted and signed. The "MIC-ONLY" and "MIC­
CLEAR" specifiers would indicate that the message is signed, but not encrypted.
MIC-CLEAR messages are not encoded and can be read using non-PEM software.
MIC-ONLY messages need PEM software to transform them to a human-readable
form. A PEM message is always signed; it is optionally encrypted.

The next field, "Content-Domain," specifies the type of mail message. It has
nothing to do with security. The "DEK-Info" field gives information on the Data
Exchange Key (DEK), the encryption algorithm used to encrypt the text, and any
parameters associated with the encryption algorithm. Only DES in CBC mode is
currently specified, or "DES-CBC." The second subfield specifies the IV. Other algo­
rithms may be specified by PEM in the future; their use will be noted in DEK-Info
and in other fields that identify algorithms.

For messages with symmetric key management (see Figure 24.4), the next field is
"Originator-ID-Symmetric" with three subfields. The first subfield identifies the
sender by a unique electronic mail address. The second subfield is optional and iden­
tifies the authority that issued the interchange key. The third is an optional Ver­
sion/Expiration subfield.

Continuing with the symmetric key-management case, each recipient has two
fields: "Recipient-ID-Symmetric" and "Key-Info." The "Recipient-ID-Symmetric"
field has three subfields; these identify the receiver in the same way that "Originator­
ID-Symmetric" identified the sender.

The "Key-Info" field specifies the key-management parameters. This field has four
subfields. The first subfield gives the algorithm used to encrypt the DEK. Since the
key management in this message is symmetric, the sender and receiver have to share
a common key. This is called the Interchange Key (IK), which is used to encrypt the
DEK. The DEK can be either encrypted using DES in ECB (denoted by "DES-ECB")
or triple-DES (which would be denoted "DES-EDE"). The second subfield specifies
the MIC algorithm. It can be either MD2 (denoted by "RSA-MD2") or MDS (which
would be denoted "RSA-MD5"). The third subfield, the DEK, and the fourth field,
the MIC, are both encrypted with the IK.

Figures 24.5 and 24.6 show messages with public-key key management (called
"asymmetric" in PEM nomenclature). The headers are different. In ENCRYPTED
messages, after the "DEK-Info" field comes the "Originator-Certificate" field. The
certificate follows the X.509 standard (see Section 24.9). The next field is "Key-Info"
with two subfields. The first subfield specifies the public-key algorithm used to
encrypt the DEK; currently only RSA is supported. The next subfield is the DEK,
encrypted in the originator's public key. This is an optional field, intended to permit
the originator to decrypt his own message in the event that it is returned by the mail
system. The next field "Issuer-Certificate," is the certificate of whomever signed
the Originator-Certificate.

Continuing with the asymmetric key-management case, the next field is "MIC­
Info." The first subfield gives the algorithm under which the MIC was computed.
The second subfield shows the algorithm under which the MIC was signed. The
third subfield consists of the MIC, signed by the sender's private key.

CHAPTER 24 Example Implementations

-----BEGIN PRIVACY-ENHANCED MESSAGE-­
Proc-Type: 4,MIC-ONLY
Content-Domain: RFC822
Originator-Certificate:

MI!BlTCCAScCAWUwDQYJKoZ!hvcNAQECBQAwUTELMAkGAlUEBhMCVVMx!DAeBgNV
BAoTFlJTQSBEYXRh!FNlY3VyaXR5LCBJbmMuM08wDOYDVOOLEwZCZXRhlDExDzAN
BgNVBAsTBk5PVEFSWTAeFw05MTA5MDQxODM4MTdaFw05MzA5MDMxODM4MTZaMEUx
CzAJBgNVBAYTAlVTMSAwHgYDVQQKExdSUOEgRGFOYSBTZWNlcml0eSwgSW5jljEU
MBIGAlUEAxMLVGVzdCBVc2Vy!DEwWTAKBgRVCAEBAg!CAANLADG!AkEAwHZHl7i+
yJcqDtjJCowzTdBJrdAiLAnSC+CnnjOJELyuQiBgkGrglh3j8/xOfM+YrsyFlu3F
LZPVtzlndhYFJQIDAQABMAOGCSqGS!b3DQEBAgUAAlkACKr0PqphJYwlj+YPtclq
iWlFPuN5jJ79Khfg7ASFxskYkEMjRNZV/HZDZQEhtVaU7Jxfzs2wfX5byMp2X3U/

5XUXGx7qusDgHQGs7Jk9W8CWlfuSWUgN4w~~
Issuer-Certificate:

MIIB3DCCAUgCAQowDQYJKoZihvcNAQECBOAwTzELMAkGAlUEBhMCVVMxIDAeBgNV
BAoTFlJTQSBEYXRhIFNlY3VyaXR5LCBJbmMuMQ8wDQYDVOOLEwZCZXRhIDExDTAL
BgNVBAsTBFRMQOEwHhcNOTEwOTAxMDgwMDAwWhcNOT!wOTAxMDclOTU5WjBRMQsw
CQYDVQQGEwJVUzEgMB4GAlUEChMXUlNBIERhdGEgU2VjdXJpdHksIEluYy4xDzAN
BgNVBAsTBkJldGEgMTEPMAOGAlUECxMGTk9UQVJZMHAwCgYEVQgBAQICArwDYgAw
XwJYCsnp6lQCxYykNlODwutF/jMJ3kL+3PjYyHOwk+/9rLg6X65B/LD4bJHt05XW
cqAz/7R7XhjYCmOPcqbdzoACZtilETrKrcJiDYoP+DkZ8klgCk7hQHpbiwIDAQAB
MAOGCSqGSib3DQEBAgUAA38AAICPv4f9Gx/tY4+p+4DB7MV+tKZnvBoy8zgoMGOx
d02jMZ/3HsyWKWgSFOeH/AJB3qr9zosG47pyMnTf3aSy2nB07CMxpUWRBcXUpE+x
EREZd9++32ofGB!Xaialn0gVUn00zSYgugi0077nJLDUjOhQehCizEs5wUJ35a5h

MIC-Info: RSA-MD5,RSA,
jV20fH+nnXHUBbnLBkPAad/mSQITDZlbVuxvZAOVRZ5q5+Ejl5bQvqNeqOUNQjr6

EtE7K2QDeVMCyXsdJlA8fA~~
LSBB!Gllc3NhZ2UgZm9y!HVzZSBpbiBOZXNOaW5nlgOKLSBGb2xsb3dpbmcgaXMg

YSBibGFuayBsaW510gOKDQpUaGlz!GlzIHRoZSBlbmQuDQo~
-----END PRIVACY-ENHANCED MESSAGE-

Figure 24.6 Example of an encapsulated MIC-ONLY message (asymmet­
ric case).

Still continuing with asymmetric key management, the next fields deal with the
recipients. There are two fields for each recipient: "Recipient-ID-Asymmetric" and
"Key-Info." The "Recipient-ID-Asymmetric" field has two subfields. The first iden­
tifies the authority that issued the receiver's public key; the second is an optional
Version/Expiration subfield. The "Key-Info" field specifies the key management
parameters: The first subfield identifies the algorithm used to encrypt the message
and the second subfield is the DEK encrypted with the receiver's public key.

Security of PEM
RSA keys in PEM can range from 508 bits to 1024 bits. This should be long

enough for anyone's security needs. A more likely attack would be against the key­
management protocols. Mallory could steal your private key-don't write it down

_____________ 2_4_.1_o __ P_ri_v_ac_y_-_En_h_a_n_c_e_d_M_a1_·1_(P_E_M_) ____ 7~~

anywhere-or attempt to fool you into accepting a bogus public key. The key certi­
fication provisions of PEM make this unlikely if everyone follows proper proce­
dures, but people have been known to be sloppy.

A more insidious attack would be for Mallory to modify the PEM implementation
running on your system. This modified implementation could surreptitiously send
Mallory all of your mail, encrypted with his public key. It could even send him a
copy of your private key. If the modified implementation works well, you will never
know what is happening.

There's no real way to prevent this kind of attack. You could use a one-way hash
function and fingerprint the PEM code. Then, each time you run it, you could check
the fingerprint for modification. But Mallory could modify the fingerprint code at
the same time he modifies the PEM code. You could fingerprint the fingerprint code,
but Mallory could modify that as well. If Mallory can get access to your machine, he
can subvert the security of PEM.

The moral is that you can never really trust a piece of software if you cannot trust
the hardware it is running on. For most people, this kind of paranoia is unwarranted.
For some, it is very real.

TIS/PEM
Trusted Information Systems, partially supported by the U.S. government

Advanced Research Projects Agency, has designed and implemented a reference
implementation of PEM (TIS/PEM). Developed for UNIX-based platforms, it has
also been ported to VMS, DOS, and Windows.

Although the PEM specifications indicate a single certification hierarchy for use
by the Internet, TIS/PEM supports the existence of multiple certification hierar­
chies. Sites may specify a set of certificates that are to be considered valid, includ­
ing all certificates issued by them. A site need not join the Internet hierarchy in
order to use TIS/PEM.

TIS/PEM is currently available to all U.S. and Canadian organizations and citizens
upon request. It will be distributed in source code form. Interested parties should
contact: Privacy-Enhanced Mail, Trusted Information Systems, Inc., 3060 Washing­
ton Road (Rte. 97), Glenwood, MD 21738; (301) 854-6889; fax: (301) 854-5363; Inter­
net: pem-info@tis.com.

RIPEM
RIPEM is a program, written by Mark Riordan, that implements the PEM proto­

cols. Although technically not public domain, the program is publicly available and
can be used royalty-free for personal, noncommercial applications. A license for its
use is included with the documentation.

The code cannot be exported. Of course, U.S. government laws don't apply out­
side the United States, and some people have ignored the export rules. RIPEM code
is available on bulletin boards worldwide. Something called RIPEM/SIG, which
only does digital signatures, is exportable.

CHAPTER 24 Example Implementations

At this writing, RIPEM is not a complete implementation of the PEM protocols;
it does not implement certificates for authenticating keys.

Before writing RIPEM, Riordan wrote a similar program called RPEM. This was
intended to be a public-domain electronic-mail encryption program. To try to avoid
patent issues, Riordan used Rabin's algorithm (see Section 19.5). Public Key Partners
claimed that their patents were broad enough to cover all of public-key cryptogra­
phy and threatened to sue; Riordan stopped distributing the program.

RPEM isn't really used anymore. It is not compatible with RIPEM. Since RIPEM
can be used with the full blessing of Public Key Partners, there is no reason to use
RPEM instead.

24.11 MESSAGE SECURITY PROTOCOL (MSP)

The Message Security Protocol (MSP) is the military equivalent of PEM. It was
developed by the NSA in the late 1980s under the Secure Data Network System
(SDNS) program. It is an X.400-compatible application-level protocol for securing
electronic mail. MSP will be used for signing and encrypting messages in the
Department of Defense's planned Defense Message System (DMS) network.

The Preliminary Message Security Protocol (PMSP), to be used for "unclassified
but sensitive" messages, is a version of MSP adapted for use with both X.400 and
TCP /IP. This protocol is also called Mosaic.

Like PEM, MSP and PMSP software applications are flexible and designed to
accommodate a variety of algorithms for security functions including signing, hash­
ing, and encryption. PSMP will work with the Capstone chip (see Section 24.17).

24.12 PRETTY GOOD PRIVACY (PGP)

Pretty Good Privacy (PGP) is a freeware electronic-mail security program, originally
designed by Philip Zimmermann [1652]. It uses IDEA for data encryption, RSA
(with keys up to 2047 bits) for key management and digital signatures, and MD5 as
a one-way hash function.

PGP's random public keys use a probabilistic primality tester, and get their initial
seeds from measuring the user's keyboard latency while typing. PGP generates ran­
dom IDEA keys using the method delineated in ANSI X9.l 7, Appendix C (see Sec­
tion 8.1) [55], with IDEA as the symmetric algorithm instead of DES. PGP also
encrypts the user's private key using a hashed pass phrase instead of a password.

PCP-encrypted messages have layered security. The only thing a cryptanalyst can
learn about an encrypted message is who the recipient is, assuming he knows the
recipient's key ID. Only after the recipient decrypts the message does he learn who
signed the message, if it is signed. Contrast this approach with PEM, which leaves
quite a bit of information about the sender, recipient, and message in the unen­
crypted header.

______________ 2_4_.1_2_P_r_e_tt_y_G_oo_d_P_ri_v_ac_y_(P_G_P_) _____ 7 __ ~

The most interesting aspect of PGP is its distributed approach to key manage­
ment (see Section 8.12). There are no key certification authorities; PGP instead
supports a "web of trust." Every user generates and distributes his own public key.
Users sign each other's public keys, creating an interconnected community of
PGP users.

For example, Alice might physically give her public key to Bob. Bob knows Alice,
so he signs her public key. He then gives the signed key back to her and keeps a copy
for himself. When Alice wants to communicate with Carol, Alice sends Carol a
copy of the key Bob signed. Carol, who already has Bob's public key (she got it at
some other time) and trusts Bob to certify other people's keys, verifies his signature
on Alice's key and accepts it as valid. Bob has introduced Alice to Carol.

PGP does not specify a policy for establishing trust; users are free to decide who
they trust and who they do not. PGP provides mechanisms for associating trust
with public keys and for using trust. Each user keeps a collection of signed public
keys in a file called a public-key ring. Each key in the ring has a key legitimacy field
that indicates the degree to which the particular user trusts the validity of the key.
The higher the trust level, the more the user believes the key is legitimate. A sig­
nature trust field measures how far the user trusts the signer to certify the public
keys of other users. And finally, an owner trust field indicates the degree to which
the particular user trusts the key's owner to sign other public keys; this field is set
manually by the user. PGP continuously updates these fields as users supply new
information.

Figure 24. 7 shows how this model might look for a particular user, Alice. Alice's
key is at the top, and the owner trust value is ultimate trust. Alice has signed Bob's,
Carol's, Dave's, Ellen's, and Frank's keys. She trusts Bob and Carol to sign other peo­
ple's public keys, and she partially trusts Dave and Ellen to sign other people's pub­
lic keys. And she trusts Gail to sign other people's public keys, even though she has
not signed Gail's key herself.

Two partially trusted signatures may be sufficient to certify a key. Alice believes
that Kurt's key is legitimate because both Dave and Ellen have signed it. This is not
automatic in PGP; Alice can set her own paranoia level.

Just because Alice believes a key to be valid, she does not have to trust it to sign
other people's keys. She does not trust Frank to sign other people's public keys, even
though she signed his key herself. And she does not trust Ivan's signature on Mar­
tin's key, or Kurt's signature on Nancy's key.

Owen's key doesn't fit into the web anywhere; perhaps Alice got it from a key
server. PGP does not assume that the key is valid; Alice must either declare the key
valid or decide to trust one of the key's signers.

Of course, nothing prevents Alice from using keys she does not trust. PGP's job is
to alert Alice that the key is not trusted, not to prevent communications.

The weakest link of this whole system is key revocation: It is impossible to guar­
antee that no one will use a compromised key. If Alice's private key is stolen she
can send out something called a key revocation certificate, but since key distribu­
tion is ad hoc and largely word of mouth there is no guarantee that it will reach

CHAPTER 24 Example Implementations

~, sigos y's key

D Alice believes key is legit

Bob

Gail Ivan

Figure 24. 7 PCP trust model.

D Alice trusts key's owner to sign other key

D Alice partially trusts key's owner to sign other key

IZJ Alice does not believe key is legit

Jennifer

everyone who has her public key on his key ring. And as Alice has to sign the key
revocation certificate with her private key; if she loses the key altogether she can­
not revoke it.

The current version of PGP is 2.6.2. A new version of PGP, PGP 3.0, is scheduled
for release by the end of 1995. Changes in 3.0 include options for triple-DES, SHA,
and other public-key algorithms, a split of the encryption and signature public­
key/private-key key pairs, enhanced procedures for key revocation, improved key­
ring management functions, an API for integrating PGP in other programs, and a
completely rewritten code base.

PGP is available for MS-DOS, UNIX, Macintosh, Amiga, and Atari. It is free for per­
sonal, noncommercial use, and is available from many ftp sites on the Internet. To ftp
PGP from MIT, telnet to net-dist.mit.edu, log in as getpgp, answer the questions, then
ftp to net-dist.mit.edu and change to the directory named in the telnet session. It is
also available from ftp.ox.ac.uk, ftp.dsi.unimi.it, ftp.funet.fi, ftp.demon.co.uk, Com­
puserve, AOL, and elsewhere. For U.S. commercial users, PGP can be bought-com-

__________________ 2_4_._13 __ S_m_a_r_t_C_a_r_d_s _______ 7____,,.~

plete with licenses-for about $100 from a company called ViaCrypt, 9033 N 24th
Ave., Phoenix, AZ, 85021; (602) 944-0773; viacrypt@acm.org. Several shareware front­
ends are available to help integrate PCP into MS-DOS, Microsoft Windows, Macin­
tosh, and UNIX.

There are several books about PCP [601,1394,1495]. The source code has even
been published in book form [1653] in an attempt to frustrate the U.S. Department
of State, which continues to maintain that source code is exportable on paper but
not electronically. Assuming you trust IDEA, PCP is the closest you're likely to get
to military-grade encryption.

24.13 SMART CARDS

A smart card is a plastic card, the size and shape of a credit card, with an embedded
computer chip. It's an old idea-the first patents were filed 20 years ago-but prac­
tical limitations made them feasible only five or so years ago. Since then they have
taken off, mostly in Europe. Many countries use smart cards for pay telephones.
There are also smart credit cards, smart cash cards, smart everything cards. The U.S.
credit-card companies are looking at the technology, and within a few years even
backwards Americans will have smart cards in their wallets.

A smart card contains a small computer (usually an 8-bit microprocessor), RAM
(about a quarter kilobyte), ROM (about 6 or 8 kilobytes), and either EPROM or EEP­
ROM (a few kilobytes). Future-generation smart cards will undoubtedly have more
capacity, but some physical limitations on smart cards make expansion difficult.
The card has its own operating system, programs, and data. (What it doesn't have is
power; that comes when the card is plugged in to a reader.) And it is secure. In a
world where you might not trust someone else's computer or telephone or what­
ever, you can still trust a card that you keep with you in your wallet.

Smart cards can have different cryptographic protocols and algorithms programmed
into them. They might be configured as an electronic purse, and be able to spend and
receive digital cash. They may be able to perform zero-knowledge authentication pro­
tocols; they may have their own encryption keys. They might be able to sign docu­
ments, or unlock applications on a computer.

Some smart cards are assumed to be tamperproof; this often protects the institu­
tion that issues the cards. A bank wouldn't want you to be able to hack their smart
card to give yourself more money.

There is a lot of interest in smart cards, and a lot of information about them is
available. A good survey article on the cryptography in smart cards is [672]. CARTES
is a conference held in Paris every October; and CardTech is held in Washington,
D.C. every April. The proceedings of two other smart-card conferences are [342,
382]. There are hundreds of smart-card patents, mostly owned by European compa­
nies. An interesting paper on possible future applications-integrity checking, audit
trails, copy protection, digital cash, secure postage meters-is [1628].

CHAPTER 24 Example Implementations

24.14 PUBLIC-KEY CRYPTOGRAPHY STANDARDS (PKCS)

The Public-Key Cryptography Standards (PKCS) are RSA Data Security, Inc.'s
attempt to provide an industry standard interface for public-key cryptography. Tra­
ditionally, this sort of thing would be handled by ANSI, but, considering the current
situation in cryptography politics, RSADSI figured that they had better do it on their
own. Working with a variety of companies, they developed a series of standards.
Some are compatible with other standards and some are not.

These are not standards in the traditional sense of the word; no standards body
convened and voted on PKCS. According to its own materials, RSADSI will "retain
sole decision-making authority on what each standard is" and will "publish revised
standards when appropriate" [803].

Even so, there is a lot of good stuff here. If you're not sure what kind of syntax and
data structures to use when programming public-key cryptography, these standards
are probably as good as anything else you can come up with. And, since they're not
really standards, you can tailor them to suit your needs.

Following is a short description of each PKCS (PKCS #2 and PKCS #4 have been
incorporated into PKCS #1).

PKCS #1 [1345] describes a method for RSA encryption and decryption, primarily
for constructing the digital signatures and digital envelopes described in PKCS #7. For
digital signatures, the message is hashed and then the hash is encrypted with the pri­
vate key of the signer. Both message and hash are represented together as detailed in
PKCS #7. For digital envelopes (encrypted messages), the message is first encrypted
with a symmetric algorithm, and then the message key is encrypted with the public
key of the recipient. The encrypted message and encrypted key are represented
together according to the syntax of PKCS #7. Both of these methods are compatible
with PEM standards. PKCS #1 also describes a syntax, identical to the syntax in X.509
and PEM, for RSA public and private keys and three signature algorithms-MD2 and
RSA, MD4 and RSA, and MD5 and RSA-for signing certificates and the like.

PKCS #3 [1346] describes a method for implementing Diffie-Hellman key
exchange.

PKCS #5 [1347] describes a method for encrypting messages with a secret key
derived from a password. It uses either MD2 or MD5 to derive the key from the pass­
word, and encrypts with DES in CBC mode. The method is intended primarily to
encrypt private keys when transferring them from one computer system to another,
but can be used to encrypt messages.

PKCS #6 [1348] describes a standard syntax for public key certificates. The syntax
is a superset of an X.509 certificate, so that X.509 certificates can be extracted if nec­
essary. Over and above the X.509 set, additional attributes extend the certification
process beyond just the public key. These include other information, such as elec­
tronic mail address.

PKCS # 7 [1349] is a general syntax for data that may be encrypted or signed, such
as digital envelopes or digital signatures. The syntax is recursive, so that envelopes
can be nested, or someone can sign some previously encrypted data. The syntax also

24.15 Universal Electronic Payment System (UEPS}

allows other attributes, such as timestamps, to be authenticated along with the
message content. PKCS #7 is compatible with PEM so that signed and encrypted
messages can be converted to PEM messages without any cryptographic operations,
and vice versa. PKCS #7 can support a variety of architectures-FEM is one-forcer­
tificate-based key management.

PKCS #8 [1350] describes a syntax for private key information-including a pri­
vate key and a set of attributes-and a syntax for encrypted private keys. PKCS #5
can be used to encrypt the private key information.

PKCS #9 [1351] defines selected attribute types for PKCS #6 extended certificates,
PKCS #7 digitally signed messages, and PKCS #8 private-key information.

PKCS #10 [1352] describes a standard syntax for certification requests. A certifi­
cation comprises a distinguished name, a public key, and (optionally) a set of
attributes, collectively signed by the person requesting certification. Certification
requests are sent to a certification authority, who either transforms the request into
an X.509 public-key certificate or a PKCS #6 certificate.

PKCS #11 [1353], the Cryptographic Token API Standard, specifies a programming
interface called "Cryptoki" for portable cryptographic devices of all kinds. Cryptoki
presents a common logical model, enabling applications to perform cryptographic
operations on portable devices without knowing details of the underlying technol­
ogy. The standard also defines application profiles: sets of algorithms that a device
may support.

PKCS #12 [1354] describes syntax for storing in software a user's public keys,
protected private keys, certificates, and other related cryptographic information.
The goal is to standardize on a single key file for use among a variety of applica­
tions.

These standards are comprehensive, but not exhaustive. Many things are outside
their scope: the problem of naming, noncryptographic issues surrounding certifica­
tion, key lengths, and conditions on various parameters. What the PKCS provide are
a format for transferring data based on public-key cryptography and an infrastruc­
ture to support that transfer.

24.15 UNIVERSAL ELECTRONIC PAYMENT SYSTEM (UEPS)

The UEPS is a smart-card banking application initially developed for rural South
Africa, but later adopted by all of that country's major banking groups. About 2 mil­
lion cards were issued in that country by early 1995. It has also been adopted in
Namibia, and is also being deployed by at least one bank in Russia.

The system provides a secure debit card suitable for regions where poor telephone
service make on-line verification impossible. Both customers and merchants have
cards; customers can use their cards to transfer money to merchants. Merchants can
then take their cards to a telephone and deposit the money in their bank account;
customers can take their cards to a telephone and have money moved onto their
card. There is no intention to provide anonymity, only to prevent fraud.

CHAPTER 24 Example Implementations

Here is the communications protocol between customer Alice and merchant Bob.
(Actually, Alice and Bob just plug their cards into a machine and wait for it to com­
plete the transaction.) When Alice first gets her card, she is given a key pair, K1 and
K2; the bank calculates them from her name and some secret function. Only the
merchant cards have the secrets necessary to work out these customer keys.

(1) Alice sends Bob her name, A, his name, B, and a random number, RA,
encrypted using DES: first with K2 and then with K 1• She also sends her
name in the clear.

A, EK1(EK2(A, B, RA))

(2) Bob calculates K1 and K2 from Alice's name. He decrypts the message, con­
firms that A and B are correct, then encrypts Alice's unencrypted second
message with K2 •

EK2(A, B, RA)

Bob does not send this message to Alice; 56 bits of the ciphertext become
K3 • Bob then sends Alice his name, her name, and another random number,
Rn, encrypted using DES: first with K, and then with K1.

EK1(Eg3(B, A, Rn))

(3) Alice computes K3 in the same manner Bob did. She decrypts Bob's mes­
sage, confirms that B and A are correct, then encrypts Bob's unencrypted
message with K3 •

EK3 (B, A, Ra)

Alice does not send this message to Bob; 56 bits of the ciphertext become
K4 • Alice then sends Bob her name, his name, and the digital check, C. This
check contains the names of the sender and recipient, a date, a check num­
ber, an amount, and two MACs, all encrypted using DES: first with K4 and
then with K 1• One of the MACs can be verified by Alice's bank, and the
other can only be verified by the clearing center. Alice debits her account
by the correct amount.

EK1(EK4(A, B, C))

(4) Bob computes K4 in the same manner Alice did. Assuming all the names
match and the check is correctly formed, he accepts it for payment.

A really clever thing about this protocol is that the encryption key for each mes­
sage depends on the previous message. Each message doubles as an authenticator for
all previous messages. This means that someone can't replay an old message; the
receiver could never decrypt it. I am impressed with this idea and expect that it will
see wider use once it becomes widely known.

Another clever thing about this protocol is that it enforces correct implementa­
tion. If the application developer doesn't implement this protocol correctly, it just
won't work.

_________________ 24_._16 __ C_li_pp_e_r _______ ----c,,7 ~

Both cards store records of every transaction. When the cards eventually go online
to communicate with the bank-the merchant to deposit his money and the cus­
tomer to get more money-the bank uploads these records for auditing purposes.

Tamperproof hardware prevents either participant from messing with the data;
Alice cannot change the value of her card. Extensive audit trails provide data to
identify and prosecute fraudulent transactions. There are universal secrets in the
cards-MAC keys in the customer cards, functions to convert customer names to
K 1 and K2 in the merchant cards-but these are assumed to be difficult to reverse­
engineer.

This scheme is not meant to be perfect, only more secure than either paper
checks or traditional debit cards. The threat of fraud is not from rival militaries,
but from opportunistic customers and merchants. UEPS protects against that kind
of abuse.

The message exchange is an excellent example of a robust protocol: Every mes­
sage names both parties, includes unique information to ensure freshness, and
depends explicitly on all the messages that came before it.

24.16 CLIPPER

The Clipper chip (also known as the MYK-78T) is an NSA-designed, tamper­
resistant VLSI chip designed for encrypting voice conversations; it is one of the two
chips that implements the U.S. government's Escrowed Encryption Standard (EES)
[1153]. VLSI Technologies, Inc. manufactures the chip, and Mykotronx, Inc. pro­
grams it. Initially, the Clipper chip will be available in the AT&T Model 3600 Tele­
phone Security Device (see Section 24.18). The chip implements the Skipjack
encryption algorithm (see Section 13.12), an NSA-designed classified secret-key
encryption algorithm, in OFB only.

The most controversial aspect of the Clipper chip, and the entire EES, is the key­
escrow protocol (see Section 4.14). Each chip has a special key, not needed for mes­
sages. This key is used to encrypt a copy of each user's message key. As part of the
synchronization process, the sending Clipper chip generates and sends a Law Enforce­
ment Access Field (LEAF) to the receiving Clipper chip. The LEAF contains a copy of
the current session key, encrypted with a special key (called the unit key). This allows
a government eavesdropper to recover the session key, and then recover the plaintext
of the conversation.

According to the director of NIST [812]:

A "key-escrow" system is envisioned that would ensure that the "Clipper Chip"
is used to protect the privacy of law-abiding Americans. Each device containing
the chip will have two unique "keys," numbers that will be needed by authorized
government agencies to decode messages encoded by the device. When the device
is manufactured, the two keys would be deposited separately in two "key-escrow"
databases established by the attorney general. Access to these keys would be lim­
ited to government officials with legal authorization to conduct a wiretap.

CHAPTER 24 Example Implementations

The government also wants to encourage the sale of telephones with these devices
abroad; no one knows what might happen to those key-escrow databases.

Politics aside, the internal structure of the LEAF is worth discussing [812,1154,
1594,459, 107,462]. The LEAF is a 128-bit string containing enough information to
allow law enforcement to recover the session key, Ks, assuming the two escrow
agencies in charge of those key-escrow databases cooperate. The LEAF contains a
32-bit unit identifier, U, unique to the Clipper chip. It also contains the current 80-
bit session key encrypted with the chip's unique unit key, Ku, and a 16-bit check­
sum, C, called an escrow identifier. This checksum is a function of the session key,
the IV, and possibly other information. These three fields are encrypted with a fixed
family key, KF, shared by all interoperable Clipper chips. The family key, the
encryption modes used, the details of the checksum, and the exact structure of the
LEAF are all secret. It probably looks something like this:

Ku is programmed into Clipper chips at the factory. This key is then split (see Sec­
tion 3.6) and stored in two different key-escrow databases, guarded by two different
escrow agencies.

For Eve to recover K5 from the LEAF, she first has to decrypt the LEAF with KF and
recover U. Then she has to take a court order to each escrow agency, who each
return half of Ku for the given U. Eve XORs the two halves together to recover Ku,
then she uses Ku to recover Ks, and Ks to eavesdrop on the conversation.

The checksum is designed to prevent someone from circumventing this scheme;
the receiving Clipper chip won't decrypt if the checksum doesn't check. However,
there are only 2 16 possible checksum values, and a bogus LEAF with the right check­
sum but the wrong key can be found in about 42 minutes [187]. This isn't much help
for Clipper voice conversations. Because the key exchange protocol is not part of the
Clipper chip, the 42-minute brute-force attack must occur after key exchange; it
cannot be done before making the telephone call. This attack may work for facsim­
ile transmission or with the Fortezza card (see Section 24.17).

Supposedly, the Clipper chip will resist reverse-engineering by "a very sophisti­
cated, well-funded adversary" [1154], but rumors are that Sandia National Laborato­
ries successfully reverse-engineered one. Even if those rumors aren't true, I suspect
that the largest chip manufacturers in the world can reverse-engineer Clipper; it's
just a matter of time before someone with the right combination of resources and
ethics comes along.

Enormous privacy issues are associated with this scheme. Numerous civil lib­
erty advocacy groups are actively campaigning against any key-escrow mechanism
that gives the government the right to eavesdrop on citizens. But the sneaky thing
is that this ic.ea never went through Congress; NIST published the Escrowed
Encryption Standard as a FIPS [1153], bypassing that irritating legislative process.
Right now it looks like the EES is dying a slow and quiet death, but standards have
a way of creeping up on you.

Anyway, Table 24.2 lists the different agencies participating in this program. Any­
one want to do a threat analysis on having both escrow agents in the executive

_________________ 24_._16 __ c_1i_·pp_e_r _______ ______,,.7 ~

branch? Or on having escrow agents who really don't know anything about the wire­
tap requests, and can do no more than blindly approve them? Or on having the gov­
ernment impose a secret algorithm as a commercial standard?

In any case, implementing Clipper raises enough problems to question its value in
court. Remember, Clipper only works in OFB mode. Despite what you may have
been told to the contrary, this does not provide integrity or authentication. Imagine
that Alice is on trial, and a Clipper-encrypted telephone call is part of the evidence.
Alice claims that she never made the call; the voice is not hers. The phone's com­
pression algorithm is so bad that it is hard to recognize Alice's voice, but the prose­
cution argues that since only Alice's escrowed key will decipher the call it must
have been made from her telephone.

Alice argues that the call was forged like so [984,1339]: Given the ciphertext and
the plaintext, it is possible to XOR them to get the keystream. This keystream can
then be XORed with an entirely different plaintext to form a forged ciphertext,
which can then be converted to forged plaintext when fed into the Clipper decryp­
tor. True or not, this argument could easily put enough doubt in a jury's mind to dis­
regard the telephone call as evidence.

Another attack, called the Squeeze attack, allows Alice to frame Bob. Here's how
[575]: Alice calls Bob using Clipper. She saves a copy of his LEAF as well as theses­
sion key. Then, she calls Carol (who she knows is being wiretapped). During the key
setup, Alice forces the session key to be identical to the one she used with Bob; this
requires hacking the phone, but it is not hard. Then, instead of sending her LEAF she
sends Bob's. It's a valid LEAF, so Carol's phone will not notice. Now she can say
whatever she wants to Carol; when the police decrypt the LEAF, they will find that
it is Bob's. Even if Bob wasn't framed by Alice, the mere fact that he can claim this
in court undermines the purpose of the scheme.

The law enforcement authorities of the United States should not be in the busi­
ness of collecting information in criminal investigations that is useless in court.
Even if key escrow were a good idea, Clipper is a bad way of implementing it.

24.17 CAPSTONE

Capstone (also known as the MYK-80) is the other NSA-developed VLSI crypto­
graphic chip that implements the U.S. government's Escrowed Encryption Standard
[1153]. Capstone includes the following functions [1155,462]:

Table 24.2
EES Participating Agencies

Justice-System Sponsor and Family Key Agent
NIST-Program Manager and Escrow Agent
FBI-Decrypt User and Family Key Agent
Treasury-Escrow Agent
NSA-Program Developer

CHAPTER 24 Example Implementations

The Skipjack algorithm in any of the four basic modes: ECB, CBC,
CFB, and OFB.

A public-key Key Exchange Algorithm (KEA), probably Diffie­
Hellman.

The Digital Signature Algorithm (DSA).

The Secure Hash Algorithm (SHA).

A general purpose exponentiation algorithm.

A general purpose, random-number generator that uses a pure noise
source.

Capstone provides the cryptographic functionality needed for secure electronic
commerce and other computer-based applications. The first application of Capstone
is in a PCMCIA card called Fortezza. (It was originally called Tessera until a com­
pany called Tessera, Inc. complained.)

NSA had considered lengthening Capstone's LEAF checksum in production ver­
sions for use in Fortezza cards, in order to foil the brute-force attack against the
LEAF previously discussed. Instead, they added a feature that reset the card after 10
incorrect LEAFs. This only increases the time required to find a fake but valid LEAF
by 10 percent, to 46 minutes. I am not impressed.

24.18 AT&T MODEL 3600 TELEPHONE SECURITY DEVICE

(TSD)

The AT&T Telephone Security Device (TSD) is the Clipper phone. Actually, there
are four models of the TSD. One contains the Clipper chip, another contains an
exportable proprietary AT & T encryption algorithm, the third contains a proprietary
algorithm for domestic use plus the exportable algorithm, and the fourth contains
the Clipper, domestic, and exportable algorithms.

TSDs use a different session key for each telephone call. A pair of TSDs generate
a session key using Diffie-Hellman key exchange, independent of the Clipper chip.
Since Diffie-Hellman incorporates no authentication, the TSD has two methods to
thwart a man-in-the-middle attack.

The first is a screen. The TSD hashes the session key and displays that hash on a
small screen as four Hex digits. The conversants should confirm that their screens
show the same digits. The voice quality is good enough that they can recognize each
other's voice.

Eve still has a possible attack. Imagine her in the middle of Alice and Bob's con­
versation. She uses one TSD on the line with Alice and a modified TSD on the line
with Bob; in the middle she bridges the two phone calls. Alice tries to go secure. She
generates a key as normal, except that Eve is acting as Bob. Eve recovers the key, and
using the modified TSD, forces the key she generates with Bob to have the same

_______________ 24_._18_A_T_eJ_T_lv._I_od_e_l_3_60_0 ______ 7---=-~

hash value. This attack may not sound very likely, but the TSD uses a variant of the
interlock protocol to prevent it.

The TSD generates random numbers using a noise source and a chaotic amplifier
with digital feedback. This generates a bit stream, which is fed through a post­
whitening filter using the digital signal processor.

Despite all of this, the TSD manual does not mention security at all. In fact, it
says [70]:

AT & T makes no warranty that the TSD will prevent cryptanalytic attack on any
encrypted transmission by any government agency, its agents, or any third party.
Furthermore, AT & T makes no warranty that the TSD will prevent any attack on
any communication by methods which bypass encryption.

-------------------------z~

CHAPTER 25

Politics

25.1 NATIONAL SECURITY AGENCY (NSA)

The NSA is the National Security Agency (once called "No Such Agency" or "Never
Say Anything," but they've been more open recently), the official security body of
the U.S. government. President Harry Truman created the agency in 1952 under the
Department of Defense, and for many years its very existence was kept secret. The
NSA is concerned with signals intelligence; its mandate is to listen in on and decode
all foreign communications of interest to the security of the United States.

The following paragraphs are excerpted from NSA's original charter, signed by
President Truman in 1952, and classified for many years thereafter [1535]:

The COMINT mission of the National Security Agency (NSA) shall be to provide
an effective, unified organization and control of the communications intelligence
activities of the United States conducted against foreign governments, to provide
for integrated operational policies and procedures pertaining thereto. As used in
this directive, the terms "communications intelligence" or "COMINT" shall be
construed to mean all procedures and methods used in the interception of com­
munications other than foreign press and propaganda broadcasts and the obtain­
ing of information from such communications by other than intended recipients,
but shall exclude censorship and the production and dissemination of finished
intelligence.

The special nature of COMINT actives requires that they be treated in all
respects as being outside the framework of other or general intelligence activities.
Orders, directives, policies, or recommendations of any authority of the Executive
Branch relating to the collection, production, security, handling, dissemination,
or utilization of intelligence, and/or classified material, shall not be applicable to
COMINT actives, unless specifically so stated and issued by competent depart­
ment or agency authority represented on the Board. Other National Security

~~:s ________ C_H_A_P_T_ER_2_5_P_o_l_it_ic_s _________________ _

Council Intelligence Directives to the Director of Central Intelligence and related
implementing directives issued by the Director of Central Intelligence shall be
construed as non-applicable to COMINT activities, unless the National Security
Council has made its directive specifically applicable to COMINT.

NSA conducts research in cryptology, both in designing secure algorithms to pro­
tect U.S. communications and in designing cryptanalytic techniques to listen in on
non-U.S. communications. The NSA is known to be the largest employer of mathe­
maticians in the world; it is also the largest purchaser of computer hardware in the
world. The NSA probably possesses cryptographic expertise many years ahead of the
public state of the art (in algorithms, but probably not in protocols) and can
undoubtedly break many of the systems used in practice. But, for reasons of national
security, almost all information about the NSA-even its budget-is classified. (Its
budget is rumored to be $13 billion per year-including military funding of NSA
projects and personnel-and it is rumored to employ 16,000 people.)

The NSA uses its power to restrict the public availability of cryptography, so as to
prevent national enemies from employing encryption methods too strong for the
NSA to break. James Massey discusses this struggle between academic and military
research in cryptography [1007]:

If one regards cryptology as the prerogative of government, one accepts that most
cryptologic research will be conducted behind closed doors. Without doubt, the
number of workers engaged today in such secret research in cryptology far
exceeds that of those engaged in open research in cryptology. For only about 10
years has there in fact been widespread open research in cryptology. There have
been, and will continue to be, conflicts between these two research communities.
Open research is a common quest for knowledge that depends for its vitality on
the open exchange of ideas via conference presentations and publications in
scholarly journals. But can a government agency, charged with responsibilities of
breaking the ciphers of other nations, countenance the publication of a cipher
that it cannot break? Can a researcher in good conscience publish such a cipher
that might undermine the effectiveness of his own government's code-breakers?
One might argue that publication of a provably secure cipher would force all gov­
ernments to behave like Stimson's "gentlemen," but one must be aware that open
research in cryptography is fraught with political and ethical considerations of a
severity more than in most scientific fields. The wonder is not that some conflicts
have occurred between government agencies and open researchers in cryptology,
but rather that these conflicts (at least those of which we are aware) have been so
few and so mild.

James Bamford wrote a fascinating book about the NSA: The Puzzle Palace [79],
recently updated by Bamford and Wayne Madsen [80].

The Commercial COMSEC Endorsement Program (CCEP)
The Commercial COMSEC Endorsement Program (CCEP), codenamed Overtake,

is a 1984 NSA initiative to facilitate the development of computer and communica­
tions products with embedded cryptography [85, 1165]. The military had always paid

25.2 National Computer Security Center (NCSC)

for this kind of thing for themselves, and it was very expensive. The NSA figured
that if companies could sell equipment to both the military and to corporate users,
even overseas, costs would go down and everyone would benefit. They would no
longer endorse equipment as complying with Federal Standard 1027, and then CCEP
would provide government-endorsed cryptographic equipment [419].

NSA developed a series of cryptographic modules for different purposes. Different
algorithms would be used in the modules for different applications, and manufac­
turers would be able to pull one module out and plug in another depending on the
customer. There were modules for military use (Type I), modules for "unclassified
but sensitive" government use (Type II), modules for corporate use (Type III), and
modules for export (Type IV). Table 25.1 summarizes the different modules, applica­
tions, and names.

This program is still around, but never became popular outside the government.
All the modules were tamperproof, all the algorithms were classified, and you had
to get your keys from NSA. Corporations never really bought into the idea of using
classified algorithms dictated by the government. You'd think the NSA would have
learned from this lesson and not even bothered with Clipper, Skipjack, and
escrowed encryption chips.

25.2 NATIONAL COMPUTER SECURITY CENTER (NCSC)

The National Computer Security Center, a branch of the NSA, is responsible for the
government's trusted computer program. Currently, the center evaluates commer­
cial security products (both hardware and software), sponsors and publishes research,
develops technical guidelines, and generally provides advice, support, and training.

The NCSC publishes the infamous "Orange Book" [465]. Its actual title is the
Department of Defense Trusted Computer System Evaluation Criteria, but that's a
mouthful to say and the book has an orange cover. The Orange Book attempts to
define security requirements, gives computer manufacturers an objective way to
measure the security of their systems, and guides them as to what to build into their
secure products. It focuses on computer security and doesn't really say a lot about
cryptography.

The Orange Book defines four broad divisions of security protection. It also
defines classes of protection within some of those divisions. They are summarized
in Table 25.2.

Application

Voice/low-speed data
Computer
High-speed data
Next Generation

Table 25.1
CCEP Modules

Type I

Winster
Tepache
Foresee
Countersign I

Type II

Edgeshot
Bulletproof
Brushstroke
Countersign II

~""'s,---------C_H_A_P_T_ER_2_5_P_o_l_it_ic_s _________________ _

Sometimes manufacturers say things like "we have C2 security." This is what
they're talking about. For more information on this, read [1365]. The computer secu­
rity model used in these criteria is called the Bell-LaPadula model [100,101,102,103].

The NCSC has published a whole series of books on computer security, sometimes
called the Rainbow Books (all the covers have different colors). For example, Trusted
Network Interpretation of the Trusted Computer System Evaluation Criteria [1146],
sometimes called the "Red Book," interprets the Orange Book for networks and net­
work equipment. The Trusted Database Management System Interpretation of the
Trusted Computer System Evaluation Criteria [1147]-I can't even begin to describe
the color of that cover-does the same for databases. There are now over 30 of these
books, some with hideously colored covers.

For a complete set of the Rainbow Books, write Director, National Security
Agency, INFOSEC Awareness, Attention: CS 1, 9800 Savage Road, Fort George G.
Meade, MD 20755-6000; (410) 766-8729. Don't tell them I sent you.

25.3 NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

(NIST)

The NIST is the National Institute of Standards and Technology, a division of the
U.S. Department of Commerce. Formerly the NBS (National Bureau of Standards),
it changed its name in 1988. Through its Computer Systems Laboratory (CSL), NIST
promotes open standards and interoperability that it hopes will spur the economic
development of computer-based industries. To this end, NIST issues standards and
guidelines that it hopes will be adopted by all computer systems in the United
States. Official standards are published as FIPS (Federal Information Processing
Standards) publications.

If you want copies of any FIPS (or any other NIST publication), contact National
Technical Information Service (NTIS), U.S. Department of Commerce, 5285 Port
Royal Road, Springfield, VA 22161; (703) 487-4650; or visit gopher://csrc.ncsl.nist.gov.

When Congress passed the Computer Security Act of 1987, NIST was mandated
to define standards for ensuring the security of sensitive but unclassified informa-

Table 25.2
Orange Book Classifications

D: Minimal Security
C: Discretionary Protection

C 1: Discretionary Security Protection
C2: Controlled Access Protection

B: Mandatory Protection
B 1: Labeled Security Protection
B2: Structured Protection
B3: Security Domains

A: Verified Protection
Al: Verified Design

25.3 National Institute of Standards and Technology (NIST)

tion in government computer systems. (Classified information and Warner Amend­
ment data are under the jurisdiction of the NSA.) The Act authorizes NIST to work
with other government agencies and private industry in evaluating proposed tech­
nology standards.

NIST issues standards for cryptographic functions. U.S. government agencies are
required to use them for sensitive but unclassified information. Often the private
sector adopts these standards as well. NIST issued DES, DSS, SHS, and EES.

All these algorithms were developed with some help from the NSA, ranging from
analyzing DES to designing DSS, SHS, and the Skipjack algorithm in EES. Some peo­
ple have criticized NIST for allowing the NSA to have too much control over these
standards, since the NSA's interests may not coincide with those of NIST. It is
unclear how much actual influence NSA has on the design and development of the
algorithms. Given NIST's limited staff, budget, and resources, NSA's involvement is
probably considerable. NSA has significant resources to contribute, including a
computer facility second-to-none.

The official "Memorandum of Understanding" (MOU) between the two agencies
reads:

MEMORANDUM OF UNDERSTANDING BETWEEN THE DIRECTOR OF
THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY AND
THE DIRECTOR OF THE NATIONAL SECURITY AGENCY CONCERNING
THE IMPLEMENTATION OF PUBLIC LAW 100-235

Recognizing that:
A. Under Section 2 of the Computer Security Act of 1987 (Public Law 100-235),

(the Act), the National Institute of Standards and Technology (NIST) has the
responsibility within the Federal Government for:

1. Developing technical, management, physical, and administrative standards
and guidelines for the cost-effective security and privacy of sensitive information
in Federal computer systems as defined in the Act; and,

2. Drawing on the computer system technical security guidelines of the
National Security Agency (NSA) in this regard where appropriate.

B. Under Section 3 of the Act, the NIST is to coordinate closely with other
agencies and offices, including the NSA, to assure:

1. Maximum use of all existing and planned programs, materials, studies, and
reports relating to computer systems security and privacy, in order to avoid
unnecessary and costly duplication of effort; and,

2. To the maximum extent feasible, that standards developed by the NIST
under the Act are consistent and compatible with standards and procedures devel­
oped for the protection of classified information in Federal computer systems.

C. Under the Act, the Secretary of Commerce has the responsibility, which he
has delegated to the Director of NIST, for appointing the members of the Com­
puter System Security and Privacy Advisory Board, at least one of whom shall be
from the NSA.

Therefore, in furtherance of the purposes of this MOU, the Director of the NIST
and the Director of the NSA hereby agree as follows:

~..,_:s.,-------------C_H_A_P_TE_R_2_5_P_o_l_it_ic_s _________________ _

I. The NIST will:
1. Appoint to the Computer Security and Privacy Advisory Board at least one

representative nominated by the Director of the NSA.
2. Draw upon computer system technical security guidelines developed by the

NSA to the extent that the NIST determines that such guidelines are consistent
with the requirements for protecting sensitive information in Federal computer
systems.

3. Recognize the NSA-certified rating of evaluated trusted systems under the
Trusted Computer Security Evaluation Criteria Program without requiring addi­
tional evaluation.

4. Develop telecommunications security standards for protecting sensitive
unclassified computer data, drawing upon the expertise and products of the
National Security Agency, to the greatest extent possible, in meeting these
responsibilities in a timely and cost-effective manner.

5. Avoid duplication where possible in entering into mutually agreeable
arrangements with the NSA for the NSA support.

6. Request the NSA's assistance on all matters related to cryptographic algo­
rithms and cryptographic techniques including but not limited to research, devel­
opment evaluation, or endorsement.

IL The NSA will:
1. Provide the NIST with technical guidelines in trusted technology, telecom­

munications security, and personal identification that may be used in cost-effective
systems for protecting sensitive computer data.

2. Conduct or initiate research and development programs in trusted technology,
telecommunications security, cryptographic techniques and personal identification
methods.

3. Be responsive to the NIST's requests for assistance in respect to all matters
related to cryptographic algorithms and cryptographic techniques including but
not limited to research, development, evaluation, or endorsement.

4. Establish the standards and endorse products for application to secure sys­
tems covered in 10 USC Section 2315 (the Warner Amendment).

5. Upon request by Federal agencies, their contractors and other government­
sponsored entities, conduct assessments of the hostile intelligence threat to fed­
eral information systems, and provide technical assistance and recommend
endorsed products for application to secure systems against that threat.

III. The NIST and the NSA shall:
1. Jointly review agency plans for the security and privacy of computer systems

submitted to NIST and NSA pursuant to section 6(b) of the Act.
2. Exchange technical standards and guidelines as necessary to achieve the pur­

poses of the Act.
3. Work together to achieve the purposes of this memorandum with the great­

est efficiency possible, avoiding unnecessary duplication of effort.
4. Maintain an on-going open dialogue to ensure that each organization

remains abreast of emerging technologies and issues affecting automated infor­
mation system security in computer-based systems.

________________ 2_5_._4_R_S_A_D_a_t_a_S_e_c_u_n_·ty_,_I_n_c. ______ z:-~

5. Establish a Technical Working Group to review and analyze issues of
mutual interest pertinent to protection of systems that process sensitive or other
unclassified information. The Group shall be composed of six federal employees,
three each selected by NIST and NSA and to be augmented as necessary by rep­
resentatives of other agencies. Issues may be referred to the group by either the
NSA Deputy Director for Information Security or the NIST Deputy Director or
may be generated and addressed by the group upon approval by the NSA DOI or
NIST Deputy Director. Within days of the referral of an issue to the Group by
either the NSA Deputy Director for Information Security or the NIST Deputy
Director, the Group will respond with a progress report and plan for further anal­
ysis, if any.

6. Exchange work plans on an annual basis on all research and development
projects pertinent to protection of systems that process sensitive or other unclas­
sified information, including trusted technology, for protecting the integrity and
availability of data, telecommunications security and personal identification
methods. Project updates will be exchanged quarterly, and project reviews will be
provided by either party upon request of the other party.

7. Ensure the Technical Working Group reviews prior to public disclosure all
matters regarding technical systems security techniques to be developed for use
in protecting sensitive information in federal computer systems to ensure they
are consistent with the national security of the United States. If NIST and NSA
are unable to resolve such an issue within 60 days, either agency may elect to
raise the issue to the Secretary of Defense and the Secretary of Commerce. It is
recognized that such an issue may be referred to the President through the NSC
for resolution. No action shall be taken on such an issue until it is resolved.

8. Specify additional operational agreements in annexes to this MOU as they
are agreed to by NSA and NIST.

IV. Either party may elect to terminate this MOU upon six months' written
notice. This MOU is effective upon approval of both signatories.

/signed/

RAYMOND G. KAMMER
Acting Director, National Institute of Standards and Technology, 24 March

1989

W. 0. STUDEMAN
Vice Admiral, U.S. Navy; Director, National Security Agency, 23 March 1989

25.4 RSA DATA SECURITY, INC.

RSA Data Security, Inc. (RSADSI) was founded in 1982 to develop, license, and mar­
ket the RSA patent. It has some commercial products, including a standalone e-mail
security package, and various cryptographic libraries (available in either source or
object form). RSADSI also markets the RC2 and RC4 symmetric algorithms (see
Section 11.8). RSA Laboratories, a research lab associated with RSADSI, performs
basic cryptographic research and provides consulting services.

~""'S ________ C_H_A_P_TE_R_2_5_P_o_l_it_ic_'S _________________ _

Anyone interested in either their patents or products should contact Director of
Sales, RSA Data Security, Inc., 100 Marine Parkway, Redwood City, CA 94065; (415)
595-8782; fax: (415) 595-1873.

25.5 PUBLIC KEY PARTNERS

The five patents in Table 25.3 are held by Public Key Partners (PKP) of Sunnyvale,
California, a partnership between RSADSI and Caro-Kahn, Inc.-the parent com­
pany of Cylink. (RSADSI gets 65 percent of the profits and Caro-Kahn gets 35 per­
cent.) PKP claims that these patents, and 4,218,582 in particular, apply to all uses of
public-key cryptography.

In [574], PKP wrote:

These patents [4,200,770, 4,218,582, 4,405,829, and 4,424,414] cover all known
methods of practicing the art of Public Key, including the variations collectively
known as ElGamal.

Due to the broad acceptance of RSA digital signatures throughout the interna­
tional community, Public Key Partners strongly endorses its incorporation in a
digital signature standard. We assure all interested parties that Public Key Part­
ners will comply with all of the policies of ANSI and the IEEE concerning the
availability of licenses to practice this art. Specifically, in support of any RSA sig­
nature standard which may be adopted, Public Key Partners hereby gives its
assurance that licenses to practice RSA signatures will be available under reason­
able terms and conditions on a nondiscriminatory basis.

Whether this is true depends on who you talk to. PKP's licenses have mostly
been secret, so there is no way to check if the licenses are standard. Although they
claim to have never denied a license to anyone, at least two companies claim to
have been denied a license. PKP guards its patents closely, threatening anyone who
tries to use public-key cryptography without a license. In part, this is a reaction to
U.S. patent law. If you hold a patent and fail to prosecute an infringement, you can
lose your patent. There has been much talk about whether the patents are legal, but
so far it has all been talk. All legal challenges to PKP's patents have been settled
before judgment.

Patent# Date

4,200,770 4/29/80
4,218,582 8/19/80
4,405,829 9/20/83
4,424,414 3/3/84
4,995,082 2/19/91

Table 25.3
Public Key Partners' Patents

Inventors

Hellman, Diffie, Merkle
Hellman, Merkle
Rivest, Shamir, Adleman
Hellman, Pohlig
Schnorr

Patent Covers

Diffie- Hellman Key Exchange
Merkle-Hellman Knapsacks
RSA
Pohlig- Hellman
Schnorr Signatures

25. 7 RACE Integrity Primitives Evaluation (RIPE)

I am not going to dispense legal advice in this book. Maybe the RSA patent will not
hold up in court. Maybe the patents do not apply to the entirety of public-key cryp­
tography. (Honestly, I can't see how they cover ElGamal or elliptic curve cryptosys­
tems.) Perhaps someone will eventually win a suit against PKP or RSADSI. But keep
in mind that corporations with large legal departments like IBM, Microsoft, Lotus,
Apple, Novell, Digital, National Semiconductor, AT&T, and Sun have all licensed
RSA for use in their products rather than fight them in court. And Boeing, Shell Oil,
DuPont, Raytheon, and Citicorp have all licensed RSA for their own internal use.

In one case, PKP brought suit against TRW Corporation for using the ElGamal
algorithm without a license. TRW claimed they did not need a license. PKP and
TRW reached a settlement in June 1992. The details of the settlement are unknown,
but they included an agreement by TRW to license the patents. This does not bode
well. TRW can afford good lawyers; I can only assume that if they thought they
could win the suit without spending an unreasonable amount of money, they would
have fought.

Meanwhile, PKP is having its own internal problems. In June 1994 Caro-Kahn
sued RSADSI alleging, among other things, that the RSA patent is invalid and unen­
forceable [401]. Both partners are trying to have the partnership dissolved. Are the
patents valid or not? Will users have to get a license from Caro-Kahn to use the RSA
algorithm? Who will own the Schnorr patent? The matter will probably be sorted
out by the time this book sees publication.

Patents are good for only 17 years, and cannot be renewed. On April 29, 1997,
Diffie-Hellman key exchange (and the ElGamal algorithm) will enter the public
domain. On September 20, 2000, RSA will enter the public domain. Mark your
calendars.

25.6 INTERNATIONAL ASSOCIATION FOR CRYPTOLOGIC
REsEARCH (IACR)

The International Association for Cryptologic Research is the worldwide crypto­
graphic research organization. Its stated purpose is to advance the theory and practice
of cryptology and related fields. Membership is open to any person. The association
sponsors two annual conferences, Crypto (held in Santa Barbara in August) and Euro­
crypt (held in Europe in May), and publishes quarterly The fournal of Cryptology and
the IACR Newsletter.

The address of the IACR Business Office changes whenever the president does.
The current address is: IACR Business Office, Aarhus Science Park, Gustav Wieds
Vej 10, DK-8000 Aarhus C, Denmark.

25. 7 RACE INTEGRITY PRIMITIVES EVALUATION (RIPE)

The Research and Development in Advanced Communication Technologies in
Europe (RACE) program was launched by the European Community to support pre-

~""s,----------C_H_A_P_T_ER_2_5_P_o_l_it_ic_s _________________ _

competitive and pre-normative work in communications standards and technolo­
gies to support Integrated Broadband Communication (IBC). As part of that effort,
RACE established the RACE Integrity Primitives Evaluation (RIPE) to put together
a portfolio of techniques to meet the anticipated security requirements of IBC.

Six leading European cryptography research groups made up the RIPE consor­
tium: Center for Mathematics and Computer Science, Amsterdam; Siemens AG;
Philips Crypto BV; Royal PTT Nederland NV, PTT Research; Katholieke Univer­
siteit Leuven; and Aarhus Universitet. After calls for algorithms in 1989 and 1991
[1564], 32 submissions from around the world, and a 350 man-month evaluation
project, the consortium published RIPE Integrity Primitives [1305,1332]. The
report included an introduction and some basic integrity concepts, and these prim­
itives: MDC-4 (see Section 18.11), RIPE-MD (see Section 18.8), RIPE-MAC (see Sec­
tion 18.14), IBC-HASH, SKID (see Section 3.2), RSA, COMSET (see Section 16.1),
and RSA key generation.

25.8 CONDITIONAL ACCESS FOR EUROPE (CAFE)

Conditional Access for Europe (CAFE) is a project in the European Community's
ESPRIT program [204,205]. Work began in December 1992 and is scheduled to be
finished by the end of 1995. The consortium involved consists of groups for social
and market studies (Cardware, Institut fur Sozialforschung), software and hardware
manufacturers (DigiCash, Gemplus, Ingenico, Siemens), and cryptographers (CWI
Amsterdam, PTT Research Netherlands, SPET, Sintef Delab Trondheim, Universi­
ties of Arhus, Hildesheim and Leuven).

The goal is to develop systems for conditional access, particularly digital payment
systems. Payment systems must give legal certainty to everybody at all times and
require as little trust as possible-this certainty should not depend on the tamper­
resistance of any devices.

The basic device for CAFE is an electronic wallet: a small computer that looks
something like a pocket calculator. It has a battery, keyboard, screen, and an
infrared channel for communicating with other wallets. Every user owns and uses
his own wallet, which administers his rights and guarantees his security.

A device with a keyboard and screen has an advantage over a smart card; it can
operate independent of a terminal. A user can directly enter his password and the
amount of the payment. The user does not have to give his wallet up to complete a
transaction, unlike tne current situation with credit cards.

Additional features are:

Offline transactions. The purpose of the system is to replace small
cash transactions; an online system would be too cumbersome.

Loss tolerance. If a user loses his wallet, or if it breaks or is stolen, he
can recover his money.

Support for different currencies.

_______________ 25_._9_IS_O_!_IE_C_9_9_7_9 ______ 7 ~

An open architecture and open system. A user should be able to pay
for arbitrary services, such as shopping, telephone, and public trans­
port, by a range of service providers. The system should be interoper­
able between any number of electronic money issuers, and between
different wallet types and manufacturers.

Low cost.

At this writing there is a software version of the system, and the consortium is hard
at work on a hardware prototype.

25.9 1S0/IEC 9979

In the mid-80s, the ISO tried to standardize DES, which by then was already a FIPS
and an ANSI standard. After some political wrangling, the ISO decided not to stan­
dardize cryptographic algorithms, but instead to register algorithms. Only encryp­
tion algorithms can be registered; hash functions and signature schemes cannot.
Any national body can submit an algorithm for registration.

Currently only three algorithms have been submitted (see Table 25.4). A submis­
sion includes information about applications, parameters, implementations, modes,
and test vectors. A detailed description is optional; it is possible to submit secret
algorithms for registration.

The fact that an algorithm is registered does not imply anything about its quality,
nor is registration an approval of the algorithm by the ISO/IEC. Registration merely
indicates that a single national body wants to register the algorithm, based on what­
ever criteria that body uses.

I am not impressed with this idea. Registration obstructs the standardization pro­
cess. Rather than agreeing on a few algorithms, the ISO is allowing any algorithm to
be registered. With so little control over what is registered, stating that an algorithm
is "ISO/IEC 9979 Registered" sounds a whole lot better than it is. In any case, the
registry is maintained by the National Computer Centre Ltd., Oxford Road, Man­
chester, Ml 7ED, United Kingdom.

Table 25.4
1S0/IEC 9979

Registered Algorithms
Name

B-CRYPT
IDEA
LUC

Registration Number

0001
0002
0003

~""':s,-------------C_H_A_P_T_ER_2_5_P_o_l_it_i_cs _________________ _

25.10 PROFESSIONAL, CIVIL LIBERTIES, AND INDUSTRY
GROUPS

Electronic Privacy Information Center (EPIC)
EPIC was established in 1994 to focus public attention on emerging privacy issues

relating to the National Information Infrastructure, such as the Clipper chip, the
Digital Telephony proposal, national identity numbers and systems, medical
records privacy, and the sale of consumer data. EPIC conducts litigation, sponsors
conferences, produces reports, publishes the EPIC Alert, and leads campaigns on
privacy issues. Anyone interested in joining should contact Electronic Privacy Infor­
mation Center, 666 Pennsylvania Avenue SE, Suite 301, Washington, D.C. 20003;
(202) 544-9240; fax: (202) 547-5482; Internet: info@epic.org.

Electronic Frontier Foundation (EFF)
The EFF is dedicated to protecting civil rights in cyberspace. With respect to cryp­

tographic policy in the United States, they believe that information and access to
cryptography are fundamental rights, and therefore should be free of government
restriction. They organized the Digital Privacy and Security Working Group, a coali­
tion of 50 organizations. The group opposed the Digital Telephony bill and the Clip­
per initiative. The EFF is also helping in a lawsuit against cryptography export
controls [143]. Anyone interested in joining the EFF should contact Electronic Fron­
tier Foundation, 1001 G Street NW, Suite 950E, Washington, D.C. 20001; (202) 347-
5400; fax: (202) 393-5509; Internet: eff@eff.org.

Association for Computing Machinery (ACM)
The ACM is an international computer industry organization. In 1994 the U.S.

ACM Public Policy Committee produced an excellent report on U.S. cryptography
policy [935]. This should be required reading for anyone interested in the politics of
cryptography. It is available via anonymous ftp from info.acm.org in /reports/
acm_ crypto / acm_crypto _study. ps.

Institute of Electrical and Electronics Engineers (IEEE)
The IEEE is another professional organization. The U.S. office investigates and

makes recommendations on privacy-related issues including encryption policy,
identity numbers, and privacy protections on the Internet.

Software Publishers Association (SPA)
The SPA is a trade association of over 1000 personal computer software compa­

nies. They have lobbied for relaxation of export controls on cryptography, and main­
tain a list of commercially available foreign cryptography products.

25.11 SCI.CRYPT

Sci.crypt is the Usenet newsgroup for cryptology. It is read by an estimated 100,000
people worldwide. Most of the posts are nonsense, bickering, or both; some are

___________________ 2_5_._13 __ P_a_te_n_t_s ________ 7---;;;;,,'~

political, and most of the rest are requests for information or basic questions. Occa­
sionally nuggets of new and useful information are posted to this newsgroup. If you
follow sci.crypt regularly, you will learn how to use something called a kill file.

Another Usenet newsgroup is sci.crypt.research, a moderated newsgroup devoted
to discussions about cryptology research. There are fewer posts and they are more
interesting.

25 .12 CYPHERPUNKS

The Cypherpunks are an informal group of people interested in teaching and learn­
ing about cryptography. They also experiment with cryptography and try to put it
into use. In their opinion, all the cryptographic research in the world doesn't do soci­
ety any good unless it gets used.

In" A Cypherpunk's Manifesto," Eric Hughes writes [744]:

We the Cypherpunks are dedicated to building anonymous systems. We are
defending our privacy with cryptography, with anonymous mail forwarding sys­
tems, with digital signatures, and with electronic money.

Cypherpunks write code. We know that someone has to write software to
defend privacy, and since we can't get privacy unless we all do, we're going to
write it. We publish our code so that our fellow Cypherpunks may practice and
play with it. Our code is free for all to use, worldwide. We don't care much if you
don't approve of the software we write. We know that software can't be destroyed
and that widely dispersed systems can't be shut down.

People interested in joining the cypherpunks mailing list on the Internet should
send mail to majordomo@toad.com. The mailing list is archived at ftp.csua.
berkeley.edu in /pub/cypherpunks.

25.13 PATENTS

Software patents are an issue much larger than the scope of this book. Whether
they're good or bad, they exist. Algorithms, cryptographic algorithms included, can
be patented in the United States. IBM owned the DES patents [514]. IDEA is
patented. Almost every public-key algorithm is patented. NIST even has a patent for
the DSA. Some cryptography patents have been blocked by intervention from the
NSA, under the authority of the Invention Secrecy Act of 1940 and the National
Security Act of 1947. This means that instead of a patent, the inventor gets a secrecy
order and is prohibited from discussing his invention with anybody.

The NSA has special dispensation when it comes to patents. They can apply for a
patent and then block its issuance. It's a secrecy order again, but here the NSA is
both the inventor and the issuer of the order. When, at some later date, the secrecy
order is removed, the Patent Office issues the patent good for the standard 1 7 years.
This rather clearly protects the invention while keeping it secret. If someone else

~""':S ________ C_H_A_P_T_ER_2_5_P_o_l_it_i_cs _________________ _

invents the same thing, the NSA has already filed for the patent. If no one else
invents it, then it remains secret.

Not only does this fly directly in the face of the patent process, which is supposed
to disclose as well as protect inventions, it allows the NSA to keep a patent for more
than 17 years. The 17-year clock starts ticking after the patent is issued, not when
it is filed. How this will change, now that the United States has ratified the CATT
treaty, is unclear.

25.14 U.S. EXPORT RULES

According to the U.S. government, cryptography can be a munition. This means it
is covered under the same rules as a TOW missile or an Ml Abrams tank. If you sell
cryptography overseas without the proper export license, then you are an interna­
tional arms smuggler. Unless you think time in a federal penitentiary would look
good on your resume, pay attention to the rules.

With the advent of the Cold War in 1949, all of the NATO countries (except Ice­
land), and later Australia, Japan, and Spain, formed CoCom, the Coordinating Com­
mittee for Multilateral Export Controls. This is an unofficial nontreaty organization,
chartered to coordinate national restrictions on the export of sensitive military tech­
nologies to the Soviet Union, other Warsaw Pact countries, and the People's Repub­
lic of China. Examples of controlled technologies are computers, milling machinery,
and cryptography. The goal here was to slow technology transfer into those coun­
tries, and thereby keep their militaries inferior.

Since the end of the Cold War, the CoCom countries realized that many of their
controls were obsolete. They are supposedly in the process of defining something
called the "New Forum, 11 another multinational organization designed to stop the
flow of military technologies to countries the members don't particularly like.

In any case, U.S. export policy on strategic goods is defined by the Export Admin­
istration Act, the Arms Export Control Act, the Atomic Energy Act, and the
Nuclear Non-Proliferation Act. The controls established by all this legislation are
implemented through a number of statutes, none of them coordinated with each
other. Over a dozen agencies including the military services administer controls;
often their regulatory programs overlap and contradict.

Controlled technologies appear on several lists. Cryptography has traditionally
been classified as a munition and appears on the U.S. Munitions List (USML),
the International Munitions List (IML), the Commerce Control List (CCL), and the
International Industrial List (IIL). The Department of State is responsible for
the USML; it is published as part of the International Traffic in Arms Regulations
(ITAR) [466,467].

Two U.S. government agencies control export of cryptography. One is the Bureau
of Export Administration (BXA) in the Department of Commerce, authorized by the
Export Administration Regulations (EAR). The other is the Office of Defense Trade
Controls (DTC) in the State Department, authorized by the ITAR. As a rule of
thumb, the Commerce Department's BXA has far less stringent requirements, but

_________________ 2_5_.1_4_U_.s_._E_x_p_o_rt_R_u_l_e_s ______ z: __ ~

State Department's DTC (which takes technical and national security advice from
the NSA, and always seems to follow that advice) sees all cryptography exports first
and can refuse to transfer jurisdiction to BXA.

The ITAR regulates this stuff. (Before 1990 the Office of Defense Trade Controls
was called the Office of Munitions Controls; presumably this public relations effort
is designed to help us forget that we're dealing with guns and bombs.) Historically,
the DTC has been reluctant to grant export licenses for encryption products
stronger than a certain level-not that they have ever been public about exactly
what that level is.

The following sections are excerpted from the ITAR [466,467]:

§ 120.10 Technical data.
Technical data means, for purposes of this subchapter:
(1) Information, other than software as defined in 120.lO(d), which is required

for the design, development, production, processing, manufacture, assembly,
operation, repair, maintenance or modification of defense articles. This includes,
for example, information in the form of blueprints, drawings, photographs, plans,
instructions and documentation;

(2) Classified information relating to defense articles and defense services;
(3) Information covered by an invention secrecy order;
(4) Software as defined in Sec. 121.8(f) directly related to defense articles;
(5) This definition does not include information concerning general scientific,

mathematical or engineering principles commonly taught in schools, colleges and
universities in the public domain as defined in § 120.11. It also does not include
basic marketing information on function or purpose or general system descrip­
tions of defense articles.

§ 120.11 Public domain.
Public domain means information which is published and which is generally

accessible or available to the public:
(1) Through sales at newsstands and bookstores;
(2) Through subscriptions which are available without restriction to any indi­

vidual who desires to obtain or purchase the published information;
(3) Through second class mailing privileges granted by the U.S. Government;
(4) At libraries open to the public or from which the public can obtain docu­

ments;
(5) Through patents available at any patent office;
(6) Through unlimited distribution at a conference, meeting, seminar, trade

show or exhibition, generally accessible to the public, in the United States;
(7) Through public release (i.e., unlimited distribution) in any form (e.g., not

necessarily in published form) after approval by the cognizant U.S. government
department or agency (see also§ 125.4(b)(l3)).

(8) Through fundamental research in science and engineering at accredited insti­
tutions of higher learning in the U.S., where the resulting information is ordinarily
published and shared broadly in the scientific community. Fundamental research is
defined to mean basic and applied research in science and engineering where the

~~:s ________ C_H_A_PT_E_R_2_S_P_o_l_it_ic_s _________________ _

resulting information is ordinarily published and shared broadly within the scien­
tific community, as distinguished from research the results of which are restricted
for proprietary reasons or specific U.S. Government access and dissemination con­
trols. University research will not be considered fundamental research if:

(i) The University or its researchers accept other restrictions on publication of
scientific and technical information resulting from the project or activity, or

(ii) The research is funded by the U.S. Government and specific access and dis­
semination controls protecting information resulting from the research are appli­
cable.

§ 120.17 Export.
Export means:
(1) Sending or taking defense articles out of the United States in any manner,

except by mere travel outside of the United States by a person whose personal
knowledge includes technical data; or

(2) Transferring registration, control or ownership to a foreign person of any air­
craft, vessel, or satellite covered by the U.S. Munitions List, whether in the
United States or abroad; or

(3) Disclosing (including oral or visual disclosure) or transferring in the United
States any defense articles to an embassy, any agency or subdivision of a foreign
government (e.g., diplomatic missions); or

(4) Disclosing (including oral or visual disclosure) or transferring technical data
to a foreign person, whether in the United States or abroad; or

(5) Performing a defense service on behalf of, or for the benefit of, a foreign per­
son, whether in the United States or abroad.

(6) A launch vehicle or payload shall not, by the launching of such vehicle, be
considered export for the purposes of this subchapter. However, for certain lim­
ited purposes (see§ 126.1 of this subchapter), the controls of this subchapter apply
to sales and other transfers of defense articles or defense services.

Part 121-The United States Munitions List

§ 121.1 General. The United States Munitions List
Category XIII-Auxiliary Military Equipment
(1) Cryptographic (including key management) systems, equipment, assem­

blies, modules, integrated circuits, components or software with the capability of
maintaining secrecy or confidentiality of information or information systems,
except cryptographic equipment and software as follows:

(i) Restricted to decryption functions specifically designed to allow the execu­
tion of copy protected software, provided the decryption functions are not user­
accessible.

(ii) Specifically designed, developed or modified for use in machines for banking
or money transactions, and restricted to use only in such transactions. Machines
for banking or money transactions include automatic teller machines, self-service
statement printers, point of sale terminals or equipment for the encryption of
interbanking transactions.

_________________ 25_._1_4_U_._s_. E_x_p_o_r_t _R_u_le_s ______ 7 __ ~

(iii) Employing only analog techniques to provide the cryptographic processing
that ensures information security in the following applications

(iv) Personalized smart cards using cryptography restricted for use only in
equipment or systems exempted from the controls of the USML.

(v) Limited to access control, such as automatic teller machines, self-service
statement printers or point of sale terminals, which protects passwords or per­
sonal identification numbers (PIN) or similar data to prevent unauthorized access
to facilities but does not allow for encryption or files or text, except as directly
related to the password of PIN protection.

(vi) Limited to data authentication which calculates a Message Authentication
Code (MAC) or similar result to ensure no alteration of text has taken place, or
authenticate users, but does not allow for encryption of data, text or other media
other than that needed for the authentication.

(vii) Restricted for fixed data compression or coding techniques.
(viii) Limited to receiving for radio broadcast, pay television or similar

restricted audience television of the consumer type, without digital encryption
and where digital decryption is limited to video, audio or management functions.

(ix) Software designed or modified to protect against malicious computer dam-
age, (e.g., viruses).

(2) Cryptographic (including key management) systems, equipment, assem­
blies, modules, integrated circuits, components or software which have the capa­
bility of generating spreading or hopping codes for spread spectrum systems or
equipment.

(3) Cryptographic systems, equipment, assemblies, modules, integrated cir­
cuits, components or software.

§ 125.2 Exports of unclassified technical data.
(a) General. A license (DSP-5) is required for the export of unclassified techni­

cal data unless the export is exempt from the licensing requirements of this sub­
chapter. In the case of a plant visit, details of the proposed discussions must be
transmitted to the Office of Defense Trade Controls for an appraisal of the tech­
nical data. Seven copies of the technical data or the details of the discussions
must be provided.

(b) Patents. A license issued by the Office of Defense Trade Controls is required
for the export of technical data whenever the data exceeds that which is used to
support a domestic filing of a patent application or to support a foreign filing of a
patent application whenever no domestic application has been filed. Requests for
the filing of patent applications in a foreign country, and requests for the filing of
amendments, modifications or supplements to such patents, should follow the
regulations of the U.S. Patent and Trademark Office in accordance with 37 CFR
part 5. The export of technical data to support the filing and processing of patent
applications in foreign countries is subject to regulations issued by the U.S.
Patent and Trademark Office pursuant to 35 U.S.C. 184.

(c) Disclosures. Unless otherwise expressly exempted in this subchapter, a
license is required for the oral, visual or documentary disclosure of technical data

~-:s. ________ C_H_A_P_T_ER_2_5_P_o_l_it_ic_s _________________ _

by U.S. persons to foreign persons. A license is required regardless of the manner
in which the technical data is transmitted (e.g., in person, by telephone, corre­
spondence, electronic means, etc.). A license is required for such disclosures by
U.S. persons in connection with visits to foreign diplomatic missions and con­
sular offices.

And so on. There's a lot more information in this document. If you're going to try to
export cryptography, I suggest you get a copy of the entire thing and a lawyer who
speaks the language.

In reality, the NSA has control over the export of cryptographic products. If you
want a Commodity Jurisdiction (CT), you must submit your product to the NSA for
approval and submit the CJ application to the State Department. After State Depart­
ment approval, the matter moves under the jurisdiction of the Commerce Depart­
ment, which has never cared much about the export of cryptography. However, the
State Department will never grant a CJ without NSA approval.

In 1977 an NSA employee named Joseph A. Meyer wrote a letter-unauthorized,
according to the official story of the incident-to the IEEE, warning them that the
scheduled presentation of the original RSA paper would violate the ITAR. From The
Puzzle Palace:

He had a point. The ITAR did cover any "unclassified information that can be
used, or adapted for use, in the design, production, manufacture, repair, overhaul,
processing, engineering, development, operation, maintenance, or reconstruc­
tion" of the listed materials, as well as "any technology which advances the state­
of-the-art or establishes a new art in an area of significant military applicability in
the United States." And export did include transferring the information both by
writing and by either oral or visual means, including briefings and symposia in
which foreign nationals are present.

But followed literally, the vague, overly broad regulations would seem to
require that anyone planning to write or speak out publicly on a topic touching
the Munitions List must first get approval from the State Department-a chilling
prospect clearly at odds with the First Amendment and one as yet untested by the
Supreme Court.

In the end NSA disavowed Meyer's actions and the RSA paper was presented as
planned. No actions were taken against any of the inventors, although their work
arguably enhanced foreign cryptography capabilities more than anything released
since.

The following statement by NSA discusses the export of cryptography [363]:

Cryptographic technology is deemed vital to national security interests. This
includes economic, military, and foreign policy interests.

We do not agree with the implications from the House Judiciary Committee
hearing of 7 May 1992 and recent news articles that allege that U.S. export laws
prevent U.S. firms' manufacture and use of top encryption equipment. We are
unaware of any case where a U.S. firm has been prevented from manufacturing
and using encryption equipment within this country or for use by the U.S. firm or

________________ 2_5_._14 __ U_.S_._E_x_p_o_rt_R_u_l_e_s ______ 7-~

its subsidiaries in locations outside the U.S. because of U.S. export restrictions. In
fact, NSA has always supported the use of encryption by U.S. businesses operat­
ing domestically and overseas to protect sensitive information.

For export to foreign countries, NSA as a component of the Department of
Defense (along with the Department of State and the Department of Commerce)
reviews export licenses for information security technologies controlled by the
Export Administration Regulations or the International Traffic in Arms Regula­
tions. Similar export control systems are in effect in all the Coordinating Com­
mittee for Multilateral Export Controls (CoCom) countries as well as many
non-CoCom countries as these technologies are universally considered as sensi­
tive. Such technologies are not banned from export and are reviewed on a case-by­
case basis. As part of the export review process, licenses may be required for these
systems and are reviewed to determine the effect such export could have on
national security interests-including economic, military, and political security
interests. Export licenses are approved or denied based upon the type of equip­
ment involved, the proposed end use and the end user.

Our analysis indicates that the U.S. leads the world in the manufacture and
export of information security technologies. Of those cryptologic products
referred to NSA by the Department of State for export licenses, we consistently
approve over 90%. Export licenses for information security products under the
jurisdiction of the Department of Commerce are processed and approved without
referral to NSA or DoD. This includes products using such techniques as the DSS
and RSA which provide authentication and access control to computers or net­
works. In fact, in the past NSA has played a major role in successfully advocating
the relaxation of export controls on RSA and related technologies for authentica­
tion purposes. Such techniques are extremely valuable against the hacker prob­
lem and unauthorized use of resources.

It is the stated policy of the NSA not to restrict the export of authentication prod­
ucts, only encryption products. If you want to export an authentication-only prod­
uct, approval may merely be a matter of showing that your product cannot easily be
used for encryption. Furthermore, the bureaucratic procedures are much simpler for
authentication products than for encryption products. An authentication product
needs State Department approval only once for a CJ; an encryption product may
require approval for every product revision or even every sale.

Without a CJ, you must request export approval every time you wish to export the
product. The State Department does not approve the export of products with strong
encryption, even those using DES. Isolated exceptions include export to U.S. sub­
sidiaries for the purposes of communicating to the U.S., exports for some banking
applications, and export to appropriate U.S. military users. The Software Publishers
Association (SPA) has been negotiating with the government to ease export license
restrictions. A 1992 agreement between them and the State Department eased the
export license rules for two algorithms, RC2 and RC4, as long as the key size is 40
bits or less. Refer to Section 7.1 for more information.

In 1993, Rep. Maria Cantwell (D-WA) introduced a bill at the behest of the soft­
ware industry to relax export controls on encryption software. Sen. Patty Murray

~""':s;c---------C_H_A_P_TE_R_2_5_P_o_l_i_t1_·c_s _________________ _

(D-WA) introduced a companion bill in the Senate. The Cantwell Bill was appended
to the general export control legislation going through Congress, but was deleted by
the House Intelligence Committee after a massive lobbying effort by the NSA.
Whatever the NSA did, it was impressive; the committee voted unanimously to
delete the wording. I can't remember the last time a bunch of legislators voted unan­
imously to do anything.

In 1995 Dan Bernstein, with the help of the EFF, sued the U.S. government,
seeking to bar the government from restricting publication of cryptographic docu­
ments and software [143]. The suit claimed that the export control laws are uncon­
stitutional, an "impermissible prior restraint on speech, in violation of the First
Amendment." Specifically, the lawsuit charges that the current export control
process:

Allows bureaucrats to restrict publication without ever going to
court.

Provides too few procedural safeguards for First Amendment rights.

Requires publishers to register with the government, creating in
effect a "licensed press."

Disallows general publication by requiring recipients to be individu­
ally identified.

Is sufficiently vague that ordinary people cannot know what conduct
is allowed and what conduct is prohibited.

Is overbroad because it prohibits conduct that is clearly protected
(such as speaking to foreigners within the United States).

Is applied too broadly, by prohibiting export of software that contains
no cryptography, on the theory that cryptography could be added to it
later.

Egregiously violates the First Amendment by prohibiting private
speech on cryptography because the government wishes its own opin­
ions on cryptography to guide the public instead.

Exceeds the authority granted by Congress in the export control laws
in many ways, as well as exceeding the authority granted by the Con­
stitution.

Everyone anticipates that the case will take several years to settle, and no one has
any idea how it will come out.

Meanwhile, the Computer Security and Privacy Advisory Board, an official advi­
sory board to NIST, voted in March 1992 to recommend a national policy review of
cryptographic issues, including export policy. They said that export policy is
decided solely by agencies concerned with national security, without input from
agencies concerned with encouraging commerce. Those agencies concerned with
national security are doing everything possible to make sure this doesn't change,
but eventually it has to.

25.15 Foreign Import and Export of Cryptography

25.15 FOREIGN IMPORT AND EXPORT OF CRYPTOGRAPHY

Other countries have their own import and export rules [311]. This summary is
incomplete and probably out of date. Countries could have rules and ignore them, or
could have no rules but restrict import, export, and use anyway.

Australia requires an import certificate for cryptography only upon
request from the exporting country.

Canada has no import controls, and export controls are similar to
those of the United States. The exportation of items from Canada
may be subject to restriction if they are included on the Export Con­
trol List pursuant to the Export and Import Permits Act. Canada fol­
lows the CoCom regulations in the regulation of cryptographic
technology. Encryption devices are outlined in category five, part two
of Canada's export regulations. These provisions are similar to U.S.
category five in the Export Administration Regulations.

China has a licensing scheme for importing commodities; exporters
must file an application with the Ministry of Foreign Trade. Based on
China's List of Prohibited and Restricted Imports and Exports enacted
in 1987, China restricts the import and export of voice-encoding
devices.

France has no special rules for the import of cryptography, but they
have rules regarding the sale and use of cryptography in their coun­
try. All products must be certified: Either they must meet a pub­
lished specification, or the company proprietary specification must
be provided to the government. The government may also ask for
two units for their own use. Companies must have a license to sell
cryptography within France; the license specifies the target market.
Users must have a license to buy and use cryptography; the license
includes a statement to the effect that users must be prepared to give
up their keys to the government up to four months after use. This
restriction may be waived in some cases: for banks, large companies,
and so on. And there is no use license requirement for cryptography
exportable from the U.S.

Germany follows the CoCom guidelines, requiring a license to export
cryptography. They specifically maintain control of public-domain
and mass-market cryptography software.

Israel has import restrictions, but no one seems to know what they are.

Belgium, Italy, Japan, Netherlands, and the United Kingdom follow
the CoCom guidelines on cryptography, requiring a license for export.

Brazil, India, Mexico, Russia, Saudi Arabia, Spain, South Africa, Sweden,
and Switzerland have no import or export controls on cryptography.

~ :s.=---------C_H_A_P_T_ER_2_5_P_o_l_it_i_cs _________________ _

25 .16 LEGAL ISSUES

Are digital signatures real signatures? Will they stand up in court? Some prelimi­
nary legal research has resulted in the opinion that digital signatures would meet
the requirements of legally binding signatures for most purposes, including com­
mercial use as defined in the Uniform Commercial Code (UCC). A GAO (General
Accounting Office) decision, made at the request of NIST, opines that digital signa­
tures will meet the legal standards of handwritten signatures [362].

The Utah Digital Signature Act went into effect on May 1, 1995, providing a legal
framework for the use of digital signatures in the judicial system. California has a bill
pending, while Oregon and Washington are still writing theirs. Texas and Florida are
right behind. By this book's publication, more states will have followed suit.

The American Bar Association (EDI and Information Technology Division of the
Science and Technology Section) produced a model act for states to use for their own
legislation. The act attempts to incorporate digital signatures into the existing legal
infrastructure for signatures: the Uniform Commercial Code, the United States Fed­
eral Reserve regulations, common law of contracts and signatures, the United
Nations Convention on Contracts for the International Sale of Goods, and the
United Nations Convention on International Bills of Exchange and International
Promissory Committees. Included in the act are responsibilities and obligations of
certification authorities, issues of liability, and limits and policies.

In the United States, laws about signatures, contracts, and commercial transac­
tions are state laws, so this model act is designed for states. The eventual goal is a
federal act, but if this all begins at the state level there is less chance of the NSA
mucking up the works.

Even so, the validity of digital signatures has not been challenged in court; their
legal status is still undefined. In order for digital signatures to carry the same
authority as handwritten signatures, they must first be used to sign a legally bind­
ing document, and then be challenged in court by one party. The court would then
consider the security of the signature scheme and issue a ruling. Over time, as this
happened repeatedly, a body of precedent rulings would emerge regarding which dig­
ital signature methods and what key sizes are required for a digital signature to be
legally binding. This is likely to take years.

Until then, if two people wish to use digital signatures for contracts (or purchase
requests, or work orders, or whatever), it is recommended that they sign a paper con­
tract in which they agree in the future to be bound by any documents digitally
signed by them [1099]. This document would specify algorithm, key size, and any
other parameters; it should also delineate how disputes would be resolved.

--------------------------------✓~

Afterword
by Matt Blaze

One of the most dangerous aspects of cryptology (and, by extension, of this book), is
that you can almost measure it. Knowledge of key lengths, factoring methods, and
cryptanalytic techniques makes it possible to estimate (in the absence of a real the­
ory of cipher design) the "work factor" required to break a particular cipher. It's all
too tempting to misuse these estimates as if they were overall security metrics for
the systems in which they are used. The real world offers the attacker a richer menu
of options than mere cryptanalysis. Often more worrisome are protocol attacks,
Trojan horses, viruses, electromagnetic monitoring, physical compromise, black­
mail and intimidation of key holders, operating system bugs, application program
bugs, hardware bugs, user errors, physical eavesdropping, social engineering, and
dumpster diving, to name just a few.

High-quality ciphers and protocols are important tools, but by themselves make
poor substitutes for realistic, critical thinking about what is actually being pro­
tected and how various defenses might fail (attackers, after all, rarely restrict them­
selves to the clean, well-defined threat models of the academic world). Ross
Anderson gives examples of cryptographically strong systems (in the banking indus­
try) that fail when exposed to the threats of the real world [43,44]. Even when the
attacker has access only to ciphertext, seemingly minor breaches in other parts of
the system can leak enough information to render good cryptosystems useless. The
Allies in World War II broke the German Enigma traffic largely by carefully exploit­
ing operator errors [1587].

An NSA-employed acquaintance, when asked whether the government can crack
DES traffic, quipped that real systems are so insecure that they never need to bother.
Unfortunately, there are no easy recipes for making a system secure, no substitute
for careful design and critical, ongoing scrutiny. Good cryptosystems have the nice
property of making life much harder for the attacker than for the legitimate user;
this is not the case for almost every other aspect of computer and communication

~--:s. _________ A_ft_e_rw_or_d _________________ _

security. Consider the following (quite incomplete) "Top Ten Threats to Security in
Real Systems" list; all are easier to exploit than to prevent.

1. The sorry state of software. Everyone knows that nobody knows how to
write software. Modern systems are complex, with hundreds of thousands
of lines of code; any one of them has the chance to compromise security.
Fatal bugs may even be far-removed from the security portion of the soft­
ware.

2. Ineffective protection against denial-of-service attacks. Some crypto­
graphic protocols allow anonymity. It may be especially dangerous to
deploy anonymous protocols if they increase the opportunities for uniden­
tified vandals to disrupt service; anonymous systems therefore need to be
especially resistant to denial-of-service attacks. Robust networks can more
easily support anonymity; consider that hardly anyone worries very much
about the millions of anonymous entry points to more robust networks
like the telephone system or the postal service, where it's relatively diffi­
cult (or expensive) for an individual to cause large-scale failures.

3. No place to store secrets. Cryptosystems protect large secrets with smaller
ones (keys). Unfortunately, modern computers aren't especially good at pro­
tecting even the smallest secrets. Multi-user networked workstations can
be broken into and their memories compromised. Standalone, single-user
machines can be stolen or compromised through viruses that leak secrets
asynchronously. Remote servers, where there may be no user available to
enter a passphrase (but see threat #5), are an especially hard problem.

4. Poor random-number generation. Keys and session variables need good
sources of unpredictable bits. A running computer has a lot of entropy in it
but rarely provides applications with a convenient or reliable way to
exploit it. A number of techniques have been proposed for getting true ran­
dom numbers in software (taking advantage of unpredictability in things
like 1/0 interarrival timing, clock and timer skew, and even air turbulence
inside disk enclosures), but all these are very sensitive to slight changes in
the environments in which they are used.

5. Weak passphrases. Most cryptographic software addresses the key storage
and key generation problems by relying on user-generated passphrase
strings, which are presumed to be unpredictable enough to produce good
key material and are also easy enough to remember that they do not
require secure storage. While dictionary attacks are a well-known problem
with short passwords, much less is known about lines of attack against
user-selected passphrase-based keys. Shannon tells us that English text has
only just over 1 bit of entropy per character, which would seem to leave
most passphrases well within reach of brute-force search. Less is known,
however, about good techniques for enumerating passphrases in order to
exploit this. Until we have a better understanding of how to attack
passphrases, we really have no idea how weak or strong they are.

____________________ A_f_t_er_w_o_r_d _________ 7 __ ~

6. Mismatched trust. Almost all currently available cryptographic software
assumes that the user is in direct control over the systems on which it runs
and has a secure path to it. For example, the interfaces to programs like
PCP assume that their passphrase input always comes from the user over
a secure path like the local console. This is not always the case, of course;
consider the problem of reading your encrypted mail when logged in over a
network connection. What the system designer assumes is trusted may not
match the needs or expectations of the real users, especially when software
can be controlled remotely over insecure networks.

7. Poorly understood protocol and service interactions. As systems get bigger
and more complex, benign features frequently come back to haunt us, and
it's hard to know even where to look when things fail. The Internet worm
was propagated via an obscure and innocent-looking feature in the send­
mail program; how many more features in how many more programs have
unexpected consequences just waiting to be discovered?

8. Unrealistic threat and risks assessment. Security experts tend to focus on
the threats they know how to model and prevent. Unfortunately, attackers
focus on what they know how to exploit, and the two are rarely exactly the
same. Too many "secure" systems are designed without considering what
the attacker is actually likely to do.

9. Interfaces that make security expensive and special. If security features are
to be used, they must be convenient and transparent enough that people
actually turn them on. It's easy to design encryption mechanisms that
come only at the expense of performance or ease of use, and even easier to
design mechanisms that invite mistakes. Security should be harder to turn
off than on; unfortunately, few systems actually work this way.

10. Little broad-based demand for security. This is a well-known problem
among almost everyone who has tied his or her fortune to selling security
products and services. Until there is widespread demand for transparent
security, the tools and infrastructure needed to support it will be expensive
and inaccessible to many applications. This is partly a problem of under­
standing and exposing the threats and risks in real applications and partly
a problem of not designing systems that include security as a basic feature
rather than as a later add-on.

A more complete list and discussion of these kinds of threats could easily fill a
book of this size and barely scratch the surface. What makes them especially diffi­
cult and dangerous is that there are no magic techniques, beyond good engineering
and ongoing scrutiny, for avoiding them. The lesson for the aspiring cryptographer
is to respect the limits of the art.

Matt Blaze
New York, NY

1. DES

2. LOKI91

3. IDEA

4. COST

5. BLOWFISH

6. 3-Way

7. RCS

8. AS

9. SEAL

DES
#define ENO 0
#define DEl 1

typedef struct {

/* MODE
/* MODE

unsigned long ek[32];
unsigned long dk[32];

} des_ctx;

PARTV

encrypt*/
decrypt*/

extern void deskey(unsigned char*, short);
/* hexkey[8] MODE
* Sets the internal key register according to the hexadecimal
* key contained in the 8 bytes of hexkey, according to the DES,
* for encryption or decryption according to MODE.
*/

extern void usekey(unsigned long*);
/* cookedkey[32J

~---:s,--------------S_o_u_rc_'e_C_o_d_e ___________________ _

* Loads the internal key register with the data in cookedkey.
*I

extern
I*

void cpkey(unsigned long*);
cookedkey[32J

* Copies the
* located at
*I

contents of the internal key register into the storage
&cookedkey[OJ.

extern void des(unsigned char*, unsigned char*);
/* from[BJ to[BJ
* Encrypts/Decrypts (according to the key currently loaded in the
* internal key register) one block of eight bytes at address 'from'
* into the block at address 'to'. They can be the same.
*/

static void scrunch(unsigned char *
'

unsigned long
static void unscrun(unsigned long * unsigned char
static void desfunc(unsigned long* unsigned long
static void cookey(unsigned long *);

static unsigned long Knl[32] OL I;
static unsigned long KnR[32J OL I;
static unsigned long Kn3[32J OL);
static unsigned char Df_Key[24] = {

Ox01,0x23,0x45,0x67 ,Ox89,0xab,Oxcd,Oxef,
Oxfe,Oxdc,Oxba,Ox98,0x76,0x54,0x32,0xl0,
Ox89,0xab,Oxcd,Oxef,Ox01,0x23,0x45,0x67 } ;

static unsigned short bytebit[BJ
0200, 0100, 040, 020, 010, 04, 02, 01 } ;

static unsigned long bigbyte[24J
OxBOOOOOL, Ox400000L, Ox200000L,
OxBOOOOL, Ox40000L, Ox20000L,
OxBOOO L, Ox4000L, Ox2000L,
OxBOO L, Ox400 L,
Ox BO L, Ox40 L,
OxBL, Ox4L, Ox2 L,

*);
*);
*);

OxlOOOOOL,
OxlOOOOL,
OxlOOOL,
Ox200L,
Ox20L,
Oxll I;

/* Use the key schedule specified in the Standard (ANSI X3.92-198ll.

static unsigned char pcl[56J =
56, 48, 40, 32, 24, 16, 8, 0, 57, 49, 41, 33, 25, 17,
9' 1 ' 58, 50, 42, 34, 26, 18, 10' 2, 59, 51, 43, 35,

62, 54, 46, 38, 30, 22, 14, 6, 61, 53, 45, 37, 29, 21,
13, 5' 60, 52, 44, 36, 28, 20, 12, 4, 27, 19, 11, 3

static unsigned char totrot[l6J = {
1,2,4,6,8,10,12,14,15,17 ,19,21,23,25,27,28 } ;

static unsigned char pc2[48J =
13, 16, 10, 23, 0, 4,
22, 18, 11, 3, 25, 7,
40, 51, 30, 36, 46, 54,
43, 48, 38, 55, 33, 52,

2, 27, 14, 5, 20, 9,
15, 6, 26, 19, 12, 1,
29, 39, 50, 44, 32, 47,
45, 41, 49, 35, 28, 31 };

) ;

*I

OxlOOL,
Ox 10 L,

_________________ D_E_S ________ 7_~

void deskey(key, edf)
unsigned char *key;
short edf;

/* Thanks to James Gillogly & Phil Karn! */

I
register int i, j, l, m, n;
unsigned char pclm[56], pcr[56];
unsigned long kn[32];

for (j = O; j < 56; j++ l {
l = pcl[j];
m = l & 07;
pclm[j] = (key[l » 3] & bytebit[m]) O;
}

for(= O; i < 16; i++) {
if(edf == DEl) m = (15 - i) << 1;
else m = i « 1;
n = m + 1;
kn[m] = kn[n] = OL;
for(j = O; j < 28; j++) I

l = j + totrot[il;
if(l < 28) pcr[j] = pclm[ll;
else pcr[j] = pclm[l - 28];
}

for(j = 28; j < 56; j++ l I
l = j + totrot[i];
if(l < 56) pcr[j] = pclm[ll;
else pcr[j] = pclm[l - 28];
}

for(j O; j < 24; j++) I

cookey(kn);
return;

if(pcr[pc2[j]J) kn[ml I= bigbyte[jJ;
if(pcr[pc2[j+24JJ) kn[nl I= bigbyte[j];
}

static void cookey(rawl)
register unsigned long *rawl;
{

register unsigned long *cook, *rawO;
unsigned long dough[32];
register int i;

cook = dough;
for(= O; i < 16; i++, rawl++) I

rawO = rawl++;
*cook (*rawO & OxOOfcOOOOL) « 6;
*cook I= (*rawO & OxOOOOOfcOU « 10;
*cook I= (*rawl & OxOOfcOOOOU » 10;
*cook++ I= (*rawl & OxOOOOOfcOL)
*cook (*rawO & Ox0003fOOOL) << 12;
*cook I= (*rawO & Ox0000003fl) << 16;
*cook I= (*rawl & Ox0003fOOOL) >> 4;
*cook++ I= (*rawl & Ox0000003fl);

» 6;

~""':s;~---------S_o_u_rc_e_C_o_d_e ___________________ _

usekey(dough);
return;

void cpkey(into)
register unsigned long *into;
{

register unsigned long *from, *endp;

from= Knl, endp = &Knl[32];
while(from< endp) *into++ *from++;
return;

void usekey(from)
register unsigned long *from;
{

register unsigned long *to, *endp;

to= Knl, endp = &Knl[32];
while(to< endp) *to++= *from++;
return;

void des(inblock, outblock)
unsigned char *inblock, *outblock;
{

unsigned ;ong work[2];

scrunch(inblock, work);
desfunc(work, Knl);
unscrun(work, outblock);
return;

static void scrunch(outof, into)
register unsigned char *outof;
register unsigned long *into;
{

*into (*outof++ & Oxffl) << 24;
*into I= (*outof++ & Oxffl) << 16;
*into I= (*outof++ & Oxffl) << 8;
*into++ I= (*outof++ & Oxffl);
*into (*outof++ & Oxffl) << 24;
*into I= (*outof++ & Oxffl) << 16;
*into I= (*outof++ & Oxffl) << 8;
*into I= (*outof & Oxffl);
return;

static void unscrun(outof, into)
register unsigned long *outof;
register unsigned char *into;
{

DES
z~

*into++= (*outof » 24) & Oxffl;
*into++= (*outof » 16) & Oxffl;
*into++= (*outof » 8) & Oxffl;
*into++= *outof++ & Oxffl;
*into++= (*outof » 24) & Oxffl;
*into++= (*outof » 16) & Oxffl;
*into++= (*outof » 8) & Oxffl;
*into *outof & Oxffl;
return;

static unsigned long SP1[64J = (
Ox01010400L, OxOOOOOOOOL, OxOOOlOOOOL, Ox01010404L,
Ox01010004L, Ox00010404L, Ox00000004L, OxOOOlOOOOL,
Ox00000400L, Ox01010400L, Ox01010404L, Ox00000400L,
Ox01000404L, Ox01010004L, OxOlOOOOOOL, Ox00000004L,
Ox00000404L, Ox01000400L, Ox01000400L, Ox00010400L,
Ox00010400L, Ox01010000L, Ox01010000L, Ox01000404L,
Ox00010004L, Ox01000004L, Ox01000004L, Ox00010004L,
OxOOOOOOOOL, Ox00000404L, Ox00010404L, OxOlOOOOOOL,
OxOOOlOOOOL, Ox01010404L, Ox00000004L, Ox01010000L,
Ox01010400L, OxOlOOOOOOL, OxOlOOOOOOL, Ox00000400L,
Ox01010004L, OxOOOlOOOOL, Ox00010400L, Ox01000004L,
Ox00000400L, Ox00000004L, Ox01000404L, Ox00010404L,
Ox01010404L, Ox00010004L, Ox01010000L, Ox01000404L,
Ox01000004L, Ox00000404L, Ox00010404L, Ox01010400L,
Ox00000404L, Ox01000400L, Ox01000400L, OxOOOOOOOOL,
Ox00010004L, Ox00010400L, OxOOOOOOOOL, Ox01010004L } ;

static unsigned long SP2[64J = (
Ox80108020L, Ox80008000L, Ox00008000L, Ox00108020L,
OxOOlOOOOOL, Ox00000020L, Ox80100020L, Ox80008020L,
Ox80000020L, Ox80108020L, Ox80108000L, Ox80000000L,
Ox80008000L, OxOOlOOOOOL, Ox00000020L, Ox80100020L,
Ox00108000L, Ox00100020L, Ox80008020L, OxOOOOOOOOL,
Ox80000000L, Ox00008000L, Ox00108020L, Ox80100000L,
Ox00100020L, Ox80000020L, OxOOOOOOOOL, Ox00108000L,
Ox00008020L, Cx80108000L, Ox80100000L, Ox00008020L,
OxOOOOOOOOL, Ox00108020L, Ox80100020L, OxOOlOOOOOL,
Ox80008020L, Ox80100000L, Ox80108000L, Ox00008000L,
Ox80100000L, Ox80008000L, Ox00000020L, Ox80108020L,
Ox00108020L, Ox00000020L, Ox00008000L, Ox80000000L,
Ox00008020L, Ox80108000L, OxOOlOOOOOL, Ox80000020L,
Ox00100020L, Ox80008020L, Ox80000020L, Ox00100020L,
Ox00108000L, OxOOOOOOOOL, Ox80008000L, Ox00008020L,
Ox80000000L, Ox80100020L, Ox80108020L, Ox00108000L } ;

static unsigned long SP3[64J = (
Ox00000208L, Ox08020200L, OxOOOOOOOOL, Ox08020008L,
Ox08000200L, OxOOOOOOOOL, Ox00020208L, Ox08000200L,
Ox00020008L, Ox08000008L, Ox08000008 L, Ox00020000L,
Ox08020208L, Ox00020008L, Ox08020000L, Ox00000208L,
Ox08000000L, Ox00000008L, Ox08020200L, Ox00000200 L,
Ox00020200L, Ox08020000L, Ox08020008 L, Ox00020208L,

~s
Source Code

Ox08000208L, Ox00020200L, Ox00020000L, Ox08000208L,
Ox00000008L, Ox08020208 L, Ox00000200L, Ox08000000L,
Ox08020200L, Ox08000000L, Ox00020008 L, Ox00000208L,
Ox00020000L, Ox08020200L, Ox08000200L, OxOOOOOOOOL,
Ox00000200L, Ox00020008 L, Ox08020208L, Ox08000200L,
Ox08000008L, Ox00000200L, OxOOOOOOOOL, Ox08020008L,
Ox08000208L, Ox00020000L, Ox08000000L, Ox08020208L,
Ox00000008L, Ox00020208 L, Ox00020200L, Ox08000008L,
Ox08020000L, Ox08000208 L, Ox00000208L, Ox08020000L,
Ox00020208L, Ox00000008 L, Ox08020008L, Ox00020200L } ;

static unsigned long SP4[64J - {
Ox00802001L, Ox00002081L, Ox00002081L, Ox00000080L,
Ox00802080L, Ox00800081L, Ox00800001L, Ox00002001L,
OxOOOOOOOOL, Ox00802000L, Ox00802000L, Ox00802081L,
Ox00000081L, OxOOOOOOOOL, Ox00800080L, Ox00800001L,
OxOOOOOOOlL, Ox00002000L, Ox00800000L, Ox00802001L,
Ox00000080L, Ox00800000L, Ox00002001L, Ox00002080L,
Ox00800081L, OxOOOOOOOlL, Ox00002080L, Ox00800080L,
Ox00002000L, Ox00802080L, Ox00802081L, Ox00000081L,
Ox00800080L, Ox00800001L, Ox00802000L, Ox00802081L,
Ox00000081L, OxOOOOOOOOL, OxOOOOOOOOL, Ox00802000L,
Ox00002080L, Ox00800080L, Ox00800081L, OxOOOOOOOlL,
Ox00802001L, Ox00002081L, Ox00002081L, Ox00000080L,
Ox00802081L, Ox00000081L, OxOOOOOOOlL, Ox00002000L,
Ox00800001L, Ox00002001L, Ox00802080L, Ox00800081L,
Ox00002001L, Ox00002080L, Ox00800000L, Ox00802001L,
Ox00000080L, Ox00800000L, Ox00002000L, Ox00802080L };

static unsigned long SP5[64J - I
OxOOOOOlOOL, Ox02080100L, Ox02080000L, Ox42000100L,
Ox00080000L, OxOOOOOlOOL, Ox40000000L, Ox02080000L,
Ox40080100L, Ox00080000L, Ox02000100L, Ox40080100L,
Ox42000100L, Ox42080000L, Ox00080100L, Ox40000000L,
Ox02000000L, Ox40080000L, Ox40080000L, OxOOOOOOOOL,
Ox40000100L, Ox42080100L, Ox42080100L, Ox02000100L,
Ox42080000L, Ox40000100L, OxOOOOOOOOL, Ox42000000L,
Ox02080100L, Ox02000000L, Ox42000000L, Ox00080100L,
Ox00080000L, Ox42000100L, OxOOOOOlOO L, Ox02000000L,
Ox40000000L, Ox02080000L, Ox42000100L, Ox40080100L,
Ox02000100L, Ox40000000L, Ox42080000L, Ox02080100L,
Ox40080100L, OxOOOOOlOOL, Ox02000000L, Ox42080000L,
Ox42080100L, Ox00080100L, Ox42000000L, Ox42080100L,
Ox02080000L, OxOOOOOOOOL, Ox40080000L, Ox42000000L,
Ox00080100L, Ox02000100L, Ox40000100L, Ox00080000L,
OxOOOOOOOOL, Ox40080000L, Ox02080100L, Ox40000100L } ;

static unsigned long SP6[64] - {
Ox20000010L, Ox20400000L, Ox00004000L, Ox20404010L,
Ox20400000L, OxOOOOOOlOL, Ox20404010L, Ox00400000L,
Ox20004000L, Ox00404010L, Ox00400000L, Ox20000010L,
Ox00400010L, Ox20004000L, Ox20000000L, Ox00004010L,
OxOOOOOOOOL, Ox00400010L, Ox20004010L, Ox00004000L,
Ox00404000L, Ox20004010L, OxOOOOOOlOL, Ox20400010L,

_________________ D_ES _________ z:-----~

Ox20400010L, OxOOOOOOOOL, Ox00404010L, Ox20404000L,
Ox00004010 L, Ox00404000L, Ox20404000L, OxZOOOOOOOL,
Ox20004000L, OxOOOOOOlOL, Ox20400010L, Ox00404000L,
Ox20404010L, Ox00400000L, Ox00004010L, Ox20000010L,
Ox00400000L, Ox20004000L, Ox20000000L, Ox00004010L,
Ox20000010 L, Ox20404010L, Ox00404000L, Ox20400000L,
Ox00404010 L, Ox20404000L, OxOOOOOOOOL, Ox20400010L,
OxOOOOOOlOL, Ox00004000L, Ox20400000L, Ox00404010L,
Ox00004000L, Ox00400010L, Ox20004010L, OxOOOOOOOOL,
Ox20404000L, OxZOOOOOOOL, Ox00400010L, Ox20004010L } ;

static unsigned long SP7[64J ~ I
OxOOZOOOOOL, Ox04200002L, Ox04000802L, OxOOOOOOOOL,
OxOOOOOSOOL, Ox04000802L, Ox00200802L, Ox04200800L,
Ox04200802L, Ox00200000L, OxOOOOOOOOL, Ox04000002L,
Ox00000002L, Ox04000000L, Ox04200002L, Ox00000802L,
Ox04000800L, Ox00200802L, Ox00200002L, Ox04000800L,
Ox04000002L, Ox04200000L, Ox04200800L, Ox00200002L,
Ox04200000L, OxOOOOOSOOL, Ox00000802L, Ox04200802L,
Ox00200800L, OxOOOOOOOZL, Ox04000000L, Ox00200800L,
Ox04000000L, Ox00200800L, Ox00200000L, Ox04000802L,
Ox04000802L, Ox04200002L, Ox04200002L, OxOOOOOOOZL,
Ox00200002L, Ox04000000L, Ox04000800L, Ox00200000 L,
Ox04200800L, Ox00000802L, Ox00200802L, Ox04200800L,
Ox00000802L, Ox04000002L, Ox04200802L, Ox04200000L,
Ox00200800L, OxOOOOOOOOL, OxOOOOOOOZL, Ox04200802L,
OxOOOOOOOOL, Ox00200802L, Ox04200000L, OxOOOOOSOO L,
Ox04000002L, Ox04000800L, OxOOOOOSOOL, Ox00200002L } ;

static unsigned long SP8[64J ~ I
Oxl0001040L, OxOOOOlOOOL, Ox00040000L, Ox10041040L,
OxlOOOOOOOL, Oxl0001040L, Ox00000040L, OxlOOOOOOOL,
Ox00040040L, Oxl0040000L, Ox10041040L, Ox00041000L,
Oxl0041000L, Ox00041040L, OxOOOOlOOOL, Ox00000040L,
Oxl0040000L, Oxl0000040L, OxlOOOlOOOL, Ox00001040L,
Ox00041000L, Ox00040040L, Ox10040040L, Ox10041000L,
Ox00001040L, OxOOOOOOOOL, OxOOOOOOOOL, Ox10040040L,
Oxl0000040L, OxlOOOlOOOL, Ox00041040 L, Ox00040000L,
Ox00041040L, Ox00040000L, Ox10041000L, OxOOOOlOOOL,
Ox00000040L, Oxl0040040L, OxOOOOlOOOL, Ox00041040L,
OxlOOOlOOOL, Ox00000040L, Oxl0000040L, Ox10040000L,
Oxl0040040L, OxlOOOOOOOL, Ox00040000L, Ox10001040L,
OxOOOOOOOOL, Oxl0041040L, Ox00040040L, Ox10000040L,
Oxl0040000L, OxlOOOlOOOL, Oxl0001040L, OxOOOOOOOOL,
Oxl0041040L, Ox00041000L, Ox00041000L, Ox00001040L,
Ox00001040L, Ox00040040L, OxlOOOOOOOL, Ox10041000L };

static void desfunc(block, keys)
register unsigned long *block, *keys;
{

register unsigned long fval, work, right, leftt;
register int round;

leftt ~ block[OJ;

~"":s,---------------S_o_u_rc_e_C_o_d_e ___________________ _

right= block[l];
work= ((leftt >> 4) A right) & OxOfOfOfOfL;
right A= work;
leftt A= (work<< 4);
work= ((leftt >> 16) A right) & OxOOOOffffL;
right A= work;
leftt A= (work<< 16);
work= ((right>> 2) A leftt) & Ox33333333L;
leftt A= work;
right A= (work<< 2);
work= ((right >> 8) A leftt) & OxOOffOOffL;
leftt A= work;
right A= (work<< 8);
right= ((right<< 1) I ((right>> 31) & ll)) & Oxffffffffl;
work= (leftt A right) & Oxaaaaaaaal;
leftt A= work;
right A= work;
leftt = ((leftt << 1) I ((leftt >> 31) & ll)) & Oxffffffffl;

for (round = 0; round < 8; round++) I
work (right<< 28) I (right>> 4);
work A= *keys++;
fval SP?[work & Ox3fLJ;
fval I= SP5[(work » 8) & Ox3fLJ;
fval I= SP3[(work » 16) & Ox3fLJ;
fval I= SPl[(work » 24) & Ox3fLJ;
work right A *keys++;
fval SP8[work & Ox3fLJ;
fval SP6[(work » 8) & Ox3fLJ;
fval SP4[(work » 16) & Ox3fl];
fval SP2[(work » 24) & Ox3fLJ;
l eftt A=fval;
work (leftt « 28) I (leftt » 4);
1,ork A= *keys++;
fval SP?[work & Ox3fLJ;
fval I= SP5[(work » 8) & Ox3fLJ;
fval I= SP3[(work » 16) & Ox3fl];
fval I= SPl[(work » 24) & Ox3fLJ;
work leftt A *keys++;
fval SP8[work & Ox3fLJ;
fval SP6[(work » 8) & Ox3fLJ;
fval SP4[(work » 16) & Ox3fLJ;
fval SP2[(work » 24) & Ox3fl];
right A= fval;
}

right= (right<< 31) I (right>> 1);
work= (leftt A right) & Oxaaaaaaaal;
leftt A= work;
right A= work;
leftt = (leftt << 31) I (leftt >> 1);
work= ((leftt >> 8) A right) & OxOOffOOffL;
right A= work;
leftt A= (work<< 8);

_________________ D_E_S ________ 7--,,,.,~

work= ((leftt >> 2) A right) & Ox33333333L;
right A= work;
leftt A= (work
work= ((right
leftt A= work;
right A= (work
WO r k = ((right

«
»

«
»

«
l eftt A= work;
right A= (work
*block++= right;
*block= leftt;
return;

2);
16) A leftt) & OxOOOOffffL;

16);
4) A leftt) & OxOfOfOfOfL;

4);

/* Validation sets:
*
* Single length key, single-length

0123 4567 89ab cdef
0123 4567 89ab cde7
c957 4425 6a5e d3ld

plaintext -
* Key
* Plain
* Cipher
*
**/

void des_key(des_ctx *de, unsigned char *key){
des key(key, ENO);
cpkey(dc->ekl;
deskey(key,DEl);
cpkey(dc->dk);

/* Encrypt several blocks in ECB mode. Caller is responsible for
short blocks. */

void des_enc(des_ctx *de, unsigned char *data, int blocks){
unsigned long work[2J;
int i ;
unsigned char *cp;

cp = data;
for C i =O ; i <bl o ck s ; i ++) {

scrunch(cp,work);
desfunc(work,dc->ek);
unscrun(work,cp);
cp+=S;

void des_dec(des_ctx *de, unsigned char *data, int blocks){
unsigned long work[2];
int i;
unsigned char *cp;

cp = data;
for(i=O;i<blocks;i++){

scrunch(cp,work);
desfunc(work,dc->dk);

~-:s __________ S_o_u_rc_e_C_o_d_e __________________ _

unscrun(work,cp);
cp+=8;

void main(void){
des_ctx de;
int i ;
unsigned long data[lOJ;
char *cp,key[8J = {Ox01,0x23,0x45,0x67,0x89,0xab,Oxcd,Oxef};
char x[8] = l0x01,0x23,0x45,0x67,0x89,0xab,Oxcd,Oxe7};

cp = x;

des_key(&dc,key);
des_enc(&dc,cp,l);
printf("Enc(0 .. 7,0 .. 7) = ");

for(i=O;i<S;i++) printf("%02x " ((unsigned int) cp[iJ)&OxOOff);
printf("\n"l;

des_dec(&dc,cp,ll;

printf("Dec(above,0 .. 7) = ");
for(i=O;i<S;i++) printf("%02x ",((unsigned int)cp[ill&OxOOffl;
printf("\n");

cp =(char*) data;
for(i=O;i<lO;i++)data[i]=i;

des_enc(&dc,cp,5); /* Enc 5 blocks. */
for(i=O;i<lO;i+=2) printf("Block %Old= %08lx %08lx.\n",

i /2,data[i J ,data[i+l]);

des_dec(&dc,cp,ll;
des_dec(&dc,cp+8,4);
for(i=O;i<lO;i+=2) printf("Block %Old= %08lx %08lx.\n",

i /2,data[i J ,data[i+ll);

LOKI91
#include <stdio.h>

#define LOKIBLK
#define ROUNDS

8
16

/* No of bytes in a LOKI data-block
/* No of LOKI rounds

*I
*I

typedef unsigned long
*I

Long; /* type specification for aligned LOKI blocks

extern Long
extern char

1h fdef _STDC_

l oki key[2];
*loki_lib_ver;

extern void enloki (char *bl;

/* 64 bit key used by LOKI routines */
/* String with version no. & copyright *I

/* declare prototypes for library functions */

LOKI91 z:~

extern void deloki(char *b);
extern void setlokikey(char key[LOKIBLKJ);
#else /* else just declare library functions extern*/
extern void enloki(), deloki(), setlokikey();
#endif _STDC_

char P[32] = {
31, 23, 15, 7' 30, 22, 14, 6,
29, 21, 13, 5' 28, 20, 12, 4,
27, 19, 11, 3, 26, 18, 10, 2,
25, 17, 9' 1 ' 24, 16, 8, 0
} ;

typedef struct
short gen;
short exp;

/* irreducible polynomial used in this field*/
/* exponent used to generate this s function*/

} sfn_desc;

sfn_desc sfn[J = {
{ /* 101110111 *I 375, 31},
I I* 110000111 *I 391, 31 l,
{ I* 110001101 *i l97, 31 l,
{ I* 110100011 *' I 419, 31},
{ I* 110110001 *I 433, 31},
{ /* 111000011 *I 451, 31 I,
{ I* 111010111 *I 471, 31},
I /* 111100111 *I 487, 31 I,
{ 00, 00) } ;

typedef struct {
Long loki_subkeys[ROUNDSJ;

I loki_ctx;

I* 101111011 *I 379, 31},
I* 110001011 *I 395, 31 I,
I* 110011111 *I 415, 31 l,
I* 110101001 *I 425, 31 I,
I* 110111101 */ 445, 31 I,
I* 111001111 *I 463, 31 I,
I* 111011101 *I 477, 31)'
I* 111110011 *I 499, 31 I,

static Long f();
static short s();

/* declare LOKI function f */
/* declare LOKI S-box fn s */

#define ROL12(b) b (Cb<< 12)
#define ROL13Cb) b (Cb<< 13)

#ifdef
#define

}

#endif

void

LITTLE_ENDIAN
bswap(cb) {

register char
C = cb[OJ; cb[OJ
C cb[lJ; cb[lJ
C cb[4J; cb[4]
C = cb[5J; cb[5J

C;

cb[3];
cb[2J;
cb[7J;
cb[6J;

setlokikey(loki_ctx *c, char *key)
{

register
register Long

i;
KL, KR;

Cb » 20) l ;
Cb» 19Jl;

cb[3J c;
cb[2J c·

' cb[7J c;
cb[6J c·

'

\
\
\
\
\
\

~-:s. __________ S_o_u_rc_e_C_o_d_e ___________________ _

#ifdef LITTLE_ENDIAN
bswap(key);

#endif

/fi f def

#endif
)

void
en l oki
{

/fi fdef

#endi f

KL= ((Long *)key)[OJ;
KR= ((Long *)key)[l];

for Ci=O; i<ROUNDS; i+=4)
c->loki_subkeys[iJ = KL;
ROL12 (KU;
c->loki_subkeys[i+l] KL;
ROL13 (KU;
c->loki_subkeys[i+2] KR;
ROL12 (KR);
c->loki_subkeys[i+3J KR;
ROL13 (KR);

LITTLE_ENDIAN
bswap(key);

(loki_ctx *c, char *b)

register i;
register Long L' R;

LITTLE_ENDIAN
bswap(b);

L ((Long *)b)[OJ;
R ((Long *)b)[l];

/* swap bytes round if little-endian */

/* Generate the 16 subkeys */

/* swap bytes back if little-endian */

/* left & right data halves */

/* swap bytes round if little-endian */

for (i=O; i<ROUNDS; i+=2) { /* Encrypt with the 16 subkeys */
LA= f CR, c->loki_subkeys[i]);
RA= f CL, c->loki_subkeys[i+l]);

((Long *)b)[OJ
CC Long *)b)[l]

#ifdef LITTLE_ENDIAN
bswap(b);

#end if
)

void

R·
' L;

del oki (l oki_ctx *c, char *b)
(

register
register Long

#ifdef LITTLE_ENDIAN

i;
L, R;

/* Y swapCLR) */

/* swap bytes round if little-endian */

/* left & right data halves */

_________________ L_O_K_I9_1 ________ 7 __ ~

bswap(b); /* swap bytes round if little endian */
#endif

L ((Long *)b)[OJ; /*LR= X XOR K */
R ((Long *)b)[l];

for (i=ROUNDS; i>O; i-=2) { /* subkeys in reverse order*/
L '= f(R, c->loki_subkeys[i-1]);
R '= f(L, c->loki_subkeys[i-2]);

((Long *)b)[OJ
((Long *)b)[l]

R·
' L;

/* y LR XOR K */

/fdefine MASK12 OxOfff /* 12 bit mask for expansion E */

static Long
f(r, k)
register Long r; I* Data value R(i -1) */
Long k.

'
I* Key K(i) */

{

Long a, b, c·
'

/* 32 bit S-box output, & P output*/

a = r ' k·
'

I* A=R(i-1) XOR K(i) *I

/* want to use slow speed/small size version*/
b = ((Long)s((a & MASK12))) I /* B S(E(R(i-l))'K(i)) */

((Long)s(((a >> 8) & MASK12)) << 8) I
((Long)s(((a >> 16) & MASK12)) << 16) I
((Long)s((((a >> 24) I (a<< 8)) & MASK12)) << 24);

perm32(&c, &b, P); /* C = P(S(E(R(i-1)) XOR K(i))) */

return(c); /* f returns the result C */

static short s(i)
register Long i; /* return S box value for input */
{

register short r, c, v, t;
short exp8();

r ((i»8) & Oxc) (i &

/* exponentiation routine for GF(2'8) */

Ox3); I* row value-top 2 & bottom 2
C (i»2) & Oxff; /* column value-middle 8 bits
t (c+((r*l7) ' Oxff)) & Oxff; I* base value for Sfn */
V exp8(t, sfn [r]. exp, sfn[r] .gen); I* Sfn[r] = t 'exp mod gen*/
return(v);

#define MSB Ox80000000L /* MSB of 32-bit word*/

perm32(out, in , perm)
Long *out; /* Output 32-bit block to be permuted *I

*I
*I

~-:s. _________ S_o_u_r_ce_C_o_d_e __________________ _

Long
char
I

*in;
perm[32];

/* Input 32-bit block after permutation
/* Permutation array

*I
*I

Long mask
register int
register char

*out= O;

MSB;
i, o, b;
*p = perm;

for (o=O; o<32; o++) I
i =(int)*p++;
b =(*in>> i) & 01;
if (bl

*out I= mask;
mask »= 1;

/* mask used to set bit in output
/* input bit no, output bit no, value*/
/* ptr to permutation array */

/* clear output block*/
/* For each output bit position o */

*I

/* get input bit permuted to output o */
/* value of input bit i */

/* If the input bit i is set*/
/* OR in mask to output i */
/* Shift mask to next bit */

#define SIZE 256 /* 256 elements in GF(2A8) */

short
short
short
(

mult8(a, b, gen)
a, b · '

/* operands for multiply*/
gen; /* irreducible polynomial generating Galois Field*/

short product O • '
/* result of multiplication*/

while(b != 0) I
if(b&Ol)

product A= a;
a<<= 1; /*
i f (a >= SIZE)

a A= gen; /*
b »= 1;

return(product);

I*

/* while multiplier is non-zero*/

/* add multiplicand if LSB of b set*/
shift multiplicand one place*/

and modulo reduce if needed*/
shift multiplier one place */

short expB(base, exponent, gen)
short base; /* base of exponentiation */
short exponent; /* exponent */
short gen; /* irreducible polynomial generating Galois Field*/
I

short accum = base;
short result= 1;

if (base== 0)
return(O);

I*

I*

I* superincreasing sequence of base*/
result of exponentiation *I

I* if zero base specified then */
the result is "O" ifbase=O *I

while (exponent != 0) (/* repeat while exponent non-zero*/
if ((exponent & OxOOOl) == OxOOOl) /* multiply if exp 1 */

result mult8(result, accum, gen);
exponent>>= 1; /* shift exponent to next digit*/
accum = multB(accum, accum, gen); /* & square */

return (result);

_________________ ID_E_A ________ 7 ___ ~

void loki_key(loki_ctx *c, unsigned char *key)(
setlokikey(c,key);

void loki_enc(loki_ctx *c, unsigned char *data, int blocks){
unsigned char *cp;
int i ;

cp = data;
for(i=O;i<blocks;i++)(

enloki (c,cp);
cp+=8;

void loki_dec(loki_ctx *c, unsigned char *data, int blocks){
unsigned char *cp;
int i ;

cp = data;
for Ci =0; i <bloc ks; i ++ l {

deloki (c,cp);
cp+=8;

void main(void)I
loki_ctx le;

IDEA

unsigned long data[lO];
unsigned char *cp;
unsigned char key[]= 10,1,2,3,4,5,6,7};
int i ;

for(i=O;i<lO;i++) data[i]=i;

loki_key(&lc,keyl;

cp = (char *)data;
loki_enc(&lc,cp,5);
for(i=O;i<lO;i+=2l printf("Block %Old= %08lx %08lx\n",

i/2,data[iJ,data[i+lJl;
loki_dec(&lc,cp,l);
loki_dec(&lc,cp+8,4);
for(i=O;i<lO;i+=2l printf("Block %Old= %08lx %08lx\n",

i/2,data[i],data[i+l]l;

typedef unsigned char boolean; /* values are TRUE or FALSE*/
typedef unsigned char byte; /* values are 0-255 */
typedef byte *byteptr; /* pointer to byte*/

~ :s;::------------S_o_u_r_ce_C_o_d_e ___________________ _

typedef char *string;/* pointer to ASCII character string*/
typedef unsigned short wordl6; /* values are 0-65535 */
typedef unsigned long word32; /* values are 0-4294967295 */

fh fndef TRUE
#define FALSE 0
#define TRUE (!FALSE)
#endif /* if TRUE not already defined*/

#ifndef min /* if min macro not already defined*/
#define min(a,b) ((aJ<(bl ? (al : (bl J
#define max(a,b) ((al>(b) ? (a) : (bl)
#endif /* if min macro not already defined*/

#define IDEAKEYSIZE 16
#define IDEABLOCKSIZE 8

#define IDEAROUNDS 8
#define IDEAKEYLEN (6*IDEARDUNDS+4)

typedef struct{
wordl6 ek[IDEAKEYLENJ,dk[IDEAKEYLENJ;

)idea_ctx;

/* End includes for IDEA.C */
#ifdef IDEA32 /* Use >16-bit temporaries*/
#define lowl6(x) ((x) & OxFFFFJ
typedef unsigned int uintl6;/* at LEAST 16 bits, maybe more*/
#else
#define lowl6(x) (x) /* this is only ever applied to uintl6's */
typedef wordl6 uintl6;
#endif

#ifdef SMALL_CACHE
static ui ntl6
mul(register uintl6 a, register uintl6 bl
{

register word32 p;

p = (word32Ja * b;
if (p) {

b = l owl6(p);
a = p»l6;
return (b - al+ (b < al;

else if (al (
return 1-b;

else {
return 1-a;

I /* mul */
#endif /* SMALL CACHE*/

static ui ntl6
mul Inv(uintl6 x)
{

_________________ ID_E_A ________ 7 __ ~

uintl6 tO, tl;
uintl6 q, Y;

if (X <= 1)

return x;
tl = OxlOOOlL / x;
y = OxlOOOlL % x;
if(y==l)

I* 0 and are self-inverse*/
/* Since x >= 2, this fits into 16 bits*/

return low16(1 tl);
to
do

1 .
'
q =XI y;
X = X % y;
to += q * t1;
if(x==l)

return tO;
q = y I x;
Y = Y % x;
tl += q * tO;

while (y != ll;
return low16(1-tl);

} /* muklnv */

static void
ideaExpandKey(byte const *userkey, wordl6 *EK)
{

int i , j;

for (j =O ; j < 8 ; j ++) {
EK[j] = (userkey[OJ<<B) + userkey[l];
userkey += 2;

for (i=O; j < IDEAKEYLEN; j++) {
i++;
EK[i+7J EK[i & 7] << 9 I EK[i+l & 7] >> 7;
EK+= i & 8;
i &= 7;

) /* ideaExpandKey */

static void
idealnvertKey(wordl6 const *EK, word16 DK[IDEAKEYLENJ)
{

int i;
uint16 tl, t2, t3;
word16 temp[IDEAKEYLENJ;
wordl6 *p =temp+ IDEAKEYLEN;

tl mul Inv(*EK++);
t2 -*EK++;
t3 -*EK++;
*- -p mullnv(*EK++);
*- -p t3;
*--p t2;

~""':s;~---------S_o_u_r_ce_C_o_d_e ___________________ _

*--p=tl;

for (i = O; i < IDEAROUNDS-1; i++) I
tl = *EK++;

)

*- -p *EK++;
*--p=tl;

tl = mullnv(*EK++);
t2 = -*EK++;
t3 = -*EK++;
*--p = mul Inv(*EK++);
*--p t2;
*--p t3;
*--p tl;

tl *EK++;
*- -p *EK++;
*--p = tl;

tl mul Inv(*EK++);
t2 -*EK++;
t3 -*EK++;
*--p mul Inv(*EK++);
*--p t3;
*--p t2;
*--p tl;

/* Copy and destroy temp copy*/
memcpy(DK, temp, sizeof(temp));
for(i=O;i<IDEAKEYLEN;i++)temp[i]=O;

l /* ideaTnvertKey */

#ifdef SMALL_CACHE
#define MUL(x,y) (x mul(lowl6(x),y))
#else /* !SMALL_CACHE */
#ifdef AVOID_JUMPS
#define MUL(x,y) (x = lowl6(x-l), tl6 = lowl6((y)-l), \

t32 = (word32)x*tl6 + x + tl6 + 1, x lowl6(t32), \
tl6 = t32>>16, x = (x-tl6) + (x<tl6))

#else/* !AVOID_JUMPS (default)*/
#define MUL(x,y) \

((tl6 = (y))? \

#endif
#endif

static void

(x=l owl6(x)) ? \
t32 = (word32)x*tl6,
x = lowl6(t32), \
tl6 = t32»16, \
x = (x-tl6)+(x<tl6) \

(x = l-tl6) \

(x 1 x))

__________________ ID_E_A _________ z:----~

ideaCipher(byte *inbuf, byte *outbuf, word16 *key)
{

register uint16 xl, x2, x3, x4, s2, s3;
word16 *in, *out;

#ifndef SMALL~CACHE

#end if

register uint16 t16; /* Temporaries needed by MUL macro*/
register word32 t32;

int r = IDEAROUNDS;

in (word16 *)inbuf;
xl *in++; x2 *in++;
x3 *in++; x4 = *in;

#ifndef HIGHFIRST

#endif

xl (xl »8)
x2 (x2 »8)
x3 (x3 »8)
x4 (x4 »8)

(x1«8);
(x2«8);
(x3«8);
(x4«8);

do
MU L(xl, *key++);
x2 += *key++;
x3 += *key++;
MUL(x4, *key++);

s3 = x3;
x3A=xl;
MUL(x3, *key++);
s2 = x2;
x2 A= x4;
x2 += x3;
MUL(x2, *key++);
x3 += x2;

x2 A= s3; x3 A= s2;
while (--r);

MUL(xl, *key++);
x3 += *key++;
x2 += *key++;
MUL(x4, *key);

out= (word16 *)outbuf;
#ifdef HIGHFIRST

*out++ xl;
*out++ = x3;
*out++ = x2;
*out= x4;

#else I* !HIGHFIRST *I
*out++ (xl »8) (x1«8);
*out++ = (x3 »8) (x3«8);
*out++ = (x2 »8) (x2«8);
*out= (x4 »8) I x4«8);

~..._:s,---------------S_o_u_rc_e_C_o_d_e __________________ _

#endif
} /* ideaCipher */

void idea_key(idea_ctx *c, unsigned char *key)I
ideaExpandKey(key,c->ek);
idealnvertKey(c->ek,c->dk);

void idea_enc(idea_ctx *c, unsigned char *data, int blocks){
int i ;
unsigned char *d = data;

for(i=O;i<blocks;i++){
ideaCipher(d,d,c->ek);
d+=S;

void idea_dec(idea_ctx *c, unsigned char *data, int blocks){
int i ;
unsigned char *d = data;

for(i=O;i<blocks;i++){
ideaCipher(d,d,c->dk);
d+=S;

#include <stdio.h>

#ifndef BLOCKS
fh fndef KBYTES
#define KBYTES 1024
#endif
#define BLOCKS (64*KBYTES)
#endif

int
main(void)
{ /* Test driver for IDEA cipher*/

inti, j, k;
idea_ctx c;
byte userkey[16];
wordl6 EK[IDEAKEYLENJ, DK[IDEAKEYLENJ;
byte XX[SJ, YY[SJ, ZZ[SJ;
word32 long_block[lOJ; /* 5 blocks*/
long l ;
char *lbp;

/* Make a sample user key for testing ... */
for (i =0; i < 16; i ++)

userkey[i] = i+l;

idea_key(&c,userkey);

/* Make a sample plaintext pattern for testing ... */

_________________ G_O_ST ________ 7_~

for (k=O; k<B; k++)
XX[k] = k;

idea_enc(&c,XX,l); /*encrypt*/

lbp = (unsigned char*) long_block;
for(i=O;i<lO;i++) long_block[i] = i;
idea_enc(&c,lbp,5);
for(i=O;i<lO;i+=2) printf("Block %Old= %08lx %08lx.\n",

i / 2 , l on g_b l o ck [i J , l on g_b l o ck [i + 1 J) ;

idea_dec(&c,lbp,3);
idea_dec(&c,lbp+24,2);

for(i=O;i<lO;i+=2) printf("Block %Old= %08lx %08lx.\n",
i / 2 , l on g_b l o ck [i J , l on g_b l o ck [i + 1 J) ;

return O;
} /*main*/

GOST

/* normal exit*/

typedef unsigned long u4;
typedef unsigned char byte;

typedef struct I
u4 k[BJ;
/*Constants-boxes -- set up in gost_init(). */
char k87[256J, k65[256J, k43[256], k21[256J;

gost_ctx;

/* Note: encrypt and decrypt expect full blocks--padding blocks is
caller's responsibility. All bulk encryption is done in
ECB mode by these calls. Other modes may be added easily
enough. */

void gost_enc(gost_ctx * u4 *, int);
void gost_dec(gost_ctx * u4 *, int);
void gost_key(gost_ctx * u4 *);
void gost_init(gost_ctx *);
void gost_destroy(gost_ctx *);

/fifdef _alpha /* Any other 64 bit machines?*/
typedef unsigned int word32;
/felse
typedef unsigned long word32;
/fend if

kboxinit(gost_ctx *c)
I

int i;

byte kB [16 J { 14, 4' 13, 1 ' 2, 15, 11,
12, 5' 9' 0' 7 } ;

byte k7[16J { 15, 1 ' 8, 14, 6, 11, 3,

8, 3, 10, 6,

4, 9, 7' 2,

~~s _________ S_o_u_rc_e_C_o_d_e __________________ _

13, 12, 0, 5, 10 } ;
byte k6[16J { 10, 0, 9, 14, 6, 3, 15, 5, 1' 13, 12,

7' 11, 4, 2, 8 } ;
byte k5 [16 J 7, 13, 14, 3, 0, 6, 9, 10' 1 ' 2' 8'

5, 11, 12, 4, 15 } ;
byte k4[16] 2' 12, 4, 1' 7, 10' 11, 6' 8, 5' 3'

15, 13, 0, 14, 9 } ;
byte k3 [16 J (12, 1' 10' 15, 9' 2' 6' 8, 0' 13, 3'

4, 14, 7' 5, 11 } ;
byte k2 [16 J (4' 11, 2' 14, 15, 0' 8' 13, 3' 12, 9'

7, 5' 10, 6' 1 } ;
byte k1[16J (13, 2' 8, 4' 6' 15, 11 , 1 ' 10, 9' 3'

14, 5' 0' 12, 7 } ;

for (i O·
'

i < 256; i++) {

c->k87[i J kB [i » 4] « 4 k7 [i & 15];
c->k65[i J k6 [i » 4] « 4 k5 [i & 15 J ;
c->k43[i] k4 [i » 4] « 4 k3 [i & 15 J ;
c->k21[i J k2 [i » 4] « 4 kl[i & 15 J ;

static word32
f(gost_ctx *c,word32 x)
{

X = c->k87[x>>24 & 255] « 24 c->k65[x>>l6 & 255] « 16 I
c->k43[x» 8 & 255] « 8 c->k21[x & 255];

/* Rotate left 11 bits*/
return x«ll I x»(32-11);

void gostcrypt(gost_ctx *c, word32 *dl(
register word32 nl, n2; /* As named in the GOST */

nl = d[OJ;
n2=d[1J;

I* Instead of swapping halves, swap names each round *I
n2 A= f(c,nl+c->k[OJ); nl A= f(c,n2+c->k[l]);
n2 A= f(c,nl+c->k[2J); nl A= f(c,n2+c->k[3]);
n2 A= f(c,nl+c->k[4]); nl A= f(c,n2+c->k[5]);
n2 A= f(c,nl+c->k[6]); nl A= f(c,n2+c->k[7]);

n2 A= f(c,nl+c->k[OJ); nl A= f(c,n2+c->k[1J);
n2 A= f(c,nl+c->k[2]); nl A= f(c,n2+c->k[3]);
n2 A= f(c,nl+c->k[4]); nl A= f(c,n2+c->k[5]);
n2 A= f(c,nl+c->k[6]); nl A= f(c,n2+c->k[7J);

n2 A= f(c,nl+c->k[O]); nl A= f (c, n 2+c -> k [1 J) ;
n2 A= f(c,nl+c->k[2]); nl A= f(c,n2+c->k[3]);
n2 A= f(c,nl+c->k[4J); nl A= f(c,n2+c->k[5]);
n2 A= f(c,nl+c->k[6J); nl A= f(c,n2+c->k[7]);

n2 A= f(c,nl+c->k[7]); nl A= f(c,n2+c->k[6]);
n2 A= f(c,nl+c->k[5]); nl A- f(c,n2+c->k[4J);

_________________ G_O_ST ________ 7----,,,~

void

n2 A= f(c,nl+c->k[3]); nl A= f(c,n2+c->k[2]);
n2 A= f(c,nl+c->k[l]); nl A= f(c,n2+c->k[OJ);

d[OJ = n2; d[l] = nl;

gostdecrypt(gost_ctx *c, u4 *d)I
register word32 nl, n2; /* As named in the GOST */

nl = d[OJ; n2 = d[ll;

n2 A= f(c,nl+c->k[OJ); nl A= f(c,n2+c->k[l]);
n2 A= f(c,nl+c->k[2]); nl A= f(c,n2+c->k[3]);
n2 A= f(c,nl+c->k[4J); nl A= f(c,n2+c->k[5J);
n2 A= f(c,nl+c->k[6]); nl A= f(c,n2+c->k[7]);

n2 A- f(c,nl+c->k[7]); nl A= f(c,n2+c->k[6]);
n2 A= f(c,nl+c->k[5]); nl A= f(c,n2+c->k[4]);
n2 A= f(c,nl+c->k[3]); nl A= f(c,n2+c->k[2]);
n2 A= f(c,nl+c->k[l]); nl A= f(c,nZ+c->k[OJ);

n2 A= f(c,nl+c->k[7]); nl A= f(c,n2+c->k[6]);
n2 A= f(c,nl+c->k[5]); nl A= f(c,n2+c->k[4]);
n2 A= f(c,nl+c->k[3]); nl A= f(c,n2+c->k[2]);
n2 A= f(c,nl+c->k[l]); nl A= f(c,nZ+c->k[OJ);

n2 A= f(c,nl+c->k[7]); nl A= f(c,n2+c->k[6]);
n2 A= f(c,nl+c->k[5]); nl A= f(c,n2+c->k[4]);
n2 A= f(c,nl+c->k[3]); nl A= f(c,n2+c->k[2J);
n2 A= f(c,nl+c->k[l]); nl A= f(c,n2+c->k[O]);

d[OJ = n2; d[ll = nl;

void gost_enc(gost_ctx *c, u4 *d, int blocks){
int i ;

for(i=O;i<blocks;i++){
gostcrypt(c,d);
d+=2;

void gost_dec(gost_ctx *c, u4 *d, int blocks){
int i ;

for(i=O;i<blocks;i++){
gostdecrypt(c,d);
d+=2;

void gost_key(gost_ctx *c, u4 *k){
int i ;
for(i=O;i<S;i++) c >k[i]=k[i];

~-:s. __________ S_o_u_r_ce_C_o_d_e ___________________ _

void gost_init(gost_ctx *c){
kboxinit(c);

void gost_destroy(gost_ctx *c){
int i;
for(i=O;i<B;i++) c >k[i]=O;

void main(void){
gost_ctx gc;
u4 k[BJ ,data[lOJ;
int i;

/* Initialize GOST context.*/
gost_init(&gc);

/* Prepare key--a simple key should be OK, with this many rounds! */
for(i=O;i<B;i++) k[il = i;
gost_key(&gc,k);

/* Try some test vectors. */
data[OJ = O; data[l] = O;
gostcrypt(&gc,datal;
printf("Enc of zero vector: %O8lx %O8lx\n",data[OJ,data[l]);
gostcrypt(&gc,data);
printf("Enc of above: %O8lx %O8lx\n",data[O],data[l]);
data[OJ = Oxffffffff; data[ll = Oxffffffff;
gostcrypt(&gc,data);
printf("Enc of ones vector: %O8lx %O8lx\n",data[OJ,data[l]);
gostcrypt(&gc,data);
printf("Enc of above: %O8lx %O8lx\n",data[OJ,data[l]);

/* Does gost_dec() properly reverse gost_enc()? Do
we deal OK with single-block lengths passed in gost_dec()?
Do we deal OK with different lengths passed in?*/

/* !nit data */
for(i=O;i<lO;i++) data[il=i;

/* Encrypt data as 5 blocks. */
gost_enc(&gc,data,5);

/* Display encrypted data. */
for(i=O;i<lO;i+=2) printf("Block %O2d = %O8lx %O8lx\n",

i / 2, data [i J, data [i + 1 J);

/* Decrypt in different sized chunks. */
gost_dec(&gc,data,ll;
gost_dec(&gc,data+2,4);
printf("\n");

/* Display decrypted data. */

_________________ B_L_O_W_F_IS_H ________ Z:__,,~

for(i=O;i<lO;i+=2) printf("Block %02d = %08lx %08lx\n",
i /2 ,data[i J ,data[i+l] l;

gost_destroy(&gc);

BLOWFISH
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#ifdef little_endian /* Eg: Intel */
#include <alloc.h>

#endif

#include <ctype.h>

#ifdef little_endian /* Eg: Intel*/
#include <dir.h>
#include <bios.h>

#endif

#ifdef big_endian
#include <Types.h>

#endif

typedef struct {
unsigned long S[4][256],P[18];

} blf_ctx;

#define MAXKEYBYTES 56
// #define little_endian 1
#define big_endian 1

/* 448 bits * /
/* Eg: Intel '/

/* Eg: Motorola*/

void Blowfish_encipher(blf_ctx *,unsigned long *xl, unsigned long *xr);
void Blowfish_decipher(blf_ctx *,unsigned long *xl, unsigned long *xrl;

#define N 16
#define noErr 0
#define DATAERROR -1
#define KEYBYTES 8

FILE* SubkeyFile;

unsigned long F(blf_ctx *be, unsigned long x)
{

unsigned short a;
unsigned short b;
unsigned short c;
unsigned short d;
unsigned long y;

~""':s;~---------S_o_u_rc_e_C_o_d_e ___________________ _

d = x & OxOOFF;
X »= 8;
c = x & OxOOFF;
X »= 8;
b = x & OxOOFF;
X »= 8;
a= x & OxOOFF;
//y = C(S[OJ[aJ + S[l][b]) 'S[2J[cJ) + S[3J[dJ;
y = bc->S[OJ[a] + bc->S[lJ[bJ;
y = y' bc->S[2J[c];
y = y + bc->S[3J[d];

return y;

void Blowfish_encipher(blf_ctx *c,unsigned long *xl, unsigned long *xr)
{

unsigned long Xl ;
unsigned long Xr;
unsigned long temp;
short i;

Xl *xl ;
Xr *xr;

for (i = 0; i < N; ++i)
Xl Xl ' c->P[i];
Xr = F(c,Xl) 'Xr;

temp = Xl;
Xl X r;
Xr = temp;

temp = Xl;
Xl Xr;
Xr temp;

Xr Xr A c->P[NJ;
Xl Xl A c->P[N + 1];

*xl Xl ;
*xr Xr;

void Blowfish_decipher(blf_ctx *c, unsigned long *xl, unsigned long *xr)
{

unsigned long Xl ;
unsigned long Xr;
unsigned long temp;
short i ;

Xl *xl ;
Xr *xr;

_________________ BL_O_W_F_IS_H ________ 7--=--~

for (i = N + l; i > l; --il {
Xl Xl A c->P[i J;
Xr = F(c,Xll A Xr;

/* Exchange Xl and Xr */
temp=Xl;
X l X r;
Xr = temp;

/* Exchange Xl and Xr */
temp = X l ;
Xl X r;
Xr temp;

Xr Xr A c->P[ll;
Xl Xl A c->P[OJ;

*xl Xl;
*xr Xr;

short InitializeBlowfish(blf_ctx *c, char key[], short keybytes)
{

short i .
' short j;

short k;
short error;
short numread;
unsigned long data;
unsigned long data l;
unsigned long datar;

unsigned long ksO[J = {
Oxdl310ba6, Ox98dfb5ac, Ox2ffd72db, Oxd0ladfb7, OxbSelafed, Ox6a267e96,
Oxba7c9045, Oxfl2c7f99, Ox24al9947, Oxb3916cf7, Ox0801 f2e2, Ox858efcl6,
Ox636920d8, Ox71574e69, Oxa458fea3, Oxf4933d7e, Ox0d95748f, Ox728eb658,
Ox718bcd58, Ox82154aee, Ox7b54a4ld, Oxc25a59b5, Ox9c30d539, Ox2af26013,
Oxc5dlb023, Ox286085f0, Oxca417918, Oxb8db38ef, Ox8e79dcb0, Ox603al80e,
Ox6c9e0e8b, Oxb0le8a3e, Oxd71577cl, Oxbd314b27, Ox78af2fda, Ox55605c60,
Oxe65525f3, Oxaa55ab94, Ox57489862, Ox63e81440, Ox55ca396a, Ox2aabl0b6,
Oxb4cc5c34, Oxll4le8ce, Oxal5486af, Ox7c72e993, Oxb3eel411, Ox636fbc2a,
Ox2ba9c55d, Ox74183lf6, Oxce5c3el6, Ox9b8793le, Oxafd6ba33, Ox6c24cf5c,
Ox7a325381, Ox28958677, Ox3b8f4898, Ox6b4bb9af, Oxc4bfe8lb, Ox66282193,
Ox6ld809cc, Oxfb2la991, Ox487cac60, Ox5dec8032, Oxef845d5d, Oxe98575bl,
Oxdc262302, Oxeb65lb88, Ox23893e81, Oxd396acc5, Ox0f6d6ff3, Ox83f44239,
Ox2e0b4482, Oxa4842004, Ox69c8f04a, Ox9elf9b5e, Ox2lc66842, Oxf6e96c9a,
Ox670c9c61, Oxabd388f0, Ox6a5la0d2, Oxd8542f68, Ox960fa728, Oxab5133a3,
Ox6eef0b6c, Oxl37a3be4, Oxba3bf050, Ox7efb2a98, Oxal fl65ld, Ox39af0176,
Ox66ca593e, Ox82430e88, Ox8cee8619, Ox456f9fb4, Ox7d84a5c3, Ox3b8b5ebe,
Oxe06f75d8, Ox85cl2073, Ox40la449f, Ox56cl6aa6, Ox4ed3aa62, Ox363f7706,
Oxlbfedf72, Ox429b023d, Ox37d0d724, Oxd00al248, Oxdb0fead3, Ox49flc09b,
Ox075372c9, Ox8099lb7b, Ox25d479d8, Oxf6e8def7, Oxe3fe50la, Oxb6794c3b,

~s
Source Code

Ox976ce0bd, Ox04c006ba, Oxcla94fb6, Ox409f60c4, Ox5e5c9ec2, Oxl96a2463,
Ox68fb6faf, Ox3e6c53b5, Oxl339b2eb, Ox3b52ec6f, Ox6dfc511 f, Ox9b30952c,
Oxcc814544, Oxaf5ebd09, Oxbee3d004, Oxde334afd, Ox660f2807, Oxl92e4bb3,
Oxc0cba857, Ox45c8740f, Oxd20b5f39, Oxb9d3fbdb, Ox5579c0bd, Oxla60320a,
Oxd6al00c6, Ox402c7279, Ox679f25fe, Oxfblfa3cc, Ox8ea5e9f8, Oxdb3222f8,
Ox3c7516df, Oxfd616bl5, Ox2f50lec8, Oxad0552ab, Ox323db5fa, Oxfd238760,
Ox53317b48, Ox3e00df82, Ox9e5c57bb, Oxca6f8ca0, Oxla87562e, Oxdfl769db,
Oxd542a8f6, Ox287effc3, Oxac6732c6, Ox8c4f5573, Ox695b27b0, Oxbbca58c8,
Oxel ffa35d, Oxb8f0lla0, Oxl0fa3d98, Oxfd2183b8, Ox4afcb56c, Ox2ddld35b,
Ox9a53e479, Oxb6f84565, Oxd28e49bc, Ox4bfb9790, Oxelddf2da, Oxa4cb7e33,
Ox62fbl341, Oxcee4c6e8, Oxef20cada, Ox36774c01, Oxd07e9efe, Ox2bfl lfb4,
Ox95dbda4d, Oxae909198, Oxeaad8e71, Ox6b93d5a0, Oxd08edld0, Oxafc725e0,
Ox8e3c5b2f, Ox8e7594b7, Ox8ff6e2fb, Oxf2122b64, Ox8888b812, Ox900df0lc,
Ox4fad5ea0, Ox688fc3lc, Oxdlcffl91, Oxb3a8clad, Ox2f2f2218, OxbeOel 777,
Oxea752dfe, Ox8b021 fal, Oxe5a0cc0f, Oxb56f7 4e8, Oxl8acf3d6, Oxce89e299,
Oxb4a84fe0, Oxfdl3e0b7, Ox7cc43b81, Oxd2ada8d9, Oxl65fa266, Ox80957705,
Ox93cc7314, Ox2lla1477, Oxe6ad2065, Ox77b5fa86, Oxc75442f5, Oxfb9d35cf,
OxebcdafOc, Ox7b3e89a0, Oxd64llbd3, Oxaele7e49, Ox00250e2d, Ox207lb35e,
Ox226800bb, Ox57b8e0af, Ox2464369b, Oxf009b91e, Ox556391ld, Ox59dfa6aa,
Ox78cl4389, Oxd95a537f, Ox207d5ba2, Ox02e5b9c5, Ox83260376, Ox6295cfa9,
Oxllc81968, Ox4e734a41, Oxb3472dca, Ox7b14a94a, Oxlb510052, Ox9a532915,
Oxd60f573f, Oxbc9bc6e4, Ox2b60a476, Ox81e67400, Ox08ba6fb5, Ox57lbe91 f,
Ox f296ec6b, Ox2a0dd915, Oxb6636521, Oxe7b9f9b6, Oxff34052e, Oxc5855664,
Ox53b02d5d, Oxa99f8fal, Ox08ba4799, Ox6e85076a};
unsigned long ksl[J = {
Ox4b7a70e9, Oxb5b32944, Oxdb75092e, Oxc4192623, Oxad6ea6b0, Ox49a7df7d,
Ox9cee60b8, Ox8fedb266, Oxecaa8c71, Ox699a l 7ff, Ox5664526c, Oxc2b19eel,
Oxl93602a5, Ox75094c29, Oxa0591340, Oxe4183a3e, Ox3f54989a, Ox5b429d65,
OxGb8fe4d6, Ox99f73fd6, Oxald29c07, Oxefe830f5, Ox4d2d38e6, Oxf0255dcl,
Ox4cdd2086, Ox8470eb26, Ox6382e9c6, Ox02lecc5e, Ox09686b3f, Ox3ebaefc9,
Ox3c971814, Ox6b6a70al, Ox687f3584, Ox52a0e286, Oxb79c5305, Oxaa500737,
Ox3e0784lc, Ox7fdeae5c, Ox8e7d44ec, Ox5716f2b8, Oxb03ada37, Oxf0500c0d,
Oxf0lclf04, Ox0200b3ff, Oxae0cf5la, Ox3cb574b2, Ox25837a58, Oxdc0921bd,
Oxdl9113f9, Ox7ca92ff6, Ox94324773, Ox22f54701, Ox3ae5e581, Ox37c2dadc,
Oxc8b57634, Ox9af3dda7, Oxa9446146, Ox0fd0030e, Oxecc8c73e, Oxa475le41,
Oxe238cd99, Ox3bea0e2f, Ox3280bbal, Oxl83eb331, Ox4e548b38, Ox4f6db908,
Ox6f420d03, Oxf60a04bf, Ox2cb81290, Ox24977c79, Ox5679b072, Oxbcaf89af,
Oxde9a77lf, Oxd9930810, Oxb38bael2, Oxdccf3f2e, Ox551272lf, Ox2e6b7124,
Ox50ladde6, Ox9f84cd87, Ox7a584718, Ox7408dal7, Oxbc9f9abc, Oxe94b7d8c,
Oxec7aec3a, Oxdb85ldfa, Ox63094366, Oxc464c3d2, Oxeflcl847, Ox3215d908,
Oxdd433b37, Ox24c2bal6, Oxl2al4d43, Ox2a65c451, Ox50940002, Oxl33ae4dd,
Ox7ldff89e, Oxl0314e55, Ox8lac77d6, Ox5flll99b, Ox043556fl, Oxd7a3c76b,
Ox3clll83b, Ox5924a509, Oxf28fe6ed, Ox97fl fbfa, Ox9ebabf2c, Oxlel53c6e,
Ox86e34570, Oxeae96fbl, Ox860e5e0a, Ox5a3e2ab3, Ox771 fe7lc, Ox4e3d06fa,
Ox2965dcb9, Ox99e 71 dOf, Ox803e89d6, Ox5266c825, Ox2e4cc978, Ox9cl0b36a,
Oxc6150eba, Ox94e2ea78, Oxa5fc3c53, Oxle0a2df4, Oxf2f74ea7, Ox36ld2b3d,
Oxl939260f, Ox19c27960, Ox5223a708, Oxf71312b6, Oxebadfe6e, Oxeac3lf66,
Oxe3bc4595, Oxa67bc883, Oxbl7f37dl, Ox018cff28, Oxc332ddef, Oxbe6c5aa5,
Ox65582185, Ox68ab9802, Oxeecea50f, Oxdb2f953b, Ox2aef7dad, Ox5b6e2f84,
Oxl52lb628, Ox29076170, Oxecdd4 77 5, Ox619fl510, Oxl3cca830, Oxeb6lbd96,
Ox0334fele, Oxaa0363cf, Oxb5735c90, Ox4c70a239, Oxd59e9e0b, Oxcbaadel4,
Oxeecc86bc, Ox60622ca7, Ox9cab5cab, Oxb2f3846e, Ox648bleaf, Oxl9bdf0ca,
Oxa02369b9, Ox655abb50, Ox40685a32, Ox3c2ab4b3, Ox319ee9d5, Oxc02lb8f7,
Ox9b540bl9, Ox875fa099, Ox95f7997e, Ox623d7da8, Oxf837889a, Ox97e32d77,

BLOWFISH
z~

Oxlled935f, Ox16681281, Ox0e358829, Oxc7e61fd6, Ox96dedfa 1, Ox7858ba99,
Ox57f584a5, Oxlb227263, Ox9b83c3ff, Oxlac24696, Oxcdb30aeb, Ox532e3054,
Ox8fd948e4, Ox6dbc3128, Ox58ebf2ef, Ox34c6ffea, Oxfe28ed61, Oxee7c3c73,
Ox5d4al4d9, Oxe864b7e3, Ox42105dl4, Ox203e13e0, Ox45eee2b6, Oxa3aaabea,
Oxdb6c4f15, Oxfacb4fd0, Oxc742f442, Oxef6abbb5, Ox654f3bld, Ox41cd2105,
Oxd81e799e, Ox86854dc7, Oxe44b476a, Ox3d816250, Oxcf62alf2, Ox5b8d2646,
Oxfc8883a0, Oxclc7b6a3, Ox7f1524c3, Ox69cb7492, Ox47848a0b, Ox5692b285,
Ox095bbf00, Oxadl9489d, Ox1462b174, Ox23820e00, Ox58428d2a, Ox0c55f5ea,
Oxldadf43e, Ox233f7061, Ox3372f092, Ox8d937e41, Oxd65fecfl, Ox6c223bdb,
Ox7cde3759, Oxcbee7460, Ox4085f2a7, Oxce77326e, Oxa6078084, Ox19f8509e,
Oxe8efd855, Ox61d99735, Oxa969a7aa, Oxc50c06c2, Ox5a04abfc, Ox800bcadc,
Ox9e447a2e, Oxc3453484, Oxfdd56705, Ox0ele9ec9, Oxdb73dbd3, Ox105588cd,
Ox675fda79, Oxe3674340, Oxc5c43465, Ox713e38d8, Ox3d28f89e, Oxf16dff20,
Ox153e21e7, Ox8fb03d4a, Oxe6e39f2b, Oxdb83adf7};
unsigned long ks2[] = {
Oxe93d5a68, Ox948140f7, Oxf64c261c, Ox94692934, Ox411520f7, Ox7602d4f7,
Oxbcf46b2e, Oxd4a20068, Oxd40824 71, Ox3320f46a, Ox43b7d4b7, Ox500061af,
Oxle39f62e, Ox97244546, Ox14214f74, Oxbf8b8840, Ox4d95fcld, Ox96b591af,
Ox70f4ddd3, Ox66a02f45, Oxbfbc09ec, Ox03bd9785, Ox7fac6dd0, Ox31cb8504,
Ox96eb27b3, Ox55fd3941, Oxda2547e6, Oxabca0a9a, Ox28507825, Ox530429f4,
Ox0a2c86da, Oxe9b66dfb, Ox68dc1462, Oxd7486900, Ox680ec0a4, Ox27a18dee,
Ox4f3ffea2, Oxe887ad8c, Oxb58ce006, Ox7af4d6b6, Oxaacele7c, Oxd3375fec,
Oxce78a399, Ox406b2a42, Ox20fe9e35, Oxd9f385b9, Oxee39d7ab, Ox3bl24e8b,
Oxldc9faf7, Ox4b6dl856, Ox26a36631, Oxeae397b2, Ox3a6efa74, Oxdd5b4332,
Ox6841e7f7, Oxca7820fb, Oxfb0af54e, Oxd8feb397, Ox454056ac, Oxba489527,
Ox55533a3a, Ox20838d87, Oxfe6ba9b7, Oxd096954b, Ox55a867bc, Oxa 1159a 58,
Oxcca92963, Ox99eldb33, Oxa62a4a56, Ox3f3125f9, Ox5ef47elc, Ox9029317c,
Oxfdf8e802, Ox04272f70, Ox80bb155c, Ox05282ce3, Ox95c11548, Oxe4c66d22,
Ox48c1133f, Oxc70f86dc, Ox07f9c9ee, Ox41041f0f, Ox404779a4, Ox5d886e17,
Ox325f51eb, Oxd59bc0dl, Oxf2bcc18f, Ox41113564, Ox257b7834, Ox602a9c60,
Oxdff8e8a3, Oxlf636clb, Ox0e12b4c2, Ox02e1329e, Oxaf664fdl, Oxcad18115,
Ox6b2395e0, Ox333e92el, Ox3b240b62, Oxeebeb922, Ox85b2a20e, Oxe6ba0d99,
Oxde720c8c, Ox2da2f728, Oxd0127845, Ox95b794fd, Ox647d0862, Oxe7ccf5f0,
Ox5449a36f, Ox877d48fa, Oxc39dfd27, Oxf33e8dle, Ox0a476341, Ox992eff7 4,
Ox3a6f6eab, Oxf4f8fd37, Oxa812dc60, Oxa lebddf8, Ox991be14c, Oxdb6e6b0d,
Oxc67b5510, Ox6d672c37, Ox2765d43b, Oxdcd0e804, Oxf1290dc7, Oxcc00ffa3,
Oxb5390f92, 01690fed0b, Ox667b9ffb, Oxcedb7d9c, Oxa091cf0b, Oxd9155ea3,
Oxbbl32f88, Ox515bad24, Ox7b9479bf, Ox763bd6eb, Ox37392eb3, Oxcc115979,
Ox8026e297, Oxf42e312d, Ox6842ada7, Oxc66a2b3b, Ox12754ccc, Ox782efl lc,
Ox6a124237, Oxb79251e7, Ox06albbe6, Ox4bfb6350, Oxla6bl018, Oxllcaedfa,
Ox3d25bdd8, Oxe2elc3c9, Ox44421659, Ox0a121386, Oxd90cec6e, Oxd5abea2a,
Ox64af674e, Oxda86a85f, Oxbebfe988, Ox64e4c3fe, Ox9dbc8057, Oxf0f7c086,
Ox60787bf8, Ox6003604d, Oxdlfd8346, Oxf6381fb0, Ox7745ae04, Oxd736fccc,
Ox83426b33, Oxf01eab71, Oxb0804187, Ox3c005e5f, Ox77a057be, Oxbde8ae24,
Ox55464299, Oxbf582e61, Ox4e58f48f, Oxf2ddfda2, Oxf474ef38, Ox8789bdc2,
Ox5366f9c3, Oxc8b38e74, Oxb475f255, Ox46fcd9b9, Ox7aeb2661, Ox8blddf84,
Ox846a0e79, Ox915f95e2, Ox466e598e, Ox20b45770, Ox8cd55591, Oxc902de4c,
Oxb90bacel, Oxbb8205d0, Oxlla86248, Ox7574a99e, Oxb77f19b6, Oxe0a9dc09,
Ox662d09al, Oxc4324633, Oxe85al f02, Ox09f0be8c, Ox4a99a025, Oxld6efe10,
Oxlab93dld, Ox0ba5a4df, Oxa186f20f, Ox2868f169, Oxdcb7da83, Ox573906fe,
Oxale2ce9b, Ox4fcd7f52, Ox50115e01, Oxa70683fa, Oxa002b5c4, Ox0de6d027,
Ox9af88c27, Ox773f8641, Oxc3604c06, Ox61a806b5, Oxf0177a28, Oxc0f586e0,
Ox006058aa, Ox30dc7d62, Oxlle69ed7, Ox2338ea63, Ox53c2dd94, Oxc2c21634,
Oxbbcbee56, Ox90bcb6de, Oxebfc7dal, Oxce591d76, Ox6f05e409, Ox4b7c0188,

~""':S __________ S_o_u_rc_e_C_o_d_e ___________________ _

Ox39720a3d, Ox7c927c24, Ox86e3725f, Ox724d9db9, Oxlacl5bb4,
Oxed545578, Ox08fca5b5, Oxd83d7cd3, Ox4dad0fc4, Oxle50ef5e,
Oxa28514d9, Ox6c51133c, Ox6fd5c7e7, Ox56el4ec4, Ox362abfce,
Oxd79a3234, Ox92638212, Ox670efa8e, Ox406000e01;
unsigned long ks3[J ~ {
Ox3a39ce37, Oxd3faf5cf, Oxabc27737, Ox5ac52dlb, Ox5cb0679e,
Oxd3822740, Ox99bc9bbe, Oxd5118e9d, Oxbf0f7315, Oxd62dlc7e,
Oxb78clb6b, Ox2lal9045, Oxb26eblbe, Ox6a366eb4, Ox5748ab2f,
Oxc6a376d2, Ox6549c2c8, Ox530ff8ee, Ox468dde7d, Oxd5730ald,
Ox2939bbdb, Oxa9ba4650, Oxac9526e8, Oxbe5ee304, Oxalfad5f0,
Ox63ef8ce2, Ox9a86ee22, Oxc089c2b8, Ox43242ef6, Oxa5le03aa,
Ox83c06lba, Ox9be96a4d, Ox8fe51550, Oxba645bd6, Ox2826a2f9,
Ox4ba99586, 8xef5562e9, Oxc72fefd3, Oxf752f7da, Ox3f046f69,
Ox80e4a915, Ox87b08601, Ox9b09e6ad, Ox3b3ee593, Oxe990fd5a,
Ox2cf0b7d9, Ox022b8b51, Ox96d5ac3a, Ox017da67d, Oxdlcf3ed6,
Oxlf9f25cf, Oxadf2b89b, Ox5ad6b472, Ox5a88f54c, Oxe029ac71,
Ox47b0acfd, Oxed93fa9b, Oxe8d3c48d, Ox283b57cc, Oxf8d56629,
Ox785f0191, Oxed756055, Oxf7960e44, Oxe3d35e8c, Oxl5056dd4,
Ox03al6125, Ox0564f0bd, Oxc3eb9el5, Ox3c9057a2, Ox9727laec,
Oxlb3f6d9b, Oxle632lf5, Oxf59c66fb, Ox26dcf319, Ox7533d928,
Ox03563482, Ox8aba3cbb, Ox28517711, Oxc20ad9f8, Oxabcc5167,
Ox4de81751, Ox3830dc8e, Ox379d5862, Ox9320f991, Oxea7a90c2,
Ox512lce64, Ox774fbe32, Oxa8b6e37e, Oxc3293d46, Ox48de5369,
Oxa2ae0810, Oxdd6db224, Ox69852dfd, Ox09072166, Oxb39a460a,
Ox586cdecf, Oxlc20c8ae, Ox5bbef7dd, Oxlb588d40, Oxccd2017f,
Oxdda26a7e, Ox3a59ff45, Ox3e350a44, Oxbcb4cdd5, Ox72eacea8,
Ox8d6612ae, Oxbf3c6f47, Oxd29be463, Ox542f5ci9e, Oxaec277lb,
Ox740e0d8d, Oxe75bl357, Oxf8721671, Oxaf537d5d, Ox4040cb08,
Ox34d2466a, Ox0115af84, Oxelb00428, Ox95983ald, Ox06b89fb4,
Ox6f3f3b82, Ox3520ab82, Ox0llald4b, Ox277227f8, Ox611560bl,
Oxbb3a792b, Ox344525bd, Oxa08839el, Ox5lce794b, Ox2f32c9b7,
Oxe0lcc87e, Oxbcc7dlf6, Oxcf0lllc3, Oxale8aac7, Oxla908749,
OxdOdadecb, Oxd50ada38, Ox0339c32a, Oxc6913667, Ox8df9317c,
Oxf79e59b7, Ox43f5bb3a, Oxf2d519ff, Ox27d9459c, Oxbf97222c,
Ox0f9lfc71, Ox9b941525, Oxfae59361, Oxceb69ceb, Oxc2a86459,
Oxb6cl075e, Oxe3056a0c, Oxl0d25065, Oxcb03a442, Oxe0ec6e0e,
Ox4c98a0be, Ox3278e964, Ox9fl f9532, Oxe0d392df, Oxd3a0342b,
Oxlb0a7441, Ox4ba3348c, Oxc5be7120, Oxc37632d8, Oxdf359f8d,
Oxe60b6f47, Ox0fe3flld, Oxe54cda54, Oxledad891, Oxce6279cf,
Oxl618bl66, Oxfd2cld05, Ox848fd2c5, Oxf6fb2299, Oxf523f357,
Ox93a83531, Ox56cccd02, Oxacf08162, Ox5a75ebb5, Ox6el63697,
Oxde966292, Ox8lb949d0, Ox4c5090lb, Ox7lc65614, Oxe6c6c7bd,
Ox45eld006, Oxc3f27b9a, Oxc9aa53fd, Ox62a80f00, Oxbb25bfe2,
Ox71126905, Oxb2040222, Oxb6cbcf7c, Oxcd769c2b, Ox53113ec0,
Ox38abbd60, Ox2547adf0, Oxba38209c, Oxf746ce76, Ox77afalc5,
Ox85cbfe4e, Ox8ae88dd8, Ox7aaaf9b0, Ox4cf9aa7e, Oxl948c25c,
Ox0lc36ae4, Oxd6ebelf9, Ox90d4f869, Oxa65cdea0, Ox3f09252d,
Oxb74e6132, Oxce77e25b, Ox578fdfe3, Ox3ac372e6 I;

/*Initializes-boxes without file read. */
for (i ~o; i < 2 5 6; i ++) {

c->S[OJ[i J
c->S[l][i J
c >S [2] [i]

ksO [i J ;
ksl[i];
ks 2 [i J ;

Oxd39eb8fc,
Oxbl6le6f8,
Oxddc6c837,

Ox4fa33742,
Oxc700c47b,
Oxbc946e79,
Ox4cd04dc6,
Ox6a2d519a,
Ox9cf2d0a4,
Oxa73a3ael,
Ox77fa0a59,
Ox9e34d797,
Ox7c7d2d28,
Oxe019a5e6,
Ox79132e28,
Ox88f46dba,
Oxa93a072a,
Oxbl55fdf5,
Oxccad925f,
Oxfb3e7bce,
Ox6413e680,
Ox6445c0dd,
Ox6bb4e3bb,
Oxfa6484bb,
Oxf64e6370,
Ox4eb4e2cc,
Oxce6ea048,
Oxe7933fdc,
Oxa0lfbac9,
Oxd44fbd9a,
Oxe0bl2b4f,
Oxl5e6fc2a,
Oxl2baa8dl,
Oxl698db3b,
Ox8971 f2le,
Ox9b992f2e,
Oxcd3e7e6f,
Oxa6327623,
Ox88d273cc,
Ox327al40a,
Ox35bdd2f6,
Oxl640e3d3,
Ox20756060,
Ox02fb8a8c,
Oxc208e69f,

________________ B_L_O_W_FI_S_H _______ ~z~

c->S[3J[iJ ks3[iJ;

j O;
for (i = 0; i < N + 2; ++i) {

data= OxOOOOOOOO;
for (k = O; k < 4; ++k) (

data= (data<< 8) key[jJ;
j = j + 1;
if (j >= keybytes)

j = O;

c->P[iJ c->P[iJ 'data;
I

datal = OxOOOOOOOO;
datar = OxOOOOOOOO;

for (i = 0; i < N + 2; i += 2) I
Blowfish_encipher(c,&datal, &datar);

c->P[iJ = datal;
c->P[i + 1] = datar;

for (i = 0; i < 4; ++i) {
for (j = 0; j < 2 56; j += 2) {

Blowfish_encipher(c,&datal, &datar);

c->S[i J[jJ = datal;
c->S[i J[j + 1] = datar;

void blf_key(blf_ctx *c, char *k, int len)I
InitializeBlowfish(c,k,len);

void blf_enc(blf_ctx *c, unsigned long *data, int blocks)(
unsigned long *d;
int i ;

d = data;
for(i=O;i<blocks;i++){

Blowfish_encipher(c,d,d+l);
d += 2;

void blf_dec(blf_ctx *c, unsigned long *data, int blocks)(
unsigned long *d;
int i ;

~-:s. __________ S_o_u_rc_e_C_o_d_e __________________ _

d = data;
for(i=O;i<blocks;i++){

Blowfish_decipher(c,d,d+l);
d += 2;

void main(void){
blf_ctx c;
char key[]="AAAAA";
unsigned long data[lOJ;
int i ;

for(i=O;i<lO;i++) data[i]

blf_key(&c,key,5);
blf_enc(&c,data,5);
blf_dec(&c,data,ll;
blf_dec(&c,data+2,4);

i. ,

for(i=O;i<lO;i+=2) printf("Block %Old decrypts to: %08lx %08lx.\n",
i / 2, data [i J, data [i + 1 J);

3-Way
#define STRT E OxObOb I* round constant of first encryption round *I
#define STRT_D Oxblbl I* round constant of first decryption round *I
#define NMBR 11 I* number of rounds is 11 */

typedef unsigned long int word32
/* the program only works correctly if long

typedef unsigned long u4;
32bits */

typedef unsigned char ul;

typedef struct I
u4 k[3J ,ki [3], ercon[NMBR+l] ,drcon[NMBR+l];

} twy_ctx;

/* Note: encrypt and decrypt expect full blocks--padding blocks is
caller's responsibility. All bulk encryption is done in
ECB mode by these calls. Other modes may be added easily
enough.

/* destroy: Context. */
/* Scrub context of all sensitive data. */
void twy_destroy(twy_ctx *);

/* encrypt: Context, ptr to data block,# of blocks. */
void twy_enc(twy_ctx *, u4 *, int);

/* decrypt: Context, ptr to data block,# of blocks. */
void twy_dec(twy_ctx *, u4 *, int);

*I

__________________ 3_-_w_a_y _________ z:-~

/* key: Context, ptr to key data. */
void twy_key(twy_ctx *, u4 *);

/* ACCO DE-- * /
/* End of AC code prototypes and structures.
I* --------------

*I
*/

void mu(word32 *a)
{

/* inverts the order of the bits of a*/

int i ;
word32 b[3J

b[OJ = b[l] = b[2J = 0 ;
for(i=O ; i<32 ; i++)

{

b[OJ «= 1
if(a[OJ&l)
if(a[l]&l)
if(a[2]&1)
a [0 J »= 1
)

; b[l] «= 1
b[2] = 1 ;
b[lJ = 1 ;
b[OJ = 1 ;

a [1 »= 1

b[2J «= 1

; a [2 J »= 1 ;

a[OJ = b[OJ ;
)

a[l] = b[l] a[2J = b[2J

void gamma(word32 *a) /* the nonlinear step*/
(

word32 b[3J

b[OJ = a[OJ ' (a[ll I (~a[2J))
b[ll = a[ll ' (a[2l I (~a[OJ))
b[2J = a[2J ' (a[Oll(~a[llll

a[OJ = b[OJ
)

a[ll = b[ll a[ZJ = b[ZJ

void theta(word32 *a)
(

/* the linear step*/

word32 b[3];

b[OJ = a[OJ '

b[ll = a[l] '

b[ZJ a[2] A

a[OJ = b[OJ ;
)

(a[OJ»16) ' (a[1]«16) A (a[1]»16)
(a[1]»24) A (a[ZJ«S) A (a[ZJ»S)
(a[2J»16) ' (a[OJ«16) ' (a[ZJ»24)
(a[1]»16) A (a[ZJ«16) ' (a[ZJ»16)
(a[2]»24) A (a[OJ«S) A (a[OJ»S)
(a[OJ»16) A (a[1]«16) A (a[OJ»Z4)
(a[2]»16) A (a[OJ«16) ' (a[OJ»16)
(a[OJ»24) ' (a[lJ«S) A (a[lJ»S)
(a[1J»16) ' (a[ZJ«16) ' (a[l]»Z4)

a[l] = b[l] ; a[ZJ = b[ZJ ;

void pi_l(word32 *a)

' (a[ZJ«16) '
' (a[OJ«Z4) '
' (a[OJ«S)
' (a[OJ«16) '
A (a[1]«24) A

' (a[l]«S)
A (a[1]«16) A

' (a[ZJ«Z4) '
' (a[ZJ«S)

~-s _________ S_o_u_r_ce_C_o_d_e __________________ _

{

a[OJ (a[OJ»lO) A (a[0]«22);
a[2J (a[2J«ll A (a[2]»31);
}

void pi_2(word32 *a)
I
a[OJ (a[OJ«l) A (a[OJ»31);
a[2J (a[2J»lO) A (a[2]«22);
}

void rho(word32 *a)
(

/* the round function

theta(a) ;
pi _l (a) ;

gamma(a) ;
pi_2(a)
}

void rndcon_gen(word32 strt,word32 *rtab)

*I

{ /* generates the round constants*/
int i ;

for(i=O ; i<=NMBR i++
I
rtab[i] = strt
strt «= 1 ;
if(strt&OxlOOOO) strt A= OxllOll
}

/* Modified slightly to fit the caller's needs. */
void encrypt(twy_ctx *c, word32 *a)

char i ;
for(i=O i <NMBR ; i++

(

a[OJ A= c->k[OJ A (c >ercon[i]<<l6)
a[l] A= c->k[l]
a[2J A= c->k[2J A c->ercon[i] ;
rho(a) ;
}

a[OJ A= c->k[OJ A (c->ercon[NMBRJ<<l6)
a[l] A= c->k[l] ,
a[2J A= c->k[2] A c->ercon[NMBRJ ;
theta(a)
}

/* Modified slightly to meet caller's needs. */
void decrypt(twy_ctx *c, word32 *a)
{

char i ;

mu (a) ;

__________________ 3_-_w_a_y _________ 7,_~

for(i-0 ; i<NMBR ; i++
(

a[OJ A_ c->ki [OJ A (c->drcon[i]«16)
a[lJ A_ c->ki [lJ ,
a[2J A_ c->ki [2] A c->drcon[i J ;
rho Ca) ;
}

a[OJ A_ c->ki[OJ A (c->drcon[NMBRJ<<l6)
a[lJ A- c->ki [lJ
a[2J A_ c->ki [2] A c->drcon[NMBRJ ;
theta(a)
mu(a)
}

void twy_key(twy_ctx *c, u4 *key){
c->ki [OJ c->k[OJ key[OJ;
c->ki [ll - c->k[l] key[l];
c->ki [2] - c->k[2J key[2J;
theta(c->ki);
mu(c->ki);
rndcon_gen(STRT_E,c->ercon);
rndcon_gen(STRT_D,c->drcon);

/* Encrypt in ECB mode. */
void twy_enc(twy_ctx *c, u4 *data, int blkcnt)(

u4 *d;
int i ;

d - data;
for (i -0 ; i <bl kc n t ; i ++)

encrypt(c,d);
d +-3;

/* Decrypt in ECB mode. */
void twy_dec(twy_ctx *c, u4 *data, int blkcnt)(

u4 *d;
int i ;

d - data;
for(i-O;i<bl kcnt;i++) I

decrypt(c,d);
d+-3;

/* Scrub sensitive values from memory before deallocating. */
void twy_destroy(twy_ctx *cl(

int i ;

for(i-O;i<3;i++) c->k[i] c->ki [i J O • '

~""'S. __________ S_o_u_rc_e_C_o_d_e ___________________ _

void printvec(char *chrs, word32 *d)I

main ()
I

printf("%20s: %08lx %08lx %08lx \n",chrs,d[ZJ,d[l],d[O]);

twy_ctx gc;
word32 a[9],k[3J;
int i;

/* Test vector 1. */

k[OJ=k[l]=k[ZJ=O;
a[OJ=a[ll=a[ZJ=l;
twy_key (&gc, k);

printf("**********\n");
printvec("KEY = ",k);
printvec("PLAIN = ",a);
encrypt(&gc,a);
printvec("CIPHER = ",a);

/* Test vector 2. */

k[OJ=6;k[ll=5;k[2]=4;
a[OJ=3;a[lJ=2;a[2J=l;
twy_key(&gc,k);

printf("**********\n");
printvec("KEY = ",kl;
printvec("PLAIN = ",a);
encrypt(&gc,a);
pri ntvec("CIPHER = ",a);

/* Test vector 3. */

k[2J=Oxbcdef012;k[l]=Ox456789ab;k[OJ=Oxdef01234;
a[2J=Ox01234567;a[l]=Ox9abcdefO;a[OJ=Ox23456789;
twy_key C &gc, k);

printf("**********\n");
printvec("KEY = ",k);
printvec("PLAIN =",al;
encrypt(&gc,a);
printvec("CIPHER = ",a);

/* Test vector 4. */

k[2J=Oxcab920cd;k[l]=Oxd6144138;k[OJ=Oxd2f05b5e;
a[2J=Oxad2lecf7;a[l]=Ox83ae9dc4;a[OJ=Ox4059c76e;
twy_key(&gc,k);

printf("**********\n");

_________________ R_c_s ________ z:~~

printvec("KEY = ",kl;
printvec("PLAIN = ",al;
encrypt(&gc, a);
printvec("CIPHER = ",al;

/* TEST VALUES

key 00000000 00000000
plaintext 00000001 00000001
ciphertext ad2lecf7 83ae9dc4

00000000
00000001
4059c76e

key 00000004 00000005 00000006
plaintext 00000001 00000002 00000003
ciphertext cab920cd d6144138 d2f05b5e

key bcdef012 456789ab
plaintext 01234567 9abcdef0
ciphertext 7cdb76b2 9cdddb6d

key cab920cd d6144138
plaintext ad2lecf7 83ae9dc4
ciphertext 15bl55ed 6bl3fl7c

*/

/* Enc/dee test: */
for(i=O;i<9;i++l a[iJ=i;
twy_enc(&gc,a,3);

def01234
23456789
Oaa55dbb

d2f05b5e
4059c76e
478ea871

for(i=O;i<9;i+=3) printf("Block %Old encrypts to %08lx %08lx %08lx\n",
i / 3, a [i J, a [i + 1 J, a [i +2 J l;

twy_dec(&gc,a,2);
twy_dec(&gc,a+6,ll;

for(i=O;i<9;i+=3) printf("Block %Old decrypts to %08lx %08lx %08lx\n",
i / 3, a [i J, a [i + 1 J, a [i +2 J) ;

RCS
#include <stdio.h>

/* An RC5 context needs to know how many rounds it has, and its subkeys. */
typedef struct {

u4 *xk;
int nr;

l rc5_ctx;

/* Where possible, these should be replaced with actual rotate instructions.
For Turbo C++, this is done with _lrotl and _lrotr. */

#define ROTL32(X,Cl (((Xl<<(Cll I ((Xl>>(32-(Cllll
#define ROTR32(X,Cl (((Xl>>(Cll I ((Xl<<(32-(CJJ)J

~""'s;,-------------S_o_u_rc_e_C_o_d_e ___________________ _

/* Function prototypes for dealing with RCS basic operations. */
void rc5_init(rc5_ctx *, int);
void rc5_destroy(rc5_ctx *);
void rc5_key(rc5_ctx *, ul *, int);
void rc5_encrypt(rc5_ctx *, u4 * int);
void rc5_decrypt(rc5_ctx *, u4 *, int);

/* Function implementations for RC5. */

/* Scrub out all sensitive values. */
void rc5_destroy(rc5_ctx *c){

int i;
for(i=O;i<(c->nr)*2+2;i++) c->xk[i]=O;
free(c->xk);

/* Allocate memory for rc5 context's xk and such. */
void rc5_init(rc5_ctx *c, int rounds){

c->nr rounds;
c->xk = (u4 *) malloc(4*(rounds*2+2));

void rc5_encrypt(rc5_ctx *c, u4 *data, int blocks){
u4 *d,*sk;
int h,i ,re;

d = data;
sk = (c->xk)+2;
for(h=O;h<blocks;h++){

d[OJ += c->xk[OJ;
d[l] += c->xk[l];
for(i=O;i<c->nr*2;i+=2){

d[OJ '= d[l];
re= d[l] & 31;
d[OJ = ROTL32(d[OJ, re);
d[OJ += sk[i];

d [l J '= d [0 J ;
re= d[OJ & 31;
d[l] = ROTL32(d[l], re);
d[l] += sk[i+l];

/*printf("Round %03d %08lx %08lx sk= %08lx %08lx\n",i/2,
d[OJ ,d[l], sk[i J, sk[i+l]) ;*/

d+=2;

void rc5_decrypt(rc5_ctx *c, u4 *data, int blocks)!
u4 *d,*sk;

int h,i,rc;

d = data;
sk = (c->xk)+2;

for(h=O;h<blocks;h++){
for(i=c->nr*2-2;i>=O;i-=2) I

_________________ R_c_s ________ 7 __ ~

/*printf("Round %03d: %08lx %08lx sk: %08lx %08lx\n",
i /2 ,d[OJ ,d[l] ,sk[i J ,sk[i+l]); */

d[l] -= sk[i+l];
re= d[OJ & 31;
d[l] = ROTR32(d[l] ,re);
d [l J A= d [0 J ;

d[OJ -= sk[i J;
re= d[l] & 31;
d[OJ = ROTR32(d[OJ ,re);

d[O] A= d[l];
}

d[OJ c->xk[OJ;
d[l] c->xk[l];

void rc5_key(rc5_ctx *c, ul *key, int keylen){
u4 *pk,A,B; /* padded key*/
int xk_len, pk_len, i, nurn_steps,rc;
ul *cp;

xk_len = c->nr*2 + 2;
pk_len = keylen/4;
i f ((key l en %4) ! =O) pk_ l en += 1 ;

pk= (u4 *) rnalloc(pk_len * 4);
if(pk==NULL) (

printf("An error occurred!\n");
exit(-1);

/* Initialize pk -- this should work on Intel machines, anyway */
for (i =0 ; i <pk_ l en ; i ++) pk [i J =0 ;
cp = (ul *)pk;
for(i=O;i<keylen;i++) cp[i]=key[i];

/* Initialize xk. */
c->xk[OJ = Oxb7el5163; /* P32 */
for(i=l;i<xk_len;i++) c->xk[i] = c->xk[i-1] + Ox9e3779b9; /* 032 */

/* TESTING */
A= B = O;
for(i=O;i<xk_len;i++)

A= A+ c->xk[i];
B = B A c->xk[i];

/* Expand key into xk. */
if(pk_len>xk_len) nurn_steps 3*pk_len;else nurn_steps = 3*xk_len;

A= B = O;
for(i=O;i<nurn_steps;i++)(

A= c->xk[i%xk_len] ROTL32(c->xk[i%xk_len] +A+ B,3);
re= (A+Bl & 31;

~-:s. __________ S_o_u_r_ce_C_o_d_e ___________________ _

B = pk[i%pk_len] ROTL32(pk[i%pk_len] +A+ B,rc);

/* Clobber sensitive data before deallocating memory. */
for(i=O;i<pk_len;i++) pk[i] =0;

free(pk);

void main(void)I
rc5_ctx c;
u4 data[SJ;
char key[] "ABCDE";
int i ;

printf("---\n");

for(i=O;i<S;i++) data[i] = i;
rc5_init(&c,10); /* 10 rounds*/
rc5_key(&c,key,5);

rc5_encrypt(&c,data,4);
printf("Encryptions:\n");
for(i=O;i<S;i+=2) printf("Block %Old= %08lx %08lx\n",

i/2,data[i],data[i+l]);
rc5_decrypt(&c,data,2);

rc5_decrypt(&c,data+4,2);
printf("Decryptions:\n");
for(i=O;i<S;i+=2) printf("Block %Old= %08lx %08lx\n",

i /2,data[i J ,data[i+ll);

AS
typedef struct I

unsigned long rl,r2,r3;
I a5_ctx;

static int threshold(rl, r2, r3)
unsigned int rl;
unsigned int r2;
unsigned int r3;
I
int total ;

total = (((rl » 9) & Oxl)
(((r2 » 11) & Oxll
(((r3 » 11) & Oxl)

if (total > 1)

return (0);

1) +
1) +
1) ;

_________________ A_5 ________ ~7~
else

return (l);

unsigned long clock _rl(ctl,
int ct l ;
unsigned long r 1 ;
{

unsigned long feedback;

ctl A_ ((rl >> 9) & Oxl);
if (ctl l
I

r 1)

feedback - (rl >> 18) A (rl >> 17) • (rl >> 16) A (rl >> 13);
rl - (rl << 1) & Ox7ffff;
if (feedback & OxOll

rl A_ OxOl;

return (rl);

unsigned long clock _r2(ctl,
int ctl;
unsigned long r2;
I
unsigned long feedback;

ctl A- ((r2 >> 11) & Oxl);
if (ctl J
{

r2l

feedback - (r2 >> 21) A (r2 >> 20) A (r2 >> 16) A (r2 >> 12);
r2 - (r2 << 1) & Ox3fffff;
if (feedback & OxOl)

r2 A_ OxOl;

return (r2);

unsigned long cl o ck_ r 3 (ct l ,
int ct l ;
unsigned long r3;
{

unsigned long feedback;

ctl A_ ((r3 >> 11) & Oxl);
if (ct l l
{

r3)

feedback - (r3 >> 22) A (r3 >> 21) A (r3 >> 18) A (r3 >> 17);
r3 - (r3 << 1) & Ox7fffff;
if (feedback & OxOl)

r3 A_ OxOl;

return (r3);

~-:s _________ S_o_u_r_ce_C_o_d_e __________________ _

int keystream(key, frame, alice, bob)
unsigned char *key; /* 64 bit session key */
unsigned long frame; /* 22 bit frame sequence number */
unsigned char *al ice; /* 114 bit Alice to Bob key stream*/
unsigned char *bob; /* 114 bit Bob to Alice key stream*/
{

unsigned long rl;
unsigned long r2;
unsigned long r3;
int i;

/* 19 bit shift register*/
/* 22 bit shift register*/
/* 23 bit shift register*/
/* counter for loops */
/* xored with clock enable on each shift register*/ int clock_ctl;

unsigned char *ptr; /*
unsigned char byte; /*
unsigned int bits;
unsigned int bit;

current position in keystream */
byte of keystream being assembled*/

/* number of bits of keystream in byte*/
/* bit output from keystream generator*/

/* Initialise shift registers from session key*/

rl = (key[0J I (key[ll << 8) I (key[2J << 16)) & 0x7ffff;
r2 = ((key[2] >> 3) I (key[3] << 5) I (key[4J << 13) (key[5] << 21)) &

0x3fffff;
r3 = ((key[5] >> 1) (key[6J << 7) (key[7J << 15) & 0x7fffff;

/* Merge frame sequence number into shift register state, by xor'ing it
* into the feedback path
*I

for (i=0;i<22;i++)
{

clock_ctl = threshold(rl, r2, r2);
rl cl ock_rl (cl ock_ctl, rl);
r2 = cl ock_r2(cl ock_ctl, r2);
r3 = cl ock_r3(cl ock_ctl, r3);
if (frame & 1)
{

rl A= 1;
r2 A= 1.

' r3 A= 1.
'

frame = frame » 1;

/* Run shift registers for 100 clock ticks to allow frame number to
* be diffused into all the bits of the shift registers
*/

for (i=0;i<l00;i++)
(

clock_ctl = threshold(rl, r2, r2);
rl clock_rl(clock_ctl,rl);
r2 clock_r2(clock_ctl,r2);
r3 cl ock_r3(cl ock_ctl, r3);

/* Produce 114 bits of Alice->Bob key stream*/

_________________ A_5 ________ 7----=--~

ptr = alice;
bits = 0;
byte= 0;
for (i=0;i<114;i++)
{

clock_ctl = threshold(rl, r2, r2);
rl clock_rl(clock_ctl,rl);
r2 clock_r2(clock_ctl,r2);
r3 clock_r3(clock_ctl, r3);

bit= ((rl >> 18) A (r2 >> 21) A (r3 >> 22)) & 0x0l;
byte= (byte<< 1) I bit;
bits++;
if (bits == 8)
I

*ptr = byte;
ptr++;
bits 0;
byte= 0;

if (bits)
*ptr = byte;

/* Run shift registers for another 100 bits to hide relationship between
* Alice->Bob key stream and Bob->Alice key stream.
*/

for (i=0;i<l00;i++)
I

cl o ck_ ct l = thresh o l d (r 1 , r 2 , r 2) ;
rl clock_rl(clock_ctl, rl);
r2 clock_r2(clock_ctl, r2);
r3 clock_r3(clock_ctl, r3);

/* Produce 114 bits of Bob->Alice key stream*/

ptr = bob;
bits= 0;
byte = 0;
for (i=0;i<114;i++)
I

clock_ctl = threshold(rl, r2, r2);
rl cl ock_rl(cl ock_ctl, rl);
r2 clock_r2(clock_ctl, r2);
r3 clock_r3(clock_ctl, r3);

bit= ((rl >> 18) A (r2 >> 21) A (r3 >> 22)) & 0x0l;
byte= (byte<< 1) I bit;
bits++;
if (bits== 8)
{

*ptr = byte;

~""":s.,-------------S_o_u_r_ce_C_o_d_e __________________ _

ptr++;
bits O;
byte= O;

if (bits)
*ptr = byte;

return (0);

void a5_key(a5_ctx *c, char *kl{
c->rl k[OJ<<lllk[lJ<<3
c->r2 k[2J<<17lk[3J<<9
c->r3 k[5]«15 I k[6]«8

k[2J»5
k[4J«l
k[7J

/* 19 */
k[5J>>7; /* 22 */

/* 23 */

/* Step one bit in AS, return O or 1 as output bit. */
int a5_step(a5_ctx *c){

int control;
control = threshold(c->rl,c->r2,c->r3);
c->rl clock_rl(control ,c->rll;
c->r2 = clock_r2(control ,c->r2);
c->r3 = clock_r3(control ,c->r3);
return((c->r1Ac->r2Ac->r3)&1);

/* Encrypts a buffer of len bytes. */
void a5_encrypt(a5_ctx *c, char *data, int len){

inti,j;
chart;

for(i=O;i<len;i++)I
for(j=O;j<S;j++) t t<<l I a5_step(c);
data[i JA=t;

void a5_decrypt(a5_ctx *c, char *data, int len){
a5_encrypt(c,data, len);

void main(void){
a5_ctx c;
char data[lOOJ;
char key[]= {1,2,3,4,5,6,7,8);
int i,flag;

for(i=O;i<lOO;i++) data[i]

a5_key(&c,key);
a5_encrypt(&c,data,100);

a5_key(&c,key);

i.
'

_________________ SE_A_L ________ 7_____,,~

a5_decrypt(&c,data,l);
a5_decrypt(&c,data+l,99l;

flag= 0;
for(i=0;i<l00;i++) if(data[i]!=i)flag = l;
if(flag)printf("Decrypt failed\n"); else printf("Decrypt succeeded\n");

SEAL
#undef SEAL_DEBUG

#define ALG_0K 0
#define ALG_N0T0K 1
#define W0RDS_PER SEAL CALL 1024

typedef struct {
unsigned long t[520]; /* 512 rounded up to a multiple of 5 + 5*/
unsigned long s[265]; /* 256 rounded up to a multiple of 5 + 5*/
unsigned long r[20J; /* 16 rounded up to multiple of 5 */

unsigned long counter; /* 32-bit synch value. */
unsigned long ks_buf[W0RDS_PER_SEAL_CALLJ;
int ks_pos;

} seal_ctx;

#define R0T2(x) (((x) » 2 l I ((x) « 30 l l
#define R0T9(x) (((x) » g l I ((x) « 23 l l
#define R0TS(x) (((xl » 8l I ((x) « 24) l
#define R0T16(x) (((x) » 16) I ((xl « 16ll
#define R0T24(xl (((x) » 24) I ((xl « 8l i
#define R0T27(x) (((x) » 27) I ((xl « 5 l l

#define W0RD(cp) ((cp[0J << 24ll(cp[l] << 16ll(cp[2J << 8) l(cp[3]))

Jfdefine Fl (x, Y, z) (((x) & (y)) I ((~(x)) & (z)))

#define F2(x, Y, z) (()()A(y)A(z))
#define F3(x, Y, zl (((x) & (y)) I ((x) & (z)) I ((y) & (z)))

#define F4(x, Y, z) ((x)A(y)A(z) l

int g(in, i, h l
unsigned char *in;
int i ;
unsigned long *h;
{

unsigned long h0;
unsigned long h 1;
unsigned long h2;
unsigned long h3;
unsigned long h4;
unsigned long a;
unsigned long b· ,
unsigned long c· ,
unsigned long d;
unsigned long e;

~~s _________ S_o_u_r_ce_C_o_d_e __________________ _

unsigned char *kp;
unsigned long w[SOJ;
unsigned long temp;

kp = in;
hO = WORD(kp); kp += 4;
hl = WORD(kp); kp += 4;
h2 = WORD(kp); kp += 4;
h3 = WORD(kp); kp += 4;
h 4 = WORD (k p) ; k p += 4 ;

w[OJ = i;
for (i=l;i<l6;i++)

w[i] = O;
for (i=l6;i<SO;i++)

w[i J = w[i-3JAw[i-8JAw[i-14JAw[i-16];

a 170;
b h 1;
c h2;
d h3;
e h4;

for (i=O;i<20;i++)
(

temp= ROT27(a) + Fl(b, c, d) + e + w[i] + Ox5a827999;
e = d;
d c;
C

b
a

ROT2(b);
a;
temp;

for (i=20;i<40;i++)
(

temp= ROT27(a) + F2(b, c, d) + e + w[i] + Ox6ed9ebal;
e d;
d c;
C

b
a

ROT2(b);
a;
temp;

for (i=40;i<60;i++)
(

temp= ROT27(a) + F3(b, c, d) + e + w[i] + OxSflbbcdc;
e d;
d c;
C

b
a

ROT2(b);
a;
temp;

for (i=60;i<SO;i++)
(

temp= ROT27(a) + F4(b, c, d) + e + w[i] + Oxca62cld6;
e = d;
d = c;

_________________ S_E_A_L ________ 7____,,~

c ROT2(b);
b a;
a= temp;

)

h[OJ hO+a;
h [1 J h 1 +b;
h[2J h2+c;
h[3J h3+d;
h[4J h4+e;

return (ALG_OK);

unsigned long gamma(a, i)
unsigned char *a;
int i ;
I
unsigned long h[5];

(void) g(a, i/5, h);
return h[i % 5J;

i1t seal_init(seal_ctx *result, unsigned char *key)
{

int i;
unsigned long h[5];

for (i=O;i<510;i+=5)
g(key, i/5, &(result->t[i]));

/* horrible special case for the end*/
g(key, 510/5, h);
for (i=510;i<512;i++)

result->t[i J = h[i-510];
/* OxlOOO mod 5 is +l, so have horrible special case for the start*/
g(key, (-l+Oxl000)/5, h);
for (i=O;i<4;i++)

result->s[i J = h[i+l];
for (i=4;i<254;i+=5)

g(key, (i+Oxl000)/5, &(result->s[i]));
/* horrible special case for the end*/
g(key, (254+0xl000)/5, h);
for (i=254;i<256;i++)

resul t->s[i J = h[i-254];
/* Ox2000 mod 5 is +2, so have horrible special case at the start*/
g(key, (-2+0x2000)/5, h);
for (i=O;i<3;i++)

result->r[i] = h[i+2];
for (i=3;i<l3;i+=5)

g(key, (i+Ox2000)/5, &(result->r[i]));
/* horrible special case for the end*/
g(key, (13+0x2000)/5, h);
for (i=l3;i<l6;i++)

resul t->r[i J = h[i-13];
return (ALG_OK);

~..,_:s,--------------S_o_u_r_ce_C_o_d_e __________________ _

int seal(seal ctx *key, unsigned long in, unsigned long *out)
{

int i.
' int j;

int l;
unsigned long a;
unsigned long b·

' unsigned long c·
' unsigned long d;

unsigned short p;
unsigned short q;
unsigned long nl;
unsigned long n2;
unsigned long n3;
unsigned long n4;
unsigned long *wp;

wp = out;

for (1=0;1<4;1++)
{

a in A key->r[4*l];
b ROTS(in) A key->r[4*l+l];
c ROT16(in) A key->r[4*l+2];
d ROT24(in) A key->r[4*l+3];

for (j=O;j<Z;j++)
{

nl
n2
n3
n4

p = a & Ox7fc;
b += key->t[p/4];
a = ROT9 (a);

p b & Ox7fc;
c += key->t[p/4];
b ROT9 (b);

p c & Ox7fc;
d += key->t[p/4];
c ROT9 (c);

p d & Ox7fc;
a+= key->t[p/4];
d = ROT9(d);

d;
b · ' a.
' C;

p=a&Ox7fc;
b += key->t[p/4];

_________________ S_E_A_L _________ 7 ___ ~

a = ROT9 (a);

p b & Ox7fc;
c += key->t[p/4];
b ROT9 (b);

p c & Ox7fc;
d += key->t[p/4];
c = ROT9 (c);

p = d & Ox7fc;
a+= key->t[p/4];
d = ROT9(d);

/* This generates 64 32-bit words, or 256 bytes of keystream. */
for (i=O;i<64;i++)
{

p = a & Ox7fc;
b += key->t[p/4];
a = ROT9 (a);
b '= a;

q = b & Ox7fc;
c '= key-)t[q/4];
b = ROT9(b);
C += b;

p = (p+c) & Ox7fc;
d += key->t[p/4];
c = ROT9 (c);
d '= c;

q = (q+d) & Ox7fc;
a'= key->t[q/4];
d = ROT9 (d);
a+= d;

p = (p+a) & Ox7fc;
b '= key->t[p/4];
a ROT9 (a);

q (q+b) & Ox7fc;
c += key-)t[q/4];
b = ROT9 (b);

p = (p+c) & Ox7fc;
d '= key->t[p/4];
c = ROT9 (c) ;

q (q+d) & Ox7fc;
a+= key->t[q/4];
d = ROT9 (d);

*wp = b + key->s[4*il;

~~:s. __________ S_o_u_rc_e_C_o_d_e ___________________ _

wp++;
*wp = C A key->s[4*i+l];
wp++;
*wp = d + key->s[4*i+2J;
wp++;
*wp = a A key->s[4*i+3];
wp++;

if (i & 1)

I
a += n3;
C += n4;

else
I

a += nl;
C += n2;

return (ALG_OK);

/* Added call to refill ks_buf and reset counter and ks_pos. */
void seal_refill_buffer(seal_ctx *c)I

seal (c,c->counter,c->ks_buf);
c->counter++;
c->ks_pos = O;

void seal_key(seal_ctx *c, unsigned char *key)I
seal_init(c,key);
c->counter = O; /* By default, init to zero. */
c->ks_pos = WORDS_PER_SEAL_CALL;

/* Refill keystream buffer on next call. */

/* This encrypts the next w words with SEAL. */
void seal_encrypt(seal_ctx *c, unsigned long *data_ptr, int w)I

int i ;

for(i=O; i <w; i++) {
if(c->ks_pos>=WORDS_PER_SEAL_CALL) seal_refill_buffer(c);
data_ptr[i]A=c->ks_buf[c->ks_pos];
c->ks_pos++;

void seal_decrypt(seal_ctx *c, unsigned long *data_ptr, int w) {
seal_encrypt(c,data_ptr,w);

void seal_resynch(seal_ctx *c, unsigned long synch_word)I
c->counter = synch_word;

_________________ SE_A_L ________ 7~~
c->ks_pos = WORDS_PER_SEAL_CALL;

void main(void)(
seal_ctx sc;
unsigned long buf[lOOOJ,t;
int i ,flag;
unsigned char key[]=

(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,l9};

printf("1 \n");
seal_key(&sc,key);

printf("2\n");
for(i=O;i<lOOO;i++) buf[i]=O;
printf("3\n");
seal_encrypt(&sc,buf,1000);
printf("4\n");
t = O;
for(i=O;i<lOOO;i++) t = t ' buf[i];

printf("XOR of buf is %08lx.\n",t);

seal_key(&sc,key);
seal_decrypt(&sc,buf,1);
seal_decrypt(&sc,buf+l,999);
flag= O;
for(i=O;i<lOOO;i++) if(buf[i]!=O)flag=l;
if(flag) printf("Decrypt failed.\n");
else printf("Decrypt succeeded.\n");

---------------------------------z~

References

1. ABA Bank Card Standard, "Management
and Use of Personal Information Num­
bers," Aids from ABA, Catalog no. 207213,
American Bankers Association, 1979.

2. ABA Document 4.3, "Key Management
Standard," American Bankers Association,
1980.

3. M. Abadi, T- Feigenbaum, and T-Kilian,
"On Hiding Information from an Oracle,"
Proceedings of the 19th ACM Symposium
on the Theory of Computing, 1987, pp.
195-203.

4. M. Abadi, J. Feigenbaum, and T- Kilian,
"On Hiding Information from an Oracle,"
fournal of Computer and System Sciences,
v. 39, n. 1, Aug 1989, pp. 21-50.

5. M. Abadi and R. Needham, "Prudent Engi­
neering Practice for Cryptographic Proto­
cols," Research Report 125, Digital Equip­
ment Corp Systems Research Center, Tun
1994.

6. C.M. Adams, "On Immunity Against
Biham and Shamir's 'Differential Crypt­
analysis,' " Information Processing Let­
ters, v. 41, 14 Feb 1992, pp. 77-80.

7. C.M. Adams, "Simple and Effective Key
Scheduling for Symmetric Ciphers," Work­
shop on Selected Areas in Cryptography­
Workshop Record, Kingston, Ontario, 5-6
May 1994, pp. 129-133.

8. C.M. Adams and H. Meijer, "Security­
Related Comments Regarding McEliece's
Public-Key Cryptosystem," Advances in

Cryptology-CRYPTO '87 Proceedings,
Springer-Verlag, 1988, pp. 224-230.

9. C.M. Adams and S.E. Tavares, "The Struc­
tured Design of Cryptographically Good S­
Boxes," Journal of Cryptology, v. 3, n. 1,
1990, pp. 27-41.

10. C.M. Adams and S.E. Tavares, "Designing
S-Boxes for Ciphers Resistant to Differen­
tial Cryptanalysis," Proceedings of the 3rd
Symposium on State and Progress of
Research in Cryptography, Rome, Italy,
15-16 Feb 1993, pp. 181-190.

11. W. Adams and D. Shanks, "Strong Primal­
ity Tests That Are Not Sufficient," Mathe­
matics of Computation, v. 39, 1982, pp.
255-300.

12. W.W. Adams and L.J. Goldstein, Introduc­
tion to Number Theory, Englewood Cliffs,
N.J.: Prentice-Hall, 1976.

13. B.S. Adiga and P. Shankar, "Modified Lu­
Lee Cryptosystem," Electronics Letters, v.
21, n. 18, 29 Aug 1985, pp. 794-795.

14. L.M. Adleman, "A Subexponential Algo­
rithm for the Discrete Logarithm Problem
with Applications to Cryptography," Pro­
ceedings of the IEEE 20th Annual Sympo­
sium of Foundations of Computer Science,
1979, pp. 55-60.

15. L.M. Adleman, "On Breaking Generalized
Knapsack Public Key Cryptosystems,"
Proceedings of the 15th ACM Symposium
on Theory of Computing, 1983, pp. 402-
412.

~-s __________ R_e_fe_r_en_ce_s ___________________ _

16. L.M. Adleman, "Factoring Numbers Using
Singular Integers," Proceedings of the 23rd
Annual ACM Symposium on the Theory
of Computing, 1991, pp. 64-71.

17. L.M. Adleman, "Molecular Computation
of Solutions to Combinatorial Problems,"
Science, v. 266, n. 11, Nov 1994, p. 1021.

18. L.M. Adleman, D. Estes, and K. Mccurley,
"Solving Bivariate Quadratic Congruences
in Random Polynomial Time," Mathemat­
ics of Computation, v. 48, n. 177, Jan 1987,
pp. 17-28.

19. L.M. Adleman, C. Pomerance, and R.S.
Rumeley, "On Distinguishing Prime
Numbers from Composite Numbers,"
Annals cf Mathematics, v. 117, n. 1, 1983,
pp. 173-206.

20. L.M. Adleman and R.L. Rivest, "How to
Break the Lu-Lee (COMSAT) Public-Key
Cryptosystem," MIT Laboratory for Com­
puter Science, Jul 1979.

21. G.B. Agnew, "Random Sources for Crypto­
graphic Systems," Advances in Cryp­
tology-EUR OCRYPT '87 Proceedings,
Springer-Verlag, 1988, pp. 77-81.

22. G.B. Agnew, R.C. Mullin, I.M. Onyszchuk,
and S.A. Vanstone, "An Implementation
for a Fast Public-Key Cryptosystem," four­
nal of Cryptology, v. 3, n. 2, 1991, pp.
63-79.

23. G.B. Agnew, R.C. Mullin, and S.A. Van­
stone, "A Fast Elliptic Curve Cryptosys­
tem," Advances in Cryptology-EURO­
CRYPT '89 Proceedings, Springer-Verlag,
1990, pp. 706-708.

24. G.B. Agnew, R.C. Mullin, and S.A. Van­
stone, "Improved Digital Signature
Scheme Based on Discrete Exponentia­
tion," Electronics Letters, v. 26, n. 14, 5 Jul
1990, pp. 1024-1025.

25. G.B. Agnew, R.C. Mullin, and S.A. Van­
stone, "On the Development of a Fast
Elliptic Curve Cryptosystem," Advances
in Cryptology-EUROCRYPT '92 Pro­
ceedings, Springer-Verlag, 1993, pp. 482-
287.

26. G.B. Agnew, R.C. Mullin, and S.A. Van­
stone, "An Implementation of Elliptic
Curve Cryptosystems over F2155," IEEE
Selected Areas of Communications, v. 11,
n. 5, Jun 1993, pp. 804-813.

27. A. Aho, J. Hopcroft, and J. Ullman, The
Design and Analysis of Computer Algo­
rithms, Addison-Wesley, 1974.

28. S.G. Akl, "Digital Signatures: A Tutorial
Survey," Computer, v. 16, n. 2, Feb 1983,
pp. 15-24.

29. S.G. Akl, "On the Security of Compressed
Encodings," Advances in Cryptology: Pro­
ceedings of Crypto 83, Plenum Press, 1984,
pp. 209-230.

30. S.G. Aki and H. Meijer, "A Fast Pseudo­
Random Permutation Generator with
Applications to Cryptology," Advances in
Cryptology: Proceedings of CRYPTO 84,
Springer-Verlag, 1985, pp. 269-275.

31. M. Alabbadi and S.B. Wicker, "Security of
Xinmei Digital Signature Scheme," Elec­
tronics Letters, v. 28, n. 9, 23 Apr 1992, pp.
890-891.

32. M. Alabbadi and S.B. Wic1cer, "Digital Sig­
nature Schemes Based on Error-Correcting
Codes," Proceedings of the 1993 IEEE­
/SIT, IEEE Press, 1993, p. 199.

33. M. Alabbadi and S.B. Wicker, "Cryptanaly­
sis of the Harn and Wang Modification of
the Xinmei Digital Signature Scheme,"
Electronics Letters, v. 28, n. 18, 27 Aug
1992, pp. 1756-1758.

34. K. Alagappan and J. Tardo, "SPX Guide:
Prototype Public Key Authentication Ser­
vice," Digital Equipment Corp., May 1991.

35. W. Alexi, B.-Z. Chor, 0. Goldreich, and
C.P. Schnorr, "RSA and Rabin Functions:
Certain Parts Are as Hard as the Whole,"
Proceedings of the 25th IEEE Symposium
on the Foundations of Computer Science,
1984, pp. 449-457.

36. W. Alexi, B.-Z. Chor, 0. Goldreich, and
C.P. Schnorr, "RSA and Rabin Functions:
Certain Parts are as Hard as the Whole,"
SIAM fournal on Computing, v. 17, n. 2,
Apr 1988,pp. 194-209.

37. Ameritech Mobile Communications et al.,
"Cellular Digital Packet Data System
Specifications: Part 406: Air link Security,"
CDPD Industry Input Coordinator, Costa
Mesa, Calif., Jul 1993.

38. H.R. Amirazizi, E.D. Kamin, and J.M.
Reyneri, "Compact Knapsacks are Polyno­
mial Solvable," ACM SIGACT News, v.
15, 1983, pp. 20-22.

39. R.J. Anderson, "Solving a Class of Stream
Ciphers," Cryptologia, v. 14, n. 3, Jul 1990,
pp. 285-288.

40. R.J. Anderson, "A Second Generation Elec­
tronic Wallet," ESORICS 92, Proceedings
of the Second European Symposium on

_____________________ R_ef_e_r_en_c_e_s __________ 7 __ ~

Research in Computer Security, Springer­
Verlag, 1992, pp. 411-418.

41. R.J. Anderson, "Faster Attack on Certain
Stream Ciphers," Electronics Letters, v.
29, n. 15, 22 Jul 1993, pp. 1322-1323.

42. R.J. Anderson, "Derived Sequence Attacks
on Stream Ciphers," presented at the rump
session of CRYPTO '93, Aug 1993.

43. R.J. Anderson, "Why Cryptosystems Fail,"
1st ACM Conference on Computer and
Communications Security, ACM Press,
1993, pp. 215-227.

44. R.J. Anderson, "Why Cryptosystems Fail,"
Communications of the ACM, v. 3 7, n. 11,
Nov 1994, pp. 32-40.

45. R.J. Anderson, "On Fibonacci Keystream
Generators," K. U. Leuven Workshop on
Cryptographic Algorithms, Springer-Verlag,
1995, to appear.

46. R.J. Anderson, "Searching for the Opti­
mum Correlation Attack," K. U. Leuven
Workshop on Cryptographic Algorithms,
Springer-Verlag, 1995, to appear.

47. R.J. Anderson and T.M.A. Lomas, "Fortify­
ing Key Negotiation Schemes with Poorly
Chosen Passwords," Electronics Letters, v.
30, n. 13, 23 Jun 1994, pp. 1040-1041.

48. R.J. Anderson and R. Needham, "Robust­
ness Principles for Public Key Protocols,"
Advances in Cryptology-CRYPTO '95
Proceedings, Springer-Verlag, 1995, to
appear.

49. D. Andleman and J. Reeds, "On the Crypt­
analysis of Rotor Machines and Substitu­
tion-Permutation Networks," IEEE Trans­
actions on Information Theory, v. IT-28, n.
4, Jul 1982, pp.578-584.

50. ANSI X3.92, "American National Stan­
dard for Data Encryption Algorithm
(DEA)," American National Standards
Institute, 1981.

51. ANSI X3.105, "American National Stan­
dard for Information Systems-Data Link
Encryption," American National Stan­
dards Institute, 1983.

52. ANSI X3.106, "American National Stan­
dard for Information Systems-Data
Encryption Algorithm-Modes of Opera­
tion," American National Standards Insti­
tute, 1983.

53. ANSI X9.8, "American National Standard
for Personal Information Number (PIN)
Management and Security," American
Bankers Association, 1982.

54. ANSI X9.9 (Revised), "American National
Standard for Financial Institution Message
Authentication (Wholesale)," American
Bankers Association, 1986.

55. ANSI X9.l 7 (Revised), "American
National Standard for Financial Institution
Key Management (Wholesale)," American
Bankers Association, 1985.

56. ANSI X9.19, "American National Stan­
dard for Retail Message Authentication,"
American Bankers Association, 1985.

57. ANSI X9.23, "American National Stan­
dard for Financial Institution Message
Encryption," American Bankers Associa­
tion, 1988.

58. ANSI X9.24, "Draft Proposed American
National Standard for Retail Key Manage­
ment," American Bankers Association,
1988.

59. ANSI X9.26 (Revised), "American
National Standard for Financial Institution
Sign-On Authentication for Wholesale
Financial Transaction," American Bankers
Association, 1990.

60. ANSI X9.30, "Working Draft: Public Key
Cryptography Using Irreversible Algo­
rithms for the Financial Services
Industry," American Bankers Association,
Aug 1994.

61. ANSI X9.31, "Working Draft: Public Key
Cryptography Using Reversible Algo­
rithms for the Financial Services
Industry," American Bankers Association,
Mar 1993.

62. K. Aoki and K. Ohta, "Differential-Linear
Cryptanalysis of FEAL-8," Proceedings of
the 1995 Symposium on Cryptography
and Information Security (SCIS 95),
Inuyama, Japan, 24-27 Jan 1995, pp.
A3.4. l-1 l. (In Japanese.)

63. K. Araki and T. Sekine, "On the Conspir­
acy Problem of the Generalized Tanaka's
Cryptosystem," IEICE Transactions, v.
E74, n. 8, Aug 1991, pp. 2176-2178.

64. S. Araki, K. Aoki, and K. Ohta, "The Best
Linear Expression Search for FEAL," Pro­
ceedings of the 1995 Symposium on Cryp­
tography and Information Security (SCIS
95), lnuyarna, Japan, 24-27 Jan 1995, pp.
A4.4.l-10.

65. C. Asmuth and J. Bloom, "A Modular
Approach to Key Safeguarding," IEEE
Transactions on Information Theory, v. IT-
29, n. 2,Mar 1983, pp.208-210.

~""':S. __________ R_e_fe_r_e_n_ce_s ___________________ _

66. D. Atkins, M. Graff, A.K. Lenstra, and P.C.
Leyland, "The Magic Words are Squeamish
Ossifrage," Advances in Cryptology­
ASIACRYPT '94 Proceedings, Springer­
Verlag, 1995, pp. 263-277.

67. AT&T, "T7001 Random Number Genera­
tor," Data Sheet, Aug 1986.

68. AT&T, "AT&T Readying New Spy-Proof
Phone for Big Military and Civilian Mar­
kets," The Report on ATc,JT, 2 Jun 1986,
pp. 6-7.

69. AT&T, "T7002/T7003 Bit Slice
Multiplier," product announcement, 1987.

70. AT&T, "Telephone Security Device TSD
3600-User's Manual," AT&T, 20 Sep
1992.

71. Y. Aumann and U. Feige, "On Message
Proof Systems with Known Space Veri­
fiers," Advances in Cryptology-CRYPTO
'93 Proceedings, Springer-Verlag, 1994, pp.
85-99.

72. R.G. Ayoub, An Introduction to the The­
ory of Numbers, Providence, RI: American
Mathematical Society, 1963.

73. A. Aziz and W. Diffie, "Privacy and
Authentication for Wireless Local Area
Networks," IEEE Personal Communica­
tions, v. 1, n. 1, 1994, pp. 25-31.

74. A. Bahreman and J.D. Tygar, "Certified
Electronic Mail," Proceedings of the Inter­
net Society 1994 Workshop on Network
and Distributed System Security, The
Internet Society, 1994, pp. 3-19.

75. D. Balenson, "Automated Distribution of
Cryptographic Keys Using the Financial
Institution Key Management Standard,"
IEEE Communications Magazine, v. 23, n.
9, Sep 1985, pp. 41-46.

76. D. Balenson, "Privacy Enhancement for
Internet Electronic Mail: Part III: Algo­
rithms, Modes, and Identifiers," RFC 1423,
Feb 1993.

77. D. Balenson, C.M. Ellison, S.B. Lipner, and
S.T. Walker, "A New Approach to Soft­
ware Key Escrow Encryption," TIS Report
#520, Trusted Information Systems, Aug
94.

78. R. Ball, Mathematical Recreations and
Essays, New York: MacMillan, 1960.

79. J. Bamford, The Puzzle Palace, Boston:
Houghton Mifflin, 1982.

80. J. Bamford and W. Madsen, The Puzzle
Palace, Second Edition, Penguin Books,
1995.

81. S.K. Banerjee, "High Speed Implementa­
tion of DES," Computers eJ Security, v. 1,
1982, pp. 261-267.

82. Z. Baodong, "MC-Veiled Linear Transform
Public Key Cryptosystem," Acta Electron­
ica Sinica, v. 20, n. 4, Apr 1992, pp. 21-24.
(In Chinese.)

83. P.H. Bardell, "Analysis of Cellular
Automata Used as Pseudorandom Pattern
Generators," Proceedings of 1990 Interna­
tional Test Conference, pp. 762-768.

84. T. Baritaud, H. Gilbert, and M. Girault,
"FFT Hashing is not Collision-Free,"
Advances in Cryptology-EUROCRYPT
'92 Proceedings, Springer-Verlag, 1993, pp.
35-44.

85. C. Barker, "An Industry Perspective of the
CCEP," 2nd Annual AIAA Computer
Security Conference Proceedings, 1986.

86. W.G. Barker, Cryptanalysis of the Hagelin
Cryptograph, Aegean Park Press, 1977.

87. P. Barrett, "Implementing the Rivest
Shamir and Adleman Public Key Encryp­
tion Algorithm on a Standard Digital Sig­
nal Processor," Advances in Cryptology­
CRYPTO '86 Proceedings, Spriniser-Verlag,
1987, pp. 311-323.

88. T.C. Bartee and D.I. Schneider, "Computa­
tion with Finite Fields," Information and
Control, v. 6, n. 2, Jun 1963, pp. 79-98.

89. U. Baum and S. Blackburn, "Clock­
Controlled Pseudorandom Generators on
Finite Groups," K. U. Leuven Workshop on
Cryptographic Algorithms, Springer-Verlag,
1995, to appear.

90. K.R. Bauer, T.A. Bersen, and R.J. Feiertag,
"A Key Distribution Protocol Using Event
Markers," ACM Transactions on Computer
Systems, v. 1, n. 3, 1983, pp. 249-255.

91. F. Bauspiess and F. Damm, "Requirements
for Cryptographic Hash Functions," Com­
puters eJ Security, v. 11, n. 5, Sep 1992, pp.
427-437.

92. D. Bayer, S. Haber, and W.S. Stornetta,
"Improving the Efficiency and Reliability
of Digital Time-Stamping," Sequences '91:
Methods in Communication, Security,
and Computer Science, Springer-Verlag,
1992, pp. 329-334.

93. R. Bayer and J.K. Metzger, "On the Enci­
pherment of Search Trees and Random
Access Files," ACM Transactions on Data­
base Systems, v. 1, n. 1, Mar 1976, pp.
37-52.

____________________ R_e_fe_r_en_ce_s _________ 7_~

94. M. Beale and M.F. Monaghan, "Encrytion
Using Random Boolean Functions," Cryp­
tography and Coding, H.J. Beker and F.C.
Piper, eds., Oxford: Clarendon Press, 1989,
pp. 219-230.

95. P. Beauchemin and G. Brassard, "A Gener­
alization of Hellman's Extension to Shan­
non's Approach to Cryptography," fournal
of Cryptology, v. 1, n. 2, 1988, pp. 129-132.

96. P. Beauchemin, G. Brassard, C. Crepeau, C.
Goutier, and C. Pomerance, "The Genera­
tion of Random Numbers that are Proba­
bly Prime," fournal of Cryptology, v. 1, n.
1, 1988, pp. 53-64.

97. D. Beaver, J. Feigenbaum, and V. Shoup,
"Hiding Instances in Zero-Knowledge
Proofs," Advances in Cryptology­
CRYPTO '90 Proceedings, Springer-Verlag,
1991, pp. 326-338.

98. H. Beker, J. Friend, and P. Halliden, "Sim­
plifying Key Management in Electronic
Funds Transfer Points of Sale Systems,"
Electronics Letters, v. 19, n. 12, Jun 1983,
pp. 442-444.

99. H. Beker and F. Piper, Cipher Systems: The
Protection of Communications, London:
Northwood Books, 1982.

100. D.E. Bell and L.J. LaPadula, "Secure Com­
puter Systems: Mathematical Found­
ations," Report ESD-TR-73-275, MITRE
Corp., 1973.

101. D.E. Bell and L.J. LaPadula, "Secure Com­
puter Systems: A Mathematical Model,"
Report MTR-2547, MITRE Corp., 1973.

102. D.E. Bell and L.J. LaPadula, "Secure Com­
puter Systems: A Refinement of the Math­
ematical Model," Report ESD-TR-73-278,
MITRE Corp., 1974.

103. D.E. Bell and L.J. LaPadula, "Secure Com­
puter Systems: Unified Exposition and
Multics Interpretation," Report ESD-TR-
75-306, MITRE Corp., 1976.

104. M. Bellare and S. Goldwasser, "New
Paradigms for Digital Signatures and Mes­
sage Authentication Based on Non­
Interactive Zero Knowledge Proofs,"
Advances in Cryptology-CRYPTO '89
Proceedings, Springer-Verlag, 1990, pp.
194-211.

105. M. Bellare and S. Micali, "Non-Interactive
Oblivious Transfer and Applications,"
Advances in Cryptology-CRYPTO '89
Proceedings, Springer-Verlag, 1990, pp.
547-557.

106. M. Bellare, S. Micali, and R. Ostrovsky,
"Perfect Zero-Knowledge in Constant
Rounds," Proceedings of the 22nd ACM
Symposium on the Theory of Computing,
1990,pp.482-493.

107. S.M. Bellovin, "A Preliminary Technical
Analysis of Clipper and Skipjack," unpub­
lished manuscript, 20 Apr 1993.

108. S.M. Bellovin and M. Merritt, "Limita­
tions of the Kerberos Protocol," Winter
1991 USENIX Conference Proceedings,
USENIX Association, 1991, pp. 253-267.

109. S.M. Bellovin and M. Merritt, "Encrypted
Key Exchange: Password-Based Protocols
Secure Against Dictionary Attacks," Pro­
ceedings of the 1992 IEEE Computer Soci­
ety Conference on Research in Security
and Privacy, 1992, pp. 72-84.

110. S.M. Bellovin and M. Merritt, "An Attack
on the Interlock Protocol When Used for
Authentication," IEEE Transactions on
Information Theory, v. 40, n. 1, Jan 1994,
pp. 273-275.

111. S.M. Bellovin and M. Merritt, "Crypto­
graphic Protocol for Secure Communica­
tions," U.S. Patent #5,241,599, 31 Aug 93.

112. I. Ben-Araya and E. Biham, "Differential
Cryptanalysis of Lucifer," Advances in
Cryptology-CRYPTO '93 Proceedings,
Springer-Verlag, 1994, pp. 187-199.

113. J.C. Benaloh, "Cryptographic Capsules: A
Disjunctive Primitive for Interactive Pro­
tocols," Advances in Cryptology­
CRYPTO '86 Proceedings, Springer-Verlag,
1987, 213-222.

114. J.C. Benaloh, "Secret Sharing Homor­
phisms: Keeping Shares of a Secret Secret,"
Advances in Cryptology-CRYPTO '86
Proceedings, Springer-Verlag, 1987, pp.
251-260.

115. J.C. Benaloh, "Verifiable Secret-Ballot
Elections," Ph.D. dissertation, Yale Uni­
versity, YALEU/DCS/TR-561, Dec 1987.

116. J.C. Benaloh and M. de Mare, "One-Way
Accumulators: A Decentralized Alterna­
tive to Digital Signatures," Advances in
Cryptology-EUROCRYPT '93 Proceed­
ings, Springer-Verlag, 1994, pp. 274-285.

117. J.C. Benaloh and D. Tuinstra, "Receipt­
Free Secret Ballot Elections," Proceedings
of the 26th ACM Symposium on the The­
ory of Computing, 1994, pp. 544-553.

118. J.C. Benaloh and M. Yung, "Distributing
the Power of a Government to Enhance

~-s __________ R_e_fe_r_e_n_ce_s __________________ _

the Privacy of Voters," Proceedings of the
5th ACM Symposium on the Principles
in Distributed Computing, 1986, pp.
52-62.

119. A. Bender and G. Castagnoli, "On the
Implementation of Elliptic Curve Cryp­
tosystems, 11 Advances in Cryptology­
CRYPTO '89 Proceedings, Springer-Verlag,
1990, pp. 186-192.

120. S. Bengio, G. Brassard, Y.G. Desmedt, C.
Goutier, and J.-J. Quisquater, "Secure
Implementation of Identification
Systems," Touma] of Cryutology, v. 4, n. 3,
1991, pp. 175-184.

121. C.H. Bennett, F. Bessette, G. Brassard, L.
Salvail, and J. Smolin, "Experimental
Quantum Cryptography, 11 Advances in
Cryptology-EUROCRYPT '90 Proceed­
ings, Springer-Verlag, 1991, pp. 253-265.

122. C.H. Bennett, F. Bessette, G. Brassard, L.
Salvail, and J. Smolin, "Experimental
Quantum Cryptography," Touma] of Cryp­
tology, v. 5, n. 1, 1992, pp. 3-28.

123. C.H. Bennett and G. Brassard, "Quantum
Cryptography: Public Key Distribution
and Coin Tossing, 11 Proceedings of the
IEEE International Conference on Com­
puters, Systems, and Signal Processing,
Banjalore, India, Dec 1984, pp. 175-179.

124. C.H. Bennett and G. Brassard, "An Update
on Quantum Cryptography, 11 Advances in
Cryptology: Proceedings of CRYPTO 84,
Springer-Verlag, 1985, pp. 475-480.

125. C.H. Bennett and G. Brassard, "Quantum
Public-Key Distribution System," IBM
Technical Disclosure Bulletin, v. 28, 1985,
pp. 3153-3163.

126. C.H. Bennett and G. Brassard, "Quantum
Public Key Distribution Reinvented, 11

SIGACT News, v. 18, n. 4, 1987, pp. 51-53.
127. C.H. Bennett and G. Brassard, "The Dawn

of a New Era for Quantum Cryptography:
The Experimental Prototype is Working! 11

SIGACT News, v. 20, n. 4, Fall 1989, pp.
78-82.

128. C.H. Bennett, G. Brassard, and S. Breidbart,
Quantum C1yptography II: How to Re­
Use a One-Time Pad Safely Even if P=NP,
unpublished manuscript, Nov 1982.

129. C.H. Bennett, G. Brassard, S. Breidbart, and
S. Weisner, "Quantum Cryptography, or
Unforgeable Subway Tokens, 11 Advances
in Cryptology: Proceedings of Crypto 82,
Plenum Press, 1983, pp. 267-275.

130. C.H. Bennett, G. Brassard, C. Crepeau, and
M.-H. Skubiszewska, "Practical Quantum
Oblivious Transfer, 11 Advances in Cryptol­
ogy-CRYPTO '91 Proceedings, Springer­
Verlag, 1992, pp. 351-366.

131. C.H. Bennett, G. Brassard, and A.K. Ekert,
"Quantum Cryptography, 11 Scientific
American, v. 267, n. 4, Oct 1992, pp. 50-57.

132. C.H. Bennett, G. Brassard, and N.D. Mer­
min, "Quantum Cryptography Without
Bell's Theorem, 11 Physical Review Letters,
v. 68, n. 5, 3 Feb 1992, pp. 557-559.

133. C.H. Bennett, G. Brassard, and J.-M.
Robert, "How to Reduce Your Enemy's
Information, 11 Advances in Cryptology­
CRYPTO '85 Proceedings, Springer-Verlag,
1986, pp. 468-476.

134. C.H. Bennett, G. Brassard, and J.-M.
Robert, "Privacy Amplification by Public
Discussion," SIAM Touma] on Computing,
v. 17, n. 2, Apr 1988, pp. 210-229.

135. J. Bennett, 11 Analysis of the Encryption
Algorithm Used in WordPerfect Word Pro­
cessing Program," Cryptologia, v. 11, n. 4,
Oct 1987, pp. 206-210.

136. M. Ben-Or, S. Goldwasser, and A. Wigder­
son, "Completeness Theorems for Non­
Cryptographic Fault-Tolerant Distributed
Computation, 11 Proceedings of the 20th
ACM Symposium on the Theory of Com­
puting, 1988, pp. 1-10.

137. M. Ben-Or, 0. Goldreich, S. Goldwasser, J.
Hastad, J. Kilian, S. Micali, and P. Rog­
away, "Everything Provable is Provable in
Zero-Knowledge, 11 Advances in Cryptol­
ogy-CRYPTO '88 Proceedings, Springer­
Verlag, 1990, pp. 37-56.

138. M. Ben-Or, 0. Goldreich, S. Micali, and
R.L. Rivest, 11 A Fair Protocol for Signing
Contracts," IEEE Transactions on Informa­
tion Theory, v. 36, n. 1, Jan 1990, pp. 40-46.

139. H.A. Bergen and W.J. Caelli, "File Security
in WordPerfect 5.0, 11 Cryptologia, v. 15, n.
1, Jan 1991, pp. 57-66.

140. E.R. Berlekamp, Algebraic Coding Theory,
Aegean Park Press, 1984.

141. S. Berkovits, "How to Broadcast a Secret,"
Advances in Cryptology-EUROCRYPT
'91 Proceedings, Springer-Verlag, 1991, pp.
535-541.

142. S. Berkovits, J. Kowalchuk, and B. Schan­
ning, "Implementing Public-Key Scheme, 11

IEEE Communications Magazine, v. 1 7, n.
3, May 1979, pp. 2-3.

____________________ R_e_f_e_re_n_c_e_s _________ 7______,,,~

143. D.J. Bernstein, Bernstein vs. U.S. Depart­
ment of State et al., Civil Action No. C95-
0582-MHP, United States District Court
for the Northern District of California, 21
Feb 1995.

144. T. Berson, "Differential Cryptanalysis
Mod 232 with Applications to MD5,"
Advances in Cryptology-EUROCRYPT
'92 Proceedings, 1992, pp. 71-80.

145. T. Beth, Verfahren der schnellen Fourier­
Transformation, Teubner, Stuttgart, 1984.
(In German.)

146. T. Beth, "Efficient Zero-Knowledge Identi­
fication Scheme for Smart Cards,"
Advances in Cryptology-EUROCRYPT
'88 Proceedings, Springer-Verlag, 1988, pp.
77-84.

147. T. Beth, B.M. Cook, and D. Gollmann,
"Architectures for Exponentiation in
GF(2n)," Advances in Cryptology­
CRYPTO '86 Proceedings, Springer-Verlag,
1987, pp. 302-310.

148. T. Beth and Y. Desmedt, "Identification
Tokens-or: Solving the Chess Grandmas­
ter Problem," Advances in Cryptology­
CRYPTO '90 Proceedings, Springer-Verlag,
1991, pp. 169-176.

149. T. Beth and C. Ding, "On Almost Nonlin­
ear Permutations," Advances in Cryp­
tology-EUROCRYPT '93 Proceedings,
Springer-Verlag, 1994, pp. 65-76.

150. T. Beth, M. Frisch, and G.J. Simmons, eds.,
Lecture Notes in Computer Science 578;
Public Key Cryptography: State of the Art
and Future Directions, Springer-Verlag,
1992.

151. T. Beth and F.C. Piper, "The Stop-and-Go
Generator," Advances in Cryptology: Pro­
ceedings of EUROCRYPT 84, Springer­
Verlag, 1984, pp. 88-92.

152. T. Beth and F. Schaefer, "Non Supersingular
Elliptic Curves for Public Key Cryptosys­
tems," Advances in Cryptology-EURO­
CRYPT '91 Proceedings, Springer-Verlag,
1991, pp. 316-327.

153. A. Beutelspacher, "How to Say 'No',"
Advances in Cryptology-EUROCRYPT
'89 Proceedings, Springer-Verlag, 1990, pp.
491-496.

154. J. Bidzos, letter to NIST regarding DSS, 20
Sep 1991.

155. J. Bidzos, personal communication, 1993.
156. P. Bieber, "A Logic of Communication in a

Hostile Environment," Proceedings of the

Computer Security Foundations Work­
shop III, IEEE Computer Society Press,
1990, pp. 14-22.

157. E. Biham, "Cryptanalysis of the Chaotic­
Map Cryptosystem Suggested at EURO­
CRYPT '91," Advances in Cryptology­
EUROCRYPT '91 Proceedings, Springer­
Verlag, 1991, pp. 532-534.

158. E. Biham, "New Types of Cryptanalytic
Attacks Using Related Keys," Technical
Report #753, Computer Science Depart­
ment, Technion-Israel Institute of Tech­
nology, Sep 1992.

159. E. Biham, "On the Applicability of Differ­
ential Cryptanalysis to Hash Functions,"
lecture at EIES Workshop on Crypto­
graphic Hash Functions, Mar 1992.

160. E. Biham, personal communication, 1993.
161. E. Biham, "Higher Order Differential

Cryptanalysis," unpublished manuscript,
Jan 1994.

162. E. Biham, "On Modes of Operation," Fast
Software Encryption, Cambridge Security
Workshop Proceedings, Springer-Verlag,
1994, pp. 116-120.

163. E. Biham, "New Types of Cryptanalytic
Attacks Using Related Keys," Journal of
Cryptology, v. 7, n.4, 1994, pp. 229-246.

164. E. Biham, "On Matsui's Linear Cryptanal­
ysis," Advances in Cryptology-EURO­
CRYPT '94 Proceedings, Springer-Verlag,
1995, pp. 398-412.

165. E. Biham and A. Biryukov, "How to
Strengthen DES Using Existing
Hardware, 11 Advances in Cryptology­
ASIACRYPT '94 Proceedings, Springer­
Verlag, 1995, to appear.

166. E. Biham and P.C. Kocher, "A Known
Plaintext Attack on the PKZIP Encryp­
tion," K. U. Leuven Workshop on Crypto­
graphic Algorithms, Springer-Verlag, 1995,
to appear.

167. E. Biham and A. Shamir, "Differential
Cryptanalysis of DES-like
Cryptosystems, 11 Advances in Cryptol­
ogy-CRYPTO '90 Proceedings, Springer­
Verlag, 1991, pp. 2-21.

168. E. Biham and A. Shamir, "Differential
Cryptanalysis of DES-like
Cryptosystems," Journal of Cryptology, v.
4, n. 1, 1991. pp 3-72.

169. E. Biham and A. Shamir, "Differential
Cryptanalysis of Peal and N-Hash,"
Advances in Cryptology-EUROCRYPT

~ sc-----------R_ef_e_r_en_c_e_s ___________________ _

'91 Proceedings, Springer-Verlag, 1991, pp.
1-16.

170. E. Biham and A. Shamir, "Differential
Cryptanalysis of Snefru, Khafre, REDOC­
II, LOKl, and Lucifer," Advances in Cryp­
tology-CRYPTO '91 Proceedings, 1992,
pp. 156-171.

171. E. Biham and A. Shamir, "Differential
Cryptanalysis of the Full 16-Round DES,"
Advances in Cryptology-CRYPTO '92
Proceedings, Springer-Verlag, 1993, 487-
496.

1 72. E. Biham and A. Shamir, Differential
Cryptanalysis of the Data Encryption
Standard, Springer-Verlag, 1993.

173. R. Bird, I. Gopal, A. Herzberg, P. Janson, S.
Kutten, R. Malva, and M. Yung, "System­
atic Design of Two-Party Authentication
Protocols," Advances in Cryptology­
CRYPTO '91 Proceedings, Springer-Verlag,
1992, pp. 44-61.

174. R. Bird, I. Gopal, A. Herzberg, P. Janson, S.
Kutten, R. Malva, and M. Yung, "System­
atic Design of a Family of Attack-Resistant
Authentication Protocols," IEEE fournal
of Selected Areas in Communication, to
appear.

175. R. Bird, I. Gopal, A. Herzberg, P. Janson, S.
Kutten, R. Malva, and M. Yung, "A Modu­
lar Family of Secure Protocols for Authenti­
cation and Key Distribution," IEEE/ACM
Transactions on Networking, to appear.

176. M. Bishop, "An Application for a Fast Data
Encryption Standard Implementation,"
Computing Systems, v. 1, n. 3, 1988, pp.
221-254.

177. M. Bishop, "Privacy-Enhanced Electronic
Mail," Distributed Computing and Cryp­
tography, J. Feigenbaum and M. Merritt,
eds., American Mathematical Society,
1991, pp. 93-106.

178. M. Bishop, "Privacy-Enhanced Electronic
Mail," Internetworking: Research and
Experience, v. 2, n. 4, Dec 1991, pp.
199-233.

179. M. Bishop, "Recent Changes to Privacy
Enhanced Electronic Mail," Internetwork­
ing: Research and Experience, v. 4, n. 1,
Mar 1993, pp. 47-59.

180. I.F. Blake, R. Fuji-Hara, R.C. Mullin, and
S.A. Vanstone, "Computing Logarithms in
Finite Fields of Characteristic Two," SIAM
fournal on Algebraic Discrete Methods, v.
5, 1984,pp.276-285.

181. I.F. Blake, R.C. Mullin, and S.A. Vanstone,
"Computing Logarithms in GF (2°),"
Advances in Cryptology: Proceedings of
CRYPTO 84, Springer-Verlag, 1985, pp.
73-82.

182. G.R. Blakley, "Safeguarding Cryptographic
Keys," Proceedings of the National Com­
puter Conference, 1979, American Federa­
tion of Information Processing Societies, v.
48, 1979, pp. 313-317.

183. G.R. Blakley, "One-Time Pads are Key
Safeguarding Schemes, Not Cryptosys­
tems-Fast Key Safeguarding Schemes
(Threshold Schemes) Exist," Proceedings
of the 1980 Symposium on Security and
Privacy, IEEE Computer Society, Apr 1980,
pp. 108-113.

184. G.R. Blakley and I. Borosh, "Rivest­
Shamir-Adleman Public Key Cryptosys­
tems Do Not Always Conceal Messages,"
Computers and Mathematics with Appli­
cations, v. 5, n. 3, 1979, pp. 169-178.

185. G.R. Blakley and C. Meadows, "A Data­
base Encryption Scheme which Allows the
Computation of Statistics Using Encrypted
Data," Proceedings of the 1985 Sympo­
sium on Security and Privacy, IEEE Com­
puter Society, Apr 1985, pp. 116-122.

186. M. Blaze, "A Cryptographic File System
for UNIX," 1st ACM Conference on Com­
puter and Communications Security,
ACM Press, 1993, pp. 9-16.

187. M. Blaze, "Protocol Failure in the
Escrowed Encryption Standard," 2nd ACM
Conference on Computer and Communi­
cations Security, ACM Press, 1994, pp.
59-67.

188. M. Blaze, "Key Management in an
Encrypting File System," Proceedings of
the Summer 94 USENIX Conference,
USENIX Association, 1994, pp. 27-35.

189. M. Blaze and B. Schneier, "The MacGuffin
Block Cipher Algorithm," K. U. Leuven
Workshop on Cryptographic Algorithms,
Springer-Verlag, 1995, to appear.

190. U. Blocher and M. Dichtl, "Fish: A Fast
Software Stream Cipher," Fast Software
Encryption, Cambridge Security Work­
shop Proceedings, Springer-Verlag, 1994,
pp. 41-44.

191. R. Blom, "Non-Public Key Distribution,"
Advances in Cryptology: Proceedings of
Crypto 82, Plenum Press, 1983, pp.
231-236.

____________________ R_ef_e_r_en_c_e_s __________ 7 __ ~

192. K.J. Blow and S.J.D. Phoenix, "On a Funda­
mental Theorem of Quantum Cryptogra­
phy," [ournal of Modern Optics, v. 40, n. 1,
Jan 1993, pp. 33-36.

193. L. Blum, M. Blum, and M. Shub, "A Simple
Unpredictable Pseudo-Random Number
Generator," SIAM fournal on Computing,
V. 15, n. 2, 1986, pp. 364-383.

194. M. Blum, "Coin Flipping by Telephone: A
Protocol for Solving Impossible
Problems," Proceedings of the 24th IEEE
Computer Conference (CompCon}, 1982,
pp. 133-137.

195. M. Blum, "How to Exchange (Secret)
Keys," ACM Transactions on Computer
Systems, v. 1, n. 2, May 1983, pp. 175-193.

196. M. Blum, "How to Prove a Theorem So No
One Else Can Claim It," Proceedings of
the International Congress of Mathemati­
cians, Berkeley, CA, 1986, pp. 1444-1451.

197. M. Blum, A. De Santis, S. Micali, and
G. Persiano, "Noninteractive Zero-Know­
ledge," SIAM fournal on Computing, v. 20,
n. 6, Dec 1991, pp. 1084-1118.

198. M. Blum, P. Feldman, and S. Micali, "Non­
Interactive Zero-Knowledge and Its Appli­
cations," Proceedings of the 20th A CM
Symposium on Theory of Computing,
1988, pp. 103-112.

199. M. Blum and S. Goldwasser, "An Efficient
Probabilistic Public-Key Encryption
Scheme Which Hides All Partial Informa­
tion," Advances in Cryptology: Proceed­
ings of CRYPTO 84, Springer-Verlag, 1985,
pp. 289-299.

200. M. Blum and S. Micali, "How to Generate
Cryptographically-Strong Sequences of
Pseudo-Random Bits," SIAM [ournal on
Computing, v. 13, n. 4, Nov 1984, pp.
850-864.

201. B. den Boer, "Cryptanalysis of F.E.A.L.,"
Advances in Cryptology-EUROCRYPT
'88 Proceedings, Springer-Verlag, 1988, pp.
293-300.

202. B. den Boer and A. Bosselaers, "An Attack
on the Last Two Rounds of MD4,"
Advances in Cryptology-CRYPTO '91
Proceedings, Springer-Verlag, 1992, pp.
194-203.

203. B. den Boer and A. Bosselaers, "Collisions
for the Compression Function of MD5,"
Advances in Cryptology-EUROCRYPT
'93 Proceedings, Springer-Verlag, 1994, pp.
293-304.

204. J.-P. Boly, A. Bosselaers, R. Cramer, R.
Michelsen, S. Mj0lsnes, F. Muller, T. Ped­
ersen, B. Pfitzmann, P. de Rooij, B. Schoen­
makers, M. Schunter, L. Vallee, and M.
Waidner, "Digital Payment Systems in the
ESPRIT Project CAFE," Securicom 94,
Paris, France, 2-6 Jan 1994, pp. 35-45.

205. J.-P. Boly, A. Bosselaers, R. Cramer, R.
Michelsen, S. Mj0lsncs, F. Muller, T. Ped­
ersen, B. Pfitzmann, P. de Rooij, B. Schoen­
makers, M. Schunter, L. Vallee, and M.
Waidner, "The ESPRIT Project CAFE­
High Security Digital Payment System,"
Computer Security-ESORICS 94,
Springer-Verlag, 1994, pp. 217-230.

206. D.J. Bond, "Practical Primality Testing,"
Proceedings of IEE International Confer­
ence on Secure Communications Systems,
22-23 Feb 1984, pp. 50-53.

207. H. Bonnenberg, Secure Testing of VSLI
Cryptographic Equipment, Series in
Microelectronics, Vol. 25, Konstanz: Har­
tung Corre Verlag, 1993.

208. H. Bonnenberg, A. Curiger, N. Felber, H.
Kaeslin, and X. Lai, "VLSI Implementation
of a New Block Cipher," Proceedings of the
IEEE International Conference on Com­
puter Design: VLSI in Computers and Pro­
cessors (ICCD 91), Oct 1991, pp. 510-513.

209. K.S. Booth, "Authentication of Signatures
Using Public Key Encryption," Communi­
cations of the ACM, v. 24, n. 11, Nov 1981,
pp. 772-774.

210. A. Bosselaers, R. Govaerts, and J. Vander­
walle, Advances in Cryptology-CRYPTO
'93 Proceedings, Springer-Verlag, 1994, pp.
175-186.

211. D.P. Bovet and P. Crescenzi, Introduction
to the Theory of Complexity, Englewood
Cliffs, N.J.: Prentice-Hall, 1994.

212. J. Boyar, "Inferring Sequences Produced by
a Linear Congruential Generator Missing
Low-Order Bits," [ournal of Cryptology, v.
1, n. 3, 1989, pp. 177-184.

213. J. Boyar, D. Chaum, and I. Damgard,
"Convertible Undeniable Signatures,"
Advances in Cryptology-CRYPTO '90
Proceedings, Springer-Verlag, 1991, pp.
189-205.

214. J. Boyar, K. Friedl, and C. Lund, "Practical
Zero-Knowledge Proofs: Giving Hints and
Using Deficiencies," Advances in Cryptol­
ogy-EURO CRYPT '89 Proceedings,
Springer-Verlag, 1990, pp. 155-172.

~--:s __________ R_e_fe_r_e_n_ce_s __________________ _

215. J. Boyar, C. Lund, and R. Peralta, "On the
Communication Complexity of Zero­
Knowledge Proofs," fournal of Cryptology,
v.6, n.2, 1993, pp.65-85.

216. J. Boyar and R. Peralta, "On the Concrete
Complexity of Zero-Knowledge Proofs,"
Advances in Cryptology-CRYPTO '89
Proceedings, Springer-Verlag, 1990, pp.
507-525.

217. C. Boyd, "Some Applications of Multiple
Key Ciphers," Advances in C1-yptology­
EUROCRYPT '88 Proceedings, Springer­
Verlag, 1988, pp. 455-467.

218. C. Boyd, "Digital Multisignatures," Cryp­
tography and Coding, H.J. Beker and F.C.
Piper, eds., Oxford: Clarendon Press, 1989,
pp. 241-246.

219. C. Boyd, "A New Multiple Key Cipher and
an Improved Voting Scheme," Advances in
Cryptology-EUROCRYPT '89 Proceed­
ings, Springer-Verlag, 1990, pp. 617-625.

220. C. Boyd, "Multisignatures Revisited,"
Cryptography and Coding III, M.J. Ganley,
ed., Oxford: Clarendon Press, 1993, pp.
21-30.

221. C. Boyd and W. Mao, "On the Limitation
of BAN Logic," Advances in Cryptology­
E UR OCRYPT '93 Proceedings, Springer­
Verlag, 1994, pp. 240-247.

222. C. Boyd and W. Mao, "Designing Secure
Key Exchange Protocols," Computer Secu­
rity-ESORICS 94, Springer-Verlag, 1994,
pp. 217-230.

223. B.O. Brachtl, D. Coppersmith, M.M.
Hyden, S.M. Matyas, C.H. Meyer, J. Oseas,
S. Pilpel, and M. Schilling, "Data Authen­
tication Using Modification Detection
Codes Based on a Public One Way Func­
tion," U.S. Patent #4,908,861, 13 Mar
1990.

224. J. Brandt, LB. Damgard, P. Landrock, and T.
Pederson, "Zero-Knowledge Authentica­
tion Scheme with Secret Key Exchange,"
Advances in Cryptology-CRYPTO '88,
Springer-Verlag, 1990, pp. 583-588.

225. S.A. Brands, 11 An Efficient Off-Line Elec­
tronic Cash System Based on the Repre­
sentation Problem," Report CS-R9323,
Computer Science/Department of Algo­
rithms and Architecture, CWI, Mar 1993.

226. S.A. Brands, "Untraceable Off-line Cash
in Wallet with Observers," Advances
in Cryptology-CRYPTO '93, Springer­
Verlag, 1994, pp. 302-318.

227. S.A. Brands, "Electronic Cash on the Inter­
net," Proceedings of the Internet Society
1995 Symposium on Network and Dis­
tributed Systems Security, IEEE Computer
Society Press 1995, pp 64-84.

228. D.K. Branstad, "Hellman's Data Does Not
Support His Conclusion," IEEE Spectrum,
v. 16, n. 7, Jul 1979, p. 39.

229. D.K. Branstad, J. Gait, and S. Katzke,
"Report on the Workshop on Cryptogra­
phy in Support of Computer Security,"
NBSIR 77-1291, National Bureau of Stan­
dards, Sep 21-22, 1976, September 1977.

230. G. Brassard, 11 A Note on the Complexity of
Cryptography," IEEE Transactions on
Information Theory, v. IT-25, n. 2, Mar
1979, pp. 232-233.

231. G. Brassard, "Relativized Cryptography,"
Proceedings of the IEEE 20th Annual Sym­
posium on the Foundations of Computer
Science, 1979, pp. 383-391.

232. G. Brassard, "A Time-Luck Tradeoff in
Relativized Cryptography," Proceedings of
the IEEE 21st Annual Symposium on the
Foundations of Computer Science, 1980,
pp. 380-386.

233. G. Brassard, "A Time-Luck Tradeoff in
Relativized Cryptography," fournal of
Computer and System Sciences, v. 22, n. 3,
Jun 1981, pp. 280-311.

234. G. Brassard, "An Optimally Secure Rela­
tivized Cryptosystem," SIGACT News, v.
15, n. 1, 1983, pp. 28-33.

235. G. Brassard, "Relativized Cryptography,"
IEEE Transactions on Information Theory,
v. IT-29, n. 6, Nov 1983, pp. 877-894.

236. G. Brassard, Modern Cryptology: A Tuto­
rial, Springer-Verlag, 1988.

237. G. Brassard, "Quantum Cryptography: A
Bibliography," SIGACT News, v. 24, n. 3,
Oct 1993, pp. 16-20.

238. G. Brassard, D. Chaum, and C. Crepeau,
11 An Introduction to Minimum Disclo­
sure," CWI Quarterly, v. 1, 1988, pp. 3-17.

239. G. Brassard, D. Chaum, and C. Crepeau,
"Minimum Disclosure Proofs of Knowl­
edge," fournal of Computer and System
Sciences, v. 37, n. 2, Oct 1988, pp. 156-189.

240. G. Brassard and C. Crepeau, "Non­
Transitive Transfer of Confidence: A Per­
fect Zero-Knowledge Interactive Protocol
for SAT and Beyond," Proceedings of the
27th IEEE Symposium on Foundations of
Computer Science, 1986, pp. 188-195.

____________________ R_e_f_er_e_n_c_e_s _________ 7______,,~

241. G. Brassard and C. Crepeau, "Zero­
Knowledge Simulation of Boolean Cir­
cuits," Advances in Cryptology­
CRYPTO '86 Proceedings, Springer-Verlag,
1987,pp.223-233.

242. G. Brassard and C. Crepeau, "Sorting Out
Zero-Knowledge," Advances in Cryptol­
ogy-EUROCRYPT '89 Proceedings,
Springer-Verlag, 1990, pp. 181-191.

243. G. Brassard and C. Crepeau, "Quantum Bit
Commitment and Coin Tossing
Protocols," Advances in Cryptology­
CRYPTO '90 Proceedings, Springer-Verlag,
1991, pp. 49-61.

244. G. Brassard, C. Crepeau, R. Jozsa, and D.
Langlois, "A Quantum Bit Commitment
Scheme Provably Unbreakable by Both
Parties," Proceedings of the 34th IEEE
Symposium on Foundations of Computer
Science, 1993, pp. 362-371.

245. G. Brassard, C. Crepeau, and J.-M. Robert,
"Information Theoretic Reductions
Among Disclosure Problems," Proceed­
ings of the 27th IEEE Symposium on Foun­
dations of Computer Science, 1986, pp.
168-173.

246. G. Brassard, C. Crepeau, and J.-M. Robert,
"All-or-Nothing Disclosure of Secrets,"
Advances in Cryptology-CRYPTO '86
Proceedings, Springer-Verlag, 1987, pp.
234-238.

247. G. Brassard, C. Crepeau, and M. Yung,
"Everything in NP Can Be Argued in Per­
fect Zero-Knowledge in a Bounded Num­
ber of Rounds," Proceedings on the 16th
International Colloquium on Automata,
Languages, and Programming, Springer­
Verlag, 1989, pp. 123-136.

248. R.P. Brent, "An Improved Monte-Carlo
Factorization Algorithm," BIT, v. 20, n. 2,
1980, pp. 176-184.

249. R.P. Brent, "On the Periods of Generalized
Fibonacci Recurrences, Mathematics of
Computation, v. 63, n. 207, Jul 1994, pp.
389-401.

250. R.P. Brent, "Parallel Algorithms for Integer
Factorization," Research Report CMA­
R49-89, Computer Science Laboratory,
The Australian National University, Oct
1989.

251. D.M. Brcssoud, Factorization and Primal­
ity Testing, Springer-Verlag, 1989.

252. E.F. Brickell, "A Fast Modular Multiplica­
tion Algorithm with Applications to Two

Key Cryptography," Advances in Cryptol­
ogy: Proceedings of Crypto 82, Plenum
Press, 1982, pp. 51-60.

253. E.F. Brickell, "Are Most Low Density Poly­
nomial Knapsacks Solvable in Polynomial
Time?" Proceedings of the 14th Southeast­
ern Conference on Combinatorics, Graph
Theory, and Computing, 1983.

254. E.F. Brickell, "Solving Low Density Knap­
sacks," Advances in Cryptology: Proceed­
ings of Crypto 83, Plenum Press, 1984, pp.
25-37.

255. E.F. Brickell, "Breaking Iterated Knap­
sacks," Advances in Cryptology: Proceed­
ings of Crypto 84, Springer-Verlag, 1985,
pp. 342-358.

256. E.F. Brickell, "Cryptanalysis of the
Uagisawa Public Key Cryptosystem,"
Abstracts of Papers, EUROCRYPT '86,
20-22 May 1986.

257. E.F. Brickell, "The Cryptanalysis of Knap­
sack Cryptosystems," Applications of Dis­
crete Mathematics, R.D. Ringeisen and
F.S. Roberts, eds., Society for Industrial
and Applied Mathematics, Philadelphia,
1988, pp. 3-23.

258. E.F. Brickell, "Survey of Hardware Imple­
mentations of RSA," Advances in Cryptol­
ogy-CRYPTO '89 Proceedings, Springer­
Verlag, 1990, pp. 368-370.

259. E.F. Brickell, D. Chaum, I.B. Damgard, and
J. van de Graff, "Gradual and Verifiable
Release of a Secret," Advances in Cryptol­
ogy-CRYPTO '87 Proceedings, Springer­
Verlag, 1988, pp. 156-166.

260. E.F. Brickell, J.A. Davis, and G.J. Simmons,
"A Preliminary Report on the Cryptanaly­
sis of Merkle-Hellman Knapsack,"
Advances in Cryptology: Proceedings of
Crypto 82, Plenum Press, 1983, pp.
289-303.

261. E.F. Brickell and J. Delaurentis, 11 An
Attack on a Signature Scheme Proposed by
Okamoto and Shiraishi," Advances in
Cryptology-CRYPTO '85 Proceedings,
Springer-Verlag, 1986, pp. 28-32.

262. E.F. Brickell, D.E. Denning, S.T. Kent, D.P.
Maher, and W. Tuchman, "SKIPJACK
Review-Interim Report," unpublished
manuscript, 28 Jul 1993.

263. E.F. Brickell, J.C. Lagarias, and AM.
Odlyzko, "Evaluation of the Adleman
Attack of Multiple Iterated Knapsack
Cryptosystems," Advances in Cryptology:

~-:s __________ R_e_fe_r_en_ce_s ___________________ _

Proceedings of Crypto 83, Plenum Press,
1984, pp. 39-42.

264. E.F. Brickell, P.J. Lee, and Y. Yacobi,
"Secure Audio Teleconference," Advances
in Cryptology-CRYPTO '87 Proceedings,
Springer-Verlag, 1988, pp. 418-426.

265. E.F. Brickell and K.S. Mccurley, "An Inter­
active Identification Scheme Based on
Discrete Logarithms and Factoring,"
Advances in Cryptology-EUROCRYPT
'90 Proceedings, Springer-Verlag, 1991, pp.
63-71.

266. E.F. Brickell, J.H. Moore, and M.R. Purtill,
"Structure in the S-Boxes of the DES,"
Advances in Cryptology-CRYPTO '86
Proceedings, Springer-Verlag, 1987, pp.
3-8.

267. E.F. Brickell and A.M. Odlyzko, "Crypt­
analysis: A Survey of Recent Results," Pro­
ceedings of the IEEE, v. 76, n. 5, May 1988,
pp. 578-593.

268. E.F. Brickell and A.M. Odlyzko, "Crypt­
analysis: A Survey of Recent Results,"
Contemporary Cryptology: The Science of
Information Integrity, G.J. Simmons, ed.,
IEEE Press, 1991, pp. 501-540.

269. E.F. Brickell and G.J. Simmons, "A Status
Report on Knapsack Based Public Key
Cryptosystems," Congressus Numeran­
tium, v. 7, 1983, pp. 3-72.

2 70. E.F. Brickell and D.R. Stinson, "The Detec­
tion of Cheaters in Threshold Schemes,"
Advances in Cryptology-CRYPTO '88
Proceedings, Springer-Verlag, 1990, pp.
564-577.

271. A.G. Broscius and J.M. Smith, "Exploiting
Parallelism in Hardware Implementation
of the DES," Advances in Cryptology­
CRYPTO '91 Proceedings, Springer-Verlag,
1992, pp. 367-376.

272. L. Brown, M. Kwan, J. Pieprzyk, and J.
Seberry, "Improving Resistance to Differ­
ential Cryptanalysis and the Redesign of
LOKI," Advances in Cryptology-ASIA­
CRYPT '91 Proceedings, Springer-Verlag,
1993, pp. 36-50.

273. L. Brown, J. Pieprzyk, and J. Seberry,
"LOKI: A Cryptographic Primitive for
Authentication and Secrecy
Applications," Advances in Cryptology­
A USCRYPT '90 Proceedings, Springer­
Verlag, 1990, pp. 229-236.

274. L. Brown, J. Pieprzyk, and J. Seberry, "Key
Scheduling in DES Type Cryptosystems,"

Advances in Cryptology-AUSCRYPT '90
Proceedings, Springer-Verlag, 1990, pp.
221-228.

275. L. Brown and J. Seberry, "On the Design of
Permutation P in DES Type Cryptosys­
tems," Advances in Cryptology-EURO­
CRYPT '89 Proceedings, Springer-Verlag,
1990, pp. 696-705.

276. W. Brown, "A Quantum Leap in Secret
Communications," New Scientist, n.
1585, 30 Jan 1993, p. 21.

277. J.O. Bruer, "On Pseudo Random Sequences
as Crypto Generators," Proceedings of the
International Zurich Seminar on Digital
Communication, Switzerland, 1984.

278. L. Brynielsson "On the Linear Complexity
of Combined Shift Register Sequences,"
Advances in Cryptology-EUROCRYPT
'85, Springer-Verlag, 1986, pp. 156-166.

279. J. Buchmann, J. Loho, and J. Zayer, "An
Implementation of the General Number
Field Sieve," Advances in Cryptology­
CRYPTO '93 Proceedings, Springer-Verlag,
1994, pp. 159-165.

280. M. Burmester and Y. Desmedt, "Broadcast
Interactive Proofs," Advances in Cryp­
tology-EUROCRYPT '91 Proceedings,
Springer-Verlag, 1991, pp. 81-95.

281. M. Burmester and Y. Desmedt, "A Secure
and Efficient Conference Key Distribution
System," Advances in Cryptology­
EUROCRYPT '94 Proceedings, Springer­
Verlag, 1995, to appear.

282. D. Burnham, "NSA Seeking 500,000
'Secure' Telephones," The New York
Times, 6 Oct 1994.

283. M. Burrows, M. Abadi, and R. Needham,
11 A Logic of Authentication," Research
Report 39, Digital Equipment Corp. Sys­
tems Research Center, Feb 1989.

284. M. Burrows, M. Abadi, and R. Needham,
11 A Logic of Authentication," ACM Trans­
actions on Computer Systems, v. 8, n. 1,
Feb 1990, pp. 18-36.

285. M. Burrows, M. Abadi, and R. Needham,
"Rejoinder to Nessett," Operating System
Review, v. 20, n. 2, Apr 1990, pp. 39-40.

286. J.J. Cade, "A Modification of a Broken Pub­
lic-Key Cipher," Advances in Cryptol­
ogy-CRYPTO '86 Proceedings, Springer­
Verlag, 1987, pp. 64-83.

287. T.R. Cain and A.T. Sherman, "How to
Break Gifford's Cipher," Proceedings of
the 2nd Annual ACM Conference on

____________________ R_e_f_er_e_n_c_e_s _________ 7---=--~

Computer and Communications Security,
ACM Press, 1994, pp. 198-209.

288. C. Calvelli and V. Varadharajan, 11 An Anal­
ysis of Some Delegation Protocols for Dis­
tributed Systems," Proceedings of the
Computer Security Foundations Work­
shop V, IEEE Computer Society Press,
1992, pp. 92-110.

289. J.L. Camenisch, J.-M. Piveteau, and M.A.
Stadler, "An Efficient Electronic Payment
System Protecting Privacy," Computer
Security-ESORICS 94, Springer-Verlag,
1994, pp. 207-215.

290. P. Camion and J. Patarin, "The Knapsack
Hash Function Proposed at Crypto '89 Can
Be Broken," Advances in Cryptology­
E UR OCRYPT '91, Springer-Verlag, 1991,
pp. 39-53.

291. C.M. Campbell, "Design and Specification
of Cryptographic Capabilities," IEEE Com­
puter Society Magazine, v. 16, n. 6, Nov
1978, pp. 15-19.

292. E.A. Campbell, R. Safavi-Naini, and P.A.
Pleasants, "Partial Belief and Probabilistic
Reasoning in the Analysis of Secure Proto­
cols," Proceedings of the Computer Secu­
rity Foundations Workshop V, IEEE Com­
puter Society Press, 1992, pp. 92-110.

293. K.W. Campbell and M.J. Wiener, "DES Is
Not a Group," Advances in Cryptology­
CRYPTO '92 Proceedings, Springer-Verlag,
pp. 512-520.

294. Z.F. Cao and G. Zhao, "Some New MC
Knapsack Cryptosystems," CHINACRYPT
'94, Xidian, China, 11-15 Nov 1994, pp.
70-75. (In Chinese).

295. C. Carlet, "Partially-Bent Functions,"
Advances in Cryptology-CRYPTO '92
Proceedings, Springer-Verlag, 1993, pp.
280-291.

296. C. Carlet, "Partially Bent Functions,"
Designs, Codes and Cryptography, v. 3,
1993, pp. 135-145.

297. C. Carlet, "Two New Classes of Bent
Functions" Advances in Cryptology­
E UR OCRYPT '93 Proceedings, Springer­
Verlag, 1994, pp. 77-101.

298. C. Carlet, J. Seberry, and X.M. Zhang,
"Comments on 'Generating and Counting
Binary Bent Sequences,' " IEEE Transac­
tions on Information Theory, v. IT-40, n. 2,
Mar 1994, p. 600.

299. J.M. Carroll, Computer Security, 2nd edi­
tion, Butterworths, 1987.

300. J.M. Carroll, "The Three Faces of Informa­
tion Security," Advances in Cryptology­
AUSCRYPT '90 Proceedings, Springer­
Verlag, 1990, pp. 433-450.

301. J.M. Carroll, " 'Do-it-yourself' Cryptogra­
phy,'' Computers eJ Security, v. 9, n. 7,
Nov 1990, pp. 613-619.

302. T.R. Caron and R.D. Silverman, "Parallel
Implementation of the Quadratic
Scheme," Journal of Supercomputing, v. 1,
n.3, 1988, pp.273-290.

303. CCITT, Draft Recommendation X.509,
"The Directory-Authentication Frame­
work," Consultation Committee, Interna­
tional Telephone and Telegraph, Inter­
national Telecommunications Union,
Geneva, 1987.

304. CCITT, Recommendation X.509, "The
Directory-Authentication Framework,"
Consultation Committee, International
Telephone and Telegraph, International
Telecommunications Union, Geneva, 1989.

305. CCITT, Recommendation X.800, "Secu­
rity Architecture for Open Systems Inter­
connection for CCITT Applications,"
International Telephone and Telegraph,
International Telecommunications Union,
Geneva, 1991.

306. F. Chabaud, "On the Security of Some
Cryptosystems Based on Error-Correcting
Codes," Advances in Cryptology-EUR 0-
CRYPT '94 Proceedings, Springer-Verlag,
1995, to appear.

307. F. Chabaud and S. Vaudenay, "Links
Between Differential and Linear Crypt­
analysis," Advances in Cryptology­
EUROCRYPT '94 Proceedings, Springer­
Verlag, 1995, to appear.

308. W.G. Chambers and D. Gollmann, "Gen­
erators for Sequences with Near-Maximal
Linear Equivalence," IEE Proceedings, V.
135, Pt. E, n. 1, Jan 1988, pp. 67-69.

309. W.G. Chambers and D. Gollmann, "Lock­
In Effect in Cascades of Clock-Controlled
Shirt Registers," Advances in Cryptol­
ogy-EURO CRYPT '88 Proceedings,
Springer-Verlag, 1988, pp. 331-343.

310. A. Chan and R. Games, "On the Linear
Span of Binary Sequences from Finite
Geometries," Advances in Cryptology­
CRYPTO '86 Proceedings, Springer-Verlag,
1987, pp. 405-417.

311. J.P. Chandler, D.C. Arrington, D.R. Berkel­
hammer, and W.L. Gill, "Identification and

~-:s. __________ R_e_fe_r_e_n_ce_s ___________________ _

Analysis of Foreign Laws and Regulations
Pertaining to the Use of Commercial
Encryption Products for Voice and Data
Communications," National Intellectual
Property Law Institute, George Washing­
ton University, Washington, D.C., Jan
1994.

312. C.C. Chang and S.J. Hwang, "Crypto­
graphic Authentication of Passwords,"
Proceedings of the 25th Annual 1991 IEEE
International Carnahan Conference on
Security Technology, Taipei, Taiwan, 1-3
Oct 1991, pp. 126-130.

313. C.C. Chang and S.J. Hwang, "A Strategy
for Transforming Public-Key Cryptosys­
tems into Identity-Based Cryptosystems,"
Proceedings of the 25th Annual 1991 IEEE
International Carnahan Conference on
Security Technology, Taipei, Taiwan, 1-3
Oct 1991, pp. 68-72.

314. C.C. Chang and C.H. Lin, "An ID-Based
Signature Scheme Based upon Rabin's Pub­
lic Key Cryptosystem," Proceedings of the
25th Annual 1991 IEEE International Car­
nahan Conference on Security Technol­
ogy, Taipei, Taiwan, 1-3 Oct 1991, pp.
139-141.

315. C. Charnes and J. Pieprzyk, "Attacking the
SL2 Hashing Scheme," Advances in Cryp­
tology-ASIA CRYPT '94 Proceedings,
Springer-Verlag, 1995, pp. 322-330.

316. D. Chaum, "Untraceable Electronic
Mail, Return Addresses, and Digital
Pseudonyms," Communications of the
ACM, v. 24, n. 2, Feb 1981, pp. 84-88.

317. D. Chaum, "Blind Signatures for Untrace­
able Payments," Advances in Cryptology:
Proceedings of Crypto 82, Plenum Press,
1983, pp. 199-203.

318. D. Chaum, "Security Without Identifica­
tion: Transaction Systems to Make Big
Brother Obsolete," Communications of
the ACM, v. 28, n. 10, Oct 1985, pp.
1030-1044.

319. D. Chaum, "Demonstrating that a Public
Predicate Can Be Satisfied without Reveal­
ing Any Information about How,"
Advances in Cryptology-CRYPTO '86
Proceedings, Springer-Verlag, 1987, pp.
159-199.

320. D. Chaum, "Blinding for Unanticipated
Signatures," Advances in Cryptology­
E UR OCRYPT '87 Proceedings, Springer­
Verlag, 1988, pp. 227-233.

321. D. Chaum, "The Dining Cryptographers
Problem: Unconditional Sender and
Receiver Untraceability," [ournal of Cryp­
tology, v. 1, n. 1, 1988, pp. 65-75.

322. D. Chaum, "Elections with Uncondition­
ally Secret Ballots and Disruptions Equiva­
lent to Breaking RSA," Advances in Cryp­
tology-EUR OCRYPT '88 Proceedings,
Springer-Verlag, 1988, pp. 177-181.

323. D. Chaum, "Blind Signature Systems,"
U.S. Patent #4, 759,063, 19 Jul 1988.

324. D. Chaum, "Blind Unanticipated Signa­
ture Systems," U.S. Patent #4,759,064, 19
Jul 1988.

325. D. Chaum, "Online Cash Checks,"
Advances in Cryptology-EUROCRYPT
'89 Proceedings, Springer-Verlag, 1990, pp.
288-293.

326. D. Chaum, "One-Show Blind Signature
Systems," U.S. Patent #4,914,698, 3 Apr
1990.

327. D. Chaum, "Undeniable Signature Sys­
tems," U.S. Patent #4,947,430, 7 Aug 1990.

328. D. Chaum, "Returned-Value Blind Signa­
ture Systems," U.S. Patent #4,949,380, 14
Aug 1990.

329. D. Chaum, "Zero-Knowledge Undeniable
Signatures," Advances in Cryptology­
E UR OCRYPT '90 Proceedings, Springer­
Verlag, 1991, pp. 458-464.

330. D. Chaum, "Group Signatures," Advances
in Cryptology-EUROCRYPT '91 Pro­
ceedings, Springer-Verlag, 1991, pp.
257-265.

331. D. Chaum, "Unpredictable Blind Signa­
ture Systems," U.S. Patent #4,991,210, 5
Feb 1991.

332. D. Chaum, "Achieving Electronic Pri­
vacy," Scientific American, v. 267, n. 2,
Aug 1992, pp. 96-101.

333. D. Chaum, "Designated Confirmer Signa­
tures," Advances in Cryptology-EURO­
CRYPT '94 Proceedings, Springer-Verlag,
1995, to appear.

334. D. Chaum, C. Crepeau, and LB. Damgard,
"Multiparty Unconditionally Secure Pro­
tocols," Proceedings of the 20th ACM
Symposium on the Theory of Computing,
1988, pp. 11-19.

335. D. Chaum, B. den Boer, E. van Heyst, S.
Mj0lsnes, and A. Steenbeek, "Efficient
Offline Electronic Checks," Advances in
Cryptology-EUROCRYPT '89 Proceed­
ings, Springer-Verlag, 1990, pp. 294-301.

____________________ R_e_f_e_re_n_c_e_s _________ 7 __ ~

336. D. Chaum and J.-H. Evertse, 11Cryptanaly­
sis of DES with a Reduced Number of
Rounds; Sequences of Linear Factors in
Block Ciphers," Advances in Cryptology-­
CRYPTO '85 Proceedings, Springer-Verlag,
1986, pp. 192-211.

337. D. Chaum, T.-H. Evertse, and T- van de
Graff, 11An Improved Protocol for Demon­
strating Possession of Discrete Loga­
rithms and Some Generalizations," Ad­
vances in Cryptology-EUROCRYPT '87
Proceedings, Springer-Verlag, 1988, pp.
127-141.

338. D. Chaum, J.-H. Evertse, J. van de Graff,
and R. Peralta, 11Demonstrating Possession
of a Discrete Logarithm without Revealing
It, 11 Advances in Cryptology-CRYPTO
'86 Proceedings, Springer-Verlag, 1987, pp.
200-212.

339. D. Chaum, A. Fiat, and M. Naor,
11Untraceable Electronic Cash, 11 Advances
in Cryptology-CRYPTO '88 Proceedings,
Springer-Verlag, 1990, pp. 319-327.

340. D. Chaum and T. Pedersen, 11Transferred
Cash Grows in Size, 11 Advances in Cryp­
tology-EUR OCRYPT '92 Proceedings,
Springer-Verlag, 1993, pp. 391-407.

341. D. Chaum and T. Pedersen, "Wallet
Databases with Observers," Advances in
Cryptology-CRYPTO '92 Proceedings,
Springer-Verlag, 1993, pp. 89-105.

342. D. Chaum and I. Schaumuller-Bichel, eds.,
Smart Card 2000, North Holland: Elsevier
Science Publishers, 1989.

343. D. Chaum and H. van Antwerpen, 11Unde­
niable Signatures," Advances in Cryptol­
ogy-CRYPTO '89 Proceedings, Springer­
Verlag, 1990, pp. 212-216.

344. D. Chaum, E. van Heijst, and B. Pfitz­
mann, 11 Cryptographically Strong Undeni­
able Signatures, Unconditionally Secure
for the Signer, 11 Advances in Cryptology­
CRYPTO '91 Proceedings, Springer-Verlag,
1992, pp. 470-484.

345. T.M. Chee, 11The Cryptanalysis of a New
Public-Key Cryptosystem Based on Modu­
lar Knapsacks," Advances in Cryptology­
CRYPTO '91 Proceedings, Springer-Verlag,
1992, pp. 204-212.

346. L. Chen, "Oblivious Signatures," Com­
puter Security-ESORICS 94, Springer­
Verlag, 1994, pp. 161-172.

347. L. Chen and M. Burminster, 11A Practical
Secret Voting Scheme which Allows Vot-

ers to Abstain," CHINACRYPT '94, Xid­
ian, China, 11-15 Nov 1994, pp. 100-107.

348. L. Chen and T.P. Pedersen "New Group
Signature Schemes, 11 Advances in Cryp­
tology-EUR OCRYPT '94 Proceedings,
Springer-Verlag, 1995, to appear.

349. T- Chenhui, 11 Spectral Characteristics of
Partially-Bent Functions, 11 CHINACRYPT
'94, Xidian, China, 11-15 Nov 1994, pp.
48-51.

350. V. Chepyzhov and B. Smeets, 11On a Fast
Correlation Attack on Certain Stream
Ciphers," Advances in Cryptology­
EUROCRYPT '91 Proceedings, Springer­
Verlag, 1991, pp. 176-185.

351. T.C. Cheung, 11Management of PEM Pub­
lic Key Certificates Using X.500 Directory
Service: Some Problems and Solutions, 11

Proceedings of the Internet Society 1994
Workshop on Network and Distributed
System Security, The Internet Society,
1994, pp. 35-42.

352. G.C. Chiou and W.C. Chen, 11 Secure
Broadcasting Using the Secure Lock," IEEE
Transactions on Software Engineering, v.
SE-15, n. 8, Aug 1989, pp. 929-934.

353. Y.T. Choie and H.S. Hwoang, "On the
Cryptosystem Using Elliptic Curves, 11 Pro­
ceedings of the 1993 Korea-fapan Work­
shop on Information Security and Cryp­
tography, Seoul, Korea, 24-26 Oct 1993,
pp. 105-113.

354. B. Chor and 0. Goldreich, 11RSA/Rabin
Least Significant Bits are 1/2+1/poly(log N)
Secure," Advances in Cryptology: Pro­
ceedings of CRYPTO 84, Springer-Verlag,
1985, pp.303-313.

355. B. Chor, S. Goldwasser, S. Micali, and B.
Awerbuch, 11Verifiablc Secret Sharing and
Achieving Simultaneity in the Presence of
Faults, 11 Proceedings of the 26th Annual
IEEE Symposium on the Foundations of
Computer Science, 1985, pp. 383-395.

356. B. Chor and R.L. Rivest, "A Knapsack Type
Public Key Cryptosystem Based on Arith­
metic in Finite Fields," Advances in Cryp­
tology: Proceedings of CRYPTO 84,
Springer-Verlag, 1985, pp. 54-65.

357. P. Christoffersson, S.-A. Ekahll, V. Fak, S.
Herda, P. Mattila, W. Price, ar,d H.-O. Wid­
man, Crypto Users' Handbook: A Guide
for Implementors of Cryptographic Protec­
tion in Computer Systems, North Holland:
Elsevier Science Publishers, 1988.

~~:s. __________ R_e_fe_r_en_ce_s ___________________ _

358. R. Cleve, "Controlled Gradual Disclosure
Schemes for Random Bits and Their Appli­
cations," Advances in Cryptology­
CRYPTO '89 Proceedings, Springer-Verlag,
1990, pp. 572-588.

359. J.D. Cohen, "Improving Privacy in Crypto­
graphic Elections," Yale University Com­
puter Science Department Technical
Report YALEU/DCS/TR-454, Feb 1986.

360. J.D. Cohen and M.H. Fischer, "A Robust
and Verifiable Cryptographically Secure
Election Scheme," Proceedings of the 26th
Annual IEEE Symposium on the Founda­
tions of Computer Science, 1985, pp.
372-382.

361. R. Cole, "A Model for Security in Dis­
tributed Systems," Computers and Secu­
rity, v. 9, n. 4, Apr 1990, pp. 319-330.

362. Comptroller General of the United States,
"Matter of National Institute of Standards
and Technology-Use of Electronic Data
Interchange Technology to Create Valid
Obligations," File B-245714, 13 Dec 1991.

363. M.S. Conn, letter to Joe Abernathy,
National Security Agency, Ser: Q43-lll-
92, 10 Jun 1992.

364. C. Connell, "An Analysis of NewDES: A
Modified Version of DES," Cryptologia, v.
14,n.3,Jul 1990,pp.217-223.

365. S.A. Cook, "The Complexity of Theorem­
Proving Procedures," Proceedings of the
3rd Annual ACM Symposium on the The­
ory of Computing, 1971, pp. 151-158.

366. R.H. Cooper and W. Patterson, "A Gener­
alization of the Knapsack Method Using
Galois Fields," Cryptologia, v. 8, n. 4, Oct
1984, pp. 343-347.

367. R.H. Cooper and W. Patterson, "RSA as a
Benchmark for Multiprocessor Machines,"
Advances in Cryptology-AUSCRYPT '90
Proceedings, Springer-Verlag, 1990, pp.
356-359.

368. D. Coppersmith, "Fast Evaluation of Loga­
rithms in Fields of Characteristic Two,"
IEEE Transactions on Information Theory,
v.30,n.4, Jul 1984,pp. 587-594.

369. D. Coppersmith, "Another Birthday
Attack," Advances in Cryptology­
CRYPTO '85 Proceedings, Springer-Verlag,
1986, pp. 14-17.

370. D. Coppersmith, "Cheating at Mental
Poker," Advances in Cryptology­
CRYPTO '85 Proceedings, Springer-Verlag,
1986, pp. 104-107.

371. D. Coppersmith, "The Real Reason for
Rivest's Phenomenon," Advances in
Cryptology-CRYPTO '85 Proceedings,
Springer-Verlag, 1986, pp. 535-536.

372. D. Coppersmith, "Two Broken Hash Func­
tions," Research Report RD 18397, IBM
T.J. Watson Center, Oct 1992.

373. D. Coppersmith, "The Data Encryption
Standard (DES) and Its Strength against
Attacks," Technical Report RC 18613,
IBM T.J. Watson Center, Dec 1992.

374. D. Coppersmith, "The Data Encryption
Standard (DES) and its Strength against
Attacks," IBM fournal of Research and
Development, v. 38, n. 3, May 1994, pp.
243-250.

375. D. Coppersmith, "Attack on the Crypto­
graphic Scheme NIKS-TAS," Advances in
Cryptology-CRYPTO '94 Proceedings,
Springer-Verlag, 1994, pp. 294-307.

376. D. Coppersmith, personal
communication, 1994.

377. D. Coppersmith and E. Grossman, "Gener­
ators for Certain Alternating Groups with
Applications to Cryptography," SIAM
fournal on Applied Mathematics, v. 29, n.
4, Dec 1975, pp. 624-627.

378. D. Coppersmith, H. Krawczyk, and Y.
Mansour, "The Shrinking Generator,"
Advances in Cryptology-CRYPTO '93
Proceedings, Springer-Verlag, 1994, pp.
22-39.

379. D. Coppersmith, A. Odlykzo, and R.
Schroeppel, "Discrete Logarithms in
GF(p)," Algorithmica, v. 1, n. 1, 1986, pr.
1-16.

380. D. Coppersmith and P. Rogaway, "Soft­
ware Efficient Pseudo Random Function
and the Use Thereof for Encryption," U.S.
Patent pending, 1995.

381. D. Coppersmith, J. Stern, and S. Vaudenay,
"Attacks on the Birational Signature
Schemes," Advances in Cryptology­
CRYPTO '93 Proceedings, Springer-Verlag,
1994,pp.435-443.

382. V. Cordonnier and J.-J. Quisquater, eds.,
CARDIS '94-Proceedings of the First
Smart Card Research and Advanced
Application Conference, Lille, France,
24-26 Oct 1994.

383. C. Couvreur and J.-J. Quisquater, "An Intro­
duction to Fast Generation of Large Prime
Numbers," Philips [ournal Research, v. 37,
n. 5-6, 1982, pp.231-264.

____________________ R_ef_e_re_n_c_'e_s _________ 7----.,,~

384. C. Couvreur and T--J. Quisquater, 11 An Intro­
duction to Fast Generation of Large Prime
Numbers, 11 Philips Journal Research, v. 38,
1983, p. 77.

385. C. Coveyou and R.D. MacPherson,
"Fourier Analysis of Uniform Random
Number Generators, 11 Journal of the ACM,
v. 14, n. 1, 1967, pp. 100-119.

386. T.M. Cover and R.C. King, 11 A Convergent
Gambling Estimate of the Entropy of
English," IEEE Transactions on Informa­
tion Theory, v. IT-24, n. 4, Jul 1978, pp.
413-421.

387. R.J.F. Cramer and T.P. Pedersen, "Improved
Privacy in Wallets with Observers,"
Advances in Cryptology-EUROCRYPT
'93 Proceedings, Springer-Verlag, 1994, pp.
329-343.

388. R.E. Crandell, "Method and Apparatus for
Public Key Exchange in a Cryptographic
System," U.S. Patent #5,159,632, 27 Oct
1992.

389. C. Crepeau, "A Secure Poker Protocol
That Minimizes the Effect of Player Coali­
tions," Advances in Cryptology­
CRYPTO '85 Proceedings, Springer-Verlag,
1986, pp. 73-86.

390. C. Crepeau, "A Zero-Knowledge Poker
Protocol that Achieves Confidentiality of
the Players' Strategy, or How to Achieve
an Electronic Poker Face, 11 Advances in
Cryptology-CRYPTO '86 Proceedings,
Springer-Verlag, 1987, pp. 239-247.

391. C. Crepeau, "Equivalence Between Two
Flavours of Oblivious Transfer," Advances
in Cryptology-CRYPTO '87 Proceedings,
Springer-Verlag, 1988, pp. 350-354.

392. C. Crepeau, "Correct and Private Reduc­
tions among Oblivious Transfers, 11 Ph.D.
dissertation, Department of Electrical
Engineering and Computer Science, Mas­
sachusetts Institute of Technology, 1990.

393. C. Crepeau, "Quantum Oblivious Trans­
fer," Journal of Modern Optics, v. 41, n. 12,
Dec 1994, pp. 2445-2454.

394. C. Crepeau and J. Kilian, "Achieving
Oblivious Transfer Using Weakened Secu­
rity Assumptions, 11 Proceedings of the
29th Annual Symposium on the Founda­
tions of Computer Science, 1988, pp.
42-52.

395. C. Crepeau and J. Kilian, "Weakening
Security Assumptions and Oblivious
Transfer," Advances in Cryptology-

CRYPTO '88 Proceedings, Springer-Verlag,
1990, pp. 2-7.

396. C. Crepeau and L. Salvail, "Quantum Obliv­
ious Mutual Identification, 11 Advances in
Cryptology-EUROCRYPT '95 Proceed­
ings, Springer-Verlag, 1995, pp. 133-146.

397. A. Curiger, H. Bonnenberg, R. Zimmer­
mann, N. Felber, H. Kaeslin and W. Ficht­
ner, "VINCI: VLSI Implementation of the
New Block Cipher IDEA," Proceedings of
IEEE CICC '93, San Diego, CA, May 1993,
pp. 15.5.1-15.5.4.

398. A. Curiger and B. Stuber, "Specification for
the IDEA Chip," Technical Report No.
92/03, Institut fur Integrierte Systeme,
ETH Zurich, Feb 1992.

399. T. Cusick, "Boolean Functions Satisfying a
Higher Order Strict Avalanche Criterion,"
Advances in Cryptology-EUROCRYPT
'93 Proceedings, Springer-Verlag, 1994. pp.
102-117.

400. T.W. Cusick and M.C. Wood, "The
REDOC-II Cryptosystem," Ad,ances in
Cryptology-CRYPTO '90 Proceedings,
Springer-Verlag, 1991, pp. 545-563.

401. Cylink Corporation, Cylink Corporation
vs. RSA Data Security, Inc., Civil Action
No. C94-02332-CW, United States District
Court for the Northern District of Califor­
nia, 30 Jun 1994.

402. T-Daeman, "Cipher and Hash Function
Design," Ph.D. Thesis, Katholieke Univer­
siteit Leuven, Mar 95.

403. J. Daeman, A. Bosselaers, R. Govaerts, and
J. Vandewalle, "Collisions for Schnorr's
Hash Function FFT-Hash Presented at
Crypto '91, 11 Advances in Cryptology­
ASIACRYPT '91 Proceedings, Springer­
Verlag, 1993, pp. 477-480.

404. J. Daeman, R. Govaerts, and T-Vandewalle,
"A Framework for the Design of One-Way
Hash Functions Including Cryptanalysis of
Damgard's One-Way Function Based on
Cellular Automata," Advances in Cryp­
tology-ASIACRYPT '91 Proceedings,
Springer-Verlag, 1993, pp. 82-96.

405. J. Daeman, R. Govaerts, and J. Vandewalle,
11 A Hardware Design Model for Crypto­
graphic Algorithms," ESORICS 92, Pro­
ceedings of the Second European Sympo­
sium on Research in Computer Security,
Springer-Verlag, 1992, pp. 419--434.

406. J. Daemen, R. Govaerts, and T-Vandewalle,
"Block Ciphers Based on Modular Arith-

~~s __________ R_e_fe_r_en_ce_s ___________________ _

metic," Proceedings of the 3rd Symposium
on State and Progress of Research in Cryp­
tography, Rome, Italy, 15-16 Feb 1993, pp.
80-89.

407. T. Daemen, R. Govaerts, and T-Vandewalle,
"Fast Hashing Both in Hardware and Soft­
ware," presented at the rump session of
CRYPTO '93, Aug 1993.

408. r. Daeman, R. Govaerts, and T. Vandewalle,
"Resynchronization Weaknesses in Syn­
chronous Stream Ciphers," Advances in
Cryptology-EUROCRYPT '93 Proceed­
ings, Springer-Verlag, 1994, pp. 159-167.

409. r. Daeman, R. Govaerts, and T-Vandewalle,
"Weak Keys for IDEA," Advances in
Cryptology-CRYPTO '93 Proceedings,
Springer-Verlag, 1994, pp. 224-230.

410. r. Daemen, R. Govaerts, and T. Vandewalle,
"A New Approach to Block Cipher
Design," Fast Software Encryption, Cam­
bridge Security Workshop Proceedings,
Springer-Verlag, 1994, pp. 18-32.

411. Z.-D. Dai, "Proof of Rueppel's Linear Com­
plexity Conjecture," IEEE Transactions on
Information Theory, v. IT-32, n. 3, May
1986,pp.440-443.

412. I.B. Damgard, "Collision Free Hash Func­
tions and Public Key Signature Schemes,"
Advances in Cryptology-EUROCRYPT
'87 Proceedings, Springer-Verlag, 1988, pp.
203-216.

413. I.B. Damgard, "Payment Systems and Cre­
dential Mechanisms with Provable Secu­
rity Against Abuse by Individuals,"
Advances in Cryptology-CRYPTO '88
Proceedings, Springer-Verlag, 1990, pp.
328-335.

414. I.B. Darngard, "A Design Principle for
Hash Functions," Advances in Cryptol­
ogy-CRYPTO '89 Proceedings, Springer­
Verlag, 1990, pp. 416-427.

415. I.B. Damgard, "Practical and Provably
Secure Release of a Secret and Exchange of
Signatures," Advances in Cryptology­
E UR OCRYPT '93 Proceedings, Springer­
Verlag, 1994, pp. 200-217.

416. I.B. Damgard and L.R. Knudsen, "The
Breaking of the AR Hash Function,"
Advances in Cryptology-EUROCRYPT
'93 Proceedings, Springer-Verlag, 1994, pp.
286-292.

417. I.B. Damgard and P. Landrock, "Improved
Bounds for the Rabin Primality Test,"
Cryptography and Coding III, M.T, Ganley,

ed., Oxford: Clarendon Press, 1993, pp.
117-128.

418. I.B. Damgard, P. Landrock and C. Pomer­
ance, "Average Case Error Estimates for
the Strong Probable Prime Test," Mathe­
matics of Computation, v. 61, n. 203, Tul
1993, pp. 177-194.

419. H.E. Daniels, Tr., letter to Datapro
Research Corporation regarding CCEP, 23
Dec 1985.

420. H. Davenport, The Higher Arithmetic,
Dover Books, 1983.

421. G.I. Davida, "Inverse of Elements of a
Galois Field," Electronics Letters, v. 8, n.
21, 19 Oct 1972. pp. 518-520.

422. G.I. Davida, "Hellman's Scheme Breaks
DES in Its Basic Form," IEEE Spectrum, v.
16, n. 7, Tul 1979, p. 39.

423. G.I. Davida, "Chosen Sig'1ature Cryptanal­
ysis of the RSA (MIT) Public Key Cryp­
tosystem," Technical Report TR-CS-82-2,
Department of EECS, University of Wis­
consin, 1982.

424. G.I. Davida and G.G. Walter, "A Public
Key Analog Cryptosystem," Advances in
Cryptology-EUROCRYPT '87 Proceed­
ings, Springer-Verlag, 1988, pp. 143-147.

425. G.I. Davida, D. Wells, and T- Kam, "A
Database Encryption System with Sub­
keys," ACM Transactions on Database
Systems, v. 6, n. 2, Tun 1981, pp. 312-328.

426. D.W. Davies, "Applying the RSA Digital
Signature to Electronic Mail," Computer,
v. 16, n. 2, Feb 1983, pp. 55-62.

427. D.W. Davies, "Some Regular Properties of
the DES," Advances in Cryptology: Pro­
ceedings of Crypto 82, Plenum Press, 1983,
pp. 89-96.

428. D.W. Davies, "A Message Authentication
Algorithm Suitable for a Mainframe Com­
puter," Advances in Cryptology: Proceed­
ings of Crypto 82, Springer-Verlag, 1985,
pp. 393-400.

429. D.W. Davies and S. Murphy, "Pairs and
Triplets of DES S-boxes," Cryptologia, v. 8,
n. 1, 1995, pp. 1-25.

430. D.W. Davies and G.I.P. Parkin, "The Aver­
age Size of the Key Stream in Output Feed­
back Encipherment," Cryptography, Pro­
ceedings of the Workshop on Cryptography,
Burg Feuerstein, Germany, March 29-April
2, 1982, Springer-Verlag, 1983, pp. 263-279.

431. D.W. Davies and G.I.P. Parkin, "The Aver­
age Size of the Key Stream in Output Feed-

____________________ R_e_fe_r_en_c_e_s _________ 7-~

back Mode, 11 Advances in Cryptology: Pro­
ceedings of Crypto 82, Plenum Press, 1983,
pp. 97-98.

432. D.W. Davies and W.L. Price, "The Applica­
tion of Digital Signatures Based on Public­
Key Cryptosystems," Proceedings of the
Fifth International Computer Communi­
cations Conference, Oct 1980, pp. 525-530.

433. D.W. Davies and W.L. Price, "The Applica­
tion of Digital Signatures Based on Public­
Key Cryptosystems," National Physical
Laboratory Report DNACS 39/80, Dec
1980.

434. D.W. Davies and W.L. Price, "Digital Sig­
nature-An Update, 11 Proceedings of Inter­
national Conference on Computer Com­
munications, Sydney, Oct 1984, North
Holland: Elsevier, 1985, pp. 843-847.

435. D.W. Davies and W.L. Price, Security for
Computer Networks, second edition, John
Wiley & Sons, 1989.

436. M. Davio, Y. Desmedt, M. Fosseprez, R.
Govaerts, J. Hulsbrosch, P. Neutjens, P.
Piret, J.-J. Quisquater, J. Vandewalle, and S.
Wouters, "Analytical Characteristics of
the Data Encryption Standard," Advances
in Cryptology: Proceedings of Crypto 83,
Plenum Press, 1984, pp. 171-202.

437. M. Davio, Y. Desmedt, J. Goubert, F. Hoor­
naert, and J.-J. Quisquater, "Efficient Hard­
ware and Software Implementation of the
DES, 11 Advances in Cryptology: Proceed­
ings of CRYPTO 84, Springer-Verlag, 1985,
pp. 144-146.

438. M. Davio, Y. Desmedt, and J.-J.
Quisquatt:r, "Propagation Characteristics
of the DES, 11 Advances in Cryptology: Pro­
ceedings of EUROCRYPT 84, Springer­
Verlag, 1985, 62-73.

439. D. Davis, R. Ihaka, and P. Fenstermacher,
"Cryptographic Randomness from Air
Turbulence in Disk Drives," Advances in
Cryptology-CRYPTO '94 Proceedings,
Springer-Verlag, 1994, pp. 114-120.

440. J.A. Davis, D.B. Holdbridge, and G.J. Sim­
mons, "Status Report on Factoring (at the
Sandia National Laboratories), 11 Advances
in Cryptology: Proceedings of CRYPTO 84,
Springer-Verlag, 1985, pp. 183-215.

441. R.M. Davis, "The Data Encryption Stan­
dard in Perspective, 11 Computer Security
and the Data Encryption Standard,
National Bureau of Standards Special Pub­
lication 500-27, Feb 1978.

442. E. Dawson and A. Clark, "Cryptanalysis of
Universal Logic Sequences, 11 Advances in
Cryptology-EUROCRYPT '93 Proceed­
ings, Springer-Verlag, to appear.

443. M.H. Dawson and S.E. Tavares, 11 An
Expanded Set of Design Criteria for Substi­
tution Boxes and Their Use in Strengthen­
ing DES-Like Cryptosystems, 11 IEEE
Pacific Rim Conference on Communica­
tions, Computers, and Signal Processing,
Victoria, BC, Canada, 9-10 May 1991, pp.
191-19.5.

444. M.H. Dawson and S.E. Tavares, 11 An
Expanded Set of S-Box Design Criteria Based
on Information Theory and Its Relation to
Differential-like Attacks," Advances in
Cryptology-EUROCRYPT '91 Proceed­
ings, Springer-Verlag, 1991, pp. 352-367.

445. C.A. Deavours, "Unicity Points in Crypt­
analysis, 11 Cryptologia, v. 1, n. 1, 1977, pp.
46-68.

446. C.A. Deavours, "The Black Chamber: A
Column; How the British Broke Enigma,"
Cryptologia, v. 4, n. 3, Jul 1980, pp. 129-
132.

447. C.A. Deavours, "The Black Chamber: A
Column; La Methode des Batons," Cryp­
tologia, v. 4, n. 4, Oct 1980, pp. 240-247.

448. C.A. Deavours and L. Kruh, Machine
Cryptography and Modern Cryptanalysis,
Norwood MA: Artech House, 1985.

449. J.M. DeLaurentis, 11 A Further Weakness in
the Common Modulus Protocol for the
RSA Cryptosystem, 11 Cryptologia, v. 8, n.
3, Jul 1984,pp.253-259.

450. P. Delsarte, Y. Desmedt, A. Odlyzko, and
P. Piret, "Fast Cryptanalysis of the
Matsumoto-Imai Public-Key Scheme,"
Advances in Cryptology: Proceedings of
EUROCRYPT 84, Springer-Verlag, 1985,
pp. 142-149.

451. P. Delsarte and P. Piret, "Comment on
'Extension of RSA Cryptostructure: A
Galois Approach', 11 Electronics Letters, v.
18, n. 13, 24 Jun 1982, pp. 582-583.

452. R. DeMillo, N. Lynch, and M. Merritt,
"Cryptographic Protocols, 11 Proceedings of
the 14th Annual Symposium on the The­
ory of Computing, 1982, pp. 383-400.

453. R. DeMillo and M. Merritt, "Protocols for
Data Security," Computer, v. 16, n. 2, Feb
1983, pp. 39-50.

454. N. Demytko, 11 A New Elliptic Curve Based
Analogue of RSA," Advances in Cryptol-

~-s; __________ R_e_fe_r_en_ce_s ___________________ _

ogy-EUROCRYPT '93 Proceedings,
Springer-Verlag, 1994, pp. 40-49.

455. D.E. Denning, "Secure Personal Comput­
ing in an Insecure Network, 11 Communi­
cations of the ACM, v. 22, n. 8, Aug 1979,
pp. 476-482.

456. D.E. Denning, Cryptography and Data
Security, Addison-Wesley, 1982.

457. D.E. Denning, "Protecting Public Keys and
Signature Keys," Computer, v. 16, n. 2, Feb
1983, pp. 27-35.

458. D.E. Denning, "Digital Signatures with
RSA and Other Public-Key Cryptosys­
tems," Communications of the ACM, v.
27, n. 4, Apr 1984, pp. 388-392.

459. D.E. Denning, "The Data Encryption Stan­
dard: Fifteen Years of Public Scrutiny,"
Proceedings of the Sixth Annual Com­
puter Security Applications Conference,
IEEE Computer Society Press, 1990.

460. D.E. Denning, "The Clipper Chip: A Tech­
nical Summary," unpublished manuscript,
21 Apr 1993.

461. D.E. Denning and G.M. Sacco, "Time­
stamps in Key Distribution Protocols,"
Communications of the ACM, v. 24, n. 8,
Aug 1981, pp. 533-536.

462. D.E. Denning and M. Smid, "Key Escrow­
ing Today," IEEE Communications Maga­
zine, v. 32, n. 9, Sep 1994, pp. 58-68.

463. T. Denny, B. Dodson, A.K. Lenstra, and
M.S. Manasse, "On the Factorization of
RSA-120," Advances in Cryptology­
CRYPTO '93 Proceedings, Springer-Verlag,
1994, pp. 166-174.

464. W.F. Denny, "Encryptions Using Linear
and Non-Linear Codes: Implementations
and Security Considerations," Ph.D. dis­
sertation, The Center for Advanced Com­
puter Studies, University of Southern
Louisiana, Spring 1988.

465. Department of Defense, "Department of
Defense Trusted Computer System Evalu­
ation Criteria," DOD 5200.28-STD, Dec
1985.

466. Department of State, "International Traf­
fic in Arms Regulations (ITAR)," 22 CFR
120-130, Office of Munitions Control,
Nov 1989.

467. Department of State, "Defense Trade Reg­
ulations," 22 CFR 120-130, Office of
Defense Trade Controls, May 1992.

468. Department of the Treasury, "Electronic
Funds and Securities Transfer Policy,"
Department of the Treasury Directives

Manual, Chapter TD 81, Section 80,
Department of the Treasury, 16 Aug 1984.

469. Department of the Treasury, "Criteria and
Procedures for Testing, Evaluating, and
Certifying Message Authentication Deci­
sions for Federal E.F.T. Use," Department
of the Treasury, 1 May 1985.

470. Department of the Treasury, "Electronic
Funds and Securities Transfer Policy­
Message Authentication and Enhanced
Security," Order No. 106-09, Department
of the Treasury, 2 Oct 1986.

4 71. H. Dobbertin, 11 A Survey on the Construc­
tion of Bent Functions," K. U. Leuven
Workshop on Cryptographic Algorithms,
Springer-Verlag, 1995, to appear.

472. B. Dodson and A.K. Lcnstra, "NFS with
Four Large Primes: An Explosive Experi­
ment," draft manuscript.

473. D. Dolev and A. Yao, "On the Security of
Public-Key Protocols," Communications
of the ACM, v. 29, n. 8, Aug 1983, pp.
198-208.

474. T-Domingo-Ferrer, "Probabilistic Authen­
tication Analysis," CARDIS 94-Proceed­
ings of the First Smart Card Research and
Applications Conference, Lille, France,
24-26 Oct 1994, pp. 49-60.

475. P. de Rooij, "On the Security of the Schnorr
Scheme Using Preprocessing," Advances
in Cryptology-EUROCRYPT '91 Proceed­
ings, Springer-Verlag, 1991, pp. 71-80.

476. A. De Santis, G. Di Crescenzo, and G. Per­
siano, "Secret Sharing and Perfect Zero
Knowledge," Advances in Cryptology­
CRYPTO '93 Proceedings, Springer-Verlag,
1994, pp. 73-84.

477. A. De Santis, S. Micali, and G. Persiano,
"Non-Interactive Zero-Knowledge Proof
Systems," Advances in Cryptology­
CRYPTO '87 Proceedings, Springer-Verlag,
1988, pp. 52-72.

478. A. De Santis, S. Micali, and G. Persiano,
"Non-Interactive Zero-Knowledge with
Preprocessing," Advances in Cryptology­
CRYPTO '88 Proceedings, Springer-Verlag,
1990, pp. 269-282.

479. Y. Desmedt, "What Happened with Knap­
sack Cryptographic Schemes" Perfor­
mance Limits in Communication, Theory
and Practice, NATO ASI Series E: Applied
Sciences, v. 142, Kluwer Academic Pub­
lishers, 1988, pp. 113-134.

480. Y. Desmedt, "Subliminal-Free Authentica­
tion and Signature," Advances in Cryptol-

____________________ R_e_f_e_re_n_c_e_s _________ 7_~

ogy-EUROCRYPT '88 Proceedings,
Springer-Verlag, 1988, pp. 23-33.

481. Y. Desmedt, "Abuses in Cryptography and
How to Fight Them," Advances in Cryptol­
ogy-CRYPTO '88 Proceedings, Springer­
Verlag, 1990, pp. 375-389.

482. Y. Desmedt and M. Burmester, "An Effi­
cient Zero-Knowledge Scheme for the
Discrete Logarithm Based on Smooth
Numbers," Advances in Cryptology­
ASIACRYPT '91 Proceedings, Springer­
Verlag, 1993, pp. 360-367.

483. Y. Desmedt and Y. Frankel, "Threshold
Cryptosystems," Advances in Cryptol­
ogy-CRYPTO '89 Proceedings, Springer­
Verlag, 1990, pp. 307-315.

484. Y. Desmedt and Y. Frankel, "Shared Gen­
eration of Authentication and Signatures,"
Advances in Cryptology-CRYPTO '91
Proceedings, Springer-Verlag, 1992, pp.
457-469.

485. Y. Desmedt, C. Goutier, and S. Bengio,
"Special Uses and Abuses of the Fiat­
Shamir Passport Protocol," Advances in
Cryptology-CRYPTO '87 Proceedings,
Springer-Verlag, 1988, pp. 21-39.

486. Y. Desmedt and A.M. Odlykzo, "A Chosen
Text Attack on the RSA Cryptosystem and
Some Discrete Logarithm Problems,"
Advances in Cryptology-CRYPTO '85
Proceedings, Springer-Verlag. 1986, pp.
516-522.

487. Y. Desmedt, J.-J. Quisquater, and M.
Davia, "Dependence of Output on Input in
DES: Small Avalanche Characteristics,"
Advances in Cryptology: Proceedings of
CRYPTO 84, Springer-Verlag, 1985, pp.
359-376.

488. Y. Desmedt, J. Vandewalle, and R. Go­
vaerts, "Critical Analysis of the Security of
Knapsack Public Key Algorithms," IEEE
Transactions on Information Theory, v. IT-
30, n. 4, Jul 1984, pp. 601-611.

489. Y. Desmedt and M. Yung, "Weaknesses of
Undeniable Signature Schemes," Ad­
vances in Cryptology-EUROCRYPT '91
Proceedings, Springer-Verlag, 1991, pp.
205-220.

490. W. Diffie, lecture at IEEE Information The­
ory Workshop, Ithaca, N.Y., 1977.

491. W. Diffie, "Cryptographic Technology: Fif­
teen Year Forecast," BNR Inc., Jan 1981.

492. W. Diffie, "The First Ten Years of Public­
Key Cryptography," Proceedings of the
IEEE, v. 76, n. 5, May 1988, pp. 560-577.

493. W. Diffie, "Authenticated Key Exchange
and Secure Interactive Communication,"
Proceedings of SECURICOM '90, 1990.

494. W. Diffie, "The First Ten Years of Public­
Key Cryptography," in Contemporary
Cryptology: The Science of Information
Integrity, G.J. Simmons, ed., IEEE Press,
1992, pp. 135-175.

495. W. Diffie and M.E. Hellman, "Multiuser
Cryptographic Techniques," Proceedings
of AFIPS National Computer Conference,
1976, pp. 109-112.

496. W. Diffie and M.E. Hellman, "New Direc­
tions in Cryptography," IEEE Transactions
on Information Theory, v. IT-22, n. 6, Nov
1976, pp. 644-654.

497. W. Diffie and M.E. Hellman, "Exhaustive
Cryptanalysis of the NBS Data Encryption
Standard," Computer, v. 10, n. 6, Jun 1977,
pp. 74-84.

498. W. Diffie and M.E. Hellman, "Privacy and
Authentication: An Introduction to Cryp­
tography," Proceedings of the IEEE, v. 6 7,
n. 3, Mar 1979, pp. 397-427.

499. W. Diffie, L. Strawczynski, B. O'Higgins,
and D. Steer, "An ISDN Secure Telephone
Unit," Proceedings of the National Tele­
communications Forum, v. 41, n. 1, 1987,
pp. 473-477.

500. W. Diffie, P.C. van Oorschot, and M.J.
Wiener, "Authentication and Authenti­
cated Key Exchanges," Designs, Codes and
Cryptography, v. 2, 1992, 107-125.

501. C. Ding. "The Differential Cryptanalysis
and Design of Natural Stream Ciphers,"
Fast Software Encryption, Cambridge
Security Workshop Proceedings, Springer­
Verlag, 1994, pp. 101-115.

502. C. Ding. G. Xiao, and W. Shan, The Stabil­
ity Theory of Stream Ciphers, Springer­
Verlag, 1991.

503. A. Di Porto and W. Wolfowicz, "VINO: A
Block Cipher Including Variable Permuta­
tions," Fast Software Encryption, Cam­
bridge Security Workshop Proceedings,
Springer-Verlag, 1994, pp. 205-210.

504. B. Dixon and A.K. Lenstra, "Factoring Inte­
gers Using SIMD Sieves," Advances in
Cryptology-EUROCRYPT '93 Proceed­
ings, Springer-Verlag, 1994, pp. 28-39.

SOS. J.D. Dixon, "Factorization and Primality
Tests," American Mathematical Monthly,
v.91, n. 6, 1984,pp.333-352.

506. D. Dolev and A. Yao, "On the Security of
Public Key Protocols," Proceedings of the

~"':S. __________ R_e_fe_r_en_ce_s ___________________ _

22nd Annual Symposium on the Founda­
tions of Computer Science, 1981, pp. 350-
357.

507. L.X. Duan and C.C. Nian, "Modified Lu­
Lee Cryptosystems," Electronics Letters,
v. 25, n. 13, 22 Jun 1989, p. 826.

508. R. Durstenfeld, "Algorithm 235: Random
Permutation," Communications of the
ACM, v. 7, n. 7, Jul 1964, p. 420.

509. S. Dusse and B. Kaliski, Jr., "A Crypto­
graphic Library for the Motorola
DSP56000," Advances in Cryptology­
E UR OCRYPT '90 Proceedings, Springer­
Verlag, 1991, pp. 230-244.

510. C. Dwork and L. Stockmeyer, "Zero­
Knowledge with Finite State Verifiers,"
Advances in Cryptology-CRYPTO '88
Proceedings, Springer-Verlag, 1990, pp.
71-75.

511. D.E. Eastlake, S.D. Crocker, and J.I.
Schiller, "Randomness Requirements for
Security," RFC 1750, Dec 1994.

512. H. Eberle, "A High-Speed DES Implemen­
tation for Network Applications,"
Advances in Cryptology-CRYPTO '92
Proceedings, Springer-Verlag, pp. 521-539.

513. J. Edwards, "Implementing Electronic
Poker: A Practical Exercise in Zero­
Knowledge Interactive Proofs," Master's
thesis, Department of Computer Science,
University of Kentucky, May 1994.

514. W.F. Ehrsam, C.H.W. Meyer, R.L. Powers,
J.L. Smith, and W.L. Tuchman, "Product
Block Cipher for Data Security," U.S.
Patent #3,962,539, 8 Jun 1976.

515. W.F. Ehrsam, C.H.W. Meyer, and W.L.
Tuchman, "A Cryptographic Key Manage­
ment Scheme for Implementing the Data
Encryption Standard," IBM Systems [our­
nal, v. 17, n. 2, 1978, pp. 106-125.

516. R. Eier and H. Lagger, "Trapdoors in Knap­
sack Cryptosystems," Lecture Notes in
Computer Science 149; Cryptography­
Proceedings, Burg Feuerstein 1982,
Springer-Verlag, 1983, pp. 316-322.

517. A.K. Ekert, "Quantum Cryptography
Based on Bell's Theorem," Physical
Review Letters, v. 67, n. 6, Aug 1991, pp.
661-663.

518. T. ElGamal, "A Public-Key Cryptosystem
and a Signature Scheme Based on Discrete
Logarithms," Advances in Cryptology:
Proceedings of CRYPTO 84, Springer­
Verlag, 1985, pp. 10-18.

519. T. ElGamal, "A Public-Key Cryptosystem
and a Signature Scheme Based on Discrete
Logarithms," IEEE Transactions on Infor­
mation Theory, v. IT-31, n. 4, 1985, pp.
469-472.

520. T. ElGamal, "On Computing Logarithms
Over Finite Fields," Advances in Cryptol­
ogy-CRYPTO '85 Proceedings, Springer­
Verlag, 1986, pp. 396-402.

521. T. ElGamal and B. Kaliski, letter to the edi­
tor regarding LUC, Dr. Dobb's fournal, v.
18, n. 5, May 1993, p. 10.

522. T. Eng and T. Okamoto, "Single-Term
Divisible Electronic Coins," Advances in
Cryptology-EUROCRYPT '94 Proceed­
ings, Springer-Verlag, 1995, to appear.

523. M.H. Er, D.J. Wong, A.A. Sethu, and K.S.
Ngeow, "Design and Implementation of
RSA Cryptosystem Using Multiple DSP
Chips," 1991 IEEE International Sympo­
sium on Circuits and Systems, v. 1, Singa­
pore, 11-14 Jun 1991, pp. 49-52.

524. D. Estes, L.M. Adleman, K. Konpella, K.S.
Mccurley, and G.L. Miller, "Breaking the
Ong-Schnorr-Shamir Signature Schemes
for Quadratic Number Fields," Advances
in Cryptology-CRYPTO '85 Proceedings,
Springer-Verlag, 1986, pp. 3-13.

525. ETEBAC, "Echanges Telematiques Entre
Les Banques et Leurs Clients," Standard
ETEBAC 5, Comite Fraw,;ais d'Organisa­
tion et de Normalisation Bancaires, Apr
1989. (In French.)

526. A. Evans, W. Kantrowitz, and E. Weiss, "A
User Identification Scheme Not Requiring
Secrecy in the Computer," Communica­
tions of the ACM, v. 17, r1. 8, Aug 197 4, pp.
437-472.

527. S. Even and 0. Goldreich, "DES-Like
Functions Can Generate the Alternating
Group," IEEE Transactions on Informa­
tion Theory, v. IT-29, n. 6, Nov 1983, pp.
863-865.

528. S. Even and 0. Goldreich, "On the Power
of Cascade Ciphers," ACM Transactions
on Computer Systems, v. 3, n. 2, May
1985, pp. 108-116.

529. S. Even, 0. Goldreich, and A. Lempel, "A
Randomizing Protocol for Signing Con­
tracts," Communications of the ACM, v.
28, n. 6, Jun 1985, pp. 637-647.

530. S. Even and Y. Yacobi, "Cryptography and
NP-Completeness," Proceedings of the 7th
International Colloquium on Automata,

____________________ R_ef_e_re_n_c_e_s __________ 7.,.,.~

Languages, and Programming, Springer­
Verlag, 1980, pp. 195-207.

531. H.-H. Evertse, "Linear Structures in Block
Ciphers," Advances in Cryptology­
E UR O CRYPT '87 Proceedings, Springer­
Verlag, 1988, pp. 249-266.

532. P. Fahn and M.J.B. Robshaw, "Results from
the RSA Factoring Challenge," Technical
Report TR-501, Version 1.3, RSA Laborato­
ries, Jan 1995.

533. R.C. Fairfield, A. Matusevich, and J. Plany,
"An LSI Digital Encryption Processor
(DEP), 11 Advances in Cryptology: Proceed­
ings of CRYPTO 84, Springer-Verlag, 1985,
pp. 115-143.

534. R.C. Fairfield, A. Matusevich, and J. Plany,
"An LSI Digital Encryption Processor
(DEP)," IEEE Communications, v. 23, n. 7,
Jul 1985, pp. 30-41.

535. R.C. Fairfield, R.L. Mortenson, and K.B.
Koulthart, "An LSI Random Number Gen­
erator (RNG)," Advances in Cryptology:
Proceedings of CRYPTO 84, Springer­
Verlag, 1985, pp. 203-230.

536. "International Business Machines Corp.
L:cense Under Patents," Federal Register,
v. 40, n. 52, 17 Mar 1975, p. 12067.

537. "Solicitation for Public Key Cryptographic
Algorithms," Federal Register, v. 47, n.
126, 30 Jun 1982, p. 28445.

538. "Proposed Federal Information Processing
Standard for Digital Signature Standard
(DSS)," Federal Register, v. 56, n. 169, 30
Aug 1991, pp. 42980-42982.

539. "Proposed Federal Information Processing
Standard for Secure Hash Standard," Fed­
eral Register, v. 57, n. 21, 31 Jan 1992, pp.
3747-3749.

540. "Proposed Reaffirmation of Federal Infor­
mation Processing Standard (FIPS) 46-1,
Data Encryption Standard (DES)," Federal
Register, v. 57, n. 177, 11 Sep 1992, p.
41727.

541. "Notice of Proposal for Grant of Exclusive
Patent License," Federal Register, v. 58, n.
108, 8 Jun 1993, pp. 23105-23106.

542. "Approval of Federal Information Process­
ing Standards Publication 186, Digital Sig­
nature Standard (DSS)," Federal Register,
v. 58, n. 96, 19 May 1994, pp. 26208-26211.

543. "Proposed Revision of Federal Information
Processing Standard (FIPS) 180, Secure
Hash Standard," Federal Register, v. 59, n.
131, 11 Jul 1994, pp. 35317-35318.

544. U. Feige, A. Fiat, and A. Shamir, "Zero
Knowledge Proofs of Identity," Proceed­
ings of the 19th Annual ACM Symposium
on the Theory of Computing, 1987, pp.
210-217.

545. U. Feige, A. Fiat, and A. Shamir, "Zero
Knowledge Proofs of Identity," fournal of
Cryptology, v. 1, n. 2, 1988, pp. 77-94.

546. U. Feige and A. Shamir, "Zero Knowledge
Proofs of Knowledge in Two Rounds,"
Advances in Cryptology-CRYPTO '89
Proceedings, Springer-Verlag, 1990, pp.
526-544.

547. J. Feigenbaum, "Encrypting Problem
Instances, or, ... , Can You Take Advan­
tage of Someone Without Having to Trust
Him," Advanc,;s in Cryptology-CRYPTO
'85 Proceedings, Springer-Verlag, 1986, pp.
477-488.

548. J. Feigenbaum, "Overview of Interactive
Proof Systems and Zero-Knowledge," in
Contemporary Cryptology: The Science of
Information Integrity, G.J. Simmons, ed.,
IEEE Press, 1992, pp. 423-439.

549. J. Feigenbaum, M.Y. Liberman, E. Grosse,
and J.A. Reeds, "Cryptographic Protection
of Membership Lists, 11 Newsletter of the
International Association of Cryptologic
Research, v. 9, 1992, pp. 16-20.

550. J. Feigenbaum, M.Y. Liverman, and R.N.
Wright, "Cryptographic Protection of
Databases and Software," Distributed
Computing and Cryptography, J. Feigen­
baum and M. Merritt, eds., American
Mathematical Society, 1991, pp. 161-172.

551. H. Feistel, "Cryptographic Coding for
Data-Bank Privacy," RC 2827, Yorktown
Heights, NY: IBM Research, Mar 1970.

552. H. Feistel, "Cryptography and Computer
Privacy, 11 Scientific American, v. 228, n. 5,
May 1973, pp. 15-23.

553. H. Feistel, "Block Cipher Cryptographic
System," U.S. Patent #3,798,359, 19 Mar
1974.

554. H. Feistel, "Step Code Ciphering System,"
U.S. Patent #3, 798,360, 19 Mar 1974.

555. H. Feistel, "Centralized Verification Sys­
tem," U.S. Patent #3,798,605, 19 Mar
1974.

556. H. Feistel, W.A. Notz, and J.L. Smith,
"Cryptographic Techniques for Machine
to Machine Data Communications," RC
3663, Yorktown Heights, N.Y.: IBM
Research, Dec 1971.

~""":S. __________ R_e_fe_r_e_n_ce_s ___________________ _

557. H. Feistel, WA. Notz, and J.L. Smith,
"Some Cryptographic Techniques for
Machine to Machine Data Communica­
tions," Proceedings of the IEEE, v. 63, n.
11, Nov 1975, pp. 1545-1554.

558. P. Feldman, "A Practical Scheme for Non­
interactive Verifiable Secret Sharing, 11 Pro­
ceedings of the 28th Annual Symposium
on the Foundations of Computer Science,
1987, pp. 427-437.

559. R.A. Feldman, "Fast Spectral Test for Mea­
suring Nonrandomncss and the DES,"
Advances in Cryptology-CRYPTO '87
Proceedings, Springer-Verlag, 1988, pp.
243-254.

560. R.A. Feldman, "A New Spectral Test for
Nonrandomness and the DES," IEEE
Transactions on Software Engineering, v.
16, n. 3, Mar 1990, pp. 261-267.

561. D.C. Feldmeier and P.R. Karn, "UNIX
Password Security-Ten Years Later, 11

Advances in Cryptology-CRYPTO '89
Proceedings, Springer-Verlag, 1990, pp.
44-63.

562. H. Fell and W. Diffie, 11 Analysis of a Public
Key Approach Based on Polynomial Sub­
stitution," Advances in Cryptology­
CRYPTO '85 Proceedings, Springer-Verlag,
1986, pp. 427-437.

563. N.T. Ferguson, "Single Term Off-Linc
Coins," Report CS-R9318, Computer Sci­
ence/Department of Algorithms and
Architecture, CWI, Mar 1993.

564. N.T. Ferguson, "Single Term Off-Line
Coins," Advances in Cryptology-EURO­
CRYPT '93 Proceedings, Springer-Verlag,
1994, pp. 318-328.

565. N.T. Ferguson, "Extensions of Single-term
Coins," Advances in Cryptology­
CRYPTO '93 Proceedings, Springer-Verlag,
1994, pp. 292-301.

566. A. Fiat and A. Shamir, "How to Prove
Yourself: Practical Solutions to Identifica­
tion and Signature Problems, 11 Advances
in Cryptology-CRYPTO '86 Proceedings,
Springer-Verlag, 1987, pp. 186-194.

567. A. Fiat and A. Shamir, "Unforgeable Proofs
of Identity," Proceedings of Securicom 87,
Paris, 1987, pp. 147-153.

568. P. Finch, "A Study of the Blowfish Encryp­
tion Algorithm," Ph.D. dissertation,
Department of Computer Science, City
University of New York Graduate School
and University Center, Feb 1995.

569. R. Flynn and A.S. Campasano, "Data
Dependent Keys for Selective Encryption
Terminal," Proceedings of NCC, vol. 47,
AFIPS Press, 1978, pp. 1127-1129.

570. R.H. Follett, letter to NIST regarding DSS,
25 Nov 1991.

571. R. Forre, "The Strict Avalanche Criterion:
Spectral Properties and an Extended Defi­
nition, 11 Advances in Cryptology­
CRYPTO '88 Proceedings, Springer-Verlag,
1990, pp. 450-468.

572. R. Forre, "A Fast Correlation Attack on
Nonlinearity Feedforward Filtered Shift
Register Sequences, 11 Advances in
Cryptology-CRYPTO '89 Proceedings,
Springer-Verlag, 1990, pp. 568-595.

573. S. Fortune and M. Merritt, "Poker Proto­
cols," Advances in Cryptology: Proceed­
ings of CRYPTO 84, Springer-Verlag, 1985,
pp. 454-464.

574. R.B. Fougner, "Public Key Standards and
Licenses," RFC 1170, Jan 1991.

575. Y. Frankel and M. Yung, "Escrowed
Encryption Systems Visited: Threats,
Attacks, Analysis and Designs," Advances
in Cryptology-CRYPTO '95 Proceedings,
Springer-Verlag, 1995, to appear.

576. W.F. Friedman, Methods for the Solution of
Running-Key Ciphers, Riverbank Publica­
tion No. 16, Riverbank Labs, 1918.

577. W.F. Friedman, The Index of Coincidence
and Its Applications in Cryptography,
Riverbank Publication No. 22, Riverbank
Labs, 1920. Reprinted by Aegean Park
Press, 1987.

578. W.F. Friedman, Elements of Cryptanalysis,
Laguna Hills, CA: Aegean Park Press,
1976.

579. W.F. Friedman, "Cryptology," Encyclope­
dia Britannica, v. 6, pp. 844-851, 1967.

580. A.M. Frieze, J. Hastad, R. Kannan, J.C.
Lagarias, and A. Shamir, "Reconstructing
Truncated Integer Variables Satisfying Lin­
ear Congruences," SIAM Journal on Com­
puting, v. 17, n. 2, Apr 1988, pp. 262-280.

581. A.M. Frieze, R. Kannan, and J.C. Lagarias,
"Linear Congruential Generators Do not
Produce Random Sequences, 11 Proceedings
of the 25th IEEE Symposium on Founda­
tions of Computer Science, 1984, pp.
480-484.

582. E. Fujiaski and T. Okamoto, "On Compar­
ison of Practical Digitial Signature
Schemes," Proceedings of the 1992 Sym-

____________________ R_e_fe_r_en_c_e_s _________ 7 __ ~

posium on Cryptography and Information
Security (SCIS 92), Tateshina, Japan, 2-4
Apr 1994, pp. lA.1-12.

583. A. Fujioka, T. Okamoto, and S. Miyaguchi,
"ESIGN: An Efficient Digital Signature
Implementation for Smart Cards, 11

Advances in Cryptology-EUROCRYPT
'91 Proceedings, Springer-Verlag, 1991, pp.
446-457.

584. A. Fujioka, T. Okamoto, and K. Ohta,
"Interactive Bi-Proof Systems and Undeni­
able Signature Schemes, 11 Advances in
Cryptology-EUROCRYPT '91 Proceed­
ings, Springer-Verlag, 1991, pp. 243-256.

585. A. Fujioka, T. Okamoto, and K. Ohta, "A
Practical Secret Voting Scheme for Large
Scale Elections, 11 Advances in Cryp­
tology-A US CRYPT '92 Proceedings,
Springer-Verlag, 1993, pp. 244-251.

586. K. Gaardner and E. Snekkenes, 11 Applying
a Formal Analysis Technique to the
CCITT X.509 Strong Two-Way Authenti­
cation Protocol, 11 fournal of Cryptology, v.
3, n. 2, 1991, pp. 81-98.

587. H.F. Gaines, Cryptanalysis, American
Photographic Press, 1937. (Reprinted by
Dover Publications, 1956.)

588. J. Gait, ''A New Nonlinear Pseudorandom
Number Generator, 11 IEEE Transactions
on Software Engineering, v. SE-3, n. 5, Sep
1977, pp. 359-363.

589. J. Gait, 11Short Cycling in the Kravitz-Reed
Public Key Encryption System, 11 Electron­
ics Letters, v. 18, n. 16, 5 Aug 1982, pp.
706-707.

590. Z. Galil, S. Haber, and M. Yung, 11 A Private
Interactivr Test of a Boolean Predicate and
Minimum-Knowledge Public-Key Cryp­
tosystems, 11 Proceedings of the 26th IEEE
Symposium on Foundations of Computer
Science, 1985, pp. 360-371.

591. Z. Galil, S. Haber, and M. Yung, "Crypto­
graphic Computation: Secure Fault­
Tolerant Protocols and the Public-Key
Model, 11 Advances in Cryptology­
CRYPTO '87 Proceedings, Springer-Verlag,
1988, pp. 135-155.

592. Z. Galil, S. Haber, and M. Yung, "Mini­
mum-Knowledge Interactive Proofs for
Decision Problems, 11 SIAM fournal on
Computing, v. 18, n. 4, 1989, pp. 711-739.

593. R.G. Gallager, Information Theory and
Reliable Communications, New York:
John Wiley & Sons, 1968.

594. P. Gallay and E. Depret, "A Cryptography
Microprocessor, 11 1988 IEEE International
Solid-State Circuits Conference Digest of
Technical Papers, 1988, pp. 148-149.

595. R.A. Games, "There are no de Bruijn
Sequences of Spann with Complexity 2n-1

+ n + l, 11 fournal of Combinatorical The­
ory, Series A, v. 34, n. 2, Mar 1983, pp.
248-251.

596. R.A. Games and A.H. Chan, "A Fast Algo­
rithm for Determining the Complexity of
a Binary Sequence with 2n,11 IEEE Transac­
tions on Information Theory, v. IT-29, n. 1,
Jan 1983, pp. 144-146.

597. R.A. Games, A.H. Chan, and E.L. Key, 11011
the Complexity of de Bruijn Sequences, 11

fournal of Combinatorical Theory, Series
A, v. 33, n. 1, Nov 1982, pp. 233-246.

598. S.H. Gao and G.L. Mullen, 11Dickson Poly­
nomials and Irreducible Polynomials over
Finite Fields, 11 fournal of Number Theory,
v. 49, n. 1, Oct 1994, pp. 18-132.

599. M. Gardner, "A New Kind of Cipher That
Would Take Millions of Years to Break, 11

Scientific American, v. 237, n. 8, Aug
1977, pp. 120-124.

600. M.R. Garey and D.S. Johnson, Computers
and Intractability: A Guide to the Theory
of NP-Completeness, W.H. Freeman and
Co., 1979.

601. S.L. Garfinkel, PGP: Pretty Good Privacy,
Sebastopol, CA: O'Reilly and Associates,
1995.

602. C.W. Gardiner, "Distributed Public Key
Certificate Management, 11 Proceedings of
the Privacy and Security Research Group
1993 Workshop on Network and Dis­
tributed System Security, The Intern~t
Society, 1993, pp. 69-73.

603. G. Garon and R. Outerbridge, 11DES
Watch: An Examination of the Sufficiency
of the Data Encryption Standard for Finan­
cial Institution Information Security in
the 1990's, 11 Cryptologia, v. 15, n. 3, Jul
1991, pp. 177-193.

604. M. Gasser, A. Goldstein, C. Kaufman, and
B. Lampson, "The Digital Distributed Sys­
tems Security Architecture, 11 Proceedings
of the 12th National Computer Security
Conference, NIST, 1989, pp. 305-319.

605. J. von zur Gathen, D. Kozen, and S. Lan­
dau, 11Functional Decomposition of Poly­
nomials, 11 Proceedings of the 28th IEEE
Symposium on the Foundations of Com-

~-:s __________ R_e_fe_r_e_n_ce_s __________________ _

puter Science, IEEE Press, 1987, pp. 127-
131.

606. P.R. Geffe, "How to Protect Data With
Ciphers That are Really Hard to Break,"
Electronics, v. 46, n. 1, Jan 1973, pp.
99--101.

607. D.K. Gifford, D. Heitmann, D.A. Segal,
R.G. Cote, K. Tanacea, and D.E. Burmas­
ter, "Boston Community Information Sys­
tem 1986 Experimental Test Results,"
MIT/LCS/TR-397, MIT Laboratory for
Computer Science, Aug 1987.

608. D.K. Gifford, J.M. Lucassen, and S.T.
Berlin, "The Application of Digital Broad­
cast Communication to Large Scale Infor­
mation Systems," IEEE Journal on
Selected Areas in Communications, v. 3,
n. 3, May 1985, pp. 457-467.

609. D.K. Gifford and D.A. Segal, "Boston Com­
munity Information System 1987-1988
Experimental Test Results," MIT /LCS/
TR-422, MIT Laboratory for Computer Sci­
ence, May 1989.

610. H. Gilbert and G. Chase, "A Statistical
Attack on the Feal-8 Cryptosystem,"
Advances in Cryptology-CRYPTO '90
Proceedings, Springer-Verlag, 1991, pp.
22-33.

611. H. Gilbert and P. Chauvaud, "A Chosen
Plaintext Attack of the 16-Round Khufu
Cryptosystem," Advances in Cryptol­
ogy-CRYPTO '94 Proceedings, Springer­
Verlag, 1994, pp. 259-268.

612. M. Girault, "Hash-Functions Using Mod­
ulo-N Operations," Advances in Cryptol­
ogy-EURO CRYPT '87 Proceedings,
Springer-Verlag, 1988, pp. 217-226.

613. J. Gleick, "A New Approach to Protecting
Secrets is Discovered," The New York
Times, 18 Feb 1987, pp. Cl and C3.

614. J.-M. Goethals and C. Couvreur, "A Crypt­
analytic Attack on the Lu-Lee Public-Key
Cryptosystem," Philips Journal of Re­
search, v. 35, 1980, pp. 301-306.

615. 0. Goldreich, "A Uniform-Complexity
Treatment of Encryption and Zcro­
Knowledge, Journal of Cryptology, v. 6, n.
1, 1993, pp. 21-53.

616. 0. Goldreich and H. Krawczyk, "On the
Composition of Zero Knowledge Proof
Systems," Proceedings on the 17th Inter­
national Colloquium on Automata, Lan­
guages, and Programming, Springer­
Verlag, 1990, pp. 268-282.

617. 0. Goldreich and E. Kushilevitz, "A Per­
fect Zero-Knowledge Proof for a Problem
Equivalent to Discrete Logarithm,"
Advances in Cryptology-CRYPTO '88
Proceedings, Springer-Verlag, 1990, pp.
58-70.

618. 0. Goldreich and E. Kushilevitz, "A Per­
fect Zero-Knowledge Proof for a Problem
Equivalent to Discrete Logarithm," Jour­
nal of Cryptology, v. 6, n. 2, 1993, pp.
97-116.

619. 0. Goldrcich, S. Micali, and A. Wigderson,
"Proofs That Yield Nothing but Their
Validity and a Methodology of Crypto­
graphic Protocol Design," Proceedings of
the 27th IEEE Symposium on the Founda­
tions of Computer Science, 1986, pp.
174-187.

620. 0. Goldreich, S. Micali, and A. Wigdcrson,
"How to Prove All NP Statements in Zero
Knowledge and a Methodology of Crypto­
graphic Protocol Design," Advances in
Cryptology-CRYPTO '86 Proceedings,
Springer-Verlag, 1987, pp. 171-185.

621. 0. Goldreich, S. Micali, and A. Wigderson,
"How to Play Any Mental Game," Pro­
ceedings of the 19th ACM Symposium on
the Theory of Computing, 1987, pp.
218-229.

622. 0. Goldrcich, S. Micali, and A. Wigderson,
"Proofs That Yield Nothing but Their
Validity and a Methodology of Crypto­
graphic Protocol Design," Journal of the
ACM, v. 38, n. 1, Jul 1991, pp. 691-729.

623. S. Goldwasser and J. Kilian, "Almost All
Primes Can Be Quickly Certified," Pro­
ceedings of the 18th ACM Symposium on
the Theory of Computing, 1986, pp. 316-
329.

624. S. Goldwasscr and S. Micali, "Probabilistic
Encryption and How to Play Mental Poker
Keeping Secret All Partial Information,"
Proceedings of the 14th ACM Symposium
on the Theory of Computing, 1982, pp.
270-299.

625. S. Goldwasser and S. Micali, "Probabilistic
Encryption," Journal of Computer and
System Sciences, v. 28, n. 2, Apr 1984, pp.
270-299.

626. S. Goldwasser, S. Micali, and C. Racko££,
"The Knowledge Complexity of Interac­
tive Proof Systems," Proceedings of the
17th ACM Symposium on Theory of Com­
puting, 1985, pp. 291-304.

____________________ R_ef_e_re_n_c_e_s _________ 7~~
627. S. Goldwasser, S. Micali, and C. Rackoff,

"The Knowledge Complexity of Interac­
tive Proof Systems," SIAM fournal on
Computing, v. 18, n. 1, Feb 1989, pp. 186-
208.

628. S. Goldwasser, S. Micali, and R.L. Rivest,
"A Digital Signature Scheme Secure
Against Adaptive Chosen-Message
Attacks," SIAM fournal on Computing, v.
17, n. 2, Apr 1988, pp. 281-308.

629. S. Goldwasser, S. Micali, and A.C. Yao,
"On Signatures and Authentication,"
Advances in Cryptology: Proceedings of
Crypto 82, Plenum Press, 1983, pp.
211-215.

630. J.D. Golie, "On the Linear Complexity of
Functions of Periodic GF(q) Sequences,"
IEEE Transactions on Information Theory,
v. IT-35, n. 1, Jan 1989, pp. 69-75.

631. J.D. Golie, "Linear Cryptanalysis of
Stream Ciphers," K. U. Leuven Workshop
on Cryptographic Algorithms, Springer­
Verlag, 1995, pp. 262-282.

632. J.D. Golie, "Towards Fast Correlation
Attacks on Irregularly Clocked Shift Regis­
ters," Advances in Cryptology-EURO­
CRYPT '95 Proceedings, Springer-Verlag,
1995, to appear.

633. J.D. Golie and M.J. Mihajlevie, "A Gener­
alized Correlation Attack on a Class of
Stream Ciphers Based on the Levenshtein
Distance," fournal of Cryptology, v. 3, n. 3,
1991, pp. 201-212.

634. J.D. Golie and L. O'Connor, "Embedding
and Probabilistic Correlation Attacks on
Clock-Controlled Shift Registers," Ad­
vances in Cryptology-EUROCRYPT '94
Proceedings, Springer-Verlag, 1995, to
appear.

635. R. Colliver, A.K. Lenstra, K.S. McCurley,
"Lattice Sieving and Trial Division," Pro­
ceedings of the Algorithmic Number The­
ory Symposium, Cornell, 1994, to appear.

636. D. Gollmann, "Kaskadenschaltungen takt­
gesteuerter Schieberegister als Pseudozu­
fallszahlengeneratoren," Ph.D. disserta­
tion, Universitiit Linz, 1983. (In German.)

637. D. Gollmann, "Pseudo Random Properties
of Cascade Connections of Clock Con­
trolled Shift Registers," Advances in Cryp­
tology: Proceedings of EUROCRYPT 84,
Springer-Verlag, 1985, pp. 93-98.

638. D. Gollmann, "Correlation Analysis of
Cascaded Sequences," Cryptography and

Coding, H.J. Beker and F.C. Piper, eds.,
Oxford: Clarendon Press, 1989, pp.
289-297.

639. D. Gollmann, "Transformation Matrices
of Clock-Controlled Shift Registers,"
Cryptography and Coding III, M.J. Ganley,
ed., Oxford: Clarendon Press, 1993, pp.
197-210.

640. D. Gollmann and W.G. Chambers, "Lock­
In Effect in Cascades of Clock-Controlled
Shift-Registers." Advances in Cryptol­
ogy-EUROCRYPT '88 Proceedings,
Springer-Verlag, 1988, pp. 331-343.

641. D. Gollmann and W.G. Chambers, "Clock­
Controlled Shift Registers: A Review,"
IEEE fournal on Selected Areas in Com­
munications, v. 7, n. 4, May 1989, pp.
525-533.

642. D. Golhnann and W.G. Cha1nbers, "A
Cryptanalysis of Stepk,m-cascades," Ad­
vances in Cryptology-EUROCRYPT '89
Proceedings, Springer-Verlag, 1990, pp.
680-687.

643. S.W. Golomb, Shift Register Sequences,
San Francisco: Holden-Day, 1967.
(Reprinted by Aegean Park Press, 1982.)

644. L. Gong, "A Security Risk of Depending on
Synchronized Clocks," Operating Systems
Review, v. 26, n. 1, Jan 1992, pp. 49-53.

645. L. Gong, R. Needham, and R. Yahalom,
"Reasoning About Belief in Cryptographic
Protocols," Proceedings of the 1991 IEEE
Computer Society Symposium on Re­
search in Security and Privacy, 1991, pp.
234-248.

646. R.M. Goodman and A.J. McAuley, "A New
Trapdoor Knapsack Public Key Cryptosys­
tem," Advances in Cryptology: Proceed­
ings of EUROCRYPT 84, Springer-Verlag,
1985, pp. 150-158.

647. R.M. Goodman and A.J. McAuley, "A New
Trapdoor Knapsack Public Key Cryptosys­
tem," IEE Proceedings, v. 132, pt. E, n. 6,
Nov 1985, pp. 289-292.

648. D.M. Gordon, "Discrete Logarithms Using
the Number Field Sieve," Preprint, 28 Mar
1991.

649. D.M. Gordon and K.S. Mccurley, "Com­
putation of Discrete Logarithms in Fields
of Characteristic Two," presented at the
rump session of CRYPTO '91, Aug 1991.

650. D.M. Gordon and K.S. Mccurley, "Mas­
sively Parallel Computation of Discrete
Logarithms," Advances in Cryptology-

~""'s;~---------R_e_fe_r_e_n_ce_s __________________ _

CRYPTO '92 Proceedings, Springer-Verlag,
1993, pp. 312-323.

651. J.A. Gordon, "Strong Primes are Easy to
Find," Advances in Cryptology: Proceed­
ings of EUROCRYPT 84, Springer-Verlag,
1985, pp. 216-223.

652. J.A. Gordon, "Very Simple Method to Find
the Minimal Polynomial of an Arbitrary
Non-Zero Element of a Finite Field," Elec­
tronics Letters, v. 12, n. 25, 9 Dec 1976, pp.
663-664.

653. J.A. Gordon and R. Retkin, "Are Big S­
Boxes Best?" Cryptography, Proceedings of
the Workshop on Cryptography, Burg
Feuerstein, Germany, March 29-April 2,
1982, Springer-Verlag, 1983, pp. 257-262.

654. M. Goresky and A. Klapper, "Feedback
Registers Based on Ramified Extension of
the 2-adic Numbers," Advances in Cryp­
tology-EUROCRYPT '94 Proceedings,
Springer-Verlag, 1995, to appear.

655. GOST, Gosudarstvennyi Standard 28147-89,
"Cryptographic Protection for Data Process­
ing Systems," Government Committee of
the USSR for Standards, 1989. (In Russian.)

656. GOST R 34.10-94, Gosudarstvennyi Stan­
dard of Russian Federation, "Information
technology. Cryptographic Data Security.
Produce and check procedures of Elec­
tronic Digital Signature based on Asym­
metric Cryptographic Algorithm." Gov­
ernment Committee of the Russia for
Standards, 1994. (In Russian.)

657. GOST R 34.11-94, Gosudarstvennyi Stan­
dard of Russian Federation, "Information
technology. Cryptographic Data Security.
Hashing function." Government Commit­
tee of the Russia for Standards, 1994. (In
Russian.)

658. R. Giittfert and H. Niederreiter, "On the
Linear Complexity of Products of Shift­
Register Sequences," Advances in Cryp­
tology-EUR OCRYPT '93 Proceedings,
Springer-Verlag, 1994, pp. 151-158.

659. R. Giittfert and H. Niederreiter, "A Gen­
eral Lower Bound for the Linear Complex­
ity of the Product of Shift-Register
Sequences," Advances in Cryptology­
E UR OCRYPT '94 Proceedings, Springer­
Verlag, 1995, to appear.

660. J. van de Graaf and R. Peralta, "A Simple
and Secure Way to Show the Validity of
Your Public Key," Advances in Cryptol­
ogy-CRYPTO '87 Proceedings, Springer­
Verlag, 1988, pp. 128-134.

661. J. Grollman and A.L. Selman, "Complexity
Measures for Public-Key Cryptosystems,"
Proceedings of the 25th IEEE Symposium
on the Foundations of Computer Science,
1984, pp. 495-503.

662. GSA Federal Standard 1026, "Telecommu­
nications: General Security Requirements
for Equipment Using the Data Encryption
Standard," General Services Administra­
tion, Apr 1982.

663. GSA Federal Standard 1027, "Telecommu­
nications: Interoperability and Security
Requirements for Use of the Data Encryp­
tion Standard in the Physical and Data
Link Layers of Data Communications,"
General Services Administration, Jan 1983.

664. GSA Federal Standard 1028, "Interoper­
ability and Security Requirements for Use
of the Data Encryption Standard with
CCITT Group 3 Facsimile Equipment,"
General Services Administration, Apr
1985.

665. P. Guam, "Cellular Automaton Public Key
Cryptosystems," Complex Systems, v. 1,
1987, pp. 51-56.

666. H. Guan, "An Analysis of the Finite
Automata Public Key Algorithm," CHI­
NACRYPT '94, Xidian, China, 11-15 Nov
1994, pp. 120-126. (In Chinese.)

667. G. Guanella, "Means for and Method for
Secret Signalling," U.S. Patent #2,405,500,
6 Aug 1946.

668. M. Gude, "Concept for a High­
Performance Random Number Generator
Based on Physical Random Phenomena,"
Frequenz, v.39, 1985, pp. 187-190.

669. M. Gude, "Ein quasi-idealer Gleichverteil­
ungsgenerator basierend auf physikalis­
chen Zufallsphiinomenen," Ph.D. disserta­
tion, Aachen University of Technology,
1987. (In German.)

670. L.C. Guillou and J.-J. Quisquater, "A Prac­
tical Zero-Knowledge Protocol Fitted to
Security Microprocessor Minimizing Both
Transmission and Memory," Advances in
Cryptology-EUROCRYPT '88 Proceed­
ings, Springer-Verlag, 1988, pp. 123-128.

671. L.C. Guillou and J.·J. Quisquater, "A 'Para­
doxical' Identity-Based Signature Scheme
Resulting from Zero-Knowledge," Ad­
vances in Cryptology-CRYPTO '88 Pro­
ceedings, Springer-Verlag, 1990, pp. 216-
231.

672. L.C. Guillou, M. Ugon, and J.·J. Quis­
quater, "The Smart Card: A Standardized

____________________ R_ef_e_re_n_c_e_s _________ 7 _____ ~

Security Device Dedicated to Public Cryp­
tology," Contemporary Cryptology: The
Science of Information Integrity, G. Sim­
mons, ed., IEEE Press, 1992, pp. 561-613.

673. C.G. Gunther, "Alternating Step Genera­
tors Controlled by de Bruijn Sequences,"
Advances in Cryptology-EUROCRYPT
'87 Proceedings, Springer-Verlag, 1988, pp.
5-14.

67 4. C.G. Gunther, "An Identity-based Key­
exchange Protocol," Advances in Cryptol­
ogy-EUROCRYPT '89 Proceedings,
Springer-Verlag, 1990, pp. 29-37.

675. H. Gustafson, E. Dawson, and B. Caelli,
"Comparison of Block Ciphers," Advances
in Cryptology-AUSCRYPT '90 Proceed­
ings, Springer-Verlag, 1990, pp. 208-220.

676. P. Gutmann, personal communication,
1993.

677. H. Gutowitz, "A Cellular Automaton
Cryptosystem: Specification and Call for
Attack," unpublished manuscript, Aug
1992.

678. H. Gutowitz, "Method and Apparatus for
Encryption, Decryption, and Authentica­
tion Using Dynamical Systems," U.S.
Patent #5,365,589, 15 Nov 1994.

679. H. Gutowitz, "Cryptography with Dynam­
ical Systems," Cellular Automata and
Cooperative Phenomenon, Kluwer Aca­
demic Press, 1993.

680. R.K. Guy, "How to Factor a Number,"
Fifth Manitoba Conference on Numeral
Mathematics Congressus Numerantium,
V. 16, 1976, pp. 49-89.

681. R.K. Guy, Unsolved Problems in Number
Theory, Springer-Verlag, 1981.

682. S. Haber and W.S. Stornetta, "How to
Time-Stamp a Digital Document,"
Advances in Cryptology-CRYPTO '90
Proceedings, Springer-Verlag, 1991, pp.
437-455.

683. S. Haber and W.S. Stornetta, "How to
Time-Stamp a Digital Document," Journal
of Cryptology, v. 3, n. 2, 1991, pp. 99-112.

684. S. Haber and W.S. Stornetta, "Digital Doc­
ument Time-Stamping with Catenate Cer­
tificate," U.S. Patent #5, 136,646, 4 Aug
1992.

685. S. Haber and W.S. Stornetta, "Method for
Secure Time-Stamping of Digital Docu­
ments," U.S. Patent #5,136,647, 4 Aug
1992.

686. S. Haber and W.S. Stornetta, "Method of
Extending the Validity of a Cryptographic

Certificate," U.S. Patent #5,373,561, 13
Dec 1994.

687. T. Habutsu, Y. Nishio, I. Sasase, and S.
Mori, "A Secret Key Cryptosystem by Iter­
ating a Chaotic Map," Transactions of the
Institute of Electronics, Information, and
Communication Engineers, v. E73, n. 7, Jul
1990,pp. 1041-1044.

688. T. Habutsu, Y. Nishio, I. Sasase, and S.
Mori, "A Secret Key Cryptosystem by Iter­
ating a Chaotic Map," Advances in Cryp­
tology-EUROCRYPT '91 Proceedings,
Springer-Verlag, 1991, pp. 127-140.

689. S. Hada and H. Tanaka, "An Improvement
Scheme of DES against Differential Crypt­
analysis," Proceedings of the 1994 Sympo­
sium on Cryptography and Information
Security (SCIS 94), Lake Biwa, Japan,
27-29 Jan 1994, pp 14A.1-11. (In Japanese.)

690. B.C.W. Hagelin, "The Story of the Hagelin
Cryptos, 11 Cryptologia, v. 18, n. 3, Jul 1994,
pp. 204-242.

691. T. Hansen and G.L. Mullen, "Primitive
Polynomials over Finite Fields," Mathe­
matics of Computation, v. 59, n. 200, Oct
1992, pp. 639-643.

692. S. Harada and S. Kasahara, "An ID-Based
Key Sharing Scheme Without Preliminary
Communication," IEICE Japan, Technical
Report, ISEC89-38, 1989. (In Japanese.)

693. S. Harari, "A Correlation Cryptographic
Scheme," EUROCODE '90-Interna­
tional Symposium on Coding Theory,
Springer-Verlag, 1991, pp. 180-192.

694. T. Hardjono and J. Seberry, "Authentication
via Multi-Service Tickets in the Kuperee
Server," Computer Security-ESORICS 94,
Springer-Verlag, 1994, pp. 144-160.

695. L. Harn and T. Kiesler, "New Scheme for
Digital Multisignatures," Electronics Let­
ters, v. 25, n. 15, 20 Jul 1989, pp. 1002-
1003.

696. L. Harn and T. Kiesler, "Improved Rabin's
Scheme with High Efficiency," Electronics
Letters, v. 25, n. 15, 20 Jul 1989, p. 1016.

697. L. Harn and T. Kiesler, "Two New Effi­
cient Cryptosystems Based on Rabin's
Scheme," Fifth Annual Computer Security
Applications Conference, IEEE Computer
Society Press, 1990, pp. 263-270.

698. L. Harn and D.-C. Wang, "Cryptanalysis
and Modification of Digital Signature
Scheme Based on Error-Correcting Codes, 11

Electronics Letters, v. 28, n. 2, 10 Jan 1992,
p. 157-159.

~-s __________ R_e_fe_r_e_n_ce_s __________________ _

699. L. Harn and Y. Xu, "Design of Generalized
ElGamal Type Digital Signature Schemes
Based on Discrete Logarithm," Electronics
Letters, v. 30, n. 24, 24 Nov 1994, p.
2025-2026.

700. L. Harn and S. Yang, "Group-Oriented
Undeniable Signature Schemes without
the Assistance of a Mutually Trusted
Party," Advances in Cryptology­
A USCRYPT '92 Proceedings, Springer­
Verlag, 1993, pp. 133-142.

701. G. Harper, A. Menezes, and S. Vanstone,
"Public-Key Cryptosystems with Very
Small Key Lengths," Advances in Cryptol­
ogy-E[JROCRYPT '92 Proceedings,
Springer-Verlag, 1993, pp. 163-173.

702. C. Harpes, "Notes on High Order Differen­
tial Cryptanalysis of DES," internal report,
Signal and Information Processing Labora­
tory, Swiss Federal Institute of Technol­
ogy, Aug 1993.

703. G.W. Hart, "To Decode Short Cryp­
tograms," Communications of the ACM,
v. 37, n. 9, Sep 1994, pp. 102-108.

704. J. Hastad, "On Using RSA with Low Expo­
nent in a Public Key Network," Advances
in Cryptology-CRYPTO '85 Proceedings,
Springer-Verlag, 1986, pp. 403-408.

705. J. Hastad and A. Shamir, "The Crypto­
graphic Security of Truncated Linearly
Related Variables," Proceedings of the
17th Annual ACM Symposium on the
Theory of Computing, 1985, pp. 356-362.

706. R.C. Hauser and E.S. Lee, "Verification and
Modelling of Authentication Protocols,"
ESORICS 92, Proceedings of the Second
European Symposium on Research in
Computer Security, Springer-Verlag, 1992,
pp. 131-154.

707. B. Hayes, "Anonymous One-Time Signa­
tures and Flexible Untraceable Electronic
Cash," Advances in Cryptology­
A USCRYPT '90 Proceedings, Springer­
Verlag, 1990, pp. 294-305.

708. D.K. He, "LUC Public Key Cryptosystem
and its Properties," CHINACRYPT '94,
Xidian, China, 11-15 Nov 1994, pp. 60-69.
(In Chinese.)

709. J. He and T. Kiesler, "Enhancing the Secu­
rity of ElGamal's Signature Scheme," IEE
Proceedings on Computers and Digital
Techniques, v. 141,n.3, 1994,pp. 193-195.

710. E.H. Hebern, "Electronic Coding Machine,"
U.S. Patent #1,510,441, 30 Sep 1924.

711. N. Heintze and J.D. Tygar, "A Model for
Secure Protocols and their Compositions,"
Proceedings of the 1994 IEEE Computer
Society Symposium on Research in Secu­
rity and Privacy, 1994, pp. 2-13.

712. M.E. Hellman, "An Extension of the Shan­
non Theory Approach to Cryptography,"
IEEE Transactions on Information Theory,
v. IT-23, n. 3, May 1977, pp. 289-294.

713. M.E. Hellman, "The Mathematics of Pub­
lic-Key Cryptography," Scientific Ameri­
can, v. 241, n. 8, Aug 1979, pp. 146-157.

714. M.E. Hellman, "DES Will Be Totally Inse­
cure within Ten Years," IEEE Spectrum, v.
16, n. 7, Jul 1979, pp. 32-39.

715. M.E. Hellman, "On 0ES-Based Syn­
chronous Encryption," Dept. of Electrical
Engineering, Stanford University, 1980.

716. M.E. Hellman, "A Cryptanalytic Time­
Memory Trade Off," IEEE Transactions on
Information Theory, v. 26, n. 4, Jul 1980,
pp. 401-406.

717. M.E. Hellman, "Another Cryptanalytic
Attack on 'A Cryptosystem for Multiple
Communications'," Information Process­
ing Letters, v. 12, 1981, pp. 182-183.

718. M.E. Hellman, W. Diffie, and R.C. Merkle,
"Cryptographic Apparatus and Method,"
U.S. Patent #4,200, 770, 29 Apr 1980.

719. M.E. Hellman, W. Diffie, and R.C. Merkle,
"Cryptographic Apparatus and Method,"
Canada Patent #1, 121,480, 6 Apr 1982.

720. M.E. Hellman and R.C. Merkle, "Public
Key Cryptographic Apparatus and
Method," U.S. Patent #4,218,582, 19 Aug
1980.

721. M.E. Hellman, R. Merkle, R. Schroeppel,
L. Washington, W. Diffie, S. Pohlig, and P.
Schweitzer, "Results of an Initial Attempt
to Cryptanalyze the NBS Data Encryption
Standard," Technical Report SEL 76-042,
Information Systems Lab, Department of
Electrical Engineering, Stanford Univer­
sity, 1976.

722. M.E. Hellman and S.C. Pohlig, "Exponen­
tiation Cryptographic Apparatus and
Method," U.S. Patent #4,424,414, 3 Jan
1984.

723. M.E. Hellman and J.M. Reyneri, "Distribu­
tion of Drainage in the DES," Advances in
Cryptology: Proceedings of Crypto 82,
Plenum Press, 1983, pp. 129-131.

724. F. Hendessi and M.R. Are£, "A Successful
Attack Against the DES," Third Canadian

_____________________ R_e_fe_r_en_ce_s __________ 7 __ ~

Workshop on Information Theory and
Applications, Springer-Verlag, 1994, pp.
78-90.

725. T. Herlestam, "Critical Remarks on Some
Public-Key Cryptosystems," BIT, v. 18,
1978, pp. 493-496.

726. T. Herlestam, "On Functions of Linear
Shift Register Sequences", Advances in
Cryptology-EUROCRYPT '85, Springer­
Verlag, 1986, pp. 119-129.

727. T. Herlestam and R. Johannesson, "On
Computing Logarithms over GF(2"), 11 BIT,
V. 21, 1981, pp. 326-334.

728. H.M. Heys and S.E. Tavares, "On the Secu­
rity of the CAST Encryption Algorithm, 11

Proceedings of the Canadian Conference on
Electrical and Computer Engineering, Hali­
fax, Nova Scotia, Sep 1994, pp. 332-335.

729. H.M. Heys and S.E. Tavares, "The Design
of Substitution-Permutation Networks
Resistant to Differential and Linear Crypt­
analysis, 11 Proceedings of the 2nd Annual
ACM Conference on Computer and Com­
munications Security, ACM Press, 1994,
pp. 148-155.

730. E. Heyst and T.P. Pederson, "How to Make
Fail-Stop Signatures, 11 Advances in Cryp­
tology-EUROCRYPT '92 Proceedings,
Springer-Verlag, 1993, pp. 366-377.

731. E. Heyst, T.P. Pederson, and B. Pfitzmann,
"New Construction of Fail-Stop Signa­
tures and Lower Bounds," Advances in
Cryptology-CRYPTO '92 Proceedings,
Springer-Verlag, 1993, pp. 15-30.

732. L.S. Hill, "Cryptography in an Algebraic
Alphabet," American Mathematical
Monthly, v. 36, Jun-Jul 1929, pp. 306-312.

733. P.J.M. Hin, "Channel-Error-Correcting Pri­
vacy Cryptosystems," Ph.D. dissertation,
Delft University of Technology, 1986. (In
Dutch.)

734. R. Hirschfeld, "Making Electronic Refunds
Safer, 11 Advances in Cryptology­
CRYPTO '92 Proceedings, Springer-Verlag,
1993, pp. 106-112.

735. A. Hodges, Alan Turing: The Enigma of
Intelligence, Simon and Schuster, 1983.

736. W. Hohl, X. Lai, T. Meier, and C. Waldvo­
gel, "Security of Iterated Hash Functions
Based on Block Ciphers," Advances in
Cryptology-CRYPTO '93 Proceedings,
Springer-Verlag, 1994, pp. 379-390.

737. F. Hoornaert, M. Decroos, J. Vandewalle,
and R. Govaerts, "Fast RSA-Hardware:

Dream or Reality?" Advances in Cryp­
tology-EUROCRYPT '88 Proceedings,
Springer-Verlag, 1988, pp. 257-264.

738. F. Hoornaert, J. Gaubert, and Y. Desmedt,
"Efficient Hardware Implementation of
the DES," Advances in Cryptology: Pro­
ceedings of CRYPTO 84, Springer-Verlag,
1985, pp. 147-173.

739. E. Horowitz and S. Sahni, Fundamentals of
Computer Algorithms, Rockville, MD:
Computer Science Press, 1978.

740. P. Horster, H. Petersen, and M. Michels,
"Meta-E!Gamal Signature Schemes," Pro­
ceedings of the 2nd Annual ACM Confer­
ence on Computer and Communications
Security, ACM Press, 1994, pp. 96-107.

741. P. Horster, H. Petersen, and M. Michels,
"Meta Message Recovery and Meta Blind
Signature Schemes Based on the Discrete
Logarithm Problem and their Applica­
tions," Advances in Cryptology-ASIA­
CRYPT '94 Proceedings, Springer-Verlag,
1995, pp. 224-237.

7 42. L.K. Hua, Introduction to Number Theory,
Springer-Verlag, 1982.

743. K. Huber, "Specialized Attack on Chor­
Rivest Public Key Cryptosystem, 11 Elec­
tronics Letters, v. 27, n. 23, 7 Nov 1991, pp.
2130-2131.

7 44. E. Hughes, 11 A Cypherpunk's Manifesto, 11 9
Mar 1993.

7 45. E. Hughes, 11 An Encrypted Key Transmis­
sion Protocol," presented at the rump ses­
sion of CRYPTO '94, Aug 1994.

746. H. Huie and W.B. Mi.iller, "On the RSA­
Cryptosystem with Wrong Keys," Contri­
butions to General Algebra 6, Vienna: Ver­
lag Holder-Pichler-Tempsky, 1988, pp.
103-109.

747. H.A. Hussain, J.W.A. Sada, and S.M.
Kalipha, "New Multistage Knapsack Pub­
lic-Key Cryptosystem, 11 International
foumal of Systems Science, v. 22, n. 11,
Nov 1991, pp. 2313-2320.

748. T. Hwang, "Attacks on Okamoto and
Tanaka's One-Way ID-Based Key Distribu­
tion System, 11 Information Processing Let­
ters, v. 43, n. 2, Aug 1992, pp. 83-86.

749. T. Hwang and T.R.N. Rao, "Secret Error­
Correcting Codes (SECC), 11 Advances in
Cryptology-CRYPTO '88 Proceedings,
Springer-Verlag, 1990, pp. 540-563.

750. C. !'Anson and C. Mitchell, "Security
Defects in CCITT Recommendation

~""':S. __________ R_ef_e_r_en_c_e_s ___________________ _

X.509-the Directory Authentication
Framework," Computer Communications
Review, v. 20, n. 2, Apr 1990, pp. 30-34.

751. IBM, "Common Cryptographic Architec­
ture: Cryptographic Application Program­
ming Interface Reference," SC40-1675-l,
IBM Corp., Nov 1990.

752. IBM, "Common Cryptographic Architec­
ture: Cryptographic Application Program­
ming Interface Reference-Public Key
Algorithm," IBM Corp., Mar 1993.

753. R. Impagliazzo and M. Yung, "Direct Min­
imum-Knowledge Computations," Ad­
vances in Cryptology-CRYPTO '87 Pro­
ceedings, Springer-Verlag, 1988, pp. 40-51.

754. I. Ingem,usson, "A New Algorithm for the
Solution of the Knapsack Problem," Lec­
ture Notes in Computer Science 149;
Cryptography: Proceedings of the Work­
shop on Cryptography, Springer-Verlag,
1983, pp. 309-315.

755. I. Ingemarsson, "Delay Estimation for
Truly Random Binary Sequences or How
to Measure the Length of Rip van Winkle's
Sleep," Communications and Cryptogra­
phy: Two Sides of One Tapestry, R.E.
Blahut et al., eds., Kluwer Adademic Pub­
lishers_ 1994, pp. 179-186.

756. I. Ingemarsson and G.J. Simmons, "A Pro­
tocol to Set Up Shared Secret Schemes
without the Assistance of a Mutually
Trusted Party," Advances in Cryptology­
EUROCRYPT '90 Proceedings, Springer­
Verlag, 1991, pp. 266-282.

757. I. Ingcmarsson, D.T. Tang, and C.K. Wong,
"A Conference Key Distribution System,"
IEEE Transactions on Information Theory,
v. IT-28, n. 5, Sep 1982, pp. 714-720.

758. ISO DIS 8730, "Banking-Requirements
for Message Authentication (Wholesale),"
Association for Payment Clearing Ser­
vices, London, Tul 1987.

759. ISO DIS 8731-1, "Banking-Approved
Algorithms for Message Authentication­
Part 1: DEA," Association for Payment
Clearing Services, London, 1987.

760. ISO DIS 8731-2, "Banking-Approved
Algorithms for Message Authentication­
Part 2: Message Authenticator
Algorithm," Association for Payment
Clearing Services, London, 1987.

761. ISO DIS 8732, "Banking-Key Manage­
ment (Wholesale)," Association for Pay­
ment Clearing Services, London, Dec 1987.

762. ISO/IEC 9796. "Information Technology­
Security Techniques-Digital Signature
Scheme Giving Message Recovery," Inter­
national Organization for Standardization,
Tul 1991.

763. ISO/IEC 9797, "Data Cryptographic Tech­
niques-Data Integrity Mechanism Using
a Cryptographic Check Function Employ­
ing a Block Cipher Algorithm," Interna­
tional Organization for Standardization,
1989.

764. ISO DIS 10118 DRAFT, "Information
Technology-Security Techniques-Hash
Functions," International Organization for
Standardization, 1989.

765. ISO DIS 10118 DRAFT, "Information
Technology-Security Trchniques-Hash
Functions," International Organization for
Standardization, April 1991.

766. ISO N98, "Hash Functions Using a Pseudo
Random Algorithm," working document,
ISO-IEC/TTC 1/SC27 /WG2, International
Organization for Standardization, 1992.

767. ISO N179, "AR Fingerprint Function,"
working document, ISO-IEC/TTC1/SC27/
WG2, International Organization for Stan­
dardization, 1992.

768. ISO/IEC 10118, "Information Technol­
ogy-Security Techniques-Hash Func­
tions-Part 1: General and Part 2: Hash­
Functions Using an n-Bit Block Cipher
Algorithm.," International Organization
for Standardization, 1993.

769. K. Ito, S. Kondo, and Y. Mitsuoka,
"SXAL8/MBAL Algorithm," Technical
Report, ISEC93-68, IEICE Tapan, 1993. (In
Tapanese.)

770. K.R. Iversen, "The Application of Crypto­
graphic Zero-Knowledge Techniques in
Computerized Secret Ballot Election
Schemes," Ph.D. dissertation, IDT-report
1991:3, Norwegian Institute of Technol­
ogy, Feb 1991.

771. K.R. Iversen, "A Cryptographic Scheme for
Computerized General Elections,"
Advances in Cryptology-CRYPTO '91
Proceedings, Springer-Verlag, 1992, pp.
405-419.

772. K. Iwamura, T. Matsumoto, and H. Imai,
"An Implementation Method for RSA Cryp­
tosystem with Parallel Processing," Trans­
actions of the Institute of Electronics, Infor­
mation, and Communication Engineers, v.
T75-A, n. 8, Aug 1992, pp. 1301-1311.

____________________ R_e_f_er_e_n_c_e_s _________ 7--=--~

773. W.T. Taburek, "A Generalization of ElGa­
mal's Public Key Cryptosystem, 11 Ad­
vances in Cryptology-EUROCRYPT '89
Proceedings, 1990, Springer-Verlag, pp.
23-28.

774. N.S. Tames, R. Lidi, and H. Niederreiter,
"Breaking the Cade Cipher, 11 Advances in
Cryptology-CRYPTO '86 Proceedings,
1987, Springer-Verlag, pp. 60-63.

775. C.T-A. Tansen, "On the Key Storage
Requirements for Secure Terminals,"
Computers and Security, v. 5, n. 2, Tun
1986, pp. 145-149.

776. C.T.A. Tansen, "Investigations on Nonlin­
ear Streamcipher Systems: Construction
and Evaluation Methods," Ph.D. disserta­
tion, Technical University of Delft, 1989.

777. C.T.A. Tansen and D.E. Boekee, "Modes of
Blockcipher Algorithms and their Protec­
tion against Active Eavesdropping,"
Advances in Cryptology-EUROCRYPT
'87 Proceedings, Springer-Verlag, 1988, pp.
281-286.

778. S.M. Tennings, 11 A Special Class of Binary
Sequences, 11 Ph.D. dissertation, University
of London, 1980.

779. S.M. Tennings, "Multiplexed Sequences:
Some Properties of the Minimum Polyno­
mial," Lecture Notes in Computer Science
149; Cryptography: Proceedings of the
Workshop on Cryptography, Springer­
Verlag, 1983, pp. 189-206.

780. S.M. Tennings, 11 Autocorrelation Function
of the Multiplexed Sequence," IEE Pro­
ceedings, v. 131, n. 2, Apr 1984, pp.
169-172.

781. T. Tin, "Care and Feeding of Your Three­
Headed Dog, 11 Document Number IAG-90-
011, Hewlett-Packard, May 1990.

782. T. Tin, "Living with Your Three-Headed
Dog, 11 Document Number IAG-90-012,
Hewlett-Packard, May 1990.

783. A. Tiwa, T-Seberry, and Y. Zheng, "Beacon
Based Authentication, 11 Computer Secu­
rity-ESORICS 94, Springer-Verlag, 1994,
pp. 125-141.

784. D.B. Tohnson, G.M. Dolan, M.T. Kelly, A.V.
Le, and S.M. Matyas, "Common Crypto­
graphic Architecture Cryptographic Appli­
cation Programming Interface, 11 IBM Sys­
tems fournal, v. 30, n. 2, 1991, pp. 130-150.

785. D.B. Tohnson, S.M. Matyas, A.V. Le, and
J.D. Wilkins, "Design of the Commercial
Data Masking Facility Data Privacy Algo-

rithm, 11 1st ACM Conference on Com­
puter and Communications Security,
ACM Press, 1993, pp. 93-96.

786. T-P. Tordan, 11A Variant of a Public-Key
Cryptosystem Based on Coppa Codes, 11

Sigact News, v. 15, n. 1, 1983, pp. 61-66.
787. A. Toux and L. Granboulan, 11 A Practical

Attack Against Knapsack Based Hash
Functions," Advances in Cryptology­
EUROCRYPT '94 Proceedings, Springer­
Verlag, 1995, to appear.

788. A. Joux and J. Stern, "Cryptanalysis of
Another Knapsack Cryptosystem, 11 Ad­
vances in Cryptology-ASIACRYPT '91
Proceedings, Springer-Verlag, 1993, pp.
470-476.

789. R.R. Jueneman, 11 Analysis of Certain
Aspects of Output-Feedback Mode, 11

Advances in Cryptology: Proceedings of
Crypto 82, Plenum Press, 1983, pp. 99-127.

790. R.R. Jueneman, "Electronic Document
Authentication," IEEE Network Maga­
zine, v. 1, n. 2, Apr 1978, pp. 17-23.

791. R.R. Jueneman, 11 A High Speed Manip­
ulation Detection Code, 11 Advances in
Cryptology-CRYPTO '86 Proceedings,
Springer-Verlag, 1987, pp. 327-346.

792. R.R. Jueneman, S.M. Matyas, and C.H.
Meyer, "Message Authentication with
Manipulation Detection Codes," Proceed­
ings of the 1983 IEEE Computer Society
Symposium on Research in Security and
Privacy, 1983, pp. 733-54.

793. R.R. Tueneman, S.M. Matyas, and C.H.
Meyer, "Message Authentication," IEEE
Communications Magazine, v. 23, n. 9,
Sep 1985, pp. 29-40.

794. D. Kahn, The Codebreakers: The Story of
Secret Writing, New York: Macmillan
Publishing Co., 1967.

795. D. Kahn, Kahn on Codes, New York:
Macmillan Publishing Co., 1983.

796. D. Kahn, Seizing the Enigma, Boston:
Houghton Mifflin Co., 1991.

797. P. Kaijser, T. Parker, and D. Pinkas,
"SESAME: The Solution to Security for
Open Distributed Systems, 11 fournal of
Computer Communications, v. 17, n. 4,
Jul 1994, pp. 501-518.

798. R. Kailar and V.D. Gilgor, "On Belief Evo­
lution in Authentication Protocols," Pro­
ceedings of the Computer Security Foun­
dations Workshop IV, IEEE Computer
Society Press, 1991, pp. 102-116.

~-:s __________ R_e_fe_r_en_ce_s ___________________ _

799. B.S. Kaliski, 11 A Pseudo Random Bit Gener­
ator Based on Elliptic Logarithms," Mas­
ter's thesis, Massachusetts Institute of
Technology, 1987.

800. B.S. Kaliski, letter to NIST regarding DSS,
4 Nov 1991.

801. B.S. Kaliski, "The MD2 Message Digest
Algorithm," RFC 1319, Apr 1992.

802. B.S. Kaliski, "Privacy Enhancement for
Internet Electronic Mail: Part IV: Key Cer­
tificates and Related Services, 11 RFC 1424,
Feb 1993.

803. B.S. Kaliski, "An Overview of the PKCS
Standards," RSA Laboratories, Nov 1993.

804. B.S. Kaliski, "A Survey of Encryption Stan­
dards, IEEE Micro, v. 13, n. 6, Dec 1993, pp.
74-81.

805. B.S. Kaliski, personal communication,
1993.

806. B.S. Kaliski, "On the Security and Perfor­
mance of Several Triple-DES Modes," RSA
Laboratories, draft manuscript, Jan 1994.

807. B.S. Kaliski, R.L. Rivest, and A.T. Sher­
man, "Is the Data Encryption Standard
a Group?", Advances in Cryptology­
EUROCRYPT '85, Springer-Verlag, 1986,
pp. 81-95.

808. B.S. Kaliski, R.L. Rivest, and A.T. Sherman,
"Is the Data Encryption Standard a Pure
Cipher? (Results of More Cycling Experi­
ments in DES)," Advances in Cryptology­
CRYPTO '85 Proceedings, Springer-Verlag,
1986, pp. 212-226.

809. B.S. Kaliski, R.L. Rivest, and A.T. Sher­
man, "Is the Data Encryption Standard a
Group? (Results of Cycling Experiments
on DES)," fournal of Cryptology, v. 1. n. 1,
1988, pp. 3-36.

810. B.S. Kaliski and M.J.B. Robshaw, "Fast
Block Cipher Proposal," Fast Software
Encryption, Cambridge Security Work­
shop Proceedings, Springer-Verlag, 1994,
pp. 33-40.

811. B.S. Kaliski and M.J.B. Robshaw, "Linear
Cryptanalysis Using Multiple Approxi­
mations," Advances in Cryptology­
CRYPTO '94 Proceedings, Springer-Verlag,
1994, pp. 26-39.

812. B.S. Kaliski and M.J.B. Robshaw, "Linear
Cryptanalysis Using Multiple Approxima­
tions and FEAL," K. U. Leuven Workshop
on Cryptographic Algorithms, Springer­
Verlag, 1995, to appear.

813. R.G. Kammer, statement before the U.S.
government Subcommittee on Telecom­
munications and Finance, Committee on
Energy and Commerce, 29 Apr 1993.

814. T. Kaneko, K. Koyama, and R. Terada,
"Dynamic Swapping Schemes and Differ­
ential Cryptanalysis, Proceedings of the
1993 Korea-fapan Workshop on Informa­
tion Security and Cryptography, Seoul,
Korea, 24-26 Oct 1993, pp. 292-301.

815. T. Kaneko, K. Koyama, and R. Terada,
"Dynamic Swapping Schemes and Differ­
ential Cryptanalysis," Transactions of the
Institute of Electronics, Information, and
Communication Engineers, v. E77-A, n. 8,
Aug 1994, pp. 1328-1336.

816. T. Kaneko and H. Miyano, "A Study on the
Strength Evaluation of Randomized DES­
Like Cryptosystems against Chosen Plain­
text Attacks," Proceedings of the 1993
Symposium on Cryptography and Infor­
mation Security (SCIS 93), Shuzenji,
Japan, 28-30 Jan 1993, pp. 15C.l-10.

81 7. J. Kari, "A Cryptosys tern Based on Proposi­
tional Logic," Machines, Languages, and
Complexity: 5th International Meeting of
Young Computer Scientists, Selected Con­
tributions, Springer-Verlag, 1989, pp.
210-219.

818. E.D. Kamin, J.W. Greene, and M.E. Hell­
man, "On Sharing Secret Systems," IEEE
Transactions on Information Theory, v. IT-
29, 1983, pp. 35-41.

819. F.W. Kasiski, Die Geheimschriften und die
Dechiffrir-kunst, E.S. Miller und Sohn,
1863. (In German.)

820. A. Kehne, J. Schonwalder, and H. Langen­
dorfer, "A Nonce-Based Protocol for Multi­
ple Authentications," Operating Systems
Review, v. 26, n. 4, Oct 1992, pp. 84-89.

821. J. Kelsey, personal communication, 1994.
822. R. Kemmerer, "Analyzing Encryption Pro­

tocols Using Formal Verification Tech­
niques," IEEE fournal on Selected Areas in
Communications, v. 7, n. 4, May 1989, pp.
448-457.

823. R. Kemmerer, C.A. Meadows, and J.
Millen, "Three Systems for Cryptographic
Protocol Analysis," fournal of Cryptology,
v. 7, n.2, 1994,pp. 79-130.

824. S.T. Kent, "Encryption-Based Protection
Protocols for Interactive User-Computer
Communications," MIT/LCS/TR-162,

____________________ R_e_fe_r_en_c_e_s _________ 7-~

MIT Laboratory for Computer Science,
May 1976.

825. S.T. Kent, "Privacy Enhancement for Inter­
net Electronic Mail: Part II: Certificate­
Based Key Management," RFC 1422, Feb
1993.

826. S.T. Kent, "Understanding the Internet
Certification System, 11 Proceedings of
INET '93, The Internet Society, 1993, pp.
BABl-BABl0.

827. S.T. Kent and J. Linn, "Privacy Enhance­
ment for Internet Electronic Mail: Part II:
Certificate-Based Key Management," RFC
1114, Aug 1989.

828. V. Kessler and G. Wedel, 11 AUTO LOG-An
Advanced Logic of Authentication," Pro­
ceedings of the Computer Security Foun­
dations Workshop VII, IEEE Computer
Society Press, 1994, pp. 90-99.

829. E.L. Key, "An Analysis of the Structure
and Complexity of Nonlinear Binary
Sequence Generators," IEEE Transactions
on Information Theory, v. IT-22, n. 6, Nov
1976, pp. 732-736.

830. T. Kiesler and L. Harn, "RSA Blocking aml
Multisignature Schemes with No Bit
Expansion," Electronics Letters, v. 26, n.
18, 30 Aug 1990, pp. 1490-1491.

831. J. Kilian, Uses of Randomness in Algo­
rithms and Protocols, MIT Press, 1990.

832. J. Kilian, 11 Achieving Zero-Knowledge
Robustly," Advances in Cryptology­
CRYPTO '90 Proceedings, Springer-Verlag,
1991, pp. 313-325.

833. J. Kilian and T. Leighton, "Failsafe Key
Escrow," MIT/LCS/TR-636, MIT Labora­
tory for Computer Science, Aug 1994.

834. K. Kim, "Construction of DES-Like S­
Boxes Based on Boolean Functions Satis­
fying the SAC," Advances in Cryptology­
ASIA CRYPT '91 Proceedings, Springer­
Verlag, 1993, pp. 59-72.

835. K. Kim, S. Lee, and S. Park, "Necessary
Conditions to Strengthen DES S-Boxes
Against Linear Cryptanalysis," Proceedings
of the 1994 Symposium on Cryptography
and Information Security (SCIS 94), Lake
Biwa, Japan, 27-29 Jan 1994, pp. 15D.l-9.

836. K. Kim, S. Lee, and S. Park, "How to
Strengthen DES against Differential
Attack," unpublished manuscript, 1994.

837. K. Kim, S. Lee, S. Park, and D. Lee, "DES
Can Be Immune to Differential Cryptanaly-

sis," Workshop on Selected Areas in Cryp­
tography-Workslwp Record, Kingston,
Ontario, 5-6 May 1994, pp. 70-81.

838. K. Kim, S. Park, and S. Lee, "How to
Strengthen DES against Two Robust
Attacks, 11 Proceedings of the 1995 fapan­
Korea Workshop on Information Security
and Cryptography, Inuyama, Japan, 24-27
Jan l 995, 173-182.

839. K. Kim, S. Park, and S. Lee, "Reconstruc­
tion of s2DES S-Boxes and their Immunity
to Differential Cryptanalysis," Proceed­
ings of the 1993 Korea-fapan Workshop on
Information Security and Cryptography,
Seoul, Korea, 24-26 Oct 1993, pp. 282-291.

840. S. Kim and B.S. Um, 11 A Multipurpose
Membership Proof System Based on Dis­
crete Logarithm," Proceedings of the 1993
Korea-fapan Workshop on Information
Security and Cryptography, Seoul, Korea,
24-26 Oct 1993, pp. 177-183.

841. P. Kinnucan, "Data Encryption Gurus:
Tuchman and Meyer," Cryptologia, v. 2, n.
4, Oct 1978.

842. A. Klapper, "The Vulnerability of Geomet­
ric Sequences Based on Fields of Odd Char­
acteristic," fournal of Cryptology, v. 7, n.
1, 1994, pp. 33-52.

843. A. Klapper, "Feedback with Carry Shift
Registers over Finite Fields," K. U. Leuven
Workshop on Cryptographic Algorithms,
Springer-Verlag, 1995, to appear.

844. A. Klapper and M. Goresky, "2-adic Shift
Registers," Fast Software Encryption,
Cambridge Security Workshop Proceed­
ings, Springer-Verlag, 1994, pp. 174-178.

845. A. Klapper and M. Goresky, "2-adic Shift
Registers," Technical Report #239-93,
Department of Computer Science, Univer­
sity of Kentucky, 19 Apr 1994.

846. A. Klapper and M. Goresky, "Large Period
Nearly de Bruijn FCSR Sequences,"
Advances in Cryptology-EUROCRYPT
'95 Proceedings, Springer-Verlag, 1995, pp.
263-273.

847. D.V. Klein, "'Foiling the Cracker': A Sur­
vey of, and Implications to, Password Secu­
rity," Proceedings of the USENIX UNIX
Security Workshop, Aug 1990, pp. 5-14.

848. D.V. Klein, personal communication,
1994.

849. C.S. Kline and G.J. Popek, "Public Key vs.
Conventional Key Cryptosystems," Pro-

~-s __________ R_e_fe_r_e_n_ce_s ___________________ _

ceedings of AFIPS National Computer
Conference, pp. 831-837.

850. H.-J. Knobloch, "A Smart Card Implemen­
tation of the Fiat-Shamir Identification
Scheme," Advances in Cryptology­
E UR OCRPYT '88 Proceedings, Springcr­
Verlag, 1988, pp. 87-95.

851. T. Knoph, J. Fro~l, W. Beller, and T.
Giesler, "A Hardware Implementation of a
Modified DES Algorithm," Microprocess­
ing and Microprogramming, v. 30, 1990,
pp. 59-66.

852. L.R. Knudsen, "Cryptanalysis of LOKI,"
Advances in Cryptology-ASIACRYPT '91
Proceedings, Springer-Verlag, 1993, pp.
22-35.

853. L.R. Knudsen, "Cryptanalysis of LOKI,"
Cryptography and Coding III, M.J. Ganley,
ed., Oxford: Clarendon Press, 1993, pp.
223-236.

854. L.R. Knudsen, "Cryptanalysis of LOKI91,"
Advances in Cryptology-AUSCRYPT '92
Proceedings, Springer-Verlag, 1993, pp.
196-208.

855. L.R. Knudsen, "Iterative Characteristics of
DES and s2DES," Advances in Cryptol­
ogy-CRYPTO '92, Springer-Verlag, 1993,
pp. 497-511.

856. L.R. Knudsen, "An Analysis of Kim, Park,
and Lee's DES-Like S-Boxes," unpublished
manuscript, 1993.

857. L.R. Knudsen, "Practically Secure Feistel
Ciphers," Fast Software Encryption, Cam­
bridge Security Workshop Proceedings,
Springer-Verlag, 1994, pp. 211-221.

858. L.R. Knudsen, "Block Ciphers-Analysis,
Design, Applications," Ph.D. dissertation,
Aarhus University, Nov 1994.

859. L.R. Knudsen, personal communication,
1994.

860. L.R. Knudsen, "Applications of Higher
Order Differentials and Partial Differen­
tials," K. U. Leuven Workshop on Crypto­
graphic Algorithms, Springer-Verlag, 1995,
to appear.

861. L.R. Knudsen and X. Lai, "New Attacks on
All Double Block Length Hash Functions
of Hash Rate 1, Including the Parallel­
DM," Advances in Cryptology-EURO­
CRYPT '94 Proceedings, Springer-Verlag,
1995, to appear.

862. L.R. Knudsen, "A Weakness in SAFER K-
64," Advances in Cryptology-CRYPTO

'95 Proceedings, Springer-Verlag, 1995, to
appear.

863. D. Knuth, The Art of Computer Program­
ming: Volume 2, Seminumerical Algo­
rithms, 2nd edition, Addison-Wesley, 1981.

864. D. Knuth, "Deciphering a Linear Congru­
ential Encryption," IEEE Transactions on
Information Theory, v. IT-31, n. 1, Jan
1985, pp. 49-52.

865. K. Kobayashi and L. Aoki, "On Linear
Cryptanalysis of MEAL," Proceedings of
the 1995 Symposium on Cryptography and
Information Security (SCIS 95), Inuyama,
Japan, 24-27 Jan 1995, pp. A4.2.l-9.

866. K. Kobayashi, K. Tamura, and Y. Nemoto,
"Two-dimensional Modified Rabin Cryp­
tosystem," Transactions of the Institute of
Electronics, Information, and Communi­
cation Engineers, v. J72-D, n. 5, May 1989,
pp. 850-851. (In Japanese.)

867. N. Koblitz, "Elliptic Curve Cryptosys­
tems," Mathematics of Computation, v.
48, n. 177, 1987, pp. 203-209.

868. N. Koblitz, "A Family of Jacobians Suitable
for Discrete Log Cryptosystems," Advances
in Cryptology-CRYPTO '88 Proceedings,
Springer-Verlag, 1990, pp. 94-99.

869. N. Koblitz, "Constructing Elliptic Curve
Cryptosystems in Characteristic 2," Ad­
vances in Cryptology-CRYPTO '90 Pro­
ceedings, Springer-Verlag, 1991, pp.
156-167.

870. N. Koblitz, "Hyperelliptic Cryptosystems,"
fournal of Cryptology, v. 1, n. 3, 1989, pp.
129-150.

871. N. Koblitz, "CM-Curves with Good
Cryptographic Properties," Advances in
Cryptology-CRYPTO '91 Proceedings,
Springer-Verlag, 1992, pp. 279-287.

872. C::.K. Ko<;, "High-Speed RSA Implementa­
tion," Version 2.0, RSA Laboratories, Nov
1994.

873. M.J. Kochanski, "Remarks on Lu and Lee's
Proposals," Cryptologia, v. 4, n. 4, 1980,
pp. 204-207.

874. M.J. Kochanski, "Developing an RSA
Chip," Advances in Cryptology-CRYPTO
'85 Proceedings, Springer-Verlag, 1986, pp.
350-357.

875. J.T. Kohl, "The Use of Encryption in Ker­
beros for Network Authentication," Ad­
vances in Cryptology-CRYPTO '89 Pro­
ceedings, Springer-Verlag, 1990, pp. 35-43.

____________________ R_e_f_er_e_n_c_e_s _________ 7-=--~

876. J.T. Kohl, "The Evolution of the Kerberos
Authentication Service, 11 EurOpen Confer­
ence Proceedings, May 1991, pp. 295-313.

877. J.T. Kohl and B.C. Neuman, "The Kerberos
Network Authentication Service," RFC
1510, Sep 1993.

878. J.T. Kohl, B.C. Neuman, and T. Ts'o, "The
Evolution of the Kerberos Authentication
System," Distributed Open Systems, IEEE
Computer Society Press, 1994, pp. 78-94.

879. Kohnfelder, "Toward a Practical Public
Key Cryptosystem," Bachelor's thesis,
MIT Department of Electrical Engineering,
May 1978.

880. A.G. Konheim, Cryptography: A Primer,
New York: John Wiley & Sons, 1981.

881. A.G. Konheim, M.H. Mack, R.K. McNeil!,
B. Tuckerman, and G. Waldbaum, "The
IPS Cryptographic Programs," IBM Sys­
tems fournal, v. 19, n. 2, 1980, pp.
253-283.

882. V.I. Korzhik and A.I. Turkin, "Cryptanaly­
sis of McEliece's Public-Key Cryptosys­
tem," Advances in Cryptology-EURO­
CRYPT '91 Proceedings, Springer-Verlag,
1991, pp. 68-70.

883. S.C. Kothari, "Generalized Linear Thresh­
old Scheme," Advances in Cryptology:
Proceedings of CRYPTO 84, Springer­
Verlag, 1985, pp. 231-241.

884. J. Kowalchuk, B.P. Schanning, and S. Pow­
ers, "Communication Privacy: Integration
of Public and Secret Key Cryptography,"
Proceedings of the National Telecommu­
nication Conference, IEEE Press, 1980, pp.
49.1.1-49.1.5.

885. K. Koyama, 11 A Master Key for the RSA
Public-Key Cryptosystem," Transactions
of the Institute of Electronics, Informa­
tion, and Communication Engineers, v.
J65-D, n. 2, Feb 1982, pp. 163-170.

886. K. Koyama, 11 A Cryptosystem Using the
Master Key for Multi-Address Communi­
cations," Transactions of the Institute of
Electronics, Information, and Communi­
cation Engineers, v. J65-D, n. 9, Sep 1982,
pp. 1151-1158.

887. K. Koyama, "Demonstrating Membership
of a Group Using the Shizuya-Koyama­
Itoh (SKI) Protocol," Proceedings of the
1989 Symposium on Cryptography and
Information Security (SCIS 89), Gotenba,
Japan, 1989.

888. K. Koyama, "Direct Demonstration of
the Power to Break Public-Key Crypto­
systems," Advances in Cryptology­
A USCRYPT '90 Proceedings, Springer­
Verlag, 1990, pp. 14-21.

889. K. Koyama, "Security and Unique Deci­
pherability of Two-dimensional Public Key
Cryptosystems," Transactwns of the Insti­
tute of Electronics, Information, and
Communication Engineers, v. E73, n. 7, Jul
1990, pp. 1057-1067.

890. K. Koyama, U.M. Maurer, T. Okamoto,
and S.A. Vanstone, "New Public-Key
Schemes Based on Elliptic Curves over the
Ring Zn," Advances in Cryptology­
CRYPTO '91 Proceedings, Springer-Verlag,
1992, pp. 252-266.

891. K. Koyama and K. Ohta, "Identity-based
Conference Key Distribution System," Ad­
vances in Cryptology-CRYPTO '87 Pro­
ceedings, Springer-Verlag, 1988, pp. 175-184.

892. K. Koyama and T. Okamoto, "Elliptic
Curve Cryptosystems and Their Applica­
tions," IEICE Transactions on Informa­
tion and Systems, v. E75-D, n. 1, Jan 1992,
pp. 50-57.

893. K. Koyama and R. Terada, "How to
Strengthen DES-Like Cryptosystems
against Differential Cryptanalysis," Trans­
actions of the Institute of Electronics,
Information, and Communication Engi­
neers, v. E76-A, n. 1, Jan 1993, pp. 63-69.

894. K. Koyama and R. Terada, "Probabilistic
Swapping Schemes to Strengthen DES
against Differential Cryptanalysis," Pro­
ceedings of the 1993 Symposium on Cryp­
tography and Information Security (SCIS
93), Shuzenji, Japan, 28-30 Jan 1993, pp.
15D.l-12.

895. K. Koyama and Y. Tsuruoka, "Speeding up
Elliptic Cryptosystems Using a Singled
Binary Window Method, 11 Advances in
Cryptology-CRYPTO '92 Proceedings,
Springer-Verlag, 1993, pp. 345-357.

896. E. Kranakis, Primality and Cryptography,
Wiler-Teubner Series in Computer Sci­
ence, 1986.

897. D. Kravitz, "Digital Signature Algorithm,"
U.S. Patent #5,231,668, 27 Jul 1993.

898. D. Kravitz and I. Reed, "Extension of RSA
Cryptostructure: A Galois Approach,"
Electronics Letters, v. 18, n. 6, 18 Mar
1982, pp. 255-256.

~""':s,-----------R_ef_e_r_en_c_e_s ___________________ _

899. H. Krawczyk, "How to Predict Congruen­
tial Generators," Advances in Cryptol­
ogy-CRYPTO '89 Proceedings, Springer­
Vcrlag, 1990, pp. 138-153.

900. H. Krawczyk, "How to Predict Congruen­
tial Generators," fournal of Algorithms, v.
13, n. 4, Dec 1992, pp. 527-545.

901. H. Krawczyk, "The Shrinking Generator:
Some Practical Considerations," Fast Soft­
ware Encryption, Cambridge Security
Workshop Proceedings, Springer-Verlag,
1994, pp. 45-46.

902. G.J. Kuhn, "Algorithms for Self-Synch­
ronizing Ciphers," Proceedings of COM­
SIG 88, 1988.

903. G.J. Kuhn, F. Bruwer, and W. Smit, '"n Vin­
nige Veeldoelige Enkripsievlokkie," Pro­
ceedings of Infosec 90, 1990. (In Afrikaans.)

904. S. Kullback, Statistical Methods in Crypt­
analysis, U.S. Government Printing
Office, 1935. Reprinted by Aegean Park
Press, 1976.

905. P.V. Kumar, R.A. Scholtz, and L.R. Welch,
"Generalized Bent Functions and their Prop­
erties," fournal of Combinational Theory,
Series A, v. 40, n. 1, Sep 1985, pp. 90-107.

906. M. Kurosaki, T. Matsumoto, and H. Imai,
"Simple Methods for Multipurpose Certi­
fication," Proceedings of the 1989 Sympo­
sium on Cryptography and Information
Security (SCIS 89), Gotenba, Japan, 1989.

907. M. Kurosaki, T. Matsumoto, and H. Imai,
"Proving that You Belong to at Least One
of the Specified Groups," Proceedings of
the 1990 Symposium on Cryptography
and Information Security (SCIS 90),
Hihondaira, Japan, 1990.

908. K. Kurosawa, "Key Changeable ID-Based
Cryptosystem," Electronics Letters, v. 25,
n. 9, 27 Apr 1989, pp. 577-578.

909. K. Kurosawa, T. Ito, and M. Takeuchi,
"Public Key Cryptosystem Using a Recip­
rocal Number with the Same Intractability
as Factoring a Large Number," Cryptolo­
gia, v. 12, n. 4, Oct 1988, pp. 225-233.

910. K. Kurosawa, C. Park, and K. Salzano,
11 Group Signer/Verifier Separation Scheme,"
Proceedings of the 1995 fapan-Korea Work­
shop on Information Security and Cryptog­
raphy, Inuyama, Japan, 24-27 Jan 1995,
134-143.

911. G.C. Kurtz, D. Shanks, and H.C. Williams,
"Fast Primality Tests for Numbers Less
than 50*10 9," Mathematics of Computa­
tion, v. 46, n. 174, Apr 1986, pp. 691-701.

912. K. Kusuda and T. Matsumoto, "Optimiza­
tion of the Time-Memory Trade-Off Crypt­
analysis and Its Application to Block
Ciphers," Proceedings of the 1995 Sympo­
sium on Cryptography and Information
Security (SCIS 95), Inuyama, Japan, 24-27
Jan 1995, pp. A3.2.l-ll. (In Japanese.)

913. H. Kuwakado and K. Koyama, "Security of
RSA-Type Cryptosystems Over Elliptic
Curves against Hastad Attack," Electron­
ics Letters, v. 30, n. 22, 27 Oct 1994, pp.
1843-1844.

914. H. Kuwakado and K. Koyama, "A New
RSA-Type Cryptosystem over Singular
Elliptic Curves," IMA Conference on
Applications of Finite Fields, Oxford Uni­
versity Press, to appear.

915. H. Kuwakado and K. Koyama, "A New
RSA-Type Scheme Based on Singular
Cubic Curves," Proceedings of the 1995
fapan-Korea Workshop on Information
Security and Cryptography, Inuyama,
Japan, 24-27 Jan 1995, pp. 144-151.

916. M. Kwan, "An Eight Bit Weakness in the
LOKI Cryptosystem," technical report,
Australian Defense Force Academy, Apr
1991.

917. M. Kwan and J. Pieprzyk, "A General Pur­
pose Technique for Locating Key Scheduling
Weakness in DES-Like Cryptosystems,"
Advances in Cryptology-ASIACRYPT '91
Proceedings, Springer-Verlag, 1991, pp.
237-246.

918. J.B. Lacy, D.P. Mitchell, and W.M. Schell,
"CryptoLib: Cryptography in Software,"
UNIX Security Symposium IV Proceed­
ings, USENIX Association, 1993, pp. 1-17.

919. J.C. Lagarias, "Knapsack Public Key Cryp­
tosystems and Diophantine Approxima­
tions," Advances in Cryptology: Proceed­
ings of Crypto 83, Plenum Press, 1984, pp.
3-23.

920. J.C. Lagarias, "Performance Analysis of
Shamir's Attack on the Basic Merkle­
Hellman Knapsack Cryptosystem," Lec­
ture Notes in Computer Science 172; Pro­
ceedings of the 11th International
Colloquium on Automata, Languages,
and Programming (ICALP), Springer­
Verlag, 1984, pp. 312-323.

921. J.C. Lagarias and A.M. Odlyzko, "Solving
Low-Density Subset Sum Problems," Pro­
ceedings of the 24th IEEE Symposium on
Foundations of Computer Science, 1983,
pp. 1-10.

____________________ R_e_f_er_e_n_c_e_s _________ 7----:,,'~

922. J.C. Lagarias and A.M. Odlyzko, "Solving
Low-Density Subset Sum Problems," four­
nal of the ACM, v. 32, n. 1, Jan 1985, pp.
229-246.

923. J.C. Lagarias and J. Reeds, "Unique Extrap­
olation of Polynomial Recurrences," SIAM
fournal on Computing, v. 17, n. 2, Apr
1988, pp. 342-362.

924. X. Lai, Detailed Description and a Soft­
ware Implementation of the IPES Cipher,
unpublished manuscript, 8 Nov 1991.

925. X. Lai, On the Design and Security of
Block Ciphers, ETH Series in Information
Processing, v. 1, Konstanz: Hartung-Corre
Verlag. 1992.

926. X. Lai, personal communication, 1993.
927. X. Lai, "Higher Order Derivatives and Dif­

ferential Cryptanalysis," Communica­
tions and Cryptography: Two Sides of
One Tapestry, R.E. Blahut et al., eds.,
Kluwer Adademic Publishers, 1994. pp.
227-233.

928. X. Lai and L. Knudsen, "Attacks on Double
Block Length Hash Functions," Fast Soft­
ware Encryption, Cambridge Security
Workshop Proceedings, Springer-Verlag,
1994, pp. 157-165.

929. X. Lai and J. Massey, "A Proposal for
a New Block Encryption Standard,"
Advances in Cryptology-EUROCRYPT
'90 Proceedings, Springer-Verlag, 1991, pp.
389-404.

930. X. Lai and J. Massey, "Hash Functions
Based on Block Ciphers." Advances in
Cryptology-EUROCRYPT '92 Proceed­
ings, Springer-Verlag, 1992, pp. 55-70.

931. X. Lai, J. Massey, and S. Murphy, "Markov
Ciphers and Differential Cryptanalysis,"
Advances in Cryptology-EUROCRYPT
'91 Proceedings, Springer-Verlag, 1991, pp.
17-38.

932. X. Lai, R.A. Rueppel, and J. Woollven, "A
Fast Cryptographic Checksum Algorithm
Based on Stream Ciphers," Advances in
Cryptology-AUSCRYPT '92 Proceedings,
Springer-Verlag, 1993. pp. 339-348.

933. C.S. Laih, J.Y. Lee, C.H. Chen, and L. Harn,
"A New Scheme for lD-based Cryptosys­
tems and Signatures." fournal of the Chi­
nese Institute of Engineers, v. 15, n. 2, Sep
1992, pp. 605-610.

934. B.A. LaMacchia and A.M. Odlyzko. "Com­
putation of Discrete Logarithms in Prime
Fields," Designs, Codes, and Cryptogra­
phy, V. 1, 1991, pp. 46-62.

935. L. Lamport, "Password Identification with
Insecure Communications," Communica­
tions of the ACM, v. 24, n. 11, Nov 1981,
pp. 770-772.

936. S. Landau, "Zero-Knowledge and the
Department of Defense," Notices of the
American Mathematical Society, v. 35. n.
1, Jan 1988, pp. 5-12.

937. S. Landau, S. Kent, C. Brooks, S. Charney,
D. Denning, W. Diffie, A. Lauck, D.
Mikker. P. Neumann, and D. Sobel.
"Codes, Keys, and Conflicts: Issues in U.S.
Crypto Policy," Report of a Special Panel
of the ACM U.S. Public Policy Committee
(USACM), Association for Computing
Machinery, Jun 1994.

938. S.K. Langford and M.E. Hellman. "Crypt­
analysis of DES." presented at 1994 RSA
Data Security conference, Redwood
Shores. CA, 12-14 Jan 1994.

939. D. Lapidot and A. Shamir, "Publicly Verifi­
able Non-Interactive Zero-Knowledge
Proofs," Advances in Cryptology­
CRYPTO '90 Proceedings, Springer-Verlag,
1991, pp. 353-365.

940. A.V. Le, S.M. Matyas, D.B. Johnson, and J.D.
Wilkins, "A Public-Key Extension to the
Common Cryptographic Architecture,"
IBM Systems fournal. v. 32, n. 3, 1993, pp.
461-485.

941. P. L'Ecuyer, "Efficient and Portable Com­
bined Random Number Generators,"
Communications of the ACM. v. 31, n. 6,
Jun 1988, pp. 742-749, 774.

942. P. L'Ecuyer, "Random Numbers for Simu­
lation," Communications of the ACM. v.
33, n. 10, Oct 1990, pp. 85-97.

943. P.J. Lee and E.F. Brickell, "An Observation
on the Security of McEliece's Public-Key
Cryptosystem," Advances in Cryptology­
EUR OCRYPT '88 Proceedings, Springer­
Verlag. 1988, pp. 275-280.

944. S. Lee, S. Sung, and K. Kim, "An Efficient
Method to Find the Linear Expressions
for Linear Cryptanalysis." Proceedings of
the 1995 Korea-fapan Workshop on Infor­
mation Security and Cryptography, Inu­
yama, Japan, 24-26 Jan 1995. pp. 183-
190.

945. D.J. Lehmann, "On PrimalityTests," SIAM
fournal on Computing, v. 11, n. 2, May
1982. pp. 374-375.

946. T. Leighton, "Failsafe Key Escrow Sys­
tems." Technical Memo 483, MIT Labora­
tory for Computer Science, Aug 1994.

~---:s;:------------R_ef_e_r_en_c_es ____________________ _

947. A. Lempel and M. Cohn, "Maximal Fami­
lies of Bent Sequences, 11 IEEE Transactions
on Information Theory, v. IT-28, n. 6, Nov
1982, pp. 865-868.

948. A.K. Lenstra, "Factoring Multivariate
Polynomials Over Finite Fields," fournal
of Computer System Science, v. 30, n. 2,
Apr 1985, pp. 235-248.

949. A.K. Lenstra, personal communication,
1995.

950. A.K. Lenstra and S. Haber, letter to NIST
Regarding DSS, 26 Nov 1991.

951. A.K. Lenstra, H.W. Lenstra Jr., and L.
Lovacz, "Factoring Polynomials with
Rational Coefficients, 11 Mathematische
Annalen, v. 261, n. 4, 1982, pp. 515-534.

952. A.K. Lenstra, H.W. Lenstra, Jr., M.S. Man­
asse, and J.M. Pollard, "The Number Field
Sieve," Proceedings of the 22nd ACM
Symposium on the Theory of Computing,
1990, pp. 574-572.

953. A.K. Lenstra and H.W. Lenstra, Jr., eds.,
Lecture Notes in Mathematics 1554: The
Development of the Number Field Sieve,
Springer-Verlag, 1993.

954. A.K. Lenstra, H.W. Lcnstra, Jr., M.S. Man­
asse, and J.M. Pollard, "The Factorization
of the Ninth Fermat Number," Mathemat­
ics of Computation, v. 61, n. 203, 1993, pp.
319-349.

955. A.K. Lenstra and M.S. Manasse, "Factoring
by Electronic Mail," Advances in Cryptol­
ogy-EUROCRYPT '89 Proceedings,
Springer-Verlag, 1990, pp. 355-371.

956. A.K. Lenstra and M.S. Manasse, "Factoring
with Two Large Primes," Advances in
Cryptology-EUROCRYPT '90 Proceed­
ings, Springer-Verlag, 1991, pp. 72-82.

957. H.W. Lenstra Jr. "Elliptic Curves and
Number-Theoretic Algorithms," Report
86-19, Mathcmatisch Instituut, Univer­
siteit van Amsterdam, 1986.

958. H.W. Lenstra Jr. "On the Chor-Rivest
Knapsack Cryptosystem, 11 fournal of Cryp­
tology, v. 3, n. 3, 1991, pp. 149-155.

959. W.J. LeVeque, Fundamentals of Number
Theory, Addison-Wesley, 1977.

960. L.A. Levin, "One-Way Functions and
Pseudo-Random Generators," Proceedings
of the 17th ACM Symposium on Theory of
Computing, 1985, pp. 363-365.

961. Lexar Corporation, 11 An Evaluation of the
DES," Sep 1976.

962. D.-X. Li, "Cryptanalysis of Public-Key Dis­
tribution Systems Based on Dickson Poly-

nomials, 11 Electronics Letters, v. 27, n. 3,
1991, pp. 228-229.

963. F.-X. Li, "How to Break Okamoto's Cryp­
tosystems by Continued Fraction Algo­
rithm," ASIACRYPT '91 Abstracts, 1991,
pp. 285-289.

964. Y.X. Li and X.M. Wang, 11 A Joint Authenti­
cation and Encryption Scheme Based on
Algebraic Coding Theory, 11 Applied Alge­
bra, Algebraic Algorithms and Error Cor­
recting Codes 9, Springer-Verlag, 1991, pp.
241-245.

965. R. Lidl, G.L. Mullen, and G. Turwald, Pit­
man Monographs and Surveys in Pure and
Applied Mathematics 65: Dickson Polyno­
mials, London: Longman Scientific and
Technical, 1993.

966. R. Lidl and W.B. Muller, "Permutation
Polynomials in RSA-Cryptosystems,"
Advances in Cryptology: Proceedings of
Crypto 83, Plenum Press, 1984, pp.
293-301.

967. R. Lidl and W.B. Muller, "Generalizations
of the Fibonacci Pseudoprimes Test, 11 Dis­
crete Mathematics, v. 92, 1991, pp.
211-220.

968. R. Lidl and W.B. Muller, "Primality Test­
ing with Lucas Functions," Advances in
Cryptology-AUSCRYPT '92 Proceedings,
Springer-Verlag, 1993, pp. 539-542.

969. R. Lidl, W.B. Muller, and A. Oswald,
"Some Remarks on Strong Fibonacci Pseu­
doprimes," Applicable Algebra in Engi­
neering, Communication and Computing,
V. 1, n. 1, 1990, pp. 59-65.

970. R. Lidl and H. Niederreiter, "Finite Fields, 11

Encyclopedia of Mathematics and its
Applications, v. 20, Addison-Wesley, 1983.

971. R. Lidl and H. Niederreiter, Introduction
to Finite Fields and Their Applications,
London: Cambridge University Press,
1986.

972. K. Lieberherr, "Uniform Complexity and
Digital Signatures," Theoretical Computer
Science, v. 16, n. 1, Oct 1981, pp. 99-110.

973. C.H. Lim and P.J. Lee, "A Practical Elec­
tronic Cash System for Smart Cards," Pro­
ceedings of the 1993 Korea-fapan Work­
shop on Information Security and
Cryptography, Seoul, Korea, 24-26 Oct
1993, pp. 34-47.

974. C.H. Lim and P.J. Lee, "Security of Interac­
tive DSA Batch Verification," Electronics
Letters, v. 30, n. 19, 15 Sep 1994, pp.
1592-1593.

_____________________ R_e_f_e_re_n_c_e_s __________ 7____,_~

975. H.-Y. Lin and L. Harn, 11A Generalized
Secret Sharing Scheme with Cheater
Detection, 11 Advances in Cryptology­
ASIACRYPT '91 Proceedings, Springer­
Verlag, 1993, pp. 149-158.

976. M.-C. Lin, T-C. Chang, and H.-L. Fu,
"Information Rate of McEliece's Public­
key Cryptosystem, 11 Electronics Letters, v.
26, n. 1, 4 Jan 1990, pp. 16-18.

977. J. Linn, "Privacy Enhancement for Internet
Electronic Mail: Part I-Message Encipher­
ment and Authentication Procedures, 11

RFC 989, Feb 1987.
978. J. Linn, "Privacy Enhancement for Internet

Electronic Mail: Part I-Message Encipher­
ment and Authentication Procedures, 11

RFC 1040, Jan 1988.
979. J. Linn, "Privacy Enhancement for Internet

Electronic Mail: Part I-Message Encipher­
ment and Authentication Procedures, 11

RFC 1113, Aug 1989.
980. J. Linn, "Privacy Enhancement for Internet

Electronic Mail: Part III-Algorithms,
Modes, and Identifiers," RFC 1115, Aug
1989.

981. J. Linn, "Privacy Enhancement for Internet
Electronic Mail: Part I-Message Encipher­
ment and Authentication Procedures, 11

RFC 1421, Feb 1993.
982. S. Lloyd, "Counting Binary Functions with

Certain Cryptographic Properties," four­
nal of Cryptology v. 5, n. 2, 1992, pp.
107-131.

983. TM.A. Lomas, 11Collision-Freedom, Con­
sidered Harmful, or How to Boot a Com­
puter," Proceedings of the 1995 Korea­
fapan Workshop on Information Security
and Cryptography, Inuyama, Japan, 24-26
Jan 1995, pp. 35-42.

984. TM.A. Lomas and M. Roe, "Forging a
Clipper Message," Communications of the
ACM, v. 37, n. 12, 1994, p. 12.

985. D.L. Long, "The Security of Bits in the Dis­
crete Logarithm, 11 Ph.D. dissertation,
Princeton University, Jan 1984.

986. D.L. Long and A. Wigderson, "How Dis­
crete Is the Discrete Log, 11 Proceedings of
the 15th Annual ACM Syposium on the
Theory of Computing, Apr 1983.

987. D. Longley and S. Rigby, "An Automatic
Search for Security Flaws in Key Manage­
ment Schemes," Computers and Security,
v. 11, n. 1, Jan 1992. pp. 75-89.

988. S.H. Low, N.F. Maxemchuk, and S. Paul,
"Anonymous Credit Cards," Proceedings

of the 2nd Annual ACM Conference on
Computer and Communications Security,
ACM Press, 1994, pp. 108-117.

989. J.H. Loxton, D.S.P. Khoo, G.J. Bird, and J.
Se berry, 11 A Cubic RSA Code Equivalent to
Factorization," fournal of Cryptology, v. 5,
n. 2, 1992, pp. 139-150.

990. S.C. Lu and L.N. Lee, 11 A Sin1ple and Effec­
tive Public-Key Cryptosystem," COMSAT
Technical Review, 1979, pp. 15-24.

991. M. Luby, S. Micali, and C. Racko££, "How
to Simultaneously Exchange a Secret Bit
by Flipping a Symmetrically-Biased Coin, 11

Proceedings of the 24nd Annual Sympo­
sium on the Foundations of Computer Sci­
ence, 1983, pp. 11-22.

992. M. Luby and C. Racko££, "How to Con­
struct Pseudo-Random Permutations from
Pseudorandom Functions, 11 SIAM fournal
on Computing, Apr 1988, pp. 373-386.

993. F. Luccio and S. Mazzone, 11 A Cryptosys­
tem for Multiple Communications, 11 Infor­
mation Processing Letters, v. 10, 1980, pp.
180-183.

994. V. Luchangco and K. Koyama, 11 An Attack
on an ID-Based Key Sharing System, Pro­
ceedings of the 1993 Korea-fapan Work­
shop on Information Security and Cryp­
tography, Seoul, Korea, 24-26 Oct 1993,
pp. 262-271.

995. D.J,C. MacKay, 11 A Free Energy Minimiza­
tion Framework for Inferring the State of a
Shift Register Given the Noisy Output
Sequence, 11 K. U. Leuven Workshop on
Cryptographic Algorithms, Springer­
Verlag, 1995, to appear.

996. M.D. MacLaren and G. Marsaglia, "Uni­
form Random Number Generators," four­
nal of the ACM v. 12, n. 1, Jan 1965, pp.
83-89.

997. D. MacMillan, "Single Chip Encrypts Data
at 14Mb/s, 11 Electronics, v. 54, n. 12, 16
June 1981, pp. 161-165.

998. R. Madhavan and L.E. Peppard, 11A Multi­
processor GaAs RSA Cryptosystem, 11 Pro­
ceedings CCVLSI-89: Canadian Confer­
ence on Very Large Scale Integration,
Vancouver, BC. Canada, 22-24 Oct 1989,
pp. 115-122.

999. W.E. Madryga, 11A High Performance
Encryption Algorithm, 11 Computer Secu­
rity: A Global Challenge, Elsevier Science
Publishers, 1984, pp. 557-570.

1000. M. Mambo, A. Nishikawa, S. Tsujii, and E.
Okamoto, "Efficient Secure Broadcast

~..,_:s.,--------------R_e_fe_r_en_ce_s ___________________ _

Communication System," Proceedings of
the 1993 Korea-fapan Workshop on Infor­
mation Security and Cryptography, Seoul,
Korea, 24-26 Oct 1993, pp. 23-33.

1001. M. Mambo, K. Usuda, and E. Okamoto,
"Proxy Signatures," Proceedings of the
1995 Symposium on Cryptography and
Information Security (SCIS 95), Inuyama,
Japan, 24-27 Jan 1995, pp. Bl.1.1-17.

1002. W. Mao and C. Boyd, "Towards Formal
Analysis of Security Protocols," Proceed­
ings of the Computer Security Founda­
tions Worl<shop VI, IEEE Computer Soci­
ety Press, 1993, pp. 147-158.

1003. G. Marsaglia and T.A. Bray, "On-Line Ran­
dom Number Generators and their Use in
Combinations," Communications of the
ACM, v. 11, n. 11, Nov 1968, p. 757-759.

1004. K.M. Martin, "Untrustworthy Participants
in Perfect Secret Sharing Schemes," Cryp­
tography and Coding III, M.J. Ganley, ed.,
Oxford: Clarendon Press, 1993, pp.
255-264.

1005. J.L. Massey, "Shift-Register Synthesis and
BCH Decoding," IEEE Transactions on
Information Theory, v. IT-15, n. 1, Jan
1969, pp. 122-127.

1006. J.L. Massey, "Cryptography and System
Theory," Proceedings of the 24th Allerton
Conference on Communication, Control,
and Computers, 1-3 Oct 1986, pp. 1-8.

1007. J.L. Massey, 11 An Introduction to Contem­
porary Cryptology, 11 Proceedings of the
IEEE, v. 76, n. 5., May 1988, pp. 533-549.

1008. J.L. Massey, "Contemporary Cryptology:
An Introduction," in Contemporary Cryp­
tology: The Science of Information
Integrity, G.J. Simmons, ed., IEEE Press,
1992, pp. 1-39.

1009. J.L. Massey, "SAFER K-64: A Byte­
Oriented Block-Ciphering Algorithm,"
Fast Software Encryption, Cambridge
Security Workshop Proceedings, Springer­
Verlag, 1994, pp. 1-17.

1010. J.L. Massey, "SAFER K-64: One Year
Later," K. U. Leuven Workshop on Crypto­
graphic Algorithms, Springer-Verlag, 1995,
to appear.

1011. J.L. Massey and I. Ingemarsson, "The Rip
Van Winkle Cipher-A Simple and Prov­
ably Computationally Secure Cipher with
a Finite Key," IEEE International Sympo­
sium on Information Theory, Brighton,
UK, May 1985.

1012. J.L. Massey and X. Lai, "Device for Con­
verting a Digital Block and the Use
Thereof," International Patent PCT/
CH91/00117, 28 Nov 1991.

1013. J.L. Massey and X. Lai, "Device for the Con­
version of a Digital Block and Use of Same,"
U.S. Patent #5,214, 703, 25 May 1993.

1014. J.L. Massey and R.A. Rueppel, "Linear
Ciphers and Random Sequence Generators
with Multiple Clocks," Advances in Cryp­
tology: Proceedings of EUROCRYPT 84,
Springer-Verlag, 1985, pp. 74-87.

1015. M. Matsui, "Linear Cryptanalysis Method
for DES Cipher," Advances in Cryp­
tology-EUROCRYPT '93 Proceedings,
Springer-Verlag, 1994, pp. 386-397.

1016. M. Matsui, "Linear Cryptanalysis of DES
Cipher (I)," Proceedings of the 1993 Sym­
posium on Cryptography and Information
Security (SCIS 93), Shuzenji, Japan, 28-30
Jan 1993, pp. 3C.1-14. (In Japanese.)

1017. M. Matsui, "Linear Cryptanalysis Method
for DES Cipher (III)," Proceedings of the
1994 Symposium on Cryptography and
Information Security (SCIS 94), Lake Biwa,
Japan, 27-29 Jan 1994, pp. 4A.l-ll. (In
Japanese.)

1018. M. Matsui, "On Correlation Between the
Order of the S-Boxes and the Strength of
DES," Advances in Cryptology-EURO­
CRYPT '94 Proceedings, Springer-Verlag,
1995, to appear.

1019. M. Matsui, "The First Experimental
Cryptanalysis of the Data Encryption
Standard, 11 Advances in Cryptology­
CRYPTO '94 Proceedings, Springer-Verlag,
1994, pp. 1-11.

1020. M. Matsui and A. Yamagishi, "A New
Method for Known Plaintext Attack of
FEAL Cipher, 11 Advances in Cryptology­
E UR OCRYPT '92 Proceedings, Springer­
Verlag, 1993, pp. 81-91.

1021. T. Matsumoto and H. Imai, "A Class of
Asymmetric Crypto-Systems Based on
Polynomials Over Finite Rings," IEEE
International Symposium on Information
Theory, 1983, pp. 131-132.

1022. T. Matsumoto and H. Imai, "On the Key
Production System: A Practical Solution to
the Key Distribution Problem," Advances
in Cryptology-CRYPTO '87 Proceedings,
Springer-Verlag, 1988, pp. 185-193.

1023. T. Matsumoto and H. Imai, "On the Secu­
rity of Some Key Sharing Schemes (Part

____________________ R_e_f_er_e_n_c_es _________ 7_~

2)," IEICE Japan, Technical Report,
ISEC90-28, 1990.

1024. S.M. Matyas, "Digital Signatures-An
Overview," Computer Networks, v. 3, n. 2,
Apr 1979, pp. 87-94.

1025. S.M. Matyas, "Key Handling with Control
Vectors," IBM Systems Journal, v. 30, n. 2,
1991, pp. 151-174.

1026. S.M. Matyas, A.V. Le, and D.G. Abraham,
"A Key Management Scheme Based on
Control Vectors," IBM Systems fournal, v.
30, n. 2, 1991, pp. 175-191.

1027. S.M. Matyas and C.H. Meyer, "Genera­
tion, Distribution, and Installation of
Cryptographic Keys," IBM Systems Jour­
nal, v. 17, n. 2, 1978, pp. 126-137.

1028. S.M. Matyas, C.H. Meyer, and J. Oseas,
"Generating Strong One-Way Functions
with Cryptographic Algorithm," IBM
Technical Disclosure Bulletin, v. 27, n.
lOA, Mar 1985, pp. 5658-5659.

1029. U.M. Maurer, "Provable Security in Cryp­
tography," Ph.D. dissertation, ETH No.
9260, Swiss Federal Institute of Technol­
ogy, Zurich, 1990.

1030. U.M. Maurer, "A Provable-Secure
Strongly-Randomized Cipher," Advances
in Cryptology-EUROCRYPT '90 Pro­
ceedings, Springer-Verlag, 1990, pp.
361-373.

1031. U.M. Maurer, "A Universal Statistical
Test for Random Bit Generators,"
Advances in Cryptology-CRYPTO '90
Proceedings, Springer-Verlag, 1991, pp.
409-420.

1032. U.M. Maurer, "A Universal Statistical
Test for Random Bit Generators," Journal
of Cryptology, v. 5, n. 2, 1992, pp. 89-106.

1033. U.M. Maurer and J.L. Massey, "Cascade
Ciphers: The Importance of Being First,"
fournal of Cryptology, v. 6, n. 1, 1993, pp.
55-61.

1034. U.M. Maurer and J.L. Massey, "Perfect
Local Randomness in Pseudo-Random
Sequences," Advances in Cryptology­
CRYPTO '89 Proceedings, Springer-Verlag,
1990, pp. 110-112.

1035. U.M. Maurer and Y. Yacobi, "Non­
interactive Public Key Cryptography,"
Advances in Cryptology-EUROCRYPT
'91 Proceedings, Springer-Verlag, 1991, pp.
498-507.

1036. G. Mayhew, "A Low Cost, High Speed
Encryption System and Method," Proceed-

ings of the 1994 IEEE Computer Society
Symposium on Research in Security and
Privacy, 1994, pp. 147-154.

1037. G. Mayhew, R. Frazee, and M. Bianco,
"The Kinetic Protection Device," Proceed­
ings of the 15th National Computer Secu­
rity Conference, NIST, 1994, pp. 147-154.

1038. K.S. McCurley, "A Key Distribution Sys­
tem Equivalent to Factoring," fournal of
Cryptology, v. 1, n. 2, 1988, pp. 95-106.

1039. K.S. Mccurley, "The Discrete Logarithm
Problem," Cryptography and Computa­
tional Number Theory (Proceedings of the
Symposium on Applied Mathematics),
American Mathematics Society, 1990, pp.
49-74.

1040. K.S. Mccurley, open letter from the Sandia
National Laboratories on the DSA of the
NIST, 7 Nov 1991.

1041. R.J. McEliece, "A Public-Key Cryptosys­
tem Based on Algebraic Coding Theory,"
Deep Space Network Progress Report
42-44, Jet Propulsion Laboratory, Califor­
nia Institute of Technology, 1978, pp.
114-116.

1042. R.J. McEliece, Finite Fields for Computer
Scientists and Engineers, Boston: Kluwer
Academic Publishers, 1987.

1043. P. McMahon, "SESAME V2 Public Key and
Authorization Extensions to Kerberos,"
Proceedings of the Internet Society 1995
Symposium on Network and Distributed
Systems Security, IEEE Computer Society
Press, 1995, pp. 114-131.

1044. C.A. Meadows, "A System for the Specifi­
cation and Analysis of Key Management
Protocols," Proceedings of the 1991 IEEE
Computer Society Symposium on
Research in Security and Privacy, 1991,
pp. 182-195.

1045. C.A. Meadows, "Applying Formal Meth­
ods to the Analysis of a Key Management
Protocol," Journal of Computer Security,
V. 1, n. 1, 1992, pp. 5-35.

1046. C.A. Meadows, "A Model of Computation
for the NRL Protocol Analyzer," Proceed­
ings of the Computer Security Founda­
tions Workshop VII, IEEE Computer Soci­
ety Press, 1994, pp. 84-89.

1047. C.A. Meadows, "Formal Verification of
Cryptographic Protocols: A Survey,"
Advances in Cryptology-ASIACRYPT '94
Proceedings, Springer-Verlag, 1995, pp.
133-150.

~--s; __________ R_e_fe_r_en_c_e_s __________________ _

1048. G. Medvinsky and B.C. Neuman, "Net­
Cash: A Design for Practical Electronic
Currency on the Internet," Proceedings of
the 1st Annual ACM Conference on Com­
puter and Communications Security,
ACM Press, 1993, pp. 102-106.

1049. G. Medvinsky and B.C. Neuman, "Elec­
tronic Currency for the Internet," Elec­
tronic Markets, v. 3, n. 9/10, Oct 1993, pp.
23-24.

1050. W. Meier, "On the Security of the IDEA
Block Cipher," Advances in Cryptology­
E UR O CRYPT '93 Proceedings, Springer­
Verlag, 1994, pp. 371-385.

1051. W. Meier and 0. Staffelbach, "Fast Corre­
lation Attacks on Stream Ciphers," four­
nal of Cryptology, v. 1, n. 3, 1989, pp.
159-176.

1052. W. Meier and 0. Staffelbach, "Analysis of
Pseudo Random Sequences Generated by
Cellular Automata," Advances in Cryptol­
ogy-EURO CRYPT '91 Proceedings,
Springer-Verlag, 1991, pp. 186-199.

1053. W. Meier and 0. Staffelbach, "Correlation
Properties of Combiners with Memory in
Stream Ciphers," Advances in Cryp­
tology-EUR OCRYPT '90 Proceedings,
Springer-Verlag, 1991, pp. 204-213.

1054. W. Meier and 0. Staffelbach, "Correlation
Properties of Combiners with Memory in
Stream Ciphers," fournal of Cryptology, v.
5, n. 1, 1992,pp. 67-86.

1055. W. Meier and 0. Staffelbach, "The Self­
Shrinking Generator," Communications
and Cryptography: Two Sides of One
Tapestry, R.E. Blahut et al., eds., Kluwer
Adademic Publishers, 1994, pp. 287-295.

1056. J. Meijers, "Algebraic-Coded Cryptosys­
tems," Master's thesis, Technical Univer­
sity Eindhoven, 1990.

1057. J. Meijers and J. van Tilburg, "On the Rao­
Nam Private-Key Cryptosystem Using
Linear Codes," International Symposium
on Information Theory, Budapest, Hun­
gary, 1991.

1058. J. Meijers and J. van Tilburg, "An Improved
ST-Attack on the Rao-Nam Private-Key
Cryptosystem," International Conference
on Finite Fields, Coding Theory, and
Advances in Communications and Com­
puting, Las Vegas, NV, 1991.

1059. A. Menezes, Elliptic Curve Public Key
Cryptosystems, Kluwer Academic Pub­
lishers, 1993.

1060. A. Menezes, ed., Applications of Finite
Fields, Kluwer Academic Publishers,
1993.

1061. A. Menezes and S.A. Vanstone, "Elliptic
Curve Cryptosystems and Their Imple­
mentations," fournal of Cryptology, v. 6,
n.4, 1993, pp. 209-224.

1062. A. Menezes and S.A. Vanstone, "The
Implementation of Elliptic Curve Cryp­
tosystems," Advances in Cryptology­
A USCRYPT '90 Proceedings, Springer­
Verlag, 1990, pp. 2-13.

1063. R. Menicocci, "Short Gollmann Cascade
Generators May Be Insecure," Codes and
Ciphers, Institute of Mathematics and its
Applications, 1995, pp. 281-297.

1064. R.C. Merkle, "Secure Communication
Over Insecure Channels," Communica­
tions of the ACM, v. 21, n. 4, 1978, pp.
294-299.

1065. R.C. Merkle, "Secrecy, Authentication,
and Public Key Systems, 11 Ph.D. disserta­
tion, Stanford University, 1979.

1066. R.C. Merkle, "Method of Providing Digital
Signatures," U.S. Patent #4,309,569, 5 Jan
1982.

1067. R.C. Merkle, "A Digital Signature Based
on a Conventional Encryption Function,"
Advances in Cryptology-CRYPTO '87
Proceedings, Springer-Verlag, 1988, pp.
369-378.

1068. R.C. Merkle, "A Certified Digital Signa­
ture, 11 Advances in Cryptology-CRYPTO
'89 Proceedings, Springer-Verlag, 1990, pp.
218-238.

1069. R.C. Merkle, "One Way Hash Functions
and DES," Advances in Cryptology­
CRYPTO '89 Proceedings, Springer-Verlag,
1990, pp. 428-446.

1070. R.C. Merkle, "A Fast Software One-Way
Hash Function," fournal of Cryptology, v.
3, n. 1, 1990, pp. 43-58.

1071. R.C. Merkle, "Fast Software Encryption
Functions, 11 Advances in Cryptology­
CRYPTO '90 Proceedings, Springer-Verlag,
1991, pp. 476-501.

1072. R.C. Merkle, "Method and Apparatus for
Data Encryption," U.S. Patent #5,003,597,
26 Mar 1991.

1073. R.C. Merkle, personal communication,
1993.

1074. R.C. Merkle and M. Hellman, "Hiding
Information and Signatures in Trapdoor
Knapsacks, 11 IEEE Transactions on Inf or-

____________________ R_e_fe_r_e_n_ce_s _________ 7_~

mation Theory, v. 24, n. 5, Sep 1978, pp.
525-530.

1075. R.C. Merkle and M. Hellman, "On the
Security of Multiple Encryption," Com­
munications of the ACM, v. 24, n. 7, 1981,
pp. 465-467.

1076. M. Merritt, "Cryptographic Protocols,"
Ph.D. dissertation, Georgia Institute of
Technology, GIT-ICS-83/6, Feb 1983.

1077. M. Merritt, "Towards a Theory of Crypto­
graphic Systems: A Critique of Crypto­
Complexity," Distributed Computing and
Cryplography, J. Feigenbaum and M. Mer­
ritt, eds., American Mathematical Society,
1991, pp. 203-212.

1078. C.H. Meyer, "Ciphertext/Plaintext and
Ciphertext/Key Dependencies vs. Number
of Rounds for Data Encryption Standard,"
AFIPS Conference Proceedings, 47, 1978,
pp. 1119-1126.

1079. C.H. Meyer, "Cryptography-A State of
the Art Review," Proceedings of Com­
peuro '89, VLSI and Computer Peripher­
als, 3rd Annual European Computer Con­
ference, IEEE Press, 1989, pp. 150-154.

1080. C.H. Meyer and S.M. Matyas, Cryptogra­
phy: A New Dimension in Computer Data
Security, New York: John Wiley & Sons,
1982.

1081. C.H. Meyer and M. Schilling, "Secure Pro­
gram Load with Manipulation Detection
Code," Proceedings of Securicom '88,
1988, pp. 111-130.

1082. C.H. Meyer and W.L. Tuchman, "Pseudo­
Random Codes Can Be Cracked," Elec­
tronic Design, v. 23, Nov 1972.

1083. C.H. Meyer and W.L. Tuchman, "Design
Considerations for Cryptography," Pro­
ceedings of the NCC, v. 42, Montvale, NJ:
AFIPS Press, Nov 1979, pp. 594-597.

1084. S. Micali, "Fair Public-Key Crypto­
systems," Advances in Cryptology­
CRYPTO '92 Proceedings, Springer-Verlag,
1993, pp. 113-138.

1085. S. Micali, "Fair Cryptosystems," MIT/
LCS/TR-579.b, MIT Laboratory for Com­
puter Science, Nov 1993.

1086. S. Micali, "Fair Cryptosystems and Meth­
ods for Use," U.S. Patent #5,276,737, 4 Jan
1994.

1087. S. Micali, "Fair Cryptosystems and Meth­
ods for Use," U.S. Patent #5,315,658, 24
May 1994.

1088. S. Micali and A. Shamir, "An Improve­
ment on the Fiat-Shamir Identification and

Signature Scheme," Advances in Cryptol­
ogy-CRYPTO '88 Proceedings, Springer­
Verlag, 1990, pp. 244-247.

1089. M.J. Mihajlevie, "A Correlation Attack
on the Binary Sequence Generators
with Time-Varying Output Function,"
Advances in Cryptology-ASIACRYPT '94
Proceedings, Springer-Verlag, 1995, pp.
67-79.

1090. M.J. Mihajlevie and J.D. Golie, "A Fast
Iterative Algorithm for a Shift Register
Internal State Reconstruction Given the
Noisy Output Sequence," Advances in
Cryptology-AUSCRYPT '90 Proceedings,
Springer-Verlag, 1990, pp. 165-175.

1091. M.J. Mihajlevie and J.D. Golie, "Conver­
gence of a Bayesian Iterative Error­
Correction Procedure to a Noisy Shift Reg­
ister Sequence," Advances in Cryptology
-EUROCRYPT '92 Proceedings, Springer­
Verlag, 1993, pp. 124-137.

1092. J.K. Millen, S.C. Clark, and S.B. Freedman,
"The Interrogator: Protocol Security Analy­
sis," IEEE Transactions on Software Engi­
neering, v. SE-13, n. 2, Feb 1987, pp. 274-288.

1093. G.L. Miller, "Riemann's Hypothesis and
Tests for Primality," fournal of Computer
Systems Science, v. 13, n. 3, Dec 1976, pp.
300-317.

1094. S.P. Miller, B.C. Neuman, J.I. Schiller, and
J.H. Saltzer, "Section E.2.1: Kerberos
Authentication and Authorization
System," MIT Project Athena, Dec 1987.

1095. V.S. Miller, "Use of Elliptic Curves in
Cryptography," Advances in Cryptology­
CRYPTO '85 Proceedings, Springer-Verlag,
1986, pp. 417-426.

1096. M. Minsky, Computation: Finite and Infi­
nite Machines, Englewood Cliffs, NJ:
Prentice-Hall, 1967.

1097. C.J. Mitchell, "Authenticating Multi-Cast
Internet Electronic Mail Messages Using a
Bidirectional MAC Is Insecure," draft
manuscript, 1990.

1098. C.J. Mitchell, "Enumerating Boolean
Functions of Cryptographic Significance,"
fournal of Cryptology, v. 2, n. 3, 1990, pp.
155-170.

1099. C.J. Mitchell, F. Piper, and P. Wild, "Digital
Signatures," Contemporary Cryptology:
The Science of Information Integrity, G.J.
Simmons, ed., IEEE Press, 1991, pp.
325-378.

1100. C.J. Mitchell, M. Walker, and D. Rush,
"CCITT /ISO Standards for Secure Message

~ :s;~---------R_e_fe_r_en_ce_s ___________________ _

Handling," IEEE Journal on Selected Areas
in Communications, v. 7, n. 4, May 1989,
pp. 517-524.

1101. S. Miyaguchi, "Fast Encryption Algorithm
for the RSA Cryptographic System," Pro­
ceedings of Compean 82, IEEE Press, pp.
672-678.

1102. S. Miyaguchi, "The FEAL-8 Cryptosystem
and Call for Attack," Advances in Cryptol­
ogy-CRYPTO '89 Proceedings, Springer­
Verlag, 1990, pp. 624-627.

1103. S. Miyaguchi, "Expansion of the FEAL
Cipher," NTT Review, v. 2, n. 6, Nov 1990.

1104. S. Miyaguchi, "The FEAL Cipher Family,"
Advances in Cryptology-CRYPTO '90
Proceedings, Springer-Verlag, 1991, pp.
627-638.

1105. S. Miyaguchi, K. Ohta, and M. Iwata, "128-
bit Hash Function IN-Hash)," Proceedings
of SECURICOM 'YO, 1990, pp. 127-137.

1106. S. Miyaguchi, K. Ohta, and M. Iwata, "128-
bit Hash Function IN-Hash)," NTT
Review, v. 2, n. 6, Nov 1990, pp. 128-132.

1107. S. Miyaguchi, K. Ohta, and M. Iwata,
"Confirmation that Some Hash Functions
Are Not Collision Free," Advances in
Cryptology-EUROCRYPT '90 Proceed­
ings, Springer-Verlag, 1991, pp. 326-343.

1108. S. Miyaguchi, A. Shiraishi, and A.
Shimizu, "Fast Data Encipherment Algo­
rithm FEAL-8," Review of the Electrical
Communication Laboratories, v. 36, n. 4,
1988.

1109. H. Miyano, "Differential Cryptanalysis on
CALC and Its Evaluation," Proceedings of
the 1992 Symposium on Cryptography
and Information Security ISCIS 92),
Tateshina, Japan, 2-4 Apr 1992, pp. 7B.l-8.

1110. R. Molva, G. Tsudik, E. van Herreweghen,
and S. Zatti, "KryptoKnight Authentica­
tion and Key Distribution System," Pro­
ceedings of European Symposium on
Research in Computer Security, Toulouse,
France, Nov 1992.

1111. P.L. Montgomery, "Modular Multiplica­
tion without Trial Division," Mathemat­
ics of Computation, v. 44, n. 170, 1985, pp.
519-521.

1112. P.L. Montgomery, "Speeding the Pollard
and Elliptic Curve Methods of Factoriza­
tion," Mathematics of Computation, v. 48,
n. 177, Jan 1987, pp. 243-264.

1113. P.L. Montgomery and R. Silverman, "An
FFT Extension to the p-1 Factoring Algo-

rithm," Mathematics of Computation, v.
54,n. 190, 1990,pp. 839-854.

1114. J.H. Moore, "Protocol Failures in Cryp­
tosystems," Proceedings of the IEEE, v. 7 6,
n. 5, May 1988.

1115. J.H. Moore, "Protocol Failures in Cryp­
tosystems," in Contemporary Cryptology:
The Science of Information Integrity, G.J.
Simmons, ed., IEEE Press, 1992, pp.
541-558.

1116. J.H. Moore and G.J. Simmons, "Cycle
Structure of the DES with Weak and Semi­
Weak Keys," Advances in Cryptology­
CRYPTO '86 Proceedings, Springer-Verlag,
1987, pp. 3-32.

1117. T. Moriyasu, M. Morii, and M. Kasahara,
"Nonlinear Pseudorandom Number Gen­
erator with Dynamic Structure and Its
Properties," Proceedings of the 1994 Sym­
posium on Cryptography and Information
Security ISCIS 94), Biwako, Japan, 27-29
Jan 1994, pp. 8A.l-ll.

1118. R. Morris, "The Data Encryption Stan­
dard-Retrospective and Prospects," IEEE
Communications Magazine, v. 16, n. 6,
Nov 1978, pp. 11-14.

1119. R. Morris, remarks at the 1993 Cambridge
Protocols Workshop, 1993.

1120. R. Morris, N.J.A. Sloane, and A.D. Wyner,
"Assessment of the NBS Proposed Data
Encryption Standard," Cryptologia, v. 1, n.
3, Jul 1977, pp. 281-291.

1121. R. Morris and K. Thompson, "Password
Security: A Case History," Communica­
tions of the ACM, v. 22, n. 11, Nov 1979,
pp. 594-597.

1122. S.B. Morris, "Escrow Encryption," lecture
at MIT Laboratory for Computer Science, 2
Jun 1994.

1123. M.N. Morrison and J. Brillhart, "A Method
of Factoring and the Factorization of F7,"

Mathematics of Computation, v. 29, n.
129, Jan 1975, pp. 183-205.

1124. L.E. Moser, "A Logic of Knowledge and
Belief for Reasoning About Computer
Security," Proceedings of the Computer
Security Foundations Workshop II, IEEE
Computer Society Press, 1989, pp. 57-63.

1125. Motorola Government Electronics Divi­
sion, Advanced Techniques in Network
Security, Scottsdale, AZ, 1977.

1126. W.B. Muller, "Polynomial Functions in
Modern Cryptology," Contributions to
General Algebra 3: Proceedings of the

_____________________ R_e_fe_r_e_n_ce_s __________ 7 __ ~

Vienna Conference, Vienna: Verlag
Hiilder-Pichler-Tempsky, 1985, pp. 7-32.

1127. W.B. Muller and W. Niibauer, "Some
Remarks on Public-Key Cryptography,"
Studia Scientiarum Mathematicarum
Hungarica, v. 16, 1981, pp. 71-76.

1128. W.B. Muller and W. Niibauer, "Cryptanaly­
sis of the Dickson Scheme, 11 Advances in
Cryptology-EUROCRYPT '85 Proceed­
ings, Springer-Verlag, 1986, pp. 50-61.

1129. C. Muller-Scholer, 11 A Microprocessor­
Based Cryptoprocessor, 11 IEEE Micro, Oct
1983, pp. 5-15.

1130. R.C. Mullin, E. Nemeth, and N. Weiden­
hofcr, "Will Public Key Cryptosystems
Live Up to Their Expectations?-HEP
Implementation of the Discrete Log Code­
breaker," ICPP 85, pp. 193-196.

1131. Y. Murakami and S. Kasahara, "An ID­
Based Key Distribution Scheme, 11 IEICE
Japan, Technical Report, ISEC90-26, 1990.

1132. S. Murphy, "The Cryptanalysis of FEAL-4
with 20 Chosen Plain texts, 11 fournal of
Cryptology, v. 2, n. 3, 1990, pp. 145-154.

1133. E.D. Myers, "STU-III-Multilevel Secure
Computer Interface, 11 Proceedings of the
Tenth Annual Computer Security Applica­
tions Conference, IEEE Computer Society
Press, 1994, pp. 170-179.

1134. D. Naccache, "Can O.S.S. be Repaired?
Proposal for a New Practical Signature
Scheme," Advances in Cryptology­
EUROCRYPT '93 Proceedings, Springer­
Verlag, 1994, pp. 233-239.

1135. D. Naccache, D. M'Rai:hi, D. Raphaeli, and
S. Vaudenay, "Can D.S.A. be Improved?
Complexity Trade-Offs with the Digital
Signature Standard, 11 Advances in Cryptol­
ogy-EUROCRYPT '94 Proceedings,
Springer-Verlag, 1995, to appear.

1136. Y. Nakao, T. Kaneko, K. Koyama, and R.
Terada, 11 A Study on the Security of RDES-
1 Cryptosystem against Linear Cryptanal­
ysis," Proceedings of the 1995 fapcm-Korea
Workshop on Information Security and
Cryptography, Inuyama, Japan, 24-27 Jan
1995, pp. 163-172.

1137. M. Naor, "Bit Commitment Using Pseudo­
Randomness, 11 Advances in Cryptology­
CRYPTO '89 Proceedings, Springer-Verlag,
1990, pp. 128-136.

1138. M. Naor and M. Yung, "Universal One­
Way Hash Functions and Their Crypto­
graphic Application," Proceedings of the

21st Annual ACM Symposium on the The­
ory of Computing, 1989, pp. 33-43.

1139. National Bureau of Standards, "Report of
the Workshop on Estimation of Significant
Advances in Computer Technology, 11

NBSIR76-1189, National Bureau of Stan­
dards, U.S. Department of Commerce,
21-22 Sep 1976, Dec 1977.

1140. National Bureau of Standards, NBS FIPS
PUB 46, "Data Encryption Standard, 11

National Bureau of Standards, U.S. Depart­
ment of Commerce, Jan 1977.

1141. National Bureau of Standards, NBS FIPS
PUB 46-1, "Data Encryption Standard, 11

U.S. Department of Commerce, Jan 1988.
1142. National Bureau of Standards, NBS FIPS

PUB 74, "Guidelines for Implementing and
Using the NBS Data Encryption Standard,"
U.S. Department of Commerce, Apr 1981.

1143. National Bureau of Standards, NBS FIPS
PUB 81, "DES Modes of Operation," U.S.
Department of Commerce, Dec 1980.

1144. National Bureau of Standards, NBS FIPS
PUB 112, "Password Usage," U.S. Depart­
ment of Commerce, May 1985.

1145. National Bureau of Standards, NBS FIPS
PUB 113, "Computer Data Authentica­
tion," U.S. Department of Commerce,
May 1985.

1146. National Computer Security Center,
"Trusted Network Interpretation of the
Trusted Computer System Evaluation Cri­
teria," NCSC-TG-005 Version 1, Jul 1987.

1147. National Computer Security Center,
"Trusted Database Management System
Interpretation of the Trusted Computer
System Evaluation Criteria," NCSC-TG-
021 Version 1, Apr 1991.

1148. National Computer Security Center, 11 A
Guide to Understanding Data Remember­
ance in Automated Information Systems,"
NCSC-TG-025 Version 2, Sep 1991.

1149. National Institute of Standards and Tech­
nology, NIST FIPS PUB XX, "Digital Sig­
nature Standard," U.S. Department of
Commerce, DRAFT, 19 Aug 1991.

1150. National Institute of Standards and Tech­
nology, NIST FIPS PUB 46-2, "Data
Encryption Standard," U.S. Department of
Commerce, Dec 93.

1151. National Institute of Standards and Tech­
nology, NIST FIPS PUB 171, "Key Manage­
ment Using X9.17," U.S. Department of
Commerce, Apr 92.

~"":s; __________ R_e_fe_r_e_n_ce_s ___________________ _

1152. National Institute of Standards and Tech­
nology, NIST FIPS PUB 180, "Secure Hash
Standard," U.S. Department of Commerce,
May 93.

1153. National Institute of Standards and Tech­
nology, NIST FIPS PUB 185, "Escrowed
Encryption Standard," U.S. Department of
Commerce, Feb 94.

1154. National Institute of Standards and Tech­
nology, NIST FIPS PUB 186, "Digital Sig­
nature Standard," U.S. Department of
Commerce, May 1994.

1155. National Institute of Standards and Tech­
nology, "Clipper Chip Technology," 30
Apr 1993.

1156. National Institute of Standards and Tech­
nology, "Capstone Chip Technology," 30
Apr 1993.

1157. J. Nechvatal, "Public Key Cryptography,"
NIST Special Publication 800-2, National
Institute of Standards and Technology,
U.S. Department of Commerce, Apr 1991.

1158. J. Nechvatal, "Public Key Cryptography,"
Contemporary Cryptology: The Science of
Information Integrity, G.J. Simmons, ed.,
IEEE Press, 1992, pp. 177-288.

1159. R.M. Needham and M.D. Schroeder,
"Using Encryption for Authentication in
Large Networks of Computers," Commu­
nications of the ACM, v. 21, n. 12, Dec
1978, pp. 993-999.

1160. R.M. Needham and M.D. Schroeder,
"Authentication Revisited," Operating
Systems Review, v. 21, n. 1, 1987, p. 7.

1161. D.M. Ncssett, "A Critique of the Burrows,
Abadi, and Needham Logic," Operating
System Review, v. 20, n. 2, Apr 1990, pp.
35-38.

1162. B.C. Neuman and S. Stubblebine, "A Note
on the Use of Timestamps as Nonces,"
Operating Systems Review, v. 2 7, n. 2, Apr
1993, pp. 10-14.

1163. B.C. Neuman and T. Ts'o, "Kerberos: An
Authentication Service for Computer Net­
works, 11 IEEE Communications Magazine,
v. 32, n. 9, Sep 1994, pp. 33-38.

1164. L. Neuwirth, "Statement of Lee Neuwirth
of Cylink on HR145," submitted to con­
gressional committees considering HR145,
Feb 1987.

1165. D.B. Newman, Jr. and R.L. Pickholtz,
"Cryptography in the Private Sector,"
IEEE Communications Magazine, v. 24, n.
8, Aug 1986, pp. 7-10.

1166. H. Niederreiter, "A Public-Key Cryptosys­
tem Based on Shift Register Sequences,"
Advances in Cryptology-EUROCRYPT
'85 Proceedings, Springer-Verlag, 1986, pp.
35-39.

1167. H. Niederreiter, "Knapsack-Type Cryp­
tosystems and Algebraic Coding Theory,"
Problems of Control and Information The­
ory, v. 15, n. 2, 1986, pp. 159-166.

1168. H. Niederreiter, "The Linear Complexity
Profile and the Jump Complexity of
Keystream Sequences," Advances in Cryp­
tology-EUR OCRYPT '90 Proceedings,
Springer-Verlag, 1991, pp. 174-188.

1169. V. Niemi, "A New Trapdoor in Knap­
sacks," Advances in Cryptology-EURO­
CRYPT '90 Proceedings, Springer-Verlag,
1991, pp. 405-411.

1170. V. Niemi and A. Renvall, "How to Prevent
Buying of Voters in Computer Elections,"
Advances in Cryptology-ASIA CRYPT '94
Proceedings, Springer-Verlag, 1995, pp.
164-170.

1171. I. Niven and H.A. Zuckerman, An Intro­
duction to the Theory of Numbers, New
York: John Wiley & Sons, 1972.

1172. R. Nobauer, "Cryptanalysis of the Redei
Scheme," Contributions to General Alge­
bra 3: Proceedings of the Vienna Confer­
ence, Verlag Holder-Pichler-Tempsky,
Vienna, 1985, pp. 255-264.

1173. R. Nobauer, "Cryptanalysis of a Public­
Key Cryptosystem Based on Dickson­
Polynomials," Mathematica Slovaca, v.
38,n.4, 1988,pp.309-323.

1174. K. Noguchi, H. Ashiya, Y. Sano, and T.
Kaneko, "A Study on Differential Attack
of MEAL Cryptosystem," Proceedings of
the 1994 Symposium on Cryptography
and Information Security (SCIS 94), Lake
Biwa, Japan, 27-29 Jan 1994, pp. 14B.l-7.
(In Japanese.)

1175. H. Nurmi, A. Salomaa, and L. Santean,
"Secret Ballot Elections in Computer Net­
works," Computers eJ Security, v. 10,
1991, pp. 553-560.

1176. K. Nyberg, "Construction of Bent Func­
tions and Difference Sets," Advances in
Cryptology-EUROCRYPT '91 Proceed­
ings, Springer-Verlag, 1991, pp. 151-160.

1177. K. Nyberg, "Perfect Nonlinear S-Boxes,"
Advances in Cryptology-EUROCRYPT
'91 Proceedings, Springer-Verlag, 1991, pp.
378-386.

____________________ R_ef_e_r_en_c_e_s __________ z:---~

1178. K. Nyberg, "On the Construction of Highly
Nonlinear Permutations," Advances in
Cryptology-EUROCRYPT '92 Proceed­
ings, Springer-Verlag, 1991, pp. 92-98.

1179. K. Nyberg, "Differentially Uniform Map­
pings for Cryptography," Advances in
Cryptology-EUROCRYPT '93 Proceed­
ings, Springer-Verlag, 1994, pp. 55-64.

1180. K. Nyberg, "Provable Security against
Differential Cryptanalysis," presented at
the rump session of Eurocrypt '94, May
1994.

1181. K. Nyberg and L.R. Knudsen, "Provable
Security against Differential Cryptanaly­
sis," Advances in Cryptology-CRYPTO
'92 Proceedings, Springer-Verlag, 1993, pp.
566-574.

1182. K. Nyberg and L.R. Knudsen, "Provable
Security against Differential Cryptanaly­
sis," Journal of Cryptology, v. 8, n. 1, 1995,
pp. 27-37.

1183. K. Nyberg and R.A. Rueppel, "A New Sig­
nature Scheme Based on the DSA Giving
Message Recovery," 1st ACM Conference
on Computer and Communications Secu­
rity, ACM Press, 1993, pp. 58-61.

1184. K. Nyberg and R.A. Rueppcl, "Message
Recovery for Signature Schemes Based on
the Discrete Logarithm Problem," Advances
in Cryptology-EUROCRYPT '94 Proceed­
ings, Springer-Verlag, 1995, to appear.

1185. L. O'Connor, "Enumerating Nondegener­
ate Permutations," Advances in Cryp­
tology-EUR OCRYPT '93 Proceedings,
Springer-Verlag, 1994, pp. 368-377.

1186. L. O'Connor, "On the Distribution of
Characteristics in Bijective Mappings,"
Advances in Cryptology-EUROCRYPT
'93 Proceedings, Springer-Verlag, 1994, pp.
360-370.

1187. L. O'Connor, "On the Distribution of
Characteristics in Composite Permuta­
tions," Advances in Cryptology­
CRYPTO '93 Proceedings, Springer-Verlag,
1994, pp. 403-412.

1188. L. O'Connor and A. Klapper, "Algebraic
Nonlinearity and Its Application to Cryp­
tography," Journal of Cryptology, v. 7, n. 3,
1994, pp. 133-151.

1189. A. Odlyzko, "Discrete Logarithms in
Finite Fields and Their Cryptographic Sig­
nificance," Advances in Cryptology: Pro­
ceedings of EUROCRYPT 84, Springer­
Verlag, 1985, pp. 224-314.

1190. A. Odlyzko, "Progress in Integer Factoriza­
tion and Discrete Logarithms," unpub­
lished manuscript, Feb 1995.

1191. Office of Technology Assessment, U.S.
Congress, "Defending Secrets, Sharing
Data: New Locks and Keys for Electronic
Communication," OTA-CIT-310, Wash­
ington, D.C.: U.S. Government Printing
Office, Oct 1987.

1192. B. O'Higgins, W. Diffie, L. Strawczynski,
and R. de Hoag, "Encryption and ISDN-a
Natural Fit," Proceedings of the 1987
International Switching Symposium,
1987, pp. 863-869.

1193. Y. Ohnishi, "A Study on Data Security,"
Master's thesis, Tohuku University, Japan,
1988. (In Japanese.)

1194. K. Ohta, "A Secure and Efficient Encrypted
Broadcast Communication System Using a
Public Master Key," Transactions of the
Institute of Electronics, Information, and
Communication Engineers, v. J70-D, n. 8,
Aug 1987, pp. 1616-1624.

1195. K. Ohta, "An Electrical Voting Scheme
Using a Single Administrator," IEICE
Spring National Convention, A-294, 1988,
v. 1, p. 296. (In Japanese.)

1196. K. Ohta, "Identity-based Authentication
Schemes Using the RSA Cryptosystem,"
Trnnsactions of the Institute of Electron­
ics, Information, and Communication
Engineers, v. J72D-II, n. 8, Aug 1989, pp.
612-620.

1197. K. Ohta and M. Matsui, "Differential At­
tack on Message Authentication Codes,"
Advances in Cryptology-CRYPTO '93
Proceedings, Springer-Verlag, 1994, pp.
200-223.

1198. K. Ohta and T. Okamoto, "Practical Exten­
sion of Fiat-Shamir Scheme," Electronics
Letters, v. 24, n. 15, 1988, pp. 955-956.

1199. K. Ohta and T. Okamoto, "A Modification
of the Fiat-Shamir Scheme," Advances in
Cryptology-CRYPTO '88 Proceedings,
Springer-Verlag, 1990, pp. 232-243.

1200. K. Ohta and T. Okamoto, "A Digital Mul­
tisignature Scheme Based on the Fiat­
Shamir Scheme," Advances in Cryp­
tology-ASIA CRYPT '91 Proceedings,
Springer-Verlag, 1993, pp. 139-148.

1201. K. Ohta, T. Okamoto and K. Koyama,
"Membership Authentication for Hierar­
chy Multigroups Using the Extended Fiat­
Shamir Scheme," Advances in Cryptol-

~-:s. __________ R_e_fe_r_en_ce_s ___________________ _

ogy-EUROCRYPT '90 Proceedings,
Springer-Verlag, 1991, pp. 446-457.

1202. E. Okamoto and K. Tanaka, "Key Distribu­
tion Based on Identification Information,"
IEEE fournal on Selected Areas in Com­
munication, v. 7, n. 4, May 1989, pp.
481-485.

1203. T. Okamoto, "Fast Public-Key Cryptosys­
tems Using Congruent Polynomial Equa­
tions," Electronics Letters, v. 22, n. 11,
1986, pp. 581-582.

1204. T. Okamoto, "Modification of a Public­
Key Cryptosystem," Electronics Letters, v.
23, n. 16, 1987, pp. 814-815.

1205. T. Okamoto, "A Fast Signature Scheme
Based on Congruential Polynomial Opera­
tions," IEEE Transactions on Information
Theory, v. 36, n. 1, 1990, pp. 47-53.

1206. T. Okamoto, "Provably Secure and Practi­
cal Identification Schemes and Corre­
sponding Signature Schemes," Advances
in Cryptology-CRYPTO '92 Proceedings,
Springer-Verlag, 1993, pp. 31-53.

1207. T. Okamoto, A. Fujioka, and E. Fujisaki,
"An Efficient Digital Signature Scheme
Based on Elliptic 1 Curve over the Ring Zn,"
Advances in Cryptology-CRYPTO '92 Pro­
ceedings, Springer-Verlag, 1993, pp. 54-65.

1208. T. Okamoto, S. Miyaguchi, A. Shiraishi,
and T. Kawoaka, "Signed Document
Transmission System," U.S. Patent
#4,625,076, 25 Nov 1986.

1209. T. Okamoto and K. Ohta, "Disposable
Zero-Knowledge Authentication and Their
Applications to Untraceable Electronic
Cash," Advances in Cryptology­
CRYPTO '89 Proceedings, Springer-Verlag,
1990, pp. 134-149.

1210. T. Okamoto and K. Ohta, "How to Utilize
the Randomness of Zero-Knowledge
Proofs," Advances in Cryptology­
CRYPTO '90 Proceedings, Springer-Verlag,
1991, pp. 456-475.

1211. T. Okamoto and K. Ohta, "Universal Elec­
tronic Cash," Advances in Cryptology­
CRYPTO '91 Proceedings, Springer-Verlag,
1992, pp. 324-337.

1212. T. Okamoto and K. Ohta, "Survey of Digi­
tal Signature Schemes," Proceedings of the
Third Symposium on State and Progress of
Research in Cryptography, Fondazone Ugo
Bordoni, Rome, 1993, pp. 17-29.

1213. T. Okamoto and K. Ohta, "Designated
Confirmer Signatures Using Trapdoor
Functions," Proceedings of the 1994 Sym-

posium on Cryptography and Information
Security (SCIS 94), Lake Biwa, Japan,
27-29 Jan 1994, pp. 16B.l-ll.

1214. T. Okamoto and K. Sakurai, "Efficient
Algorithms for the Construction of Hyper­
elliptic Cryptosystems," Advances in
Cryptology-CRYPTO '91 Proceedings,
Springer-Verlag, 1992, pp. 267-278.

1215. T. Okamoto and A. Shiraishi, "A Fast Sig­
nature Scheme Based on Quadratic
Inequalities," Proceedings of the 1985
Symposium on Security and Privacy, IEEE,
Apr 1985, pp. 123-132.

1216. J.D. Olsen, R.A. Scholtz, and L.R. Welch,
"Bent Function Sequences," IEEE Transac­
tions on Information Theory, v. IT-28, n. 6,
Nov 1982, pp. 858-864.

1217. H. Ong and C.P. Schnorr, "Signatures
through Approximate Representations by
Quadratic Forms," Advances in Cryptol­
ogy: Proceedings of Crypto 83, Plenum
Press, 1984.

1218. H. Ong and C.P. Schnorr, "Fast Signature
Generation with a Fiat Shamir-Like
Scheme," Advances in Cryptology­
E UR OCRYPT '90 Proceedings, Springer­
Verlag, 1991, pp. 432-440.

1219. H. Ong, C.P. Schnorr, and A. Shamir, "An
Efficient Signature Scheme Based on Poly­
nomial Equations," Proceedings of the
16th Annual Symposium on the Theory of
Computing, 1984, pp. 208-216.

1220. H. Ong, C.P. Schnorr, and A. Shamir, "Effi­
cient Signature Schemes Based on Polyno­
mial Equations," Advances in Cryptology:
Proceedings of CRYPTO 84, Springer­
Verlag, 1985, pp. 37-46.

1221. Open Shop Information Services, OSIS
Security Aspects, OSIS European Working
Group, WCI, final report, Oct 1985.

1222. G.A. Orton, M.P. Roy, P.A. Scott, L.E. Pep­
pard, and S.E. Tavares, "VLSI Implementa­
tion of Public-Key Encryption Algo­
rithms," Advances in Cryptology­
CRYPTO '86 Proceedings, Springer-Verlag,
1987, pp. 277-301.

1223. H. Orup, E. Svendsen, and E. Andreasen,
"VICTOR-An Efficient RSA Hardware
Implementation," Advances in Cryptol­
ogy-EUROCRYPT '90 Proceedings,
Springer-Verlag, 1991, pp. 245-252.

1224. D. Otway and 0. Rees, "Efficient and
Timely Mutual Authentication," Operat­
ing Systems Review, v. 21, n. 1, 1987, pp.
8-10.

___________________ R_ef_e_re_n_c_e_s _________ 7_~

1225. G. Pagels-Fick, "Implementation Issues for
Master Key Distribution and Protected
Keyload Procedures, 11 Computers and
Security: A Global Challenge, Proceedings
of IFIP/SEC '83, North Holland: Elsevier
Science Publishers, 1984, pp. 381-390.

1226. C.M. Papadimitriou, Computational
Complexity, Addison-Wesley, 1994.

1227. C.S. Park, "Improving Code Rate of
McEliece's Public-key Cryptosystem, 11

Electronics Letters, v. 25, n. 21, 12 Oct
1989, pp. 1466-1467.

1228. S. Park, Y. Kim, S. Lee, and K. Kim,
11 Attacks on Tanaka's Non-interactive Key
Sharing Scheme, 11 Proceedings of the 1995
Symposium on Cryptography and Infor­
mation Security (SCIS 95), Inuyama,
Japan, 24-27 Jan 1995, pp. B3.4.l-4.

1229. S.J. Park, K.H. Lee, and D.H. Won, "An
Entrusted Undeniable Signature, 11 Pro­
ceedings of the 1995 fapan-Korea Work­
shop on Information Security and Cryp­
tography, Inuyama, Japan, 24-27 Jan 1995,
pp. 120-126.

1230. S.J. Park, K.H. Lee, and D.H. Won, 11 A Prac­
tical Group Signature, 11 Proceedings of the
1995 fapan-Korea Workshop on Informa­
tion Security and Cryptography, Inuyama,
Japan, 24-27 Jan 1995, pp. 127-133.

1231. S. K. Park and K. W. Miller, 11 Random N um­
ber Generators: Good Ones Are Hard to
Find," Communications of the ACM, v.
31, n. 10, Oct 1988, pp. 1192-1201.

1232. J. Patarin, "How to Find and Avoid Colli­
sions for the Knapsack Hash Function, 11

Advances in Cryptology-EUROCRYPT
'93 Proceedings, Springer-Verlag, 1994, pp.
305-317.

1233. W. Patterson, Mathematical Cryptology for
Computer Scientists and Mathematicians,
Totowa, N.J.: Rowman & Littlefield, 1987.

1234. W.H. Payne, "Public Key Cryptography Is
Easy to Break, 11 William H. Payne, unpub­
lished manuscript, 16 Oct 90.

1235. T.P. Pederson, "Distributed Provers with
Applications to Undeniable Signatures, 11

Advances in Cryptology-EUROCRYPT
'91 Proceedings, Springer-Verlag, 1991, pp.
221-242.

1236. S. Peleg and A. Rosenfield, "Breaking Sub­
stitution Ciphers Using a Relaxation Algo­
rithm," Communications of the ACM, v.
22, n. 11, Nov 1979, pp. 598-605.

1237. R. Peralta, "Simultaneous Security of Bits
in the Discrete Log," Advances in Cryptol-

ogy-EUROCRYPT '85, Springer-Verlag,
1986, pp. 62-72.

1238. I. Peterson, "Monte Carlo Physics: A Cau­
tionary Lesson, 11 Science News, v. 142, n.
25, 19 Dec 1992, p. 422.

1239. B. Pfitzmann, "Fail-Stop Signatures: Prin­
ciples and Applications," Proceedings of
COMPUSEC '91, Eighth World Confer­
ence on Computer Security, Audit, and
Control, Elsevier Science Publishers, 1991,
pp. 125-134.

1240. B. Pfitzmann and M. Waidner, "Formal
Aspects of Fail-Stop Signatures," Fakultiit
fur Informatik, University Karlsruhe,
Report 22/90, 1990.

1241. B. Pfitzmann and M. Waidner, "Fail-Stop
Signatures and Their Application," Securi­
com '91, 1991, pp. 145-160.

1242. B. Pfitzmann and M. Waidner, "Uncondi­
tional Concealment with Cryptographic
Ruggedness," VIS '91 Verlassliche Infor­
mationsysteme Proceedings, Darmstadt,
Germany, 13-15 March 1991, pp. 3-2-320.
(In German.)

1243. B. Pfitzmann and M. Waidner, "How to
Break and Repair a 'Provably Secure'
Untraceable Payment System, 11 Advances
in Cryptology-CRYPTO '91 Proceedings,
Springer-Verlag, 1992, pp. 338-350.

1244. C.P. Pfleeger, Security in Computing,
Englewood Cliffs, N.J.: Prentice-Hall,
1989.

1245. S.J.D. Phoenix and P.D. Townsend, "Quan­
tum Cryptography and Secure Optical
Communication, 11 BT Technology fournal,
v. 11, n. 2, Apr 1993, pp. 65-75.

1246. J. Pieprzyk, "On Public-Key Cryptosys­
tems Built Using Polynomial Rings, 11

Advances in Cryptology-EUROCRYPT
'85, Springer-Verlag, 1986, pp. 73-80.

1247. J. Pieprzyk, "Error Propagation Property
and Applications in Cryptography," IEE
Proceedings-E, Computers and Digital
Techniques, v. 136, n. 4, Jul 1989, pp.
262-270.

1248. D. Pinkas, T. Parker, and P. Kaijser,
"SESAME: An Introduction, 11 Issue 1.2,
Bull, ICL, and SNI, Sep 1993.

1249. F. Piper, "Stream Ciphers, 11 Elektrotechnic
und Maschinenbau, v. 104, n. 12, 1987, pp.
564-568.

1250. V.S. Pless, "Encryption Schemes for Com­
puter Confidentiality, 11 IEEE Transactions
on Computing, v. C-26, n. 11, Nov 1977,
pp. 1133-1136.

~""'s;,-----------R_e_fe_r_e_n_ce_s ___________________ _

1251. J.B. Plumstead, "Inferring a Sequence Gen­
erated by a Linear Congruence," Proceed­
ings of the 23rd IEEE Symposium on the
Foundations of Computer Science, 1982,
pp. 153-159.

1252. R. Poet, "The Design of Special Purpose
Hardware to Factor Large Integers," Com­
puter Physics Communications, v. 3 7,
1985, pp. 337-341.

1253. S.C. Pohlig and M.E. Hellman, "An
Improved Algorithm for Computing Loga­
rithms in GF(p) and Its Cryptographic Sig­
nificance," IEEE Transactions on Informa­
tion Theory, v. 24, n. 1, Jan 1978, pp.
106-111.

1254. J.M. Pollard, "A Monte Carlo Method for
Factorization," BIT, v. 15, 1975, pp. 331-334.

1255. J.M. Pollard and C.P. Schnorr, "An Effi­
cient Solution of the Congruence x2 + ky 2 =
m (mod n), 11 IEEE Transactions on Infor­
mation Theory, v. IT-33, n. 5, Sep 1987, pp.
702-709.

1256. C. Pomerance, "Recent Developments in
Primality Testing," The Mathematical
Intelligencer, v. 3, n. 3, 1981, pp. 97-105.

1257. C. Pomerance, "The Quadratic Sieve Fac­
toring Algorithm, 11 Advances in Cryptol­
ogy: Proceedings of EUROCRYPT 84,
Springer-Verlag, 1985, 169-182.

1258. C. Pomerance, "Fast, Rigorous Factoriza­
tion and Discrete Logarithm Algorithms,"
Discrete Algorithms and Complexity, New
York: Academic Press, 1987, pp. 119-143.

1259. C. Pomerance, J.W. Smith, and R. Tuler,
"A Pipe-Line Architecture for Factoring
Large Integers with the Quadratic Sieve
Algorithm," SIAM fournal on Computing,
v. 17, n. 2, Apr 1988, pp. 387-403.

1260. G.J. Popek and C.S. Kline, "Encryption and
Secure Computer Networks," ACM Com­
puting Surveys, v. 11, n. 4, Dec 1979, pp.
331-356.

1261. F. Pratt, Secret and Urgent, Blue Ribbon
Books, 1942.

1262. B. Preneel, "Analysis and Design of Cryp­
tographic Hash Functions," Ph.D. disserta­
tion, Katholieke Universiteit Leuven, Jan
1993.

1263. B. Preneel, "Differential Cryptanalysis of
Hash Functions Based on Block Ciphers,"
Proceedings of the 1st ACM Conference on
Computer and Communications Security,
1993, pp. 183-188.

1264. B. Preneel, "Cryptographic Hash Func­
tions," European Transactions on Telecom­
munications, v 5, n. 4, Jul/Aug 1994, pp.
431-448.

1265. B. Preneel, personal communication, 1995.
1266. B. Preneel, A. Bosselaers, R. Govaerts, and

J. Vandewalle, "Collision-Free Hash Func­
tions Based on Block Cipher Algorithms,"
Proceedings of the 1989 Carnahan Confer­
ence on Security Technology, 1989, pp.
203-210.

1267. B. Preneel, R. Govaerts, and J. Vandewalle,
"An Attack on Two Hash Functions by
Zheng-Matsumoto-Imai," Advances in
Cryptology-ASIACRYPT '92 Proceed­
ings, Springer-Verlag, 1993, pp. 535-538.

1268. B. Preneel, R. Govaerts, and J. Vandewalle,
"Hash Functions Based on Block Ciphers:
A Synthetic Approach," Advances in
Cryptology-CRYPTO '93 Proceedings,
Springer-Verlag, 1994, pp. 368-378.

1269. B. Preneel, M. Nuttin, V. Rijmen, and J.
Buelens, "Cryptanalysis of the CFB mode
of the DES with a Reduced Number of
Rounds," Advances in Cryptology­
CRYPTO '93 Proceedings, Springer-Verlag,
1994, pp.212-223.

1270. B. Preneel and V. Rijmen, "On Using Max­
imum Likelihood to Optimize Recent
Cryptanalytic Techniques, 11 presented at
the rump session of EUROCRYPT '94,
May 1994.

1271. B. Preneel, W. Van Leekwijck, L. Van Lin­
den, R. Govaerts, and J. Vandewalle, "Prop­
agation Characteristics of Boolean Func­
tions, 11 Advances in Cryptology­
EUR OCRYPT '90 Proceedings, Springer­
Verlag, 1991, pp. 161-173.

1272. W.H. Press, B.P. Flannery, S.A. Teukolsky,
and W.T. Vetterling, Numerical Recipes in
C: The Art of Scientific Computing, Cam­
bridge University Press, 1988.

1273. W. Price, "Key Management for Data Enci­
pherment," Security: Proceedings of
IFIP/SEC '83, North Holland: Elsevier Sci­
ence Publishers, 1983.

1274. G.P. Purdy, "A High-Security Log-in Proce­
dure," Communications of the ACM, v.
17, n. 8, Aug 1974, pp. 442-445.

1275. J.-J. Quisquater, "Announcing the Smart
Card with RSA Capability," Proceedings of
the Conference: IC Cards and Applications,
Today and Tomorrow, Amsterdam, 1989.

____________________ R_ef_e_r_en_c_e_s __________ 7-~

1276. J.-f. Quisquater and C. Couvreur, "Fast
Decipherment Algorithm for RSA Public­
Key Cryptosystem," Electronic Letters, v.
18, 1982, pp. 155-168.

1277. J.-J. Quisquater and J.-P. Delescaille,
"Other Cycling Tests for DES," Advances
in Cryptology-CRYPTO '87 Proceedings,
Springer-Verlag, 1988, pp. 255-256.

1278. J.-J. Quisquater and Y.G. Desmedt, "Chi­
nese Lotto as an Exhaustive Code-Breaking
Machine," Computer, v. 24, n. 11, Nov
1991, pp. 14-22.

1279. J.-J. Quisquater and M. Girault, "2n-bit
Hash Functions Using n-bit Symmetric
Block Cipher Algorithms, Advances in
Cryptology-EUROCRYPT '89 Proceed­
ings, Springer-Verlag, 1990, pp. 102-109.

1280. J.-J. Quisquater and L.C. Guillou, "Des
Procedes d' Authentification Bases sur une
Publication de Problemes Complexes et
Personnalises dont !es Solutions Main­
tenues Secretes Constituent autant d' Ac­
creditations," Proceedings of SECURI­
COM '89: 7th Worldwide Congress on
Computer and Communications Security
and Protection, Societe d'Edition et d'Or­
ganisation d'Expositions Professionnelles,
1989, pp. 149-158. (In French.)

1281. J.-J., Myriam, Muriel, and Michael
Quisquater; L., Marie Annick, Ga1d, Anna,
Gwenole, and Soazig Guillou; and T.
Berson, "How to Explain Zero-Knowledge
Protocols to Your Children," Advances in
Cryptology-CRYPTO '89 Proceedings,
Springer-Verlag, 1990, pp. 628-631.

1282. M.O. Rabin, "Digital Signatures," Founda­
tions of Secure Communication, New
York: Academic Press, 1978, pp. 155-168.

1283. M.O. Rabin, "Digital Signatures and
Public-Key Functions as Intractable as Fac­
torization," MIT Laboratory for Computer
Science, Technical Report, MIT/LCS/TR-
212, Jan 1979.

1284. M.O. Rabin, "Probabilistic Algorithm for
Testing Primality," Journal of Number
Theory, v. 12, n. 1, Feb 1980, pp. 128- 138.

1285. M.O. Rabin, "Probabilistic Algorithms in
Finite Fields," SIAM fournal on Comput­
ing, v. 9, n. 2, May 1980, pp. 273-280.

1286. M.O. Rabin, "How to Exchange Secrets by
Oblivious Transfer," Technical Memo TR-
81, Aiken Computer Laboratory, Harvard
University, 1981.

1287. M.O. Rabin, "Fingerprinting by Random
Polynomials," Technical Report TR-15-81,
Center for Research in Computing Tech­
nology, Harvard University, 1981.

1288. T. Rabin and M. Ben-Or, "Verifiable Secret
Sharing and Multiparty Protocols with
Honest Majority," Proceedings of the 21st
ACM Symposium on the Theory of Com­
puting, 1989, pp. 73-85.

1289. RAND Corporation, A Million Random
Digits with 100,000 Normal Deviates,
Glencoe, IL: Free Press Publishers, 1955.

1290. T.R.N. Rao, "Cryposystems Using Alge­
braic Codes," International Conference on
Computer Systems and Signal Processing,
Bangalore, India, Dec 1984.

1291. T.R.N. Rao, "On Struit-Tilburg Cryptanal­
ysis of Rao-Nam Scheme," Advances in
Cryptology-CRYPTO '87 Proceedings,
Springer-Verlag, 1988, pp. 458-460.

1292. T.R.N. Rao and K.H. Nam, "Private-Key
Algebraic-Coded Cryptosystems," Ad­
vances in Cryptology-CRYPTO '86 Pro­
ceedings, Springer-Verlag, 1987, pp. 35-48.

1293. T.R.N. Rao and K.H. Nam, "Private-Key
Algebraic-Code Encryptions," IEEE Trans­
actions on Information Theory, v. 35, n. 4,
Jul 1989,pp. 829-833.

1294. J.A. Reeds, "Cracking Random Number
Generator," Cryptologia, v. 1, n. 1, Jan
1977, pp. 20-26.

1295. J.A. Reeds, "Cracking a Multiplicative
Congruential Encryption Algorithm," in
Information Linkage Between Applied
Mathematics and Industry, P.C.C. Wang,
ed., Academic Press, 1979, pp. 467-472.

1296. J.A. Reeds, "Solution of Challenge
Cipher," Cryptologia, v. 3, n. 2, Apr 1979,
pp. 83-95.

1297. J.A. Reeds and J.L. Manferdelli, "DES Has
No Per Round Linear Factors," Advances
in Cryptology: Proceedings of CRYPTO 84,
Springer-Verlag, 1985, pp. 377-389.

1298. J.A. Reeds and N.J.A. Sloane, "Shift Regis­
ter Synthesis (Modulo m)," SIAM fournal
on Computing, v. 14, n. 3, Aug 1985, pp.
505-513.

1299. J.A. Reeds and P.J. Weinberger, "File Secu­
rity and the UNIX Crypt Command,"
ATevT Technical fournal, v. 63, n. 8, Oct
1984,pp. 1673-1683.

1300. T. Renji, "On Finite Automaton One-Key
Cryptosystems," Fast Software Encryption,

~"":s;~---------R_e_fe_r_e_n_ce_s ___________________ _

Cambridge Security Workshop Proceed­
ings, Springer-Verlag, 1994, pp. 135-148.

1301. T. Renji and C. Shihua, 11 A Finite Automa­
ton Public Key Cryptosystems and Digital
Signature," Chinese Journal of Computers,
v. 8, 1985, pp. 401-409. (In Chinese.)

1302. T. Renji and C. Shihua, "Two Varieties of
Finite Automaton Public Key Cryptosys­
tems and Digital Signature," Journal of
Computer Science and Tecnology, v. 1,
1986, pp. 9-18. (In Chinese.)

1303. T. RenjiandC. Shihua, "An Implementation
of Identity-based Cryptosystems and Signa­
ture Schemes by Finite Automaton Public
Key Cryptosystems," Advances in Cryptol­
ogy-CHINACRYPT '92, Bejing: Science
Press, 1992, pp. 87-104. (In Chinese.)

1304. T. Renji and C. Shihua, "Note on Finite
Automaton Public Key Cryptosystems,"
CHINACRYPT '94, Xidian, China, 11-15
Nov 1994, pp. 76-80.

1305. Research and Development in Advanced
Communication Technologies in Europe,
RIPE Integrity Primitives: Final Report of
RACE Integrity Primitives Evaluation
(R1040}, RACE, June 1992.

1306. J.M. Reyneri and E.D. Kamin, "Coin Flip­
ping by Telephone," IEEE Transactions on
Information Theory, v. IT-30, n. 5, Sep
1984, pp. 775-776.

1307. P. Ribenboim, The Book of Prime Number
Records, Springer-Verlag, 1988.

1308. P. Ribenboim, The Little Book of Big
Primes, Springer-Verlag, 1991.

1309. M. Richter, "Ein Rauschgenerator zur
Gewinnung won quasi-idealen Zufall­
szahlen fur die stochastische Simulation,"
Ph.D. dissertation, Aachen University of
Technology, 1992. (In German.)

1310. R.F. Rieden, J.B. Snyder, R.J. Widman, and
W.J. Barnard, 11 A Two-Chip Implementation
of the RSA Public Encryption Algorithm, 11

Proceedings of GOMAC (Government
Microcircuit Applications Conference),
Nov 1982, pp. 24-27.

1311. H. Riesel, Prime Numbers and Computer
Methods for Factorization, Boston:
Birkhauser, 1985.

1312. K. Rihaczek, "Data Interchange and Legal
Security-Signature Surrogates, 11 Comput­
ers eJ Security, v. 13, n. 4, Sep 1994, pp.
287-293.

1313. V. Rijmen and B. Preneel, "Improved
Characteristics for Differential Crypt-

analysis of Hash Functions Based on
Block Ciphers, 11 K. U. Leuven Workshop
on Cryptographic Algorithms, Springer­
Verlag, 1995, to appear.

1314. R.L. Rivest, "A Description of a Single­
Chip Implementation of the RSA Cipher, 11

LAMBDA Magazine, v. 1, n. 3, Fall 1980,
pp. 14-18.

1315. R.L. Rivest, "Statistical Analysis of the
Hagelin Cryptograph," Cryptologia, v. 5,
n. 1, Jan 1981, pp. 27-32.

1316. R.L. Rivest, "A Short Report on the RSA
Chip," Advances in Cryptology: Proceedings
of Crypto 82, Plenum Press, 1983, p. 327.

1317. R.L. Rivest, "RSA Chips (Past/Present/
Future)," Advances in Cryptology: Pro­
ceedings of EUROCRYPT 84, Springer­
Verlag, 1985, pp. 159-168.

1318. R.L. Rivest, "The MD4 Message Digest
Algorithm," RFC 1186, Oct 1990.

1319. R.L. Rivest, "The MD4 Message Digest
Algorithm," Advances in Cryptology­
CRYPTO '90 Proceedings, Springer-Verlag,
1991, pp. 303-311.

1320. R.L. Rivest, "The RC4 Encryption Algo­
rithm," RSA Data Security, Inc., Mar 1992.

1321. R.L. Rivest, "The MD4 Message Digest
Algorithm," RFC 1320, Apr 1992.

1322. R.L. Rivest, "The MDS Message Digest
Algorithm," RFC 1321, Apr 1992.

1323. R.L. Rivest, "Dr. Ron Rivest on the Diffi­
culty of Factoring," Ciphertext: The RSA
Newsletter, v. 1, n. 1, Fall 1993, pp. 6, 8.

1324. R.L. Rivest, "The RCS Encryption Algo­
rithm," Dr. Dobb's Journal, v. 20, n. 1, Jan
95, pp. 146-148.

1325. R.L. Rivest, "The RCS Encryption Algo­
rithm, 11 K. U. Leuven Workshop on Crypto­
graphic Algorithms, Springer-Verlag, 1995,
to appear.

1326. R.L. Rivest, M.E. Hellman, J.C. Anderson,
and J.W. Lyons, "Responses to NIST's Pro­
posal," Communications of the ACM, v.
35, n. 7, Jul 1992, pp. 41-54.

132 7. R.L. Rivest and A. Shamir, "How to Expose
an Eavesdropper," Communications of the
ACM, v. 27, n. 4, Apr 1984, pp. 393-395.

1328. R.L. Rivest, A. Shamir, and L.M. Adleman,
11 A Method for Obtaining Digital Signa­
tures and Public-Key Cryptosystems,"
Communications of the ACM, v. 21, n. 2,
Feb 1978, pp. 120-126.

1329. R.L. Rivest, A. Shamir, and L.M. Adleman,
"On Digital Signatures and Public Key

____________________ R_ef_e_re_n_c_e_s _________ z:-----~

Cryptosystems, 11 MIT Laboratory for
Computer Science, Technical Report,
MIT/LCS/TR-212, Jan 1979.

1330. R.L. Rivest, A. Shamir, and L.M. Adleman,
"Cryptographic Communications System
and Method," U.S. Patent #4,405,829, 20
Sep 1983.

1331. M.J.B. Robshaw, "Implementations of the
Search for Pseudo-Collisions in MD5,"
Technical Report TR-103, Version 2.0,
RSA Laboratories, Nov 1993.

1332. M.J.B. Robshaw, "The Final Report of
RACE 1040: A Technical Summary,"
Technical Report TR-9001, Version 1.0,
RSA Laboratories, Jul 1993.

1333. M.J.B. Robshaw, "On Evaluating the Lin­
ear Complexity of a Sequence of Least
Period 2n,11 Designs, Codes and Cryptogra­
phy, v.4,n.3, 1994,pp. 263-269.

1334. M.J.B. Robshaw, "Block Ciphers," Techni­
cal Report TR-601, RSA Laboratories, Jul
1994.

1335. M.J.B. Robshaw, "MD2, MD4, MD5, SHA,
and Other Hash Functions," Technical
Report TR-101, Version 3.0, RSA Laborato­
ries, Jul 1994.

1336. M.J.B. Robshaw, "On Pseudo-Collisions in
MD5," Technical Report TR-102, Version
1.1, RSA Laboratories, Jul 1994.

1337. M.J.B. Robshaw, "Security of RC4," Tech­
nical Report TR-401, RSA Laboratories, Jul
1994.

1338. M.J.B. Robshaw, personal communication,
1995.

1339. M. Roe, "Reverse Engineering of an EES
Device," K. U. Leuven Workshop on Cryp­
tographic Algorithms, Springer-Verlag,
1995, to appear.

1340. P. Rogaway and D. Coppersmith, "A Soft­
ware-Oriented Encryption Algorithm,"
Fast Software Encryption, Cambridge
Security Workshop Proceedings, Springer­
Verlag, 1994, pp. 56-63.

1341. H.L. Rogers, "An Overview of the Cand­
ware Program, 11 Proceedings of the 3rd
Annual Symposium on Physical/Elec­
tronic Security, Armed Forces Communi­
cations and Electronics Association, paper
31, Aug 1987.

1342. J. Rompel, "One-Way Functions Are Nec­
essary and Sufficient for Secure Signa­
tures," Proceedings of the 22nd Annual
ACM Symposium on the Theory of Com­
puting, 1990, pp. 387-394.

1343. T. Rosati, "A High Speed Data Encryption
Processor for Public Key Cryptography,"
Proceedings of the IEEE Custom Integrated
Circuits Conference, 1989, pp. 12.3.1-12.3.5.

1344. O.S. Rothaus, "On 'Bent' Functions," four­
nal of Combinational Theory, Series A, v.
20, n.3, 1976,pp.300-305.

1345. RSA Laboratories, "PKCS #1: RSA Encryp­
tion Standard," version 1.5, Nov 1993.

1346. RSA Laboratories, "PKCS #3: Diffie­
Hellman Key-Agreement Standard," ver­
sion 1.4, Nov 1993.

1347. RSA Laboratories, "PKCS #5: Password­
Based Encryption Standard," version 1.5,
Nov 1993.

1348. RSA Laboratories, "PKCS #6: Extended­
Certificate Syntax Standard," version 1.5,
Nov 1993.

1349. RSA Laboratories, "PKCS #7: Crypto­
graphic Message Syntax Standard," version
1.5, Nov 1993.

1350. RSA Laboratories, "PKCS #8: Private Key
Information Syntax Standard," version 1.2,
Nov 1993.

1351. RSA Laboratories, "PKCS #9: Selected
Attribute Types," version 1.1, Nov 1993.

1352. RSA Laboratories, "PKCS #10: Certifica­
tion Request Syntax Standard," version
1.0, Nov 1993.

1353. RSA Laboratories, "PKCS #11: Crypto­
graphic Token Interface Standard," version
1.0, Apr 95.

1354. RSA Laboratories, "PKCS #12: Public Key
User Information Syntax Standard," ver­
sion 1.0, 1995.

1355. A.D. Rubin and P. Honeyman, "Formal
Methods for the Analysis of Authentica­
tion Protocols," draft manuscript, 1994.

1356. F. Rubin, "Decrypting a Stream Cipher
Based on J-K Flip-Flops," IEEE Transac­
tions on Computing, v. C-28, n. 7, Jul 1979,
pp. 483-487.

1357. R.A. Rueppel, Analysis and Design of
Stream Ciphers, Springer-Verlag, 1986.

1358. R.A. Rueppel, "Correlation Immunity and
the Summation Combiner, 11 Advances in
Cryptology-EUROCRYPT '85, Springer­
Verlag, 1986, pp. 260-272.

1359. R.A. Rueppel, "When Shift Registers
Clock Themselves," Advances in Cryp­
tology-EUROCRYPT '87 Proceedings,
Springer-Verlag, 1987, pp. 53-64.

1360. R.A. Rueppel, "Security Models and
Notions for Stream Ciphers," Cryptogra-

~---:s __________ R_ef_e_r_en_c_e_s ___________________ _

phy and Coding II, C. Mitchell, ed.,
Oxford: Clarendon Press, 1992, pp.
213-230.

1361. R.A. Rueppel, "On the Security of
Schnorr's Pseudo-Random Sequence Gen­
erator," Advances in Cryptology-EURO­
CRYPT '89 Proceedings, Springer-Verlag,
1990, pp. 423-428.

1362. R.A. Rueppel, "Stream Ciphers," Contem­
porary Cryptology: The Science o.f Infor­
mation Integrity, G.J. Simmons, ed., IEEE
Press, 1992, pp. 65-134.

1363. R.A. Rueppcl and J.L. Massey, "The Knap­
sack as a Nonlinear Function," IEEE Inter­
national Symposium on Information The­
ory, Brighton, UK, May 1985.

1364. R.A. Rueppel and O.J. Staffelbach, "Prod­
ucts of Linear Recurring Sequences with
Maximum Complexity," IEEE Transac­
tions on Information Theory, v. IT-33, n. 1.
Jan 1987, pp. 124-131.

1365. D. Russell and G.T. Gangemi, Computer
Security Basics, O'Reilly and Associates,
Inc., 1991.

1366. S. Russell and P. Craig, "Privacy
Enhanced Mail Modules for ELM," Pro­
ceedings of the Internet Society 1994
Workshop on Network and Distributed
System Security, The Internet Society,
1994, pp. 21-34.

1367. D.F.H. Sadak and J. Kelner, "Privacy
Enhanced Mail Design and Implementation
Perspectives," Computer Communications
Review, v. 24, n. 3, Jul 1994, pp. 38-46.

1368. K. Sakano, "Digital Signatures with User­
Flexible Reliability," Proceedings of the
1993 Symposium on Cryptography and
Information Security (SCIS 93}, Shuzenji,
Japan, 28-30 Jan 1993, pp. 5C.l-8.

1369. K. Sakano, C. Park, and K. Kurosawa,
"(kn) Threshold Undeniable Signature
Scheme," Proceedings of the 1993 Korea­
Japan Workshop on Information Security
and Cryptography, Seoul, Korea, 24-26
Oct 1993,pp. 184-193.

1370. K. Sako, "Electronic Voting Schemes
Allowing Open Objection to the Tally,"
Transactions of the Institute of Electron­
ics, Information, and Communication
Engineers, v. E77-A, n. 1. 1994, pp. 24-30.

1371. K. Sako and J. Kilian, "Secure Voting Using
Partially Compatible Homomorphisms,"
Advances in Cryptology-CRYPTO '94

Proceedings, Springer-Verlag, 1994, p.
411-424.

1372. K. Sako and J. Kilian, "Receipt-Free Mix­
Type Voting Scheme-A Practical Solution
to the Implementation of a Voting Booth,"
Advances in Cryptology-EUROCRYPT
'95 Proceedings, Springer-Verlag, 1995, pp.
393-403.

1373. A. Salomaa, Public-Key Cryptography,
Springer-Verlag, 1990.

1374. A. Salomaa and L. Santean, "Secret Selling
of Secrets with Many Buyers," ETACS Bul­
letin, v. 42, 1990, pp. 178-186.

1375. M. Santha and U.V. Vazirani, "Generating
Quasi-Random Sequences from Slightly
Random Sources," Proceedings of the 25th
Annual Symposium on the Foundations of
Computer Science, 1984, pp. 434-440.

1376. M. Santha and U.V. Vazirani, "Generating
Quasi-Random Sequences from Slightly
Random Sources," Journal of Computer
and System Sciences, v. 33, 1986, pp. 75-87.

1377. S. Saryazdi, "An Extension to ElGamal
Public Key Cryptosystem with a New Sig­
nature Scheme," Proceedings of the 1990
Bilkent International Conference on New
Trends in Communication, Control, and
Signal Processing, North Holland: Else­
vier Science Publishers, 1990, pp.
195-198.

1378. J.E. Savage, "Some Simple Self-
Synchronizing Digital Data Scramblers,"
Bell System Technical Journal, v. 46, n. 2,
Feb 1967, pp. 448-487.

1379. B.P. Schanning, 11 Applying Public Key Dis­
tribution to Local Area Networks," Com­
puters eJ Security, v. 1, n. 3, Nov 1982, pp.
268-274.

1380. B.P. Schanning, S.A. Powers, and J.
Kowalchuk, "MEMO: Privacy and
Authentication for the Automated
Office," Proceedings of the 5th Conference
on Local Computer Networks, IEEE Press,
1980, pp. 21-30.

1381. Schaumuller-Bichl, "Zur Analyse des Data
Encryption Standard und Synthese Ver­
wandter Chiffriersysteme," Ph.D. disserta­
tion, Linz University, May 1981. (In Ger­
man.)

1382. Schaumuller-Bichl, "On the Design and
Analysis of New Cipher Systems Related
to the DES," Technical Report, Linz Uni­
versity, 1983.

_____________________ R_ef_e_r_en_c_e_s __________ 7 __ ~

1383. A. Scherbius, "Ciphering Machine," U.S.
Patent #1,657,411, 24 Jan 1928.

1384. J.I. Schiller, "Secure Distributed Comput­
ing," Scientific American, v. 271, n. 5, Nov
1994, pp. 72-76.

1385. R. Schlafly, "Complaint Against Exclusive
Federal Patent License," Civil Action File
No. C-93 20450, United States District
Court for the Northern District of Califor­
nia.

1386. B. Schneier, "One-Way Hash Functions,"
Dr. Dobb's Journal, v. 16, n. 9, Sep 1991,
pp. 148-151.

1387. B. Schneier, "Data Guardians," Mac World,
v. 10, n. 2, Feb 1993, pp. 145-151.

1388. B. Schneier, "Description of a New Vari­
able-Length Key, 64-Bit Block Cipher
(Blowfish)," Fast Software Encryption,
Cambridge Security Workshop Proceed­
ings, Springer-Verlag, 1994, pp. 191-204.

1389. B. Schneier, "The Blowfish Encryption
Algorithm," Dr. Dobb's Journal, v. 19, n. 4,
Apr 1994,pp.38-40.

1390. B. Schneier, Protect Your Macintosh,
Peachpit Press, 1994.

1391. B. Schneier, "Designing Encryption Algo­
rithms for Real People," Proceedings of the
1994 ACM SIGSAC New Security
Paradigms Workshop, IEEE Computer
Society Press, 1994, pp. 63-71.

1392. B. Schneier, "A Primer on Authentication
and Digital Signatures," Computer Secu­
rity Journal, v. 10, n. 2, 1994, pp. 38-40.

1393. B. Schneier, "The GOST Encryption Algo­
rithm," Dr. Dobb's Journal, v. 20, n. 1, Jan
95, pp. 123-124.

1394. B. Schneier, E-Mail Security (with PGP and
PEM) New York: John Wiley & Sons, 1995.

1395. C.P. Schnorr, "On the Construction of
Random Number Generators and Random
Function Generators," Advances in Cryp­
tology-EUR OCRYPT '88 Proceedings,
Springer-Verlag, 1988, pp. 225-232.

1396. C.P. Schnorr, "Efficient Signature Genera­
tion for Smart Cards," Advances in Cryp­
tology-CRYPTO '89 Proceedings,
Springer-Verlag, 1990, pp. 239-252.

1397. C.P. Schnorr, "Efficient Signature Genera­
tion for Smart Cards," Journal of Cryptol­
ogy, v. 4, n. 3, 1991, pp. 161-174.

1398. C.P. Schnorr, ''Method for Identifying Sub­
scribers and for Generating and Verifying
Electronic Signatures in a Data Exchange

System," U.S. Patent #4,995,082, 19 Feb
1991.

1399. C.P. Schnorr, "An Efficient Cryptographic
Hash Function," presented at the rump
session of CRYPTO '91, Aug 1991.

1400. C.P. Schnorr, "FFT-Hash II, Efficient Cryp­
tographic Hashing," Advances in Cryp­
tology-EUR OCRYPT '92 Proceedings,
Springer-Verlag, 1993, pp. 45-54.

1401. C.P. Schnorr and W. Alexi, "RSA-bits are
0.5 + E Secure," Advances in Cryptology:
Proceedings of EUROCRYPT 84, Springer­
Verlag, 1985, pp. 113-126.

1402. C.P. Schnorr and S. Vaudenay, "Parallel
FFT-Hashing," Fast Software Encryption,
Cambridge Security Workshop Proceed­
ings, Springer-Verlag, 1994, pp. 149-156.

1403. C.P. Schnorr and S. Vaudenay, "Black Box
Cryptanalysis of Hash Networks Based on
Multipermutations," Advances in Cryp­
tology-EUROCRYPT '94 Proceedings,
Springer-Verlag, 1995, to appear.

1404. W. Schwartau, Information Warfare:
Chaos on the Electronic Superhighway,
New York: Thunders Mouth Press, 1994.

1405. R. Scott, "Wide Open Encryption Design
Offers Flexible Implementations," Cryp­
tologia, v. 9, n. 1, Jan 1985, pp. 75-90.

1406. J. Seberry, "A Subliminal Channel in
Codes for Authentication without
Secrecy," Ars Combinatorica, v. 19A,
1985, pp. 337-342.

1407. J. Seberry and J. Pieprzyk, Cryptography:
An Introduction to Computer Security,
Englewood Cliffs, N.J.: Prentice-Hall,
1989.

1408. J. Seberry, X.-M. Zhang, and Y. Zheng,
"Nonlinearly Balanced Boolean Functions
and Their Propagation Characteristics,"
Advances in Cryptology-EUROCRYPT
'91 Proceedings, Springer-Verlag, 1994, pp.
49-60.

1409. H. Sedlack, "The RSA Cryptography Pro­
cessor: The First High Speed One-Chip
Solution," Advances in Cryptology­
EUROCRYPT '87 Proceedings, Springer­
Verlag, 1988, pp. 95-105.

1410. H. Sedlack and U. Golze, "An RSA Cryp­
tography Processor," Microprocessing and
Microprogramming, v. 18, 1986, pp.
583-590.

1411. E.S. Selmer, Linear Recurrence over Finite
Field, University of Bergen, Norway, 1966.

~~:s __________ R_ef_e_r_en_c_e_s ___________________ _

1412. J.O. Shallit, "On the Worst Case of Three
Algorithms for Computing the Jacobi Sym­
bol," [ournal of Symbolic Computation, v.
10, n. 6, Dec 1990, pp. 593-610.

1413. A. Shamir, "A Fast Signature Scheme,"
MIT Laboratory for Computer Science,
Technical Memorandum, MIT/LCS/TM-
107, Massachusetts Institute of Technol­
ogy, Jul 1978.

1414. A. Shamir, "How to Share a Secret," Com­
munications of the ACM, v. 24, n. 11, Nov
1979,pp.612-613.

1415. A. Shamir, "On the Cryptocomplexity of
Knapsack Systems," Proceedings of the
11th ACM Symposium on the Theory of
Computing, 1979, pp. 118-129.

1416. A. Shamir, "The Cryptographic Security of
Compact Knapsacks," MIT Library for
Computer Science, Technical Memoran­
dum, MIT/LCS/TM-164, Massachusetts
Institute of Technology, 1980.

1417. A. Shamir, "On the Generation of Cryp­
tographically Strong Pseudo-Random
Sequences," Lecture Notes in Computer
Science 62: 8th International Colloquium
on Automata, Languages, and Program­
ming, Springer-Verlag, 1981.

1418. A. Shamir, "A Polynomial Time Algo­
rithm for Breaking the Basic Merkle­
Hellman Cryptosystem," Advances in
Cryptology: Proceedings of Crypto 82,
Plenum Press, 1983, pp. 279-288.

1419. A. Shamir, "A Polynomial Time Algorithm
for Breaking the Basic Merkle-Hellman
Cryptosystem," Proceedings of the 23rd
IEEE Symposium on the Foundations of
Computer Science, 1982, pp. 145-152.

1420. A. Shamir, "On the Generation of Crypto­
graphically Strong Pseudo-Random
Sequences," ACM Transactions on Com­
puter Systems, v. 1, n. 1, Feb 1983, pp. 38-44.

142,1. A. Shamir, "A Polynomial Time Algo­
rithm for Breaking the Basic Merkle­
Hellman Cryptosystem," IEEE Transac­
tions on Information Theory, v. IT-30, n. 5,
Sep 1984, pp. 699-704.

1422. A. Shamir, "Identity-Based Cryptosystems
and Signature Schemes," Advances in
Cryptology: Proceedings of CRYPTO 84,
Springer-Verlag, 1985, pp. 47-53.

1423. A. Shamir, "On the Security of DES,"
Advances in Cryptology-CRYPTO '85
Proceedings, Springer-Verlag, 1986, pp.
280-281.

1424. A. Shamir, lecture at SECURICOM '89.
1425. A. Shamir, "Efficient Signature Schemes

Based on Birational Permutations," Ad­
vances in Cryptology-CRYPTO '93 Pro­
ceedings, Springer-Verlag, 1994, pp. 1-12.

1426. A. Shamir, personal communication, 1993.
1427. A. Shamir and A. Fiat, "Method, Apparatus

and Article for Identification and Signa­
ture," l.J.S. Patent #4,748,668, 31 May
1988.

1428. A. Shamir and R. Zippel, "On the Security
of the Merkle-Hellman Cryptographic
Scheme," IEEE Transactions on Informa­
tion Theory, v. 26, n. 3, May 1980, pp.
339-340.

1429. M. Shand, P. Bertin, and J. Vuillemin,
"Hardware Speedups in Long Integer Mul­
tiplication," Proceedings of the 2nd
Annual ACM Symposium on Parallel
Algorithms and Architectures, 1990, pp.
138-145.

1430. D. Shanks, Solved and Unsolved Problems
in Number Theory, Washington D.C.:
Spartan, 1962.

1431. C.E. Shannon," A Mathematical Theory of
Communication," Bell System Technical
[ournal, v. 27, n. 4, 1948, pp. 379-423,
623-656.

1432. C.E. Shannon, "Communication Theory of
Secrecy Systems," Bell System Technical
[ournal, v. 28, n. 4, 1949, pp. 656-715.

1433. C.E. Shannon, Collected Papers: Claude
Elmwood Shannon, N.J.A. Sloane and
A.D. Wyner, eds., New York: IEEE Press,
1993.

1434. C.E. Shannon, "Predication and Entropy in
Printed English," Bell System Technical
[ournal, v. 30, n. 1, 1951, pp. 50-64.

1435. A. Shimizu and S. Miyaguchi, "Fast Data
Encipherment Algorithm FEAL," Transac­
tions of IEICE of [apan, v. J70-D, n. 7, Jul
87, pp. 1413-1423. (In Japanese.)

1436. A. Shimizu and S. Miyaguchi, "Fast Data
Encipherment Algorithm FEAL," Ad­
vances in Cryptology-EUROCRYPT '87
Proceedings, Springer-Verlag, 1988, pp.
267-278.

1437. A. Shimizu and S. Miyaguchi, "FEAL­
Fast Data Encipherment Algorithm," Sys­
tems and Computers in [apan, v. 19, n. 7,
1988, pp. 20-34, 104-106.

1438. A. Shimizu and S. Miyaguchi, "Data Ran­
domization Equipment," U.S. Patent
#4,850,019, 18 Jul 1989.

____________________ R_e_fe_r_e_n_ce_s _________ 7~~
1439. M. Shimada, "Another Practical Public­

key Cryptosystem," Electronics Letters, v.
28, n. 23, 5 Nov 1992, pp. 2146-2147.

1440. K. Shirriff, personal conununication, 1993.
1441. H. Shizuya, T. Itoh, and K. Sakurai, "On

the Complexity of Hyperelliptic Discrete
Logarithm Problem," Advances in Cryp­
tology-EUROCRYPT '91 Proceedings,
Springer-Verlag, 1991, pp. 337-351.

1442. Z. Shmuley, "Composite Diffie-Hellman
Public-Key Generating Systems Arc Hard
to Break," Computer Science Department,
Technion, Haifa, Israel, Technical Report
356, Feb 1985.

1443. P.W. Shor, "Algorithms for Quantum
Computation: Discrete Log and
Factoring," Proceedings of the 35th Sym­
posium on Foundations of Computer Sci­
ence, 1994, pp. 124-134.

1444. L. Shroyer, letter to NIST regarding DSS,
17 Feb 1992.

1445. C. Shu, T. Matsumoto, and H. Imai, "A
Multi-Purpose Proof System, Transactions
of the Institute of Electronics, Informa­
tion, and Communication Engineers, v.
E75-A, n. 6, Jun 1992, pp. 735-743.

1446. E.H. Sibley, "Random Number Genera­
tors: Good Ones Are Hard to Find," Com­
munications of the ACM, v. 31, n. 10, Oct
1988, pp. 1192-1201.

1447. V.M. Sidenikov and S.O. Shestakov, "On
Encryption Based on Generalized Reed­
Solomon Codes," Diskretnaya Math, v. 4,
1992, pp. 57-63. (In Russian.)

1448. V.M. Sidenikov and S.O. Shestakov, "On
Insecurity of Cryptosystems Based on
Generalized Reed-Solomon Codes," un­
published manuscript, 1992.

1449. D.P. Sidhu, "Authentication Protocols for
Computer Networks," Computer Net­
works and ISDN Systems, v. 11, n. 4, Apr
1986, pp. 297-310.

1450. T. Siegenthaler, "Correlation-Immunity of
Nonlinear Combining Functions for Cryp­
tographic Applications," IEEE Transac­
tions on Information Theory, v. IT-30, n. 5,
Sep 1984, pp. 776-780.

1451. T. Siegenthaler, "Decrypting a Class of
Stream Ciphers Using Ciphertext Only,"
IEEE Transactions on Computing, v. C-34,
Jan 1985, pp. 81-85.

1452. T. Siegenthaler, "Cryptanalyst's Represen­
tation of Nonlinearity Filtered ml­
sequences," Advances in Cryptology-

EUROCRYPT '85, Springer-Verlag, 1986,
pp. 103-110.

1453. R.D. Silverman, "The Multiple Polynomial
Quadratic Sieve," Mathematics of Compu­
tation, v. 48, n. 177, Jan 1987, pp. 329-339.

1454. G.J. Simmons, "Authentication without
Secrecy: A Secure Communication Prob­
lem Uniquely Solvable by Asymmetric
Encryption Techniques," Proceedings of
IEEE EASCON '79, 1979, pp. 661-662.

1455. G.J. Simmons, "Some Number Theoretic
Questions Arising in Asymmetric Encryp­
tion Techniques," Annual Meeting of the
American Mathematical Society, AMS
Abstract 763.94.1, 1979, pp. 136-151.

1456. G.J. Simmons, "High Speed Arithmetic
Using Redundant Number Systems," Pro­
ceedings of the National Telecommunica­
tions Conference, 1980, pp. 49.3.1-49.3.2.

1457. G.J. Simmons, "A 'Weak' Privacy Protocol
Using the RSA Cryptosystem," Cryptolo­
gia, v. 7, n. 2, Apr 1983, pp. 180-182.

1458. G.J. Simmons, "The Prisoner's Problem
and the Subliminal Channel," Advances
in Cryptology: Proceedings of CRYPTO
'83, Plenum Press, 1984, pp. 51-67.

1459. G.J. Simmons, "The Subliminal Channel
and Digital Signatures," Advances in
Cryptology: Proceedings of EUROCRYPT
84, Springer-Verlag, 1985, pp. 364-378.

1460. G.J. Simmons, "A Secure Subliminal
Channel (?)," Advances in Cryptology­
CRYPTO '85 Proceedings, Springer-Verlag,
1986, pp. 33-41.

1461. G.J. Simmons, "Cryptology," Encyclope­
dia Britannica, 16th edition, 1986, pp.
913-924B.

1462. G.J. Simmons, "How to (Really) Share a
Secret," Advances in Cryptology­
CRYPTO '88 Proceedings, Springer-Verlag,
1990, pp. 390-448.

1463. G.J. Simmons, "Prepositioned Secret Shar­
ing Schemes and/or Shared Control
Schemes," Advances in Cryptology­
E UR OCRYPT '89 Proceedings, Springer­
Verlag, 1990, pp. 436-467.

1464. G.J. Simmons, "Geometric Shares Secret
and/or Shared Control Schemes,"
Advances in Cryptology-CRYPTO '90
Proceedings, Springer-Verlag, 1991, pp.
216-241.

1465. G.J. Simmons, ed., Contemporary Cryptol­
ogy: The Science of Information Integrity,
IEEE Press, 1992.

~~:s. __________ R_e_fe_r_en_ce_s ___________________ _

1466. G.J. Simmons, "An Introduction to Shared
Secret and/or Shared Control Schemes and
Their Application," in Contemporary
Cryptology: The Science of Information
Integrity, G.T. Simmons, ed., IEEE Press,
1992, pp. 441-497.

1467. G.J. Simmons, "How to Insure that Data
Acquired to Verify Treaty Compliance Are
Trustworthy," in Contemporary Cryptol­
ogy: The Science of Information Integrity,
G-T-Simmons, ed., IEEE Press, 1992, pp.
615-630.

1468. G.J. Simmons, "The Subliminal Channels
of the U.S. Digital Signature Algorithm
(DSA)," Proceedings of the Third Sympo­
sium on: State and Progress of Research in
Cryptography, Rome: Fondazone Ugo Bor­
doni, 1993, pp. 35-54.

1469. G.J. Simmons, "Subliminal Communica­
tion is Easy Using the DSA, 11 Advances in
Cryptology-EUROCRYPT '93 Proceed­
ings, Springer-Verlag, 1994, pp. 218-232.

1470. G.J. Simmons, "An Introduction to the
Mathematics of Trust in Security Proto­
cols, 11 Proceedings: Computer Security
Foundations Workshop VI, IEEE Com­
puter Society Press, 1993, pp. 121-127.

1471. G.T. Simmons, "Protocols that Ensure Fair­
ness," Codes and Ciphers, Institute of
Mathematics and its Applications, 1995,
pp. 383-394.

1472. G.T. Simmons, "Cryptanalysis and Proto­
col Failures," Communications of the
ACM, v. 37, n. 11, Nov 1994, pp. 56-65.

1473. G.T. Simmons, "Subliminal Channels: Past
and Present," European Transactions on
Telecommuncations, v. 4, n. 4, Tul/Aug
1994, pp. 459-473.

1474. G.T. Simmons and M-T- Norris, How to
Cipher Fast Using Redundant Number
Systems, SAND-80-1886, Sandia National
Laboratories, Aug 1980.

1475. A. Sinkov, Elementary Cryptanalysis,
Mathematical Association of America, 1966.

1476. R. Siromoney and L. Matthew, "A Public
Key Cryptosystem Based on Lyndon
Words," Information Processing Letters, v.
35, n. 1, 15 Tun 1990, pp. 33-36.

1477. B. Smeets, 11 A Note on Sequences Gener­
ated by Clock-Controlled Shift Registers,"
Advances in Cryptology-EUROCRYPT
'85, Springer-Verlag, 1986, pp. 40-42.

1478. M.E. Smid, "A Key Notarization System
for Computer Networks," NBS Special

Report 500-54, U.S. Department of Com­
merce, Oct 1979.

1479. M.E. Smid, "The DSS and the SHS," Fed­
eral Digital Signature Applications Sym­
posium, Rockville, MD, 17-18 Feb 1993.

1480. M.E. Smid and D.K. Branstad, "The Data
Encryption Standard: Past and Future, 11

Proceedings of the IEEE, v. 76, n. 5., May
1988, pp. 550-559.

1481. M.E. Smid and D.K. Branstad, "The Data
Encryption Standard: Past and Future, 11 in
Contemporary Cryptology: The Science of
Information Integrity, G.T. Simmons, ed.,
IEEE Press, 1992, pp. 43-64.

1482. T.L. Smith, "The Design of Lucifer, A Cryp­
tographic Device for Data Comrn.unica­
tions," IBM Research Report RC3326,
1971.

1483. J.L. Smith, "Recirculating Block Cipher
Cryptographic System," U.S. Patent
#3,796,830, 12 Mar 1974.

1484. J.L. Smith, W.A. Notz, and P.R. Osseck,
11 An Experimental Application of Cryptog­
raphy to a Remotely Accessed Data Sys­
tem," Proceedings of the ACM Annual
Conference, Aug 1972, pp. 282-290.

1485. K. Smith, "Watch Out Hackers, Public
Encryption Chips Are Coming," Electron­
ics Week, 20 May 1985, pp. 30-31.

1486. P. Smith, "LUC Public-Key Encryption,"
Dr. Dobb's Journal, v. 18, n. 1, Tan 1993, pp.
44-49.

1487. P. Smith and M. Lennon, "LUC: A New
Public Key System," Proceedings of the
Ninth International Conference on Infor­
mation Security, IFIP /Sec 1993, North
Holland: Elsevier Science Publishers,
1993, pp. 91-111.

1488. E. Snekkenes, "Exploring the BAN
Approach to Protocol Analysis," Proceed­
ings of the 1991 IEEE Computer Society
Symposium on Research in Security and
Privacy, 1991, pp. 171-181.

1489. B. Snow, "Multiple Independent Binary
Bit Stream Generator," U.S. Patent
#5,237,615, 17 Aug 1993.

1490. R. Solovay and V. Strassen, 11 A Fast Monte­
Carlo Test for Primality, 11 SIAM Journal on
Computing, v. 6, Mar 1977, pp. 84-85;
erratum in ibid, v. 7, 1978, p. 118.

1491. T. Sorimachi, T. Tokita, and M. Matsui,
"On a Cipher Evaluation Method Based on
Differential Cryptanalysis," Proceedings
of the 1994 Symposium on Cryptography

____________________ R_e_fe_r_e_n_ce_s _________ 7 ___ ~

and Information Security (SCIS 94), Lake
Biwa, Japan, 27-29 Jan 1994, pp. 4C.l-9.
(In Japanese.)

1492. A. Sorkin, "Lucifer, a Cryptographic Algo­
rithm," Cryptologia, v. 8, n. 1, Jan 1984,
pp. 22-41.

1493. W. Stallings, "Kerberos Keeps the Ethernet
Secure," Data Communications, Oct
1994, pp. 103-111.

1494. W. Stallings, Network and Internetwork
Security, Englewood Cliffs, N.J.: Prentice­
Hall, 1995.

1495. W. Stallings, Protect Your Privacy: A
Guide for PGP Users, Englewood Cliffs,
N.T.: Prentice-Hall, 1995.

1496. Standards Association of Australia, "Aus­
tralian Standard 2805.4 1985: Electronic
Funds Transfer-Requirements for Inter­
faces: Part 4-Message Authentication,"
SAA, North Sydney, NSW, 1985.

1497. Standards Association of Australia, "Aus­
tralian Standard 2805.5 1985: Electronic
Funds Transfer-Requirements for Inter­
faces: Part 5-Data Encipherment Algo­
rithm," SAA, North Sydney, NSW, 1985.

1498. Standards Association of Australia, "Aus­
tralian Standard 2805.5.3: Electronic Data
Transfer-Requirements for Interfaces:
Part 5.3-Data Encipherment Algorithm
2," SAA, North Sydney, NSW, 1992.

1499. J.C. Steiner, B.C. Neuman, and J.I. Schiller,
"Kerberos: An Authentication Service for
Open Network Systems," USENIX Con­
ference Proceedings, Feb 1988, pp.
191-202.

1500. J. Stern, "Secret Linear Congruential Gen­
erators Are Not Cryptographically
Secure," Proceedings of the 28th Sympo­
sium on Foundations of Computer Sci­
ence, 1987, pp.421-426.

1501. J. Stern, "A New Identification Scheme
Based on Syndrome Decoding," Advances
in Cryptology-CRYPTO '93 Proceedings,
Springer-Verlag, 1994, pp. 13-21.

1502. A. Stevens, "Hacks, Spooks, and Data
Encryption," Dr. Dobb's fournal, v. 15, n.
9, Sep 1990, pp. 127-134, 147-149.

1503. R. Struik, "On the Rao-Nam Private-Key
Cryptosystem Using Non-Linear Codes,"
IEEE 1991 Symposium on Information
Theory, Budapest, Hungary, 1991.

1504. R. Struik and J. van Tilburg, "The Rao­
Nam Scheme Is Insecure against a Chosen­
Plaintext Attack," Advances in Cryp-

tology-CRYPTO '87 Proceedings,
Springer-Verlag, 1988, pp. 445-457.

1505. S.G. Stubblebine and V.G. Gligor, "Pro­
tecting the Integrity of Privacy-Enhanced
Mail with DES-Based Authentication
Codes," Proceedings of the Privacy and
Security Research Group 1993 Workshop
on Network and Distributed System Secu­
rity, The Internet Society, 1993, pp. 75-80.

1506. R. Sugarman, "On Foiling Computer
Crime," IEEE Spectrum, v. 16, n. 7, Jul 79,
pp. 31-32.

1507. H.N. Sun and T. Hwang, "Public-key ID­
Based Cryptosystem," Proceedings of the
25th Annual 1991 IEEE International Car­
nahan Conference on Security Technol­
ogy, Taipei, Taiwan, 1-3 Oct 1991, pp.
142-144.

1508. P.F. Syverson, "Formal Semantics for Log­
ics of Computer Protocols," Proceedings of
the Computer Security Foundations
Workshop III, IEEE Computer Society
Press, 1990, pp. 32-41.

1509. P.F. Syverson, "The Use of Logic in the
Analysis of Cryptographic Protocols," Pro­
ceedings of the 1991 IEEE Computer Soci­
ety Symposium on Research in Security
and Privacy, 1991, pp. 156-170.

1510. P.F. Syverson, "Knowledge, Belief, and
Semantics in the Analysis of Crypto­
graphic Protocols," fournal of Computer
Security, v. 1, n. 3, 1992, pp. 317-334.

1511. P.F. Syverson, "Adding Time to a Logic
Authentication," 1st ACM Conference on
Computer and Communications Security,
ACM Press, 1993, pp. 97-106.

1512. P.F. Syverson and C.A. Meadows, "A Logi­
cal Language for Specifying Cryptographic
Protocol Requirements," Proceedings of
the 1993 IEEE Computer Society Sympo­
sium on Research in Security and Privacy,
1993, pp. 14-28.

1513. P.F. Syverson and C.A. Meadows, "Formal
Requirements for Key Distribution Proto­
cols," Advances in Cryptology-£ UR 0-
CRYPT '94 Proceedings, Springer-Verlag,
1995, to appear.

1514. P.F. Syverson and P.C. van Oorschot, "On
Unifying Some Cryptographic Protocol
Logics," Proceedings of the 1994 IEEE
Computer Society Symposium on Research
in Security and Privacy, 1994, pp. 165-177.

1515. H. Tanaka, "A Realization Scheme for the
Identity-Based Cryptosystem," Advances

~-:s __________ R_e_fe_r_en_ce_s __________________ _

in Cryptology-CRYPTO '87 Proceedings,
Springer-Verlag, 1988, pp. 340-349.

1516. H. Tanaka, "A Realization Scheme for the
Identity-Based Cryptosystem," Electronics
and Communications in fapan, Part 3
(Fundamental Electronic Science), v. 73, n.
5, May 1990, pp. 1-7.

1517. H. Tanaka, "Identity-Based Noninterac­
tive Common-Key Generation and Its
Application to Cryptosystems," Transac­
tions of the Institute of Electronics, Infor­
mation, and Communication Engineers, v.
J75-A, n. 4, Apr 1992, pp. 796-800.

1518. J. Tardo and K. Alagappan, "SPX: Global
Authentication Using Public Key Certifi­
cates," Proceedings of the 1991 IEEE Com­
puter Society Symposium on Security and
Privacy, 1991, pp. 232-244.

1519. J. Tardo, K. Alagappan, and R. Pitkin,
"Public Key Based Authentication Using
Internet Certificates," USENIX Security II
Workshop Proceedings, 1990, pp. 121-123.

1520. A. Tardy-Corfdir and H. Gilbert, "A
Known Plaintext Attack of FEAL-4 and
FEAL-6," Advances in Cryptology­
CRYPTO '91 Proceedings, Springer-Verlag,
1992, pp. 172-182.

1521. M. Tatebayashi, N. Matsuzaki, and D.B.
Newman, "Key Distribution Protocol for
Digital Mobile Communication System,"
Advances in Cryptology-CRYPTO '89
Proceedings, Springer-Verlag, 1990, pp.
324-333.

1522. M. Taylor, "Implementing Privacy
Enhanced Mail on VMS," Proceedings of
the Privacy and Security Research Group
1993 Workshop on Network and Dis­
tributed System Security, The Internet
Society, 1993, pp. 63-68.

1523. R. Taylor, "An Integrity Check Value
Algorithm for Stream Ciphers," Advances
in Cryptology-CRYPTO '93 Proceedings,
Springer-Verlag, 1994, pp. 40--48.

1524. T. Tedrick, "Fair Exchange of Secrets,"
Advances in Cryptology: Proceedings of
CRYPTO '84, Springer-Verlag, 1985, pp.
434-438.

1525. R. Terada and P.G. Pinheiro, "How to
Strengthen FEAL against Differential
Cryptanalysis," Proceedings of the 1995
fapan-Korea Workshop on Information
Security and Cryptography, Inuyama,
Japan, 24-27 Jan 1995, pp. 153-162.

1526. J.-P. Tillich and G. Zemor, "Hashing with
SI2," Advances in Cryptology-CRYPTO
'94 Proceedings, Springer-Verlag, 1994, pp.
40-49.

1527. T. Tokita, T. Sorimachi, and M. Matsui,
"An Efficient Search Algorithm for the
Best Expression on Linear Cryptanalysis,"
IEICE Japan, Technical Report, ISEC93-97,
1994.

1528. M. Tampa and H. Woll, "Random Self­
Reducibility and Zero-Knowledge Interac­
tive Proofs of Possession of Information,"
Proceedings of the 28th IEEE Symposium
on the Foundations of Computer Science,
1987, pp. 472--482.

1529. M. Tompa and H. Woll, "How to Share a
Secret with Cheaters," fournal of Cryptol­
ogy, v. 1, n. 2, 1988, pp. 133-138.

1530. M.-J. Toussaint, "Verification of Crypto­
graphic Protocols," Ph.D. dissertation,
Universite de Liege, 1991.

1531. M.-J. Toussaint, "Deriving the Complete
Knowledge of Participants in Crypto­
graphic Protocols," Advances in Cryptol­
ogy-CRYPTO '91 Proceedings, Springer­
Verlag, 1992, pp. 24--43.

1532. M.-J. Toussaint, "Separating the Specifica­
tion and Implementation Phases in Cryp­
tology," ESORICS 92, Proceedings of the
Second European Symposium on Research
in Computer Security, Springer-Verlag,
1992, pp. 77-101.

1533. P.D. Townsend, J.C. Rarity, and P.R. Tap­
ster, "Enhanced Single Photon Fringe Visi­
bility in a 10 kn1-Long Prototype Quantum
Cryptography Channel," Electronics Let­
ters, v. 28, n. 14, 8 Jul 1993, pp. 1291-1293.

1534. S.A. Tretter, "Properties of PN'-Sequences,"
IEEE Transactions on Information Theory,
v. IT-20, n. 2, Mar 1974, pp. 295-297.

1535. H. Truman, "Memorandum for: The Secre­
tary of State, The Secretary of Defense," A
20707 5/4/54/OSO, NSA TS CONTL. NO
73-00405, 24 Oct 1952.

1536. Y.W. Tsai and T. Hwang, "ID Based Public
Key Cryptosystem Based on Okamoto and
Tanaka's ID Based One-Way Communica­
tions Scheme," Electronics Letters, v. 26,
n. 10, 1 May 1990, pp. 666-668.

1537. G. Tsudik, "Message Authentication with
One-Way Hash Functions," ACM Com­
puter Communications Review, v. 22, n. 5,
1992, pp. 29-38.

_____________________ R_e_fe_r_en_ce_s __________ 7~~

1538. S. Tsujii and K. Araki, "A Rebuttal to Cop­
persmith's Attacking Method," memoran­
dum presented at Crypto '94, Aug 1994.

1539. S. Tsujii, K. Araki, J. Chao, T. Sekine, and
Y. Matsuzaki, "ID-Based Key Sharing
Scheme-Cancellation of Random Num­
bers by Iterative Addition," IEICE Japan,
Technical Report, ISEC 92-47, Oct 1992.

1540. S. Tsujii, K. Araki, and T. Sekine, "A New
Scheme of Noninteractive ID-Based Key
Sharing with Explosively High Degree of
Separability," Technical Report, Depart­
ment of Computer Science, Tokyo Insti­
tute of Technology, 93TR-0016, May 1993.

1541. S. Tsujii, K. Araki, and T. Sekine, "A New
Scheme of Non Interactive ID-Based key
Sharing with Explosively High Degree of
Separability (Second Version)," Technical
Report, Department of Computer Science,
Tokyo Institute of Technology, 93TR-
0020, Jul 1993.

1542. S. Tsujii, K. Araki, T. Sekine, and K.
Tanada, "A New Scheme of Non Interac­
tive ID-Based Key Sharing with Explo­
sively High Degree of Separability," Pro­
ceedings of the 1993 Korea-fapan
Workshop on Information Security and
Cryptography, Seoul, Korea, 24-26 Oct
1993, pp. 49-58.

1543. S. Tsujii, K. Araki, H. Tanaki, J. Chao, T.
Sekine, and Y. Matsuzaki, "ID-Based Key
Sharing Scheme-Reply to Tanaka's Com­
ment," IEICE Japan, Technical Report,
ISEC 92-60, Dec 1992.

1544. S. Tsujii and J. Chao, "A New ID-based Key
Sharing System," Advances in Cryptol­
ogy-CRYPTO '91 Proceedings, Springer­
Verlag, 1992, pp. 288-299.

1545. S. Tsujii, J. Chao, and K. Araki, "A Simple
ID-Based Scheme for Key Sharing," IEICE
Japan, Technical Report, ISEC 92-25, Aug
1992.

1546. S. Tsujii and T. Itoh, "An ID-Based Cryp­
tosystcm Based on the Discrete Logarithm
Problem," IEEE Journal on Selected Areas
in Communication, v. 7, n. 4, May 1989,
pp.467-473.

1547. S. Tsujii and T. Itoh, "An ID-Based Cryp­
tosystem Based on the Discrete Logarithm
Problem," Electronics Letters, v. 23, n. 24,
Nov 1989, pp. 1318-1320.

1548. S. Tsujii, K. Kurosawa, T. Itoh, A. Fujioka,
and T. Matsumoto, "A Public-Key Cryp-

tosystem Based on the Difficulty of Solv­
ing a System of Non-Linear Equations,"
TSUJII Laboratory Technical Memoran­
dum, n. 1, 1986.

1549. Y. Tsunoo, E. Okamoto, and H. Doi, "Ana­
lytical Known Plain-Text Attack for FEAL-
4 and Its Improvement," Proceedings of
the 1994 Symposium on Cryptography
and Information Security (SCIS 93), 1993.

1550. Y. Tsunoo, E. Okamoto, T. Uyematsu, and
M. Mambo, "Analytical Known Plain-Text
Attack for FEAL-6" Proceedings of the
1993 Korea-fapan Workshop on Informa­
tion Security and Cryptography, Seoul,
Korea, 24-26 Oct 1993, pp. 253-261.

1551. W. Tuchman, "Hellman Presents No
Shortcut Solutions to DES," IEEE Spec­
trum, v. 16, n. 7, July 1979, pp. 40-41.

1552. U.S. Senate Select Committee on Intelli­
gence, "Unclassified Summary: Involve­
ment of NSA in the Development of the
Data Encryption Standard," IEEE Commu­
nications Magazine, v. 16, n. 6, Nov 1978,
pp. 53-55.

1553. B. Vallee, M. Girault, and P. Toffin, "How
to Break Okamoto's Cryptosystem by
Reducing Lattice Values," Advances in
Cryptology-EUROCRYPT '88 Proceed­
ings, Springer-Verlag, 1988, p. 281-291.

1554. H. Van Antwerpen, "Electronic Cash,"
Master's thesis, CWI, Netherlands, 1990.

1555. K. Van Espen and J. Van Mieghem, "Evalu­
atie en Implementatie van Authentiser­
ingsalgoritmen," graduate thesis, ESAT
Laboratorium, Katholieke Univcrsiteit
Leuven, 1989. (In Dutch.)

1556. P.C. van Oorschot, "Extending Crypto­
graphic Logics of Belief to Key Agreement
Protocols," Proceedings of the 1st Annual
ACM Conference on Computer and Com­
munications Security, 1993, pp. 232-243.

1557. P.C. van Oorschot, "An Alternate Explana­
tion for Two BAN-logic 'Failures,'"
Advances in Cryptology-EUROCRYPT
'93 Proceedings, Springer-Verlag, 1994, pp.
443-447.

1558. P.C. van Oorschot and M.J. Wiener, "A
Known-Plaintext Attack on Two-Key
Triple Encryption," Advances in Cryp­
tology-EUROCRYPT '90 Proceedings,
Springer-Verlag, 1991, pp. 318-325.

1559. J. van Tilburg, "On the McEliece Cryp­
tosystem," Advances in Cryptology-

~-:s. __________ R_e_fe_r_en_ce_s ___________________ _

CRYPTO '88 Proceedings, Springer-Verlag,
1990, pp. 119-131.

1560. J. van Tilburg, "Cryptanalysis of the Xin­
mei Digital Signature Scheme," Electron­
ics Letters, v. 28, n. 20, 24 Sep 1992, pp.
1935-1938.

1561. J. van Tilburg, "Two Chosen-Plaintext
Attacks on the Li Wang Joing Authentica­
tion and Encryption Scheme," Applied
Algebra, Algebraic Algorithms and Error
Correcting Codes 10, Springer-Verlag,
1993, pp. 332-343.

1562. J. van Tilburg, "Security-Analysis of a Class
of Cryptosystems Based on Linear Error­
Correcting Codes," Ph.D. dissertation,
Technical University Eindhoven, 1994.

1563. A. Vandemeulebroecke, E. Vanzieleghem,
T. Denayer, and P.G. Jespers, "A Single
Chip 1024 Bits RSA Processor," Advances
in Cryptology-EUROCRYPT '89 Proceed­
ings, Springer-Verlag, 1990, pp. 219-236.

1564. J. Vanderwalle, D. Chaum, W. Fumy, C.
Jansen, P. Landrock, and G. Roelofsen, "A
European Call for Cryptographic Algo­
rithms: RIPE; RACE Integrity Primitives
Evaluation," Advances in Cryptology­
E UR OCRYPT '89 Proceedings, Springer­
Vcrlag, 1990, pp. 267-271.

1565. V. Varadharajan, "Verification of Network
Security Protocols," Computers and Secu­
rity, v. 8, n. 8, Aug 1989, pp. 693-708.

1566. V. Varadharajan, "Use of a Formal Descrip­
tion Technique in the Specification of
Authentication Protocols," Computer
Standards and Interfaces, v. 9, 1990, pp.
203-215.

1567. S. Vaudenay, "FFT-Hash-II Is not Yet
Collision-Free," Advances in Cryptol­
ogy-CRYPTO '92 Proceedings, Springer­
Verlag, pp. 587-593.

1568. S. Vaudenay, "Differential Cryptanalysis
of Blowfish," unpublished manuscript,
1995.

1569. U.V. Vazirani and V.V. Vazirani, "Trapdoor
Pseudo-Random Number Generators with
Applications to Protocol Design," Pro­
ceedings of the 24th IEEE Symposium on
the Foundations of Computer Science,
1983, pp. 23-30.

1570. U.V. Vazirani and V.V. Vazirani, "Efficient
and Secure Pseudo-Random Number Gen­
eration," Proceedings of the 25th IEEE
Symposium on the Foundations of Com­
puter Science, 1984, pp. 458-463.

1571. U.V. Vazirani and V.V. Vazirani, "Efficient
and Secure Pseudo-Random Number Gen­
eration," Advances in Cryptology: Pro­
ceedings of CRYPTO '84, Springer-Verlag,
1985, pp. 193-202.

1572. I. Verbauwhede, F. Hoornaert, J. Vander­
walle, and H. De Man, "ASIC Crypto­
graphical Processor Based on DES," Euro
ASIC '91 Proceedings, 1991, pp. 292-295.

1573. I. Verbauwhcdc, F. Hoornaert, J. Vandcr­
walle, H. De Man, and R. Govaerts, "Secu­
rity Considerations in the Design and
Implementation of a New DES Chip,"
Advances in Cryptology-EUROCRYPT
'87 Proceedings, Springer-Verlag, 1988, pp.
287-300.

1574. R. Vogel, "On the Linear Complexity of
Cascaded Sequences," Advances in Cryp­
tology: Proceedings of EUROCRYPT 84,
Springer-Verlag, 1985, pp. 99-109.

1575. S. von Sohns and D. Naccache, "On Blind
Signatures and Perfect Crimes," Comput­
ers eJ Security, v. 11. 1992, pp. 581-583.

1576. V.L. Voydock and S.T. Kent, "Security
Mechanisms in High-Level Networks,"
ACM Computing Surveys, v. 15, n. 2, Jun
1983, pp. 135-171.

1577. N.R. Wagner, P.S. Putter, and M.R. Cain,
"Large-Scale Randomization Techniques,"
Advances in Cryptology-CRYPTO '86
Proceedings, Springer-Verlag, 1987, pp.
393-404.

1578. M. Waidner and B. Pfitzmann, "The Din­
ing Cryptographers in the Disco: Uncondi­
tional Sender and Recipient Untraceability
with Computationally Secure Serviceabil­
ity," Advances in Cryptology-EURO­
CRYPT '89 Proceedings, Springer-Verlag,
1990, p. 690.

1579. S.T. Walker, "Software Key Escrow-A
Better Solution for Law Enforcement's
Needs?" TIS Report #533, Trusted Infor­
mation Systems, Aug 1994.

1580. S.T. Walker, "Thoughts on Key Escrow
Acceptability," TIS Report #534D, Trusted
Information Systems, Nov 1994.

1581. S.T. Walker, S.B. Lipner, C.M. Ellison, D.K.
Branstad, and D.M. Balenson, "Commercial
Key Escrow-Something for Everyone­
Now and for the Future," TIS Report #541,
Trusted Information Systems, Jan 1995.

1582. M.Z. Wang and J.L. Massey, "The Charac­
teristics of All Binary Sequences with
Perfect Linear Complexity Profiles,"

_____________________ R_e_fe_r_en_ce_s __________ 7..,,.,~

Abstracts of Papers, EUROCRYPT '86,
20-22 May 1986.

1583. E.J. Watson, "Primitive Polynomials (Mod
2)," Mathematics of Computation, v. 16,
1962, p. 368.

1584. P. Wayner, "Mimic Functions," Cryptolo­
gia, v. 16, n. 3, Jul 1992, pp. 193-214.

1585. P. Wayner, "Mimic Functions and
Tractability," draft manuscript, 1993.

1586. A.F. Webster and S.E. Tavares, "On the
Design of S-Boxes," Advances in Cryptol­
ogy-CRYPTO '85 Proceedings, Springer­
Verlag, 1986, pp. 523-534.

1587. G. Welchman, The Hut Six Story: Break­
ing the Enigma Codes, New York:
McGraw-Hill, 1982.

1588. A.L. Wells Jr., "A Polynomial Form for
Logarithms Modulo a Prime," IEEE Trans­
actions on Information Theory, Nov 1984,
pp. 845-846.

1589. D.J. Wheeler, "A Bulk Data Encryption
Algorithm," Fast Software Encryption,
Cambridge Security Workshop Proceed­
ings, Springer-Verlag, 1994, pp. 127-134.

1590. D.J. Wheeler, personal communication,
1994.

1591. D.J. Wheeler and R. Needham, "A Large
Block DES-Like Algorithm," Technical
Report 355, "Two Cryptographic Notes,"
Computer Laboratory, University of Cam­
bridge, Dec 1994, pp. 1-3.

1592. D.J. Wheeler and R. Needham, "TEA. A
Tiny Encryption Algorithm," Technical
Report 355, "Two Cryptographic Notes,"
Computer Laboratory, University of Cam­
bridge, Dec 1994, pp. 1-3.

1593. S.R. White, "Covert Distributed Process­
ing with Computer Viruses," Advances in
Cryptology-CRYPTO '89 Proceedings,
Springer-Verlag, 1990, pp. 616-619.

1594. White House, Office of the Press Secretary,
"Statement by the Press Secretary," 16 Apr
1993.

1595. B.A. Wichman and I.D. Hill, "An Efficient
and Portable Pseudo-Random Number
Generator," Applied Statistics, v. 31, 1982,
pp. 188-190.

1596. M.J. Wiener, ''Cryptanalysis of Short RSA
Secret Exponents," IEEE Transactions on
Information Theory, v. 36, n. 3, May 1990,
pp. 553-558.

1597. M.J. Wiener, "Efficient DES Key Search,"
presented at the rump session of CRYPTO
'93, Aug 1993.

1598. M.J. Wiener, "Efficient DES Key Search,"
TR-244, School of Computer Science, Car­
leton University, May 1994.

1599. M.V. Wilkes, Time-Sharing Computer Sys­
tems, New York: American Elsevier, 1968.

1600. E.A. Williams, An Invitation to Cryp­
tograms, New York: Simon and Schuster,
1959.

1601. H.C. Williams, "A Modification of the
RSA Public-Key Encryption Procedure,"
IEEE Transactions on Information Theory,
V. IT-26, 11. 6, Nov 1980, pp. 726-729.

1602. H.C. Williams, "An Overview of Factor­
ing," Advances in Cryptology: Proceed­
ings of Crypto 83, Plenum Press, 1984, pp.
71-80.

1603. H.C. Williams, "Some Public-Key Crypto­
Functions as Intractable as Factorization,"
Advances in Cryptology: Proceedings of
CRYPTO 84, Springer-Verlag, 1985, pp.
66-70.

1604. H.C. Williams, "Some Public-Key Crypto­
Functions as Intractable as Factorization, 11

Cryptologia, v. 9, n. 3, Jul 1985, pp.
223-237.

1605. H.C. Williams, "An M' Public-Key Encryp­
tion Scheme, 11 Advances in Cryptology­
CRYPTO '85, Springer-Verlag, 1986, pp.
358-368.

1606. R.S. Winternitz, "Producing One-Way
Hash Functions from DES," Advances in
Cryptology: Proceedings of Crypto 83,
Plenum Press, 1984, pp. 203-207.

1607. R.S. Winternitz, "A Secure One-Way Hash
Function Built from DES, 11 Proceedings of
the 1984 Symposium on Security and Pri­
vacy, 1984, pp. 88-90.

1608. S. Wolfram, "Random Sequence Genera­
tion by Cellular Automata," Advances in
Applied Mathematics, v. 7, 1986, pp.
123-169.

1609. S. Wolfram, "Cryptography with Cellular
Automata," Advances in Cryptology­
CRYPTO '85 Proceedings, Springer-Verlag,
1986, pp. 429-432.

1610. T.Y.C. Woo and S.S. Lam, "Authentication
for Distributed Systems," Computer, v. 25,
n. 1, Jan 1992, pp. 39-52.

1611. T.Y.C. Woo and S.S. Lam, "'Authentica­
tion' Revisited," Computer, v. 25, n. 3, Mar
1992, p. 10.

1612. T.Y.C. Woo and S.S. Lam, "A Semantic
Model for Authentication Protocols," Pro­
ceedings of the 1993 IEEE Computer Soci-

~-s __________ R_e_fe_r_en_ce_s __________________ _

ety Symposium on Research in Security
and Privacy, 1993, pp. 178-194.

1613. M.C. Wood, technical report, Cryptech,
Inc., Jamestown, NY, Jul 1990.

1614. M.C. Wood, "Method of Cryptographically
Transforming Electronic Digital Data from
One Form to Another," U.S. Patent
#5,003,596, 26 Mar 1991.

1615. M.C. Wood, personal communication, 1993.
1616. C.K. Wu and X.M. Wang, "Determination

of the True Value of the Euler Totient
Function in the RSA Cryptosystem from a
Set of Possibilities, 11 Electronics Letters, v.
29, n. 1, 7 Jan 1993, pp. 84-85.

1617. M.C. Wunderlich, "Recent Advances in
the Design and Implementation of Large
Integer Factorization Algorithms," Pro­
ceedings of 1983 Symposium on Security
and Privacy, IEEE Computer Society Press,
1983, pp. 67-71.

1618. Xerox Network System (XNS) Authentica­
tion Protocol, XSIS 098404, Xerox Corpo­
ration, Apr 1984.

1619. Y.Y. Xian, "New Public Key Distribution
System," Electronics Letters, v. 23, n. 11,
1987, pp. 560-561.

1620. L.D. Xing and L.G. Sheng, "Cryptanalysis
of New Modified Lu-Lee Cryptosystems, 11

Electronics Letters, v. 26, n. 19, 13 Sep
1990,p. 1601-1602.

1621. W. Xinmei, "Digital Signature Scheme
Based on Error-Correcting Codes," Elec­
tronics Letters, v. 26, n. 13, 21 Jun 1990, p.
898-899.

1622. S.B. Xu, D.K. He, and X.M. Wang, "An
Implementation of the GSM General
Data Encryption Algorithm AS," CHI­
NACRYPT '94, Xidian, China, 11-15 Nov
1994, pp. 287-291. (In Chinese.)

1623. M. Yagisawa, "A New Method for Realiz­
ing Public-Key Cryptosystem," Cryptolo­
gia, v. 9, n. 4, Oct 1985, pp. 360-380.

1624. C.H. Yang, "Modular Arithmetic Algo­
rithms for Smart Cards," IEICE Japan,
Technical Report, ISEC92-16, 1992.

1625. C.H. Yang and H. Morita, "An Efficient
Modular-Multiplication Algorithm for
Smart-Card Software Implementation,"
IEICE Japan, Technical Report, ISEC91-58,
1991.

1626. J.H. Yang, K.C. Zeng, and Q.B. Di, "On the
Construction of Large S-Boxes," CHI­
NACRYPT '94, Xidian, China, 11-15 Nov
1994, pp. 24-32. (In Chinese.)

1627. A.C.-C. Yao, "Protocols for Secure Compu­
tations," Proceedings of the 23rd IEEE
Symposium on the Foundations of Com­
puter Science, 1982, pp. 160-164.

1628. B. Yee, "Using Secure Coprocessors,"
Ph.D. dissertation, School of Computer
Science, Carnegie Mellon University, May
1994.

1629. S.-M. Yen, "Design and Computation of
Public Key Cryptosystems," Ph.D. disser­
tation, National Cheng Hung Univc:rsity,
Apr 1994.

1630. S.-M. Yen and C.-S. Lai, "New Digital Sig­
nature Scheme Based on the Discrete Log­
arithm," Electronics Letters, v. 29, n. 12,
1993, pp. 1120-1121.

1631. K. Yiu and K. Peterson, "A Single-Chip
VLSI Implementation of the Discrete
Exponential Public-Key Distribution Sys­
tem," IBM Systems fournal, v. 15, n. 1,
1982, pp. 102-116.

1632. K. Yiu and K. Peterson, "A Single-Chip
VLSI Implementation of the Discrete Expo­
nential Public-Key Distribution System,"
Proceedings of Government Microcircuit
Applications Conference, 1982, pp. 18-23.

1633. H.Y. Youm, S.L. Lee, and M.Y. Rhee,
"Practical Protocols for Electronic Cash,"
Proceedings of the 1993 Korea-fapan
Workshop on Information Security and
Cryptography, Seoul, Korea, 24-26 Oct
1993, pp. 10-22.

1634. M. Yung, "Cryptoprotocols: Subscriptions
to a Public Key, the Secret Blocking, and
the Multi-Player Mental Poker Game,"
Advances in Cryptology: Proceedings of
CRYPTO 84, Springer-Verlag, 1985,
439-453.

1635. G. Yuval, "How to Swindle Rabin," Cryp­
tologia, v. 3, n. 3, Jul 1979, pp. 187-190.

1636. K.C. Zeng and M. Huang, "On the Linear
Syndrome Method in Cryptanalysis,"
Advances in Cryptology-CRYPTO '88
Proceedings, Springer-Verlag, 1990, pp.
469-478.

1637. K.C. Zeng, M. Huang, and T.R.N. Rao, "An
Improved Linear Algorithm in Cryptanaly­
sis with Applications," Advances in
Cryptology-CRYPTO '90 Proceedings,
Springer-Verlag, 1991, pp. 34-47.

1638. K.C. Zeng, C.-H. Yang, and T.R.N. Rao,
"On the Linear Consistency Test (LCT)
in Cryptanalysis with Applications,"
Advances in Cryptology-CRYPTO '89

_____________________ R_e_fe_r_en_ce_s __________ 7...,,.,..~

Proceedings, Springer-Verlag, 1990, pp.
164-174.

1639. K.C. Zeng, C.-H. Yang, D.-Y. Wei, and
T.R.N. Rao, "Pseudorandom Bit Genera­
tors in Stream-Cipher Cryptography,"
IEEE Computer, v. 24, n. 2, Feb 1991, pp.
8-17.

1640. M. Zhang, S.E. Tavares, and L.L. Campbell,
"Information Leakage of Boolean Func­
tions and Its Relationship to Other Crypto­
graphic Criteria," Proceedings of the 2nd
Annual ACM Conference on Computer
and Communications Security, ACM
Press, 1994, pp. 156-165.

1641. M. Zhang and G. Xiao, "A Modified
Design Criterion for Stream Ciphers,"
CHINACRYPT '94, Xidian, China, 11-15
Nov 1994, pp. 201-209. (In Chinese.)

1642. Y. Zheng, T. Matsumoto, and H. Imai,
"Duality between two Cryptographic
Primitives," Papers of Technical Group for
Information Security, IEICE of Japan, Mar
1989, pp. 47-57.

1643. Y. Zheng, T. Matsumoto, and H. Imai,
"Impossibility and Optimality Results in
Constructing Pseudorandom Permuta­
tions," Advances in Cryptology-EURO­
CRYPT '89 Proceedings, Springer-Verlag,
1990, pp. 412-422.

1644. Y. Zheng, T. Matsumoto, and H. Imai, "On
the Construction of Block Ciphers Prov­
ably Secure and Not Relying on Any
Unproved Hypotheses," Advances in

Cryptology-CRYPTO '89 Proceedings,
Springer-Verlag, 1990, pp. 461-480.

1645. Y. Zheng, T. Matsumoto, and H. Imai,
"Duality between two Cryptographic
Primitives," Proceedings of the 8th Inter­
national Conference on Applied Algebra,
Algebraic Algorithms and Error-Correcting
Codes, Springer-Verlag, 1991, pp. 379-390.

1646. Y. Zheng, J. Pieprzyk, and J. Seberry,
"HAVAL-A One-Way Hashing Algorithm
with Variable Length of Output,"
Advances in Crytology-AUSCRYPT '92
Proceedings, Springer-Verlag, 1993, pp.
83-104.

1647. N. Zierler, "Linear Recurring Sequences,"
Journal Soc. Indust. Appl. Math., v. 7, n. 1,
Mar 1959, pp. 31-48.

1648. N. Zierler, "Primitive Trinomials Whose
Degree Is a Mersenne Exponent," Infor­
mation and Control, v. 15, 1969, pp.
67-69.

1649. N. Zierler and J. Brillhart, "On Primitive
Trinomials (mod 2)," Information and
Control, v. 13, n. 6, Dec 1968, pp. 541-544.

1650. N. Zierler and W.H. Mills, "Products of
Linear Recurring Sequences," Journal of
Algebra, v. 27, n. 1, Oct 1973, pp. 147-157.

1651. C. Zimmer, "Perfect Gibberish," Discover,
v. 13, n. 12, Dec 1992, pp. 92-99.

1652. P.R. Zimmermann, The Official PGP
User's Guide, Boston: MIT Press, 1995.

1653. P.R. Zimmermann, PGP Source Code and
Internals, Boston: MIT Press, 1995.

------------------------------,,,,z~

Index

AS, 389, 662-667
Abadi, Martin, 66
Absolute rate, of language,

234
Accreditation, 103
Active attacks, 2 7
Active cheaters, 27
Adams, Carlisle, 334
Adapti ve-chosen-plaintext

attack, 6
Addition chaining, 244
Additive generators, 390-392
Adjudicated protocol, 26, 71
Adjudicator, 26
Adleman, Leonard M., 163-164,

467
Adler, Roy, 266
Agnew, G. B., 423
Algebraic structure, DES,

282-283
Algorithm M, 393-394
Algorithms, 2-4, 17

all-or-nothing disclosure of
secrets, 543-546

Asmuth-Bloom, 529-530
Barrett's, 244
Berlekamp-Massey algorithm,

380,404
block

chain mode, 206-207
choosing, 354-355
replay, 191-193

breaking, 8
CAST, 334-335
choosing, 214-216

cipher block chaining mode,
193-197, 208-210

cipher block chaining of
plaintext difference
mode, 208

cipher block chaining with
checksum, 207-208

cipher-feedback mode,
200-202, 208-210

cipher mode
choosing,208-210
summary, 209

classes, 217
coin flipping

using Blum integers, 543
using exponentiation mod­

ulo p, 542-543
using square roots, 541-542

complexity, 23 7-239
constant, 238
convertible undeniable signa-

tures, 538-539
counter mode, 205-206, 209
cubic, 238
data compression, 226
designated confirmer signa-

tures, 539-540
Diffie-Hellman, fair, 546-54 7
digital signatures, 39
exponential, 238
for export, 215-216
extended Euclidean, 246-248
factoring, 256
ISO /IEC 99 79 registered, 60 7
Kamin-Greene-Hellman, 530

Khafre, 317-318
Khufu, 317
linear, 238
linear syndrome, 381
modes, DES, 277-278
multiple block

cascading, 367-368
combining, 368

multiple-key public-key cryp-
tography, 52 7-528

oblivious transfer, 550
one-way accumulators, 543
output-feedback mode,

203-205, 208-210
output feedback with a non­

linear function, 208
plaintext block chaining

mode, 208
plaintext feedback mode, 208
polynomial, 238
polynomial-time, 238
probabilistic encryption,

552-554
propagating cipher block

chaining mode, 207
public- key, 4-5, 33
quadratic, 238
quantum cryptography,

554-557
restricted, 3
running times, 238-239
secret-sharing algorithms,

528-531
secure multiparty computa­

tion, 551-552

~-:s. __________ I_n_d_ex __________________ _

Algorithms (Cont.)
security, 8-9
self-synchronizing stream

cipher, 198-199
stream ciphers, 197-198
subliminal-channel signature,

79
superpolynomial, 238
symmetric, 4
synchronous stream cipher,

202-203
TEA, 346
types, 189
unconditionally secure, 8
undeniable digital signatures,

536-539
using, 213-229
vector scheme, 529
zero-knowledge proofs,

548-550
See also Block ciphers;

Stream ciphers
All-or- nothing disclosure of

secrets, 96, 543-546
voting with a single central

facility, 128-130
Alternating stop-and-go genera­

tor, 383,385, 410-411
American National Standards

Institute, DES approval,
267-268

Anderson, Ross, 391
ANDOS, see All-or-nothing dis­

closure of secrets
Anonymous message broadcast,

137-139
ANSI X3.105, 267
ANSI X3.106, 267
ANSI X9.8, 267
ANSI X9.l 7,268,359

key generation, 175
ANSI X9.19, 267
ANSI X9.26, 268
Arbitrated protocol, 23-26
Arbitration, timestamping,

75-76
Arbitrator, 23

document signing with,
35-37

group signatures with, 84-85
AR hash function, 453
Arithmetic, modular, 242-245
Arms Export Control Act, 610
Asmuth-Bloom scheme,

529-530
Association for Computing

Machinery, 608

Asymmetric algorithms, see
Public-key algorithms

Atomic Energy Act, 610
Attack, 5
AT & T Model 3600 Telephone

Security Device, 594-
595

Authentication, 2, 52-56
DASS, 62
Denning-Sacco protocol, 63
dictionary attacks, 52
ISO framework, 574-577
Kerberos, 60
message, 56
Needham -Schroeder protocol,

58-59
Neuman-Stubblehine proto­

col, 60-62
Otway-Rees protocol, 59-60
protocols, formal analysis,

65-68
salt, 52-53
Schnorr, 511
SESAME, 572
SKEY, 53
SKID, 55-56
using interlock protocol,

54-55
using one-way functions, 52
using public-key cryptogra­

phy, 53-54
Wide-Mouth Frog protocol,

56-57
Woo-Lam protocol, 63-64
Yahalom, 57-58

Authenticators, 568
Avalanche effect, 2 73

Backup keys, 181-182
BAN logic, 66-67
Barrett's algorithm, 244
BaseKing, 346
Basis, polarization measure­

ment, 555
Battista, Leon, 11
BBS generator, 417

add to spelled out, 553-554
Beacons, 64
Bellovin, Steve, 518, 520-521,

571
Bennett, Charles, 555, 557
Berlekamp-Massey algorithm,

380,404
Bernstein, Dan, 616
Berson, Tom, 441
Best affine approximation

attack, 381

Beth-Piper stop-and-go genera­
tor, 383-384

Bias, 425
Bidirectional message authenti­

cation codes, 45 7
Biham, Eli, 284-285, 288, 296,

301, 303, 306, 308,
311-312, 314,316,319,
354, 361, 434

Bilateral stop-and-go generator,
384-385

Binary trees, 78
Biotechnology, as cryptanalysis

tool, 156-157
Birthday attack, 165-166, 430
Bit commitment, 86-88

using one-way functions,
87-88

using pseudo-random­
sequence generators, 88

using symmetric cryptogra-
phy, 86-87

Blakley, George, 72, 529
Blaze, Matt, 346, 364
Blinding factor, 112
Blind signatures, 112-115,

549-550
patents, 115
voting with, 126-127

Blobs, 88
Block algorithms, 4
Block chain mode, 206-207
Block ciphers, 4, 189

Blowfish, 336-339
CA-1.1, 327-328
cascading algorithms,

367-368
CAST, 334-335
CDMF key shortening, 366
choosing algorithms, 354-355
combining algorithms, 368
counter mode, 205-206, 209
Crab, 342-344
CRYPTO-MECCANO, 346
designing, 351
design theory, 346-351

Feistel networks, 34 7
group structure, 348
S-box, 349-351
simple relations, 34 7-348
strength against differential

and linear cryptanalysis,
348-349

weak keys, 348
double encryption, 35 7-358
double OFB/counter, 363-364
doubling length, 363

___________________ I_n_d_ex __________ 7,_~

electronic codebook mode,
189-191,208-210

encryption speeds, 355
FEAL, 308-312
feedback, 193
COST, 331-334
IDEA, 319-325
iterated, 347
Li-Wang algorithm, 346
LOKI, 314-316
Lucifer, 303-304
Madryga,304-306
McEliece algorithm, 346
MME, 325-327
multiple encryption, 357
NewDES, 306-308
Rao-Nam algorithm, 346
RC2, 318-319
RCS, 344-346
REDOC II, 311-313
REDOC III, 313
SAFER K-64, 339-341
security, based on one-way

hash functions, 353-354
Skipjack, 328-329
versus stream ciphers, 210-211
SXAL8/MBAL, 344
triple encryption, 358-363
3-Way, 341-342
using one-way hash func­

tions, 351-354
whitening, 366-367
xDES1, 365-366

Block length, doubling, 363
Block replay, 191-193
Blocks, 4
Blowfish, 336-339, 354,

647-654
Blum, Manuel, 89, 105, 108
Blum, Blum, and Shub genera­

tor, 417-418
Blum integers, 253

coin flipping, 543
zero-knowledge proofs, 549

Blum-Micali generator, 416-417
Boolean functions, in S-boxes,

350
Bosselacrs, Antoon, 436, 441
Boyar, Joan, 369
Brassard, Gilles, 555, 557
Broadcasting:

anony1nous, 137-139
secret, 523-524

Brute-force attack, 8, 151-152
software-based, 154-155
time and cost estimates,

152-154

Bureau of Export Administra­
tion, 610-611

Burrows, Michael, 66

CA-1.1, 327-328
Cade algorithm, 500-501
Caesar Cipher, 11
CAFE, 606-607
CALC, 346
Cantwell Bill, 615-616
Capstone, 593-594
Cascade generators, 405
Cascades, Gollmann, 387-388
Cascading:

multiple block algorithms,
367-368

multiple stream ciphers,
419-420

Cash, digital, see Digital cash
Cassells, Ian, 381
CAST, 334-335

S-boxes, 349
CBC, see Cipher block chaining

mode
CCEP, 269, 598-599
CDMF, 366, 574
Cellhash, 446
Cellular automata, 500
Cellular automaton generator,

414
Certificates:

Privacy-Enhanced Mail, 579
public-key, 185-18 7
X.509, 574-575

Certification authority, 186
Certification path, 5 76
Certified mail, digital, 122-

123
Chaining variables, 436
Chambers, Bill, 385-386
Characteristics, 286-288
Chaum, David, 84, 115, 133,

13 7, 536, 549
Cheater, 27

sharing secrets with, 531
Chess Grandmaster Problem,

109
Chinese Lottery, 156-15 7
Chinese remainder theorem,

249-250, 470
Chor-Rivest knapsack, 466
Chosen-ciphertext attack, 6-7,

471-472
Chosen-key attack, 7
Chosen-plaintext attack, 6-7,

359
Chosen-text attack, 7

Cipher:
substitution, 10-12
transposition, 12

Cipher block chaining mode,
193-197, 208-210

DES, 277-278
error extension, 196
error propagation, 195-196
initialization vector, 194
message authentication

codes, 456
padding, 195
security, 196-197
self-recovering, 196
triple encryption, 360-361

Cipher block chaining of plain­
text difference mode, 208

Cipher block chaining with
checksum, 207-208

Cipher-feedback mode,
200-202, 208-210

DES, 277
error propagation, 201-202
initialization vector, 201

Cipher mode:
choosing, 208-210
summary, 208-210

Ciphertext, 1-2
auto key, 198
hiding in ciphertext, 22 7-228
pairs, differential cryptanaly-

sis, 285
stealing, 191

Ciphertext-only attack, 5-6
Cleartext, see Plaintext
Clipper chip, 591-593
Clipper key-escrow, 328
Clipper phone, 594
Clock-controlled generators,

381
Clocking, 381
CoCom, 610
Code, 9
Coefficients, solving for, 248
Coin flipping, 89-92

fair, 541-543
into a well, 92
key generation, 92
using Blum integers, 543
using one-way functions, 90
using public- key cryptogra-

phy, 90-91
using square roots, 541-542

Collision, 166
Collision-free, 30
Collision-resistance, 429
Combination generator, 381

~-:s __________ I_n_d_ex __________________ _

Combining function, 381
Commercial COMSEC Endorse­

ment Program, 269,
598-599

Commercial Data Masking
Facility, 366, 5 7 4

Common Cryptographic Archi­
tecture, 573-574

Common modulus, dangers of,
493

Common modulus attack, RSA,
472

Communications:
using public-key cryptogra­

phy, 31-34
using symmetric cryptogra­

phy, 28-29
Communications channels,

encryption, 216-220
Communications Setup,

517-518
Complementation property, 281
Complement keys, DES,

281-282
Completely blind signatures,

112-113
Complete set of residues, 242
Complexity-theoretic approach,

stream ciphers, 415-418
Complexity theory, 237-242

algorithms, 237-239
complexity of problems,

239-241
Compression, 226
Compression function, 431
Compression permutation,

273-274
Compromise, 5
Compromised keys, 182-183
Computational complexity, 237
Computationally secure, 8
Computer algorithms, 17
Computer clock, as random-

sequence generator, 424
Computer Security Act of 1987,

600-601
Computing, with encrypted

data, 85-86, 540-541
COMSET, 517-518
Conditional Access for Europe,

606-607
Conference key distribution, 524
Confusion, 237, 346-347
Congruent, 242
Connection integer, 403

feedback with carry shift reg­
isters, maximal-period,
406-407

Continued fraction algorithm,
256

Contract signing, simultaneous:
with an arbitrator, 118
without an arbitrator

face-to-face, 118-119
not face-to-face, 119-120
using cryptography,

120-122
Control Vector, 180
Convertible undeniable signa­

tures, 538-539
Coppersmith, Don, 94, 266,

280,283,293,398,457
Coppersmith's algorithm, 263
Correlation attack, 380
Correlation immunity, stream

ciphers, 380
Correlations, random-sequence

generators, 425
Counter mode, 205-206, 209
Counting coincidences, 14
Crab, 342-344
Credit cards, anonymous, 147
Crepeau, Claude, 555
Crypt(l), 414
CRYPT(3), 296
Cryptanalysis, 1, 5-8

differential, see Differential
cryptanalysis

FEAL, 311-312
GOST, 333-334
IDEA, 323
linear, 290-293
LOKI91, 316
Madryga, 306
N-Hash, 434-435
related-key, 290
Sncfru, 432
types, 5-7

Cryptanalysts, 1
Crypt Breakers Workbench,

414
Cryptographers, 1
Cryptographic algorithm, see

Cipher
Cryptographically secure

pseudo- random, 45
Cryptographic facility, 562
Cryptographic mode, 189
Cryptographic protection,

databases, 73-74
Cryptographic protocol, 22
Cryptography, 1
CRYPTO-LEGGO, 414
Cryptologists, 1
Cryptology, 1
CRYPTO-MECCANO, 346

Cryptosystems, 4
fair, 97
finite automaton public-key,

482
hybrid, 32-34
security, 234-235
weak, 97

Cusick, Thomas, 312
Cut and choose, 103
Cypherpunks, 609

Daemen, Joan, 325,341,349,
414

Damgard, Ivan, 446
Damm, Arvid Gerhard, 13
Data, encrypted:

computing with, 85-86,
540-541

discrete logarithm problem,
540-541

for storage, 220-222
Databases, cryptographic pro­

tection, 7 3-7 4
Data complexity, 9
Data Encryption Algorithm, see

Data Encryption Stan­
dard

Data Encryption Standard, 17,
265-301

adoption, 267-268
algorithm, brute-force attack

efficiency, 152-153
characteristics, 286-288
commercial chips, 279
compared to GOST, 333-334
compression permutation,

273-274
CRYPT(3), 296
decryption, 277
description, 2 70
DESX, 295
development, 265-267
differential cryptanalysis,

284-290
DES variants, 298

expansion permutation,
273-275

final permutation, 2 77
generalized, 296-297
hardware and software imple-

mentation, 2 78-2 79
with independent suhkeys,

295
initial permutation, 271
iterated block cipher, 347
key transformation, 272-273
linear cryptanalysis, 290-293
modes, 277-278

___________________ I_n_d_ex __________ 7 __ ~

multiple, 294-295
1987 review, 268-269
1993 review, 269-270
outline of algorithm, 270-272
P-boxes

design criteria, 294
permutation, 275, 277

RDES, 297-298
related-key cryptanalysis, 290
RIPE-MAC, 457-458
S-boxes, 349

alternate, 296-298
design criteria, 294
key-dependent, 298, 300,

354
substitution, 274-276

security, 278, 280-285
algebraic structure,

282-283
complement keys, 281-282
current, 300-301
key length, 283-284
number of rounds, 284
possibly weak keys,

281-282
S-box design, 284-285
semiweak keys, 280-281
weak keys, 280-281

snDES, 298-299
source code, 623-632
speeds on microprocessors

and computers, 279
validation and certification of

equipment, 268
Data Exchange Key, 581
Data Keys, 176
Davies, Donald, 562
Davies-Meyer, 448

abreast, 452
modified, 449-450
parallel, 451
tandem, 451-452

Davies-Price, 358
Decoherence, 165
Decryption, 1

DES, 277
key, 3
key-error detection, 179
knapsack algorithms, 465
with a public key, 39
with symrnetric algorithm, 4

den Boer, Bert, 434, 436, 441
Denning-Sacco protocol, 63
Dense, 378
Dereferencing keys, 221-222
Derived sequence attack, 381
Designated confirmer signa-

tures, 82-83, 539-540

Desmedt, Yvo, 81
DES, see Data Encryption Stan­

dard
Destruction:

information, 228-229
of keys, 184-185

DESX, 295
Dictionary attack, 52, 171-173
Differential cryptanalysis,

284-290
attacks against

DES, 288-290
DES variants, 298
L ucifcr, 303

extending to higher-order dif­
ferentials, 293

strength against, block cipher
design theory, 348-349

Differential- linear cryptanal y­
sis, 293

Diffie, Whitfield, 31, 37, 122,
216,283,419,461, 501,
565

Diffie-Hellman:
EKE implementation,

519-520
extended, 515
failsafe, 54 7-548
fair, 546-54 7
Hughes variant, 515
key exchange without

exchanging keys, 515
patents, 516
with three or more parties, 514

Diffie's randomized stream
cipher, 419

Diffusion, 237, 346-347
Digital card, properties, 146
Digital cash, 139-14 7

anonymous, 139
credit cards, 147
money orders, 140

double spending problem,
140-141

off-line systems, 146
on-line systems, 145-146
other protocols, 145-14 7
perfect crime, 145
practical, 145
secret splitting, 142-145

Digital certified mail, 122-123
Digital Notary System, 78
Digital Signature Algorithm,

17,483-494
attacks against k, 492
computation time compari­

son with RSA, 489
criticisms, 484-486

dangers of common modulus,
493

description, 486-488
ElGamal encryption with,

490-491
patents, 493-494
prime generation, 488-490
proposal for NIST standard,

483-486
RSA encryption with, 491
security, 491-492
speed precomputations,

487-488
subliminal channel, 493,

534-536
foiling, 536

variants, 494-495
Digital signatures, 34-41

algorithms, 39
applications, 41
blind, 112-115, 549-550
convertible undeniable signa-

tures, 538-539
converting identification

schemes to, 512
definition, 39
designated confirmer signa-

tures, 82-83, 539-540
ElGamal, 476-478
with encryption, 41-44
entrusted undeniable, 82
fail-stop, 85
Fiat-Shamir signature

scheme, 507-508
group signatures, 84-85
Guillou-Quisquater signature

scheme, 509-510
improved arbitrated solution,

76
key exchange with, 50
multiple, 39-40

Guillou-Quisquater, 510
nonrepudiation, 40
oblivious, 117
protocol, 40
proxy, 83
public-key algorithms,

483-502
Cade algorithm, 500-501
cellular automata, 500
Digital Signature Algo-

rithm, see Digital Signa­
ture Algorithm

discrete logarithm signa­
ture schemes, 496-498

ESIGN, 499-500
COST digital signature

algorithm, 495-496

~-:s __________ I_n_d_ex __________________ _

Digital signatures I Cont.)
public-key algorithms (Cont.)

Matsumoto-Imai algo­
rithm, 500

Ong-Schnorr-Shamir,
498-499

public-key cryptography,
37-38

attacks against, 43-44
one-way hash functions

and, 38-39
resend attack, foiling, 43
RSA, 473-474
Schnorr signature scheme,

511-512
subliminal-free, 80
with symmetric cryptosys­

tems and arbitrator,
35-37

terminology, 39
timestamps, 38
trees, 37
undeniable, 81-82, 536-539

Dining Cryptographers Prob­
lem, 137

Discrete logarithm, 245
in finite field, 261-263
zero-knowledge proofs, 548

Discrete Logarithm Problem,
501, 540-541

Discrete logarithm signature
schemes, 496-498

Distributed Authentication
Security Service, 62

Distributed convertible undeni­
able signatures, 539

Distributed key management,
187

DNA computing, 163-164
DNRSG, 387
DoD key generation, 175
Double encryption, 357-358
Double OFB/counter, 363-364
Double spending problem,

140-141
Driver-level encryption, 222-223
DSA, see Digital Signature

Algorithm
Dynamic random-sequence gen­

erator, 387

E-box, 273
ECB, see Electronic codebook

mode
Electronic checks, 146
Electronic codebook mode,

189-191, 208-210
combined with OFB, 364

DES, 277-278
padding, 190-191
triple encryption, 362-363

Electronic coins, 146
Electronic Frontier Foundation,

608
Electronic-funds transfer, DES

adoption, 268
Electronic Privacy Information

Center, 608
ElGamal, 532-533

EKE implementation, 519
encryption, 478

with DSA, 490-491
patents, 479
signatures, 476-478
speed, 478-479

ElGamal, Taher, 263
Elliptic curve cryptosystems,

480-481
Elliptic curve method, 256
Ellison, Carl, 362
Encoding, 226
Encrypt-decrypt-encrypt mode,

359
Encrypted Key Exchange:

applications, 521-522
augmented, 520-521
basic protocol, 518-519
implementation with

Diffie-Hellman, 519-520
ElGamal, 519
RSA, 519

strengthening, 520
Encryption, 1

communication channels,
216-220

combining link-by-link and
end-to-end, 219-221

with compression and error
control, 226

data, for storage, 220-222
detection, 226-22 7
digital signatures with, 41-44
driver-level versus file-level,

222-223
ElGamal, 478

with DSA, 490-491
end-to-end, 217-220
with interleaving, 210-211
key,3
knapsack algorithms, 464
link-by-link, 216-218
multiple, 357
with a private key, 39
probabilistic, 552-554
RSA, 468

with DSA, 491

with symmetric algorithm, 4
using public key, 5

End-to-end encryption, 217-220
combined with link-by-link,

219-221
Enigma, 13, 414
Entropy, 233-234
Entrusted undeniable signature,

82
Error detection:

during decryption, 179
during transmission, 178

Error extension, cipher block
chaining mode, 196

Error propagation:
cipher block chaining mode,

195-196
cipher-feedback mode,

201-202
output-feedback mode, 204

Escrow agencies, 592
Escrowed Encryption Standard,

97,593
ESIGN, 499-500, 533-534
Euclid's algorithm, 245
Euler totient function, 248-249
Expansion permutation,

273-275, 315
Export:

of algorithms, 215-216,
610-616

foreign, 617
Exportable Protection Device,

389
Export Administration Act, 610
EXPTIME, 241
Extended Euclidean algorithm,

246-248

Factoring, 255-258
general number field sieve,

159-160
long-range predictions, 162
public-key encryption algo­

rithms, 158-159
special number field sieve,

160-161
using quadratic sieve, 159

Factoring Problem, 501
Failsafe:

Diffie-Hellman, 547-548
key escrowing, 98

Fail-stop digital signatures, 85
Fair cryptosystems, 97
Fait-Shamir, 508
FAPKC0, 482
FAPKCl, 482
FAPKC2, 482

___________________ I_n_d_ex __________ z:=--~

FEAL, 308-312
cryptanalysis, 311-312
description, 308-10
patents, 311

Feedback:
cipher block chaining mode,

193, 195
internal, output-feedback

mode, 203
Feedback function, 373
Feedback shift register, 373
Feedback with carry shift regis-

ters, 402-404
combining generators, 405,

410
maximal-length, tap

sequences, 408-409
maximal-period, connection

integers, 406-407
Feedforward, cipher block

chaining mode, 195
Feige, Uriel, 503-504
Feige-Fiat-Shamir, 503-508

enhancements, 506-507
identification scheme,

504-505
simplified, 503-504

Feistel, Horst, 266, 303
Feistel network, 34 7

Blowfish, 33 7
practically secure, 349

Fermat's little theorem, 248
Euler's generalization, 248

FFT-Hash, 446
Fiat, Amos, 503-504
Fiat-Shamir signature scheme,

507-508
Fibonacci configuration, 3 73,

379
Fibonacci shrinking generator,

391
File-level encryption, 222-223
Filter generator, 381
Finite field, 254

discrete logarithms, 261-263
FIPS PUB 46, 267
FIPS PUB 74, 267
FIPS PUB 81, 267
FIPS PUB 112, 267
Fish, 391
Fixed hit index, 543
Flat keyspace, 176
Flipping coins, see Coin flipping
Fortified key negotiation, 522

Galois configuration, linear
feedback shift registers,
378-379

Galois field, computing in,
254-255

Garey, Michael, 241
Gatekeeper, 2 78
Geffe generator, 382-383
General number field sieve,

159-160, 256
General Services Administra-

tion, DES adoption, 268
Generators, 253-254
Gifford, 392-393
Gifford, David, 392
Gill, J., 501
Global deduction, 8
Goldwasser, Shafi, 94, 552
Gollmann, Dieter, 386
Gollmann cascade, 387-388
Goodman-McAuley cryptosys-

tem, 466
Goresky, Mark, 404
COST, 331-334, 354

source code, 643-647
COST digital signature algo-

rithm, 495--496
COST hash function, 454
COST R 34.10-94, 495
Gosudarstvennyi Standard

Soyuza SSR, 331-334
Graham-Shamir knapsacks, 465
Graph isomorphism, 104-105
Greatest common divisor,

245-246
Grossman, Edna, 266
Group signatures, 84-85
Group Special Mobile, 389
Group structure, block ciphers

design theory, 348
GSM, 389
Guillou, Louis, 102, 508
Guillou-Quisquater:

identification scheme,
508-510

signature scheme, 509-510
Gutmann, Peter, 353
Guy, Richard, 159

Haber, Stuart, 75, 485, 488
Hamiltonian cycles, 105-106
Hard drive, encrypted, provid-

ing random access to,
222

Hardware:
DES implementation,

278-279
encryption, 223-225
RSA, 469

Hash functions, see One-way
hash functions

Hash value, 30
HAVAL, 445-446
Hellman, Martin, 31-32, 37,

262, 283, 293, 358-359,
461-462

Hiding infonnation from an
oracle, 86

Historical terms, 9
Homophonic substitution

cipher, 10-11
Hughes, 515
Hughes, Eric, 609
Hughes XPD/KPD, 389-390
Hybrid cryptosystems, 32-34,

461

IBC-Hash, 458
IBM Common Cryptographic

Architecture, 573-574
IBM secret-key management

protocol, 561-562
IDEA, 319-325, 354

cryptanalysis, 323
description, 320-322
modes of operation, 323-

325
overview, 320-321
patents, 325
S-boxes, 349
source code, 637-643
speed, 322-323
strength against differential

cryptanalysis, 348
variants, 325

Ideal secrecy, 236
Identification schemes:

converting to signature
schemes, 512

Feige-Fiat-Shamir, 503-508
Guillou-Quisquater, 508-

510
Ohta-Okamoto, 508
Schnorr authentication and

signature scheme,
510-512

Identity-based cryptosystems,
115

Ignition key, 564
Import, foreign, 617
Index of coincidence, 14
Information:

amount, information theory
definition, 233

deduction, 8
destruction, 228-229

Information-theoretic approach,
418

stream ciphers, 415

~..,_:s.,---------------I_n_d_ex __________________ _

Information theory, 233-237
cryptosystem security,

234-235
entropy and uncertainty,

233-234
in practice, 236-23 7
rate of the language, 234
unicity distance, 235-236

Ingemarsson, Ingemar, 418
Initialization vector:

cipher block chaining mode,
194

cipher-feedback mode, 201
output-feedback mode, 204

Inner-CBC, 360, 363
Insertion attack, synchronous

stream ciphers, 203
Instance deduction, 8
Institute of Electrical and Elec­

tronics Engineers, 608
Integrated Services Digital Net-

work, 563-565
Intcgri ty, 2
Interactive protocol, 103
Interchange Key, 581
Interleave, 210-211
Interlock protocol, mutual

authentication usil1g,
54-55

Internal feedback, 203
International Association for

Cryptologic Research,
605

International Standards Organi­
zation:

authentication framework,
574-577

DES adoption, 268
International Traffic in Arms

Regulations, 610-614
Internet, Privacy-Enhanced

Mail, 577-584
Introducers, 18 7
Inverses modulo a number,

246-248
IPES,319
ISDN, 563-565
ISO 8732, 359
ISO 9796, 472, 474, 486
ISO/IEC 9979, 607
ISO X.509 protocols, 574-577
Iterated block cipher, 34 7

Jacobi symbol, 252-253
J-algebras, 501
Jam, 414
Jennings generator, 383-384

Johnson, David, 241
Jueneman's methods, 457

Kaliski, Burt, 342
Karn, 351-352
Karn, Phil, 351
Kamin-Greene- Hellman, 530
Kcrbcros, 60, 566-5 71

abbreviations, 567
authentication steps, 56 7
credentials, 568
getting initial ticket, 569
getting server tickets,

569-570
licenses, 5 71
model, 566
requesting services, 5 70
security, 571
Version 4, 570-571
Version 5 messages, 568

Kcrckhoffs, A., 5
Kerckhoffs's assumption, 7
Key, 3

backup, 181-182
CDMF shortening, 366
complement, DES, 281-282
compromised, 182-183
controlling usage, 180
dereferencing, 221-222
destroying, 184-185
distribution in large net-

works, 177
genera ting, 170-175

ANSI X9.l 7 standard, 175
DoD, 175
pass phrases, 174-175
poor choices, 171-1 73
random keys, 173-174
reduced keyspaccs, 170-171

ISDN, 563-564
lifetime, 183-184
possibly weak, DES, 281-282
semiweak, DES, 280-281
session, 33, 180
storing, 180-181
transferring, 176-177
transmission, error detection,

178
updating, 180
using, 1 79-180
verification, 178-179
weak

block ciphers design theory,
348

DES, 280-281
Key and message broadcast,

51-52

Key and message transmission,
51

Key Auto-Key, 202
Keyboard latency, as random­

sequence genera tor,
424-425

Key Certification Authority, 43
Key control vectors, 562
Key distribution:

anonymous, 94-95
conference, 524

Key Distribution Center, 43-44
Key-Encryption Keys, 176, 184
Key escrow, 97-100, 181-182,

591
politics, 98-100

Key exchange, 47-52
DASS, 62
Denning-Sacco protocol, 63
with digital signatures, 50
interlock protocol, 49-50
Kerberos, 60
key and message broadcast,

51-52
key and message transmis­

sion, 51
man-in-the-middle attack,

48-49
Needham-Schroeder protocol,

58-59
Neuman-Stubblebine proto­

col, 60-62
Otway-Rees protocol, 59-60
protocols, formal analysis,

65-68
with public-key cryptography,

48
with symmetric cryptogra­

phy, 47-48
Wide-Mouth Frog protocol,

56-57
without exchanging keys, 515
Woo-Lam protocol, 63-64
Yahalom, 57-58

Key-exchange algorithms:
COMSET, 517-518
conference key distribution

and secret broadcasting,
523-525

Diffie-Hellman, 513-516
Encrypted Key Exchange,

518-522
fortified key negotiation, 522
Shamir's three-pass protocol,

516-517
station-to-station protocol,

516

___________________ I_n_d_ex __________ 7-----~

Tatebayashi-Matsuzaki­
N ewman, 524-525

Key generation, using coin flip­
ping, 92

Key length:
comparing symmetric and

public-key, 165-166
deciding on, 166-16 7
DES, 283-284
public-key, 158-165

DNA computing, 163-164
quantum computing,

164-165
recommended lengths,

161-163
symmetric, 151-158

biotechnology as cryptanal-
ysis tool, 156-157

brute-force attack, 151-154
Chinese Lottery, 156-15 7
neural networks, 155
software-based brute-force

attacks, 154-155
thermodynamic limitations

on brute-force attacks,
157-158

using viruses to spread
cracking program,
155-156

Key management, 169-187
distributed, 18 7
public-key, 185-187

Key negotiation, fortified, 522
Key notarization, 562
Key revocation certificate, 585
Keyspace, 3

flat, 176
nonlinear, 175-176
reduced, 170-1 71

Keystream generator, 197-198
counter mode, 206
periodic, 202

Khafre, 317-318, 349
Khufu, 317, 349
Kilian, Joe, 116
Kim, Kwangjo, 298,350
Kinetic Protection Device,

389-390
Klapper, Andy, 404
Klein, Daniel, 53, 171
Knapsack algorithms, 462-466

decryption, 465
encryption, 464
implementations, 465
patents, 466
public key created from pri­

vate key, 464

security, 465
superincreasing, 463-464
variants, 465-466

Knapsack problem, 501
Known-plaintext attack, 6-7,

151,359
Knudsen, Lars, 8,293,314,316,

348-349
Knuth, 393, 501
Koblitz, Neal, 480
Konheim, Alan, 266, 280
Kravitz, David, 493
Kravitz-Recd, 481
KryptoKnight, 5 71-5 72

Lagged Fibonacci generators,
390

LaGrange interpolating polyno-
mial scheme, 528-529

Lai, Xuejia, 319, 449
Langford, Susan, 293
Law Enforcement Access Field,

591
Legal issues, 618
Legendre symbol, 251
Lehmann, 259
Lehmann algorithm, 259
Length, shift register, 3 73
Lenstra, Arjen, 159, 162, 257,

485,488
LFSR/FCSR summation/parity

cascade, 410-411
Lid!, Rudolph, 481
Linear complexity:

profile, 380
stream ciphers, 380

Linear congruential generators,
369-372

combining,371-372
constants, 3 70

Linear consistency test, 381
Linear cryptanalysis:

DES, 290-293
strength against, block cipher

design theory, 348-349
Linear error-correcting codes,

algorithms based on, 480
Linear feedback shift registers,

372-379
Galois, 3 78-3 79
primitive polynomials mod 2,

376-377
software, 3 78-3 79
stream ciphers using, see

Stream ciphers
Linear syndrome algorithm,

381

Link-by-link encryption,
216-218

combined with end-to-end,
219-221

Linking protocol, timestamp-
ing, 76-77

Li-Wang algorithm, 346
Local deduction, 8
Lock-in, 388
Logarithms, discrete, see Dis­

crete logarithm
LOKI, 314-316

S-boxes, 349
source code, 632-63 7

LOKI Double-Block, 451
Low decryption exponent

attack, RSA, 473
Low encryption exponent

attack, RSA, 472-473
Luby, Michael, 352
Luby-Racko££, 352-353

xDES 1, 365
LUC, 481
Lucas number, 481
Luccio-Mazzone, 501
Lucifer, 266, 303-304
Lu-Lee cryptosystem, 466
Lyndon words, 501

MacGuffin, 346
Madryga, W. E., 304
Mafia Fraud, 110
Magic numbers, 423
Manasse, Mark, 159,257
Man-in-the-middle attack,

48-49
Masks, REDOC II, 312
Massey, James, 319,339,386,

418, 449
Master Key, 561
Master Terminal Key, 561
Matsui, Mitsuru, 290-291
Matsumoto-Imai algorithm, 500
Mauborgnc, Joseph, 15
Maurer, Ueli, 419
Maurer's randomized stream

cipher, 419
Maximal period generator, 369
MEAL, 344
McEliece, Robert, 479
McEliece algorithm, 346,

479-480
MD2, 441
MD3, 446
MD4, 435-436
MDS, 436-441
MDC, 353-354

~...,_:s,---------------I_n_d_ex __________________ _

MDC-2, 452-453
MDC-4, 452-454
MD-strengthening, 431
Meet-in-the-middle attack, 358,

381
Mental poker, 92-95
Merkle, Ralph, 34, 316-318,

358-359, 432, 455,
461-462

Merkle's puzzles, 34
Merritt, Michael, 67, 518,

520-521, 571
Message:

authentication, 56
broadcasting, 69
Privacy-Enhanced Mail,

579-582
recovery, 497-498
resending as receipt, 42-43

Message authentication codes,
31, 455-459

bidirectional, 45 7
CBC-MAC, 456
IBC-Hash, 458
Jueneman's methods, 457
message authenticator algo-

rithm, 456-457
one-way hash functions as,

458-459
RIPE-MAC, 457-458
stream ciphers, 459

Message authenticator algo­
rithm, 456-45 7

Message broadcast, anonymous,
137-139

Message Digest, 435-436
Message Digest Cipher, 353
Message Integrity Check, 5 78
Message-meaning rule, 66
Message Security Protocol, 584
Meyer, Carl, 266, 278
Meyer, Joseph A., 614
Meyer-Schilling, 452
Micali, Silvio, 94, 508, 546-547,

552
Miller, Gary, 259
Miller, V. S., 480
Mimic functions, 10
Minimum-disclosure proofs,

108
MITRENET, 562-563
Miyaguchi, Shoji, 308
MME, 325-327
m *n-bit S box, 349
Modular arithmetic, 242-245
Modular Multiplication-based

Block cipher, 325-327
Modular reduction, 242

Modulo, inverses, 246-248
Monoalphabetic cipher, 10
Montgomery's method, 244
Moore's Law, 153
m-sequence, 374
MSP, 584
Muller, Winfried, 481
Multiparty unconditionally

secure protocols, 13 7
Multiple-bit generator, 421
Multiple encryption, 357

quintuple, 366
Multiple Identity Fraud, 111
Multiple-key public-key cryp-

tography, 527-528
Multiple signatures, 39-40
Multiplier, 369
Multispccd inner-product gen­

erator, 386-38 7
Mush,392
Mutual shrinking generator,

392
MYK-80, 593-594
Mykotronx Clipper chip, 328
MYK-78T, 591-593

Nanoteq, 390
National Bureau of Standards,

see National Institute of
Standards and Technology

National Computer Security
Center, 599-600

National Institute of Standards
and Technology, 600-603

DES development, 265-267
Memorandum of Understand­

ing, 601-603
National Security Agency,

597-599
DES development, 266-267
export of cryptography,

614-615
Memorandum of Understand­

ing, 601-603
S-box development role, 278,

280
Navy Research Laboratory, pro­

tocol analyzer, 67-68
Needham, Roger, 58, 66, 216
Needham-Schroeder protocol,

58-59
Networks, large, key distribu­

tion, 177
Neuman-Stubblebine protocol,

60-62
Neural networks, breaking algo­

rithms, 155
NewDES, 306-308

N-Hash, 433-435
Nicdcrreiter, Harald, 501
Niederreiter algorithm, 480
Niemi cryptosystem, 466
Nobauer, Wilfried, 481
Noise, random, using as ran-

dom-sequence generator,
423-424

Nonce-verification rule, 66
Non-Interactive Key Sharing

systems, 115
Nonlinear-feedback shift regis-

ters, 412-413
Nonlinear keyspace, 175-176
Nonrcpudiation, 2
Notz, Bill, 266
NP-complete problem, 240-242

graph isomorphism, 104
knapsack algorithms, 462
McEliece algorithm, 479
solving, 163-164

NRL Protocol Analyzer, 67-68
NSDD-145, 268
Nuclear Non-Proliferation Act,

610
Number field sieve, 256
Numbers:

2-adic, 404
large, 17-18

Numbertheory,242-255
Barrett's algorithm, 244
Blum integers, 253
Chinese remainder theorem,

249-250
Euclid's algorithm, 245
Euler totient function,

248-249
extended Euclidean algo­

rithm, 246-248
Fermat's little theorem, 248
Galois field, computing in,

254-255
generators, 253-254
greatest common divisor,

245-246
inverses modulo a number,

246-248
Jacobi symbol, 252-253
Legendre symbol, 251
modular arithmetic, 242-245
Montgomery's method, 244
prime numbers, 245
quadratic residues, 250-251
solving for coefficients, 248

Nyberg, Kaisa, 348

Oblivious transfer, 116-11 7,
550

___________________ I_n_de_x __________ 7 __ ~

Oblivous signatures, 117
OFB, see Output-feedback mode
Ohta, Kazuo, 146, 501
Ohta-Okamoto identification

scheme, 508
Okamoto, Tatsuaki, 146, 501
1/p generator, 414
One-time pad, 15-17

hiding ciphertext in cipher­
text, 227-228

One-time tape, 418
One-way accumulators, 95-96,

543
One-way function, 29-30

authentication using, 52
bit commitment using, 87-88
coin flipping using, 90
trap-door, 158

One-way hash functions, 30-31,
351-354

background, 429-431
birthday attacks, 165-166,

430
choosing, 455
cipher security, 353-354
compression function, 431
encryption speeds, 456
HAVAL, 445-446
improved arbitrated solution,

76
Karn, 351-352
length, 430-431
Luby-Rackoff, 352-353
MD2, 441
MD3, 446
MD4, 435-436
MD5, 436-441
MD-strengthening, 431
message authentication

codes, 455-459
Message Digest Cipher,

353-354
multiple signatures, 40
N-Hash, 433-435
RIPE-MD, 445
Secure Hash Algorithm,

442-445
signing documents with,

38-39
Snefru, 432
as unbiased random-bit gener­

ator, 107
using public-key algorithms,

455
using symmetric block algo­

rithms, 446-455
AR hash function, 453
COST hash function, 454

hash length equals block
size, 447-449

LOKI Double-Block, 451
MDC-2 and MDC-4,

452-454
modified Davies-Meyer,

449-450
parallel Davies-Meyer, 451
Preneel- Bossclaers­

Govaerts-Vandewalle, 450
Quisquater-Girault, 450
tandem and abreast Davies­

Meyer, 451-452
Ong-Schnorr-Shamir, 498-499,

531-532
Orange Book, 599-600
Otway-Rees protocol, 59-60
Outerbridge, Richard, 363
Outer-CBC, 360
Output-feedback mode,

203-205,208-210
combined with ECB, 364
DES, 277
with a nonlinear function,

208
Overtake, 598
Overwriting, 229

Padding:
cipher block chaining mode,

195
electronic codebook mode,

190-191
MD5, 436
Secure Hash Algorithm, 442
triple encryption with, 362

Painvin, Georges, 12
Pass phrases, 17 4-175
Passive attack, 27
Passive cheaters, 2 7
Patents, 609-61 O; See also spe­

cific algorithms
P-boxes:

design criteria, 294
permutation, 275,277,316

PEM, see Privacy-Enhanced
Mail

Perfect secrecy, 235
Period, 11

shift register, 3 73
Permutation, 237

key,DES, 272-273
PES,319,324
Pike, 391-392
PKZIP, 394-395
Plaintext, 1-2
Plaintext block chaining mode,

208

Plaintext feedback mode, 208
Plaintext pair, right and wrong

pairs, 287
Pless genera tor, 413-414
p-NEW scheme, 498
Pohlig, Stephen, 262
Pohlig-Hellman encryption

scheme, 474
Polarized photons, 555
Pollard's Monte Carlo algo­

rithm, 256
Polyalphabetic substitution

cipher, 10-11
Polygram substitution cipher,

10-11
Polynomials:

degree, shift register length,
374

dense, 378
irreducible, 255, 481
sparse, 378

Pomerance, Carl, 257
Powerline System, 466
Pre-image, 30
Preneel, Bart, 45 7
Preneel- Bosselaers-Govaerts-

Vandewallc, 450
Pretty Good Privacy, 584-587
Price, William, 562
Prime numbers, 245

generation, 258-261
DSA, 488-490
practical considerations,

260-260
relatively prime, 245
strong, 261

Primitive, 253
Principal square root, 251
Privacy-Enhanced Mail,

577-584
certificates, 579
documents, 5 78
messages, 579-582
RIPEM, 583-584
security, 582-583
TIS/PEM, 583

Private key, 5
creating public key from, 464
for public-key cryptography,

lifetime, 184
Probabilistic encryption,

552-554
Problems:

complexity, 239-241
EXPTIME, 241
hard, 239
intractable, 239
PSPACE, 241

~-:s _________ I_n_d_ex _________________ _

Problerns (Cont.)
tractable, 239
undecidable, 240
See also NP-complete prob-

lem
Processing complexity, 9
Product cipher, 34 7
Proofs of Membership, 111
Propagating cipher block chain-

ing mode, 207
Proposed Encryption Standard,

319
Protocols, 21, 47

adjudicated, 26, 70-71
all-or-nothing disclosure of

secrets, 96
analysis, approaches, 65-66
anonymous message broad-

cast, 137-139
arbitrated, 23-26
attacks against, 2 7
authentication, 576-577
authentication and key-

exchange, formal analy­
sis, 65-68

BAN logic, 66-67
basic zero-knowledge,

102-104
bit commitment, 86-88
blind signatures, 112-115
characteristics, 21
cryptographic, 22
DASS, 62
definition, 21
Denning-Sacco, 63
digital cash, see Digital cash
digital certified mail, 122-123
digital signatures, 40
distributed, timestamping,

77-78
fair coin flips, 89-92
IBM Common Cryptographic

Architecture, 573-574
IBM secret-key management,

561-562
identity-based public-key

cryptography, 115
interactive, 103
interlock, 49-50, 54-55
Kerberos, 60, 566-571
key escrow, 97-100
key exchange, 47-52
KryptoKnight, 571-572
lessons, 64-65
mental poker, 92-95
multiparty unconditionally

secure, 137
Needham-Schroeder, 58

Neuman-Stubblebine, 60-62
oblivious signatures, 117
oblivious transfer, 116-117
one-way accumulators, 95-96
Otway-Rees, 59-60
purpose,22-23
secret splitting, 70-71
secure circuit evaluation, 13 7
secure elections, see Secure

elections
secure multiparty computa-

tion, 134-137
self-enforcing, 26-27
SESAME, 572
simultaneous contract sign­

ing, 118-122
simultaneous exchange of

secrets, 123-124
subliminal channel, 79-80
timestamping, 75-79
types, 24
Wide-Mouth Frog, 56-57
Woo-Lam, 63-64
Yahalom, 57-58
See also Authentication;

Zero-knowledge proofs
Pseudo-Hadamard Transform,

340
Pseudo-random function family,

SEAL, 398-399
Pseudo-random-number genera­

tor, 78, 416
Pseudo-random sequence,

44-45
Pseudo-random-sequence gener­

ator, 44
bit commitment using, 88
generating multiple streams,

420-421
linear congruential genera­

tors, 369-3 72
linear feedback shift registers,

372-379
PSPACE, 241
Public key, 5

certificates, 185-18 7
creating from private key, 464
key length, 158-165

recommended lengths,
161-163

key management, 185-187
Public-key algorithms, 4-5, 33,

500-502
background, 461-462
based on linear error-correct­

ing codes, 480
Diffie-Hcllman, 513
ElGamal, 476-479

elliptic curve cryptosystcms,
480-481

finite automaton cryptosys­
tems, 482

knapsack algorithms,
462-466

LUC, 481
McEliece, 479-480
one-way hash functions

using, 455
Pohlig-Hellman, 474
Rabin, 475-476
RSA, see RSA
security, 461-462
strength, 502

Public-key cryptography:
attacks against, 43-44
authentication using, 53-54
coin flipping using, 90-91
communications using, 31-34
identity-based, 115
key exchange with, 48
multiple-key, 68-69
private keys, lifetime, 184
signing documents with,

37-38
one-way hash functions,

38-39
versus symmetric cryptogra­

phy, 216-217
Public-Key Cryptography Stan-

dards, 588-589
Public Key Partners, 604-605
Public-key ring, 585
Purchase-key attack, 7

Quadratic nonrcsiducs, 251
Quadratic residues, 250-251

generator, 417
Quadratic sieve, 256

factoring, 159
Quantum computing, 164-

165
Quantum cryptography,

554-557
Quintuple encryption, 366
Quisquater, Jean-Jacques, 102,

508
Quisquater-Girault, 450

Rabin, 475-476
Rabin, Michael, 103, 259, 518,

550
Rabin-Miller algorithm,

259-260
RACE Integrity Primitives Eval­

uation, 605-606
Rackoff, Charles, 352

___________________ I_n_d_ex __________ 7.,,,,,~

Rainbow Books, 600
Rambutan, 390
Random keys, 173-17 4
Random noise, as random-

sequence generator,
423-424

Random-number generation, 44
Random-sequence generators,

421-428
biases and correlations,

425-426
computer clock, 424
distilling randomness,

426-428
keyboard latency measure­

ment, 424-425
RAND tables, 422-423
using random noise, 423-424

Random sequences, real, 45-46
Randomized approach, stream

ciphers, 415
Randomized stream cipher,

419
Randomness, distilling,

426-428
RAND tables, 422-423
Rao-Nam algorithm, 346
Rate of the language, 234
RC2, 318-319
RC4, 319, 397-398
RCS, 344-346

source code, 659-662
RDES, 297-298
Receipt, resending message as,

42-43
REDOC II, 311-313
REDOC III, 313
Redundancy, oflanguage,234
Reeds, Jim, 369
Related-key cryptanalysis, 290
Renji, Tao, 482
Renting Passports, 111
Replay attacks, 58-59
Research and Development in

Advanced Communica­
tion Technologies,
Integrity Primitives Eval­
uation, 605-606

Resend attack, foiling, 43
Residue, 242

quadratic, 250-251
reduced set, 248

Restricted algorithms, 3
RFC 1421, 578
RFC 1422, 578
RFC 1423, 578
RFC 1424, 578
Richter, Manficld, 423

Riordan,Mark, 583-584
RIPE, 605-606
RIPEM, 583-584
RIPE-MAC, 457-458
RIPE-MD, 445
Rip van Winkle cipher, 418-419
Rivest, Ron, 159, 163, 318-319,

344,397, 435, 440-441,
444,446,467

Rivest Cipher, 318
Robshaw, Matt, 342
Rogaway, Phil, 398
ROM key, 181
ROT13, 11
Rotor machines, 12-13
RSA, 17, 466-474

ability to break, zero-knowl­
edge proofs, 548-549

attack on encrypting and
signing with, 473-474

blind signatures, 548
chosen ciphertext attack,

471-472
common modulus attack,

472
compared to DSA, 485
computation time compari-

son with DSA, 489
as de facto standard, 485-486
EKE implementation, 519
encryption, 468

with DSA, 491
in hardware, 469
low decryption exponent

attack, 473
low encryption exponent

attack, 472-473
patents, 474
restrictions on use, 4 73
security, 470-471
speed, 469
standards, 4 7 4

RSA Data Security, Inc., 295,
603-604

RSA Factoring Challenge, 25 7
RSA generator, 417
Rubber-hose cryptanalysis, 7
Rueppel, Ranier, 385-386
Running-key cipher, 12

SAFER K-64, 339-341
SAFER K-128, 341
Salt, 52-53
S-boxes:

alternate, DES, 296-298
Blowfish, 336
Boolean functions in, 350
DES, key-dependent, 298, 300

design
criteria, 294
security questions, 284
theory, 349-351

Lucifer, 303
NSA role, 278, 280
substitution, 274-276

Scherbius, Arthur, 13
Schlafly, Roger, 394
Schneier, Bruce, 336, 346
Schnorr, Claus, 418, 446, 510
Schnorr authentication and sig-

nature scheme, 510-
512

Schroeder, Michael, 58, 216
Schwartau, Winn, 300
Sci.crypt, 608-609
Scott, Robert, 306
SEAL, 398-400

source code, 667-673
Secrecy:

ideal, 236
perfect, 235

Secrets, simultaneous
exchange, 123-124

Secret sharing, 71-73
without adjudication, 72
with cheaters, 72
with disenrollment, 73
without revealing shares, 73
schemes with prevention, 73
verifiable, 73

Secret-sharing algorithms,
528-531

advanced threshold schemes,
530-531

Asmuth-Bloom, 529-530
cheater detection, 531
Kamin-Greene-Hellman, 530
LaGrange interpolating poly-

nomial scheme, 528-529
vectorsche1ne, 529

Secret splitting, 70-71
digital cash, 142-145

Secure and Fast Encryption
Routine, 339

Secure circuit evaluation, 13 7
Secure elections, 125-134

divided protocols, 133
multiple-key ciphers, 133
simplistic voting protocols,

125-126
voting with

blind signatures, 126-127
single central facility,

128-130
two central facilities,

127-128

~--:s __________ I_n_d_ex __________________ _

Secure elections (Cont.)
voting without central tabu­

lating facility, 130-133
Secure European System for

Applications in a Multi­
vendor Environment,
572

Secure Hash Algorithm,
442-445

Secure multiparty computation,
134--137, 551-552

Secure Telephone Unit, 565
Security:

of algorithms, 8-9
Blowfish, 339
cipher block chaining mode,

196-197
ciphers based on one-way

hash functions, 353-354
cryptosystem, 234-235
DES, 278,280-285

algebraic structure,
282-283

current, 300-301
keylength,283-284
weak keys, 280-281

DSA, 491-492
ESIGN, 500
Kerberos, 5 71
knapsack algorithms, 465
MD5, 440-441
MMB,326-327
output-feedback mode, 205
PKZIP, 395
Privacy-Enhanced Mail,

582-583
requirements for different

information, 167
RSA, 470-471
SEAL, 400
Secure Hash Algorithm,

444-445
self-synchronizing stream

cipher, 199
Selector string, 143
Self-decimated generator,

385-387
Self-enforcing protocols, 26-27
Self-recovering, cipher block

chaining mode, 196
Self-shrinking generator, 388
Self-synchronizing stream

cipher, 198-199
Selmer, E. S., 381
Semiwcak keys, DES, 280-281
SESAME, 572
Session keys, 33, 180
SHA, 442-445

Shadows, 71-72
Shamir, Adi, 72, 284-285, 288,

291,296,303, 311-312,
314,319,416,434, 462,
467, 502-504, 508, 516,
528

Shamir's pseudo-random­
number generator, 416

Shamir's three-pass protocol,
516-517

Shimizu, Akihiro, 308
Shor, Peter, 164
Shrinking generator, 388,

411-412
Signature equation, 496
Signatures, see Digital signa­

tures
Silverman, Bob, 159
Simmons, Gustavus, 72, 79,

493,501,531
Simple columnar transposition

cipher, 12
Simple relations, 347-348
Simple substitution cipher,

10-11
Simultaneous exchange of

secrets, 123-124
Skew, 425
SKEY, 53
SKID, 55-56
Skipjack, 267, 328-329
Smart cards, 587

observer, 146
Universal Electronic Payment

System, 589-591
Smith, Lynn, 266
s"DES, 298-299
Snefru, 432
Software:

DES implementation, 278-279
encryption, 225
linear feedback shift registers,

378-379
RSA speedups, 469-470

Software-based brute-force
attack, 154-155

Software Publishers Associa-
tion, 608

Solovay, Robert, 259
Solovay-Strassen algorithm, 259
Space complexity, 237
Sparse, 378
Special number field sieve,

160-161
SP network, 347
Square roots:

coin flipping using, 541-542
modulo n, 258

Standards:
public-key cryptography, 588-

589
RSA, 474

Station-to-station protocol, 516
Steganography, 9-10
StepRightUp, 414
Stereotyped beginnings, 190
Stereotyped endings, 190
Storage:

data encryption for, 220-222
keys, 180-181
requirements, 9

Stornetta, W. Scott, 75
Straight permutation, 275
Strassen, Volker, 259
Stream algorithms, 4
Stream ciphers, 4, 189, 197-198

AS, 389
additive generators, 390-392
Algorithm M, 393-394
versus block ciphers, 210-

211
Blum, Blum, and Shub gener­

ator, 417-418
Blum-Micali generator,

416-417
cascading multiple, 419-

420
cellular automaton generator,

414
choosing, 420
complexity-theoretic

approach, 415-418
correlation immunity, 380
counter mode, 206
crypt(!), 414
design and analysis, 3 79-

381
Diffie's randomized stream

cipher, 419
encryption speeds, 420
feedback with carry shift reg-

isters, 402-404
Fish, 391
Gifford, 392-393
Hughes XPD/KPD, 389-390
information-theoretic

approach, 418
linear complexity, 380
Maurer's randomized stream

cipher, 419
message authentication

codes, 459
multiple, generating from sin­

gle pseudo-random­
scqucnce generator,
420-421

___________________ I_n_d_ex __________ 7_~

Mush,392
Nanoteq, 390
nonlinear-feedback shift reg-

isters, 412-413
1 /p generator, 414
output-feedback mode, 205
Pike, 391-392
PKZIP, 394-395
Pless generator, 413-414
Rambutan, 390
random-sequence generators,

421-428
RC4, 397-398
Rip van Winkle cipher,

418-419
RSA generator, 417
SEAL, 398-400
self-synchronizing, 198-199
synchronous,202-203
system-theoretic approach,

415-416
using feedback with carry

shift registers, 405-412
alternating stop-and-go gen­

erators, 410-411
cascade generators, 405
FCSR combining genera­

tors, 405, 410
LFSR/FCSR

summation/parity cas­
cade, 410-411

shrinking generators, 411-
412

using linear feedback shift
registers, 381-388

alternating stop-and. go gen­
erator, 383, 385

Beth-Piper stop-and-go gen­
erator, 383-384

bilateral stop-and-go gener-
ator, 384-385

DNRSG, 387
Geffe generator, 382
generalized Geffe generator,

382-383
Gollmann cascade, 387-388
Jennings generator, 383-384
multispeed inner-product

generator, 386-38 7
self-decimated generator,

385-387
self-shrinking generator, 388
shrinking generator, 388
summation generator,

386-387
threshold generator,

384-386
WAKE, 400-402

Strict avalanche criteria, 350
Strong primes, 261
STU-III, 565-566
Subkey, 272

Blowfish, 338-339
Crab, 342-343
IDEA, 322
independent, DES, 295

Subliminal channel, 79-80
applications, 80
DSA, 493, 534-536
ElGamal, 532-533
ESIGN, 533-534
foiling, 536
Ong-Schnorr-Shamir,

531-532
signature algorithm, 79

Subliminal-free signature
schemes, 80

Subprotocols, 26
Substitution boxes, 274-276
Substitution ciphers, 10-12
Substitution-permutation net-

work, 347
SubStream, 414
Summation generator, 386-387
Superincreasing knapsack,

463-464
Superincreasing sequence,

463-464
Suppress-replay, 61
Surety Technologies, 79
SXAL8, 344
Symmetric algorithms, 4
Symmetric block algorithms,

one-way hash functions
using, 446-455

Symmetric cryptography:
bit commitment using, 86-87
communication using, 28-29
key exchange with, 47-48
versus public-key cryptogra-

phy, 216-217
Symmetric cryptosystems, doc­

ument signing, 35-37
Symmetric key length, 151-158
Synchronous stream cipher,

202-203
System-theoretic approach,

stream ciphers, 415-416

Tap sequence, 3 73
feedback with carry shift reg­

isters, maximal-length,
408-409

Tatebayashi-Matsuzaki­
Newman, 524-525

Tavares, Stafford, 334

TEA, 346
TEMPEST, 224
Terminology, 1-9, 39
Terrorist Fraud, 110
Thermodynarnics, limitations

on brute-force attacks,
157-158

Three-pass protocol, Shamir's,
516-517

Three-Satisfiability, 242
3-Way,341-342,354

source code, 654-659
Three-Way Marriage Problern,

242
Threshold generator, 384-386
Threshold schemes, 71-72,

530-531
Ticket-Granting Service, 567
Ticket Granting Ticket, 569
Tickets, 568
Time complexity, 237
Timestamping, 75

arbitrated solution, 75-76
digital signatures, 38
distributed protocol, 77-78
improved arbitrated solution,

76
improvements, 78-79
linking protocol, 7 6-77
patented protocols, 78-79
protocols, 75-79

TIS/PEM, 583
Total break, 8
Traffic analysis, 219
Traffic-flow security, 21 7
Transfer, oblivious, 116-117
Transposition, 237

ciphers, 12
Trapdoor one-way function, 30
Traveling Salesman Problem,

241-242
Trees, digital signatures, 37
Trial division, 256
Triple encryption, 358-363

encrypt-decrypt-encrypt
mode, 359

with minimum key, 360
modes, 360-362
with three keys, 360
with two keys, 358-359
variants, 362-363

TSD, 594-595
Tsujii-Kurosawa-Itoh-Fujioka­

Matsumoto, 501
Tuchman, Walt, 266, 278, 280,

294,303,358
Tuckerman, Bryant, 266
Turing, Alan, 240

~""':S. __________ I_n_d_ex __________________ _

Turing machine, 239, 241
2-adic numbers, 404

UEPS, 589-591
Uncertainty, 234
Unconditional sender and recip­

ient untraceability, 138
Undeniable digital signatures,

81-82, 536-539
Unicity distance, 235-236
Unit key, 591
United States, export rules,

610-616
Universal Electronic Payment

System, 589-591
Unpredictable, to left and to

right, 417
Updating, keys, 180
Utah Digital Signature Act, 618

van Oorschot, Paul, 359
Vector scheme, 529
Verification, keys, 178-179
Verification block, 179
Verification equation, 496
Vernam, Gilbert, 15
Vigenere cipher, 10-11, 14
Vino, 346
Viruses, to spread cracking pro­

gram, 155-156

VLSI 6868, 278
Voting, see Secure elections

WAKE, 400-402
Wayner, Peter, 10
Weak keys:

block ciphers design theory,
348

DES, 280-281
Wheeler, David, 400
Whitening, 363, 366-367
Wide-Mouth Frog protocol,

56-57
Wiener, Michael, 153, 284,

359
Williams, 475-476
Wolfram, Steve, 414, 446
Wood, Michael, 311,313
Woo-Lam protocol, 63-64
Word Auto Key Encryption,

400
Work factor, 9

xDES 1, 365-366
XOR, 13-15
XPD, 389-390

Yagisawa algorithm, 501
Yahalom, 57-58
Yao's millionaire problem, 551

Yung, Moti, 81
Yuval, Gideon, 430

Zero-knowledge proofs,
101-109, 548-549

ability to break RSA, 548-549
Chess Grandmaster Problem,

109
computational, 108
discrete logarithm, 548
generalities, 108-109
identity, 109-111
Mafia Fraud, 110
minimum-disclosure, 108
Multiple Identity Fraud, 111
n is Blum integer, 549
noninteractive, 106-107
no-use, 108
parallel, 106
perfect, 108
Proofs of Membership, 111
Renting Passports, 111
statistical, 108
Terrorist Fraud, 110

Zero-knowledge protocol:
basic, 102-104
graph isomorphism, 104-105
Hamiltonian cycles, 105-106

Zierler, Neal, 381
Zimmermann, Philip, 584

