
Creating Business Value
Through Developer Experience

Designing Great
Web APIs

James Higginbotham

©2016 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. D1814

Short. Smart.
Seriously useful.

Free ebooks and reports from O’Reilly
at oreil.ly/webdev

We’ve compiled the best insights from
subject matter experts for you in one place,

so you can dive deep into what’s
happening in web development.

Davey Shafik

Upgrading
to PHP 7

Modern Tools for
Static Website Development

Static Site
Generators

Brian Rinaldi

KYLE SIMPSON

UP &I

 GOING

“When you strive to comprehend your code, you create better
work and become better at what you do. The code isn’t just

your job anymore, it’s your craft. This is why I love Up & Going.”
—JENN LUKAS, Frontend consultant

Jens Oliver Meiert
Foreword by Lindsey Simon

The Little Book
of HTML/CSS
Coding Guidelines

http://oreil.ly/webdev

James Higginbotham

Designing Great Web APIs
Creating Business Value Through

Developer Experience

978-1-491-92459-4

[LSI]

Designing Great Web APIs
by James Higginbotham

Copyright © 2015 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Allyson MacDonald
Production Editor: Melanie Yarbrough
Copyeditor: Amanda Kersey
Proofreader: Melanie Yarbrough

Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

July 2015: First Edition

Revision History for the First Edition
2015-07-21: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Designing Great
Web APIs, the cover image, and related trade dress are trademarks of O’Reilly Media,
Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com

Table of Contents

The Business of APIs. 1
What Are APIs? 1
The Rise of the API Economy 2
Business Advantages of Web APIs 4
Web API Development versus Traditional Software 6

Guidelines for Designing a Great API. 7

The Design-First API Process. 23
User Interface Wireframes to Drive API Design 24
API Modeling 24
Next Step: Detailed API Design 28

API Design Details. 29
An HTTP Primer 29
Building Your Resource Ontology 33
Defining URLs Through Relationships 33
Mapping Resource Lifecycles to HTTP Verbs 35
Mapping Response Codes 36
Validating Design Through Documentation and Prototyping 37
Putting It All Together 38

iii

The Business of APIs

Web APIs are everywhere. Just browse any technology news website
and you are likely to read something about the latest product
launching an open API. Companies are making huge investments in
providing APIs to internal developers, partner organizations, and
public developers. APIs that were once used to solve integration
problems have now become the backbone for an organization’s digi‐
tal strategy.

What Are APIs?
An API, or application programming interface, is the specification
of how one piece of software can interact with another. It is best
thought of as a contract between software and the developers using
it.

As an example, if you provide a display message to the confirm dia‐
log API inside a browser, then the browser will display the message
inside of a pop-up dialog and offer OK/Cancel buttons to proceed
when the user presses OK, or cancel if the user presses Cancel:

if (window.confirm("Do you really want to leave?")) {
 window.open("done.html", "Thanks for visiting!");
}

Using the preceding window.confirm() API results in a browser
confirmation dialog:

1

Traditionally, APIs have always been part of software development.
Operating systems such as Microsoft Windows and Mac OS or
mobile platforms such as iOS and Android offer APIs that allow
developers to build software on top of their platform. Developers
depend upon these APIs to exist, operate as expected, and not break
their contract without sufficient notice.

As software has moved from a focus on desktop and web to mobile
computing, there has been an increased demand for web APIs.
These modern web APIs aren’t just built to integrate systems within
an organization. Instead, they allow businesses to share business
capabilities and data, build community, and foster innovation. This
has led to the rise of the API economy.

The Rise of the API Economy
The API economy is a term that was coined to describe the growth
of revenue and brand engagement as a result of offering public APIs
for developers. Let’s examine the reasons that gave rise to the API
economy.

Reason #1 – Higher Demand
Historically, APIs were used to integrate different software systems
or even different organizations. Web APIs are now in high demand
due to three key factors: the modern browser, mobile devices, and
the Internet of Things.

Years ago, modern browsers were limited to displaying content and
limited scripting capabilities using JavaScript. Modern browsers
have moved beyond this, allowing rich web applications to be built
using a combination of HTML, CSS, and modern JavaScript frame‐
works. As a result, we no longer require servers to generate com‐
plete web pages. Instead, JavaScript frameworks request data from

2 | The Business of APIs

one or more web APIs, dynamically changing what the user sees and
the actions they can perform.

In addition to modern browsers, there has been explosive growth in
mobile devices such as phones and tablets. These devices have access
to the Internet from most locations and offer GPS location and app-
store distribution. Applications no longer have to be web pages in a
browser. Instead, they can use APIs to access data and business logic
to get things done.

Finally, the Internet of Things (IoT) is moving the world of devices,
previously requiring human intervention, into autonomous replace‐
ments that combine the physical world with the world of software.
As a result, APIs enable IoT devices to broadcast their telemetry
data and receive commands from other systems. IoT is an emerging
domain that will greatly benefit from integrating and providing
APIs.

Reason #2 – Simplicity
Historically, enterprises adopted technologies such as SOAP or
XML-RPC to integrate applications internally and between partner
organizations. These technologies often required additional stand‐
ards and specifications on top of transport protocols such as HTTP.
However, these technologies are meant for systems integration
where rigid specifications are most important.

Modern web APIs abandon the need for these complex standards,
instead choosing a simpler solution. They encourage the use of
HTTP, the protocol that powers the Web, as the foundation for
APIs. The HTTP specification was designed to support a robust set
of request verbs (i.e., what you want to do) and response codes (i.e.,
the result of the request). The philosophy for web APIs is to avoid
additional standards and specifications, instead choosing to use the
HTTP standard to define how web APIs operate.

By choosing HTTP as the only standard, any application or device
can consume a web API using built-in programming libraries. No
longer are expensive software solutions and complicated standards
required. This means easy integration for any device: mobile
phones, browsers, or even cars with mobile network access can con‐
sume web APIs.

The Rise of the API Economy | 3

Reason #3 –Lower Cost
By choosing HTTP for our APIs, companies can avoid allocating
large budgets of time and money to learn, build, and maintain com‐
plex software-technology stacks. Instead, built-in and open source
programming libraries can be used to create and consume a variety
of web APIs.

With the introduction of cloud computing, any business or individ‐
ual developer can provision a complete data center on a credit card.
No longer do you have to purchase tens of thousands of dollars of
equipment, wait for it to be shipped to a data center, physically
install it, and configure it for use. Now anyone can provision a
server from one of multiple cloud vendors—often in less than 60
seconds—and at a fraction of the cost of purchasing and maintain‐
ing a physical server.

Reason #4 – New Business Models
As software moved from installed, on-premise solutions to
Software-as-a-Service (SaaS) products, web APIs became more pop‐
ular for accessing data and automating integration. Eventually, com‐
panies offering SaaS products realized that their APIs were just as
valuable as the product itself. They could even be productized inde‐
pendently from the core SaaS offering.

As the API economy emerged, new API business models were iden‐
tified, including free, developer pays, developer gets paid, indirect,
and internal. The free or developer pays subscription models are the
most common, although the other models are used with specific
strategies in mind.

As a result of the API economy, businesses must market APIs to
developers directly to gain traction and generate revenue. This
places heavier emphasis on great API design to gain developer
acceptance, whether the API will be open to the public or only used
internally.

Business Advantages of Web APIs
Today, companies are using web APIs to transform their businesses
as well. Netflix uses APIs to enable streaming across more than 200
different devices. Over half of eBay’s listings are posted using its
API. Best Buy has used APIs to transform itself in the face of online

4 | The Business of APIs

retail competitors. Walgreens has wrapped every corner store with
an API to enable local photo printing and other services, all pow‐
ered by developers.

Businesses are using Web APIs to increase revenue, improve innova‐
tion, and reduce their time-to-market through two strategies: con‐
suming APIs from others and exposing their own APIs for internal
and external developers.

Consuming APIs from Others
APIs allow businesses to leverage the hard work of other developers.
Rather than building every feature in-house, teams can leverage
third-party APIs to add new functionality and focus on the aspects
of the solution that are unique. For some solutions, this may result
in building an application entirely from third-party APIs, with little
or no custom development.

When selecting a third-party API for integration, it is important to
consider the API provider’s strengths and weaknesses. An API pro‐
vider needs to have a business model that indicates longevity, to pre‐
vent the API from being shut down in the future. It should also have
a documented process for upgrading and versioning APIs to prevent
breaking your existing applications. Finally, it should invest in great
documentation to help your developers, while offering support pro‐
cesses when your developers are experiencing difficulties. If care is
not taken when selecting an API provider, the result can be worse
than building the feature in-house.

Exposing APIs to Other Developers
While many organizations are resistant to building and exposing
APIs to partner or public developers, there are several advantages
for doing so:

• APIs allow your customers to innovate without depending on
your team. This allows them to customize your solution as they
wish, a requirement that is often necessary for mid and large-
size organizations.

• APIs often result in additional revenue streams by productizing
your business capabilities as a service. For product companies,
this may be a necessary step to closing sales (or accelerating the
close).

Business Advantages of Web APIs | 5

• APIs create partner networks, allowing third-parties to sell your
software by offering API-based integration to your solution.

Building web APIs are often considered an integration problem best
left to the technology team. However, web APIs are more than just a
technology solution: they reach to the heart of the business. Every‐
thing an API offers (and doesn’t offer) speaks volumes about what
an organization most cares about. This means that organizations
need to view web APIs as a business asset, not just a technology sol‐
ution. An organization’s API provides a view into what the business
truly values; the quality of its API design provides a view into how
the business truly values developers.

Web API Development versus Traditional
Software
Unlike past trends that market to business leaders, APIs market
directly to developers. And developers demand more than just a
marketing website that lists the features in bullet points. They
demand an intuitive, easy-to-use API that can quickly be integrated
into their next project.

This requirement, called “developer experience,” is transforming the
way that APIs are designed. Organizations can no longer bolt on an
API as an afterthought and force developers to use it. Instead, entire
markets are emerging where APIs compete for the attention of
developers.

This means that an API that solves developer problems and comes
with a great design will have a greater chance of winning their atten‐
tion. Your web API design is a competitive advantage.

With all of this in mind, the remainder of this book provides
insights into designing a great API that results in creating value for
your business.

6 | The Business of APIs

Guidelines for Designing
a Great API

If you have been involved with any kind of software product, you
have probably heard of the term user experience, or UX. This is the
discipline of meeting the exact needs of the user, from their interac‐
tions with the product, company, and its services.

Developer experience (DX) is just as important for APIs as UX is for
great applications. The developer experience focuses on the various
aspects of engagement with developers for your API product. This
extends beyond the features of the API. It also includes all aspects of
the API product, from first glance to day-to-day usage and support.

As we seek to understand how to design a great API, it is important
to remember that DX is important for both internal and external
developers. Internal developers benefit from great DX because they
are able to create business value faster, especially for newer develop‐
ers that just joined the organization. External developers benefit by
integrating your well-designed API quickly, hopefully faster than
any competitor can offer (or building it in-house).

As you begin to produce APIs for internal or external developers,
you will be faced with a variety of decisions about your API. This
can range from how you manage it as a product, to its design and
documentation. The following seven guidelines will help your orga‐
nization incorporate a great developer experience for the internal
and external developers that will use your API.

7

#1 - Treat Your API as a Product
Many APIs start as a bolt-on solution to an existing application in
an effort to solve a short-term problem, such as building a mobile
application. However, APIs designed from the ground-up as a sepa‐
rate product enable the development of not just one type of applica‐
tion, but any number of applications that span a variety of devices
and situations: third-party software, internal applications, desktop
apps, mobile devices, and the emerging world of IoT. This means
that APIs extend beyond a simple technology solution: they can
have a positive (or negative) impact across the entire business,
including:

1. Internal innovation
2. Marketing channels
3. Business development
4. Lead generation
5. User acquisition
6. Upsell opportunity
7. Device and mobile support
8. Increased customer retention

As a result, APIs need to be treated as a product, even if it is an
internal product used only by the organization itself. This means
investing in the API as you would any other product, including:

1. Clear communication of your API strategy and business
model(s) to all lines of business to ensure everyone is focused
on achieving the same business goals

2. Implementing an API governance program to encourage API
consistency through design standards and product management

3. Managing the entire API software development life cycle
(SDLC), from requirements to delivery, deployment, and cus‐
tomer support

4. Monitoring API usage and key metrics and performance indica‐
tors (KPIs)

8 | Guidelines for Designing a Great API

5. Evangelizing the API to internal and external developers
through online resources, hackathons, internal/external confer‐
ences, and partner programs

Taking these steps will ensure that not only will your API design
remain well-designed and consistent, but also that your API will
have longevity as you continue to support the needs of both internal
and external developers.

#2 – Take an Outside-In Design Approach
Web APIs have a tendency to reflect two things: organizational
structure and database structure. Neither will produce a great API
design, and both of these situations can be prevented. Taking an
outside-in approach to API design means looking at your API from
the viewpoint of an external developer that doesn’t have access to
your code, your database design, or your organizational structure.

Organizational structure leaks
When an organizational structure leaks into the API, it announces
to developers that the API isn’t a product; it is the output of a spe‐
cific team within the organization. The result is inconsistent design
and duplication or gaps in functionality.

Organizational structure creeps into an API for two reasons: 1) APIs
are designed in isolation from other teams, or 2) APIs are designed
around internal systems rather than external needs.

To avoid this, consider establishing an API governance board that
encourages consistency across teams. A governance board isn’t
meant to be an oppressive committee that stalls innovation. Rather,
they represent the best interests of developers, your APIs, and your
business. Great governance boards often act as internal consultants
for your APIs to make them successful.

Database structure leaks
Database structure creeps in through the use of tools and frame‐
works that promise rapid API development at the expense of a
thoughtful API design. They externalize the data through generated
APIs but make one huge assumption that becomes the enemy of
great API design: external developers want to use your API like you
access your database.

Guidelines for Designing a Great API | 9

Developers using your API don’t care how you store your data as
long as it is stored correctly and reliably. Taking an outside-in design
approach will prevent the database design from creeping in by
encouraging you to see your API as external developers will see it.

When taking an outside-in approach to API design, focus on how
the API will be used, rather than how it is built. This means looking
for ways to make your API useful for web clients, where connectiv‐
ity and CPU capabilities are abundant as well as mobile devices,
where connectivity and battery enforce a variety of limitations.

#3 – Write Great Documentation
The first essential trait of a great API is great documentation. It is
important to remember that developers won’t have access to your
source code. Therefore, they won’t be able to see how things work
inside your API. They will depend on your API’s documentation to
understand how to use it, when to use it, and what will happen as a
result.

Great documentation requires careful attention to format, complete‐
ness, and discoverability. Let’s look at each of these documentation
concerns in more detail.

Format
How you decide to distribute your documentation will heavily
impact the audience. Many companies employ technical writers who
use tools that produce beautiful, typeset documentation in PDF for‐
mat. The documentation looks professional and amazing.

However, there is a big downside to PDF-based documentation: the
PDF goes stale once it is downloaded. As new versions of the PDF
are released, older versions remain on their hard drive for reference.
This means that they won’t have the benefit of the latest examples,
clarifications, and new features.

Instead, APIs need to have documentation that is always current for
the reader. HTML-based documentation provides an always upda‐
ted, easily accessible solution. It should be hosted on your website
and easily accessed by developers to ensure the documentation is
available at any time.

10 | Guidelines for Designing a Great API

Completeness
At least one time in your life you have encountered bad documenta‐
tion. It may have been the assembly instructions for do-it-yourself
furniture. Perhaps it was an owner’s manual for a new device or soft‐
ware product. The experience of poor documentation can waste
your time, leave you frustrated, or perhaps even cause you to replace
it with something better.

API documentation can provide the same experience if it is left
incomplete or unclear. Developers may continue to use the API in
the short term, but they will likely look to replace your API at first
chance.

It is important to remember that a public web API is a contract with
every developer that will use it. Whether you target internal devel‐
opers, developers within a partner organization, or public develop‐
ers in general, you are making a contract with each individual devel‐
oper.

Therefore, the documentation you provide to developers will pro‐
vide the bulk of their developer experience. It will be the first thing
that they experience when trying to understand your API, and the
first place they go when they are stuck.

The challenge with API documentation is that it must serve a variety
of situations. This may include the developer looking at your API
for the first time or the expert developer looking to use a newly
released feature. This means that complete documentation takes into
account the following scenarios:

• Developers, product managers, and business users that are con‐
sidering your API but haven’t committed to it yet

• The developer integrating your API for the first time
• The expert developer who has been using your API for some

time and wants to explore previously hidden features or options
• Support staff trying to troubleshoot how your API works and

why an application is failing
• Newly hired developers in your organization seeing the API

(and the business) details for the first time

Too often, documentation lacks focus around one or more of these
areas. This is particularly the case when using documentation writ‐

Guidelines for Designing a Great API | 11

ten inline with the code itself. Tools exist that allow API docs to be
built from inline comments and are sometimes used to expedite the
documentation process. However, the result is documentation that is
only focused on what that specific code does, not how to use it suc‐
cessfully. Complete documentation must consider all of the five sce‐
narios previously listed.

Interactive
Finally, great documentation should be interactive. As mentioned,
API documentation delivered in HTML format can be hosted on a
website and kept up-to-date. But another added benefit is that we
can use the browser to actually interact with our API.

Figure 2-1 is an example of interactive documentation using Swag‐
ger.

Figure 2-1. API documentation using Swagger, which offers a Try It
Out feature

Interactive API documentation allows anyone, including developers,
quality assurance staff, product managers, and support staff to make
API calls into a live running server from within the documentation
itself. This is possible because our web APIs use the HTTP standard
and therefore don’t require special libraries or software to make
them work. Imagine allowing developers and QA staff explore your
API before they ever write a line of code or an automated test! That
is power of interactive documentation.

#4 – Have an Intuitive, Consistent Design
An intuitive API is one that makes it easy for a developer to know
what to do to use it effectively. By lowering the learning curve of
your API, you will ensure that developers experience successes early

12 | Guidelines for Designing a Great API

and often. This results in greater API adoption, longer retention
(even in the face of competitors), and developer autonomy resulting
in reduced support costs.

Follow these general guidelines to make your API more intuitive:

• Make data available easily, rather than hidden or hard to find.
• Require only the information necessary to accomplish the

desired task.
• Offer both low-level ways of getting things done, as well as

higher-level ways of accomplishing common workflows with
fewer calls.

• Use hypermedia links to inform API clients the available actions
at any given point, based on the current state of the data and the
permissions of the API client.

• Offer only one way to accomplish a task.

For APIs, consistency is important for a great developer experience
because it creates predictability. As developers start to become
familiar with your API, they will come to expect the same familiarity
as they explore it further. This consistency encompasses a number of
areas, including naming, resource URLs, payload formats, and error
messaging. Let’s examine each one further.

Consistent naming
As developers approach your API, the first thing they will notice is
the naming conventions that you use. This includes the names of the
domain concepts referenced, many of which become the resources
used in the URLs of your API. Therefore, naming is critical to the
understanding and usage of your API. The following are some tips
for incorporating consistent naming:

• Avoid abbreviations, as they can be difficult to read and often
create confusion as some names may be unclear or inconsis‐
tently abbreviated.

• Be consistent with resource names to avoid confusion.
• Refrain from referencing internal systems, as this results in

requiring insider knowledge to use or comprehend your API.

Guidelines for Designing a Great API | 13

Consistent resource URLs
As you design your API, you will need to map out the various URLs
that will represent your resources. It is highly recommended that
you develop a resource ontology to ensure that URLs are consis‐
tently designed into the API.

If you are unfamiliar, ontology is a technique used in information
science for the naming and typing of entities and their relationships.
API ontologies define the structure of your API, from the top-level
resources to the nested resources under them.

Figure 2-2 is an example of a URL ontology for an ecommerce web‐
site.

Figure 2-2. An example resource ontology for an eCommerce API

When designing your resource ontology, apply the following techni‐
ques to create a more consistent API:

• Use plural resource names when offering a collection of resour‐
ces and a singular resource name for a single resource
(e.g., /users for a collection of user resources, /user for a single
user resource).

• Use nested resources to indicate relationships between resour‐
ces.

14 | Guidelines for Designing a Great API

• Avoid one-off URLs (e.g., /users/current rather than the more
appropriate /user).

We will cover this topic in more detail in Chapter 4.

Consistent payload formats
Finally, the payload format should be consistent to allow API con‐
sumers to easily construct request payloads and parse response pay‐
loads. Most developers prefer to write helper code to handle this
logic. If an API is inconsistent in its approach, developers will have
to write one-off code to handle the differences. Follow these patterns
for more consistent API payloads:

• Reuse field names across payloads when possible for better pre‐
dictability (e.g., use firstName and lastName or use fullName,
but don’t interchange them).

• Avoid abbreviations in field names.
• Keep consistent casing rules, usually camelCase or snake_case

(e.g., firstName or first_name, but not both).
• Select a single payload format or standard when handling pay‐

loads, including resource representations and search result col‐
lections.

• Ensure all error message formats are consistent across the API.
This is especially important when an API is built by multiple
developers who may otherwise handle error messaging differ‐
ently.

Beyond data: Supporting API-based workflows
APIs often require more than just data. While data is important,
developers seek out APIs to solve a problem. If they wanted to store
data, they would push it into a database directly, unless you have
data that no one else can provide. They are looking to your API to
do something that they don’t want to build themselves. This may be
solving difficult problems, building support for collaboration, or
providing data analysis.

Great APIs need to look beyond data access endpoints. While these
kinds of endpoints are essential to any API, adding workflow into
your API helps developers get things done quickly and with fewer
lines of code.

Guidelines for Designing a Great API | 15

As an example, Twilio only supported conference calls by putting
each caller on mute and then managing each caller using the low-
level access APIs. The company realized that customers required an
affordance to support conference calls at a higher level. The result is
that providers were able to remove a lot of hard work from API
developers by building in a higher-level conference call API that did
the heavy lifting for them.

As an API provider, it is important to look for usage patterns of how
your API may be used across a variety of different types of develop‐
ers. Then begin to build in higher-level APIs that support these
workflows, saving them effort and time.

A Note About Hypermedia APIs
Hypermedia APIs are a breed of web APIs that inform clients about
what actions are possible after a given request. This may take the
form of next steps within a workflow, related API resources, and
other functional areas of the API. This mimics how we use the Web:
we go to a homepage, click the login link, enter our credentials,
then navigate to various areas of the application.

Using hypermedia enables our clients to be more flexible and
reduces the amount of business logic we have to code into them.
Instead, they look for the existence of specific links within a
response payload and offer (or hide) specific actions based on the
server’s determination of what is and isn’t allowed. If the business
logic needs to change in a workflow, the server simply adds or
removes the appropriate hypermedia links that are used to guide
the client’s behavior.

Some REST purists believe that hypermedia is a requirement for an
API to be labeled REST. While this isn’t strictly the case, hyperme‐
dia often provides additional value to an API by making API con‐
sumption easier and more flexible. However, it isn’t necessarily
required to deliver a useful and functionally complete API.

#5 – Design for Security at the Start
Teams can become so focused on the features that they forget to
integrate security into their API design. Nearly every API will need
to provide access to internal business systems, sensitive and per‐
sonal information (PII), and/or public data that co-exists with inter‐

16 | Guidelines for Designing a Great API

nal/private data. Some APIs may provide limited data for free or for
specific roles, while others may restrict access to any and all data.
Therefore, every API must consider security from the design phase
rather than as an afterthought, when it is often too late to make API
changes without significant impact. The following are security con‐
siderations that need to be made during API design.

Authentication
Authentication is the process of verifying the identity of a particular
API consumer. For websites that are built for humans, this is often a
form that asks for a username and password. For APIs, there are a
number of options available:

Password-based authentication
With password-based authentication, a username and password
is sent on each request. While this may be secured through the
use of transport-level security (TLS), software integrations to
APIs may stop working if a user resets her password for any rea‐
son.

API-key based authentication
Instead of sharing a username and password, APIs can require
the use of an API key that is provided by the service. This key
identifies the API client and is not directly tied to a user’s pass‐
word. The API key may be embedded within the URL as part of
the request body or in the request header. API keys may be
shared with other applications, but revoking access to the API
key will cause all applications sharing the key to stop working.

Delegation-based authentication
For scenarios when third-party applications may want to con‐
nect to an API on someone else’s behalf (e.g., a third-party Twit‐
ter or Facebook client), delegation-based authentication is often
the best approach. OAuth is the most popular standard, since it
is somewhat like a “protocol of protocols” that allows discon‐
necting the authentication provider that provides API tokens
from the API provider. API tokens are granted and revoked as
desired by the user, allowing third-party applications to make
API calls on their behalf (i.e., delegated access)

Guidelines for Designing a Great API | 17

Authorization
Once you have identified yourself through the authentication mech‐
anism, the API must still authorize access to the appropriate data
and functional access rules for the system. This may be a direct
result of your user account permissions within the API, or the per‐
missions granted through the use of a delegation-based authentica‐
tion mechanism such as OAuth. Each API endpoint’s authorization
requirements should be considered during the API design process to
ensure that data and access to critical systems are secured properly
while the core functionality of the API is maintained.

Data leakage
Even with the proper authentication and authorization mechanism,
your API design can still have security leaks. While this can happen
for a variety of reasons, the most common is that APIs are designed
for internal consumption only and are eventually promoted to part‐
ner or public developers. Sensitive data once thought as accessible
only by internal systems is now made available to developers outside
of the organization.

As an example, the Tinder API experienced a security breach
through data leakage. While its mobile applications did not surface
an individual’s exact location, the API did return specific locations
within the response payload. This means that any developer had
access to an individual’s location, since the data was not removed or
scrubbed properly for external consumption. Instead, internal
knowledge of another Tinder user’s location was both stored within
their backend systems and then made available directly via its API,
exposing these users to potential harm.

To prevent data leakage, design your APIs as if you were releasing
the API to the public. This includes adding proper authorization for
API consumers to grant or revoke access to specific data fields and
functional areas of the API as appropriate.

Always use TLS
While some API endpoints may be providing data that isn’t sensi‐
tive, it is generally best to use TLS to secure all data in motion. This
will help protect authentication credentials, as well as prevent eaves‐
dropping when transmitting sensitive data between the API client
and server.

18 | Guidelines for Designing a Great API

http://qz.com/106731/tinder-exposed-users-locations/

Designing with security is important
As you likely realize by now, if security is an afterthought in your
API design, everything from the API documentation to assumptions
in implementation may need to be revisited. In addition, improper
design of your API by ignoring security implications can result in
the sharing of sensitive data and perhaps even exposing unnecessary
risk to users.

#6 – Share Great Code Examples
Documentation is a very important element of the developer experi‐
ence. However, code examples provide the important guidance nec‐
essary for developers to be able to apply the documentation in prac‐
tice.

Code examples come in a variety of forms, from just a few lines that
demonstrate how a specific API works, to more complex examples
that show how to assemble multiple API calls into a complete work‐
flow.

So, how do you choose what kind of examples to include? First, you
need to understand the developer journey and the various mile‐
stones developers go through as they learn your API.

Milestone 1: First success
Initially, the developer needs to overcome any doubts that the API
will solve his needs. This often starts with code examples that allow
her to explore the API beyond the interactive documentation.

It is important to remember that during this phase, the developer
just wants to see something work. This is often known as TTFHW,
“Time to first Hello World” and is a key metric for determining API
complexity. The longer it takes to get a developer to her first “win”,
the more likely the developer will leave your API and find a better
solution. If there are no alternatives for your API, the developer will
build his own solution.

Products such as Twilio have made it their goal to onboard develop‐
ers in less than five minutes. While this takes considerable focus and
investment, your goal should be to find the shortest possible route,
then keep working to shorten the time as your API matures.

To achieve a low TTFHW, provide concise examples that remove all
need for boilerplate code. Look at the following example:

Guidelines for Designing a Great API | 19

require "stripe"
Stripe.api_key = "sk_test_BQokikJOvBiI2HlWgH4olfQ2"

Stripe::Token.create(
 :card => {
 :number => "4242424242424242",
 :exp_month => 6,
 :exp_year => 2016,
 :cvc => "314"
 },
)

Notice in this example that there is little code to write. Simply fill-in
your API key and the credit card credentials to try it out.

Bad example code requires that you write code to use the example.
This requires you to learn more about the API before you can try it
out. Never require developers to write code to complete an example
when first trying out your API.

Milestone 2: Workflow support
After the developers have had some time to acquaint themselves
with your API using your easy-to-use examples, the next step is to
begin to demonstrate the API based on how they will want to use it.

Workflow examples focus more on achieving specific goals than
applying coding best practices. This means that you want to convey
clarity over code performance, clear intent over code quality. Use
copious inline comments to explain why each step is necessary. Be
willing to include hard-coded values for easier reading. Choose vari‐
able and method names that make it easy to read. Focus more on
behavior than handling errors at this point.

It is important to note that while these examples will be more com‐
plex than those found from the first milestone, they shouldn’t
exceed the height of the screen. The examples need to be short
enough to explain the concepts but not too long that they require
considerable time to understand. It is often best to demonstrate sce‐
narios that are easily understood and likely map to your customer
needs.

Milestone 3: Production-ready integration
Once the developer has followed your simple examples and then
tried some workflows, the final step is to help her understand how
to integrate your API into her production environment. This

20 | Guidelines for Designing a Great API

includes how to catch errors to help developers properly trouble‐
shoot their integration code. It also includes demonstrating how to
catch and recover from bad data provided by end users. Finally, if
you are enforcing rate limiting, then show not only how to obtain
the current rate limits for their account, but also provide tips for
reducing the number of API calls required.

#7 – Provide Helper Libraries
Web APIs have a huge advantage: they are built on the hard work of
the authors of the HTTP specification. This means that any devel‐
oper can pick up their favorite programming language, select an
HTTP client library, and make API calls. They don’t need anything
else to make it happen.

Helper libraries allow developers to make API calls using a special
library built for their specific programming language. As an exam‐
ple, a Ruby helper library can be provided to allow developers to
consume your API directly, without having to write the code neces‐
sary to handle the lower-level HTTP logic required for web APIs.

While API providers are not required to release helper libraries,
they often accelerate developer success. This is especially the case for
mobile developers, who are accustomed to working with helper
libraries rather than raw HTTP. Many API providers that wish to
reach mobile developers choose to produce a helper library for iOS
and a helper for Android.

For APIs that will likely be used outside of a mobile platform, you
may opt to provide helper libraries for Java, JavaScript, Python,
Ruby, Go, PHP, and .NET. What languages you choose depend upon
your intended audience. For example, if your target audience is
enterprise developers, then Java and .NET should be priority. For
web developers, you may choose to focus on Python, PHP, Java‐
Script, Ruby, and Go. Whatever you do, don’t assume that your
team’s preferred language platform is what your customers will be
using. Do the research to be sure you have prioritized your focus.

It is important to note that each helper library should be docu‐
mented fully and follow each language’s programming idioms. This
will prevent a library written in Ruby from looking like it was built
for a Java developer. This may require hiring outside expertise to
consult on how the library should work, or perhaps even build it for
your organization.

Guidelines for Designing a Great API | 21

The Design-First API Process

Traditional software development is often focused on internal devel‐
opment teams that have access to the source code that makes the
software function. Or, at the very least, they have access to the inter‐
nal developers and data administrators to ask questions.

Web APIs, however, are more social in nature. They require collabo‐
ration between the developers consuming the API and the develop‐
ers that built the API. They only have the API design and documen‐
tation to guide them. Developers consuming an API do not have
access to the source code, database diagrams, or an internal knowl‐
edge base on why the API operates a certain, quirky way. They can‐
not copy-and-paste the source code for an API and make the
changes they need to get their job done.

This means that our goals for our API design need to reflect simplic‐
ity and clarity and to anticipate the needs of developers and the end
users who will indirectly consume the API from a web or mobile
application. This is a difficult challenge for any team, no matter how
experienced they may be with the particular software or business
domain. Therefore, heavy emphasis should be placed on the API
design process, including how your team translates product require‐
ments.

This chapter provides a process and some guidelines for API model‐
ing and design that your team may wish to incorporate into their
process. Feel free to adjust as necessary to support your specific
organizational requirements.

23

User Interface Wireframes to Drive API Design
In the case of an API that is being developed in tandem with a
mobile or web interface, wireframing the user interface will help
drive a top-down view of how the API will be used. The wireframes
won’t define every required feature of the API, but they will focus on
the key goals of end users: what they will do and how they will do it.
This will have a large impact on the API, as often the user interface
requires more complex interactions that the API will need to sup‐
port.

While many APIs start with simple data-access functionality, the
user interface will expose the gaps in your APIs as they need to per‐
form more complex tasks. It will also expose the number of API calls
that will be required to accomplish a given task. This is especially
important with regard to mobile applications, where every HTTP
call to an API occurs over an unreliable cellular network.

As we will discuss later, a simple wireframe or static mockup of the
screens can help validate your API design. Be sure to schedule time
into your project plan to design any web and mobile screens, pref‐
erably in time to help validate your API design.

API Modeling
Just as a beautiful web design begins from a wireframe, a great API
design begins with modeling. The goal of API modeling is to trans‐
late the product requirements into the beginnings of a high-level
API design. API modeling ensures that both developers and end
users have their goals met.

The API modeling process is comprised of five steps:

1. Identify the participants, or actors, who will interact with your
API.

2. Identify the activities that participants wish to achieve.
3. Separate the activities into steps that the participants will per‐

form.
4. Create a list of API methods from the steps, grouped into com‐

mon resource groups.

24 | The Design-First API Process

5. Validate the API by using requirements artifacts to test the com‐
pleteness of the API.

The process is designed to be iterative, allowing you to return to a
previous step if you discover that something is missing or needs to
be adjusted. Let’s look at how to perform each step.

Step 1: Identify the Participants
The first step is to identify the participants, sometimes called actors,
who will interact with the API. Unlike a user interface, an API
design must factor in both humans and non-humans who may
interact with your API. Some examples include:

• System administrators (i.e., your company’s administrators)
• Account administrators (i.e., your customer’s administrators)
• Users of the system, including their various roles (e.g., users,

managers, and moderators)
• Internal or external software
• Other Internet-connected devices

For each participant, you will capture their name and perhaps a
short description of what they do (see Table 3-1).

Table 3-1. Some example participants for our project management API

Participant Description

Project manager The person in charge of the project

Project member Someone assigned to the project and tasks

System administrator Manages global settings

By considering the different types of participants, it will help you
consider your API design from a variety of intended uses.

Step 2: Identify the Activities
Activities are the outcomes that your participants will expect your
API to provide. These activities focus on the job to be done, not how

API Modeling | 25

to do it. We will capture the steps required to accomplish the activi‐
ties in our next modeling process.

Although your API may focus on only one activity, most APIs must
support more than one activity to deliver value to developers. If you
find yourself with only one activity, try asking what each participant
is trying to achieve. Most likely, you will find more than one activity
will be required of your API once you evaluate the activities for each
of your participants identified in step 1.

For each activity, capture a short name, description, and the partici‐
pant(s) that will be involved in the activity (see Table 3-2).

Table 3-2. Some example activities for our project-management API

Activity name Description Participant(s)

Manage project Create, update, and archive a project Project manager

View project
details

View project tasks and overall status Project manager, project
member

Manage project
tasks

Create, update, and archive tasks for a
project

Project manager, Project
member

Step 3: Separate the Activities into Steps
Once you have a list of activities, it is time to break them into steps.
Each step may involve one or more participants but must be exe‐
cuted by a single participant at a time.

You may find that you may be missing some details about how an
activity should be performed. This is an indicator that you should
involve one or more subject matter experts (SMEs) who can provide
greater insight and details into how the system should work. These
experts may be business analysts, customers, and/or quality-
assurance teams familiar with the requirements.

For each activity step, capture the activity name, a short name for
the step, a description, and a list of participants who may perform
the step. Table 3-3 is an example of documenting the activity steps
for the “manage project tasks” activity in the previous modeling
step.

26 | The Design-First API Process

Table 3-3. “Manage project tasks” activity step example for our project
management API

Activity Activity step name Description Participant(s)

Manage
project tasks

Add task to
project

Adds a task to an existing
project

Project manager,
project member

Manage
project tasks

Archive project
task

Archives a task in an exist-
ing project

Project manager,
project member

Manage
project tasks

Mark project
task as complete

Marks a task in an existing
project as complete

Project manager,
project member

You may notice that you see recurring patterns or steps across activi‐
ties. That is expected and may provide insight into possible API
design and/or code reuse.

Step 4: Identify the Resources and Candidate APIs
Once you have the activities and steps identified, you will begin to
see specific business entities emerge. These are your resource candi‐
dates that may become actual API resources. Others may appear to
be resources but may instead be activities that will be performed
outside of the API itself and therefore won’t become actual API
resources. Since this is the modeling phase, that is perfectly fine.
Our API design process will help filter out these unnecessary items.

Because this is the modeling and not the design phase, we do not
want to focus on the HTTP specifics. Instead, focus on the high-
level API only. The details of how you will implement the API,
including the specific URLs, HTTP verbs, and response codes will
emerge as we move into the full API design process. Table 3-4 is an
example of how to document the project tasks API that we have
identified as a result of our API design model.

Table 3-4. “Project tasks API”: Project-management API example

Method Participant(s) authorized for API

Add task to project Project manager, project member

Archive project task Project manager, project member

API Modeling | 27

Method Participant(s) authorized for API

Mark project task as complete Project manager, project member

Step 5: Validate the API Model
Once you have an API model defined, you can use the model to vali‐
date that it meets the requirements of internal developers, partner or
public developers, and the end user. There are three techniques that
can help validate your API model:

The API walkthrough
If you have mobile or web mockups, walk through each screen
to determine which API will be used to satisfy the data being
displayed or functionality being performed. Revisit any areas
that you may have missed to ensure that you have a complete
API model.

Use-case validation
Using existing use cases, step through each one to identify any
gaps in your API. This is especially useful if user interface
mockups haven’t been completed yet, or if some of the API will
not have a user interface associated with it. This is often the case
for APIs designed for machine-to-machine integration rather
than end-user functionality.

Business-process diagrams
For APIs that will be supporting business-workflow processes,
first diagram the workflow(s). For each step in the workflow,
map your API model to each step to ensure that you can accom‐
plish all necessary aspects of the workflow.

As you validate your APIs, look for methods that are missing. You
may also want to make notes about APIs that have dependencies on
other APIs or that may experience heavy usage. While not necessary,
this may guide some of your decisions as you move into the design
and development phases.

Next Step: Detailed API Design
With the API model complete, we now have a sketch of what our
API will look like. The next step is to detail the design by applying
HTTP and REST principles. We will cover this in the next chapter.

28 | The Design-First API Process

API Design Details

While API modeling is focused on mapping requirements to the
API, the API design process maps the API model to HTTP, the lan‐
guage of the Web.

Transitioning from the model to design phase will require a variety
of decisions. Some of these decisions will become obvious, while
others may require some careful thought and planning. The more
decisions you leave until the development phase, the more likely
your API design will be compromised due to your delivery schedule.

Rather than making these decisions quickly during the development
phase, we encourage you to spend sufficient time with the API
design process to ensure that your API design is complete. This will
help you focus on building a great web API and avoiding too many
changes after your API has been released.

An HTTP Primer
As we move from the API design model to the details of how the
web API will be realized using HTTP, it is important to review how
HTTP works. If you are familiar with HTTP, feel free to skip this
section.

HTTP Is Request/Response
HTTP is a request/response protocol. The HTTP client contacts a
server and sends a request. The server processes the request and
returns a response indicating a success or failure. It is important to
note that HTTP is stateless, which means that every request must

29

provide all of the details necessary to process the request on the
server.

Uniform Resource Locators (URLs)
Uniform resource locators, or URLs, provide a address of where to
locate a resource, such as a web page, image, or data, from an API. A
URL is divided into the following parts:

Scheme
How we want to connect, (e.g., HTTP [unsecure] or HTTPS
[secure]).

Hostname
The server to contact (e.g., api.example.com).

Port number
A number ranging from 0 to 65535 that identifies the process
on the server where the request is to go (e.g., 443 [optional,
defaults to 80 for HTTP and 443 for HTTPS]).

Path
The path to the resource being requested (e.g., /projects [default
is /, which indicates the homepage]).

Query string
Contains data to be passed to the server. Starts with a question
mark and contains name/value (e.g., foo=bar) pairs, using an
ampersand as a separator between (e.g., ?page=1&per_page=10).

HTTP Verbs
HTTP request verbs indicate the type of action being requested
from the URL. For APIs, they are often one of the following:

GET
Retrieve a collection or individual resource.

POST
Create a new resource or request custom action.

PUT
Update an existing resource or collection.

DELETE
Delete an existing resource or collection.

30 | API Design Details

There are more HTTP request verbs in the HTTP
specification. This list contains the majority of HTTP
verbs useful for a modern web API.

HTTP Requests
A client request is composed of the following parts:

Request verb
Informs the server about the type of request being made (e.g.,
retrieve, create, update, delete, etc.)

URL
The universal address of the information being requested

Request header
Information about the client and what is being requested in
name:value format

Request body
The request details (may be empty)

The following is an example HTTP request with no request body:

GET http://www.oreilly.com/ HTTP/1.0
Proxy-Connection: Keep-Alive
User-Agent: Mozilla/5.0 [en] (X11; I; Linux 2.2.3 i686)
Host: oreilly.com
Accept: image/gif, image/x-xbitmap, image/jpeg, */*
Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1, *, utf-8

The following are examples of API requests:

GET /accounts
Retrieves all accounts in the accounts resource collection

GET /accounts/{id}
Retrieves a specific account by the given ID

POST /accounts
Creates a new acccount

PUT /accounts/{id}
Updates an account by the given ID

An HTTP Primer | 31

DELETE /accounts/{id}
Deletes an account by the given ID

HTTP Responses
A server response is composed of the following parts:

Server response code
A number indicating if the request was successful or not

Response header
Information about what happened in name:value format

Response body
Contains the response payload, often HTML, XML, JSON, or an
image (may be empty)

The following code is an example HTTP request with an HTML
response body:

HTTP/1.1 200 OK
Date: Tue, 26 May 2015 06:57:43 GMT
Content-Location: http://oreilly.com/index.html
Etag: "07db14afa76be1:1074"
Last-Modified: Sun, 24 May 2015 01:27:41 GMT
Content-Type: text/html
Server: Apache

<html>...</html>

Response codes are grouped into families, with the 2xx response
codes indicating success, 4xx response codes indicating that the cli‐
ent failed to format the request properly, and 5xx response codes
indicating a server error. The following are the most common server
response codes used for web APIs:

200 OK
The request has succeeded.

201 Created
The request has been fulfilled and resulted in a new resource
being created.

202 Accepted
The request has been accepted for processing, but the process‐
ing has not been completed.

32 | API Design Details

204 No Content
The server has fulfilled the request but does not need to return a
body. This is common for delete operations.

400 Bad Request
The request could not be understood by the server due to mal‐
formed syntax.

401 Unauthorized
The request requires user authentication.

403 Forbidden
The server understood the request, but is refusing to fulfill it.

404 Not Found
The server has not found anything matching the requested URI.

500 Internal Server Error
The server encountered an unexpected condition which preven‐
ted it from fulfilling the request.

Building Your Resource Ontology
An ontology is simply a classification of concepts. An API ontology
captures the set of resources you will be offering, and their relation‐
ships to other resources. It is generally realized through your API’s
URL structure.

If you modeled your API already, you likely have a list of candidate
resources that will be part of it. If not, take some time and model
your API to help you identify your resources. To build your ontol‐
ogy, begin by creating a list of the resources, placing them at the top
of the URL structure (e.g., /projects and /tasks).

Defining URLs Through Relationships
Next, you will need to determine if your resources all belong at the
top level, or if some of them should be nested under parent resour‐
ces. To do this, we first need to understand the relationships
between each of the resources.

Relationships between resources can be categorized into three types:
independent, dependent, and associative. Those familiar with data‐
base design will recognize these relationship types and will quickly
understand them. For those not familiar, the following list contains

Building Your Resource Ontology | 33

a description of each of the three types, with further information in
Table 4-1:

Independent
Independent resources can exist stand alone without the other’s
existence, but may reference each other. The URLs for both
resources often exist at the top level.

Dependent
Dependent resources cannot exist without the existence of the
parent resource. The URL for the dependent resource exists as a
nested resource of its parent.

Associative
Associative resources have a relationship that contains or
requires additional properties to describe it. Associative resour‐
ces may be nested under one parent or may be placed as a top-
level resource and treated as an independent resource.

Table 4-1. Examples of resource relationships

Relation Type Resources Meaning

Independent /projects, /tasks Tasks can exist with or without a project

Dependent /projects, /projects/{id}/
tasks

Tasks must belong to a project instance

Associative /users, /projects, /projects/
{id}/collaborators

Users assigned to a project become col-
laborators

In our project-management API example, we have to make a critical
decision: whether tasks exist outside of a project or not. If they can,
then both resources are independent and therefore both exist at the
top level of the URL structure (e.g., /projects and /tasks). However, if
tasks must belong to a project, then tasks are dependent on a project
and must exist as a nested resource under the specific project
instance (e.g., /projects/{id}/tasks).

Understanding and applying resource relationships is critical to a
great API design. Weigh your resource URL designs carefully and
understand the impact of your decisions.

34 | API Design Details

Mapping Resource Lifecycles to HTTP Verbs
Once you determine your resource URL structure, you can then
map your resource lifecycles to the necessary HTTP verb or verbs.
We have four core HTTP verbs that we will focus on, though a few
others exist when you need them for uncommon situations.

Your API model will provide insight into the lifecycle requirements
of your resources. Review your model and notice the verbs you used
for each resource. Some resources may require all verbs in our life‐
cycle: search, create, read, update, and delete. However, other
resources may not require update or delete actions. Other resources
may be read-only. Therefore, the requirements identified during the
modeling phase will inform your API design.

As you model your API, you will notice a common pattern between
the verbs you choose and the eventual resource lifecycle they
require. Table 4-2 is a common mapping between verbs used in
modeling and the verbs in HTTP.

Table 4-2. Common modeling actions to HTTP verb mappings

Modeling Actions Typical HTTP Verb

“List”, “Search”, “Match”, “View All” GET collection

“Show”, “Retrieve”, “View” GET resource instance

“Create”, “Add” POST create a new resource

“Replace” PUT update a resource collection

“Update” PUT update a resource instance

“Delete All”, “Remove All”, “Clear”, “Reset” DELETE delete a resource collection

“Delete”, “Remove” DELETE delete a resource instance

<other verbs> POST custom action on a resource instance

While you may use different verbs during modeling, they will likely
map to one of the common HTTP verbs. If they don’t, you may need
to revisit the concept and see if it can be broken down into a

Mapping Resource Lifecycles to HTTP Verbs | 35

resource with a specific lifecycle. Otherwise, you may need to con‐
sider a custom POST action on a particular resource instance (e.g.,
POST /projects/{id}/approve).

Mapping Response Codes
For each API endpoint you identified in the previous step, you will
need to consider what response code(s) to return. While we hope
that most responses will indicate a success, sometimes the client will
fail to provide all of the correct details necessary to fulfill a request.

It is important to map both success and error codes in the design
phase, as it will be part of our documentation delivered to develop‐
ers consuming our API. It will also inform your team in the com‐
plexity of each API endpoint prior to development, to help with the
estimation process (see Table 4-3).

Table 4-3. Common HTTP verb to response-code mappings

Type Condition Common response code Verb(s)

Success Request was successful 200 OK All verbs

Success Resource created successfully 201 Created POST

Success Request was successful, but not
complete yet

202 Accepted POST

Success Resource deleted successfully 204 No Content DELETE

Error Not authentication credentials pro-
vided

401 Unauthorized All verbs

Error User not authorized or server for-
bids requested action

403 Forbidden All verbs

Error Resource not found 404 Not Found GET, PUT,
DELETE

Error Filter parameters provided were
not valid

400 Bad Request GET, POST, PUT

36 | API Design Details

Validating Design Through Documentation
and Prototyping
As your API design starts to emerge, you should start the API docu‐
mentation process. At this stage, you may not have all of the details
of what your resource representations will look like—that is
expected.

By documenting your API design early, it will encourage the team to
focus on documentation throughout the development process. It
will also encourage validation through feedback from internal or
external developers by sharing your API design with them early
rather than waiting until launch.

You can begin to document the high-level design using one of your
favorite API definition formats, such as Swagger, RAML, Blueprint,
or IO Docs. Each of these formats can convert your API design into
beautiful interactive docs, one of our key characteristics of a great
API design. As your resource structures begin to take shape, you can
capture those additional details, along with examples to complete
your documentation.

In addition to documentation, prototyping is another effective way
to validate your API design. Prototypes come in two common
forms: a static prototype and a working prototype.

A static prototype is just a method of returning resource representa‐
tions in one or more formats, such as XML or JSON. The static pro‐
totype is either stored on the local filesystem or served via a web
server.

Static prototypes allow developers to begin to integrate the search
(i.e., GET collection) and read (i.e., GET a resource instance) por‐
tions of the lifecycle. However, the filesystem or web server cannot
process POST, PUT, or DELETE requests, so static prototypes are
limited. To get beyond this limitation, a working prototype is
required.

Working prototypes offer more functionality than static prototypes,
allowing any or all functionality to be delivered. The focus of a
working prototype is to simplify more complex interactions, such as
third-party integrations or connecting to existing SOAP-based serv‐
ices or legacy systems.

Validating Design Through Documentation and Prototyping | 37

Working prototypes are not meant to be production-ready imple‐
mentations, so they can take shortcuts or flatten complex data struc‐
tures for ease of implementation. You can use the programming lan‐
guage and framework you plan to use for the production implemen‐
tation or select something simple that provides the minimal func‐
tionality required.

Putting It All Together
APIs can offer several advantages for businesses, including faster
innovation and increased revenue. Every member of the organiza‐
tion, including executives, product managers, and developers, must
be willing to see APIs as an investment that will create business
value.

A significant portion of your investment must be in the design of the
API to provide a great developer experience. Only then will you pro‐
duce APIs that developers will love.

38 | API Design Details

About the Author
James Higginbotham is a seasoned API consultant with experience
in architecting, building, and deploying APIs. He is also a speaker
and trainer. As an API consultant, he enjoys helping businesses bal‐
ance great API design and product needs. As a trainer, he enjoys
equipping cross-functional teams to integrate their talents toward
building first-class APIs for their product or enterprise systems.

Acknowledgments
I would first like to thank D. Keith Casey, Jr., whose generosity
knows no bounds.

I would also like to thank Mike Amundsen for his feedback on an
early draft of this book.

And finally, my sincere thanks to the many people that have directly
and indirectly influenced this book through lively discussions, both
online and offline.

	Copyright
	Table of Contents
	Chapter 1. The Business of APIs
	What Are APIs?
	The Rise of the API Economy
	Reason #1 – Higher Demand
	Reason #2 – Simplicity
	Reason #3 –Lower Cost
	Reason #4 – New Business Models

	Business Advantages of Web APIs
	Consuming APIs from Others
	Exposing APIs to Other Developers

	Web API Development versus Traditional Software

	Chapter 2. Guidelines for Designing a Great API
	Chapter 3. The Design-First API Process
	User Interface Wireframes to Drive API Design
	API Modeling
	Step 1: Identify the Participants
	Step 2: Identify the Activities
	Step 3: Separate the Activities into Steps
	Step 4: Identify the Resources and Candidate APIs
	Step 5: Validate the API Model

	Next Step: Detailed API Design

	Chapter 4. API Design Details
	An HTTP Primer
	HTTP Is Request/Response
	Uniform Resource Locators (URLs)
	HTTP Verbs
	HTTP Requests
	HTTP Responses

	Building Your Resource Ontology
	Defining URLs Through Relationships
	Mapping Resource Lifecycles to HTTP Verbs
	Mapping Response Codes
	Validating Design Through Documentation and Prototyping
	Putting It All Together

