

©2016 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. D1710

Short. Smart.
Seriously useful.

Free ebooks and reports from O’Reilly
at oreil.ly/finance

A New Excerpt from
High Performance Browser Networking

HTTP/2

Ilya Grigorik

DevOps
in Practice

J. Paul Reed

Docker
Security

Adrian Mouat

Using Containers Safely in Production

Scheduling the Future at Cloud Scale

Kubernetes

David K. Rensin

DevOps
for Finance

Jim Bird

Reducing Risk Through Continuous Delivery

Get even more insights from industry experts
and stay current with the latest developments in
 web operations, DevOps, and web performance

with free ebooks and reports from O’Reilly.

oreil.ly/finance

Jim Bird

DevOps for Finance

978-1-491-93822-5

[LSI]

DevOps for Finance
by Jim Bird

Copyright © 2015 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Brian Anderson Production Editor: Kristen Brown
Proofreader: Rachel Head
Interior Designer: David Futato
Cover Designer: Karen Montgomery

September 2015: First Edition

Revision History for the First Edition
2015-09-16: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. DevOps for
Finance, the cover image, and related trade dress are trademarks of O’Reilly Media,
Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com

Table of Contents

Introduction. ix

1. Challenges in Adopting DevOps. 1
Enterprise Problems 1
The High Cost of Failure 3
System Complexity and Interdependency 5
Weighed Down by Legacy 8
The Costs of Compliance 11
Security Threats to the Finance Industry 15

2. Adopting DevOps in Financial Systems. 19
Enter the Cloud 19
Introducing DevOps: Building on Agile 20
From Continuous Integration to Continuous Delivery 21
Changing Without Failing 29
DevOpsSec: Security as Code 38
Compliance as Code 45
Continuous Delivery Versus Continuous Deployment 49
DevOps for Legacy Systems 52
Implementing DevOps in Financial Markets 54

vii

Introduction

Disclaimer: The views expressed in this book are those
of the author, and do not reflect those of his employer
or the publisher.

DevOps, until recently, has been a story about unicorns. Innovative,
engineering-driven online tech companies like Flickr, Etsy, Twitter,
Facebook, and Google. Netflix and its Chaos Monkey. Amazon
deploying thousands of changes per day.

DevOps was originally about WebOps at Internet companies work‐
ing in the Cloud, and a handful of Lean Startups in Silicon Valley. It
started at these companies because they had to move quickly, so they
found new, simple, and collaborative ways of working that allowed
them to innovate much faster and to scale much more effectively
than organizations had done before.

But as the velocity of change in business continues to increase,
enterprises—sometimes referred to as “horses,” in contrast to the
unicorns referenced above—must also move to deliver content and
features to customers just as quickly. These large organizations have
started to adopt (and, along the way, adapt) DevOps ideas, practices,
and tools.

This short book assumes that you have heard about DevOps and
want to understand how DevOps practices like Continuous Delivery
and Infrastructure as Code can be used to solve problems in finan‐
cial systems at a trading firm, or a big bank or stock exchange. We’ll
look at the following key ideas in DevOps, and how they fit into the
world of financial systems:

ix

• Breaking down the “wall of confusion” between development
and operations, and extending Agile practices and values from
development to operations

• Using automated configuration management tools like Chef,
Puppet, CFEngine, or Ansible to programmatically provision
and configure systems (Infrastructure as Code)

• Building Continuous Integration and Continuous Delivery
(CI/CD) pipelines to automatically test and push out changes,
and wiring security and compliance into these pipelines

• Using containerization and virtualization technologies like
Docker and Vagrant, together with Infrastructure as Code, to
create IaaS, PaaS, and SaaS clouds

• Running experiments, creating fast feedback loops, and learning
from failure

To follow this book you need to understand a little about these ideas
and practices. There is a lot of good stuff about DevOps out there,
amid the hype. A good place to start is by watching John Allspaw
and Paul Hammond’s presentation at Velocity 2009, “10+ Deploys
Per Day: Dev and Ops Cooperation at Flickr”, which introduced
DevOps ideas to the public. IT Revolution’s free “DevOps Guide”
will also help you to get started with DevOps, and point you to other
good resources. The Phoenix Project: A Novel About IT, DevOps, and
Helping Your Business Win by Gene Kim, Kevin Behr, and George
Spafford (also from IT Revolution) is another great introduction,
and surprisingly fun to read.

If you want to understand the technical practices behind DevOps,
you should also take the time to read Continuous Delivery (Addison-
Wesley), by Dave Farley and Jez Humble. Finally, DevOps in Practice
is a free ebook from O’Reilly that explains how DevOps can be
applied in large organizations, walking through DevOps initiatives
at Nordstrom and Texas.gov.

Common Challenges
From small trading firms to big banks and exchanges, financial
industry players are looking at the success of Google and Amazon
for ideas on how to improve speed of delivery in IT, how to innovate
faster, how to reduce operations costs, and how to solve online scal‐
ing problems.

x | Introduction

http://bit.ly/1LeI91c
http://bit.ly/1LeI91c
http://bit.ly/1Otpik0
http://bit.ly/1p8YV7F
http://bit.ly/1p8YV7F
http://continuousdelivery.com/
http://www.oreilly.com/webops-perf/free/devops-in-practice.csp

Financial services, cloud services providers, and other Internet tech
companies share many common technology and business chal‐
lenges.

They all deal with problems of scale. They run farms of thousands
or tens of thousands of servers, and thousands of applications. No
bank—even the biggest too-big-to-fail bank—can compete with the
number of users that an online company like Facebook or Twitter
supports. On the other hand, the volume and value of transactions
that a major stock exchange or clearinghouse handles in a trading
day dwarfs that of online sites like Amazon or Etsy. While Netflix
deals with massive amounts of streaming video traffic, financial
trading firms must be able to keep up with low-latency online mar‐
ket data that can peak at several millions of messages per second,
where nanosecond accuracy is necessary.

These Big Data worlds are coming closer together, as more financial
firms like Morgan Stanley, Credit Suisse, and Bank of America
adopt data analytics platforms like Hadoop. Google (in partnership
with SunGard) is one of the shortlisted providers bidding on the
Securities and Exchange Commission’s new Consolidated Audit
Trail (CAT), a secure platform that will hold the complete record of
every order, quote, and trade in the US equities and equities options
markets: more than 50 billion records per day from 2,000 trading
firms and exchanges, all of which needs to be kept online for several
years. This will add up to several petabytes of data.

The financial services industry, like the online tech world, is
viciously competitive, and there is a premium on innovation and
time to market. Businesses (and IT) are under constantly increasing
pressure to deliver faster, and with greater efficiency—but not at the
expense of reliability of service or security. Financial services can
look to DevOps for ways to introduce new products and services
faster, but at the same time they need to work within constraints to
meet strict uptime and performance service-level agreements (SLAs)
and compliance and governance requirements.

DevOps Tools in the Finance Industry
DevOps is about changing culture and improving collaboration
between development and operations. But it is also about automat‐
ing as many of the common jobs in delivering software and main‐
taining operating systems as possible: testing, compliance and secu‐

Introduction | xi

http://bit.ly/1USX2Hh
http://bit.ly/1USX2Hh

rity checks, software packaging and configuration management, and
deployment. This strong basis in automation and tooling explains
why so many vendors are so excited about DevOps.

A common DevOps toolchain includes:

• Version control and artifact repositories
• Continuous Integration/Continuous Delivery servers like Jen‐

kins, Bamboo, TeamCity, and Go
• Automated testing tools (including static analysis checkers and

automated test frameworks)
• Automated release/deployment tools
• Infrastructure as Code: software-defined configuration manage‐

ment tools like Ansible, Chef, CFEngine, and Puppet
• Virtualization and containerization technologies such as Docker

and Vagrant

Build management tools like Maven and Continuous Integration
servers like Jenkins are already well established across the industry
through Agile development programs. Using static analysis tools to
test for security vulnerabilities and common coding bugs and imple‐
menting automated system testing are common practices in devel‐
oping financial systems. But as we’ll see, popular test frameworks
like JUnit and Selenium aren’t a lot of help in solving some of the
hard test automation problems for financial systems: integration
testing, security testing, and performance testing.

Log management and analysis tools such as Splunk are being used
effectively at financial services organizations like BNP Paribas,
Credit Suisse, ING, and the Financial Industry Regulatory Authority
(FINRA) for operational and security event monitoring, fraud anal‐
ysis and surveillance, transaction monitoring, and compliance
reporting.

Automated configuration management and provisioning systems
and automated release management tools are becoming more widely
adopted. CFEngine, the earliest of these tools, is used by 5 of the 10
largest banks on Wall Street, including JP Morgan Chase. Puppet is
being used extensively at the International Securities Exchange,
NYSE, E*Trade, and the Bank of America. Bloomberg, the Standard
Bank of South Africa (the largest bank in Africa), and others are
using Chef. Electric Cloud’s automated build and deployment solu‐

xii | Introduction

tions are being used by global investment banks and other financial
services firms like E*Trade.

While most front office trading systems still run on bare metal in
order to meet low latency requirements, Docker and other contain‐
erization and virtualization technologies are being used to create
private clouds for testing, data analytics, and back office functions in
large financial institutions like ING, Société Générale, and Goldman
Sachs.

Financial players are truly becoming part of the broader DevOps
community by also giving back and participating in open source
projects. For example, LMAX, who we will look at in more detail
later, has open sourced its automated tooling and even some of its
core infrastructure technology (such as the low-latency Disruptor
inter-thread messaging library). And at this year’s OSCON, Capital
One released Hygieia, an open source Continuous Delivery dash‐
board.

Financial Operations Is Not WebOps
Financial services firms are hiring DevOps engineers to automate
releases and to build Continuous Delivery pipelines, and Site Relia‐
bility Engineers (patterned after Google) to work in their operations
teams. But the jobs in these firms are different in many ways,
because a global bank or a stock exchange doesn’t operate the same
way as Google or Facebook or one of the large online shopping sites.
Here are some of the differences:

• Banks or investment advisers can’t run continuous, online
behavioral experiments on their users, like Facebook has done.
Something like this could violate securities laws.

• DevOps practices like “Monitoring as Testing” and giving devel‐
opers root access to production in “NoOps” environments so
that they can run the systems themselves work for online social
media startups, but won’t fly in highly regulated environments
with strict requirements for testing and assurance, formal
release approval, and segregation of duties.

• Web and mobile have become important channels in financial
services—for example, in online banking and retail trading—
and web services are used for some B2B system-to-system
transactions. But most of what happens in financial systems is

Introduction | xiii

https://lmax-exchange.github.io/disruptor/
http://bit.ly/1FcXy0K
http://onforb.es/1USX95E

system-to-system through industry-standard electronic messag‐
ing protocols like FIX, FAST, and SWIFT, and low-latency pro‐
prietary APIs with names like ITCH and OUCH. This means
that tools and ideas designed for solving web and mobile devel‐
opment and operations problems can’t always be relied on.

• Continuous Deployment, where developers push changes out to
production immediately and automatically, works well in state‐
less web applications, but it creates all kinds of challenges and
problems for interconnected B2B systems that exchange thou‐
sands of messages per second at low latencies, and where regu‐
lators expect change schedules to be published up to two quar‐
ters in advance. This is why this book focuses on Continuous
Delivery: building up automated pipelines so that every change
is tested and ready to be deployed, but leaving actual deploy‐
ment of changes to production to be coordinated and controlled
by operations and compliance teams, not developers.

• While almost all Internet businesses run 24/7, most financial
businesses, especially financial markets, run on a short trading
day cycle. This means that a massive amount of activity is com‐
pressed into a small amount of time. It also means that there is a
built-in window for after-hours maintenance and upgrading.

• While online companies like Etsy must meet PCI DSS regula‐
tions for credit card data and SOX-404 auditing requirements,
this only affects the “cash register” part of the business. A finan‐
cial services organization is effectively one big cash register,
where almost everything needs to be audited and almost every
activity is under regulatory oversight.

Financial industry players were some of the earliest and biggest
adopters of information technology. This long history of investing
in technology also leaves them heavily weighed down by legacy sys‐
tems built up over decades; systems that were not designed for
rapid, iterative change. The legacy problem is made even worse by
the duplication and overlap of systems inherited through mergers
and acquisitions: a global investment bank can have dozens of sys‐
tems performing similar functions and dozens of copies of master
file data that need to be kept in sync. These systems have become
more and more interconnected across the industry, which makes
changes much more difficult and riskier, as problems can cascade
from one system—and one organization—to another.

xiv | Introduction

In addition to the forces of inertia, there are significant challenges
and costs to adopting DevOps in the financial industry. But the ben‐
efits are too great to ignore, as are the risks of not delivering value to
customers quickly enough and losing them to competitors—espe‐
cially to disruptive online startups powered by DevOps. We’ll start
by looking at the challenges in more detail, to understand better
how financial organizations need to change in order for them to
succeed with DevOps, and how DevOps needs to be changed to
meet their requirements.

Then we’ll look at how DevOps practices can be—and have been—
successfully adopted to develop and operate financial systems, bor‐
rowing ideas from DevOps leaders like Etsy, Amazon, Netflix, and
others.

Introduction | xv

CHAPTER 1

Challenges in Adopting DevOps

DevOps practices like Continuous Delivery are being followed by
some startup online banks and other disruptive online fintech plat‐
forms, often leveraging cloud services to get up and running quickly
without spending too much up front on technology and to take
advantage of elastic on-demand computing capacity as they grow.

But what about global investment banks, or a central securities
depository or a stock exchange—large enterprises that have massive
investments in legacy technology?

Enterprise Problems
So far, enterprise success for DevOps has been mostly modest and
predictable: Continuous Delivery in consumer-facing web apps or
greenfield mobile projects; moving admin apps and office functions
into the Cloud; Agile programs to introduce automated testing and
Continuous Integration, branded as DevOps to sound sexier.

In her May 2014 Wall Street Journal article, “DevOps is Great for
Startups, but for Enterprises It Won’t Work—Yet”, Rachel Shannon-
Solomon outlines some of the major challenges that enterprises
need to overcome in adopting DevOps:

• Siloed structures and organizational inertia make the kinds of
change that DevOps demands difficult and expensive.

• Most of the popular DevOps toolkits are great if you have a web
system based on a LAMP stack, or if you need to solve specific
automation problems. But these tools aren’t always enough if

1

http://on.wsj.com/1OczPAF
http://on.wsj.com/1OczPAF

1 See http://on.mktw.net/1MdiuaF.

you have thousands of systems on different architectures and
legacy technology platforms, and want to standardize on com‐
mon enterprise tools and methods.

• Building the financial ROI case for a technology-driven busi‐
ness process transformation that needs to cross organizational
silos doesn’t seem easy—although, as we’ll see by the end of this
book, the ROI for DevOps should become clear to all of the
stakeholders once they understand how DevOps works.

• Many people believe that DevOps requires a cultural revolution.
Large-scale cultural change is especially difficult to achieve in
enterprises. Where does the revolution start? In development,
or in operations, or in the business lines? Who will sponsor it?
Who will be the winners—and the losers?

These objections are valid, but they’re less convincing when you rec‐
ognize that DevOps organizations like Google and Amazon are
enterprises in their own right, and when you see the success that
some other organizations are having with DevOps at the enterprise
level. They’ve already proven that DevOps can succeed at scale, if
the management will and vision and the engineering talent are
there.

A shortage of engineering talent is a serious blocker for many
organizations trying to implement DevOps. But this isn’t as much of
a concern for the financial industry, which spends as much on IT
talent as Silicon Valley, and competes directly with Internet technol‐
ogy companies for the best and the brightest.1

So what is holding DevOps adoption back in the financial markets?
Let’s look at other challenges that financial firms have to overcome:

• The high risks and costs of failure in financial systems
• Chaining interdependencies between systems, making changes

difficult to test and expensive (and high risk) to roll out
• The weight of legacy technology and legacy controls
• Perceived regulatory compliance roadblocks
• Security risks and threats, and the fear that DevOps will make

IT less secure

2 | Chapter 1: Challenges in Adopting DevOps

http://on.mktw.net/1MdiuaF

2 For a list of articles giving various viewpoints on the Amazon outage, see http://bit.ly/
1UBWURz.

The High Cost of Failure
DevOps leaders talk about “failing fast and failing early,” “leaning
into failure,” and “celebrating failure” in order to keep learning.
Facebook is famous for its “hacker culture” and its motto, “Move
Fast and Break Things.” Failure isn’t celebrated in the financial
industry. Regulators and bank customers don’t like it when things
break, so financial organizations spend a lot of time and money try‐
ing to prevent failures from happening.

Amazon is widely known for the high velocity of changes that it
makes to its infrastructure. According to data from 2011 (the last
time that Amazon publicly disclosed this information), Amazon
deploys changes to its production infrastructure every 11.6 seconds.
Each of these deployments is made to an average of 10,000 hosts,
and only .001% of these changes lead to an outage.

At this rate of change, this still means that failures happen quite
often. But because most of the changes made are small, it doesn’t
take long to figure out what went wrong, or to recover from failures
—most of the time.

Sometimes even small changes can have unexpected, disastrous con‐
sequences. Amazon EC2’s worst outage, on April 21, 2011, was
caused by a mistake made during a routine network change. While
Netflix and Heroku survived this accident, it took out many online
companies, including Reddit and Foursquare, part of the New York
Times website, and several smaller sites, for a day or more. Amazon
was still working on recovery four days later, and some customers
permanently lost data.2

When companies like Amazon or Google suffer an outage, they lose
online service revenue, of course. There is also a knock-on effect on
the customers relying on their services as they lose online revenue
too, and a resulting loss of customer trust, which could lead to more
lost revenue as customers find alternatives. If the failure is bad
enough that service-level agreements are violated, that means more
money credited back to customers, and harm to the company brand
through bad publicity and damage to reputation. All of this adds up
fast, in the order of several million dollars per hour: one estimate is

The High Cost of Failure | 3

http://bit.ly/1UBWURz
http://bit.ly/1UBWURz
http://bit.ly/1isOBqd

that when Amazon went down for 30 minutes in 2013, it lost
$66,240 per minute.

This is expensive—but not when compared to a failure of a major
financial system, where hundreds of millions of dollars can be lost.
The knock-on effects can extend across an entire financial market,
potentially impacting the national (or even global) economy, and
negatively affecting investor confidence over an extended period of
time. Then there are follow-on costs, including regulatory fines and
lawsuits, and of course the costs to clean up what went wrong and
make sure that the same problem won’t happen again. This could—
and often does—include bringing in outside experts to review sys‐
tems and procedures, firing management and replacing the technol‐
ogy, and starting again. As an example, in the 2000s the London
Stock Exchange went through two CIOs and a CEO, and threw out
two expensive trading systems that cost tens of millions of pounds
to develop, because of high-profile system outages. These outages,
which occurred eight years apart, each cost the UK financial indus‐
try hundreds of millions of pounds in lost commissions.

NASDAQ Fails on Facebook’s IPO
On May 18, 2012, Facebook’s IPO—one of the largest in history—
failed while the world watched.

Problems started during the pre-IPO auction process. NASDAQ’s
system could not keep up with the high volume of orders and can‐
cels, because of a race condition in the exchange’s matching engine.
As more orders and requests to cancel some orders came in, the
engine continued to fall further behind, like a puppy chasing its
own tail.

NASDAQ delayed the IPO by 30 minutes so that its engineers could
make a code fix on the fly and fail over to a backup engine running
the new code. They assumed that in the process they would miss a
few orders, not realizing just how far behind the matching engine
had fallen. Tens of thousands of orders (and requests to cancel
some orders) had built up over the course of almost 20 minutes.
These orders were not included in the IPO cross, violating trading
rules. Orders that should have been canceled got executed instead,
which meant that some investors who had changed their minds and
decided that they didn’t want Facebook shares got them anyway.

4 | Chapter 1: Challenges in Adopting DevOps

http://onforb.es/1MpuuFU

3 For full details on the incident, see http://on.wsj.com/1bd6MJk.

For more than two hours, traders and their customers did not know
the status of their orders. This created confusion across the market,
and negatively affected the price of Facebook’s stock.3

In addition to the cost of lost business during the incident, NAS‐
DAQ was fined $10 million by the SEC and paid $41.6 million in
compensation to market makers (who had actually claimed up to
$500 million in losses) and $26.5 million to settle a class action suit
brought by retail investors. And although NASDAQ made signifi‐
cant changes to its systems and improved its operations processes
after this incident, the next big tech IPO, Alibaba, was awarded to
NASDAQ’s biggest competitor, the New York Stock Exchange.

The risks and costs of major failures, and the regulatory require‐
ments that have been put in place to help prevent or mitigate these
failures, significantly slow down the speed of development and
delivery in financial systems.

System Complexity and Interdependency
Modern online financial systems are some of the most complex sys‐
tems in the world today. They process massive transaction loads at
incredible speeds with high reliability and integrity. All of these sys‐
tems are interlinked with many other systems in many different
organizations, creating a large and fragile “system of systems” prob‐
lem of extreme scale and complexity.

While these systems might share common protocols, they were not
necessarily all designed to talk with each other. All of these systems
are constantly being changed for different reasons at different times,
and they are rarely tested all together. Failures can and do happen
anywhere along this chain of systems, and they cascade quickly, tak‐
ing other systems down as load shifts or as systems try to handle
errors and fail themselves.

It doesn’t matter that all of these systems are designed to handle
something going wrong: hardware or network failures, software fail‐
ures, human error. Catastrophic failures—the embarrassing acci‐
dents and outages that make the news—aren’t caused by only one
thing going wrong, one problem or one mistake. They are caused by

System Complexity and Interdependency | 5

http://on.wsj.com/1bd6MJk

4 For more on how this happens, read Dr. Richard Cook’s paper, “How Complex Systems
Fail”.

a chain of events, mostly minor errors and things that “couldn’t pos‐
sibly happen.”4 Something fails. Then a fail-safe fails. Then the pro‐
cess to handle the failure of a fail-safe fails. This causes problems
with downstream systems, which cascade; systems collapse, eventu‐
ally leading to a meltdown.

Financial transactions are often closely interlinked: for example,
where an investor needs to sell one or more stocks before buying
something else, or cancel an order before placing a new one; or
when executing a portfolio trade involving a basket of stocks, or
simultaneously buying or selling stocks and options or futures in
combination across different trading venues.

Failures in any of the order management, order routing, execution
management, trade matching, trade reporting, risk management,
clearing, or settlement systems involved can make the job of recon‐
ciling investment positions and unrolling transactions a nightmare.

Troubleshooting can be almost impossible when something goes
wrong, with thousands of transactions in flight between hundreds of
different systems in different organizations at any point in time,
each of them handling failures in different ways. There can be many
different versions of the truth, and not all of them will be correct.
Synchronized timestamps and sequence accounting are relied on to
identify gaps and replay problems and duplicate messages—the
financial markets spend millions of dollars per year just trying to
keep all of their computer clocks in sync, and millions more on test‐
ing and on reporting to prove that transactions are processed cor‐
rectly. But this isn’t always enough when a major accident occurs.

Nobody in the financial markets wants to “embrace failure.”

6 | Chapter 1: Challenges in Adopting DevOps

http://bit.ly/1Kd5agK
http://bit.ly/1Kd5agK

5 The SEC report on the Knight failure is available at https://www.sec.gov/litigation/
admin/2013/34-70694.pdf.

The Knight Capital Accident
On August 1, 2012, Knight Capital, a leading market maker in the
US equities market, updated its SMARS high-speed automated
order routing system to support new trading rules at the New York
Stock Exchange. The order routing system took parent orders,
broke them out, and routed one or more child orders to different
execution points, such as the NYSE.

The new code was manually rolled out in steps prior to August 1.
Unfortunately, an operator missed deploying the changes to one
server. That’s all that was needed to cause one of the largest finan‐
cial systems failures in history.5

Prior to the market open on August 1, Knight’s system alerted oper‐
ations about some problems with an old order routing feature
called “Power Peg.” The alerts were sent by email to operations staff
who didn’t understand what they meant or how important they
were. This meant that they missed their last chance to stop very bad
things from happening.

In implementing the new order routing rules, developers had
repurposed an old flag used for a Power Peg function that had been
dormant for several years and had not been tested for a long time.
When the new rule was turned on, this “dead code” was resurrected
accidentally on the one server that had not been correctly updated.

When the market opened, everything went to hell quickly. The
server that was still running the old code rapidly fired off millions
of child orders into the markets—far more orders than should have
been created. This wasn’t stopped by checks in Knight’s system,
because the limits checks in the dead code had been removed years
ago. Unfortunately, many of these child orders matched with coun‐
terparty orders at the exchanges, resulting in millions of trade exe‐
cutions in only a few minutes.

Once they realized that something had gone badly wrong, opera‐
tions at Knight rolled back the update—which meant that all of the
servers were now running the old code, making the problem tem‐
porarily much worse before the system was finally shut down.

System Complexity and Interdependency | 7

https://www.sec.gov/litigation/admin/2013/34-70694.pdf
https://www.sec.gov/litigation/admin/2013/34-70694.pdf

The incident lasted a total of around 45 minutes. Knight ended up
with a portfolio of stock worth billions of dollars, and a shortfall of
$460 million. The company needed an emergency financial bailout
from investors to remain operational, and four months later the
financially weakened company was acquired by a competitor. The
SEC fined Knight $12 million for several securities law violations,
and the company also paid out $13 million in a lawsuit.

In response to this incident (and other recent high-profile system
failures in the financial industry), the SEC, FINRA, and ESMA have
all introduced new guidelines and regulations requiring additional
oversight of how financial market systems are designed and tested,
and how changes to these systems are managed.

With so many variables changing constantly (and so many variables
that aren’t known between systems), exhaustive testing isn’t achieva‐
ble. And without exhaustive testing, there’s no way to be sure that
everything will work together when changes are made, or to under‐
stand what could go wrong.

We’ll look at the problems of testing financial systems—and how to
overcome these problems—in more detail later in this book.

Weighed Down by Legacy
Large financial organizations, like other enterprises, have typically
been built up over years through mergers and acquisitions. This has
left them managing huge application portfolios with thousands of
different applications, and millions and millions of lines of code, in
all kinds of technologies. Even after the Y2K scare showed enterpri‐
ses how important it was to keep track of their application portfo‐
lios, many still aren’t sure how many applications they are running,
or where.

Legacy technology problems are endemic in financial services,
because financial organizations were some of the earliest adopters of
information technology. The Bank of America started using auto‐
mated check processing technology back in the mid 1950s. Instinet’s
electronic trading network started up in 1969, and NASDAQ’s com‐
puterized market was launched two years later. The SWIFT interna‐
tional secure banking payment system went live in 1977, the same
year as the Toronto Stock Exchange’s CATS trading system. And the

8 | Chapter 1: Challenges in Adopting DevOps

“Big Bang” in London, where the LSE’s trading floor was closed and
the UK financial market was computerized, happened in 1986.

Problems with financial systems also go back a long time. The
NYSE’s first big system failure was in 1967, when its automated
trade reporting system crashed, forcing traders to go back to paper.
And who can forget when a squirrel shut down NASDAQ in 1987?

There are still mainframes and Tandem NonStop computers run‐
ning business-critical COBOL and PL/1 and RPG applications in
many large financial institutions, especially in the back office. These
are mixed in with third-party ERP systems and other COTS applica‐
tions, monolithic J2EE systems written 15 years ago when Java and
EJBs replaced COBOL as the platform of choice for enterprise busi‐
ness applications, and half-completed SOAs and ESBs. Many of
these applications are hosted together on enterprise servers without
virtualization, making deployment and operations much more com‐
plex and error prone.

None of this technology supports the kind of rapid, iterative change
and deployment that DevOps is about. Most of it is nearing end of
life, draining IT budgets into support and maintenance, and taking
resources away from new product development and technology-
driven innovation. In a few cases, nobody has access to the source
code, so the systems can’t be changed at all.

Legacy technology isn’t the only drag on implementing changes.
Another factor is the overwhelming amount of data that has built up
in many different systems and different silos. Master Data Manage‐
ment and other enterprise data architecture projects are never-
ending in big banks as they try to reduce inconsistencies and dupli‐
cation in data between systems.

Dealing with Legacy Controls
Legacy controls and practices, mostly Waterfall-based and
paperwork-heavy, are another obstacle to adopting DevOps.
Entrenched operational risk management and governance frame‐
works like CMMI, Six Sigma, ITIL, ISO standards, and the bureauc‐
racy that supports them also play a role. Operational silos are cre‐
ated on purpose: to provide business units with autonomy, for sepa‐
ration of control, and for operational scale. And outsourcing of criti‐
cal functions like maintenance and testing and support, with SLAs

Weighed Down by Legacy | 9

http://nyti.ms/1gmJeXI

and more bureaucracy, creates more silos and more resistance to
change.

DevOps initiatives need to fight against this bureaucracy and inertia,
or at least find a way to work with it.

ING Bank: From CMMI to DevOps
A few years ago at ING, development and operations were ruled by
heavyweight process frameworks. Development was done following
Waterfall methods, using Prince2, Rational Unified Process, and
CMMI. Operations was ruled by ITIL. ING had multiple change
advisory boards and multiple acceptance gates with detailed check‐
lists, and process managers to run all of this.

Changes were made slowly and costs were high. Project delivery
problems led the company to adopt even more stringent acceptance
criteria, more gates, and more paperwork.

Then some development teams started to move to Scrum. After an
initial learning period, their success led the bank to adopt Scrum
across development. Further success led to a radical restructuring
of the IT organization. There were no more business analysts, no
more testers, and no more project managers: developers worked
directly with the business lines. Everyone was an application engi‐
neer or an operations engineer.

At the same time, ING rationalized its legacy application portfolio,
eliminating around 500 duplicate applications.

This Agile transformation was the trigger for DevOps. The devel‐
opment teams were delivering faster than Ops could handle, so
ING went further. It adopted Continuous Delivery and DevOps,
folding developers and operators into 180 cross-functional engi‐
neering teams responsible for designing, delivering, and operating
different applications.

The teams started with mobile and web apps, then moved to core
banking functions such as savings, loans, and current accounts.
They shortened their release cycle from a handful of times per year
to every few weeks. Infrastructure setup that used to take 200 days
can now be done in 2 hours. At the same time, they reduced out‐
ages significantly.

Continuous Delivery is mandatory for all teams. There is no out‐
sourcing. ING teams are now busy building a private internal

10 | Chapter 1: Challenges in Adopting DevOps

6 This case study is based on public presentations made by ING staff.

cloud, and replacing their legacy ESB with a microservices architec‐
ture. They still follow ITIL for change management and change
control, but the framework has been scaled down and radically
streamlined to be more efficient and risk-focused.6

The Costs of Compliance
Regulatory compliance is a basic fact of life in the financial industry,
affecting almost every system and every part of the organization; it
impacts system requirements, system design, testing, and opera‐
tions, as well as the personal conduct of industry employees.

Global firms are subject to multiple regulators, different regimes
with different requirements for different activities and financial
products. In the US alone, a bank could be subject to regulation by
the OCC, the Federal Reserve, the SEC, FINRA, the regulatory arms
of the different exchanges, the CFTC, and the FDIC.

Regulations like Dodd-Frank, GLBA, Regulation NMS, Regulation
SCI, and MiFID (and of course, for public financial institutions,
SOX) impose mandatory reporting requirements; restrictions
around customer data privacy and integrity; mandatory operational
risk management and credit management requirements; mandatory
market rules for market data handling, order routing, trade execu‐
tion, trade reporting; rules for fraud protection and to protect
against money laundering, insider trading, and corruption; “know
your customer” rules; rules for handling data breaches and other
security incidents; business continuity requirements; restrictions on
and monitoring of personal conduct for employees; and auditing
and records retention requirements to prove all of this. Regulations
also impose uptime requirements for key services, as well as require‐
ments for reporting outages, data breaches, and other incidents and
for preannouncing and scheduling major system changes. This
means that regulatory compliance is woven deeply into the fabric of
business processes and IT systems and practices.

The costs and complexities of regulatory compliance can be over‐
whelming: constant changes to compliance reporting requirements,
responding to internal and external audits, policies and procedures
that need to be continuously reviewed and updated and approved,

The Costs of Compliance | 11

testing to make sure that all of the controls and procedures are being
followed. Paperwork is required to track testing and reviews and
approvals for system changes, and to respond to independent audits
on systems and controls.

Callout: Regulation SCI
In November 2015, the SEC’s Regulation Systems Compliance and
Integrity (Reg SCI) comes into effect, as a way to deal with increas‐
ing systemic market risks due to the financial industry’s reliance on
technology, including the widespread risk of cyber attacks. It is
designed to minimize the likelihood and impact of technology fail‐
ures, including the kinds of large-scale, public IT failures that we’ve
looked at so far.

Initially, Reg SCI will apply to US national stock exchanges and
other self-regulatory organizations (SROs) and large alternative
trading systems. However, the SEC is reviewing whether to extend
this regulation, or something similar, to other financial market par‐
ticipants, including market makers, broker-dealers, investment
advisers, and transfer agents.

Reg SCI covers IT governance and controls for capacity planning,
the design and testing of key systems, change control, cyber secu‐
rity, disaster recovery, and operational monitoring, to ensure that
systems and controls are “reasonably designed” with sufficient
capacity, integrity, resiliency, availability, and security.

It requires ongoing auditing and risk assessment, immediate notifi‐
cation of problems and regular reporting to the SEC, industry-wide
testing of business continuity planning (BCP) capabilities, and
extensive record keeping for IT activities. Failure to implement
appropriate controls and to report to the SEC when these controls
fail could result in fines and legal action.

In Europe, MiFID II regulations address many of the same areas,
but extend to trading firms as well as execution venues like
exchanges.

What do these regulations mean to organizations adopting or look‐
ing to adopt DevOps?

The regulators have decided that relevant procedures and controls
will be considered “reasonably designed” if they consistently follow
generally recognized standards—in the SEC’s case, these are pub‐
lished government standards from the ISO and NIST (such as NIST

12 | Chapter 1: Challenges in Adopting DevOps

http://1.usa.gov/1Kd5nQV
http://1.usa.gov/1Kd5nQV

800-53). However, the burden is on regulated organizations to
prove that their processes and control structures are adequate,
whether they follow Waterfall-based development and ITIL, or
Agile and DevOps practices.

It is too soon to know how DevOps will be looked at by regulators
in this context. In Chapter 2 we’ll look at a “Compliance as Code”
approach for building compliance controls into DevOps practices,
to help meet different regulatory requirements (such as Reg SCI).

Compliance Roadblocks to DevOps
Most regulators and auditors are lawyers and accountants—or they
think like them. They don’t necessarily understand Agile develop‐
ment, Infrastructure as Code, or Continuous Delivery. The acceler‐
ated pace of Agile and DevOps raises a number of concerns for
them.

They want evidence that managers are directly involved in decisions
about what changes are made and when these changes are imple‐
mented. They want to know that compliance and legal reviews are
done as part of change management. They want evidence of security
testing before changes go in. They are used to looking at written
policies and procedures and specifications and checklists and other
documents to prove all of this, not code and system logs.

Regulators and auditors like Waterfall delivery and ITIL, with
approval gates built in and paper audit trails. They look to industry
best practices and standards for guidance. But there are no stand‐
ards for Continuous Delivery, and DevOps has not been around
long enough for best practices to be codified yet. Also, auditors
depend on the walls built up between development and operations
to ensure separation of duties.

Separation of Duties
Separation of duties—especially separating work between develop‐
ers and operations engineers—is spelled out as a fundamental con‐
trol in security and governance frameworks like ISO 27001, NIST
800-53, COBIT and ITIL, SSAE 16 exams, and regulations such as
SOX, GLBA, MiFID II, and PCI DSS.

Auditors look closely at separation of duties, to ensure that require‐
ments for data confidentiality and integrity are satisfied: that data

The Costs of Compliance | 13

and configuration cannot be altered by unauthorized individuals,
and that confidential data cannot be viewed by unauthorized indi‐
viduals. They review change control procedures and approval gates
to ensure that no single person has end-to-end control over changes
to the system. They want to see audit trails to prove all of this.

Even in compliance environments that do not specifically call for
separation of duties, strict separation of duties is often enforced to
avoid the possibility or the appearance of a conflict of interest or a
failure of controls.

DevOps, by breaking down silos and sharing responsibilities
between developers and operators, seems to be in direct conflict
with separation of duties. Allowing developers to push code and
configuration changes out to production in Continuous Deploy‐
ment raises red flags for auditors. However, as we’ll see in “Compli‐
ance as Code” on page 45, it’s possible to make the case that this can
be done, as long as strict automated and manual controls and audit‐
ing are in place.

Another controversial issue is granting developers access to produc‐
tion systems in order to help support (and sometimes even help
operate) the code that they write, following Amazon’s “You build it,
you run it” model. At the Velocity Conference in 2009, John Allspaw
and Paul Hammond made strong arguments for giving developers
access—at least limited access—to production:

Allspaw: “I believe that ops people should make sure that develop‐
ers can see what’s happening on the systems without going through
operations… There’s nothing worse than playing phone tag with
shell commands. It’s just dumb.
“Giving someone [i.e., a developer] a read-only shell account on
production hardware is really low risk. Solving problems without it
is too difficult.”
Hammond: “We’re not saying that every developer should have root
access on every production box.”

At Etsy, for example, even in PCI-regulated parts of the system
developers get read access to metrics dashboards (“data porn”) and
exception logs so that they can help find problems in the code that
they wrote. But any fixes to code or configuration are done through
Etsy’s audited and automated Continuous Deployment pipeline.

Any developer access to a financial system, even read-only access,
raises questions and problems for regulators, compliance, InfoSec,

14 | Chapter 1: Challenges in Adopting DevOps

http://bit.ly/1LeI91c

and customers. To address these concerns, you need to put strong
compensating controls in place. Limit access to non-public data and
configuration to a minimum. Review logging code carefully to
ensure that logs do not contain confidential data. Audit and review
everything that developers do in production: every command they
execute, every piece of data that they look at. You need detective
change control in place to report any changes to code or configura‐
tion. In financial systems, you also need to worry about data exfil‐
tration: making sure that developers can’t take data out of the sys‐
tem. These are all ugly problems to deal with.

You also need to realize that the closer developers are to operations,
the more directly involved they will get in regulatory compliance.
This could lead to developers needing to be licensed, requiring
examinations and enforcing strict restrictions on personal conduct.
For example, in March 2015 FINRA issued a regulatory notice pro‐
posing that any developer working on the design of algorithmic
trading strategies should be registered as a securities trader.

Security Threats to the Finance Industry
Cyber security and privacy are important to online ecommerce sites
like Etsy and Amazon (and, after then-candidate Obama’s handle
was hacked, to Twitter). But security is even more fundamentally
important to the financial services industry.

Financial firms are obvious and constant targets for cyber criminals
—there is simply too much money and valuable customer data that
can be stolen. They are also targets for insider trading and financial
fraud; for cyber espionage and the theft of intellectual property; and
for hacktivists, terrorists, and nation state actors looking to disrupt a
country’s economic infrastructure through denial of service attacks
or more sophisticated integrity attacks.

These threats are rapidly increasing as banks and trading firms open
up to the Internet and mobile and other channels. The extensive
integration and interdependence of online financial systems pro‐
vides a massive attack surface.

For example, JP Morgan Chase, which spends more than a quarter
of a billion dollars on its cyber security program per year, was
hacked in June 2014 through a single unpatched server on the bank’s

Security Threats to the Finance Industry | 15

http://bit.ly/1USeLnq

7 For details on this attack, see http://nyti.ms/1zdvK32.

8 See http://nyti.ms/1L2JhoC.

9 See http://bloom.bg/1KaFBQU.

vast network.7 An investigation involving the NSA, the FBI, federal
prosecutors, the Treasury Department, Homeland Security, and the
Secret Service found that the hackers were inside JPMC’s systems for
two months before being detected. The same hackers appear to have
also attacked several other financial organizations.

In response to these and other attacks, regulators including the SEC
and FINRA have released cyber security guidelines to ensure that
financial firms take security risks seriously. Their requirements
extend out to partners and service providers, including “law firms,
accounting and marketing firms, and even janitorial companies.”8

Callout: The NASDAQ Hack
In late 2010, hackers broke into NASDAQ’s Directors Desk web
application and planted malware. According to NASDAQ, the hack‐
ers did not get access to private information or breach its trading
platform.

At least, that’s what they thought at the time.

However, subsequent investigations by the NSA and the FBI found
that the hackers were extremely sophisticated. They had used two
zero-day vulnerabilities—evidence of a nation state actor—and
planted advanced malware (including a logic bomb) created by the
Federal Security Service of the Russian Federation in NASDAQ’s
systems.

Agents also found evidence that several different hacking groups
(including cyber criminals and “Chinese cyberspies”) had compro‐
mised NASDAQ’s networks, and may have been inside for years.
More than a year after the hack, it was still not clear to the investi‐
gators who the attackers were or if the attackers were attempting to
steal NASDAQ’s technology IP, or get access to inside information
about the market, or if they had intended to plant a digital weapon
to disrupt the US economy.9

16 | Chapter 1: Challenges in Adopting DevOps

http://nyti.ms/1zdvK32
http://nyti.ms/1L2JhoC
http://bloom.bg/1KaFBQU

Making the Case for Secure DevOps
Because of these increased risks, it may be hard to convince InfoSec
and compliance teams that DevOps will make IT security better, not
worse. They have grown accustomed to Waterfall project delivery
and stage gate reviews, which gives them a clear opportunity and
time to do their security checks and a way to assert control over
projects and system changes.

Many of them think Agile is “the A word”: that Agile teams move
too fast and take on too many risks. Imagine what they will think of
DevOps, breaking down separation of duties between developers
and operators so that teams can deploy changes to production even
faster.

In “DevOpsSec: Security as Code” on page 38, we’ll look at how secu‐
rity can be integrated into DevOps, and how to make the case to
auditors and InfoSec for DevOps as a way to manage security risks.

Security Threats to the Finance Industry | 17

CHAPTER 2

Adopting DevOps in
Financial Systems

Enough of the challenges. Let’s look at the drivers for adopting
DevOps in financial systems, and how it can be done effectively.

Enter the Cloud
One of the major drivers for DevOps in financial enterprises is the
adoption of cloud services. Online financial institutions like
exchanges or clearinghouses are essentially cloud services providers
to the rest of the market. And most order and execution manage‐
ment system vendors are, or are becoming, SaaS providers to trad‐
ing firms. So it makes sense for them to adopt some of the same
ideas and design approaches as cloud providers: Infrastructure as
Code; virtualization; rapid, automated system provisioning and
deployment.

The financial services industry is spending billions of dollars on
building private internal clouds and using public cloud SaaS and
PaaS (or private/public hybrid) solutions. This trend started in back‐
end, general-purpose systems, with HR, CRM, and office services
using popular SaaS platforms and services like Microsoft’s Office
360 or Azure. Now more financial services providers are taking
advantage of cloud platforms for data intelligence and analytics,
using cloud storage services, and building test platforms in the
Cloud.

19

1 See http://aws.amazon.com/solutions/case-studies/finra/ for details.

2 See http://ubm.io/1hZMMjT.

3 Cloud Security Alliance, “How Cloud is Being Used in the Financial Sector: Survey
Report”, March 2015.

Today, even the regulators are in the Cloud. FINRA’s new surveil‐
lance platform runs on Amazon’s AWS, using public trade data.1 The
SEC has moved its SEC.gov website and Edgar company filing sys‐
tem, as well as its MIDAS data analytics platform, to a private/public
cloud to save operations and maintenance costs, improve availabil‐
ity, and handle surges in demand (such as the one that happened,
for example, during Facebook’s IPO).2

Cloud adoption is still being held back by concerns about security
and data privacy, data residency and data protection, and other
compliance restrictions, according to a recent survey from the
Cloud Security Alliance.3 However, as cloud providers continue to
raise the level of transparency and improve auditing controls over
operations, encryption, and ediscovery, and as regulators provide
clearer guidance on the use of cloud services, more and more finan‐
cial data will make its way into the Cloud.

Introducing DevOps: Building on Agile
DevOps is a natural next step in organizations where Agile develop‐
ment has proved successful. Development teams who have proven
that they can iterate through designs and deliver features quickly,
and the business sponsors who are waiting for these features, grow
frustrated with delays in getting systems into production. They start
looking for ways to simplify and streamline the work of acceptance
testing and security and compliance reviews; dependency analysis
and packaging; release management and deployment.

Capital One: From Agile to DevOps
The ING story is continuing in a way at Capital One, which pur‐
chased ING Direct USA in 2012. Until then, Capital One out‐
sourced most of its IT. Today, Capital One is fully committed to
Agile and DevOps.

20 | Chapter 2: Adopting DevOps in Financial Systems

http://aws.amazon.com/solutions/case-studies/finra/
http://ubm.io/1hZMMjT.
http://bit.ly/1gb1ROr
http://bit.ly/1gb1ROr

4 This case study is based on public presentations made by Capital One staff.

Capital One’s Agile experiment started in late 2011, with just two
teams. As more teams were trained in Agile development, as at
ING, they found that they were building software quickly, but it was
taking too long to get working software into production. Develop‐
ment sprints led to testing and hardening sprints before the code
was finally ready to be packaged and handed off to production.
This wasn’t Agile; it was “Agilefall.”

Capital One developers were following the Scaled Agile Framework
(SAFe). They leveraged the idea of System Teams in SAFe, creating
dedicated DevOps teams in each program to help streamline the —
offs between development and operations. These teams were
responsible for setting up and managing the development and test
environments, automating build and deployment processes, and
release management, acting as “air traffic controllers to navigate
through the CABs.”

Integration testing, security testing, and performance testing were
all being done outside of development sprints by separate test
teams. They brought this testing into the dedicated DevOps teams
and automated it. Then they moved all testing into the development
sprints, adopting behavior-driven/acceptance-test-driven develop‐
ment and wiring integration, security, and performance testing into
a Continuous Delivery pipeline. Today they have 700 Agile teams
following Continuous Delivery.4

Agile ideas and principles—prioritizing working software over doc‐
umentation, frequent delivery, face-to-face collaboration, and a
focus on technical excellence and automation—form the foundation
of DevOps. And Continuous Delivery, which is the control frame‐
work for DevOps, is also built on top of a fundamental Agile devel‐
opment practice: Continuous Integration.

From Continuous Integration to Continuous
Delivery
In Continuous Integration, developers make sure that the code
builds and runs correctly on each check-in. Continuous Delivery
takes this to the next step.

From Continuous Integration to Continuous Delivery | 21

It’s not just about automating unit testing (something that the devel‐
opment team owns). Continuous Delivery is about configuring test
environments to match production as closely as possible, automati‐
cally; packaging the code and deploying it to test environments,
automatically; running acceptance tests and stress tests and perfor‐
mance tests and security tests and other checks, with pass/fail feed‐
back to the team—again, automatically. It’s about auditing all of
these steps and communicating status to a dashboard, then later,
using the same pipeline and deployment steps to deploy the changes
to production.

Continuous Delivery is the backbone of DevOps. It’s an automated
framework for making software and infrastructure changes; pushing
out software upgrades, patches, and changes to configurations; and
is repeatable, predictable, efficient, and fully audited.

Putting a Continuous Delivery pipeline together requires a high
degree of cooperation between development and operations, and a
much greater shared understanding of how the system works, what
production really looks like, and how it runs. It forces teams to start
talking to each other, exposing details about how they work.

There is a lot of work that needs to be done. Understanding depen‐
dencies, standardizing configurations, and bringing configuration
into code. Cleaning up the build—getting rid of inconsistencies,
hardcoding, and jury rigging. Putting everything into version con‐
trol: application code and configuration, binary dependencies (like
the Java Runtime), infrastructure configuration (recipes/manifests),
database schemas, and configurations for the CI/CD pipeline itself.
Automating testing. Getting all of the steps for deployment together
and automating them carefully. Doing all of this in a heterogeneous
environment, with different architectures and technology platforms
and languages.

This work isn’t development, and it’s not operations either. This can
make it hard to build a business case for: it’s not about delivering
specific business features or content, and it can take time to show
results. But the payoff can be huge.

22 | Chapter 2: Adopting DevOps in Financial Systems

Continuous Delivery at LMAX
The London Multi-Asset Exchange (LMAX) is a highly regulated
FX retail market in the UK, where Dave Farley (coauthor of the
Continuous Delivery book) helped pioneer the model of Continuous
Delivery.

LMAX’s systems were built from scratch following Agile best prac‐
tices: TDD, pair programming, and Continuous Integration. But
LMAX took this further, automatically deploying code to integra‐
tion, acceptance, and performance testing environments, building
up a Continuous Delivery pipeline.

LMAX has made a massive investment in automated testing. Each
build runs through 25,000 unit tests with code coverage failure,
simple code analysis (using tools like FindBugs, PMD, and custom
architectural dependency checks), and automated integration sanity
checks. All of these tests and checks must pass for every piece of
code submitted.

The last good build is automatically picked up and promoted to
integration and acceptance testing, where more than 10,000 end-to-
end tests are run on a test cluster, including API-level acceptance
tests, multiple levels of performance tests, and fault injection tests
that selectively fail parts of the system and verify that the system
recovers correctly without losing data. More than 24 hours’ worth
of tests are executed in parallel in less than 1 hour.

If all of the tests and reviews pass, the build is tagged. All builds are
kept in a secure repository, together with dependent binaries (such
as the Java Runtime). Everything is tracked in version control.

QA can conduct manual exploratory testing or other kinds of tests
on a build. Operations can then pull a tagged build from the devel‐
opment repository to their separate secure production repository,
and use the same automated tools to deploy to production. Releases
to production are scheduled every two weeks, on a Saturday, out‐
side of trading hours.

There is nothing sexy about the technology involved: they rolled a
lot of the tooling on their own using scripts and simple conven‐
tions. But it’s everything that we’ve come to know today as Continu‐
ous Delivery.

From Continuous Integration to Continuous Delivery | 23

Protecting the Pipeline
DevOps in a high-integrity, regulated environment relies heavily on
the audit trail and checks in the Continuous Delivery pipeline. The
integrity and security of this environment must therefore be
ensured:

• Every step must be audited, from check-in to deployment.
These audit logs need to be archived as part of records reten‐
tion.

• You have to be able to prove the identity of everyone who per‐
formed an action: developers checking in code, reviewers, peo‐
ple pulling or pushing code to different environments.

• You need to ensure the integrity of the CI/CD pipeline and all
the artifacts created, which means securing access to the version
control system, the Continuous Integration server configura‐
tion, the artifact repositories containing the binaries and system
configuration data and other dependencies, and all of the logs.

• There must be a secure way to manage secrets: keys and other
credentials.

• Separate development and production repositories are required.
Only authorized people can pull from a development repository
to the production repository, and, again, all actions must be
audited.

Test Automation
Testing is a critical function in financial systems. Regulators require
proof that core financial systems have been thoroughly tested. Some
regulatory guidance even lays out how testing needs to be conduc‐
ted. For example, MiFID II requires trading firms to test their trad‐
ing systems and algorithms with exchanges, which need to provide
production-like testing facilities with representative data. A lot of
time is spent on regression testing to make sure that changes don’t
break existing functions and interfaces.

Automated testing is fundamental to Continuous Delivery. Without
automated tests, you can’t do Continuous Delivery of changes
through a pipeline. While some organizations (like exchanges) have
invested a lot in automating testing, many financial institutions still
rely heavily on manual testing for important areas like functional
acceptance testing, integration testing, and security testing. A PwC

24 | Chapter 2: Adopting DevOps in Financial Systems

5 PwC, “An ounce of prevention: Why financial institutions need automated testing”,
November 2014.

study in 2014 found that only 15% of testing activities have been
automated at major financial institutions.5

Because manual testing for large systems is so expensive, many firms
outsource or offshore testing to take advantage of lower-cost skills,
handing the code off to test teams in India or somewhere else in a
“follow the sun” approach to be tested overnight.

Agile development, especially for web and mobile applications, is
already pushing organizations away from manual acceptance testing
and offshore teams and toward automated testing in-phase as part
of development, because testing cannot keep up with the pace of
change in rapid, iterative development. DevOps and Continuous
Delivery push this even further.

The path toward automated testing is straightforward, but it’s not
easy. It starts with the basics of Continuous Integration: automating
unit testing and basic functional testing, and moving responsibility
for regression testing onto developers.

This makes sense to teams already practicing Agile development
and TDD. It’s much harder when you’re working on monolithic leg‐
acy systems that were never designed to be testable. Here, you can
get help from Michael Feathers, and his excellent book Working
Effectively with Legacy Code (Prentice Hall).

Continuous Delivery requires a big investment up front in setting
up testing infrastructure, moving testing from offshore test teams
into development, creating virtualized test platforms, and generating
synthetic test data or anonymizing test data to protect confidential‐
ity and privacy of information.

It will take a long time to write the thousands (or tens of thousands,
or more) of tests needed to cover a big financial system. Many of the
most important of these tests—integration tests, performance and
capacity tests, security tests—are particularly difficult to automate in
Continuous Delivery. Let’s look at what is needed to get this done.

From Continuous Integration to Continuous Delivery | 25

http://pwc.to/1ieldTX
http://amzn.to/1KnVBiA
http://amzn.to/1KnVBiA

Integration Testing
With the exception of online retail applications such as online bank‐
ing, most financial transactions are done system-to-system through
APIs. Central capital markets institutions like exchanges or major
clearinghouses can be connected to hundreds of trading firms, while
large OMS/EMS systems at trading firms may be connected to doz‐
ens of different trading venues and market data sources and back-
office systems, all through different protocols. This makes integra‐
tion testing and end-to-end testing at the API level critically impor‐
tant.

Regression testing of these interfaces is expensive and difficult to set
up. Because test systems are not always available and are often not
deterministic, you’ll need to stub them out, creating test doubles or
simulators that behave in predictable ways.

There are risks to testing using simulators or test harnesses. Because
you’ve made the mock testing environment predictable and deter‐
ministic, you won’t catch the kinds of exceptions and problems that
happen in real-life systems, and that can lead to wide-scale failures.
Race conditions, timeouts, disconnections, random behavior, and
other exceptions will escape your automated testing safety net—
which means that your exception-handling code needs to be care‐
fully reviewed.

This also means that if you’re making changes that could affect out‐
side behavior, you need to do certification testing with other parties.
Luckily, for widely used financial protocols like FIX or SWIFT at
least, there are several automated tools to help with this.

One potential shortcut to automating integration testing in large
systems is through model-based testing. According to Bob Binder at
Carnegie Mellon’s Software Engineering Institute, a well-defined
protocol specification such as FIX or SWIFT can be used to auto‐
matically generate many of the integration test cases needed to cover
the behavior of a system, including catching mistakes in detailed
scenarios that could trip up a system in production.

Model-based testing is still a niche idea, but this may be changing
soon, at least in some parts of the financial industry. Jim Northey, a
financial systems integration testing expert and the Global Technical
Committee Chair of the FIX Trading Community, is helping to lead
an initiative to create machine-readable versions of FIX specifica‐

26 | Chapter 2: Adopting DevOps in Financial Systems

6 For a list of open source tools for model-based testing, go to Bob Binder’s blog: http://
robertvbinder.com/open-source-tools-for-model-based-testing/.

tions. These formal, machine-readable specs could be exchanged
and compared between systems to catch incompatibilities, and even‐
tually used by protocol engines to automatically map between pro‐
tocol implementations. They could also be fed into model-based
testing tools to automatically generate integration tests.6

Performance and Capacity Testing
Regulators mandate regular capacity testing to ensure that financial
systems can hold up to demand. Online trading and market data
and risk management systems are all extremely sensitive to latency,
which means that even small changes have to be carefully tested to
ensure that they don’t slow down latency-critical parts of the system.

There are three basic kinds of performance tests that need to be
automated:

• System load testing using standard workloads against a baseline
• Stress testing to find the edge of the system’s capability
• Micro-benchmark tests at the functional/unit level in

performance-critical sections of code, to catch small degrada‐
tions

The challenges in implementing automated performance testing
include:

• Creating a controlled test environment and protecting tests
from runtime variability, including runtime jitter for micro-
benchmarks

• Designing representative scenarios and building load generation
tools that handle financial protocols

• Putting an accurate measurement system in place (including
instrumenting the system and capturing metrics, down to
microseconds)

• Deciding on clear pass/fail criteria

The tricky part will be integrating all of this cleanly into Continuous
Delivery, in a simple, repeatable way. From a legal standpoint, you
should also be careful in how you design and implement automated

From Continuous Integration to Continuous Delivery | 27

http://robertvbinder.com/open-source-tools-for-model-based-testing/
http://robertvbinder.com/open-source-tools-for-model-based-testing/

performance testing in Continuous Delivery, to make sure that you
don’t step on the patent that HP has filed on doing this.

Security Testing
Automating security testing in Continuous Delivery requires a re-
think of how security testing is done. We’ll look at how to do this in
detail in “DevOpsSec: Security as Code” on page 38.

Automated Infrastructure Testing
Infrastructure as Code introduces a new dimension to operations
engineering. It requires a disciplined software engineering approach
to provisioning and configuring systems: no more ad hoc scripting
or manual configuration or hardening steps.

Operations engineers need to understand and follow the same cod‐
ing disciplines as application developers. This includes writing auto‐
mated unit tests and integration tests using frameworks like rspec-
puppet, Chef Test Kitchen, or Serverspec; learning about test-driven
infrastructure and how tests should drive design and implementa‐
tion; and wiring these tests into Continuous Integration and Contin‐
uous Delivery as part of an automated configuration management
pipeline. Like developers, they need to learn to spend as much time,
or more time, writing tests as they do writing code. And, like devel‐
opers, they need to learn how to make changes in small, safe, incre‐
mental and iterative steps.

Manual Testing in Continuous Delivery
In Continuous Delivery, you try to automate testing as much as pos‐
sible. All of these tests have to be designed to run within short time
constraints, which might mean breaking tests into parallel pipelines
and executing them across a grid (like LMAX did, as discussed ear‐
lier in this chapter).

But there is still an important place for manual testing in large,
business-critical system. In particular, a manual approach is impor‐
tant for:

• Risk-based exploratory testing to look for holes and edge cases,
including group-based multiparty testing sessions or “war
games.” Multiparty testing can be an especially useful way to
find important bugs (like timing problems and race conditions

28 | Chapter 2: Adopting DevOps in Financial Systems

http://bit.ly/1QfhdOj

and workflow problems) in interactive, online systems such as
trading systems, by trying to recreate real-world conditions and
introducing some randomness and stressors into testing. This is
about bug hunting, not acceptance testing.

• Usability testing for any user interfaces.
• Penetration testing and other kinds of adversarial or destructive

testing: trying to break things to see what happens.

With Continuous Delivery, there is always a window where this kind
of testing can and should be done.

Changing Without Failing
Making changes to financial systems can be expensive and risky.
Changes (especially street-wide regulatory reporting changes or
rules changes) often need to be made in lockstep, coordinated across
many different systems, both inside the enterprise and out. Change
introduces new forms of failure, which is why changes can be so
scary to large organizations—and why they are made so infre‐
quently.

DevOps is about changing faster and changing more often, which
sounds like it will make these risks even worse. But it turns out that
changing more often actually reduces the risk of change—as long as
you do it properly.

The Puppet Labs “2015 State of DevOps Report” found that DevOps
high performers deploy changes 30x more often than their lower-
performing peers, with lead times as much as 200x shorter. But they
also have a much higher change success rate: 60x higher, in fact. And
they recover from these failures much, much faster (168x).

How have they been able to achieve this? By breaking changes down
into small increments that can be easily reviewed and tested. By
automating and standardizing most or all of the steps required to
take a change and put it into production. By carefully controlling
and monitoring changes as they go in, and being prepared to
respond to any problems as quickly as possible. And by learning
from failures and mistakes and continuously improving.

All of this requires changing not only how you deliver software, but
also how you think about software and how you decide when soft‐
ware is “done.” Developers have to think more like operators, and

Changing Without Failing | 29

https://puppetlabs.com/2015-devops-report

consider how to make changes safe for production: operations
requirements become as important as user requirements.

Minimize the Risk of Change
In DevOps you minimize the risk of change by leaning on your
Continuous Delivery pipeline. If you focus on reducing risks and
costs, using automation as much as possible, speed will come as a
side effect.

Automate everything that you can. Automate testing. Use static
analysis to automatically find common bugs and problems in code.
And automate the deployment steps to test, pre-production, and
production.

By automating and exercising these steps over and over, in test and
in production, you reduce the risk of deploying changes. This is a
case for “if it hurts, do it more often,” until it stops hurting. This will
force you to simplify steps and checks, minimize manual steps, and
get the bugs out of deployment—and improve your confidence.
Build checks during and at the end of the deployment process.
Check dependencies and configurations. Replace checklists and pro‐
cedures with automatically executed steps, scripted health checks,
and self tests.

Use Continuous Delivery to eliminate, as much as possible, differ‐
ences between the production and test environments. This makes
testing results more meaningful, and it will help developers to
become more familiar with what production looks like and how it
actually works.

The more that developers and operations engineers work together,
the more they will learn from each other. Operators will get more
opportunities to understand the application and how it is designed.
Developers will learn more about how production is set up and how
the system actually runs. The more visibility that they have into each
other’s work, the fewer assumptions they will make—which means
that they will make better design decisions, and fewer mistakes.

Reduce the Batch Size of Changes
The advantages of incremental, smaller changes are all well known
in IT. Yet in the financial industry we still see big bang releases, even
industry-wide changes that create unnecessary risk.

30 | Chapter 2: Adopting DevOps in Financial Systems

7 For more on refactoring tactics, see Emerson Murphy-Hill and Andrew P. Black’s paper
“Refactoring Tools: Fitness for Purpose”.

Automated Continuous Delivery reduces the cost of deploying indi‐
vidual changes. This means that making smaller changes, more
often, becomes a viable way of reducing operational risk.

Smaller changes can be made even safer by deploying changes incre‐
mentally to production. One way of doing this is using “canaries”:
releasing to one server and checking to make sure that the change is
okay, then releasing to two servers and checking again, then four,
and so on.

Another way to reduce risk is through “dark launching” a feature
using runtime feature switches to turn on functionality only for
some users, or only for some products, and again closely monitoring
the results before promoting the change to more of the user com‐
munity. This is a common approach to rolling out changes in finan‐
cial systems. For example, exchanges often roll out new features or
rules for products starting with the letters A–C, then D–F, and so
on, as part of announced incremental release programs.

You’ll need to encourage both developers and operations engineers
to think small, and to work out changes in small, safe, incremental
steps. Put scaffolding in first. Protect changes through feature
switches. And refactor in the small too: no “root-canal refactoring”
allowed.7 This is hard for developers to get comfortable with—even
developers who have been working in Agile methods—and it can be
even harder for operations engineers, because vendors often dictate
how network, database, operating system, server, and storage
updates are done.

Identify Problems Early
To recover fast from a failure, you need to recognize that something
is going wrong as early as possible—that is, to minimize the mean
time to detect a failure (MTTD).

The DevOps community is continuously working on how to
improve metrics and alerting in order to find the exceptional needle
in a haystack of events, and correlating application and system
events and metrics to find patterns and trends.

Changing Without Failing | 31

http://bit.ly/1QD3uSe

Financial systems already have strong monitoring capabilities in
place, watching for exceptions and latency and event queuing, and
online surveillance to catch anomalies in system use. This is another
area where financial services operations can work with the broader
DevOps community to learn and improve together, through confer‐
ences like Monitorama and by contributing to open source monitor‐
ing tools and frameworks such as Etsy’s StatsD/Graphite/Carbon/
Whisper monitoring stack.

DevOps also expands the responsibility for monitoring the system
from the operations center to development, exposing production
metrics, exception logs, and alerts to developers, especially after a
change has been rolled out. Developers wrote the code; they know
to freak out if an impossible error message shows up. Facebook has a
rule around deployment: a developer’s code won’t go into produc‐
tion if that developer is not online to make sure that it goes in suc‐
cessfully.

In DevOps shops, developers are also on call for their code if some‐
thing goes wrong after hours. Luckily, it’s easy to add developers to
the escalation ladder using services like Pager Duty.

In DevOps, logging, alerting, and instrumentation need to be part of
the Definition of Done: the acceptance criteria for changes. Code
reviews and testing should include checking alerts, logging, error
handling, and runtime instrumentation. Tests should make sure that
new features or services are properly wired into monitoring, and
that sensitive data is not exposed in logs.

Minimize MTTR
Mean time to recovery (MTTR) is a key metric for DevOps shops.
They assume that failures will happen, especially at Internet scale.
As James Hamilton (now a Distinguished Engineer at Amazon)
points out in his paper “On Designing and Deploying Internet-Scale
Services”, even extremely rare, “one-in-a-million” combinations of
events can become commonplace when you’re running thousands of
servers that provide millions of opportunities for component fail‐
ures each day. And in systems of this scale, operations mistakes will
also happen, especially when making changes.

Knowing exactly how everything is configured and the status of
every part of the system, leveraging automated configuration man‐

32 | Chapter 2: Adopting DevOps in Financial Systems

http://bit.ly/1QD3yRH
http://bit.ly/1QD3yRH

8 See the ACM Queue discussion “Resilience Engineering: Learning to Embrace Failure”.

agement, is an important first step. Knowing that you can quickly
identify and roll back changes is next.

Always Be Ready to Roll Back
When serious problems come up in a big online financial system,
rolling forward and trying to push a patch out immediately is not
always a viable option. You must know with complete confidence
that you can roll back, that it will work, and that it will be safe and
fast and not introduce more problems. This means designing to
make rollback easy, and building forward and backward compatibil‐
ity into database and configuration changes and into APIs.

It also means building tests in to make sure that the rollback steps
work and that the code runs properly, as part of your deployment
process and Continuous Delivery.

Incident Response—Always Be Prepared
In the financial industry, an outage is often treated like a security
data breach, with the response involving compliance and legal and
usually requiring formal escalation and notification to participants
and regulators.

Because it can be painful and expensive, most organizations don’t
test handling outages and other failures often enough. This is why
Netflix’s Chaos Monkey is so compelling and so controversial: it
automatically injects random failures to test the resiliency of the sys‐
tem and the team’s ability to respond to failures, live and in produc‐
tion.

GameDay exercises—running real-life, large-scale failure tests (like
shutting down a data center)—have also become common practices
in DevOps organizations like Amazon, Google, and Etsy. They could
involve (at Google, for example) hundreds of engineers working
around the clock for several days, to test out disaster recovery cases
and to assess how exhaustion could impact the organization’s ability
to deal with real accidents.8

At Etsy, GameDay exercises are run in production, even involving
core functions such as payments handling. As John Allspaw put it:

Changing Without Failing | 33

https://queue.acm.org/detail.cfm?id=2371297

9 See his article in ACM Queue, “Fault Injection in Production: Making the case for resil‐
ience testing”.

Why not simulate this in a QA or staging environment? First, the
existence of any differences in those environments brings uncer‐
tainty to the exercise, and second, the risk of not recovering has no
consequences during testing, which can bring hidden assumptions
into the fault tolerance design and into recovery. The goal is to
reduce uncertainty, not increase it.9

These exercises are carefully tested and planned in advance. The
team brainstorms failure scenarios and prepares for them, running
through failures first in test and fixing any problems that come up.
Then it’s time to execute scenarios in production, with developers
and operators watching closely and ready to jump in and recover,
especially if something goes unexpectedly wrong.

Once the exercise is over, the team conducts a postmortem to learn
about what happened, look into any surprises, and figure out what
they need to improve.

The point of failure injection in production isn’t just to find reliabil‐
ity problems in the system. It also tests your organization’s ability to
deal with failures, and builds confidence in your technology and
your team.

Will we see stock exchanges doing large-scale failure testing in pro‐
duction? Not likely. While the arguments for doing this kind of test‐
ing in production are all valid, the risks of running live production
incident tests in financial systems are too great. Even if you have
high confidence in how your systems will behave in a failure situa‐
tion, you can’t predict how participants’ systems will behave and
what the impact will be on them, and on other systems downstream.

For this reason, fire drills are sometimes done in production outside
of trading hours, under controlled conditions. This includes
industry-wide BCP testing, such as the annual exercises conducted
by SIFMA in the US. Alternatively, they may be run as simulations
that don’t impact live systems, like with Quantum Dawn, which sim‐
ulates industry-wide cyber attacks during the business day to exer‐
cise each organization’s incident response capabilities and interorga‐
nizational communications and escalation processes.

34 | Chapter 2: Adopting DevOps in Financial Systems

http://queue.acm.org/detail.cfm?id=2353017
http://queue.acm.org/detail.cfm?id=2353017

These kinds of tests, while imperfect and incomplete, are still valua‐
ble in evaluating system resilience and building a better organiza‐
tional incident handling capability.

Get to the Root Cause(s)
Production incidents are expensive and stressful—but they also pro‐
vide valuable information. One of the key ideas in DevOps is to take
this information and use it to learn and improve at multiple levels.

Part of this involves collecting metrics to understand what kinds of
changes are risky and whether the team is changing too much or too
often, or not often enough, by looking at the type and size and fre‐
quency of changes, and correlating this to production problems.
This idea is nicely described by John Allspaw in his 2010 Velocity
presentation “Ops Meta-Metrics: The Currency You Use to Pay For
Change”.

Blameless postmortems are another important part of DevOps cul‐
ture: getting Ops and development together after a failure to con‐
structively review what went wrong and understand why it went
wrong, discussing what can be done to prevent a problem like this
from happening again, and sharing all of this information across the
organization and with customers.

Postmortem analysis isn’t a new idea, especially in the financial
industry. Formal investigations after a major production problem
are done routinely, often by regulators. The major difference in
DevOps is the emphasis on blameless exploration of problems and
sharing of information by the team, and conducting postmortems
on smaller incidents and even “near misses” as learning experiences.

Recognizing that people will make mistakes, that fail-safes can fail
and that accidents will happen, a DevOps postmortem gets people
working together in an open and safe environment to share what
happened and to understand why it happened, focusing on the facts
and on problem solving, opening up a dialogue and creating oppor‐
tunities to learn. It is not about determining liability or apportioning
blame and deciding who is going to be fired. And it is not just about
coming up with a list of bugs that need to be fixed, or procedures
that need to be improved. A postmortem is an opportunity to
explore mistakes and why they were made; to confront deeper tech‐
nical and organizational issues like design resilience, training, deci‐
sion making, and communications; to try to get to the root causes of

Changing Without Failing | 35

http://bit.ly/1iMvNlV
http://bit.ly/1iMvNlV
http://bit.ly/1E7g3wl

10 For a good summary of the Knight Trading accident from a DevOps perspective, read
“Knightmare: A DevOps Cautionary Tale” by Doug Seven.

problems, and to figure out how to get better as an organization.
And, done properly, by focusing on the facts and by trusting and
sharing with each other, a postmortem is another way to bring
development and operations closer together.

I said we need to get to the “root causes” here. Because (back to All‐
spaw again, from his 2011 Velocity presentation “Advanced Post‐
Mortem Fu and Human Error 101”):

There is no such thing as a root cause for any given incident in
complex systems. It’s more like a coincidence of several things that
make a failure happen.
In hindsight, there often seems to be a single action that would
have prevented the incident to happen. This one thing is searched
for by managers when they do a root cause analysis. They hope to
be able to prevent this incident from ever happening again. But if
the incident was possible due to the coincidence of many events, it
makes no sense to search for a singular root cause. This would lead
to a false sense of security, as in a complex system there are too
many ways an incident can possibly happen.

The Knight Accident Through DevOps Eyes
Let’s look at the Knight accident again,10 through the lens of
DevOps. It demonstrates a series of control failures in some key
DevOps areas that we’ve just gone through.

Automated Release/Deployment

An operations engineer followed manual procedures to deploy
changes, but missed deploying the code on one server, and unfortu‐
nately nobody noticed the mistake.

This problem is what automated configuration management and
deployment is intended to prevent. An audited, automated deploy‐
ment pipeline, with post-release checks and smoke tests (including
looking for version mismatches on all servers) to check that the
deployment was successful, would have avoided this problem.

36 | Chapter 2: Adopting DevOps in Financial Systems

http://bit.ly/1FcYUbS
http://oreil.ly/1KQoYw1
http://oreil.ly/1KQoYw1

Dark Launching and Branching in Code

One way to minimize risk with code changes is to hide the changes
behind a feature switch, so that operators can control the behavior
of the system at runtime by turning a flag on or off. In Knight’s case,
the code was executed based on a flag in an order message, not a
runtime switch value, which meant that there was no easy way for
operations to stop the code from executing.

This case also highlights some of the risks of using conditional
switches and branching in code to control runtime behavior of a
system. For this new feature, Knight’s developers chose to repur‐
pose a flag that meant something quite different in the old code.
And because of the deployment mistake discussed above, this old
code was still running on one server, so it got triggered accidentally.

Using conditional logic to “branch in code” allows you to introduce
changes in steps and to control system behavior at runtime. But it
also makes code harder to understand, harder to change, and
harder to test. The longer conditional logic and switches are left in
the code, and the more switches are added over time, the worse
these problems become. After a while, nobody understands or is
prepared for what will happen if some flag or a combination of flags
gets turned on—which is what happened to Knight.

Feature switches and branches in code are a dangerous kind of
technical debt. Teams need to follow a disciplined approach in
managing code like this, making sure to remove it as soon as it’s no
longer needed.

Visibility and Monitoring/Feedback Loops

Another important practice in DevOps is making sure developers
are on call and available to help with any changes that they make. If
the developers who had been working on the code had seen the
“Power Peg” alerts in the early morning, they may have recognized
what was happening, or at least been surprised enough to look fur‐
ther, and been able to help stop things from going wrong before the
market opened.

Responding to Failure

We’ve gone through how important it is to always be prepared for
failure, and to have a proven incident response capability in place.
This includes knowing when to roll back code and knowing that it
will work, and having a well-defined escalation ladder to someone
who can “pull the kill switch” and shut things down quickly, before

Changing Without Failing | 37

a problem gets out of control. Knight’s team took too long to make
critical decisions—by the time the system was shut down, the com‐
pany was effectively already out of business.

DevOpsSec: Security as Code
The approach that most financial organizations take to IT security
today is “scan, then fix.” They depend heavily on security reviews in
Waterfall project gates: reviewing specifications and architecture,
scanning code before it’s handed off to test, pen testing the system
before it goes live.

But in DevOps there are no Waterfall gates where security audits or
penetration tests can be scheduled. There aren’t even any Agile secu‐
rity sprints or hardening sprints. Security needs to be brought into
development and operations, and included in Continuous Delivery
stages.

Whether it’s called DevOpsSec or DevSecOps or Rugged DevOps, or
whether it has a name at all, security in DevOps is based on a few
key ideas:

• Breaking down walls between development, operations, and
InfoSec, and bringing them all together to solve (and, more
importantly, to prevent) security problems

• Shifting security controls and checks earlier, into design and
development

• Automating security testing and security checks in Continuous
Integration and Continuous Delivery, including security checks
on dependencies

• Taking advantage of Infrastructure as Code and Continuous
Delivery to standardize and secure the runtime environment

• Leveraging the logging and workflow controls in Continuous
Delivery to provide an audit trail of security checks for regula‐
tors

• Wiring security into application operations monitoring and
feedback loops

Shift Security Left
To keep up with the pace of Continuous Delivery, security has to be
“shifted left,” earlier into the design and coding processes, and into

38 | Chapter 2: Adopting DevOps in Financial Systems

the automated test cycles, instead of waiting and running security
checks just before release. Security has to fit into the way that engi‐
neers think and work: more iterative and incremental, and automa‐
ted in simple ways.

Some organizations do this by embedding InfoSec specialists into
development and operations teams. But it is difficult to scale this
way, because there are too few InfoSec engineers to go around—
especially ones who can work at the design and code level. This
means developers and operators need to be given more responsibil‐
ity for security, training in security principles and practices, and
tools to help them build and run secure systems.

Developers need to learn how to identify and mitigate security risks
in design through threat modeling, and how to leverage security fea‐
tures in their application frameworks and security libraries to pre‐
vent common security vulnerabilities like injection attacks. The
OWASP and SAFECode communities provide a lot of useful, free
tools and frameworks and guidance to help developers with under‐
standing and solving common application security problems in any
kind of system.

Making smaller changes in DevOps not only reduces operational
risk of failure; it also reduces security risks, because most small,
incremental changes do not meaningfully increase the system’s
attack surface. But a red flag should be raised whenever anyone
makes a high-risk change, such as changing crypto code or the con‐
figuration of a public network facing device. This can be done auto‐
matically on check-in. For example, at Etsy, they hash high-risk code
and automatically run unit tests as part of Continuous Integration
that will alert InfoSec if any of this code changes.

Self-Service Automated Security Scanning
If you want to make developers more responsible for application
security, you need to give them simple tools that work iteratively
and incrementally, and that provide fast and simple feedback.

Scanning applications for security vulnerabilities using automated
tools is fundamental to most security programs today. But rather
than relying on a centralized security scanning factory run by Info‐
Sec, DevOps organizations like Twitter and Netflix implement self-
service security tools for developers.

DevOpsSec: Security as Code | 39

http://bit.ly/1ielIgY
http://bit.ly/1ielIgY

While Dynamic Analysis Security Testing (DAST) tools and services
are important in testing web and mobile apps, they don’t play that
nicely in Continuous Integration or Continuous Delivery. Most of
these tools are designed to be run by security analysts or pen testers,
not a Continuous Integration server like Jenkins or Bamboo. While
you can run an attack proxy like OWASP’s ZAP in headless mode to
automatically scan a web app for common vulnerabilities, it’s diffi‐
cult to return unambiguous pass/fail results. And more importantly,
these tools can’t be used to test system-to-system APIs.

This means that Static Analysis Security Testing (SAST) becomes the
scanning technology of choice in Continuous Delivery. Developers
can take advantage of IDE plug-ins like Cigital’s SecureAssist, or
plug-ins from Coverity, Klocwork, Fortify, or Checkmarx, to catch
security problems and common coding mistakes as they are writing
code. Incremental static analysis pre-commit and commit checks
can also be wired into Continuous Integration to catch common
mistakes and anti-patterns quickly (full scans, which can take sev‐
eral hours to run on a large code base, need to be run separately,
outside of the pipeline). It’s important to tune these tools to mini‐
mize false positives, in order to provide developers with simple,
actionable, pass/fail feedback.

Wiring Security Tests into CI/CD
Scanning code for common security vulnerabilities and coding mis‐
takes isn’t enough. Developers need to include security testing as
part of their automated unit and integration tests for security fea‐
tures and functions: positive and negative tests on authentication,
access control, and auditing functions and security libraries. Write
positive and negative API-level integration tests to check that secu‐
rity functions are working correctly: that you can’t perform an
action if you haven’t authenticated, that you can’t see or change
information for a different account, and so on.

Then script system-level attacks in Continuous Delivery using tools
that behave well in CI/CD, like Gauntlt/, Mittn, or BDD-Security.
Some common tests that can be done using tools like Gauntlt
include using nmap to check for open ports, checking that SSL is
configured correctly, attempting SQL injections, and testing for
high-severity vulnerabilities like Heartbleed.

40 | Chapter 2: Adopting DevOps in Financial Systems

http://gauntlt.org/
https://github.com/F-Secure/mittn
http://www.continuumsecurity.net/bdd-intro.html
http://bit.ly/1isPuiw

11 See http://bit.ly/1OfrDig.

Coming up with good tests takes a good understanding of the appli‐
cation, the runtime environment, and security tools, bringing devel‐
opers, Ops, and InfoSec together. Like automating integration test‐
ing or acceptance testing, it will take a while to build up a strong set
of security tests in Continuous Delivery. Start by building a security
smoke test: a basic regression test that can be run early in the pipe‐
line and in production to catch common and important security
problems, and to ensure that security configurations are correct.

Automating security testing makes it easy to collect metrics on the
security posture of the application, and to make this information
available to everyone—development, Ops, InfoSec, and compliance
—as part of the team’s CI/CD dashboard.

There is still a place for pen tests and comprehensive security audits
in Continuous Delivery, and not just to meet regulatory require‐
ments. The real value in a pen test or a security audit is as a health
check on the effectiveness of your security practices and controls.
Treat the results the same as a production failure. Run them through
a postmortem review to understand the root causes: what you need
to improve in your training, reviews, testing, and other checks; what
you need to change in your design or coding practices. Just like with
a production failure, it’s not enough to fix the problem. You have to
make sure to prevent problems from happening again.

Supply Chain Security: A System Is Only as Secure as the
Sum of Its Parts
Today’s Agile and DevOps teams take extensive advantage of open
source libraries to reduce development time and costs—which
means that they also inherit quality problems and security vulnera‐
bilities from other people’s code.

According to Sonatype (who run the Central Repository, the world’s
largest repo for open source software), 80% of application code
today comes from libraries and frameworks—and a lot of this code
has serious problems in it.11 They looked at 17 billion download
requests from 106,000 different organizations in 2014 and found
that:

DevOpsSec: Security as Code | 41

http://bit.ly/1OfrDig

12 Source: http://bit.ly/1ig8HE4.

Large software and financial services companies are using an aver‐
age of 7,600 suppliers. These companies sourced an average of
240,000 software “parts” in 2014, of which 15,000 included known
vulnerabilities.12

More than 50,000 of the software components in the Central Repos‐
itory have known security vulnerabilities. One in every 16 download
requests is for software with at least one known security vulnerabil‐
ity. And on average, 50 new critical vulnerabilities in open source
software are reported every day.

Scared yet? You should be. You need to know what open source code
is included in your apps and when this changes, and review this
code for known security vulnerabilities.

Luckily, this can be done automatically. Open source tools like
OWASP’s Dependency Check and commercial tools like Sonatype
Nexus Lifecycle can be wired into the CI/CD pipeline to detect open
source dependencies, identify known security vulnerabilities, and
fail the build automatically if serious problems are found.

Secure Infrastructure as Code
The same ideas and controls need to be followed when making
changes to infrastructure. This can easily be done using modern
configuration management tools like Puppet, Chef, and CFEngine.

These tools make it easy to set up standardized configurations
across the environment using templates, minimizing the security
risk that one unpatched server can be exploited by hackers, as well
as the operational risks of a server being set up incorrectly (as we
saw in the Knight case study). All the configuration information for
the managed environment is visible in a central repository, and
under version control. This means that when a vulnerability is
reported in a software component like OpenSSL, it is easy to identify
which systems need to be patched, and it is easy to push the patch
out too. These tools also provide file integrity monitoring and give
you control over configuration drift: they automatically audit run‐
time configurations to make sure that they match definitions, alert
when something is missing or wrong, and automatically correct it.

42 | Chapter 2: Adopting DevOps in Financial Systems

http://bit.ly/1ig8HE4

Puppet manifests and Chef cookbooks need to be written and
reviewed with security in mind. Unit tests for Puppet and Chef
should include security checks. Build standard hardening steps into
your recipes, instead of using scripts or manual checklists. Security
standards like the Center for Internet Security (CIS) benchmarks
and NIST requirements can be burned into Puppet and Chef defini‐
tions. There are several examples of Puppet modules and Chef cook‐
books available to help harden Linux systems against security guide‐
lines like CIS and the Defense Information Systems Agency’s Secu‐
rity Technical Implementation Guide (STIG).

Security Doesn’t End with Development or Deployment
Another key part of DevOpsSec is tying security into application
monitoring and metrics and runtime checks.

Security monitoring in many enterprises is the responsibility of a
Security Operations Center (SOC), manned by security analysts who
focus on anomalies in network traffic. But security also needs to be
tied into application and operations monitoring. This means build‐
ing instrumentation and intrusion detection into the application
using a design framework like OWASP’s AppSensor, and making
application attack data and other anomalies visible to operations
and developers, as well as to the SOC. This enables what Zane
Lackey at Signal Sciences calls “attack-driven defense”.

Security runtime checks should also be done as part of application
operations. Netflix’s Security Monkey and Conformity Monkey
illustrate the kinds of automated continuous checks that can be done
in online services. These are rule-driven services that automatically
monitor the environment to detect changes and to ensure that con‐
figurations match predefined definitions, looking for violations of
security policies and common security configuration weaknesses (in
the case of Security Monkey) or configurations that do not meet
predefined standards (Conformity Monkey). They run periodically
online, notifying operations and InfoSec when something is wrong.

While checks like these are particularly important in a public cloud
environment like Netflix’s where changes are constantly being made
by developers, the same ideas can be extended to any system, con‐
stantly checking to ensure that systems are always set up correctly
and safely.

DevOpsSec: Security as Code | 43

http://bit.ly/1ielSos
http://bit.ly/1ielTsE

13 See https://www.whitehatsec.com/press-releases/featured/2015/05/21/pressrelease.html.

Continuous Delivery (and DevOps) as a Security
Advantage
A major problem that almost all organizations face is that even
when they know that they have a serious security vulnerability in a
system, they can’t get the fix out fast enough to stop attackers from
exploiting the vulnerability.

The longer vulnerabilities are exposed, the more likely it is that the
system will be, or has already been, attacked. WhiteHat Security,
which provides a service for scanning websites for security vulnera‐
bilities, regularly analyzes and reports on vulnerability data that it
collects. Using data from 2013 and 2014, WhiteHat found that 35%
of finance and insurance websites were “always vulnerable,” mean‐
ing that these sites had at least one serious vulnerability exposed
every single day of the year. Only 25% of finance and insurance sites
were vulnerable for less than 30 days of the year. On average, serious
vulnerabilities stayed open for 739 days, and only 27% of serious
vulnerabilities were fixed at all, because of the costs, risks, and over‐
head involved in getting patches out.13

Continuous Delivery, and collaboration between developers, opera‐
tors, and InfoSec staff working closely together, can close vulnerabil‐
ity windows. Most security patches are small and don’t take long to
code. A repeatable, automated Continuous Delivery pipeline means
that you can figure out and fix a security bug or download a patch
from a vendor, test to make sure that it doesn’t introduce a regres‐
sion, and get it out quickly, with minimal cost and risk. This is in
direct contrast to “quick fixes” done under pressure that have resul‐
ted in failures in the past.

44 | Chapter 2: Adopting DevOps in Financial Systems

https://www.whitehatsec.com/press-releases/featured/2015/05/21/pressrelease.html

14 Quote from Zane Lackey of Signal Sciences in discussion with the author, August 11,
2015.

Callout: The Honeymoon Effect
There appears to be another security advantage to moving fast in
DevOps. Recent research shows that smaller, more frequent
changes may make systems safer from attackers, through “the Hon‐
eymoon Effect”.

Legacy code with known vulnerabilities is a more common and eas‐
ier point of attack. New code that is changed frequently is harder
for attackers to follow and understand, and once they understand
it, it might change again before they can exploit a vulnerability.
Sure, this is a case of “security through obscurity”—a weak defen‐
sive position—but it could offer an edge to fast-moving organiza‐
tions.

Security Can No Longer Be a Blocker
In DevOps, “security can no longer be a blocker—in places where
this is part of the culture, a big change will be needed.”14 Information
security needs to be engaged much closer to development and oper‐
ations, and security needs to become part of development and oper‐
ations, how they think and how they work. This means security has
to become more engineering-oriented and less audit-focused, and a
lot more collaborative—which is what DevOps is all about.

Compliance as Code
Earlier we looked at the extensive compliance obligations that finan‐
cial organizations have to meet. Now let’s see how DevOps can be
followed to achieve what Justin Arbuckle at Chef calls “Compliance
as Code”: building compliance into development and operations,
and wiring compliance policies and checks and auditing into Con‐
tinuous Delivery, so that regulatory compliance becomes an integral
part of how DevOps teams work on a day-to-day basis.

One way to do this is by following the DevOps Audit Defense Tool‐
kit, a free, community-built process framework written by James

Compliance as Code | 45

http://bit.ly/1UEdbWh
http://bit.ly/1UEdbWh
http://bit.ly/1Y8uy0v
http://bit.ly/1Y8uy0v

15 For example, see how Etsy supports PCI DSS: http://bit.ly/1UD6J1y.

DeLuccia IV, Jeff Gallimore, Gene Kim, and Byron Miller. The Tool‐
kit builds on real-life examples of how DevOps is being followed
successfully in regulated environments, on the Security as Code
practices that we’ve just looked at, and on disciplined Continuous
Delivery.15 It’s written in case study format, describing compliance at
a fictional organization, laying out common operational risks and
control strategies, and showing how to automate the required con‐
trols.

Up-Front Policies
Compliance as Code brings management, compliance, internal audi‐
tors, the project management office, and InfoSec to the table,
together with development and operations. Compliance policies and
rules and control workflows need to be defined up front by all of
these stakeholders working together. Management needs to under‐
stand how operational risks and other risks will be controlled and
managed through the pipeline. Any changes to policies, rules, or
workflows need to be formally approved and documented, for
example in a Change Advisory Board (CAB) meeting.

But instead of relying on checklists and procedures and meetings,
the policies and rules are enforced (and tracked) through automated
controls, which are wired into the Continuous Delivery pipeline.
Every change ties back to version control and a ticketing system for
traceability and auditability: all changes have to be made under a
ticket, and the ticket is automatically updated along the pipeline,
from the initial request for work all the way to deployment.

Automated Gates and Checks
The first approval gate is mostly manual. Every change to code and
configuration must be reviewed pre-commit. This helps to catch
mistakes, and makes sure that no changes are made without at least
one other person checking to make sure that they were done cor‐
rectly. High-risk code (defined by the team, management, compli‐
ance, and InfoSec) must also have a subject-matter expert (SME)
review: for example, security-sensitive code must be reviewed by a
security expert. Periodic checks are done by management to ensure
that reviews are being done consistently and responsibly, and that

46 | Chapter 2: Adopting DevOps in Financial Systems

http://bit.ly/1UD6J1y

no “rubber stamping” is going on. The results of all reviews are
recorded in the ticket. Any follow-up actions that aren’t immediately
addressed are added to the team’s backlog as another ticket.

In addition to manual reviews, automated static analysis checking is
also done to catch common security bugs and coding mistakes (in
the IDE, and in the CI/CD pipeline). Any serious problems found
will fail the build.

Once checked in, all code is run through the automated test pipe‐
line. The Audit Defense Toolkit assumes that that the team follows
test-driven development, and outlines an example set of tests that
should be executed.

Infrastructure changes are done using an automated configuration
management tool like Puppet or Chef, following the same set of
controls:

• Changes are code reviewed pre-commit.
• High-risk changes (again, as defined by the team) must go

through a second review by an SME.
• Static analysis/lint checks are done automatically in the pipeline.
• Automated tests are executed using a test framework like rspec-

puppet, Chef Test Kitchen, or Serverspec.
• Changes are deployed to test and staging in sequence with auto‐

mated smoke testing and integration testing.

And again, every change is tracked through a ticket and logged.

Managing Changes
Because DevOps is about making small changes, the Audit Defense
Toolkit assumes that most changes can be treated as standard (rou‐
tine): changes that are essentially preapproved by management and
therefore do not require CAB approval.

It also assumes that bigger changes will be made “dark”: that is, that
they will be made in small, safe, and incremental steps, protected
behind runtime feature switches that are turned off by default. The
features will only be fully rolled out with coordination between
development, Ops, compliance, and other stakeholders.

Any problems found in production are reviewed through postmor‐
tems, and tests are added back into the pipeline to catch the prob‐
lems (following TDD principles).

Compliance as Code | 47

Code Instead of Paperwork
Compliance as Code tries to minimize paperwork and overhead.
You still need clear, documented policies that define how changes
are approved and managed, and checklists for procedures that can‐
not be automated. However, most of the procedures and the appro‐
val gates are enforced through automated rules in the CI/CD pipe‐
line, and you can lean on the automated pipeline to ensure that all of
the steps are followed consistently and take advantage of the detailed
audit trail that gets automatically created.

This lets developers and operations engineers make changes quickly
and safely, although it does require a high level of engineering disci‐
pline. And in the same way that frequently exercising build and
deployment steps reduces operational risks, exercising compliance
on every change, following the same standardized process and auto‐
mated steps, reduces the risks of compliance violations. You—and
your auditors—can be confident that all changes are made the same
way, that all code is run through the same tests and checks, and that
everything is tracked the same way: consistent, complete, repeatable,
and auditable.

Standardization makes auditors happy. Audit trails make auditors
happy (obviously). Compliance as Code provides a beautiful audit
trail for every change, from when the change was requested and
why, to who made the change and what they changed, who reviewed
the change and what they found in their review, how and when the
change was tested, and when it was deployed. Except for the disci‐
pline of setting up a ticket for every change and tagging changes
with a ticket number, compliance becomes automatic and seamless
to the people who are doing the work.

Just as beauty is in the eye of the beholder, compliance is in the
opinion of the auditor. Auditors may not understand or agree with
this approach at first. You will need to walk them through it and
prove that the controls work—but that shouldn’t be too difficult. As
Dave Farley of Continuous Delivery Ltd put it in a conversation in
July 2015:

I have had experience in several finance firms converting to Con‐
tinuous Delivery. The regulators are often wary at first, because
Continuous Delivery is outside of their experience, but once they
understand it, they are extremely enthusiastic. So regulation is not
really a barrier, though it helps to have someone that understands

48 | Chapter 2: Adopting DevOps in Financial Systems

http://www.continuous-delivery.co.uk/

16 E. Michael Maximilien, “Extreme Agility at Facebook”, November 11, 2009.

the theory and practice of Continuous Delivery to explain it to
them at first.
If you look at the implementation of a deployment pipeline, a core
idea in Continuous Delivery, it is hard to imagine how you could
implement such a thing without great traceability. With very little
additional effort the deployment pipeline provides a mechanism for
a perfect audit trail. The deployment pipeline is the route to pro‐
duction. It is an automated channel through which all changes are
released. This means that we can automate the enforcement of
compliance regulations—“No release if a test fails,” “No release if a
trading algorithm wasn’t tested,” “No release without sign-off by an
authorised individual,” and so on. Further, you can build in mecha‐
nisms that audit each step, and any variations. Once regulators see
this, they rarely wish to return to the bad old days of paper-based
processes.

Continuous Delivery Versus Continuous
Deployment
The DevOps Audit Defense Toolkit tries to make a case to an audi‐
tor for Continuous Deployment in a regulated environment: that
developers, following a consistent, disciplined process, can safely
push changes out automatically to production once the changes pass
all of the reviews and automated tests and checks in the CD pipeline.

Continuous Deployment has been made famous at places like Flickr,
IMVU (where Eric Ries developed the ideas for the Lean Startup
method), and Facebook:

Facebook developers are encouraged to push code often and
quickly. Pushes are never delayed and [are] applied directly to parts
of the infrastructure. The idea is to quickly find issues and their
impacts on the rest of the system and surely [fix] any bugs that
would result from these frequent small changes.16

While organizations like Etsy and Wealthfront (who we will look at
later) work hard to make Continuous Deployment safe, it is scary to
auditors, to operations managers, and to CTOs like me who have
been working in financial technology and understand the risks
involved in making changes to a live, business-critical system.

Continuous Delivery Versus Continuous Deployment | 49

http://cacm.acm.org/blogs/blog-cacm/51564-extreme-agility-at-facebook/fulltext
http://theleanstartup.com/
http://theleanstartup.com/

17 In Blue-Green deployment, you run two production environments (“blue” and
“green”). The blue environment is active. After changes are rolled out to the green envi‐
ronment, customer traffic is rerouted using load balancing from the blue to the green
environment. Now the blue environment is available for updating.

Continuous Deployment requires you to shut down a running appli‐
cation on a server or a virtual machine, load new code, and restart.
This isn’t that much of a concern for stateless web applications with
pooled connections, where browser users aren’t likely to notice that
they’ve been switched to a new environment in Blue-Green deploy‐
ment.17 There are well-known, proven techniques and patterns for
doing this that you can follow with confidence for this kind of situa‐
tion.

But deploying changes continuously during the day at a stock
exchange connected to hundreds of financial firms submitting thou‐
sands of orders every second and where response times are meas‐
ured in microseconds isn’t practical. Dropping a stateful FIX session
with a trading counterparty and reconnecting, or introducing any
kind of temporary slowdown, will cause high-speed algorithmic
trading engines to panic. Any orders that they have in the book will
need to be canceled immediately, creating a noticeable effect on the
market. This is not something that you want to happen ever, never
mind several times in a day.

It is technically possible to do zero-downtime deployments even in
an environment like this, by decoupling API connection and session
management from the business logic, automatically deploying new
code to a standby system, starting the standby and primary systems
up, and synchronizing in-memory state between the systems, trig‐
gering automated failover mechanisms to switch to the standby, and
closely monitoring everything as it happens to make sure that noth‐
ing goes wrong.

But do the benefits of making small, continuous changes in produc‐
tion outweigh the risks and costs involved in making all of this
work?

During trading hours, every part of every financial market system is
expected to be up and responding consistently, all the time. But
unlike consumer Internet apps, financial systems don’t need to run
24/7/365. This means that most financial institutions have mainte‐

50 | Chapter 2: Adopting DevOps in Financial Systems

nance windows where they can safely make changes. So why not
continue to take advantage of this?

Some proponents of Continuous Deployment argue that if you don’t
exercise your ability to continuously push changes out to produc‐
tion, you cannot be certain that it will work if you need to do it in an
emergency. But you don’t need to deploy changes to production 10
or more times per day to have confidence in your release and
deployment process. As long as you have automated and standar‐
dized your steps, and practiced them in test and exercised them in
production, the risks of making a mistake will be low.

Another driver behind Continuous Deployment is that you can use
it to run quick experiments, to try out ideas for new features or to
evaluate alternatives through A/B testing. This is important if you’re
an online consumer Internet startup. It’s not important if you’re run‐
ning a stock exchange or a clearinghouse. While a retail bank may
want to experiment with improvements to its consumer website’s
look and feel, most changes to financial systems need forward plan‐
ning and coordination, and advance notice—not just to operations,
but to partners and customers, to compliance and legal, and often to
regulators.

Changes to APIs and reporting specifications have to be certified
with counterparties. Changes to trading rules and risk management
controls need to be approved by regulators in advance. Even algo‐
rithmic trading firms that are constantly tuning their models based
on live feedback need to go through a testing and certification pro‐
cess when they make changes to their code.

In order to minimize operational and technical risk, financial indus‐
try regulators are demanding more formal control over and trans‐
parency in changes to information systems, not less. New regula‐
tions like Reg SCI and MiFID II require firms to plan out and
inform participants and regulators of changes in advance; to prove
that sufficient testing and reviews have been completed before (and
after) changes are made to production systems; and to demonstrate
that management and compliance are aware of, understand, and
approve of all changes.

It’s difficult to reconcile these requirements with Continuous
Deployment—at least, for heavily regulated core financial transac‐
tion processing systems. This is why we focus on Continuous Deliv‐
ery in this book, not Continuous Deployment.

Continuous Delivery Versus Continuous Deployment | 51

Both approaches leverage an automated testing and deployment
pipeline, with built-in auditing. With Continuous Delivery, changes
are always ready to be deployed—which means that if you need to
push a fix or patch out quickly and with confidence, you can. Con‐
tinuous Delivery also provides a window to review, sign off on, and
schedule changes before they go to production. This makes it easier
for DevOps to work within ITIL change management and other
governance frameworks, and to prove to regulators that the risk of
change is being managed from the top down. Continuous Delivery
puts control over system changes clearly into the hands of the busi‐
ness, not developers.

DevOps for Legacy Systems
Introducing Continuous Delivery, Infrastructure as Code, and simi‐
lar practices into a legacy environment can be a heavy lift. There are
usually a lot of different technology platforms and application archi‐
tectures to deal with, and outside of Linux and maybe Windows
environments, there isn’t a lot of good DevOps tooling support
available yet for many legacy systems.

From Infrastructure to Code
It’s a massive job for an enterprise running thousands of apps on
thousands of servers to move its infrastructure into code. Even with
ITIL and other governance frameworks, many enterprises aren’t
sure how many applications they run and where they are running,
never mind the details of how the systems are configured. How are
they supposed to get this information into code for tools like Chef,
Puppet, and Ansible?

This is what a tech startup called ScriptRock is taking on. Scrip‐
tRock’s cloud-based service captures configuration details from
running systems (physical or virtual servers, databases, or cloud
services), and tracks changes to this information over time. You can
use it as a Tripwire-like detective change control tool, to alert on
changes to configuration and track changes over time, or to audit
and visualize configuration management and identify inconsisten‐
cies and vulnerabilities.

ScriptRock takes this much further, though. You can establish poli‐
cies for different systems or types of systems, and automatically cre‐
ate fine-grained tests to check that the correct version of software is

52 | Chapter 2: Adopting DevOps in Financial Systems

18 Dave Farley of Continuous Delivery Ltd in discussion with the author, July 24, 2015.

installed on a system, that specific files or directories exist, that spe‐
cific ports are open or closed, or that certain processes are running.
ScriptRock can also generate manifests that can be exported into
tools like Puppet, Chef, or Ansible, or Microsoft PowerShell DSC or
Docker. This allows you to bring infrastructure configuration into
code in an efficient and controlled way, with a prebuilt test frame‐
work.

IBM and other enterprise vendors are jumping in to fill in the tool‐
ing gap, with upgraded development and automated testing tools,
cross-platform release automation solutions, and virtualized cloud
services for testing. Organizations like Nationwide Insurance are
implementing Continuous Integration and Continuous Delivery on
zSeries mainframes, and a few other success stories prove that
DevOps can work in a legacy enterprise environment.

There’s no reason not to try to speed up development and testing, or
to shift security left into design and coding in any environment. It’s
just good sense to make testing and production configurations
match; to automate more of the compliance steps around change
management and release management; and to get developers more
involved with operations in configuring, packaging, deploying, and
monitoring the system, regardless of technology issues.

But you will reach a point of diminishing returns as you run into
limits of platform tooling and testability. According to Dave Farley:18

Software that was written from scratch, using the high levels of
automated testing inherent in Continuous Delivery looks different
from software that was not. Software written using automated test‐
ing to drive its design is more modular, more loosely coupled, and
more flexible—it has to be to make it testable. This imposes a bar‐
rier for companies looking to transition. There are successful
strategies to make this transition but it is a challenge to the devel‐
opment culture, both business and technical, and at the technical
level in terms of “how do you migrate a legacy system to make it
testable?”

Legacy constraints in large enterprises lead to what McKinsey calls a
“two-speed IT architecture”, where you have two types of systems:

DevOps for Legacy Systems | 53

http://www.continuous-delivery.co.uk/
http://bit.ly/1KnW04n

1. Slower-changing legacy backend “systems of record,” where all
the money is kept and counted

2. More agile frontend “systems of engagement,” where money is
made or lost—and where DevOps makes the most sense

DevOps adoption won’t be equal across the enterprise—at least, not
for a long time. But DevOps doesn’t have to be implemented every‐
where to realize real benefits. As the Puppet Labs “2015 State of
DevOps Report” found:

It doesn’t matter if your apps are greenfield, brownfield or legacy—
as long as they are architected with testability and deployability in
mind, high performance is achievable… The type of system—
whether it was a system of engagement or a system of record, pack‐
agedor custom, legacy or greenfield—is not significant. Continuous
Delivery can be applied to any system.

Implementing DevOps in Financial Markets
The drivers for adopting better operations practices in financial
enterprises are clear. The success stories are compelling. There are
challenges, as we’ve seen—but these challenges can be overcome.

So, where to start?

DevOps in the end is about changing the way that IT is done. This
can lead to fundamental changes in the structure and culture of an
entire organization. Look at what ING and Capital One did, and are
still doing.

54 | Chapter 2: Adopting DevOps in Financial Systems

https://puppetlabs.com/2015-devops-report
https://puppetlabs.com/2015-devops-report

Wealthfront: A Financial Services Unicorn
There are already DevOps unicorns in the financial industry, as
we’ve seen looking at LMAX, ING, and Capital One. Wealthfront is
another DevOps unicorn that shows how far DevOps ideas and
practices can be taken in financial services.

Wealthfront, a retail automated investment platform (“robo advi‐
sor”) that was launched in 2011, is not a conventional financial
services company. It started as an online portfolio management
game on Facebook called “KaChing,” and then, following Eric Ries’s
Lean Startup approach, continued to pivot to its current business
model. Today, Wealthfront manages $2.5 billion in assets for thou‐
sands of customers.

Wealthfront was built using DevOps ideas from the start. It follows
Continuous Deployment, where changes are pushed out by devel‐
opers directly, 10 or 20 or 50 or more times per day, like at Etsy.
And, like at Etsy, Wealthfront has an engineering-driven culture
where developers are encouraged to push code changes to produc‐
tion on their first day of work. But this is all done in a highly regu‐
lated environment that handles investment money and private cus‐
tomer records.

How do they do it? By following many of the practices and ideas
described in this book—to the extreme.

Developers at Wealthfront are obsessed with writing good, testable
code. They enforce consistent coding standards, run static analysis
(dependency checks, identifying forbidden function calls, source
code analysis with tools like FindBugs and PMD to find bad code
and common coding mistakes), and review all code changes.
They’ve followed test-driven development from the beginning to
build an extensive automated test suite. If code coverage is too low
in key areas of the code, the build fails. Every couple of months they
run Fix-It days to clean up tests and improve test coverage in key
areas. The same practices are followed for infrastructure changes,
using Chef.

Wealthfront engineers’ priorities are to optimize for safety as well as
speed. The company continually invests in its platforms and tools to
make it easy for engineers to do things the right way by default.
They routinely dark launch new features; they use canary deploy‐
ments to roll changes out incrementally; and they’ve built a runtime

Implementing DevOps in Financial Markets | 55

19 This profile is based on public presentations by Wealthfront employees, information
published on Wealthfront’s engineering blog, and a conversation with CTO David For‐
tunato on August 21, 2015.

20 See http://www.ibm.com/ibm/devops/us/en/casestudies/fidelity.html.

“immune system,” as described in the Lean Startup methodology, to
monitor logs and key application and system metrics after changes
are deployed and automatically roll back the most recent change if
it looks like something is going wrong.

Wealthfront has no operations staff or QA staff: the system is
designed, developed, tested, and run by engineers. All of this
sounds more like an engineering-driven Internet startup than a
financial services provider, and Wealthfront is the exception, rather
than the rule—at least, for now.19

Books like Gary Gruver and Tommy Mouser’s Leading the Transfor‐
mation (IT Revolution) and Jez Humble, Joanne Molesky, and Barry
O’Reilly’s Lean Enterprise (O’Reilly) can help you understand how to
implement Agile and DevOps in large-scale programs, how to man‐
age cultural change within the organization, secure executive spon‐
sorship, and shift toward Lean thinking across development and IT
operations and across the business as a whole.

Organizational change on this scale is expensive and risky. DevOps
can also be implemented incrementally, in small batches, from the
ground up, by building first on Agile development. Start by creating
self-service tools and putting them into the hands of developers, and
making testing more streamlined and efficient.

There’s a lot to be gained by going after obvious pain points first,
like manual configuration and deployment. As one example, just by
implementing automated deployment, Fidelity Worldwide Invest‐
ment was able to speed up development and testing on important
trading applications, significantly reducing time to market and sav‐
ing millions of dollars per year.20

Other initiatives like this are already underway in many financial
organizations. Some of them are creating cross-functional DevOps
teams like Capital One did to start: teams focused on automating
builds and release engineering, automating testing, extending Con‐
tinuous Integration into Continuous Delivery.

56 | Chapter 2: Adopting DevOps in Financial Systems

http://www.ibm.com/ibm/devops/us/en/casestudies/fidelity.html
http://bit.ly/1M9bjgL
http://bit.ly/1M9bjgL
http://thght.works/1OcAQc4

21 See http://www.thoughtworks.com/insights/blog/there-no-such-thing-devops-team.

While some practitioners see DevOps teams as an anti-pattern,21

these teams can help bridge silos between development, operations,
compliance, and InfoSec; open up communications; identify and
deal with inefficiencies; and bootstrap the adoption of new practices
and different ways of thinking and problem solving.

Where I work, we didn’t know about DevOps when we started down
this path—but DevOps happened anyway. When we launched the
business, the CEO made it clear that we all shared the same goals: to
ensure the integrity, reliability, and regulatory compliance of the ser‐
vice that we offered to our customers.

After we went live, we had to switch from a project delivery mindset
to an operational one. This meant putting operational readiness and
risk management ahead of features and schedules; spending more
time on change control, building in backward compatibility, testing
failover and rollback, preventing alert storms, and writing health
checks.

We started making smaller changes, because smaller changes were
easier to test and safer to deploy, and because working this way hel‐
ped us to keep up with rapidly changing operational and support
requirements as more customers came on board. And because we
were making smaller changes, and making them more often, we had
to automate more of the steps in delivery: testing and compliance
checks, system provisioning and configuration, deployment. The
more that we automated this work, the safer and easier it was for us
to make changes. The more often that we made changes, the better
we got at it, and the closer developers and operators became.

In my organization, operations and development are separate organ‐
izational silos reporting up to different executives, in different cities.
We also have independent QA. Although we adopted a culture of
code reviews and built our automated Continuous Integration plat‐
form a long time ago, and we continue automating checks and tests
and deployment steps in Continuous Delivery, we rely on the QA
team’s manual testing and reviews to catch edge conditions and to
hunt for bugs and look for holes in our automated test suites. Their
job—and their value—is to identify risks, to make sure our controls
are effective, and to help us improve.

Implementing DevOps in Financial Markets | 57

http://www.thoughtworks.com/insights/blog/there-no-such-thing-devops-team

We have these organizational silos because they help us to maintain
control over change, to minimize security risks, and to meet compli‐
ance and governance requirements. This structure doesn’t get in the
way of people working together. Developers and QA and Ops col‐
laborate closely on design and problem solving, setting up and con‐
figuring environments, conducting security reviews, coordinating
changes, responding to incidents. But market operations and QA
and compliance decide if and when changes go into production—
not developers. Deployment is done by operations, after the reviews
and checks are complete, with developers watching closely and
standing by. We don’t do Continuous Deployment, or anything close
to it. But we can still make changes quickly, taking advantage of
automation and agility. This is DevOps—just a different kind of
DevOps.

In the financial industry, regulators, compliance, risk managers, and
InfoSec are all concerned that business lines and development put
speed of delivery ahead of safety, security, and reliability. For us, and
for other financial firms, adopting DevOps practices like Continu‐
ous Delivery, Infrastructure as Code, and improved collaboration
between developers and operations engineers is about reducing
operational and technical risks, improving efficiency, and increasing
transparency—not just improving time to market. Done this way,
the ROI case for DevOps seems clear. An approach to managing IT
changes that reduces both time to delivery and operational costs,
minimizes technical and operational risks, and at the same time
makes compliance happy? That’s a win, win, win.

58 | Chapter 2: Adopting DevOps in Financial Systems

About the Author
Jim Bird is a CTO, software development manager, and project
manager with more than 20 years of experience in financial services
technology. He has worked with stock exchanges, central banks,
clearinghouses, securities regulators, and trading firms in more than
30 countries. He is currently the CTO of a major US-based institu‐
tional alternative trading system.

Jim has been working in Agile and DevOps environments in finan‐
cial services for several years. His first experience with incremental
and iterative (“step-by-step”) development was back in the early
1990s, when he worked at a West Coast tech firm that developed,
tested, and shipped software in monthly releases to customers
around the world—he didn’t realize how unique that was at the
time. Jim is active in the DevOps and AppSec communities, is a con‐
tributor to the Open Web Application Security Project (OWASP),
and occasionally helps out as an analyst for the SANS Institute.

	Cover
	Velocity
	Copyright
	Table of Contents
	Introduction
	Common Challenges
	DevOps Tools in the Finance Industry
	Financial Operations Is Not WebOps

	Chapter 1. Challenges in Adopting DevOps
	Enterprise Problems
	The High Cost of Failure
	System Complexity and Interdependency
	Weighed Down by Legacy
	Dealing with Legacy Controls

	The Costs of Compliance
	Compliance Roadblocks to DevOps
	Separation of Duties

	Security Threats to the Finance Industry
	Making the Case for Secure DevOps

	Chapter 2. Adopting DevOps in Financial Systems
	Enter the Cloud
	Introducing DevOps: Building on Agile
	From Continuous Integration to Continuous Delivery
	Protecting the Pipeline
	Test Automation
	Integration Testing
	Performance and Capacity Testing
	Security Testing
	Automated Infrastructure Testing
	Manual Testing in Continuous Delivery

	Changing Without Failing
	Minimize the Risk of Change
	Reduce the Batch Size of Changes
	Identify Problems Early
	Minimize MTTR
	Always Be Ready to Roll Back
	Incident Response—Always Be Prepared
	Get to the Root Cause(s)

	DevOpsSec: Security as Code
	Shift Security Left
	Self-Service Automated Security Scanning
	Wiring Security Tests into CI/CD
	Supply Chain Security: A System Is Only as Secure as the Sum of Its Parts
	Secure Infrastructure as Code
	Security Doesn’t End with Development or Deployment
	Continuous Delivery (and DevOps) as a Security Advantage
	Security Can No Longer Be a Blocker

	Compliance as Code
	Up-Front Policies
	Automated Gates and Checks
	Managing Changes
	Code Instead of Paperwork

	Continuous Delivery Versus Continuous Deployment
	DevOps for Legacy Systems
	Implementing DevOps in Financial Markets

