

©2015 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. #15306

“ Velocity is the most
 valuable conference I have
 ever brought my team to.
 For every person I took
 this year, I now have three
 who want to go next year.”
 — Chris King, VP Operations, SpringCM

Join business technology leaders,
engineers, product managers,
system administrators, and developers
at the O’Reilly Velocity Conference.
You’ll learn from the experts—and
each other—about the strategies,
tools, and technologies that are
building and supporting successful,
real-time businesses.

Santa Clara, CA
May 27–29, 2015

http://oreil.ly/SC15

http://oreil.ly/SC15

Courtney Nash and Mike Loukides

Everything Is Distributed

Everything Is Distributed
by Courtney Nash and Mike Loukides

Copyright © 2014 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department: 800-998-9938
or corporate@oreilly.com.

Editor: Brian Anderson
Production Editor: Kara Ebrahim
Proofreader: Kara Ebrahim

Cover Designer: Ellie Volckhausen
Interior Designer: David Futato
Illustrator: Rebecca Demarest

September 2014: First Edition

Revision History for the First Edition:

2014-08-26: First release

2015-03-24: Second release

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly Media, Inc. Everything Is Distributed and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their prod‐
ucts are claimed as trademarks. Where those designations appear in this book, and
O’Reilly Media, Inc. was aware of a trademark claim, the designations have been printed
in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher
and authors assume no responsibility for errors or omissions, or for damages resulting
from the use of the information contained herein.

ISBN: 978-1-491-91247-8

[LSI]

http://safaribooksonline.com
mailto:corporate@oreilly.com

Table of Contents

Everything Is Distributed. 1
Embracing Failure 2
Think Globally, Develop Locally 3
Data Are the Lingua Franca of Distributed Systems 4
Humans in the Machine 4

Beyond the Stack. 7
Cloud as Platform 8
Development as a Distributed Process 8
Infrastructure as Code 9
Containerization as Deployment 10
Monitoring as Testing 11
Is This DevOps? 12
Why Now? 12

Revisiting DevOps. 17
Empathy 17
Promise Theory 18
Blameless Postmortems 19
Beyond DevOps 19

Performance Is User Experience. 23
The Slow Web 23
The Human Impact 24
It’s Not Just the Desktop: It’s Mobile, Too 25
Selling It to Your Organization 25

iii

From the Network Interface to the Database. 29
Web Ops and Performance 29
Broadening the Scope 30

iv | Table of Contents

Everything Is Distributed

Courtney Nash

What is surprising is not that there are so many accidents. It is that
there are so few. The thing that amazes you is not that your system
goes down sometimes, it’s that it is up at all.

— Richard Cook

In September 2007, Jean Bookout, 76, was driving her Toyota Camry
down an unfamiliar road in Oklahoma, with her friend Barbara
Schwarz seated next to her on the passenger side. Suddenly, the Camry
began to accelerate on its own. Bookout tried hitting the brakes, ap‐
plying the emergency brake, but the car continued to accelerate. The
car eventually collided with an embankment, injuring Bookout and

1

http://bloom.bg/1v9KsYE

killing Schwarz. In a subsequent legal case, lawyers for Toyota pointed
to the most common of culprits in these types of accidents: human
error. “Sometimes people make mistakes while driving their cars,” one
of the lawyers claimed. Bookout was older, the road was unfamiliar,
these tragic things happen.

However, a recently concluded product liability case against Toyota
has turned up a very different cause: a stack overflow error in Toyota’s
software for the Camry. This is noteworthy for two reasons: first, the
oft-cited culprit in accidents—human error—proved not to be the
cause (a problematic premise in its own right), and second, it dem‐
onstrates how we have definitively crossed a threshold from software
failures causing minor annoyances or (potentially large) corporate
revenue losses into the realm of human safety.

It might be easy to dismiss this case as something minor: a fairly vanilla
software bug that (so far) appears to be contained to a specific car
model. But the extrapolation is far more interesting. Consider the self-
driving car, development for which is well underway already. We take
out the purported culprit for so many accidents, human error, and the
premise is that a self-driving car is, in many respects, safer than a tra‐
ditional car. But what happens if a failure that’s completely out of the
car’s control occurs? What if the data feed that’s helping the car to
recognize stop lights fails? What if Google Maps tells it to do something
stupid that turns out to be dangerous?

We have reached a point in software development where we can no
longer understand, see, or control all the component parts, both tech‐
nical and social/organizational—they are increasingly complex and
distributed. The business of software itself has become a distributed,
complex system. How do we develop and manage systems that are too
large to understand, too complex to control, and that fail in unpre‐
dictable ways?

Embracing Failure
Distributed systems once were the territory of computer science PhDs
and software architects tucked off in a corner somewhere. That’s no
longer the case. Just because you write code on a laptop and don’t have
to care about message passing and lockouts doesn’t mean you don’t
have to worry about distributed systems. How many API calls to
external services are you making? Is your code going to end up on
desktop sites and mobile devices—do you even know all the possible

2 | Everything Is Distributed

http://bloom.bg/1v9KsYE
http://bloom.bg/1v9KsYE
http://1.usa.gov/1v9KQGB
http://bit.ly/1v9KVKG

devices? What do you know now about the network constraints that
may be present when your app is actually run? Do you know what your
bottlenecks will be at a certain level of scale?

One thing we know from classic distributed computing theory is that
distributed systems fail more often, and the failures often tend to be
partial in nature. Such failures are not just harder to diagnose and
predict; they’re likely to be not reproducible—a given third-party data
feed goes down or you get screwed by a router in a town you’ve never
even heard of before. You’re always fighting the intermittent failure,
so is this a losing battle?

The solution to grappling with complex distributed systems is not
simply more testing, or Agile processes. It’s not DevOps, or continuous
delivery. No one single thing or approach could prevent something
like the Toyota incident from happening again. In fact, it’s almost a
given that something like that will happen again. The answer is to
embrace that failures of an unthinkable variety are possible—a vast
sea of unknown unknowns—and to change how we think about the
systems we are building, not to mention the systems within which we
already operate.

Think Globally, Develop Locally
Okay, so anyone who writes or deploys software needs to think more
like a distributed systems engineer. But what does that even mean? In
reality, it boils down to moving past a single-computer mode of think‐
ing. Until very recently, we’ve been able to rely on a computer being a
relatively deterministic thing. You write code that runs on one ma‐
chine, you can make assumptions about what, say, the memory lookup
is. But nothing really runs on one computer any more—the cloud is
the computer now. It’s akin to a living system, something that is con‐
stantly changing, especially as companies move toward continuous
delivery as the new normal.

So, you have to start by assuming the system in which your software
runs will fail. Then you need hypotheses about why and how, and ways
to collect data on those hypotheses. This isn’t just saying “we need more
testing,” however. The traditional nature of testing presumes you can
delineate all the cases that require testing, which is fundamentally im‐
possible in distributed systems. (That’s not to say that testing isn’t
important, but it isn’t a panacea, either.) When you’re in a distributed
environment and most of the failure modes are things you can’t predict

Everything Is Distributed | 3

in advance and can’t test for, monitoring is the only way to understand
your application’s behavior.

Data Are the Lingua Franca of Distributed
Systems
If we take the living-organism-as-complex-system metaphor a bit fur‐
ther, it’s one thing to diagnose what caused a stroke after the fact versus
to catch it early in the process of happening. Sure, you can look at the
data retrospectively and see the signs were there, but what you want
is an early warning system, a way to see the failure as it’s starting, and
intervene as quickly as possible. Digging through averaged historical
time series data only tells you what went wrong, that one time. And in
dealing with distributed systems, you’ve got plenty more to worry
about than just pinging a server to see if it’s up. There’s been an ex‐
plosion in tools and technologies around measurement and monitor‐
ing, and I’ll avoid getting into the weeds on that here, but what matters
is that, along with becoming intimately familiar with how histo‐
grams are generally preferable to averages when it comes to looking
at your application and system data, developers can no longer think
of monitoring as purely the domain of the embattled system
administrator.

Humans in the Machine
There are no complex software systems without people. Any discus‐
sion of distributed systems and managing complexity ultimately must
acknowledge the roles people play in the systems we design and run.
Humans are an integral part of the complex systems we create, and we
are largely responsible for both their variability and their resilience (or
lack thereof). As designers, builders, and operators of complex sys‐
tems, we are influenced by a risk-averse culture, whether we know it
or not. In trying to avoid failures (in processes, products, or large sys‐
tems), we have primarily leaned toward exhaustive requirements and
creating tight couplings in order to have “control,” but this often leads
to brittle systems that are in fact more prone to break or fail.

And when they do fail, we seek blame. We ruthlessly hunt down the
so-called “cause” of the failure—a process that is often, in reality, more
about assuaging psychological guilt and unease than uncovering why
things really happened the way they did and avoiding the same

4 | Everything Is Distributed

https://www.youtube.com/watch?v=InyHBnd_chw
https://www.youtube.com/watch?v=InyHBnd_chw

outcome in the future. Such activities typically result in more controls,
engendering increased brittleness in the system. The reality is that
most large failures are the result of a string of micro-failures leading
up to the final event. There is no root cause. We’d do better to stop
looking for one, but trying to do so is fighting a steep uphill battle
against cultural expectations and strong, deeply ingrained psycholog‐
ical instincts.

The processes and methodologies that worked adequately in the ’80s,
but were already crumbling in the ’90s, have completely collapsed.
We’re now exploring new territory, new models for building,
deploying, and maintaining software—and, indeed, organizations
themselves.

Photo by Mark Skipper, used under a Creative Commons license.

Learn More
Planning for failure

• Bloomberg on the Toyota acceleration case
• An analysis of the case from NHTSA
• The role of human error in the incident
• “Resilience In Complex Adaptive Systems: Operating At The

Edge Of Failure”, Velocity New York 2013 keynote by Richard
Cook

• “What, Where and When is the Risk in System Design?”, Velocity
Santa Clara 2013 Keynote by Johan Bergström

• Learning from First Responders: When Your Systems Have to
Work, free ebook by Dylan Richard

Managing complexity

• In Search of Certainty, by Mark Burgess
• “Beyond Automation with CFEngine 3”, video by Mark Burgess
• Continuous Quality (O’Reilly), by Jeff Sussna
• Building Anti-Fragile Systems and Teams (O’Reilly), by Dave

Zwieback

Everything Is Distributed | 5

https://flic.kr/p/cFM3cd
http://bloom.bg/1v9KsYE
http://1.usa.gov/1v9KQGB
http://bit.ly/1v9KVKG
https://www.youtube.com/watch?v=PGLYEDpNu60
https://www.youtube.com/watch?v=PGLYEDpNu60
https://www.youtube.com/watch?v=BtJIumyCrtE
http://oreil.ly/YqGFM7
http://oreil.ly/YqGFM7
http://amzn.to/YqGKiM
http://oreil.ly/1qHCn9w
http://oreil.ly/1qHCq5p
http://oreil.ly/YqGMqK

Beyond the Stack

Mike Loukides

The shape of software development has changed radically in the last
two decades. We’ve seen many changes: the Internet, the Web, virtu‐
alization, and cloud computing. All of these changes point toward a
fundamental new reality: all computing has become distributed com‐
puting. The age of standalone applications has disappeared, and ap‐
plications that run on a single computer are almost inconceivable.
Distributed is the default; and whether an application is running on
Amazon Web Services (AWS), on a private cloud, or even on a desktop
or a mobile phone, it depends on the behavior of other systems and
services that aren’t under the developer’s control.

In the past few years, a new toolset has grown up to support the de‐
velopment of massively distributed applications. We call this new
toolset the Distributed Developer’s Stack (DDS). It is orthogonal to
the more traditional world of servers, frameworks, and operating sys‐
tems; it isn’t a replacement for the aged LAMP stack, but a set of tools to
make development manageable in a highly distributed environment.

The DDS is more of a meta-stack than a “stack” in the traditional sense.
It’s not prescriptive; we don’t care whether you use AWS or OpenStack,
whether you use Git or Mercurial. We do care that you develop for the
cloud, and that you use a distributed version control system. The DDS
is about the requirements for working effectively in the second decade
of the 21st century. The specific tools have evolved, and will continue
to evolve, and we expect you to evolve, too.

7

Cloud as Platform
AWS has revolutionized software development. It’s simple for a startup
to allocate as many servers as it needs, tailored to its requirements, at
low cost. A developer at an established company can short-circuit tra‐
ditional IT procurement channels, and assemble a server farm in mi‐
nutes using nothing more than a credit card.

Even applications that don’t use AWS or some other cloud implemen‐
tation are distributed. The simplest web page requires a server, a web
browser to view it, DNS servers for hostname resolution, and any
number of switches and routers to move bits from one place to another.
A web application that’s only slightly more complex relies on authen‐
tication servers, databases, and other web services for real-time data.
All these are externalities that make even the simplest application into
a distributed system. A power outage, router failure, or even a bad
cable in a city you’ve never heard of can take your application down.

I’m not arguing that the sky is falling because … cloud. But it is criti‐
cally important to understand what the cloud means for the systems
we deploy and operate. As the number of systems involved in an ap‐
plication grows, the number of failure modes grows combinatorially.
An application running over 10 servers isn’t 10 times as complex as an
application running on a single server; it’s thousands of times more
complex.

The cloud is with us to stay. Whether it’s public or private, AWS,
OpenStack, Microsoft Azure, or Google Compute Engine, applica‐
tions will run in the cloud for the foreseeable future. We have to deal
with it.

Development as a Distributed Process
We’ve made many advances in source control over the years, but until
recently we’ve never dealt with the fact that software development itself
is distributed. Our models have been based on the idea of lone “pro‐
grammers” writing monolithic “programs” that run on isolated “ma‐
chines.” We have had build tools, source control archives, and other
tools to make the process easier, but none of these tools really recognize
that projects require teams. Developers would work on their part of
the project, then try to resolve the mess in a massive “integration” stage
in which all the separate pieces are assembled.

8 | Beyond the Stack

https://wiki.openstack.org/wiki/Main_Page

The version control system Git recognizes that a team of developers
is fundamentally a distributed system, and that the natural process of
software development is to create branches, or forks, then merge those
branches back into a master repository. All developers have their own
local codebase, branching from master. When they’re ready, they
merge their their changes and push them back to master; at this point,
other members of the team can pull the changes to update their own
code bases. Each developer’s work is decoupled from others; team
members can work asynchronously, distributed in time as well as in
space.

Continuous integration tools like Jenkins and its predecessor, Hudson,
were among the first tools to recognize the paradigm shift. Continuous
integration reflects the reality that, when development is distributed,
integrating the work of all the developers has to be a constant process.
It can’t be postponed until a major release is finished. It’s important to
move forward in small, incremental steps, making sure that the project
always builds and works.

Facilitating collaboration on a team of distributed developers will
never be a simple problem. But it’s a problem that becomes much more
tractable with tools that recognize the nature of distributed develop‐
ment, rather than trying to maintain the myth of the solitary
programmer.

Infrastructure as Code
Infrastructure as code has been a slogan at the Velocity Conference for
some years now. But what does that mean?

Cloud computing lets developers allocate servers as easily as they al‐
locate memory. But as any ’90s sysadmin knows, the tough part isn’t
taking the server out of the box, it’s getting it set up and configured
correctly. And that’s a pain whether you’re sitting at a console terminal
with a green screen or ssh’ed into a virtual box a thousand miles away.
It’s an even bigger pain when you’ve grown from a single server or a
small cluster to hundreds of AWS nodes distributed around the world.

In the last decade, we’ve seen a proliferation of tools to solve this
problem. Chef, Puppet, CFEngine, Ansible, SaltStack, and other tools
capture system configurations in scripts, automating the configura‐
tion of computer systems, whether physical or virtual. The ability to
allocate machines dynamically and configure them automatically

Beyond the Stack | 9

http://jenkins-ci.org/
http://bit.ly/YqJ0qm
http://www.getchef.com/chef/
http://puppetlabs.com/
https://cfengine.com/
http://www.ansible.com/home
http://www.saltstack.com/

changes our relationship to computing resources. In the old days,
when something went wrong, a sysadmin had to nurse the system back
to health, whether by rebooting, reinstalling software, replacing a disk
drive, or something else. When something was broken, you had to fix
it. That still may be true of our laptops or phones, but it’s no longer
true of our production infrastructure. If something goes wrong with
a server on AWS, you delete it, and start another one. It’s easier, simpler,
quicker, cheaper. A small operations staff can manage thousands, or
tens of thousands, of servers. With the appropriate monitoring tools,
it’s even possible to automate the process of identifying a malfunc‐
tioning server, stopping it, deleting it, and allocating a new one.

If configuration is code, then configuration must be considered part
of the software development process. It’s not enough to develop soft‐
ware on your laptop, and expect operations staff to build systems on
which to deploy. Development and deployment aren’t separate pro‐
cesses; they’re two sides of the same thing.

Containerization as Deployment
Containers are the most recent addition to the stack. Containers go a
step beyond virtualization: a system like Docker lets you build a pack‐
age that is exactly what you need to deploy your software: no more,
and no less. This package is analogous to the standard shipping con‐
tainer that revolutionized transportation several decades ago. Rather
than carefully loading a transport ship with pianos, nuts, barrels of oil,
and what have you, these things are stacked into standard containers
that are guaranteed to fit together, that can be loaded and unloaded
easily, placed not only onto the ship but also onto trucks and trains,
and never opened until they reach their destination.

Containers are special because they always run the same way. You can
package your application in a Docker container and run it on your
laptop; you can ship it to Amazon and run it on an AWS instance; you
can ship it to a private OpenStack cloud and run it there; you can even
run it in on a server in your machine room, if you still have one. The
container has everything needed to run the code correctly. You don’t
have to worry about someone upgrading the operating system,
installing a new version of Apache or nginx, replacing a library with
a “better” version, or any number of things that can result in unpleas‐
ant surprises. Of course, you’re now responsible for keeping your con‐
tainers patched with the latest operating systems and libraries; you

10 | Beyond the Stack

http://slidesha.re/YqJgFB
https://www.docker.com/
http://wiki.nginx.org/Main

can’t rely on the sysadmins. But you’re in control of the process: your
software will always run in exactly the environment you specify. And
given the many ways software can fail in a distributed environment,
eliminating one source of failure is a good thing.

Monitoring as Testing
In a massively distributed system, software can fail in many ways that
you can’t test for. Test-driven development won’t tell you how your
applications will respond when a router fails. No acceptance test will
tell you how your application will perform under a load that’s 1,000
times the maximum you expected. Testing may occasionally flush out
a race condition that you hadn’t noticed, but that’s the exception rather
than the rule.

Netflix’s Chaos Monkey shows how radical the problem is. Because
systematic testing can never find all the problems in a distributed sys‐
tem, Netflix resorts to random vandalism. Chaos Monkey (along with
other members of Netflix’s Simian Army) periodically terminates ran‐
dom services in Netflix’s AWS cloud, potentially causing failures in
their production systems. These failures mostly go unnoticed, because
Netflix developers have learned to build systems that are robust and
resilient in the face of failure. But on occasion, Chaos Monkey reveals
a problem that probably couldn’t have been discovered through any
other means.

Monitoring is the next step beyond testing; it’s really continuous run-
time testing for distributed systems where testing is impossible. Mon‐
itoring tools such as Riemann, statsd, and Graphite tell you how your
systems are handling real-world conditions. They’re the tools that let
you know if a router has failed, if your servers have died, or if they’re
not holding up under an unexpected load. Back in the ’60s and ’70s,
computers periodically “crashed,” and system administrators would
scurry around figuring out what happened and getting them re-
booted. We no longer have the luxury of waiting for failures to happen,
then guessing about what went wrong. Monitoring tools enable us to
see problems coming, and when necessary, to analyze what happened
after the fact.

Monitoring also lets the developer understand what features are being
used, and which are not, and applications that are deployed as cloud
services lend themselves easily to A/B testing. Rather than designing
a monolithic piece of software, you start with what Eric Ries calls a

Beyond the Stack | 11

http://nflx.it/1dkWwjE
http://nflx.it/YqJRav
http://riemann.io/
https://github.com/etsy/statsd
https://github.com/graphite-project

minimum viable product—the smallest possible product that will give
you validated learning about what the customer really wants and re‐
sponds to—and then build out from there. You start with a hypothesis
about user needs, and constantly measure and learn how better to meet
those needs. Software design itself becomes iterative.

Is This DevOps?
No. The DDS stack is about the tools for working in a highly dis‐
tributed environment. These tools are frequently used by people in the
DevOps movement, but it’s important not to mistake the tools for the
substance. DevOps is about the culture of software development,
starting with developers and operations staff, but in a larger sense,
across companies as a whole. Perhaps the best statement of that is
Velocity speaker Jeff Sussna’s (@jeffsussna) post “Empathy: The Es‐
sence of DevOps”.

Most globally, DevOps is about the realization that software develop‐
ment is a business process, all businesses are software businesses, and
all businesses are ultimately human enterprises. To mistake the tools
for the cultural change is the essence of cargo culting.

The CIO of Fidelity Investments once remarked to Tim O’Reilly: “We
know about all the latest software development tools. What we don’t
know is how to organize ourselves to use them.” DevOps is part of the
answer to that business question: how should the modern enterprise
be organized to take advantage of the way software systems work now?
But it’s not just integration of development and IT operations. It’s also
integration of development and marketing, business modeling and
measurement, and, in a public sector context, policy making and
implementation.

Why Now?
All software is “web software,” even the software that doesn’t look like
web software. We’ve become used to gigantic web applications running
across millions of servers; Google and Facebook are in the forefront
of our consciousness. But the Web has penetrated to surprising places.
You might not think of enterprise applications as “web software,” but
it’s increasingly common for internal enterprise applications to have
a web interface. The fact that it’s all behind a firewall is irrelevant.

12 | Beyond the Stack

http://oreil.ly/YqKdxM
http://bit.ly/YqKgJW
http://bit.ly/YqKgJW

Likewise, we’ve heard many times that mobile is the future, and the
Web is dead. Maybe, if “the Web” means Firefox and Chrome. But the
first time the Web died, Nat Torkington (@gnat) said: “I’ve heard that
the Web is dead. But all the applications that have killed it are accessing
services using HTTP over port 80.” A small number of relatively un‐
interesting mobile applications are truly standalone, but most of them
are accessing data services. And those services are web services; they’re
using HTTP, running on Apache, and pushing JSON documents
around. Dead or not, the Web has won.

The Web has done more than win, though. The Web has forced all
applications to become distributed. Our model is no longer Microsoft
Word, Adobe InDesign, or even the original VMWare. We’re no longer
talking products in shrink-wrapped boxes, or even enterprise software
delivered in massive deployments, we’re talking products like Gmail
and Netflix that are updated and delivered in real time from thousands
of servers. These products rely on services that aren’t under the de‐
veloper’s control, they run on servers that are spread across many data
centers on all continents, and they run on a dizzying variety of
platforms.

The future of software development is bound up with distributed sys‐
tems, and all the complexity and indeterminacy that entails. We’ve
started to develop the tools necessary to make distributed systems
tractable. If you’re part of a software development or operations team,
you need to know about them.

Learn More
Cloud computing

• The Enterprise Cloud: Lessons Learned (O’Reilly), by James Bond
• AWS System Administration (O’Reilly), by Mike Ryan
• OpenStack Operations Guide (O’Reilly), by Tom Fifield, Diane

Fleming, Anne Gentle, Lorin Hochstein, Jonathan Proulx, Ever‐
ett Toews, and Joe Topjian

• eCommerce in the Cloud (O’Reilly), by Kelly Goetsch
• Resilience and Reliability on AWS (O’Reilly), by Jurg van Vliet,

Flavia Paganelli, and Jasper Geurtsen

Beyond the Stack | 13

http://oreil.ly/1paaRWJ
http://oreil.ly/1pabdNb
http://bit.ly/openstack-ops-guide
http://bit.ly/ecommerce_in_the_cloud
http://bit.ly/Resilience_Reliability_AWS

• 60 Recipes for Apache CloudStack (O’Reilly), by Sebastien
Goasguen

Distributed development

• Jenkins: The Definitive Guide (O’Reilly), by John Ferguson Smart
• Version Control with Git (O’Reilly), by Jon Loeliger and Matthew

McCullough
• Git Pocket Guide (O’Reilly), by Richard E. Silverman
• Building Microservices (O’Reilly), by Sam Newman

Infrastructure as code

• Adam Jacob’s chapter on “Infrastructure as Code” from Web Op‐
erations (O’Reilly), by John Allspaw and Jesse Robbins

• Learning Chef (O’Reilly), by Mischa Taylor and Seth Vargo
• Customizing Chef (O’Reilly), by Jon Cowie
• Test-Driven Infrastructure with Chef (O’Reilly), by Stephen

Nelson-Smith
• Vagrant: Up and Running (O’Reilly, by Mitchell Hashimoto
• “Beyond Automation with CFEngine 3”, video by Mark Burgess
• Salt Essentials (O’Reilly), by Craig Sebenik
• Learning MCollective (O’Reilly), by Jo Rhett
• “Ansible - Python-Powered Radically Simple IT Automation”,

presentation by Michael DeHaan, PyCon 2014

Containerization

• Getting Started with Docker, a set of Docker tutorials from
OSCON 2014

• Interview with James Turnbull (Docker) at Velocity Santa Clara
2014

14 | Beyond the Stack

http://oreil.ly/1pablfJ
http://oreil.ly/1pabNdN
http://bit.ly/VCWG2e
http://bit.ly/git_pocket_guide
http://oreil.ly/1pabT5f
http://oreil.ly/1pacqnR
http://oreil.ly/1pacqnR
http://bit.ly/learn_chef
http://bit.ly/customizing-chef
http://bit.ly/test-driven-infra-chef
http://bit.ly/vagrant-UR
http://oreil.ly/1qHCn9w
http://oreil.ly/1pacIuI
http://bit.ly/learn-mcollective
https://www.youtube.com/watch?v=Qi0AhK7PMCI
http://oreil.ly/1pachRd
https://www.youtube.com/watch?v=CyAAY5IYUpQ

Monitoring and testing

• Using WebPagetest (O’Reilly), by Rick Viscomi, Andy Davies,
and Marcel Duran

• Monitoring with Ganglia (O’Reilly), by Matt Massie, Bernard Li,
Brad Nicholes, Vladimir Vuksan, Robert Alexander, Jeff
Buchbinder, Frederiko Costa, Alex Dean, Dave Josephsen, Peter
Phaal, and Daniel Pocock

• Feedback Control for Computer Systems (O’Reilly), by Philipp K.
Janert

• Complete Web Monitoring (O’Reilly), by Alistair Croll and Sean
Power

• “Beyond Averages”, Velocity New York 2013 presentation by Dan
Kuebrich

• Lightweight Systems for Realtime Monitoring, free ebook by Sam
Newman

Beyond the Stack | 15

http://oreil.ly/1padnMN
http://bit.ly/ganglia
http://bit.ly/feedback-control
http://oreil.ly/1padgkr
https://www.youtube.com/watch?v=InyHBnd_chw
http://oreil.ly/1padeZQ

Revisiting DevOps

Mike Loukides

It’s always easy to think of DevOps (or of any software industry para‐
digm) in terms of the tools you use; in particular, it’s very easy to think
that if you use Chef or Puppet for automated configuration, Jenkins
for continuous integration, and some cloud provider for on-demand
server power, that you’re doing DevOps. But DevOps isn’t about tools;
it’s about culture, and it extends far beyond the cubicles of developers
and operators.

Empathy
As Jeff Sussna says in “Empathy: The Essence of DevOps”:

…it’s not about making developers and sysadmins report to the same
VP. It’s not about automating all your configuration procedures. It’s
not about tipping up a Jenkins server, or running your applications
in the cloud, or releasing your code on GitHub. It’s not even about
letting your developers deploy their code to a PaaS. The true essence
of DevOps is empathy.

By “empathy,” Jeff means an intimate understanding between the de‐
velopment and operations teams. Tricks like co-locating dev and ops
desks, placing them under the same management, and so on, are just
a means to an end: the real goal is communications between organi‐
zations that can easily become antagonistic. Indeed, the origin of our
Velocity conference was the realization that, although the develop‐
ment and operations teams were frequently antagonists, they spoke
the same language and had the same goals.

17

http://bit.ly/YqKgJW

Promise Theory
In his blog post “The Promises of DevOps”, Mark Burgess discusses
the connection between DevOps and promise theory. Promise theory
is a radically different take on management: rather than basing man‐
agement on a top-down, command-and-control network of require‐
ments, promise theory builds services from networks of local prom‐
ises. Components of a system (which may be a machine or a human)
aren’t presented with a list of “requirements” that they must deliver;
they are asked to make “promises” about what they are able to deliver.
Promises are local commitments: a developer commits to writing a
specific piece of code by a specific date, operations staff commits to
keeping servers running within certain parameters.

Promise theory doesn’t naively assume that all promises will be kept.
Humans break their promises all the time; machines (which can also
be agents in a network of promises) just break. But with promise theo‐
ry, agents are aware of the commitments they’re making, and their
promises are more likely to reflect what they’re capable of performing.
As Burgess explains:

Dev promises things that Ops like; Ops promises things that Dev likes.
Both of them promise to keep the supply chain working at a certain
rate, i.e., Dev supplies at a rate that Ops can promise to deploy. By
choosing to express this as promises, we know the estimates were
made with accurate information by the agent responsible, not by ex‐
ternal wishful thinkers without a clue.

And a well-formed network of promises includes contingencies and
backups. What happens if Actor A doesn’t deliver on Promise X? It
may be counterintuitive, but a web of promises exposes its weak links
much more readily than a top-down chain of command. Networks of
promises provide services that are more robust and reliable than com‐
mand and control management pushed down from above. As Tim
Ottinger puts it in a pair of Tweets:

Some people waste their time trying to make a perfect, efficient ma‐
chine with human cogs.
— Tim Ottinger (@tottinge) June 12, 2014
Generally people would be better off with a productive, dynamic
community of talented human beings.
— Tim Ottinger (@tottinge) June 12, 2014

18 | Revisiting DevOps

http://markburgess.org/blog_devops.html
http://markburgess.org/blog_devops.html
http://bit.ly/1p9WMYB
http://bit.ly/1p9WOzy

That’s the difference between top-down management and promise
theory in a nutshell: are you building a machine made of human cogs,
or a community of talent?

Burgess is completely clear that DevOps isn’t about tools and tech‐
nologies. “Cooperation has nothing to do with computers or pro‐
gramming. The principles of cooperation are universal matters of in‐
formation exchange, and intent.” Cooperation, information exchange,
and networks of intent are first and foremost cultural issues. Likewise,
Sussna’s concept of “empathy” is about understanding (again, infor‐
mation exchange), and understanding is a cultural issue.

Blameless Postmortems
It’s one thing to talk about cultural change and understanding; it’s
something different to put it into practice. To make this concrete, let’s
talk about one particular practice: blameless postmortems at Etsy. As
John Allspaw writes, if a postmortem analysis is about understanding
what actually happened, it’s essential to do so in an atmosphere where
employees can give an account of events “without fear of punishment
or retribution.” A postmortem is about information exchange and
empathy (to use Sussna’s word). If we can’t find out what happened,
we have no hope of building systems that are more resilient.

Blameless postmortems are all the more important because of another
aspect of modern computing. Top-down management has long insis‐
ted that, when there’s a failure, it must be traced to a single root cause,
which usually ends up being “human error.” But for complex systems,
there is no root cause. This is an extremely important point: as we’ve
pointed out, all systems are distributed, and all systems are complex
systems. And almost all failures are the result of “perfect storms” of
unrelated events, not single failures or errors that could or should have
been anticipated. As Allspaw puts it, paraphrasing Richard Cook,
“failures in complex systems require multiple contributing causes,
each necessary but only jointly sufficient.”

Beyond DevOps
DevOps isn’t just about Dev and Ops. It’s about corporate management
as a whole.

If you’ve ever worked in a company where the project wasn’t over until
the blame was assigned (as I have), you know that the short-term result

Revisiting DevOps | 19

http://codeascraft.com/2012/05/22/blameless-postmortems/
http://bit.ly/1p9XfKi
http://bit.ly/1p9XfKi

of “single root cause” thinking is blame and shame for the individual
“responsible.” The long-term result is a solution that inevitably makes
the organization more brittle and failure-prone, and less agile, less able
to adapt to changing circumstances. Without a culture of understand‐
ing and empathy, it is impossible to get to real causes and to build
systems that are more resilient.

The conclusions we’re coming to are far-reaching. We’ve been discus‐
sing cultural change and DevOps, but we have hardly mentioned
computing systems, software developers, or infrastructure engineers.
It doesn’t matter a bit whether the postmortem is about a server outage
or bad lending practices; the same principles apply.

If all companies are software companies, then all companies have to
learn how to manage their online operations. But beyond that: on the
Web, we’ve seen dramatic decreases in product development time and
dramatic increases in reliability and performance. Can those increases
in productivity be extended through the whole enterprise, not just the
online group? We believe so. Can practices like blameless postmor‐
tems make corporations more resilient in the face of failure, in addi‐
tion to improving the lives of employees at every level? We believe so.
Adoption of DevOps principles across the enterprise, and not just in
the “online group,” will be a slow process, but it’s a necessary process.
In five or ten years, we’ll look back at who survived and who thrived,
and we’ll see that the enterprises that have built communities of col‐
laboration, mutual respect, and understanding have outperformed
their competition.

DevOps isn’t just about Dev and Ops. It’s about corporate management
as a whole; it’s about the entire corporate culture, from the janitors
(who promise to keep the building clean) to the CEO (who promises
to keep the company funded and the paychecks coming). Promise
theory has emerged as the intellectual framework underpinning that
change in culture. And Velocity is where we are discussing those
changes.

See you in Beijing or Barcelona!

20 | Revisiting DevOps

http://velocity.oreilly.com.cn/2014/
http://velocityconf.com/velocityeu2014

Learn More
DevOps

• “10+ Deploys Per Day: Dev and Ops Cooperation at Flickr”, Ve‐
locity 2009 presentation by John Allspaw and Paul Hammond

• DevOps in Practice, free ebook from J. Paul Reed
• The Phoenix Project, by Gene Kim, Kevin Behr, and George

Spafford
• Lean Enterprise: Adopting Continuous Delivery, DevOps, and

Lean Startup at Scale (O’Reilly), by Jez Humble, Barry O’Reilly,
and Joanne Molesky

• Continuous Delivery, by Jez Humble
• “What is DevOps?”, blog post by Mike Loukides
• Building a DevOps Culture, free ebook by Mandi Walls
• Training DevOps Staff, free ebook by Mandi Walls
• 5 Unsung Tools of DevOps, free ebook by Jonathan Thurman
• Interview with Gene Kim, Velocity Santa Clara 2014

Empathy and promise theory

• Continuous Quality (O’Reilly), by Jeff Sussna
• “Empathy: The Essence of DevOps”, blog post by Jeff Sussna
• “The Promises of DevOps”, blog post by Mark Burgess
• Interview with Mark Burgess, Velocity Santa Clara 2014
• Promise Theory: Principles and Applications, by Jan A. Bergstra

and Mark Burgess

Blameless postmortems

• Being Blameless (O’Reilly), by Dave Zwieback
• The Human Side of Postmortems, free ebook by Dave Zwieback
• John Allspaw’s post on blameless postmortems
• Interview with John Allspaw on blameless postmortems, Velocity

SC 2014

Revisiting DevOps | 21

https://www.youtube.com/watch?v=LdOe18KhtT4
http://oreil.ly/1pae6NV
http://bit.ly/1p8YV7F
http://oreil.ly/1padRTe
http://oreil.ly/1padRTe
http://amzn.to/1p9XYv1
http://oreil.ly/1padW9j
http://oreil.ly/1p8YPNr
http://oreil.ly/1pae34H
http://oreil.ly/1pae5cT
https://www.youtube.com/watch?v=KN7w6QjNTgs
http://oreil.ly/1qHCq5p
http://bit.ly/YqKgJW
http://markburgess.org/blog_devops.html
https://www.youtube.com/watch?v=VTR8GCP4n_M
http://amzn.to/1p9Yidd
http://oreil.ly/1paevjy
http://oreil.ly/1paejka
http://bit.ly/1paekoq
http://oreil.ly/1paeoUY

Performance Is User Experience

Lara Swanson and Courtney Nash

Despite a wealth of research, writing, and even media coverage of the
pain/cost of slow websites and apps, the Web is barely getting faster—
depending on who you ask, it may even be getting slower. Back at
Velocity 2009, a groundbreaking presentation by Google and Micro‐
soft engineers showed how serious performance is: imperceptibly
small increases in response time cause users to move to another site.
If response time is over a second, a measurable percentage of users just
click away. If your site takes four seconds to load, forget it: you don’t
exist. A fast website is not just a technology challenge, it is a user ex‐
perience imperative.

The Slow Web
Three primary factors contribute to the continuing problem of the
“slow web”:

• Lack of general awareness of importance of performance among
web developers, especially in more beginner/intermediate roles

• Design-heavy requirements (images and video) that increase page
size. New techniques like parallax design, responsive web design,
etc. can be significant performance hogs

• Third-party elements (scripts, APIs, social sharing features) aren’t
under your control, and can wreak havoc on performance

Web developers, designers, and frontend engineers all need to think
about performance from a more holistic perspective. They have to
master the basics (e.g., JavaScript minimization, network round-trip

23

http://www.youtube.com/watch?v=bQSE51-gr2s
http://www.youtube.com/watch?v=bQSE51-gr2s

reduction, image compression, etc.) and devise strategies to make the
end-user experience seem as fast and seamless as possible. They need
to exercise discipline around what to add to their pages: the latest video
or special JavaScript effect is likely to be counterproductive if it makes
the page slower and drives users away.

The Human Impact
Web performance is user experience. Fast page load time builds trust
in your site; it yields more returning visitors, more users choosing your
site over a competitor’s site, and more people trusting your brand.
Users expect pages to load in two seconds, and after three seconds, up
to 40% of users will abandon your site. Similar results have been noted
by major sites like Amazon, who found that 100 milliseconds of ad‐
ditional page load time decreased sales by one percent, and Google,
who lost 20% of revenue and traffic due to half a second increase in
page load time. Akamai has also reported that 75% of online shoppers
who experience an issue such as freezing, crashing, taking too long to
load, or having a convoluted checkout process will not buy from that
site.

Web performance impacts more than just ecommerce sites; improve‐
ments from page speed optimization apply to any kind of site. Users
will return to faster sites, evidenced in a study by Google Maps that
noted an increase in returning traffic when the Google Maps home‐
page weight was reduced from 100 KB to 80 KB. Additionally, page
load time is factored into search engine results, bumping faster sites
higher in the results list than slower sites.

Page load time also has a significant impact on mobile users’ experi‐
ence. Lara Swanson’s team at Etsy found an increased bounce rate of
12% on mobile devices when they added 160 KB of images to a page.
DoubleClick removed one client-side redirect and saw a 12% increase
in clickthrough rate on mobile devices. In another study, researchers
found that if Amazon changed all of their images to compressed JPEG
files, it would save 20% of the energy needed to load the page on a
phone, and on Facebook it would save 30%.

The bottom line is that your efforts to optimize your site have an effect
on the entire experience for your users, including battery life.

These numbers matter because collectively we are designing sites with
increasingly rich content—lots of dynamic elements, larger JavaScript

24 | Performance Is User Experience

files, beautiful animations, complex graphics, etc. You may focus on
optimizing design and layout, but those can come at a tradeoff with
page speed. Some responsively designed sites are irresponsible with
the amount of JavaScript and images they use to reformat a site for
smaller screen sizes.

Think about your most recent design. How many different font
weights were used? How many images did you use? How large were
the image files, and what file formats did you use? How did your design
affect the plan for markup and CSS structure?

It’s Not Just the Desktop: It’s Mobile, Too
In the past, developers relied on the assumption that people didn’t
expect mobile sites or apps to be as fast as the desktop. For a brief
romantic period (probably before the iPhone took off), this may have
been true. But the opposite holds, and strongly, now. If anything, users
expect their mobile devices to be faster than their desktops.

Expectations for website and app performance on mobile devices is
even more stringent than for desktops. They don’t care about network
constraints or how many server-client roundtrips you have to make
—they want things to load in under 4 seconds. Initial irritation starts
to set in at 1 second. As such, this is an area where the focus on user
experience must be even stronger, notably finding ways to make mo‐
bile experiences feel faster, even if they really aren’t.

The problems of the modern development or operations team are dif‐
ficult enough without dealing with the performance of devices you
don’t control, don’t even know about, and possibly can’t even test,
communicating over networks that may be slow or unreliable. But
that’s the world we live in, and those are the challenges we face.

Selling It to Your Organization
It’s one thing to know performance is important, and to understand
how to address performance problems technically. It’s a whole other
challenge to convince management to invest time in improving it.
Culture change may be the single most challenging aspect of imple‐
menting performance improvements, and it involves helping upper
management as well as your peers understand the importance of per‐
formance’s impact on your site’s user experience.

Performance Is User Experience | 25

Start by educating those around you. Teach them not only how to
positively affect page load time and perceived performance, but also
why performance is an important focus for your organization. Share
studies that detail the impact that performance has on business met‐
rics, or build your own experiments that show how a site speedup can
positively affect bounce rates, returning visitors, and other metrics that
your coworkers and upper management at your company care about.

Incentivize upper management to give you and others an opportunity
to work on improving the performance of your site. Run multiple page
speed tests using different locations and devices and share the filmstrip
or video versions with them. How does your site perform on a mobile
network, or on another continent? Comparing the videos of your
desktop page speed to what a mobile or global user may see will help
those around you feel what your users are likely experiencing. Another
tactic to incentivize upper management is comparing the video of your
site’s page load time to that of a competitor’s. How does your site stack
up? Could you be losing visitors to another site because it outperforms
yours?

Develop performance budgets for new projects and publicize your
site’s speed internally. Teach lunch and learns. Incorporate perfor‐
mance into designers’ and developers’ daily workflows using automa‐
ted testing and dashboards. Empower people to understand how their
work directly impacts your site’s end user experience, especially the
effect that they have on performance.

Learn More
The slow Web

• Web Page Size, Speed, and Performance, free ebook by Terrence
Dorsey

• “Mobile Web Stress: Understanding the Neurological Impact of
Poor Performance”, webcast by Tammy Everts

Frontend performance

• Getting Started with Web Performance(O’Reilly), by Daniel
Austin

• Designing for Performance (O’Reilly), by Lara Swanson

26 | Performance Is User Experience

http://oreil.ly/1paeHiR
http://www.oreilly.com/pub/e/3149
http://www.oreilly.com/pub/e/3149
http://oreil.ly/1paePPf
http://oreil.ly/1paeZ9r

• “Web performance is user experience”, blog post by Lara
Swanson

• High Performance Websites (O’Reilly), by Steve Souders
• Even Faster Websites (O’Reilly), by Steve Souders
• High Performance Browser Networking (O’Reilly), by Ilya

Grigorik
• Web Performance Daybook Volume 2 (O’Reilly), by Stoyan

Stefanov
• “Achieving Rapid Response Times in Large Online Services”,

presentation by Jeff Dean, Velocity 2014]

Mobile performance

• Programming the Mobile Web, 2nd Edition (O’Reilly), by Maxi‐
miliano Firtman

• High Performance iOS Apps (O’Reilly), by Gaurav Vaish
• Responsive & Fast (O’Reilly), by Guy Podjarny
• High Performance Responsive Design (O’Reilly), by Tom Barker
• “Speed Up Mobile Delivery by Squeezing Out Network Laten‐

cy”, webcast by Steve Miller-Jones

Selling performance in your organization

• Art of Application Performance Testing, 2nd Edition (O’Reilly),
by Ian Molyneux

• “4 Steps to a culture of performance”, blog post by Mehdi Daoudi
• Designing for Performance (O’Reilly), by Lara Swanson

Performance Is User Experience | 27

http://oreil.ly/1pa0TE6
http://oreil.ly/1gAdsB7
http://oreil.ly/1paf9h3
http://bit.ly/high-performance-browser
http://oreil.ly/web_perf_daybook_v2
https://www.youtube.com/watch?v=1-3Ahy7Fxsc
http://bit.ly/program_mobile_web_2e
http://oreil.ly/1pafQqo
http://oreil.ly/1pafMaq
http://oreil.ly/1pafLmT
http://www.oreilly.com/pub/e/3033
http://www.oreilly.com/pub/e/3033
http://oreil.ly/1pafH6l
http://oreil.ly/1pa0RvK
http://oreil.ly/1paeZ9r

From the Network Interface
to the Database

Mike Loukides

From the beginning, the Velocity Conference has focused on web per‐
formance and operations—specifically, web operations. This focus has
been fairly narrow: browser performance dominated the discussion
of “web performance,” and interactions between developers and IT
staff dominated operations.

Web Ops and Performance
These limits weren’t bad. Perceived performance really is dominated
by the browser—how fast you can get resources (HTML, images, CSS
files, JavaScript libraries) over the network to the browser, and how

29

http://velocityconf.com/velocity2014/

fast the browser can execute those resources. How long before a user
stops waiting for your page to load and clicks away? How do you make
a page useable as quickly as possible, even before all the resources have
loaded? Those discussions were groundbreaking and surprising: users
are incredibly sensitive to page speed.

That’s not to say that Velocity hasn’t looked at the rest of the application
stack; there’s been an occasional glance in the direction of the database
and an even more occasional glance at the middleware. But the data‐
base and middleware have, at least historically, played a bit part. And
while the focus of Velocity has been frontend tuning, speakers like
Baron Schwartz haven’t let us ignore the database entirely.

The web operations side of Velocity has been more diverse: integrating
the work of developers and ops staff, moving from waterfall practices
to “agile” development, developing a culture of continuous deploy‐
ment—these have been major milestones in the Velocity story. We’re
proud that a healthy “devops” movement grew out of Velocity. But
here, too, there’s certainly a bigger story to tell.

In the operations world, it’s never been possible to abstract a system
from what’s happening at the lowest levels. In the past few years, we’ve
learned that all applications are distributed. So, there have been ses‐
sions on resilient systems, accepting failure, and blameless postmor‐
tems: that’s a start. There’s a lot of system between the web server and
the browser. For that matter, there’s a lot of system between the web
server and the point where the bits leave the building. For that matter
squared, what building? A building you own, or a building Amazon
owns in a city you can’t name?

While Velocity has been a pioneer in recognizing the distributed na‐
ture of modern computing as well as the tools and the cultural changes
needed to deal effectively with a distributed world, we’ve only taken
occasional glances at the infrastructure that lies behind the server.
We’ve only taken occasional looks at data centers themselves. And I
don’t think we’ve ever discussed routing issues or routers, though a
router failure can sink your application just as badly as a dead server.

Broadening the Scope
So, in our ongoing exploration of web performance and operations,
we’re going to broaden the scope. I don’t think we’ll be doing less of
anything than we are today, but we do have to take a step back and

30 | From the Network Interface to the Database

http://oreil.ly/1pXXsiw
http://radar.oreilly.com/2012/06/what-is-devops.html

look at the bigger picture. If everything is distributed, it makes no sense
to look at part of a distributed system and skip the rest. In particular:

• What are the performance and operational implications of our
low-level network infrastructure? What happens when you hand
off your packets to “the network”? There are many important
questions here. How can you use new technologies like software-
defined networks and network function virtualization to make
your infrastructure more reliable? What roles do CDNs and other
intermediaries play in delivering data to our users? How does the
advent of a “slow lane” for those of us who aren’t rich enough to
negotiate with Comcast, Verizon, and AT&T affect our applica‐
tions? We don’t have to like it, but we’re naive if we don’t think
those issues will affect us.

• What are the performance and operational implications of mid‐
dleware and databases? While the backend of the application
doesn’t have the same millisecond-by-millisecond effect on per‐
formance, it has a huge effect on scalability. And an application
that hasn’t scaled well is very slow. We’re not talking about the
extra second of latency that makes some users frustrated and
drives them away: we’re talking about being dead in the water
during the Christmas rush. An application that’s slow because it
can’t handle peak loads is slow in an entirely different way from
an application that downloads 5 MB of JavaScript libraries and
images before it’s useable, but the users don’t care either way. It’s
slow, and they’re going elsewhere.

All systems are distributed systems. And in that sense, there’s nothing
really new here. Rather than focusing narrowly on a few key compo‐
nents of our distributed systems, we’re extending the scope to include
the whole thing, even the parts we don’t know about or see. Further‐
more, as our distributed systems evolve, we see how they fit into Ve‐
locity’s historical themes. Configuration is code, but that’s a nasty ar‐
gument to make when the “code” you’re talking about is a mess of Cisco
IOS configuration files. Software-defined networks (and their de‐
scendants) turn network configuration into software. And in a
virtualized, cloud-oriented world, automated database scaling is also
a matter of software.

The historical mission of Velocity has been to unite web developers
and operations, to get both sides to realize they’re on the same team
and talking the same language. Over the years, the number of people

From the Network Interface to the Database | 31

we’ve invited to the conversation has grown: a few years ago, we started
to address mobile developers. Now, the conversation is becoming even
wider. We trust we won’t lose focus. But if there’s one thing we’ve
learned over the years, silos are nobody’s friend, and it doesn’t matter
who’s living in the silo, whether it’s a DBA or a router administrator.

Everything is distributed. And when everything is distributed, every‐
one has a stake in the conversation. We’re looking forward to burning
down a few more silos, and inviting even more people into the Velocity
tent. It’s a big tent indeed.

Photo by Ian Barbour, used under a Creative Commons license.

32 | From the Network Interface to the Database

http://radar.oreilly.com/2013/05/burning-the-silos.html
https://www.flickr.com/photos/barbourians/8578689970/
http://creativecommons.org/licenses/by-sa/2.0/

	Cover
	Copyright
	Table of Contents
	Everything Is Distributed
	Embracing Failure
	Think Globally, Develop Locally
	Data Are the Lingua Franca of Distributed Systems
	Humans in the Machine

	Beyond the Stack
	Cloud as Platform
	Development as a Distributed Process
	Infrastructure as Code
	Containerization as Deployment
	Monitoring as Testing
	Is This DevOps?
	Why Now?

	Revisiting DevOps
	Empathy
	Promise Theory
	Blameless Postmortems
	Beyond DevOps

	Performance Is User Experience
	The Slow Web
	The Human Impact
	It’s Not Just the Desktop: It’s Mobile, Too
	Selling It to Your Organization

	From the Network Interface to the Database
	Web Ops and Performance
	Broadening the Scope

