
JS.Next:
A Manager’s
Guide

Aaron Frost

2nd Edition

©2016 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. D1814

Short. Smart.
Seriously useful.

Free ebooks and reports from O’Reilly
at oreil.ly/webdev

We’ve compiled the best insights from
subject matter experts for you in one place,

so you can dive deep into what’s
happening in web development.

Davey Shafik

Upgrading
to PHP 7

Modern Tools for
Static Website Development

Static Site
Generators

Brian Rinaldi

KYLE SIMPSON

UP &I

 GOING

“When you strive to comprehend your code, you create better
work and become better at what you do. The code isn’t just

your job anymore, it’s your craft. This is why I love Up & Going.”
—JENN LUKAS, Frontend consultant

Jens Oliver Meiert
Foreword by Lindsey Simon

The Little Book
of HTML/CSS
Coding Guidelines

http://oreil.ly/webdev

Aaron Frost

JS.Next: A Manager’s Guide
SECOND EDITION

978-1-491-92019-0

[LSI]

JS.Next: A Manager’s Guide
by Aaron Frost

Copyright © 2015 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com .

Editor: Meg Foley
Production Editor: Matthew Hacker
Proofreader: Amanda Kersey

Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrator: Rebecca Demarest

May 2013: First Edition
April 2015: Second Edition

Revision History for the Second Edition
2015-03-27: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. JS.Next: A Manag‐
er’s Guide, the cover image, and related trade dress are trademarks of O’Reilly Media,
Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com

Table of Contents

Preface. v

1. You Can’t Afford to Avoid ES6. 1
Innovation Debt 2
Direction of the Industry 4
Recruit and Retain Top Talent 7
Efficiency 8
The World Is Changing 9

2. ES6 Goals. 11
History in the Making 11
The Meeting 12
Harmony 12

3. Features Explained. 17
Arrow Functions 17
Let, Const, and Block Functions 18
Destructuring 18
Default Values 18
Modules 19
Classes 19
Rest Parameters 20
Spreading 20
Proper Tail Calls 21
Sets 21
Maps 21
Weak Maps 22

iii

Generators 22
Iterators 23
Direct Proxies (and Supporting Features) 23
String Literals 23
Binary Data 24
API Improvements 24
Unicode 24

4. Where to Start. 25
Incidental Functionality First 25
Graceful Degradation 25
Train Your Teams 27
Using a Transpiler 27
Microsoft’s Enterprise Mode 28
Summary 29

5. Watching for ES7. 31
Object.observe 32
Multithreading 32
Traits 33
Additional Potential Proposals 33

iv | Table of Contents

Preface

Writing this book was extremely fun and proved to be a helpful
exercise. Researching and describing each topic was a process that
lasted about two and a half years. When Simon (@simonstl) and
Mike (@mikeloukides) approached me about the idea, I wasn’t sure
that I would be able to deliver what they were asking for. Their
vision was to explain ECMAScript 6 in a way that non-developers
would understand it. Additionally, they wanted to help everyone
understand the importance of adopting the new syntax into their
current projects, as opposed to waiting years for certain parts of the
Web to catch up. Much like steering a donkey with a carrot on a
stick, Simon and Mike helped steer my efforts. Without them, much
of what was written wouldn’t be. I appreciate all of their mentoring
and guidance.

Once I finally understood the direction in which we needed to go, I
simply needed time. A special thanks goes to my wonderfully under‐
standing wife (Sarai) and to my four children (Naomi, Joceline,
Ryan, and Owen). Family life is already a lot of work. Having a hus‐
band/dad that is busy writing a book only adds to it. Each of them
helped me race to get this finished in time for FluentConf 2015.
Thank you.

Everyone made a very serious effort to disguise how sleep deprived I
was when finishing this. A special thanks to the inventors/makers/
distributors of Diet Mountain Dew and Mio Energy Drops. While
the ideas are my own, many of the words used to spell out my ideas
were heavily fueled by caffeine from these sources.

To my friends and colleagues who helped out, you know who you
are, thank you! Chad “the knife” (@chadmaughan) and Tom

v

https://twitter.com/simonstl
https://twitter.com/mikeloukides
https://twitter.com/chadmaughan

(@tvalletta), thank you for mentoring me and helping my solidify
some of the ideas expressed here. Mom (@marlli53), Neal (@Neal‐
Midgley), Steveo (@steveolyo), Ted “the head” (@jsbalrog), and Tay‐
ler (@taylersumms). These are my people who read the pages when
they were fresh off the press. Each of them took part in ensuring the
quality of the text.

And a very special thanks to each of the members of the TC39. This
book is only possible because of their efforts. While the JavaScript
community eagerly await the ES6 updates, the members of the TC39
remain focused as they continue their daily effort of solidifying the
ES6 specification. I feel lucky that I have been able to work directly
with a handful of them. While I want to thank each of them, the fol‐
lowing are the members who have directly had a hand in helping my
efforts: Dave Herman (@littlecalculist), Allen Wirfs-Brock (@awbjs),
Brendan Eich (@BrendanEich), Rafael Weinstein (@rzweinstein),
Rick Waldron (@rwaldron), and Alex Russell (@slightlylate). Note to
whomever is running the @FakeAlexRussell account: you’re brilliant!

vi | Preface

https://twitter.com/tvalletta
https://twitter.com/marlli53
https://twitter.com/NealMidgley
https://twitter.com/NealMidgley
https://twitter.com/steveolyo
https://twitter.com/jsbalrog
https://twitter.com/tayler
https://twitter.com/littlecalculist
https://twitter.com/awbjs
https://twitter.com/BrendanEich
https://twitter.com/rzweinstein
https://twitter.com/rwaldron
https://twitter.com/slightlylate
https://twitter.com/FakeAlexRussell

CHAPTER 1

You Can’t Afford to Avoid ES6

ECMAScript 6 is a big deal. ECMAScript, everyone’s favorite script‐
ing API, hasn’t had an update this significant since it was initially
formalized. Some people may feel overwhelmed as they browse
through the impressive list of new features. Each was carefully con‐
sidered, discussed at length, and selected for adoption into the offi‐
cial API. Ours is the task of rolling out these new features, bringing
ES6 to our teams and to our projects.

But exactly how are we do that? How do we take these new features
and concepts and infuse them into the brains of our developers?
How can we inject this new power into our current projects? Just as
important, and possibly more so, is when should we do this?

You may feel that you can’t afford to implement these features in
your world. Some of you may prove yourselves to be extremely tal‐
ented as creating reasons why you can’t afford it at this time. I am
here to tell you that you can’t afford not to. As you read on, consider
yourself warned: the content that follows is highly controversial.

While the main audience of this book is com‐
posed of development management, I am sure
that a handful of developers will find their way
here as well. If you are a developer, welcome! If
you are in management, I hope that you enjoy
the ride.

1

The remaining sections in this chapter will cover various reasons for
adopting ES6 into your current and future projects. Although not a
complete list of reasons, it should help show that in the long run, it
will cost more to avoid ES6 than to embrace it.

Innovation Debt
When talking about debt in software development, most people will
talk about technical debt. Technical debt reflects the imperfect and
sometimes dangerous state of your code and processes. As deadlines
approach, optional features and maintenance time can get cut from
the schedule. Without enough time to properly maintain code and
processes, you will inevitably have to watch as your technical debt
grows. Increased technical debt is something that all teams, except
perhaps those with infinite resources, face regularly.

There is, however, another type of development debt that is con‐
stantly accruing: innovation debt. The term comes from Peter Bell,
an amazing author, speaker, and innovator. Peter provides a concise
definition:

Innovation debt is the cost that companies incur when they don’t
invest in their developers.

Like technical debt, innovation debt can spiral out of control if left
unchecked, possibly threatening the existence of the company.

If you have time, please visit Peter’s blog and
read his full explanation of the definition.

Imagine your CEO tells you that she needs a new and modern app
(that your team doesn’t know how to build), built with very modern
tools (that your team doesn’t know how to use), and deployed using
very modern build tools (that your team doesn’t know how to con‐
figure). What would you say? Given the state of your team, what are
the odds of getting it done right?

Consider your current technology stack, code base, feature set, and
business goals with their new target feature set. Now think of all the
training and practice that your team will need before you can create
those target features. Consider your competitors’ feature set and

2 | Chapter 1: You Can’t Afford to Avoid ES6

http://blog.pbell.com/

how fast they are gaining on you, or how fast you are falling behind
them.

Innovation debt is the cost you have to ante up before you can begin
innovating again. Many teams keep their innovation debt managea‐
ble and may be able to train up a few of their current members to
help bring the team back on track. However, some teams have
accrued so much innovation debt that they have to hire new
employees, with a new and different skill set than their current team.
They hope that these new employees can pull everyone else up to
speed. In extreme cases, such teams may even plan for these new
team members to replace their current team. As innovation debt
increases, the ability to avoid extreme decisions decreases.

So how do you pay back innovation debt? Better yet, how can you
prevent innovation debt from increasing on your teams?

The answer is simple: teach your teams what they need to know so
that they can innovate, and then let them practice it in the
workplace.

Make time for your team members to learn and practice these new
skills. Trying to pay off large lumps all at once can be too costly in
the short term. Taking multiple iterations and cycles to train your
teams is difficult to sell to your customers, whereas smaller and
more consistent bites can be much easier to swallow.

While the “how to pay back” may seem most important, I think that
the “when to pay back” is even more important. The “when” is now.
Starting today, pay back small amounts of innovation debt on a reg‐
ular basis. At least once per quarter we should all be taking strides
toward paying back innovation debt.

Let’s bring this back to ES6 now. Dropping ES6 into your current
project can seem like a tough challenge, but it may prove to be your
strongest ally. The ES6 release is not a minor upgrade to the lan‐
guage. It is a significant upgrade and improvement. And the new
constructs and syntax in ES6 will enable your teams to make more
progress faster than they ever have. Here are some tips on how you
can help your team to catch up on ES6:

They will need time to learn it, even those who are already skilled
JavaScript developers. If you don’t dedicate enough time to learning
and training on ES6, your teams will struggle. Create goals around
learning ES5/6 and other modern JS libraries/ frameworks. Projects

Innovation Debt | 3

like Angular, Grunt, and IOjs are a few that I am partial to. An
ambitious few may even jump into server-side JavaScript, such as
IO.js and Nashorn. Make sure your teams have the resources they
need to learn the latest technologies. Then ask them to implement
those technologies to help reduce the technical debt. Lead from in
front instead of from behind. Help lead the way by regularly sched‐
uling team training. Even if they are simple, informal meetups,
make time for the team to sit down and talk about what the next
steps are.

Do what you can to create a healthy culture on your team, one that
harbors innovation. For example, at a past job, we ordered 100
Angular iron-on badges. We handed those out to engineers who
released an Angular app into production. At our internal monthly
JavaScript meetup, we ceremoniously handed out the Angular
badges to those who released their app since our last meetup. We
were surprised by the results. Many of those badge winners were on
teams that we never expected to adopt such modern and fun frame‐
works. It was encouraging to see the team members innovate and
learn something new. Nowadays, you can spot these badges all over
the building, each one a reminder of our goal to continually
innovate.

Direction of the Industry
With zero exceptions, all of today’s most popular browsers are work‐
ing to provide support for ES6 (see the ES6 compatibility chart).
Each of them already has partial ES6 support, with a few expecting
100% support as early as Q4 2015. Once each of the major browsers
fully supports ES6, our lives will get much easier. Browsers that are
considered “evergreen,” meaning that they automatically update
independently of the operating system, will be the first to provide
full ES6 support. A few examples of evergreen browsers are Chrome,
Firefox, Opera, and Chrome/Firefox for Android. Within a few
weeks of a new release, most users have the newest version. After a
few months, over 98% of users will have the latest version of an ever‐
green browser. Not only do these browsers have auto-updating built
in, they also adhere to very short release cycles. This means that we
don’t have to wait years between releases, as the updates are only
weeks apart. These browsers make our life easier. It’s the non-
evergreen browsers that will make us wish we didn’t have to get out
of bed in the morning. A few examples are Internet Explorer (all

4 | Chapter 1: You Can’t Afford to Avoid ES6

http://bit.ly/compatibility_table

versions), Safari (desktop and mobile), and Android’s “Browser”
(the worst offender). These legacy browsers have caused the death of
innumerable kittens.

This begs the question: if a significant number of our users don’t
have an evergreen browser, what should we do? Chapter 4 explains
our options for using ES6 without abandoning those users. I would
like to display some information about how far some companies are
going to promote the use of the Web. The following are all examples
of what the industry is doing to prune support for stale browsers.

Microsoft
Beginning in August of 2014, Microsoft began implementing pieces
of its strategy to revive its in-house browser, Internet Explorer. The
company appears no longer impartial about how long people use
outdated versions. Not only did it point out that updated browsers
“decrease online risks,” it also pointed out that stale browsers “frag‐
ment the Web” and decrease productivity. Along with these claims,
Microsoft announced that starting on January 12, 2016, it will only
support the most recent version of IE available for your operating
system. This means that a consumer running Windows 7 SP1 will
need to be on IE11 in order to continue receiving security updates.

On January 21, 2015, Microsoft announced that their new operating
system, Windows 10, will be a free upgrade for anyone running
Windows 7 or newer (you need to upgrade within the first year).
Further, all subsequent updates will be free. Further, they announced
that Windows 10 will include a new browser (currently called
Project Spartan) that will be updated independently of the operating
system. In March of 2015, Microsoft announced that IE will no
longer be the default browser on Windows and that Project Spartan
will take over in Windows 10. This means that the Microsoft
browser of the future will be evergreen.

Microsoft is taking some aggressive (and expensive) moves toward
helping users avoid an insecure and outdated Internet experience. If
Microsoft is abandoning support for “oldIE,” then what business do
we have supporting it?

Google
The king of search, Google, has a similar support strategy. On its
help and support page for sites such as Google Apps, Google spells

Direction of the Industry | 5

out its policy for supported browsers. It supports the current and
previous version of all major browsers. In its documentation, the
company explains its reasoning:

At Google, we’re committed to developing web applications that go
beyond the limits of traditional software. Our engineering teams
make use of new capabilities available in modern, up-to-date
browsers. That’s why we made the decision last year to support only
modern browsers, which also provide improved security and per‐
formance.

Rather than spend money to help people limp along in their out-of-
date browser, Google opted to spend money innovating and gaining
a competitive edge by building websites that “go beyond the limits”
of traditional websites.

Kogan.com
One last example of the direction of the industry demonstrates in-
your-face boldness.

An Australian electronics store, Kogan, took a strong stance against
stale browsers. As of June 2012, any shopper checking out in IE7 or
lower will be charged a special IE tax. The IE tax rate is 6.8%, which
is 0.1% for each month since Microsoft released IE7 and the date
Kogan.com rolled out its IE7 tax feature. The following is Kogan’s
explanation to the user about the IE7 tax:

6 | Chapter 1: You Can’t Afford to Avoid ES6

http://bit.ly/apps_browsers
http://bit.ly/ie7_tax_blog
http://bit.ly/ie7_tax_blog

Conclusion
The industry as a whole is largely on the fence with regard to aban‐
doning stale browsers. However, two of the biggest movers in the
game (Microsoft and Google) are herding people to modern brows‐
ers. With that, they are saying: When faced with spending your
money on stagnating to support “oldIE” or innovating and building
the apps of tomorrow, always bet on tomorrow. It will help you
retain a competitive edge and keep your teams sharp.

Additionally, you should make an informed decision when deciding
to prune support for legacy browsers. If you are setup with a web
analytics platform, look at the data to find out what percentage of
your users are on these old browsers. You may be surprised with
what you find. While management won’t easily prune support for an
unknown number of users, you will find that people are much more
willing to move forward with a decision when you provide them
with current and past browser usage statistics for your company.
Once you know the statistics, everyone can make a more informed
decision with regard to moving forward with the Web.

Please check your pulse. If reading this section has raised your heart
rate, no worries. Recommending that you drop support for Internet
Explorer can have that effect. If this is you, go ahead and skip to
Chapter 4 and read “Graceful Degradation” on page 25 and “Using a
Transpiler” on page 27. These offer serious solutions that will allow
your team to use ES6 without completely abandoning IE users in the
process.

Recruit and Retain Top Talent
Suppose that your team has an open spot. You would really love to
fill that position with a rockstar developer. You know the kind I’m
talking about. One of those developers who sleeps using a keyboard
for a pillow. But where can you find this (He-Man or She-Rah)-
gone-programmer? A better question would be: what can you do to
make that person come to you? And an equally pertinent question
would be: how do you keep that person with you?

Unfortunately, limitless sodas, snacks, and an arcade machine aren’t
considered perks anymore. These days, those perks are all too com‐
mon and are expected. Still, employers have many opportunities to

Recruit and Retain Top Talent | 7

draw in and keep a top-talent developer. One of those opportunities
is your technology stack.

You can’t send a ninja into a sword fight without a sword. Ninjas
needs their swords. In the world of JavaScript ninjas, there are
things you can do that will make them feel like you’ve taken their
sword away. Things like telling them that their cutting-edge experi‐
ence needs to be throttled back to match decade-old standards. If
decade-old standards are your target, I would ask you: do you really
need a top-talent developer?

Telling your JS ninja that he can’t innovate is another way to make
him feel like a sad, swordless ninja. On page 62 of his book The
Myths of Innovation (O’Reilly), author Scott Berkun asserts that
when we mix innovative people with frustrating situations that pre‐
vent them from innovating, those people will leave. His examples
range from Michelangelo and da Vinci, to the founders of Apple,
Google, Microsoft, Yahoo!, and HP. Each is an example of people, or
groups of people, who were frustrated by the limited thinking of
their peers or management. In each case, the frustration, combined
with their need to innovate, forced them to seek out another home
for their ideas. In each case, their frustration was justified. Their
innovative thinking proved to be very successful.

This type of frustration will result in employees finding another
home. Rockstar “bro-grammers” and “diva-elopers” need an envi‐
ronment that can keep up. The best way to keep them is to feed their
need to learn and trailblaze and allow them to keep disrupting.
Adopting ES6 as a standard will help satisfy your innovators’ need to
learn and practice those new findings. It will fulfill their need to
become current and disrupt, without incurring unwanted risks for
your organization.

Truly, ours is the job of coexisting with innovators rather than forc‐
ing them out the door to find a home for their ideas.

Efficiency
The term “efficient code” can have a few different meanings. The
many new features in ES6 can each be categorized as satisfying one
or both of these definitions.

The first is: does it run efficiently? If I write code using the new ES6,
does it run faster than code written in ES5 and earlier? Many of the

8 | Chapter 1: You Can’t Afford to Avoid ES6

http://oreil.ly/15r1wQZ
http://oreil.ly/15r1wQZ

features in ES6 are runtime optimizations. Many of these new fea‐
tures have been taken from other languages, where these optimiza‐
tions were found and implemented.

The second is: can I write/maintain it more efficiently? I was unable
to accurately attribute the following quote to any single author.
However, consider the following:

If I had more time, I would have written a shorter letter.
—T.S. Eliot / Blaise Pascal /

John Locke / Ben Franklin /
someone else?

In programming, the same is true. Most code could be reviewed and
written with fewer lines.

Does ES6 make writing code more efficient than previous versions
of ES? The answer is unequivocally “Yes!” ES6 has a handful of new
features that will save you dozens of lines of boilerplate inside each
function. For example, writing “classes” in pre-ES6 versions of Java‐
Script is much more verbose than doing the same thing in ES6. And
so it goes with many other features. Not only does coding with ES6
constructs help your developers make more progress, it will make
their run faster than it ever has before.

The World Is Changing
In Innovation and Entrepreneurship (HarperBusiness), Peter Drucker
said the following about management:

Management tends to believe that anything that has lasted for a fair
amount of time must be normal and go on forever. Anything that
contradicts what we have come to consider a law of nature is then
rejected as unsound.

Moving away from heavy “oldIE” support may be met with resist‐
ance. Transitioning your web architecture from server-side templat‐
ing to a heavy, frontend templated JavaScript solution may also be
met with resistance. You may even be the one resisting. Those who
have seen success in the past tend to think erroneously that their
one road traveled is the only road worth traveling. As Drucker sug‐
gests, proposing alternatives to tried methods is often “rejected as
unsound.” Drucker refers to this as a “myth of management,” a myth
that we can help overcome.

The World Is Changing | 9

The opposite of this myth is known as “chrono‐
logical snobbery”, and it can cause entirely dif‐
ferent problems. By constantly discrediting past
ideas due to having been thought up before we
had our present knowledge, you rob yourself of
the stability that comes with making a decision
once and then sticking with it for a while. If
decisions like which technology to use are being
re-decided every few months, you may find that
you have a chronological snob among you.

I once had a conversation about implementing a newer server archi‐
tecture in our organization. I was told that “old technologies with
six- to seven-year proven track records are what is needed in an
enterprise arena.” Additionally, I was told that “these newer projects
(that I was proposing) change version numbers on a daily basis.”
The person saying this meant that these constant commits were a
sign of instability, which scared him. To these two comments, I had
two responses. The first was that IE7 is six to seven years old. Was
my friend suggesting that we roll back all production to IE7 stand‐
ards? He shook his head. Second, if I had to choose between an
architecture that has dozens of commits per day versus two or three
commits per year, I’d choose the more active platform. If the com‐
munity around your architecture can’t manage to commit updates
and fixes on a daily basis, then you are on a platform that doesn’t
have any demonstrable longevity. Platforms with active communi‐
ties that innovate are the platforms of tomorrow.

Technologies don’t need to have a record-setting trend before they
can be safely adopted. Three years ago, AngularJS was a dark horse.
Now its popularity has surpassed the combined popularity of all
other past and current client-side JavaScript frameworks. And simi‐
larly, prior to 2014 no one had even heard of React.js. Fast-forward
less than 12 months, and we see that React.js is embraced by many
of the smartest JavaScript developers around.

Some of the most beautiful parts of the Web would have been rejec‐
ted if we all bought into this myth. We would still use XML instead
of JSON, and SOAP instead of REST. Teams need to evaluate tech‐
nologies on their merits. We need to trust in our ability to innovate
now and refactor later on, where needed.

10 | Chapter 1: You Can’t Afford to Avoid ES6

CHAPTER 2

ES6 Goals

When looking at what’s new in ES6, I have found it helpful to under‐
stand some of the history behind JavaScript.

History in the Making
July 2008 marked the beginning of change for ECMAScript. These
changes were the result of years of hard work, deep thought, and
discussion. Many brilliant minds spent years debating, and at times
fighting over, what the next steps for ECMAScript should be. The
Web had spent years growing organically and evolving. That growth
and evolution had different meaning for many companies and indi‐
viduals. Many stood to benefit significantly, if they could only make
a few changes of their own to the ECMAScript specification. These
biases made life difficult for the TC39, the committee in charge of
steering the ECMAScript specification. None of the TC39 members
could have predicted the challenges they would face as they attemp‐
ted to advance ECMAScript, and by proxy, JavaScript.

As in many debates, all sides argued their honest opinions about
what needed to be changed to further the language. Prior to July of
2008, many of these debates became heated, and very few saw much
progress, if any. Due to these conflicts, the small group that initially
endeavoured to fight for JavaScript inevitably broke down. Brendan
Eich, the creator of JavaScript, compared the history of the ECMA‐
Script standardization committee to J.R.R. Tolkien’s The Fellowship
of the Ring. It is a story about a once strong group of friends who are
ultimately divided into smaller groups, taking separate journeys.

11

http://bit.ly/ecmascript_harmony

(See Douglas Crockford’s “The State and Future of ECMAScript”
and Brendan Eich’s Lord of the Rings analogy.)

These separations had all but stagnated the progress of the language
for years. Before July 2008, progress in the browser (and specifically
JavaScript) had come to a halt. (See Brendan Eich’s keynote at YUI‐
CONF 2009.) Something had to give if this would ever change. Not
everyone could get what they wanted if ECMAScript were to move
forward.

The Meeting
Opera hosted the TC39’s monthly meeting in Oslo, Norway’s capital.
There were two different camps fighting for control of the next
ECMAScript update. One camp had proposed a smaller update
under the release number ES3.1. The other camp wanted a more
robust release, full of features that hadn’t reached a group consensus.
This second, larger release was dubbed ES4. And this had been the
debate for months: whether to choose the smaller ES3.1 release, or
the larger, feature-rich ES4. Unlike the previous meetings, these two
sides would reach a compromise. ES4 would be postponed, and
ES3.1 would become the next release. However, because the group
had torn down their walls and made new alliances, they changed the
release number from ES3.1 to ES5 to account for those milestones.

The final ES5 specification was approved in September of 2009, with
a follow-up release 5.1 landing in June of 2011. This marked a huge
step forward for browser vendors. Progress and standards prevailed,
and JavaScript was again moving forward with new features. This
was all very cool.

Harmony
What about all the ES4 features that no one could agree upon?
Where did they end up?

A super-majority of the ECMAScript proposals fell into this bucket.
In August 2008, Eich addressed the TC39 and let them know that all
remaining features (ES4 and beyond) would be grouped into a col‐
lection labeled “Harmony,” a tribute to all the committee members
that harmoneously came together to help move the language for‐
ward again. In his email, Eich outlined a list of goals for the Har‐
mony features. A few additional goals have been standardized since

12 | Chapter 2: ES6 Goals

http://bit.ly/crockford_ecmascript
http://bit.ly/eich_lotr
http://bit.ly/eich_harmony
http://bit.ly/eich_harmony
http://bit.ly/ecmascript_harmony

then, and they can be found on the ES Harmony wiki. The goals
include:

1. Provide a better language for writing
a. complex applications,
b. libraries,
c. and code generators targeting the new edition.

2. Switch to a testable specification.
3. Improve interoperation, adopting de facto standards where

possible.
4. Keep versioning as simple and linear as possible.
5. Support a statically verifiable, object-capability secure subset.

These goals still guide TC39 today.

Complex Applications
As JavaScript began, the engineers pioneering its adoption had only
a fraction of the ambition that we demand from JavaScript. What
started as a very simple scripting language has grown into the most
used language development language on the planet, appearing in the
browser, on our servers, and event-powering robots. JavaScript
needs features that allow for less coding while producing more
functionality.

Libraries
Any given page on the Internet may have dozens of JavaScript
dependencies. As a JavaScript project becomes larger, the task of
library and dependency management increases in difficulty. Harmony
has a handful of features that will provide a better experience for
library builders and app developers alike.

Adopt De Facto Standards
JavaScript is only one of the programming languages involved in
building modern web applications. Many of today’s best developers
have other languages they love in addition to JavaScript. The silver
lining in being late to the web standards game (don’t forget that we
spent years fighting, not updating) is that you get to see what every‐
one else is doing, and you can aggressively reject the bad and assimi‐

Harmony | 13

http://bit.ly/es_wiki

late the good. The ECMAScript specification is adopting many of
the most popular features from some of today’s best languages,
including Python, Ruby, Java, and CoffeeScript. This will make Java‐
Script appear to be more familiar and friendly to developers that
have a grasp on those other languages.

ES6: Subsetting Harmony
Immediately after ES5.1 was formally released in June 2011, the
TC39 began discussing and planning the next update to the ECMA‐
Script specification. Many committee members already had favorite
features in mind. Because of that, many features were quickly sorted
to the front of the line.

A handful of these features have been part of Mozilla’s Firefox for
the past six to seven years (yes, they predate the ES5 specification
approval). I found several instances of ES6 features existing in pro‐
duction browsers, including a seven-year-old code commit to the
Firefox source code by Brendan Eich himself, in which he imple‐
mented destructuring. This means that the browser vendors imple‐
mented many features that had yet to be officially approved by the
standards committee. That may sound bad. It is more likely that this
accelerated the process of approving features for the ES6 specifica‐
tion. Because the features were already in production browsers, it
was easier for the committee to see how they would affect the
language.

Now, four years after the ES5.1 specification was officially approved,
the TC39 is busy preparing to approve ES6 in June of 2015. As an
outsider, I have watched the TC39 make make of their decisions. I
have read their thoughts and meetings notes. I am excited for this
latest release.

Imagine swapping a car’s motor while it is driving down the freeway.
This is what the TC39 is trying to do with this latest version of the
ECMAScript specification. Their goal is to have a final approval
from the ECMA General Assembly by June of 2015. Yet, just a few
months ago in January 2015, they continued to modify their propos‐
als and make changes to the spec. Further, while the JavaScript com‐
munity at large has come to embrace this upcoming release by the
name of ES6, the TC39 has opted to rename the release to ES2015.
However, like most people, I will continue to refer to this release as
ES6.

14 | Chapter 2: ES6 Goals

Because the Web depends on JavaScript, and JavaScript depends on
the ECMAScript specification, progress in the Web is highly coupled
to the success of the TC39 members. Given their successes in the
past few years, the Web, and all other things JavaScript are ready to
blaze forward faster than they ever have.

Harmony | 15

CHAPTER 3

Features Explained

ECMAScript 6 is a large collection of new features that program‐
mers need to learn and explore and ultimately bring to their
projects. The following is a list of some of the features, with a brief
description of each one.

Arrow Functions
When JavaScript programmers talk about what this means in Java‐
Script, you may feel like you’re watching “Who’s on First?” For those
who are new to JavaScript, understanding what this is can often
prove difficult.

What better way to provide clarity than to add yet another meaning
for this? Arrow functions are a new syntax that allow developers to
manage their scope differently than before, providing yet another
value for this.

While that may sound confusing, arrow functions will help make
JavaScript code more readable. When using arrow functions, your
code reads the same way that it will execute. The same cannot be
said for all usages of this. Such functionality will help make Java‐
Script code more readable and predictable for developers, which
translates into easier maintainability.

In addition to helping developers understand what this is, arrow
functions have some syntactic sugar that allows you to opt-out of
using the function and return keywords throughout your code.

17

Let, Const, and Block Functions
Prior to the ES6 release, each time you declared a new variable, you
used the keyword var. There were no alternate keywords to define a
variable. Starting with the ES6 release, you will now have two addi‐
tional constructs for defining new variables: const and let.

Using const makes your variables a constant value. Variables
defined using the keyword const will never be changeable. Other
languages call these final variables, as their value cannot be changed
once it is set.

let, on the other hand, is more like var, in the sense that you can
change the value repeatedly. Where let and var differ is in relation
to how they scope themselves. To the chagrin of many JavaScript
developers, using the keyword var to define your variables can leave
you with code that looks one way but acts differently when it comes
time to be executed. Using let instead of var produces clearer code,
which is the linchpin of maintainability. let allows the code to exe‐
cute the way it was written. This improved predictability will make
life easier for everyone involved with your project.

Destructuring
As you pass data around inside your apps, you will invariably need
to pull pieces of the data apart to examine them individually. The
task of pulling data apart is also referred to as destructuring, because
you are taking the data’s structure apart. Prior to ES6, programmers
were required to be fairly verbose while destructuring their data.
ES6 destructuring allows you to perform the same task of taking
your data apart with a lot less code.

Default Values
Toward the top of many JavaScript functions there is code that veri‐
fies that all incoming parameters have a value and are not left unde‐
fined. Unwanted undefined values can create hard-to-find bugs in
code. ES6 default values allow you to elegantly verify and provide
default values for each of your parameters. It has always been possi‐
ble to catch these undefined parameters and trap them before they
make a mess; however, the new default values syntax simply makes it
much easier. Many other modern languages have this feature.

18 | Chapter 3: Features Explained

Modules
Prior to ES6, JavaScript had two main competing module systems:
AMD and CommonJS. Neither is native to the browser: they are
monkey-patched into the browser at runtime. Both of these module
systems have different strengths. When it came time for the TC39 to
decide between the two, the committee decided to come up with yet
another approach for modules. The new approach is elegant and
covers an even wider spread of functionality then either of the
predecessors.

Modules, in general, solve several problems for developers. First,
they allow the developer to separate code into smaller pieces, called
modules. Second, they make it easy for developers to load (inject)
those modules into other sections of code. Having modules injected
like this helps keep project code uncoupled from the module (read:
improved testability). And third, modules can load scripts asynchro‐
nously. This means that apps can begin loading faster, as they don’t
require all scripts to be loaded prior to executing code.

Under the current proposal, modules will provide features from
both AMD and CommonJS. In addition, ES6 modules have addi‐
tional pieces that don’t exist in either of the others.

Classes
One of the easiest ways to reuse code is by allowing one piece of
code to inherit the functionality from another piece. This way, both
pieces of code have the same functionality, but the code only gets
written once. By using an inheritance chain known as prototypes,
JavaScript has always been able to share code this way.

While prototype chaining works, most other object-oriented pro‐
gramming languages use a variation of class-based inheritance to
share functionality from one piece of code with another. Starting in
ES6, you will be able to define and inherit functionality by using
classes as well as prototypes. The syntax to share code using classes
is much cleaner than its equivalent in prototypical code sharing.

This is a polarizing feature among JavaScript developers. You won’t
find many developers who are on the fence with regard to classes in
JavaScript. They will either like it or dislike it.

Modules | 19

As I see it, classes have two main advantages. First, classes add some
syntactic sugar to inheritance in JavaScript. This means that inheri‐
tance in ES6 will be more straightforward, and the code will be eas‐
ier to follow. Further, languages that compile to JavaScript will be
able to do so more easily and exactly. Second, once classes have
completely replaced traditional prototype-inheritance, regular func‐
tions will potentially have a smaller footprint in memory.

Rest Parameters
The term “rest” frequently refers to REST, a common pattern for
writing web services. In the context of the ES6 release, “rest” has
nothing to do with a web service.

Many other modern languages allow you to make a method that
takes a dynamic number of parameters. Consider a function called
add. It may need to add 2 numbers together; it may need to add 100
numbers together. Suppose that at times you need to add two num‐
bers together, and at time you need to sum three numbers. You
wouldn’t want to write two different add functions to accomplish
this. ES6 rest parameters now give JavaScript the ability to have
functions that accept a dynamic number of parameters.

Previously in JavaScript, if you wanted to pass around a dynamic
amount of numbers, you had to put them inside a container, like an
array. Rest parameters allow you to just pass the numbers, without
jumping through the hoop of manually wrapping them in a
container.

Spreading
Arrays are just linear collections of objects. They could be a collec‐
tion of numbers, words, or even other arrays, for example. How can
you get things out of the array once they are there? Looking back‐
ward, you always had to reference each of the items one by one. This
always worked; however, it tends to be a bit verbose, not to mention
that the code can become cryptic. ES6 spreading allows you to easily
spread out the array, without all the mess.

20 | Chapter 3: Features Explained

Proper Tail Calls
Proper tail calls leverage a low-level enhancement inside the Java‐
Script engines. In spite of the many things that JavaScript is good at,
it has always been notably horrific at recursion. A recursive method
is one that will call itself over and over again. These methods may
only need to do this a few times, or they may need to recurse tens of
thousands of times. Each time the method calls itself, it consumes
more memory. There is no limit to the amount of memory that
recursion may use. Within milliseconds, it is capable of crashing
your entire website due to memory consumption.

ES6 proper tail calls allow JavaScript to run a properly written recur‐
sive function that can call itself tens of thousands of times without
using additional memory for each call. Fibonacci sequence, here we
come!

Sets
JavaScript has has two very powerful containers: arrays and objects.
Arrays are lightweight containers. You can treat them like a queue or
a list, popping an object off the end, or shifting an object off the
front. However, there were some things that an array couldn’t easily
do.

Prior to ES6, if you wanted to have an array without any duplicates,
you had to write your own code to prevent duplicates from being
added to the array. This duplicate-preventing functionality now
comes built in with sets. Sets are very much like arrays in JavaScript.
However, if you try to add the same value twice to a set, the set will
simply ignore the second attempt to add that value. With sets there
is now an easy way to have collections of unique values.

Maps
In other languages, we refer to maps as hashmaps or dictionaries. A
hashmap maps a key with a value. An example would be mapping
the key “name” with the value “Freddie Mercury” and the key
“band” with the value “Queen.”

JavaScript has had these hashmaps for a long time. In fact, JSON is
an entire data structure based on keys that are mapped to values.

Proper Tail Calls | 21

Maps add functionality to JavaScript’s JSON and Object Literal syn‐
tax. Historically, you could only use strings and numbers as keys in
object literals. With the new Map object, however, you can use any
object as the key. We aren’t restricted to strings and numbers. You
could have a key that is a function or an HTML element. Maps are
more dictionary-like than anything JavaScript has ever had.

Weak Maps
Weak maps are exactly like maps, with a few exceptions. The pri‐
mary difference is: weak maps can make cleanup easy.

Suppose you have a map and add a key that represents some HTML
element from your page. If that HTML element is ever removed
from your DOM, having a reference to that element in your map
prevent the browser from completely removing the HTML element
from memory. This is known as a memory leak. Because the map
still points to the element, the garbage collector will not remove it
and free up the memory that it was occupying.

Unlike a map, weak maps will let the garbage collector remove the
element from memory. If the only reference to the HTML element is
the key in the weak map, the weak map will release its reference as
well. Once all references have been dropped, you can then say good‐
bye to the HTML element forever.

Generators
Generators are functions that can be paused. By adding the keyword
yield inside our generator functions, the system will pause the exe‐
cution of code, return the value to the right of the keyword yield,
and wait until we tell it to continue. (Generators have been in Fire‐
fox for quite a while now.)

Generators have many practical uses. One would be generating
unique IDs. Each time you need a new ID, you could call genera
tor.next(). The generator would return the next ID and then pause
again. You could write your own for loops with generators, along
with many other features. I predict that generators will help library
and framework authors to produce more efficient code.

22 | Chapter 3: Features Explained

Iterators
In conjunction with generators, iterators offer enhanced support for
looping. If you have an object that is iterable, you may now use a
new for loop to iterate through that object’s properties. The new
for…in loops make it easier to go through an object’s values. Prior to
iterators, you needed to reference each value by first referencing the
key and then using it to retrieve its values. For…in loops give us
direct access to the object’s values.

Direct Proxies (and Supporting Features)
Direct proxies allow developers to intercept method calls on an
object and have a separate object perform those instructions instead.
While this sounds complicated and entirely convoluted, they will
provide increased functionality for library builders. Direct proxies
help developers abstract functionality out of individual objects and
into more powerful APIs.

To drive the point home, one could use a proxy when saving an
object in JavaScript. When you tell the object to save itself, you may
have a proxy that intercepts and carries out the save instruction. As
of today, the proxy might save the object to your server. At a later
date, you may need to implement a new proxy that saves the object
to your browser’s localStorage. Simply switching the proxy can
change where your objects save. This can be done without ever
modifying the object code.

Along with the ability to proxy method calls, several other changes
were needed in order to completely enable proxies to work, includ‐
ing prototype climbing refactoring, a new reflect API, virtual objects
API, and some extensions to the object API.

String Literals
ES6 string literals fill multiple roles. One role is templating; another
is string interpolation. In the browser, JavaScript is often used to
glue together HTML, CSS, JSON, and XML. While there are many
client-side templating libraries out there, they will all enjoy what ES6
quasis have to offer.

String literals (referred to as quasis by some) will perform much
faster than any templating library could ever hope to. Additionally,

Iterators | 23

they will come packed with all sorts of data-scrubbing goodies to
help developers prevent security issues like cross-site scripting, SQL
injection, and more. And finally, string literals will allow developers
to use multiline strings. Any developer that denies lusting after mul‐
tiline strings is lying.

While the name “quasis” is unfortunate, I am confident that they will
quickly become one of the more widely used pieces of the ES6
release.

Binary Data
The binary data enhancements in ES6 aim to provide some perfor‐
mance gains when working with binary data in JavaScript. APIs
such as Canvas or FileReader return binary data. By improving per‐
formance behind the scenes, these APIs will perform much faster at
runtime than they ever have before.

API Improvements
The Number, Regex, String, and Math global objects each has a
handful of improvements in the newest version of JavaScript. None
of the enhancements are major. Most of the methods that are new
are utility methods that many people have built on their own.

Unicode
Beginning in ES6, JavaScript will begin supporting UTF-16. These
changes will add better support for a wider range of less frequently
encountered characters.

24 | Chapter 3: Features Explained

CHAPTER 4

Where to Start

It’s settled then. You are going to begin integrating ES6 into your
projects. Still, you may have some questions about where to start. Or
maybe you would like some best practices for your organization.
The following suggestions may make this transition easier.

Incidental Functionality First
Your team will need to gain some momentum when using these new
constructs, especially if you’re catching up on your innovation debt.
I suggest you pick a portion of your app that isn’t considered “core
functionality.” Let your team train up on areas of your app that add
value and provide incidental functionality. This will allow you to
leverage your team’s training process while minimizing any risk
involved.

Graceful Degradation
Some browsers have more capabilities than other browsers. Maybe
you’ve decided that you want to use some functionality that doesn’t
exist in all browsers. In other words, your users will have a different
experience on your site, depending on their web browser. When
implementing different features for different browsers, there are two
competing ideologies:

25

Progressive enhancement
Progressive enhancement suggests that you begin by building
your site for the worst-case and most basic scenario. Once that
exists, you add functionality for the more capable browsers.

Graceful degradation
Graceful degradation suggests that you build your app for the
most capable browser. Once that exists, you find alternate func‐
tionality or turn off the functionality for less-capable browsers.

I recommend that you start out by implementing graceful degrada‐
tion. Allowing your team to focus on the best possible scenario will
produce the best possible experience for your customers. You may
then combine your best-case scenario using a transpiler (see “Using
a Transpiler” on page 27), pushing Microsoft’s Enterprise Mode (see
“Microsoft’s Enterprise Mode” on page 28), and/or traditional
monkey-patching. Combining these technologies may even enable
the worst of browsers to run the latest ES6 code.

Monkey-patching is the term used to describe the
act of modifying JavaScript’s default behavior.
An example of monkey-patching could be
adding JSON.parse and JSON.stringify func‐
tionality into IE7. Because IE7 was released
prior to the explosion of JSON, it doesn’t have
support for the JSON API. However, a handful
of libraries out there monkey-patch IE7 so that
it has JSON.parse and JSON.stringify function‐
ality. Monkey-patching is also known as duck-
punching and polyfilling.

However, please do not shy away from shutting off different pieces
of your site to users who are on older browsers. As discussed previ‐
ously, herding your users to an evergreen (auto-updating) browser
will reduce your development and maintenance costs. Further, as a
member of the web community, we all have a duty to protect our
users. While modern browsers are much faster and more capable
than older browsers, that isn’t why you should help your users
upgrade to a better browser. You should help them upgrade so that
they can use a browser that has the latest security patches and
updates. You should help them upgrade so that they can be safe.

26 | Chapter 4: Where to Start

Evergreen browsers automatically update them‐
selves. Additionally, they remain up-to-date,
regardless of your operating system. This
ensures that you have the freshest speed, secu‐
rity, and functionality enhancements available.

Train Your Teams
Once you’ve seriously committed to training your team, those com‐
mitments should be made apparent. Your commitment should be
more than simply giving them goals on their annual performance
review or buying each member a book to read. Create a culture
based on the results of the training. Recognize, reward, and promote
individuals who are leading the way and helping others to learn.

The number of pure JavaScript conferences is increasing. Both
locally and nationally, these conferences are becoming viral. Find
two or three of them and send your teams. If the conference is dur‐
ing the work week, pay your employees to attend the conference.
Don’t require your team to use vacation days to go to a conference.
If the conference is on a weekend, make strong recommendations
that they attend. Have team members return and present their find‐
ings to the rest of the team. If you have to, offer comp time for those
who use weekends to attend conferences.

Do everything in your control to get your teams trained and talking
to each other about JavaScript.

Using a Transpiler
One of the quickest ways to get your team into ES6 is by using a
transpiler. With a transpiler, you write ES6 code, and it is then
turned into something that older browsers can understand. This
means that your teams can start using tomorrow’s syntax today.

This means that you can have your teams write this:

let add = (x, y) => x + y ;

and it will convert that into code that your users’ browser can
understand:

var add = function(x, y){
 return x + y;
};

Train Your Teams | 27

If the idea of a transpiler interests you, you may be pleased to know
that you have more than one option. As I write this chapter, there
are two transpilers that are more widely used than others. Babel is
the most widely used, and Traceur-Compiler is the second most
widely used.

Babel (formerly known as 6to5 but changed its name when ES6 was
renamed to ES2015) is the most popular, and currently supports
76% of the latest ES6 functionality. Babel is used and recommended
by many of today’s greatest JavaScript developers. While Babel sup‐
ports more features from ES6, Traceur-Compiler has a more
semantically-correct implementation of those features.

As I compared Babel and Traceur side by side, I realized that some
of the expectations that I had for runtime ended up being less
important to the Babel engine than the Traceur engine. However,
when Babel transforms your code, the code is more readable than it
otherwise is when transpiled with Traceur. In other words, each
library has its own benefits. Yours is the job of finding those differ‐
ences and helping your team make an educated decision on what
you should use.

In addition to Babel and Traceur, there are other transpilers that you
should listen for. JSX w/ ES6, Closure, ES6-shim, CoffeeScript, and
TypeScript are the ones that you should keep your listening for. Par‐
ticularly, you may want to listen for TypeScript. In March of 2015,
the Angular core team announced that their plans for Angular 2.0
include the adoption of TypeScript as an official part of their recom‐
mendation. Because of this, you will begin to hear about more and
more developers integrating TypeScript with their projects. Addi‐
tionally, TypeScript carries with it many of the features from ES7
(ES2016), which means that it will continue to be more and more
relevant. Further, the TypeScript team has more developers on it
than both Babel and Traceur combined, making it a mean
competitor.

Microsoft’s Enterprise Mode
In the past few years, Microsoft has taken several steps toward help‐
ing the Web gain momentum. And more than one of those changes
may prove helpful as you attempt to fight free of the bonds of oldIE.
I am not asserting that we need to forget everything that Microsoft
has done along the way to sandbag the progress of the Web. How‐

28 | Chapter 4: Where to Start

ever, I do feel that we should each let our biases go and accept pro‐
gress as such. Especially when it helps us move our organizations
forward.

One of the reasons that many corporate environments are stuck
using an old version of IE is because they have a few sites that don’t
run well in newer versions of any browser. In almost all cases, these
are sites that they depend on. And rather than rewrite those sites to
work in modern browsers, they are more than happy to force all of
their network users to continue using IE8 or IE9. If this sounds like
your organization, or your customers’ organizations, KEEP READ‐
ING! There is hope.

One of Microsoft’s recent features that I think you should care about
is Enterprise Mode. Enabling Enterprise Mode on a Windows Net‐
work means that you can set up a list of certain sites that need and
depend on oldIE to function appropriately. Then, any network user
can open Internet Explorer 11 (or whatever the latest version is
when you are reading this) and IE11 will load those sites with an
older version of its JavaScript and HTML/CSS rendering engines. A
version that acts, thinks, and performs like oldIE performs. All other
sites will get to experience the Web through IE11.

Perhaps educating your network folks (or your customers’ network
folks) about the benefits and ease of use of Enterprise Mode may
afford you the freedom to upgrade your development process to
only include more modern browsers. If are like me, you know the
exact number of users that are still using oldIE. Fingers crossed that
Enterprise Mode, along with Microsoft’s support changes coming in
January 2016, will help us all move our projects into the future.

Summary
Every organization is different. Each team will need to set its own
pace. With innovation in general, constant progress is key. Aggres‐
sively seek out new opportunities to help your projects stay on track
with your innovation goals. The total reduction in costs for stand‐
ardizing on modern technologies will make your efforts worth it.
The age of “oldIE” isolation has already begun.

Summary | 29

CHAPTER 5

Watching for ES7

As of January 2016, the list of possible features for ES6 has been fro‐
zen. Only the proposals that are already on the list may be included
in ES6. Any additional proposed features to ECMAScript will have
to wait in hopes of being included in ES7. Potential features for ES7
have already begun to appear.

JS.Next refers to the next version of the JS API.
Currently JS.Next refers to ES6. Once the ES6
release is live, JS.Next will refer to the ES7
release. JS.Next will always refer to the next
update to the language.

Several of the potential features have the possibility of really chang‐
ing the way we think about app development in JavaScript. Taking
an initial look at those features now can give us some time to digest
them while the ES7 release is being prepared over the next few years.

Everything in this section is partially speculation. None of the fol‐
lowing proposed features has been officially accepted into the final
ES7 release. Additionally, only Object.observe has been officially
approved as a Harmony proposal.

31

Object.observe
A popular feature in modern frontend JavaScript frameworks is
two-way databinding. Having two-way databinding makes life easier
on your developers. It allows them to focus on writing new code
rather than worry about keeping all the data in sync.
Object.observe makes two-way databinding easier than ever
before.

On any given JavaScript-assembled web page, the values on the page
represent some JavaScript variable in your code. Keeping those two
values (the page value and your variable’s value) in sync is impor‐
tant. Any time your users update the values on the page, your vari‐
ables are updated as well. Additionally, if you change the value of
your variables, you want the page to be updated with your changes.
That is two-way databinding in a nutshell.

We have already seen a handful of frameworks implement
Object.observe, each reporting huge performance increases. In late
2012, Chromium, the open source browser project on which Google
Chrome is based, released Object.observe functionality in its Can‐
ary channel. A few of the modern frameworks then updated their
two-way databinding to use Object.observe. Those frameworks
saw their performance increase. The AngularJS team reported that
their code ran 20-40 times faster than it had previously. This means
that once Object.observe is released into the Web, most libraries
and frameworks that switch to it will see increased efficiency and
optimization.

Multithreading
One of the best things about JavaScript is that it runs in a single-
threaded nature. Because you can write code without worrying
about multiple threads, application development tends to be easier.
While this is a huge plus, it also present limitations. For example, if
any of your JavaScript code runs too long, your entire app will
appear to be frozen. Things like intense graphics can easily bring
your code to a halt. If JavaScript apps had a good option for running
code in parallel, on different threads, it would be a much more pow‐
erful language.

32 | Chapter 5: Watching for ES7

http://bit.ly/object_observe

Intel Labs has a research project called RiverTrail. Together with
Mozilla, Intel aims to allow JavaScript applications to run using mul‐
tiple threads. This means that your browser would be able to utilize
all your computer’s processors. As shown in their demos, RiverTrail
allows things like intense graphics processing to happen right inside
the browser.

With any luck, the RiverTrail project will yield some conclusions of
sorts that can be integrated into the ECMAScript specification and
then implemented in JavaScript. Having the ability to easily program
in parallel would be a great addition to the language. Maybe your
average JavaScript developer wouldn’t use this type of low-level
functionality, but your framework developers would. This means
that once you implement the frameworks, they will take care of the
lower-level stuff like improved optimization.

Traits
In many object-oriented languages, your objects share functionality
by inheriting it from parent classes. One of the alternatives to class-
based inheritance is traits. By using traits, you define the functional‐
ity to be shared as a trait and then add the desired traits onto your
object. By adding a trait to your object, your object will absorb the
functionality of your defined trait.

Implementing traits provides another powerful way of sharing func‐
tionality. It can also reduce the risk of over-architecting traditional
class-based inheritance models.

Additional Potential Proposals
Here is a list of additional items to watch for in ES7. I am sure this
list will grow before the ES7 approval process is over:

• Precise math
• Improved garbage collection
• Cross-site security enhancements
• Typed, low-level JavaScript
• Internationalization support
• Digital electronic rights
• Additional data structures

Traits | 33

• Array comprehensions
• Async functions
• Typed objects

Invite your teams to keep their ears to the ground, listening for
more cutting-edge features that may appear in JavaScript.

34 | Chapter 5: Watching for ES7

About the Author
Aaron Frost spent the last several years swimming (at times sink‐
ing) in the Open Web waters. Finding JS and CSS/HTML was the
best thing that could have happened to him. By day he is a part of
the Domo frontend team, building an app that makes everyone a
CEO. By night he is working with O’Reilly Media and is writing the
book JS.Next: ES6. The final release may be much later, as the final
spec will take a while to solidify. He is also a Google Developer
Expert, nominated by Google for his work with AngularJS and its
community. He is also an Egghead.io author. Additionally, he works
on several small projects for himself, and one with his identical twin
brother. Peppered in between working hours, he enjoys being mar‐
ried to a wonderful wife and being the dad of four amazing mon‐
sters. When the world is white and frozen, you will find him atop
the mountain, ice fishing.

	Table of Contents
	Preface
	Chapter 1. You Can’t Afford to Avoid ES6
	Innovation Debt
	Direction of the Industry
	Microsoft
	Google
	Kogan.com
	Conclusion

	Recruit and Retain Top Talent
	Efficiency
	The World Is Changing

	Chapter 2. ES6 Goals
	History in the Making
	The Meeting
	Harmony
	Complex Applications
	Libraries
	Adopt De Facto Standards
	ES6: Subsetting Harmony

	Chapter 3. Features Explained
	Arrow Functions
	Let, Const, and Block Functions
	Destructuring
	Default Values
	Modules
	Classes
	Rest Parameters
	Spreading
	Proper Tail Calls
	Sets
	Maps
	Weak Maps
	Generators
	Iterators
	Direct Proxies (and Supporting Features)
	String Literals
	Binary Data
	API Improvements
	Unicode

	Chapter 4. Where to Start
	Incidental Functionality First
	Graceful Degradation
	Train Your Teams
	Using a Transpiler
	Microsoft’s Enterprise Mode
	Summary

	Chapter 5. Watching for ES7
	Object.observe
	Multithreading
	Traits
	Additional Potential Proposals

	About the Author

