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MECHANICS

Throughout the Mechanics section in this Handbook, both English and metric SI
data and formulas are given to cover the requirements of working in either system of
measurement. Except for the passage entitiethe Use of the Metric SI System in
Mechanics Calculationgormulas and text relating exclusively to Sl are given in bold
face type.

Terms and Definitions

Definitions.—The science of mechanics deals with the effects of forces in causing or pre-
venting motionStaticsis the branch of mechanics that deals with bodies in equilibrium,
i.e., the forces acting on them cause them to remain at rest or to move with uniform veloc-
ity. Dynamicss the branch of mechanics that deals with bodies not in equilibrium, i.e., the
forces acting on them cause them to move with non-uniform veldGitgticsis the
branch of dynamics that deals with both the forces acting on bodies and the motions tha
they causeKinematicss the branch of dynamics that deals only with the motions of bodies
without reference to the forces that cause them.

Definitions of certain terms and quantities as used in mechanics follow:

Forcemay be defined simply as a push or a pull; the push or pull may result from the
force of contact between bodies or from a force, such as magnetism or gravitation, in which
no direct contact takes place.

Matteris any substance that occupies space; gases, liquids, solids, electrons, atoms
molecules, etc., all fit this definition.

Inertiais the property of matter that causes it to resist any change in its motion or state of
rest.

Massis a measure of the inertia of a body.

Work,in mechanics, is the product of force times distance and is expressed by a combi-
nation of units of force and distance, as foot-pounds, inch-pounds, meter-kilograms, etc.
The metric Sl unit of work is the joule, which is the work done when the point of appli-
cation of a force of one newton is displaced through a distance of one meter in the
direction of the force.

Power,in mechanics, is the product of force times distance divided by time; it measures
the performance of a given amount of work in a given time. Itis the rate of doing work and
as such is expressed in foot-pounds per minute, foot-pounds per second, kilogram-meter
per second, etd:he metric Sl unit is the watt, which is one joule per second.

Horsepoweis the unit of power that has been adopted for engineering work. One horse-
power is equal to 33,000 foot-pounds per minute or 550 foot-pounds per secokitb-The
watt, used in electrical work, equals 1.34 horsepower; or 1 horsepower equals 0.746
kilowatt. However, in the metric S, the term horsepower is not used, and the basic
unit of power is the watt. This unit, and the derived units milliwatt and kilowatt, for
example, are the same as those used in electrical work.

Torque or momertf a force is a measure of the tendency of the force to rotate the body
upon which it acts about an axis. The magnitude of the moment due to a force acting in &
plane perpendicular to some axis is obtained by multiplying the force by the perpendicular
distance from the axis to the line of action of the force. (If the axis of rotation is not perpen-
dicular to the plane of the force, then the components of the force in a plane perpendicula
to the axis of rotation are used to find the resultant moment of the force by finding the
moment of each component and adding these component moments algebraically.)
Moment or torque is commonly expressed in pound-feet, pound-inches, kilogram-meters,
etc.The metric Sl unitis the newton-meter (N - m).

Velocityis the time-rate of change of distance and is expressed as distance divided by
time, that is, feet per second, miles per hour, centimeters per second, meters per secon
etc.
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Acceleratioris defined as the time-rate of change of velocity and is expressed as veloc-
ity divided by time or as distance divided by time squared, that is, in feet per second, per
second or feet per second squared; inches per second, per second or inches per seco
squared; centimeters per second, per second or centimeters per second squéined; etc.
metric Sl unit is the meter per second squared.

Unit Systems.—n mechanics calculations, badbsoluteandgravitational systems of

units are employed. The fundamental units in absolute systefesgiigtime, andmass

and from these units, the dimension of force is derived. Two absolute systems which have
been in use for many years are the cgs (centimeter-gram-second) and the MKS (meter
kilogram-second) systems. Another system, known as MKSA (meter-kilogram-second-
ampere), links the MKS system of units of mechanics with electro magnetic units.

The Conference General des Poids et Mesures (CGPM), which is the body responsi-
ble for all international matters concerning the metric system, adopted in 1954 a
rationalized and coherent system of units based on the four MKSA units and includ-
ing the kelvin as the unit of temperature, and the candela as the unit of luminous
intensity. In 1960, the CGPM formally named this system the ‘Systeme International
d'Unites,’ for which the abbreviation is Sl in all languages. In 1971, the 14th CGPM
adopted a seventh base unit, the mole, which is the unit of quantity (“amount of sub-
stance”). Further details of the Sl are given in the Weights and Measures section, and
its application in mechanics calculations, contrasted with the use of the English sys-
tem, is considered on pag&16.

The fundamental units in gravitational systemslength time, andforce, and from
these units, the dimension of mass is derived. In the gravitational system most widely usec
in English measure countries, the units of length, time, and force are, respectively, the foot
the second, and the pound. The corresponding unit of mass, commonly cadled, tise
equal to 1 pound secchger foot and is derived from the formuld= W+ gin whichM =
mass in slugdV/= weight in pounds, argl= acceleration due to gravity, commonly taken
as 32.16 feet per secdnd body that weighs 32.16 Ibs. on the surface of the earth has,
therefore, a mass of one slug.

Many engineering calculations utilize a system of units consisting of the inch, the sec-
ond, and the pound. The corresponding units of mass are pounds?gedndh and the
value ofg is taken as 386 inches per second

In a gravitational system that has been widely used in metric countries, the units of
length, time, and force are, respectively, the meter, the second, and the kilogram. The cor
responding units of mass are kilograms se¢med meter and the value @fs taken as
9.81 meters per secohd

Acceleration of Gravity g Used in Mechanics Formulas.—Fhe acceleration of a freely
falling body has been found to vary according to location on the earth’s surface as well as
with height, the value at the equator being 32.09 feet per second, per second while at th
poles it is 32.26 ft/sécin the United States it is customary to regard 32.16 as satisfactory
for most practical purposes in engineering calculations.

Standard Pound Forcé&or use in defining the magnitude of a standard unit of force,
known as th@ound forcea fixed value of 32.1740 ft/sedesignated by the symbmy,
has been adopted by international agreement. As a result of this agreement, whenever tt
term massyl, appears in a mechanics formula and the substitMtrelV/g is made, use of
the standard valugy, = 32.1740 ft/se%is implied although as stated previously, it is cus-
tomary to use approximate valuesda@xcept where extreme accuracy is required.
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American National Standard Letter Symbols for Mechanics and
Time-Related PhenomenaANSI/ASME Y10.3M-1984
Acceleration, angular o (alpha) Height h
Acceleration, due to gravity g Inertia, moment of lord
Acceleration, linear a Inertia, polar (area) moment?ofJ
Amplitude? A Inertia, product (area) momentIxy
ofa
a (alpha) Length Lorl
B (beta) Load per unit distanée qorw
y(gamma) | Load, tota? Porw
Angle 0 (theta) Mass m
(phi) Moment of force, including M
e P bending moment
. Neutral axis, distance to extrem
¥ (psi) fiber from? €
Angle, solid Q (omega) Period T
Angular frequency w (omega) Poisson's ratio \L}lgmﬂ)
Angular momentum L Power P
Angular velocity © (omega) Pgersesaure, normal force per un|tp
Arc length s Radius r
Area A Revolutions per unit of time  n
. X-X, Y-Y, or | Second moment of area (second
Axes, through any poifit Z-Z axial moment of area) la
Bulk modulus K Second polar moment of area Ipord
Breadth (width) b Section modulus z
Coefficient of expansion, linear a (alpha) Shear force in beam section V
Coefficient of friction W (mu) Spring cpnstant (load per unit k
deflection}
Concentrated load (same as Statical moment of any area Q
force) about a given axis
Deflection of beam, max 3 (delta) Strain, normal € (epsilon)
Density p (rho) Strain, shear y (gamma)
Depth gr? (delta), Stress, concentration factor K
Diameter Dord Stress, normal o (sigma)
Displacemerit u, v, w Stress, shear T (tau)
Distance, linedr s Temperature, absollte T, or6 (theta),
Efg:cr;tncny of application of e Temperature t, or @ (theta)
Efficiency? n (eta) Thickness grf (delta),
Elasticity, modulus of E Time t
Elasticity, modulus of, in shear G Torque T
Elongation, tot&l 3 (delta) Velocity, linear \
Energy, kinetic E.K T Volume \Y
Energy, potential B (\;'hi(;rm Wavelength A (lambda)
Factor of safety N, orn Weight w
Force or load, concentrated F Weight per unit volume y (gamma)
Frequency f Work W
Gyration, radius 6f k

aNot specified in Standard
bSpecified in ANSI Y10.4-1982 (R1988)
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The Use of the Metric SI System in Mechanics Calculations.Fhe S| system is a
development of the traditional metric system based on decimal arithmetic; fractions are
avoided. For each physical quantity, units of different sizes are formed by multiplying or
dividing a single base value by powers of 10. Thus, changes can be made very simply by
adding zeros or shifting decimal points. For example, the meter is the basic unit of length;
the kilometer is a multiple (1,000 meters); and the millimeter is a sub-multiple (one-thou-
sandth of a meter).

In the older metric system, the simplicity of a series of units linked by powers of 10 is an
advantage for plain quantities such as length, but this simplicity is lost as soon as more
complex units are encountered. For example, in different branches of science and engi
neering, energy may appear as the erg, the calorie, the kilogram-meter, the liter-atmo-
sphere, or the horsepower-hour. In contrast, the S| provides only one basic unit for eact
physical quantity, and universality is thus achieved.

There are seven base-units, and in mechanics calculations three are used, which are f
the basic quantities of length, mass, and time, expressed as the meter (m), the kilogran
(kg), and the second (s). The other four base-units are the ampere (A) for electric current
the kelvin (K) for thermodynamic temperature, the candela (cd) for luminous intensity,
and the mole (mol) for amount of substance.

The Slis a coherent system. A system of units is said to be coherent if the product or quo
tient of any two unit quantities in the system is the unit of the resultant quantity. For exam-
ple, in a coherent system in which the foot is a unit of length, the square foot is the unit of
area, whereas the acre is not. Further details of the SI, and definitions of the units, are give!
in the sectionMETRIC SYSTEMS OF MEASUREMENTthe end of the book.

Other physical quantities are derived from the base-units. For example, the unit of veloc-
ity is the meter per second (m/s), which is a combination of the base-units of length and
time. The unit of acceleration is the meter per second squarell. By spplying New-
ton's second law of motion — force is proportional to mass multiplied by acceleration —
the unit of force is obtained, which is the kg -4nT4is unit is known as the newton, or N.
Work, or force times distance, is the kg%sh which is the joule, (1 joule = 1 newton-
meter) and energy is also expressed in these terms. The abbreviation for joule is J. Powe
or work per unit time, is the kg -2/8%, which is the watt (1 watt = 1 joule per second = 1
newton-meter per second). The abbreviation for watt is W.

The coherence of Sl units has two important advantages. The first, that of uniqueness an
therefore universality, has been explained. The second is that it greatly simplifies technical
calculations. Equations representing physical principles can be applied without introduc-
ing such numbers as 550 in power calculations, which, in the English system of measure-
ment have to be used to convert units. Thus conversion factors largely disappear from
calculations carried out in Sl units, with a great saving in time and labor.

Mass, weight, force, loadl is an absolute system (déeit Systemsn page 114), and
consequently it is necessary to make a clear distinction between mass and weight. Th
masf a body is a measure of its inertia, whereas the weight of a bodydsatexerted
on it by gravity. In a fixed gravitational field, weight is directly proportional to mass, and
the distinction between the two can be easily overlooked. However, if a body is moved to a
different gravitational field, for example, that of the moon, its weight alters, but its mass
remains unchanged. Since the gravitational field on earth varies from place to place by
only a small amount, and weight is proportional to mass, it is practical to use the weight of
unit mass as a unit of force, and this procedure is adopted in both the English and older met
ric systems of measurement. In common usage, they are given the same names, and we s
that a mass of 1 pound has a weight of 1 pound. In the former case the pound is being use
as a unit of mass, and in the latter case, as a unit of force. This procedure is convenient i
some branches of engineering, but leads to confusion in others.
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As mentioned earlier, Newton's second law of motion states that force is proportional to
mass times acceleration. Because an unsupported body on the earth's surface falls wit
acceleratiomy (32 ft/£ approximately), the pound (force) is that force which will impart an
acceleration of ft/s? to a pound (mass). Similarly, the kilogram (force) is that force which
will impart an acceleration af (9.8 meters per secohapproximately), to a mass of one
kilogram. In the SI, theewtonis that force which will impart unit acceleration (1 8ite
a mass of one kilogram. It is therefore smaller than the kilogram (force) in the gatio 1:
(about 1:9.8). This fact has important consequences in engineering calculations. The facto
g now disappears from a wide range of formulas in dynamics, but appears in many formu-
las in statics where it was formerly absent. It is however not quite thegsémneeasons
which will now be explained.

In the article on pag&54, the mass of a body is referred tdsbut it is immediately
replaced in subsequent formulasWig, whereW is the weight in pounds (force), which
leads to familiar expressions such/g? / 2g for kinetic energy. In this treatment, thie
which appears briefly is really expressed in terms of the slug (da®ea unit normally
used only in aeronautical engineering. In everyday engineers’ language, weight and mas:
are regarded as synonymous and expressions sWwéfd2g are used without pondering
the distinction. Nevertheless, on reflection it seems oddytsladuld appear in a formula
which has nothing to do with gravity at all. In fact ¢hesed here is not the true, local value
of the acceleration due to gravity, but an arbitrary standard value which has been chosen a
part of the definition of the pound (force) and is more properly desiggatpdgel14).

Its function is not to indicate the strength of the local gravitational field, but to convert from
one unit to another.

In the Sl the unit of mass is thkidlogram and the unit of force (and therefore weight) is
thenewton

The following are typical statements in dynamics expressed in Sl units:

A force of R newtons acting on a masshtkilograms produces an acceleratioriRi¥l
meters per secoAdT he kinetic energy of a massMfkg moving with velocity m/s is¥,

MV2kg (m/s§ or¥%MV2joules. The work done by a forceRhewtons moving a distance

L meters i)RL Nm, orRL joules. If this work were converted entirely into kinetic energy
we could writeRL=%MV?2and itis instructive to consider the units. Remembering that the
N is the same as the kg - Aige have (kg - m/Ax m = kg (m/s}, which is obviously cor-
rect. It will be noted thag does not appear anywhere in these statements.

In contrast, in many branches of engineering where the weight of a body is important,
rather than its mass, using Sl unisloes appear where formerly it was absent. Thus, if a
rope hangs vertically supporting a mas#/dfilograms the tension in the ropeNig N.

Hereg is the acceleration due to gravity, and its units aré. e ordinary numerical

value of 9.81 will be sufficiently accurate for most purposes on earth. The expression is
still valid elsewhere, for example, on the moon, provided the proper vaieusded. The
maximum tension the rope can safely withstand (and other similar properties) will also be
specified in terms of the newton, so that direct comparison may be made with the tension
predicted.

Words like load and weight have to be used with greater care. In everyday language we
might say “a lift carries a load of five people of average weight 70 kg,” but in precise tech-
nical language we say that if the average mass is 70 kg, then the average wegght is 70
and the total load (that is force) on the lift is §50

If the lift starts to rise with acceleratiam/<, the load becomes 35§+ a) N; bothg and
ahave units of m%the mass is in kg, so the load is in terms of kg2 mhich is the same
as the newton.

Pressure and stres$hese quantities are expressed in terms of force per unit area. In the
Sl the unit is the pascal (Pa), which expressed in terms of S| derived and base units is th
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newton per meter squared (Njilhe pascal is very small—it is only equivalent to &15

1078 Ib/in2— hence the kilopascal (kPa = 1000 pascals), and the megapascal (MPa = 10
pascals) may be more convenient multiples in practice. Thus, note: 1 newton per millime-
ter squared = 1 meganewton per meter squared = 1 megapascal.

In addition to the pascal, the bar, a non-Sl unit, is in use in the field of pressure measure:
ment in some countries, including England. Thus, in view of existing practice, the Interna-
tional Committee of Weights and Measures (CIPM) decided in 1969 to retain this unit for
a limited time for use with those of SI. The bar £ffiscals and the hectobar # p@scals.

Force Systems

Scalar and Vector Quantities.—T he quantities dealt with in mechanics are of two kinds
according to whether magnitude alone or direction as well as magnitude must be known in
order to completely specify them. Quantities such as time, volume and density are com-
pletely specified when their magnitude is known. Such quantities are sedlietlquanti-

ties. Quantities such as force, velocity, acceleration, moment, and displacement which
must, in order to be specified completely, have a specific direction as well as magnitude,
are calledrectorquantities.

Graphical Representation of Forces.—A force has three characteristics which, when
known, determine it. They adirection, point of applicationandmagnitude The direc-

tion of a force is the direction in which it tends to move the body upon which it acts. The
point of application is the place on the line of action where the force is applied. Forces may
conveniently be represented by straight lines and arrow heads. The arrow head indicate
the direction of the force, and the length of the line, its magnitude to any suitable scale. The
point of application may be at any point on the line, but it is generally convenient to assume
itto be at one end. In the accompanying illustration, a force is supposed to act alaBg line

in a direction from left to right. The length of lidd shows the magnitude of the force. If
pointAis the point of application, the force is exerted as a pull, but if Béiatassumed to

be the point of application, it would indicate that the force is exerted as a push.

Vector

Velocities, moments, displacements, etc. may similarly be represented and manipulatec
graphically because they are all of the same class of quantities called vectoBsal8ee
and Vector Quantitiey

Addition and Subtraction of ForceEhe resultant of two forces applied at the same point
and acting in the same direction, is equal to the sum of the forces. For example, if the two
forcesABandAC, one equal to two and the other equal to three pounds, are applied at point
A, then their resulta®D equals the sum of these forces, or five pounds.

5"
3" 6” 4n
2" 2
A B C D C D A B
Fig. 1. Fig. 2.

If two forces act in opposite directions, then their resultant is equal to their difference,
and the direction of the resultant is the same as the direction of the greater of the two forces
For exampleAB andAC are both applied at poiAt then, ifAB equals four anACequals
six pounds, the resultaAD equals two pounds and acts in the directioh@f
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Parallelogram of Forcesdlf two forces applied at a point are represented in magnitude
and direction by the adjacent sides of a parallelogBaOdAC in Fig. 3, their resultant
will be represented in magnitude and direction by the diagdRatawn from the intersec-
tion of the two component forces.

A C A D

Fig. 3. Fig. 4. Fig. 5.

If two forcesP andQ do not have the same point of application, &dn4, but the lines
indicating their directions intersect, the forces may be imagined as applied at the point of
intersection between the lines (aggtand the resultant of the two forces may be found by
constructing the parallelogram of forces. LR shows the direction and magnitude of
the resultant, the point of application of which may be assumed to be at any poin&ét line
or its extension.

If the resultant of three or more forces having the same point of application is to be found,
as inFig. 5 first find the resultant of any two of the forcé®B@ndAC) and then find the
resultant of the resultant just four@R;) and the third forceAD). If there are more than
three forces, continue in this manner until the resultant of all the forces has been found.

Parallel Forces!if two forces are parallel and act in the same direction, Eigir6, then
their resultant is parallel to both lines, is located between them, and is equal to the sum o
the two components. The point of application of the resultant divides the line joining the
points of application of the components inversely as the magnitude of the components.
Thus,

AB:CE=CD:AD

The resultant of two parallel and unequal forces acting in opposite dire€ligns, is
parallel to both lines, is located outside of them on the side of the greater of the compo-
nents, has the same direction as the greater component, and is equal in magnitude to t
difference between the two components. The point of application on th&im@duced
is found from the proportion:

AB:CD=CE:AE

B A
Cr—E —
D—-—-—»F C_—>D
Al——=3 El———F
Fig. 6. Fig. 7.

Polygon of ForcesWhen several forces are applied at a point and act in a single plane,
Fig. 8 their resultant may be found more simply than by the method just described, as fol-
lows: From the extreme end of the line representing the first force, draw a line representing
the second force, parallel to it and of the same length and in the direction of the seconc
force. Then through the extreme end of this line draw a line parallel to, and of the same
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length and direction as the third force, and continue this until all the forces have been thus
represented. Then draw a line from the point of application of the forcég {ashe
extreme point (as;pof the line last drawn. This lin&&,) is the resultant of the forces.

P
f—
A0—B
Fig. 8. Fig. 9.

Moment of a ForceThe moment of a force with respect to a point is the product of the
force multiplied by the perpendicular distance from the given point to the direction of the
force. InFig. 9 the moment of the ford@with relation to poinf is P x AB. The perpen-
dicular distancéBis called the lever-arm of the force. The moment is the measure of the
tendency of the force to produce rotation about the given point, which is termed the center
of moments. If the force is measured in pounds and the distance in inches, the moment i:
expressed in inch-pounds. metric Sl units, the moment is expressed in newton-
meters (N - m), or newton-millimeters (N - mm).

The moment of the resultant of any number of forces acting together in the same plane i
equal to the algebraic sum of the moments of the separate forces.

Couples.—If the forcesAB andCD are equal and parallel but act in opposite directions,
then the resultant equals 0, or, in other words, the two forces have no resultant and ar
called a couple. A couple tends to produce rotation. The measure of this tendency is callec
the moment of the couple and is the product of one of the forces multiplied by the distance
between the two.

Be+———A H

e
F

I ——
G

C D E

Two Examples of Couples

As a couple has no resultant, no single force can balance or counteract the tendency of th
couple to produce rotation. To prevent the rotation of a body acted upon by a couple, two
other forces are therefore required, forming a second couple. In the illustEatindF
form one couple an@ andH are the balancing couple. The body on which they act is in
equilibrium if the moments of the two couples are equal and tend to rotate the body in
opposite directions. A couple may also be represented by a vector in the direction of the
axis about which the couple acts. The length of the vector, to some scale, represents th
magnitude of the couple, and the direction of the vector is that in which a right-hand screw
would advance if it were to be rotated by the couple.
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Composition of a Single Force and Couple.-A single force and a couple in the same
plane or in parallel planes may be replaced by another single force equal and parallel to th
first force, at a distance from it equal to the moment of the couple divided by the magnitude
of the force. The new single force is located so that the moment of the resultant about the
point of application of the original force is of the same sign as the moment of the couple.

In the next figure, with the couplé- N in the position shown, the resultanfpf- N, and
Nis O (which equal$) acting on a line through poiaso that P —N) x ac=N x bc.

Thus, it follows that,

_ N(ac+ bg _ Moment of Couple
ac = 5 = 5

Single Force and Couple Composition

Algebraic Composition and Resolution of Force Systems.Fhe graphical methods

given beginning on pagkl8are convenient for solving problems involving force systems

in which all of the forces lie in the same plane and only a few forces are involved. If many
forces are involved, however, or the forces do not lie in the same plane, it is better to use
algebraic methods to avoid complicated space diagrams. Systematic procedures for solv
ing force problems by algebraic methods are outlined beginning oripagde connec-

tion with the use of these procedures, it is necessary to define several terms applicable t
force systems in general.

The single force which produces the same effect upon a body as two or more forces actin
together is called thefesultant The separate forces which can be so combined are called
thecomponentsFinding the resultant of two or more forces is callecctimaposition of
forces and finding two or more components of a given forcerékelution of forces
Forces are said to lm®ncurrentwhen their lines of action can be extended to meet at a
common point; forces that aparallel are, of coursegonconcurrentTwo forces having
the same line of action are said tododlinear. Two forces equal in magnitude, parallel,
and in opposite directions constituteauple Forces all in the same plane are said to be
coplanar;if not in the same plane, they are caltedicoplanarforces.

Theresultantof a system of forces is the simplest equivalent system that can be deter-
mined. It may be a single force, a couple, or a noncoplanar force and a couple. This last typ
of resultant, a noncoplanar force and a couple, may be replaced, if desiredskgvwed
forces (forces that are nonconcurrent, nonparallel, and noncoplanar). When the resultant o
a system of forces is zero, the system is in equilibrium, that is, the body on which the force
system acts remains at rest or continues to move with uniform velocity.
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Algebraic Solution of Force Systems—All Forces in the Same Plane

Finding Two Concurrent Components of a Single Force:

angles andg, @not being 90.

Case I:To find two components, andF, at

_ FsinB
17 Tsing
E = Fsin(¢—6)
2 sing

Case Il:Component§, andF, form 9¢° angle.
F, = Fsin®
F, = FcosB

Finding the Resultant of Two Concurrent Forces:

Case |:Forces, andF, do not form 99angle.

- 7\\ _ Fysing _ Fysing
Fy < \ =S N7 Sne-9
¢ //‘\9 \ R = ,[F}+F3+2F,F,cosp
\ F,sin
- \ F2 tand = —— o
F,cosp+F,
__________ Case ll:Forced, andF, form 9C angle.
P T 9
~ =2 = L
Fi /‘3~/ I R o sine "
Y —
7, | R=JR*F?
- F
- } Fy I tane = =
F2

Finding the Resultant of Three or More Concurrent Forces:

y

To determine resultant of forcEg, F,, Fs, etc.
making angles, respectively, &, 8,, 65, etc. with

F2
thex axis, find thex andy component§, andF, of
F, each force and arrange in a table similar to that
F3 831 03 shown below for a system of three forces. Find
0477 6 algebraic sum of the, andF, componentsYF,
X ! and} F,) and use these to determine resulRnt
Force Fy Fy
Fi F, cost, F,sin6,
Fy F, F, cos6, F,sin®,
—y Fs F;cos0, F5sinB;
v 3P, 3Py
&1y R = [(EF,)2+(2F,)?
} {r SF
—x - X
¥ F, * cog = &
sF
=Y
or tanbg 5F,
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Finding a Force and a Couple Which Together are Equivalent to a Single Force:

dF To resolve a single fordeinto a couple of
"_ *1 momentM and a forc® passing through any ch
sen poinD at a distancd from the original force
F, use the relations
P=F
M = Fxd

The momenM must, of course, tend to produ|

nal force. Thus, as seen in the diagrBrends to
produce clockwise rotation; henlgkis shown
clockwise.

SN

Finding the Resultant of a Single Force and a Couple:

F The resultant of a single foréeand a coupl&!
is a single forceR equal in magnitude and direc
tion toF and parallel to it at a distandé¢o the left
or right of .

R=F
d=M=+R

R
ResultanRis placed to the left or right of poin
E’ of applicatiorO of the original forcé= depending
onwhich position will givdRthe same direction g

moment abouD as the original coupld.

rotation abou® in the same direction as the origi

ce

it

Finding the Resultant of a System of Parallel Forces:

To find the resultant of a system of coplanar parallel
forces, proceed as indicated below.

1) Select any convenient poidfrom which perpendicular distanagsd,, ds, etc. to parallel forces,, F,, F5, etc. can|
be specified or calculated.

2) Find the algebraic sum of all the forces; this will give the magnitude of the resultant of the system.

R=ZF = F +F,+F3+...

3) Find the algebraic sum of the moments of the forces &haldckwise moments may be taken as negative and

terclockwise moments as positive:
ZMg = Fyd;+Fody + ...
4) Calculate the distancfrom O to the line of action of resultant R:
d=2Mg+R

This distance is measured to the left or right f@uepending on which position will give the momenRafie same
direction of rotation aboud as the couplg My, that s, ify M is negative, thedis left or right ofO depending on whic
direction will makeR x d negative.

Note Concerning Interpretation of ResulfsR = 0, then the resultant of the system is a copipg; if Y My = 0 then
the resultant is a single forgeif bothRandyMg = 0, then the system is in equilibrium.

oun-
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Finding the Resultant of Forces Not Intersecting at a Common Point:
y
F4 F3 Fy
0 To determine the resultant offa
| 4 coplanar, nonconcurrent, nonpgr-
—x—t \ x |allelforce system as showninthe
Ya T0 diagram, proceed as shown
below.
X4 Fy
-y

1) Draw a set of andy coordinate axes through any convenient poiirt the plane of the forces ¢
shown in the diagram.

2) Determine th& andy coordinates of any convenient point on the line of action of each force
the angléd, measured in a counterclockwise direction, that each line of action makes with the
xaxis. For example, in the diagram, coordinates,, andé, are shown foF,. Similar data should b
known for each of the forces of the system.

3) Calculate the andy componentsK;, F,) of each force and the moment of each component g
0. Counterclockwise moments are considered positive and clockwise moments are negative.
all results ina manner similar to that shown below for a system of three forces gn,fifd,, > Mo
by algebraic addition.

Force Coordinates &f Components of Moment ofF aboutO
F X y 0 Fy Fy Mg =xF, —yF,
Fy Xy A 6, F; cos8,; F;sin6, X, sinB; —y;F; cosd,
F, Xo Yo 6, F,cos8, F,sin®, XoF, sinB, —y,F, cos,
F3 X3 Y 63 F3C0s8, F3sin6; XaF 3 SiNB3 — y5F; 0SB,
>Fy 2Fy >Mo

S

and
ositive

B

bout
[Tabulate

4. Compute the resultant of the system and the 8pdflenakes with the axis by using the formulaj

R = J(ZF)%+(2F))?
cosfg = ZF,+Rortanbg = IF +3F,
5. Calculate the distanddrom O to the line of action of the resultdRit
d=3Mg+R

Distanced is in such direction fror® as will make the moment 8faboutO have the same sign a:
>Mo.

Note Concerning Interpretation of ResulfsR = 0, then the resultant is a couplkl; if Y My =0,
thenR passes throug; if bothR= 0 andy My = 0, then the system is in equilibrium.

5.
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ExampleFind the resultant of three coplanar nonconcurrent forces for which the follow-
ing data are given.

F, =101bs; x; =5in.; y; = -1in.; 6, =270°

F, = 20 Ibs; x, = 4in,; y, = 1.51in,; 6, = 50°
F; =30 1bs; X3 = 2in.; y3 = 2in.; 83 = 60°
Fy, = 10c0s270° = 10x 0=10 Ibs.

Tn

X, = 20cos50° = 20x 0.64279= 12.86 Ibs.

Tn

X3 = 30cos60° = 30x 0.5000= 15.00 Ibs.

Tn

y, = 10xsin270° = 10x(~1) = ~10.00lbs.

v, = 20x% sin50° = 20x 0.76604= 15.32 Ibs.

m M

y, = 30xsin60° = 30x 0.86603= 25.98 Ibs.
o, = 5% (=10~ (-1) x 0 = —50in. Ibs.

< =

0, = 4x15.32-1.5% 12.86 = 41.99 in. Ibs.
Mo3 = 2x25.98-2x%x 15 = 21.96 in. Ibs.
Note: When working in metric Sl units, pounds are replaced by newtons (N); inches by

meters or millimeters, and inch-pounds by newton-meters (N - m) or newton-millimeters
(N - mm).

Force Coordinates of Components df Moment
F X y 9 = F, of F aboutO
F,=10 5 -1 270 0 -10.00 -50.00
F,=20 4 15 | 50 12.86 15.32 41.99
F;=30 2 2 | 60 15.00 25.98 21.96
27.86 31.30 13.95
y
= /(27.8672 302
R = ./(27.89%+(31.30 41.90 LBS.
= 41.901bs.
3130 RN
tanBg = 786" 1.1235 B / \
By, = 48°20 x v 7 X
48°20'
_13.95 _ ) AN
d= 190 0.33 inches 033”/(-—/
measured as shown on the diagram /
-y
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Algebraic Solution of Force Systems — Forces Not in Same Plane
Resolving a Single Force Into Its Three Rectangular Components:

The diagram shows how a forEenay be
resolved at any poil@ on its line of action into

Fy 67 ) Fy | / y three concurrent components each of which is|per-
- R pendicular to the other two.
Thex, y, zcomponents,, F, F, of forceF are
determined from the accompanying relations in
x which,, ey, 0, are the angles that the foifee

Fx = Feosd, makes with the, y, zaxes.
F, = Fcos,

F, = Fcosd,

-
1

[F+F2F2

Finding the Resultant of Any Number of Concurrent Forces:

To find the resultant of any number of noncopla-
nar concurrent forcds,, F,, F5, etc., use the pro.
cedure outlined below.

1) Draw a set of, y, zaxes a0, the point of concurrency of the forces. The angles each force makes
measured counterclockwise from the posikiwe andz coordinate axes must be known in addition to
the magnitudes of the forces. For foFgefor example, the angles &g, 6,,, 6, as indicated on the
diagram.

2) Apply the first three formulas given under the heading “Resolving a Single Force Into Its Three
Rectangular Components” to each force to fing,iysandz components. Tabulate these calculatipns
as shown below for a system of three forces. Algebraically add the calculated componenjgHg find
> F,, and} F,which are the components of the resultant.

Force Angles Components of Forces
F 6, 0, 6, Fy Fy F,
Fy 04 6,1 6,4 F,cos8,, F, cosB,, F,cosB,,
F, 6,0 6y, 6, F,cos8,, F,cosd,, F,cosb,
Fs 6,5 65 0,4 F5co0s0,5 F3cosf, F;cos6,
R >Fy 3F,

3. Find the resultant of the system from the forriufa /(F,)? + (2F,)? + (ZF,)?
4. Calculate the angl€gg, 8,5, andd,gthat the resultai® makes with the respective coordinate akes:

cosB, g = =
2F

= Y
cosByr R

cosB,g = =
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Finding the Resultant of Parallel Forces Not in the Same Plane:

/___y‘__1 Inthe diagram, forces;, F,, etc. repre
’ sent a system of noncoplanar para
OJ,/ e forces. To find the resultant of suc
-y i > y systems, use the procedure sho
/
F3 }

/ below.

le
L

1) Draw a set of, y, andz coordinate axes through any pdnin such a way that one of these ax
say thezaxis, is parallel to the lines of action of the forces. Téedy axes then will be perpendicul.
to the forces.

2) Set the distances of each force fromxthedy axes in a table as shown below. For exampknd
y, are thexandy distances foF, shown in the diagram.

3) Calculate the moment of each force abouxtedy axes and set the results in the table as sh
for a system consisting of three forces. The algebraic sums of the mgivgready M, are then
obtained. (In taking moments about #endy axes, assign counterclockwise moments a plus ( +
and clockwise moments a minus ( - ) sign. In deciding whether a moment is counterclockwise
wise, look from the positive side of the axis in question toward the negative side.)

£S,
ar

own

sign
pr clock-

Force Coordinates of Forée MomentsM, andM, due toF

F X y My M,

Fy X1 Y1 Fiy; Fixq

Fy X2 Y2 Fa¥s FaX

Fs X3 Y3 Fays FaXg

>F M, My

4. Find the algebraic sulfF of all the forces; this will be the resultdof the system.
R=3F =F +F,+...
5. Calculatex g andy g, the moment arms of the resultant:
Xg = XMy+ R
YR = ZMX+ R
These moment arms are measured in such direction aloxgrlg axes as will give the resultan
moment of the same direction of rotatioryas, andy M,.
Note Concerning Interpretation of Resulfsy M, andy M, are both 0, then the resultant is a sin
forceRalong thezaxis; ifRis also 0, then the system is in equilibriunR 16 0 buty M, andy M, are
not both 0, then the resultant is a couple

Mg = J(EM)2+ (ZMy)2

that lies in a plane parallel to thexis and making an andig measured in a counterclockwise dirj
tion from the positivex axis and calculated from the following formula:

o = ZM
sindg = —
MR

yle

ec-
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Finding the Resultant of Nonparallel Forces Not Meeting at a Common Point:

The diagram shows a system of
noncoplanar, nonparallel, nonco
current force§,, F,, etc. for which
the resultant is to be determined.
Generally speaking, the resultan
will be a noncoplanar force and &
couple which may be further com-
bined, if desired, into two forces
y that are skewed.

This is the most general force sys-
tem that can be devised, so each|of
the other systems so far describgd
represents a special, simpler casg of
this general force system. The
method of solution described belg
for a system of three forces appli¢:
for any number of forces.

n =

1) Select a set of coordinatgy, andzaxes at any desired poldin the body as shown in the diagrgm.

2) Determine the, y, andz coordinates of any convenient point on the line of action of each fofce as
shown forF,. Also determine the angle, 8,, 6, that each force makes with each coordinate axis.
These angles are measured counterclockwise from the positive directiox gf #meizaxes. The data
is tabulated, as shown in the table accompanying Step 3, for convenient use in subsequent cajculations

3) Calculate th&, y, andzcomponents of each force using the formulas given in the accompanying
table. Add these components algebraically tgggs > F, andy F, which are the components of the
resultantR, given by the formula,

R = [(EF )2+ (IF )2+ (ZF,)?

Force| Coordinates of Forée Components of
F X y z | 6|6 |6 Fy Fy F,
= X1 Vi Z | 6q | 6y | B, F, cosf,, F, cosby, F,cosb,,
Fol % | V2|2 [8a]08,] 6, F,cosf,, F, cosB,, F,cosB,,
Fs Xg A Z; | Bg | B | B4 F3c0s0,5 F3cosby, F3c0s0,5
R 3Fy 3F,

The resultant forcBR makes angles &g, 6,5, andd,gwith thex, y, andz axes, respectively, and passes
through the selected poidt These angles are determined from the formulas,
cosh,r = ZF,+R
cosByp = ZF +R
cosh, g = ZF,+R
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4. Calculate the momerit, M,, M, about, y, andzaxes, respectively, due to thgF,, andF, com-,

table.
In interpreting moments about theg/, andz axes, consider counterclockwise moments a plus (J+)

clockwise, look from the positive side of the axis in question toward the negative side.

Force Moments of Components Bf(F,, F,, F,) aboutx, y, zaxes
F M, =yF,-zF, M, =zF-XF, M, =xF, -yF,
Fy Mg =Y1Fa-zFy, My =zF,q -xFn My =xFy1 -¥1Fa
F, Mo =YoF» - ZFy, My, =2,F,5 - %F » My =X%F 5 - YoFyo
Fs Mg =YsF5-ZsFy5 My =2F,3-XF 5 Mg =X3Fy3-YaFyq
2 My M, M,

5. Add the component moments algebraically tgdég, > M, andy M, which are the components of
the resultant coupl®, given by the formula,

M = /():MX)2+(2MY)2+(ZMZ)2

The resultant coupld will tend to produce rotation about an axis making anglBg Bf, and3, with
thex, y, zaxes, respectively. These angles are determined from the formulas,
M M, M,

X = — =
v cosﬁy =W cosf, o

cosp, =

General Method of Locating Resultant When Its Components are Known:

To determine the position of the resultant force of a system of forces, proceed as follows:
From the origin, poin®, of a set of coordinate axey, z, lay off on thecaxis a lengtt representing
the algebraic suriF, of thex components of all the forces. From the end ofAiteey off a lineB rep-
resentings F,, the algebraic sum of tiyeomponents; this linB is drawn in a direction parallel to th
y axis. From the end of liriglay off a lineC representing F,. Finally, draw a lind&k from O to the end
of C; Rwill be the resultant of the system.

[]

ponents of each force and set them in tabular form. The formulas to use are given in the accorppanying

sign and clockwise moments a minus ( - ) sign. In deciding whether a moment is counterclockvise or
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Mechanisms
Inclined Plane—Wedge

W = weight of body

\/\T
|

\
W Q
fe—b

Neglecting friction:

)
1

P = th = Wx sina

P

W = le— = —— = Pxcosex
h  sina
Q= lel—) = Wx cosa
W = weight of body

If friction is taken into account, then forBeto
pull body up is:
P = W(pcosa + sina)

ForceP; to pull body down is:
P, = W(pcosa —sina)
ForceP, to hold body stationary:
P, = W(sina —pcosa)

in which is the coefficient of friction.

N
L

T

P =

we |

Neglecting friction:
P = ZQXLT) = 2Q x sina
Q=Pxg - = 1px cosea
2b 2
With friction:

Coefficient of friction =p.
P = 2Q(pcosua + sina)

Neglecting friction: With friction: Neglecting friction: With friction:

sina Coefficient of friction h Coefficient of friction
P = Wr s = W= tang P = Wxp = Wxtana | == ang
w = px %08 p = wx SN@+Q) [y = Px2 = Px cota P = Wtan(a +¢)

sina cos(B—q) h

_ cos(a +B) W
Q = Wx o Q o Wx sem
P b+
Q Q

Neglecting friction:
P = ZQX:—)] = 2Q x tana

- pxh
Q=Pxzp

= %P x cota
With friction:
Coefficient of friction = = tan¢.

P = 2Qtan(a + @)
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Table of Forces on Inclined Planes

The table below makes it possible to find the force required for nov-
ing a body on an inclined plane. The friction on the plane is not tgken
into account. The column headed “Tensiin Cable per Ton of 200
Pounds” gives the pull in pounds required for moving one ton alonfy the
inclined surface. The fourth column gives the perpendicular or nofmal
pressure. If the coefficient of friction is known, the added pull required
to overcome friction is thus easily determined:
Q x coefficient of friction = additional pull required.
Tensions and Pressures in Pounds
e renson | "Piesire| | percen repson | e
Rise, Ft. Anglea Cable per Plgngnper Rise, Ft. | Anglea | Cable per Plgnznper
per 100 Ton of Ton of Per 100 Ton of Ton of
Ft. 2000 Lbs. 2000 Lbs. Ft. 2000 Lbs. 2000 Lbs.
1 o 35 20.2 1999.8 39 21 19 727.0 1863.0
2 1 9 40.0 1999.4 40 21 4 743.2 1856.6
3 1 44 60.4 1999.0 41 22 18 758.8] 1850.4
4 2 18 80.2 1998.2 42 22 47 774.4] 1843.8
5 2 52 100.0 1997.4 43 23 1 790.4) 1837.0
6 3 27 120.2 1996.2 44 23 4p 805.4 1830.6
7 4 1 140.0 1995.0 45 24 14 820.8] 1823.6
8 4 35 159.8 1993.6 46 24 4B 836.2 1816.6
9 5 9 179.4 1991.8 a7 25 11 851.0] 1809.8
10 5 43 199.2 1990.0 48 25 3p 865.6 1802.8
11 6 17 2188 1987.8 49 26 4 880.4) 1795.6
12 6 51 238.4 1985.6 50 26 3¢ 894.4 1788.8
13 7 25 258.0 1983.2 51 27 P 909.0| 1781.4
14 7 59 277.6 1980.6 52 27 2P 922.8 1774.2
15 8 32 296.6 1977.8 53 27 56 936.8 1766.8
16 9 6 316.2 1974.8 54 28 2B 950.6| 1759.4
17 9 39 335.2 1971.6 55 28 4p 964.0 1752.2
18 10 13 354.6 1968.2 56 29 15 977.2 17448
19 10 46 373.6 1964.6 57 29 M4 990.4 1737.4
20 11 19 392.4 1961.0 58 30 4 10034 1730.0
21 11 52 411.2 1957.2 59 30 3P 1016.4 1722.2,
22 12 25 430.0 1953.2 60 30 58 1029.4 1714.8|
23 12 58 448.6 1949.0 61 31 1041.4 1707.4]
24 13 30 466.8 1944.6 62 31 1053.4 1699.6|
25 14 3 485.4 1940.0 63 32 1 1066.2 1692.0
26 14 35 503.4 1935.4 64 32 1078.4 1684.2,
27 15 7 521.4 1930.6 65 33 1090.2 1676.6
28 15 39 539.4 1925.8 66 33 1101.4 1669.0|
29 16 11 557.4 1920.6 67 33 1113.4 1661.2,
30 16 42 574.6 1915.6 68 34 1124.4 1653.8]
31 17 14 592.4 1910.2 69 34 1136.4 1645.8|
32 17 45 609.6 1904.6 70 35 11479 1638.2
33 18 16 626.8 1899.2 71 35 1158.4 1630.4]
34 18 47 643.8 1893.4 72 35 1168.4 1622.8|
35 19 18 661.0 1887.6 73 36 1179.2 1615.2
36 19 48 677.4 1881.6 74 36 i 1190.4 1607.2]
37 20 19 694.4 1875.4 75 36 1200.4 1599.6)
38 20 49 710.6 1869.4
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Levers
Types of Levers Examples
- A pull of 80 pounds is exerted at the end of the
L_ ¢ lever, atw:
I | = 12 inches antl = 32 inches.
[ l Find the value of forcE required to balance the
M lever.
_ 80x12 _ 960 _
F:W = |iL ExL = Wx| F==—55—=3; - 30pounds
g Wxl _ FxL| If F=20;W=180; and = 3; how long must.
L I |be made to secure equilibrium?
- Wxa_ Wx]| _ Fxa _FxL _ 180x 3 _
LEWEETE I =WET W L== =%
L | . . .
Total lengthL of a lever is 25 inches. A weigh|
I"_' i a of 90 pounds is supported\&t | is 10 inches.
& 7 Find the value oF.
[ JE S _90x10 _
F F = %5 - 36 pounds
Fw= L FxL=WxI | |t £ =100 poundsy= 2200 pounds, anai= 5
F= Wxl _ FxL |feet, what should equal to secure equilibrium?
L |
_ 2200x 5 _
I_:W><a:W><I |:F><a:F><L L—2200_100—5.24feet
W-F F W-F W

]
YRV

When three or more forces act on lever:
Fxx =Wxa+Pxb+Qxc
- Wx a+Pxbh+Qxc
F
- Wx a+Pxbh+Qxc
X

LetW=20,P = 30, andQ = 15 poundsa = 4,b
=7, andc = 10 inches.
If x =6 inches, find~.

- 20x 4+30x 7+ 15%x10

6
AssumingF = 20 in the example above, how
long must lever arm be made?

X = 20%x 4+30x7+15x 10

20

_ 9ql
F = 733 Ibs

= 22 ins

The above formulas are valid using metric Sl units, with forces expressed in newtons, and
lengths in meters. However, it should be noted that the weight of a maa&kilograms is equal to
a force of Wg newtons, whereg is approximately 9.81 m/3. Thus, supposing that in the first
examplel = 0.4 m,L = 1.2 m, andW = 30 kg, then the weight otV is 3Qy newtons, so that the

force F required to balance the lever iss =

30g x0.4
1.2

= 10g = 98.1 newtons.

This force could be produced by suspending a mass of 10 kdrat
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Toggle-joint.—If armsED andEH are of unequal length:

:F_a

P=%

The relation betweeR andF changes con-
stantly ag- moves downward.

If armsED andEH are equal:
_ Fa
T 2h
A double toggle-joint does not increase tf..

pressure exerted so long as the relative distances
moved byF andP remain the same.

P P

Toggle-joints with Equal Arms

F =force applied
P =resistance
a =given angle
2Psina = Fcosx
P cosa

= = =—— = coefficient
F  2sina

P = F x coefficient
Equivalent expressions (see diagram):

_Fs _Fs

P=an P=H
To use the table, measure angjend find the|
coefficient in the table corresponding to the ar|g
found. The coefficient is the ratio of the resis-
tance to the force applied, and multiplying the
force applied by the coefficient gives the resis-
tance, neglecting friction.

==

e

Angle [ Coefficienf] Angle | Coefficieff Angle | Coefficift  Angle] Coefficignt
0° 2 862 o 50 34.4 2 45 10.4 g 0 3.58

0 4 456 0 55 31.2 2 5 10.1 8 3D 3.35
0 6 285 1 0 28.6 3 0 9.54 9 q 3.15
0 8 216 1 10 24.6 3 14 8.81 9 3P 2.99
0 10 171 1 15] 22.9 3 8.17 10 D 2.84
0 12 143 1 20 215 3 4! 7.63 11 2.57
0 14 122 1 30 19.1 4 0 7.25 12 2.35
0 15 115 1 40 17.2 4 1 6.73 13 D 2.17
0 16 107 1 45 16.4 4 3 6.35 14 2.00
0 18 95.4 1 50 15.6 4 4 6.02 15 D 1.87
0 20 85.8 2 0 14.3 5 0 5.71 16 1.74
0 25 68.6 2 10| 13.2 5 3 5.19 17 D 1.64
0 30 57.3 2 15] 12.7 6 4.76 18 1.54
0 35 49.1 2 20 12.5 6 3 4.39 19 D 1.45
0 40 42.8 2 30 115 7 4.07 20 1.37
0 45 38.2 2 40 10.7 7 3 3.79
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Wheels and Pulleys

F:W = rR
FxR=Wxr The radius of a drum on which is wound the|
Wx r lifting rope of a windlass is 2 inches. What force
hlar-u will be exerted at the periphery of a gear of 24
_‘l inches diameter, mounted on the same shaft ps
K1/ w=FxR the drum and transmitting power to it, if one ton
r (2000 pounds) is to be lifted? Hané= 2000;R
R:er =12;r=2.
F F _ 2000% 2 _
< F = = - 333 pounds

F:W = sea :2
F=hw - Wxsem
The velocity with which 2
weightW will be raised W = 2F x cosu

equals one-half the velog-
ity of the force applied at|
F.

n = number of strands gr
parts of ropert;, Ny, etc.). | | the illustration is shown a combination ofa

E- 1, W double and triple block. The pulleys each turn

“n freely on a pin as axis, and are drawn with differ-

ny ent diameters, to show the parts of the rope more
n F The velocity with which| clearly. There are 5 parts of rope. Therefore, if

. ) 1 |200 pounds is to be lifted, the forEeequired at

ns ny Wwill be raised equal§ |the end of the rope is:
of the velocity of the forcg F = %x200 = 40 pounds
applied af-.

gq @ Let the pitch diameters of geasB, C andD be

30, 28, 12 and 10 inches, respectively. TRer
15;R, = 14;r, = 6; and =5. LetR=12, and, =
4. Then the forc€ required to lift a weightV of

F 2000 pounds, friction being neglected, is:
; i _ 2000 5x6x4 _
A, B, C andD are the pitch circles of gears. = SN IE T 95 pounds
X X

_ Wxrxryxr,
" RxR xR,

FxRxR; xR,

W = 1 2
rXryxr,

Note: The above formulas are valid using metric Sl units, with forces expressed in newtons, and
lengths in meters or millimeters. (See note on fda&fxoncerning weight and mass.)
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Differential Pulley—Screw

Differential Pulley.—In the differential pulley a chain must
be used, engaging sprockets, so as to prevent the chain fro
ping over the pulley faces.

PxR= %LW(R-1)

- W(R-1
P=7R

_ 2PR
W=rmy

Force Moving Body on Horizontal Plane—F tends to move
B along lineCD; Q is the component which actually mosP
is the pressure, due g of the body orCD.

Q = Fx cosa P = JF?2-Q?

Screw—F = force at end of handle or wrenéhs lever-arm
of F; r = pitch radius of screvwg = lead of threadQ = load.
Then, neglecting friction:

- p -
=Qxgzmmm O°F

If wis the coefficient of friction, then:

For motion in direction of loa@ which assistst:

_ 6.283ur—p r
F=Q*5%837 rup 'R

For motion opposite loa@ whichresistsit:

p+6.283ur !

F = Q*82832 —up 'R

6.283R
x 2£99R
P

m slip-
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MECHANICAL PROPERTIES OF BODIES

Properties of Bodies

Center of Gravity.— The center of gravity of a body, volume, area, or line is that point at
which if the body, volume, area, or line were suspended it would be perfectly balanced in
all positions. For symmetrical bodies of uniform material it is at the geometric center. The
center of gravity of a uniform round rod, for example, is at the center of its diameter half-
way along its length; the center of gravity of a sphere is at the center of the sphere. For sol
ids, areas, and arcs that are not symmetrical, the determination of the center of gravity ma
be made experimentally or may be calculated by the use of formulas.

The tables that follow give such formulas for some of the more important shapes. For
more complicated and unsymmetrical shapes the methods outlined oh4@agay be
used.

ExampleA piece of wire is bent into the form of a semi-circular arc of 10-inch radius.
How far from the center of the arc is the center of gravity located?

Accompanying the third diagram on pati#/is a formula for the distance from the cen-
ter of gravity of an arc to the center of the are:2r = 1t Therefore,

a = 2x 10+ 3.1416 = 6.366 inches

Formulas for Center of Gravity

Triangle:

Perimeter

If A, BandC are the middle points of the sides of
the triangle, then the center of gravity is at the ¢en-
ter of the circle that can be inscribed in trianglg
ABC. The distanced of the center of gravity from
sideais:

d= h(b+ c)
~ 2(a+b+0)

wherehis the height perpendicularao

- Area

The center of gravity is at the intersection of
linesAD andBE, which bisect the sid&&C and
AC. The perpendicular distance from the centgr of
gravity to any one of the sides is equal to one-third
the height perpendicular to that side. Helaceh

B D C

Perimeter or Area of a Parallelogram :

The center of gravity is at the intersection of the
diagonals.
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Area of Trapezoid:

137

The center of gravity is on the line joining the|
middle points of parallel linesB andDE.

_ h(a+2b) 4 = ha+b)
3(a+b) 3(a+b)
a2+ab+ 1P

3(a+b)

The trapezoid can also be divided into two tri
gles. The center of gravity is at the intersectio
the line joining the centers of gravity of the tria
gles, and the middle lirfeG.

an-
of
h-

Two cases are possible, as shown in the illug
tion. To find the center of gravity of the four-sid
figureABCD, each of the sides is divided into th:
equal parts. A line is then drawn through each
of division points next to the points of intersect
A, B, C, andD of the sides of the figure. These lir|
form a parallelograrBFGH, the intersection of
the diagonal&G andFH locates center of gravit

tra-
ed
ee
pair
on
es

2

Circular Arc:

The center of gravity is on the line that bisect
2
the arc, at a distanee = r—?—c = E(—C%hi'l—)
from the center of the circle.
For an arc equal to one-half the periphery:
a=2r+m= 0.6366G
For an arc equal to one-quarter of the periph

a = 2r./2+1 = 0.9003

For an arc equal to one-sixth of the periphery:

a = 3r+m = 0.9549

S

ery:

An approximate formula is very nearly exact
all arcs less than one-quarter of the periphery

a=%h
The error is only about one per cent for a qud
circle, and decreases for smaller arcs.

[ZRS)
=]

rter

Circle Segment :

T

The distance of the center of gravity from the
center of the circle is:
r3sima

c3
b= =% =

=155

in whichA = area of segment.
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Circle Sector :

CENTER OF GRAVITY

Distanceb from center of gravity to center of cf
cleis:

r-

in whichA = area of sector, ardis expressed in
degrees.
For the area of a half-circle:
b = 4r +3m = 0.4244
For the area of a quarter circle:
b = 4,/2xr+3m = 0.6002
For the area of a sixth of a circle:
b = 2r+m = 0.6366

Distanceb from center of gravity to center of ¢
cleis:

r-

b = 3g.19AR =r¥)sina
(R2-r2)a

Anglea is expressed in degrees.

= 0.223R
0.223R

Area = 0.214R?

The center of gravity of an elliptic segm&®C,
symmetrical about one of the axes, coincides
the center of gravity of the segm@&BF of a cir-
cle, the diameter of which is equal to that axis
the ellipse about which the elliptic segmentis s
metrical.

Spherical Surface of Segments and Zol

nes of Spheres :

Distances andb which determine the center pf

gravity, are:

1
NI
]

NIT




Area of a Parabola :
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b—d +=

[+

gravity is on the center line or axis, and
_3h

5

For one-half of the parabola:
23N gp = 3W

a= 5 andb = 3

For the complement aréBC.

¢ =0.3h andd = 0.75w

Cylinder :

The center of gravity of a solid cylinder (or
prism) with parallel end surfaces, is located at

of the end surfaces.

shell, with the base or end surface in one end, i
found from:
2h?
4h+d
The center of gravity of a cylinder cut off by g
inclined plane is located by:
_h, r2tarfa

2 8h

a=

_ r2tana
4h

wherea is the angle between the obliquely cut
surface and the base surface.

For the complete parabolic area, the center ¢f

The center of gravity of a cylindrical surface ¢r

he

middle of the line that joins the centers of gravity

off

Portion of Cylinder :

Fhy 7
L )
.

For a solid portion of a cylinder, as shown, th|
center of gravity is determined by:

a = %4x3.1416 b = %,x3.1416h
For the cylindrical surface only:
a = ¥%x3.1416 b = ¥ x3.1416h

If the cylinder is hollow, the center of gravity
the solid shell is found by:

4_ 4
a = ¥ex 3'141%

4_pa

b = %,x3.1416° 5=

of
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Pyramid :

=

In a solid pyramid the center of gravity is located
on the line joining the apex with the center of grav-
ity of the base surface, at a distance from the hase
equal to one-quarter of the heightasr ¥, h.

The center of gravity of the triangular surfaces
forming the pyramid is located on the line joining
the apex with the center of gravity of the base $ur-
face, at a distance from the base equal to one-third
of the height; oa=%h.

Frustum of Pyramid :

Aj = AREA OF TOP

The center of gravity is located on the line that
joins the centers of gravity of the end surfaces| If
A, = area of base surface, ahgdarea of top sur-
face,

_ h(A +2,/A x Ay +3A)
AL+ JA XAy AY)

Cone:

The same rules apply as for the pyramid.
For the solid cone:

a=%h
For the conical surface:
a=%h

Frustum of Cone :

The same rules apply as for the frustum of a pyr-
amid. For a solid frustum of a circular cone the for-
mula below is also used:

_ h(R?+2Rr+3r?)
4(R2+Rr+r2)

The location of the center of gravity of the copi-
cal surface of a frustum of a cone is determinedi by:

a= h(R+2r)
3(R+7r)

The center of gravity is on the line joining the|
center of gravity of the base with the middle pdint
of the edge, and is located at:

_ h(b+o
2(2b+c)




CENTER OF GRAVITY

Half of a Hollow Sphere :

141

The center of gravity is located at:
a= 3(R* =19
8(R3—r3)

The center of gravity of a solid segment is defter-

mined by:

_ 3(2r-h)?

4(3r—h)
_ h(4r —h)
" 4(3r-h)

For a half-sphere =b =%r

The center of gravity of a solid sector is at:
a = %(1+ cosa)r = ¥%(2r-h)

The center of gravity of a solid segm&&C,
symmetrical about the axis of rotation, coincid
with the center of gravity of the segm&BF of a
sphere, the diameter of which is equal to the ax|
rotation of the spheroid.

£S

s of

Paraboloid :

j~——h

The center of gravity of a solid paraboloid of
rotation is at:

a=%h

Center of Gravity of Two Bodies :

If the weights of the bodies aPeandQ, and the
distance between their centers of gravig, then:
_ Qa _ Pa
b=5y Q ©“pFvo0
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Center of Gravity of Figures of any Outline.—f the figure is symmetrical about a cen-

ter line, as irFig. 1, the center of gravity will be located on that line. To find the exact loca-
tion on that line, the simplest method is by taking moments with reference to any
convenient axis at right angles to this center line. Divide the area into geometrical figures,
the centers of gravity of which can be easily found. In the example shown, divide the figure
into three rectangles KLMN, EFGH and OPRS. Call the areas of these rectaitesl

C, respectively, and find the center of gravity of each. Then select any convenient axis, as
X-X, at right angles to the center line Y-Y, and determine distamdesndc. The dis-

tancey of the center of gravity of the complete figure from the axis X—X is then found from
the equation:

_ Aa+ Bb+ Cc
A+B+C
Y
Y
| !4——(‘1*’
0 P :
Co—- LT - C|
| L'[F |
. W ;
***** - : t:;*’*T
T_Kh—_H——? G N T ¥ “T T*-—M—*
- — - >
e (IO
=
Y Y
Fig. 1. Fig. 2.

As an example, assume that the #&&a24 square incheB, 14 square inches, a@d16
square inches, and thet 3 inchesb = 7.5 inches, anc= 12 inches. Then:
_ 24x 3+14x75+16x 12 _ 369

y = 54+ 14+ 16 =% = 6.83 inches

If the figure, the center of gravity of which is to be found, is not symmetrical about any
axis, then moments must be taken with relation to two axes X—X and Y-Y, centers of grav-
ity of which can be easily found, the same as before. The center of gravity is determined by
the equations:

« = A2tBb +Co _ Aa+Bb+ Cc
T T A+B+C Y= "A¥B+C
As an example, &k = 14 square incheB,= 18 square inches, a@d= 20 square inches.
Leta=3inchesb =7 inches, and=11.5 inches. Let; = 6.5 inchedh, = 8.5 inches, and
¢, =7inches. Then:

14x 6.5+18x8.5+20x7 _ 384 _

X = 14+ 18+ 20 =% - 7.38 inches
_14x3+18x7+20x11.5 _ 398 _ )
y = T4+ 18+ 20 =% - 7.65 inches

In other words, the center of gravity is located at a distance of 7.65 inches from the axis
X-X and 7.38 inches from the axis Y-Y.
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Moments of Inertia.—An important property of areas and solid bodies is the moment of
inertia. Standard formulas are derived by multiplying elementary particles of area or mass
by the squares of their distances from reference axes. Moments of inertia, therefore,
depend on the location of reference axes. Values are minimum when these axes pas
through the centers of gravity.

Three kinds of moments of inertia occur in engineering formulas:

1) Moments of inertia of plane arel in which the axis is in the plane of the area, are
found in formulas for calculating deflections and stresses in beams. When dimensions are
given in inches, the units bare inches A table of formulas for calculating tthef com-
mon areas can be found in tS# RENGTH OF MATERIALSection beginning on
page218

2) Polar moments of inertia of plane aredsin which the axis is at right angles to the
plane of the area, occur in formulas for the torsional strength of shafting. When dimensions
are given in inches, the unitshdre inche If moments of inertid, are known for a plane
area with respect to bogandy axes, then the polar moment for #hexis may be calcu-

lated using the equatial, = I, +1,

A table of formulas for calculatingfor common areas can be found on p2gein the
SHAFTSsection.

When metric Sl units are used, the formulas referred to in (1) and (2) above, are
valid if the dimensions are given consistently in meters or millimeters. If meters are
used, the units ofl and J are in meter?; if millimeters are used, these units are in
millimeters4.

3) Polar moments of inertia of massgg’, appear in dynamics equations involving rota-
tional motion.Jy, bears the same relationship to angular acceleration as mass does to lineal
acceleration. If units are in the foot-pound-second system, the udjjtsue ft-Ibs-setor
slug-f2. (1 slug = 1 pound secohgler foot.) If units are in the inch-pound-second system,
the units of, are inch-lbs-sec

If metric Sl values are used, the units of, are kilogram-meter squared.Formulas
for calculating)), for various bodies are given beginning on pag# If the polar moment
of inertiaJ is known for the area of a body of constant cross sedfjanay be calculated
using the equation,

_pL
Iy = =3
Mg
wherep is the density of the materi&l the length of the part, anrthe gravitational con-
stant. If dimensions are in the foot-pound-second systésrin lbs per f, L is in ft, g is
32.16 ft per se¢ andJis in ft*. If dimensions are in the inch-pound-second syspemin
Ibs per i, L is in inchesg is 386 inches per sg@ndJis in inche$.

Using metric Sl units, the above formula becomey, = pLJ, wherep =the density in
kilograms/meterd, L = the length in meters, and) = the polar moment of inertia in
meters*. The units ofJ,, are kg - n?.

*In some books the symblaflenotes the polar moment of inertia of mas3gis used in this handbook
to avoid confusion with moments of inertia of plane areas.
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POLAR MOMENT OF INERTIA

Formulas for Polar Moment of Inertia of Masses,J,

i
1]
i
|
1
=

fhet
=
|
i
-]

Prism: With reference to axié — A:
M
Iy = 75(h2+b?
With reference to axiB — B:

= mdZ. o
= ME

O I}

Cylinder. With reference to axié - A:
Iy = BMr2

With reference to axiB - B:

_ a2,
v = Mg+ 20

7~

3
[/
I
_,__
®

-1

=
=
X
w

Hollow Cylinder With reference to axi8 - A:
Iv = l’zM(R2 + r2)
With reference to axiB — B:

_ 2, Rerd
JM_ME§+ 7 0

f=b]
=
=

/@
=
N r
=

/N

\;g/

1
1
i
‘

Pyramid rectangular base: With reference to
axisA- A

M
Ju = 5582+ b)

With reference to axiB — B (through the center of
gravity):

- uBB 2. P
Im MQSOh +201

=
==}

Cone: With reference to axié — A:
3M
Jy = ==r2
M 10
With reference to axiB — B (through the center of
gravity):

_ 3Mg,, h
I = Spa2+ 30

el

Frustum of ConeWith reference to axis — A:
- 3M(R5—r5)
M 10(R3-r3)
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Formulas for Polar Moment of Inertia of Masses,J,

Sphere With reference to any axis through the cen-
ter:

Jy = %Mr2

g
-

Spherical SectorWith reference to axié — A:

Moo 2
= (3rh-h?)

Spherical SegmentVith reference to axié — A:

3rh , 3h% 2h
- 2_
M% " 2003 =

—_— =

Ellipsoid: With reference to axié — A:
M
Iu = g(b2 +¢2)
With reference to axiB - B:
M
Jy = £(a%+c?)
5
With reference to axi€ - C:

Ju = Blaz+b?)

Paraboloid With reference to axié — A:
Jy = %Mr2
With reference to axiB - B (through the center of
gravity):

o2, hy
v = Mg * 151

Torus With reference to axié — A:

R?, 5%
Iu M +8EI

With reference to axiB - B:
v = M(R2+%r2)
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Moments of inertia of complex areas and mass®g be evaluated by the addition and
subtraction of elementary areas and masses. For example, the accompanying figure shov
a complex mass at (1); its mass polar moment of inertia can be determined by adding
together the moments of inertia of the bodies shown at (2) and (3), and subtracting that a
4.

Thus,Jy1 =Iuz +Ius — Jua- All of these moments of inertia are with respect to the axis of
rotationz — z. Formulas fody, andJ,,;; can be obtained from the tables beginning on
pagel44 The moment of inertia for the body at (4) can be evaluated by using the following
transfer-axis equatiody,, = Jy,,' + d®M. The termJ,,,’ is the moment of inertia with
respect to axis — Z; it may be evaluated using the same equation that appligswiere
dis the distance between the z and thez - Z axes, and is the mass of the body (=
weight in Ibs- g).

(©)]

Moments of Inertia of Complex Masses

Similar calculations can be made when calculatiagdJ for complex areas using the
appropriate transfer-axis equationslarg’ + d?A andJ = J' + d?A. The primed term; or
J, is with respect to the center of gravity of the correspondingfareés the distance
between the axis through the center of gravity and the axis to idnidlis referred.
Radius of Gyration.—The radius of gyration with reference to an axis is that distance
from the axis at which the entire mass of a body may be considered as concentrated, th
moment of inertia, meanwhile, remaining unchanged i the weight of a bodyj,,, its
moment of inertia with respect to some axis; lyjathe radius of gyration with respect to
the same axis, then:

2

ky = ‘1\“;'79 and v = \—N——ki’

0

When using metric Sl units, the formulas are:

Im
ko = J% and Iy = Mk2
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wherek, = the radius of gyration in meters J,, = kilogram-meter squared, andM =
mass in kilograms.

To find the radius of gyration of an area, such as for the cross-section of a beam, divide
the moment of inertia of the area by the area and extract the square root.

When the axis, the reference to which the radius of gyration is taken, passes through the
center of gravity, the radius of gyration is the least possible and is callpdribipal
radius of gyration. IKis the radius of gyration with respect to such an axis passing through
the center of gravity of a body, then the radius of gyrakipmith respect to a parallel axis

at a distancd from the gravity axis is given by:
ky = K2 +d?
Tables of radii of gyration for various bodies and axes follows.

Formulas for Radius of Gyration
Bar of Small Diameter:

Axis, a diameter of the ring

k=0.2886
k=0.5778 K2=,2
K= ;/3|2
|-—1———|
l"—l —“I TA=
A k
—k— 2
Axis atend Axis at center
Bar of Small Diameter bent to Circular Shape:
k=0.707t k=r;k2=r2
k2 =Yy2 A
A |
[
Ak "
A

Axis through center of ring.

Thin Circular Disk:

Axis through center.

k=0.7071
K2 =Yy2
4 k=%
A /k Ke=Yyy2
4
=22z
| A
A
A

Axis its diameter.
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Cylinder:

k=07077, K= %r

Axis through center.

k = 0.289/12 + 3r2
2 = E+f
12 4

A A
L]
k
A A

Axis, diameter at mid-length.

k = 0.289/ 42+ 3r2

k2 = E + r_2
3 4
A A
—
—k —+]
A A

Axis, diameter at end.

k = Ja2+%r?

K2 = a2+ Jr2

A

—
a

NG

Axis at a distance.

Parallelogram (Thin flat plate):

k=0.577%; K= Y2

E
A A
Axis at base.

k= 0.2886; k2 ¥, hi2

|

Axis at mid-height.

Thin, Flat, Circular Ring:

Axis its diameter.

k = %/D2+d?2
D2 +d?

2 = Z __—_—

k 16

Thin Hollow Cylinder.:

A A

I

Y‘ k

H
et

1 !

A A

Axis, diameter at mid-length.

k = 0.289/12+6r2
12 p2

2 12,12
=373
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Hollow Cylinder.:

149

k = 0.289/12+ 3(R2+r2)

o - 12 Re+r?
12 4
A
] (@)
A

Axis, diameter at mid-length.

k = 0.7071/RZ +r2
k2 = J(R2+r2)
b

e
3/
k

Longitudinal Axis.

Rectangular Prism:

NEEZEARE
s

Axis through center.

k = 0.577/b% + c2
k2 = H(b2+c?)

Parallelepiped:

k = 0.289/ 42+ p?

24+ p2 24p2
2 = A2+b k= [A2Eb% oo
12 12
A A A A
ok —] !I L
fe— ] ]
C a»l«—l——{
A A A
Axis at one end, central. Axis at distance from end.
Cone:
Axis at base.
A A 2h2 +3r2
k k = |/——
r~! V20
- | Axis at apex.
h— [{on2 2
A A k = 12h% + 3r
20
A%*‘ k=0.5477
k2=0.32

Axis through its center line.
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Frustum of Cone:

- JT
K= h2[R2+3Rr+6r3; 3[R5—rﬁ:|
*l T00RZ+ Rr+ 12 0 200R3_

ot

Axis at large end.

Sphere:
k = Ja2+%r2
k=0.632%; k> =% K2 = a2+?/5r2
A
A
fa— Kk
a
A A
Axis its diameter. Axis at a distance.
Hollow Sphere and Thin Spherical Shell:
_ /Rs —r5
k = 0.6325 RE_ 3
5 .5 k=0.816%
2 = 2(R>=r>) K2 =2
5(R3-r3)
A A
A A
Axis its diameter. Thin Spherical Shell
Ellipsoid. and Paraboloid:
k = 0.447Jb2 +c2
2 5 2 k=0.5773
k? = ¥(b2+c?) K2 =Yy2
T
A A
Axis through center. Axis through center.
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Center and Radius of Oscillation.—f a body oscillates about a horizontal axis which
does not pass through its center of gravity, there will be a point on the line drawn from the
center of gravity, perpendicular to the axis, the motion of which will be the same as if the
whole mass were concentrated at that point. This point is callegtier of oscillation
Theradius of oscillatioris the distance between the center of oscillation and the point of
suspension. In a straight line, or in a bar of small diameter, suspended at one end and osci
lating about it, the center of oscillation is at two-thirds the length of the rod from the end by
which it is suspended.

When the vibrations are perpendicular to the plane of the figure, and the figure is sus-
pended by the vertex of an angle or its uppermost point, the radius of oscillation of an isos-
celes triangle is equal #of the height of the triangle; of a circigpf the diameter; of a
parabola¥ of the height.

If the vibrations are in the plane of the figure, then the radius of oscillation of a circle
equals, of the diameter; of a rectangle, suspended at the vertex of one&Zgofgies diag-
onal.

Center of Percussion.—or a body that moves without rotation, the resultant of all the
forces acting on the body passes through the center of gravity. On the other hand, for a bod
that rotates about sorfiged axis the resultant of all the forces acting on it does not pass
through the center of gravity of the body but through a point callecktiiter of percus-

sion The center of percussion is useful in determining the position of the resultant in
mechanics problems involving angular acceleration of bodies about a fixed axis.

Finding the Center of Percussion when the Radius of Gyration and the Location of the
Center of Gravity are Knowrhe center of percussion lies on a line drawn through the
center of rotation and the center of gravity. The distance from the axis of rotation to the cen-
ter of percussion may be calculated from the following formula

q = kg =T
in whichq = distance from the axis of rotation to the center of percudgjerihe radius of

gyration of the body with respect to the axis of rotation;ranthe distance from the axis
of rotation to the center of gravity of the body.

Velocity and Acceleration

Motion is a progressive change of position of a body. Velocity is the rate of motion, that
is, the rate of change of position. When the velocity of a body is the same at every momen
during which the motion takes place, the latter is calfeftbrmmotion. When the velocity
is variable and constantly increasing, the rate at which it changes isaxaiigdration;
that is, acceleration is the rate at which the velocity of a body changes in a unit of time, as
the change in feet per second, in one second. When the motion is decreasing instead
increasing, it is calletetardedmotion, and the rate at which the motion is retarded is fre-
quently called theleceleration If the acceleration is uniform, the motion is called-
formly acceleratednotion. An example of such motion is found in that of falling bodies.

Motion with Constant Velocity.—In the formulas that follow$ = distance moved/ =
velocity;t = time of motionp = angle of rotation, an@d = angular velocity; the usual units

for these quantities are, respectively, feet, feet per second, seconds, radians, and radial
per second. Any other consistent set of units may be employed.

Constant Linear Velocity:

S=Vxt V =S+t t=S+V
Constant Angular Velocity:

0 = wt w= 0+t t=0+w
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Relation between Angular Motion and Linear Moti®he relation between the angular
velocity of a rotating body and the linear velocity of a point at a distafes from the
center of rotation is:

V(ft per se¢ = r(ft) x w(radians per sgc
Similarly, the distance moved by the point during rotation through 8rigie
S(ft) = r(ft) x 6(radiang

Linear Motion with Constant Acceleration.—The relations between distance, velocity,

and time for linear motion with constant or uniform acceleration are given by the formulas
in the accompanying table. In these formulas, the acceleration is assumed to be in the sar
direction as the initial velocity; hence, if the acceleration in a particular problem should
happen to be in a direction opposite that of the initial velocity dlséould be replaced by

—a Thus, for example, the formwé =V, + at becomed/; =V, — at whena andV, are
opposite in direction.

Linear Motion with Constant Acceleration

To To
Find Known Formula Find Known Formula
Motion Uniformly Accelerated From Rest

a,t S=¥at? SV; t=2S+V;

S Vi, t S=¥\it t Sa t=.2S+a
Vi, a S=V/2+2a a, Vi t=Vi+a
at V;=at St a=25+t2
St V; =25+t a SV a=V2+2S

A as V; = J2aS Vi, t a=V;+t

Motion Uniformly Accelerated From Initial Velocity,,

atV, S=V, t+%at . Vo, Vi, a t=(Vi-Vy)+a

S VoVt | S=(Vp+Vgt=2 V, Vi, S | t=25+(Vj+V,)
Vo Via | S=(V2-VA+2a Vo Vi, S | a=(V2-V,)+2S
Vi, at S=Vjt-Yaf Vo, Vi, t a=(Vi-Vy)+t
Vo,at | V=V, +at é vV, St a=26-V, 1)+t
VoSt | V=(2S+1)-V, V;, St a=2(\jt-9+t
Vo a,S | V; = /Vg +2aS Meanings of Symbols

Vi Sat V= (S+1) +¥at

S =distance moved in feet

V; =final velocity, feet per second
V;, St V,=(25+1)-V, V, =initial velqcity, feet per second
a =acceleration, feet per second per se¢ond
t=time of acceleration in seconds

Vias |V, = /NZ-2as

Vi, a,t V,=V;-at
Vo Sat Vo= (S+1) -Hat
ExampleA car is moving at 60 mph when the brakes are suddenly locked and the car

begins to skid. If it takes 2 seconds to slow the car to 30 mph, at what rate is it being decel
erated, how long is it before the car comes to a halt, and how far will it have traveled?

The initial velocityV, of the car is 60 mph or 88 ft/sec and the acceleratilre to brak-
ing is opposite in direction 14, since the car is slowed to 30 mph or 44 ft/sec.
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SinceV,, V;, andt are knowna can be determined from the formula
a=(Vi=Vy)+t = (44-88+2
a = 22 ft/se@

The time required to stop the car can be determined from the formula
t=(Vi-V,)+a=(0-88+-22
t = 4 seconds

The distance traveled by the car is obtained from the formula
S=(V+V)t+2 = (0+884+2

= 176 feet

Rotary Motion with Constant Acceleration.—The relations among angle of rotation,
angular velocity, and time for rotation with constant or uniform acceleration are given in
the accompanying table.

Rotary Motion with Constant Acceleration

To To
Find Known Formula Find Known Formula

Motion Uniformly Accelerated From Rest

a,t 6 =%at? 6, ux t=20+0y
6 |uwt 0 =Yt t 6,a t=.J20+a
wy, o 0=w?+ 20 a, o t=w+a
a,t w=at 0,t a=20+t2
w |6t =20+t a |6 a=wl+20
a,8 o = 4208 oy t a=uy+t
Motion Uniformly Accelerated From Initial Velocity,
ot 0w, 0=t +%at? W 0,0 o= (@W-w?)+20
0 005, 0, € 8= (o +wo)t+2 a 005, 0, € o= (0= W)+t
Wy, Wy, O 6= (- w?)+2a Wy, Bt a=2@-wt) +t?
Wy, a,t 6 =wt-¥at? wy, Ot a=2(t-0)+t?
Wy, O, t ) =W, +at Meanings of Symbols

W00t |o=@:)-q,

oY
,a,0 = w2 . .
“ “ w5 + 200 6 =angle of rotation, radians
6,a,t w=@+t)+¥at w =final angular velocity, radians per second
w, =initial angular velocity, radians per secdnd
o, 0, 8 w, = Jwf-2a6 a =angular acceleration, radians per secord,
o) = per second
@ |“r ot W= (B0 -0y t=time in seconds
w, a,t W, =ux—at
0,a,t w,=(O+1t) - ¥at
0y, G, @ t=(-w)=a 1 degree = 0.01745 radians

Wy, X, 6 t=20+ (W +0y) (See conversion table on pa@f8)
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In these formulas, the acceleration is assumed to be in the same direction as the initia
angular velocity; hence, if the acceleration in a particular problem should happento be in a
direction opposite that of the initial angular velocity, tieeshould be replaced byo.

Thus, for example, the formuia = w, + at becomesy, = w, — at whena andw, are oppo-
site in direction.

Linear Acceleration of a Point on a Rotating Bodypoint on a body rotating about a
fixed axis has a linear acceleratimthat is the resultant of two component accelerations.
The first component is the centripetal or normal acceleration which is directed from the
pointP toward the axis of rotation; its magnitudedg wherer is the radius from the axis
to the pointP andw is the angular velocity of the body at the time acceleratisrio be
determined. The second componerd iEfthe tangential acceleration which is equabto
wherea is the angular acceleration of the body.

The acceleration of poiftis the resultant ofw? andra and is given by the formula

a = J(rw?)2+(ra)?
Whena =0, this formula reduces ta=rw?

ExampleA flywheel on a press rotating at 120 rpm is slowed to 102 rpm during a punch-
ing operation that requirg$second for the punching portion of the cycle. What angular
deceleration does the flywheel experience?

From the table on pade87, the angular velocities corresponding to 120 rpm and 102
rpm, respectively, are 12.57 and 10.68 radians per second. Therefore, using the formula

a = (W—0,)+t
(10.68- 12,57+ %, = -1.89+ 7,
—2.52 radians per second per second

a

a

which is, from the table on pad87, — 24 rpm per second. The minus sign in the answer
indicates that the acceleratiaracts to slow the flywheel, that is, the flywheel is being
decelerated.

Force, Work, Energy, and Momentum

Accelerations Resulting from Unbalanced Forces.+n the section describing the reso-
lution and composition of forces it was stated that when the resultant of a system of forces
is zero, the system is in equilibrium, that is, the body on which the force system acts
remains at rest or continues to move with uniform velocity. If, however, the resultant of a
system of forces is not zero, the body on which the forces act will be accelerated in the
direction of the unbalanced force. To determine the relation between the unbalanced force
and the resulting acceleration, Newton's laws of motion must be applied. These laws may
be stated as follows:

First Law: Every body continues in a state of rest or in uniform motion in a straight line,
until it is compelled by a force to change its state of rest or motion.

Second LawChange of motion is proportional to the force applied, and takes place along
the straight line in which the force acts. The “force applied” represents the resuéttnt of
the forces acting on the body. This law is sometimes worded: An unbalanced force acting
on a body causes an acceleration of the body in the direction of the force and of magnitude
proportional to the force and inversely proportional to the mass of the body. Stated as a for-
mula,R=MawhereRis the resultant ddll the forces acting on the bod,is the mass of
the body (mass = weighi¥ divided by acceleration due to gravify anda is the accelera-
tion of the body resulting from application of foiRe
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Third Law: To every action there is always an equal reaction, or, in other words, if a force
acts to change the state of motion of a body, the body offers a resistance equal and directl
opposite to the force.

Newton's second law may be used to calculate linear and angular accelerations of a bod
produced by unbalanced forces and torques acting on the body; however, it is necessar
first to use the methods described under “Composition and Resolution of Forces” to deter-
mine the magnitude and direction of the resultaatldérces acting on the body. Then, for
a body moving with pure translation,

R = Ma=V—Va
g

whereRis the resultant force in pounds acting on a body weighipgundsg is the grav-
itational constant, usually taken as 32.16 fsapproximately; and is the resulting
acceleration in ft/séof the body due tRand in the same direction@s

Using metric Sl units, the formula isR = Ma, whereR = force in newtons (N)M =
mass in kilograms, anda = acceleration in meters/second squared. It should be noted
that the weight of a body of mas#1 kg isMg newtons, whereg is approximately 9.81
m/s2.

Free Body Diagramtn order to correctly determine the effect of forces on the motion of
a body itis necessary to resort to what is knowrfeeeadody diagramT his diagram
shows 1) the body removed or isolated from contact with all other bodies that exert force
on the body and; and &) the forces acting on the body.

Thus, for example, ifig. athe block being pulled up the plane is acted upon by certain
forces; the free body diagram of this block is showFigith. Note that all forces acting on
the block are indicated. These forces include: 1) the force of gravity (weight); 2) the pull
of the cableP; 3) the normal componeM cose, of the force exerted on the block by the
plane; and 4) the friction forcgWV cosg, of the plane on the block.

uW cos ¢ Weos ¢
w
Fig. a. Fig. b.

In preparing a free body diagram, it is important to realize that only those forces exerted
onthe body being considered are shown; forces exerted by the body on other bodies ar
disregarded. This feature makes the free body diagram an invaluable aid in the solution of
problems in mechanics.

ExampleA 100-pound body is being hoisted by a winch, the tension in the hoisting cable
being kept constant at 110 pounds. At what rate is the body accelerated?

Two forces are acting on the body, its weight, 100 pounds downward, and the pull of the
cable, 110 pounds upward. The resultant fétceom a free body diagram, is therefore
110-100. Thus, applying Newton's second law,

100

110- 100= 32—163
a=3216%10_ 5516 fysed upward

100
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It should be noted that since in this problem the resultantfonaes positive (116 100
=+10), the acceleratiamis also positive, that ig,is in the same direction Bswhich is in
accord with Newton's second law.

Example using Sl metric unitsA body of mass 50 kilograms is being hoistedby a
winch, and the tension in the cable is 600 newtons. What is the acceleration? The
weight of the 50 kg body is 5§ newtons, whereg = approximately 9.81 m/3 (seeNote
on pagel63). Applying the formula R = Ma, the calculation is: (600~ 50g) = 50a.
Thus,

a

_ 600— 503 _ 600—(50x 9.8} _
= =z = 2 =219 m/2

Formulas Relating Torque and Angular Acceleratibar a body rotating about a fixed
axis the relation between the unbalanced torque acting to produce rotation and the resulting
angular acceleration may be determined from any one of the following formulas, each
based on Newton's second law:

T, = Iyo
T, = MK2a
T - WkZa  Wka

°o” g T 3216

whereT, is the unbalanced torque in pounds-fagin ft-lbs-seéis the moment of inertia

of the body about the axis of rotatidg;in feet is the radius of gyration of the body with
respect to the axis of rotation, améh radians per second, per second is the angular accel-
eration of the body.

ExampleA flywheel has a diameter of 3 feet and weighs 1000 pounds. What torque must
be applied, neglecting bearing friction, to accelerate the flywheel at the rate of 100 revolu-
tions per minute, per second?

From pagel44the moment of inertia of a solid cylinder with respect to a gravity axis at
right angles to the circular cross-section is giveb, 8r2. From pagel87, 100 rpm =
10.47 radians per second, hence an acceleration of 100 rpm per second = 10.47 radians
second, per second. Therefore, using the first of the preceding formulas,

_ _ 101000082
To = IO = Brgsasn * 1047
= 366 ft-Ibs

Using metric Sl units, the formulas are:T, = Jya = Mk 2a, where T, = torque in
newton-meters;J,, = the moment of inertia in kg - n, anda = the angular accelera-
tion in radians per second squared.

Example:A flywheel has a diameter of 1.5 m, and a mass of 800 kg. What torque is
needed to produce an angular acceleration of 100 revolutions per minute, per sec-
ond? As in the preceding exampley = 10.47 rad/3. Thus:

Iy = %BMr2 = ¥%x800x 0.7% = 225 kgOn¥
Therefore: T, =Jya =225x 10.47 =2356 N - m.

Energy.—A body is said to possess energy when it is capable of doing work or overcom-
ing resistance. The energy may be either mechanical or non-mechanical, the latter includ.
ing chemical, electrical, thermal, and atomic energy.
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Mechanical energy includégnetic energyenergy possessed by a body because of its
motion) ancpotential energyenergy possessed by a body because of its position in a field
of force and/or its elastic deformation).

Kinetic EnergyThe motion of a body may be one of pure translation, pure rotation, or a
combination of rotation and translation. By translation is meant motion in which every line
in the body remains parallel to its original position throughout the motion, that is, no rota-
tion is associated with the motion of the body.

The kinetic energy of a translating body is given by the formula

Kinetic Energy in ft Ibs due to translation E, 1 = %MV?2 =

W\2
29 (@)

whereM = mass of body (¥+ g); V = velocity of the center of gravity of the body in feet
per secondyV = weight of body in pounds; algd= acceleration due to gravity = 32.16 feet
per second, per second.

The kinetic energy of a body rotating about a fixed @xisexpressed by the formula:
Kinetic Energy in ft Ibs due to rotation Eyg = %J),o0? (b)

wherelJy,q is the moment of inertia of the body about the fixed &xia pounds-feet-
second3 andw = angular velocity in radians per second.
For a body that is moving with both translation and rotation, the total kinetic energy is

given by the following formula as the sum of the kinetic energy due to translation of the
center of gravity and the kinetic energy due to rotation about the center of gravity:

Total Kinetic Energy in ft Ibs= E; = ,MV2 + %], sw?

W\2
= 2g " Emed
2 ()2 C
VL/ZJr;,ZWkw (©
2g g
—W 2 202
= 5g(V2+eu?)

whereJy,s is the moment of inertia of the body about its gravity axis in pounds-feet-
seconds k is the radius of gyration in feet with respect to an axis through the center of
gravity, and the other quantities are as previously defined.

In the metric SI system, energy is expressed as the joule (J). One joule = 1 newton-
meter. The kinetic energy of a translating body is given by the formul&; = %MV?2,
where M = mass in kilograms, andv = velocity in meters per second. Kinetic energy
due to rotation is expressed by the formuld&yg = %Jyow? WhereJyo = moment of
inertia in kg - m?, and w = the angular velocity in radians per second. Total kinetic
energyET = #MV2+%J,,0w? joules =¥M (V2 + k?w?) joules, wherek = radius of gyra-
tion in meters.

Potential EnergyThe most common example of a body having potential energy because
of its position in a field of force is that of a body elevated to some height above the earth.
Here the field of force is the gravitational field of the earth and the potential éfraly
a body weighinV pounds elevated to some hei§fint feet above the surface of the earth
isWSfoot-pounds. If the body is permitted to drop from this height its potential eBgrgy
will be converted to kinetic energy. Thus, after falling through h&gin kinetic energy
of the body will bV Sft-Ibs.
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In metric Sl units, the potential energyEp of a body of mas# kilograms elevated
to aheight ofSmeters, isMgSjoules. After it has fallen a distances, the kinetic energy
gained will thus beMgSjoules.

Another type of potential energy is elastic potential energy, such as possessed by a sprin
that has been compressed or extended. The amount of work in ft Ibs done in compressini
the springSfeet is equal t&S/2, whereK is the spring constant in pounds per foot. Thus,
when the spring is released to act against some resistance, it can pesHt-lbs of
work which is the amount of elastic potential endggystored in the spring.

Using metric Sl units, the amount of work done in compressing the spring a dis-
tanceS meters isKS%2 joules, whereK is the spring constant in newtons per meter.

Work Performed by Forces and Couples.—Fhe workU done by a forcg in moving an
object along some path is the product of the dist&tise body is moved and the compo-
nentF cosa of the forcer in the direction o

U = FScosa
whereU = work in ft-Ibs;S = distance moved in feef; = force in Ibs; andi = angle
between line of action of force and the patB.of

If the force is in the same direction as the motion, theacosos 0 = 1 and this formula
reduces to:

U=FS
Similarly, the work done by a couplaurning an object through an an@les:
Uu=T8

whereT = torque of couple in pounds-feet &hd the angular rotation in radians.

The above formulas can be used with metric Sl unitdJ is in joules;Sis in meters;F
is in newtons, andr is in newton-meters.

Relation between Work and Energy.—Theoretically, when work is performed on a
body and there are no energy losses (such as due to friction, air resistance, etc.), the ener
acquired by the body is equal to the work performed on the body; this energy may be eithel
potential, kinetic, or a combination of both.

In actual situations, however, there may be energy losses that must be taken into accoun
Thus, the relation between work done on a body, energy losses, and the energy acquired k
the body can be stated as:

Work Performed- Losses Energy Acquired
U—Losses= Eg

Example 1A 12-inch cube of steel weighing 490 pounds is being moved on a horizontal
conveyor belt at a speed of 6 miles per hour (8.8 feet per second). What is the kinetic energ;
of the cube?

Since the block is not rotating, Formula (a) for the kinetic energy of a body moving with
pure translation applies:

W2

29
_ 490x%(8.892 _ ]
= Sx3216 - 590 ft-lbs

A similar example using metric Sl units is as follows: If a cube of mass 200 kg is
being moved on a conveyor belt at a speed of 3 meters per second, what is the kinetic
energy of the cube? Itis:

Kinetic Energy = %MV2 = % x200x 32 = 900 joules

Kinetic Energy
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Example 2f the conveyor irExample lis brought to an abrupt stop, how long would it
take for the steel block to come to a stop and how far along the belt would it slide before
stopping if the coefficient of frictiop between the block and the conveyor belt is 0.2 and
the block slides without tipping over?

The only force acting to slow the motion of the block is the friction force between the
block and the belt. This fordeis equal to the weight of the blodk, multiplied by the
coefficient of friction;F = pW=0.2x 490 = 98 Ibs.

The time required to bring the block to a stop can be determined from the impulse-
momentunformula (con pagel60

Rxt= V—V(vf—vo)

490

(-98)t = 3516 x(0-8.9
_ 490x 8.8 _
t= 38x 3216 1.37 seconds

The distance the block slides before stopping can be determined by equating the kinetic
energy of the block and the work done by friction in stopping it:

Kinetic energy of blockWV?% 2g) = Work done by frictiotiF x S)
590 = 98x S

S= 590—60feet

If metric Sl units are used, the calculation is as follows (for the cube of 200 kg mass):
The friction force =y multiplied by the weight Mg whereg = approximately 9.81 m/s.
Thus, uMg = 0.2x 200g = 392.4 newtons. The timérequired to bring the block to a
stop is ¢ 392.4) = 200(0- 3). Therefore,

200%x 3 _
t= 3924 - 1.53 seconds
The kinetic energy of the block is equal to the work done by friction, that is 392X
S=900 joules. Thus, the distance S which the block moves before stopping is

_ 900
392.4

Force of a Blow.—A body that weigh8Vpounds and fallSfeet from an initial position of

rest is capable of doingySfoot-pounds of work. The work performed during its fall may

be, for example, that necessary to drive a pile a disthimte the ground. Neglecting
losses in the form of dissipated heat and strain energy, the work done in driving the pile is
equal to the product of the impact force acting on the pile and the didtahaeh the pile

is driven. Since the impact force is not accurately known, an average value, called the
“average force of the blow,” may be assumed. Equating the work done on the pile and the
work done by the falling body, which in this case is a pile driver:

= 2.29 meters

Average force of blowkd = WS
or, WS

Average force of blon= e

where, S =total height in feet through which the driver falls, including the distericat
the pile is driven
W =weight of driver in pounds
d =distance in feet which pile is driven
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When using metric Sl units, it should be noted that a body of mas4 kilograms has
a weight of Mg newtons, whereg = approximately 9.81 m/S. If the body falls a dis-
tanceS meters, it can do work equal taVigS joules. The average force of the blow is
MgS/d newtons, whered is the distance in meters that the pile is driven.

ExampleA pile driver weighing 200 pounds strikes the top of the pile after having fallen
from a height of 20 feet. It forces the pile into the ground a distari¢éoot. Before the
ram is brought to rest, it will 200(20+ %) = 4100 foot-pounds of work, and as this energy
is expended in a distance of one-half foot, the average force of the blow equats/4100
8200 pounds.

A similar example using metric Sl units is as follows: A pile driver of mass 100 kilo-
grams falls 10 meters and moves the pile a distance of 0.3 meters. The work done =
100g(10+0.3) joules, and itis expended in 0.3 meters. Thus, the average force is

%"310-3 = 33680 newtons or 33.68 kN

Impulse and Momentum.—Thelinear momenturof a body is defined as the product of
the mas# of the body and the velociwof the center of gravity of the body:

Linear momentum= MV or sinceM = W+ g

@

. WV
Linear momentunm= ?

It should be noted that linear momentum is a vector quantity, the momentum being in the
same direction ag.

Linear impulseis defined as the product of the resultamf all the forces acting on a
body and the timethat the resultant acts:

Linear Impulse= Rt (b)

The change in the linear momentum of a body is numerically equal to the linear impulse

that causes the change in momentum:
Linear Impulse= change in Linear Momentum
W, W w (c)
Rt = =V;—=V, = =(V;-V,
g f g o g ( f o)

whereVy, the final velocity of the body after timeandV ,, the initial velocity of the body,
are both in the same direction as the applied fertfev,, andV; are in opposite directions,
then the minus sign in the formula becomes a plus sign.

In metric Sl units, the formulas are: Linear Momentum =MV kg - m/s, whereM =
mass in kg, andv = velocity in meters per second; and Linear Impulse Rt newton-
seconds, wherdR = force in newtons, and = time in seconds. IfFormula (c) above,
WI/gis replaced byM when Sl units are used.

ExampleA 1000-pound block is pulled up a 2-degree incline by a cable exerting a con-
stant forcd= of 600 pounds. If the coefficient of frictipnbetween the block and the plane
is 0.5, how fast will the block be moving up the plane 10 seconds after the pull is applied?

The resultant forc® causing the body to be accelerated up the plane is the difference
betweerF, the force acting up the plane, @dhe force acting to resist motion up the
plane. This latter force for a body on a plane is given by the formula at the top df3gage
asP =W (u cosa + sina) wherea is the angle of the incline.

Thus, R =F-P=F-W(ucosa +sina)

=600-1000(0.5 cos2+ sin 2)
=600—-1000(0.5¢< 0.99939+ 0.03490)
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=600-535
R =65 pounds.

Formula (c)can now be applied to determine the speed at which the body will be moving
up the plane after 10 seconds.

Rt = Yy, - Wy
9 9
_ 100 1000
05%10= 555V 322 %0
_ 65x10%x 32.2_
Vi = 1000 = 20.9 ft per sec

= 14.3 miles per hour

A similar example using metric Sl units is as follows: A 500 kg block is pulled up a 2
degree incline by a constant forc& of 4 kN. The coefficient of frictionp between the
block and the plane is 0.5. How fast will the block be moving 10 seconds after the pull
is applied?

The resultant forceR is:

R = F-Mg(pcosa + sina)
4000- 500% 9.81( 0.5x 0.99939 0.0349Q
= 1378N or 1.378 kN
Formula (c) can now be applied to determine the speed at which the body will be

moving up the plane after 10 seconds. ReplaciMy/g by M in the formula, the calcu-
lation is:

Rt = MV,=MV,
1378x 10= 500(V, - 0)

_ 1378x 10 _
V; = 00 - 27.6 m/s

Angular Impulse and Momentuim: a manner similar to that for linear impulse and
moment, the formulas for angular impulse and momentum for a body rotating about a fixed
axis are:

Angular momentun= J,w (a)
Angular impulse= Tt (b)

whereJ,, is the moment of inertia of the body about the axis of rotation in pounds-feet-
seconds wis the angular velocity in radians per secdnglis the torque in pounds-feet
about the axis of rotation, ani$ the time in seconds thgyj, acts.

The change in angular momentum of a body is numerically equal to the angular impulse
that causes the change in angular momentum:
Angular Impulse= Change in Angular Momentum ©
c
Tot = Iy —JIyw, = Iy (w;—w,)

wherewy andw, are the final and initial angular velocities, respectively.

ExampleA flywheel having a moment of inertia of 25 Ibs-ft-3écrevolving with an
angular velocity of 10 radians per second when a constant torque of 20 Ibs-ft is applied to
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reverse its direction of rotation. For what length of time must this constant torque act to
stop the flywheel and bring it up to a reverse speed of 5 radians per second?

Applying Formula (c)
Tot = ‘]M (wf - ('Oo)
20t = 25(10-[-3) = 250+ 125
t = 375+ 20 = 18.8 seconds
A similar example using metric Sl units is as follows: A flywheel with a moment of
inertia of 20 kilogram-meters? is revolving with an angular velocity of 10 radians per
second when a constant torque of 30 newton-meters is applied to reverse its direction
of rotation. For what length of time must this constant torque act to stop the flywheel

and bring it up to a reverse speed of 5 radians per second? Applyifgrmula (c), the
calculation is:

Tot = Iy (wx—wy),
30t = 20(10-[-9).
Thus,t = 20;015 = 10 seconds

Formulas for Work and Power.—The formulas in the accompanying table may be used
to determine work and power in terms of the applied force and the velocity at the point of
application of the force.

Formulas for Work and Power

To To

Find | Known Formula Find | Known Formula
P,t,F | S=Pxt+F F,V P=FxV

S | KF S=K+F P F, St P=F xS+t
t,F,hp | S=550xtxhp+F K, t P=K=+t
P,F V=P=+F hp P=550x hp

V | KFt | V=K=+(Fxt) F,S K=FxS
F,hp V=550x hp+F K P, t K=Pxt
F,SP |[t=FxS+P F,V,t K=FxVxt

t K,F,V | t=K+(FxV) t,hp K=550xtx hp
F,Shp | t=F xS+ (550x hp) F,St hp=F x S+ (550x t)
P,V F=P+V hp P hp=P+550

F K,S F=K+S FV hp=F xV+ 550
K, V,t F=K=+(Vxt) K, t hp=K+ (550x%t)
V, hp F=550xhp+V

Meanings of Symbol§= distance in feelf = constant or average velocity in feet per second;
time in seconds; = constant or average force in pourfdls; power in foot-pounds per secods
work in foot-pounds; ankp = horsepower.

Note: The metric Sl unit of work is the joule (one joule = 1 newton-meter), and the unit of
power is the watt (one watt = 1 joule per second =1 N - m/s). The term horsepower is not used.
Thus, those formulas above that involve horsepower and the factor 550 are not applicable
when working in Sl units. The remaining formulas can be used, and the units ar&:= distance
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in meters; V = constant or average velocity in meters per secontf time in secondsF = force
in newtons; P = power in watts; K = work in joules.

ExampleA casting weighing 300 pounds is to be lifted by means of an overhead crane.
The casting is lifted 10 feet in 12 seconds. What is the horsepower develope&?>=Here
300;S=10;t=12.

_ FxS _ 300x 10 _
hP = 5t = ssox 12~ O4°

A similar example using metric S| units is as follows: A casting of mass 150 kg is
lifted 4 meters in 15 seconds by means of a crane. What is the power? HEre 150
N,S=4m, andt=15s. Thus:

FS _ 150gx4 _ 150x 9.81x 4

Power = T = 15 = 15

392 watts or 0.392 kW

Centrifugal Force

Centrifugal Force.—When a body rotates about any axis other than one at its center of
mass, it exerts an outward radial force called centrifugal force upon the axis or any arm or
cord from the axis that restrains it from moving in a straight (tangential) line. In the follow-
ing formulas:
F = centrifugal force in pounds
W =weight of revolving body in pounds
v =velocity at radiufk on body in feet per second
n=number of revolutions per minute
g=acceleration due to gravity = 32.16 feet per second per second

R =perpendicular distance in feet from axis of rotation to center of mass, or for
practical use, to center of gravity of revolving body

Note:If a body rotates about its own center of mRs=quals zero andequals zero. This
means that theesultantof the centrifugal forces of all the elements of the body is equal to
zero or, in other words, no centrifugal force is exerted on the axis of rotation. The centrifu-
gal force of any part or element of such a body is found by the equations given below,
whereR s the radius to the center of gravity of the part or element. In a flywhed® iim,
the mean radius of the rim because it is the radius to the center of gravity of a thin radial
section.

WV _ W\ _ AWR®n?2 _ WRPR

F= 3R ~ 321 ~ 60x60y ~ 2033 - 000034WRr
_ FRg _ 2933 - [FRg
w= 30 - 285F v= o
v2 Rr? w
n o W2 _ 203F Lo [93F
Fg ~ wr WR

(If nis the number of revolutions per second instead of per minutei; thé22 IVRI?.)

If metric Sl units are used in the foregoing formulasW/g is replaced byM, which is
the mass in kilograms;F = centrifugal force in newtons;v = velocity in meters per sec-
ond; n = number of revolutions per minute; andR = the radius in meters. Thus:

2 2
F = Mv/R = MZCTRY) _  51097MRn2
60°R
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If the rate of rotation is expressed a$\, = revolutions per second, therr = 39.48
MRn,Z if it is expressed aso radians per second, thefr = MRw?.

Calculating Centrifugal Force.—In the ordinary formula for centrifugal forcE,=
0.00034WRr; the mean radiuR of the flywheel or pulley rim is given in feet. For small
dimensions, it is more convenient to have the formula in the form:

F = 0.284%10*Wrn?

in whichF = centrifugal force, in poundgy = weight of rim, in pounds;= mean radius of
rim, in inchesn = number of revolutions per minute.

In this formula leC = 0.0000284162. This, then, is the centrifugal force of one pound,
one inch from the axis. The formula can now be written in the form,

F=WrC

Cis calculated for various values of the revolutions per mmwted the calculated val-
ues ofC are given iffable 1 To find the centrifugal force in any given case, simply find
the value o in the table and multiply it by the productMyfandr, the four multiplications
in the original formula given thus having been reduced to two.

ExampleA cast-iron flywheel with a mean rim radius of 9 inches, is rotated at a speed of
800 revolutions per minute. If the weight of the rim is 20 pounds, what is the centrifugal
force?

FromTable 1 forn = 800 revolutions per minute, the valuesds 18.1862.
Thus,
F =wrC

20x 9% 18.1862
3273.52 pounds

Using metric Sl units, 0.010972 is the centrifugal force acting on a body of 1 kilo-
gram mass rotating atn revolutions per minute at a distance of 1 meter from the axis.
If this value is designatedC,, then the centrifugal force of mas$/ kilograms rotating
at this speed at a distance from the axis & meters, isSC;MR newtons. To simplify cal-
culations, values forC, are given inTable 2 If it is required to work in terms of milli-
meters, the force is 0.00C;MR, newtons, whereR, is the radius in millimeters.

Example:A steel pulley with a mean rim radius of 120 millimeters is rotated at a
speed of 1100 revolutions per minute. If the mass of the rim is 5 kilograms, what is the
centrifugal force?

From Table 2, for n = 1100 revolutions per minute, the value dg, is 13,269.1.
Thus,

F = 0.001C;MR,

0.001x 13 269.&x5x 120
= 7961.50 newtons
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Table 1. FactorsC for Calculating Centrifugal Force (English units)

n C n C n C n C
50 0.07104 100 0.28416 470 6.2770 520 768.369
51 0.07391 101 0.28987 480 6.5470 530 798.205
52 0.07684 102 0.29564 490 6.8227 544 828.611
53 0.07982 103 0.30147 500 7.1040 55( 859.584
54 0.08286 104 0.30735 600) 10.2294 56( 891.126
55 0.08596 105 0.31328 700] 13.923§ 57 923.236
56 0.08911 106 0.31928 800) 18.1863 58( 955.914
57 0.09232 107 0.32533 900 23.017(¢ 590 989.161
58 0.09559 108 0.33144 1000 28.416| 600D 1022.980
59 0.09892 109 0.33761 1100 34.3834 610p 1057.3p0
60 0.10230 110 0.34383 1200 40.919 620p 1092.3[L0
61 0.10573 115 0.37580 1300 48.023| 630p 1127.830
62 0.10923 120 0.40921 1400 55.6954 640D 1163.9p0
63 0.11278 125 0.44400 1500 63.936! 6500 1200.580
64 0.11639 130 0.48023 1600 72.745 6600 1237.8p0
65 0.12006 135 0.51788 1700 82.1221 6700 1275.5p0
66 0.12378 140 0.55695 1800 92.067 680D 1313.950
67 0.12756 145 0.59744 1900 102.582 690D 1352.890
68 0.13140 150 0.63936 2000| 113.664 700p 1392.380
69 0.13529 160 0.72745 2100 125.315 710D 1432.450
70 0.13924 170 0.82122 2200| 137.533 720D 1473.0p0
71 0.14325 180 0.92067 2300 150.321 730D 1514.200
72 0.14731 190 1.02590 2400 163.676 740D 1556.060
73 0.15143 200 1.1367 2500 177.600 7500 1598.400
74 0.15561 210 1.2531 2600) 192.092 760D 1641.3[L0
75 0.15984 220 1.3753 2700) 207.153! 7700 1684.7B0
76 0.16413 230 1.5032 2800) 222.781 7800 1728.830
77 0.16848 240 1.6358 2900 238.979 7900 1773.440
78 0.17288 250 1.7760 3000) 255.740! 800p 1818.6R0
79 0.17734 260 1.9209 3100) 273.078! 810p 1864.3[70
80 0.18186 270 2.0715 3200 290.980! 820D 1910.6p0
81 0.18644 280 2.2278 3300 309.450! 830D 1957.580
82 0.19107 290 2.3898 3400 328.489 840p 2005.0B80
83 0.19576 300 2.5574 3500 348.096 850p 2053.0p0
84 0.20050 310 2.7308 3600 368.271 860D 2101.6p0
85 0.20530 320 2.9098 3700 389.015! 870p 2150.8[L0
86 0.21016 330 3.0945 3800 410.327 880D 2200.50
87 0.21508 340 3.2849 3900 432.207 890D 2250.830
88 0.22005 350 3.4809 4000 454.656 900p 2301.7p0
89 0.22508 360 3.6823 4100 477.673 9100 2353.1B0
90 0.23017 370 3.8901 4200 501.258! 920p 2405.130
91 0.23531 380 4.1032 4300 525.412 930p 2457.7p0
92 0.24051 390 4.3220 4400 550.134 940p 2510.8440
93 0.24577 400 4.5466 4500 575.424 950D 2564.540
94 0.25108 410 4.7767 4600 601.283 960p 2618.8p0
95 0.25645 420 5.0126 4700 627.709 9700 2673.6p0
96 0.26188 430 5.2541 4800 654.705! 980p 2729.0[70
97 0.26737 440 5.5013 4900 682.268! 990p 2785.0p0
98 0.27291 450 5.7542 5000) 710.400! 100 2841.600
99 0.27851 460 6.0128 5100) 739.100! TF
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Table 2. FactorsC, for Calculating Centrifugal Force (Metric Sl units)

n C1 n Cl n C1 n || Cl

50 27.4156 100 109.662 470 2,422.44 296,527
51 28.5232 101 111.867 480 2,526.61 308,041
52 29.6527 102 114.093 490 2,632.9 319,775
53 30.8041 103 116.341 500 2,741.5 331,728
54 31.9775 104 118.611 60d 3,947.84 343,901
55 33.1728 105 120.903 700 5,373.4 356,293
56 34.3901 106 123.217 800 7,018.39 368,904
57 35.6293 107 125.552 90d 8,882.64 381,784
58 36.8904 108 127.910 1004 10,966.2 394,784
59 38.1734 109 130.290 110( 13,269.1 408,053
60 39.4784 110 132.691 1204 15,791.4 421,542
61 40.8053 115 145.028 130( 18,532.9 435,250
62 42.1542 120 157.914 1400 21,493.8 449,1y7
63 43.5250 125 171.347 150( 24,674.0 463,323
64 449177 130 185.329 160( 28,073.5 477,689
65 46.3323 135 199.860 170( 31,692.4 492,274
66 47.7689 140 214.938 1804 35,530.6 507,0y8
67 49.2274 145 230.565 1904 39,588.1 522,102
68 50.7078 150 246.740 200( 43,864.9 537,345
69 52.2102 160 280.735 210( 48,361.1 552,808
70 53.7345 170 316.924 220( 53,076.5 568,489
71 55.2808 180 355.306 230( 58,011.3 584,390
72 56.8489 190 395.881 240( 63,165.5 600,511
73 58.4390 200 438.649 250( 68,538.9 616,850
74 60.0511 210 483.611 260( 74,131.7 633,409
75 61.6850 220 530.765 270( 79,943.8 650,188
76 63.3409 230 580.113 280( 85,975.2 667,185
7 65.0188 240 631.655 290( 92,226.0 684,402
78 66.7185 250 685.389 300( 98,696.0 701,889
79 68.4402 260 741.317 310( 105,385 719,494
80 70.1839 270 799.438 320( 112,294 737,369
81 71.9494 280 859.752 330( 119,422 755,463
82 73.7369 290 922.260 340( 126,770 773,777
83 75.5463 300 986.960 350( 134,336 792,310
84 77.3777 310| 1,053.85 360 142,122 811,062
85 79.2310 320( 1,122.94 370 150,128 830,084
86 81.1062 330 1,194.22 380 158,352 849,2P5
87 83.0034 340( 1,267.70 390 166,796 868,685
88 84.9225 350( 1,343.36 400 175,460 888,264
89 86.8635 360 1,421.22 410 184,342 908,113
90 88.8264 370| 1,501.28 420 193,444 928,182
91 90.8113 380| 1,583.52 430 202,766 948,469
92 92.8182 390| 1,667.96 440 212,306 968,976
93 94.8469 400| 1,754.60 450 222,066 989,702
94 96.8976 410| 1,843.42 460 232,045 1,010,650
95 98.9702 420| 1,934.44 470 242,244 1,031,810
96 101.065 430| 2,027.66 480 252,662 1,053,2p0
97 103.181 440| 2,123.06 490 263,299 1,074,8p0
98 105.320 450| 2,220.66 500 274,156 1,096,620
99 107.480 460| 2,320.45 510 285,232
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Balancing Rotating Parts

Static Balancing.—There are several methods of testing the standing or static balance of
a rotating part. A simple method that is sometimes used for flywheels, etc., is illustrated by
the diagramFig. 1L An accurate shaft is inserted through the bore of the finished wheel,
which is then mounted on carefully leveled “parallels” A. If the wheel is in an unbalanced
state, it will turn until the heavy side is downward. When it will stand in any position as the
result of counterbalancing and reducing the heavy portions, it is said to be in standing or
static balance. Another test which is used for disk-shaped parts is sHegrAmhe disk

D is mounted on a vertical arbor attached to an adjustable cross-slide B. The latter is carrie
by a table C, which is supported by a knife-edged bearing. A pendulum having an adjust-
able screw-weight W at the lower end is suspended from cross-slide B. To test the static
balance of disk D, slide B is adjusted until pointer E of the pendulum coincides with the
center of a stationary scale F. Disk D is then turned halfway around without moving the
slide, and if the indicator remains stationary, it shows that the disk is in balance for this par-
ticular position. The test is then repeated for ten or twelve other positions, and the heavy
sides are reduced, usually by drilling out the required amount of metal. Several other
devices for testing static balance are designed on this same principle.

] Hy

Fig. 1. Fig. 2. Fig. 3.

Running or Dynamic Balance.—A cylindrical body may be in perfect static balance and

not be in a balanced state when rotating at high speed. If the part is in the form of a thin disk
static balancing, if carefully done, may be accurate enough for high speeds, but if the rotat-
ing part is long in proportion to its diameter, and the unbalanced portions are at opposite
ends or in different planes, the balancing must be done so as to counteract the centrifuge
force of these heavy parts when they are rotating rapidly. This process is known as a run
ning balance or dynamic balancing. To illustrate, if a heavy section is locateBigt 8),(

and another correspondingly heavy section gtdde may exactly counterbalance the
other when the cylinder is stationary, and this static balance may be sufficient for a part rig-
idly mounted and rotating at a comparatively slow speed; but when the speed is very high
as in turbine rotors, etc., the heavy masses H gnbeihg in different planes, are in an
unbalanced state owing to the effect of centrifugal force, which results in excessive strains
and injurious vibrations. Theoretically, to obtain a perfect running balance, the exact posi-
tions of the heavy sections should be located and the balancing effected either by reducin
their weight or by adding counterweights opposite each section and in the same plane at th
proper radius; but if the rotating part is rigidly mounted on a stiff shaft, a running balance
that is sufficiently accurate for practical purposes can be obtained by means of compara:
tively few counterbalancing weights located with reference to the unbalanced parts.

Balancing Calculations.—As indicated previously, centrifugal forces caused by an

unbalanced mass or masses in a rotating machine member cause additional loads on tt
bearings which are transmitted to the housing or frame and to other machine members
Such dynamically unbalanced conditions can occur even though static balance (balance ¢
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zero speed) exists. Dynamic balance can be achieved by the addition of one or two masse
rotating about the same axis and at the same speed as the unbalanced masses. A sin
unbalanced mass can be balanced by one counterbalancing mass located 180 degre
opposite and in the same plane of rotation as the unbalanced mass, if the product of thel
respective radii and masses are equalNlg,, = M.r,. Two or more unbalanced masses
rotating in the same plane can be balanced by a single mass rotating in the same plane,
by two masses rotating about the same axis in two separate planes. Likewise, two or mor
unbalanced masses rotating in different planes about a common axis can be balanced k
two masses rotating about the same axis in separate planes. When the unbalanced mas:
are in separate planes they may be in static balance but not in dynamic balance; i.e., the
may be balanced when not rotating but unbalanced when rotating. If a system is in dynamic
balance, it will remain in balance at all speeds, although this is not strictly true at the critical
speed of the system. (S@gtical Speeds

In all the equations that follow, the symidldenotes either mass in kilograms or in
slugs, or weight in pounds. Either mass or weight units may be used and the equations ma
be used with metric or with customary English units without change; however, in a given
problem the units must be all metric or all customary English.

Counterbalancing Several Masses Located in a Single Planelr-all balancing prob-

lems, itis the product of counterbalancing mass (or weight) and its radius that is calculated:
itis thus necessary to select either the mass or the radius and then calculate the other val
from the product of the two quantities. Design considerations usually make this decision
self-evident. The angular position of the counterbalancing mass must also be calculated
Referring tdFig. 1

Mgrg = J(EMr cosB)2 + (EMr sinB)2 @)
_ =(Mrsin®) _y
tandg = —~(ZMrcosB)  x @

Fig. 1.
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Table 1. Relationship of the Signs of the Functions of the Angle with Respect to the
Quadrant in Which They Occur

Angle 8
u | 0°t090 | 90°to 180 | 180°to 270 | 270 to 360

Signs of the Functions

ty y =4 oy

tan = = = =
+X X X +X

i y y Ny Ny
sine +r +r +r +r
cosine X =X =X =
+r +r +r +r

where:
My, My, M5, ... M, = any unbalanced mass or weight, kg or Ib
Mg = counterbalancing mass or weight, kg or Ib
r= yadri1us to center of gravity of any unbalanced mass or weight, mm or
incl
rg =radius to center of gravity of counterbalancing mass or weight, mm
orinch
6 =angular position of of any unbalanced mass or weight, degrees
6g =angular position ofg of counterbalancing mass or weight, degrees

x and y = seeTable 1
Table 1is helpful in finding the angular position of the counterbalancing mass or weight.
Itindicates the range of the angles within which this angular position occurs by noting the
plus and minus signs of the numerator and the denominator of the té&qusition (2)In
a like mannerTable 1is helpful in determining th&ignof the sine or cosine functions for
angles ranging from 0 to 360 degrees. Balancing problems are usually solved most conve
niently by arranging the arithmetical calculations in a tabular form.

ExampleReferring toFig. 1, the particular values of the unbalanced weights have been
entered in the table below. Calculate the magnitude of the counterbalancing weight if its
radius is to be 10 inches.

M r 0 0 in6 Mr cos Mr sin®
No. b, in. deg cost sin I COst rsin
1 10 10 30 0.8660 05000 86.6 50.0
2 5 20 | 120 | -0.5000 0.8660 -50.0 86.6
3 15 15 | 200 | -0.9307 | -0.3a20 -211.4 -77.0
-174.8 59.6
=Y Mr cosf =Y Mrsing
M. = J(EMrcosB)2 + (=MrsinB)? _ ./(-174.82 +(59.6)2
B g 10
Mg = 185 Ib

- Z(EMrsin®) _ —~(59.6 _ V. 5 _ 341010
—(=MrcosB) —(-174.89 +X’ % = 341710
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Fig. 2.
Counterbalancing Masses Located in Two or More Planes.dnbalanced masses or
weights rotating about a common axis in two separate planes of rotation form a couple,
which must be counterbalanced by masses or weights, also located in two separate plane
call them plane#\ andB, and rotating about the same common axis Geeples
pagel20). In addition, they must be balanced in the direction perpendicular to the axis, as
before. Since two counterbalancing masses are required, two separate equations at
required to calculate the product of each mass or weight and its radius, and two additiona
equations are required to calculate the angular positions. The plamet8 selected as

balancing planes may be any two planes separated by any convenient djstiomgethe
axis of rotation. IrFig. 2

For balancing plana:
ZMrbcosB)? + (ZMrb sin@)?
M, = 2 ) @
_ =(*Mrbsin®) _y
t@and, = —(ZMrbcosB) ~ x @)

For balancing planB:

SMracosB)? + (XMrasing)?
Mgl g = M )C ( ) ©)

_ —~(=ZMrasinB) _y
tandg —(ZMracosB) ~ x ©)

Where:M, andMg are the mass or weight of the counterbalancing masses in the balanc-
ing planesA andB, respectivelyr , andrg are the radii; anél, and6g are the angular posi-
tions of the balancing masses in these plavigs.andd are the mass or weight, radius, and
angular positions of the unbalanced masses, with the subscripts defining the particular
mass to which the values are assigned. The lengfte distance between the balancing
planes, is always a positive value. The axial dimens#asdb, may be either positive or
negative, depending upon their position relative to the balancing plane; for example, in
Fig. 2 the dimensiol, would be negative.

ExampleReferring toFig. 2, a set of values for the masses and dimensions has been
selected and put into convenient table form below. The separation of balancinggplanes,
assumed as being 15 inches. If in balancing phariee radius of the counterbalancing
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weight is selected to be 10 inches; calculate the magnitude of the counterbalancing mas
and its position. If in balancing plaBethe counterbalancing mass is selected to be 10 Ib;
calculate its radius and position.

For balancing plana:
Balancing Plan&
M r 2] b

Plane Ib in. deg. in. Mrb Mrb cos® Mrb sin@
1 10 8 30 6 480 415.7 240.0
2 8 10 135 -6 -480 339.4 -339.4
3 12 9 270 12 1296 __ 0o -1296.0
A ? 10 ? 15 755.1 -1395.4
B 10 ? ? 0 = Mrb cos8 =3Mrbsin®

a15 inches = distanaebetween planes andB.

J(EMrbcos9)2 + (SMrbsinB)2 _ /(755.1)2 + (—1395.42

Ma = raC - 10(15
M, = 106 Ib
tang. = —(ZMrbsin6) _ <(-1395.9 _ +y
A" (IMrbcosB) = —(755.) —X
6, = 118°25

For balancing planB:

Balancing Plan8
M r ] a

Plane Ib in. deg. in. Mra Mra cosf Mra sin@

1 10 8 30 9 720 623.5 360.0

2 8 10 135 21 1680 -1187.9 1187.9

3 12 9 270 3 324 0.0 -324.0

A ? 10 ? 0 -564.4 12239

B 10 ? ? 15 =Y Mra cost =yMrasin@

a15 inches = distaneebetween plane&andB.

_ J(EMracos)2 + (zMrasin@)? _ ,/(-564.42+ (1223.92

's Mge 10(19
= 8.985 in.
tand.. = —(ZMrasin6) _ —(1223.9 _ -y
B~ _(IMracosB)  —(-564.49 = +x
0y = 294°45

Balancing Lathe Fixtures.—Lathe fixtures rotating at a high speed require balancing.
Often itis assumed that the center of gravity of the workpiece and fixture, and of the coun-
terbalancing masses are in the same plane; however, this is not usually the case. Counte
balancing masses are required in two separate planes to prevent excessive vibration c
bearing loads at high speeds.
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Fig. 3.

Usually a single counterbalancing mass is placed in one plane selected to be 180 degree
directly opposite the combined center of gravity of the workpiece and the fixture. Two
equal counterbalancing masses are then placed in the second counterbalancing plan
equally spaced on each side of the fixture. Referrifggo3 the two counterbalancing
massed/, and the two anglésare equal. For the design in this illustration, the following
formulas can be used to calculate the magnitude of the counterbalancing masses. Sinc
their angular positions are fixed by the design, they are not calculated.

My = Iv'wrw(ll_HZ) (7)
B rgly
_ MBrB_MWrW
Ma = 2r ,sin® ®

In these formulaM,, andr,, denote the mass or weight and the radius of the combined
center of gravity of the workpiece and the fixture.

In Fig. 3the combined weight of the workpiece and the fixture is 18.5 Ib. The following
dimensions were determined from the layout of the fixture and by calculating the centers of
gravity:r, = 21in.;r, = 6.25in.rg =6 in.;I; = 3in.;l, = 5 in.; and = 3C°. Calculate the
weights of the counterbalancing masses.

Myrw(li+15) _ 185x 2x8 _

Mg = = = 16.44 |
B rgly 6x3 644 1b

Mgrg—M,r —
M= S8 _ww._ (16.44x § (18'5°X 2 =986 (each weight)
2r 5sind (2% 6.295sin30
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FLYWHEELS

Classification of Flywheels.—lywheels may be classified balance wheelsr asfly-

wheel pulleysThe object of all flywheels is to equalize the energy exerted and the work
done and thereby prevent excessive or sudden changes of speed. The permissible spe
variation is an important factor in all flywheel designs. The allowable speed change varies
considerably for different classes of machinery; for instance, it is about 1 or 2 per cent in
steam engines, while in punching and shearing machinery a speed variation of 20 per cer
may be allowed.

The function of a balance wheel is to absorb and equalize energy in case the resistance
motion, or driving power, varies throughout the cycle. Therefore, the rim section is gener-
ally quite heavy and is designed with reference to the energy that must be stored in it to pre
vent excessive speed variations and, with reference to the strength necessary to withstar
safely the stresses resulting from the required speed. The rims of most balance wheels at
either square or nearly square in section, but flywheel pulleys are commonly made wide to
accommodate a belt and relatively thin in a radial direction, although this is not an invari-
able rule.

Flywheels, in general, may either be formed of a solid or one-piece section, or they may
be of sectional construction. Flywheels in diameters up to about eight feet are usually cas
solid, the hubs sometimes being divided to relieve cooling stresses. Flywheels ranging
from, say, eight feet to fifteen feet in diameter, are commonly cast in half sections, and the
larger sizes in several sections, the number of which may equal the number of arms in the
wheel. Sectional flywheels may be divided into two general classes. One class includes
cast wheels which are formed of sections principally because a solid casting would be toc
large to transport readily. The second class includes wheels of sectional construction
which, by reason of the materials used and the special arrangement of the sections, enabls
much higher peripheral speeds to be obtained safely than would be possible with ordinary
sectional wheels of the type not designed especially for high speeds. Various designs hav
been built to withstand the extreme stresses encountered in some classes of service. Tt
rims in some designs are laminated, being partly or entirely formed of numerous segment-
shaped steel plates. Another type of flywheel, which is superior to an ordinary sectional
wheel, has a solid cast-iron rim connected to the hub by disk-shaped steel plates instead
cast spokes.

Steel wheels may be divided into three distinct types, including 1) those having the cen-
ter and rim built up entirely of steel plates; 2) those having a cast-iron center and steel
rim; and 3) those having a cast-steel center and rim formed of steel plates.

Wheels having wire-wound rims have been used to a limited extent when extremely high
speeds have been necessary.

When the rim is formed of sections held together by joints it is very important to design
these joints properly. The ordinary bolted and flanged rim joints located between the arms
average about 20 per cent of the strength of a solid rim and about 25 per cent is the maxi
mum strength obtainable for a joint of this kind. However, by placing the joints at the ends
of the arms instead of between them, an efficiency of 50 per cent of the strength of the rim
may be obtained, because the joint is not subjected to the outward bending stresse
between the arms but s directly supported by the arm, the end of which is secured to the rin
just beneath the joint. When the rim sections of heavy balance wheels are held together b
steel links shrunk into place, an efficiency of 60 per cent may be obtained; and by using a
rim of box or I-section, a link type of joint connection may have an efficiency of 100 per-
cent.

Flywheel Calculations

Energy Due to Changes of Velocity.-When a flywheel absorbs energy from a variable
driving force, as in a steam engine, the velocity increases; and when this stored energy i
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given out, the velocity diminishes. When the driven member of a machine encounters a
variable resistance in performing its work, as when the punch of a punching machine is
passing through a steel plate, the flywheel gives up energy while the punch is at work, and
consequently, the speed of the flywheel is reduced. The total energy that a flywheel would
give out if brought to a standstill is given by the formula:

WV W

29  64.32

in which E =total energy of flywheel, in foot-pounds
W =weight of flywheel rim, in pounds
v =velocity at mean radius of flywheel rim, in feet per second
g =acceleration due to gravity = 32.164t/s
If the velocity of a flywheel changes, the energy it will absorb or give up is proportional
to the difference between the squares of its initial and final speeds, and is equal to the dif-
ference between the energy that it would give out if brought to a full stop and the energy
that is still stored in it at the reduced velocity. Hence:
Wy? Wy2  W( -v3)
17 29 29 = 6432
inwhich E, =energy in foot-pounds that a flywheel will give out while the speed is
reduced fronv, tov,
W =weight of flywheel rim, in pounds
v; = velocity at mean radius of flywheel rim before any energy has been given
out, in feet per second
v, = velocity of flywheel rim at end of period during which the energy has been
given out, in feet per second
Ordinarily, the effects of the arms and hub do not enter into flywheel calculations, and
only the weight of the rim is considered. In computing the velocity, the mean radius of the
rim is commonly used.
Using metric Sl units, the formulas areE = %Mv?, and E; = %M (v,2 —V,?), whereE
andE, arein joules;M =the mass of the rim in kilograms; and, v, andv, = velocities
in meters per second. Note: In the SI, the unit of mass is the kilogram. If the weight of
the flywheel rimis given in kilograms, the value referred to is the mas®|. Should the
weight be given in newtonsl\, then
M = W(newtons)
g
whereg is approximately 9.81 meters per second squared.
General Procedure in Flywheel Design.—Fhe general method of designing a flywheel
is to determine first the value Bf or the energy the flywheel must either supply or absorb
for a given change in velocity, which, in turn, varies for different classes of service. The
mean diameter of the flywheel may be assumed, or it may be fixed within certain limits by
the general design of the machine. Ordinarily the speed of the flywheel shaft is known, at
least approximately; the values\gfandv, can then be determined, the latter depending
upon the allowable percentage of speed variation. When these values are known, the
weight of the rim and the cross-sectional area required to obtain this weight may be com-
puted. The general procedure will be illustrated more in detail by considering the design of
flywheels for punching and shearing machinery.
Flywheels for Presses, Punches, Shears, Etdrthese classes of machinery, the work
that the machine performs is of an intermittent nature and is done during a small part of the
time required for the driving shaft of the machine to make a complete revolution. To dis-
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tribute the work of the machine over the entire period of revolution of the driving shaft, a
heavy-rimmed flywheel is placed on the shaft, giving the belt an opportunity to perform an
almost uniform amount of work during the whole revolution. During the greater part of the
revolution of the driving shaft, the belt power is used to accelerate the speed of the fly-
wheel. During the part of the revolution when the work is done, the energy thus stored up
in the flywheel is given out at the expense of its velocity. The problem is to determine the
weight and cross-sectional area of the rim when the conditions affecting the design of the
flywheel are known.

ExampleA flywheel is required for a punching machine capable of punchiimgh

holes through structural steel plagginch thick. This machine (see accompanying dia-
gram) is of the general type having a belt-driven shaft at the rear which carries a flywheel
and a pinion that meshes with a large gear on the main shaft at the top of the machine. It
assumed that the relative speeds of the pinion and large gear are 7 to 1, respectively, ar
that the slide is to make 30 working strokes per minute. The preliminary layout shows that
the flywheel should have a mean diameter (see enlarged detail) of about 30 inches. Find th
weight of the flywheel and the remaining rim dimensions.

FLYWHEEL

!

RA‘DIUS

Punch Presss and Flywheel Detail

Energy Supplied by Flywhedlhe energy that the flywheel must give up for a given
change in velocity, and the weight of rim necessary to supply that energy, must be deter-
mined. The maximum force for shearinganch hole through,-inch structural steel
equals approximately the circumference of the hole multiplied by the thickness of the stock
multiplied by the tensile strength, which is nearly the same as the shearing resistance of th
steel. Thus, in this case, 3.144% x %,x 60,000 = 106,000 pounds. The average force will
be much less than the maximum. Some designers assume that the average force is abc
one-half the maximum, although experiments show that the material is practically sheared
off when the punch has entered the sheet a distance equal to about one-third the sheet thic
ness. On this latter basis, the average ertey2200 foot-pounds for the example given.
Thus:

_ 106, 000x % x % _ 106 000 _

E, 5 e 2200 foot-pounds.

If the efficiency of the machine is taken as 85 per cent, the energy required will equal
2200 0.85 = 2600 foot-pounds nearly. Assume that the energy supplied by the belt while
the punch is at work is determined by calculation to equal 175 foot-pounds. Then the fly-
wheel must supply 2600 - 175 = 2425 foot-pounés.=
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Dimensions of Flywheels for Punches and Shears

Max.

A B C D E F G H J R.P.M.
24 3 3% 6 17, 1% 2%, 3%, 3% 955
30 3% 4 7 1% 1%, 3 3%, 4 796
36 4 4, 8 1% 13, 3y, 4, 4%, 637
42 4, 43, 9 13, 2 3% 4%, 5 557
48 4%, 5 10 19, 2 33, 43, 5% 478
54 43, 5% 11 2 2y, 4 5 6 430
60 5 6 12 2y, 2%, 4%, 5% 6% 382
72 5% 7 13 2% 23, 5 6% 7 318
84 6 8 14 3 3% 5% 7, 8 273
96 7 9 15 3% 4 6 9 9 239
108 8 10 16%, 37, 4%, 6% 10% 10 212
120 9 11 18 4 5 A 12 12 191

The maximum number of revolutions per minute given in this table should never be exceeded for
cast-iron flywheels.

Rim Velocity at Mean Radiug/hen the mean radius of the flywheel is known, the
velocity of the rim at the mean radius, in feet per second, is:
v = 2x3.1416xRx n
60
inwhich  v=velocity at mean radius of flywheel, in feet per second
R =mean radius of flywheel rim, in feet
n=number of revolutions per minute
According to the preliminary layout the mean diameter in this example should be about
30 inches and the driving shaft is to make 210 rpm, hence,
v = 2x3.1416x 1.25% 210 _

) 27.5 feet per second
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Weight of Flywheel RinAssuming that the allowable variation in velocity when punch-
ing is about 15 per cent, and values,aindv, are respectively 27.5 and 23.4 feet per sec-

ond (27.5¢< 0.85 = 23.4), the weight of a flywheel rim necessary to supply a given amount
of energy in foot-pounds while the speed is reduced rdow, would be:

_ E;x64.32  2425x 64.32_
W= 2_v2 -
Vi-Vi  275-234
Size of Rim for Given Weigl8ince 1 cubic inch of cast iron weighs 0.26 pound, a fly-
wheel rim weighing 750 pounds contains 750 0.26 = 2884 cubic inches. The cross-sec-
tional area of the rim in square inches equals the total number of cubic inches divided by
the mean circumference, or 2884 94.25 = 31 square inches nearly, which is approximately
the area of a rim¥%inches wide and 6 inches deep.
Simplified Flywheel Calculations.—Calculations for designing the flywheels of
punches and shears are simplified by the following formulas and the accompanying table

of constants applying to different percentages of speed reduction. In these formulas let:
HP =horsepower required

N =number of strokes per minute
E =total energy required per stroke, in foot-pounds
E, = energy given up by flywheel, in foot-pounds
T =time in seconds per stroke
T, =time in seconds of actual cut
W =weight of flywheel rim, in pounds
D =mean diameter of flywheel rim, in feet
R =maximum allowable speed of flywheel in revolutions per minute
CandC, = speed reduction values as given in table
a=width of flywheel rim
b =depth of flywheel rim
y =ratio of depth to width of rim

_ EN _ E _ T
HP_33,000_T><550 El'E%l TO

E 1220
W = _212 a= 122_2\/\/ b = ay
CD°R 12Dy
For cast-iron flywheels, with a maximum stress of 1000 pounds per square inch:
W= CE, R = 1940+ D

750 pounds

Values ofC andC, in the Previous Formulas

Per Cent Per Cent
Reduction [@ C, Reduction @ C
2%, 0.00000213 0.1250 10 0.00000810 0.0328
5 0.00000426 0.0625 15 0.00001180 0.0225
KA 0.00000617 0.0432 20 0.00001535 0.0173

Example 1A hot slab shear is required to cut a slab¥b inches which, at a shearing
stress of 6000 pounds per square inch, gives a force between the knives of 360,000 pound
The total energy required for the cut will then be 360;09= 120,000 foot-pounds. The

shear is to make 20 strokes per minute; the actual cutting time is 0.75 second, and the ba
ance of the stroke is 2.25 seconds.
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The flywheel is to have a mean diameter of 6 feet 6 inches and is to run at a speed of 20
rpm; the reduction in speed to be 10 per cent per stroke when cutting.

_ 120, 000% 20 _
HP = 33000 - 72.7 horsepower

E, = 120, 000x - 2721 = 90, 000 foot-pounds

3

W = 90, 000
0.0000081x 6.5x 2007

Assuming a ratio of 1.22 between depth and width of rim,

_ [ 6570 _ .
= |Tox65" 9.18 inches

b = 1.22x 9.18= 11.2 inches
or size of rim, say, 8 11%inches.

= 6570 pounds

Example 2Suppose that the flywheelttxample 1Iis to be made with a stress due to cen-
trifugal force of 1000 pounds per square inch of rim section.

C, for 10 per cent=  0.0328

W = 0.0328x 90 000= 2950 pounds

_ 1940 1940 _
6

D If D = 6 feet, R = —— = 323 rpm
Assuming a ratio of 1.22 between depth and width of rim, as before:
_ 2950 _ .
= oxe - 6.4 inches
b = 1.22x 6.4= 7.8 inches
or size of rim, say,%§x 8 inches.

R

Centrifugal Stresses in Flywheel Rims.— general, high speed is desirable for fly-
wheels in order to avoid using wheels that are unnecessarily large and heavy. The centrifu
gal tension or hoop tension stress, that tends to rupture a flywheel rim of given area,
depends solely upon the rim velocity and is independent of the rim radius. The bursting
velocity of a flywheel, based on hoop stress alone (not considering bending stresses), i
related to the tensile stress in the flywheel rim by the following formula which is based on
the centrifugal force formula from mechanics.

V = J10xs or, s= V=10

whereV = velocity of outside circumference of rim in feet per secondsénthe tensile
strength of the rim material in pounds per square inch.

For cast iron having a tensile strength of 19,000 pounds per square inch the bursting
speed would be:

V = J/10x 19 000= 436 feet per second

Built-up Flywheels:Flywheels built up of solid disks of rolled steel plate stacked and
bolted together on a through shaft have greater speed capacity than other types. The max
mum hoop stress is at the bore and is given by the formula,

s = 0.0194/°[4.333+ (d/ D)7
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In this formulasandV are the stress and velocity as previously definedlamdiD are
the bore and outside diameters, respectively.

Assuming the plates to be of steel having a tensile strength of 60,000 pounds per squar
inch and a safe working stress of 24,000 pounds per square inch (using a factor of safety c

2.50nstressoy2.5  on speed) and taking the worst condition (hmaroacheb), the
safe rim speed for this type of flywheel is 500 feet per second or 30,000 feet per minute.

Combined Stresses in Flywheels.-Fhe bending stresses in the rim of a flywheel may
exceed the centrifugal (hoop tension) stress predicted by the simple feru®@a 0 by a
considerable amount. By taking into account certain characteristics of flywheels, rela-
tively simple formulas have been developed to determine the stress due to the combinec
effect of hoop tension and bending stress. Some of the factors that influence the magnitud
of the maximum combined stress acting at the rim of a flywheel are:

1) The number of spokeBicreasing the number of spokes decreases the rim span
between spokes and hence decreases the bending moment. Thus an eight-spoke wheel ¢
be driven to a considerably higher speed before bursting than a six-spoke wheel having th
same rim.

2) The relative thickness of the spokéthe spokes were extremely thin, like wires, they
could offer little constraint to the rim in expanding to its natural diameter under centrifugal
force, and hence would cause little bending stress. Conversely, if the spokes were
extremely heavy in proportion to the rim, they would restrain the rim thereby setting up
heavy bending stresses at the junctions of the rim and spokes.

3) The relative thickness of the rim to the diamefethe rim is quite thick (i.e., has a
large section modulus in proportion to span), its resistance to bending will be great and
bending stress small. Conversely, thin rims with a section modulus small in comparison
with diameter or span have little resistance to bending, thus are subject to high bending
stresses.

4) Residual stresse3hese include shrinkage stresses, impact stresses, and stresses
caused by operating torques and imperfections in the material. Residual stresses are take
into account by the use of a suitable factor of safety.k8ew@rs of Safety for Flywhee)s

The formulas that follow give the maximum combined stress at the rim of fly-wheels
having 6, 8, and 10 spokes. These formulas are for flywheelsastdmgular rim sections
and take into account the first three of the four factors listed as influencing the magnitude
of the combined stress in flywheels.

2
. _V 0.56B-1.8% o
For 6 spokes: = — st In these formulag = maximum
P S 10[l o 3Q+3.14 DQ:| combined stress i?pounds per
square inchQ) = ratio of mean

2
. _V 0.42B—-2.53, spoke cross-section area to rim
For 8 spokes: $= 1_0[1 0 4Q+3.14 DQ} cross-section areB;= ratio of out-
) side diameter of rim to rim thick-
) Y; 0.338-3.22 ness; and/ = velocity of flywheel
For 10 spokes: = —|1+ rim in feet per second.
P s 10[ 050+3.14 DQ} mineetp

Thickness of Cast Iron Flywheel Rims.—F¥he mathematical analysis of the stresses in
flywheel rims is not conclusive owing to the uncertainty of shrinkage stresses in castings or
the strength of the joint in sectional wheels. When a flywheel of ordinary design is revolv-
ing at high speed, the tendency of the rim is to bend or bow outward between the arms, an
the bending stresses may be serious, especially if the rim is wide and thin and the spoke
are rather widely spaced. When the rims are thick, this tendency does not need to be cor
sidered, but in a thin rim running at high speed, the stress in the middle might become suf-
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ficiently great to cause the wheel to fail. The proper thickness of a cast-iron rim to resist
this tendency is given for solid rims Bprmula (1)and for a jointed rim biformula (2)

_ 047 _ 0.95d
t= 208000 1 @ t= 208000 11 @
o2 ~10d o2 10

In these formulag,= thickness of rim, in inched;= diameter of flywheel, in inches=
number of armsy = peripheral speed, in feet per second.

Factors of Safety for Flywheels.—€ast-iron flywheels are commonly designed with a
factor of safety of 10 to 13. A factor of safety of 10 applied to the tensile strength of a fly-
wheel material is equivalent to a factor of safety/aD or 3.16 on the speed of the fly-

wheel because the stress on the rim of a flywheel increases as thdesigned would underg
rim stresses four times as great as at the design speed.

Tables of Safe Speeds for Flywheels.Fhe accompanyingable 1 prepared by T. C.
Rathbone of The Fidelity and Casualty Company of New York, gives general recommen-
dations for safe rim speeds for flywheels of various construcfiatse 2shows the num-

ber of revolutions per minute corresponding to the rim speddie 1

Table 1. Safe Rim Speeds for Flywheels

©

Solid Wheel Solid Rim: (a) Solid hub Rim In Halves Segment Type
(b) Split hub Shrink Links Shrink Links
Or Keyed Links

@

Rim With Bolted Rim With Bolted Wheel In Segment Type
Flange Joints Midway Flange Joints Halves With With Pad
Between Spokes Next To Spokes Split Spoke Joint Joints
Safe Rim Speed
Type of Wheel Feet per Sec. Feet per Min.

Solid cast iron (balance wheels—heavy rims) 110 6,600
Solid cast iron (pulley wheels—thin rims) 85 5,100
Wheels with shrink link joints 775 4,650
Wheels with pad type joints 70.7 4,240
Wheels with bolted flange joints 50 3,000
Solid cast steel wheels 200 12,000
Wheels built up of stacked steel plates 500 30,000

To find the safe speed in revolutions per minute, divide the safe rim speed in feet per minute by 3.14
times the outside diameter of the flywheel rim in feet. For flywheels up to 15 feet in diameter, see
Table 2



FLYWHEELS 181
Table 2. Safe Speeds of Rotation for Flywheels
Outside Safe Rim Speed in Feet per Minute (frdable )
Diameter ™5 500 [ 5100 ] 4650] 4240] 30000 12,000 30,000
of Rim
(feet) Safe Speed of Rotation in Revolutions per Minute
1 2100 1623 1480 1350 955 3820 9549
2 1050 812 740 676 478 1910 4775
3 700 541 493 450 318 1273 3183
4 525 406 370 338 239 955 2387
5 420 325 296 270 191 764 1910
6 350 271 247 225 159 637 1592
7 300 232 211 193 136 546 1364
8 263 203 185 169 119 478 1194
9 233 180 164 150 106 424 1061
10 210 162 148 135 96 382 955
11 191 148 135 123 87 347 868
12 175 135 123 113 80 318 796
13 162 125 114 104 73 294 735
14 150 116 106 97 68 273 682
15 140 108 99 90 64 255 637

Safe speeds of rotation are based on safe rim speeds shitatnerl
Safe Speed Formulas for Flywheels and Pulleys.Ne simple formula can accommo-

date all the various types and proportions of flywheels and pulleys and at the same time
provide a uniform factor of safety for each. Because of considerations of safety, such a for-

mula would penalize the better constructions to accommodate the weaker designs.

One formula that has been used to check the maximum rated operating speed of fly-
wheels and pulleys and which takes into account material properties, construction, rim

thickness, and joint efficiencies is the following:

In this formula,
N =maximum rated operating speed in revolutions per minute

C=1.0for wheels driven by a constant speed electric motor (i.e., a-c squirrel-cage

E =joint efficiency

_ CAMEK

N D

induction motor or a-c synchronous motor, etc.)

0.90 for wheels driven by variable speed motors, engines or turbines where

overspeed is not over 110 per cent of rated operating speed
A=0.90 for 4 arms or spokes

1.00 for 6 arms or spokes

1.08 for 8 arms or spokes

1.50 for disc type

M =1.00 for cast iron of 20,000 psi tensile strength, or unknown
1.12 for cast iron of 25,000 psi tensile strength

1.22 for cast iron of 30,000 psi tensile strength

1.32 for cast iron of 35,000 psi tensile strength

2.20 for nodular iron of 60,000 psi tensile strength

2.45 for cast steel of 60,000 psi tensile strength

2.75 for plate or forged steel of 60,000 psi tensile strength

1.0 for solid rim
0.85 for link or prison joints
0.75 for split rim — bolted joint at arms
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0.70 for split rim — bolted joint between arms
K =1355 for rim thickness equal to 1 per cent of outside diameter
1650 for rim thickness equal to 2 per cent of outside diameter
1840 for rim thickness equal to 3 per cent of outside diameter
1960 for rim thickness equal to 4 per cent of outside diameter
2040 for rim thickness equal to 5 per cent of outside diameter
2140 for rim thickness equal to 7 per cent of outside diameter
2225 for rim thickness equal to 10 per cent of outside diameter
2310 for rim thickness equal to 15 per cent of outside diameter
2340 for rim thickness equal to 20 per cent of outside diameter
D = outside diameter of rim in feet
A six-spoke solid cast iron balance wheel 8 feet in diameter has a rectangular rim 10
inches thick. What is the safe speed, in revolutions per minute, if driven by a constant speec
motor?
In this instanceC = 1;A = 1;M = 1, since tensile strength is unknowy 1;K = 2225
since the rim thickness is approximately 10 per cent of the wheel diametBr=thtket.
Thus,
_ 1x1x1x2225
8

(Note: This safe speed is slightly greater than the value of 263 rpm obtainable directly
from Tables land2.)

Tests to Determine Flywheel Bursting Speeds.Fests made by Prof. C. H. Benjamin,
to determine the bursting speeds of flywheels, showed the following results:

Cast-iron Wheels with Solid RinSast-iron wheels having solid rims burst at a rim
speed of 395 feet per second, corresponding to a centrifugal tension of about 15,60C
pounds per square inch.

Wheels with Jointed RimSour wheels were tested with joints and bolts inside the rim,
using the familiar design ordinarily employed for band wheels, but with the joints located
at points one-fourth of the distance from one arm to the next. These locations represent th
points of least bending moment, and, consequently, the points at which the deflection due
to centrifugal force would be expected to have the least effect. The tests, however, did no
bear out this conclusion. The wheels burst at a rim speed of 194 feet per second, corre
sponding to a centrifugal tension of about 3750 pounds per square inch. These wheels
therefore, were only about one-quarter as strong as the wheels with solid rims, and burst
practically the same speed as wheels in a previous series of tests in which the rim joint:
were midway between the arms.

Bursting Speed for Link Jointdnother type of wheel with deep rim, fastened together
at the joints midway between the arms by links shrunk into recesses, after the manner o
flywheels for massive engines, gave much superior results. This wheel burst at a speed o
256 feet per second, indicating a centrifugal tension of about 6600 pounds per square inch

Wheel having Tie-rodJests were made on a band wheel having joints inside the rim,
midway between the arms, and in all respects like others of this design previously tested
except that tie-rods were used to connect the joints with the hub. This wheel burst at a spee
of 225 feet per second, showing an increase of strength of from 30 to 40 per cent over sim
ilar wheels without the tie-rods.

Wheel Rim of I-sectioiBeveral wheels of special design, not in common use, were also
tested, the one giving the greatest strength being an English wheel, with solid rim of |-sec-
tion, made of high-grade cast iron and with the rim tied to the hub by steel wire spokes.
These spokes were adjusted to have a uniform tension. The wheel gave way at a rim spee
of 424 feet per second, which is slightly higher than the speed of rupture of the solid rim
wheels with ordinary style of spokes.

N = 278 rpm
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Tests on Flywheel of Special Constructidrtest was made on a flywheel 49 inches in
diameter and weighing about 900 pounds. The rim Waméhes wide and% inches
thick, and was built of ten segments, the material being cast steel. Each joint was secure
by three “prisoners” of an I-section on the outside face, by link prisoners on each edge, anc
by a dovetailed bronze clamp on the inside, fitting over lugs on the rim. The arms were of
phosphor-bronze, twenty in number, ten on each side, and were cros-shaped in sectior
These arms came midway between the rim joints and were bolted to plane faces on the
polygonal hub. The rim was further reinforced by a system of diagonal bracing, each sec-
tion of the rim being supported at five points on each side, in such a way as to relieve it
almost entirely from bending. The braces, like the arms, were of phosphor-bronze, and all
bolts and connecting links were of steel. This wheel was designed as a model of a propose
30-foot flywheel. On account of the excessive air resistance the wheel was enclosed at the
sides between sheet-metal disks. This wheel burst at 1775 revolutions per minute or at
linear speed of 372 feet per second. The hub and main spokes of the wheel remained near
in place, but parts of the rim were found 200 feet away. This sudden failure of the rim cast-
ing was unexpected, as it was thought the flange bolts would be the parts to give way first.
The tensile strength of the casting at the point of fracture was about four times the strengtt
of the wheel rim at a solid section.
Stresses in Rotating Disks.-When a disk of uniform width is rotated, the maximum
stress§ is tangential and at the bore of the hub, and the tangential stress is always greate
than the radial stress at the same point on the diSk=Imaximum tangential stress in
pounds per sq. inw = weight of material, Ib. per cu. if\;= rev. per min.m= Poisson's
ratio = 0.3 for steeR = outer radius of disk, inchesz= inner radius of disk or radius of
bore, inches.

S = 0.00007WN[(3+m)R* + (1 —m)r’]

Steam Engine Flywheels.—Fhe variable amount of energy during each stroke and the
allowable percentage of speed variation are of special importance in designing steam
engine flywheels. The earlier the point of cut-off, the greater the variation in energy and the
larger the flywheel that will be required. The weight of the reciprocating parts and the
length of the connecting-rod also affect the variation. The following formula is used for
computing the weight of the flywheel rim:
Let W=weightof rim in pounds

D =mean diameter of rim in feet

N =number of revolutions per minute

% =allowable variation in speed (frolgyto %)

E =excess and deficiency of energy in foot-pounds

c =factor of energy excess, from the accompanying table

HP =indicated horsepower
Then, if the indicated horsepower is given:

_ 387,587 500 cnx HP

w (1)
D°N?
If the work in foot-pounds is given, then:
W= 11, Z4?E @)
DN

In the second formuld& equals the average work in foot-pounds done by the engine in
one revolution, multiplied by the decimal given in the accompanying tafaetdrs for
Engine Flywheel Calculationswhich covers both condensing and non-condensing
engines:
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Factors for Engine Flywheel Calculations

Condensing Engines
e m s w o w
Factor of energy excess 0.163 0.173 0.178 0.184 0.189 0{191
Non-condensing Engines
Steam cut off at 182 183 184 189
Factor of energy excess 0.160 0.186 0.209 0.232

Example 1A non-condensing engine of 150 indicated horsepower is to make 200 revo-
lutions per minute, with a speed variation of 2 per cent. The average cut-off is to be at one-
quarter stroke, and the flywheel is to have a mean diameter of 6 feet. Find the necessar
weight of the rim in pounds.

From the table = 0.209, and from the data given HP = 186;200; 1h= /50 orn = 50;
and,D = 6.

Substituting these valueskguation (1)

_ 387,587 500<0.209% 50 x 150

w
62 x 200°

= 2110 pounds, nearly

Example 2A condensing engine, 2442 inches, cuts off at one-third stroke and has a
mean effective pressure of 50 pounds per square inch. The flywheel is to be 18 feetin mea
diameter and make 75 revolutions per minute with a variation of 1 per cent. Find the
required weight of the rim.

The work done on the piston in one revolution is equal to the pressure on the piston mul-
tiplied by the distance traveled or twice the stroke in feet. The area of the piston is 452.4
square inches, and twice the stroke is 7 feet. The work done on the piston in one revolutior
is, therefore, 452.4 50x 7 = 158,340 foot-pounds. From the tabke 0. 163, and there-
fore:

E = 158 340x 0.163 = 25, 810 foot-pounds
From the data givem= 100;D = 18;N = 75. Substituting these valuesEquation (2)

_ 11, 745x100x 25, 810 _

w
18 x 752

16, 650 pounds, nearly

Spokes or Arms of Flywheels.—Flywheel arms are usually of elliptical cross-section.
The major axis of the ellipse is in the plane of rotation to give the arms greater resistance tc
bending stresses and reduce the air resistance which may be considerable at high velocit
The stresses in the arms may be severe, due to the inertia of a heavy rim when sudden loz
changes occur. The strength of the arms should equal three-fourths the strength of the sha
in torsion.

If Wequals the width of the arm at the hub (length of major axispaglals the shaft
diameter, thelVequals 1.® for a wheel having 6 arms; and for an 8-arm wkiéetjuals
1.2D. The thickness of the arm at the hub (length of minor axis) equals one-half the width.
The arms usually taper toward the rim. The cross-sectional area at the rim should not be
less than two-thirds the area at the hub.
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Critical Speeds

Critical Speeds of Rotating Bodies and Shafts.4a body or disk mounted upon a shaft
rotates about it, the center of gravity of the body or disk must be at the center of the shaft, if
a perfect running balance is to be obtained. In most cases, however, the center of gravity ¢
the disk will be slightly removed from the center of the shaft, owing to the difficulty of per-
fect balancing. Now, if the shaft and disk be rotated, the centrifugal force generated by the
heavier side will be greater than that generated by the lighter side geometrically opposite tc
it, and the shaft will deflect toward the heavier side, causing the center of the disk to rotate
in a small circle. A rotating shaft without a body or disk mounted on it can also become
dynamically unstable, and the resulting vibrations and deflections can result in damage no
only to the shaft but to the machine of which it is a part. These conditions hold true up to a
comparatively high speed; but a point is eventually reached (at several thousand revolu-
tions per minute) when momentarily there will be excessive vibration, and then the parts
will run quietly again. The speed at which this occurs is calledritieal speedof the

wheel or shaft, and the phenomenon itself for the shaft-mounted disk or body is called the
settlingof the wheel. The explanation of the settling is that at this speed the axis of rotation
changes, and the wheel and shaft, instead of rotating about their geometrical center, begi
to rotate about an axis through their center of gravity. The shaft itself is then deflected so
that for every revolution its geometrical center traces a circle around the center of gravity
of the rotating mass.

Critical speeds depend upon the magnitude or location of the load or loads carried by the
shaft, the length of the shaft, its diameter and the kind of supporting bearings. The normal
operating speed of a machine may or may not be higher than the critical speed. Fol
instance, some steam turbines exceed the critical speed, although they do not run lon
enough at the critical speed for the vibrations to build up to an excessive amplitude. The
practice of the General Electric Co. at Schenectady is to keep below the critical speeds. It i
assumed that the maximum speed of a machine may be within 20 per cent high or low of the
critical speed without vibration troubles. Thus, in a design of steam turbine sets, critical
speed is a factor that determines the size of the shafts for both the generators and turbine
Although a machine may run very close to the critical speed, the alignment and play of the
bearings, the balance and construction generally, will require extra care, resulting in a
more expensive machine; moreover, while such a machine may run smoothly for a consid-
erable time, any looseness or play that may develop later, causing a slight imbalance, will
immediately set up excessive vibrations.

The formulas commonly used to determine critical speeds are sufficiently accurate for
general purposes. There are cases, however, where the torque applied to a shaft has
important effect on its critical speed. Investigations have shown that the critical speeds of
a uniform shaft are decreased as the applied torque is increased, and that there exist critic
torques which will reduce the corresponding critical speed of the shaft to zero. A detailed
analysis of the effects of applied torques on critical speeds may be found in a paper, “Crit-
ical Speeds of Uniform Shafts under Axial Torque,” by Golumb and Rosenberg, presented
at the First U.S. National Congress of Applied Mechanics in 1951.

Formulas for Critical Speeds.—The critical speed formulas given in the accompanying
table (from the paper on Critical Speed Calculation presented before the ASME by S. H.
Weaver) apply to (1) shafts with single concentrated loads and (2) shafts carrying uni-
formly distributed loads. These formulas also cover different conditions as regards bear-
ings. If the bearings are self-aligning or very short, the shaft is considered supported at the
ends; whereas, if the bearings are long and rigid, the shaft is considered fixed. These for
mulas, for both concentrated and distributed loads, apply to vertical shafts as well as hori-
zontal shafts, the critical speeds having the same value in both cases. The data required ft
the solution of critical speed problems are the same as for shaft deflection. As the shaft i
usually of variable diameter and its stiffness is increased by a long hub, an ideal shaft of
uniform diameter and equal stiffness must be assumed.
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Critical Speed Formulas

Formulas for Single Concentrated Load

Bearings supported

Bearings supported

w w w
L N
a . L —t—— _l — ] fe—— -, J—
I 3 3 —
! I / N 1*-—»1\
2 2
I i [0
= L N = 1,550 500— = L
N = 387, ooog—bj; Q o N = 387, oocgm wab

Bearings fixed

Bearings supported

Bearings fixed

W w w
R RS S & — —— G e b —] § !
A 2 J 2 N I & I——»Jl
¢ T _ d*
N = 3,100 SSGTW—I N = 775 zodj_ Wa(3| 5 N = 387, OOW
Bearings fixed One-fixed — One supported One fixed — One free end
Formulas for Distributed Loads—First Critical Speed
Total Load =W Total Load = W Total Load = W
82820205001 @HHHHHY A8222202220
T § ! !
- ! A\ A !
_ d _ d _ d
N = 2,232 SO(I):/—W—I N = 4,979 25(|)—J—\—ﬁ—I N = 795 ZO?T/W_I
N; = 4,760 00(‘% N; = 10, 616 74(% N; = 1,695 50(%

One fixed—One free end

N =critical speed, RPM

N, = critical speed of shaft alone

d =diameter of shaft, in inches

W =load applied to shaft, in pounds

| = distance between centers of bearings, in inches

a and b = distances from bearings to load

In calculating critical speeds, the weight of the shaft is either neglected or, say, one-half
to two-thirds of the weight is added to the concentrated load. The formulas apply to steel
shafts having a modulus of elastidiy 29,000,000. Although a shaft carrying a number
of loads or a distributed load may have an infinite number of critical speeds, ordinarily it is
the first critical speed that is of importance in engineering work. The first critical speed is
obtained by the formulas given in the distributed loads portion of theGalkitsal Speed

Formulas
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Angular Velocity

Angular Velocity of Rotating Bodies.—The angular velocity of a rotating body is the
angle through which the body turns in a unit of time. Angular velocity is commonly
expressed in terms of revolutions per minute, but in certain engineering applications it is
necessary to express it as radians per second. By definition themeradkahs in 360
degrees, or one revolution, so that one radian = 36957.3 degrees. To convert angular
velocity in revolutions per minutae, to angular velocity in radians per secangnultiply

by tand divide by 30:

mn
== 1
w=35 1)
The following table may be used to obtain angular velocity in radians per second for all
numbers of revolutions per minute from 1 to 239.

ExampleTo find the angular velocity in radians per second of a flywheel making 97 rev-
olutions per minute, locate 90 in the left-hand column and 7 at the top of the columns; at the

intersection of the two lines, the angular velocity is read off as equal to 10.16 radians per
second.

Linear Velocity of Points on a Rotating Body.—T he linear velocityy, of any pointon a
rotating body expressed in feet per second may be found by multiplying the angular veloc-
ity of the body in radians per secong by the radius;, in feet from the center of rotation
to the point:
V= wr 2
The metric Sl units arev = meters per secondw = radians per second; = meters.

Angular Velocity in Revolutions per Minute Converted to Radians per Second

Angular Velocity in Radians per Second
R.P.M. 0 1 2 3 4 5 6 7 8 9
0 0.00 0.10 0.21 0.31 0.42 0.52 0.6: 0. 0.84 0.p4
10 1.05 1.15 1.26 1.36 1.47 15 1.6y 1.718 1.88 1.p9
20 2.09 2.20 2.30 241 2.51 2.6 2.7p 2.43 2.93 3.p4
30 3.14 3.25 3.35 3.46 3.54 3.6 3.77 3.47 3.98 4.p8
40 4.19 4.29 4.40 4.50 4.61 4.7 4.8p 4.92 5.03 5.3
50 5.24 5.34 5.44 5.55 5.69 5.7 5.8p 5.97 6.07 6.18
60 6.28 6.39 6.49 6.60 6.7q 6.8 6.9[L 7.02 712 7.p3
70 7.33 7.43 7.54 7.64] 7.79 7.8 7.96 8.6 8.17 8.p7
80 8.38 8.48 8.59 8.69 8.80 8.9 9.01 9.11 9.21 9.82
90 9.42 9.53 9.63 9.74] 9.84 9.9 10.0p 10.16 10.p6 10|37
100 10.47 10.58 10.68 10.79 10.89 11.4o 11.10 1120 1131 11.41
110 11.52 11.62 11.73 11.89 11.94 12.04 12.15 12125 12(36 12.46
120 12.57 12.67 12.78 12.84 12.9 13.49 13.19 13130 1340 13.51
130 13.61 13.72 13.82 13.9§ 14.0 14.14 14.24 14135 1445 14.56
140 14.66 14.76 14.87 14.97 15.08 15.18 15.29 15139 1550 1%.60
150 15.71 15.81 15.92 16.07 16.18 16.23 16.84 1644 1655 16.65
160 16.75 16.86 16.96 17.07 17.1y 17.28 17.38 17149 17159 171.70
170 17.80 17.91 18.01 18.17 18.2p 18.33 18.43 18J53 1864 18.74
180 18.85 18.95 19.06 19.14 19.2 19.37 19.48 19158 1969 19.79
190 19.90 20.00 20.11] 20.21 20.32 20.42 20.52 20463 20173 20.84
200 20.94 21.05 21.15] 21.24 21.3p 21.47 21.57 21168 21478 21.89
210 21.99 22.10 22.20] 22.3( 22.41 22.91 22.62 2272 2283 22.93
220 23.04 23.14 23.25] 23.34 23.4 23.56 23.67 2377 2388 23.98
230 24.09 24.19 24.29| 24.4( 24.5 24.41 24.11 24182 2492 2%.03
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Types of Pendulums

Types of Pendulums.—A compoundor physicalpendulum consists of any rigid body
suspended from a fixed horizontal axis about which the body may oscillate in a vertical
plane due to the action of gravity.

A simpleor mathematicapendulum is similar to a compound pendulum except that the
mass of the body is concentrated at a single point which is suspended from a fixed horizon
tal axis by a weightless cord. Actually, a simple pendulum cannot be constructed since itis
impossible to have either a weightless cord or a body whose mass is entirely concentrate
at one point. A good approximation, however, consists of a small, heavy bob suspended by
a light, fine wire. If these conditions are not met by the pendulum, it should be considered
as a compound pendulum.

A conicalpendulum is similar to a simple pendulum except that the weight suspended by
the cord moves at a uniform speed around the circumference of a circle in a horizontal
plane instead of oscillating back and forth in a vertical plane. The principle of the conical
pendulum is employed in the Watt fly-ball governor.

A torsional pendulum in its simplest form consists of a disk fixed to a slender rod, the
other end of which is fastened to a fixed frame. When the disc is twisted through some
angle and released, it will then oscillate back and forth about the axis of the rod because o
the torque exerted by the rod.

Four Types of Pendulum

w
Physical Pendulum Simple Pendulum

Conical Pendulum Torsional Pendulum

W = Weight of Disk
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Pendulum Calculations

Pendulum Formulas.—From the formulas that follow, the period of vibration or time
required for one complete cycle back and forth may be determined for the types of pendu-
lums shown in the accompanying diagram.

T=21TJ£ )

whereT = period in seconds for one complete cygleacceleration due to gravity = 32.17
feet per second per second (approximately);l amthe length of the pendulum in feet as
shown on the accompanying diagram.

For aphysicalorcompoungendulum,

kg
T=o2m)2 %)

wherek, = radius of gyration of the pendulum about the axis of rotation, in featjsitite
distance from the axis of rotation to the center of gravity, in feet.

The metric Sl units that can be used in the two above formulas afle= secondsg =
approximately 9.81 meters per second squared, which is the value for acceleration
due to gravity; | = the length of the pendulum in metersk, = the radius of gyration in
meters, andr = the distance from the axis of rotation to the center of gravity, in
meters.

Formulas (1pnd(2) are accurate when the angle of oscillai@mown in the diagram is
very small. FoB equal to 22 degrees, these formulas give results that are too small by 1 per
cent; for@ equal to 32 degrees, by 2 per cent.

For asimplependulum,

For aconicalpendulum, the time in seconds for one revolution is:

T=2n /'—C—cg’fip Ga) or T=o2n lr—c—;’t—q’ (3b)

For atorsionalpendulum consisting of a thin rod and a disk as shown in the figure

2 mwr2|
=g MV 4
3\ gd*G @

whereW = weight of disk in pounds;= radius of disk in feet;= length of rod in fee =
diameter of rod in feet; ar@®= modulus of elasticity in shear of the rod material in pounds
per square inch.

The formula using metric Sl units is:

2
T=38 TtMr 4|
d4G

where T = time in seconds for one complete oscillatiot\l = mass in kilograms;r =
radius in meters;| = length of rod in meters;d = diameter of rod in meters;G = mod-
ulus of elasticity in shear of the rod material in pascals (newtons per meter squared).
The same formula can be applied using millimeters, providing dimensions are
expressed in millimeters throughout, and the modulus of elasticity in megapascals
(newtons per millimeter squared).
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FRICTION

Properties of Friction

Friction is the resistance to motion that takes place when one body is moved upon
another, and is generally defined as “that force which acts between two bodies at their sur
face of contact, so as to resist their sliding on each other.” According to the conditions
under which sliding occurs, the force of frictidh,bears a certain relation to the force
between the two bodies called the normal fddc&he relation between force of friction
and normal force is given by theefficient of frictiongenerally denoted by the Greek let-
tery. Thus:

F
F=puxN and u N

A body weighing 28 pounds rests on a horizontal surface. The force required to keep itin

motion along the surface is 7 pounds. Find the coefficient of friction.

If a body is placed on an inclined plane, the friction between the body and the plane will
prevent it from sliding down the inclined surface, provided the angle of the plane with the
horizontal is not too great. There will be a certain angle, however, at which the body will
just barely be able to remain stationary, the frictional resistance being very nearly over-
come by the tendency of the body to slide down. This angle is termed the angle of repose
and the tangent of this angle equals the coefficient of friction. The angle of repose is fre-
quently denoted by the Greek letBeiThus u = tan®.

A greater force is required to start a body moving from a state of rest than to merely keep
itin motion, because thdction of restis greater than tHeiction of motion

Laws of Friction.—The laws of friction for unlubricated or dry surfaces are summarized
in the following statements.

1) For low pressures (normal force per unit area) the friction is directly proportional to
the normal force between the two surfaces. As the pressure increases, the friction does nc
rise proportionally; but when the pressure becomes abnormally high, the friction increases
at a rapid rate until seizing takes place.

2) The friction both in its total amount and its coefficient is independent of the areas in
contact, so long as the normal force remains the same. This is true for moderate pressure
only. For high pressures, this law is modified in the same way as in the first case.

3) At very low velocities the friction is independent of the velocity of rubbing. As the
velocities increase, the friction decreases.

Lubricated SurfacesFor well lubricated surfaces, the laws of friction are considerably
different from those governing dry or poorly lubricated surfaces.

1) The frictional resistance is almost independent of the pressure (normal force per unit
area) if the surfaces are flooded with oil.

2) The friction varies directly as the speed, at low pressures; but for high pressures the
friction is very great at low velocities, approaching a minimum at about two feet per second
linear velocity, and afterwards increasing approximately as the square root of the speed.

3) For well lubricated surfaces the frictional resistance depends, to a very great extent, or
the temperature, partly because of the change in the viscosity of the oil and partly because
for a journal bearing, the diameter of the bearing increases with the rise of temperature
more rapidly than the diameter of the shaft, thus relieving the bearing of side pressure.

4) If the bearing surfaces are flooded with oil, the friction is almost independent of the
nature of the material of the surfaces in contact. As the lubrication becomes less ample, th
coefficient of friction becomes more dependent upon the material of the surfaces.
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Influence of Friction on the Efficiency of Small Machine Elements.—Friction

between machine parts lowers the efficiency of a machine. Average values of the effi-

ciency, in per cent, of the most common machine elements when carefully made are ordi-
nary bearings, 95 to 98; roller bearings, 98; ball bearings, 99; spur gears with cut teeth,
including bearings, 99; bevel gears with cut teeth, including bearings, 98; belting, from 96

to 98; high-class silent power transmission chain, 97 to 99; roller chains, 95 to 97.

Coefficients of Friction.—Tables land2 provide representative values of static friction

for various combinations of materials with dry (clean, unlubricated) and lubricated sur-
faces. The values for static or breakaway friction shown in these tables will generally be
higher than the subsequent or sliding friction. Typically, the steel-on-steel static coeffi-
cient of 0.8 unlubricated will drop to 0.4 when sliding has been initiated; with oil lubrica-
tion, the value will drop from 0.16 to 0.03.

Many factors affect friction, and even slight deviations from normal or test conditions
can produce wide variations. Accordingly, when using friction coefficients in design cal-
culations, due allowance or factors of safety should be considered, and in critical applica-
tions, specific tests conducted to provide specific coefficients for material, geometry,
and/or lubricant combinations.

Rolling Friction.— When a body rolls on a surface, the force resisting the motion is
termedolling friction orrolling resistancelLetW = total weight of rolling body or load on
wheel, in pounds; = radius of wheel, in inchesz coefficient of rolling resistance, in
inches. Then: resistance to rolling, in poundg&x() +r.

The coefficient of rolling resistance varies with the conditions. For wood on wood it may
be assumed as 0.06 inch; for iron on iron, 0.02 inch; iron on granite, 0.085 inch; iron on
asphalt, 0.15 inch; and iron on wood, 0.22 inch.

The coefficient of rolling resistancg,is in inches and is not the same as the sliding or
static coefficient of friction given ifiables Jand2, which is a dimensionless ratio between
frictional resistance and normal load. Various investigators are not in close agreement on
the true values for these coefficients and the foregoing values should only be used for the
approximate calculation of rolling resistance.

Table 1. Coefficients of Static Friction for Steel on Various Materials

Coefficient of Frictionp

Material Clean Lubricated
Steel 0.8 0.16
Copper-lead alloy 0.22
Phosphor-bronze 0.35
Aluminum-bronze 0.45
Brass 0.35 0.19
Cast iron 0.4 0.21
Bronze 0.16
Sintered bronze 0.13
Hard carbon 0.14 0.11-0.14
Graphite 0.1 0.1
Tungsten carbide 0.4-0.6 0.1-0.2
Plexiglas 0.4-0.5 0.4-0.5
Polystyrene 0.3-0.35 0.3-0.35
Polythene 0.2 0.2
Teflon 0.04 0.04
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Tables 1and2 used with permission frofhe Friction and Lubrication of Solid¥ol. 1, by
Bowden and Tabor, Clarendon Press, Oxford, 1950.

Table 2. Coefficients of Static Friction for Various Materials Combinations

Coefficient of Frictionp

Material Combination Clean Lubricated
Aluminum-aluminum 1.35 0.30
Cadmium-cadmium 0.5 0.05
Chromium-chromium 0.41 0.34
Copper-copper 1.0 0.08
Iron-iron 1.0 0.15-0.20
Magnesium-magnesium 0.6 0.08
Nickel-nickel 0.7 0.28
Platinum-platinum 1.2 0.25
Silver-silver 1.4 0.55
Zinc-zinc 0.6 0.04
Glass-glass 0.9-1.0 0.1-0.6
Glass-metal 0.5-0.7 0.2-0.3
Diamond-diamond 0.1 0.05-0.1
Diamond-metal 0.1-0.15 0.1
Sapphire-sapphire 0.2 0.2
Hard carbon on carbon 0.16 0.12-0.14
Graphite-graphite (in vacuum) 0.5-0.8
Graphite-graphite 0.1 0.1
Tungsten carbide-tungsten carbide 0.2-0.25 0.12
Plexiglas-plexiglas 0.8 0.8
Polystyrene-polystyrene 0.5 0.5
Teflon-Teflon 0.04 0.04
Nylon-nylon 0.15-0.25
Solids on rubber 1-4
Wood on wood (clean) 0.25-0.5
Wood on wood (wet) 0.2
Wood on metals (clean) 0.2-0.6
Wood on metals (wet) 0.2
Brick on wood 0.6
Leather on wood 0.3-0.4
Leather on metal (clean) 0.6
Leather on metal (wet) 0.4
Leather on metal (greasy) 0.2
Brake material on cast iron 0.4
Brake material on cast iron (wet) 0.2
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