Flexible belt drives are used in industrial power transmission applications, especially when the speeds of the driver and driven shafts must be different or when shafts must be widely separated. The trend toward higher speed prime movers and the need to achieve a slower, useful driven speed are additional factors favoring the use of belts. Belts have numerous advantages over other means of power transmission; these advantages include overall economy, cleanliness, no need for lubrication, lower maintenance costs, easy installation, dampening of shock loads, and the abilities to be used for clutching and variable speed power transmission between widely spaced shafts.

Power Transmitted By Belts. With belt drives, the force that produces work acts on the rim of a pulley or sheave and causes it to rotate. Since a belt on a drive must be tight enough to prevent slip, there is a belt pull on both sides of a driven wheel. When a drive is stationary or operating with no power transmitted, the pulls on both sides of the driven wheel are equal. When the drive is transmitting power, however, the pulls are not the same. There is a tight side tension T_T and a slack side tension, T_S . The difference between these two pulls $(T_T - T_S)$ is called *effective pull* or *net pull*. This effective pull is applied at the rim of the pulley and is the force that produces work.

Net pull equals horsepower (HP) \times 33,000 ÷ belt speed (fpm). Belt speed in fpm can be set by changing the pulley, sprocket, or sheave diameter. The shaft speeds remain the same. Belt speed is directly related to pulley diameter. Double the diameter and the total belt pull is cut in half, reducing the load on the shafts and bearings.

A belt experiences three types of tension as it rotates around a pulley: working tension (tight side – slack side), bending tension, and centrifugal tension.

The *tension ratio* (R) equals tight side divided by slack side tension (measured in pounds). The larger R is, the closer a V-belt is to slipping—the belt is too loose. (Synchronous belts do not slip, because they depend on the tooth grip principle.)

In addition to working tension (tight side – slack side), two other tensions are developed in a belt when it is operating on a drive. Bending tension T_B occurs when the belt bends around the pulley. One part of the belt is in tension and the other is in compression, so compressive stresses also occur. The amount of tension depends on the belt's construction and the pulley diameter. Centrifugal tension (T_C) occurs as the belt rotates around the drive and is calculated by $T_C = MV^2$, where T_C is centrifugal tension in pounds, M is a constant dependent on the belt's weight, and V is the belt velocity in feet per minute. Neither the bending nor centrifugal tensions are imposed on the pulley, shaft, or bearing—only on the belt.

Combining these three types of tension results in *peak tension* which is important in determining the degree of performance or belt life: $T_{peak} = T_T + T_B + T_C$.

Measuring the Effective Length.—The effective length of a V-belt is determined by placing the belt on a measuring device having two equal diameter sheaves with standard groove dimensions. The shaft of one of the sheaves is fixed. A specified measuring tension is applied to the housing for the shaft of the other sheave, moving it along a graduated scale. The belt is rotated around the sheaves at least two revolutions of the belt to seat it properly in the sheave grooves and to divide the total tension equally between the two strands of the belt.

The effective length of the belt is obtained by adding the effective (outside) circumference of one of the measuring sheaves to twice the center distance. Synchronous belts are measured in a similar manner.

The following sections cover common belts used in industrial applications for power transmission and specified in Rubber Manufacturers Association (RMA), Mechanical Power Transmission Association (MPTA), and The Rubber Association of Canada (RAC) standards. The information presented does not apply to automotive or agricultural drives, for which other standards exist. The belts covered in this section are Narrow, Classical, Double, and Light-Duty V-Belts, V-Ribbed Belts, Variable-Speed Belts, 60 deg V-Belts, and Synchronous (Timing) Belts.

Narrow V-Belts ANSI/RMA IP-22.—Narrow V-belts serve the same applications as multiple, classical V-belts, but allow for a lighter, more compact drive. Three basic cross sections—3V and 3VX, 5V and 5VX, and 8V—are provided, as shown in Fig. 1. The 3VX and 5VX are molded, notched V-belts that have greater power capacity than conventional belts. Narrow V-belts are specified by cross section and effective length and have top widths ranging from ³/₃ to 1 in.

Narrow V-belts usually provide substantial weight and space savings over classical belts. Some narrow belts can transmit up to three times the horsepower of conventional belts in the same drive space, or the same horsepower in one-third to one-half the space. These belts are designed to operate in multiples and are also available in the joined configuration.

Belt Cross Sections: Nominal dimensions of the three cross sections are given in Fig. 1.

Belt Size Designation: Narrow V-belt sizes are identified by a standard belt number. The first figure of this number followed by the letter V denotes the belt cross section. An X following the V indicates a notched cross section. The remaining figures show the effective belt length in tenths of an inch. For example, the number 5VX1400 designates a notched V-belt with a 5V cross section and an effective length of 140.0 in. Standard effective length of narrow V-belts are shown in Table 1.

Fig. 1. Nominal Narrow V-Belt Dimensions

	Sta O	ndard Effec utside Leng	tive th	Permissible Deviation	Permissible Deviation Matching		Sta O	ndard Effec utside Leng	tive th	Permissible Deviation	Matching
Length	(Cross Sectio	n	from Standard	Limits	Length	0	Cross Sectio	n	from Standard	Limits
Designation ^a	3V	5V	8V	Length	One Set Designation ^a		3V	5V	8V	Length	One Set
250	25.0			±0.3	0.15	1060	106.0	106.0	106.0	±0.6	0.30
265	26.5			±0.3	0.15	1120	112.0	112.0	112.0	±0.6	0.30
280	28.0			±0.3	0.15	1180	118.0	118.0	118.0	±0.6	0.30
300	30.0			±0.3	0.15	1250	125.0	125.0	125.0	±0.6	0.30
315	31.5			±0.3	0.15	1320	132.0	132.0	132.0	±0.6	0.30
335	33.5			±0.3	0.15	1400	140.0	140.0	140.0	±0.6	0.30
355	35.5			±0.3	0.15	1500		150.0	150.0	±0.8	0.30
375	37.5			±0.3	0.15	1600		160.0	160.0	±0.8	0.45
400	40.0			±0.3	0.15	1700		170.0	170.0	±0.8	0.45
425	42.5			±0.3	0.15	1800		180.0	180.0	±0.8	0.45
450	45.0			±0.3	0.15	1900		190.0	190.0	±0.8	0.45
475	47.5			±0.3	0.15	2000		200.0	200.0	±0.8	0.45
500	50.0	50.0		±0.3	0.15	2120		212.0	212.0	±0.8	0.45
530	53.0	53.0		±0.4	0.15	2240		224.0	224.0	±0.8	0.45
560	56.0	56.0		±0.4	0.15	2360		236.0	236.0	±0.8	0.45
600	60.0	60.0		±0.4	0.15	2500		250.0	250.0	±0.8	0.45
630	63.0	63.0		±0.4	0.15	2650		265.0	265.0	±0.8	0.60
670	67.0	67.0		±0.4	0.30	2800		280.0	280.0	±0.8	0.60
710	71.0	71.0		±0.4	0.30	3000		300.0	300.0	±0.8	0.60
750	75.0	75.0		±0.4	0.30	3150		315.0	315.0	±1.0	0.60
800	80.0	80.0		±0.4	0.30	3350		335.0	335.0	±1.0	0.60
850	85.0	85.0		±0.5	0.30	3550		355.0	355.0	±1.0	0.60
900	90.0	90.0		±0.5	0.30	3750			375.0	±1.0	0.60
950	95.0	95.0		±0.5	0.30	4000			400.0	±1.0	0.75
1000	100.0	100.0	100.0	±0.5	0.30	4250			425.0	±1.2	0.75

 Table 1. Narrow V-Belt Standard Effective Lengths ANSI/RMA IP-22 (1983)

^aTo specify belt size, use the Standard Length Designation prefixed by the cross section, for example, 5 V850.

All dimensions in inches.

2374

 Table 2. Narrow V-Belt Standard Sheave and Groove Dimensions ANSI/RMA IP-22 (1983)

^a Summation of the deviations from S_g for all grooves in any one sheave should not exceed ± 0.031 in. The variations in pitch diameter between the grooves in any one sheave must be within the following limits: Up through 19.9 in. outside diameter and up through 6 grooves—0.010 in. (add 0.0005 in. for each additional groove), 20.0 in. and over on outside diameter and up through 10 grooves—0.015 in. (add 0.0005 in. for each additional groove). This variation can be obtained by measuring the distance across two measuring balls or rods placed in the grooves diameter. Comparing this "diameter over balls or rods" measurement between grooves will give the variation in pitch diameter.

					Design Factors							
Cross Section	Deep Groove Outside Diameter	Groove Angle, α, ±0.25 deg	b _g ±0.005	b _e (Ref)	h _g (Min)	R _B (Min)	d_B ±0.0005	$\frac{S_g^a}{\pm 0.015}$	S _e	Min Recommended OD	2a	$2h_e$
	Up through 3.71	36	0.421			0.070						
	Over 3.71 up to and including 6.22	38	0.425			0.073						
3V	Over 6.22 up to and including 12.22	40	0.429	0.350	0.449	0.076	0.3438	0.500	0.375	2.87	0.050	0.218
	Over 12.22	42	0.434			0.078			(+0.094, -0.031)			
	Up through 10.31	38	0.710			0.168						
5V	Over 10.31 up to and including 16.32	40	0.716	0.600	0.750	0.172	0.5938	0.812	0.562 (+0.125,	7.42	0.100	0.320
	Over 16.32	42	0.723			0.175			- 0.047)			
	Up through 16.51	38	1.180			0.312						
8V	Over 16.51 up to and including 22.92	40	1.191	1.000	1.252	0.316	1.0000	1.312	0.844 (+0.250,	13.02	0.200	0.524
	Over 22.92	42	1.201			0.321			-0.062)			

Table 2. (Continued) Narrow V-Belt Standard Sheave and Groove Dimensions ANSI/RMA IP-22 (1983)

^a Deep groove sheaves are intended for drives with belt offset such as quarter-turn or vertical shaft drives. They may also be necessary where oscillations in the center distance may occur. Joined belts will not operate in deep groove sheaves.

	Other Sheave Tolerances									
Outside Diameter	Radial Runout ^a	Axial Runout ^a								
Up through 8.0 in. outside diameter ± 0.020 in.	Up through 10.0 in. outside diameter 0.010 in.	Up through 5.0 in. outside diameter 0.005 in.								
For each additional inch of outside diameter add ± 0.0025 in.	For each additional inch of outside diameter add 0.0005 in.	For each additional inch of outside diameter add 0.001 in.								

^aTotal indicator reading.

All dimensions in inches.

Sheave Dimensions: Groove angles and dimensions for sheaves and face widths of sheaves for multiple belt drives are given in Table 2, along with various tolerance values. Standard sheave outside diameters are given in Table 3.

	3V			5V		8V			
Nom	Min	Max	Nom	Min	Max	Nom	Min	Max	
2.65	2.638	2.680	7.10	7.087	7.200	12.50	12.402	12.600	
2.80	2.795	2.840	7.50	7.480	7.600	13.20	13.189	13.400	
3.00	2.953	3.000	8.00	7.874	8.000	14.00	13.976	14.200	
3.15	3.150	3.200	8.50	8.346	8.480	15.00	14.764	15.000	
3.35	3.346	3.400	9.00	8.819	8.960	16.00	15.748	16.000	
3.55	3.543	3.600	9.25	9.291	9.440	17.00	16.732	17.000	
3.65	3.642	3.700	9.75	9.567	9.720	18.00	17.717	18.000	
4.00	3.937	4.000	10.00	9.843	10.000	19.00	18.701	19.000	
4.12	4.055	4.120	10.30	10.157	10.320	20.00	19.685	20.000	
4.50	4.409	4.480	10.60	10.433	10.600	21.20	20.866	21.200	
4.75	4.646	4.720	10.90	10.709	10.880	22.40	22.047	22.400	
5.00	4.921	5.000	11.20	11.024	11.200	23.60	23.622	24.000	
5.30	5.197	5.280	11.80	11.811	12.000	24.80	24.803	25.200	
5.60	5.512	5.600	12.50	12.402	12.600	30.00	29.528	30.000	
6.00	5.906	6.000	13.20	13.189	13.400	31.50	31.496	32.000	
6.30	6.299	6.400	14.00	13.976	14.200	35.50	35.433	36.000	
6.50	6.496	6.600	15.00	14.764	15.000	40.00	39.370	40.000	
6.90	6.890	7.000	16.00	15.748	16.000	44.50	44.094	44.800	
8.00	7.874	8.000	18.70	18.701	19.000	50.00	49.213	50.000	
10.00	9.843	10.000	20.00	19.685	20.000	52.00	51.969	52.800	
10.60	10.433	10.600	21.20	20.866	21.200	63.00	62.992	64.000	
12.50	12.402	12.600	23.60	23.622	24.000	71.00	70.866	72.000	
14.00	13.976	14.200	25.00	24.803	25.200	79.00	78.740	80.000	
16.00	15.748	16.000	28.00	27.953	28.400	99.00	98.425	100.000	
19.00	18.701	19.000	31.50	31.496	32.000				
20.00	19.685	20.000	37.50	37.402	38.000				
25.00	24.803	25.200	40.00	39.370	40.000				
31.50	31.496	32.000	44.50	44.094	44.800				
33.50	33.465	34.000	50.00	49.213	50.000				
			63.00	62.992	64.000				
			71.00	70.866	72.000				

Table 3. Standard Sheave Outside Diameters ANSI/RMA IP-22, 1983

All dimensions in inches. The nominal diameters were selected from R40 and R80 preferred numbers (see page 19).

Cross Section Selection: The chart (Fig. 2, on page 2379) is a guide to the V-belt cross section to use for any combination of design horsepower and speed of the faster shaft. When the intersection of the design horsepower and speed of the faster shaft falls near a line between two areas on the chart, it is advisable to investigate the possibilities in both areas. Special circumstances (such as space limitations) may lead to a choice of belt cross section different from that indicated in the chart.

Horsepower Ratings: The horsepower ratings of narrow V-belts can be calculated using the following formula:

$$HP = d_p r[K_1 - K_2/d_p - K_3(d_p r)^2 - K_4 \log(d_p r)] + K_{SR} r$$

where d_p = the pitch diameter of the small sheave, in.; r = rpm of the faster shaft divided by 1000; K_{SR} , speed ratio correction factor, and K_1 , K_2 , K_3 , and K_4 , cross section parameters, are listed in the accompanying tables. This formula gives the basic horsepower rating, corrected for the speed ratio. To obtain the horsepower per belt for an arc of contact other than 180° and for belts shorter or longer than average length, multiply the horsepower obtained from this formula by the length correction factor (Table 4) and the arc of contact correction factor (Table 5).

Standard Length	Cross Section		Standard Length	(n		
Designation	3V	5V	8V	Designation	3V	5V	8V
250	0.83			1180	1.12	0.99	0.89
265	0.84			1250	1.13	1.00	0.90
280	0.85			1320	1.14	1.01	0.91
300	0.86			1400	1.15	1.02	0.92
315	0.87			1500		1.03	0.93
335	0.88			1600		1.04	0.94
355	0.89			1700		1.05	0.94
375	0.90			1800		1.06	0.95
400	0.92			1900		1.07	0.96
425	0.93			2000		1.08	0.97
450	0.94			2120		1.09	0.98
475	0.95			2240		1.09	0.98
500	0.96	0.85		2360		1.10	0.99
530	0.97	0.86		2500		1.11	1.00
560	0.98	0.87		2650		1.12	1.01
600	0.99	0.88		2800		1.13	1.02
630	1.00	0.89		3000		1.14	1.03
670	1.01	0.90		3150		1.15	1.03
710	1.02	0.91		3350		1.16	1.04
750	1.03	0.92		3550		1.17	1.05
800	1.04	0.93		3750			1.06
850	1.06	0.94		4000			1.07
900	1.07	0.95		4250			1.08
950	1.08	0.96		4500			1.09
1000	1.09	0.96	0.87	4750			1.09
1060	1.10	0.97	0.88	5000			1.10
1120	1.11	0.98	0.88				

Table 4. Length Correction Factors

Table 5. Arc of Contact Correction Factors

$\frac{D_e-d_e}{C}$	Arc of Contact, θ, on Small Sheave (deg)	Correction Factor	$\frac{D_e-d_e}{C}$	Arc of Contact, θ, on Small Sheave (deg)	Correction Factor
0.00	180	1.00	0.80	133	0.87
0.10	174	0.99	0.90	127	0.85
0.20	169	0.97	1.00	120	0.82
0.30	163	0.96	1.10	113	0.80
0.40	157	0.94	1.20	106	0.77
0.50	151	0.93	1.30	99	0.73
0.60	145	0.91	1.40	91	0.70
0.70	139	0.89	1.50	83	0.65

Speed Ratio Correction Factors

	K _{SR}			K	SR
	Cross	Section		Cross	Section
Speed Ratio ^a Range	3VX	5VX	Speed Ratio ^a Range	5V	8V
1.00-1.01	0.0000	0.0000	1.00-1.01	0.0000	0.0000
1.02-1.03	0.0157	0.0801	1.02-1.05	0.0963	0.4690
1.04-1.06	0.0315	0.1600	1.06-1.11	0.2623	1.2780
1.07-1.09	0.0471	0.2398	1.12-1.18	0.4572	2.2276
1.10-1.13	0.0629	0.3201	1.19-1.26	0.6223	3.0321
1.14-1.18	0.0786	0.4001	1.27-1.38	0.7542	3.6747
1.19-1.25	0.0944	0.4804	1.39-1.57	0.8833	4.3038
1.26-1.35	0.1101	0.5603	1.58-1.94	0.9941	4.8438
1.36-1.57	0.1259	0.6405	1.95-3.38	1.0830	5.2767
Over 1.57	0.1416	0.7202	Over 3.38	1.1471	5.5892

 ${}^{a}D_{p}/d_{p}$, where $D_{p}(d_{p})$ is the pitch diameter of the large (small) sheave.

Cross Section	<i>K</i> ₁	<i>K</i> ₂	<i>K</i> ₃	K_4
3VX	1.1691	1.5295	1.5229×10^{-4}	0.15960
5VX	3.3038	7.7810	3.6432×10^{-4}	0.43343
5V	3.3140	10.123	5.8758×10^{-4}	0.46527
8V	8.6628	49.323	1.5804×10^{-3}	1.1669

Cross Section Correction Factors

Number of Belts: The number of belts required for an application is obtained by dividing the design horsepower by the corrected horsepower rating for one belt.

Minimum Sheave Size: The recommended minimum sheave size depends on the rpm of the faster shaft. Minimum sheave diameters for each belt cross-section are listed in Table 3.

Fig. 2. Selection of Narrow V-Belt Cross Section

Arc of contact on the small sheave may be determined by the formulas.

Exact formula:

Arc of Contact (deg) =
$$2\cos^{-1}\left(\frac{D_e - d_e}{2C}\right)$$

Arc of Contact (deg) = $180 - \frac{(D_e - d_e)60}{C}$

Approximate formula:

where: $D_{e} =$ Effective diameter of large sheave, inch

 $d_e =$ Effective diameter of small sheave, inch

C = Center distance, inch

Classical V-Belts ANSI/RMA IP-20.—Classical V-belts are most commonly used in heavy-duty applications and include these standard cross sections: A, AX, B, BX, C, CX, D, and DX (Fig. 3, page 2383). Top widths range from $\frac{1}{2}$ to $\frac{1}{4}$ in. and are specified by cross section and nominal length. Classical belts can be teamed in multiples of two or

more. These multiple drives can transmit up to several hundred horsepower continuously and absorb reasonable shock loads.

Belt Cross Sections: Nominal dimensions of the four cross sections are given in Fig. 3.

Belt Size Designation: Classical V-belt sizes are identified by a standard belt number consisting of a letter-numeral combination. The letter identifies the cross section; the numeral identifies the length as shown in Table 6. For example, A60 indicates an A cross section and a standard length designation of 60. An X following the section letter designation indicates a molded notch cross section, for example, AX60.

		Standard Da	tum lengths	Permissible		
Standard Length		Cross S	Section		Deviations from Std	Matching Limits for
Designationa	A, AX	B, BX	X C, CX D		Datum Length	One Set
26	27.3				+0.6, -0.6	0.15
31	32.3				+0.6, -0.6	0.15
35	36.3	36.8			+0.6, -0.6	0.15
38	39.3	39.8			+0.7, -0.7	0.15
42	43.3	43.8			+0.7, -0.7	0.15
46	47.3	47.8			+0.7, -0.7	0.15
51	52.3	52.8	53.9		+0.7, -0.7	0.15
55	56.3	56.8			+0.7, -0.7	0.15
60	61.3	61.8	62.9		+0.7, -0.7	0.15
68	69.3	69.8	70.9		+0.7, -0.7	0.30
75	75.3	76.8	77.9		+0.7, -0.7	0.30
80	81.3				+0.7, -0.7	0.30
81		82.8	83.9		+0.7, -0.7	0.30
85	86.3	86.8	87.9		+0.7, -0.7	0.30
90	91.3	91.8	92.9		+0.8, -0.8	0.30
96	97.3		98.9		+0.8, -0.8	0.30
97		98.8			+0.8, -0.8	0.30
105	106.3	106.8	107.9		+0.8, -0.8	0.30
112	113.3	113.8	114.9		+0.8, -0.8	0.30
120	121.3	121.8	122.9	123.3	+0.8, -0.8	0.30
128	129.3	129.8	130.9	131.3	+0.8, -0.8	0.30
144		145.8	146.9	147.3	+0.8, -0.8	0.30
158		159.8	160.9	161.3	+1.0, -1.0	0.45
173		174.8	175.9	176.3	+1.0, -1.0	0.45
180		181.8	182.9	183.3	+1.0, -1.0	0.45
195		196.8	197.9	198.3	+1.1, -1.1	0.45
210		211.8	212.9	213.3	+1.1, -1.1	0.45
240		240.3	240.9	240.8	+1.3, -1.3	0.45
270		270.3	270.9	270.8	+1.6, -1.6	0.60
300		300.3	300.0	300.8	+1.6, -1.6	0.60
330			330.9	330.8	+2.0, -2.0	0.60
360			380.9	360.8	+2.0, -2.0	0.60
540				540.8	+3.3, -3.3	0.90
390			390.9	390.8	+2.0, -2.0	0.75
420			420.9	420.8	+3.3, -3.3	0.75
480				480.8	+3.3, -3.3	0.75
600				600.8	+3.3, -3.3	0.90
660				660.8	+3.3, -3.3	0.90

Table 6. Classical V-Belt Standard Datum Length ANSI/RMA IP-20, 1988

^a To specify belt size use the Standard Length Designation prefixed by the letter indicating the cross section, e.g., B90.

All dimensions in inches.

	Face Width of Standard and Deep Groove Sheaves $= S_g (N_g - 1) + 2S_e$, where $N_g =$ number of grooves													
				5	Standard Groove Dim	ensions							Design Fact	ors
	Cross Section	Datum ^a Diameter Range	α Groove Angle ±0.33°	b _d Ref	b_g	h _g Min	$2h_d$	R _B Min	$d_B \pm 0.0005$	Sg ^b ±0.025	S	le	Min Recom. Datum Diameter	$2a_p$
	A, AX	Through 5.4 Over 5.4	34 38	0.418	$\begin{array}{c} 0.494 \\ 0.504 \end{array} \pm 0.005 \end{array}$	0.460	0.250	0.148 0.149	0.4375 (7/16)	0.625	0.375	+ 0.090 - 0.062	A 3.0 AX 2.2	0
	B, BX	Through 7.0 Over 7.0	34 38	0.530	$\begin{array}{c} 0.637\\ 0.650 \end{array} \pm 0.006 \end{array}$	0.550	0.350	0.189 0.190	0.5625 (%)	0.750	0.500	+ 0.120 - 0.065	B 5.4 BX 4.0	0
nation	A, AX Belt	Through 7.4 ^c Over 7.4	34 38	0.5084	0.612 0.625 ±0.006	0.612	0.634 ^e 0.602 ^e	0.230 0.226	0.5625	0.750	0.500	+0.120	A 3.6° AX 2.8	0.37
Combi	B, BX Belt	Through 7.4 ^c Over 7.4	34 38	0.508	0.612 0.625 ±0.006	0.012	0.333° 0.334°	0.230 0.226	(% ₁₆)	0.750	0.500	-0.065	B 5.7° BX 4.3	-0.01
	C, CX	Through 7.99 Over 7.99 to and incl. 12.0 Over 12.0	34 36 38	0.757	0.879 0.887 ±0.007 0.895	0.750	0.400	0.274 0.276 0.277	0.7812 (²⁵ ₃₂)	1.000	0.688	+0.160 -0.070	C 9.0 CX 6.8	0
	D	Through 12.99 Over 12.99 to and incl. 17.0 Over 17.0	34 36 38	1.076	1.259 1.271 ± 0.008 1.283	1.020	0.600	0.410 0.410 0.411	1.1250 (1½)	1.438	0.875	+ 0.220 - 0.080	13.0	0

				Deep Groove Dimer	nsionsf							Design Fact	ors
Cross Section	Datum ^a Dia. Range	α Groove Angle $\pm 0.33^{\circ}$	b _g Ref	b_g	h_g Min	2h _d Ref	R _B Min	$d_B \pm 0.0005$	$\frac{S_g^{b}}{\pm 0.025}$		S _e	Min Rec. Datum Diameter	$2a_p$
B BX	Through 7.0	34	0.530	0.747 + 0.006	0.730	0.710	0.007	0.5625	0.875	0 562	+ 0.120	B 5.4	0.36
2, 21	Over 7.0	38	0.550	0.774	0.750	0.710	0.008	(%)	0.075	0.002	- 0.065	BX 4.0	0.50
	Through 7.99	34		1.066			- 0.035						
C, CX	Over 7.99 to and incl. 12.0	36	0.757	1.085 ± 0.007	1.055	1.010	- 0.032	0.7812 (²⁵ / ₃₂)	1.250	0.812	+ 0.160 - 0.070	C 9.0 CX 6.8	0.61
	Over 12.0	38		1.105			-0.031						
	Through 12.99	34		1.513			-0.010						
D	Over 12.99 to and incl. 17.0	36	1.076	1.514 ±0.008	1.435	1.430	-0.009	1.1250 (1½)	1.750	1.062	+0.220 -0.080	13.0	0.83
	Over 17.0	38		1.569			-0.008						

Table 7. (Continued) Classical V-Belt Sheave and Groove Dimensions ANSI/RMA IP-20, 1988

^a The A/AX, B/BX combination groove should be used when deep grooves are required for A or AX belts.

^bSummation of the deviations from S_g for all grooves in any one sheave should not exceed ±0.050 in. The variation in datum diameter between the grooves in any one sheave must be within the following limits: Through 19.9 in. outside diameter and through 6 grooves: 0.010 in. (add 0.0005 in. for each additional groove). 20.0 in. and over on outside diameter and through 10 grooves: 0.015 in. (add 0.0005 in. for each additional groove). This variation can be obtained by measuring the distance across two measuring balls or rods placed diametrically opposite each other in a groove. Comparing this "diameter over balls or rods" measurement between grooves will give the variation in datum diameter.

^c Diameters shown for combination grooves are outside diameters. A specific datum diameter does not exist for either A or B belts in combination grooves.

^d The b_d value shown for combination grooves is the "constant width" point, but does not represent a datum width for either A or B belts ($2h_d = 0.340$ ref).

 $e^{2}h_{d}$ values for combination grooves are calculated based on b_{d} for A and B grooves.

^fDeep groove sheaves are intended for drives with belt offset such as quarter-turn or vertical shaft drives. Joined belts will not operate in deep groove sheaves. Also, A and AX joined belts will not operate in A/AX and B/BX combination grooves.

Other Sheave Tolerances									
Outside Diameter	Radial Runout ^a	Axial Runout ^a							
Through 8.0 in. outside diameter ± 0.020 in. For each additional inch of outside diameter add ± 0.005 in.	Through 10.0 in. outside diameter 0.010 in. For each additional inch of outside diameter add 0.0005 in.	Through 5.0 in. outside diameter 0.005 in. For each additional inch of outside diameter add 0.001 in.							

^aTotal indicator readings.

A, AX & B, BX Combin. All dimensions in inches.

Sheave Dimensions: Groove angles and dimensions for sheaves and the face widths of sheaves for multiple belt drives are given in Table 7, along with various tolerance values.

Fig. 3. Classical V-Belt Cross Sections

Cross Section Selection: Use the chart (Fig. 4) as a guide to the Classical V-belt cross section for any combination of design horsepower and speed of the faster shaft. When the intersection of the design horsepower and speed of the faster shaft falls near a line between two areas on the chart, the possibilities in both areas should be investigated. Special circumstances (such as space limitations) may lead to a choice of belt cross section different from that indicated in the chart.

Horsepower Ratings: The horsepower rating formulas for classical V-belts are:

$$\mathbf{A:HP} = d_p r \left[1.004 - \frac{1.652}{d_p} - 1.547 \times 10^{-4} (d_p r)^2 - 0.2126 \log(d_p r) \right] \\ + 1.652 r \left(1 - \frac{1}{K_{SR}} \right)$$

AX:HP =
$$d_p r \left[1.462 - \frac{2.239}{d_p} - 2.198 \times 10^{-4} (d_p r)^2 - 0.4238 \log(d_p r) \right] + 2.239 r \left(1 - \frac{1}{K_{SR}} \right)$$

B:HP =
$$d_p r \Big[1.769 - \frac{4.372}{d_p} - 3.081 \times 10^{-4} (d_p r)^2 - 0.3658 \log(d_p r) \Big] + 4.372 r \Big(1 - \frac{1}{K_{SR}} \Big)$$

$$\begin{aligned} \mathbf{BX:} \mathrm{HP} &= d_p r \Big[2.051 - \frac{3.532}{d_p} - 3.097 \times 10^{-4} (d_p r)^2 - 0.5735 \log(d_p r) \Big] \\ &\quad + 3.532 r \Big(1 - \frac{1}{K_{SR}} \Big) \\ \mathbf{C:} \mathrm{HP} &= d_p r \Big[3.325 - \frac{12.07}{d_p} - 5.828 \times 10^{-4} (d_p r)^2 - 0.6886 \log(d_p r) \Big] \\ &\quad + 12.07 r \Big(1 - \frac{1}{K_{SR}} \Big) \\ \mathbf{CX:} \mathrm{HP} &= d_p r \Big[3.272 - \frac{6.655}{d_p} - 5.298 \times 10^{-4} (d_p r)^2 - 0.8637 \log(d_p r) \Big] \\ &\quad + 6.655 r \Big(1 - \frac{1}{K_{SR}} \Big) \\ \mathbf{D:} \mathrm{HP} &= d_p r \Big[7.160 - \frac{43.21}{d_p} - 1.384 \times 10^{-3} (d_p r)^2 - 1.454 \log(d_p r) \Big] \end{aligned}$$

$$+43.21r\left(1-\frac{1}{K_{SR}}\right)$$

Fig. 4. Selection of Classic V-Belt Cross Sections

In these equations, d_p = pitch diameter of small sheave, in.; r = rpm of the faster shaft divided by 1000; K_{SR} = speed ratio factor given in the accompanying table. These formulas give the basic horsepower rating, corrected for the speed ratio. To obtain the horsepower per belt for an arc of contact other than 180 degrees and for belts shorter or longer than average length, multiply the horsepower obtained from these formulas by the length correction factor (Table 8) and the arc of contact correction factor (Table 9).

Std. Length				
Designation	A, AX	B, BX	C, CX	D
26	0.78			
31	0.82			
35	0.85	0.80		
38	0.87	0.82		
42	0.89	0.84		
46	0.91	0.86		
51	0.93	0.88	0.80	
55	0.95	0.89		
60	0.97	0.91	0.83	
68	1.00	0.94	0.85	
75	1.02	0.96	0.87	
80	1.04			
81		0.98	0.89	
85	1.05	0.99	0.90	
90	1.07	1.00	0.91	
96	1.08		0.92	
97		1.02		
105	1.10	1.03	0.94	
112	1.12	1.05	0.95	
120	1.13	1.06	0.96	0.88
128	1.15	1.08	0.98	0.89
144		1.10	1.00	0.91
158		1.12	1.02	0.93
173		1.14	1.04	0.94
180		1.15	1.05	0.95
195		1.17	1.08	0.96
210		1.18	1.07	0.98
240		1.22	1.10	1.00
270		1.24	1.13	1.02
300		1.27	1.15	1.04
330			1.17	1.06
360			1.18	1.07
390			1.20	1.09
420			1.21	1.10
480				1.13
540				1.15
600				1.17
660				1.18

Table 8. Length Correction Factors

Table 9. Arc of Contact Correction Factors

$\frac{D_d-d_d}{C}$	Arc of Contact,	Correction	on Factor	$D_d - d_d$	Arc of Contact,	Correction Factor		
	θ, Small Sheave (deg)	V-V	V-Flat ^a	$\frac{a}{C}$	θ Small Sheave (deg)	V-V	V-Flat ^a	
0.00	180	1.00	0.75	0.80	133	0.87	0.85	
0.10	174	0.99	0.76	0.90	127	0.85	0.85	
0.20	169	0.97	0.78	1.00	120	0.82	0.82	
0.30	163	0.96	0.79	1.10	113	0.80	0.80	
0.40	157	0.94	0.80	1.20	106	0.77	0.77	
0.50	151	0.93	0.81	1.30	99	0.73	0.73	
0.60	145	0.91	0.83	1.40	91	0.70	0.70	
0.70	139	0.89	0.84	1.50	83	0.65	0.65	

^aA V-flat drive is one using a small sheave and a large diameter flat pulley.

Speed Ratio Correction Factors

Speed Ratio ^a Range	K _{SR}	Speed Ratio ^a Range	K _{SR}
1.00-1.01	1.0000	1.15-1.20	1.0586
1.02-1.04	1.0112	1.21-1.27	1.0711
1.05-1.07	1.0226	1.28-1.39	1.0840
1.08-1.10	1.0344	1.40-1.64	1.0972
1.11-1.14	1.0463	Over 1.64	1.1106

 ${}^{a}D_{p}/d_{p}$, where $D_{p}(d_{p})$ is the pitch diameter of the large (small) sheave.

Arc of contact on the small sheave may be determined by the formulas.

Exact formula: Arc of Contact (deg) = $2\cos^{-1}\left(\frac{D_d - d_d}{2C}\right)$ Approximate formula: Arc of Contact (deg) = $180 - \left(\frac{(D_d - d_d)60}{C}\right)$

where D_d = Datum diameter of large sheave or flat pulley, inch; d_d = Datum diameter of small sheave, inch; and, C = Center distance, inch.

Number of Belts: The number of belts required for an application is obtained by dividing the design horsepower by the corrected horsepower rating for one belt.

Minimum Sheave Size: The recommended minimum sheave size depends on the rpm of the faster shaft. Minimum groove diameters for each belt cross section are listed in Table 11.

Double V-Belts ANSI/RMA IP-21.—Double V-belts or hexagonal belts are used when power input or takeoff is required on both sides of the belt. Designed for use on "serpentine" drives, which consist of sheaves rotating in opposite directions, the belts are available in AA, BB, CC, and DD cross sections and operate in standard classical sheaves. They are specified by cross section and nominal length.

Belt Cross Sections: Nominal dimensions of the four cross sections are given in Fig. 5.

Belt Size Designation: Double V-belt sizes are identified by a standard belt number, consisting of a letter-numeral combination. The letters identify the cross section; the numbers identify length as shown in Column 1 of Table 10. For example, AA51 indicates an AA cross section and a standard length designation of 51.

Standard Standard Effetive Length		Permissible Deviation				
Length		Cross	Section		from Standard Effective	Matching Limits
Designationa	AA	BB	CC	DD	Length	for One Set
51	53.1	53.9			±0.7	0.15
55		57.9			±0.7	0.15
60	62.1	62.9			±0.7	0.15
68	70.1	70.9			±0.7	0.30
75	77.1	77.9			±0.7	0.30
80	82.1				±0.7	0.30
81		83.9	85.2		±0.7	0.30
85	87.1	87.9	89.2		±0.7	0.30
90	92.1	92.9	94.2		±0.8	0.30
96	98.1		100.2		±0.8	0.30
97		99.9			±0.8	0.30
105	107.1	107.9	109.2		±0.8	0.30
112	114.1	114.9	116.2		±0.8	0.30
120	122.1	122.9	124.2	125.2	±0.8	0.30
128	130.1	130.9	132.2	133.2	±0.8	0.30
144		146.9	148.2	149.2	±0.8	0.30
158		160.9	162.2	163.2	±1.0	0.45
173		175.9	177.2	178.2	±1.0	0.45
180		182.9	184.2	185.2	±1.0	0.45
195		197.9	199.2	200.2	±1.1	0.45
210		212.9	214.2	215.2	±1.1	0.45
240		241.4	242.2	242.7	±1.3	0.45
270		271.4	272.2	272.7	±1.6	0.60
300		301.4	302.2	302.7	±1.6	0.60
330			332.2	332.7	±2.0	0.60
360			362.2	362.7	±2.0	0.60

Table 10. Double V-Belt Standard Effective Lengths ANSI/RMA IP-21, 1984

^a To specify belt size use the Standard Length Designation prefixed by the letters indicating cross section; for example, BB90.

All dimensions in inches.

Sheave Dimensions: Groove angles and dimensions for sheaves and face widths of sheaves for multiple belt drives are given in Table 11, along with various tolerance values.

2386

	File Dreak Grouve all sharp d' angle corners $a_p h_d$ a_{p} b_{q} $b_{$												
	Standard Groove Dimensions Drive Design Factors												
Cross Section	Outside Diameter Range	Groove Angle, α ±0.33°	Groove Angle, α b_g h_g R_B d_B S_g^a N_g $M_{\text{in.}}$ b_g $M_{\text{in.}}$ b_g $M_{\text{in.}}$ b_g h_g $M_{\text{in.}}$ b_g h_g								Min. Recomm. Outside Diam.	$2a_p^{b}$	
AA	Up through 5.65 Over 5.65	34 38	0.494 ±0.005 0.504	0.460	0.250	0.148 0.149	0.4375 (\tilde{c}'_{16})	0.625	0.375	+0.090	3.25	0.0	
BB	Up through 7.35 Over 7.35	34 38	0.637 0.650 ±0.006	0.550	0.350	0.189 0.190	0.5625 (§' ₁₆)	0.750	0.500	+0.120 -0.065	5.75	0.0	
AA-BB	Up through 7.35 Over 7.35	34 38	0.612 0.625 ±0.006	0.612	A = 0.750 B = 0.350	0.230 0.226	0.5625 (%16)	0.750	0.500	+0.120 -0.065	A = 3.620 B = 5.680	A = 0.370 B = -0.070	
сс	Up through 8.39 Over 8.39 up to and including 12.40 Over 12.40	34 36 38	0.879 0.887 } ±0.007 0.895	0.750	0.400	0.274 0.276 0.277	0.7812 (²⁵ / ₃₂)	1.000	0.688	+0.160 -0.070	9.4	0.0	
DD	Up through 13.59 Over 13.59 up to and including 17.60 Over 17.60	34 36 38	1.259 1.271 } ±0.008 1.283	1.020	0.600	0.410 0.410 0.411	1.1250 (1½)	1.438	0.875	+0.220 -0.080	13.6	0.0	

Table 11. Double V-Belt Sheave and Groove Dimensions ANSI/RMP IP-21, 1984

2387

	Deep Groove Dimensions ^c											Drive Design Factors	
Cross Section	Outside Diameter Range	Groove Angle, α ±0.33°	, α b _g		h _g (Min.)	$2h_d$	R _B (Min.)	$d_B \pm 0.0005$	$S_g^a \pm 0.025$	5	Še.	Minimum Recommended Outside Diameter	$2a_p$
AA	Up through 5.96 Over 5.96	34 38	0.589 0.611	±0.005	0.615	0.560	-0.009 -0.008	0.4375 (7 ₁₆)	0.750	0.438	+0.090 -0.062	3.56	0.310
BB	Up through 7.71 Over 7.71	34 38	0.747 0.774	±0.006	0.730	0.710	+0.007 +0.008	0.5625 (%16)	0.875	0.562	+0.120 -0.065	6.11	0.360
сс	Up through 9.00 Over 9.00 up to and including 13.01 Over 13.01	34 36 38	1.066 1.085 1.105	} ±0.007	1.055	1.010	-0.035 -0.032 -0.031	0.7812 (²⁵ / ₃₂)	1.250	0.812	+0.160 -0.070	10.01	0.610
DD	Up through 14.42 Over 14.42 up to and including 18.43 Over 18.43	34 36 38	1.513 1.541 1.569	} ±0.008	1.435	1.430	-0.010 -0.009 -0.008	1.1250 (1½)	1.750	1.062	+0.220 -0.080	14.43	0.830

 Table 11. (Continued) Double V-Belt Sheave and Groove Dimensions ANSI/RMP IP-21, 1984

^a Summation of the deviations from S_g for all grooves in any one sheave shall not exceed ±0.050 in. The variation in pitch diameter between the grooves in any one sheave must be within the following limits: Up through 19.9 in. outside diameter and up through 6 grooves: 0.010 in. (add 0.005 in. for each additional groove). 20.0 in. and over on outside diameter and up through 10 grooves: 0.015 in. (add 0.0005 in. for each additional groove). This variation can be obtained easily by measuring the distance across two measuring balls or rods placed diameter.

^b The a_p values shown for the A/B combination sheaves are the geometrically derived values. These values may be different from those shown in manufacturer's catalogs.

^cDeep groove sheaves are intended for drives with belt offset such as quarter-turn or vertical shaft drives.

Other Sheave Tolerances										
Outside Diameter	Radial Runout ^a	Axial Runout ^a								
Up through 4.0 in. outside diameter ± 0.020 in. For each additional inch of outside diameter add ± 0.005 in.	Up through 10.0 in. outside diameter ± 0.010 in. For each additional inch of outside diameter add 0.0005 in.	Up through 5.0 in. outside diameter 0.005 in. For each additional inch of outside diameter add 0.001 in.								

^aTotal indicator reading.

All dimensions in inches.

Effective Diameter Determination: Fig. 6 shows the relationship of effective diameter, outside diameter, and nomenclature diameter. Nomenclature diameter is used when ordering sheaves for double V-belt drives. The effective diameter is determined as follows:

Effective diameter = Nomenclature diameter + $2h_d - 2a_p$

The values of $2h_d$ and $2a_p$ are given in Table 11.

Double V-belt Length Determination: The effective belt length of a specific drive may be determined by making a scaled layout of the drive. Draw the sheaves in terms of their effective diameters and in the position when a new belt is applied and first brought to driving tension. Next, measure the tangents and calculate the effective arc length (AL_e) of each sheave (see Table 12 for a glossary of terms):

$$AL_e = \frac{d_e\theta}{115}$$

The effective length of the belt will then be the sum of the tangents and the connecting arc lengths. Manufacturers may be consulted for mathematical calculation of effective belt length for specific drive applications.

Table 12. Glossary of Terms for Double V-belt Calculations

AL_e	=	Length, arc, effective, in.
$2a_p$	=	Diameter, differential, pitch to outside, in.
d	=	Diameter, pitch, in. (same as effective diameter)
d_e	=	Diameter, effective, in.
$2h_d$	=	Diameter differential, nomenclature to outside, in.
K_f	=	Factor, length - flex correction
L	=	Length, effective, in.
n	=	Sheaves, number on drive
P_d	=	Power, design, horsepower (transmitted horsepower × service factor)
R	=	Ratio, tight side to slack side tension
(R - 1)	=	Factor, tension ratio
r	=	Angular velocity, faster shaft, rpm/1000
S	=	Speed, belt, fpm/1000
T_e	=	Tension, effective pull, lbf
T_r	=	Tension, allowable tight side, lbf
T_S	=	Tension, slack side, lbf
T_T	=	Tension, tight side, lbf
θ	=	Angle, arc of belt contact, deg

Fig. 7. Effective, Outside, and Nomenclature Sheave Diameters

Number of Belts Determination: The number of belts required may be determined on the basis of allowable tight side tension rating (T_r) at the most severe sheave. The allowable tight side tensions per belt are given in Tables 13 through 16, and must be multiplied by the length-flex correction factors (K_f) listed in Table 17. To select the allowable tight side tension from the tables for a given sheave, the belt speed and effective diameter of the sheave in question are required.

Double V-Belt Drive Design Method: The fourteen drive design steps are as follows:

1) Number the sheaves starting from the driver in the opposite direction to belt rotation; include the idlers.

2) Select the proper service factor for each loaded driven unit.

3) Multiply the horsepower requirement for each loaded driven sheave by the corresponding service factor. This is the design horsepower at each sheave.

4) Calculate driver design horsepower. This hp is equal to the sum of all the driven design horsepowers.

5) Calculate belt speed (S) in thousands of feet per minute: S = rd/3.820.

6) Calculate effective tension (T_e) for each loaded sheave: $T_e = 33P_d/S$.

7) Determine minimum R/(R-1) for each loaded sheave from Table 18 using the arc of contact determined from the drive layout.

2390

R

8) In most drives, slippage will occur first at the driver sheave. Assume this to be true and calculate T_T and T_S for the driver: $T_T = T_e [R/(R-1)]$ and $T_s = T_T - T_e$. Use R/(R-1) from Step 7 and T_e from Step 6 for the driver sheave.

9) Starting with the first driven sheave, determine T_T and T_S for each segment of the drive. The T_T for the driver becomes T_S for that sheave and is equal to $T_T - T_e$. Proceed around the drive in like manner.

10) Calculate actual R/(R-1) for each sheave using: $R/(R-1) = T_T/T_e = T_T/(T_T - T_s)$. The T_T and T_S values are for those determined in Step 9. If these values are equal to or greater than those determined in Step 7, the assumption that slippage will first occur at the driver is correct and the next two steps are not necessary. If the value is less, the assumption was not correct, so proceed with Step 11.

11) Take the sheave where the actual value R/(R-1) (Step 10) is less than the minimum, as determined in Step 7, and calculate a new T_T and T_S for this sheave using the minimum R/(R-1) as determined in Step 7: $T_T = T_e [R/(R-1)]$ and $T_S = T_T - T_e$.

12) Start with this sheave and recalculate the tension in each segment of the drive as in Step 9.

13) The length-flex factor (K_f) is taken from Table 17. Before using this table, calculate the value of L_e/n . Be sure to use the appropriate belt cross-section column when selecting the correction factor.

14) Beginning with the driver sheave, determine the number of belts (N_b) needed to satisfy the conditions at each loaded sheave using: $N_b = T_T/T_r K_f$. Note: T_T is tight side tension as determined in Step 9 or 11 and 12. T_r is allowable tight side tension as shown in Tables 15-18. K_f is the length-flex correction factor from Table 17. The sheave that requires the largest number of belts is the number of belts required for the drive. Any fraction of a belt should be treated as a whole belt.

Belt Speed	Sheave Effective Diameter (in.)									
(fpm)	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5		
200	30	46	57	66	73	79	83	88		
400	23	38	49	58	65	71	76	80		
600	18	33	44	53	60	66	71	75		
800	14	30	41	50	57	63	67	72		
1000	12	27	38	47	54	60	65	69		
1200	9	24	36	45	52	57	62	66		
1400	7	22	34	42	49	55	60	64		
1600	5	20	32	40	47	53	58	62		
1800	3	18	30	38	46	51	56	60		
2000	1	16	28	37	44	50	54	58		
2200		15	26	35	42	48	53	57		
2400		13	24	33	40	46	51	55		
2600		11	23	31	39	44	49	53		
2800		9	21	30	37	43	47	51		
3000		8	19	28	35	41	46	50		
3200		6	17	26	33	39	44	48		
3400		4	16	24	31	37	42	46		
3600		2	14	23	30	35	40	44		
3800		1	12	21	28	34	38	43		
4000			10	19	26	32	37	41		
4200			8	17	24	30	35	39		
4400			6	15	22	28	33	37		
4600			4	13	20	26	31	35		
4800			2	11	18	24	29	33		
5000				9	16	22	27	31		
5200				7	14	20	24	28		
5400				4	12	17	22	26		
5600				2	9	15	20	24		
5800					7	13	18	22		

Table 13. Allowable Tight Side Tension for an AA Section

The allowable tight side tension must be evaluated for each sheave in the system (see Step 14). Values must be corrected by K_f from Table 17.

Belt Speed	Sheave Effective Diameter (in.)								
(fpm)	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0
200	81	93	103	111	119	125	130	135	140
400	69	81	91	99	107	113	118	123	128
600	61	74	84	92	99	106	111	116	121
800	56	68	78	87	94	101	106	111	115
1000	52	64	74	83	90	96	102	107	111
1200	48	60	71	79	86	93	98	103	107
1400	45	57	67	76	83	89	95	100	104
1600	42	54	64	73	80	86	92	97	101
1800	39	51	61	70	77	84	89	94	98
2000	36	49	59	67	74	81	86	91	96
2200	34	46	56	64	72	78	84	89	93
2400	31	43	53	62	69	75	81	86	90
2600	29	41	51	59	67	73	78	83	88
2800	26	38	48	57	64	70	76	81	85
3000	23	35	45	54	61	68	73	78	82
3200	21	33	43	51	59	65	70	75	80
3400	18	30	40	49	56	62	68	73	77
3600	15	27	37	46	53	59	65	70	74
3800	12	24	35	43	50	57	62	67	71
4000	9	22	32	40	47	54	59	64	69
4200	7	19	29	37	45	51	56	61	66
4400	4	16	26	34	42	48	53	58	63
4600	1	13	23	31	39	45	50	55	60
4800		10	20	28	35	42	47	52	57
5000		6	16	25	32	39	44	49	53
5200		3	13	22	29	35	41	46	50
5400			10	18	26	32	38	42	47
5600			6	15	22	29	34	39	43
5800			3	11	19	25	31	36	40

Table 14. Allowable Tight Side Tension for a BB Section

The allowable tight side tension must be evaluated for each sheave in the system (see Step 14). Values must be corrected by K_f from Table 17.

Table 15. Allowable Tight Side Tension for a CC Section

Belt Speed		Sheave Effective Diameter (in.)								
(fpm)	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	
200	121	158	186	207	228	244	257	268	278	
400	99	135	164	187	206	221	234	246	256	
600	85	122	151	173	192	208	221	232	242	
800	75	112	141	164	182	198	211	222	232	
1000	67	104	133	155	174	190	203	214	224	
1200	60	97	126	149	167	183	196	207	217	
1400	54	91	120	142	161	177	190	201	211	
1600	48	85	114	137	155	171	184	196	205	
1800	43	80	108	131	150	166	179	190	200	
2000	38	75	103	126	145	160	174	185	195	
2200	33	70	98	121	140	155	169	180	190	
2400	28	65	93	116	135	150	164	175	185	
2600	23	60	88	111	130	145	159	170	180	
2800	18	55	83	106	125	140	154	165	175	
3000	13	50	78	101	120	135	149	160	170	
3200	8	45	73	96	115	130	144	155	165	
3400	3	39	68	91	110	125	138	150	160	
3600		34	63	86	104	120	133	145	154	
3800		29	58	80	99	115	128	139	149	
4000		24	52	75	94	109	123	134	144	
4200		18	47	70	88	104	117	128	138	
4400		12	41	64	83	98	112	123	133	
4600		7	35	58	77	93	106	117	127	
4800		1	29	52	71	87	100	111	121	
5000			23	46	65	81	94	105	115	
5200			17	40	59	75	88	99	109	
5400			11	34	53	68	81	93	103	
5600			5	27	46	62	75	86	96	
5800				21	40	55	68	80	90	

The allowable tight side tension must be evaluated for each sheave in the system (see Step 14). Values must be corrected by K_f from Table 17.

			0						
Belt Speed				Sheave Ef	fective Dia	meter (in.)			-
(fpm)	12,0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0
200	243	293	336	373	405	434	459	482	503
400	195	245	288	325	358	386	412	434	455
600	167	217	259	297	329	358	383	406	426
800	146	196	239	276	308	337	362	385	405
1000	129	179	222	259	291	320	345	368	389
1200	114	164	207	244	277	305	331	353	374
1400	101	151	194	231	263	292	318	340	361
1600	89	139	182	219	251	280	305	328	349
1800	78	128	170	207	240	269	294	317	337
2000	67	117	159	196	229	258	283	306	326
2200	56	106	149	186	218	247	272	295	316
2400	45	95	138	175	208	236	262	284	305
2600	35	85	128	165	197	226	251	274	294
2800	24	74	117	154	187	215	241	263	284
3000	14	64	106	144	176	205	230	253	273
3200	3	53	96	133	165	194	219	242	263
3400		42	85	122	155	183	209	231	252
3600		31	74	111	144	172	198	220	241
3800		20	63	100	132	161	186	209	230
4000		9	51	89	121	150	175	198	218
4200			40	77	109	138	163	186	207
4400			28	65	97	126	152	174	195
4600			16	53	85	114	139	162	183
4800			3	40	73	102	127	150	170
5000				28	60	89	114	137	158
5200				15	47	76	101	124	145
5400				1	34	62	88	111	131
5600					20	49	74	97	118
5800					6	35	60	83	104

Table 16. Allowable Tight Side Tension for a DD Section

The allowable tight side tension must be evaluated for each sheave in the system (see Step 14). Values must be corrected by K_f from Table 17.

L_{*}	L. Belt Cros		oss Section		L_{*}	Belt Cross Section			
$\frac{e}{n}$	AA	BB	CC	DD	$\frac{e}{n}$	AA	BB	CC	DD
10	0.64	0.58			70		1.03	0.95	0.91
15	0.74	0.68			80		1.06	0.98	0.94
20	0.82	0.74	0.68		90		1.09	1.00	0.96
25	0.87	0.79	0.73	0.70	100		1.11	1.03	0.99
30	0.92	0.84	0.77	0.74	110			1.05	1.00
35	0.96	0.87	0.80	0.77	120			1.06	1.02
40	0.99	0.90	0.83	0.80	130			1.08	1.04
45	1.02	0.93	0.86	0.82	140			1.10	1.05
50	1.05	0.95	0.88	0.84	150			1.11	1.07
60		0.99	0.92	0.88					

Table 17. Length-Flex Correction Factors K_f

Minimum Sheave Size: The recommended minimum sheave size depends on the rpm of the faster shaft. Minimum sheave diameters for each cross-section belt are listed in Table 11.

Tension Ratings: The tension rating formulas are:

AA
$$T_r = 118.5 - \frac{318.2}{d} - 0.8380S^2 - 25.76\log S$$

BB $T_r = 186.3 - \frac{665.1}{d} - 1.269S^2 - 39.02\log S$

CC
$$T_r = 363.9 - \frac{2060}{d} - 2.400S^2 - 73.77\log S$$

DD $T_r = 783.1 - \frac{7790}{d} - 5.078S^2 - 156.1\log S$

where T_r = The allowable tight side tension for a double-V belt drive, lbf (not corrected for tension ratio or length-flex correction factor)

d = Pitch diameter of small sheave, inch

S = Belt speed, fpm/1000

Arc of Contact, θ (deg.)	Design $\frac{R}{R-1}$	Arc of Contact, $\theta(deg.)$	Design $\frac{R}{R-1}$
300	1.07	170	1.28
290	1.08	160	1.31
280	1.09	150	1.35
270	1.10	140	1.40
260	1.11	130	1.46
250	1.12	120	1.52
240	1.13	110	1.60
230	1.15	100	1.69
220	1.16	90	1.81
210	1.18	80	1.96
200	1.20	70	2.15
190	1.22	60	2.41
180	1.25	50	2.77

Table 18. Tension Ratio/Arc of Contact Factors

Light Duty V-Belts ANSI/RMA IP-23.—Light duty V-belts are typically used with fractional horsepower motors or small engines, and are designed primarily for fractional horsepower service. These belts are intended and specifically designed for use with small diameter sheaves and drives of loads and service requirements that are within the capacity of a single belt.

Fig. 8. Light Duty V-Belt Cross Sections

The four belt cross sections and sheave groove sizes are 2L, 3L, 4L, and 5L. The 2L is generally used only by OEMs and is not covered in the RMA standards.

Belt Cross Sections.-Nominal dimensions of the four cross sections are given in Fig. 8.

Belt Size Designation.—V-belt sizes are identified by a standard belt number, consisting of a letter-numeral combination. The first number and letter identify the cross section; the remaining numbers identify length as shown in Table 19. For example, a 3L520 belt has a 3L cross section and a length of 52.0 in.

2395

(Standard Dutside L	Effective ength (in	;	Permissible Deviation	(Standard Dutside L	Effective ength (in	;	Permissible Deviation
	Cross S	Section	,	From Standard		Cross	Section	,	From Standard
2L	3L	4L	5L	Length (in.)	2L	3L	4L	5L	Length (in.)
8				+0.12, -0.38			53	53	+0.25, -0.62
9				+0.12, -0.38		54	54	54	+0.25, -0.62
10				+0.12, -0.38			55	55	+0.25, -0.62
11				+0.12, -0.38		56	56	56	+0.25, -0.62
12				+0.12, -0.38			57	57	+0.25, -0.62
13				+0.12, -0.38		58	58	58	+0.25, -0.62
14	14			+0.12, -0.38			59	59	+0.25, -0.62
15	15			+0.12, -0.38		60	60	60	+0.25, -0.62
16	16			+0.12, -0.38			61	61	+0.31, -0.69
17	17			+0.12, -0.38			62	62	+0.31, -0.69
18	18	18		+0.12, -0.38			63	63	+0.31, -0.69
19	19	19		+0.12, -0.38			64	64	+0.31, -0.69
20	20	20		+0.12, -0.38			65	65	+0.31, -0.69
	21	21		+0.25, -0.62			66	66	+0.31, -0.69
	22	22		+0.25, -0.62			67	67	+0.31, -0.69
	23	23		+0.25, -0.62			68	68	+0.31, -0.69
	24	24		+0.25, -0.62			69	69	+0.31, -0.69
	25	25	25	+0.25, -0.62			70	70	+0.31, -0.69
	26	26	26	+0.25, -0.62			71	71	+0.31, -0.69
	27	27	27	+0.25, -0.62			72	72	+0.31, -0.69
	28	28	28	+0.25, -0.62			73	73	+0.31, -0.69
	29	29	29	+0.25, -0.62			74	74	+0.31, -0.69
	30	30	30	+0.25, -0.62			75	75	+0.31, -0.69
	31	31	31	+0.25, -0.62			76	76	+0.31, -0.69
	32	32	32	+0.25, -0.62			77	77	+0.31, -0.69
	33	33	33	+0.25, -0.62			78	78	+0.31, -0.69
	34	34	34	+0.25, -0.62			79	79	+0.31, -0.69
	35	35	35	+0.25, -0.62			80	80	+0.62, -0.88
	36	36	36	+0.25, -0.62			82	82	+0.62, -0.88
	37	37	37	+0.25, -0.62			84	84	+0.62, -0.88
	38	38	38	+0.25, -0.62			86	86	+0.62, -0.88
	39	39	39	+0.25, -0.62			88	88	+0.62, -0.88
	40	40	40	+0.25, -0.62			90	90	+0.62, -0.88
	41	41	41	+0.25, -0.62			92	92	+0.62, -0.88
	42	42	42	+0.25, -0.62			94	94	+0.62, -0.88
	43	43	43	+0.25, -0.62			96	96	+0.62, -0.88
	44	44	44	+0.25, -0.62			98	98	+0.62, -0.88
	45	45	45	+0.25, -0.62			100	100	+0.62, -0.88
	46	46	46	+0.25, -0.62					
	47	47	47	+0.25, -0.62					
	48	48	48	+0.25, -0.62					
	49	49	49	+0.25, -0.62					
	50	50	50	+0.25, -0.62					
		51	51	+0.25, -0.62					
	52	52	52	+0.25, -0.62					

Table 19. Light Duty V-Belt Standard Dimensions ANSI/RMA IP-23, 1968

All dimensions in inches.

Sheave Dimensions: Groove angles and dimensions for sheaves and various sheave tolerances are given in Table 20.

		Effective outside diameter	k filtertive outside diameter		Effective O.D. + 2K, ± 0.025 in.	Effective	d _B	
	Effective O	utside Diameter	α Groove	d_B Ball				
Belt Section	Min. Recomm.	Range	Angle ±0°20' (deg)	Diameter ±0.0005	2 <i>K</i>	bg (Ref)	h _g (min)	2a ^a
	0.8	Less Than 1.50	32		0.176			
2L		1.50 to 1.99	34	0.2188	0.182	0.240	0.250	0.04
		2.00 to 2.50	36		0.188			
		Over 2.50	38		0.194			
		Less Than 2.20	32		0.177			
3L	1.5	2.20 to 3.19	34	0.3125	0.191	0.364	0.406	0.06
		5.20 to 4.20 Over 4.20	20		0.205			
		Less Than 2.65	30		0.215			
		2 65 to 3 24	32		0.299			
4L	2.5	3 25 to 5 65	34	0.4375	0.331	0.490	0.490	0.10
		Over 5.65	38		0.358			
		Less Than 3.95	30		0.385			
		3.95 to 4.94	32		0.406			
5L	3.5	4.95 to 7.35	34	0.5625	0.426	0.630	0.580	0.16
		Over 7.35	38		0.461			

Table 20. Light Duty V-Belt Sheave and Groove Dimensions ANSI/RMA IP-23, 1968

^a The diameter used in calculating speed ratio and belt speed is obtained by subtracting the 2a value from the Effective Outside Diameter of the sheave.

Other Sheave Tolerances								
Outside D	iameters	Outside Diameter E	Recentricitya	Groove Side Wobble & Runouta				
For outside dian	neters under	For outside diameter	rs 10.0	For outside diam	eters 20.0			
6.0 in.	±0.015 in.	in. and under	0.010 in.	in. and under	0.0015 in. per			
				inch of outside diameter.				
For outside dian	neters 6.0 to	For each additional	inch of outside	For each additional inch of out-				
12.0 in.	±0.020 in.	diameter, add 0.000	5 in.					
For outside diameters over					side diameter, add 0.0005 in.			
12.0 in.	±0.040 in.							

^a Total indicator reading.

All dimensions in inches.

Horsepower Ratings: The horsepower ratings for light duty V-belts can be calculated from the following formulas:

3L HP =
$$r \left(\frac{0.2164 d^{0.91}}{r^{0.09}} - 0.2324 - 0.0001396 r^2 d^3 \right)$$

4L HP = $r \left(\frac{0.4666 d^{0.91}}{r^{0.09}} - 0.7231 - 0.0002286 r^2 d^3 \right)$
5L HP = $r \left(\frac{0.7748 d^{0.91}}{r^{0.09}} - 1.727 - 0.0003641 r^2 d^3 \right)$

where $d = d_0 - 2a$; d_0 = effective outside diameter of small sheave, in.; r = rpm of the faster shaft divided by 1000. The corrected horsepower rating is obtained by dividing the horsepower rating by the combined correction factor (Table 21), which accounts for drive geometry and service factor requirements.

	Speed Ratio				
Type of Driven Unit	Less than 1.5	1.5 and Over			
Fans and blowers	1.0	0.9			
Domestic laundry machines	1.1	1.0			
Centrifugal pumps	1.1	1.0			
Generators	1.2	1.1			
Rotary compressors	1.2	1.1			
Machine tools	1.3	1.2			
Reciprocating pumps	1.4	1.3			
Reciprocating compressors	1.4	1.3			
Wood working machines	1.4	1.3			

Table 21. Combined Correction Factors

V-Ribbed Belts ANSI/RMA IP-26.—V-ribbed belts are a cross between flat belts and Vbelts. The belt is basically flat with V-shaped ribs projecting from the bottom, which guide the belt and provide greater stability than that found in a flat belt. The ribs operate in grooved sheaves.

V-ribbed belts do not have the wedging action of a V-belt and thus operate at higher tensions. This design provides excellent performance in high-speed and serpentine applications, and in drives that utilize small diameter sheaves. The V-ribbed belt comes in five cross sections: H, J, K, L, and M, specified by effective length, cross section and number of ribs.

Belt Cross Sections: Nominal dimensions of the five cross sections are given in Table 22.

Table 22. Nominal Dimensions of V-Ribbed Belt Cross Sections

		-,		, - / / / /	
	+	1	b _b		
\hat{h}_b			$(\overline{\mathcal{N}})$	$\Lambda \Lambda$	∇
-	_•	S.	-		•

 $b_b = N_r \times S_g$, where N_r = number of ribs and S_g is sheave groove spacing

Cross Section	h_b	S_g	Standard Number of Ribs
Н	0.12	0.063	
l	0.16	0.092	4, 6, 10, 16, 20
K	0.24	0.140	
L	0.38	0.185	6, 8, 10, 12, 14, 16, 18, 20
М	0.66	0.370	6, 8, 10, 12, 14, 16, 18, 20

All dimensions in inches.

Face width =	$= S_e (N_g)$	~1) +	2Se, w	here Ng is	number o	f grooves
--------------	---------------	-------	--------	------------	----------	-----------

Cross Section	Minimum Recommended Outside Diameter	α Groove Angle ±0.25 (deg)	S_g^{a}	r_t +0.005, -0.000	2 <i>a</i>	r _b	h _g (min)	d_B ±0.0005	Se
н	0.50	40	0.063 ±0.001	0.005	0.020	0.013 +0.000 -0.005	0.041	0.0469	0.080 +0.020 -0.010
1	0.80	40	0.092 ±0.001	0.008	0.030	0.015 +0.000 -0.005	0.071	0.0625	0.125 +0.030 -0.015
К	1.50	40	0.140 ±0.002	0.010	0.038	0.020 +0.000 -0.005	0.122	0.1093	0.125 +0.050 -0.000
L	3.00	40	0.185 ±0.002	0.015	0.058	0.015 +0.000 -0.005	0.183	0.1406	0.375 +0.075 -0.030
м	7.00	40	0.370 ±0.003	0.030	0.116	0.030 +0.000 -0.010	0.377	0.2812	0.500 +0.100 -0.040

^a Summation of the deviations from S_{ρ} for all grooves in any one sheave shall not exceed ± 0.010 in.

	Other Sheave Tolerances ^a							
Outside Diameter	Radial Runout ^b	Axial Runout ^b						
Up through 2.9 in. outside diameter	Up through 2.9 in. outside diameter	0.001 in. per inch of outside						
±0.010 in.	0.005 in.	diameter						
Over 2.9 in. to and including 8.0 in. outside diameter	Over 2.9 in. to and including 10.0 in. outside diameter							
±0.020 in.	0.010 in.							
For each additional inch of outside diameter over 8.0 in., add ±0.0025 in.	For each additional inch of outside diameter over 10.0 in., add 0.0005 in.							

^a Variations in pitch diameter between the grooves in any one sheave must be within the following limits: Up through 2.9 in. outside diameter and up through 6 grooves, 0.002 in. (add 0.001 in. for each additional groove); over 2.9 in. to and including 19.9 in. and up through 10 grooves, 0.005 in. (add 0.0002 in. for each additional groove); over 19.9 in. and up through 10 grooves, 0.010 in. (add 0.0005 in. for each additional groove); over 19.9 in. and up through 10 grooves, 0.010 in. (add 0.0005 in. for each additional groove). This variation can be obtained by measuring the distance across two measuring balls or rods placed in the grooves diametrically opposite each other. Comparing this "diameter-over-balls or -rods" measurement between grooves will give the variation in pitch diameter.

^b Total indicator reading.

All dimensions in inches

Belt Size Designation: Belt sizes are identified by a standard belt number, which consists of belt effective length to the nearest tenth of an inch, a letter designating cross section, and the number of ribs. For example, 540L6 signifies a 54.0 in. effective length, L belt, six ribs wide.

Sheave Dimensions.: Groove angles and dimensions for sheaves and face widths of sheaves for multiple belt drives are given in Table 23, along with various tolerance values.

Cross Section Selection.: Use the chart (Fig. 9) as a guide to the V-ribbed belt cross section for any combination of design horsepower and speed of the faster shaft. When the intersection of the design horsepower and speed of the faster shaft falls near a line between two areas on the chart, the possibilities in both areas should be explored. Special circumstances (such as space limitations) may lead to a choice of belt cross section different from that indicated in the chart. H and K cross sections are not included because of their specialized use. Belt manufacturers should be contacted for specific data.

Horsepower Ratings .: The horsepower rating formulas are:

$$\begin{aligned} \mathbf{J}: \mathbf{HP} &= d_p r \left[\frac{0.1240}{(d_p r)^{0.09}} - \frac{0.08663}{d_p} - 0.2318 \times 10^{-4} (d_p r)^2 \right] + 0.08663 r \left[1 - \frac{1}{K_{SR}} \right] \\ \mathbf{L}: \mathbf{HP} &= d_p r \left[\frac{0.5761}{(d_p r)^{0.09}} - \frac{0.8987}{d_p} - 1.018 \times 10^{-4} (d_p r)^2 \right] + 0.8987 r \left[1 - \frac{1}{K_{SR}} \right] \\ \mathbf{M}: \mathbf{HP} &= d_p r \left[\frac{1.975}{(d_p r)^{0.09}} - \frac{6.597}{d_p} - 3.922 \times 10^{-4} (d_p r)^2 \right] + 6.597 r \left[1 - \frac{1}{K_{SR}} \right] \end{aligned}$$

In these equations, $d_p =$ pitch diameter of the small sheave, in.; r = rpm of the faster shaft divided by 1000; K_{SR} = speed ratio factor given in the accompanying table. These formulas give the maximum horsepower per rib recommended, corrected for the speed ratio. To obtain the horsepower per rib for an arc of contact other than 180 degrees, and for belts longer or shorter than the average length, multiply the horsepower obtained from these formulas by the length correction factor (Table 25) and the arc of contact correction factor (Table 26).

	J Cross Section		1	L Cross Section		M Cross Section		
Standard Length Designation ^a	Standard Effective Length	Permissible Deviation From Standard Length	Standard Length Designation ^a	Standard Effective Length	Permissible Deviation From Standard Length	Standard Length Designation ^a	Standard Effective Length	Permissible Deviation From Standard Length
180	18.0	+0.2, -0.2	500	50.0	+0.2, -0.4	900	90.0	+0.4, -0.7
190	19.0	+0.2, -0.2	540	54.0	+0.2, -0.4	940	94.0	+0.4, -0.8
200	20.0	+0.2, -0.2	560	56.0	+0.2, -0.4	990	99.0	+0.4, -0.8
220	22.0	+0.2, -0.2	615	61.5	+0.2, -0.5	1060	106.0	+0.4, -0.8
240	24.0	+0.2, -0.2	635	63.5	+0.2, -0.5	1115	111.5	+0.4, -0.9
260	26.0	+0.2, -0.2	655	65.5	+0.2, -0.5	1150	115.0	+0.4, -0.9
280	28.0	+0.2, -0.2	675	67.5	+0.3, -0.6	1185	118.5	+0.4, -0.9
300	30.0	+0.2, -0.3	695	69.5	+0.3, -0.6	1230	123.0	+0.4, -1.0
320	32.0	+0.2, -0.3	725	72.5	+0.3, -0.6	1310	131.0	+0.5, -1.1
340	34.0	+0.2, -0.3	765	76.5	+0.3, -0.6	1390	139.0	+0.5, -1.1
360	36.0	+0.2, -0.3	780	78.0	+0.3, -0.6	1470	147.0	+0.6, -1.2
380	38.0	+0.2, -0.3	795	79.5	+0.3, -0.6	1610	161.0	+0.6, -1.2
400	40.0	+0.2, -0.4	815	81.5	+0.3, -0.7	1650	165.0	+0.6, -1.3
430	43.0	+0.2, -0.4	840	84.0	+0.3, -0.7	1760	176.0	+0.7, -1.4
460	46.0	+0.2, -0.4	865	86.5	+0.3, -0.7	1830	183.0	+0.7, -1.4
490	49.0	+0.2, -0.4	915	91.5	+0.4, -0.7	1980	198.0	+0.8, -1.6
520	52.0	+0.2, -0.4	975	97.5	+0.4, -0.8	2130	213.0	+0.8, -1.6
550	55.0	+0.2, -0.4	990	99.0	+0.4, -0.8	2410	241.0	+0.9, -1.6
580	58.0	+0.2, -0.5	1065	106.5	+0.4, -0.8	2560	256.0	+1.0, -1.8
610	61.0	+0.2, -0.5	1120	112.0	+0.4, -0.9	2710	271.0	+1.1, -2.2
650	65.0	+0.2, -0.5	1150	115.0	+0.4, -0.9	3010	301.0	+1.2, -2.4

Table 24. V-Ribbed Belt Standard Effective Lengths ANSI/RMA IP-26, 1977

^a To specify belt size, use the standard length designation, followed by the letter indicating belt cross section and the number of ribs desired. For example: 865L10. All dimensions in inches.

Std. Length	(Cross Sectio	n	Std. Length	Cross Section			
Designation	J	L	М	Designation	J	L	М	
180	0.83			1230		1.08	0.94	
200	0.85			1310		1.10	0.96	
240	0.89			1470		1.12	0.098	
280	0.92			1610		1.14	1.00	
320	0.95			1830		1.17	1.03	
360	0.98			1980		1.19	1.05	
400	1.00			2130		1.21	1.06	
440	1.02			2410		1.24	1.09	
500	1.05	0.89		2710			1.12	
550	1.07	0.91		3010			1.14	
610	1.09	0.93		3310			1.16	
690	1.12	0.96		3610			1.18	
780	1.16	0.98		3910			1.20	
910	1.18	1.02	0.88	4210			1.22	
940	1.19	1.02	0.89	4810			1.25	
990	1.20	1.04	0.90	5410			1.28	
1060		1.05	0.91	6000			1.30	
1150		1.07	0.93					

Table 25. Length Correction Factors

Table 26. Arc of Contact Correction Factors

$\frac{D_o - d_o}{C}$	Arc of Contact, θ , on Small Sheave, (deg)	Correction Factor
0.00	180	1.00
0.10	174	0.98
0.20	169	0.97
0.30	163	0.95
0.40	157	0.94
0.50	151	0.92
0.60	145	0.90
0.70	139	0.88
0.80	133	0.85
0.90	127	0.83
1.00	120	0.80
1.10	113	0.77
1.20	106	0.74
1.30	99	0.71
1.40	91	0.67
1.50	83	0.63

Number of Ribs: The number of ribs required for an application is obtained by dividing the design horsepower by the corrected horsepower rating for one rib.

Arc of contact on the small sheave may be determined by the following formulas:

Exact Formula:

Arc of Contact (deg) =
$$2\cos^{-1}\left(\frac{D_o - d_o}{2C}\right)$$

Approximate Formula:

Arc of Contact (deg) =
$$180 - \frac{(D_o - d_o)60}{C}$$

where $D_o =$ Effective outside diameter of large sheave, in; $d_o =$ Effective outside diameter of small sheave, in; and, C = Center distance, inch.

Speed Ratio ^a	K _{SR}
1.00 to and incl. 1.10	1.0000
Over 1.01 to and incl. 1.04	1.0136
Over 1.04 to and incl. 1.08	1.0276
Over 1.08 to and incl. 1.12	1.0419
Over 1.12 to and incl. 1.18	1.0567
Over 1.18 to and incl. 1.24	1.0719
Over 1.24 to and incl. 1.34	1.0875
Over 1.34 to and incl. 1.51	1.1036
Over 1.51 to and incl. 1.99	1.1202
Over 1.99	1.1373

Spee	d R	atio (Corr	ectio	n F	actor	s
------	-----	--------	------	-------	-----	-------	---

 ${}^{a}D_{p}/d_{p}$, where $D_{p}(d_{p})$ is the pitch diameter of the large (small) sheave.

Variable Speed Belts ANSI, RMA IP-25.—For drives that require more speed variation than can be obtained with conventional industrial V-belts, standard-line variable-speed drives are available. These drives use special wide, thin belts. Package units of standard-line variable-speed belts and sheaves, combined with the motor and output gearbox are available in ranges from approximately ½ through 100 horsepower.

The speed ranges of variable-speed drives can be much greater than those drives using classical V-belts. Speed ranges up to 10:1 can be obtained on lower horsepower units.

This section covers 12 variable speed belt cross sections and sheave groove sizes designed 1422V, 1922V, 2322V 1926V, 2926V, 3226V, 2530V, 3230V, 4430V, 4036V, 4436V, and 4836V. The industry supplies many other sizes that are not listed in this section.

Belt Cross Sections and Lengths: Nominal dimensions of the 12 cross sections are given in Table 27, and lengths in Table 28.

Fable 27. Normal Variable-Speed Belt Dimensions	ANSI/RMA IP-25, 198	2
---	---------------------	---

Cross Section	b_b	h_b	h_b/b_b	Cross Section	b_b	h_b	h_b/b_b					
1422V	0.88	0.31	0.35	2530V	1.56	0.59	0.38					
1922V	1.19	0.38	0.32	3230V	2.00	0.62	0.31					
2322V	1.44	0.44	0.31	4430V	2.75	0.69	0.25					
1926V	1.19	0.44	0.37	4036V	2.50	0.69	0.28					
2926V	1.81	0.50	0.28	4436V	2.75	0.72	0.26					
3226V	2.0	0.53	0.27	4836V	3.00	0.75	0.25					

All dimensions in inches.

					Sta	ndard Effe	ctive Lengtl	15					Permissible
Standard						Cross S	ection						Deviations
Pitch Length Designation	1422V	1922V	2322V	1926V	2926V	3226V	2530V	3230V	4430V	4036V	4436V	4836V	From Standard Length
315	32.1												±0.7
335	34.1												±0.7
355	36.1	36.2		36.3									±0.7
375	38.1	38.2		38.3									±0.7
400	40.6	40.7	40.8	40.8									±0.7
425	43.1	43.2	43.3	43.3									±0.8
450	45.6	45.7	45.8	45.8									±0.8
475	48.1	48.2	48.3	48.3									±0.8
500	50.6	50.7	50.8	50.8			50.9						±0.8
530	53.6	53.7	53.8	53.8	53.9		53.9						±0.8
560	56.6	56.7	56.8	56.8	56.9	56.9	56.9	57.1	57.3	57.3	57.3	57.4	±0.9
600	60.6	60.7	60.8	60.8	60.9	60.9	60.9	61.1	61.3	61.3	61.3	61.4	±0.9
630	63.6	63.7	63.8	63.8	63.9	63.9	63.9	64.1	64.3	64.3	64.3	64.4	±0.9
670	67.6	67.7	67.8	67.8	67.9	67.9	67.9	68.1	68.3	68.3	68.3	68.4	±0.9
710	71.6	71.7	71.8	71.8	71.9	71.9	71.9	72.1	72.3	72.3	72.3	72.4	±0.9
750	75.6	75.7	75.8	75.8	75.9	75.9	75.9	76.1	76.3	76.3	76.3	76.4	±1.0
800		80.7	80.8	80.8	80.9	80.9	80.9	81.1	81.3	81.3	81.3	81.4	±1.0
850		85.7	85.8	85.8	85.9	85.9	85.9	86.1	86.3	86.3	86.3	86.4	±1.1
900		90.7	90.8	90.8	90.9	90.9	90.9	91.1	91.3	91.3	91.3	91.4	±1.1
950		95.7	95.8	95.8	95.9	95.9	95.9	96.1	96.3	96.3	96.3	96.4	±1.1
1000		100.7	100.8	100.8	100.9	100.9	100.9	101.1	101.3	101.3	101.3	101.4	±1.2
1060		106.7	106.8	106.8	106.9	106.9	106.9	107.1	107.3	107.3	107.3	107.4	±1.2
1120		112.7	112.8	112.8	112.9	112.9	112.9	113.1	113.3	113.3	113.3	113.4	±1.2
1180		118.7	118.8	118.8	118.9	118.9	118.9	119.1	119.3	119.3	119.3	119.4	±1.3
1250					125.9	125.9	125.9	126.1	126.3	126.3	126.3	126.4	±1.3
1320						132.9		133.1	133.3	133.3	133.3	133.4	±1.3

Table 28. Variable-Speed V-Belt Standard Belt Lengths ANSI/RMA IP-25, 1982

All dimensions in inches.

The lengths given in this table are not necessarily available from all manufacturers. Availability should be investigated prior to design commitment.

Table 29. Variable-Speed Sheave and Groove Dime	nsions
---	--------

	Standard Groove Dimensions												
			Variable				Compan	ion		Drive Design Factors			
Cross Section	$\begin{array}{c} \alpha \\ \text{Groove Angle} \\ \pm 0.67 \ (\text{deg}) \end{array}$	$b_g{}^a$ Closed +0.000 -0.030	b _{go} Open Max	h _{gv} Min	S_g ±0.03	$\begin{array}{c} \alpha \text{ Groove} \\ \text{Angle } \pm 0.33 \\ (\text{deg}) \end{array}$	b_g ±0.010	h_g Min	S_g ±0.03	Min. Recomm. Pitch Diameter	2 <i>a</i>	2 <i>av</i> Max	CL Min
1422V	22	0.875	1.63	2.33	1.82	22	0.875	0.500	1.82	2.0	0.20	3.88	0.08
1922V	22	1.188	2.23	3.14	2.42	22	1.188	0.562	2.42	3.0	0.22	5.36	0.08
2322V	22	1.438	2.71	3.78	2.89	22	1.438	0.625	2.89	3.5	0.25	6.52	0.08
1926V	26	1.188	2.17	2.65	2.36	26	1.188	0.625	2.36	3.0	0.25	4.26	0.08
2926V	26	1.812	3.39	4.00	3.58	26	1.812	0.750	3.58	3.5	0.30	6.84	0.08
3226V	26	2.000	3.75	4.41	3.96	26	2.000	0.781	3.96	4.0	0.30	7.60	0.08
2530V	30	1.562	2.81	3.01	2.98	30	1.562	0.844	2.98	4.0	0.30	4.64	0.10
3230V	30	2.000	3.67	3.83	3.85	30	2.000	0.875	3.85	4.5	0.35	6.22	0.10
4430V	30	2.750	5.13	5.23	5.38	30	2.750	0.938	5.38	5.0	0.40	8.88	0.10
4036V	36	2.500	4.55	3.95	4.80	36	2.500	0.938	4.80	4.5	0.40	6.32	0.10
4436V	36	2.750	5.03	4.33	5.30	36	2.750	0.969	5.30	5.0	0.40	7.02	0.10
4836V	36	3.000	5.51	4.72	5.76	36	3.000	1.000	5.76	6.0	0.45	7.74	0.10

^a The effective width (b_e) , a reference dimension, is the same as the ideal top width of closed variable-speed sheave (b_g) and the ideal top width of the companion sheave (b_g) .

Other Sheave Tolerances									
Outside Diameter	Radial Runout ^a	Axial Runout ^a							
Up through 4.0 in. outside diameter ±0.020 in	Up through 10.0 in. outside diameter 0.010 in.	Up through 5.0 in. outside diameter 0.005 in.							
For each additional inch of outside diameter add ± 0.005 in.	For each additional inch of outside diameter add 0.0005 in.	For each additional inch of outside diameter add 0.001 in.							

^aTotal indicator reading.

Surface Finish									
Machined Surface Area	Max Surface Roughness Height, R_a (AA) (μ in.)	Machined Surface Area	Max Surface Roughness Height, R_a (AA) (μ in.)						
V-Sheave groove sidewalls	125	Straight bores with 0.002 in. or less total tolerance	125						
Rim edges and ID, Hub ends and OD	500	Taper and straight bores with total tolerance over 0.002 in.	250						

All dimensions in inches, except where noted.

Belt Size Designation: Variable-speed belt sizes are identified by a standard belt number. The first two digits denote the belt top width in sixteenths of an inch; the third and fourth digits indicate the angle of the groove in which the belt is designed to operate. The letter V (for variable) follows the first four digits. The digits after the V indicate the pitch length to the nearest 0.1 in. For example, 1422V450 is a belt of $\frac{7}{8}$ in. ($\frac{14}{16}$ in.) nominal top width designed to operate in a sheave of 22 degree groove angle and having a pitch length of 45.0 in.

Sheave Groove Data: A variable speed sheave is an assembly of movable parts, designed to permit one or both flanges of the sheave to be moved axially causing a radial movement of the variable speed belt in the sheave groove. This radial movement permits stepless speed variation within the physical limits of the sheave and the belt. A companion sheave may be a solid sheave having a constant diameter and groove profile or another variable sheave. Variable speed sheave designs should conform to the dimensions in Table 29 and Fig. 10. The included angle of the sheaves, top width, and clearance are boundary dimensions. Groove angles and dimensions of companion sheaves should conform to Table 29 and Fig. 11. Various tolerance values are also given in Table 29.

Open Multiple Groove Variable Sheave

Fig. 10. Variable Sheaves

Variable-Speed Drive Design: Variable-speed belts are designed to operate in sheaves that are an assembly of movable parts. The sheave design permits one or both flanges of the sheave to be moved axially, causing a radial movement of the variable-speed belt in the sheave groove. The result is a stepless speed variation within the physical limits of the sheave and the variable-speed belt. Therefore, besides transmitting power, variable-speed belt drives provide speed variation.

Fig. 11. Companion Sheaves

The factors that determine the amount of pitch diameter change on variable-speed sheaves are belt top width, belt thickness, and sheave angle. This pitch diameter change, combined with the selected operating pitch diameters for a sheave, determines the possible speed variation.

The range of output speeds from a variable-speed sheave drive is established by the companion sheave and is a function of the ratio of the pitch diameter of the companion sheave to the maximum and minimum pitch diameters of the variable sheave. Speed variation is usually obtained by varying the center distance between the two sheaves. This type of drive seldom exceeds a speed variation of 3:1.

For a single variable-speed sheave drive, the speed variation

Speed variation
$$= \frac{PD Max}{PD Min}$$
 (of variable sheave)

For a dual variable-speed sheave drive, which is frequently referred to as a compound drive because both sheaves are variable, the speed variation is

Speed variation =
$$\frac{DR(DN)}{dr(dn)}$$

where DR = Max driver PD DN = Max driven PD dr = Min driver PD dn = Min driven PD

With this design, the center distance is generally fixed and speed variation is usually accomplished by mechanically altering the pitch diameter of one sheave. In this type of drive, the other sheave is spring loaded to make an opposite change in the pitch diameter and to provide the correct belt tension. Speed variations of up to 10: 1 are common on this type of drive.

Speed Ratio Adjustment: All speed ratio changes must be made while the drives are running. Attempting to make adjustments while the unit is stopped creates unnecessary and possibly destructive forces on both the belt and sheaves. In stationary control drives, the belt tension should be released to allow the flanges to adjust without belt force interference.

Cross Section Selection: Selection of a variable speed belt cross section is based on the drive design horsepower and speed variation. Table 29 shows the maximum pitch diameter variation (2av) that each cross section can attain.

Horsepower Ratings: The general horsepower formulas for variable-speed belts are:

$$1422 \text{ V HP} = d_p r \left[0.4907 (d_p r)^{-0.09} - \frac{0.8378}{d_p} - 0.000337 (d_p r)^2 \right] + 0.8378 r \left(1 - \frac{1}{K_{SR}} \right)$$

$$\begin{split} &1922\,\mathrm{VHP} = d_p r \Big[0.8502 (d_p r)^{-0.09} - \frac{1.453}{d_p} - 0.000538 (d_p r)^2 \Big] + 1.453r \Big(1 - \frac{1}{K_{SR}} \Big) \\ &2322\,\mathrm{VHP} = d_p r \Big[1.189 (d_p r)^{-0.09} - \frac{2.356}{d_p} - 0.000777 (d_p r)^2 \Big] + 2.356r \Big(1 - \frac{1}{K_{SR}} \Big) \\ &1926\,\mathrm{VHP} = d_p r \Big[1.046 (d_p r)^{-0.09} - \frac{1.833}{d_p} - 0.000589 (d_p r)^2 \Big] + 1.833r \Big(1 - \frac{1}{K_{SR}} \Big) \\ &2926\,\mathrm{VHP} = d_p r \Big[1.769 (d_p r)^{-0.09} - \frac{4.189}{d_p} - 0.001059 (d_p r)^2 \Big] + 4.189r \Big(1 - \frac{1}{K_{SR}} \Big) \\ &3226\,\mathrm{VHP} = d_p r \Big[2.073 (d_p r)^{-0.09} - \frac{5.236}{d_p} - 0.001217 (d_p r)^2 \Big] + 5.236r \Big(1 - \frac{1}{K_{SR}} \Big) \\ &2530\,\mathrm{VHP} = d_p r \Big[2.395 (d_p r)^{-0.09} - \frac{6.912}{d_p} - 0.001148 (d_p r)^2 \Big] + 6.912r \Big(1 - \frac{1}{K_{SR}} \Big) \\ &3230\,\mathrm{VHP} = d_p r \Big[2.806 (d_p r)^{-0.09} - \frac{7.854}{d_p} - 0.002196 (d_p r)^2 \Big] + 9.818r \Big(1 - \frac{1}{K_{SR}} \Big) \\ &4430\,\mathrm{VHP} = d_p r \Big[3.454 (d_p r)^{-0.09} - \frac{9.687}{d_p} - 0.002196 (d_p r)^2 \Big] + 9.818r \Big(1 - \frac{1}{K_{SR}} \Big) \\ &4436\,\mathrm{VHP} = d_p r \Big[4.041 (d_p r)^{-0.09} - \frac{11.519}{d_p} - 0.002297 (d_p r)^2 \Big] + 11.519r \Big(1 - \frac{1}{K_{SR}} \Big) \\ &4836\,\mathrm{VHP} = d_p r \Big[4.564 (d_p r)^{-0.09} - \frac{13.614}{d_p} - 0.002634 (d_p r)^2 \Big] + 13.614r \Big(1 - \frac{1}{K_{SR}} \Big) \\ \end{aligned}$$

In these equations, d_p = pitch diameter of small sheave, in.; r = rpm of faster shaft divided by 1000; K_{SR} = speed ratio factor given in the accompanying table. These formulas give the basic horsepower rating, corrected for the speed ratio. To obtain the horsepower for arcs of contact other than 180 degrees and for belts longer or shorter than average length, multiply the horsepower obtained from these formulas by the arc of contact correction factor (Table 31).

$\frac{D-d}{C}$	Arc of Contact, θ, on Small Sheave, (deg)	Correction Factor	$\frac{D-d}{C}$	Arc of Contact, θ, on Small Sheave, (deg)	Correction Factor
0.00	180	1.00	0.80	0.80	0.87
0.10	174	0.99	0.90	0.90	0.85
0.20	169	0.97	1.00	1.00	0.82
0.30	163	0.96	1.10	1.10	0.80
0.40	157	0.94	1.20	1.20	0.77
0.50	151	0.93	1.30	1.30	0.73
0.60	145	0.91	1.40	1.40	0.70
0.70	139	0.89	1.50	1.50	0.65

Table 30. Arc of Contact Correction Factors

Table 31. Length Correction Factors

Standard Pitch		Cross Section										
Length Designation	1422V	1922V	2322V	1926V	2926V	3226V	2530V	3230V	4430V	4036V	4436V	4836V
315	0.93											
335	0.94											
355	0.95	0.90		0.90								
375	0.96	0.91		0.91								
400	0.97	0.92	0.90	0.92								
425	0.98	0.93	0.91	0.93								
450	0.99	0.94	0.92	0.94								
475	1.00	0.95	0.93	0.95								
500	1.01	0.95	0.94	0.95			0.90					
530	1.02	0.96	0.95	0.96	0.92		0.92					
560	1.03	0.97	0.96	0.97	0.93	0.92	0.93	0.91	0.90	0.91	0.91	0.92
600	1.04	0.98	0.97	0.98	0.94	0.93	0.94	0.93	0.92	0.93	0.92	0.93
630	1.05	0.99	0.98	0.99	0.95	0.94	0.95	0.94	0.93	0.94	0.93	0.94
670	1.06	1.00	0.99	1.00	0.97	0.95	0.96	0.95	0.94	0.95	0.95	0.95
710	1.07	1.01	1.00	1.01	0.98	0.96	0.98	0.96	0.96	0.96	0.96	0.96
750	1.08	1.02	1.01	1.02	0.99	0.98	0.99	0.97	0.97	0.97	0.97	0.98
800		1.03	1.02	1.03	1.00	0.99	1.00	0.99	0.99	0.99	0.99	0.99
850		1.04	1.03	1.04	1.01	1.00	1.01	1.00	1.00	1.00	1.00	1.00
900		1.05	1.04	1.05	1.02	1.01	1.02	1.01	1.01	1.01	1.01	1.01
950		1.06	1.05	1.06	1.03	1.02	1.04	1.02	1.03	1.02	1.02	1.02
1000		1.07	1.06	1.07	1.04	1.03	1.05	1.03	1.04	1.03	1.04	1.03
1060		1.08	1.07	1.07	1.06	1.04	1.06	1.05	1.06	1.05	1.05	1.04
1120		1.09	1.08	1.08	1.07	1.06	1.07	1.06	1.07	1.06	1.06	1.06
1180		1.09	1.09	1.09	1.08	1.07	1.08	1.07	1.08	1.07	1.07	1.07
1250					1.09	1.08	1.10	1.08	1.10	1.08	1.09	1.08
1320						1.09		1.09	1.11	1.09	1.10	1.09

Rim Speed: The material and design selected for sheaves must be capable of withstanding the high rim speeds that may occur in variable-speed drives. The rim speed is calculated as follows: Rim speed (fpm) = $(\pi/12) (D_o)$ (rpm).

60 Degree V-Belts.—60 degree V-belts are ideal for compact drives. Their 60 degree angle and ribbed top are specifically designed for long life on small diameter sheaves. These belts offer extremely smooth operation at high speeds (in excess of 10,000 rpm) and can be used on drives with high speed ratios. They are available in 3M, 5M, 7M, and 11M (3, 5, 7, 11 mm) cross sections (top widths) and are commonly found in the joined configuration, which provides extra stability and improved performance. They are specified by cross section and nominal length; for example, a 5M315 designation indicates a belt having a 5 mm cross section and an effective length of 315 mm.

Speed Ratio ^a	K _{SR}	Speed Ratio ^a	K _{SR}
1.00-1.01	1.0000	1.19-1.24	1.0719
1.02-1.04	1.0136	1.25-1.34	1.0875
1.05-1.08	1.0276	1.35-1.51	1.1036
1.09-1.12	1.0419	1.52-1.99	1.1202
1.13-1.18	1.0567	2.0 and over	1.1373

Speed Ratio Correction Factors

 ${}^{a}D_{p}/d_{p}$, where $D_{p}(d_{p})$ is the pitch diameter of the large (small) sheave.

Arc of contact on the small sheave may be determined by the formulas:

Exact Formula: Arc of Contact (deg) = $2\cos^{-1}\left(\frac{D-d}{2C}\right)$

Approximate Formula:

Arc of Contact (deg) =
$$180 - \frac{(D-d)60}{C}$$

where D = Pitch diameter of large sheave or flat pulley, inch

d = Pitch diameter of small sheave, inch

C =Center distance, inch

Industry standards have not yet been published for 60 degree V-belts. Therefore, belt manufacturers should be contacted for specific applications, specifications, and additional information.

Synchronous Belts ANSI/RMA IP-24.—Synchronous belts are also known as timing or positive-drive belts. These belts have evenly spaced teeth on their surfaces, which mesh with teeth on pulleys or sprockets to produce a positive, no-slip transmission of power. Such designs should not be confused with molded notched V-belts, which transmit power by means of the wedging action of the V-shape.

Synchronous belts are used where driven shaft speeds must be synchronized to the rotation of the driver shaft and to eliminate the noise and maintenance problems of chain drives.

Standard Timing Belts: Conventional trapezoidal, or rectangular tooth, timing belts come in six cross sections, which relate to the pitch of the belt. Pitch is the distance from center to center of the teeth. The six basic cross sections or pitches are MXL (mini extra light), XL (extra light), L (light), H (heavy), XH (extra heavy), and XXH (double extra heavy) (Fig. 12). Belts are specified by pitch length, cross section (pitch), and width.

Double-sided timing belts have identical teeth on both sides of the belt and are used where synchronization is required from each belt face. They are available in XL, L, and H cross sections.

Size Designations: Synchronous belt sizes are identified by a standard number. The first digits specify the belt length to 0.1 in. followed by the belt section (pitch) designation. The digits following the belt section designation represent the nominal belt width times 100. For example, an L section belt 30.000 in. pitch length and 0.75 in. in width would be specified as a 300L075 synchronous belt.

Fig. 12. Standard Synchronous Belt Sections

The RMA nomenclature for double-sided belts is the same as for single-sided belts with the addition of the prefix "D" in front of the belt section. However, some manufacturers use their own designation system for double-sided belts.

Standard Sections: Belt sections are specified in terms of pitch. Table 33 gives the Standard Belt Sections and their corresponding pitches.

Pitch Lengths: Standard belt pitch lengths, belt length designations, and numbers of teeth are shown in Table 34. Belt length tolerances are also given in this table; these tolerances apply to all belt sections and represent the total manufacturing tolerance on belt length.

Table 32. Synchronous Belt Standard Pulley and Flange Dimensions ANSI/RMA IP-24, 1983

	Flanged Pulley	Unflanged	Fla out dian Pulley	0.03 in. max rad. Flan, nge flan, side term Fulley outsid diameter Flange Dime	8° min 25° ma Bre cor ti Flange thickn ensions	ix Pak ner 2 ess
Belt	Standard Nominal	Standard Pulley	Minimum	Pulley Width	Flan	ge
Section	Pulley Width	Width Designation	Flanged b _f	Unflanged b'_{f}	Thickness (min)	Height ^a (min)
MXL	0.25	025	0.28	0.35	0.023	0.020
XL	0.38	037	0.41	0.48	0.029	0.040
	0.50	050	0.55	0.67		
L	0.75	075	0.80	0.92	0.050	0.065
	1.00	100	1.05	1.17		
	1.00	100	1.05	1.23		
н	1.50	150	1.55	1.73	0.050	0.080
	2.00	200	2.08	2.26		
	3.00	300	3.11	3.29		
XH	2.00	200	2.23	2.46	0.000	0.100
	5.00	300	3.30	3.50	0.098	0.190
NVIII	4.00	400	4.36	4.59		
лхн	2.00	200	2.23	2.52		
	5.00	500	3.30	3.59	0.127	0.245
	4.00	400	4.30	4.05		
	5.00	500	5.42	5.12		

Nominal Tooth Dimensions: Table 33 shows the nominal tooth dimensions for each of the standard belt sections. Tooth dimensions for single- and double-sided belts are identical.

Table 33. Synchronous Belt Nominal Tooth and Section Dimensions ANSI/RMP IP-24, 1983

All dimensions in inches.

		Permissible Deviation		Number	of Teeth fo	or Standard	l Lengths				Permissible Deviation		Number	of Teeth fo	or Standard	d Lengths	
Belt Length Designation	Pitch Length	From Standard Length	MXL (0.080)	XL (0.200)	L (0.375)	H (0.500)	XH (0.875)	XXH (1.250)	Belt Length Designation	Pitch Length	From Standard Length	MXL (0.080)	XL (0.200)	L (0.375)	H (0.500)	XH (0.875)	XXH (1.250)
36	3.600	±0.016	45						230	23.000	±0.024		115				
40	4.000	±0.016	50						240	24.000	±0.024		120	64	48		
44	4.400	±0.016	55						250	25.000	±0.024		125				
48	4.800	±0.016	60						255	25.500	±0.024			68			
56	5.600	±0.016	70						260	26.000	±0.024		130				
60	6.000	±0.016	75	30					270	27.000	±0.024			72	54		
64	6.400	±0.016	80						285	28.500	±0.024			76			
70	7.000	±0.016		35					300	30.000	±0.024			80	60		
72	7.200	±0.016	90						322	32.250	±0.026			86			
80	8.000	±0.016	100	40					330	33.000	±0.026				66		
88	8.800	±0.016	110						345	34.500	±0.026			92			
90	9.000	±0.016		45					360	36.000	±0.026				72		
100	10.000	±0.016	125	50					367	36.750	±0.026			98			
110	11.000	±0.018		55					390	39.000	±0.026			104	78		
112	11.200	±0.018	140						420	42.000	±0.030			112	84		
120	12.000	±0.018		60					450	45.000	±0.030			120	90		
124	12.375	±0.018			33				480	48.000	±0.030			128	96		
124	12.400	±0.018	155						507	50.750	±0.032					58	
130	13.000	±0.018		65					510	51.000	±0.032			136	102		
140	14.000	±0.018	175	70					540	54.000	±0.032			144	108		
150	15.000	±0.018		75	40				560	56.000	±0.032					64	
160	16.000	±0.020	200	80					570	57.000	±0.032				114		
170	17.000	±0.020		85					600	60.000	±0.032			160	120		
180	18.000	±0.020	225	90					630	63.000	±0.034				126	72	
187	18.750	±0.020			50				660	66.000	±0.034				132		
190	19.000	±0.020		95					700	70.000	±0.034				140	80	56
200	20.000	±0.020	250	100					750	75.000	±0.036				150		
210	21.000	±0.024		105	56				770	77.000	±0.036					88	
220	22.000	±0.024		110					800	80.000	±0.036				160		64
225	22.500	±0.024			60				840	84.000	±0.038					96	

Table 34. Synchronous Belt Standard Pitch Lengths and Tolerances ANSI/RMA IP-24, 1983

All dimensions in inches.

FLEXIBLE BELTS AND SHEAVES

	Standard E	Belt Widths	Tolerances of	n Width for Belt Pitch I	.engths
Belt Section	Designation	Dimensions	Up to and including 33 in.	Over 33 in. up to and including 66 in.	Over 66 in.
MXL (0.080)	012 019 025	0.12 0.19 0.25	+0.02 -0.03		
XL (0.200)	025 037	0.25 0.38	+0.02 -0.03		
L (0.375)	050 075 100	0.50 0.75 1.00	+0.03 -0.03	+0.03 -0.05	
	075 100 150	0.75 1.00 1.50	+0.03 -0.03	+0.03 -0.05	+0.03 -0.05
H (0.500)	200	2.00	+0.03 -0.05	+0.05 -0.05	+0.05 -0.06
	300	3.00	+0.05 -0.06	+0.06 -0.06	+0.06 -0.08
XH (0.875)	200 300 400	2.00 3.00 4.00		+0.19 -0.19	+0.19 -0.19
XXH (1.250)	200 300 400 500	2.00 3.00 4.00 5.00			+0.19 -0.19

 Table 35. Synchronous Belt Standard Widths and Tolerances

 ANSI/RMA IP-24, 1983

Length Determination.: The pitch length of a synchronous belt is determined by placing the belt on a measuring fixture having two pulleys of equal diameter, a method of applying force, and a means of measuring the center distance between the two pulleys. The position of one of the two pulleys is fixed and the other is movable along a graduated scale.

Synchronous Belt Pulley Diameters: Table 36 lists the standard pulley diameters by belt section (pitch). Fig. 13 defines the pitch, pitch diameter, outside diameter and pitch line differential.

Fig. 13. Synchronous Belt Pulley Dimensions

						Belt S	lection					
	MX	L (0.080)	XL	(0.200)	L (0.375)	Н	(0.500)	XH	(0.875)	XXH	(1.250)
Number	Di	iameters	Dia	meters	Dia	meters	Di	ameters	Dia	meters	Dia	meters
Grooves	Pitch	Outside	Pitch	Outside	Pitch	Outside	Pitch	Outside	Pitch	Outside	Pitch	Outside
10	0.255	0.235	0.637	0.617	1.194 ^a	1.164						
12	0.306	0.286	0.764	0.744	1.432 ^a	1.402						
14	0.357	0.337	0.891	0.871	1.671	1.641	2.228 ^a	2.174				
16	0.407	0.387	1.019	0.999	1.910	1.880	2.546	2.492				
18	0.458	0.438	1.146	1.126	2.149	2.119	2.865	2.811	5.013	4.903	7.162	7.042
20	0.509	0.489	1.273	1.253	2.387	2.357	3.183	3.129	5.570	5.460	7.958	7.838
22	0.560	0.540	1.401	1.381	2.626	2.596	3.501	3.447	6.127	6.017	8.754	8.634
24	0.611	0.591	1.528	1.508	2.865	2.835	3.820	3.766	6.685	6.575	9.549	9.429
26	0.662	0.642			3.104	3.074	4.138	4.084	7.242	7.132	10.345	10.225
28	0.713	0.693	1.783	1.763	3.342	3.312	4.456	4.402	7.799	7.689		
30	0.764	0.744	1.910	1.890	3.581	3.551	4.775	4.721	8.356	8.246	11.937	11.817
32	0.815	0.795	2.037	2.017	3.820	3.790	5.093	5.039	8.913	8.803		
34	0.866	0.846									13.528	13.408
36	0.917	0.897	2.292	2.272	4.297	4.267	5.730	5.676				
40	1.019	0.999	2.546	2.526	4.775	4.745	6.366	6.312	11.141	11.031	15.915	15.795
42	1.070	1.050	2.674	2.654								
44	1.120	1.100	2.801	2.781	5.252	5.222	7.003	6.949				
48	1.222	1.202	3.056	3.036	5.730	5.700	7.639	7.585	13.369	13.259	19.099	18.979
60	1.528	1.508	3.820	3.800	7.162	7.132	9.549	9.495	16.711	16.601	23.873	23.753
72	1.833	1.813	4.584	4.564	8.594	8.564	11.459	11.405	20.054	19.944	28.648	28.528
84					10.027	9.997	13.369	13.315	23.396	23.286		
90											35.810	35.690
96							15.279	15.225	26.738	26.628		
120							19.099	19.045	33.423	33.313		

Table 36. Synchronous Belt Standard Pulley Diameters ANSI/RMA IP-24, 1983

All dimensions in inches.

* Usually not available in all widths -- consult supplier.

FLEXIBLE BELTS AND SHEAVES

Widths: Standard pulley widths for each belt section are shown in Table 32. The nominal pulley width is specified in terms of the maximum standard belt width the pulley will accommodate. The minimum pulley width, whether flanged or unflanged, is also shown in Table 32, along with flange dimensions and various pulley tolerances.

Pulley Size Designation: Synchronous belt pulleys are designated by the number of grooves, the belt section, and a number representing 100 times the nominal width. For example, a 30 groove L section pulley with a nominal width of 0.75 in. would be designated by 30L075. Pulley tolerances are shown in Table 37.

	Outside	Pitch to	Pitch Tolerance
Outside Diameter Range	Diameter Tolerance	Adjacent Grooves	Accumulative Over 90 Degrees
Up thru 1.000	+0.002 -0.000	±0.001	±0.003
Over 1.000 to and including 2.000	+0.003 -0.000	±0.001	±0.004
Over 2.000 to and including 4.000	+0.004 -0.000	±0.001	±0.005
Over 4.000 to and including 7.000	+0.005	±0.001	±0.005
Over 7.000 to and including 12 000	+0.006	±0.001	±0.006
Over 12.000 to and including 20.000	+0.007	±0.001	±0.007
Over 20.000	+0.008 -0.000	±0.001	±0.008
Radial	Runout ^a	A	xial Runout ^b
For outside diameters 8.0 in. a	nd under 0.005 in.	For outside diameters 1.0	in. and under 0.001 in.
For each additional inch of out	side diameter add 0.0005 in.	For each additional inch o in., add 0.001 in.	of outside diameter up through 10.0
		For each additional inch o 0.0005 in.	of outside diameter over 10.0 in., add

Table 37. Pulley Tolerances (All Sections)

^a Flange outside diameter equals pulley outside diameter plus twice flange height.

^b Total indicator reading.

All dimensions in inches.

Cross Section Selection: The chart (Fig. 14) may be used as a guide to the selection of a synchronous belt for any combination of design horsepower and speed of the faster shaft. When the intersection of the design horsepower and speed of the faster shaft falls near a line between two areas on the chart, the possibilities in both areas should be explored. Special circumstances (such as space limitations) may result in selection of a belt cross section different from that indicated in the chart. Belt manufacturers should be contacted for specific data.

Torque Ratings: It is customary to use torque load requirements rather than horsepower load when designing drives using the small pitch MXL section belts. These belts operate on small diameters resulting in relatively low belt speeds, so torque is essentially constant for all rpm. The torque rating formulas for MXL sections are:

 $Q_r = d[1.13 - 1.38 \times 10^{-3} d^2]$ for belt width = 0.12 in. $Q_r = d[1.88 - 2.30 \times 10^{-3} d^2]$ for belt width = 0.19 in. $Q_r = d[2.63 - 3.21 \times 10^{-3} d^2]$ for belt width = 0.25 in.

where Q_r = the maximum torque rating (lbf-in.) for a belt of specified width having six or more teeth in mesh and a pulley surface speed of 6500 fpm or less. Torque ratings for drives with less than six teeth in mesh must be corrected as shown in Table 38. d = pitch diameter of smaller pulley, inch.

Fig. 14. Selection of Synchronous Belt Cross Section

Table 38. Teeth in Mesh Factor

Teeth in Mesh	Factor K _z	Teeth in Mesh	Factor K _z
6 or more	1.00	3	0.40
5	0.80	2	0.20
4	0.60		

Horsepower Rating Formulas: The horsepower rating formulas for synchronous belts, other than the MLX section, are determined from the following formulas, where the number in parentheses is the belt width in inches.

 $XL(0.38)HP = dr[0.0916 - 7.07 \times 10^{-5} (dr)^{2}]$ $L(1.00)HP = dr[0.436 - 3.01 \times 10^{-4} (dr)^{2}]$ $H(3.00)HP = dr[3.73 - 1.41 \times 10^{-3} (dr)^{2}]$ $XH(4.00)HP = dr[7.21 - 4.68 \times 10^{-3} (dr)^{2}]$ $XXH(5.00)HP = dr[11.4 - 7.81 \times 10^{-3} (dr)^{2}]$

where HP = the maximum horsepower rating recommended for the specified standard belt width having six or more teeth in mesh and a pulley surface speed of 6500 fpm or less. Horsepower ratings for drives with less than six teeth in mesh must be corrected as shown in Table 38. d = pitch diameter of smaller pulley, in. r = rpm of faster shaft divided by 1000. Total horsepower ratings are the same for double-sided as for single-sided belts. Contact manufacturers for percentage of horsepower available for each side of the belt.

Finding the Required Belt Width: The belt width should not exceed the small pulley diameter or excessive side thrust will result.

Torque Rating Method (MXL Section): Divide the design torque by the teeth in mesh factor to obtain the corrected design torque. Compare the corrected design torque with the torque rating given in Table 39 for the pulley diameter being considered. Select the narrowest belt width that has a torque rating equal to or greater than the corrected design torque.

Belt		Rated Torque (lbf-in.) for Small Pulley (Number of Grooves and Pitch Diameter, in.)												
Width, (in.)	10MXL 0.255	12MXL 0.306	14MXL 0.357	16MXL 0.407	18MXL 0.458	20MXL 0.509	22MXL 0.560	24MXL 0.611	28MXL 0.713	30MXL 0.764				
0.12	0.29	0.35	0.40	0.46	0.52	0.57	0.63	0.69	0.81	0.86				
0.19	0.48	0.58	0.67	0.77	0.86	0.96	1.05	1.15	1.34	1.44				
0.25	0.67	0.80	0.94	1.07	1.20	1.34	1.47	1.61	1.87	2.01				

Table 39. Torque Rating for MXL Section (0.080 in. Pitch)

Horsepower Rating Method (XL, L, H, XH, and XXH Sections): Multiply the horsepower rating for the widest standard belt of the selected section by the teeth in mesh factor to obtain the corrected horsepower rating. Divide the design horsepower by the corrected horsepower rating to obtain the required belt width factor. Compare the required belt width factor with those shown in Table 40. Select the narrowest belt width that has a width factor equal to or greater than the required belt width factor.

Table 40. Belt Width Factor

Belt					Be	t Width (in.)					
Section	0.12	0.19	0.25	0.38	0.50	0.75	1.00	1.50	2.00	3.00	4.00	5.00
MXL (0.080)	0.43	0.73	1.00									
XL (0.200)			0.62	1.00								
L (0.375)					0.45	0.72	1.00					
H (0.500)						0.21	0.29	0.45	0.63	1.00		
XH (0.875)									0.45	0.72	1.00	
XXH (1.250)									0.35	0.56	0.78	1.00

Drive Selection: Information on design and selection of synchronous belt drives is available in engineering manuals published by belt manufacturers. Manufacturers should be consulted on such matters as preferred stock sizes, desirable speeds, center distances, etc.

Minimum Pulley Size: The recommended minimum pulley size depends on the rpm of the faster shaft. Minimum sheave diameters for each cross-section belt are listed in Table 36.

Selection of Flanged Pulleys: To determine when to use flanged pulleys, consider the following conditions:

1) On all two-pulley drives, the minimum flanging requirements are two flanges on one pulley, or one flange on each pulley on opposite sides.

2) On drives where the center distance is more than eight times the diameter of the small pulley, both pulleys should be flanged on both sides.

3) On vertical shaft drives, one pulley should be flanged on both sides and other pulleys in the system should be flanged on the bottom side only.

4) On drives with more than two pulleys, the minimum flanging requirements are two flanges on every other pulley, or one flange on every pulley, alternating sides around the system.

Service Factors: Service factors for V-belts are listed in Table 41 and for synchronous belts in Table 42.

Belt Storage and Handling.—To achieve maximum belt performance, proper belt storage procedures should always be practiced. If belts are not stored properly, their performance can be adversely affected. Four key rules are:

1) Do not store belts on floors unless they are protected by appropriate packaging.

2) Do not store belts near windows where the belts may be exposed to direct sunlight or moisture.

3) Do not store belts near electrical devices that may generate ozone (transformers, electric motors, etc.).

4) Do not store belts in areas where solvents or chemicals may be present in the atmosphere.

Driving Unit	AC Motors: Normal Torque, Squirrel Cage, Synchronous a DC Motors: Shunt Wound. Engines: Multiple Cylinder Internal Combustion.	nd Split Phase.		
	Types of Driven Machines	Intermittent Service (3–5 hours daily or seasonal)	Normal Service (8–10 hours daily)	Continuous Service (16–24 hours daily)
Agitators compress	for liquids; Blowers and exhausters; Centrifugal pumps & ors; Fans up to 10 horsepower; Light duty conveyors	1.1	1.2	1.3
Belt conv horsepow tools; Pur placemen	eyors for sand, grain, etc.; Dough mixers; Fans over 10 er; Generators; Line shafts; Laundry machinery; Machine nches, presses, shears; Printing machinery; Positive dis- trotary pumps; Revolving and vibrating screens	1.2	1.3	1.4
Brick ma Conveyor Piston pu and wood	chinery: Bucket elevators; Exciters; Piston compressors; s (drag, pan, screw); Hammer mills; Paper mill beaters; mps: Positive displacement blowers; Pulverizers; Saw mill lworking machinery; Textile machinery	1.4	1.5	1.6
Crushers calendars	(gyratory, jaw, roll); Mills (ball, rod, tube); Hoists; Rubber a, extruders, mills	1.5	1.6	1.8
Driving Unit	AC Motors: High Torque, High Slip, Repulsion-Induction, DC Motors: Series Wound, Compound Wound. Engines: Single Cylinder Internal Combustion. Line Shafts	Single Phase, Serie	s Wound, Slip I	Ring.
Driving Unit	AC Motors: High Torque, High Slip, Repulsion-Induction, DC Motors: Series Wound, Compound Wound. Engines: Single Cylinder Internal Combustion. Line Shafts Types of Driven Machines	Single Phase, Serie <i>c, Clutches</i> Intermittent Service (3–5 hours daily or seasonal)	s Wound, Slip I Normal Service (8–10 hours daily)	Continuous Service (16–24 hours daily)
Driving Unit Agitators compress	AC Motors: High Torque, High Slip, Repulsion-Induction, DC Motors: Series Wound, Compound Wound. Engines: Single Cylinder Internal Combustion. Line Shafts Types of Driven Machines for liquids; Blowers and exhausters: Centrifugal pumps & ors; Fans up to 10 horsepower; Light duty conveyors	Single Phase, Serie s, Clutches Intermittent Service (3–5 hours daily or seasonal) 1.1	Normal Service (8–10 hours daily) 1.2	Continuous Service (16–24 hours daily) 1.3
Driving Unit Agitators compress Belt conv horsepow tools; Pur placemen	AC Motors: High Torque, High Slip, Repulsion-Induction, DC Motors: Series Wound, Compound Wound. Engines: Single Cylinder Internal Combustion. Line Shafts Types of Driven Machines for liquids; Blowers and exhausters; Centrifugal pumps & ors; Fans up to 10 horsepower; Light duty conveyors eyors for sand, grain, etc.; Dough mixers; Fans over 10 er; Generators; Line shafts; Laundry machinery; Machine tohes, presses, shears; Printing machinery; Positive dis- trotary pumps; Revolving and vibrating screens	Single Phase, Serie <i>c, Clutches</i> Intermittent Service (3–5 hours daily or seasonal) 1.1 1.2	s Wound, Slip l Normal Service (8–10 hours daily) 1.2 1.3	Ring. Continuous Service (16-24 hours daily) 1.3 1.4
Driving Unit Agitators compress Belt conv horsepow tools; Puu placemen Brick ma Conveyon Piston pu and wood	AC Motors: High Torque, High Slip, Repulsion-Induction, DC Motors: Series Wound, Compound Wound. Engines: Single Cylinder Internal Combustion. Line Shafts Types of Driven Machines for liquids; Blowers and exhausters; Centrifugal pumps & ors; Fans up to 10 horsepower; Light duty conveyors eyors for sand, grain, etc.; Dough mixers; Fans over 10 er; Generators; Line shafts; Laundry machinery; Machine tches, presses, shears; Printing machinery; Nachine tches, presses, shears; Printing machinery; Positive dis- trotary pumps; Revolving and vibrating screens chinery; Bucket levators; Exciters; Piston compressors; s (drag, pan, screw); Hammer mills; Paper mill beaters; mps; Positive displacement blowers; Pulverizer; Saw mill working machinery; Texile machinery	Single Phase, Serie Clutches Intermittent Service (3–5 hours daily or seasonal) 1.1 1.2 1.4	s Wound, Slip I Normal Service (8-10 hours daily) 1.2 1.3 1.5	Ring. Continuous Service (16–24 hours daily) 1.3 1.4 1.6

Table 41. Service Factors for V-Belts

The machines listed above are representative samples only. Select the group listed above whose load characteristics most closely approximate those of the machine being considered.

Belts should be stored in a cool, dry environment. When stacked on shelves, the stacks should be short enough to avoid excess weight on the bottom belts, which may cause distortion. When stored in containers, the container size and contents should be sufficiently limited to avoid distortion.

V-Belts: A common method is to hang the belts on pegs or pin racks. Very long belts stored this way should use sufficiently large pins or crescent shaped "saddles" to prevent their weight from causing distortion.

Joined V-belts, Synchronous Belts, V-Ribbed Belts: Like V-belts, these belts may be stored on pins or saddles with precautions taken to avoid distortion. However, belts of this type up to approximately 120 in. are normally shipped in a "nested" configuration and should be stored in the same manner. Nests are formed by laying a belt on its side on a flat surface and placing as many belts inside the first belt as possible without undue force. When the nests are tight and are stacked with each rotated 180° from the one below, they may be stacked without damage.

Belts of this type over 120 in. may be "rolled up" and tied for shipment. These rolls may be stacked for easy storage. Care should be taken to avoid small bend radii which could damage the belts.

	-			
Driving Units	AC Motors: Normal Torque, Squirrel Cage DC Motors: Shunt Wound. Engines: Multip	e, Synchronous and ble Cylinder Interna	Split Phase. l Combustion.	
	Types of Driven Machines	Intermittent Service (3–5 hours daily or seasonal)	Normal Service (8–10 hours daily)	Continuous Service (16–24 hours daily)
Display, I Instrumer	Dispensing, Projection, Medical equipment; ntation; Measuring devices	1.0	1.2	1.4
Appliance Wood lat	es, sweepers, sewing machines; Office equipment; hes, band saws	1.2	1.4	1.6
Conveyor	s: belt, light package, oven, screens, drums, conical	1.3	1.5	1.7
Agitators Screw ma Paper, Pri	for liquids; Dough mixers; Drill presses, lathes; achines, jointers; Circular saws, planes; Laundry, nting machinery	1.4	1.6	1.8
Agitators Conveyor Machine Pumps: c	for semiliquids; Brick machinery (except pug mills); belt: ore, coal, sand; Line shafts; tools: grinder, shaper, boring mill, milling machines; entrifugal, gear, rotary	1.5	1.7	1.9
Conveyor blowers; o Hoists, el Textile m	: apron, pan, bucket, elevator; Extractors, washers; Fans, centifugal, induced draft exhausters; Generators & exciters; evators; Rubber calenders, mills, extruders; Saw mill, achinery inc. looms, spinning frames, twisters	1.6	1.8	2.0
Centrifug	es; Conveyors: flight, screw; Hammer mills; Paper pulpers	1.7	1.9	2.1
Brick & o blowers	clay pug mills; Fans, blowers, propeller mine fans, positive	1.8	2.0	2.2
Driving Units	AC Motors: High Torque, High Slip, Repulsion-Induction DC Motors: Series Wound and Compound Wound. Engin Line Shafts. Clutches.	n, Single Phase Seri nes: Single Cylinder	es Wound and S Internal Comb	Slip Ring. oustion.
	Types of Driven Machines	Intermittent Service (3–5 hours daily or seasonal)	Normal Service (8–10 hours daily)	Continuous Service (16-24 hours daily)
Display, I Instrume	Dispensing, Projection, Medical equipment; ntation; Measuring devices	1.2	1.4	1.6
Appliance Wood lat	es, sweepers, sewing machines; Office equipment; hes, band saws	1.4	1.6	1.8
Conveyor	rs: belt, light package, oven, screens, drums, conical	1.5	1.7	1.9
Agitators Screw ma Paper, Pr	for liquids; Dough mixers; Drill presses, lathes; the schines, jointers; Circular saws, planes; Laundry, inting machinery	1.6	1.8	2.0
Agitators Conveyor Machine Pumps: c	for semiliquids; Brick machinery (except pug mills); belt: ore, coal, sand; Line shafts; tools:grinder, shaper, boring mill, milling machines; entrifugal, gear, rotary	1.7	1.9	2.1
Conveyor blowers; o Hoists, el Textile m	: apron, pan, bucket, elevator; Extractors, washers; Fans, centifugal, induced draft exhausters; Generators & exciters; evators; Rubber calenders, mills, extruders; Saw mill, achinery inc. looms, spinning frames, twisters	1.8	2.0	2.2
Centrifug	es; Conveyors: flight, screw; Hammer mills; Paper pulpers	1.9	2.1	2.3
Brick & c positive	slay pug mills; Fans, blowers, propeller mine fans, blowers	2.0	2.2	2.4

Table 42. Service Factors for Synchronous Belt Drives

Synchronous belts will not slip, and therefore must be belted for the highest loadings anticipated in the system. A minimum service factor of 2.0 is recommended for equipment subject to chocking.

Variable Speed Belts: Variable speed belts are more sensitive to distortion than most other belts, and should not be hung from pins or racks but stored on shelves in the sleeves in which they are shipped.

SAE Standard V-Belts.—The data for V-belts and pulleys shown in Table 43 cover nine sizes, three of which — 0.250, 0.315, and 0.440 — were added in 1977 to conform to existing practice. This standard was reaffirmed in 1987.

Nominal diameter K Nominal diameter R								
SAE Size	Recommended Min. Eff Dia ^a	A Groove Angle (deg) ±0.5	W Eff. Groove Width	D Groove Depth Min	d Ball or Rod Dia (±0.0005)	$\begin{array}{c} 2K\\ 2\times \text{Ball}\\ \text{Extension} \end{array}$	2 <i>X</i> ^b	S Groove ^c Spacing (±0.015)
0.250 0.315 0.380 0.440 0.500	2.25 2.25 2.40 2.75 3.00	36 36 36 36 36	0.248 0.315 0.380 0.441 0.500	0.276 0.354 0.433 0.512 0.551	0.2188 0.2812 0.3125 0.3750 0.4375	0.164 0.222 0.154 0.231 0.314	0.04 0.05 0.06 0.07 0.08	0.315 0.413 0.541 0.591 0.661
11/16	3.00 Over 4.00 Over 6.00	34 36 38	0.597	0.551	0.500	0.258 0.280 0.302	0.00	0.778
3⁄4	3.00 Over 4.00 Over 6.00	34 36 38	0.660	0.630	0.5625	0.328 0.352 0.374	0.02	0.841
7/8	3.50 Over 4.50 Over 6.00	34 36 38	0.785	0.709	0.6875	0.472 0.496 0.520	0.04	0.966
1	4.00 Over 6.00 Over 8.00	34 36 38	0.910	0.827	0.8125	0.616 0.642 0.666	0.06	1.091

Table 43. SAE V-Belt and Pulley Dimensions

^a Pulley effective diameters below those recommended should be used with caution, because power transmission and belt life may be reduced.

^bThe X dimension is radial; 2X is to be subtracted from the effective diameter to obtain "pitch diameter" for speed ratio calculations.

^c These values are intended for adjacent grooves of the same effective width (*W*). Choice of pulley manufacture or belt design parameter may justify variance from these values. The S dimension should be the same on all multiple groove pulleys in a drive using matched belts. © 1990, SAE, Inc.

All dimensions in inches.

V-belts are produced in a variety of constructions in a basic trapezoidal shape and are to be dimensioned in such a way that they are functional in pulleys dimensioned as described in the standard. Standard belt lengths are in increments of $\frac{1}{2}$ inch up to and including 80 inches. Standard lengths above 80 inches up to and including 100 inches are in increments of 1 inch, without fractions. Standard belt length tolerances are based on the center distance and are as follows: For belt lengths of 50 inches or less, ± 0.12 inch; over 50 to 60 inches, inclusive, ± 0.16 inch; over 60 to 80 inches, inclusive, ± 0.19 ; and over 80 to 100 inches, inclusive, ± 0.22 .