Salsa20/8 and Salsa20/12

Daniel J. Bernstein *

Department of Mathematics, Statistics, and Computer Science (M/C 249)
The University of Illinois at Chicago
Chicago, 1L 60607-7045
snuffle@box.cr.yp.to

Introduction. This document formally proposes two variants of the Salsa20
stream cipher:

e Salsa20/8, which is Salsa20 reduced from 20 rounds to 8 rounds; and
e Salsa20/12, which is Salsa20 reduced from 20 rounds to 12 rounds.

There are no known attacks on Salsa20/8, Salsa20/12, or the original Salsa20/20.
Paul Crowley has published an attack (taking 2'%® operations) on Salsa20/5, so
the security margin in Salsa20/8 is obviously not huge; but the other eSTREAM
submissions generally have no security margin at all.

The sole purpose of reducing the number of rounds is to save time. Salsa20/8
is spectacularly fast in software; see below for detailed timings of Salsa20/8
in various situations. One can also expect Salsa20/8 to perform very well in
hardware; no timings are available at this point, but this document discusses
the resources required for a Salsa20/8 hardware implementation.

Do Salsa20/8 and Salsa20/12 replace Salsa20/207 No. This issue was
already covered in the original Salsa20 design document: “Should there be fewer
rounds? I’'m comfortable with the 20 rounds of Salsa20 as being far beyond what
I’'m able to break. Perhaps it will turn out that, after more extensive attempts at
cryptanalysis, the community is comfortable with a smaller number of rounds;
I can imagine using a smaller number of rounds for the sake of speed. On the
other hand, Salsa20 will still have its place as a conservative design that is fast
enough for practically all applications.”

I'd be utterly astonished to see a successful attack on Salsa20/20, the original
20-round Salsa20. I can’t express the same confidence about the other ciphers
submitted to eSTREAM, or about AES/10, or about Salsa20/8. The literature
has many examples of ciphers that weren’t designed with large security margins,
that seemed to withstand cryptanalysis for a while, and that were finally broken
by a slight advance in cryptanalysis.

On the other hand, 10-round AES has survived without a large security
margin. Perhaps cryptography doesn’t need large security margins. Perhaps

* The author carried out this work while visiting Denmark Technical University. The
author was also supported by the Alfred P. Sloan Foundation. Date of this document:
2006.02.07. Permanent ID of this document: 6975039c50783e7d4d93229a58305aa6.
This document is final and may be freely cited.

Salsa20/8 will survive too. Even if Salsa20/8 is broken, I wouldn’t be surprised
to see Salsa20/12 withstanding all attacks.

One can draw an analogy here between Salsa20 and Serpent. The original 20-
round Salsa20, like the original 32-round Serpent, was designed to achieve the
maximum possible confidence subject to specified performance goals. In both
cases, it’s interesting to consider reduced-round variants that don’t inspire as
much confidence but that provide better performance.

One flaw in the analogy is that Salsa20/20 is, in absolute terms, more than
twice as fast as Serpent/32. (It’s clear to me that Serpent suffers from being a
16-byte block cipher; Salsa20 diffuses changes through a much larger block.) For
example, on the Pentium III, Salsa20/8 streams at about 6 cycles per byte;
Salsa20/20 and Serpent/13 stream at about 14 cycles per byte; Serpent/32
streams at about 35 cycles per byte. Some applications are unable to afford
35 cycles per byte; fewer applications are unable to afford 14 cycles per byte.

What about Salsa20/9, Salsa20/10, Salsa20/11, etc.? I don’t think there’s
any point in taking such tiny steps, except to mark advances in cryptanalysis.
Assume, for example, that Salsa20/r is secure for all » > 10. What application
would notice the slowdown from Salsa20/10 to Salsa20/127 Salsa20/10 would
also annoy software and hardware implementors who want to unroll 4 rounds
for the sake of speed.

How fast is Salsa20/8 in software? I added a Salsa20/8 implementation
to version 156 of ECRYPT’s stream-cipher timing suite. I timed Salsa20/8 in
several different situations:

“40k”: set up key, set up nonce, and encrypt 40-byte packet.
“40”: set up nonce and encrypt 40-byte packet.

“576”: set up nonce and encrypt 576-byte packet.

“1500”: set up nonce and encrypt 1500-byte packet.

“long”: encrypt one long stream.

“agility”: encrypt many parallel streams in 256-byte blocks.

The following table shows the results, all expressed in cycles per encrypted byte,
as in [1]:

PPCPPC A64 Athl PM HP P3 SP P3 P3 P4 P1 P4

G4 G5H Alpha 695 68a III 673 6bl f12 52c {29

40k 12.4 12.0 14.2 16.2 19.7 24.3 27.9 21.6 22.4 25.2 25.1 26.1 29.0 36.9
40 10.7 11.3 12.6 14.2 18.8 22.4 26.0 20.2 20.8 23.1 23.0 23.8 25.4 34.2
576 21 33 39 50 62 59 6.0 68 6.8 70 7.0 80 9.2 84
1500 2.2 34 39 51 63 59 63 69 69 70 69 81 92 83
long 2.0 32 36 48 60 55 58 65 66 66 66 76 93 7.6
agility 2.7 58 49 6.7 69 65 64 79 7.8 7.6 7.9 9.7 10.7 10.1

For example, to set up a nonce and encrypt a 576-byte packet, Salsa20/8
takes 2.1 cycles per encrypted byte (about 1200 cycles overall) on a PowerPC
G4, and 8.4 cycles per encrypted byte on a Pentium 4 {29.

How does this speed compare to other submissions? The following table
shows the speedup factor in switching from ABC version 2 to Salsa20/8:

PPCPPC A64 Athl PM HP P3 SP P3 P3 P4 P1 P4

G4 G5H Alpha 695 68a III 673 6bl f12 52c {29

40k >10 >10 >10 >10 >10 >10 >10 >10 >10 >10 >10 >10 >10 >10
40 1.30 1.42 1.02 0.94 0.57 0.75 0.45 2.42 1.14 0.83 0.83 0.95 0.90 0.73
976 2.7 1.79 0.97 1.12 0.61 0.92 0.83 1.00 0.96 1.03 0.91 0.71 1.10 0.83
1500 2.32 1.62 0.90 1.04 0.57 0.85 0.76 0.93 1.10 0.94 0.84 0.62 1.03 0.75
long 2.45 1.59 0.92 0.92 0.57 0.76 0.78 0.78 0.89 0.77 0.74 0.51 0.95 0.57
agility 7.19 >10 5.61 3.91 3.65 5.23 5.14 8.84 >10 2.97 6.27 2.40 2.89 2.62

For example, for a 576-byte packet, Salsa20/8 is 2.57 times faster than ABC on
a PowerPC G4, but 0.83 times faster (i.e., 1.2 times slower) on a Pentium 4 {29.
The table shows that, on most machines, Salsa20/8 is somewhat slower than
ABC for long streams (for example, losing 3 cycles per byte on the Pentium 4
£29), but provides better key agility (for example, saving 16 cycles per byte on
the Pentium 4 f29) and is much faster at key setup (for example, saving 50000
cycles on the Pentium 4 29). Note that ABC has only a 128-bit key.

The following table shows the speedup factor in switching from Dragon to
Salsa20/8:

PPCPPC A64 Athl PM HP P3 SP P3 P3 P4 Pl P4

G4 G5 Alpha 695 68a III 673 6bl f12 52¢ {29

40k 5.66 6.37 4.34 6.51 4.02 3.44 2.25 5.07 4.41 4.34 3.76 3.62 5.42 2.91
40 6.25 6.34 4.65 7.04 3.89 3.58 2.23 5.10 4.39 4.33 3.93 3.63 5.85 2.89
576 >10 >10 6.15 7.46 5.65 4.71 4.33 5.21 6.79 5.63 4.67 3.88 6.55 4.12
1500 >10 9.88 5.72 6.71 5.30 4.31 3.90 4.68 6.38 5.21 4.35 3.57 5.57 3.87
long 4.20 2.62 2.25 2.79 1.43 2.35 1.07 2.20 1.33 2.17 2.12 1.70 2.80 1.70
agility 3.74 2.16 2.12 2.51 1.46 2.32 1.27 2.52 1.55 2.16 2.19 1.81 2.54 1.82

The table shows that Salsa20/8 is always faster than Dragon.
The following table shows the speedup factor in switching from HC-256 to
Salsa20/8:

PPCPPC A64 Athl PM HP P3 SP P3 P3 P4 P1 P4

G4 G5 Alpha 695 68a III 673 6bl f12 52c¢ {29

40k >10 >10 >10 >10 >10 >10 >10 >10 >10 >10 >10 >10 >10 >10
40 >10 >10 >10 >10 >10 >10 >10 >10 >10 >10 >10 >10 >10 >10
576 >10 >10 >10 >10 >10 >10 >10 >10 >10 >10 >10 >10 >10 >10
1500 >10 >10 >10 >10 >10 8.14 7.08 8.49 >10 8.46 8.46 >10 >10 9.96
long 3.10 1.91 1.22 1.19 1.03 0.80 0.91 1.00 1.36 0.88 0.86 0.66 1.25 0.63
agility >10 5.03 3.71 5.18 3.38 3.28 2.78 6.99 7.33 3.14 4.48 2.79 3.13 2.95

The table shows that Salsa20/8 provides much better performance than HC-256
for small packets, for large packets, and for parallel streams. Performance for
long streams may be better or worse, depending on the machine.

The following table shows the speedup factor in switching from LEX to
Salsa20/8:

PPCPPC A64 Athl PM HP P3 SP P3 P3 P4 Pl P4

G4 G5 Alpha 695 68a III 673 6bl f12 52¢ {29

40k 2.46 2.23 1.68 2.04 1.26 1.49 0.75 1.71 1.17 1.56 1.48 1.56 2.47 1.34
40 2.12 1.67 1.44 1.78 0.98 1.24 0.55 1.27 0.99 1.35 1.25 1.00 2.26 0.94
976 5.86 3.30 2.46 2.74 1.69 2.29 1.27 2.07 1.66 2.16 2.01 1.52 3.39 1.73
1500 5.18 2.97 2.28 2.49 1.52 2.10 1.10 1.87 1.51 1.96 1.86 1.36 3.09 1.60
long 5.40 2.94 2.33 2.50 1.53 2.13 1.10 1.86 1.47 1.98 1.83 1.36 2.98 1.59
agility 4.74 2.24 2.18 2.31 1.59 2.15 1.34 2.08 1.69 2.01 1.90 1.46 2.70 1.55

The table shows that Salsa20/8 is generally faster than LEX. Note that LEX has
only a 128-bit key, although I'm told that 256-bit keys are possible with slower
setup.

The following table shows the speedup factor in switching from NLS to
Salsa20/8:

PPCPPC A64 Athl PM HP P3 SP P3 P3 P4 P1 P4

G4 G5 Alpha 695 68a III 673 6bl f12 52c {29

40k 3.69 3.14 4.69 4.28 3.06 1.96 1.54 2.42 3.00 2.96 2.92 3.48 3.02 2.40
40 2.86 2.06 3.34 3.15 2.09 1.40 1.12 1.63 2.08 2.13 2.12 2.20 2.40 1.64
976 3.86 2.27 1.82 1.52 1.31 1.27 1.30 1.10 1.28 1.21 1.20 1.41 1.65 1.40
1500 3.18 1.94 1.38 1.14 1.03 1.03 1.06 0.88 1.03 0.89 0.88 1.15 1.22 1.18
long 3.45 2.09 1.39 1.17 1.07 1.09 1.10 0.92 1.11 0.91 0.91 0.93 1.09 0.92
agility 3.59 1.90 1.92 1.73 1.51 1.45 1.45 1.48 1.59 1.49 1.53 1.52 1.31 1.50

The table shows that Salsa20/8 is generally faster than NLS. Note that NLS has
only a 128-bit key and is now believed vulnerable to a 64-bit attack.
The following table shows the speedup factor in switching from Phelix to

Salsa20/8:

PPCPPC A64 Athl PM HP P3 SP P3 P3 P4 Pl P4

G4 G5 Alpha 695 68a III 673 6bl f12 52¢ {29

40k 5.57 5.99 2.05 2.07 3.54 2.79 2.68 1.88 4.11 2.99 2.99 2.20 2.15 1.67
40 4.89 4.28 1.66 1.75 2.60 2.40 2.30 1.49 3.24 2.50 2.50 1.66 1.81 1.28
576 8.14 4.91 1.56 1.46 2.52 2.53 2.73 1.32 3.09 2.44 2.43 1.50 1.54 1.50
1500 7.05 4.35 1.38 1.27 2.19 2.22 2.29 1.16 2.74 2.17 2.20 1.35 1.38 1.33
long 4.80 3.12 1.36 1.25 2.07 2.20 3.97 1.15 2.56 2.24 2.24 1.33 1.30 1.33
agility 4.56 2.34 1.47 1.42 2.09 2.23 3.86 1.47 2.56 2.34 2.25 1.46 1.37 1.45

The table shows that Salsa20/8 is always faster than Phelix. Note that Phelix
claims only 128-bit security.

Beware that the above comparison is unfair to Phelix in one important way:
Phelix provides free message authentication. On the other hand, when the goal
is to survive a flood of forged packets, Phelix isn’t as good as a fast cipher plus a
fast authenticator: a separate authenticator allows forged packets to be discarded
without being decrypted.

The following two tables show the speedup factor in switching from Py and
Py6 to Salsa20/8:

PPCPPC A64 Athl PM HP P3 SP P3 P3 P4 P1 P4

G4 G5 Alpha 695 68a III 673 6bl f12 52¢ {29

40k >10 >10 >10 >10 >10 >10 6.04 >10 >10 >10 >10 >10 >10 9.62
40 >10 >10 >10 >10 7.08 7.54 4.27 8.15 >10 7.94 7.90 >10 9.95 7.18
976 7.90 4.79 4.23 3.90 2.23 2.39 1.88 2.13 3.32 2.27 2.26 3.00 3.08 2.38
1500 4.41 2.65 2.59 2.20 1.35 1.19 1.06 1.10 1.91 1.19 1.19 1.68 2.21 1.24
long 2.70 1.47 1.11 1.04 0.88 0.49 0.72 0.49 1.02 0.67 0.48 0.63 1.16 0.50
agility >10 3.47 5.10 6.15 2.71 4.11 2.30 9.78 2.77 4.39 5.99 2.91 3.69 2.69

PPCPPC A64 Athl PM HP P3 SP P3 P3 P4 P1 P4

G4 G5 Alpha 695 68a III 673 6bl f12 52¢ {29

40k 6.75 8.15 6.47 5.88 4.25 5.60 2.38 7.69 5.08 5.19 5.71 4.68 4.32 3.43
40 5.83 5.49 4.96 4.63 2.72 4.20 1.63 4.81 3.67 4.43 4.27 3.79 2.99 2.46
976 4.38 2.70 2.56 2.08 1.34 1.54 1.10 1.44 1.68 1.49 1.40 1.46 1.89 1.07
1500 3.09 1.88 1.97 1.53 1.00 0.88 0.79 0.84 1.23 0.89 0.84 1.06 1.71 0.66
long 2.65 1.50 1.08 0.92 0.88 0.53 0.74 0.51 0.98 0.58 0.50 0.59 1.01 0.46
agility 4.96 1.93 2.45 2.51 1.42 1.65 1.30 3.20 1.87 1.74 2.09 1.53 1.68 1.22

The Py and Py6 tables are comparable to the ABC table. Note that Py and Py6
are now believed vulnerable to a 64-bit attack.
The following table shows the speedup factor in switching from Rabbit to

Salsa20/8:

PPCPPC A64 Athl PM HP P3 SP P3 P3 P4 P1 P4

G4 G5 Alpha 695 68a III 673 6bl f12 52c {29

40k 5.20 3.70 1.61 1.82 1.87 1.42 1.37 1.60 2.15 1.50 1.43 2.31 2.12 1.86
40 4.01 2.61 1.18 1.34 1.36 1.02 0.97 1.08 1.45 1.06 1.05 1.57 1.49 1.22
576 8.48 3.52 1.28 1.30 1.68 1.24 1.42 1.15 1.85 1.23 1.17 1.45 1.63 1.45
1500 7.64 3.21 1.21 1.20 1.57 1.15 1.27 1.07 1.72 1.13 1.10 1.32 1.50 1.30
long 8.05 3.25 1.25 1.21 1.52 1.15 1.24 1.08 1.74 1.08 1.06 1.28 1.41 1.30
agility 6.37 2.31 1.24 1.22 1.61 1.18 1.33 1.28 1.76 1.13 1.18 1.32 1.37 1.29

The table shows that Salsa20/8 is generally faster than Rabbit. Note that Rabbit
has only a 128-bit key.

The following table shows the speedup factor in switching from Sosemanuk
to Salsa20/8:

PPCPPC A64 Athl PM HP P3 SP P3 P3 P4 P1 P4

G4 G5 Alpha 695 68a III 673 6bl f12 52¢ {29

40k 6.21 8.19 3.82 3.09 3.63 2.78 1.68 3.32 3.71 2.98 3.00 4.57 3.11 3.90
40 2.98 3.24 1.93 1.96 1.95 1.61 1.14 1.90 2.09 1.77 1.78 1.94 2.13 1.50
576 4.90 3.21 2.13 1.76 1.56 1.63 1.47 1.76 2.06 1.77 1.71 1.60 1.88 1.61
1500 4.05 2.62 1.87 1.47 1.27 1.37 1.17 1.48 1.77 1.49 1.48 1.31 1.65 1.30
long 3.10 2.19 1.22 1.17 0.93 0.95 1.05 0.95 1.26 0.92 0.92 0.82 1.18 0.86
agility 2.67 1.57 1.16 1.10 0.94 0.97 1.14 0.99 1.31 0.93 0.94 0.84 1.13 0.87

The table shows that Salsa20/8 is faster than Sosemanuk for packet encryption,
slightly slower for streaming performance on some machines, and slightly faster
for streaming performance on other machines. Note that Sosemanuk has a 256-
bit key but claims only 128-bit security and has been shown vulnerable to a
224-bit attack.

The following table shows the speedup factor in switching from TRIVIUM
to Salsa20/8:

PPCPPC A64 Athl PM HP P3 SP P3 P3 P4 P1 P4

G4 G5H Alpha 695 68a III 673 6bl f12 52c {29

40k 5.32 2.52 1.86 3.75 1.10 2.32 0.71 3.70 1.48 3.77 3.14 4.34 5.23 2.47
40 6.03 2.51 1.97 4.11 1.06 2.43 0.67 3.84 1.45 4.01 3.32 4.66 5.82 2.57
976 8.00 2.12 1.46 2.58 0.66 3.27 0.68 2.90 1.12 3.57 3.31 3.62 3.93 2.49
1500 6.68 1.79 1.23 2.12 0.49 3.00 0.56 2.48 0.96 3.13 3.00 3.16 3.74 2.13
long 6.65 1.69 1.17 3.10 0.43 1.07 0.53 2.37 0.91 1.00 1.00 3.07 3.31 2.11
agility 5.48 1.43 1.18 2.61 0.54 1.12 0.66 2.27 0.99 1.07 1.08 2.67 2.84 1.92

The table shows that Salsa20/8 is faster than TRIVIUM except on a few old
CPUs. TRIVIUM performs somewhat fewer bit operations than Salsa20/8 (11
xors and 3 ands for each output bit, compared to 8 xors and 9 adds-with-carry),

but it doesn’t exploit the many fast addition circuits built into modern CPUs.
Note that TRIVIUM has only an 80-bit key.

How does this speed compare to the official “benchmark” ciphers? The
following table shows the speedup factor in switching from 10-round AES to
Salsa20/8:

PPCPPC A64 Athl PM HP P3 SP P3 P3 P4 Pl P4

G4 G5 Alpha 695 68a III 673 6bl f12 52¢ {29

40k 3.28 3.09 2.17 3.02 1.72 1.75 1.11 2.05 1.93 1.89 1.88 1.67 3.59 1.44
40 3.26 2.65 1.99 3.02 1.54 1.62 0.98 1.89 1.59 1.78 1.77 1.50 3.46 1.30
576 >10 6.85 5.00 6.64 3.73 4.46 2.97 4.22 3.71 4.31 4.20 3.56 7.22 3.58
1500 >10 6.65 4.97 6.51 3.63 4.44 2.81 4.13 3.65 4.26 4.25 3.53 7.55 3.59
long >10 7.03 5.36 6.85 3.80 4.71 3.03 4.35 3.80 4.44 4.41 3.70 7.22 3.88
agility >10 4.78 4.43 5.54 3.70 4.43 3.17 4.23 3.76 4.22 4.09 3.35 6.18 3.43

The following table shows the speedup factor in switching from RC4 to
Salsa20/8:

PPCPPC A64 Athl PM HP P3 SP P3 P3 P4 P1 P4

G4 G5 Alpha 695 68a III 673 6bl f12 52c¢ {29

40k >10 >10 >10 >10 >10 >10 2.58 >10 5.29 >10 >10 >10 >10 >10
40 >10 >10 >10 >10 >10 >10 2.67 >10 5.53 >10 >10 >10 >10 >10
976 >10 8.97 9.82 7.68 6.05 5.25 1.87 4.56 3.24 4.63 4.66 6.20 5.17 5.12
1500 7.91 5.06 6.05 4.67 3.49 2.85 1.37 2.48 2.58 2.54 2.55 3.36 3.03 2.98
long 5.60 2.97 4.03 3.04 2.17 1.42 1.19 1.26 2.29 1.26 1.23 1.88 1.72 1.72
agility 5.19 2.47 4.53 4.22 2.74 2.69 1.83 5.19 2.58 2.39 1.77 2.01 1.70 1.77

The following table shows the speedup factor in switching from SNOW 2.0

to Salsa20/8:

PPCPPC A64 Athl PM HP P3 SP P3 P3 P4 P1 P4
G4 G5H Alpha 695 68a III 673 6bl f12 52c {29

40

40k 2.79 2.60 1.90 2.15 2.07 1.49 1.02 1.81 1.97 1.75 1.72 1.84 2.36 1.34

576 4.00 2.39 1.54 1.32 1.23 1.07 0.90 1.12 1.44 1.16 1.11 0.93 1.55 0.94
1500 3.55 2.15 1.38 1.16 1.13 0.92 0.79 0.97 1.32 1.00 0.99 0.78 1.42 0.78
long 3.55 2.09 1.36 1.06 1.00 0.84 0.78 0.91 1.18 0.91 0.89 0.70 1.31 0.71
agility 3.11 1.69 1.35 1.13 1.04 0.94 0.87 1.15 1.33 0.97 1.05 0.88 1.26 0.85

2.98 2,58 1.92 2.23 1.86 1.50 0.92 1.80 1.95 1.76 1.72 1.79 2.42 1.32

Is Salsa20/8 suitable for hardware? Yes. Salsa20/8 and Salsa20/12, like
the original Salsa20/20, offer a wide range of attractive options for the hardware
implementor. They can fit into a very small circuit area; alternatively, they
can be parallelized for extremely high throughput; either way, Salsa20/8 and
Salsa20/12 offer even better price-performance ratios than Salsa20/20.

A hardware implementation of Salsa20/8, like a hardware implementation of

Salsa20/20, needs the following resources:

e Storage for the key, or several keys for a multiple-key chip. This storage

has minimal size (for example, 256 bits for the recommended 256-bit keys);
Salsa20 does not need space to store, or gates to compute, expanded keys.
The key is read only twice for each 512-bit block, once at the beginning and
once at the end, so one can save area without much loss of performance by
storing the key in RAM rather than registers.

Storage for the nonce and block counter, or several nonces and block counters
for a multiple-session chip. As above, this storage has minimal size; Salsa20
does not use expanded nonces.

Temporary storage used while generating a 512-bit output block. Typical
implementations will use 512 flip-flops here. A tiny circuit could instead use
512 bits of RAM. Of course, no storage is required for a large high-throughput
low-delay circuit that generates the entire output block combinatorially.
32-bit adders used in generating an output block. Salsa20/20 involves 0.65625
additions per bit of output; Salsa20/8 involves 0.28125 additions per bit of
output. There are many options here: a minimum-area circuit using a 32-
bit adder 16 times per round (with a simple pattern of RAM access); a
circuit performing an entire round combinatorially, with 16 separate 32-
bit adders; a 2-combinatorial-round circuit with 32 separate 32-bit adders;
a 4-combinatorial-round circuit with 64 separate 32-bit adders; etc. At a
lower level, there are many different ASIC adder structures offering various
combinations of area and speed.

Other gates used in generating an output block and encrypting data. There is
some cost here—for example, each 32-bit addition is accompanied by a 32-bit
xor—but Salsa20 does not use expensive operations such as multiplications
or accesses to large tables.

e Wires and other overheads. Salsa20 was designed to allow shorter wires than
a typical circuit, potentially saving both space and time, if hardware blocks
are placed in Salsa20’s 4 x 4 pattern.

Obviously Salsa20 can achieve reasonable performance in a small circuit, and
higher performance in larger circuits. I don’t know whether Salsa20/8 is as fast
as today’s best hardware-oriented ciphers, especially ciphers designed for a lower
security level; but it shouldn’t be omitted from hardware benchmarks.

For applications that need maximum streaming throughput, Salsa20 offers a
huge advantage: it can be parallelized across any number of blocks. One can, for
example, generate 256 blocks from a single stream in parallel with 256 copies
of the Salsa20 hardware, either on a single chip or spread across chips. (This
parallelization should also improve price-performance ratio somewhat: one does
not need to store 256 copies of the key, for example.) Traditional LFSR-based
stream ciphers offer the same feature, but most other stream ciphers don’t.

References

1. Daniel J. Bernstein, Comparison of 256-bit stream ciphers at the beginning of 2006
(2006). URL: http://cr.yp.to/papers.html#stream256. ID effOeb8eebacda584
62948ab97ca4d8a0. Citations in this paper: §1.

