
STRONGER KEY DERIVATION VIA SEQUENTIAL

MEMORY-HARD FUNCTIONS

COLIN PERCIVAL

Abstract. We introduce the concepts of memory-hard algorithms and se-
quential memory-hard functions, and argue that in order for key derivation

functions to be maximally secure against attacks using custom hardware, they
should be constructed from sequential memory-hard functions. We present
a family of key derivation functions which, under the random oracle model

of cryptographic hash functions, are provably sequential memory-hard, and a
variation which appears to be marginally stronger at the expense of lacking
provable strength. Finally, we provide some estimates of the cost of perform-
ing brute force attacks on a variety of password strengths and key derivation
functions.

1. Introduction

Password-based key derivation functions are used for two primary purposes:
First, to hash passwords so that an attacker who gains access to a password file
does not immediately possess the passwords contained therewithin; and second, to
generate cryptographic keys to be used for encrypting and/or authenticating data.
While these two uses appear to be cryptologically quite different — in the first
case, an attacker has the hash of a password and wishes to obtain the password
itself, while in the second case, the attacker has data which is encrypted or au-
thenticated with the password hash and wishes to obtain said password hash —
they turn out to be effectively equivalent: Since all modern key derivation func-
tions are constructed from hashes against which no non-trivial pre-image attacks
are known, attacking the key derivation function directly is infeasible; consequently,
the best attack in either case is to iterate through likely passwords and apply the
key derivation function to each in turn.

Unfortunately, this form of “brute force” attack is quite liable to succeed. Users
often select passwords which have far less entropy than is typically required of cryp-
tographic keys; a recent study found that even for web sites such as paypal.com,
where — since accounts are often linked to credit cards and bank accounts — one
would expect users to make an effort to use strong passwords, the average password
has an estimated entropy of 42.02 bits, while only a very small fraction had more
than 64 bits of entropy [15]. In order to increase the cost of such brute force at-
tacks, an approach known as “key stretching” or “key strengthening”1 can be used:

E-mail address: cperciva@tarsnap.com.
1The phrase “key strengthening” was introduced by Abadi et al. [8] to refer to the process of

adding additional entropy to a password in the form of a random suffix and verifying a password
by conducting a brute-force search of possible suffixes; but the phrase is now widely used to mean

the same thing as “key stretching”.

2 STRONGER KEY DERIVATION VIA SEQUENTIAL MEMORY-HARD FUNCTIONS

By using a key derivation function which requires 2s cryptographic operations to
compute, the cost of performing a brute-force attack against passwords with t bits
of entropy is raised from 2t to 2s+t operations [19].

This approach has been used with an increasing degree of formalism over the
years. The original UNIX CRYPT function — dating back to the late 1970s —
iterated the DES cipher 25 times in order to increase the cost of an attack [22],
while Kamp’s MD5-based hash [18] iterated the MD5 block cipher 1000 times; more
recently, Provos and Mazières’ bcrypt [24] and RSA Laboratories’ PBKDF1 and
PBKDF2 [17] are explicitly defined to perform a user-defined number of iterations2,
with the number of iterations presumably being stored along with the password salt.

Providing that the number of iterations used is increased as computer systems
get faster, this allows legitimate users to spend a constant amount of time on key
derivation without losing ground to attackers’ ever-increasing computing power —
as long as attackers are limited to the same software implementations as legitimate
users. However, as Bernstein famously pointed out in the context of integer fac-
torization [10], while parallelized hardware implementations may not change the
number of operations performed compared to software implementations, this does
not prevent them from dramatically changing the asymptotic cost, since in many
contexts — including the embarrassingly parallel task of performing a brute-force
search for a passphrase — dollar-seconds are the most appropriate units for measur-
ing the cost of a computation3. As semiconductor technology develops, circuits do
not merely become faster; they also become smaller, allowing for a larger amount
of parallelism at the same cost. Consequently, using existing key derivation algo-
rithms, even if the iteration count is increased such that the time taken to verify a
password remains constant, the cost of finding a password by using a brute force
attack implemented in hardware drops each year.

This paper aims to reduce the advantage which attackers can gain by using
custom-designed parallel circuits.

2. Memory-hard algorithms

A natural way to reduce the advantage provided by an attacker’s ability to
construct highly parallel circuits is to increase the size of a single key derivation
circuit — if a circuit is twice as large, only half as many copies can be placed on a
given area of silicon — while still operating within the resources available to software
implementations, including a powerful CPU and large amounts of RAM. Indeed,
in the first paper to formalize the concept of key stretching [19] it is pointed out
that requiring “32-bit arithmetic and use of moderately large amounts of RAM4”
can make hardware attacks more expensive. However, widely used key derivation

2It should be noted, however, that when used to verify login passwords, the “user-defined”
value is typically stored in a system configuration file which the vast majority of users never

modify.
3That is, the price of hardware times the amount of time for which it needs to be used; this is

analogous to the common AT (area times time) cost measure used in the context of VLSI circuit
design. The ability of parallel designs to achieve a lower cost for the same number of operations

is essentially due to their ability to use a larger fraction of die area for computational circuits.
4The example given is 256 32-bit words, which hardly qualifies as “moderately large” at the

present time, and is questionable even in the context of hardware of the time (1997) given that
even low-end PCs rarely had less than 4 MB of RAM (that being the official minimum requirement

to run the Windows 95 operating system).

STRONGER KEY DERIVATION VIA SEQUENTIAL MEMORY-HARD FUNCTIONS 3

functions have thus far used constant amounts of logic and memory; in order to
increase the cost of a parallel attack, we would like to parameterize not only the
operation count, but also the memory usage. To this end, we introduce the following
definition:

Definition 1. A memory-hard algorithm on a Random Access Machine is an al-
gorithm which uses S(n) space and T (n) operations, where S(n) ∈ Ω

(

T (n)1−ǫ
)

.

A memory-hard algorithm is thus an algorithm which asymptotically uses almost
as many memory locations as it uses operations5; it can also be thought of as an
algorithm which comes close to using the most memory possible for a given number
of operations, since by treating memory addresses as keys to a hash table it is trivial
to limit a Random Access Machine to an address space proportional to its running
time.

Requiring an amount of memory approximately proportional to the number of
operations to be performed also happens to meet our objective of creating expensive
hardware implementations while staying within the resources available to a software
implementation. A widely used rule of thumb in high performance computing is
that balanced systems should have one MB of RAM for every million floating-point
operations per second of CPU performance; outside of high performance computing
this ratio varies somewhat depending on the field — for instance, home PCs tend
to have more MFLOPS than MB, while database servers tend to have more MB
than MFLOPS — but these ratios have remained remarkably constant over several
decades.

3. HEKS

In contrast to the aforementioned widely-used key derivation functions, which
all operate within a constant memory size, the HEKS key derivation algorithm [25]
— introduced by Reinhold in 1999, but apparently never used [26] — is designed to
use an arbitrarily large amount of memory6. Reinhold constructs a linear congru-
ential pseudo-random number generator and feeds it into a Bays-Durham shuffling
PRNG [9], then accumulates the output of the Bays-Durham PRNG in a vector
of 16 words; that 16-word vector is periodically hashed to reseed the PRNGs, and
once enough iterations have been performed, said hash is output as the derived key.

Algorithm HEKS-D1(P, S, L, N, K)
Input:

P Password (P0P1 . . . Pr−1) of length r octets.
S Salt (S0S1 . . . St−1) of length t octets.
K,L,N Integer parameters.

Output:
(w0 . . . w4) 32-bit integers.

Steps:

1: (w0, w1, w2, w3, w4)← SHA1(P0P1 . . . Pr−1S0S1 . . . St−1)
2: X ← w0

3: a← (w1 & 0x04000002) | 0x02000005

5We allow the T (n)ǫ to account for factors of log (S(n)) which inevitably arise from varying
models of Random Access Machines with vast address spaces.

6As specified, HEKS is limited to using 232 32-bit values; but the design is trivially extendable

by replacing 32-bit integers with 64-bit or longer integers.

4 STRONGER KEY DERIVATION VIA SEQUENTIAL MEMORY-HARD FUNCTIONS

4: b← w2 | 0x00000001
5: G← w4

6: for i = 0 to 15 do
7: Bi ← 0
8: end for
9: for i = 0 to L− 1 do

10: X ← (aX + b) mod 232

11: Vi ← X + Pi mod r mod 232

12: end for
13: for n = 0 to N − 1 do
14: for i = 0 to K − 1 do
15: j ← G mod L
16: G← Vj

17: X ← (aX + b) mod 232

18: Vj ← X
19: Bi mod 16 ← Bi mod 16 + G mod 232

20: end for
21: if n < r then
22: B1 ← B1 + Pn mod 232

23: end if
24: (w0, w1, w2, w3, w4)← SHA1 Compress ((w0, w1, w2, w3, w4), B0 . . . B15)
25: X ← X + w0 mod 232

26: a← w1

27: b← w2

28: G← w4

29: end for

There is a significant bug in this algorithm as stated above7: When the lin-
ear congruential generator is reinitialized on lines 25–27, there is no guarantee
that the multiplier a is odd (unlike when the LCG is first initialized at lines 2–
4); consequently, 50% of the time the LCG will rapidly degrade to the fixed point
b(1 − a)−1 mod 232. However, we do not believe that this error causes any signif-
icant reduction in the security of HEKS: If a large proportion of the entries in V
are the same, then for even values of a the sequence of values of G in the inner
loop (lines 14–20) will reach a fixed point shortly after the sequence of values of
X; but for odd values of a, the sequence of values of G will not easily reach a fixed
point. Consequently, in the algorithm as stated the vector V is likely to reach an
equilibrium point where it has many duplicate entries but still contains significant
entropy.

Reinhold suggests that the parameter K should be chosen to be
√

L or larger,
that L should be “as large as the user or user community can comfortably provide on
the smallest machine on which they plan to use the algorithm”, and that N should
be determined as necessary to make the computation take the desired duration.
Since HEKS takes, on a sequential machine, O(L) space and O(L+NK) time, it is

memory-hard for N = O(L1+ǫK−1), e.g., if N,K = O(
√

L); and if the parameters
are chosen as suggested, HEKS only fails to be memory-hard if there is not sufficient
memory to match the desired duration of computation.

7Reinhold’s description of the algorithm matches his C source code, so presumably this is not

merely a typographical error.

STRONGER KEY DERIVATION VIA SEQUENTIAL MEMORY-HARD FUNCTIONS 5

However, this alone is not sufficient to eliminate the asymptotic advantage of
an attacker armed with parallel hardware. On a parallel random access machine
with L processors and O(L) space, the next Ω(L0.5−ǫ) outputs of the Bays-Durham
PRNG can be computed in O(log L) time by applying binary powering to the per-
mutation j ← Vj mod L to compute the initial non-repeating sequence of values
j; and the kth output of a linear congruential PRNG can be computed on a sin-
gle processor in O(log k) time. Consequently, a parallel random access machine
with O(L) CPUs and O(L) space can compute the HEKS key derivation function
in O(NKL−0.5+ǫ) time, resulting in a computation cost of O(NKL0.5+ǫ) dollar-
seconds — a very significant advantage over the O(L2 + NKL) cost of a näıve
sequential implementation.

4. Sequential memory-hard functions

Clearly the inadequacy of HEKS as a key derivation function is due to its ability
to effectively use multiple processors: While HEKS makes good use of a resource
(RAM) which software implementations have in large supply, it can also make
good use of a resource (computational parallelism) which is far more available in
a hardware attack. To provide a framework for functions immune to this sort of
attack, we introduce the following definition:

Definition 2. A sequential memory-hard function is a function which

(a) can be computed by a memory-hard algorithm on a Random Access Machine
in T (n) operations; and

(b) cannot be computed on a Parallel Random Access Machine with S∗(n)
processors and S∗(n) space in expected time T ∗(n) where S∗(n)T ∗(n) =

O(T (n)2−x) for any x > 0.

Put another way, a sequential memory-hard function is one where not only the
fastest sequential algorithm is memory-hard, but additionally where it is impossible
for a parallel algorithm to asymptotically achieve a significantly lower cost. Since
memory-hard algorithms asymptotically come close to using the most space possi-
ble given their running time, and memory is the computationally usable resource
general-purpose computers have which is most expensive to reproduce in hardware8,
we believe that, for any given running time on a sequential general-purpose com-
puter, functions which are sequential memory-hard come close to being the most
expensive possible functions to compute in hardware.

Indeed, it is surprising to consider the effect of adjusting parameters so that a
sequential memory-hard function takes twice as long to compute: As long as there
is enough random-access memory to compute the function on a general-purpose
system, doubling the time spent asymptotically results in the cost of computing
the function in hardware increasing four-fold, since the time and required space are
both doubled.

8On many general-purpose systems, the CPU and motherboard are more expensive than the

RAM; but the vast majority of that cost is due to the requirements of general-purpose compu-
tation, rapid sequential computation, and support for peripheral devices. The area occupied by
computation logic on modern CPUs is vanishingly small compared to caches, instruction decoding,

out-of-order execution, and I/O.

6 STRONGER KEY DERIVATION VIA SEQUENTIAL MEMORY-HARD FUNCTIONS

5. ROMix

The definition of sequential memory-hard functions, while theoretically interest-
ing in its consequences, would not be of any practical value if it turned out that
no sequential memory-hard functions exist; to that end, we introduce the class of
functions ROMixH : {0, 1}k × {0 . . . 2k/8 − 1} → {0, 1}k computed as follows9:

Algorithm ROMixH(B,N)
Parameters:

H A hash function.
k Length of output produced by H, in bits.
Integerify A bijective function from {0, 1}k to {0, . . . 2k − 1}.

Input:
B Input of length k bits.
N Integer work metric, < 2k/8

Output:
B′ Output of length k bits.

Steps:

1: X ← B
2: for i = 0 to N − 1 do
3: Vi ← X
4: X ← H(X)
5: end for
6: for i = 0 to N − 1 do
7: j ← Integerify(X) mod N
8: X ← H(X ⊕ Vj)
9: end for

10: B′ ← X

This algorithm can be thought of as computing a large number of “random”
values, and then accessing them “randomly” in order to ensure that they are all
stored in Random Access Memory. Before we can prove anything more formally,
we need a simple lemma concerning the iterated application of random oracles.

Lemma 1. Suppose that two algorithms, Algorithm A and Algorithm B exist such
that

(1) Algorithm A takes as input the integers N , M , and k, a k-bit value B,
and an oracle H : {0, 1}k → {0, 1}k, and produces a kM -bit output value
AN,M,k(B,H); and

(2) Algorithm B takes as input the integers N , M , k, and x, with 0 ≤ x < N ,
and AN,M,k(B,H); and operates on a system which can simultaneously
consult M copies of the oracle H in unit time and perform any other com-
putations instantaneously, to compute the value Hx(B).

Then if the values H0(B) . . . HN−1(B) are distinct and N < 2k/8, Algorithm B
operates in expected time at least N

4M+2
− 1

2
for random oracles H, k-bit values B,

and integers x ∈ {0 . . . N − 1}.
9We expect that for reasons of performance and simplicity, implementors will restrict N to

being a power of 2, in which case the function Integerify can be replaced by reading the first (or

last) machine-length word from a k-bit block.

STRONGER KEY DERIVATION VIA SEQUENTIAL MEMORY-HARD FUNCTIONS 7

Proof. For notational simplicity, we consider N , M , and k to be fixed and omit
them from variable subscripts.

Consider the Process B*, taking input A(B,H), and operating on a machine
which can simultaneously consult NM copies of the oracle H in unit time and
perform any other computations instantaneously, defined as follows10: Execute
Algorithm B for each integer x ∈ {0 . . . N − 1} in parallel (using up to M oracles
for each value x); after Algorithm B has completed for a value x and has returned
the value Hx(B), input that value to an oracle in the following step; finally, if any
oracles are unneeded (due to Algorithm B not using all M oracles at some point,
due to Algorithm B having finished, or because two or more instances of Algorithm
B are inputting the same value into oracles) then input arbitrary unique values to
them11.

Now define Ri(B,H) ∈ {0, 1}k for i ≤ N/M − 1 to be the set of values in-
put by Process B* to the NM oracles at time i, define R̄i(B,H) = R0(B,H) ∪
R1(B,H) . . . Ri(B,H), and define H̄(B) = {H0(B), . . . HN−1(B)}. Clearly if Al-
gorithm B computes Hx(B) in time t for some B,H, x, then Hx(B) ∈ Ri(B,H) ⊂
R̄i(B,H) for all i ≥ t. We will proceed by bounding the expected size of R̄i(B,H)∩
H̄(B) for any process taking a kM bit input and operating on NM oracles.

Let R̄i−1(B,H) and the values of H evaluated thereupon be fixed, and con-
sider the probability, over random B, H, that Hx(B) ∈ R̄i(B,H). Trivially, if
Hx−1(B) ∈ R̄i−1(B,H), then P (Hx(B) ∈ R̄i(B,H)) ≤ 1 (since the probability of
anything is at most 1); but if Hx−1(B) /∈ R̄i−1(B,H) then the value of H evalu-
ated at Hx−1(B) is entirely random; so P (Hx(B) ∈ R̄i(B,H)) =

∣

∣R̄i(B,H)
∣

∣·2−k =

NM(i+1)2−k ≤ N22−k. Now suppose that out of the 22k+1−NMi values of (B,H)

such that H takes the specified values, s · 22k+1−NMi of them (i.e., a proportion s)
result share the same value A(B,H). Then the values of

∣

∣R̄i(B,H) ∩ H̄(B)
∣

∣ for such

B,H are at most equal to the s · 22k+1−NMi largest values of
∣

∣R̄i(B,H) ∩ H̄(B)
∣

∣

for permissible H.
However, the Chernoff bound states that for X a sum of independent 0-1 vari-

ables, µ = E(X) and Y a constant greater than µ,

P (X > Y) < exp(Y − µ + Y (log µ− log Y)),

and so for Y > 1 we have

P (
∣

∣R̄i(B,H) ∩ H̄(B)
∣

∣−
∣

∣R̄i−1(B,H) ∩ H̄(B)
∣

∣ > Y)

< exp(Y −N32−k + Y (log(N32−k)− log(Y)))

< exp(Y + Y log(N32−k))

=
(

eN32k
)Y

<
(

2k/2
)Y

and thus we find that, for (B,H) in the set of s · 22k+1−NMi values such that
A(B,H) and H evaluated on R̄i−1(B,H) take the correct values,

E(
∣

∣R̄i(B,H) ∩ H̄(B)
∣

∣) <
∣

∣R̄i(B,H) ∩ H̄(B)
∣

∣ + log(s−1)/ log(2k/2) + 1,

10We refer to the Process B* instead of the Algorithm B* since it neither produces output nor
terminates.

11Thus for any B, H, Process B* inputs disjoint sets of NM values to the oracles at successive

time steps.

8 STRONGER KEY DERIVATION VIA SEQUENTIAL MEMORY-HARD FUNCTIONS

where the +1 arises as a trivial upper bound on the contribution from the expo-
nentially decreasing probabilities of values X − Y for X > Y .

Now we note that E(
∣

∣R̄i(B,H) ∩ H̄(B)
∣

∣), with expectation taken over all values

(B,H) is merely the average of the 2NMi+Mk values E(
∣

∣R̄i(B,H) ∩ H̄(B)
∣

∣) with
the expectation taken over (B,H) consistent with a given A(B,H) and values of
H at R̄i−1(B,H); and by convexity, the resulting bound is weakest when all of the
values s are equal, i.e., s = 2−Mk. Consequently, we obtain (with the expectation
taken over all (B,H))

E(
∣

∣R̄i(B,H) ∩ H̄(B)
∣

∣) <
∣

∣R̄i(B,H) ∩ H̄(B)
∣

∣ + 2M + 1

< (2M + 1) · (i + 1).

The result now follows easily: Writing tx as the expected time taken by Algo-
rithm B to compute Hx(B) and noting that the time it takes to compute Hx(B)
is equal to the number of sets R̄i(B,H) which do not contain Hx(B), we have

1

N

N−1
∑

x=0

tx =
1

N

∞
∑

i=0

N − E(
∣

∣R̄i(B,H) ∩ H̄(B)
∣

∣)

≥ 1

N

N
2M+1

−1
∑

i=0

N − E(
∣

∣R̄i(B,H) ∩ H̄(B)
∣

∣)

>
1

N

N
2M+1

−1
∑

i=0

N − (2M + 1)(i + 1)

=
N

4M + 2
− 1

2

as required.
�

While this proof is rather dense, the idea behind it is quite simple: If the value
Hx−1(B) has not yet been computed, there is no way to compute Hx(B); and
with only kM bits of information stored in A(B,H), any algorithm will be limited
to computing O(M) values Hx(B) from A(B,H) directly and then iterating H
to compute the rest. We believe that the “correct” lower bound on the expected
running time is in fact N

2M − 1
2
, but this appears difficult to prove.

In spite of being marginally weaker than desirable, this lemma is still sufficient
to prove the following theorem:

Theorem 1. Under the Random Oracle model, the class of functions ROMixH are
sequential memory-hard.

Proof. The algorithm stated earlier uses O(N) storage and operates in O(N) time
on a Random Access Machine, so clearly the functions can be computed by a
memory-hard algorithm in T (N) = O(N) operations.

Now suppose that ROMixH can be computed in S∗(N) = M(N) space. Since
H is a random oracle, it is impossible to compute the function without computing
each of the values Vj and X in steps 6–9 of the sequential algorithm in turn; but
by Lemma 1, it takes at least O(N/M(N)) time to compute each Vj .

Consequently, it takes at least T ∗(N) = O(N2/M(N)) time to compute the
function, and thus S∗(N)T ∗(N) = O(N2) as required. �

STRONGER KEY DERIVATION VIA SEQUENTIAL MEMORY-HARD FUNCTIONS 9

6. SMix

While ROMix performs well on a theoretical Random Access Machine, it suf-
fers somewhat on real-world machines. In the real world, random access memory
isn’t; instead, factors such as caches, prefetching, and virtual memory12 make small
“random” memory accesses far more expensive than accesses to consecutive mem-
ory locations.

Existing widely used hash functions produce outputs of up to 512 bits (64 bytes),
closely matching the cache line sizes of modern CPUs (typically 32–128 bytes), and
the computing time required to hash even a very small amount of data (typically
200–2000 clock cycles on modern CPUs, depending on the hash used) is sufficient
that the memory latency cost (typically 100–500 clock cycles) does not dominate
the running time of ROMix.

However, as semiconductor technology advances, it is likely that neither of these
facts will remain true. Memory latencies, measured in comparison to CPU per-
formance or memory bandwidth, have been steadily increasing for decades, and
there is no reason to expect that this will cease — to the contrary, switching delays
impose a lower bound of Ω(log N) on the latency of accessing a word in an N -byte

RAM, while the speed of light imposes a lower bound of Ω(
√

N) for 2-dimensional
circuits. Furthermore, since most applications exhibit significant locality of refer-
ence, it is reasonable to expect cache designers to continue to increase cache line
sizes in an attempt to trade memory bandwidth for (avoided) memory latency.

In order to avoid having ROMix become latency-limited in the future, it is nec-
essary to apply it to larger hash functions. While we have only proved that ROMix
is sequential memory-hard under the Random Oracle model, by considering the
structure of the proof we note that the full strength of this model does not appear
to be necessary. The critical properties of the hash function required in order for
ROMix to be sequential memory-hard appear to be the following13:

(1) The outputs of H are uniformly distributed over {0, 1}k.
(2) It is impossible to iterate H quickly, even given access to many copies of

the oracle and precomputation producing a limited-space intermediate.
(3) It is impossible to compute Integerify(H(x)) significantly faster than com-

puting H(x).

Most notably, there is no requirement that the function H have the usual properties
of collision and pre-image resistance which are required of cryptographic hashes.

There are also two more criteria required of the hash function in order for ROMix
to maximize the cost of a brute-force attack given an upper bound on the amount
of computing time taken to compute the function in software:

(4) The ratio of the hash length k to the number of operations required to
compute the hash function should be as large as possible.

(5) The hash function should not have significantly more internal parallelism
than is available to software implementations.

12Even if data is stored in RAM, the first access to a page typically incurs a significant cost

as the relevant paging tables are consulted.
13The first requirement limits the number of values Hx(B) which A(B, H) can uniquely iden-

tify; the second requirement ensures that values Hx(B) which are not stored cannot be computed
quickly; and the third requirement ensures that each iteration of the loop in lines 6–9 must com-

plete before the next iteration starts.

10 STRONGER KEY DERIVATION VIA SEQUENTIAL MEMORY-HARD FUNCTIONS

In light of these, we define the function BlockMixH,r computed as follows:

Algorithm BlockMixH,r(B)
Parameters:

H A hash function.
r Block size parameter

Input:
B0 . . . B2r−1 Input vector of 2r k-bit blocks

Output:
B′

0 . . . B′

2r−1 Output vector of 2r k-bit blocks.
Steps:

1: X ← B2r−1

2: for i = 0 to 2r − 1 do
3: X ← H(X ⊕Bi)
4: Yi ← X
5: end for
6: B′ ← (Y0, Y2, . . . Y2r−2, Y1, Y3, . . . Y2r−1)

This function clearly satisfies condition (1) if the underlying H is uniformly dis-
tributed; it satisfies condition (3) if Integerify(B0 . . . B2r−1) is defined as a function
of B2r−1; and it is clearly optimal according to criteria (4) and (5) compared to any
functions constructed out of the same underlying H. We conjecture that BlockMix
also satisfies criteria (2), on the basis that the “shuffling” which occurs at step 6
should thwart any attempt to rapidly iterate BlockMix using precomputed values
which uniquely identify some but not all of the values Bi; but this does not appear
to be easily proven14.

Given that the performance of BlockMix according to criteria (4) and (5) is
exactly the same as the performance of the underlying hash H, BlockMix is best
used with a hash which is fast while not possessing excess internal parallelism;
based on this, it appears that Bernstein’s Salsa20/8 core [11] is the best-performing
widely studied cryptographic function available15. While Bernstein recommends
using the Salsa20 core by adding diagonal constants [13] and uses it in this manner
in his Salsa20 cipher and Rumba20 compression functions, we do not believe that
this is necessary when the Salsa20 core is being used in ROMix and BlockMix, since
the related-input attacks against which they defend are not relevant in this context.

Putting this together, we have the following:

Definition 3. The function SMixr : {0, 1}1024r × {0 . . . 264 − 1} → {0, 1}1024r

is SMixr(B,N) = ROMixBlockMixSalsa20/8,r
(B,N) where Integerify(B0 . . . B2r−1) is

defined as the result of interpreting B2r−1 as a little-endian integer.

Theorem 2. The function SMixr(B,N) can be computed in 4Nr applications of
the Salsa20/8 core using 1024Nr + O(r) bits of storage.

Proof. The above algorithms operate in the required time and space. �

14If the shuffling is omitted from BlockMix, it can be rapidly iterated given precomputed values
B0, since the computations would neatly “pipeline”.

15Bernstein’s Chacha [12] appears to have a very slight advantage over Salsa20, but is newer

and less widely used, and consequently has been less studied.

STRONGER KEY DERIVATION VIA SEQUENTIAL MEMORY-HARD FUNCTIONS 11

7. scrypt

Given a sequential memory-hard “mixing” function MF and a pseudorandom
function PRF it is simple to construct a strong key derivation function. We de-
fine the class of functions MFcryptPRF,MF (P, S,N, p, dkLen) as computed by the
following algorithm:

Algorithm MFcryptH,MF (P, S,N, p, dkLen)

Parameters:
PRF A pseudorandom function.
hLen Length of output produced by PRF , in octets.
MF A sequential memory-hard function from Z

MFLen
256 ×N

to Z
MFLen
256 .

MFLen Length of block mixed by MF , in octets.
Intput:

P Passphrase, an octet string.
S Salt, an octet string.
N CPU/memory cost parameter.
p Parallelization parameter; a positive integer satisfying

p ≤ (232 − 1)hLen/MFLen.
dkLen Intended output length in octets of the derived key; a

positive integer satisfying dkLen ≤ (232 − 1)hLen.
Output:

DK Derived key, of length dkLen octets.
Steps:

1: (B0 . . . Bp−1)← PBKDF2PRF (P, S, 1, p ·MFLen)
2: for i = 0 to p− 1 do
3: Bi ←MF (Bi, N)
4: end for
5: DK ← PBKDF2PRF (P,B0 ‖ B1 ‖ . . . ‖ Bp−1, 1, dkLen)

This algorithm uses PBKDF2 [17] with the pseudorandom function PRF to
generate p blocks of length MFLen octets from the provided password and salt;
these are independently mixed using the mixing function MF ; and the final output
is then generated by applying PBKDF2 once again, using the well-mixed blocks
as salt16. Since, for large N , the calls to MF take asymptotically longer than the
calls to PBKDF2, and the blocks Bi produced using PBKDF2 are independent and
random, subject to H being a random oracle, we note that if MF is a sequential
memory-hard function then MFcrypt is sequential memory-hard under the random
oracle model.

We now apply MFcrypt to the mixing function SMix from the previous section
and the SHA256 hash function:

Definition 4. The key derivation function scrypt is defined as

scrypt(P, S,N, r, p, dkLen) = MFcryptHMAC SHA256,SMixr
(P, S,N, p, dkLen)

16The limits on the size of p and dkLen exist as a result of a corresponding limit on the length

of key produced by PBKDF2.

12 STRONGER KEY DERIVATION VIA SEQUENTIAL MEMORY-HARD FUNCTIONS

Users of scrypt can tune the parameters N , r, and p according to the amount
of memory and computing power available, the latency-bandwidth product of the
memory subsystem, and the amount of parallelism desired; at the current time,
taking r = 8 and p = 1 appears to yield good results, but as memory latency
and CPU parallelism increase it is likely that the optimum values for both r and
p will increase. Note also that since the computations of SMix are independent, a
large value of p can be used to increase the computational cost of scrypt without
increasing the memory usage; so we can expect scrypt to remain useful even if the
growth rates of CPU power and memory capacity diverge.

Conjecture 1. If it is impossible for a circuit to compute the Salsa20/8 core in
less than t time, and it is impossible for a circuit to store x bits of data in less than
sx area for any x ≥ 0, then it is impossible to compute scrypt(P, S,N, r, p, dkLen)
in a circuit with an expected amortized area-time product per password of less than
1024N2r2pst.

Put simply, this conjecture states that combining MFcrypt, ROMix, BlockMix,
and the Salsa20/8 core does not expose scrypt to any attacks more powerful than
the “generic” algorithms for computing ROMix.

8. Brute-force attack costs

Given a set of key derivation functions, it is natural to ask how much it would
cost an attacker to perform a brute-force search over a class of passwords in order to
find a particular password given its hash (or, equivalently, given some cryptographic
ciphertext which can be used to quickly accept or reject potential password hashes).
It is difficult to obtain accurate data concerning the cost of hardware password-
cracking circuits — those few organizations which have the resources and inclination
to design and fabricate custom circuits for password-cracking tend to be somewhat
secretive — and so we must rely instead on estimating the costs of the underlying
cryptographic operations in the expectation that the other costs are comparatively
negligible. Even given this approximation the amount of information available is
limited, since much of the work of implementing cryptographic circuits has been
performed by private corporations which have clear financial reasons to restrict
access to information about their products to potential customers.

Based on available data concerning DES [1, 4, 5], MD5 [2, 6], Blowfish [14, 21],
SHA-256 [3, 7, 20], and Salsa20 [16, 27] cores, we provide the following estimates
for the size and performance of cryptographic circuits on a 130 nm process17:

• A DES circuit with ≈ 4000 gates of logic can encrypt data at 2000 Mbps.
• An MD5 circuit with ≈ 12000 gates of logic can hash data at 2500 Mbps.
• A SHA256 circuit with ≈ 20000 gates of logic can hash data at 2500 Mbps.
• A Blowfish circuit with ≈ 22000 gates of logic and 4 kiB of SRAM can

encrypt data at 1000 Mbps.
• A Salsa20/8 circuit with ≈ 24000 gates of logic can output a keystream at

2000 Mbps.

We also make estimates of the cost of manufacturing integrated circuits on a 130
nm process circa 2002:

17We use 130 nm as a basis for comparison simply because this is the process technology for

which the most information was readily available concerning cryptographic circuits.

STRONGER KEY DERIVATION VIA SEQUENTIAL MEMORY-HARD FUNCTIONS 13

• Each gate of random logic requires ≈ 5 µm2 of VLSI area.
• Each bit of SRAM requires ≈ 2.5 µm2 of VLSI area.
• Each bit of DRAM requires ≈ 0.1 µm2 of VLSI area.
• VLSI circuits cost ≈ 0.1$/mm2.

Using these values, we estimate the cost of computing 9 key derivation func-
tions: the original CRYPT; the MD5 hash (which, although not designed for use
as a key derivation function, is nonetheless used as such by many applications);
Kamp’s MD5-based hash; PBKDF2-HMAC-SHA256 with an iteration count of
86,000; PBKDF2-HMAC-SHA256 with an iteration count of 4,300,000; bcrypt with
cost = 11; bcrypt with cost = 16; scrypt with (N, r, p) = (214, 8, 1); and scrypt with
(N, r, p) = (220, 8, 1). For the parameterized KDFs the parameters are chosen such
that the running time on one core of a 2.5 GHz Intel Core 2 Duo processor18 is less
than 100 ms (for the lower parameters) or less than 5 s (for the higher parameters);
we chose these values since 100 ms is a reasonable upper bound on the delay which
should be cryptographically imposed on interactive logins, while 5 s is a reasonable
amount of time to be spent encrypting or decrypting a sensitive file.

For each key derivation function, we consider six different types of password:

• A random sequence of 6 lower-case letters; e.g., “sfgroy”.
• A random sequence of 8 lower-case letters; e.g., “ksuvnwyf”.
• A random sequence of 8 characters selected from the 95 printable 7-bit

ASCII characters; e.g., “6,uh3y[a”.
• A random sequence of 10 characters selected from the 95 printable 7-bit

ASCII characters; e.g., “H.*W8Jz&r3”.
• A 40-character string of text; e.g., “This is a 40-character string of

English”.
• An 80-character string of text; e.g., “This is an 80-character phrase

which you probably won’t be able to crack easily.”.

For the strings of text, we estimate entropy following the guidance provided by
NIST [23]: The first character is taken to have 4 bits of entropy, the next 7 charac-
ters are taken to have 2 bits of entropy each, the following 12 characters are taken
to have 1.5 bits of entropy each, and subsequent characters are taken to have 1 bit
of entropy each.

In Table 1 we show the estimated costs of “cracking” hashed passwords in dollar-
years; or equivalently, the cost of hardware which can find a password in an average
time of 1 year (i.e., which would take 2 years to search the complete password
space). We caution again that these values are very approximate and reflect only the
cost of the cryptographic circuitry with circa 2002 technology: It is quite possible
that the costs of other hardware (control circuitry, boards, power supplies) and
operating costs (power, cooling) would increase the costs by a factor of 10 above
these; and it is equally possible that improvements in semiconductor technology
and improved cryptographic circuit designs could each reduce the costs by a factor
of 10. Nevertheless, we believe that the estimates presented here are useful for the
purpose of comparing different key derivation functions.

It is clear from this table that scrypt is a much more expensive key derivation
function to attack than the alternatives: When used for interactive logins, it is 35
times more expensive than bcrypt and 260 times more expensive than PBKDF2;

18This processor is also known as “the CPU in the author’s laptop”.

14 STRONGER KEY DERIVATION VIA SEQUENTIAL MEMORY-HARD FUNCTIONS

Table 1. Estimated cost of hardware to crack a password in 1 year.

KDF 6 letters 8 letters 8 chars 10 chars 40-char text 80-char text

DES CRYPT < $1 < $1 < $1 < $1 < $1 < $1
MD5 < $1 < $1 < $1 $1.1k $1 $1.5T
MD5 CRYPT < $1 < $1 $130 $1.1M $1.4k $1.5× 1015

PBKDF2 (100 ms) < $1 < $1 $18k $160M $200k $2.2× 1017

bcrypt (95 ms) < $1 $4 $130k $1.2B $1.5M $48B
scrypt (64 ms) < $1 $150 $4.8M $43B $52M $6× 1019

PBKDF2 (5.0 s) < $1 $29 $920k $8.3B $10M $11× 1018

bcrypt (3.0 s) < $1 $130 $4.3M $39B $47M $1.5T
scrypt (3.8 s) $900 $610k $19B $175T $210B $2.3× 1023

and when used for file encryption — where, unlike bcrypt and PBKDF2, scrypt uses
not only more CPU time but also increases the die area required — scrypt increases
its lead to a factor of 4000 over bcrypt and 20000 over PBKDF2. It is also worth
noting that while bcrypt is stronger than PBKDF2 for most types of passwords, it
falls behind for long passphrases; this results from bcrypt’s inability to use more
than the first 55 characters of a passphrase19. While our estimated costs and NIST’s
estimates of passphrase entropy suggest that bcrypt’s 55-character limitation is not
likely to cause problems at the present time, implementors of systems which rely on
bcrypt might be well-advised to either work around this limitation (e.g., by “pre-
hashing” a passphrase to make it fit into the 55-character limit) or to take steps to
prevent users from placing too much password entropy in the 56th and subsequent
characters (e.g., by asking users of a website to type their password into an input
box which only has space for 55 characters).

9. Conclusions

We have proven that, under the random oracle model, the mixing function
ROMixH is sequential memory-hard; and it appears very likely that the scrypt key
derivation function is also sequential memory-hard. Providing that no new attacks
on scrypt or its underlying components are found, a brute-force attack on scrypt
is many times harder than similar attacks on other key derivation functions; con-
sequently, we recommend that implementors of new cryptographic systems should
strongly consider using scrypt.

Finally, we recommend that cryptographic consumers make themselves aware of
the strengths of the key derivation functions they are using, and choose passwords
accordingly; we suspect that even generally security-conscious users are in many
cases not aware how (in)secure their passwords are.

10. Acknowledgements

We thank Arnold G. Reinhold, Daniel J. Bernstein, Graeme Durant, and Paul
Kocher for the advice and information they have provided.

19This is, however, far better than the original DES-based CRYPT, which only hashed the first
8 bytes of a password and is consequently absurdly cheap to break, regardless of the underlying

password distribution.

STRONGER KEY DERIVATION VIA SEQUENTIAL MEMORY-HARD FUNCTIONS 15

References

[1] CAST DES data encryption standard core. http://www.cast-inc.com/cores/des/cast des.

pdf.
[2] CAST MD5 hash function core. http://www.cast-inc.com/cores/md5/cast md5.pdf.

[3] CAST SHA256 secure hash function core. http://www.cast-inc.com/cores/sha-256/cast
sha256.pdf.

[4] DES1 ultra-compact data encryption standard (DES/3DES) core. http://www.ipcores.com/
DES1core.htm.

[5] Helion technology datasheet - high performance DES and triple-DES core for asic. http:

//www.heliontech.com/downloads/des asic helioncore.pdf.
[6] Helion technology datasheet - high performance MD5 hash core for asic. http://www.

heliontech.com/downloads/md5 asic helioncore.pdf.
[7] Helion technology datasheet - high performance SHA-256 hash core for asic. http://www.

heliontech.com/downloads/sha256 asic fast helioncore.pdf.
[8] M. Abadi, T. Mark, A. Lomas, and R. Needham. Strengthening passwords. Technical report,

SRC Technical Note, 1997.
[9] C. Bays and S.D. Durham. Improving a poor random number generator. ACM transactions

on mathematical software, 2(1):59–64, 1976.

[10] D.J. Bernstein. Circuits for integer factorization: a proposal, 2001. http://cr.yp.to/papers.
html#nfscircuit.

[11] D.J. Bernstein. The Salsa20 family of stream ciphers, 2007. http://cr.yp.to/papers.html#
salsafamily.

[12] D.J. Bernstein. ChaCha, a variant of Salsa20, 2008. http://cr.yp.to/papers.html#chacha.
[13] D.J. Bernstein. Personal communication, 2009.
[14] G. Durant. Personal communication, 2009.
[15] D. Florêncio and C. Herley. A large-scale study of web password habits. In WWW ’07: Proc.

of the 16th international World Wide Web conference, pages 657–666, 2007.
[16] T. Good and M. Benaissa. Hardware results for selected stream cipher candidates. In Proc.

of The State of the Art of Stream Ciphers, 2007.

[17] B. Kaliski. PKCS #5: Password-based cryptography specification version 2.0. RFC 2898,
2000.

[18] P.-H. Kamp. MD5 crypt. FreeBSD 2.0, 1994. http://www.freebsd.org/cgi/cvsweb.cgi/
∼checkout∼/src/lib/libcrypt/crypt.c?rev=1.2.

[19] J. Kelsey, B. Schneier, C. Hall, and D. Wagner. Secure applications of low-entropy keys. In
ISW ’97: Proc. of the first international workshop on information security, pages 121–134,
1998.

[20] Y.K. Lee, H. Chan, and I. Verbauwhede. Iteration bound analysis and throughput optimum
architecture of SHA-256 (384, 512) for hardware implementations. In Workshop on Informa-

tion Security Applications 2007, LNCS 4867, 2008.
[21] M.C.-J. Lin and Y.-L. Lin. A VLSI implementation of the blowfish encryption/decryption

algorithm. In ASP-DAC ’00: Proceedings of the 2000 conference on Asia South Pacific design

automation, 2000.
[22] R.H. Morris and K. Thompson. UNIX password security. Communications of the ACM,

22(11), 1979.

[23] National Institute of Standards and Technology. Electronic authentication guideline. NIST
Special Publication 800-63, 2006.

[24] N. Provos and D. Mazières. A future-adaptable password scheme. In Proc. of the FREENIX

track: 1999 USENIX annual technical conference, 1999.
[25] A.G. Reinhold. HEKS: A family of key stretching algorithms, 1999. http://world.std.com/

∼reinhold/HEKSproposal.html.
[26] A.G. Reinhold. Personal communication, 2009.
[27] J. Yan and H.M. Heys. Hardware implementation of the Salsa20 and Phelix stream ciphers.

In Proc. of the IEEE Canadian Conference on Electrical and Computer Engineering, 2007.

16 STRONGER KEY DERIVATION VIA SEQUENTIAL MEMORY-HARD FUNCTIONS

Appendix A. Availability

Source code for scrypt, including reference and optimized implementations in
C, and a demonstration file-encryption utility are available for download and use
under the 2-clause BSD license from http://www.tarsnap.com/scrypt/.

Appendix B. Test vectors

For reference purposes, we provide the following test vectors for scrypt, where
the password and salt strings are passed as sequences of ASCII bytes without a
terminating NUL:

scrypt(“”, “”, 16, 1, 1, 64) =

77 d6 57 62 38 65 7b 20 3b 19 ca 42 c1 8a 04 97

f1 6b 48 44 e3 07 4a e8 df df fa 3f ed e2 14 42

fc d0 06 9d ed 09 48 f8 32 6a 75 3a 0f c8 1f 17

e8 d3 e0 fb 2e 0d 36 28 cf 35 e2 0c 38 d1 89 06

scrypt(“password”, “NaCl”, 1024, 8, 16, 64) =

fd ba be 1c 9d 34 72 00 78 56 e7 19 0d 01 e9 fe

7c 6a d7 cb c8 23 78 30 e7 73 76 63 4b 37 31 62

2e af 30 d9 2e 22 a3 88 6f f1 09 27 9d 98 30 da

c7 27 af b9 4a 83 ee 6d 83 60 cb df a2 cc 06 40

scrypt(“pleaseletmein”, “SodiumChloride”, 16384, 8, 1, 64) =

70 23 bd cb 3a fd 73 48 46 1c 06 cd 81 fd 38 eb

fd a8 fb ba 90 4f 8e 3e a9 b5 43 f6 54 5d a1 f2

d5 43 29 55 61 3f 0f cf 62 d4 97 05 24 2a 9a f9

e6 1e 85 dc 0d 65 1e 40 df cf 01 7b 45 57 58 87

scrypt(“pleaseletmein”, “SodiumChloride”, 1048576, 8, 1, 64) =

21 01 cb 9b 6a 51 1a ae ad db be 09 cf 70 f8 81

ec 56 8d 57 4a 2f fd 4d ab e5 ee 98 20 ad aa 47

8e 56 fd 8f 4b a5 d0 9f fa 1c 6d 92 7c 40 f4 c3

37 30 40 49 e8 a9 52 fb cb f4 5c 6f a7 7a 41 a4

