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PREFACE

Fast transforms are playing an increasingly important role in applied engi-
neering practices. Not only do they provide spectral analysis in speech,
sonar, radar, and vibration detection, but also they provide bandwidth re-
duction in video transmission and signal filtering. Fast transforms are used
directly to filter signals in the frequency domain and indirectly to design
digital filters for time domain processing. They are also used for convolution
evaluation and signal decomposition. Perhaps the reader can anticipate
other applications, and as time passes the list of applications will doubtlessly
grow.

At the present time to the authors’ knowledge there is no single book that
disctsses the many fast transforms and their uses. The purpose of this book
is to provide a single source that covers fast transform algorithms, analyses,
and applications. It is the result of collaboration by an author in the aero-
space industry with another in the university community. The authors hope
that the collaboration has resulted in a suitable mix of theoretical develop-
ment and practical uses of fast transforms.

This book has grown from notes used by the authors to instruct fast
transform classes. One class was sponsored by the Training Department of
Rockwell International, and another was sponsored by the Department of
Electrical Engineering of The University of Texas at Arlington. Some of the
material was also used in a short course sponsored by the University of
Southern California. The authors are indebted to their students for motivat-
ing the writing of this book and for suggestions to improve it.

The development in this book is at a level suitable for advanced under-
graduate or beginning graduate students and for practicing engineers and
scientists. It is assumed that the reader has a knowledge of linear system
theory and the applied mathematics that is part of a standard undergraduate
engineering curriculum. The emphasis in this book is on material not directly
covered in other books at the time it was written. Thus readers will find
practical approaches not covered elsewhere for the design and development

of spectral analysis systems.
Xin



xiv PREFACE

The long list of references at the end of the book attests to the volume of
literature on fast transforms and related digital signal processing. Since it is-
impractical to cover all of the information available, the authors have tried to
list as many relevant references as possible under some of the topics dis-
cussed only briefly. The authors hope this will serve as a guide to those
seeking additional material.

Digital computer programs for evaluation of the transforms are not listed,
as these are readily available in the literature. Problems have been used to
convey information by means of the format: If A is true, use B to show C.
This format gives useful information both in the premise and in the conclu-
sion. The format also gives an approach to the solution of the problem.
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NOTATION

A®@B
AT
A4t
f4(0)]
D(/)

D(f)

D'(f)

D'(f)

DFT[x(n)]

[DXL)]
E

LEAL)]
F,

[GA(D)]
LHoan(L)]

Meaning

Matrices are designated by
capital letters

The Kronecker product of 4
and B (see Appendix)

The transpose of matrix 4

The inverse of matrix 4

DCT matrix of size (2F x 25)

Periodic DFT filter frequency
response, which for P =15
is given by

1 sin(nf)
exp[—jnf(l — —)J“
N/ AN sin(nf/N)

Periodic frequency response
of DFT with weighted
input (windowed output)

Nonperiodic DFT filter fre-
quency response which for
P =1 sis given by

expl—jnf(1 —1/N)][sin(m/)]/(nf)

Nonperiodic frequency re-
sponse of DFT with
weighted input (windowed
output)

The discrete Fourier trans-
form of the sequence
{x(0), x(1), ..., x(N — 1)}

Jjth matrix factor of [G,(L)]

Expectation operator

Jth matrix factor of [M,(L)]

tth Fermat number, F, =
Q¥+ 1),1=0,1,2,...

(GT), matrix of size 2 x 2%)

MWHT matrix of size
(2F x 2b

Symbol
[H(L)]

[Ha(1)]
[Hh,(1)]

Im

Iy
Ig
Im[ ]

IDFTX(K)]

LK(L)]
L

Mp

Meaning

Walsh-Hadamard matrix of
size (21 x 21). The sub-
script s can be w, h, p, or cs,
denoting Walsh,
Hadamard, Paley or cal-sal
ordering, respectively.

Haar matrix of size (2% x 25)

rth order (HHT), matrix of
size (2L x 20)

Opposite diagonal matrix,
e.g.,

00 0 1
_ 001 0
L=l o100

1 000

Columns of I are shifted cir-
cularly to the right by m
places

Columns of I are shifted cir-
cularly to the left by m
places

Columns of Iy are shifted
dyadically by / places

Identity matrix of size (R x R)

The imaginary part of the
quantity in the square
brackets

The inverse discrete Fourier
transform of the sequence
{X(0), X(1), ..., X(N - )}

KLT matrix of size (2* x 25)

Integer such that N = o

Mersenne number,

Mp =27 — 1, where Pis a
prime number

Xix
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number
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ative integer powers of 2
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mth sequency power spectrum
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bandwidth (Chapter 6)
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s
X,
Xha
Xhhr

a<b
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Fourier (or generalized)
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Transform of X"
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CHAPTER 1

INTRODUCTION

1.0 Transform Domain Representations

Many signals can be expressed as a series that is a linear combination of
orthogonal basis functions. The basis functions are precisely defined (mathe-
matically) waveforms, such as sinusoids. The constant coefficients in the series
expansion are computed using integral equations. Let the basis functions be
specified in terms of an independent variable ¢ and be represented as ¢,(¢) for
k=...,—1,0,1,2,... . Let x(¢) be the signal and X (k) be the kth coefficient.
Then the signal x(¢) can be decomposed in terms of the basis functions ¢,(¢) as

x() = Y X)) (1.1)
k=—ow
If (1.1) describes x() for all values of ¢, it also describes x(¢) for specific values of
t. Suppose these values are nT where Tis fixedand n=...,—1,0,1,2,....
Define x(n) and ¢, (n) as x(¢) and ¢,(), respectively, evaluated at ¢ = nT. Then
(1.1) becomes

x(ny= ) X(k)pu(n) (1.2)

k=—w

Now suppose that only N of the coefficients in (1.1) are nonzero, and let those
nonzero coefficients be X(0), X(1), X(2),..., X(N — 1). Then (1.2) reduces to

x) = ¥ X(K)b(n) (1.3)
Let @ be the matrix defined by
$0(0) $1(0) e ¢n-1(0)
45 — ¢0(1) ¢1(1) e ¢N‘.1(1) (14)

Go(N—1) $i(N=1) -~ ¢y (N—1)
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and let X be the vector defined by

X = [X(0), X(1), X(2),..., X(N — D]" (1.5)

where the superscript T denotes the transpose. Then (1.3) can be written as a
matrix-vector equation that specifies N variables x(0), x(1),..., x(N — 1):

x = oX (1.6)

x = [x(0), x(1), x(2),...,x(N — 1)]T (1.7)

The N coefficients in (1.5) scale the values of @ in (1.6) and result in a complete
description of x. Since the basis function values in ¢ are well defined and since
(1.6) is a matrix—vector equation (or transformation), the components of X
constitute a transform domain representation of x.

The transform domain representation of x is especially useful in signal
processing using digital computers. If x(0), x(1), x(2),...,x(N — 1) is a data
sequence, then this sequence is represented by the transform sequence X(0),
X(), X(2),..., X(N — 1). If x(¢) is a voice, sonar, or TV signal, the transform
sequence aids in such tasks as identifying the speaker or sonar emitter and
reducing the data required to transmit the TV picture. It is therefore highly
desirable to evaluate the transform sequence as efficiently as possible. This
evaluation is implemented with a fast transform algorithm.

1.1 Fast Transform Algorithms

Fast transform algorithms reduce the number of computations required to
determine the transform coefficients. Matrix-vector equations can be defined
for the inverse of (1.6) as

X = ¢ 1x (1.8)

where @ ~! is the matrix inverse of @. Since ®is an N x N matrix, ® ! is also an
N x Nmatrix. Assuming that @~ is well defined, brute force evaluation of (1.8)
requires roughly N? multiplications and N? additions. Fast transform algo-
rithms reduce these arithmetic operations significantly as measured by digital
computer costs.

The first fast transforms to achieve prominence in digital signal processing
were fast Fourier transform (FFT) algorithms. A large part of this book is
devoted to the FFT. Not only are such old favorites as power-of-2 FFTs
described, but also newer FFT's are carefully developed. The first FFT algorithm
was described by Good [G-12], but FFTs were brought into prominence by the
publication of a paper by Cooley and Tukey [C-31]. The newer FFTs are the
result of the works of Winograd [W-6] and of Nussbaumer and Quandalle
[N-23].

The generalized transforms in this book resulted from contributions by
several researchers, including the authors. The continuous generalized trans-
form has attributes which include a frequency interpretation and a fast



12 FAST TRANSFORM ANALYSES 3

generalized transform (FGT) version. The generalized transforms dependent on
a parameter r are designated (GT),. They preceded the FGTs, and while they do
not have a frequency interpretation, they are otherwise similar for many data
processing purposes.

The Walsh-Hadamard transform (WHT) is particularly suited to digital
computation because the basis functions take only the values + 1 and — 1. The
Haar transform takes the values + 1, — 1, and 0 plus scaling of transform
coefficients and is similarly suited to digital computation. Other discrete
transforms, such as the slant (ST), discrete cosine (DCT), Hadamard-Haar
(HHT), and rapid (RT) transforms, also have fast algorithms. These algorithms
result from sparse matrix factoring or matrix partitioning.

In a statistical sense, the Karhunen-Loéve transform (KLT) is optimal under
a variety of criteria. In general, generation and implementation of the KLT are
both difficult because the statistics of the data have to be known or developed to
obtain the KLT matrix and because there are no fast algorithms except for
certain classes of statistics.

1.2 Fast Transform Analyses

Under appropriate conditions the function x(f) can be decomposed into the
sum of basis functions ¢,(z), each scaled by X(k), where k is an integer. One
condition required for a Fourier series expansion to be valid, for example, is that
x(f) be periodic with a known period P.

If x(¢) is sampled to obtain the finite discrete-time sequence {x(0), x(1),...,
x(N — 1)}, then this sequence can always be expressed in terms of sampled
orthogonal basis functions. This is because ® and ¢~ ! both exist if the basis
functions are orthogonal so that (1.8) defines the coefficient vector X and (1.6)
defines the data vector x.

Suppose that another N samples of x(z) were taken to obtain the sequence
{x(N), x(N + 1),..., x(2N — 1)}. Let the coefficient vector determined for this
sequence be X. In some instances we wish to make X = X. One instance is the
analysis of an accelerometer signal that has been integrated to give the vertical
motion of an automobile subjected to periodic vertical forces. If the analysis
information is FFT coefficients, then these coefficients describe the amplitudes
of sinusoidal basis functions. Large coefficients identify the resonant frequencies
of the suspension system. We would like to obtain the same information about
the automobile’s suspension system from two sets of data.

In general, two sets of data do not give the same coefficients. This is because
assumptions such as periodicity of the input and knowledge of the period P are
not met. This does not negate the value of the analyzed data. We might change
the sampling interval T, average a number of coefficient vectors, or use a
different integer N to investigate the data further. Which procedure to use is best
evaluated if we examine fast transform analyses that specify the responses of the
transform to various inputs.
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Examination of the automobile suspension system is facilitated by regarding
the FFT coefficient magnitudes as detected filter outputs. We can then use our’
filtering knowledge to evaluate the data. Specification of the FFT frequency
response is one of the fast transform analyses presented in this book.

Often a continuous transform is very helpful in design and analysis. FFT
analysis is expedited by the Fourier transform that is developed heuristically and
applied extensively. FGT analysis is likewise aided by the generalized con-
tinuous transform.

1.3 Fast Transform Applications

The development of the efficient algorithms for fast implementation of the
discrete transforms has led to a number of applications in such diverse
disciplines as spectral analysis, medicine, thermograms, radar, sonar, acoustics,
filtering, image processing, convolution and correlation studies, structural
vibrations, system design and analysis, and pattern recognition. Fast algorithms
lead to reduced digital computer processing time, reduced round-off error,
savings in storage requirements, and simplified digital hardware.

Digital processors based on the fast transform algorithms have been
developed. Decreasing cost and size of the semiconductor devices have further
added the impetus for designing and developing the digital hardware. Many
application aspects of these transforms are illustrated in the problems, so that
the readers’ efforts can be directed toward discovering additional applications.
Chapters on filter shapes and spectral analysis are oriented solely toward
applications of FFT algorithms.

1.4 Organization of the Book

The book consists of 11 chapters. Signal analysis in the Fourier domain is
described in Chapter 2. This chapter defines Fourier series with both real and
complex coefficients and develops the Fourier transform heuristically. This is
followed by a development of the Fourier transform pairs of some standard
functions. Fourier decomposition lays the foundation for the development of
the discrete Fourier transform (DFT), which is described in Chapter 3. It is
shown that the same DFT results whether it is developed from the Fourier series
for a periodic function or from an approximation to the Fourier transform
integral. Various properties of the DFT are outlined both in the text and in the
problems. A unique feature of this chapter is the shorthand notation for the
matrix factored representation for the DFT. This notation shows at a glance
what operations are required for the fast Fourier transform (FFT), which
follows in Chapter 4.

The initial development of FFT is based on power-of-2 algorithms and is then
extended to mixed radix cases. It is shown that an FFT can be developed as long
as the sequence length is composed of a number of factors. The inverse FFT
operation is similar to that of the forward FFT.
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Chapter 5 introduces the results from number theory required for the reduced
multiplications FFT (RMFFT). From number theory, circular convolution,
and Kronecker product procedures, various FFT algorithms minimizing
multiplications are developed. Beginning with the definition and development of
polynomial transforms, their application to multidimensional convolutions and
implementing the DFT is discussed. DFT filter shapes and shaping are discussed
in Chapter 6. Applications of the DFT receive attention in this chapter. Both
time domain weighting and frequency domain windowing can be used to modify
the DFT filter shapes, the latter in FFT spectral analyses. Various weightings
and windows as well as shaped filters are described in this chapter.

Further applications of the FFT are considered in Chapter 7, which discusses
some basic systems for spectral analysis. Both finite and infinite impulse
response (FIR and IIR) digital filters are presented. Complex modulations are
combined with digital filters to increase system efficiency. The description of an
efficient digital spectrum analyzer and hardware considerations concludes this
chapter.

Nonsinusoidal functions first appear in Chapter 8, where Walsh functions are
introduced, generated from Rademacher functions. Discrete transforms based
on Walsh functions for such orderings as Walsh, Hadamard, Paley, and cal-sal
are then developed. Power spectra invariant with respect to circular shift of a
sequence and the extension of the Walsh-Hadamard transform to multiple
dimensions are developed. In summary, this chapter develops the sequency
decomposition of a signal, in contrast to the frequency analysis outlined in
Chapters 2-7.

A generalized transform, in both continuous and discrete versions, is the
subject of Chapter 9. Various advantages are stressed, such as frequency
interpretation, generalized system design and analysis, and fast algorithms. As
before, various properties of the generalized transform are listed. A strong point
of this chapter is the frequency interpretation that provides a common ground
for comparison of generalized and other transforms.

A family of discrete orthogonal transforms varying from WHT to DFT is the
major highlight of Chapter 10. Their properties and those of fast algorithms are
developed, and other widely used transforms, such as slant, Haar, discrete
cosine, and rapid transforms, are presented. These have found application in a
wide variety of disciplines.

Drawing upon the results of number theory presented in Chapter 5, number
theoretic transforms (NTT) are developed in Chapter 11. These have become
prominent because of their applications to convolution, correlation, and digital
filtering. Both the advantages and limitations of NTT are pointed out.

Problems at the end of each chapter reflect the concepts, principles, and
theorems developed in the book. They also treat applications of the fast
transforms and extend these to additional research topics. The extensive
references, listed at the end of the book, are only as exhaustive as the rapidly
changing subject permits. Care was taken to make this list as up-to-date as
possible.



CHAPTER 2

FOURIER SERIES AND THE FOURIER TRANSFORM

2.0 Introductiomn

Fourier series are used to decompose periodic signals into the sum of sinusoids
of appropriate amplitudes. If the periodic signal has a period of P s, then the
sinusoidal frequencies in the Fourier series are 1/P, 2/P, 3/P,...Hz. The
representation of periodic signals as the sum of sinusoids of known frequencies is
a very useful technique for system analysis.

For example, let a periodic signal be the input, or driving function, of a linear
time invariant system. Then the sinusoidal representation relates the signal input
and the steady state output. This is because the system has a definite response to
each sinusoid at the input. The system’s steady state response manifests itself as a
change in the amplitude and as a shift in the phase of the sinusoid at the output.
The system gain change and phase shift can be applied to each sinusoid in the
Fourier series to evaluate the system’s steady state output.

This chapter develops the Fourier series representation of periodic signals. In
later chapters we shall extend the representation to include the discrete Fourier
transform (DFT), the fast Fourier transform (FFT), and other fast transforms.
This chapter also gives a heuristic development of the Fourier transform. We
shall use the Fourier transform for the performance analysis of systems
incorporating FFT algorithms. The Fourier transform provides a frequency
domain analysis of signals that can be represented by Fourier series, as well as of
signals having a continuous spectrum, and is therefore a very general system
analysis tool.

2.1 TFourier Series with Real Coefficients

Let x(¢) be a periodic time function whose magnitude is integrable over its
period. Then the Fourier series with real coefficients is given by [C-58, H-18,
H-40]

ag ® 2nlt . 2nlt
N =— cos— + b — 2.1
x(1) 5 + 1§1 |:al P + 0811 P 2.0
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where P is the period in seconds, / = 0, 1,2, ... is the integer number of cycles in
P s, [/P is frequency in units of Hz, and ay, a;, a,, ... and by, b,, ... are the
Fourier series coefficients.

The value of the Fourier series coefficient a, is found by multiplying both sides
of (2.1) by cos(2nkt/P) and integrating from — P/2 to P/2, giving

P/2 P/2
2nkt 2nkt
x(f) cos " dt = @cosn—dt
2 P
—P/2 —P/2
P/2
N 2nlt  2mkt
+ > q J cos L cos T gt
=1 P
—-P/2
P/2
® 2nlt  2mkt
+ > b sin——cos-——dt 2.2
So [ sl e 02
—-P/2

Evaluation of (2.2) is expedited by the orthogonality of the sine and cosine
functions on the interval — P/2 <t < P/2:

P/2
2 2rnkt | 2nlt
Z J cos T sin L g = 0 2.3)
P P
—P/2
P/2
2 2kt  2nlt
P JVCOS P cos—th=6k, (2.4)
—-P/2
P/2
2 . 2znkt | 2nlt
7 j sin sdeZ:ék, (2.5)
—P/2

where J,, is the Kronecker delta function, given by
P L (2.6)
“ 70 otherwise '

Applying (2.3) and (2.4) to (2.2) gives

P/2
2 2nkt
a = 3 x(t) Cossz, k=0,1,2,... 2.7
—P/2

The Fourier series coefficient b, is found by multiplying both sides of (2.1) by
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sin(2rkt/P), integrating from — P/2 to P/2, and applying (2.3) and (2.5):
P/2

b 2 r (?) sin
=— x(2) st
k P J

—P/2
Equations (2.7) and (2.8) define the real coefficients a, and b,. These
coefficients are evaluated for a particular function x(¢). Substituting g, and b,
into (2.1) gives the Fourier series for x(¢).

2nkt

d, k=0,1,2,... (2.8)

2.2 Fourier Series with Complex Coefficients

Equation (2.1) represents a periodic function x(¢) by a series with real
coefficients. This series may be converted to a Fourier series with complex
coefficients by using the identities

cosf) = %(eﬂ’ + e %) 2.9
and
sing = i,(ej" — e 9 (2.10)
2
Letting 6 = 2znkt/P and substituting (2.9) and (2.10) into (2.1) gives

12 . . 1 . .
x(f) = %o, - Yo @@ + e ) + —b(e® — eI
2 2,0 J

a =] 1 . X 1 . .
= 70 + kgl ':2 (ax — jb)e”® + E(ak +]bk)e_je:|

© 1 . )
= Z 3 [ap — jsign(k) b|k|]e1" (2.11)
k=—w
where
. +1, k=0
sign(k) = {_ L k<0 (2.12)

and | | denotes the magnitude of the quantity enclosed by the vertical lines. If we
define

X(k) = 3law — jsign(k) by (2.13)
then (2.11) reduces to

x(t) = i X (k) e32mki/P (2.14)

k=—-c
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The right side of (2.14) is the Fourier series with complex coefficients X (k),
k=0, +1, +2,.

Equations (2.3)~ (2 5) display the orthogonallty condltlons of the sinusoids
over the interval — P/2 <t < P/2. The exponential functions are likewise
orthogonal as follows:

P/2
1 . )
F J\ e—}ant/Pe—ﬂnlt/P dl — 5kl (215)
-P/2

We can change the summation index in (2.14) to /, multiply both sides by
exp(— j2nkt/P), integrate from — P/2 to P/2, and apply (2.15) to get the
evaluation formula for X (k):

P/2
1 .
X(k) = J x(£) e~ 12KIP gy (2.16)

—P/2

Plots of X (k) versus k show that a periodic function has a discrete spectrum. In
general, values of X (k) are complex and require a three-dimensional plot, such as
that shown in Fig. 2.1. As (2.13) and Fig. 2.1 show, for £ >0, X(k) =
a,/2 — jb,/2 is the complex conjugate of X(— k).

Re 4
Jjlm
jby/2

a;/2 jbl/Z a)/2

-jb,/2
-3 ) I/' 142;2 3 >
1A AT

a,/2
33/2 2

—jb3/2

Fig. 2.1 Complex Fourier series coefficients.

2.3 Existence of Fourier Series

Typical engineering problems require information about the spectral content
of signals. For example, a sonar signal from a ship contains sinusoids due to
motion of its propeller through the water, vibration of its hull, and oscillations
transmitted through the hull by vibrating auxiliary equipment. The water
pressure variations sensed by a sonar receiver contain the sum of a finite number
of sinusoids due to the ship (plus other background signals and noise). We show
in this section that a Fourier series always exists for such a band-limited function
which is the sum of a finite number of sinusoids with rational frequencies. This
result is applicable to the development of the DFT in the next chapter because



10 2 FOURIER SERIES AND THE FOURIER TRANSFORM

the DFT must be applied to a band-limited function if it is to give accurate values
for the Fourier series coefficients. Since these coefficients define both the
amplitude and phase of the input spectrum, the DFT output is often referred to
as a spectral analysis.

We consider first the simple case of a Fourier series representation for the sum
of two cosine waves of frequencies 2 and 3 Hz:

x(#) = cos(2n2t) + cos(2n31) (2.17)
The two cosine waves have frequencies f; = 2Hz and f, = 3Hz and periods
Py =1/fi=% s and Py=1/fa=3% s (2.18)

At the end of 1s the 2 Hz wave has gone through two cycles, the 3 Hz waveform
has gone through three cycles, and they are in the same phase relation asat 0s. In
this example, P; P, = % and the period of the combined waveforms is

P=6P,P,=1 s (2.19)
Generalizing this result, let M waveforms be present with rational periods
P; = pi/q; (2.20)

where p; and ¢; are integersand i = 1,2,..., M. Let p;, g;, p;, and g, be relatively
prime: that is, let

ged(p,p) =1, i#l
ged(gig) =1, i#! (2.21)
ged(pi,q) =1, forall il

whereif » and £ are integers then gcd(«, £) is the greatest common integer divisor
of @« and 4. Then the period P is given by

P=q:1q2 qu PPy Pyy=pip2 Pu (222)
The waveform with period P; goes through
fiP=P/P, =q,p; " py cycles (2.23)
in P s. The waveform with period P, goes through
foP = P/P, =pigaps - py  cycles (2.24)

in P s, and so on. If (2.21) is not satisfied, other modifications to the period are
required (see Problems 10-12).

2.4 The Fourier Transform

The Fourier series with complex coefficients for the function x(z) is given by
(2.14), where the complex coefficients X(k),k = 0, + 1, + 2,..., aregiven by the
integral with finite limits in (2.16). We shall give a heuristic derivation of the
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Fourier transform by converting the right side of (2.16) into an integral with
infinite limits. The new integral equation will define a function X(f) that is a
continuous function of frequency f.

The derivation of the Fourier transform begins by multiplying both sides of
(2.16) by P giving

P/2
PX(k) = J x(t)e 2P gy (2.25)

—P/2
Note that the frequency of the sinusoids with argument 2rkt/P is k/P. As P
becomes arbitrarily large, the spacing between the frequencies k/P and (k + 1)/P
becomes arbitrarily small, and the frequency approaches a continuous variable.
This leads us to define frequency by

f= lim k/P (2.26)

P— oo
We must consider what happens to the left side of (2.25) as P approaches infinity.
We shall assume that the left side of (2.25) is meaningful for all P and define
X(f) = lim PX(k) (2.27)

P

We next combine (2.25)-(2.27), getting

0

X(f) = j x()e i¥ I dy (2.28)
Equation (2.28) is the Fourier transform of x(¢). The function X(f) can be either
real or complex valued and will be called the spectrum of the signal x(¢).

Specifying conditions under which (2.27) defines a meaningful function would
require a lengthy mathematical digression [T-3]. From a practical viewpoint, we
can derive Fourier transforms simply by using (2.28) and seeing if a well-defined
answer results for X(f). Transforms required for FFT analysis are derived in the
following sections, and the derivations of many other transforms are outlined in
the problems.

The signal x(¢) can be recovered from its spectrum X(f) using the inverse
Fourier transform. We shall derive the inverse transform from the Fourier series
with complex coefficients given by (2.14). Multiplying numerator and de-
nominator of (2.14) by P gives

x) = Y PXReHr(1/P) 229)

k=—o0
As P approaches infinity, let the separation between adjacent frequencies k/P
and (k + 1)/P be defined as df:

df = lim [(k + 1)/P — k/P] = lim [1/P] (2.30)

P— oo P— o
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The summation in (2.29) becomes an integration as the spectral line separation
df becomes arbitrarily small. Using this fact, (2.26) and (2.30) give

x(t) = J X(f)el? I df ‘ 2.31)

Equation (2.31) is the inverse Fourier transform of X(f). The signal x(r)
recovered from its spectrum X(f) can be either a real or complex valued
function. ‘

When the Fourier transform exists, we shall use the simplified notation & x(z)
to denote the integral in (2.28). When the inverse transform exists, we shall use
ZF 1 X(f) to mean the integral in (2.31). The Fourier transform and its inverse
are summarized by

X(f)=Fx(1) = j x(t)e 2t dt (2.32)
and
x(t) =7 X)) = J X(f)erm It df (2.33)
If the transforms of (2.32) and (2.33) exist, they can be combined to get
x(t) = F 1Fx(1) (2.34)
X(fy=77 'X(/) (2.35)

When both the integrals on the right of (2.32) and (2.33) exist, we say that x(z)
and X(f) constitute a Fourier transform pair. We indicate this pair by

x() < X(f) (2.36)

where <« means that both the transform and its inverse exist.

2.5 Some Fourier Transforms and Transform Pairs

In this section we derive Fourier transform pairs for some functions. The pairs
in this section are essential for analysis of the DFT and will be used extensively in
several later chapters.

TrANSFORM OF RECT(2/Q) [B-3, W-27] The function rect(¢/Q), shown in Fig.

2.2, is defined by
t 1 if —0/2<t<0Q)/2, :
rect <—> = { ,Q/ o/ (2.37)
0 0 otherwise
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4 rect [-(%]

>

-Q/2 0 - Q2 t

Fig. 2.2 The rect function.

Substituting (2.37) in (2.32) gives

/2
£\ . ~infQ _ pinfQ i
F rect (-) - '[ e 2 €0 €M GO, 5
0 —Jj2nf nfQ
-0/2
In like manner we obtain
i t
1 rect <£> _ pSin®Q) (2.39)
0 ntQ
TRANSFORM OF SINC(¢Q) [B-3, W-27] This function is defined by
sinc(1Q) = sin(n1Q)/(ntQ) (2.40)

The function sinc(?) is plotted in Fig. 2.3. The similarity of the right sides of
(2.38) and (2.40) leads us to guess that

F[Q sinc(tQ)] = rect(f/Q) (2.41)
‘1 sinc(t)
N\ N
3N /! 0 1IN _" 3 4 t

Fig. 2.3 The sinc function.

Taking the inverse transform of both sides of (2.41) gives (2.39), which verifies
our guess. In like manner we obtain

F ~[Q sinc(fQ)] = rect(t/Q) (2.42)

RECT AND SINC FUuNcTION PAIRs Combining the rect and sinc function trans-
forms gives the following pairs:

rect(¢/Q) < Q sinc(fQ) (2.43)
0 sinc(tQ) > rect(f/Q) (2.44)
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TRANSFORM OF e/27/ot  Taking the Fourier transform of exp(j2nf,?) gives

P/2
Fel?mSot = lim j (e12 /g =2%01) df — Tim {pw
n(f —fo)P
—-P/2

P- P-w

The function in the braces in (2.45) is Psinc[(f — f,)P], which is shown in Fig.
2.3. If the abscissa is changed to (f — fy)P in Fig. 2.3, the peak of the sinc
function occurs at f, and the first nulls occur at f;, + 1/P. As P — oo the function
Psinc[(f — f,)P} approaches infinite amplitude at the point f = f;. As P - oo
the number of sidelobes of sinc[(f — f,)P] becomes infinite for small but
nonzero distances |f — fo| between f and f,. The amplitude of the sidelobes
approaches zero. These conditions correspond to the Dirac delta function,
which has infinite height, infinitesimal width, and zero amplitude at all but one
point. (For additional development of the delta function concepts, see distri-
bution function discussions in [B-2, P-1].) We conclude that we can represent
the Fourier transform of exp(j2nfyt) by a delta function,

FelPmiot — §(f — fo) = {;O’ =/

} (2.45)

2.46
otherwise ( )

An equivalent definition of the Dirac delta function is that its width is zero, its
height is infinite, and its area is unity. We can combine the concepts of
infinitesimal width and unit area to show that the integral of the product of a
delta function and another function yields the sampled value of the second
function at the instant the delta function occurs. Applying this to the product of
a frequency domain function X(f) and a delta function at f; gives

e}

J X(N)o(f = fo)df = X(fo) (2.47)
Using (2.47) to find the inverse Fourier transform of §(f — f,) gives

o)

F o~ o) = j 8(f — fo)e1tdf = efwro (2.48)

We can establish in like manner that #6(¢ — t,) = exp(— j2nft,). The new pairs
are:

e 5(f — fo) (2.49)
8t — tg) <> e i2nf10 (2.50)

TRANSFORM OF cos(2mfyt) Since cosf = 3(e® + e~#), the transform of e”,
0 = 2nfyt, determines the transform of cos . The transform of e’ is stated in
(2.46); it yields

F cosQ2nfot) = F 320 + e 2N = 25(f + fo) + L0(f — fo) (2.51)
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The inverse transform also follows from (2.49), leading to the Fourier transform
pair '
cos(2nfot) >3 0(f + fo) + 3 6(f - fo) (2.52)

TRANSFORM OF SIN(27tfof)  Since sin 0 = (e — e7#9)/2j, the transform of sin 0,
9 = 2mfyt, follows in the same manner as cos 6:

F sinQnfot) = F (e — e 2N 2j = (1/2) 8(f — fo) — (1/2) 8(f + /o)
(2.53)
which leads to the Fourier transform pair
SINQnfot) > 6(f + fo) — 41 6(f — fo) (2.54)

TRANSFORM OF A PERIODIC FUuNcTION A periodic function with known period
Pisrepresented by a Fourier series. Equation (2.1) is the Fourier series with real
coefficients. Transforming the right side of (2.1) gives

a, 2= 2kt . ant:|
FL<—+ cos + b, sin
{ ) [a" p TP

ao @1 k k
=75(f) + kgliak[(S(f_F) + 5<f+F>}
+ i%b,{é(ﬁt%)—é(f—%)] 2.55)

Using the unit area of a delta function gives

(kIP)+e
k
j (a +jbk)5<f— F) df = ay + jby (2.56)
(k/P)—¢

where ¢ 1s an arbitrarily small interval. The Fourier transform of the periodic
function is thus an infinite series of delta functions spaced 1/P Hz apart
whose strengths are the Fourier series coefficients.

Transforming (2.14) yields

?[ Y X(k)ejz"’“”’] = Y X(k)é(f—k/P) 2.57)
k=—o k=—-o

Since X(k) = a, — jsign(k)b,, we again see that the Fourier transform of the
Fourier series gives spectral lines at f=0, + 1/P,+2/P,...,+ k/P,....
Figure 2.1 represents the Fourier transform coefficients if the vectors represent-
ing X(k) are considered to be delta functions whose strengths are a,/2 and b,/2.

TRANSFORM OF A SINGLE SIDEBAND MoDULATED FuNcTioN Single sideband
modulation of a time signal is used extensively in spectral analysis and
communications. It accomplishes a frequency shift which preserves a signal’s
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spectrum without duplicating the spectrum. This makes single sideband
modulation more efficient than double sideband modulation which duplicates
the spectrum.

Single sideband modulation is accomplished by multiplying a signal x(7) by
the modulation factor exp(+j2nfot). The Fourier transform of a modulated
function is

©
gg[x(z)e_janol] — J\x(t)eijnfoze—jzn[tdt

— W

[ee]

J x(yexp[—j2n(f + fo)ldit = X(f + fo)  (2.58)

—

I

The inverse transform of X(f + f;)is found by a change of variables. If 1, is fixed
and z = f + f,, then dz = df and

F XS+ /)] = f X(f + fo)e* It df = J X(z)e?mte=2mordy (2.59)

The factor exp(—j2nfot) does not vary with z and may be factored out of the
integral, giving the Fourier transform pair

x(De I X(f+ o) (2.60)

Equation (2.60) specifies a frequency shifted spectrum and the single sideband
modulation property is frequently called the frequency shift property. The shift
for positive f, is to the left. For example, consider the spectral value X(f,)
occurring at f, in the original spectrum. The value X(f,) is found at f = 0 in the
shifted function X(f + fo)-

TrRANSFORM OF A TIME SHIFTED FUNCTION Suppose we have the Fourier
transform pair x(¢) <> X(f) and want the Fourier transform of the time shifted
function x(r — 7). We find this transform by the change of variables z = ¢ — 1,
which gives

Fx(t—1)= J x(t — t)e gt = J x(2)e It itz dz  (2.61)

The factor e 72"/ does not vary with z and can be taken out of the integral,
resulting in

Fx(t — 1) = e I2X(f) (2.62)

The factor e 727/ is a phase shift that couples power between the real and
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imaginary parts of the Fourier transform spectrum. The result is the transform
pair ' '
x(t + 1) > eTI2X( ) (2.63)

TrANSFORM OF A ConvoLuTIiON Convolution is one of the most useful proper-
ties of the Fourier transform in the analysis of systems incorporating an FFT. If
x(f) and y(f) are two time functions, their time domain convolution is
represented symbolically as x(f) x y(¢) and is defined as

o0

x(t) xy(t) = J x()y(t — u)du (2.64)
The Fourier transform of (2.64) give_s00
F[x(@®)xy()] = J eIt J x()y(t — u) du dt (2.65)

For most time functions the order of integration in (2.65) may be interchanged,
giving

Fx(®)*y(D)] = J x(u) J y(t — w)e It dt du (2.66)

Letting z = t — u gives

0 @

Fx@)*y()] = f x(u)|: J Y(z)e™S2mS G+ dz} du (2.67)

— 00 - 00
Note that u does not vary in the integration in brackets and may be factored out
to give

F[x(®)*y(D)] = f x(u)[ j Y(z)e iz dz:|e_j2"f“ du (2.68)

The term in square brackets is the Fourier transform of y(¢), which we denote
Y(f) = # Y(t). We now have

F [x() * y(1)] J x(u)e ™ 2 Y(f) du

Y(f) J x(u)e™ ™" du = Y(/)X(f) (2.69)
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The inverse transform also exists for most applications. Furthermore, we can
interchange x(¢) and y(¢) in (2.69) and get the same answer. This establishes the
Fourier transform time domain convolution pair

x(@) * y(t) = X(NH Y(f) . (2.70)

If X(f) and Y(f) are two frequency domain functions, then frequency domain
convolution is represented by X(f) * Y(f) and is defined as

X(NH=Y(f) = JX(u)Y(f— u) du (2.71)

The inverse Fourier transform of X(f) = Y(f) is similar to the Fourier transform
of x(¢) x y(¢) outlined in (2.64)~(2.70).

The transform pairs for time domain and frequency domain convolution are
summarized as follows:

x(2) % y(t) = X(f) Y(f) (2.72)
x(O(1) = X(f) = Y(f) (2.73)

2.6 Applications of Convolution

The Fourier transform of a time domain convolution and the inverse
transform of a frequency domain convolution are particularly useful for system
analysis. The transfer function property illustrates the application of time
domain convolution, and analysis of a function with unknown period illustrates
the application of frequency domain convolution.

TraNSFER Funcrions Determining transfer functions is an important appli-
cation of the convolution property. Let a linear time invariant system have an
input time function x(¢) with transform X(f), as shown in Fig. 2.4. Let the
system response to a delta function be the output y(¢). Let the transform of y(¢)

be Y(f).

Input System Output
X(f) Y(f) 0(f)
_ ————  »

Fig. 2.4 Relationships between system transfer functions.

Y(f)is called a transfer function when used to describe a time invariant linear
system. We shall demonstrate that the output time function o(¢) has Fourier
transform O(f) given by

O(f) = X(NH X)) (2.74)
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as shown in Fig. 2.4. Equation (2.74) gives the output time function o(¢) as

o(t) = F10(f) = F XN Y()
= x(8) *y(t) = j x()y(t — u)du ‘ (2.75)

Most systems do not have an input until some specific time, which we can pick as
zero so that

x()=0, t<0 (2.76)

Furthermore, many systems do not have an output without an input (causal
systems), 8o it is reasonable to set

y(t —u) =0, t—u<0 2.77)
Then

t

o(t) = jx(u)y(t —u)du (2.78)
0
The integral in (2.78) may be approximated by a summation giving
K-1
oK)y~ T Y x(myK—1—n) (2.79)
n=0
where o(n), x(n), and y(n) are the values of o(¢), x(¢), and y(¢) at time ¢t = nTand T
is an arbitrarily small time interval. Sampled functions x(n), y(n), y(— n), and
y(K — n) are shown in Fig. 2.5 for K = 12.

The function y(¢) is called the impulse response of the system because an input
x() = 6(¢) produces the output y(r). We can approximate 4(¢) by a pulse T's wide
and 1/T high since both the delta function and pulse have unit area. A pulse with
amplitude x(0)/T and duration 7 would give the output x(0)y(t — T') which, if
sampled at times nT, would give the sampled sequence {x(0)y(n — 1)}. A pulse
with amplitude x(0) and duration 7T will approximate the sequence
{Tx(0)y(n — 1)} if T is sufficiently small. Thus at sample K the output is
Tx(0)y(K — 1) due to an input x(0) at time 0. Likewise, at sample K the output is
Tx(1)y(K — 2) due to an input x(1) at time T’; it is Tx(2)y(K — 3) due to an input
x(2) at time 27; and in general, it is Tx(n)y(K — 1 — n) due to an input x(n) at
time nT, n < K. A linear time invariant system has the property that the output
at time KT is the sum of the outputs caused by all the inputs, so

K-1
oK)y=T Y x(my(K—1—n) (2.80)

n=0
which agrees with (2.79). Equation (2.80) is an approximation to (2.78), and
within the accuracy of this approximation we have demonstrated that a time
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x(n) Sampled Input a y{n) Sampled Impulse
Response

Actual Input : / Actual Impulse

Response

0 q 8 12 16 n 0 4 8 12 16 n
y{-n) 4 y(12-n)
13011 HH‘ '[L_ .
-no.16 -12 -8 -4 G 40 4 8 12 n
$ ()
8(t)
System \\\\\\\s‘
-—p
E——— Y(f) 0 >t
¥y
x(t) oft)
i‘: System /\
0 t -
—_ Y(f) —s

Fig. 2.5 Sampled functions and system response.

invariant linear system with input x(¢) and impulse response y(¢) has output o(z).
The transform pair describing the transfer function property also holds under
very general conditions. The transform pair follows:

o(t) = x(1) » (1) = O(f) = X(NH Y(/) (2.81)

ANaLysis oF A Function witH UNKNOowN PErRIOD  The convolution property
is extremely useful for analyzing system outputs. We shall illustrate this by
analyzing the Fourier series of a function that actually has period P but for
which a period Q was assumed because of lack of this knowledge. Knowledge of
the periodicity of the input function is usually lacking when a system is
mechanized, so the problem of transforming a function with period P under the
assumption that the period is Q is a very real one.

Consider the system shown in Fig. 2.6 with the input cos(2r4¢) + cos(2n51).
The Fourier transform of the input is delta functions with area atf = — 5, — 4,
4, and 5 Hz. The 4 and 5 Hz terms together give a signal with the period P = 1 s,
and using this to determine the complex Fourier series gives

L if k=44
X(k):{2 ' taorts (2.82)

0 otherwise
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iemit T “[ 4172 T T
l 54 2 0 2 4 5 f

cos (2w 4t) +cos (2m5t) p/2
X [ (Vdtfpo 5

-P/2

Fig.2.6 System to evaluate the effect of using an erroneous period to determine the Fourier series
coefficients.

These values are shown in Fig. 2.6. The integrator runs from — £ to s. Now
assume we do not know that the cosine waves at the input have frequencies of 4
and 5 Hz and suppose we guess that P = 1s. For P = 1 s we get an estimate X(k)
that approximates the actual complex Fourier series coefficient. The estimate is
given by

1/4
- 1 .
X(k) = 2 J [cos(2n4t) + cos(2nS5t)]e J2m/1i2) gy
—-1/4

1 {sin [27(4 + 2k)/4]  sin[2n(4 — 2k)/4]
T

4+ 2k * 4 -2k
sin[27(5 + 2k)/4]  sin[2(5 — 2k)/4]
s+ T s_%

Since f = k/P is the sinusoidal frequency, we note that X(2) approximates X(4).
For k = 4+ 2 we get

(2.83)

X(k) = 1 + l[sm(zﬂ + sinz—n] ~ 0.85 (2.84)
2 = 9 4
For values other than k = + 2 the estimates given by (2.83) are not zero owing to
the erroneous guess of the period. Figure 2.7 shows the complex Fourier series
coefficients X(k) for — 4 < k < 4 computed under the erroneous assumption
that P = 1 s. In this case the coefficients are all real.

This analysis has demonstrated two things. (1) If we pick P incorrectly, the
Fourier series are not accurate. (2) If we mistakenly use P = 1, it is laborious to
compute the Fourier series coefficients given by (2.83) and (2.84). An easier
approach is to note that under the assumption that the period is Q (2.16) gives

Q/2

_ 1 :

X(k) -5 J x(£)e ~2™IQ gy (2.85)
-Q/2

We note further that we may extend the limits of integration from + Q/2to + oo
if we multiply the integrand by rect(¢/Q), since this function is unity in the
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X(k)
1.0
0.85 0.85
0.8
0.6
0.4
0.28 0.28

) 0.2

-4 4

\

_0.04 -3 -2 -11 0 1I 2 3 Y
-0.15 ~015

Fig. 2.7 Complex Fourier series coefficients computed with the erroneous period P =1 s.

interval + Q/2 to — Q/2 and zero elsewhere. This gives

X’(k)zé J x(t) rect(t/Q)e 2™ gy (2.86)

— o0

Using the frequency domain convolution property yields

X(k) = X(f) + Qsinc(fQ)  (evaluated at f = k/Q) (2.87)

For the system of Fig. 2.6 the input x() is the four delta functions with amplitude
Latf= 4 4 and 4 5 Hz. The convolution integral of four delta functions and
the Q sinc(fQ) function is just a sum of the four values due to the delta functions:

- 1 )
Xk = 3 Y. Qsinc[(k — Q] (2.88)

I=t+4,+5
The convolution integral (2.87) is illustrated in Fig. 2.8 for kK = 3 (f = 6). This
figure shows that the convolution results in the sum of four values, two of which
are zero. The sum is given by

. 1[sin(z/2)  sin(117/2)
X3) = 2[ RRTET } ~ 0.28
L

m/

1
X(-4) 2 X(a) X(5) ‘/ysinc[(f—G)/Z]
L\ 0 »
4 -2 — i

-/6/- )~ 4 b

sin{llm /2)
11m/2

(2.89)

X(-5)

Fig. 2.8 Functions for computation of the convolution.
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Other Fourier series coefficients are computed for k =0, + 1, +2,... and
Q = 1. Analysis of the effect of the erroneous period used to determine the
coefficients has been expedited using (2.87). The analysis is an example of the
utility of the frequency domain convolution property.

2.7 Table of Fourier Transform Properties

Table 2.1 summarizes some useful Fourier transform pairs. We have already
derived the pairs on which we shall rely heavily in subsequent chapters. Most
derivations not already presented are in the problems at the end of this chapter.
Difficult derivations in the problems are outlined in detail. The transform pairs
will be referenced by the property associated with the transform pair. For
example, time domain convolution is associated with the pair x(¢) * y(¢) <
X()Y(f). When f; and T appear in a pair, then f, = 1/T.

Simplification of the representation of some Fourier transforms results from
the definition of the comb function and rep operator [B-3, W-27]. The comb
function is an infinite series of impulse functions T s apart:

comby = i o(t — nT) (2.90)

n= — o

Likewise, comb, is an infinite series of impulse functions with f; Hz between
successive impulses. The repp, operator is one that causes a function to repeat
with period P. If %(¢) is a well-defined signal, then its periodic repetition defines

x(1):
x(1) = repp[X(1)] (291)

Note that whereas comb; is a function by itself, the rep operator requires a
function in the square brackets in (2.91). Since comb, has the period P, (2.91) is
equivalent to

repp[X(f)] = combp * X(2) (2.92)
Likewise, if X(f) is a well-defined spectrum, then

X(f) = rep,[X(f)] = comb, * X(f) (2.93)

is a function which has the period f; Hz.
Table 2.1 contains the unit step function, defined by

1, t—1t, =0

2.94
0 otherwise ( )

The table also uses the notation Re[ X(f)] and Im[ X(f)] to denote the real and
imaginary parts of X(f), respectively. The multidimensional Fourier transform
is a direct extension of (2.28). For example, the L-dimensional transform is
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Table 2.1

Summary of Fourier Transform Properties

2 FOURIER SERIES AND THE FOURIER TRANSFORM

Time domain

Frequency domain

Property representation representation
Fourier transform x() XN

Linearity ax(t) + by(?) aX(f) + bY(f)
Scaling x(at) (/o) X(f/a)

Decomposition of a real time domain
function into even and odd parts

Horizontal axis sign change

Complex conjugation

Time shift

Single sideband modulation

Double sideband modulation

Time domain differentiation

Frequency domain differentiation

Time domain integration

Frequency domain integration

Time domain convolution

Frequency domain convolution

Time domain cross-correlation
(see Problem 30)

Time domain autocorrelation
(see Problem 32)

Symmetry

Time domain sinc function

Time domain rect function

Time domain cosine waveform

Time domain sine waveform

Time domain delta function

Frequency domain delta function

Time domain unit step function

Frequency domain unit step function

Sampling functions

Time domain sampling

Frequency domain sampling

Time domain sampling theorem
(see Problem 27)

Frequency domain sampling theorem
(see Problem 28)

Transform of a periodic sampled
function

L-dimensional Fourier transform

Parseval’s (Rayleigh’s, Plancherel’s)
theorem

x.(f) + x,(f), where

xe()=3[x() + x(~1)]
xo() =3 [x(8) = x(~1)]

x(t+1)
ethmfgx(t)
cos(2nfo)x(t)’
(d/dnx(1)

— J2ntx(t)

o x(ndt

X(D)(—j2mt) +3x(0) (1)

x(t) = ()
x(Oy()
'%xy(f)

‘%XX(/E)

X

Q sinc(tQ)
rect(z/Q)
cos(27fot)
sin(2ntfy?)

o(t — to)

ej27tfot

u(z)

30(1) — 1/(j2me)
comby

comby x(¢)

repp [x(£)]
combyx(t) * sinc(tf;)

x(¢) (time-limited)
repp[comby x(7)]
x(ty, by, .., 1p)

Jm |x()|? dt

X.(f) + Xo(f), where
X.(f) = Re[X(f)]
X.(f) =jIm[X()]

X(-1)

X*(—f)

eijanrX(f)

X(fF 1)

X+ fo) + X(f — fo)]

72nfX(f)

(d/dNX(f)

X(N/(j2rf) + 1X(0)8(f)

L X(Ndf

XNY()

X(NH=*Y()

limy, . o [ X7, () Y1, (F)/(2T1)]

limy, - o [[X7, (NIPA2T1)]

x(—f)

rect(f/Q)

Qsinc(f0)

30(f + /o) +33(f = fo)
%jé(];+fo) =378/~ fo)
e Jj2nfto

o(f = fo)

30(f) + 1/(j2nf)

u(f)

Jfscomb

Jxep, [X(N)]
(1/P)comb pX(f)
X(f) (band-limited)

comb ;p X(f) * sinc(fP)
(fs/P)comb, prep, [X(f)]
X(f1:25 - f1)

= Jl IX(NP>df
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defined by
X(fl,st e ’fL) = J J T J x(ll’tb HRI] ZL)‘?_jznflrl

x g J2mf2t2 ... pi2nfLiL dll dlz Ce dlL (2.95)

Other properties listed in Table 2.1 can be extended to the multidimensional case
using (2.95).

2.8 Summary

This chapter has presented Fourier series with both real and complex
coefficients. The Fourier series with complex coefficients will be used in the next
chapter to develop the DFT.

A considerable portion of this chapter was devoted to the Fourier transform.
A heuristic development of the Fourier transform followed from reducing the
Fourier series with complex coefficients to an integral form. The DFT may be
regarded as an approximation to the Fourier transform, so that the latter is
helpful in understanding the discrete transform. Furthermore, the Fourier
transform is a powerful tool for the analysis of the DFT. Intuitive or heuristic
developments led to many of the Fourier transform pairs described in Table 2.1.
Nevertheless, the results are valid for functions with which we shall deal.
Readers who wish to persue Fourier transforms further will find that a standard
text for a rigorous development is [T-3], while [A-52, B-3, B-36, P-1, H-40,
W-27] present engineering oriented developments.

PROBLEMS

1 Show that the Fourier series coefficients for the function of Fig. 2.9 are given by b, = 0, @, = 0,
and

{0, k even
T U= D*- 24k, Kk oodd

Sketch cosine waveforms for k = 1 and 3, scale the waveforms by a, and a5, add the waveforms, and
compare with Fig. 2.9.

A x(t)

-1 -172 J-1/740 1/4 1/2 1

-1

Fig. 2.9 Periodic even function.
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2 Determine the Fourier series with real coefficients for the function x(¢) in Fig. 2.10. Sketch sine
waveforms for k = 1 and 3, scale the waveforms by b, and b3, add the waveforms, and compare with
Fig. 2.10.

)

-1 -1/2 0 172 1

-1

Fig. 2.10 Periodic odd function.

3 The function in Fig. 2.9 is even because x(#) = x(— f). The function in Fig. 2.10 is odd because
x(f) = — x(— 1). Generalize the results of Problems 1 and 2 to show that Fourier series for even and
odd functions are accurately represented by cosine and sine waveforms, respectively.

4 Show that the complex Fourier coefficients of Problems 1 and 2 are unchanged if the integration
time is changed from between — P/2 and P/2 to between — P/2 + o.and P/2 + «. Conclude that if a
function is periodic and that if a time interval spans the period, then that interval may be used to
evaluate the Fourier series coefficients.

5 Show that Fig. 2.11 results from summing the periodic functions of Figs. 2.9 and 2.10. Use the
sum of Fourier series for Problems 1 and 2 to represent x(¢) in Fig. 2.11. Change the series to complex
form and group the termsfork = ..., — 2, — 1,0,1,2,... . Use the new Fourier series with complex
coefficients to draw a three-dimensional plot of the complex Fourier series coefficients.

x(t)

12 -1/4 12 3a
Sl -3/a of 14 1

R 2

-2

Fig. 2.11 The sum of the functions shown in Figs. 2.9 and 2.10.

6 Use the definite integral

@
sin x n
dx = —
X 2

0

to show that the delta function definition in (2.45) when integrated gives

P2
J PSin[Tr(f*fo)P]

df=1
n(f — fo)P 4

J o(f = fo)df = lim

Poow
- —P/2
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7 Use (2.87) to show for Q =1 and the input shown in Fig. 2.6 that X(0) = X(&+ k) =0 for

k=1,2,3,6,7,8. .

8 Use (2.87) to show that for Q = 2 and the input shown in Fig. 2.6

sin(27n/2)  sin(3n/2
QTnp) sinGr)
27m/2 3n/2

9 Note that for Q = £ s and the input shown in Fig. 2.6 that (2.87) gives |X(+ 6)| ~ 0.3. Likewise

note for Q = 3 s that (2.87) gives |X(& 6)| ~ 0.2. This indicates that the longer we take to establish

the coefficients, that is, the larger Q is, the more accurate the answer. Use (2.45) and (2.88) to show
that as Q — oo

X(6) =

X(k)>16(f—k/Q) for k/Q=+4and +5

10 Let a periodic function be defined by the sum of a finite number of sinusoids:

a K
x(t) = 70 + Y [aycosnfit) + by sinQnfit)] (P2.10-1)
k=1
where f, = q,/p, is a rational frequency (in Hz) such that p, and ¢, are relatively prime for
k=1,2,...,M. Show that the period of the function x(¢) is
M

Px
P = —/gcd(q VG2 i) (P2.10-2)
kl], ged(p1, P2 Px) v

11 LetM =2,P, = 1/2%,and P, = 22/3. Determine the period P of the combined waveform using
(P2.10-2). Why is this answer the same as that for x(f) given by (2.17)?

12 Congruence Relations The congruence relationship = is defined by

a = ¢ (modulo ¢) (P2.12-1)
where 4,4, and ¢ are integers such that when » and £ are divided by ¢, the remainders are equal:
remainder(«/c) = remainder(¢/c) (P2.12-2)

For example, 5 = 9 (modulo 4). Let (P2.10-1) hold and show that f, P = f;P (modulo 1) where f; and
f, are the frequencies of any two cosine waveforms in the summation and P is the period of x(z).

13 Show that defining the congruence relation of Problem 12 by (P2.12-2) is equivalent to requiring
that |a — b| = kc, where k is an integer.

14 Show that the kth Fourier series complex coefficient can be written
X(k) = |X(k)|e”

N e A

SV S [/ X(k)

Fig.2.12 The phase shift of a complex Fourier series coefficient due to delay of the time function
by .
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where ), = tan™![ — sign(k)b./a,]. Let X'(k) be the kth Fourier series coefficient for the function
x(t — 7). Use the single sideband modulation (i.e., frequency shift) property to show that

X'(K) = e~ 00 X (k)|
Show that X(k) and X’(k) may be represented by vectors as shown in Fig. 2.12.
Establish the properties given by the following Fourier transform pairs.

15 Linearity Property x(f) + y(t) < X(f) + Y(f).

16 Scaling Property x(at) <« (1/a)X(f]a).

17 Double Sideband Modulation Property cosQnfot)x(t) <> L[ X(f + fo) + X(f — fo)].
18 Decomposition Property Note that

x(t) x(—1t) x(t) x(—1)
W T T (P2.18-1)

= x;Et) + xo(1)

Show x.(f) and x,(f) are even and odd functions, respectively (see Problem 3). Let
X(f) = X.(f) + X,(f) be the Fourier transform of (P2.18-1) and establish the decomposition

property

X.(f) = Re[X(f)] = real part of X(f)

X,(f) = jIm[X(f)] = jimaginary part of X(f)
19 Unit Step Function For o > 0 let

lime ™, t>=0
u(t) =< 20
0, t<0
Show that
Fu(t) = lim {a/[a® + 2nf)?] + 2nf/[jo? + j2nf)?]}
a=0
Next show that if « # 0
1 fi =0
J‘#df=— and limL={OO or /
o? + 2nf)? 2 wm00? + (2nf)? 0 for f#0
Thus establish
u(t) =>4 8(f) + 1/(j2nf) (P2.19-1)
Likewise establish
$6(0) — 1/(j2nt) - u(f) (P2.19-2)

20 Differentiation dx(t)/dt < 2njfX(f) and —j2ntx(t) — dX(f)/df.

21 Integration Use time domain convolution and (P2.19-1) to show that

X(f)  X(06(f)
j x(t)dt % + —

=00
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Use (2.73) and (P2.19-2) to show that
s
> J X(Hdf

22 Horizontal Axis Sign Change Prove x(— t) < X(— f).

x(t)  x(0)8(p)
—j2nt 2

23 Complex Conjugation Use the Fourier transform definition to derive the pair
(1) & X*(— ).

24 Sampling Functions Using the definition given by (2.90) for an infinite series of impulses, show
that comby is a periodic function with period 7. Show that the Fourier series for this periodic
function is ’

0
comby =— Y eI

k=—-o

Use the Fourier transform pair (2.49) to show that

&“combT=lT i o(f—k/T)

k=-o

Recall that the sampling frequency is defined by f; = 1/T and verify the Fourier transform pair
comby < f; combfs

25 Time Domain Sampling An analog-to-digital converter (ADC) provides an output that
represents the value of a continuous signal x(¢) at intervals of 7T'seconds. The ADC output at a given
time n7T can be represented as

nT+e
x(n) = J x((t — nT)dt (P2.25-1)

nT e
Let x,(¢) be the sampled output shown pictorially in Fig. 2.13, which uses-dots to represent the delta

functions in comby. Keeping in mind that this output must be integrated as shown by (P2.25-1) to

o
combr = ¥ 8(t- kT)
k=-©

l

x(t) t+e xg(t)
X (¢) dt ————
S
(a)
x(t) comb xg (1)
i—vt .0 o.
t 5 t

X

(b)

Fig. 2.13 (a) System for obtaining discrete time data; (b) a pictorial representation of the system.
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define a sampled-data value, let
x,(t) = comby x(¢)
Use the convolution and sampling function properties to show that
F [comby x(t)] = f,comb, * X(f) (P2.25-2)

Define
rep, [X(f)] = comby * X(f) = |: Y 8(f— kfs)]*X(f) (P2.25-3)

Show that the inverse Fourier transform of (P2.25-3) exists. Show that the two preceding equations
give the Fourier transform pair

comby x(t) < forep, [ X(f)]

26 Frequency Domain Sampling Start with the frequency domain sampled spectrum
comb, pX(f), and following the ideas of Problem 25 show that

repp[x(f)] <> (1/P)comb, ;p X(f) (P2.26-1)

Note that repp[x(#)] can be used to describe a function that repeats with period P. Show that
(P2.26-1) is equivalent to (2.55) and (2.56).

27 Time Domain Sampling Theorem Let X(f) have a magnitude that is band-limited between
— f./2 and f,/2 as shown in Fig. 2.14. Show that

X(f) = rep [ X(f)] rect(f/f,) (P2.27-1)

| x(r)

-f/2 0 /2

Fig. 2.14 Band-limited spectrum.

Use the time domain convolution property to show that the inverse Fourier transform of (P2.27-1) is
x(t) = comby x(¢) * sinc(zf;) (P2.27-2)
Use the definition of comb; and the sinc function to show that (P2.27-2) is equivalent to

x(t) = i x(n)sinc[(t — nT)f] (P2.27-3)

n=-oo

Note that (P2.27-3) says that a function may be accurately reconstructed from samples of itself if it
has a band-limited spectrum. This is known as the time domain sampling theorem.

28 Frequency Domain Sampling Theorem Let x(¢) be a function that is zero outside of the interval
— P/2 to P/2 as shown in Fig. 2.15. Mimic the steps in Problem 27 to show that

. o kY . k
X(f) = comby p X(f) *sinc(fP) = Y X(F) smc[(f— ;) P:,

k=—o
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NN .
_p/z\/\/ 0 ~N e

Fig. 2.15 Time-limited function.

Explain why the preceding equation is called the frequency domain sampling theorem.

29  Transform of a Periodic Sampled Function Let x(f) be nonzero only in the interval |7| < P/2.
Show that repp[x(#)] has period P and that the Fourier transform of the periodic sampled function is
given by

repp[comby x(t)] > (f;/P)comby p rep, [X(f)]

Show that the rep operator and comb function can be interchanged on either the right, the left, or
both sides of this equation.

30 Cross-Correlation The cross-correlation of two jointly wide-sense stationary random pro-
cesses x(f) and y(¢) is the function #,,(t) defined by %,,(t) = E[x(¢)y*(t — t)] where E is the
expectation operator. Under suitable conditions this is equivalent to (see [P-24], Section 9.8, for a
discussion)

Ty
1
Roft) = lim — | x()y*(t — 1) dt (P2.30-1)
Ti» o 2T1
-T
Let
o {x(!) for | < T, ($2302)
X = . -
T' 0 otherwise
and define yr (¢) similarly. Show that
X, Y#
PR~ lim [ () Tl(f>]
Ti—+ 2T1

where X, (f) and Y7, (f) are the Fourier transforms of x,(¢) and yy (), respectively.

31 Parseval’s Theorem Show that

©

J Px(0)|* dt = J FUXNOIF T HXH(— ) dt

- —©

© © o

- j j fX(fl)x*(—f»eﬂ"‘f'+f2>'df1dfzdt ®231-)

Use (2.45) to show that

f eI dL = 5(f1 +12)

Use this relation to prove Parseval’s theorem (see Table 2.1).
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32 Autocorrelation ..(t), the autocorrelation of a wide-sense stationary random process x(¢), is
obtained by replacing y*(¢ — 1) by x*(t — 1) in (P2.30-1). Show that

©

o (REOP fm,(f)p
Rx(0) = lim ,[_Z_dt_ lim Tdf

Ti— o Tl Ty~

where xr (1) is given by (P2.30-2).
33 Power Spectral Density (PSD) The PSD (or power spectrum) of xy,(¢) is defined by

X7, (f )|2}
27,

where (P2.30-2) defines xr (¢). Let S.(f) = limr, ., {PSD[x7 ()]}. Show that
S{f) = FRu(1)

PSD[xr,(0)] = E{

where Z£,.(t) is as defined in the preceding problem.



CHAPTER 3

DISCRETE FOURIER TRANSFORMS

3.0 Introduction

The previous chapter developed the Fourier series representation for a
periodic function. Fourier series with both real and complex coefficients were
given. The complex Fourier series representation is an infinite sum of products
of Fourier coefficients and exponentials. In this chapter we shall develop the
discrete Fourier transform representation for a periodic function. The DFT
series is usually evaluated in practical applications using an FFT algorithm that
is simply an efficient computational scheme for DFT evaluation.

We shall develop the DFT from the integral used to determine the Fourier
series complex coefficients. This integral was developed in Chapter 2 with lower
and upper limits of — P/2 and P/2, respectively. Derivation of the DFT is more
convenient if we shift the limits from — P/2 and P/2 to 0 and P. This shift has no
effect on the value of the integral because we are integrating the product of a
periodic function and sinusoids. Each sinusoid completes an integral number of
cycles during the period of the periodic function. Integration of the product of
the periodic function and one of the sinusoids gives the same answer even if the
integration limits are shifted, provided the period is known and the limits of
integration span the period (see Problems 2.4 and 3.10). Applying the change in
limits of integration to the integral for the Fourier series complex coefficient
X(k) gives

P
X(k) = %J x(£)e~I2malP gy 3.1)
0

where x(7) is a periodic function, P is the period, and % is an integer.

The input to the DFT is a sequence of numbers rather than a continuous
function of time x(¢). The sequence of numbers usually results from periodically
sampling the continuous signal x(¢) at intervals of T's. We refer to the sequence
of numbers as a discrete-time signal. A system with both continuous and

33
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discrete-time signals is called a sampled-data system. A system with only
discrete-time signals is called a discrete-time system. This book deals primarily.
with discrete-time signal processing. However, the signals invariably originate in
sampled-data systems, and we shall make extensive use of the relatlons between
continuous-data and sampled-data spectra.

The next section develops the DFT from (3.1). Other sections define the
periodic and folding properties of sampled-data spectra, matrix representation
of the DFT, the inverse discrete Fourier transform (IDFT) using the unit circle
in the complex plane to generate sampled values of exp(—2njkt/N), a shorthand
notation for matrix representation, and factored matrices.

3.1 DFT Derivation

The DFT is derived from a time function x(¢) using N samples taken at times
t=0,T,2T,..., (N — 1)T, where T is the sampling interval [A-1, A-5, A-10,
A-22, A-43, A-54, B-3, B-16, B-20, C-14, C-29-C-31, D-1, F-9, G-12, H-18,
H-40,0-1, R-16, T-12, W-13]. As an example, a function with a period of P = 1
sis shown in Fig. 3.1. The function, constructed from a constant and sinusoids of
frequencies 1, 2, and 3 Hz, is sampled eight times per second, giving a sampling
interval of T'= §s. The sampling interval T is implicit in a sampled-data system
and the ordering of the data defines the sample time. Therefore, we use the
simplified notation x(0), x(1), x(2), ..., x(®),..., x(N — 1) to mean samples of
x(¢) taken at times of 0, T, 27T,..., nT,..., (N — 1)T, respectively. These N
samples of x(f) form the data sequence {x(0),x(1),...,x(n),...,x(N — 1)},
which we shall refer to as x(n). .

0 \\-/2_\/ 3 6 §° t (8ths s)
x(1 x(2) x(3)

Fig. 3.1 Periodic band-limited function x(#) and sampled values (dots).

The DFT may be regarded as a discrete-time system for the evaluation of
Fourier series coefficients. Therefore, continuous functions in (3.1) must be
replaced by discrete time values. First, let the integration be replaced with a
summation. Next, let 7" be the time sampling interval and let the periodic
function x(#) be sampled N times. The N samples represent P s, so P = NT.
Adjacent samples are separated by T s, which corresponds to the arbitrarily
small interval dt in (3.1). Let a < b mean either that variable a is given the value
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of expression b or that a is approximated by b. We can then express the
relationships between the continuous and discrete-time values as
t—nT, dt<T, x(t)=x(n) at t=nT 3.2)
wheren =0,1,2,..., N — 1. Replacing the quantities in (3.1) according to (3.2)
gives :
P
1 . 1 N-1
- £ i2mkP gy —j2mknT/NT T 3.3
5 jx( ) 37 L woe (3.3)
0
The derivation of the Fourier series in Chapter 2 allows & to be any integer. The
derivation of the DFT uses the N data points x(0), x(1), x(2),..., x(N — 1),
which allows us to solve for only N unknown coefficients. We therefore restrict &

to be one of the finite integers 0, 1,2, ..., N — 1. Using this restriction gives the
DFT equation for evaluation of X(k),
1 Nt .
X(k) = N Y. x(n)e 72N, k=0,1,2,...,N—1 (3.9
n=0

Figure 3.2 gives an example of the relation between the function x(¢) of time in
seconds and x(n) of time sample number for x(¢) = cos(2nt/P). The horizontal
axis is labeled with both time in seconds and data sequence number. Since the
samplingintervalin Fig. 3.21is T = P/8 s, the data sequence number is equivalent
to a sample time of nP/8 s. Generalizing, the data sequence number is equivalent
to a sample time of n7 where 7' = P/N s. For a normalized period of P = 1 s the
sample number expresses the sampling time in Nths of seconds. The integer
values of n will be referred to as data sequence number or time sample number.

A

x(0)

»

8 n (data sequence
. number)

0 2T 47 6T 8T t (s)

Fig. 3.2 The function x(¢f) = cos(2nt/P) and its discrete time values.

Figure 3.3 gives an example of the DFT coefficients for X(0) = 1, X(1) =1,
X(2) = %, and X(3) = §. Transform coefficient number k determines the number
of cycles in P s and identifies the frequency f as

f=k/P Hz (3.5)
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X(0)
X(1)
1/2
X(2)
le
> P <« X(3)
0 [ |t
Q 1 2 3 k (transform sequence
° ° ® ® number)
1 2 3
0 7 Il P f (Hz)

Fig. 3.3 DFT coefficients versus transform sequence number and frequency.

The integer values of k& will be referred to as transform sequence number or
frequency bin number. The sequence {X(0), X(1), ..., X(N — 1)} is a transform
sequence, which we shall refer to as X(k).

This section has developed the DFT, defined by (3.4). The DFT evaluates the
Fourier series coefficient X(k) using the data sequence {x(0), x(1), x(2),...,
x(N — 1)}. The inverse discrete Fourier transform is a series representation that
yields the sequence x(r). The IDFT is developed in Section 3.5 using the periodic
property of the DFT.

3.2 Periodic Property of the DFT

Let a signal be sampled with a sampling frequency of f, Hz where f, = 1/T and
T is the sampling interval. Then this signal has a periodic spectrum that repeats
at intervals of the sampling frequency f; [H-18, L-13, O-1, R-16, T-12, T-13,
W-12, E-14]. The DFT produces a periodic spectra as a consequence of a
computation on discrete data. The reason for the periodic property is that a
sinusoid with frequency f, Hz sampled at f; Hz has the same sampled waveform
as a sinusoid of frequency f, + /f; Hz sampled at f, Hz, where / is any integer.

We illustrate the periodic property with a simple example. Let x(n) =
cos(2nn/8). Let T = § so that f; = 8 Hz and let N = 8. Then X(k) can be written

coszine*ﬂ"""/8 (3.6)
n=0 8
which gives X(0) =0, X(1)=3 X(2)=X03)=X4) =X(5)=X(6)=0,
X(9) = 7 = X(1). This implies that the coefficients determined from cos(2nk?)
are the same for k = 1 and 9 Hz if the sampling intervalis T = % s. The reason for
this is not difficult to discover if we examine discrete values of cos(2nt) and
cos(2n91). As Fig. 3.4 shows, the two waveforms have exactly the same values at
t=0,4,2,...s. If we continue to derive coefficients we find that not only does
X(1) = X(9), but also that all coefficients separated by integer multiples of eight
frequency bins are equal, giving X(1) = X(9) = X(17) == X(-17) =

X(k) =

0| =—
gl

=
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X(— 15) = - -+ = L. Furthermore, letting x(n) = sin(2nn/8) gives X(1) = X(9)
= X(17) == X(—=7) = X(— 15 = --- = —j/2. In general for x(n) =
acos2rkn/N) + bsin(2rkn/N), X(k) = X(k + IN) = a/2 — jb/2 for all integer
values of /. Figure 3.5 illustrates the periodic property for N = 8.

cos(2mt) cos(2w9t)

Fig. 3.4 Waveforms that have the same values when sampled at } s intervals.

[x(k)|
a2+b2/2

B

-15 -7 1 9 17 25

k
Fig. 3.5 Periodic property of DFT coefficients for x(n) = acos(2nn/8) + bsin(2nn/8) and N = 8.

The repetition of coefficients at intervals of N is the periodic property of the
DFT. The reason for the periodic property is also apparent if we look at the
exponential factor in the DFT definition. We note that

exp[ —j2n(k + IN)n/N] = exp(— j2nkn/N) exp(— j2nin) = exp(— j2nkn/N)

since exp(— j2nin) = 1 for integral values of / and n. Therefore, (3.4) can also be
expressed
1 N-1
X(k + IN) = v Y. x(mye” 2rEEIONN — X(k) 3.7
n=0
for integer values of /. The DFT coefficients separated by N frequency bins are
equal because the sampled sinusoids for frequency bin number & + /N complete /
cycles between sampling times and take the same value as the sinusoid for
frequency bin number k. The periodic property is a consequence of sampling and
is true for all discrete time systems.

3.3 Folding Property for Discrete Time Systems with Real Inputs

The folding property for discrete time systems with real inputs states that the
spectrum for frequency f, — f is the complex conjugate of the spectrum for
frequency f[H-18, L-13, O-1, R-16, T-12, T-13, W-12, E-14]. This gives the
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coefficients a symmetry about f;/2 Hz. The symmetry about f/2 appears to be a
folding, which results in the name folding property. When applied to the DFT,
the folding property says that coefficient X(N — k) is the complex conjugate of
coefficient X(k).

The folding property is illustrated by continuing the example of the previous
section. We did not compute X(7) for (3.6) because it is not zero. In fact, using
(3.6) gives X(7) =% = X(1). More generally, if we let x(n) = acos(2nkn/N)
+ bsin(2rnkn/N), then we get X(k) =a/2 — jb/2 and X(N — k) = a/2 + jb/2
= X*(k). This result is known as the folding property of the DFT for a real data
sequence. The cause of the folding property is apparent if we substitute the factor
N — k for k in the DFT definition, i.e.,

1 N—-1 1 N—-1 %
X(N _ k) — N Z x(n)e-jZﬂ:(N—k)n/N — I:ﬁ Z x(n)e—jann/Nj| — X*(k)
n=0 n=0

(3.8)

We conclude that we get an outputin DFT frequency bin N — k even though the
only inputisin bink, k=1,2,...,N— 1.

On a more intuitive basis, to find X(k) we multiply x(n) times the phasor
exp(— j2nkn/N), whereas to find X(N — k) we multiply x(n) times the phasor
expl — j2n(N — k)n/N] = exp(j2nkn/N). The phasors exp(— j2znft/N) and
exp(j2nft/N) rotate with the same angular velocity; but one rotates clockwise,
whereas the other rotates counterclockwise. The projections of the phasors on
the real axis are equal, whereas the projections on the imaginary axis have equal
magnitude and opposite sign. Consequently, DFT inputs in either bin k or
N — k have outputs in both bins k and N — k, and there is a complex conjugate
symmetry in the DFT output about frequency bin N/2 (i.e., about f,/2).

The folding property is closely related to the time domain sampling theorem:
If a real signal is sampled at a rate at least twice the frequency of the highest
frequency sinusoid in the signal, then the signal can be completely reconstructed
from these samples (see Problem 2.27). The minimum sampling frequency f; for
which the time domain sampling theorem is satisfied is called the Nyquist
sampling rate. In this case the frequency f;/2, about which the spectrum of the
real signal folds, is called the Nyquist frequency.

We have considered only sampled real inputs in this section. If we use sampled
complex inputs, then spectral lines between f,/2 and f; are not derivable from
lines between 0 and f,/2. This will be demonstrated in Chapter 7 by applying the
FFT to a single sideband modulated signal.

3.4 Aliased Signals

An aliased signal is a sampled sinusoid that can be interpreted as having a
different frequency than the sinusoid from which it was derived. Aliased signals
are composed of such sinusoids and can result in erroneous conclusions as to the
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frequency content of the signal. Therefore, filters are used to remove sinusoids
which would give ambiguous results.

Let | f] < f; be the frequency of a signal sampled at f Hz. As a consequence of
the periodic property, this signal cannot be distinguished from one whose
frequency is f + If, where / is any integer. If a signal whose frequency is f + If;,
[ # 0, is sampled, then it appears as an aliased signal with a frequency of f Hz.

Now let |f] < f;/2 be the frequency of a real signal sampled at f; Hz. As a
consequence of the folding property, this signal cannot be distinguished from
one at f; — f. The folding property also shows that if a real signal of frequency
If, — f, 1 # 0, is present, then it appears as an aliased signal with a frequency of f
Hz.

In sampled-data systems filtering must be used to suppress signals outside of a
band of width |f| < f,/2. Analog filtering is used prior to sampling and digital
filtering can be used to further attenuate signals aliased by a change in sampling
rate (see Chapter 7). The filtering must reduce the unwanted signal levels so that
they have negligible effect on evaluation by the DFT or other signal processing.

3.5 Generating kn Tables for the DFT

Computation of the DFT requires the exponentials in the DFT series. Values
of the exponents can be found by generating kn tables. We defined the DFT
coefficient X(k) as

1 N-1
X(k)y=— 3 x(n)e™/2mnN (3.9
N n=0
A mechanism to determine DFT coefficient X(k) is shown in Fig. 3.6. This
mechanism is less efficient than an FFT, but it illustrates the principles of
determining X(k). The factor exp(— j2n/N) is common to all coefficients and is
described in the literature as

W = e~ i2niN (3.10)

Particular values of k, n=0,1,...,N — 1 define W*" in the multiplier in
Fig. 3.6.

3 [x{n)exp(-j2mkn/N)]

x(t) \ x(n) ex [’:J?ﬂ(ﬂ_] + ) 1 _.\X—(k)
1/T Hz PITN ) N [1/NT Hz
a
Sample Number n=0,1,..., N-1 One Sample
Generator Delay

Reset to zero
every N samples

Fig. 3.6 Mechanism to determine the DFT coefficient X(k).
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Table 3.1
Values of kn. Computed (a) mod N and (b) mod 8

(2) . ()

n n
k k
0 1 2 3 4 5 6 17 - N-—1 01 2 3 45 67
0 0 0 0- 0 0 0 0 O 0 000 0O0O0O0O0OO
1 0 1 2 3 4 5 6 7 N-1 1 0123 4567
2 0 2 4 6 8 10 12 14 N-2 2 0 2 46 02 46
3 0 3 6 9 12-15 18 21 N-3 3 03 6147 235
4 0 4 8 12 16 20 24 28 N—-4 4 0 4 0 40 40 4
5 0 5 10 15 20 25 30 35 N-5 5 05274163
6 0 6 12 18 24 30 36 42 N-6 6 0 6 4 2 0 6 4 2
7 0 7 14 21 28 35 42 49 N-7 7 07 6 5 43 21
N-2 0 N-2 N-4 4 2
N—-1 0 N—-1 N-2 2 1

Table 3.1 gives values of kn computed mod N and mod 8. The mod N values
are defined by

knmod N = remainder of kn/N (3.11)

That is (see Problem 2.12), kn = [ (modulo N) where = means congruent and
knmod N, called the residue of kn modulo N, is the integer remainder of kn/N.
For example, 14 = 6 (modulo8), and 14mod8 = 6. The unit circle in the
complex plane is helpful in generating these values. Figure 3.7 shows the phasor
exp(— j2n8¢) rotating around the unit circle in the complex plane. This phasor
has a projection cos(2n8¢) on the real axis. This projection versus time is shown
below the unit circle. Likewise, the vector has a projection — sin(2z8¢) on the
imaginary axis, which is shown to the right of the unit circle. Sampled-data
values of exp(— j2n8¢) are indicated in Fig. 3.7 by dots.
For k = 1 the sampled sequence S; of unit phasor values for the 8-point DFT
is
S, = {e~j2n(0/8)’ e~ I2mLIB) pmi2n2(8) e—jzn(7/8)} (3.12)

The first value in S, is 2 of a rotation around the unit circle, the second value is &
of a clockwise rotation around the unit circle starting from the positive real axis,
etc. The sampled values of exp(—j2nkn/8) are labeled on the unit circle (Fig. 3.7)
asstepnumbers 0, 1,2, ..., 7. The sequence S, takes a distinct complex value for
each step number.

For k = 2 the sampled sequence is

S2 — {e*jZnZ(O/S)’ e*j27t2(1/8)’ e*j27t2(2/8)’ e, e—j27t2(7/8)} (313)

Step numbers are 0, 2, 4, 6, 0, 2, 4, 6. Likewise, S5 has the step numbers 0, 3, 6, 1,
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4,7,2,5. Table 3.1b has the same step numbers for k=1,2,3,... as
S:,S,,83,..., respectively.

J Imaginary Part of

i Im exp (-j2m8t)
'1‘ A
Jl(s) o 3 Pl
(5) ) 7 \
\
/ \
/ \
\
(4 5 t -~ Re 4 —s-
-1 -2m8t/ (0 0 2 4 6 8\ 10
X / \ ot (s)
— 4_: / \
@) : N
(1)I -j N’
(2)]-3 I

|

I
-1 1 Real Part of

0 7 P exp (-j2n8t)
I Instantaneous Values of

/‘k____,/ exp (-j2n8t)

-

-
P 2
-
// Sampled-data Values of exp (-j2n8t)
( 4
N
~
<
~
N
S
6> <
~
o
N
v
8t (s)

Fig. 3.7 Waveforms derived from the phasor rotating with angular velocity — 278¢ rad/s.
Sampled waveform values (dots) correspond to step numbers (in parentheses) on the unit circle.

We can generalize this result to generate tables of kn values for the N-point
DFT. Wedivide the unit circle in the complex plane into N equal sectors with the
first sector having the real axis as one side. Each sector determines a step number
with step 0 at + 1, step 1 at exp(—j2n/N), and in general, step n at
exp(— j2nn/N). We then go around the unit circle in increments of one step for
k = 1,and so forth. After each increment we write down the step number. Tables
of kn values result.

3.6 DFT Matrix Representation

In this section we represent the DFT by a matrix, and rearranging the matrix
we shall end up with a matrix factorization leading to the FFT [A-5, A-22, A-33,
M-31]. Theinput to the DFT is the data sequence contained in the vector x given
by

x = [x(0), x(1), x(2), ..., x(N — 1)]T (3.14)
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where the superscript T denotes the transpose. The output of the DFT is the

transform sequence contained in the vector X given by :
X = [X(0), X(1), X(2),..., X(N — D]T (3.15)

The outputs are computed using the DFT definition (3.4): For example, if
N =38, (3.4) gives

X0 =t we w° w° w° w° w° Wx
X =t(wo W' WE WP Wt WS W® W)
XQ=tw° w* w* w° w° w? w* Wwox (3.16)

Xn=tw° w' we ws w* W3 W? Wi
All of the operations in (3.16) can be combined into a matrix form given by
X = (I/N)W=x (3.17)

where W¥ is the DFT matrix with row numbers £k =0,1,2,...,N — 1 and
column numbers n =0, 1,2,..., N — 1 and where the entry WE®" is in row k
and column 7. For example, if N = 8, then E and W¥E are given by

K\n0 1 23 456 7_
0 0000 0O0TO0O0
1o 123 4567
210 2 46 02 4 6
E=3103 61 47 25 (3.18)
410 4 0 4 0 4 0 4
51052 7 41 6 3
61 0 6 42 0 6 4 2
7L0 7 6 54 3 2 1]
W we w° w° w° w° w° woT]
wo wi ow? w* w* ws we w’
wo w2 w* we w° w2 w* wS
WE — we w? we w' w* w' w?: WS (3.19)
Tl we o owrt we oWt we Wt W Wt '
wo ws w?* w' ow* wr ws w3
wo we w*t w* w° wt w* w2
woe wl owe ws ow* w? w? wt

In the future, we shall often tag rows and columns of an E matrix with k and »
values, as shown in (3.18), to illustrate rearrangements of the matrix. More
generally, the E matrix of dimension N has the entries of Table 3.1a and is
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given by
ko\n 01 2 N-2 N—1_
o [o o 0 0 0
1 0 1 2 N—-2 N-—1
E= 2 0 2 4 N—4 N-2 (3.20)
N—2| 0 N2 N—4 - 4 2
N-1]L0 N—1 N=2 -+ 2 I

In conclusion, (3.17) is the vector-matrix equation for the DFT. The matrix of
exponents is given by (3.20). Each entry in (3.20) is the product of the £ value for
the row and the » value for the column (computed mod N). The DFT matrix is a
square matrix with N rows and N columns. Since the DFT has an N-point input
and an N-point output, it is called an N-point DFT.

3.7 DFT Inversion—the IDFT

The DFT resulted from approximating an integral equation with a sum-
mation. The inverse discrete Fourier transform (IDFT) is also a summation. Itis
similar to the Fourier series representation of x(z) given by (2.14) with only the
first N coefficients. Only N coefficients are allowed, because the N points in the
data sequence {x(0), x(1), x(2),..., X(N — 1)} allow us to solve for only N
unknown transform sequence values. We can rewrite (2.14) with N coefficients
using the restriction —N/2 < k < N/2, which gives

N/2-1
x(n)= Y X(k)el* N (3.21)
- k=—N/2
The periodic property of X(k) [see (3.7)] can be applied to the coefficients in
(3.21), giving

X(— N/2) = X(N/2),
X(— N2+ 1)=X(N2 + 1)

X(—1) = X(N — 1) (3.22)

The nonnegative values of k in (3.21) go from 0 to N/2 — 1 and the negative
values can be shifted to between N/2 and N — 1 using (3.22), that is,
N/2—-1 ) N—-1
X(l’l) — Z X(k)eJZTrkn/N + Z X(k)ejZn(k—N)n/N (323)
k=0 k=N/2
The phasor exp(—j2nNn/N) in the second summation in (3.23) is unity for
n=0,1,2,...,N — 1, so the two terms in (3.23) can be combined, resulting in
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the IDFT:

N-1 N-1

x(n) = Y X(k)e2™ N = % X(kyw (3.24)
P

k=0 =0

wheren =0,1,2,...,N — land W~ ! = exp(j2n/N). As an example, for N = 8
(3.24) gives

x(0) = WOX(0) + WOX(1) + WOX(Q2) + -+ + WOX(7)
x(1) =WoX(0) + W X)) + W2X(2) + - + W7X(7)
x(2) = WOX(0) + W2X(1) + W*X(2) + -+ + W °X(7)  (3.25)

x(7) = WOX(0) + W 7X(1) + W=°X(2) + -+ + W X(7)
The N equations defined by (3.24) can be written in vector-matrix notation
x = W EX (3.26)

where x and X are vectors of data samples and DFT coefficients given by (3.14)
and (3.15), respectively, W% is the IDFT matrix with row numbers
n=0,1,2,...,N—1, column numbers k=0,1,2,...,N—1, and entry
W~ E®R in row n and column k. For example, for N = 8, Eis given by (3.18) and
W~E is given by

1 we wo wo wo we wo wo

1 w=' w2 w3 w* wS w¢ w7

1 w2 wt Wt o we w2 o wt wee

-3 -6 -1 -4 -7 -2 -5

1 w5 wr wl wt wt o we w3

1 W= w* w2 w° w¢ w+ w2
—1 W—7 W—6 W—S W—4 W-3 W—2 W—l_

Note from (3.27) that the entries in the matrix of exponents E are given in Table
3.1(b). Note also that the roles of k and » interchanged in (3.27) with respect to
(3.19).

3.8 The DFT and IDFT — Unitary Matrices
The N x N matrix U is called a unitary matrix if its inverse is the complex
conjugate of U transposed, that is,
Ut =(UHT = (UH* (3.28)

We shall show that if time and frequency tags are in natural order, then the
scaled DFT matrix WE/\/N and the scaled IDFT matrix (W%)~! /\/]V satisfy



3.8 THE DFT AND IDFT — UNITARY MATRICES 45

the unitary matrix conditions [B-34, P-41]

(WE/J/N) ' = [(WF)¥1T//N = W E/ /N and WEW‘E/Nz Iy (329

where Iy is the identity matrix of size (N x N). To prove (3.29) consider first the
8 x 8 DFT and IDFT matrices given by (3.19) and (3.27), respectively. Any
entry in the symmetric IDFT matrix is exp(j2nkn/N) = [exp(— j2rnk/N)]*,
which proves that

WE = (W*)E' = (WE)*' (3.30)

To prove that WEW “E/N = I select any row of W and any column of W £,
For example, if N = 8 the scalar product of the row in W for k = 2 and the
column in W~ E for n = 2 gives

(1 W2 W We 1 W2 w* WoY(l W2 W+ W S1W?2Ww*woT
=38

All values of k =n=0,1,2,3,...,7 give the same result. However, the scalar
product of row 2 of W% and column 3 of W £ gives

AW2W+We1W2w+woHAw3wow ' w*w ™ Tw 2w 5T
=14+ W 4 W24 W34+ W4+ W S S+Wo4+w’

The sum of the phasors 1 + W~ + W~2 4 --- + W~ 7 is shown in Fig. 3.8 to
be zero, and in general we conclude that

1+ W P+ W2 W N =1 W+ W24 -+ WV =0

(3.31)
J Im
Unit circle in
the complex plane
W3 i'
1 .
<+—7 > >
1\ W w'7 1 Re
(a) (b)

Fig. 3.8 (a) The phasors 1, W~!, W~2 ..., W~7; (b) the vector sum 1 + W~' + W~2 + ---
+ W7 =0.

To generalize for other rows and columns, let r, be a row vector determined by
row k of W% and let ¢, be a column vector determined by column n of W £, Then
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the scalar product of r, and ¢, gives
e, = (1 4+ Wk + - 4+ W(N‘I)k)(l + W4 e W*(Nfl)n)T
=1+ Wk—n 4 4 WW - Dk—n
Applying the series relationship Y ¥Z1y™ = (1 — yV)/(1 — y) to the latter

summation yields

(3.32)

rC, =

I {N, k=n

1 — Wk 0 otherwise

This means that WEW ~£/N = I, which completes the proof of (3.30). From an
alternative point of view we can substitute the IDFT output into the DFT
definition:

1 1 1
X = Wi = — WE(W EX) = — WEW ~EX (3.33)
N N N

Since X = IyX, (3.33) implies that WEW ~E/N = I. Likewise, substituting the
DFT definition in the IDFT gives

x = W EX = WE[(1/N)W*x] (3.34)

Since W EWE/N = I, the IDFT matrix is again shown to be unitary.

3.9 Factorization of W&

A quick and easy way to derive FFT algorithms is to manipulate WE into the
product of matrices. In Chapter 4 we shall find that FFTs are represented by
factored matrices. As an example of matrix factorization let

WE = WEpE ' (3.35)

and let N =4, W = exp(—j2n/4) = —J,

0 0 —Jjoo —joo
E - 0 2 —joo —joo
27l —jo —joo 0 0
—joo —joo 0 2
and (3.36)
0 — joo 0 —joo
0 — joo 2 — joo
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Then
1 10 0 I 0 10
1 —1.0 0 0 1 0 1
B _ Bl _ 3.37
w 0o 01 1| w W 1 0 -1 0 (3.37)
0 01 —1 0 —j 0 j

since W ™I® = g j2m/4(=i®) — ¢~ — (. Matrices like (3.37) are called sparse
matrices because of the zero entries that become more numerous as N increases.
Substituting (3.37) in (3.35) yields

1 1 1 1
B Be | 1 —1 1 =1
W = Whwks = 1o 1 ; (3.38)
1 J -1 =
where
kx\n 0 1 2 3
0 00 0 O
E=2 0 2 0 2 (3.39)
1 01 2 3
3 0 3 2 1

which is the £ matrix of a 4-point DFT with a different k tagging on the rows.
Equation (3.38) is an FFT matrix, which will be discussed in detail in Chapter 4.

3.10 Shorthand Notation

The matrices in (3.36) have many — joo entries. In the future, instead of
making these entries we shall use the shorthand notation that a dot (no entry) in
row k and column n of E means — joo. In the matrix W the corresponding entry
in row k and column n is W ~/® = (¢727/N)=i® = ¢=* = (), For example, in
shorthand notation (3.36) is written

oo - - 0o - 0 -
E, = 0 0 and E, = 0 - 2 . (3.40)
0 2 ' -1 - 3
Taking the matrix product W& = WE2 W gives
W w° 0 0 we o w° 0
WE _ we w2 0 0 o w° o we
N 0 0o w° we° we o0 w2 0
|0 0 w° w2 o wr o w?
_W0+0 WO+O W0+O W0+0
0+0 0+2 0+0 0+2
= W0+0 W0+ W v (3-41)
w w 1 WO+2 W0+3
W0+0 W1+2 W0+2 W2+3
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The factorization of W%z is such that only the nonzero entry per row of W¥ is
multiplied by a nonzero entry of any column of W#: using the row-times-column
rule of matrix multiplication. The matrix multiplication becomes addition when
applied to the exponents; since ee® = ¢**?, each entry in E is the sum of two
exponents, so that ‘

04+0 0+0 040 040

040 042 040 042
E=l 040 041 042 043 (3.42)
040 142 042 243

The preceding result is true of all FFT matrices in their factored form. Let E be
an N x N matrix, let W& = WEW¥: and let at most one nonzero entry result
from the row-times-column rule in evaluating W% for every row of W*: and
every column of W% Then

N-1
E(k,n) = ) [Ey(k,1) + E(I,n)] (3.43)

1=0

where, for any two entries in the square brackets, no entry + entry = entry + no
entry = no entry + no entry = no entry and where W means W ~/® = (.
As a simple example, let E, and E; be given by (3.40). Then using (3.43) gives

E0,0) = (0 + 0) + (0 + no entry) + (no entry + 0)
+ (no entry + no entry)
=0
which agrees with (3.42). Furthermore,
E(1,1) = (0 4+ no entry) + (2 + 0) + (no entry + no entry) + (no entry + 1)
=2

etc. If WE = WE2 ¥ we let the shorthand notation

E=F,tE (3.44)

mean the matrix derived by using (3.43). For example, WF = WwE ¥ is
equivalent to

(3.45)
00 -1 -3
In general, when dealing with N x N matrices we shall use the notation
WE — WELWEL-1 ... (3.46)
E=E*tE 1t TE (3.47)



3.11 TABLE OF DFT PROPERTIES 49

The entries in £ can be obtained by working out the matrix product in (3.46), but
it is usually much simpler just to work with the matrices of exponents in (3.47).

3.11 Table of DFT Properties

When both x(n) and X(k) are defined,. we say that they constitute a DFT pair,
indicated by

x(n) « X(k) (3.48)
Table 3.2
Summary of DFT Properties

Data sequence Transform sequence
Property . .

representation representation
Discrete Fourier transform x(n) X(k)

Linearity ax(n) + by(n) aX(k) + bY(k)
Decomposition of a real data sequence x.(n) + x,(n) where X (k) + X,(k) where
into even and odd parts X (1) =3 [x(n) +x(N—n)] X (k) = Re[X(k)]

xo(m)=3[x(m)—x(N—n)] X (k) = jIm[X(k)]
Periodicity of data and transform x(n + IN) X(k +mN)
sequences Im=...,—1,0,1,...
Transform sequence folding with real  x(n) X(k) = X*(N — k)
data
Horizontal axis sign change x(—n) X(— k)
Complex conjugation x*(n) X*(—k)
Data sequence sample shift x(n + ng) et 2mhnolN x(k)
Single sideband modulation et i2mkoniN x(p) Xk F ko)
Double sideband modulation [cos(2rkon)] x(n) Xk + ko) + X(k — ko)]
Data sequence circular convolution x(n) * y(n) X(k)Y(k)
Transform sequence circular x(n)y(n) X(k) * Y(k)
convolution
Arithmetic correlation x(n) * y*(— n) X(k)Y*(k)
Arithmetic autocorrelation x(n) = x*(— n) | X (k)1
Data sequence convolution X(n) * j(n) X Yk)
(augmented sequences)
Transform sequence convolution X(n)j(n) Xk« ¥(k)
(augmented sequences)
Data sequence cross-correlation X(n) * 7*(— n) Xk Y*(k)
(augmented sequences)
Data sequence autocorrelation X(n)* X*(—n) |X (k)12
(augmented sequences)
Data sequence exponential function gd2nSniN g~ /mlk= L~ 1/N)
' sin[n(f — k)]
" Nsin[a(f — k)/N]
Symmetry (1/N)YX(n) x(— k)
IDFT by means of DFT N{DFT[X*(k)]}* X(k)
DFT by means of IDFT x(n) (1/N){IDFT[x*(n)]}*
L-dimensional DFT x(ny, Ry, .. 0L Xky, kg, ... ky)
N-1 N—1
Parseval’s theorem l Y Ix(m)? = 3 |X(k)?
N n=0 k=0
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The notation
X(k) = DFT[x(n)] and x(n) = IDFT[X(k)] (3.49)

means that the DFT and its inverse are defined by the N—pomt sequences x(r)
and X(k), respectively.

The utility of the DFT lies in its ability to estimate a spectrum using numerical
methods. The DFT coefficients correspond to the spectrum determined using
the Fourier transform. As a consequence, it is useful to state DFT pairs and to
identify them with the corresponding Fourier transform property. Let x(n) and
y(n) be two periodic sequences with period N. Then Table 3.2 summarizes some
DFT pairs that may be compared with the Fourier transform pairs in Table 2.1.

ConvorLutioN Convolution and circular convolution are important topics in
the discussion of FFT algorithms for reducing multiplications (see Chapter 5).
Circular convolution is defined for periodic sequences whereas convolution is
defined for aperiodic sequences (see Table 3.2). The circular convolution of these
two N-point periodic sequences x(n) and y(m) is the N-point sequence
a(m) = x(n) * y(n) defined by

N-1

a(m) = x(n) * y(n) =% > x(m)y(m — n), m=0,1,2,...,.N—1 (3.50)
n=0

Since a(m + N) = a(m), the sequence a(m) is periodic with period N. Therefore
A(k) = DFT[a(m)] has period N and is determined by A(k) = X(k)Y(k) (see
Problem 12).

The convolution x(n) = y*(— n) is called arithmetic correlation. The terms in
the summation in (3.50) become x(n)y*(n — m), which corresponds to right
shifting of y*(n) (see Problem 13). Equivalently, x(n) can be left shifted.
Arithmetic autocorrelation is similar and is discussed in the Appendix.

The noncircular (i.e., aperiodic) convolution of two sequences x(x) and y(n) of
lengths L and M, respectively, yields another sequence a(n) of length
N=L+M-1:

a(m)zthilx(n)y(m—n), m=0,1,...,L+M-2 (3.51)

Note that the convolution property of DFT (see (3.50)) implies circular
convolution. Noncircular convolution, as implied in (3.51), requires that the
sequences x(n) and y(n) be extended to length N > L + M — 1 by appending
zeros to yield the augmented sequences

(%(n)} = {x(0), x(1), ..., x(L — 1),0,0,...,0} (3.52)
G} = {(3(0), (1), ..., (M —1),0,0,...,0} (3.53)

Then the circular convolution of %(n) and j(n) yields a periodic sequence d(n)
with period N. However, d(m) = a(m) for m =0,1,...,L + M — 2. Hence

DFT[d(n)] = DFT[%(n) * §(n)] = X(k)Y(k) (3.54)
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where X(k) = DFT[%(n)] and Y(k) = DFT[§(n)] are the DFTs of (3.52) and
(3.53), respectively, and ' '

' a(n) = IDFT[X(k) Y(k)] (3.55)
These operations are illustrated in block diagram form in Fig. 3.9. Of course, an
FFT is applied to implement the DFT.

Sequence X(n)

Sequence x(n) of length ~
of length L | a9 df leost N2L+ M-t N-point | X(K)
at the end of the DFT
sequence
s (o) Sequence y(n)
equence y(n of length
of length M Add at least N2L+ M- N-point
e at—
at the end of the ~
sequence DFT Y (k)
Sequence a(n) ‘ Ak) =
of length N N-point X (k)Y (k)
[ A — |
IDFT

Fig.3.9 Theapplication of DFT to obtain the noncircular convolution of two sequences x(r) and
yn).

OtnerR DFT ProPERTIES  Other pairs in Table 3.2 are a direct consequence of
the DFT definition and its periodic property. For example, the horizontal axis
sign change results from using the sequence x(— ») in (3.4). This yields

N-1 1~ N+1
DFT[x(— n)] = — Z xX(— nyW = v Y x(hwH (3.56)
n=0 1=0
where we let / = — n. The per1od1c1ty of W~ and the sequence x(/) allow us to

shift the indices to between N and 1. Since x(N) = x(0) and kN = 0 (modulo N)
we have

——Zx(l)W M—X(—k) and x(—n)eX(—k)  (3.57)

Derivation of some other DFT pairsisindicated in the problems at the end of the
Chapters 3-5.

The multidimensional DFT is a direct extension of (3.4). The L-dimensional
DFT is defined for N = NN, - - N, by

1 Ni—1 N2—1 Nr—1 '
X(kl,kz,...,kL):— Z Z Z x(nl,nz,...,nL)
NlNZ-”NLn1=O na=0 n.=0
x WkimiNINypzkanaNIN2 . pp7keneN/Ne (358)
where WNNi = [~ J2m/NININi — ¢=J2nINi for j = 1,2,..., L. Other properties in

Table 3.2 can be extended to the multidimensional cases using (3.58).
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3.12 Summary

This chapter has introduced the DFT and has showed that it corresponds
closely to the integral that determines the Fourier series coefficients. The
correspondence is so close that we can change interpretation of symbols from the
Fourier series to the DFT representation, as is shown in Table 3.3. A function
represented by a Fourier series can have an infinite number of coefficients, each
of which is determined by an integral. A real function must be band-limited to a
constant term and N/2 or fewer sinusoids if the Fourier series coefficients are to
be determined with the DFT. For this case the DFT has unique coefficients only
from coefficient number zero to N/2. Coefficients for coefficient numbers
L(N/2)] +i are complex conjugates of those for [(N/2)]—1i, i=1,2,
...»,[(N/2)] — 1, by the folding property where | ( )] and [( )] denote the largest
integer contained in ( ) and the smallest integer containing ( ), respectively (e.g.,
|4.5] = 4 and [4.57 = 5). In this chapter we developed a matrix representation
for the DFT. Matrices are a very powerful tool for developing FFT algorithms,
as we shall see in the next chapter, where we shall reorder rows and/or columns
of WE to get factored FFT matrices. We have already introduced a shorthand
notation for the factored matrices, and we shall find in the next chapter that this
notation shows at a glance what operations are required for the FFT.

Table 3.3

Correspondence of DFT and Fourier Series Nomenclature

DFT Fourier series

Symbol Units or meaning Symbol Units or meaning
YNIEC) summation [HQL: integration
N samples P seconds
k transform coefficient number (frequency bin f hertz

number)
n integer data sequence number (time sample t seconds

number)
x(n) sampled value of x(?) at t = nT x(1) instantaneous value

of x at time ¢

An alternative development of the DFT is to approximate the Fourier
transform integrals

X(f) = | x(De= it dy (3.59)

x() = | X(f)e* ' df (3.60)

I
|
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with the finite summations (based on P=1s)

N/2-1 iN/2—1
XR=- ¥ x@W"  and  x(m= Y XRW (36])

n=—N/2 k=—-N/2

Both equations in (3.61) can have the summation shifted to bétween 0 and
N — 1, giving the DFT pair. Since (3.61) describes a periodic function that is the
sum of N sinusoids, the development used in this chapter was to start with the
Fourier series with complex coefficients. Such series always describe periodic
functions. Regardless of whether the DFT is developed from the Fourier series
for a periodic function or from an approximation to the Fourier transform
integral, the pair X (k) and x(n) results.

PROBLEMS

1 Let x(n) = cos(2nkn/N). Show that X (k) =4 for N = 8 and k = + 2. Compare X (k) with the
Fourier transform of cos(2nkt/P) for k = + 2.

2 Let x(¢) = cos(2nt) + sin(2n¢). Find the Fourier series coefficients X(k). Let N = 8and P = 1 s.
Find the DFT series representation for the sampled-data function x(r). Show that the Fourier series
coefficients X(— 1) and X (1) are the same as the DFT coefficients X(7) and X(1), respectively.

3 Letx(n) = 1 + cos®’(2nn/N). Find the DFT coefficients for x(n) for N = 8. Use these coefficients
to determine a series representation for x(n) and verify that the series accurately represents x(n).

4. Parseval’s Theorem Write IDFT representations for X (k) and X*(k) and multiply them. Show
that ) N4 e~ J2mk~I/N — 5,_N. Use this retationship to prove Parseval’s theorem, which states that

N-1

N-1
go X (k)[* = % "4;0 x|(m)?

k

5 Shift Invariance of the DFT Power Spectrum Let the sequence x(n) have period N. The DFT
power spectrum of x(n) is defined as |X(k)|%, k = 0,1,..., N — 1. Use the shifting property (Table
3.2) to show that the power spectrum of the sequence x(n + n) is also | X (k)|?, where n, is an integer.

6 Derive the matrix of exponents for a 4-point DFT. Using the matrix of exponents show that the
DFT matrix is

1 1 1 1
we| L =/ -1 (P3.6-1)
1 -1 1 -1
1 Jj -1 —j

How many real multiplications and additions are required to evaluate X = W% x/N, where (P3.6-1)
gives WE and x is a dimension 4 vector of real data? How many complex additions?

7 Define
0 0 —joo —joo 0 = joo 0 — joo
E = 0 1 —joo —joo E - — joo 0 — joo 0
2 —jo —jo 0 0 ’ te 0 —jow 1 — joo

—joo —joo 0 1 — joo 1 — joo 0
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Recall that (~ 1)/ = (¢7/*)7® = ¢~ = 0 and write F, and E, in shorthand form. Show that

0000 1111
0101 PO 0 TS B
E=BEtE=l 1 1o U=l 21 21
0011 11 -1 -1

8 Write the DFT and IDFT matrices of dimension 4. Show WEW /4 = ], and W™ = [((WE)]*.

9 Show that for |k| < N/2 the Fourier series, DFT, and Fourier transform all give
X(k) = (a, — jsign(k)b,)/2 (times 6(f + k) for the Fourier transform) if x(¢) has period P = 1 sandis
band-limited to frequencies |k| < N/2.

10 Integration Intervals for Determining Fourier Series Coefficients Let (2.16) define X (k) and let

x()= Y F(Derrur
I=-w
Show that
© _ sin[n(f; —k
Xk 3 F0) [n(fi — k)]
= n(fi — k)
and that X (k) = X (k) if £, is always an integer for any /.
Next define

P
- 1 .
Xtk)=— J x(f)e ™ J2muF gy
P
o

Show that

o= § oo 51

and that X (k) = X (k) = ¥ (k) if f, is an integer for all /. Conclude that the Fourier series coefficients
for a periodic function with period P may be determined by either (2.16) or (3.1).

11 Convolution of Nonperiodic Functions Let x(¢) and y(f) be nonzero real functions in the
interval 0 < ¢ < 1 and let them be zero elsewhere. Show that a(¢) = x(f) * y(¢) is nonzero for
0 <t < 2. Use Table 2.1 to show that A(f) = X(f)Y(f). Let x(¢) and y(r) be sampled N times per
second and let X(f) and Y(f) be approximated by X (k) and Y (k), respectively. Let A(f) be
approximated by A4 (k) = X(k)Y(k). Show that N samples of x(¢) and y(?) in the interval 0 < ¢t < 1
must be followed by at least N — 1 zeros and that at least a (2N — 1)-point DFT must be used to
determine X (k) and Y (k).

12 DFT of a Convolution Let x(n) and y(n) be sequences of length N determined by augmenting
length L and M sequences as shown in Fig. 3.9. Let a(n) = x(n) * y(n). Show that

N-1 N-1

DFT[a(m)] = g Y Y x(myim — m)W = X (k)Y (k) = A(k)

m=0 n=0
13 DFT of a Correlation Let X(k) and Y*(k) be the N-point DFTs of x(n) and y*(— n),
respectively, where x(n) and y(n) are the augmented sequences in Problem 12. Let W=
exp(— j2n/N) and let #(m) = x(m)* y*(— m) be the correlation of the sequences x(n) and y(n).
Show that

1 N-1 N—-1

DFT[%(m)] = ¥ > Y x(my*n — myWh = X (k) Y*(k)

m=0 n=0
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14 DFT of an Exponential Let the input to the DFT be exp(j2nfn/N). Apply the series
relationship Y 2! y" = (1 — ")/(1 — y) to show that '

1 1 — e d2ntk=0)

DFT[e/2%/"N] = —

N 1 — e i2xk=1IN (P3.14-1)

Show that (P3.14-1) can be reduced to yield

DFT[e/nN] = ¢-mk=noi -1 SRS =01 (P3.14-2)
: Nsin[n(f — k)/N]

Interpret (P3.14-2) as the DFT frequency response.

15 DFTof a Sinusoid Let the input to the DFT be cos(j2nfn/N). Use (P3.14-2) to show that the
magnitude of the DFT coefficients k and N — k are the same. Show that the phase of these
coefficients has the same magnitude, but opposite sign, so that the coefficients are complex
conjugates. Show that this may be interpreted as the DFT folding property.

16 DFT of a Two-Dimensional Image A high altitude photograph shows the earth’s surface
viewed vertically from a spacecraft. The photograph gives gray level (variation from black, 0, to
white, 1) versus x and y coordinates. The photograph is sampled to give the image x(m,n),
m=0,1,...,M—1,n=0,1,...,N — 1. The power spectrum of the image is desired for texture
analysis. Let this power spectrum be |X(k,/)|> where X(k,/) = DFT[x(m,n)]. Let X(k,I) be
obtained by first transforming the rows of the image to yield X(m, /) = DFT of row m of x(m, n). Use
the folding property to show that X(m, /) = X*(m, N — /). Then use the horizontal axis sign change,
complex conjugation (Table 3.2), and the periodic properties of the DFT to show that the DFT of the
columns of X(m, /) yields X' (k,l) = X*(— k,N — ) = X*(M — k,N — [). Let M and N be even and
show that the number of DFT coefficients that contain all the power spectrum information in the
high altitude photograph is (M/2 + 1)(N/2 + 1) + (M/2 — 1)(N/2 — 1).

17 Three-Dimensional Plot of a Two-Dimensional Spectrum A three-dimensional plot of | X (k, )|2
versus k and / is desired where X (k, /) = DFT[x(m, n)] and x(m, n) is the sampled value of a real
image. Let M and Nbeevenandlet0 < m < M/2and0 < n < N/2or N/2 < n < N define quadrants
(0,0) or (0, 1), respectively. Let M/2 < m < M and 0 < n < N/2 or N/2 < n < N define quadrants
(1,0) or (1, 1), respectively. Show that if the plot has the dc term (i.e., the term X(0,0)) at k = M/2
and / = N/2, then the quadrants must be interchanged as follows: (0, 0) with (1, 1), and (1, 0) with
0,1).

Show that a single sideband modulation (see Table 3.2) can be applied before taking the two-
dimensional DFT to place the dc term at (M/2, N/2). Show that this gives X(k,/)=
DFT[(— D)™*"x(m,n)].

18 DFT of Two Real N-Point Sequences by Means of One Complex N-Point DFT  Let x(n) and y(n)
be two real N-point sequences and let a(n) = x(n) + jy(n). Decompose x(n) and y(n) into even and
odd parts. Let X (k) = DFT[x(n)] = X.(k) + jX,(k) where jX,(k) = X,(k) and similarly represent
Y (k). Show that

Ak) = Xo(k) + jXo(k) + jY (k) — Yo(k)
Use the folding property to show that
X.(k) = 3 Re[A(k) + AN - k)]
Y,(k) = LRe[ — A(k) + AN — k)]
Xo(k) = $Im[A(k) — AN — k)]
Y. (k) = 3 Im[A(k) + AN — k)]

Conclude that the DFT of two real N-point sequences is determined by the output of just one N-
point complex DFT, that is, a DFT with a complex input (use an FFT, of course, to do the
evaluation).
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19 DFT of an N-Point Real Sequence by Means of an (N/2)-Pcint Complex FFT [C-60, R-78] Let
x(n) = x.(n) + x,(n) be a real N-point sequence, where the subscripts e and o stand for even and odd
parts, respectively. Let N be even. Define

1) = x(2n) + x2n + 1) = x(2n — ) = a(n) + ¢(n), N=0,1,...,N/2 -1

where a(n) = x.(2n) and ¢(n) = x,(2n + 1) — x.(2n — 1). Let W = e~ 2%N_ Show that

N/2-1
Yik) =— z yim)yWHr = A(k) + C(k), k=0,1,...,N2 -1
N2 Do
where
1 N-1
Ak) = — X () Whm
© N2 ,Eo )

C(k) = (W™F — W¥)B(k) = 2jsin(2nk/N)B(k)

N-1

1 km
B(k) = N7/2 2z X (m)W

modd

Show that the (V/2)-point sequences a(n) and c¢(n) are even and odd, respectively, so that

A(k) = Re[Y(K)], k=0,1,...,N2 -1
B(k)=w, k=1,2,...,N2—1
2sin(2nk/N)
Let
1 N-1
B(0) = —B(N/2) = a L xo(n).

nodd
Show that X,(0) = $[4(0) + B(0)], X.(N/2) = 1[4(0) — B(0)], and

X.(6) {%[A(k) + B(k)], k=12,...,N/4

¢ HAWNR2—k) - BN2-K)], k=N/A+1,... . N2-1
Conclude that X,(k), k =0,1,...,N — 1, can be computed with an (N/2)-point DFT with a real
input.

Show that analogous formulas hold for X,(k) by considering the (N/2)-point sequence
¥2(n) = x4(n) + xo(n + 1) — x,(n — 1). Use the results of Problem 18 to show that an (¥/2)-point
DFT with the complex input y(n) = y;(n) + jy.(n) specifies the DFT of the N-point real sequence
x(n). Conclude that an N-point real sequence can be transformed by an (N/2)-point complex FFT.

20 DFT of an N-Point Even (0dd) Sequence by Means of an (N/4)-Point Complex FFT [C-60]
Note in Problem 19 that a(r) and ¢(n) are even and odd (V/2)-point sequences, respectively, derived
from the N-point sequence x,.(n). Use the logic of Problem 19 to show that a(n) and c(n) can be
computed with one (N/4)-point FFT with a complex input. Conclude that the DFT of the N-point
even or odd sequence x,(n) or x,(n), respectively, can be computed with one (N/4)-point complex
FFT.

21 DFT of a Sequence Padded with Zeros Let the N-point sequence x(n) result from sampling x(¢)
at an f, Hz sampling rate. Let i — 1 zeros be inserted between consecutive samples (i.e., the sequence
is “padded” with zeros) yielding an (Ni)-point sequence x,(n) at an i, Hz sampling rate. Show that
x,(n) is unchanged if multiplied by $[1 + cos(2rif,7)]{rect[t — (P — T)]/P} where P = NT and
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f,=1/T. Use Table 2.1 to show that

1 _ [~ (P-T)2
DFTy[x,(n)] = & 2_N[1 + cos(2mift)] {rect — 5 [comb x(1)]
= {36(0) + £[6(f — i) + 6(f + if)]} *1ep [ X(/)]
* e~ 1UN) gine( fP) (P3.21-1)
where DFT y;, is an (Ni)-point transform. Show that the right side of (P3.21-1) yields the same
spectrum as DFTy[x(n)], but with respect to the sampling rate if; (Fig. 3.10). As a consequence of the

higher sampling frequency, show that a digital bandpass filter (BPF) can be used to extract one of the
translated replicas of X(f) for further processing (e.g., transmission).

«(m) | pad “(n) Tran:lated
spectrum

— ] with e BPF P

fs Hz zeros ifs Hz

Fig. 3.10 The use of a sequence padded with zeros.



CHAPTER 4

FAST FOURIER TRANSFORM ALGORITHMS

4.0 Introduction

The fast Fourier transform uses a greatly reduced number of arithmetic
operations as compared to the brute force computation of the DFT. The first
practical applications of FFTs using digital computers resulted from manipu-
lations of the DFT series. For example, if N = 2L, L > 2, then the N-point DFT
can be evaluated from two (N/2)-point DFTs, and so on a total of L times.
Putting the summations together in proper order gives a power-of-2 FFT
algorithm, which is fully developed in Section 4.1.

An easy way to visualize the procedure for generating FFT algorithms results
from matrix factorization. In Sections 4.2-4.8 we shall discuss FFT algorithms,
which can be derived by reordering rows and/or columns of the DFT matrix W%
such that it factors into a product of matrices:

WE = Whewke-s - E2yEs — ppELtBr-at  1EatEs (4.1)

where E=E; TE;,_1T ' tE,TE; is the shorthand notation developed in °
Chapter 3 and L is the number of integral factors of N. The easiest case is when
N = 2L This case is discussed in Sections 4.2-4.4. The more general case is for N
having L integral factors, so that N = N N, _; - -+ Ny. FFTs for this case are
called mixed radix transforms. Their derivation is given in Section 4.5.
Sections 4.6-4.8 develop additional FFT and inverse FFT (IFFT) algorithms
using matrix manipulation methods. These methods include matrix transpose,
using the IFFT to deduce an FFT and inserting a factored identity matrix into an
already factored FFT [A-5, A-22, A-32, A-33, A-34, B-2, C-29, G-9, K-30, M-31,
S-9, Y-5]. These additional FFTs are developed for several purposes. First, they
provide software and hardware engineers with flexibility in a particular
application. Second, they illustrate techniques that apply to the derivation of
other fast transforms, such as the generalized transforms of Chapters 9 and 10.
Matrix factorization is a simple technique for deriving fast transforms. It does
not necessarily give the most economical transform in terms of minimizing
arithmetic operations. In fact, the algorithms in Chapter 5 significantly reduce

58
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the number of multiplications as compared to the FFTs of this chapter.
However, depending on the number of points in the transform, use of the FFTs
of this chapter may result in less computer time, due to simplicity of indexing,
loading, and storing data, as compared to the algorithms in Chapter 5.

4.1 Power-of-2 FFT Algorithms

Let the number of pointsin the data sequence be a power of 2; thatis, N = 2%,
where L 1is an integer. Then a simple manipulation of the series expression for the
DFT converts it into an FFT algorithm [C-29, C-30, C-31, S-16]. Recall that
DFT coefficient X(k) is defined by
N-1 N-1

. 1
Z x(n)(e ™ J2m/Nykn =¥ Y x(n)ywkn 4.2)

n=0

1
X(k)=—
(k) N
where £ =0,1,2,..., N — 1. Since N is a power of 2, N/2 is an integer, and
samples separated by N/2 in the data sequence can be combined to yield
Nj2-1
X(k) = I Y (MW 4+ x(n + Nj2)yWHr N2
n=0
N/2-1
=y Y [x(n) 4+ x(n + N/2)yWHN2] ke 4.3)
n=0
Equation (4.3) can be simplified because W*¥/2 takes only two values for integral
values of k, as is seen from

n

21 kN .
WHNI2 — exp <_]~NE 7) = e itk = (= 1)t (4.4)

First let k£ be even, so that W*N2 = 1. Also let
k=2l 1=0,1,2,...,N/2 -1,
g(n) = x(n) + x(n + N/2) 4.5)
Then the series for even-numbered DFT coefficients is given by

N/2—1 1 N/2—1
X2hH=— w2 — _ W 4.6
@)=+ ngo g(n) AN ngo g(m(W=) (4.6)
The right side of (4.6) is one-half times an (N/2)-point DFT because
W? =exp[—j2rn/(N/2)] and because the input sequence is {g(0), g(1),
g(2),...,9(N/2 — 1)}. We conclude that for even values of k we can reduce DFT
inputs by a factor of 2 if we let the input be g(n) = x(n) + x(n + N/2). We can
then use an (N/2)-point DFT to transform the sequence defined by g(n).
Now let k& be odd, so that W*¥2 = — 1. Also let

k=21+1, [=0,1,2,...,N/2 -1
) = x(n) — x(n + N/2) 4.7)
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Then the series for odd-numbered DFT coefficients is given by

NSt 21+ 1)n 1 1 = 2\In

X2+ 1) = N 'Zlo ymyw SN Z h(n)(W ) (4.8)
where h(n) = y(n)W". The right side of (4.8) is one-half times an (N/2)-point
DFT for the input sequence {/#(0), h(1), h(2), ..., h(N/2 — 1)}.We conclude that
for odd values of k we also can reduce DFT inputs by a factor of 2 by letting
h(n) = W"[x(n) — x(n + N/2)]. We can then use an (N/2)-point DFT to
transform the sequence defined by A(n). The parameter W" in the preceding
equation for A(n) is sometimes called a twiddle factor.

Let us apply what we have learned so far to the DFT for N = 8. To do this we
start with the inputs x(n) for n =0,1,...,7, as is shown in Fig. 4.1. Adding
inputs x(0) and x(4), x(1) and x(5), x(2) and x(6), and x(3) and x(7) reduces terms
by a factor of 2, so we can use a 4-point DFT to determine X(k) for k = 0,2, 4,
and 6. Likewise, subtracting these inputs and multiplying by the twiddle factors
WO, W', W?and W3, as shown in Fig. 4.1, makes it possible to use a 4-point
DFT to determine X(k) for k = 1,3,5, and 7. The parameter W2 for N = 8 is
W? = exp(— j2mn/4), which is the W value required for the 4-point DFT.

The procedure for the 8-point DFT may be mimicked for the 4-point DFT.
The vertical structure of Fig. 4.1 is reduced by one-half in going from the 8-point
DFT to the 4-point DFT. The structures for the 4-point and 2-point DFTs are
shown in Fig. 4.2. The only multiplier other than unity for the 2-point DFT is

= [exp(—j2n/8)]* = — 1. When the structures of Figs. 4.1 and 4.2 are put
together, we have an 8-point FFT.

Note that we have decomposed the DFTs from N-points to (N/2)-points, then
to (N/4)-points, and so on, until we obtained a 2-point output. The transform
sequence numbers for the N-point DFT are separated by 1 Hz for a normalized
analysis period of P = 1 s. The outputs of the (N/2)- and (N/4)-point DFTs are
separated by 2 and 4 Hz, respectively, if we continue to let P = 1 s for the N-point
input (Figs. 4.1 and 4.2). Therefore, when a DFT is divided into two DFTs of
half the original size, the frequency separation of the output of either of the
smaller DFTs is increased by 2. This corresponds to dropping (decimating)
alternate outputs of the original DFT and is called a decimation in frequency
(DIF) FFT. Decimation factors of 3,4, ..., K, K < N/2, arise in DIF FFTs of
Section 4.5 due to decimation of frequencies by 3,4, ..., K at the outputs of the
DFTs of sequences of shorter lengths.

The coefficients for the 8-point FFT can be found by letting X(m), m = 0, 1, be
the 2-point DFT output, as shown in Table 4.1. If X(/) is the 4-point FFT output,
then /=2m or / = 2m + 1, and the coefficients are ordered X(0), X(2), X(1),
X(3). If X(k) is the 8-point FFT output, then k = 2/ or k = 2/ + 1. Table 4.1
shows that the 8-point FFT coefficients are ordered X(0), X(4), X(2), X(6), X(1),
X(5), X(3), X(7). This 8-point FFT resulted from converting an 8-point DFT
into two 4-point DFTs. Each 4-point DFT was in turn converted into two 2-
point DFTs.
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Data sequence Transform sequence
x{ ) ) X ()
(0) 9
0 5 5 3 = o
1 g(1)
1 ) Z . —== 2 | Coefficients
(2) 4-point r ;or even,
2 S % 9 DFT |, 4 | freauencies
) 1 g(3)
h(O
4 == T W° (Q) e 1 1
tog h{1)
5 =Z 2 w . = 3 | Coefficients
4-point L for odd
6 NG %Wg h(2) OFT 5 | frequencies
h{3
7 5 %w3 ) — 7 |

Fig. 4.1 Reduction of an 8-point DFT to two 4-point DFTs using DIF.

Data sequence Transform sequence
x{ ) X{ )

(o] — 0
1 — 2
2 —2= 1
3 —— 3
Data sequence Transform sequence
x{ ) X( )
i :>@ 15 —°
I 1L wa o
1 ~2) |2(w ) 1

(b)
Fig. 4.2 (a) Reduction of a 4-point DFT to two 2-point DFTs; (b) a 2-point DFT.

Figure 4.3 shows the DIF FFT in the form of a flow diagram. The symbols
used in the flow diagram are shown in Table 4.2. FFT flow diagrams use several
notational conventions that do not necessarily agree with their digital computer
implementation. One convention is to move the multipliers back through the
summing junctions. For example, W3 in the bottom flow line of Fig. 4.1 is
moved left through the summation to become a multiplier 2 following the x(3)
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Table 4.1

Generation of Output Coefficients Going from
Lower to Higher Point DIF FFT

N=38 N=4 N=2

X(k) X() X(m)

k=2l [ =2m

" X(0) X(0) X(0)

X4 X2) X1
I=2m+1

X©2) X(1) X(0)

X(6) X@3) X(1)

k=21+1 [=2m

X(1) X(0) X(0)

X(5) X(?2) X(1)
I=2m+1

X(3) Xx(1) X(0)

X(7) X(3) X(1)

Table 4.2

Symbols for the 8-Point FFT

Expression Meaning Value Symbol
we exp[ — (j2n/8)0] 1 -
w4 exp[— (j2n/8)4] -1 -7
& expl— (j2n/8)2]  —j -
w expl— (G201 (-2 5z

input and a multiplier — W3 = W7 following the x(7) input. Inputs to the
summation in Fig. 4.3 are W7x(7) and W3x(3). Another convention is to show
all scaling at the output of the FFT. For example, Fig. 4.3 shows scaling of §
preceding each output coefficient.

When a DIF FFT digital computer program is written, the procedure to
minimize multiplications is that of Fig. 4.1. For example, in the bottom part of
Fig. 4.1 x(7) would be subtracted from x(3) and the result multiplied by 113.
Scaling the output of each summing junction by § has the added advantage of
reducing word length requirements in a fixed point digital computation. If only
the output is scaled, additional bits are needed to keep from degrading the
signal-to-noise ratio (SNR) (see the discussion of dynamic range in Section
7.8).
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A repetitive structure called a butterfly can be seen in the FFT of Fig. 4.3.
Examples of butterflies are shown by the darker lines in the figure. The first stage
of butterflies on the left determines a matrix W%+, the second stage a matrix W-2,
and the right stage a matrix W¥: These matrices are developed in the next

Data sequence . Transform sequence
x( ) Stage 1 Stage 2 Stage 3 X))

Fig. 4.3 Flow diagram for an 8-point DIF FFT.

section. The operations given so far can be extended to give a 16-point FFT, a
32-point FFT, and so forth. The first FFTs used extensively were developed
from the type of manipulation of series that has been presented in this section.
However, the matrix representation of the FFT is very simple and easy to extend
for N = 64,128, ... . Therefore, throughout the remainder of this book we shall
emphasize the matrix representation developed in the following section.

4.2 Matrix Representation of a Power-of-2 FFT

This section develops the series representation of the previous section into a
matrix representation for a power-of-2 FFT algorithm [K-30, M-31]. We shall
generalize the matrix representations to factors other than 2 in a later section.

The matrix representation of the DIF FFT follows from Figs. 4.1 and 4.3.
Consider the output of the first set of butterflies in Fig. 4.1. The input—output
relationship of the butterflies is given by
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KON
g(1)
9(2)
9(3)
h(0)
(1)
h(2)
L h(3)

WO

- WOox(0) + WOx(4) T

| W3x(3) + Wx(T)
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WOx(1) + WOx(5)
WOx(2) + WOox(6)
WOx(3) + WOx(T)
WOx(0) + W*x(4)
Wix(l) + W3x(S)
W2x(2) + Wox(6)

WO
wo 0

0
o "0

wo 0

WO
WO

WO

W4

wi 0
WZ

0 wo| 0

ws 0

W6
W7

where 0 means that all entries not shown are zero.
Let a = [a(0),a(1),a(2),...,a(7)]T be the output of the second set of
butterflies (Fig. 4.3). Then the output of these butterflies is given by

a(0) 7]

i a(1)
a(2)
a(3)
a(4)
a(s)
a(6)

| a(7)

WO
0
WO
0

™ W°9(0) + W(2) 7]
WOq(1) + W(3)
W°g(0) + W*g(2)
W2g(1) + W°(3)
WOh(0) + WOh(2)
WOh(1) + WOh(3)
WOh(0) + W*h(2)

L W2h(1) + WOh(3)
0 wW° 0
we o W
0 Wt 0
w2 0 we

WO
0
WO
0

wo 0

wr 0

0 w° o0
WO
0o w* 0
W6

- 2(0) 7
x(1)
x(2)
x(3)
x(4)
x(5)
x(6)

L x(7)

[ 9(0)
g9(1) W
9(2)
9(3)
h(0)
h(1)
h(2)

L h3)

(4.9)

(4.10)
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The output of the third set of butterflies gives the DFT coefficients in scrambled
order. Figure 4.3 gives the output of these butterflies as

M X(0) 7
X@)
xQ)
X(6)
X(1)
X(5)
X(3)
L X(7)

WO

~ a(0) + a(1) 7]
a(0) — a(1)
a(2) + a(3)
a(2) — a(3)
a(4) + a(5)
a(4) — a(s)
a(6) + a(7)

L a(6) — a(7)
WO
W4

WO
WO

W4

WO
WO

WO
W4

WO
WO

WO

w

[~ a(0) 7
a(l)
a(2)
a(3)
a(4)
a(s)
a(6)

@.11)

a(7)

Combining (4.9)-(4.11) gives the matrix-vector representation for the DIF FFT:

- X(0)
X(4)
X(@2)
X(6)
X(1)
X(5)
X(3)

L X(7) -
—
X

— Ly
8
- o o _
0 O 0 0
w W
WO WO
0 wo O we
| wo W 0
wt 0 w3
w2 we
0 w7 0 w

(4.12)

- 2(0)
x(1)
x(2)
x(3)
x(4)
x(5)
x(6)

W

L x(7)
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where WF: and W¥2 are diagonal matrices of size 8 x 8 given by

WO WO
WEs = diag {[ ], [same], [same], [same]}

we w4
we o w° o0
0o w° o we°
Ex _ A;
Wt = diag w0 Wt 0 , [same]
0 w2 o0 »W6

where “‘same” means the matrix shown in the square brackets repeats down the

diagonal.
Equation (4.12) is the DIF FFT in factored matrix form. All information in
the factored matrices is in the matrices of exponents Ej, E,, and E;. Let

WE = WEswE e — WEstE2tEy (4.13)

where E = E; 1 E, T E, is the shorthand notation described in Chapter 3.
Writing out the matrices of exponents and affixing data and transform sequence
numbers to them gives

KnO 1 2 3 4 5 6 7 kK\nO 1 2 3 4 5 6 7
ofoo - - - - - -3 00 -0 - - - - 7
41 0 4 - 0 o -0 - - -
0] - 0 0 210 - 4 -
E=4 0 4 - 2 2 6
0 : 0 0 0 -0 - 0 -
4 0o 4 - 0 0o - 0
0 : 0 0 2 0o - 4 -
4L 0 4] 2L 2 - 6
E; E,
K\nO 1 2 3 4 5 6 7
oo -0 7]
of - O : 0
0 0 - 0
0 0 - 0 (4.14)
110 4 :
1 1 - -5
1 2 - 6
1L .3 7
E,

where - is the shorthand notation for —joo and W™i® = ¢~ = (. Carrying out
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the matrix multiplication Wt = WEWElE gives WE = 4, where

W0+0+0 W0+0+0 W0+0+0 W0+0+0 W0+0+0 W0+d+0 W0+0+0 W0+0+0
W0+O'+O W4+0+0 W0+0+0 W4+0+0 W0+0+0 W4+0+0 W0+0+0 W4+0+0
W0+0+0 W0+2+0 W0+4+0 W0+6+0 W0+0+0 W0+2+0 WO+4+0 WO+6+0
W0+0+0 W4+2+0 W0+4+0 W4+6+0v W0+0+0 W4+2+0 W0+4+0 W4+6+0
A = W0+0+0 W0+0+1 W0+0+2 W0+0+3 WO+0+4 W0+0+5 W0+0+6 W0+0+7
W0+0+0 W4+0+1 W0+0+2 W4+0+3 W0+0+4 W4+0+5 WO+O+6 W4+0+7
W0+0+0 W0+2+1 W0+4+2 W0+6+3 W0+0+4 W0+2+5 W0+4+6 WO+6+7

W0+0+0 W4+2+1 W0+4+2 W4+6+3 WO+0+4 W4+2+5 W0+4+6 W4+6+7

(—4.15)

Each entry in WE has the form We = Weste2tei where e, comes from Ej, e,
from E,, and e, from E;. This indicates that a cyclic patternin ey, e,, and e; like
that in (4.15) leads to a factorization into three matrices like that in (4.14).
Adding the exponents in (4.15) mod 8 gives

.

K\nO 1 2 3 456 7
00000000 07
410 4 0 4040 4
2102 4602 46
E=6|06 420 6 4 2 (4.16)
110123 4567
510527 416 3
310361 4725
7L0 7 6 5 4 3 2 1]

This FFT matrix of exponents is the same as the DFT matrix of exponents
except for a reordering of the rows from the natural order of £k = 0,1,2,...,7 to
k=0,4,2,6,1,5,3,7. From this we conclude that the DIF FFT matrix is just a
DFT matrix with reordered rows. Note that the k& indices for E,, E,, and F; in
(4.14) correspond to the DIF. That is, based on a normalized period of P = 1 s,
E5 has frequencies separated by 4 Hz (they are 0 and 4 Hz); E, has frequencies
separated by 2 Hz (they are 0 and 2 Hz); and E; has frequencies separated by 1
Hz (they are 0 and 1 Hz).

The matrices in (4.12) are called sparse matrices because of the numerous zero
entries in any row or column. The sparse matrices cut down the number of
arithmetic operations required to compute the DFT, as will be discussed in
Section 4.4. Furthermore, when a row of W3 is multiplied by a column of W%z,
the row-times-column rule of matrix multiplication gives only one nonzero
entry. That s, every entry in WE:IWE2 has the form W * €2, We can regard taking
the product WEsWE2 as accomplishing a frequency mixing operation in which
the frequency indices in the matrices of exponents add. The matrices E£3 and E,
have only frequencies 0 and 4 or 0 and 2 Hz, respectively (based on an analysis
period of P = 1 s). These frequencies mix so that F; t F, has frequencies 0, 4, 2,
and 6 Hz. Likewise, in taking WEstE2[J/E1 the row-times-column rule of matrix



68 4 FAST FOURIER TRANSFORM ALGORITHMS

multiplication gives only one nonzero entry, which has the form We:*ez*e: The
frequencies 0 and 1 Hz in £, sum with those in E5 { E, to give frequencies of -
0,4,2,6,1,5,3, and 7 Hz.

The dimension of the FFT algorithm represented by the flow diagram of Fig.
4.3 is doubled from 8 inputs to 16 by the following procedure: (1) Repeat the
flow diagram shown, (2) place it directly under the one shown, and (3) add eight
butterflies on the left with wing tips at inputs x(0) and x(8), x(1) and x(9), ...,
x(7) and x(15). Figure 4.4 shows the flow diagram for the 16-point FFT. This
procedure may be repeated for N = 32,64, ... by adding 16, 32, .. ., respectively,
butterflies in step 3. The factorization of an N x N DFT matrix, N = 2%, into L
sparse matrix factors is accomplished by reordering the k and » entries in the
matrix. A generalization of the procedures in this section is shown in Table 4.3.

Data sequence Transform sequence

x) Stage | Stage 2 Stage 3 Stage 4 1/16 X
. O O 0]

1716
0 8

1716
4

1716
-0 12

INKKE 2 SN,
\\\Vllll“XA e,
‘\v“'lli ‘ w? >< 118 o 1o
‘ “’(I. A AA 3 1716 6
=
wwm A
110 NNV/= =
1 ” A‘\\%‘:A',v 118 s

w”
/
12 1/16
v ><><\ //><——°
w2 1716
13
v /\\\2<><L
1/16
14
/ " \/ el \7\><i“—"’
s o 1/16
W15

Fig. 4.4 Flow diagram for a 16-point DIF FFT.
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Note that the data sequence numbers on each factored matrix are in the natural
order {0,1,2,...,N — 1}. Note that the transform sequence numbers are
different on each of the factored matrices. When the frequency tags of a given
row of E;, E; 1, ..., E; are added, the transform sequence number (frequency
bin number) of the FFT coefficient is obtained. The — joo entries are not shown
in Table 4.3. ‘

Table 4.3 shows that frequencies 0 and N/2 Hz (based on an analysis period of
P =15s)in E; mix with frequencies 0 and N/4 in E;_, to form frequencies
0,N/2, N/4,and 3N/4in E, 1 E; _ ;. These frequencies mix with frequencies 0 and
N/8in E; _ 5 to form frequencies 0, N/2, N/4,3N/4, N/8, 5N/8,3N/8, and 7N/8 in
E tE, _tE._, ExtE,_1t - 1E,_, has frequencies 0, N/2¥*1 2N/2k+1
cor, 2KTY — 1)N/2¥* 1 The matrix E = E, 1 E,_, T - - - 1 E; has frequencies of
0,1,2,...,N — 1 (still based on P =1 s).

The DFT matrix for a power-of-2 FFT has sampled sinusoids of N = 2t
different frequencies. These sinusoids are formed from sampled sinusoids having
frequencies 2°/P, 2'/P, 22/P,..., 2k71/P. Thus, L sampled sinusoids in the
sparse matrices WEL, WEL-1  WEi mix to form 2L sampled sinusoids in WE.

Table 4.3

Factorization of the Matrix of Exponents for a 2t-Point DIF FFT

EL EL—l

K\n0 1 2 3 N-1 kK\no 1 2 3 N—1
oo o0 ] 0oJo 0
Ni2| 0 N2 0 0 0
0 0 0 N4 o 2N/4
N/2 0 N2 N/4 N/4 3N/4
; - 0
0 0 0 0
N/2 0 N2 :

— —— N/4

This submatrix repeats N/2
times going down the diagonal.

K\no 1 2
00

0 0

0 0
0

1o

1 I

1 C Np-2
1L

This matrix repeats N/N=1 time.

E,

N/2—1

N2

N2

This submatrix repeats N/4
times going down the diagonal.

N-1

|

N-2
N
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4.3 Bit Reversal to Obtain Frequency Ordered Outputs

For the 8-point FFT we found that the transform sequence was given by
X = [X(0), X(4), X(2), X(6), X(1), X(5), X(3), X(7)]T. The entries in X
correspond to the Fourier series coefficients (for a periodic function, with a
known period and with a band-limited input) in scrambled order. The reason for
the scrambled order of the DFT coefficients can be found by observing how the
subscripts k, /, and m are generated in Table 4.1. These subscripts were generated
for an 8-point DIF FFT and are shown in binary form in Table 4.4. Also shown
are the bit-reversed k and its decimal equivalent.

Table 4.4
Generation of Binary Subscripts for DIF FFT

Decimal Binary Bit-reversed

k k k / m
0 000 000 00 0

1 0 0 1 1 00 10 1

2 010 01 0 0 1 0

3 011 110 1 1 1

4 1 00 0 01 00 0

5 1 0 1 1 01 1 0 1

6 110 011 01 0

7 1 11 111 11 1

The 8-point DIF FFT was obtained by starting with an 8-point DFT. The first
set of butterflies feeds into two 4-point DFTs, and the first set of butterflies in
each of these feeds into two 2-point DFTs. The 2-point DFT has outputs X(m)
form = 0, 1. The subscripts generated at the 4-point DFT output are determined
by [ = 2m, 2m + 1 and are in the order / = 0,2, 1, 3. The / subscripts are in bit-
reversed order. That is, if the binary numbers / = 00, 10, 01, 11 are bitreversed to
give binary numbers 00, 01, 10, 11, then the orderingis the natural order 0, 1, 2, 3.

The k subscripts generated at the 8-point DFT output determined by k = 2/,
2]+ 1 are in the order 0, 4, 2, 6, 1, 5, 3, 7. These k subscripts are also in bit-
reversed order. Bit reversal of the k subscripts gives the natural ordering, as
shown by the decimal k in Table 4.4.

We can extend this bit reversal process to higher order DIF FFTs. For any
power-of-2 FFT the output coefficients are in bit reversed order. The bit-reversal
procedure is a special case of digital reversal, which is discussed in Section 4.5.
Algorithms have been developed for efficient unscrambling of the FFT outputs
[P-23].

As we shall see, there are other ways of generating an FFT. One of these is to
insert a factored identity matrix between matrix factors of the DIF FFT
algorithm. Another FFT algorithm is called a decimation in time (DIT) FFT
(see Section 4.6).
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4.4 Arithmetic Operations for a Power-of-2 FFT

The arithmetic operations to mechanize the power-of-2 FFT can be de-
termined from Table 4.3. Each row of each matrix requires either one real or one
complex addition. We shall make the pessimistic assumption that all additions
are complex. There are N rows and L matrices, so the number of complex
additions to transform a 2E-point input is given by

(number of complex additions) = NL = Nlog, N 4.17)

Note from Table 4.3 that matrix E; has only the entries 0 and N/2.
Consequently, WEr has only + 1 entries, and no multiplications are required to
compute outputs of the last set of butterflies, as, for example, Fig. 4.4 shows. To

estimate the multiplications required by matrices W¥c-: Wkr-z WE we
make the pessimistic assumption that multiplications by j are complex
multiplications. The number of matrices Wkr-:, Wer-2 WE: ig

L —1=1logy(N/2) (4.18)

Half the rows in each factored matrix contain the factor £k = 0, which yields
WO = 1 so that no multiplications are required. The other half are for k # 0 and
require one complex multiplication per row. Only one complex multiplication is
required, because in each row the entries are for points directly opposite each
other on the unit circle in the complex plane. For example, the fourth row of WZz
in the 8-point FFT given by (4.12) has entries

— 2 — 2y
szexp< 8’”2):*], W6=exp< 8’”6):;’ (4.19)

Therefore, we may subtract the terms in that row and then perform the complex

multiplication. Since half therowsof E; _,, E; _,,..., E; arefor k # 0, a total of
N/2 complex multiplications are required for each of the matrices WEr-1,
WhL-2 WZE The total number of complex multiplications is given by
number of N multiplications )
o = ———— x L — 1 matrices
complex multiplications 2 matrix
Nl N (4.20)
= _log, — .
2 987

Actually, the number of multiplications specified by (4.20) is a pessimistic
answer, because there are rows in the factored FFT matrices that require only a
subtraction. For example, in Table 4.3 the first row for £ = N/4 in E, requires
only a subtraction.

Ifweusedan N x N DFT matrix, each row of the DFT would require about N
complex additions to transform an N-point input and the N rows of the DFT
would require about N? complex additions. Likewise, about N? complex
multiplications would be required for a complex valued input. Table 4.5
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Table 4.5

Approximate Number of Complex Arithmetic Operations
Required for 2--Point DFT and FFT Computations

Operation

2L Complex additions Complex multiplications
DFT FFT DFT FFT
8 64 24 64 8
16 256 64 256 24
32 1024 160 1024 64
64 4096 384 4096 160
128 16384 896 16384 384

indicates the savings resulting from using the FFT instead of the DFT. (See also
Problem 2.)

4.5 Digit Reversal for Mixed Radix Transforms

Digit reversal is a technique by which an FFT may be derived for an N-point
transform, where N is the product of two or more integers. The technique is
equally applicable to integer powers and to the products of integers that may be
relatively prime [S-8, A-22, A-34]. For example, N=30=2-3-5 and
N =9 =33 are factorizations that lead to FFTs using digit reversal. Bit
reversal, described in Section 4.3, is a special case of digit reversal leading to
power-of-2 FFTs.

The mixed radix transforms can be derived by breaking the DFT series for
X(k) into the sum of several series, as was done in Section 4.1. (See also Problems
5.17-5.21.) Instead of using this approach, we shall use digit reversal to specify
the factored matrices of exponents. When these factored matrices are multiplied
to form a single DFT matrix, the exponentials combine in a sort of frequency
mixing operation that combines a small number of exponent values to give the N
valuesof £k =0,1,2,...,N — 1.

Let N be factored into the product of L integers as given by

N=NN,_, - N,N,; 4.21)

where N, N,,..., N, are not necessarily distinct integers nor are they nec-
essarily prime numbers. (See Chapter 5 for the definition of a prime number.) We
shall show that an FFT matrix in factored form is given by

WE — WELWEL-1 ... E1 — WWELTEL-11" " tEy (422)

where the matrices of exponents Ej,E;_,,...,E; are specified by N,
Ny_iy,...,Ny. Let the rows of W% be numbered « =0,1,2,...,N — 1. Any
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integer @, 0 < « < N, has the mixed radix integer representation (MIR) given by
(see Problem 5.16) : .

a/:aLNL;lNL—Z t 'Nle + a’L—lNL—Z te 'N2N1 + -+ ale + a4
(4.23)

where 0 < «; < N,and N,is aradix of the MIR for/ = 1,2, ..., L. In Section 4.3
we showed that bit reversal of the row number gives the data sequence number k
for an FFT whose dimension is a power of 2. In like manner, digit reversal of the
row number gives the transform sequence number k& of the row for the mixed
radix FFT. Digit reversal of (4.23) gives

k=ayNy " "Ny +a;NsNy - N+ +ap N+ ap  (424)
A table of 2 =0,1,2,...,N —1 and k = » digit reversed determines the

transform sequence numbers for the matrices of exponents E;, E; _,..., E;.
Matrix E, is for k =0, N/N, 2N/Ny,...,(N; — 1)N/N;; matrix E, _, is for
k=0, NJN\N,, 2N/N;N,,...,(N, — 1)N/N,N,;...; and matrix E; is for

k=0,1,2,..., N, — 1. Transform sequences numbers are shown in Table 4.6.

Table 4.6

Transform Sequence Numbers in Matrices of Exponents in a Mixed Radix Factorization

Matrix E;p E -y J oy —— E,

0 0 0 0

transform N/N, N/(Ny{N,) e N/(NyN, - N,) s 1

sequence 2N/N, 2N/(NyN>) 2N/(NyN, -+ N,) 2

numbers : : : :
Ny = DN/Ny (N2 — 1)N/(N,N>) (N = DN/(N Ny - Nyy) N, -1

Each matrix of exponents in (4.22) has dimension N. Matrix E is displayed in
Table 4.7. E; is made up of N; x N; submatrices. The entries in E, _,, however,
are diagonals of length V,, so thatin E; T E; _; there is either no entry or else the
sum of one entry each from E; and E; _,. Table 4.8 shows the N;N, x NN,
submatrix that repeats N/N; N, times down the diagonal of E; _ ;. Matrix E; _,
has diagonal entries of length N, N,, so in the matrix E, + E,_; T E; _, there is
either no entry or else the sum of the entry from E; + E; _; and one entry from
E;_,. Any entry from E; T E; _, is the sum of an entry from E; and one from
E,_{,s0E, 1 E;_1TE;_,iseither no entry or the sum of three entries, one each
from E;, E; _;,and E; _,. In general, matrix E; t E,_, T - T EL -+ haseither
no entry or the sum of m entries, one each from E;, E; _4,..., and E; 4.

The final matrix in (4.22) is E;. The diagonal submatrices are of dimension
NN, -+ N _; = N/N;, so there are N, of these diagonal submatrices. Table
4.9 shows the matrix of exponents E;.

Most of the — joo entries (i.e., dotted entries) in Tables 4.7-4.9 are not shown
to simplify the display of the kn entries. Data sequence numbers on all matrices
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gointhenatural order of 0,1,2,..., N — 1. Frequency bin numbers are different
in the matrix factors. When the frequency tags of a given row are added for each
of the L matrix factors, the frequency bin number of the FFT coefficient is
obtained. The matrix factorization guarantees that each frequency of a given
matrix adds with all the frequencies of each other matrix so that F =
E, tE _,% - 1E; hasa total of N frequencies, which, based on a normalized
period of P =1 s, are given by k =0,1,2,..., N — 1 Hz. The t operation in
computing £ = E; t E, ;T - tE; accomplishes a frequency addition that is
analogous to single sideband frequency mixing.

Digit reversal will be illustrated with several examples. For the first example
let N=6,L =2,N,=2,and N; = 3. Then the row number is « = «,N; + a4
= 34, + @, and the frequency binis k = &1 N, + @, = 2a; + «,. Values of k
and < arein Table 4.10, and Fig. 4.5 shows the factored matrix of exponents. The
matrix of exponents E, has block submatrices S, of dimension N; = 3. S,
repeats N/N; = 2 down the diagonal. The matrix E; is composed of four 3 x 3
diagonal submatrices. Let f be a 3 x 3 matrix of — joo entries. Then S,, E,, and
E, are given by

00 0 ' '

S .o .

Sz=024,E2=[2 0], E = Y ’
0 4 2 0 S

(4.25)

As a second example, let N=6=3 2= N,N,. The row and column
numbers are @ = 2@, + «; and k = 34, + «,. The data are displayed in Table
4.10 and Fig. 4.5.

Table 4.10
Row and Frequency Bin Numbers for
6-Point FFT
N
a
2-3 3-2

1’2 ay k aj ay k
0 0 0 0 0 0 0
1 0 1 2 0 I 3
2 0 2 4 1 0 1
3 1 0 1 1 1 4
4 1 1 3 2 0 2
S 1 2 5 2 1 5
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78

E,

E,

(®)

Fig. 4.5 6-point FFT for (@) N=2-3 and (b) N=3-2.

As a third example, let N =12 = N3N,N; =2 -3 - 2. The row number is
@ = 6[63 —+ 24?,2 + aq and the frequency bln iS k = d1N2N3 + a2N3 + a3y

621 + 2a, + a3, as shown in Table 4.11. The factored matrices of exponents in

Fig. 4.6a define the matrix of exponents given by

11

6 7 8 9 10

S

4

1

K\n 0

10

0

4 6 8 10

2

2

11

4
10
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4 2 0 10 8 6
7 8 9
1

6

10 8

0

6
6

5
11

2 9 4 8 3 5

7

0

2

11 49

6
6

1
7

10 3 8§

10 9 8

5

11

0

E3TE2TE1 = 10

E=

11L0
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Fig. 4.6a Factored matrix of exponents for 12-point FFT for N=2-3-2.

n0 1 23 456 78 9°10 11
=0 0 _
0 6
00 o
0 6
00
0 6
0 0
0 6
, 00
—J® 0 6
0 0
L 0 6.
n0 1 23 4 56789 10 11
m 0 0 - 0 7
S0 -0 - 0
0 - 4 8 - .
2 -6 - 10 J*
0 - 8 4 -
-4 -0 8
0 -0 - 0
0 - 0 0
) 0 - 4 - 8
—J® 2 - 6 10
0 8 - 4
B 4 -0 8
n0 1 23 456 789 10 11
Fo.....o..,._
0 S0
0 |
Sl -7
2 8 -
4 10 J
| 5 11
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K\no 1 2 3 456 7 8 9 10 11
orfo - o - .
OF~0 0

3o - 6 e

3 3 -9

0 0 - 0
E, =0 0 - 0

3 0 - 6

3 3 -9

0 , 0 0

0 I S0 0
.3 0 6
3L 3 9
K\no 1 234 567 89 10 11
ol o 0 S0 - '}
0 0 0 0

0 0 0 0
0 0 0 0
1| o 4 8

E =1 | 5 - 9

1 2 -6 10

1 3 7 11
21 0 8 4

2 2 10 6

2 4 - -0 - - -8
oL - -6 - - -2 - - - 10

Fig. 4.6b Factored matrix of exponents for 12-point FFT for ¥ = 3-2-2. E; is the same as in
Fig. 4.6a and is not shown here.

Table 4.11

Data and Transform Sequence Numbers
for 12-Point FFT
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As a fourth example let N =12 =3-2-2. Then « = 4a3 + 2a, + «; and
k = 6ay + 3@, + a3. The factored matrices of exponents (Fig. 4.6b) define the
matrix FE, which is given by

K\nO 1 2.3 4 56 7 8 9 10 11
00 0 000 0O 00O 0 0T
6/0 6 060 60 6 06 0 6
30 3 690 36 903 6 9
910 9 630 96 3009 6 3
1o 1 234 56 78 9 10 11
E=EytE,tE,= 710 7 2 9 4 11 6 1 8 3 10 5
40 4 8 0 4 8 0 48 0 4 8
100 10 8 6 4 20 10 8 6 4 2
210 2 46 8 100 2 4 6 8 10
8]0 8 4 08 40 8 40 8 4
510 5 10 38 16 11 49 2 7
1mLo 11 10 9 8 76 5 43 2 1.

As a final example, let N = 23. The row number is « = 423 + 24, + «, and
the frequency bin numberisk = 442, + 24, + a3, Where a4, a,, a3 = 0, 1. Digit
reversal in this case is bit reversal and the factored matrix of exponents is in
(4.14). Since the radix in this case is 2, a power-of-2 FFT is usually called a radix-
2 FFT. Radix-3, radix-4, ..., FFTs can be found in a manner analogous to the
radix-2 FFT.

4.6 More FFTs by Means of Matrix Transpose

Each of the factored FFT matrices developed so far may be turned into
another algorithm by using matrix transpose. To see what matrix transpose
does, consider the matrix product 4 = 4;4; —, -+ Ay, where Ay, A; _4,..., Ay
are matrices of compatible dimension so that the product is defined. The
transpose of a product of matrices is the product of the transposed matrices in
reverse order. Therefore, the transpose of A4 is given by

AT = ATAT - AT (4.26)

The factored FFT matrices we have developed so far have had N x N matrix
factors defining an N-point FFT. Let the FFT have L matrix factors and be
given by WE = wErpEr-1 ... Bt The transpose of matrix WE is given by

(WE)T _ (WE(k,n))T _ (WE(n,k)) — WET (4.27)

where (WE"K) is a matrix whose entry in row »n and column k is
exp[ — (j2n/N)E(n, k)]. Equation (4.27) shows that transposing the matrix W%
is accomplished by transposing its matrix of exponents E. The same is true of
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WE j=1,2,..., L. Therefore,
WE = wETET . 4.28)

The transform obtained via transpose is defined by (4.28) and has the matrices in
reverse order with respect to the original FFT. The matrices are also transposed.

As an example consider the 8-point DIF FFT matrix given by (4.12) as
WE = WEsWE2 s The transpose is WE' = WE WE " WE" or

- w° 0 0 0 wo 0 0 0 7]
0 we 0 0 0 w0 0
0 0 we 0 0 0 w2 0
0 0 0 we 0 0 0 w3 T T
ET _ E, T13/E 3
Po=1we o o o w* o o o |7
0 we 0 0 0 w3 0 0
0 0 we 0 0 0 we 0
0 0 0 w0 o0 0 W
o
(4.29)
where
we 0 w° 0
0 2
WE" = diag A 0 W , [same]

we 0 w* 0
o w° o W

Pt , wo we
WEs' = diag {[WO W“} , [same], [same], [same]}
The row and column tags must be transposed with the matrices of exponents.
This yields Eq. (4.30), shown at the top of p. 83. The matrix £ has the transform
sequence numbers in natural order and the data sequence numbers in scrambled
order. The transform vector is X = [X(0), X(1), X(2), ..., X(7)]" and the input
vector is x = [x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7)]*. Figure 4.7 shows the
flow diagram for N = 16. Note that the 16-point output is constructed from the
outputs of two 8-point DFTs. Each 8-point DFT is constructed from the outputs
of two 4-point DFTs and each 4-point DFT from two 2-point DFTs. Because
the DFT inputs are separated by larger increments of time when going from the
8- to the 4- to the 2-point DFT, the transform is called decimation in time (DIT)
FFT. (See also Problems 3 and 4.) Note that the #» indices for E,, E,, and E; in
(4.30) correspond to the DIT; that is, the data sequence numbers tagging these
matrices are 1, 2, and 4, respectively.

The derivation of more FFT algorithms has been illustrated by converting
DIF algorithms to DIT algorithms. Given any factored matrix representation
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Data sequence Transform sequence

x( ) X( )
1/16

0 T - ~ —0 0
e /\ ‘/r

8 © O S 1

1/16

ﬁ A
4 NN AN
. >'<:/ NN

XN
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T
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TS AN T

—1 wi2 wlié wid

Fig. 4.7 Flow diagram for a 16-point DIT FFT.

for an FFT, a new FFT algorithm can be obtained by matrix transpose. The
procedure is general.

4.7 More FFTs by Means of Matrix Inversion — the IFFT

IDFT SymMmerry The DFT and IDFT pairs are X = (1/N)W*x and x =
W~ EX, respectively, where E is the symmetric matrix of exponents with time
sample and frequency bin numbers in natural order. W° /\/N is a unitary matrix
whose inverse (W¥£) ™1 /\/N is given by its complex conjugate transpose. Since E
is symmetric, the IDFT is given by

(WE) L= [(WH*]T = [(WHF)T = w—* (4.31)
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FFT matrices are not, in general, symmetric. Hence new procedures which
follow are required to find the inverse fast Fourier transform (IFFT).

Direct IFFT CompUTATION An analysis like that in Section 3.8 shows that

1/./N times the FFT matrix is a unitary matrix. Let W® = WEcwFe-1 ... ks
be an FFT matrix where, in general, E is not symmetric. As a result of the
nonsymmietry of E and the unitary property, the IFFT matrix is given by

(WEY L= w E =BTy BT BT BT (4.32)

where ET(k,n) = E(n,k)and W ~Eb = exp[( j2rn/N)E(n, k)]. The IFFT flow
diagram follows from (4.32). .

ConverstoN of FFT 1o TFFT By CHANGING MULTIPLIER COEFFICIENT SIGNS
An FFT flow diagram converts directly to an IFFT flow diagram by changing
the signs of the multiplier coefficients. To show this, let W be a matrix having an
FFT factorizationdefined by E = E; t E;, _, 1 - - - T E;. The sign of each entry in
E and its factored representation can be changed so that

—E=(-E)f(=E,- )T 1(-Ep) (4.33)

For example, the DIF FFT in Fig. 4.3 gives the IFFT of Fig. 4.8. Note that
the inputs of both Figs. 4.3 and 4.5 are in natural order. The outputs are bit
reversed.

Transform sequence Data sequence

X( ) x( )

Fig. 4.8 Flow diagram for an 8-point IFFT with naturally ordered transform sequence and bit-
reversed data sequence.
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The following general procedure derives an IFFT in which the exponents of W
are negative: (1) Use the FFT factorization but with the sign changed on each .
entry in the factored matrix of exponents; (2) use the same flow diagram as for
the FFT but with the exponents of W negative in the IFFT flow diagram, in
contrast to positive in the FFT flow diagram. The components of X at the IFFT
input are in the same order as those of x at the FFT input. In the same manner
the output IFFT ordering is determined by the FFT output ordering.

ConversioN ofF FFT To IFFT By CHANGING Tags An FFT converts to an
IFFT directly by changing the data or transform sequence numbers that tag a
factored FFT matrix of exponents. Conversely, a given IFFT converts directly
to an FFT by changing the input or output numbers tagging the columns or
rows, respectively. We demonstrate conversion of an FFT to an IFFT. (See also
Problems 13 and 14.) Let transform and data sequence numbers be affixed to
every row and column of a matrix of exponents £ that is derived from an FFT.
The entry E(k,n) is knmod N if k and » are ordered according to the input and
output order of the FFT. Note that

nkmodN = —(N — k)nmod N = —(N — n)kmod N (4.34)
Let the column and row tags of the FFT be converted to IFFT tags as follows:
k—N-—n and nek (4.35a)

or
n—N-—k and k<n (4.35b)

Then the matrix E is an IFFT matrix and the factored matrices given by
E=EtE, _{t - TE;T - tE; hold for both the FFT and IFFT. Tags on
rows and columns of E;,i = 1,2,..., L, must be converted using whichever of
(4.35a) or (4.35b) was applied to E.

As an example, let N = 8. Then (4.35a) converts the DIT FFT to an IFFT as
follows:

KAn0O 1 2 3 4 5 6 7 n\k0 7 6 5 4 3 2 1
00 000O0O0OO0OT O[O O0OOO0O0O0O0 0T
410 4 0 40 40 4 410 4 0 40 4 0 4
210 2 4 6 02 4 6 210 2 46 0 2 4 6
6|10 6 4206 42 |-6l0642 0064 2] 436
1101 2 3 45 6 7 1101 2 3 456 7
510 5 2 7 41 6 3 510 5 2 7 41 6 3
310 3 61 4 7 25 303 6 1 4 7 25
700 7 6 543214 70L0 76 5 4 3 2 1]

where we note that the right matrix in (4.36) obeys the following congruence
relationship:
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The FFT on the left of (4.36) has the factored matrix of exponents
E = E;t E, T Ey, as given by (4.14). The same factorization describes an IFFT
with input vector X = [X(0), X(7), X(6),...,X(2), X(1)]T and output vector
x = [x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7)]*. The flow diagram is shown in

Fig. 4.9.

Transform sequence

X( )

Data sequence

x( )

Fig. 49 Flow diagram for an 8-point IFFT with transform sequence in reverse order.
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4.8 Still More FFTs by Means of Factored Identity Matrix

Multiplication of any square matrix or vector by the identity matrix leaves the
matrix or vector unchanged. Therefore, we may insert the identity matrix
between two factors of a matrix product and the result is unchanged [M-31,
S-9]. For example, W5 W = WE[W*:. Suppose that we can find a per-
mutation matrix R such that R is not an identity matrix and RTR = I. Then the
two preceding equations give

WEWE = WERTRWE 4.37)

Let R have only one entry of unity per row and per column so that RWE%! is a
reordering of the rows of W' and W¥®2R" is a reordering of the columns of ¥%2.
Let

W' — wERT  and  WE — RWE (4.38)

Then
WEWE = WEs ppFi (4.39)
If WE: %1 is a component of a fast transform factorization, W2 IWE! will also be

a fast transform factorization. .
Equation (4.37) can be put in shorthand notation by letting R = W*. Then

WE2RTRWE: — WETETELE (4.40)
Generalizing (4.40) gives
WELRLTRLWEL—I c. R"ZFRZWLH = WETEITEYE  t E[t Bt By Y E, (4.41)

As an example, consider the matrix for the 8-point FFT in (4.30). The input
vector x = [x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7)] T can be transformed into
a vector X whose components are in natural order by the permutation matrix
R = W* where %, R, and E are given by

X = [x(0), (1), x(2), x(3), x(4), x(5), x(6), x(7)]* (4.42)
1000000 07 C0 T
00001000 L
00100000 S0 -
00000071 0| 0

R=lo 1000000 F~ 0 .
00000100 0
00010000 0
L 0000000 1 i . 0

(4.43)

The matrix Ris real, symmetric, and orthogonal, so RTR = RR = I, which gives

X = %WE:, WEz WEIR.RX — éWEﬂ'EzTEl‘}'Ei (444)
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With (4.30) identifying the matrices of exponents, {4.44) defines an FFT with a
naturally ordered input and a naturally ordered output. If the factored identity is-
inserted between all matrix factors in (4.30), we get

X — éW(EaTE)T(ETEzTE)T(ETElTE)X . (4.45)

The exponents grouped as indicated by parentheses in (4.45) give the FFT
matrices of exponents shown in Fig. 4.10. We conclude that we can insert
factored identity matrices RTR = I into an FFT factorization to obtain a new
FFT if R has but ‘one nonzero entry of unity per row and per column.

4.9 Summary

In this chapter we first developed the FFT for sequences of length N = 2F
where L is an integer by evaluating an N-point DFT in terms of two (N/2)-point
DFTs. Each of the two (N/2)-point DFTs were then separated into two (N/4)-
point DFTs. This process was repeated until 2-point DFTs were obtained. The
result was an FFT.

We showed that this decomposition for developing an FFT is equivalent to
factoring a matrix. The matrix is a DFT matrix, but with its rows rearranged in
bit-reversed order. More generally, the rows are digit reversed for naturally
ordered input and scrambled order output algorithms. We also found scrambled
order input and naturally ordered output FFT algorithms.

We developed the IFFT, from which we deduced more FFTs. Other FFTs
resulted from inserting factored identity matrices between matrix factors of an
FFT. The FFT is a subset of the fast generalized transform of Chapter 9, and we
shall find that fast generalized transform matrices follow directly from the FFT
format. All these algorithms are presented to give flexibility to an analyst in
developing different computer programs and to an engineer in designing
hardware for implementing the FFT [D-12].

PROBLEMS

1 In-Place Computation In-place computation results from combining a pair of values to form
another pair of values. For example, each butterfly in Fig. 4.3 has two inputs and two outputs. Show
that a 2%-point FFT can be mechanized as an in-place computation with 25! + 4 real words of
memory.

2 Minimum Multiplications for Power-of-2 FFT [A-34, W-7] Show that the complex multipli-
cation (@ + jb)(¢c + jd) = r + js, where a, b, ¢, d, r, and s are real numbers, can be accomplished with
three real multiplications and five real additions using y = a(c + d), z = d(a + b), w = ¢(— a + b),
r=y—z,and s = y + w. Show that the number of multiplications by each of W° and jin a power-
of-2 DIF FFT are as follows: 1 in the first set of butterflies, 2 in the second set, 4 in the third set, .. .,
and 287 'inset L — 1. If the input to the FFT consists of N complex numbers, show that according to
an accurate count of the total number of multiplications to compute the FFT the number of complex
multiplications is N log, $N — 2N +2, so that the total may be minimized at 3(4Nlog, N—iN+2)
real multiplications. Show that two of the additions can be precomputed. If the input data is
complex, show that the total number of real additions using this scheme is 2N log, N + the number of
real multiplications.
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3 Decimation in Time FFT [C-31, C-29] The series expression for the DFT coefficient X (k) may
be separated into two series such that the first contains even sample numbers and the other odd
sample numbers. Let N = 2L, where L > 0 is an integer. Then

N-1
X(ky =Y x(mywh
n=0
1 1 N/2-1 Wk N/2—-1
= —— xQHWwHk 4 — — 20 + 1)yWwH
N2 ,;0 @h 2 N2 ,;0 X@+ 1)
R —
(N/2)-point (N/2)-point
DFT for even sample numbers DFT for odd sample numbers
Let
N/2-1 N/2-1
gly="Y xQHw and hky =Y xQ2l+ Hw
1=0 =0

Show that g(k) and A(k) obey the periodic property of the DFT with period N/2, that is,
gtk + Nj2) =g(k) and  h(k + NJj2) = h(k) (P4.3-1)
Use (P4.3-1) to show that for N =8
X(0) =39(0) +3W°h©),  X(1) =3g(1) —4W'h(D), ...,
X(6) = 39(2) + 1 W°h(2), X(7) = 19(3) + 1W7h(3) (P4.3-2)
Show that (P4.3-1) and (P4.3-2) are represented by the flow diagram in Fig. 4.11. Then show that

repetition of these steps for N = 4 and then N = 2 gives the flow diagram in Fig. 4.12. Finally, show
that (4.30) is the matrix representation. This FFT is called a decimation in time (DIT) FFT.

Transform sequence

x(o) X( )
o—
2
Even °
;‘i‘;'"‘"ebe'ed 4 4 -point
samples DFT
6
['o S——
1
o—
O
Odd o
numbered 4-point
time 5 DFT
o
samples
7
[ S

Fig. 4.11 . Reduction of an 8-point DFT to two 4-point DFTs.
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Data sequence Transform sequence

Fig. 4.12 8-point DIT FFT.

4 Time Separation for DIT Inputs In Problem 3 note that the DFT input is reduced from N-points
to (N/2)-points, then to (N/4)-points, and so on until a 2-point input is obtained. Show that the data
sequence numbers for the N-point input are separated by 1/N s for a normalized analysis period of
P =1 s. Show that the (N/2)- and (N/4)-point DFTs have inputs separated by 2/N and 4/N s,
respectively, if we continue to let P = 1 s for the N-point input. Show that when the DFT is divided
into two DFTs of half the original size, the time separation of the input to either of the smaller DFTs
is increased by 2. Show that this corresponds to dropping (decimating) alternate inputs to the
original DFT. Explain why a DFT of this type is called a DIT FFT.

5 Pruning a DIT FFT Let an N-point DIT FFT be used to transform a function sequence
“padded” with zeros, i.e., x(n) =0 for n > M, where M < N. Show that the computational
efficiency of the DIT FFT can be increased by altering the algorithm to eliminate operations on zero-
valued inputs. Elimination of these butterflies is called pruning [M-32, S-33].

6 DIT FFTsfor N=6 Take E" where E is given in Fig. 4.5a. Show that this determines a DIT
FFT and that the decimation factor is 2 in the smaller DFT. Determine ET for Fig. 4.5b and show
that this time the decimation factor is 3 for the smaller DFT.

7 DIT FFT with Real Multipliers [C-57, R-76, T-9] Let {X(0), X(1),...,X(N — 1)} be the DFT
of the sequence {x(0), x(1),..., x(N — 1)}. Show that Problem 3 can be written

X(k) =3[G(k) + W*H(k)], ~ G(k) = DFTyp[x(2n)],  H(k) = DFTy,[x(2n + 1)]

where n=0,1,2,...,N/2 — 1, W= ¢ /2®N and DFTy,, is an (N/2)-point DFT. Define g(n) =
(— 1)"q. Define new variables d(n) and y(n):

d(n) = x(2n + 1), d(n) + q(n) = y(n) + y(n + 1)
and let

Q(k) = DFT[g(n)],  Y(k) = DFT[y(n)]
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Show that
WEH(k) = W1 + W)Y (k) — W"Q(I%)
= 2cos(2nk/N)Y(k) — W*Q(k)
L S
=0 thus Q(k) must be
at k = N/4 defined at k = N/4
Show that
Nj2-1 N2-1
> (= D'[dm) + q(m)] =0 and q= v > (= Dx@2n+ 1)
n=0 : n=0

k) = 4 iekNimzN =

sin[n(k — N/42/N1

g~ Jmk=NI4) sin[n(k — N/4)] {qN/Z, k= N/4
0 otherwise

Let M, = gN/2 and show that
X(N/4) = Q(N/4) — JH(N/4) = Q(N/4) + M,
X(3N/4) = Q(N/4) + JH(N/4) = Q(N/4) — [ M,

Input sequence Transform sequence

x( ) X( )
1/2

‘70——»0 o]
4 -point \ 'z

OFT iz2
1/2
1/2
! 4 - point ‘o 2
I OFT vy i 172
- 1/2

o

~N O O~ oM~ O
[e]
VN < S & I N GV | Y

-1 Mot1/4 -1 ug -1

~N o o0 b U N =~ O
o) o)
~N OO O p N~ O

Fig.4.13 (a) Reduction of an 8-point DFT to two 4-point DFTs; (b) flow diagram for 8-point FFT.
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Show there are sufficient degrees of freedom to define y(0) = 0. Show for N = 8 that
0 =0, yOH=xV+g y)=x3)-y1)—gq
¥3)=x5) -y +q, Mo=4q

Define u, = 2 cos(2nk/N) and show that the flow diagram of Fig. 4.13a holds. Show that this flow
diagram may be expanded as shown in Fig. 4.13b. Observe that only real multiplications are required
for the implementation of this DIT algorithm. If trivial multiplications by + 1 or +j are not
counted, show that the ratio of the number of real multiplications for this algorithm to that for the
algorithm in Problem 3 is about one-half.

8 Let N =12 =2-2-3. Use digit reversal to find the FFT matrix of exponents. Draw the flow
diagram.

9 Find a mixed radix FFT for N = 15. Show matrices of exponents and flow diagram.

10 Radix-4 FFTs are defined by an FFT whose number of input (output) points is a power of 4.
They offer an economy in multiplications with respect to radix-2 (power-of-2) transforms [B-21].
Let L be even, so that N = 2L = 442 Firstlet L = 4 and determine the radix-4 FFT. Let the real and
imaginary parts of W* be r and i, respectively, so that W* =r + ji. Show that in general the
dimension N flow diagram for the radix-4 FFT has summing junction inputs as shown in Fig. 4.14.
Determine the output ¢ from the summing junction and show that it can be computed with six real
additions and four real multiplications. Verify the L = 4 entry in Table 4.12 for the 16-point FFT

Table 4.12

Real Arithmetic Operations

L
Radix 4 L>»1
Add Multiply Add Multiply
2 176 48 3LN 2LN
4 144 36 LN LN

with the radix-2 factorization. Using Fig. 4.14 verify the radix-4 entry for L = 4. Finally, verify
entries for L » 1 and show that in this case

number of real multiplications for radix-4 FFT 3

number of real multiplications for radix-2 FFT "3

ay + jby ,-{\r+“

U

a, + jby /{\

i—jr

ag + jb3

X
~r - ji
O—

. -+ jr
04+Jb4 A J
N

Fig. 4.14 Radix-4 FFT arithmetic operations.
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11 Derive a 4-point IFFT matrix of negative exponents and the flow diagram for (a) a naturally
ordered output, and (b) a scrambled order output. Convert the IFFT matrices to positive exponents
and draw the flow diagrams. Determine the data and transform sequence ordering.

12 Derive a 6-point IFFT flow diagram from Fig. 4.5a and a 12-point IFFT from Fig. 4.6a.

13 IFFT Calculation by Means of an FFT Show that the IFFT formula in (3.24) is the same as

N-1 %
x(n) = |: D X*(k)W“"] (P4.13-1)
k=0
Show that (P4.13-1) is equivalent to using an FFT to calculate an IDFT provided that (1) the
complex conjugate of the transform sequence is applied to the FFT input, (2) the FFT outputs are
multiplied by N, and (3) the complex conjugate of the FFT output is taken if the outputs are complex.

14 Create an IFFT by giving all nonzero exponents in (4.14) a minus sign. Use modulo 8 arithmetic
to convert exponents to positive values and show that the new matrices define an FFT with the rows
in the transform sequence ordered k = 0, 4, 6, 2, 7, 3, 5, 1 and the data sequence numbers naturally
ordered. Show that the flow diagrams for the IFFT and FFT are given by Figs. 4.8 and 4.15,
respectively.

Data sequence Transform sequance

) x( )
1/8

o] 0 0
T T
1 =0 4

Fig. 4.15 8-point FFT.

15 The gray code (see Appendix) of a binary number is found by writing down the most significant
bit (msb), the modulo 2 sum of the msb and the next to msb, etc., ending with the sum of the two least
significant bits. For example, a binary sequence and its gray code sequence are (111, 110, 101) and
(100, 101, 111), respectively. Show that the frequencies 0, 4, 6, 2, 3,7, 5, 1 can be obtained by
bit reversing the gray code of the row number for rows numbered O, 1, 2, 3, ..., 7,
respectively.

16 Createan IFFT by giving all nonzero exponents in (4.29) a minus sign. Use modulo 8 arithmetic
to convert exponents to positive values and show that the new transform is an FFT that has data
sequence numbers in the order n = 0, 4, 6,2, 7, 3, 5, 1. Show that the IFFT converts into the FFT in
Fig. 4.16.
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-
Data sequence Transform sequence

x( ) X( )

O :><:D\//:E O
1/8.
4 == E £ 0 1
w

== 0 6

w2
1/8
0 7

Fig. 4.16 8-point FFT that interchanges input and output ordering in Fig. 4.15.

17 Let (4.43) define R and let the matrix of exponents given in Fig. 4.10a define an FFT. Show that
multiplying (4.45) on the left by R gives the factorization

[0 o 0 - 0 - .
0 4 ) -0 -0 .
0o 2| /% 0 - 4 —J®©
0 6 0 4
E= 0 1 f 0 - 2
. 0 5 , 0 2
—J® 0 3 A N
0 7 0 6
0 0 - W
0 - 0
0 0
- 0 0
Tl o 4
0 4
0 4
18 Let the permutation matrix R; be defined by
1 00 00000
00100000
000071 000
00000O0TO0T1 0
BR=1l091000000
00010000
0000O0T1O00
[ 0000000 1]
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Show that RTR; = /and determine E such that R, = WwE. Let E;, E,, and E| be defined by the DIT
FFT in Fig. 4.10, let R = W* be defined. by (4.43), and let

WE = WERTR, WE:RTRWER = WAEsTE)VT(ETt Ex Y E)H(ETE, Y E) (P4.18-1)

Show that the right side of (P4.18-1) is as shown in Fig. 4.17 and that both transform and data
sequence numbers of E are in natural order.

EstE ET+E,tE EtEtE
0 0 T 7o o- T To 0
0 1 0 0 - 0 0

0 2 0 - 2 0 0

0 3 - 0 2 . 0 0
0 4 1o 4 - 1o 4
05 0 4 0 4

0 6 . -0 - 6 0 - 4

| o 7] |- 0 6 0 4

Fig. 4.17 Reordering of matrix of exponents using a factored identity matrix.

19 Transforms by Means of Transpose along the Way The basicidea of transpose along the way is
illustrated by referring to Fig. 4.1. An 8-point input feeds two 4-point DFTs. Either or both of these
4-point DFTs may be reformatted to accomplish internal computations. Likewise, Fig. 4.2a shows
two 4-point DFTs that may be reformatted internally if the proper order is maintained on output
coefficients fed into the last set of butterflies. The reformatting may be accomplished by a
permutation matrix which matches the input (output) of transposed submatrices to the output
(input) of the adjacent matrix. Determine the permutation matrix R that must be used so that

WE — ( WEs WE))TR WE‘

where WE! corresponds to the first set of butterflies in Fig. 4.1 (DIF FFT), and W*: and Ww*:
correspond to the first two sets of butterflies shown in Fig. 4.12 (DIT FFT). Show that, if the
permutation matrix is multiplied by W%, then

[0 - 0 7T [oo 7]
0 . 0 4 ,
4 7o 0 0 J®
0 0 4
E =
0 T 0 0
o 0 - 2 . 104
4 4 J 0 0
o« 6] | 0 4
0 0
0 0
0
2 6
5
7
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20 Transpose the two high frequency matrices in (4.29) to obtain a new FFT given by
WE = wEEITED where

0 - - -0 00 A
0 - 2 0 4 ,
0 - 1 0 0] I%
-0 3 0 4

E=1yo . . . 4 T 00

0o - 6 . 0 4
0 5 —J® 00

i ) 7 0 4

- _

0 - 0 .

o - 4 | TI%
2 - 6

T 0 - 0
, 0 - 0
P 1o -4 -

| 26

Show that transform and data sequence numbersarek = 0,2, 1, 3,4,6,5,7andn =0,2,4,6,1, 3,5,
7, respectively. Draw the flow diagram for the transform. Interpret this as a hybrid (DIT-DIF)
algorithm.



CHAPTER b

FFT ALGORITHMS THAT REDUCE MULTIPLICATIONS

5.0 Introduction

The FFT algorithms of Chapter 4 are derived using matrix factorization and
matrix analysis, or equivalent series manipulations. FFT algorithms that reduce
multiplications are derived using number theory, circular convolution,
Kronecker products, and polynomial transforms. Whereas the algorithms
described in Chapter 4 appeared mainly in the latter 1960s, the reduced
multiplications FFT (RMFFT) algorithms were not popularized until 1977
[A-26, K-1, S-5, S-6], although Good published some basic concepts in 1958
[G-12, G-13]. Winograd developed additional RMFFT concepts in the early
1970 decade [W-6-W-11] and is also credited with the nested version of the
RMFFT, which has been called the Winograd Fourier transform algorithm
(WFTA) [S-5]. The WFTA requires about one-third the multiplications of a
power-of-2 FFT for inputs of over 1000 points; it requires about the same
number of additions. While not minimizing the multiplications, the Good
algorithm usually requires fewer additions than the WFTA.

Other RMFFTs presented in this chapter are based on polynomial transforms
defined in rings of polynomials. Polynomial transforms have been shown by
Nussbaumer and Quandalle to give efficient algorithms for the computation of
two-dimensional convolutions [N-22]. They are also well adapted to the
computation of multidimensional DFTs, as well as some one-dimensional
DFTs, and they yield algorithms that in many instances are more efficient than
the WFTA [N-23].

At the time this chapter is written, no theorems have been published to
determine the minimum number of arithmetic operations (additions plus
multiplications) or minimum computational cost (computer time). Since the cost
of summing several multiplications can be minimized using read only memories
(Princeton multiplier, vector multiplier) [B-38, P-45, W-34], the minimum cost
problem has several aspects.

The impact of multiplications on computational time can be estimated by
noting that multiplying two N-bit numbers requires N additions. For example,

99
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the product of two eight-bit words is the result of adding eight binary numbers.
Multiplication computation can consume the majority of computer time if
calculations involving many multiplications are accomplished with digital words
having many bits.

A reduction in the number of multiplications required to compute an FFT is
the main advantage of the FFTs described in the following sections. These
algorithms do not have the in-place feature of the FFTs of Chapter 4 and
therefore require more load, store, and copy operations. These operations and
the associated bookkeeping result in a disadvantage to the RMFFT algorithms.
The final decision as to the “best” FFT may be decided by parallel processors
performing input—-output, arithmetic, and addressing functions.

The next several sections develop the results of number theory that are
required for the RMFFT algorithms. Other sections present computational
complexity theory, which leads to results derived by Winograd for determining
the minimum number of multiplications required for circular convolution
[W-6-W-11, H-11]. Winograd’s theorems give the minimum number of
multiplications to compute the product of two polynomials modulo a third
polynomial and describe the general form of any algorithm for computing the
coefficients of the resultant polynomial in the minimum number of multipli-
cations. The Winograd formulation is then applied to a small N DFT by
restructuring the DFT to look like a circular convolution [A-26, K-1].

Circular convolution is the foundation for applying Winograd’s theory to the
DFT. In Section 5.4 we shall show that the DFT of a circular convolution results
in the product of two polynomials modulo a third polynomial. Computationally
efficient methods are used to compute the coefficients of the resultant
polynomial. These computationally efficient methods require that the resultant
polynomial be expressed using a polynomial version of the Chinese remainder
theorem.

The DFT can always be converted to a circular convolution if the small Nis a
prime number. Conversion of the DFT to circular convolution can also be
accomplished for the case in which some numbers in the set {1,2,3,...,N — 1}
contain a common factor p, where p is a prime number. The results of the circular
convolution development are applied to evaluating small N DFTs. Sections
5.4-5.6 contain the circular convolution development. Section 5.7 shows how
the small N DFTs are represented as matrices for analysis purposes. Section 5.8
discusses Kronecker expansions of small N DFTs to obtain a large N DFT.
Sections 5.9 and 5.10 develop the Good and WFTA algorithms, and Section 5.11
shows how they may be regarded as multidimensional processing. Sections 5.12
and 5.13 present work of Nussbaumer and Quandalle that extends circular
convolution evaluation to multidimensional space and evaluates multidimen-
sional DFTs. Algorithms are compared in Section 5.14.

5.1 Results from Number Theory

This section presents some results from number theory, which is concerned
with the properties of integers. If we note that the kn tables in Chapter 4 are
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based on integer arithmetic, it is not surprising that the properties of integers
should be important in the newer transforms, which are based on circular
convolution rather than matrix factorization. The study of integers is one of the
oldest branches of mathematics (see [D-11]), as is evidenced by the names given
to some of the theorems that follow. Some of these theorems are proven if they
are particularly relevant to the development or if they give the flavor of number
theory. Missing details are in [B-37, M-6, N-1, K-2].

We shall use the italic letters a, b, c,...,h, s, ... for arbitrary numbers. We
shall use the script letters «, 4, ¢, . . . , and the italic letters i, k, [, m,n,p, q,r, K, L,
M, and N for integers. Some important relations for integer arithmetic are stated
as the following four axioms.

Addition and Multiplication Axiom 1If o =¢ and ¢= « (modulo n), then
a+c=46+ & and ac = 4« (modulo n).

Division Axiom If ac = 64 (modulo n), gcd(,n) = 1, and & = £ (modulo #n),
then ¢ = « (modulo n).

Scaling Axiom Ifk # 0,then o = ¢ (modulo n) if and only if «k = £k (modulo
nk).

Axiom for Congruence Modulo a Product 1f gcd(m,n) = 1 then & = 4 (modulo
mn) if and only if & = 4 (modulo m) and & = 4 (modulo n).

Rings and fields are sets whose elements obey certain properties. Fields of
integers are important, for example, in determining the inverse of a number
modulo another number, whereas rings of numbers are important in describing
coefficients of polynomials. Less stringent requirements are necessary for a set to
be a ring than for the set to be a field.

Ring A ringisanonempty set, denoted R, together with two operations + and
- satisfying the following properties for each a, b, ce R:

1. (a+b)+ c=a+ (b+ c) (addition associative property).

2. Thereisanelement 0in Rsuchthata + 0 = 0 + a = a (additive identity).

3. There is an element —a in R such that a+(—a)=0=(—a)+a
(additive inverse).

4. a+ b= b+ a(addition commutative property).

5. (a*b) c=a-(b-c) (multiplication associative property).

6. (a+b)-c=a-c+b-c

7. a-(b+c)=a-b+a-c } (distributive properties).

A commutative ring with a multiplicative identity has the preceding properties
plus the following:

1. There is an element in R, denoted 1, such that a-1=1-a=a
(multiplicative identity).
2. a-b=b-a (multiplication commutative property).
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The set .# of N x N matrices whose entries are complex numbers together
with the usual matrix addition and matrix multiplication operations form a ring.
Matrices do not form a commutative ring, however, since in general
A-B#B-Awhere A,B,e /.

An example of a commutative ring is the set of integers together with the usual
+ (addition) and - (multiplication) operations computed modulo M. This ring
is denoted Z,,. Every integer in the ring is congruent modulo M to an integer in
the set {0,1,2,...,M — 1} and is therefore represented by that integer. For
example, 19 and 2 are congruent modulo 17, which can be denoted 19 =2
(modulo 17).

The basic arithmetic operations that can be performed in a commutative ring
can be illustrated with examples:

Addition: 8 + 13 = 21 = 4 (modulo 17).

Negation: — 8 = — 8 + 17 =11 (modulo 17).

Subtraction: 8 — 13 =8+ (—13)=8+4 =12 = 12 (modulo 17).
Multiplication: 8- 13=13"-8 =104 = 2 (modulo 17).

Field If a set is a commutative ring with a multiplicative identity and its
nonzero elements have multiplicative inverses, then it is a field. An example of a
field is the set of all rational numbers. Other examples include the sets of real
numbers, complex numbers, and integers modulo a prime number.

Multiplicative inverse: The multiplicative inverse modulo M of an integer £
is denoted 4~ ! and exists if and only if 4 and M are relatively prime. Then
447t =1 (modulo M). For example 8! = 15 (modulo 17) since 8 - 15 = 120
= 1 (modulo 17) and we say that the multiplicative inverse of 8 is congruent to 15
(modulo 17).

Division: Division modulo M of two integers is permissible only if the
divisor has a multiplicative inverse. The division is denoted /6 = & - 471
(modulo M). For example 12/8 = 12-87 ! =12-15 = 180 = 10 (modulo 17).

Prime and relatively prime numbers are of major importance in the
development of RMFFT algorithms. Their definition is followed by an
exposition of Euler’s phi function and Gauss’s theorem, which give useful
integer properties.

Prime Number The positive number p is prime if ged(k,p) =1 for any k,
1<k<p.

Relatively Prime Numbers The positive numbers k and » are relatively prime if
ged(k,n) = 1.

Euler’s Phi Function Define ¢(n) to be the number of positive integers less than
n and relatively prime to n; that is,

dm)= Y1,  ged(ln) =1 (5.1)

I<n
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¢(1) = 1 by definition; ¢(2) = 1 (the integer less than 2 and relatively prime to 2
is 1); ¢(3) = 2 (the integers are 1 and 2); ¢p(4) = 2, ¢(5) = 4, ¢(6) = 2, ¢(7) = 6,
$(8) = 4, and ¢(9) = 6 (the integers are 1, 2, 4, 5, 7, and 8); and if p is a prime
number ¢(p) = p — 1. The function ¢ is usually called the Euler phi function
(sometimes the indicator or totient) after its originator ; the functional notation
¢(n), however, is credited to Gauss [B-37]. '

Gauss’s THeorEM  The divisors of 6 are 1, 2, 3, and 6 and we note that
o)) + ¢(2) + ¢(3) + ¢(6) = 1+ 1 + 2 + 2 = 6. This generalizes to Gauss’s
theorem:

N =73 ¢0) (5.2)
TN
where i | N means i divides N and the summation is over all positive integers i that
divide N, including 1 and N.

To prove Gauss’s theorem, let the class %, be the set of integers k& between 1
and N such that ged(k/l, N/I) = 1 for 1 < /< N; that is,

Py ={k:ged(k/LN/l) =1,1 <k <N, |k}  where I[N (5.3)

Since ged(k/l, N/I) = 1, the integers k/l and N/! are relatively prime and there are
¢(N/I) of them in ;. Furthermore, each integer in the set {1, 2, ..., N} fallsinto
exactly one class ;. Since there are N integers altogether, we must have

N =Y ¢/ (5.4)
1IN

If we define i = NJ/I, then for each / that divides N, i also divides N, giving (5.2).
For example, if N =6, ¥; = {1,5}, &, = {2,4}, &3 = {3}, and ¥ = {6}
then 6 = ¢(6/1) + $(6/2) + $(6/3) + p(6/6) =2 +2 + 1 + 1.

FermAT’s THEOREM If p is a prime and « is not a multiple of p, then
a? = o (modulo p) (5.5)
To prove Fermat’s theorem consider the numbers in the set
amodp, 2amodp, ..., (p— 1)emodp

These numbers are distinct for if we assume they are not, then ce = & « (modulo
p), where ¢ and « are distinct coefficients of z and ¢, & = 1,2,...,p — 1. The
division axiom gives ¢ = « (modulo p), and since ¢, & < p we have ¢ = «, which
contradicts the fact that the coefficients of » are distinct. Therefore, the numbers
in the set are distinct, and since they are less than p we can reorder the set to 1,
2,...,p — 1. The multiplication axiom gives

aRa) - [(p—1Da]l =12) - (p — 1) (modulo p) (5.6)

Applying the division axiom to divide (1)(2) - - - (p — 1) from both sides of (5.6)
and then multiplying by « gives (5.5).
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EuLer’s THeoreM If ged(e, N) = 1, then
2*™ =1 (modulo N) (5.7)

The proof of Euler’s theorem is similar to that of Fermat’s theorem. For
example, let N = 6 so that ¢ = 5. Then ¢(N) = 2 and 5% = 25 = 1 (modulo 6).

Order Let gcd(w, N) = 1 where N > 1. Then the order of 4~ modulo N is the
smallest positive integer k£ such that

<* =1 (modulo N) (5.8)

and we say that 4 is a root of order £ modulo N. For example, if « = 2 and
N=09,then2! =2,22=4,23=28,2*=7,2%=5,2%=1 (modulo 9), and the
order of 2 modulo 9 is 6. As another example, 4! =4, 4> =7, and 43 =1
(modulo 9) and 4is aroot of order 3modulo 9. Since 2**! = &' (modulo N), { 2"}
defines a cyclic sequence. For example, {4"} = {4,7,1,4,7,1,...} (modulo 9).

The Order k of a Root Divides $(N) The preceding examples gave 4> = 1 and
2% = 1 (modulo 9), where N = 9, ¢(N) = 6, and 4 is a root of order 3 modulo 9.
In this case 3|6, and in general k|¢(N). This fact is important in the
development of number theoretic transforms.

Primitive Root of an Integer Let k be the order of 2 modulo N. Then « is a
primitive root of N if

k = o(N) (5.9)

Let N = 9 and note that 6 = ¢(9) and that 6 is the order of 2 modulo 9. This
means that 2 is a primitive root of 9.

Number of Primitive Roots A rather curious fact is that if N has a primitive
root, it has ¢[p(N)] of them. For example, ¢[$(9)] = ¢(6) = 2 and 9 has two
primitive roots, which are readily verified to be 2 and 5: 2° =1 and 5° = 1
(modulo 9).

Reordering Powers of a Primitive Root [B-37] This property states that if the
first ¢(N) powers of a primitive root of N are computed modulo ¥, then all
numbers relatively prime to N and less than N are generated. Stated mathemati-
cally, let z be a primitive root of N. Then 2!, 22, . .., «*™ are congruent modulo
Nto @y, ay,. .., apy where ged(a;, N) =1and o; < N,i=1,2,...,¢(N). For
example, if N =9, then 2%, 22, 23, 24 2% 26=2 4,8, 7,5, 1 (modulo 9),
respectively.

Existence of Primitive Roots [B-37] Development of small N DFTs uses the
reordering property of primitive roots to put the DFT in a circular convolution
format. For this reason it is important to know which numbers have primitive
roots. It is rather surprising that N has a primitive root if and only if N = 2, 4, p*
or 2p* where p is a prime number other than 2 and k > 1. For example,
N = 32 = 9 has the primitive roots 2 and 5.
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Index of @ Relative to 1 (ind, «) [B-37,N-1] The circular convolution format of
a small N DFT is easily expressed by writing the exponents of ¥ in terms of
indices. Let 2 be a primitive root of N and ged(«, N) = 1. Then k is the index of «
relative to + (written k = ind, ) if it is the smallest positive integer such that
« = 7* (modulo N). The utility of indices is due to the following logarithmlike
relationships they obey: ‘

ind, ¢4 = ind, ¢ + ind,4 (modulo ¢(N)) (5.10)
ind, &' = I[ind, 2] (modulo ¢$(N)) (5.11)
ind,1 = 0 (modulo ¢(N)) (5.12)
ind,,¢ = 1 (modulo ¢(N)) (5.13)

For example, Table 5.1 shows the indices of numbers relatively prime to N = 9.
Using the table we get, for example,
(i) ind,8-7=ind,8 +ind,7 =1 (modulo 6) and 2"%:%7—=2!=8-7
(modulo 9);
(i) ind, 8 =ind, 23 = 3(ind, 2) = 3;
(iii) ind, 1 = 6 = 0 (modulo 6); and
(iv) ind,2 =1.

Table 5.1

Illustration of Indices

k =ind; « 1 2 3 4 5 6

@ = 2% (mod 9) 2 4 8 7 5 1

CHINESE REMAINDER THEOREM (CRT) FOR INTEGERS [B-37, K-2] A special case
of this theorem is credited to the Chinese mathematician Sun-Tsu, who wrote
sometime between 200 B.c. and 200 a.D. (uncertain). A general proof appeared in
Chiu-Shao’s “Shu Shu Chiu Chang” around 1247 A.p. Nicomachus (Greek) and
Euler (Swiss) gave proofs similar to those of Sun-Tsu and Chiu-Shao in about
100 A.D. and in 1734 A.D,, respectively. The general theorem follows.

Let N= NN, - N where gcd(N;,N,)=1if i #k, for i,k=1,2,...,L.
Then, given «;, 0 < «; < N,, there is a unique « such that 0 < « < N and

a; = amod N; for all i (5.14)

where ¢ is determined by

N ¢(N1) N ¢(N2) N ¢(N1)
“E[“(E) *“2@ +”'+“L<E> ](m“““’ M)
(5.15)

We shall prove the CRT for integers by first showing that there is at most one
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number satisfying the conditions of the theorem. Suppose that » and #£ are two
distinct solutions. Then (5.14) implies that & = £ (modulo N;) for 1 < i< L.
This is equivalent to |« — 4| = k;N; for some k; and

la — 4l = kyNy =kyNy = -+ =k, N, . (5.16)

Since gcd(N,,N,) =1, k; must contain N, and likewise N;, N, ..., N;.
Similarly, k£, contains Ny, N3, Ny, ..., Ny, so for some k,

la — 4| = koN\Ny - Ny = koN O (517)

But (5.17) implies that either « or £ is not in the interval [0, N). This contradicts
the assumption that the solution is in [0, N). Therefore, » and £ cannot be
distinct solutions, and there is at most one solution.

We next show that there is a solution given by (5.15) that meets all the
conditions of the theorem. Note that gcd(N/Ny, N{) = 1, so by Euler’s theorem
(N/N)*®) =1 (modulo N,). Since N/N{= N,N;---N;, (N/N)*¥ =0
(modulo N)), i > 1. Combining the last two modulo relationships based on N,
and generalizing to N, yields

( N>¢<Nk) B {1 (modulo N,) ‘ 5.18
N ~ 0 (modulo &), i#k o

Computing (5.15) mod N; and using (5.18) yields (5.14), so (5.15) meets all
conditions of the CRT and uniquely specifies the integer «.
As an example let N; = 2 and N, = 3, so that

@ = [a1(6/2)*® + 2,(6/3)*] (modulo 6)
= (341 + 4a,) (modulo 6) (5.19)
Table 5.2 illustrates (5.19).

Table 5.2
Illustration of the CRT

a 0 1 2 3 4 5
ay 0 1 0 1 1
2 0 1 2 0 1

In DFTs evaluated using Kronecker products the CRT determines either the
input or output index. The other index is determined by the following expansion.

A StconD INTEGER REPRESENTATION (SIR) Again let N = Ny N, - - - N;, where
ged(N, Ny) =1ifi # kfori,k=1,2,...,L. Given «;, 0 < a; < N,, there is a
unique ¢ such that 0 < ¢ < N and

a; = [(N/N) '] mod N, (5.20)
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where « is determined by

N .
a= |: > a,i~:| mod N (5.2
i=1 Ni
and (N/N;)~ ! is the symbolic solution for the smallest positive integer such that
N\"'N
— ] — =1 (modulo N)) (5.22)
N/ N

The proof that there is at most one such integer « is similar to that for the CRT.
The proof that there is at least one such integer follows by multiplying both sides
of (5.21) by (N/N;)~*, giving

N>1 [ (N 71<N + i AN dN  (5.23)
N LW W T s W

(k#1i)
Since gcd(V;, N;) = 1 for all i # j, N/N; and N, are relatively prime. It follows
that there is a smallest positive integer #; such that (4,N)/N; = 1 (modulo N;) (see

Problem 7). We define this integer as 4; = (N/N;)~! so that

[<N>_l N:|
— ] —|modN;=1 (5.24)
N;) N;

Since N/N, contains N; for i # k, (4;N)/N, also contains N;. Therefore,
£;(N/N)ymod N; = 0 and

[<N> 1 N} mod N; — 0 (5.25)
Ni Nk

Noting that 24 mod N; = [(« mod N;)(4 mod N;)] mod N; and using (5.24) and
(5.25) in (5.23) yields (5.20).
When N; has a primitive root it is easy to find 4; using (5.10). For example, let

N = N;N,, N; =9, N, = 5 and Table 5.1 gives

N\ 'N

<—> — = (5)715 = 2%2° (modulo 9)

Ny Ny
where (5) 7! = 2¥ (modulo 9). Then the smallest k that gives 2¥2° = 1 (modulo 9)
is k = 1 since 2°mod 9 = 1. Therefore, £, = (N/N;)~! = 2. Similarly, £, = 4
since 4-9mod S = 1.

RESIDUE NUMBER SYSTEM ARITHMETIC Let ~ and £ be determined by the CRT
from the sequences of integers {«;} and {4;}, i =1,2,..., L, respectively (i.e.,
a; = amod N; and 4; = ¢ mod N,). Let g denote either - or +. Then it is easy to
show that

(ecd)mod N = {(«yoé;)mod Ny, ...,(ar 0b;) mod N, }

where N = Ny N, - - - N;. Thus multiplication, addition, and subtraction involv-
ing ¢ and £ can be accomplished solely by operations on the residue digits «; and
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6, i=1,2,...,L. Such arithmetic is called residue number system (RNS)
arithmetic. High speed digital systems can be mechanized by parallel processors
operating on the residue digits. As in any digital system, there are overflow
constraints.

If we represent « and £ by the SIR, then the preceding comments are valid for
addition, but are not necessarily valid for multiplication.

5.2 Properties of Polynomials

Polynomials with coefficients in a field (ring) are referred to as polynomials
over a field (ring) and are important in the development of efficient circular
convolution evaluation. In particular, polynomials with complex coefficients are
used in the development of DFTs using polynomial transforms.

This section discusses properties of polynomials. Many properties are
analogous to the properties of integers discussed in the previous section. For
example, the CRT for polynomials is similar to that for integers and results in an
expansion that reduces multiplications in FFT implementations. Several
definitions and properties of polynomials follow. Further details are in [N-1,
M-1, M-6].

Axioms for Polynomials Four axioms for polynomials are directly analogous
to the four axioms for integers stated in Section 5.1. Let A(z), B(z), C(z), D(2),
M(z), and N(z) be polynomials over a field. Then these polynomials may be
substituted for «, 4, ¢, &, m, and n in the integer axioms.

Ring of Polynomials Polynomials whose coefficients are elements of a ring (or a
field) together with the usual polynomial addition and multiplication form a ring
of polynomials. The ring of polynomials modulo M(z) is defined by letting P(z)
and M(z) be polynomials with coefficients in the ring R. Let Z[P(z)/M(z)]
denote the remainder of the division of P(z) by M(z). Congruence of
polynomials is defined by

P(z)mod M(z) = R[P(z)/M(2)] (5.26a)
P(z) = R[P(z)/M(z)] (modulo M(z)) (5.26b)

The set of all polynomials with coefficients in R together with the polynomial
operations + and - defined modulo M(z) forms a ring of polynomials modulo
M(2).

For example, if M(z) = (z + 1)? and P(z) = (z + 1)3, we get Z[P(z)/M(2)]
=z+41land (z + 1)® =z + 1 (modulo (z + 1)?).

Let P,(z) be the set of all polynomials with coefficients in R and such that
deg[P,(z)] < deg[M(z)] where the value of deg is degree of the polynomial
enclosed within the square brackets. Then, analogous to integers in the ring Z,,,
all polynomials with coefficients that are elements of R are congruent modulo
M(z) to some polynomial in the set P,(z). The basic operations that can be
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performed in the ring are illustrated with the following examples, in which R is
the set of complex numbers, W = exp(—;2n/3), and M(z) =z + 1:
Addition: (z+ W)+ (z+ W?) =2z — 1= — 3 (modulo (z + 1)).
Negation:: —(z + W) =1 — W (modulo(z + 1)).
Subtraction: z> + W —(z + W) = z(z — 1) = 2 (modulo (z + 1)).
Multiplication: (z 4+ 2)(z — 1) =z?> 4+ z — 2 = — 2 (modulo (z + 1)).
Roots of Unity The equation z¥ = 1 has the solution
W™ = exp(— j2nm/N), m=0,1,...,N—1

where W™ is the mth root of unity. Furthermore,

N-1

N —1=T] - wm (5.27)

For example, 22 — 1=z + 1)z —1), 22 = 1=(z— D)(z + 3 +j\/§/2)(z +3
—j/3/2), and z* — 1 = (z + D)(z — Dz + )z —))-

Primitive Roots of Unity W™ is a primitive root of unity if the set {(#W™)°,
(Wm™L,...,(W™¥1} can be reordered as {W°, W' ..., WN"1} where
W = exp(— j2n/N). For example, if N = 4, W and W?3 are the only primitive
roots. Drawing the unit circle in the complex plane and showing the points W,
W, ..., WN 1 verifies that W™ is a primitive root if and only if gcd(m, N) = 1.

FAcTORIZATION OF z¥ — 1  The polynomial zV¥ — 1 factors into products of
polynomials with integer coefficients, called cyclotomic polynomials, as follows:
N —1=]]C2) (5.28)

IIN

where Cy(z) is a cyclotomic polynomial of index / and the values of /used for /| N
include 1 and N. For example, z2 — 1 =(z - 1)(z + 1) = C,(2)C,(z) and
= 1= - D+ DE+1) = C1(DCo(2)Cul2).

Cyclotomic Polynomial of Index | The polynomial C,(z) is determined by
C@) =[] =W (5.29)

kicE;
where E; is given by

E, = {0}
E, = {k;:k, = Nr/l where 0 < r < [ and ged(r,]) = 1} where /[N (5.30)
including / = N

By reasoning similar to that in the proof of Gauss’s theorem, it follows that all
integers less than N are in the set {E;,..., Ey} exactly once, so that (5.27) is
satisfied by (5.28). It also follows that

deg[Cy(2)] = o) (5.31)
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Examples of cyclotomic polynomials are
Ciz)=z—-1, G@E)=z+1

C@=GE+3+i3DE+3-i/3D) =2 +z+1
CO=C+)e-N=+1 @)=+ +7 4241 53
Ce(z) =22 —z+1, Ce(z) = z* + 1, Co(z) =25 +23+1

Cioe)=z*—22+22—z+ 1, Ci(2)=z—z22 +1
Cis(@)=2—2"+22 - +22—z+41
The preceding polynomials verify the following, which are true in general [N-1]
for p a prime number and ged(p,/) = 1:
P ., p—1 )
Cp(z) = ——ra Cpm(z) = Cp(zpm )s Cp = H [Z - (e*jZT[/p)k]
‘ . k=1 (5.33)
Cl z?P

C = Cy(2) = Cy(— 2), >2

lp(Z) CI(Z) 2p( ) p( Z) p
Coefficients of Cyclotomic Polynomials The coefficients of cyclotomic poly-
nomials have small values for cases that are of interest in the development of
small N DFT algorithms. This results in the assumption later on that if coef-

ficients of C,(z) are required, then they can be computed by addition of num-
bers such as + 1 and + 2 rather than by multiplication of arbitrary numbers.

As (5.32) shows, coefficients of Cj(z) are all + 1 or — 1 for ! < 15. In fact, if /
has at most two distinct odd prime factors, the coefficients cannot have values
other than 0, + 1 and — 1 [N-1, Problem 116, p. 185]. The integer [/ = 105
= 3.5 7isthefirst with three odd prime factors. Of the nonzero coefficients of
Cios(2), 31 are equal to + 1 or — 1 and 2 are equal to — 2 [A-26].

Irreducibility of the Cyclotomic Polynomials A polynomial P(z) is reducible if
P(z) = P{(z)P,(z) where P(z), P,(z), and P,(z) have rational coefficients and are
polynomials in z other than constants. (A number is rational if it can be
expressed as the ratio of two integers.) All cyclotomic polynomials are
irreducible. For example, C,(z) = z> + 1 cannot be factored into polynomials
with rational coefficients (+ j is a complex coefficient).

Greatest Common Divisor for Polynomials In the following development of the
polynomial version of the CRT, relatively prime polynomials are required. Such
polynomials have only constants as greatest common divisors. We state this
formally by letting D(z), P(z), and Q(z) be polynomials over a field. Then

D(z) = ged[P(2), O(2)]  if D(2)|P(z) and D(2)|Q(z) (5.34)
and if C(z) is a polynomial such that
if C(2)|P(z) and C(2)|Q(z)
then  deg[C(2)] < deg[D(z)] (5.35)
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For example, if P(z) =2(z — 1) and Q(z) = 4(z> — 1), then D(z) = k(z — 1),
where k is any rational number ; D(z) is specified to within an arbitrary constant.

Relatively Prime Polynomials Let P(z) and Q(z) be polynomials over a field.
They are relatively prime if a

ged[P(z), Q(2)] =1 (5.36)
In particular we observe that
ged[1,0(2)] =1 for degQ(z) > 1 (5.37)

EucLiD’s ALGorITHM  This algorithm determines the ged of two polynomials
over a field including those of degree zero, the constants. The algorithm starts
with

ged[P(2), Q(2)] = ged{Q(2), Z[P(2)/Q(2)]} (5.38)
where deg[Q(2)] < deg[P(2)], O(2)|P(z), and
R[P(2)/Q(z)] = remainder of [P(z)/Q(2)] (5.39)

Equation (5.38) is applied repetitively; the second application substitutes Q(z)
and Z[P(z)/Q(z)] on the left side of (5.38), and so forth. The procedure
terminates with a zero remainder. For example, ged(z® — 1,22 — 1) =
ged(z? —l,z—Dand 22 - 1=z - D +z—-1; gedz? -1,z - 1) =z — 1
and 22— 1=GC—-Dz+1)s0 22 -1=zz—-1DE+1)+z—1and (z—-1)
= ged(z® — 1,22 — 1). Note that Euclid’s algorithm applies to integers. For
example, ged(39, 27) = ged[27, 2(39/27)]1, and 39 =27 + 12, ged(27,12) =
gcd(12,3) and 27 = 2(12) + 3; ged(12,3) = 3, 12=4(3), 27 = 2(4)(3) + 3 and
39 = 2(4)(3) + 3 + 4(3) and 3 = gcd(39,27).

CoMPUTATION OF P(z) mod Q(z) If P(z) and Q(z) are polynomials over a field
and Q(z) # 0, then

P(z)mod Q(z) = P4(z2) (5.40)

where P,(z) is defined over the field and
deg[P,(z)] < deg[Q(2)] or Pi(2)=0 (5.41)
Py(2) = Z[P(2)/Q(2)]. (5.42)

For example,3mod 2 = 1, (z — 1)*mod (z — 1) = 0 for k a positive integer, and
(z2—1)mod (z —1)=0.

A RELATION FOR RELATIVELY PRIME PoLynomiaLs The proof of the CRT for
polynomials uses the following result. Let P(z) and Q(z) be nonzero polynomials
over a field Fand let them be relatively prime. Then there exist polynomials N(z)
and M(z) over F such that

M(2)P(z) + N(z)Q(z) = 1 (5.43)

We shall prove (5.43) in three steps. First, let & be the set of all polynomials over
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F as defined by M(2)P(z) + N(z)Q(z2):
F = {S(2):8(z) = M(2)P(z) + N(2)Q(2)} (5.44)

Let D(z) be a member of % having the least degree and such that D(z) # 0 (by
definition 0 has no degree). Let

D(2) = My(2)P(z) + No(2)Q(2) (5.45)
Let S;(z) be any other member of % and let
Si(z) = M(2)P(z) + N«{(2)Q(z) (5.46)
Then there exists an A(z) such that
Si(z) = A(2)D(z) + R(2) (5.47)

where R(z) = Z[Si(z)/D(z)] and deg[R(z)] < deg[D(z)]. The previous three
equations yield

R(z) = M{2)P(z) + Ni(2)Q(z) — A(2)[M(2)P(z) + No(2)Q(2)]
= [Mi(z) — A@DMo(2)] P(2) + [Ni(2) — A(2)No(2)]Q(z)  (5.48)

But the right side of (5.48) is a member of .%, which contradicts the assumption
that D(z) has the least degree. Therefore, R(z) = 0 and D(z) divides S;(z).

Second, we shall show that D(z)is a gcd of P(z) and Q(z). Suppose that C(z) is
a ged. Since C(z) | P(z) and C(z)| Q(z), C(z)| [Mo(2)P(z) + No(z)Q(z)] and by
(5.45) C(2)| D(2). If C(z)| D(z), either deg[C(2)] < deg[D(z)] or they differ at
most by a rational constant and D(z) is a ged of P(z) and Q(z).

Third, we shall show that there is an M(z) and an N(z) such that (5.43) is
satisfied. Since P(z) and Q(z) are relatively prime, ged[ P(z), Q(z)] = 1. D(2) is
also a ged, so it is a constant and there is another constant d, such that
dyD(z) = 1. Rescaling (5.45) by d,, and letting dyM(z) = M(z) and dyNy(z) =
N(z) gives (5.43).

In practice, the polynomials M(z) and N(z) are found by using Euclid’s
algorithm. Since gcd[P(z), Q(z)] = 1, application of Euclid’s algorithm results
in a remainder ¢, which is a constant. Reconstruction of P(z), as was done in the
example following (5.39), results in M(z)P(z) = N(2)Q(z) + ¢, which may be
rewritten as (5.43) with M(z) = M,(z)/c and N(z) = — Ny(z)/c. For example, a
ged(zZ+z4+1,z—1)=1, and 22+z+1=(z+2(z—-1)+3 so that
D +2+ 1) = [(z+2)3](z—1)=1, M(z) =5 and N(z) = — (z + 2)/3.

CRT ror PoLynowmiaLs [K-2] Let C(z) be a polynomial of degree N over a field
and with factors C(z), i = 1,2,..., K, that are relatively prime;

C2) = Ci(2)Ca(2) -~ Ck(2) (5:49)

Let deg[Ci(z)] =N; and let N= NN, ---Ng. Then given A;(z), 0<
deg[A4,(z)] < N, there is a unique A(z) such that deg[A4(z)] < N,

A(z) = A(z)mod Cy(z) (5.50)
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where A(z) is determined by

A(z) = [ i Ai(z)Bi(z)} mod C(z) (5.51)

i=1

and B(z) satisfies the following ‘
{[C(2)/Ci(z)] mod C(2)} B(z) = C(2)/C(2) (5.52)

The proof is parallel to that of the CRT for integers; we first show that at most
one solution exists. Suppose a second solution 4,(z) exists. Then A,(z) = A4,(2)
mod Cy(z) so that Cy(z) | [4(z) — Ao(2)]. Since thisis true fori = 1,2, ..., Kand
since the Cy(z) are relatively prime, we get C(z) | [A(z) — Ao(z)]. This implies
A(z) = Ao(z) mod C(z) and deg[Ay(z)] > deg[C(z)], which contradicts the
assumption that the solution has degree less than N. There can be at most one
solution.
We now show that a solution exists. Define
Pyz) = C(2)/Cz) = [ | Cl2) (5.53)
k#i

Since the C(z) are relatively prime, gcd[ P(z), Ci(z)] = 1 and the conditions are
met for using the relation for relatively prime polynomials stated in (5.43). This
relation in the present situation says there are polynomials M;(z) and N(z) such
that

Mi(z)Pi(z) + Ni(2)Ci(z) = 1 (5.54)
so that
[M(2)P{(z) + Ni(z2)Ciz)] mod Cy(z) = [M(2)P(z)] mod C(z) (5.55)
Since 1 mod Cy(z) = 1, (5.53)~(5.55) yield

{[M(z) mod Cy(z)]1[Pi(z) mod Cy(z)]} mod Ci(z) =1 (5.56)
If we select M(z), so that deg[ M (z)] < deg[C(z)], then (5.56) is equivalent to
{M(2)[C(2)/Ci(z)] mod Cy(z)} mod Ci(z) =1 (5.57)

Since M(z) is a polynomial in z of degree > 0, the following is a symbolic
solution of (5.57): ‘

Mi(z) = ! (5.58)
[C(z)/Ci(2)] mod C(z)
If we define By(z) as
By(z) = M(2)P(2) (5.59)

then Bz)mod C,(z) = 1 and By(z)mod C,(z) = 0 for i # k, so that using the
axiom for polynomials for congruence modulo a product gives

Ai(z)> [ = k

[; Ai(z)Bi(z):| mod Cy(z) = {0, oy (5.60)
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which satisfies (5.50). Equations (5.53) and (5.58)-(5.60) are equivalent to
(5.50)-(5.52), and (5.51) is a solution satisfying the polynomial version of the
CRT.

As an example of using the CRT, let

Clz)y=z"-1=]]C(2) (5.61)
1IN
where the C(z) are cyclotomic polynomials. From the irreducible property of
cyclotomic polynomials it follows that ged[Ci(z)Ci(z)] = 1, k # [ These
polynomials are defined over the field of rational numbers and have integer
coefficients. Given A(z), we can compute A,(z) = A(z)mod Cy(z) and P(z) =
[1,+: Ci(2), where /| N. Then the expansion (5.51) is valid.
More specifically, let N =2 and A(z) = a(1)z + a(0). Then C(z) = z? — 1,
Ci(z)=z—1,Cy(z)=z+ 1, and

Pi(2) = C(2)/C(2) =z + 1

(5.62)
Pa(2) = CRYCale) = 2 — 1
1
Biz) = PI(Z){W “ 1)z = 1)] mod (z = 1)} =zl +D)
1 (5.63)
B0 = 1) {uzz “D/G+ D] mod (z + 1)} A
A4(2) = Al(a()z + aO)/(z — 1)] = a(0) + a(1)
(5.64)

A,(2) = 2[(a(1)z + a(0)/(z + D] = a(0) — a(1)
Using this in the CRT for polynomials of degree N < 2 gives
A(z) = [a(0) + a(D]3(¢z + 1) + [a(0) — a(DI(— Dz — D) (5.65)

which is a(1)z + a(0), the polynomial assumed for A(z).

The polynomials 4;(z) and By(z) define the polynomial CRT expansion of
A(z). Evaluation of By(z) requires M(z),i= 1,2, ..., K, and evaluation of these
latter polynomials may be accomplished using Euclid’s algorithm. For example,
when C(z) = z¥ — 1 and N is prime, then B,(z) = ¥ ' +z"N"2 + - -~ + 1)/N
and B,(z) = 1 — By(z) (see Problem 32).

LaGrANGE INTERPOLATION FORMULA Let L data points be given. Then these
points uniquely determine a polynomial A(z) of degree L — 1 that passes
through the points. The polynomial is specified by the Lagrange interpolation
formula

Z — 0

-1
Aizy= ) m]] (5.66)
=0 ki

i

O — O

where m; = A(x;) is the data point at z = ;. The validity of (5.66) is easily shown
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by substituting any data point, say a,, in the product on the right side, that is,
oy — ‘O(k 0, 175 i
|1, 1=

Using (5.67) in (5.66) gives m; = A(o;). The Lagrange interpolation formula is
used in the Cook-Toom algorithm in the following section. '

(5.67)

k#i% — Ok

5.3 Convolution Evaluation

In this section we describe the convolution of nonperiodic sequences and show
how convolution is evaluated using a minimum number of multiplications
[H-11, M-1, N-1, W-6-W-11].

Convolution of nonperiodic sequences is defined by letting g(n) and k(n),

n=20,1,2,..., N— 1, be nonperiodic sequences of length N. Let the linear
convolution of these sequences be defined by a(i),i = 0,1,2,...,2N — 2, where
a(i) is given by (3.51) rescaled, or
min(N - 1,1)
a(i) = > g(lh(i — k), i=0,1,2,...,2N -2 (5.68)

k=max(0,i—N+1)
A sketch will quickly convince the reader that the max and min functions in
(5.68) define points at which the two length N sequences A(#) and g(n) overlap.
These two sequences define a length 2N — 1 sequence {a(0),a(l),...,
a(2N — 2)}.

The convolution operation defined by (5.68) is used to compute auto-
correlation and crosscorrelation functions. Evaluation of (5.68) is often
accomplished by using a DFT of dimension 2N — 1 to determine H and G, the
vectors determined by the DFTs of [A(0), A(1),...,A(N — 1),0,0,...,0]T and
[g(0),g(1),...,g(N — 1),0,0,...,0]7, respectively, where the last N — 1 entries
of the latter two vectors are zeros. Let A = DFT[a(n)] = DFT[a(0), a(l),
...,a(2N — 1)]. Then A is given by (see Section 3.10 and Problem 3.11)

A=H.G (5.69)

where o means element by element multiplication, A(k) = H(k)G(k) for
k=0,1,2,...,2N — 2, The inverse DFT of A then gives a.

The Cook-Toom algorithm also gives an efficient technique for evaluation of
(5.68). To begin the development of this evaluation technique we consider the
time domain convolution, which resembles (5.68) and which is defined by

N-1 N-1
a(t)y= ) g@)6(t —nT)x Y h(t)é(t —nT) (5.70)
n=0 n=0
where 7 is the sampling interval. When ¢ = T, (5.70) gives a(7), the value of the
discrete time convolution in (5.68). The Fourier transform of either summation
in (5.70) is obtained from the definition of a delta function. For example,
N-1 N-1 N-1
97< (D)6t — nT)) = h(n)e J2m/nT — h(n)z" = H(z) (5.71)
n=0 =0 =0

n= n=
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where
z=e 2T (5.72)

and h(n) is the discrete time sequence determined by A(r) at t=nT,
n=0,1,...,N — 1. The Fourier transform of the convolution on the right side
of (5.70) is the product of transforms, which gives (see Problem 10)

(Z [a]); = - = A(2) = H(2)G(2) (5.73)
where
H(z) = h(0) + h()z + h(2)z*> + -+ + (N — 1)z ! (5.74)
G(z) = g0) + g()z + g2)z* + -+ + g(N — 1)z ! (5.75)
A(z) = a(0) + a()z + a(Q)z* + -+ + a2N — 2)z*V =2 (5.76)

Direct evaluation of (5.73) confirms that the coefficient of z' in (5.76) is the value
a(i) of the convolution in (5.68). Alternatively, we can view (5.73) as an
embodiment of the convolution property in Table 2.1.

In what follows no knowledge is required beyond the standard Fourier
transform pairs from Chapter 2. However, readers familiar with the z transform
will recognize that (5.73) is the z transform of (5.70) and that (5.72) evaluates
(5.73) on the unit circle in the z plane. Also, the usual definition of the complex
variable z on the unit circle in the z plane is z = exp(j2=fT) [L-13, T-12, T-13].
We are using the complex variable z = exp(— j2xfT) to avoid negative powers
of z and to simplify representation of the polynomials that follow.

Sequences that are periodic have a convolution output that is also periodic
and that is called circular because of its periodicity. By contrast, the convolution
of nonperiodic sequences is often called noncircular.

The technique for evaluating a(z) in (5.73) carries over to the evaluation of
small N DFTs. It is important that this evaluation use a minimum number of
multiplications. This number is 2N — 1 and a method for obtaining it follows.

MiNiMUM NUMBER OF MULTIPLICATIONS FOR NONCIRCULAR CONVOLUTION The
noncircular convolution (5.68) can be computed with only 2N — 1 multipli-
cations. Rather than prove this (for a proof see [W-7]), we shall prove a method
for obtaining the minimum number of multiplications [A-26]. The sequences
g(n) and h(n), n=20,1,...,N — 1, specify G(z) and H(z) through (5.74) and
(5.75), and these in turn specify A(z) by means of (5.73). From the Lagrange
interpolation formula we also know that 2N — 1 data points uniquely determine
the 2N — 2 degree polynomial A(z) in (5.76) which in turn gives a(i) in (5.68). We
can obtain the 2N — 1 data points by arbitrarily picking 2N — 1 distinct
numbers o;, 1=0,1,2,...,2N — 2, and evaluating (5.73) for the 2N — 1
products given by

m; = A(o;) = H(o)G(o;) (5.77)
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Substituting (5.77) into the Lagrange interpolation formula gives

2N—-1

Az = ) m[]

i=0 ki 0 T O

Z — O

(5.78)

which uniquely determines A(z) at the cost of 2N — 1 multiplications in (5.77).
This proves the method for obtaining the minimum number of multiplications.

Evaluation of (5.78) in 2N — 1 multiplications is predicated on having H(«;)
and G(«;) and on being able to compute the product over k # iin (5.78) without
multiplications. This in fact can be done if simple numbers are used for the «;
values. For example, let G(z) = g(1)z + ¢g(0), A(z) = h(1)z + h(0) and A(z) =
a(2)z* 4+ a(1)z + a(0). Then

a?)z? + a(1)z + a(0) = [g(1)z + g(0)][A(1)z + h(0)] (5.79)
and direct computation yields
a(2) = g(HA),  a(l) = g(DAO) + g(O)A),  a(0) = g(0)A(0) (5.80)

In this case N = 2, and 2N — 1 = 3 is the minimum number of multiplications.
Evaluating (5.80) requires four multiplications. To evaluate a(2), a(1), and a(0)
in three multiplications we arbitrarily let «y = — 1, a; = 0, and a, = 1. Then
(5.77) and (5.79) give

mo = [g(0) — g(D)][AQO) — A(D)],  m1 = g(0)(0),

my = [g(0) + g()I1[A0) + h(1)] (5.81)
Using these values in (5.78) yields
_ z(z + 1) z+D(Ez—-1 z(z — 1)
S O R T T S ey e R

and combining coefficients in (5.82) gives
a(2) = 3(my + mo) —my,  a(l) =3(my —my),  a(0) =m; (5.83)

which agrees with (5.80) but requires only three multiplications, as specified in
(5.81), if we are willing to treat the factors of 5 in (5.83) as being accomplished by
a right shift of one bit. In applications in which one sequence is fixed, the factor
of 2 can be combined with the fixed sequence. For example, if the i(n) values are
fixed and the g(n) values are variable, we can store precomputed constants

co=3[h0) —h(D)], ¢ =hO), 3 =3[h0) +h1)]  (5.84)
SO
mo = ¢o[9(0) —g(D)],  my =c19(0),  my =c3[g(0) + g(1)] (5.85)
and
a(2) =my + my — my, a(l) = my, — my, a(0) = m, (5.86)

Equations (5.85) and (5.86) require three multiplications and five additions, as
compared to four multiplications and one addition in (5.80).
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The value of «; selected for evaluation of (5.77) affects the computational
efficiency of the method. For example, using ag = 0,0; = 1, and a, = 21in (5.79)
gives

mo = g(0)r(0),  my = [9(0) + g(DI[AO0) + A(1)],

(5.87)
my = [g(0) + 2g(1)] [4(0) + 2h(1)]

and
a(2) = $(mg + my) — my, a(l) = 5(— 3mgy — my) + 2my, a(0) = myq
(5.88)

Owing to the simpler coefficients, (5.81) and (5.83) may be preferable to (5.87)
and (5.88) for the evaluation of (5.79). In any case the polynomial version of the
CRT permits us to bypass use of the Lagrange interpolation formula for small N
DFT evaluation. The Lagrange interpolation formula shows that only 2N — 1
multiplications are required to evaluate the convolution in (5.68).

Note that if g and & are the complex numbers g = g(0) + jg(1) and
h = h(0) + jh(1), then (5.79)-(5.88) give several ways of computing the complex
product gk in three instead of four real multiplications.

Cook-Toom ALGorITHM [A-26, K-2, T-1] The Lagrange interpolation for-
mula can be put into a compact vector-matrix notation. Let g = [¢(0), g(1),

., g(N = D% h = [A(0), A(1),...,A(N — D)]T, m = [mg,my,...,myy_,]T and
define

2 ... L N-1
1 0o (XO OCO
1 o ocf ozf—l
of = (5.89)
2 .. N—-1
1 aon-2 ooy, Xy -2

Then the 2N — 1 element vectors /g and «/h contain G(a;) and H(wx;),
i=0,1,...,2N — 2. All the m; needed for the Lagrange interpolation formula
are in

m = (/g) o (/h) (5.90)

The coefficients of A4(z) that determine a(0), a(l),...,a(2N — 1) are linear
combinations of the elements of m as, for example, (5.83) shows. If a =
[a(0),a(1),...,a(2N — 1)]", then thereisa 2N — 1 x 2N — 1 matrix ¢ such that

a=%m (5.91)

Equations (5.89)-(5.91) formulate the Cook-Toom algorithm. The entries in €
are rational numbers if rational numbers are used for «; in (5.89).

When the vector his fixed, o/h can be precomputed. Furthermore, a common
factor from column i of ¥ can be moved into element i of .«7h since this element is
also in m, so that ¥m is unchanged. In practice, ¥ and .«7h are redefined so that ¢
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has the simplest possible entries and a new matrix 4 absorbs any constants
transferred from & to /. Then '

‘ m = (/g) o (%h) (5.92)

is the more general form of the Cook-Toom algorithm.
5.4 Circular Convolution
As discussed in Chapter 3, circular convolution is the convolution of periodic

sequences. It is defined by letting g(n) and A(n), n=0,1,2,...,N — 1, be
sequences with period N. Circular .convolution of these sequences defines a

periodic convolution sequence a(i), i = 0,1,2,...,N — 1, where
N—-1
a(i)y= ) gmh(i —n) (5.93)
n=0
Since A(n) is periodic, (5.93) can always be evaluated for a positive index
hi—n)=h(i—n+ N) (5.94)
Equation (5.93) can be expressed in matrix-vector form as
a=JHg (5.95)
where a = [a(0),a(1),...,a(N — DIT, g = [g(0),g(1),...,g(N — 1)]", and
h(0) MN—1) h((N—-2) --- h(1)
(1) h(0) MN—-1) - hQ)
H =1 hQ?2) A(1) h(0) - h(3) (5.96)
BN —1) h(N—2) h(N—3) - h0)

We shall show that, whereas brute force evaluation of (5.93) for
i=0,1,2,...,N — 1 requires N? multiplications, efficient evaluation over all N
values of i requires only 2N — K multiplications, where K is the number of
integer factors of N including 1 and N.

Since the sequences A(n) and g(n) have period N and are represented by N
samples, their spectra take discrete values at k = 0,1,2,..., N — 1, where k is
the transform sequence number. The circular convolution given by (5.93) is
equivalent to the time domain convolution in (5.70) at sample numbers O,
l,...,N — 1,and again (5.73)-(5.76) are valid. However, as a consequence of the
periodicity of g(n) and kh(n), (5.76) can be further reduced. It is reduced by setting
T = 1/f, where £ is the sampling frequency in hertz. Using this substitution gives

z = e 2T = gmi2nIl; (5.97)
Evaluation of (5.97) at f = kf./N yields z = e 7>®™"N_and this in turn yields
N=1 and Nt = g (5.98)
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Combining (5.98) and (5.76) as a_pplied to periodic sequences yields
A(2) = a(0) + a(N) + [a(1) + a(N + )]z + -+
+ [a(N —2) + a@N — 2)]z2V"2 4 a(N — 1)zN! (5.99)

which shows the sequence a(n) has the period N. Direct evaluation of (5.76) mod
(z" — 1)isshownin Fig. 5.1. The remainder of the division in Fig. 5.1 is the same
as (5.99), so we conclude that if g(n) and A(n) are periodic sequences with Fourier
transforms G(z) and H(z), then

A(z) = G(z)H(z) mod (2N — 1) (5.100)

The next section shows that the right side of (5.100) can be further expanded
into a summation using the polynomial version of the CRT. This summation can
be used to compute the circular convolution (5.93) in the minimum number of
multiplications.

5.5 Evaluation of Circular Convolution through the CRT

The coefficients of A(z) given by (5.100) determine the a(i) values that specify
the circular convolution given by (5.93). Therefore, evaluation of A(z) results in
evaluation of circular convolution. We shall show that A(z) can be evaluated
with the minimum number of multiplications possible by expressing it in terms
of the polynomial version of the CRT.

From (5.99) we have deg[A4(z)] < N. From (5.61) we have a factorization of
z¥ — 1into polynomials with rational coefficients. All conditions of the CRT are
met and

A(z) = [ Z Al(z)B,(z)] mod (z¥ — 1) (5.101)
1IN
where
A(z) = [G(2)H(z)] mod C\(2) (5.102)
N —1 1
Bi(z) = (5.103)

Ci(2) {(" = D/[C(2)]} mod Cy(2)

Let K be the number of integral factors of N including 1 and N. Let
dy = deg[C\(z)] and note that (see Problem 9)

Yd =N (5.104)
1IN

These facts lead to the following result.

EVALUATING A(z) IN 2N — K MuLTipLICATIONS The convolution on the right
side of (5.102) has degree < d; and the minimum number of multiplications in
which its noncyclic convolution can be computed is 2d;, — 1. There are K such
convolutions to be computed for a total number of multiplications, which
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(5.104) gives as
> @2d—-1)=2N—-K (5.105)

1IN

We have shown that the convolution evaluation can be accomplished in 2N — &
multiplications. Winograd has proved that this is the minimum number of
multiplications [W-7].

EvaLUATING A CIRcULAR CONVOLUTION As an example, let G(z) and H(z) be
the transforms of two periodic sequences of length 2 given by

G(z) = g(1)z + g(0) (5.106)
H(z) = h(1)z + h(0) (5.107)

Then A(z) = a(1)z + a(0) is also a length-2 sequence, C(z) = z? — 1 and Egs.
(5.63) give B,(z) and B,(z). In the present case

41(2) = [G(2)H(2)] mod (z — 1) = [g(0) + g(D][A(0) + A(1)] (5.108)
4,(2) = [G(2)H(2)] mod (z + 1) = [¢(0) — g(1)][A(0) — h(1)] (5.109)
Combining the equations for B)(z) and 4,(2), [ = 1,2, gives
A(z) = A1(2)B1(2) + A2(2)B1(2)
= 3{[9(0) + g(DI[A(0) + A(1)] — [9(0) — g(1)][~(0) — A(1)]}z

a(l)
+ 3{[9(0) + g(MI[AO) + A(1)] + [g(0) — g(DILAO) — A(1)]}

a(0) (5.110)

The minimum number of multiplications is determined by N = 2and K = 2, and
s0 2N — K = 2. One option is to let )

multiplication No. 1 = [g(0) + g(1)][A(0) + A(1)]
multiplication No. 2 = [g(0) — g(1)][2(0) — A(1)] (5.111)

and to use two shifts to account for the two factors of 1 in (5.110). Another
option is to include these factors in one of the sequences. This minimizes
operations if one sequence is fixed and the other variable.

5.6 Computation of Small V DFT Algorithms

A DFT of dimension N is defined by
X = (I/N)WEx (5.112)

where X is the N-dimensional output vector of DFT coefficients and x is the
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N-dimensional input vector. In this section we show that certain DFTs can be
put in the form of circular convolution. First, we' shall give an example to
demonstrate what is meant by circular convolution in the context of a DFT
matrix. Next, we shall show a method for converting a DFT matrix into a
circular convolution. Then we shall apply the circular convolution theory to the
evaluation of a DFT.

Consider the evaluation of (5.112) for the 5-point DFT [K-1]. In this case

00 00O
01 2 3 4
E=| 0 2 41 3 (5.113)
0-3 1 4 2
0 4 3 2 1

To change (5.113) to circular convolution, the first row and column must be
removed so the remaining DFT is

X) wtow? w3 wH x(1)
X | _ 1Y w2 owt owtow? x(2) (5.114)
X3 | 5| wrowt owr w? x(3) '
X4 we w3 w2 w! x(4)
Interchanging the last two rows and last two columns of the square matrix in
(5.114) gives

X wtow?rowt W x()

A:(Z) _l w2 w4t w3 Wt x(2) (5.115)
X4 | sl wrowowtow? x(4) ’
X(@3) w3 owt o wr ow* x(3)

Equation (5.115) is similar to circular convolution, but the multipliers in the
matrix shift left one place if we drop down one row in the matrix. Circular
convolution requires that the multipliers be shifted to the right. This can be
accomplished by reversing the order of x(2), x(4), and x(3) to give

X wtow? wt w? x(1)
X(2) _l w2 wt w3 wH x(3) (5.116)
X | 5| wr w2 wt w? x(4) ‘
X(@3) w3 wt w2 Wt x(2)
Note that the output indices in (5.116) are k = 1,2, 4, 3. The inputs result from
keeping x(1) in the first row of the DFT and reversing the other inputs top to
bottom, giving the input indices n = 1, 3,4, 2. Making the changes
a < [X(1), X(2), X(4), X3)]"
he (WL w3, w4 w2t (5.117)

g« [x(1), x(3), x(4), x(2)]"
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in (5.96) and comparing with (5.93) shows that (5.116) is the matrix form of
circular convolution of two sequences of length 4. Note that each entry in the
matrix in (5.116) shifts one place to the right in moving from one row to the next
one down. This is characteristic of the shift in the data in (5.93). The original
DFT is evaluated from ‘

X(0) =13 x(n) (5.118)
X() =ix(0) + X(k),  k=1,234 (5.119)

A little luck is required to achieve circular convolution by shifting DFT matrix
entries, input data, and output coefficients as we have done. Fortunately, the
primitive roots of N and indices in Section 5.1 provide a mapping that
systematically formats the DFT as a circular convolution. The mapping is
specified by (5.10) and converts multiplication of numbers modulo N to addition
of their indices modulo ¢(N).

The mapping requires that N have a primitive root «, which it does if and only
if N=2, 4, p* or 2p* where p is a prime number other than 2 and k > 1.
Furthermore, only ¢(n) numbers less than N are generated by «"
n=0,1,...,N—1. If N is a prime, then ¢(N) =N — 1 and the integers
1,2,...,N — 1 are all generated by " forn=0,1,...,N — 1. If N = p* where
k > 1, then powers of the primitive root do not generate all of the integers
1,2,...,N — 1 and a subset of the exponents kn in (5.112) must be generated
in a separate DFT. In any case the number 0 is not generated by a primitive
root to any power and x(0) and X(0) must be handled separately. The two
cases of N equal to a prime number and N equal to a power of a prime number
follow.

DFTs Whose DiMensioN Is PrRiME [R-64] The DFT coefficient X (k) is
computed using

-~ 1NZ2
X ==Y W "x(a"") (5.120)
N, 2o
where « is a primitive root of N, «™ is computed modulo N, m is computed
modulo ¢(N), and x(« ~ ') is the discrete time value of x(f) at t = (¢~ ""mod N)T.
The negative sign on [, causes the entries in the rows of W¥ to move one place to
the right in moving from any row to the next lower row, as exemplified by
(5.116). A positive sign moves the entries to the left as exemplified by (5.115).
Table 5.3 illustrates computation of indices for a 5-point DFT that uses « = 3.
Note that the exponents evaluate the 4 x 4 matrix in (5.116).
Equation (5.120) is equivalent to

X =1/NwEk (5.121)
where X = [X(1), X(a), X(a?), ..., X(a""D]T, % = [x(1), x(<"2), x(""?),
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..., x(21]7, all numbers in parentheses are computed modulo N, and

Wl Walv—z WaN—J L Wal
~ W“l Wl WaNfZ . W“Z
wik= | wo w* w* - W< (5.122)
WaN—Z W@N*} WGN_4 . Wl

Table 5.3

Computation of Indices and Exponents for a 5-Point DFT

k I, I, I — 1, (mod 4) 301 (mod 5)
1 0 0 0 1
1 3 3
2 2 4
3 1 2
2 1 0 1 2
1 0 1
2 3 3
3 2 4
4 2 0 2 4
1 1 2
2 0 1
3 3 3
3 3 0 3 3
1 2 4
2 ] 2
3 0 1

A one-to-one correspondence exists between these equations and the equations
for circular convolution:

aeX, gex AW (5.123)

The entries in both # and in W¥ move one place to the right going from one row
to the next row down. Paralieling the development of (5.118) and (5.119),

1 N-1
X(0) = NEO x(n) (5.124)
X(k) = X(k) + (1/N)x(0), k=12,...,N—1 (5.125)

This completes circular convolution evaluation of a DFT whose dimension is
prime.

DFTs WHose DivensioN Is A PRiME Power [A-26, K-1, S-5, W-35]  Let
N = pt, where p is a prime number and L is an integer, and let < be a primitive
root of N. Then !, &2,...,2*™ does not include the numbers 0, p,
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2p,...,N — p. Let & be the set with the p factors removed,

P =1{0,1,2,...,p — 1} — {0,p,2p, ..., (P~ — 1)p}

(5.126)

pt integers pt~ 1 integers

Let M be the number of integers in the set . Then (5.126) gives M =
p*~1(p — 1). A circular convolution evaluation of a DFT is computed based on
these M numbers. An auxiliary computation is required for the remaining
p* — M rows and columns. The computation is illustrated for N = 32 and is
easily generalized.

For N = 9we have ¥ = {1,2,4,5,7, 8}, which defines a 6-point DFT that we
evaluate with the aid of Table 5.1:

K\n1 5 7 8 4 2
1[1 57 8 4 27
202 1 5 7 8 4

X=1iwf, E=4|4 215738 (5.127)
818 4 21 5 7
717 8 4 2 1 5
5L 78 4 2 1 |

where X = [X(1), X(2), X(4), X(8), X(7), X(5)]" and % = [x(1), x(5), x(7), x(8),
x(4), x(2)]*. Columns deleted to form E define a 3-point transform,

K\no 3 6

- : - 0[o o0 o0

_ 1k —

X=dw's,  E= |, 3 ¢ (5.128)
210 6 3

where X = [X(0), ¥(1), X(2)]" and % = [x(0), x(3), x(6)]". Six of the 9-point
DFT outputs are given by

— N — .

X(1) 7 x(1) (1)
X@) 1@ @
X4 | | X@ X
x®) |~ | x® | 7| %@ (5.129)
X7 @) X
| X(5) | _)?(5)_ L_)?(2)_

Rows deleted to form E define another 3-point transform,

X(0) x(0) + x(3) + x(6)
X@3) | =3W*| x(1) + x(4) + x(7) (5.130)
X(6) x(2) + x(5) + x(8)

where the x(0) 4+ x(3) + x(6) entry in (5.130) is given by X(0).
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EvaLUATING A DFT By CircULAR ConvoLuTiON  For N = 3, the DFT is defined

by
0
WEX, E=|0
0

Y 1 1 2
EEEH A (5132
which is equivalent to circular convolution of two sequences of length 2. Let
9(0) < x(1),  hO) W', a(0)« X(1)
g(1) « x(2), h(1) « W2, a(l) « X(2) (5.133)

If the input data is scaled by 3, (5.110) and (5.111) give the following optimum
algorithm for computing an N = 3DFT:

t=30x(D) +xQ2)1, 1 =30x(1) - x(2)]

X = (5.131)

W=

o= o
—_ N o
I

Equation (5.121) gives

my = — ty, m, = — ji /3t,,

o ’ b3 (5.134)
51 = 3%(0), Sy =my + 5

X(0) = sy + 11, X(1) = s, + my, X(2) =5, —m,

Evaluation of (5.134) requires six additions, one multiplication, and one shift
(assuming the input data is scaled by ).

We observe that the small N algorithm for N = 3 is rather easy to derive
without the CRT polynomial expansion. For larger values of N, the algorithm is
not obvious and requires considerable guessing, if indeed it can be determined at
all without the systematic approach provided by the CRT polynomial expansion
(see discussion in [A-26]). Another advantage of the systematic approach is that
it always results in multiplier values that are either purely real or imaginary, and
not complex. For example, W?! and W? are complex conjugates, and (5.111)
shows that ! and W? appear together as a sum or difference. The sum is real;
the difference is imaginary.

Equations (5.131)-(5.134) illustrate the derivation of a 3-point DFT. The
CRT expansion used in the derivation is defined by (5.101)-(5.103) and contains
just two terms. There will be just two terms in (5.101) for any value of N thatisa
prime number, as discussed in greater detail in Section 5.12. When N is a power
of a prime number, the approach for the 9-point DFT in (5.127)~(5.130) is used.
We have illustrated the derivation of the small N DFT algorithms and shall
summarize those commonly used.

SUMMARY OF SMALL N ALGORITHMS Table 5.4 summarizes the small N algo-
rithms [N-23, S-5, S-31, S-32, T-22]. The following statements describe the
algorithms.
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Table 5.4
Summary of Small N Algorithms

N=2:
mo =1 x [x(0) + x(1)],

X(0) = my,
2 multiplications (2), 2 additions.

N=3: u=?im

my =1 x [x(0) — x(1)]
X(1) =my

t; = x(1) + x(2)

mo =1 x [x(0) + ],

my = (cosu — 1) x ty,

my = (jsinu) x [x(2) — x(1)]

S = mg + my

X(0) = mo,
3 multiplications (1), 6 additions.
N=4:
t; = x(0) + x(2),
mo=1Xx (t; + t3),
my =1 x [x(0) — x(2)],
X(0) = my, X(1) = my + ms,
4 multiplications (4), 8 additions.
N=5: u=*im
1y = x(1) + x(4),
ty = x(1) — x(4),

X(1) = sy + m,,

XQ2) =15, —m,

t, = x(1) + x(3)
my=1x(t; —tp)

my = j x [x(3) — x(1)]

X(2) = my, X(3) =my —mjy

t = x(2) + x(3)
ts = x(3) — x(2)

ts=1t +1,

my =1 X (xo + ts)

my = [A(cosu + cos2u) — 1] x s

m, = 4(cosu — cos2u) x (t; — t,),

my = — j(sinu + sin2u) x t,,

§y = mo + my,

Sq = 8§y — My,

Sy =81 + my,

my = — j(sinu) X (t3 + t,)
ms = j(sinu — sin2u) x t5

S3 =Mz — my

S5 = m3 + ms

X(0) = my, X(1) =55 + 53, X(Q2) = 54 + 55
X(3) =54 — 5, X(4) =5, — 53
6 multiplications (1), 17 additions.

N=7: u=32n

t; = x(1) + x(6),

ty = x(3) + x(4)

t, = x(2) + x(5),

ts = x(1) = X(6),

t; = x(4) — x(3)
mo =1 x [x(0) + 4]

my = 3(cosu + cos2u + cos3u) — 1] x 4

ty=1t; +t, + t3, te = x(2) — x(5)

my = H2cosu — cos2u — cos 3u) x (t; — 13)
ms = Hcosu — 2¢cos2u + cos 3u) x (13 — 1,)

my = 3(cosu + cos2u — 2cos 3u) x (1, — t;)

(continues)
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Table 5.4 (continued)
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ms = — j3(sinu + sin2u — sin3u) x (t5 + 6 + 14)
me = j3(2sinu — sin 2u + sin 3u) x (17 — t5)
my = ji(sinu — 2sin 2u — sin 3u) x (15 — 17)

mg = j3(sinu + sin 2u + 2sin 3u) x (t5 — te)

Sl;m0+M1, 52:5‘1+m2+m3
S3 =81 — My — My, Sq =81 —m3 +my
S5 = ms + Mg + My, Se = M5 — Mg — Mg, S7 =Ms — My + mg

X(0)=my,  X(1) =5, + 55, X(2) = 55 + g, X3) =5, — 5,
X(4) = 54 + 57, X(5) = 55 — S, X(6) = 53 — 55
9 multiplications (1), 36 additions.

N=8: u=}n
t; = x(0) + x(4), t, = x(2) + x(6), ty = x(1) + x(5)
ty = x(1) — x(5), ts = x(3) + x(7), te = x(3) — x(7)
t; =1 + &5, tg =13 + 15
mo=1x (t; + tg), my =1 X (t; — tg)
my,=1xX(t; — t,), my =1 x [x(0) — x(4)]
my = (cosu) x (14 — ), ms=j x (s — t3)
ms = j x [x(6) — x(2)], mq = (—jsinu) x (4 + )
S1 = m3 + my, S; = M3 — My, §3 = Mg + M4, S4 = Mg — M4

X(0) = my, X(1) =51 + s3, X(2) =my + ms, X(3) =15, — 54
X(4) = my, X(5) =55 + 54, X(6) = m, — ms, X(T)y =51 — 53
8 multiplications (6), 26 additions
N=9 u=in
f=x()+x©@), t=x@+xD), ts=x(3)+ x(6)
t, = x(4) + x(5), ts=1; +t; + 1y, te = x(1) — x(8)
t; = x(7) — x(2), tg = x(3) — x(6), to = x(4) — x(5)
tig=1le+1;+ 1o
my =1 x [x(0) + t3 + 5], my =2 x 13, my=—131xts
ms = $(2cosu — cos2u — cos4u) x (t; — 13)
my = H(cosu + cos 2u — 2008 4u) x (t; — 1)
ms = 3(cosu — 2cos2u + cosdu) x (ty — t;)

mg = (— jsin 3u) X ty,, m = (— jsin 3u) x tg, mg = (jsinu) X (t; — tg)

my = (jsindu) x (t; — to), My = (jsin2u) x (tg — to)
Sy = mo + my + my, Sy = 8§ — my, S3 =81 +m;

Sq = mz +my + 8, Ss = —my + ms + 53, S = — M3 —Ms + 5,

§7 = Mg + Mg + My, Sg = = Mg + Mg + My, So = — Mg — My + My

X(0) = myg, X(1) =54 + 57, X2)=155—s3
X(3) = 53 + mq, X(4) = s¢ + 59, X(5) =56 — 59
X(6) = 53 — mg, X(7) = s5 + ss, X&) =54 — 57
11 multiplications (1), 44 additions.

(continues)
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Table 5.4 (continued)
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N=16: u=Fm

t; = x(0) + x(8),

1y = x(2) — x(10),

t; = x(1) + x(9),

t10 = x(3) — x(11),
t13 = x(7) + x(15),

tie = I3 + 15,
tig =17 — Iy,
ty = 13 + 20,
s = I10 + t12,
mo =1 % (t17 + 32),
my =1 x (I15 — tye),

my =1 x [x(0) — x(8)],

me = (cos2u) X (t4 — t5),
mg = (cosu + cos 3u) X 1y,
myo =J X (t20 — t18),

my; =j x (x(12) — x(4)),

myq = (—jsin2u) x (ta + ),
mye = j(sin 3u — sinu) x t,3,

5y = ms + ms,
S4 =Mz — My,
87 = Mg — M7,
S10 =355 — 87,

Sy3 = Myg + Mg,
S16 = Mys — My7,

S19 = S14 + S165

t, = x(4) + x(12),
ts = x(6) + x(14),
1y = x(1) — x(9),
ti1 = x(5) + x(13),
tq = x(7) — x(15),
f17 = tis + e
tyo =19 + 113,

tz3 =Ig + 114,

S5 = My + Mg,

Sg = Mg — My,

S11 = 8¢ + S,
S14 = Myy — My,

817 = S13 + Si15,

t3 = x(2) + x(10)
te = x(6) — x(14)
to = x(3) + x(11)
t12 = x(5) — x(13)
hs=1t +1
Lig =1 + 114
Iy =1y — 113
fag =13 — 14
b =112 — 1o
my =1 x(t17 — ta3)
my=1x(t; — t;)
ms = (cos2u) X (t10 — t3y)
mq = (cos3u) X ({24 + t26)
mg = (COS 3u — cosu) X iy4

myy =Jj X (Is — t3)

myz = (—jsin2u) x (tyo + t51)

mys = (—jsin3u) x (t23 + t55)

My, = — j(sinu + sin 3u) X 1,5

8§y = M3 — Ms,

§3 =My + M3
Sg = My ~— Mg
So = 85 + 87
§12 =S¢ — Sg
S5 = Mys + Mye

S18 = 813 — S15

20 = S14 — S16

X(0) = my, X(1) = 59 + 517, X(2) =51 + 53
X(3) = 515 — 520, X(4) = my + myo, X(5) =511+ 510

X(6) = 53 + 54, X(7) =510 — S18s X@8) =m
XO) = 510 + 5185 X(10) = 53 — 54, X(11) = 515 — 810
X(12) = my — myo, X(13) = 512 + 530, X(14) =5, — 53

X(15) = 59 — 517
18 multiplications (8), 74 additions.
(1) The algorithms are structured to compute X (k) = Y ¥~ 1 x(n) W* and

therefore do not contain the factor 1/N.

(2) Input data to the small N algorithm are x(0), x(1),...,x(N — 1) in
natural order. This input data may be a complex sequence.

(3) Output data are X(0), X(1),..., X(N — 1) in natural order.
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(4) mg,my,...,my_, are the results of the M multiplications.
(5) t,1,,...are temporary storage areas for input data.
(6) s1, S5 ... are temporary storage areas for output data.

(7) The lists of input and output additions are sequenced and must be
executed in the specified order. When there are several equations to a line, read
left to right before proceeding to next line. '

(8) Multiplications stated for each factor include multiplications by + 1 or
+ j. These trivial multiplications are stated in parentheses. Shifts due to factors
of 1 are counted as a multiplication.

The IDFT can be computed from the preceding algorithms by one of the
following methods:

(1) Substitute — u for u.
(2) Use any of the methods in Chapter 4 that compute the IDFT with a
DFT.

5.7 Matrix Representation of Small NV DFTs

For analysis purposes, it is useful to put the small N DFTs into a factored
matrix representation. The matrix representation can then be handled with
powerful matrix analysis tools to arrive at the WFTA and the Good algorithm
described in the next few sections.

Formatting the small N algorithms as matrices is analogous to matrix
factorization to derive FFTs. If N = 2%, then L factored matrices represent the
power-of-2 FFT, but the actual program stored in memory typically does an
in-place computation of butterflies. The matrices are not stored since they
are sparse and since storing the zero values would incur a large waste of
memory.

Likewise, the factored matrices representing small N DFTs have many zero
entries and are not used to implement FFTs. Rather, the equations which
minimize arithmetic operations are stored in memory. These equations do notin
general have the symmetrical form of power-of-2 FFTs and therefore require
more program storage.

Let D be asmall N DFT. The CRT expression of the DFT makes it possible to
combine input data using only additions. All multiplications can then be
performed. Finally, more additions determine the transform coefficients. These
operations are represented by

D =SCT (5.135)

where T accomplishes input additions, C accomplishes all multiplications, and .S
accomplishes output additions.
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As an example, let N = 3. Then (5.134) is the optimum algorithm and has the
following matrix representation:

10 0 0
1100(1)?88 01 o0 0
p=lo o1 1 00 -1 0
101 0

00 1 —1
00 0 1 -
00 01 —i/32
S C
(1)(1)8 10 0
x 01 1 (5.136)
01 0|y -y
00 1

Note the following characteristics of the C matrix:

(1) It is a diagonal matrix implementing all the small N algorithm
multiplications.

(2) The numbers along the diagonal are either real or imaginary, but not
complex.

(3) The real numbers along the diagonal may be grouped on one side of the
C matrix; the imaginary ones may be grouped on the other side.

5.8 Kronecker Product Expansions

Development of RMFFT algorithms from the small N DFTs can be
accomplished using Kronecker product expansions [C-30, E-17, E-19, E-20,
G-12, W-35, Y-6]. Let

A = (ay) (5.137)
be a K x L matrix, where k =0,1,2,...,K—1land /=0,1,2,...,L — 1. Let
B = (b,,,) be an M x N matrix. Then their Kronecker product is 4 ® B, where

ao,0B ao,1 B ©t do,L-1B
a@p=| @B @aB a8 (5.138)
ag-1,0B agx_1, B - ag-1,.-1B

The Kronecker product causes B to be repeated KL times, each time scaled by an
entry from 4. Since Bis M x N, A® Bis KM x LN. Further discussion of
Kronecker products is in the Appendix.

LARGE N ALGORITHMS FROM SMALL ONEs  Small N algorithms can be com-
bined into large N algorithms using their Kronecker product. Let Dy, ..., D,, D,
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be small N DFT algorithms with naturally ordered indices. Their dimensions are
N x N, ..., N, x Ny,and Ny x Ny, respectively. Let their Kronecker product
be the N x N matrix D, where N = N -+ N,N; and

D=D,® " ®D,® D, (5.139)
For example, let L = 2, N, = 2 and N, = 3. Then, neglecting the'1/N scaling,
D =W~ =D,® D, = WNNE2 @ JyNINOEL — p73E2 @ p72E1 (5.140)

where D;=W¥, i=1,2, W2 =e W3 W, =e I B =W, W=e 276

s 1 e
E,=0] 0 o] L E=1| o (5.141)
Lot 21 0 2 1

and the matrix E, with possible £ and n values that are consistent with the
Kronecker product on the right side of (5.140), is given by

KNnO 2 4 3 51
0o[0 00 O0O0 0]
4102 4 0 2 4

E=2{04 20 4 2 (5.142)
31000 3 3 3
1102 43 51
504231 5

We wish to show that D isin fact a large N algorithm for computing the DFT
when the N-point input and output data are ordered by the CRT and the SIR (or
vice versa). We consider first the two-factor case and then the L-factor case.

Two-FacTtor Case  Let L =2, and let gcd(N,,N,) = 1. Then

\m0 1 - N1

o [0 0 0
E2: 1 0 1 Nz-l .
Ny—1 0 Ny—1 -1

(5.143)

k\m0 1 - Ny—1
0 o 0 - 0 ]

E = 1 0 1 oo Ny —1
N—1Lo0 N—1 - 1

D =D, ® D, = WWNIEz & [y (NIN1)E;
— (W(N/Nz)kznz(W(N/Nl)klnl)) (5144)

— (W(N/Nz)kznz + (N/Nl)klnl)
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where the indices on the matrices of exponents £, and E; are shown explicitly in
(5.143) and are in natural order, (WW/Nvkm) ig an N, x N; matrix, and
(WNINkanz + (NINDRinty g an NN, x NyN, matrix defined by the Kronecker
product, i.e., for each value of k, and n,, k; and n; must progress through values
defined by E, in (5.143). ‘

We need a general solution for the values of k and n in (5.144). We note that
the SIR defines the » index for E in (5.142), so we try the SIR as a general
solution for n and verify that it is indeed correct. For the two-factor case under
consideration the SIR index for # is given by

n = [(N/Nyn, + (N/Ny)n;] mod N (5.145)
Using the SIR for n we arbitrarily define k by the general formula
k= a2k2 + a1k1 (5146)

where a; and a, are to be determined. From (5.145) and (5.146) we get

kn = —N k +—N k <N k +—N k d N
n a n a n a n a n mo
szzz N1111+N2112 lezl
('1 )

If we can eliminate terms containing k;n; for i # j, then (5.147) will determine kn
strictly on the basis of entries k,n; and k,n, which come from E; and E,,
respectively. The advantage of this is that DFTs D; and D, can be applied to the
data to compute the transform sequence without exponentials, called twiddle
factors, being required between the application of D; and the application of
D, [B-1, E-17, G-5, W-35] (see also Problems 17-19). The twiddle factors
involve exponents k,n, or k,n; and require additional multiplications for the
DFT computation.

The value of kn will be a linear combination of only k,n, and k,n, if the term
in parenthesis is always zero. This will be true for all k;, n; =1,2,...,N; — 1
and all k,,n, =1,2,...,N, — 1if

N N
—a; =0 (modulo N) and —a, = 0(moduloN) (5.148)
N2 Nl

Furthermore, (5.144) shows that we get all the integers kn =0,1,...,N — 1
when k,, k,, n;, and n, go through their possible values if

N N N N
N—Za2 = N—Z(modulo N) and Eal = N—l(modulo N) (5.149)
Applying the scaling axiom to (5.148) and (5.149) yields
a;=0 and a,=1 (moduloN,), a,=0 and a; =1 (moduloN;)
(5.150)

If we identify a; = (N/N,;)*™V and a, = (N/N,)?™?, then a solution to (5.150)is
given by (5.18). Making these substitutions for a; and a, in (5.146) shows that
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the CRT determines the index k. If the SIR determines #, then we have shown
that the CRT determines k. Both the SIR and CRT are valid integer
representations. We conclude that if L = 2, then a sufficient condition for the
Kronecker product of small N DFTs to determine a large N DFT is that the SIR
and CRT determine the input and output indices, respectively.
As an example, let N; = 3 and N, = 2. If the SIR determines # and the CRT

determines k, then (5.140) yields

n = [(6/2)n, +(6/3)n;] mod 6 (5.151)

k = [(6/2)'k, + (6/3)*k,] mod 6 (5.152)
The k and » indices for (5.151) and (5.152) are in Table 5.5. The matrix of
exponents (5.142) is unchanged if the k and » indices are interchanged. This is
true in general and the derivation of k and n indices may be interchanged with no
change in the DFT matrix (see Problem 30). In our derivation the SIR and CRT
determined the » and k indices, respectively, so if the indices are interchanged the
roles of the CRT and SIR are interchanged. Then the CRT and SIR determine
the n and & indices, respectively. Note also that reversing the Kronecker product
in (5.140) gives another E matrix; the index determined by the SIR is ordered as
0,3,2,5,4,1; the CRT ordering is 0,3,4,1,2,5.

Table 5.5

Indices for Dimension-6 DFT with » Determined by the SIR and & by
the CRT

ny ny n (mod 6) ks ky k (mod 6)
0 0 0 0 0 0

0 1 2 0 1 4

0 2 4 0 2 2

1 0 3 1 0 3

1 1 5 1 1 1

1 2 1 1 2 5

L-Factor Case  Itiseasy to generalize the preceding arguments to the L-factor
case (see Problem 15). The SIR determines #, and the CRT determines & (or vice
versa). CRT and SIR representations require that Ny, N,, ..., N, be mutually
relatively prime. Let N= N,N, - -+ N, --- N, and let D be an N x N matrix
derived from (5.139). Then sufficient conditions for D to be a DFT matrix are
that the input and output indices are determined by the SIR and CRT.

At this point we have taken the Kronecker product of small N DFTs for input
vectors whose dimensions are relatively prime. We have obtained a valid large N
DFT with the input index determined by the SIR and the output index
determined by the CRT (or vice versa).

EQUIVALENCE OF 1-D anND L-D DFTs  As aresult of the DFT indexing, k and n
are represented by the L-tuples

k=(kp,...,ky k1), n=(ng,...,nyn) (5.153)
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where the DFT is given by the Kronecker product of L matrices in (5.134).
Substituting the CRT and SIR indices for k and ninto X = (1/N)Dx, where D is
given by (5.139), yields

] Ne-t Ny—1 Ny—1 )
Xky, ... kp, k) =— Z Z Z [(Dpkp,ng) -+
N np=0 n;=0 n1=0

x Dy(ky,ny)Dy(ky,ny)x(n, ..., ny,ny)] (5.154)
where
Dy(k;, n;) = WkiniNINi, W = e~ J2nN (5.15%)

Comparison of (5.154) and (5.155) with Table 3.2 shows that (5.154) defines an
L-dimensional (L-D) DFT. The Kronecker product formulation transformed a
one-dimensional (1-D) DFT into an L-dimensional DFT, and we conclude that
1-D and L-D DFTs are equivalent if we properly order the input and output
data. In our derivation we converted a 1-D DFT into an L-D DFT, but we can
just as easily go the other way and convert an L-D DFT into a 1-D DFT. Thus
we can evaluate a 2-D, 3-D, ..., or L-D DFT with a 1-D FFT (or vice versa)
simply by properly ordering the input and output data.

From the alternative viewpoint of vector-matrix processing, the input to the
1-D DFT is determined by the N-dimensional vector x. Equation (5.154) shows
that processing this input vector in N-dimensional space can be reduced to
processing vectors in N;-dimensional subspaces, i=1,2,...,L. As a con-
sequence of the indexing, the processing is done in subspaces whose dimensions
are relatively prime.

From still another viewpoint, readers familiar with tensors will note that the
data sequence may be defined as a tensor of the Lth rank having N components
and that (5.154) transforms the input data into a transform sequence that is
another tensor of the Lth rank having N components.

As a final comment, using the SIR for both k and » also results in the
equivalence of 1-D and L-D DFTs. In this case the equivalence is shown simply
by substituting the SIR expressions for k£ and » into the DFT definitions (see
Problem 42).

5.9 The Good FFT Algorithm

The Good algorithm in general minimizes the number of additions, but not
the number of multiplications required to evaluate the RMFFT. The
algorithm’s structure was described in a 1958 paper by Good [G-12], but went
largely unnoticed until after Cooley and Tukey published their 1965 paper
[C-31]. However, the Good algorithm was not generally competitive with
power-of-2 FFTs prior to the advent of the efficient small N DFT algorithms.
We shall assume that the small N DFTs are used to evaluate the Good algorithm
when stating algorithm comparisons in Section 5.14.
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Good’s algorithm evaluated with small N DFTs, where the N values are
relatively prime, has also been called the prime factor algorithm [A-26, K-1,
N-27]. The WFTA also requires relatively prime small N values, so we shall use
the terminology “Good’s algorithm” rather than prime factor algorithm.

The algorithm will be illustrated by continuing the two index example of the
previous section. Let N, = 2and N; = 3. Then (5.154) gives the Good algorithm
for L =2:

1

1
X(kaiky) =

W3k2n2

0

M=

2
Z W2amix(ng, ny)
ny =0

W |

2

3-point DFT for fixed n,

1 1
== Y WM x(ny, ki) (5.156)

2.2
where x(n,, k,) is defined by the 3-point DFT for fixed n,. A block diagram
implementing the Good algorithm for N; = 3, N, = 2, and the CRT and SIR
determining the data and transform sequence numbers, respectively, is shown in
Fig. 5.2. If the SIR and CRT determine the input and output sequences,
respectively, then the input and output indices in Fig. 5.2 are reversed.

Data . . Transform
sequence 3-point DFTs 2-point DF Ts sequence
number - ? number

0———9 0
3 < 3

Fig. 5.2 DFT for N, = 3 and N, = 2.

A block diagram implementing the Good algorithm for N; = 2and N, = 3 is
shown in Fig. 5.3. The SIR and CRT determine the data and transform sequence
numbers, respectively (see Table 5.5). If the SIR and CRT roles are reversed in
Fig. 5.3, then the input and output indices are interchanged.

Generalizing the example for L =2,let D = D; ® -+ ® D, ® D,. Then the
input is expressed x(n,...,n;,...,n,,ny) where 0 < n; < N;. The summations
over ny, n,, ..., N are equivalent to processing an L-dimensional DFT since the
summations result first in applying D,, then D,, then Ds, ..., and finally D,
sequentially to the data.
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2-point DFTs 3-point DFTs
Data c A— c A \ Transform
sequence sequence
number ] number
0 \\ i
3 < =0
| $——=3
2 T_\T- |
5 " < 4
l [ — 2
TN S |
|
1 ” ] r——oz
T ¢———5
l\m [\h [\‘Iq
np N2 kz

Fig. 5.3 DFT for Ny =2 and N, = 3.

5.10 The Winograd Fourier Transform Algorithm

This algorithm, in general, minimizes the number of multiplications, but not
the number of additions, required to evaluate the RMFFT. Winograd not only
was instrumental in developing the small N DFTs but also is credited with the
nested structure, which has been termed the Winograd Fourier transform
algorithm (WFTA) [S-5]. The WFTA results from a Kronecker product
manipulation to group input additions so that all transform multiplications
follow. The multiplications are then followed by output additions which give the
transform coefficients.

The Kronecker product manipulation used to generate the nested DFT uses
the relationship

(AB)®(CD) = (4A® C)(B® D) (5.157)

where A, B, C, and D are matrices with dimensions M; x N;, N; x N,,
M5 x Nj, and N5 x N, respectively. According to (5.135) a small N DFT of
dimension N, can be put into the form

D, = S,C.T, (5.158)

A DFT of dimension N = Ny - - N,N; is given by (5.139). Using (5.158) in
(5.139) gives

D=(SCT)® - ®(5:C,T5) ®(S:C Ty) (5.159)
Using (5.157) repeatedly in (5.159) gives
D=(S.® @5 S5NC.® - QC,RC)TLQ T, ®T)

output additions multiplications input additions

(5.160)
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Equation (5.160) is the WFTA. The T, matrices are sparse, usually with
nonzero entries of + 1, and therefore, T, ® - ® T, ® T specifies addition
operations on input data. Each of the S, matrices accomplishes output
additions; their Kronecker product does likewise. DFT multiplications are
specified by the Kronecker product of the C, matrices, k = 1,2,..., L.

Each of the C) matrices is diagonal and is made up of entries that are either
purely real or purely imaginary. The Kronecker product C; ® C; ® - - ® Cpis
a multidimensional array, described in the next section, that nests all the
multiplications inside of the additions.

5.11 Multidimensional Processing

We have seen that 1-D and L-D DFTs are equivalent if either the CRT or the
SIR determines the one-dimensional DFT data sequence index and the other (of
the CRT or SIR) determines the transform sequence index. We have commented
that using the SIR for both k and n also results in the equivalence of 1-D and L-D
DFTs.

In this section we shall further discuss DFTs defined by Kronecker products.
We shall show that the two-dimensional DFT can be reformatted in terms of
equivalent matrix operations to define a two-index FFT. The L-index FFT for
L > 2 can also be defined in terms of matrix operations on an L-D array. In the
L-D DFT the meaning of transpose and inverse transpose generalizes to a
circular shift of indices with subscripts in reverse and natural orders, re-
spectively. In the following let Ny, N, ..., N, be mutually relatively prime, and
let N= NN, - Np. D;is an N;-point DFT for i =1,2,...,L.

Two-InpeEx FFTs Consider the convolution equation

Y=4,® A;h (5.161)
where the dimensions of the matrices 4; and A4, are M; x N; and M, X N,,
respectively; h is a vector with the N;N, components A(0), A(l),...,
W(N.,N, —1); and y is a vector with the M;M, components y(0), y(1),...,

y(M M, — 1). Direct computation shows that all components of y are in the
(M, x M,)-dimensional matrix ¥ [E-17, S-5, S-6].

Y = A, (A,H)" (5.162)
where
»(0) (M) T yIM, — 1HM,]
Yy = J’(:‘l) y(M1:+1) J’(M1M2:—M1 +1) (5.163)
| (M, — 1) yeMy 1) - y(M M, — 1)
[ h(0) h(1) oo BN, — 1)
| B[V, — DNyT RI(N, — DNy + 11 -+ A(N,N, — 1)
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Applying the previous three equations to the Good and WFTA algorlthms
respectively, yields

Z = D,HD] (5.165)
Z = 8,[S;Co T(T,H)"]T (5.166)
where S;C,T; is the factorization of the small N DFT, D,

C, = diagle,(0),¢;(1), ..., e (M, — 1)]

(5.167)
C, = diag[c,(0), co(1), . .., (M, — 1)]
¢2(0)c1(0) c2(1)c1(0) . co(My — 1)y (0)
C= 02(0).01(1) CZ(I)'CI(I) T c(M, — ey (1)
O (My — 1) ex(Ders(M = 1) ++ ey(My — Dey(My — 1)
(5.168)

and Z and H are N, x N, matrices. Let H(n,,n;) be the entry in row n, and
column n,; for n;,=0,1,2,...,N; — 1, i=1,2. Let the SIR specify the input
index. Then H(n,, ny) = x(n), where

n=n,N; +nN, (5.169)

Let the entries in Z be Z(k,, k,) = z(k), where k;, =0,1,...,N, — 1 and
ky=0,1,...,N, — 1 are the row and column numbers, respectively, in natural
order. Then since the SIR entered the data sequence into the H matrix, the CRT
determines the output index k as (see Problems 25 and 26)

k = k(NP o Ky (N,)P (5.170)

As mentioned in Section 5.8, the roles of k and n can be reversed so that data is
entered into the H matrix using the CRT and the coefficients in the Z matrix are
ordered according to the SIR.

Figure 5.4 illustrates the 2-ID processing. The evaluation of X = (1/N)D,
® D,x shown pictorially in Fig. 5.4a corresponds to the operations in (5.112),
where X and x are the DFT output and input vectors with entries ordered
according to the CRT and SIR (or vice versa), respectively. Entries in x, D, D,
and D, are indicated pictorially in Fig. 5.4 by large dots. (The scale factor 1/N is
not shown.)

Equivalent operations are shown in Figs. 5.4b-d. D, operates on all columns
of H (Fig. 5.4b), so that D{H has transform sequence numbers k; going down
the column and data sequence numbers 7, across the rows. D, operates on all
columns of (D;H)T (Fig. 5.4c) to convert the data to k,—k, space. All operations
are indicated in Fig. 5.4d.
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Turee-InpeEx FFTs  The summatlon order in (5.154) can be interchanged w1th
no effect on the answer. For L = 3 this interchange yields
] Ni-1 Na—1Ns—1

X(ka;kz:]ﬂ)—ﬁ Z Z Z [D1(k1,”1)D2(k2,n2)

ny=0 ny=0 n3=0
X D3(k3,n3)H(n3,n2,n1)] (5.171)
where H(ns, n,,n,) = x(n) and n is specified by n,, n,, and ny. We shall define
(5.171) in terms of matrix operations. To do this let A(/;, n;) be an M; x N;

matrix. Let
Ni—1
Hiy(l3,ny,my) = ), As(l3,n3)H(ng, ny,ny) (5.172)

n3=0
Let H, be the three-index array defined by H; = (Hs(/3,n,,7n,)), Where
0<Il; < M;s, 0<n, <N,, and 0 <n; < N;. The symbolic representation of
(5.172) for all values of I3, n,, and n; is defined as

Hy = AH (5.173)

Furthermore, we define the transpose of H5 by the circular shift of the indices to
the left by one place, which gives

H; = (Hs(I3,n2,m1))" = (Hs(na,n4,13)) (5.174)
In like manner, let
H, = A,H} and H, =A4,H) (5.175)
where H, and H; are M, x N; x Msand M x M4 x M, arrays, respectively,
H, = (Hy(l3,n4,13)) and H, = (H(l1, 13, 15)) (5.176)
Applying these equations to the Good algorithm for k; = [, i = 1,2, 3,
= (D1(D,(D;HY)HH?T (5.177)

where Z = (Z(ks, k;, ky)). If the SIR determines » through n,, n,, and nj, then
the CRT determines k through k3, k,, and &, and the FFT output is X (k). Asin
the two-index case, the roles of CRT and SIR can be reversed.

Let (#(ly,03,0,)) be an M; x M3 x M, array, and let (7 (ky,L5)),
(ol 3(ks, [3)) and (,(k,, 1)) be Ny x My, N3 x M3, and N, x M, arrays,
respectively. Let

Mi-1
«#10{1,13,12) = Z ﬂl(khh)%(lhlsslz) (5-178)
11=0
Let #, be the Ny x M3 x M, array sy = (#(ky,13,1,)) and define
Hy = A\ H (5.179)

Let the inverse transpose of #; result from the circular shift of the indices to the
right by one place as follows:

T = (H(y, ke, 1)) (5.180)
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Let A
Hoy=oA, H]T and Hy=A3H ;" (5.181)

Applying these equations to the nested algorithm yields
Z = S3(Sy(S;Co T(To(TsH)HH)™ T ' (5.182)
where the SIR and CRT yield the input and output indices (or vice versa),
respectively; H = (H(ns, ny,n4)); (C(ly,13,1,)) isan M, x M5 x M, array; and

ny . nop

n3
n
\>\ - ™~ —

PN N T

Ny

" () (b)

Fig. 5.5 Meaning of (a) transpose and (b) inverse transpose in three-index processing.

n2
. k2
D404 D2
ny
ny
D3
. 4 4 n2
Dy ns
o o [ ] > > [ ]
L] o L] [ ] 3
[ ] [ ] o — [ ]
l " /
ks
N3

Fig. 5.6 Conversion of 30-point 1-D DFT evaluation to equivalent 2-, 3-, and 5-point 3-D DFT
processing.
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if Ci = diag(c,»(O), Ci(l), ey C,‘(Mi - 1)), = 1,2, 3, then
C(l1, 13, 1) = es(ly)ea(lz)ea (1) (5.183)

Figure 5.5 illustrates the meaning of transpose in a 3-D right-hand coordinate
system. Transpose is a right-hand rotation about the diagonal from the origin in
a cube containing the data. Inverse transpose is a left-hand rotation.

Figure 5.6 illustrates the 3-D processing in (5.182) for N; =2, N, = 3, and
N; = 5. D, is applied to both planes perpendicular to the »; axis as shown. It is
applied to each ‘column of data parallel to the n; axis using matrix-vector
multiplication. Only two of six D3 matrices are shown pictorially in Fig. 5.6.
Similar remarks apply to D, and D,. Entries in D;, D,, D5, and H are indicated
pictorially in Fig. 5.6 by large dots.

MuLti-INnDEx FFTs The definition of transpose and inverse transpose as a
circular shift one place to the left and right, respectively, carries over from the
three-index case. In the general case the Good algorithm is given by

Z = (Dy(Dy(- - - (DLH)DT) - - )T (5.184)

where H = (H(ny,...,ny,n,)) and Z = (Z(ky,...,k,,k,)) are L-dimensional
arrays. Using the same Z and H in the WFTA yields

Z =8, (Sy(S;CoT(To(- - (T H) - )H)™1)~T--)~T (5.185)
where C = (C(ly,[,,...,[))isan My x M, x -+ x M array and
Clly, by ) = es(ly) ea(ly) -~ eply) (5.186)

SigNiFicaNCE OF THE MULTI-INDEx FFTs The matrix representation of the
small N DFTs showed that T; and S; are matrices that can be implemented with
additions. All multiplications are lumped in the C array. Since the C; are
diagonal matrices, only one term appears in their Kronecker product in array
location ({4, [, . .., ;) as specified in (5.186) (see Problem 24). As a consequence,
the total number of multiplications is the number of points in the C array. Each
multiplier ¢;(/;), ¢({3),...,c (ly) is either real or imaginary and so
C(ly,15,...,1;) is real or imaginary.

Let M(L) be the total number of real multiplications to compute the RMFFT
of areal input using (5.185). Note that the numbers in the C array are either real
or imaginary and that T,(T, - - - (T H)T - - -)T is also an array of real numbers.
Therefore

M(L)= MM, My — kik; * " Ky (5.187)

where ,,, m = 1,2, ..., L, is the number of multiplications by + 1 or + jfor the
index /,, in (5.186). Multiplications by + 1 or 4 j are counted when specifying
nested algorithm equations to account for the term x;x, - - - k; in (5.187).
An estimate of the number of multiplications can be made by discarding the
second term in (5.187). If we assume M; ~ N,, then M(L) ~ N;N, - - -N,. For
the power-of-2 FFT the total number of real multiplications are the order of
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2N log,(N/2), so areduction of multiplications of the order of 2 log,(N/2) might
be expected when using the nested algorithm instead of the power-of-2
algorithm. This reduction is optimistic since, for larger values of M;, M; > N..
The Good algorithm does not group the multiplications and in general requires
more multiplications than the WFTA.- ‘

Redundancies in multiplying by powers of W are evident in the flow diagrams
of Chapter 4. The WFTA and Good algorithms reduce multiplications because
they eliminate these redundancies. RMFFTs determined from polynomial
transforms also eliminate redundancies in multiplying by powers of . These
RMFFTs are derived from techniques for multidimensional convolution
evaluation using polynomial transforms.

5.12 Multidimensional Convolution by Polynomial Transforms

Section 5.6 presented efficient small N DFT algorithms derived from
polynomial representations of one-dimensional (1-D) circular convolution. The
systematic procedure for evaluation of these algorithms required the CRT
expansion of the polynomials. Intuitively, we feel that the development might be
extended to multidimensional space. This is indeed true, as we shall show in
Sections 5.12 and 5.13.

This section develops multidimensional linear convolution by means of
polynomial transforms [N-22]. Section 5.13 applies the development to the
derivation of FFT algorithms. Both sections are based on the work of
Nussbaumer and Quandalle. In this section we shall first extend (5.70) through
(5.73) to 2-D space. We shall show the impact of evaluating the CRT expansion
of the 2-D polynomial. Finally, extensions to L-D space will be indicated.

Let (4(n,, n,)) and (g(n,, n,)) be matrices describing images having periods N,
and N, with respect to the indices n; and #n,, respectively. Their 2-D circular
convolution is the matrix (a(m;, m,)), where

Ni—1 Np—1
a(my,my) = z Z g(ny, ny)h(my — ny,my — ny),
n =0 ny=0 (5188)

m1=0,1,...,N1—2, m2=0,1,...,N2—2
This convolution can be represented as

Ni—1 Na—1
a(ty, ;) = |: XY gt 1) 8(ty — nyTy) 68, — nsz)}

ni=0 ny=0
Ny—1 Ny—1
*|: Y h(ty, 1) 6(t — ny Ty) (2, —”2T2):| (5.189)
n=0 ny=0

where A(t,,t,) and g(ty,1,) are 2-D images and T; and T, are the sampling
intervals along the #; and ¢, axes, respectively.
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Let #, , = %% , denote the 2-D Fourier transform, where & | and & , are
the Fourier transforms along the ¢, and ¢, axes, respectively. Let

No—1
H, (z;) = 372[ Z h(n Ty,1,)0(t, — nZTZ)} (5.190)

n,=0

Ni—1
H(z,z,) = 9?1|: Z H, (z;)0(t — "1T1):| (5.191)

n1=0

where

zy =e T g, = T2 (5.192)

and f; and f, are the frequency domain variables. Let G, (z,) and G(zy,z,) be
likewise defined. Let

A(zy,2,) = {[H(z1,22)G(z1,2,)] mod (z5> — 1)} mod (zM* — 1)  (5.193)
Direct evaluation of (5.193) confirms that the coefficient of z7'z7> in the
polynomial A4(zy,z,) is the circular convolution evaluation of a(m,m,) in
(5.188). Alternatively, after we substitute (5.192) in (5.193) we can view (5.193)
as the frequency domain embodiment of the 2-D data sequence circular
convolution property.

We can also evaluate (5.188) by noting that

Ni—1

A (z2) = Z [H,, 0 (22)G(22) mod (Z[;;_J2 -], m =0,1,2,...,N; — 1
n=0
(5.194)

is the circular convolution of the one-dimensional polynomials such that the
polynomial product in the square brackets in (5.194) evaluates the circular
convolution of data in rows (m,; — n;)mod N and n; of the matrices (k(n;, n,))
and (g(ny, n,)), respectively. Thus the coefficient of 22> in 4,,,(z,) also evaluates
a(my, m,).

The preceding equations for A(zy,z,) are equivalent to

A(zy,25) = [a(0,0) + a0, 1)z; + -+ + a(0, N, — 1)z5271]
+ [a(1,0) + a(l, Dz, + -+ + a(l,N, — )25 1]z + - -
+ [a(N; — 1,0) +a(N; — 1,1)z, + - -~
+a(Ny — 1,N, — 1)zy271]z0 1

Ni—1
= Y A (222" (5.195)
mi=0
where
Ny—1 ’
A, (22) = ), a(my,my)zy? (5.196)

my=0
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and similar expressions hold for G(z,, z,) and H(z;, z,). We note that /;T; = f;/f,
for i = 1,2 and that evaluating (5.195) for f;/f, = 0, 1/N;, 2/N,,...,(N; — 1)/N;
yields the 2-D DFT multiplied by N; N,. The 2-D data sequence a(m,, m,) may
be completely recovered by evaluating the IDFT of (5.195) for all of the N, N,
values v

7= Wh, W; = e J2mINy ki=0,1,...,N; — 1, i=1,2 (5197
We can also recover 4,,,(z;) from (5.195) by using an IDFT with a 1/N, scaling
along the first axis (i.e., with respect to k;):

1 Ni—1
A,,,l(zz):‘]—v— Y AW, )W mod (232 — 1) (5.198)

1 k=0

The expression for 4, (z,) may be exploited by expanding it in terms of the
CRT, as we describe next.

CRT ExpansioN oF PoLyNnoMmiaLs  We shall state conditions under which the
polynomial version of the CRT can be used to expand 4,,,(z,). We shall show
that evaluation of a part of the CRT expansion can be accomplished by using
polynomial transforms.

Let N, = N, where N is an odd prime number (2 is the only even prime
number), and let N; = Ng, where gcd(N, g) = 1. Then z32 — 1 factors into the
product of two cyclotomic polynomials C;(z,) and Cy(z,):

2y — 1 = Cy(2,)Cx(zy),
Ci(z)) =2z, — 1, Cy(zy) =21 +2872+ - +1 (5.199)
Expanding 4,,,(z,) using the CRT gives
Ap (z2) = [A1 m,B1(25) + Az (22)B1(22)] mod (2 — 1),
my=0,1,...,N; — 1 (5.200)
where
Bi(z,) =1, B,(z,) =0 (modulo Cy(z,))
Bi(z,) =0, By(z;) =1 (modulo Cy(z,)) (5.201)
and a solution to (5.201) is given by (see Problem 32)
By(z5) = (1/N)Cn(z2), Bsy(z5) = [N — Cy(z,)]/N (5.202)
The scalars 4, ,,, are found using (5.50) and (5.194) to be
Ng—1
Ay = |: > Hml_,,l(zz)G,u(zz)] mod (z, — 1)

np =0
Ng—1
= ) Him-nGin (5.203)

ny=0
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where H, ,, = H,,(z;) mod (z; — 1),..., so that
N;—1 Ny—1

Hl,n: Z h(r1>r2)> Gl,nlz Z g(nl,nz) (5204)

¥ =0 n,=0
We have specified the term 4, ,, B;(z,) in the CRT expansion of 4,,(z;) and
need only 4, ,,,(z,) to completely evaluate (5.200). We shall show that in certain
cases a computationally efficient procedure exists to evaluate 4, ,,,(z,). We first
note that (5.50) and (5.194) give
Ng—1

Az,‘ml(zz) = |: Y Hypmy-n(22) GZ,nl(ZZ):| mod Cy(z,) (5.205)

ni=0

where
H,, (z;) = H,(z,) mod Cy(z,), Gyn,(22) = G, (2,) mod Cy(z,) (5.206)

The efficient procedure for evaluating (5.205) begins by noting that (5.193) and
the axiom for polynomials for congruence modulo a product give

A(zy,25) mod Cy(z;) = {[H(z1,2z;)mod Cy(z,) G(z4,z,) mod Cy(z,)]
mod Cy(z;)} mod (le\h -1 (5.207)

We shall determine A(z,, z,) mod Cy(z,) by evaluating the right side of (5.207).
Using a summation similar to (5.195) yields

Ng—1
H(Zl,Zz) InOd CN(Zz) = |: Z HZ’V(ZZ)Z;] InOd CN(ZZ) (5208)
r=0
Using the SIR we get
r=a N+ ayq (5.209)
where (5.20) determines «; and «,. Using (5.209) and (5.197) gives
Z;i — e—janlr/Nq — Wﬂflkle_jzﬂdzkl/N’ W = e*jZn/q (5210)

Since N is an odd prime and since N and g are relatively prime, we can find an
integer k such that (see Problem 37)

ki = gkk, (modulo N), k; = Nk (modulog), k,=1,2,... . N—1 (5211
where ky, k=0,1,...,Ng — 1. Using (5.211) in (5.210) yields

Z’i = WaiNK) p—j2n(axgkk2)/N — pp/(aiN + a2@)k o — j2nka(arN + 22)k/N (5212)

If k, is a nonzero integer, then
2 = (Wz,)¥, k=0,1,2,...,Ng—1 (5.213)

Substituting (5.213) in (5.208) leads to a polynomial in z, with the index k,
which we define as H,(z,):
Ng—1
H(z,) = H(zy,2,) modCy(z5) = l: Z H, (z5)( sz)kr:I mod Cy(z,)
r=0 (5.214)
k=0,1,2,...,Ng—1
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Equation (5.214) specifies a 1-D polynomial transform. The right side is a
function of the single variable z, if we incorporate W*" into the coefficients of
H, (z;). The utility of the transform is due to the fact that it is a valid
representation of a 2-D frequency domain function. It can be multiplied with a
similar function and the product inverse (or partially inverse) transformed to
evaluate a convolution, as we show next.

Corresponding to H,(z,) we find the function G,(z,),

Ng—1

Gz2) = G(z1,2,) mod Cy(zy) = |: Z Gz,n(zz)(sz)k":| modCy(z;)  (5.215)

We likewise definé the polynomial transform
A(z,) = A(z4,2,) mod Cy(z,), k=0,1,2,...,Ng—1 (5.216)

Its inverse transform is defined by

Az m(22) = [Nq "Z_l Zk(Zz)(I’VZz)km’:| mod Cy(z,),

my=0,1,2,...,Ng— 1
Note the relationship of (5.198) and (5.217). Note also that H,(z,) and G,(z,) are
no longer explicitly functions of z; so that (5.207) yields
A(z5) = [Hi(22)Gi(z,)] mod Cy(z,), k=0,1,2,...,Ng—1 (5.218)
Substituting (5.214) and (5.215) in (5.218) and using (5.217), we have

Ng—1 Ng—1

Az,ml(zz):[ﬁq‘ Z Z H, ,(2,)G5 4(z2)
r=0 =0

n=

k

(5.217)

Ng—1

x Y (sz)""“”"""“} mod Cy(z,) (5.219)
k=0

We define S to be the summation over k, on the right of (5.219), computed mod
Cy(z,). Using the SIR, weletk = 4, N + £,9. Wealsolet/ = r + n — m; and we
get

Ng—1 g-—1 N—-1
S= |: Y (sz)kl:| mod Cy(z;) = l: > oWy (Zz)gqu} mod Cy(z,)
k=0 6, =0 4,=0

(5.220)
Since z) = 1 (modulo Cy(z,)), the summation over £, for / # 0 (modulo N) can
be reordered to zy '+ 87?4 - +1=Cp(z) =0 (modulo Cy(z,)).
Likewise, using (3.31) the summation over £, yields zero unless / = 0 (modulo ¢).
The conditions /=0 (modulo N) and /=0 (modulo ¢) and the axiom for
congruence modulo a product imply / = 0 (modulo Ng). Therefore, the value of
S in (5.220) is zero unless / = 0 (modulo N), in which case S = Ng. Thus

Ng—1
|: > Hz,ml_,,(zz)Gz,,,(zz):| mod Cy(z,), [ = 0 (modulo Nq)

AZ,WI1(ZZ) = n=0
0, otherwise

(5.221)
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which agrees with (5.205). Equations (5.203) and (5.221) completely specify
A (25), and as mentioned in conjunction with (5.194), the coefficient of z3>in
the polynomial A, (z,) evaluates a(m;,m,) and therefore the circular con-
volution given by (5.188).

We have used a frequency domain development to establish the validity of the
polynomial transform. In particular, we relied on (5.196) to establish that we
could recover the N; N, data points a(m,, m,) from N, N, transform coefficients.
We have noted that 4, ,,(z,) is specified for k, = 0 in (5.203). Note also from
(5.202) that B,(z,) = 1, By(z,) = 0,and 4,,,(z,) = 4, ,, for k, = 0. We specified
Ay m(z5) forky =1,2,...,N, — 1, and in this case B(z,) = 0, B,(z;) = 1, and
Ay (22) = Ay m,(22). We conclude that A4, (z,) is completely determined by the
N, values k, =0,1,2,...,N, — L.

ComPUTATIONAL CONSIDERATIONS From a computational viewpoint, the poly-
nomial transforms H,(z,) and Gi(z,) are computed using (5.214) and (5.215).
Their product mod Cy(z,) determines 4,(z,), and the inverse transform is
computed using (5.217). If N; = Ngq, where g = 2 or 4, then powers of Ware + 1
or + 1 and + j, respectively, and evaluation of (5.214), (5.215), and (5.217) is
accomplished without multiplications. If N; = N, = N, then there are no
factors containing W, and the only products required are those for computing
Hi(z,)Gi(z2)- _ _

The polynomials H,(z,) and G,(z,) are computed by adding coefficients
corresponding to a power of z. Since z¥ = 1 modulo Cy(z), a final reduction mod
Cy(2) is accomplished by rotating coefficients in an N-coefficient polynomial.

GENERALIZED PoryNomiaL TransrorMs The efficiency of the polynomial
transforms in evaluating the Ng x N circular convolution depends on the
reduction of a 2-D problem to evaluating the Ng polynomial products given by
(5.218) and the circular convolution of length Ng given by (5.203). This in turn
depends on the CRT expansion and the computation of polynomials mod
Cn(z,). This computation mod Cy(z,) yields S = Ng for I = 0 (modulo Ng) and
S = 0 otherwise. The computation can be generalized to other cases, including
CRT expansions based on more than two cyclotomic polynomials and
expansions based on noncircular convolution.

Let M(z,) be a factor of z)2 — 1 used in the CRT expansion of a polynomial,
and let S have the representation (see Problems 38-41)

S=' % (azy {M(ZZ)D(ZZ), I#0
K=o Ny, otherwise

Then S = 0 (modulo M(z,))if/ # 0, S = N, (modulo M(z,))if/ = 0;and az§isa
root of § (modulo M(z,)). If az4 is aroot of S and (azf)¥* = 1 (modulo M(z,)),
then the circular convolution can be evaluated using polynomial transforms.

Table 5.6 states parameters for the computation of circular convolution using
polynomial transforms. In the table N is an odd prime number and ¢ a prime
number. Figure 5.7 presents a flow diagram of circular convolution evaluation
for N; = N, = N; the subscript 2 on z has been discarded.

(5.222)
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g (ny.ny)
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Fig. 5.7 Flow diagram of circular convolution evaluation using polynomial transforms [N-22].
(Copyright 1978 by International Business Machines Corporation; reprinted with permission.)

As was the case in 1-D circular convolution, econﬁy of computation results
when factors are incorporated into fixed elemerits of the circular convolution.
Let the matrix (h(n,, n,)) be fixed. The polynomials determined by A(n,, n,) can
be precomputed. Furthermore, factors associated with B,(z,) in the CRT
expansion can be incorporated into the polynomials H,(z,) so that only
multiplication by Gy(z,), an inverse transform to determine 4, ,,(z,), and a
CRT reconstruction are required for computation of 4,,,(z,) (see Problems
33-34). Special algorithms have been developed to compute the product of
Gi(z,) and the polynomial determined by incorporating B,(z,) into H(z,)
[N-23]. Additions stated in Table 5.6 are based on these algorithms.

The circular convolution of size 2N? x 2N? is an interesting example of the
flexibility of the polynomial transform method. Note from Table 5.6 that
M(z) = (z*™ — 1)/(z*" — 1). The term in the CRT expansion, which is based on
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computation in a ring mod M(z), is evaluated with 2N? polynomial products
mod M(z). The remaining terms in the CRT expansion are based on com-
putation in a ring mod (z*¥ — 1) and can be restructured as a 2N x N?Z circular
convolution by interchanging the n; and n, axes. The 2N x N? circular
convolution is evaluated with 2N polynomial products mod M(z) plus another
2N x 2N circular convolution. This is evaluated as stated under the 2N x 2N
entry in Table 5.6. ,

Evaluation of the circular convolution of size N x Ng follows by noting that
(5.28) and (5.31) give z" — 1 = Cy(z9)C,(2)Cy(z). Reduction in a ring
mod Cy(z?) yields N polynomials of Ng terms. These polynomials in the CRT
expansion (5.200) aré evaluated with N products of polynomials mod Cy(z%).
The remaining terms in the CRT expansion are based on computation in a ring
mod [Cy(2)Cy(2)],1.e.,in aring mod (z? — 1), and correspond to N polynomials
of ¢ terms. The latter represents a circular convolution of size N x g.

Ordinary convolutions can also be calculated by the polynomial transform
method. Let * after a dimension denote noncircular convolution. Then cases of
interest include convolutions of size 2N x N* computed by transforms defined
(modulo [(z¥ + 1)/(z + 1)]) with N a prime number and 2¢*! x 2" and
2L" x 2" computed by transforms defined (modulo (22" + 1)).

ExTENSION TO L-D Space We shall indicate the evaluation of 3-D circular
convolutions of size N x N x N where N is a prime number. Extension to L-D
space is straightforward. The 3-D circular convolution of 3-D arrays i(n,, n,, n3)
and g(n,,n,, ns) is the 3-D array a(m,, m,, m3) defined by

N—-1 N-1 N—-1

a(my, my, msz) = Z Z Z h(my — ny,my — ny,my — n3)g(ng, vy, 13),
n1=0 n,=0 n3=0

m=01..N—-1, i=1,2,3 (5.223)
The CRT expansion along the n; axis yields
Ay (23) = [A1mym, B1(23) + A2y .m,(23)B2(23)] mod (213\,’ -1 (5.224)

where B, (z5) and B,(z3) are given by substituting z for z, in (5.202). We define
corresponding to (5.208)
N—1 N-1
H(zy,2,,23) mod Cy(z3) = |: Z Z H oy my(23)27 2'2"2:| mod Cy(zs)
mi=0 my=0
(5.225)

where z; = e 2™IN k. =0,1,... N—1,i=1,2,3, and

N-1

Hn;,nz(zi’;): Z h(”l,nlsné})Z’;}}

n3=0

HZ,nl,nz(Z3) = H,, ,(z3) mod Cy(z3) (5.226)
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We find the 2-D polynomial transform
N-1 N-1

Hy(23) =[ DD H2,n1,n2(z3)zglk+n21:| mod Cy(z3) (5.227)

ni=0 ny,=0 .

by direct analogy to (5.214). Corresponding to (5.221), an inverse transform of
H, (z3)Gy (z3) yields

N-1 N-1
A2,m1,m2(z3) = |: Z Z HZ,m1—"1,7"2’nz(z3)G2,"1,n7_(Z3):| mod CN(Z3)
n=0 ny=0
(5.228)
A computation similar to (5.203) yields
N—-1 N-1 ,
Al,ml,mz = Z Z Hl,ml—nl,mz—nzGl,nl,nz (522%
ng=0 ny=0
where
N-1 N-1
Hl,rl,rz = Z h(rlar25n3) and Gl,nl,nz = Z g(nlanZ’ 713)
n3=0 n3=0
’ (5.230)

All terms in the CRT reconstruction are defined, and the coefficient of z%* in
A, m,(23) evaluates a(m;, m,, m3). The 3-D circular convolution evaluation is
complete. The L-D circular convolution for L > 3 is similar.

Multidimensional linear convolutions have also been investigated by
Arambepola and Rayner [A-72]. They computed convolutions by taking
polynomial transforms in all dimensions but one, where a noncircular con-
volution was used. They developed a mapping to translate circular into
noncircular convolutions and vice versa. With this they mapped the 1-D
noncircular convolution into a circular one so as to use the efficient polynomial
transform methods.

5.13 Still More FFTs by Means of Polynomial Transforms

In the previous section we saw that multidimensional convolutions can be
computed. efficiently using polynomial transforms. A multidimensional DFT
can be formatted as a multidimensional convolution, so RMFFTs can be
computed using the polynomial transform method [N-22, N-23, N-27, N-35]. In
this section we discuss some of these RMFFT algorithms.

Direct APpLICATION OF CIRCULAR CONVOLUTION In Section 5.8 we found that a
1-D DFT can be formatted asan L-D DFT (see also Problem 42). Let N = Ny N,
where N, and N, are prime numbers and an N-point DFT is to be computed. Let
W; = e 42%Ni j=1,2. Then 1-D and 2-D DFTs can be computed from
1 Ni—1 Ny;—-1
Xk, ky) = N YooY x(ng,ny)Whim ke (5.231)

ng=0 ny=0
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Note that (3.31) may be extended to give x(n;,0) = — x(n,,0)(W} + W2 +
ce WY, x(0,ny) = — x(0,n)(WE 4+ W2 44+ WY1, and x(0,0) =
x(O0,0[WiWi+ Wi+ -+ WY + Wi(Wh4+ W2+ - + Wi D+
o+ WRTIWL 4+ Wi+ - + WY D] Thus a total of (N; — 1)(N, — 1)
transform coefficients given by (5.231) can be computed using .

Ni=2 Np-2
X(ah,42) = N Z Z [x(a™™, 67™) — x(&™™,0) — x(0,47 ™) + x(0, 0)]

mi=0 my=0

x W ws™, L=0,1,...,N; =2, i=1,2 (5.232)
where 2 and # are primitive roots of N; and N,, respectively. Equation (5.232)is
the 2-D extension of (5.120). It is a 2-D circular convolution of size
(N; — 1) x (N, — 1) and we can evaluate it using any algorithms for circular
convolution evaluation by polynomial transforms. N, points of (5.231) are
computed using the N,-point DFT

1 Ni—1[N—1
Xk, 0) =5 ¥ [Z x(nl,nz):| whm ke =0,1,...,Ny—1  (5233)
n=0Lny=0

The remaining N, — 1 points of (5.231) are computed using the (N, — 1)-point
circular correlation

X(0,4%) =% i {[ ilx(nl,é"“) - x(nl,O)}} Wz,

my=0 n=0
,=0,1,...,N, =2 (5.234)
Equations (5.232) and (5.234) are 2-D and 1-D circular convolutions, re-

spectively. The DFT given by (5.233) can be computed with the 1-D circular
convolution of (5.120)—(5.125).

N x NDFT ror NPrRiME Let N; = N, = N where Nis a prime number. Then
(5.231) can be reduced to N + 1 N-point DFTs and one polynomial transform,
as we show next. Dropping the subscript 2 on z and letting X, (z) be the
polynomial that results from transforming rows of the matrix (x(n, n,)) gives

1 N—-1
an(Z) = |:F Z x(nl,n2)2"2:| mod (ZN — 1), ny = 1,2, Ca ,N— 1
n,=0
(5.235)
If we define X(k,,z) by
N-1
Xy, 2) = [ Y an(z)ka] mod (z¥ — 1) (5.236)
n=0

we note that the substitution z = W*2 in (5.236) gives a solution for DFT
coefficient X(k,, k,). We note also that z¥ — 1 = C,(2)Cy(z), where Ci(z) =
z — 1 and (5.33), gives
N-1
Cy@ =[] z—Ww*) (5.237)

k=1
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Define
X,(ky, 2) = X(ky, z) mod(z — 1) (5.238)
X,(ky,2) = X(ky,z) mod Cy(z) ‘ (5.239)

Using (5.28) and the axiom for polynomials for congruence modulo a product
gives X(k,,z) = X,(ky,z) (modulo (z — W*2)), or X(ky,z) mod(z — W*) =
X,(ky,z) mod(z — W*). Let X(z) =ay—12" ' +ay_,2" 24+ - +ao be a
polynomial of degree N — 1. Then direct computation shows that X{(z)
mod(z — W*) = X(W*2). Thus X(ky, k,) = X,(k,, W*2), and we conclude that

Xy, ks) = Xo(ky,2) mod(z — W), ky #0 (5.240)

and X, (k;,0) yield a solution to the N x N DFT. To further develop this DFT
we consider separately the cases k, = 0 and k, =1,2,...,N — 1.
First, let k, = 0. Then (5.236) and (5.238) reduce to

1 N-1[N-1
X(kl,()) :—]F Z_:O|: zox(nl,nz)] Wklnl, kl 20,1,...,N'— 1 (5241)
The term in the square bracketsis X; ,, = X,,(z) mod(z — 1). Equation (5.241) is
computed by taking an N-point FFT of X , .

For k, # 0 define

N-1
XZ(klaz) = |: z XZ,nl(Z)Wklnl:| mod CN(Z)7 kl = 0’ 1:27 ces ,N -1
n=0
(5.242)
where
1 N—-2
X2, (2) = X,,(z) mod Cy(2) = A 2 [x(ny,mp) — x(ny, N — D]z (5.243)
ny=0

Since N is a prime number, there is always a k for k, # 0 such that

ky =kk, modN. We note that X,(kk,,z) contains the terms W"m =

Z1 (modulo Cy(z)). We may therefore substitute z for W*2 in (5.242), getting
N-1

X,(kky,z) = [ > Xz,,,l(z)z""l} mod Cy(z), k=0,1,...,N—1 (52449
n=0

Equation (5.244) is a polynomial transform with ¢(N) = N — 1 terms after

reduction mod Cy(z). The only computations in (5.244) are data transfers that

order the data according to exponents of z. The redundancy in multiplying by

w¥imand W*2"2 is completely removed by substituting z for #*2 and noting that

Wk = W¥a = Z*for some k. The summation of N — 1 terms on the right side of

(5.244) defines a polynomial

Z »dn)z"

=0

N-1
n
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which corresponds to a data sequence y, (). The only multiplications required to
evaluate the 2-D coefficient X(k,, k,) = X(kk,,k,) result when W*: is sub-
stituted for z and (5.244) is evaluated yielding
N-1
Xy, ky) = Xy(kky, WF) = 3 yu(n)W*" , (5.245)
n=0
where k; = kk, mod N.

Equations (5.241) and (5.245) specify the evaluation of an N x N 2-D DFT by
computing just N + 1 DFTs. One DFT corresponds to k&, = 0, and N DFTs
correspond to k, # 0, whereineverycasek; = 0,1,..., N — 1. These DFTs are
evaluated in the most efficient manner possible.

Each of the N DFTs in (5.245) can be converted into a DFT in which the
first data sequence term is ostensibly zero by using (3.31) to get y,(0) =
—2O(Wr + W2+ -+ + WN™1), We then define a new sequence
P = y(n) — y»(0)forn =1,2,..., N — 1. We note that DFT [j,(n)] = DFT
[y(m)], but the first data sequence term in DFT [j,(n)] is missing. The
transform sequence coefficient X(k;, 0) is computed by (5.233) so we can regard
(5.245) as specifying a DFT in which the first data sequence and first transform
sequence entries are missing. Such DFTs are referred to as reduced DFTs.

x(ny,n,)

!

Ordering of
polynomials

xn1(z)
N polynomials of N terms
. i
Reduction mod Cy (z)
Cnlz) =(zN-1)7(z-1) Reduction mod (z-1)

+ X2, (2)

X1,n1
Polynomial transform
of N polynomials DFT of
of N—{ Terms N points

X2 (kkz,Z)

\
N reduced DFTs

(N correlations of N-1
points)

+ X (Kkp k)

Permutation

l kp# O kp=0
K

Fig. 5.8 Computation of 2-D DFT by polynomial transforms for N prime [N-23].

X (kg k)
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Using the 1-D equivalent of the 2-D explanation at the beginning of this section,
we can convert these DFTs to IV circular convolutions (correlations) of N — 1
points. Figure 5.8 presents a flow diagram for this method.

The significance of using polynomial transforms is now apparent. As Fig. 5.8
shows, the 2-D DFT is evaluated with N + 1 N-point DFTs. The brute force
approach requires that the data first be transformed along each row using N N-
point DFTs. Finally, the columns are transformed using N more N-point DFTs.
Thus the ratio of DFTs for the polynomial transform and brute force
approaches is (N + 1)/(2N) ~ 1/2; the polynomial transform method requires
about one-half the number of complex multiplications required for the brute
force method. This can be again reduced by about one-half by using an FFT with
real multipliers (e.g., see Problem 4.7).

x (ng,n;)

Ordering of
polynomials

Xn, (2)

7 polynomials of 7 terms

Reduction mod
z-1

DFT of
7 points

Reduction mod
(27-1)/(z—1)

7 polynomials of 6 terms

6 polynomials of 7 terms
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mod z-1

Correlation
of 6 points

Reduction mod
(27-1)/(z~1)
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(26-1)/(z2-1) | |™Y0

(22-1)
]

Polynomial transform| [Correlation

—_————m———e=—d

of 6 polynomials of 6x2
of 6 terms points
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of 6 x 6 points
1

mod (z6-1)/(z2-1)

I
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Fig. 5.9 Computation of a DFT of 7x 7 points by polynomial transforms [N-23].
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We have shown that N x N 2-D DFTs can be computed by polynomial
transforms when N is a prime. In this case z¥ — 1 = C,(z)Cy(z) and only the
polynomials -X;(k,, z) and X,(k,, z) are needed.

However, the data in X, ,, (z) may be reordered to give additional efficiencies.
The reordering corresponds to the rotation of axes for the 2-D circular
convolution and is illustrated for N = 7 in Fig. 5.9, which also incorporates
some procedures described next.

N x N DFT ror N Not PRIME When N is not prime, we can extend the
procedures of the previous subsection so as to use the polynomial transform
method. Note that (5.28) gives z¥ — 1 =[[jnCi(2) =z — 1) C(2) - -
Cn(2), and (5.29) gives Cy(z) = [ [xer, (z — W*) and E; is the set of all integers
k, = Nr/l such that gcd(r,/) = 1 and 0 < r < [ where /| N, including / = N. We

note that
— j2m Ni —j2
W = exp< Jen l) _ exp( ]z ”) (5.246)

N

For [ = N we observe that gcd(r, /) = 1 permits us to find an integer & such that

x (n1, n,)
Ordering of
polynomials
xn1 (z)
g2 polynomials of q2 terms
t ¥
Reduction mod Reduction
Cqlz9)=(29%-1)/(29-1) mod (z9-1)
g2 polynomials
of g terms
Polynomial transform Reordening
of q2 polynomials of
qlq-1) terms q polynomials
' _ |of q?terms
a2 reduced DFTs Reducfionq Reductgon
of q(q-1) points mod C'q z%) mod (27 -1)
Polynomial transform DFT of
- of q polynomials q x q points
Permutation of g (g-1) terms
reoa———————
q reduced DFTs
of q{(q-1) points

Permutation

Sy

X (ky, ky)

Fig. 5.10 Computation of a DFT of g% x ¢? points by polynomial transforms for ¢ prime [N-23].
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ky = kr (modulo N)fork; =0,1,..., N — 1. Thus we can use the procedures of
the previous subsection and (5.245) evaluates X(k;,r) when /= N. Since
deg[Cn(2)] = ¢(N), the result is an N x ¢(N) DFT.

For /# N we must evaluate X(k;,z) mod[(z¥ — 1)/Cy(z)] for k; =
0,1,...,N — 1. These polynomials can be reformatted as a matrix of size
N x [N — ¢(N)]. This is rotated to give a [N — ¢(N)] x N matrix.
Polynomials of N terms are again formed and reduced mod Cy(z) and
mod[(zY — 1)/Cn(2)]. This results, respectively, in another N x ¢(N) DFT and
polynomials that can be reformatted as a matrix of size [N — ¢(N)]
x [N — ¢p(\)]. |

At this point we have evaluated an N x N DFT by using two DFTs of size
N x ¢(N). We still need the DFT of the matrix of size [N — ¢(N)] x
[N — ¢(N)]. We evaluate the latter DFT in the most efficient manner available.

Figure 5.10 illustrates the method for a ¢g> x ¢> DFT, where ¢ is a prime
number. In this case Cp(z)=Cy(z%) =201 4 20472 4 ... 1 1=
(z2 — 1)/(z% — 1). The reduction mod C,(z%) yields ¢ polynomials, each with
q* — g terms. The reduction mod (z¢ — 1) yields ¢* polynomials, each with ¢

x (ng, no)

I Ordering of polynomials

(z)
* ™M 2Lpolynomials of 2t terms

Reductio: mod Reduction
227 mod 227" -1

* 2L polynomials
Polynomials transform of 2471 terms
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R d
of 21 terms eordering
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- of 2" terms
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oL—1
z +1 |—>
Permutation J ¥
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L ) L-1 L1
of 2% polynomials 27 x 2
of 2~ terms
Y
24" reduced DFTs
of 2471 points

X (ky yka)

Fig. 5.11 Computation of a DFT of 2" x 2* points by polynomial transforms [N-23].
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terms. These are reformatted as polynomials of g2 terms. These polynomials are
in turn reduced mod C,(z% and mod (z? — 1). The reduction mod (z% — 1) gives
a g x ¢ DFT, which is evaluated with the procedures of the previous subsection
since ¢ is a prime number.

Figure 5.11 illustrates the method for a 2L x 2X DFT. Note that

225 1= Cou(@)(@Z = 1), Coulz) = C(z* ) =2"""+1 (5247)

Since ¢(2F) = 2571, we take the DFTs of two matrices of size 2% x 2F~! and still
need the DFT of a matrix of size 27! x 2~ . Thus we can apply the procedure
iteratively (see also [N-271).

N, x N, DFT, gcd(N;,N,)=1 This case is of particular interest since
gcd(Ny, N,) = 1 makes it possible to format a 1-D DFT as a 2-D DFT using the
techniques in Section 5.8. For example, consider a 9 x 7 2-D DFT. A 7-point
DFT reduces to a 6-point circular convolution. The 9-point DFT reduces to a 6-
point circular convolution plus auxiliary computations, as given by
(5.128)—(5.130). The 7 x 9 reduces to the circular convolution of size 6 x 6 plus
auxiliary computations. We conclude that polynomial transforms are a versatile
method for DFT computation.

RoLE oF PoLyNoMIAL TRANSFORMS [N-29]  Polynomial transforms provide an
efficient (and in some ways optimum) method of mapping multidimensional
convolutions and DFTs into one-dimensional convolutions and DFTs. In order
to compute large convolutions and DFTs of dimension N x N, two approaches
are possible. In the first approach one nests (see Problem 43) small convolutions
or DFTs of dimensions Ny x Ny, N, x N,,..., where N = N;N,- - - and these
small convolutions and DFTs are evaluated by polynomial transforms. In the
second approach, one does away with nesting and the large convolution or DFT
of size N x N is computed by large polynomial transforms.

The second method is particularly attractive for N = 2F because the
polynomial transforms are computed without multiplications and the number of
multiplications for this method is reduced by power-of-2 FFT-type algorithms
[N-31]. This approach eliminates the involved data transfers associated with all
Winograd-type algorithms and can be programmed very similarly to the power-
of-2 FFT. One difficulty with this method is that it implies the computation of
large one-dimensional reduced DFTs or polynomial products. Nussbaumer has
shown that large reduced DFTs are computed efficiently by the Rader-Brenner
algorithm for N = 2F [N-27]. The Rader-Brenner algorithm [R-76] has the
peculiarity that none of the multiplying constants is complex —most are purely
imaginary. The Rader-Brenner algorithm can be replaced by the more
computationally well-suited algorithm of Cho and Temes [C-57]. The latter
algorithm is described in Problem 4.7. Nussbaumer has also shown that large
one-dimensional polynomial products modulo (z*F + 1) are computed ef-
ficiently by polynomial transforms. Thus FFT-type polynomial transforms are
an important application of the polynomial transform method in DFT
computation.
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5.14 Comparison of Algorithms

In this section we shall first derive the number of additions and multiplications
required to compute the WFTA and Good algorithms. This is done for the L-
factor case defined by N = Ny N, - - - Ny - - - Np. We then shall compare WFTA,
Good, polynomial transform, and power-of-2 FFT algorithms on the basis of
the number of arithmetic operations required for their computation. We also
shall show that savings result from using a polynomial transform to compute an
L-dimensional DFT.

ARITHMETIC REQUIREMENTS FOR THE WFTA [A-26, K-1, S-5, Z-3] The num-
ber of additions and multiplications required for the L-factor case follows from
the multidimensional WFTA algorithm definition. For the two-factor case

Z = SZ [Slco Tl(TzH)T]T (5248)

where Z and H are N, x N, matrices and S,, Ty, S,, and T, are N; x M,
M; x N, N, x M,, and M, x N, matrices, respectively.

Let A4;, and A, stand for input and output additions defined by T} and S,,
respectively,k = 1,2,..., L. Then Table 5.7 shows the total number of additions
to compute the two-factor nested algorithm with a real input.

Table 5.7
Additions to Compute Two-Factor WFTA Algorithm with a Real Input

. . Additions to evaluate . Additions to
Computation Points in x Computation
column 1 evaluate column 4
T,x N, A;n T,H ANy
T)x Ny A Ty(T,H)" A M,
S1x M, Aoy ~5w1C°T1(TzH)T Aoy M,
S,x M, Aoz VA ANy

Total number of additions: N;(4j; + 4q2) + Ma(4i; + Aoy)

Let A(L) be the total number of real additions to compute the L-factor case
and let A, = A4;, + A, Then for a real input Table 5.7 gives

AQ2) = N1 A, + M, A, (5.249)

Expanding Table 5.7 for the three-factor case for a real input yields

AQ3) = NiN,A3 + NiM3A, + M, M3A, (5.250)
and, in general, for a real input [S-5]
L k-1 L
AL =) [ N4 [] M, (5.251)

k=1 1=1 m=k+1
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where
L .
]_[ M,=1 for k+1>=1L (5.252)
m=k+1
k—1 .
H N =1 for k=0 ‘ (5.253)

We-can select S, and T, to minimize the number of additions. For example, if
S; and S, are interchanged in (5.248) and T'; and T, are also interchanged, then
(5.249) is changed to A(2) = N,A; + M A,. If (5.249) minimizes the number of
additions then

Nid; + MyA; < N4y + My 4, ~or (M; — N)/Ay =2 (M, — N,)/A,
(5.254)
which generalizes to (see Problem 29)
(M1 — Ni—1)/Ak—1 = (My — Ni)/ Ay (5.255)

for k=2,3,...,L. The expression (M, — N)/A,, =1,2,...,L, is called a
permutation value, and the smallest values possible should be used. Further-
more, if D; = S;C;T; is an N;-point DFT, then the smallest permutation value
should be used to specify D;, the next smallest to specify D, 4, .... Permutation
values are listed in Table 5.8 along with the relative ordering.

Table 5.8
Permutation Values and Relative Ordering [S-6,
S-31]
N, Permutation value Relative order
2 0.0 5
3 0.0 5
4 0.0 5
5 0.0588 1
7 0.055 2
8 0.0 5
9 0.0465 3
16 0.0270 4

The number of multiplications to compute the FFT of a real input using the
nested algorithm is approximately the product of the dimensions of the C
matrices, as given by (5.187). Note that the multiplications are independent of
the order of computation.

If the input is complex, the input additions and multiplications are doubled,
since all multipliers in the C matrix are either real or imaginary. Output
additions of complex numbers are reduced by combining components that result
from the real and imaginary parts of the input.
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ARITHMETIC REQUIREMENTS FOR THE GoOD ALGORITHM The Good algorithm
for the three-factor case has N, N3, Ny N3, and N; N, transforms defined by Dy,
D,, and D3, respectively, where the small N DFTs D,, D,, and D; are applied in
tandem. The outputs of D, are complex numbers, so the computations involving
D, and D5 are not affected significantly if the inputs to D, are complex. If the
input is complex and M(L) and A(L) are the number of real multiplications and
real additions to compute the Good algorithm, then for the three-factor case
[K-1]

M(@3) = 2(N;NsM; + NyN3M, + Ny N, Ms) (5.256)
AQ3) = 2(NyN3A; + NiN3A, + NyN,yA3) (5.257)
These expressions can easily be generalized to cases in which L > 3.

Rapix-2 FFT AriTHMETIC REQUIREMENTS  The number of real multiplications
M(L) and real additions A(L) to compute a 2--point FFT with a complex input is
minimized at (see Problem 4.2) [A-34]

M(L) = 3[3N log, N — 3N + 2] (5.258)
A(L) = 2N log, N + M(L) (5.259)

ComPARISON OF ALGORITHMS The preceding expressions for arithmetic re-
quirements lead to the data in Table 5.9 [A-26, A-34, K-1, N-23, S-5, S-6, S-31,
T-22]. The data are plotted in Fig. 5.12. Note that approximately a 3:1 reduction
in multiplications results from using the WFTA or a polynomial transform
algorithm instead of a power-of-2 algorithm.

Multidimensional DFT computation is compared in Table 5.10. The 2-D
DFTs are for transforming N x N arrays where N = N;N, and gcd(Ny, N,)
= 1. The polynomial transform method can be used in several ways, including
nesting (see Problem 43). Note that the number of multiplications is sub-
stantially less using polynomial transforms plus nesting than using the WFTA.

Although the algorithms reduce the number of multiplications, they require
an increase in data transfer. Silverman found that in spite of the increased
bookkeeping the WFTA algorithm took only approximately 609/ of the run time
for a comparable power-of-2 algorithm [S-5]. Morris compared WFTA and
power-of-4 algorithms on several computers that compile a relatively time
efficient program for execution [M-33]. He found that data transfer, an increase
in the number of additions, and data reordering resulted in execution times
40-609; longer for the WFTA algorithm than those for the power-of-4
algorithm.

The preceding qualitative results were investigated quantitatively by Nawab
and McClellan [N-18, N-24]. They developed the following expression giving
the ratio of run time for the WFTA and power-of-2 algorithms:

Ty _ %[1 + (A M) pa + (LN/MN)pL]
Te  Me |1+ (Ag/M)pa+ (Le/M¢) p,

(5.260)
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Power of two

10°
DOWFTA
104 |
%]
[ =4
o
B
2 A Good
[=8
)
1031
| x Polynomial
transform
102

Number of Points

Fig. 5.12 Comparison of real arithmetic operations to compute 1-D FFT algorithms with
complex input data: solid line, additions; dashed line, multiplications.

where M and A4 are multiplication and addition times, respectively, the
subscripts N and F stand for nested FFT and (some other) FFT, respectively,
and p, and p, are the ratios of additon to multiplication time and of load, store,
or copy time to multiplication time, respectively. Indexing time (usually
negligible) is not included.

Their parametric curves show that the 120-point nested algorithm is always
faster than the 128-point power-of-2 algorithm (Fig. 5.13). The 1008-point
nested algorithm is slower than the 1024-point power-of-2 algorithm based on
the typical computer performance parameters p, ~ 0.6 and p; ~ 0.5 (Fig. 5.14).

Patterson and McClellan investigated quantization error introduced by fixed-
point mechanizations of the WFTA algorithm [P-44]. They found that in
general the WFTA and Good algorithms require one or two more bits for data
representation to give an error similar to that of a comparable power-of-2 FFT.

If a 32-bit digital computer is used, a Fermat number transform (FNT) may be
used to implement the circular convolution for D, when N, = 128 points. The
FNT requires no multiplications and provides an error-free method for
computing circular convolution (see Chapter 11). Agarwal and Cooley used
mixed radix transforms based on the radices 2, 4, and 8 for comparison with a
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Table 5.10

Number of Real Multiplications and Additions per Output Point for Multidimensional DFTs with
Complex Input Data (Trivial Multiplications by + 1, + j Are Not Counted) [N-23]

Polynomial transform

method plus nesting WFTA Good

DFT size Multiplica- Additions Multiplica- Additions Multiplica- Additions
tions per tions per tions per
per point point per point point per point point

24 x 24 1.86 20.75 1.87 21.00 3.67 21.00

30 x 30 2.47 29.68 2.87 26.96 6.67 25.60

36 x 36 2.57 27.38 2.96 29.73 4.44 27.56

40 x 40 243 30.43 2.83 27.96 5.00 26.60

48 x 48 2.30 25.69 2.48 27.66 5.17 26.50

56 x 56 2.63 38.67 3.28 36.51 5.57 33.57

63 x 63 3.44 51.63 4.94 56.85 9.02 40.13

72 x 72 2.58 32.14 2.97 34.73 5.44 32.56

80 x 80 2.93 38.68 3.62 38.59 6.50 32.10

112 x 112 3.14 48.47 4.17 49.41 7.07 39.07

120 x 120 2.47 38.43 2.87 35.96 7.67 34.60

144 x 144 3.07 40.70 3.78 47.16 6.94 38.06

240 x 240 2.94 46.68 3.64 46.59 9.17 40.10

504 x 504 3.44 64.38 4.94 69.85 10.02 53.13

1008 x 1008 4.08 79.00 6.25 91.61 11.52 58.63

120 x 120 x 120 2.50 57.85 3.46 56.25 11.50 51.90

240 x 240 x 240 3.04 50.74 4.92 78.61 13.75 60.15

1.00

Twera/ Teer

Radix 2

0'50 Il 1 1
0.25 075 1.25 1.75

Relative addition time (pA)

L.

Fig. 5.13 Relative execution time of the 120-point WFTA to the 128-point FFT (radix 2 and
mixed radix, 4 x 4 x 4 x 2) plotted as a function of the ratio of addition to multiplication time (p )
and data transfer time to multiplication time (p;) on a machine with four or more registers [N-2].

relatively prime factor algorithm using an FNT [A-26]. They found that the
mixed radix FFT algorithm for 1024 points took 12 multiplications per output
point to compute a circular convolution, while the FNT, used with their
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1.20-

Tweta/Teer

1008 versus 1024
—== 8req
—— 4reg

0.60

TR Y T I S Y S S
0.20 0.40 0.600.80 1.00 1.20

Relative addition time (pA)

Fig. 5.14 Relative execution time of the 1008-point WFTA to the 1024-point FFT plotted as a
function of the ratio of addition to multiplication time (p ,) and data transfer time to multiplication
time (p) on a machine with (a) four and (b) eight or more registers [N-24].

relatively prime factor algorithms for a composite 896 point transform, took
only 2.71 multiplications per output point. The comparable figure for 840 points
with their algorithms was 12.67 multiplications per output point. For N = 1920,
2.66 multiplications were required per output point for the FNT method, while
for N = 2048, the FFT method took 13 multiplications per output point. Based
on their comparison, a reduction in the number of multiplications by almost 5:1
resulted from incorporating the FNT. Other NTTs may be used to implement
the circular convolution (see, e.g., [R-72] and Chapter 11).

Speed of computation can be increased using residue arithmetic. Reddy and
Reddy [R-73] used a technique which replaces a digital machine of b-bit
wordlength by two digital machines of approximately (6/2)-bit wordlength.
Normally, hardware requirements for addition and multiplication go up by
approximately twice and more than twice, respectively, when the wordlength
doubles. On the other hand, the speed goes up with a decrease in the wordlength.
Thus the technique allows higher speed of computation of digital convolution
with no increase in the total hardware. Further, the technique can also be used as
a convenient tool to extend the dynamic range of the convolution and is useful in
view of the smaller wordlengths usually associated with microprocessors.

5.15 Summary

This chapter includes a complete development of the theory required for the
RMFFT algorithms [A-26, N-22, N-23, W-7-W-11, W-35]. It presents the
computational complexity theory originated by Winograd to determine the
minimum number of multiplications required for circular convolution.
Winograd’s theorems give the minimum number of multiplications to compute
the product of two polynomials modulo a third polynomial and describe the
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general form of any algorithm that computes the coefficients of the resultant
polynomial with the minimum number of multiplications. This chapter shows
how the Winograd formulation is applied to a small N DFT by restructuring the
DFT to look like a circular convolution.

Circular convolution is the foundation for applying Winograd’s theory to the
DFT. In this chapter we showed that the DFT of the circular convolution results
in the product of two polynomials modulo a third polynomial. Computationally
efficient methods for computing coefficients of the resultant polynomial require
that the DFT be expressed using a polynomial version of the Chinese remainder
theorem.

We showed that the DFT can always be converted to a circular convolution if
the value of N is a prime number.” Conversion of the DFT to a circular
convolution format can also be accomplished when some numbers in the set
{1, 2, 3,...,N — 1} contain a common factor p. The results of the circular
convolution development are applied to evaluate small N DFTs. The small N
DFTs are represented as matrices for analysis purposes. Then a Kronecker
expansion of the small N DFT matrices is used to obtain a large N DFT.

The Kronecker product formulation is equivalent to an L-dimensional DFT.
Multi-index data processing is shown to result from reformatting the Kronecker
products. The two-index case can be reformatted in terms of equivalent matrix
operations. The L-index case for L > 2 can also be defined in terms of matrix
operations on an array with L indices. In the L-index case, the meaning of
transpose and inverse transpose, respectively, generalizes to left and right
circular shift of the indices.

Polynomial transforms are introduced and are shown to provide an efficient
approach to the computation of multidimensional convolutions. These trans-
forms are defined in rings of polynomials where each polynomial is computed
modulo a cyclotomic polynomial. When applied to 2-D DFTs the polynomial
transforms eliminate redundancies in multiplying by powers of exp(— j2n/N;)
and exp(— j2n/N,) along the two input data axes.

The RMFFT algorithms do not have the in-place feature of the FFTs of
Chapter 4 and therefore require more data transfer operations. These operations
and associated bookkeeping result in a disadvantage to the RMFFT algorithms.
The final decision as to the “best” FFT may be decided by parallel processors
performing input-output, arithmetic, and addressing functions.

PROBLEMS

1 Lete=1,4=4, c=2and & =5. Show that the addition and multiplication axioms yield
a+¢=4+ o and ac = 64 (modulo 3). Show that «c = 4 and ¢ = « so that o = £ (modulo 3)
by the division axiom. Let k = 7. Show that the scaling axiom gives ke = k4 modulo (3k).

2 Note that 27 = 39 (modulo 6) and 9 = 3 (modulo 6). If we apply the division axiom, we get

21 =3 or 3 = 13 (modulo 6), which is not true. Explain the reason for this incorrect answer.

3 Letw =2and N = 5. Show that if the numbers in the set {«, 2«, 34, 4o} are computed mod N,
then they can be reordered giving the set {1, 2, 3, 4}.
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4 Let o, 4, cand N be positive integers such that gcd(e, N) = 1,4 < N, ¢ < N,and # # ¢. Show that
fa # ca (modulo N) so that the sequence {«, 24,...,(N — 1)a} mod N, i.e., all integers in the
sequence are computed mod N, may be reordered to {1, 2,...,(N — 1)}.

5 Prove Euler’s theorem by considering the sequence {@@y, za,, . . ., @ayy,} Where ged(a, N) = 1,
a; < N, gced(a, N) =1, i=1,2,...,¢(N), and appropriately modifying the proof of Fermat’s
theorem.

6 Provethat2isa primitiveroot of 25. Let k be a positive integer. Show that 2* modulo 25 generates
all positive integers less than 25 except for 5, 10, 15 and 20.

7 Let gcd(N/N;, N;J=1. Use Euler’s theorem to show that there is an integer 4; such that
(4:N)/N; = 1 (modulo N;). Define #; = (N/N;)~! and note that (N/N;)”!N/N; = 1 (modulo N)).

8 Leta,rand s be positive integers, and define g = o’ (modulo o/ *1). Let ged(g, o * 1) = ia”. Show
that the integers 0, ¢,2q, ..., (¢ — 1)g may be reordered as the sequence &
S = {0, i, 2", . .., (o0 — D)o, 0,0, ..., (o0 — D)o}
where the subsequence {0, i, 2io", . .., (¢ — i)a’} repeats i times.
9 Use Gauss’s theorem and (5.61) to prove (5.104).

10 Convolution of Periodic Sequences Let h(f) be a periodic function with P = 1 s, and let it be
sampled N times per second to yield A(0), A(1),...,h(N — 1) over one period. Let H(z) =
h©Q) + A(1)z + h(2)z? + -+ - + KN — 1)z""1, where z = ¢ #>T be the z-transform of this finite
sequence. Show that

1
H(k) = FV— [H(Z)]lzze—ihkm

where

N-1
W™, k=01,...,N—1

n=0

1
H(k) = —
(k) N
is the DFT of the sequence A(n), n=0,1,..., N — 1. Conclude that the z transform of a finite

sequence evaluated at equally spaced points on the unit circle in the z plane yields the DFT of this
sequence within a constant 1/N.

11 Let

by b,

b, b4> , C = (cyc5¢3)7T and D= (d)

A=(a; ay), B=<

Show that

(AB)®(CD)=(4® C)YBR®D) (P5.11-1)
12 Let D, = S,C,T, and Dy = §,C,T;. Use (P5.11-1) to show that D, ® D; = [(5,C.) ®
S1CHIT>®Ty) = (S2 @ S1)Ca® Ci1 YT, ® Ty).

13 Kronecker Product Indexing for L =3 Let Ny, N,, and N; be mutually relatively prime. Let
n=nyN,N;3 + n,N{N;3 + n3N Nyand k = a1k, + ak, + ask;. Take the product kn and show that
the terms containing k,n, and k;n; are congruent to zero (modulo N, N,Ns) if

a;N,Ny =1, ayNi{N; =0, a;NyN, =0 (modulo NyN,N;) (P5.13-1)

Show that a; = (N/N;)**? is a solution to (P5.13-1). Conclude that if the SIR determines » in
D =D;® D, ® Dy, then the CRT yields k such that terms k;n,, may be discarded for / % m in
determining E where D = WE.
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14 LetD; = W¥iandlet D;and E; be N; x N, matrices, i = 1,2, 3, where ged(N;, Nj) = 1,i # j. Let
D=D;®D,®D,,where D= WE Letn=0,1,2,..., NyN,N; ~ 1 be the column number of E
and let n; =0,1,...,N; — 1 be the column number of E;. Show that D is given by

WE — WE;N/N; ® WEZN/NZ ® WE;N/N;

and that the SIR defines the column number of E. Show that the CRT then defines row number k of
E.

15 Let N = NyN,N,, where the N; are mutually relatively prime, i = 1,2, 3. Let the integers k and n
be given by

k=

i

M e

3
ak; and n= Y mN/N;
1 i=1

n

where 0 < k;, n; < N;. Show that for kn to contain no terms k;n; for i # j it is sufficient that a; = 1
(modulo N;) and a; = 0 (modulo N)).

16 Mixed Radix Integer Representation (MIR) Let N = N;N,--+N;. Then given «,
0 < a; < N;, prove that there is a unique « such that 0 < « < N and

a1 = @ mod N,

a3 = (a — a;)/N; mod N,

ax=(a—a;— aNi— "+ — a_1N\Ny - Ny 3)/(N{N; -+ Ni—y) mod N,
k=3,4,...,L
where
a=a NNy " Np_y+a 1NNy - Np—p+ " +a,Ny + ay (P5.16-1)

Let N; = N, = N3 = 2. Show that the seven positive integers that can be represented by (P5.16-1)
are 1, 10, ..., 111 (radix-2 representation). Let N; = N3 = 2 and N, = 3. Show that the integers 1,
2,...,11 may be written in a mixed radix system as shown in Table 4.11.

17 FFT with Twiddle Factors by Means of MIR Let L = 2. Use the following MIR for k and n:
k=ky + kN, and n=mn, +nN, P5.17-1)

Show that kn = kyn, N, + k,nyNy + kyn, (modulo N). The term W2 is called a twiddle factor
[B-1]. Show that the twiddle factor may be incorporated into the DFT with W=
exp[ — j2r/(N V)]

1 Na—1 Ny—1
X(k) [ Z |:_ Z WNZkl"lx(nhnZ):l Wklnz Wleznz

NZ ny=0 Nl n =0
——
Nj-point DFT twiddle
factor
N,-point DFT P5.17-2)

Note that the twiddle factor can be grouped with either the n, or n, summation. Show that a reversal
of the order of summation in (P5.17-2) cannot be done if the twiddle factor is applied between the N, -
and N,-point DFTs.

18 FFT with Twiddle Factors Using Another MIR Let L =2. Use the following MIR repre-
sentations for k and n:

k=ky+ kyN, and n=ny; +n,N; (P5.18-1)
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Show that this requires the following DFT computation:
1 Ni—1 1 N—1
Xk)=— Y [— > WN”‘Z"Zx(n,,nz):| ket pyNakim (P5.18-2)
Nl ny=0 N, ny=0
which is the same as (P5.17-2) if the subscripts are interchanged.

19 FFTs Using the Twiddle Factor for N =6 Let N, = 3and N, = 2. Use (P5.17-1) to show that &
and #n are in Table 5.11. Use (P5.17-2) to show that the DFT is given by Fig. 5.15. Show that the
twiddle factors at the outputs of the first (back) DFT are W°, W and W°. Show that at the outputs
of the second (front) DFT they are W°, W', and W2

Table 5.11
MIR Representations for Ny = 3 and N, =2

k, ky ky + 3k, n, ny ny + 2m,

0 0 0 0 0 0

0 1 1 0 1 2

0 2 2 0 2 4

1 0 3 1 0 1

1 1 4 1 1 3

1 2 5 1 2 5
Data 3-point DFTs 2-point DFTs Transform
sequence —_——— sequence

number number

|

L_:I“_T_
=] ]

Fig. 5.15 DFT with twiddle factors for N; = 3 and N, = 2.

Data 2-point DFTs 3-points DFTs Transform
sequence — —— sequence
number number
o
3 \ | b {—— —— O
L - S — 1
|
! |
a wi —2
[
e X |
5 w2 = 4
- - 5

Fig. 5.16 DFT with twiddle factors for N; =2 and N, = 3.
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Let N, = 2and N, = 3. Show that Table 5.12 gives k and n and that Fig. 5.16 gives the FFT. Show
that the twiddle factors are W°, W° W° w° W' and W?2.

Table 5.12
MIR Representations for N, = 2.and N, = 3

ks, ky ky + 2k, n, ny n, + 3ny
0 0 0 0 0 0
1 0 2 1 0 1
2 0 4 2 0 2
0 1 1 0 1 3
1 1 3 1 1 4
2 1 S 2 1 S

In Tables 5.11 and 5.12 interpret » and k as natural and digit reversed orderings. Show how these
orderings follow from (P5.17-1).

20 DIF FFTs for N = 6 [G-5] Combine the functions of the two 3-point DFTs and the twiddle
factors in Fig. 5.15. Do this so that the inputs remain in natural order, six butterflies follow the 6-
point input, and three 2-point DFTs follow the butterflies. Interpret this as a DIF FFT. Show that
equivalent matrix operations are defined in Fig. 4.5b.

Separate the two 3-point DFTs in Fig. 5.16 so that one is above the other and the outputs are
ordered 0, 2, 4, 1, 3, 5. Combine the three 2-point DFTs and the twiddle factors so the inputs are in
natural order. Again interpret this as a DIF FFT and show that equivalent matrix operations are
defined in Fig. 4.5a.

21 DITFFTsfor N = 6 [G-5] Separate the two 3-point DFTsin Fig. 5.15 so that oneis above the
other and the inputs are ordered 0, 2, 4, 1, 3, 5. Combine the three 2-point DFTs and the twiddle
factors so that three butterflies are formed with the FFT outputs in natural order. Interpret the two
3-point DFTs followed by butterflies as a DIT FFT. Show that equivalent matrix operations are
defined by ET where E is in Fig. 4.5a.

Combine the functions of the two 3-point DFTs and the twiddle factors in Fig. 5.16 so that six
butterflies are formed and the outputs are naturally ordered as shown. Interpret this as a DIT FFT
and show that equivalent matrix operations are defined by ET where E is in Fig. 4.5b.

22 Power-of-2 FFTs by Means of the Twiddle Factor Let N; = 2 and N, = 4. Show that the four
2-point DFTs in (P5.17-2) can be combined to yield Fig. 4.1. Interpret (P5.17-1) as yielding a
naturally ordered » and a bit-reversed k.

23 Let 4; and 4, be M; x N, and M, x N, matrices, respectively. Let h = [4(0), A(1), h(2), ...,
h(N\N, — 1)]T and define y = [(0), »(1), (2), ..., (MM, — 1)]7 by

y=A4,@4:h
Show that
N,—1 N;—1
ykoMy + k)= Y Y Aa(ka,ny)Ai(ky, n)h(nyNy + ny) (P5.23-1)
k=0 ky=0
where 0 < k; < M, for i = 1, 2. Define
h(0) h(1) o ANy = 1)

h(Ny) h(N; + 1) s h(2N; - 1)

H= (P5.23-2)

[N, — DN,] A[(N; — DN, +1] -+ h(N,N, — 1)
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and
Y0 o yMY) o YI(My - )M
y— y(_l) y(MI' +1 e (M, — })Ml +1] (P5.23-3)
WM =1 M=) MMy — 1)
Show that y(k, M, + k,) = Y(ky,ky) if
Y = A(4,H)T (P5.23-4)
Show that y(k,M; + k) = Z(k,,k,), where Z = Y™ and
Z = A4, HN)T (P5.23-5)

24 Let C; and C, be N; x N; and N; x N, diagonal matrices where C; = diag[c,(0), ci(1),...,
c¢(N; — 1)] for i =1, 2. Let H be an N, x N, matrix. Use (P5.23-1) and (P5.23-4) to show that if
z=(C, ® Cy)h, then z(k,N; + k) = Z(k,, k), where H is given by (P5.23-2),

Z=CoHT (P5.24-1)
€1(0)¢2(0) ¢1(0)cx(1) e c1(0)c(N; — 1)
| ee®  awem o amems - #5242
a; = De0) eV, — Des() -+ (Vs — Dey(N, — 1)

25 Let D, = S,C;T; where S; and T; are N; x M; and M; x N; matrices, respectively and
C; = diag[c(0), ¢(1), ..., cf(M; — 1)] for i = 1, 2. Use (P5.23-4), (P5.23-5), and (P5.23-1) to show
that if z = (1/N)D, ® D;x, then

Z = (1/N)S,[8:C-T\(T,H)"]" (P5.25-1)
where C is defined by (P5.24-2) and
20) (1) N =)
z A N 1) oD (P5.25-2)
AN, = DNy] 2N Ns — Ny + 1) -+ (NN, — 1)

26 Let z(koNy + ki) = Z(k,, k,) where Z is given by (P5.25-2). Let x(n,N, + n,) = H(n,, ny),
where H is given by (P5.23-2). Let (P5.25-1) define an N; N,-point DFT. Show thatn = n,N; + n; is
determined by the SIR so that the CRT determines k. Show that X(k) = Z(k,, k), where
k = k(NP2 4k (N,)*NY (modulo Ny N,) and X(k) is a value in the DFT transform sequence.

27 Let NN, and N; be mutually relatively prime and D, D,, and D, be N,-, N,-, and N;-point
DFTs. Use (5.171) and (5.178)(5.180) to show that

Z = (1/N)(D3(Dy(Dy o)™ ")) (P5.27-1)

where z(k3, k,, k;) = X(k), k is specified by the CRT, # = (A#(ny, ns, ny)), and #(ny, ny, ny) = x(n)
with n specified by the SIR.

28 Let Ny, N,, N3, Dy, D5, and D, be as in the previous problem. Let D; = S,C;T;, where S; and T;
are N; x M; and M; x N; matrices, respectively, and C; = diag(c;(0), ¢;(1), ..., c;(M; — 1)). Use
(5.173)-(5.181) to show that

Z = (S1(S2(S5Co To(To(T H)~Ty=HHYHT (P5.28-1)
where Z = (Z(ks, kj, k1)), H = (H(ny, n3, ny)), and C(ls, 1, 1) = (¢3(l3)ea(lr)ei(1y)). .
29 Let the three-factor nested algorithm be computed using

Z = 55[8,[S,Co T1(ToT:H)N)T]~ 1]~ T (P5.29-1)
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Show that if this ordering minimizes additions, then Ny N, 43 + N;Msd, + MaM3A; < NaNsA; +
NyMiAs + M3sMA;, < N3sNiA, + NsM,A; + M{M,A;. Infer from Table 5.4 that N, < M,,
k=1,2,3,sothat (M,—; — Ni—1)/4, = (M, — N))J4, for I =2, 3.

30 Interchanging CRT and SIR Indices Let Dy, D,, ..., D, be determined by (5.155) and let k;, n;
be naturally ordered, i=1, 2,...,L. Let X = (1/N)Dx, where D=D, ® --- ® D, ® D;. Use
(5.154) to show that the indices on D can be interchanged with no effect on D. Conclude that the CRT
and SIR determine the output and input indices, respectively, or vice versa.

31 Show that z* — 1 = C,(2)C,(2)Cy(2). Show that E; = {0}, E, = {2}, and E, = {3, 4} so that
Cl@=z-1,C@E=z+1,and Cu2) =z + )z - =2>+ .

32 Let C(z) = z¥ — 1, where N is prime. Show that C(z) has only two polynomial factors with
rational coefficients and that these factors are the cyclotomic polynomials Cy(z) =z — 1 and
Cy(z) =z°"1 + 2% 2+ --- + z + 1. Show that Euclid’s algorithm yields Cy(z) = C,(z)D(z) + N,
where D(z) =z¥72 422814 32872 4+ ... L (N =2)z+ N —1. Since Cy(z)/N — C1(2)D(z)/N
= 1, conclude from (5.54) that M,(z) = 1/N and M,(z) = — D(z)/N. Show that a polynomial 4(z),
deg[A(z)] < N, can be expanded in terms of Bi(z) = Cy(z)/N and B, = [N — Cy(2)]/N.

)

Hex l:aoz+bﬁ‘+cy+d5 ay+b5+coc+dﬁ:|
* =
af +ba+cd+dy ad+by+cf+ da

33 2 x 2 Circular Convolution Let

G )
H= ,
b 4

Show that their circular convolution is given by

Show that this answer may be obtained using polynomial transforms with B(z) = (z + 1)/2 and
B,(z) = (— z + 1)/2. Show that

Ap@ =@+ e+ +G+d)p+0), A @D=(a+)B+03)+ &+ d)(x+7)

Show that Hyo(z) =a+cz mod (z+1)=a—c and that H,; =b—d, X, =0 —1y, and
X,,; = f — 4. Show that

Ao(z) = ao + bp + cy + dd + (ay + bS + ca + df)z
Ay(@)=af + bo+cd +dy + (ad + by + cf + do)z
Show that Ay(z) and A44(z) contain the evaluation of H * X.

34 Alternative Representation of Circular Convolution FEvaluation by Means of Polynomial
Transforms [N-22] -Let N; = N, = N, where N is a prime number. Show that 4,,,(z) has the CRT
polynomial expansion

Ap(z) = (YN)[By(D) A1, + T(2)4;,m(z)(z — 1)] mod(z" — 1)

where B,(z) = T(z)(z — 1) (modulo (zV - 1)), B,(z) and B,(z) are given in Problem 32, and T(z) =
[—Z2Y"24+ - +(B3—=N)z2+ (2 — N)z+ 1 — N]. Show that H,(z)/N can be premultiplied by
T(z). Show that the CRT reconstruction reduces to multiplying 4, ,,/Nby z¥ ! + --- + z + 1 and
T(2)A5.m(z) by z — 1. Show that these two operations require 2N(N — 1) additions.

35 Let z¥ — 1= C,(2)C,(2) - Cp,(2), where the C,(2), i=1, 2,..., M, are cyclotomic poly-
nomials and N has M factors including 1 and N. Show that z¥ = 1 (modulo C,(z)) and that C;(z) = 0
(modulo (z — W*)) where k; = Nr/l; and ged(r, ;) = 1. Conclude that z¥ = 1 (modulo(z — Wk")).
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36 3 x 3 Circular Convolution Evaluated Using Polynomial Transforms [N-22]1 Let N; = N,
=3 and

4 3 0 2 0 2
H=|4 3 1|, X=10 1 3
210 34 4
Let M(z) = z2 + z + 1. Show that

An(2) = [Ay miM(2) + A2 m(2)3(z — 1)(—2z — 2)] mod (23 — 1)

Circular convolution of length 3 Show that H, , = (7, 8, 3), X;, = (4, 4, 11) and 4, ,/3 =
(128, 93, 121)/3, where H, ,, denotes (H, o, H,,1, H,,,), and so on.

Input polynomials Show that H,,(z) = [(4 + 3z), 3 + 22), (2 + 2)] and X, ,(2) = [(0 — 22),
(=3-2z2), —1].

Polynomial transforms Show that Hi(z) = [(9 + 62), (1 + 22), (2 + 2)], [H(z)(— z — 2)/3] mod
M(z) = — [(4 + 52),z, (1 + 2)] and X,(z) mod M(z) = [(— 4 — 4z), (3 — 22), 1].

Inverse polynomial transforms Show that [A4,,(2)(z —2)/2] mod M(z) = [(— 7 + 10z)/3,
(— 6 + 182)/3, (1 + 20z)/3].

CRT reconstruction Show that A,(z) = [(45 + 37z + 462%), (33 + 23z + 37z%), (40 + 34z
+ 472%)].

37 Let N be an odd prime number, gcd(N,q) =1, k, =1,2,..., N—1land k, =0, 1, 2,...,
Ng — 1. Given k; and k,, show that there is a k&’ such that

k=N"'k, (modulo g) and k=k;'q 'k, (modulo N) (P5.37-1)
Show that the CRT yields
k=N N9+ k;'q" 'k,g*™ (modulo Ng) (P5.37-2)

Define k = k' + «q. Show that (P5.37-1) is equivalent to
ky = Nk (modulo g) and k, = gkk, (modulo N) (P5.37-3)
Show that for the specified k; and k,, k is one of the integers in the set {0, 1, 2,..., Ng — 1}.

38 LetS =) 2N '(— z)*. ShowthatS = Cy(z)(1 — z")sothat — zisaroot of Smod Cy(z). Show
that (— 2)?¥ = 1 (modulo Cy(2)).

39 LetS=) N4 z4 where Nisa prime number and z; = e7/>"N = z. Show that § = Cy(z) so that
z is a root of S mod Cy(2).

40 LetS =) 2N !z where Nisa prime number. Show that § = Cy(2)(1 + zV) = Cy(z?)(1 + z) s0
that — z¥*1! is a root of S mod Cy(z?).

41 Let N, = N and N, = Ng where N is a prime number and ged(¥N, ¢) = 1. Show that z}4 — 1
= C1(2,)Ca(2,)Cn(28). Let z; = e 2™V and z, = ¢7/2™2/N4_ Show that there is a k such that
kk, = ky (modulo N) so that S = Y Y=o 2 = Y V2 (z9)* = Cn(z%) = 0 (modulo Cy(z%)) so that z%
is a root of S mod Cy(z%). Show that (z)¥ =1 (modulo Cy(z)).

42 Formatting a 1-D DFT as a 2-D DFT [A-58] Use the SIR to represent both n and k as
k=kiN, + k,N;and n = n; N, + n,N;. Show that the 1-D DFT coefficient X(k) is determined by

1 MNami[Ni-1
X(klak2)=N Z [ Z x(nl’nz)Wl;lnlNli| Wl;znle

14Y2 =0 bny=0

where W, = e 12N j =1, 2. Let k|, = k;N, mod N,. Show that k; =0, 1,..., N; — | generates

t From H. J. Nussbaumer and P. Quandalle, IBM J. Res. Develop. 22, 134—144 (1978).
Copyright © 1978 by International Business Machines Corporation; reprinted with permission.
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k' =0,1,...,N; — lina permuted order. Show that the summation in the square brackets can be
accomplished with an N;-point DFT along columns of the matrix (x(n;, n,)) with the transform
sequence number given by k. Likewise, show that the outer summation can be accomplished with an
N,-point DFT. Conclude that a 1-D DFT may be obtained with a 2-D DFT.

43  2-D DFT by Means of Polynomial Transforms Plus Nesting [N-23] Let Hbean N x N matrix,
and let D be an N-point DFT matrix given by D = D; ® D,, where D, and D, are N;- and N,-point
DFT matrices, respectively, and gcd(N;, N,) = 1. Show that the 2-D DFT of H can be computed
from D, ® D,H(D, ® D,)",that H can be represented as a 4-D array H(n,, ny,ny,n'), and thatits 2-
D transform can be computed from D, [D, [D,[D,H(n,, ny, ny, n))1"1"1", where n, n; =0, 1,...,
N; — 1,i =1, 2. Show the computations can be performed by nesting N, x N, array computations
inside of N, x N, array computations. Let the N; x N, and N, x N, DFTs be taken with
polynomial transforms, and interpret the 2-D DFT as being taken via polynomial transforms plus
nesting.

44 Show that Lagrange interpolation is equivalent to the CRT for polynomials [M-17].

45 Alternative Form of the CRT Let N = N;N, --- N, where gcd(N;, N;) = 1 for i # j, and let
M;= N/N;,i=1,2,...,L. Show that the CRT for integers can be written

L
a= [ > a;Mini:| mod N (P5.45-1)

i=1
where
{1 (modulo N;)
Mn; =
0 (modulo N;), i#j

Let ¢; = (N/N;) mod N;. Show that »; is the smallest positive integer such that n;c; = 1 (modulo N;).
Show that (P5.45-1) is equivalent to

L
a= { Y. M;[(an;) mod N,-]} mod N

i=1

Let Ny = 3, N, =4, Ny = 5. Show that n; = 2, n, = 3, and ny = 3.



CHAPTER 6

DFT FILTER SHAPES AND SHAPING

6.0 Introduction

A sampled-data equivalent of any analog system can be implemented using an
appropriate analog filter, a sampler, and digital processing equivalent to the
analog processing. Analog filters can be designed to detect signals in narrow
frequency bands and converted to sampled-data filters using digital filtering
technology, but frequently the FFT is a more efficient way of accomplishing
narrowband signal analysis. There are a number of differences and analogies
between the analog and DFT systems for signal analysis, and it is worth
reviewing them.

One difference is that an analog filter has a continuously varying time domain
output that can be viewed with an oscilloscope. If there is a sinusoid in the
passband, it can be seen on the scope. If white noise is the input and the center
frequency of the analog filter is high compared to the passband, the scope will
show a sinusoid whose amplitude and phase vary slowly. We cannot display
sampled-data representations of these time domain waveforms anywhere in the
DFT, but we do get a complex coefficient out of the DFT which describes the
amplitude and phase of a sinusoidal input.

Another difference between analog and DFT systems for spectral analysis is
that the DFT is a waveform correlating device for the exponential sequence
exp(j2rnkn/N), n=10, 2,..., N — 1. If the input sequence is properly band-
limited and has the period N, then by virtue of its correlating property the DF T is
a matched filter for the input sequence (if the noise is white) [C-43]. An analog
system is less easy to realize as a matched filter that correlates exponent1al
functions over exactly one period of the input function.

One analogy between an analog system for spectral analysis and the DFT
results from considering the detected outputs of both in response to a sinusoid.
Let the output of the analog filter whose center frequency is nearest to that of the
sinusoid be rectified and averaged with a low pass filter (LPF). Let coefficient
X(k) have the maximum magnitude of all DFT outputs. Then both the LPF
output and | X(k)| are measures of the amplitude and frequency of the sinusoid.

178
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Either output indicates the sinusoid’s amplitude and frequency, but not
precisely. This is because either system responds to sinusoidal inputs regardless
of frequency, except to signals at stopband nulls or of such low amplitude that
they are lost in the system noise.

Another analogy between the analog and DFT systems for signal analysis
appears in considering a number of detected outputs in response to a sinusoidal
input. Multiple detected outputs make it possible to specify the amplitude and
frequency (but not phase) of the input, and both the analog filters and the DFT
have a frequency response. For either system, we can compare several detected
outputs and use the system frequency responses to determine the sinusoidal
amplitude and frequency.

Based on the analogies between the analog filter and DFT outputs, we refer to
the DFT output as coming from a filter. In Section 6.1 we shall show that the
basic DFT filter shape is accurately represented for a normalized period of
P =1 sand for fa continuous real variable (in hertz) by either of the following
equivalent viewpoints [B-2, B-3, B-4, E-15, H-19, R-44, W-27]:

1. An exp[—jzf(1 — 1/N)]sin(nf)/[Nsin(rnf/N)] frequency response.
This response repeats at intervals of N Hz and is convolved with a nonrepeated
input frequency response.

2. Anexp[— jrnf(1 — 1/N)] sin(nf)/(nf) frequency response. This response
is not repetitive and is convolved with a periodic input frequency response
repeating at intervals of N Hz.

In Section 6.2 we shall discuss requirements for frequency band limiting the
input spectrum to account for the periodicity of the filter or input frequency
response. We shall also show (Section 6.3) that the basic DFT filter can be
modified by a data sequence (time domain) weighting applied to the DFT input
or by an equivalent transform sequence (frequency domain) convolution called
windowing at the DFT output. Section 6.4 illustrates the analytical derivation of
both the periodic and nonperiodic filter shapes for triangular weighting. Section
6.5 illustrates the application of either data sequence weighting or DFT output
convolution to obtain the Hanning window. The construction of shaped DFT
filters to meet specific criteria is illustrated with proportional filters in Section
6.6. A summary of shaped DFT filters and some of their performance
parameters is found in Sections 6.7 and 6.8.

6.1 DFT Filter Response

Whenever we draw gain/phase plots, we describe the steady state response of a
linear time invariant system to sinusoidal inputs of fixed frequencies and
constant amplitudes. The linear system may be part or all of a control,
communication, or other kind of system. In any case, if we insert an input
Acos2nft + ¢), we get a steady state output of K(f)A4 cos[2nft + ¢ + 0(f)], as
Fig. 6.1 shows. K(f) and 0(f), the system gain and phase shift, respectively, are
in general functions of frequency.
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Acos2nft + ¢) Linear | K(/)4 cos[2nft + ¢ + 6(/)]
System —

Fig. 6.1 Response of a linear system to a sinusoid.

The DFT is a linear digital system for determining the amplitude 4 and phase
¢ of the input. The DFT is analogous to the linear system in Fig. 6.1 in that it
displays a frequency dependent gain and phase shift. However, the DFT is not
analogous to the system in Fig. 6.1 in other respects. The linear system in Fig. 6.1
is characterized by a time domain convolution of the input and the system
impulse response. This results in a frequency domain product of the input and
system transfer functions. The DFT, as we shall show, reverses these operations.
The DFT does a frequency domain convolution resulting from a time domain
product.

A DFT preceded by an analog-to-digital converter (ADC) is shown in Fig.
6.2a. The ADC is composed of both a sampler and a quantizer (which is not
shown). The input x(¢) to the ADC is a function of time in seconds. The ADC
output x(n) is a function of the time sample number #. The DFT linear system
response to the sequence {x(0), x(1),..., x(N — 1)} is in general a complex
sequence {X(0), X(1),..., X(N — 1)}. If the DFT inputis ) ¥~ [ 4, cos(2rk?) +
By sin(2rkt)], then (2.11) gives the magnitude and phase of coefficient X(k) as
(4} + BY)''? and ¢, = tan™'[ — sign(k)(By/A4y)], respectively.

Periobic DFT Firter  This filter may be derived with the aid of Figure 6.2b,
which shows an equivalent representation of the DFT. The sampling is
accomplished by multiplying the input x(z) by a series of N delta functions.
According to the definition of the delta function, the product x(¢) §(t — nT) must
be integrated to give the sample x(n). The integration is over ¢ seconds, where
e < T. Fig. 6.2c shows a second equivalent DFT representation. Multiplication
of x(7) first by exp( — j2rkt/P) and then by the sum of delta functions yields X(k)
after integration, since, if P = NT,

1 N—-1
X(k) =¥ Y x(mywr
n=0

n=0

P
1[N |
= NJ > 8(t — nT)x(r)e™ 2™IP gy (6.1)
0

Note that the integrand in (6.1) takes nonzero values only at the N times
defined by the N delta functions. Note also that the limits of integration can be
extended from — oo to oo, giving

Xk) = f d(Dx(H)e” 2P gy 6.2)
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where
1 N—-1
() =— ). ot —nT) (6.3)
N n=0
The Fourier transform definition in Chapter 2 shows that (6.2) is the Fourier
transform of x(7)(¢) with respect to the frequency domain variable k/P, so

X(k) = Z [x()£(1)] (with frequency variable k/P) (6.4)

Furthermore, Table 2.1 shows that the Fourier transform of a product is a
convolution, so that (6.4) is equivalent to

X(k) = [D(f/P) = X,(f/P)] (evaluated at f'= k) (6.5)

where D(f) is the Fourier transform of the N impulse functions given by ()
and X,(f) is the Fourier transform of the (analog) function x(¢). Applying the
convolution definition to (6.5) gives

o

k k k—f FAYYA
o :D@*Xa (F) - f D[T}Xa @dﬁ (060

— a0

oo}

_ j D<f>Xa [";f}zf (6.6b)
P P P

Either (6.6a) or (6.6b) determines X(k). The equations are perfectly general
and apply to all spectra. The function X,(f/P) is the Fourier transform of the
input x(f) with respect to the scaled frequency domain variable f/P. If x(¢) is
periodic with period P, it has a line spectrum with lines at integer multiples of
1/P. If X,(f/P) = Qfor f = N/2, then X(k) represents only the spectral line at k/P
because, as we shall see, D(f/P) in (6.6b) has nulls at all other lines (see also
Problem 8).

The function D( f/P) is the Fourier transform of #(¢) with respect to f/P and is
called the DFT filter response. This response determines how energy feeds into
X(k) through the convolution described by (6.6). Determination of D(f/P)
follows on noting that D(f/P) is the Fourier transform of (6.3):

o0

f 1 N-1
D= |=— 8(t — nT)e ™ 2™YP 4y 6.7
Evaluation of (6.7) by using Table 2.1 and setting 7/P = 1/N gives
f) 1Nt
DI ]=— Jj2nfniN 6.8
(P N ngo ‘ ( )

The series relationship Y ¥~ 43" = (1 — y™)/(1 — y) can be applied to (6.8),
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giving
11—
D\p) =N 1= (6.9)

Equation (6.9) defines the DFT filter frequency response. At this point we
note an interesting fact: The period P does not appear on the right side of (6.9).
The real variable f'is continuous and describes the DFT frequency response in
scaled units of cycles per P's. Let a normalized period of P = 1 s be used. This
normalization requires appropriate scaling (Problem 7). Then (6.5) and (6.9)
reduce to

X(k) = D(f)* X,(f)  (evaluated at f = k) (6.10)
_ imf- 1N sin(nf)
D(f)=e )—Nsm ) (6.11)

phase term ratio term

The DFT filter frequency response given by (6.11) consists of the product of a
ratio term and a phase term. The frequency response is defined by 1/N times the
Fourier transform of N delta functions starting at ¢ = 0. If the delta functions
started at a time ¢ # 0, the phase term in (6.11) would change but the ratio term
would still be the same. The phase angle in the phase term is always a linear
function of frequency. The ratio term is a periodic function of type
(sinx)/[Nsin(x/N)], and hence D(f) is referred to as a periodic filter.

Note that the right sides of (6.9) and (6.11) are the same so that plots of D(f/P)
and D(f) versus fare the same. For example, both D(f/P) and D(f) have a first
null at f=1 (i.e.,, D(1/P) = D(1) = 0). A plot of D(f) versus f yields a plot of
D(f/P) versus f/P if the units of f are read as 1/P Hz.

Figure 6.3 illustrates the periodic DFT filter frequency response for N = 16.
The phase angle goes through multiples of (N — 1)n radians every N/P Hz. The
combination of the phase and ratio terms gives the normalized response a gain of
unity at integer multiples of N (see Problem 1). As Fig. 6.3 shows, the DFT filter
responds to all frequencies except to those at integer bin numbers. The response
is continuous and is analogous to the response of a narrowband analog filter.
There are peaks of unit magnitude, referred to as mainlobe peaks, at f'= 0, + N,
+ 2N, ... and peaks of small magnitudes, referred to as sidelobe peaks, near
f=+32 43, £1,.... Theresponse of a given DFT filter to frequencies other
than those in a mainlobe frequency band is sometimes called spectral leakage.

By substituting (6.11) in (6.6a) for P =1 s we get

0

— e pya -1y Sinlnk = f)]
X(k) J e ) )Nsin[n(k — AT X.(Ndf (6.12)

Equation (6.12) says to center the conjugate DFT filter so that the peak filter
response at D(0) lies over f = k, multiply X,(f) by D(k — f), and integrate.
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Fig. 6.3 Frequency response of a periodic DFT filter for N = 16; (a) ratio term, (b) phase.

If we substitute f for — f'with P =1 s and use (6.11), (6.6b) becomes

X(k) = JD(—f)Xa(k +/)df
R aw Sin(af)
_ Je 0 /)m)(a(k +df (6.13)

— o0
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Equation (6.13) says that DFT coefficient X(k)is given by multiplying X,(k + f)
by the conjugate DFT fiiter response and integrating from — oo to co.

Note from the modulation property of Table 2.1 that X,(k + f)in (6.13) is the
demodulated spectrum of X,(f). We can regard the integration in (6.13) as
determining X,(f) by a low pass filter operation on the demodulated spectrum.
The LPF has a frequency response described by (6.11) and is followed by a
frequency domain integration.

The preceding development has shown that the DFT filter given by (6.10) has
a frequency response which is periodic with period N. The periodic DFT filter is
convolved with a nonperiodic input to give DFT coefficient X(k) using either
(6.6a) or (6.6b). Intuitively we feel that we should be able to reverse the periodic
and nonperiodic roles of the DFT frequency response and the unsampled input
frequency response, respectively, so that X(f) is periodic and D(f) is not. This,
in fact, is true, as we show next.

Nonperiopic DFT FiLTer [E-15]  To develop this filter we first note that Fig.
6.2b includes a sequence of N delta functions that are T's apart. This sequence is
equivalent to an infinite sequence of delta functions multiplied by a function that
is unity over the extent of N of the delta functions and zero otherwise. Such a
sequence is given by rect[(t — (P — T)/2)/P] comb;. The rect, comby, and input
functions and their product are illustrated in Fig. 6.4. This product is a pictorial
representation of delta functions weighted by x(nT).

The rect function in Fig. 6.4 sets the integrand of (6.14) to zero outside of the
interval encompassing time samples x(0), x(1), ..., x(N — 1). It appears that the
rect function could encompass any interval — a7 <t < (N — o)7, where
0 <a < 1. In practice we must select o =% to get known answers for the
nonperiodic DFT filter using test functions (see Problems 5 and 6) and we
conclude that o = 1 is correct in general.

We now note that each entry in the time domain sequence input to the N-point
DFT can be represented forn=10,1,2,..., N— 1 by

nT+e

t—(P-1)2
x(n) = rect — 5 comby x(#) dt (6.14)
nT—e¢
where 0 < ¢ < T'isarbitrary, Pisthe period of x(¢), comby = > 2 _ (¢t — nT),

and the rect function is unity in the time interval — 7/2 < ¢t < (N — %)T and zero
elsewhere. Using (6.14) in the definition of the DFT and again recalling that
P = NT, we find
1Nt A
X(k) = v Y x(n) e 2N

n=0

8

t—(P—-1))2 .
J rect [M] comby x(¢)e 2P dt

1
N P

— 0
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1 t—(P—T)2
=—F {rect [—T_J comby x(t)} (evaluated at f = k/P)

N
(6.15)

The term given by 4 { } in (6.15) has f/P as its frequency domain variable
because — j2nftis scaled by 1/Pinexp(— j2nft/P). The Fourier transform of the
product in (6.15) is the convolution

w22 (]
f=k

= D'(f/P)«rep,[X.(f/P)] (evaluated at f'= k) (6.16)
where P = NT, T=1/f,, D'(f/P) is 1/P times the Fourier transform of

[t (P - T)/2:|
A rect 3

-+
ST

ol LLLLLL D =

Fig. 6.4 Functions utilized in (6.14).
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rect{[t — (P — T)/2]/P}, given by (see Table 2.1)

jnra -y S

D'(f/lP)=e o

N e\~

(6.17)

phase ratio
term term

repﬂ[Xa <§>]= i of —lfs)*Xa@): i X, <f _Plf5> (6.18)

1= - ==

and

D'(f/P) is the nonperiodic DFT filter frequency response, and rep [X(f/P)] is
the input frequency response repeated every f; Hz (every N frequency bins).
For a normalized period of P =1 s, (6.16) and (6.18) reduce to

X(k) = D'(f) * repy[Xa(f)] (6.19)

repy[Xu(N] = X 8(f— kN)*X.(f) (6.20)

k=—o0

Note that the period P does not appear in the right side of (6.17) so that plots of
D'(f/P) and D'(f) versus f are the same. D'(f) as given by (6.17) is the

0.8

0.6

Ratio

0.2

-0.2 \f S

0 2 4 6 8 10 12 14 16
f(1/P Hz)

Fig. 6.5 Frequency response of the ratio term for a nonperiodic DFT filter.
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nonperiodic DFT filter frequency response. It consists of the product of a ratio
term and a phase term. The phase angle in the phase term is a linear function of
frequency. The ratio term is a (sin x)/x type of nonperiodic function, and hence
D'(f)is referred to as a nonperiodic filter. Figure 6.5 shows the ratio term for the
nonperiodic DFT filter. The phase term is the same as that of the periodic filter
(Fig. 6.3).

Equations (6.5) and (6.16) are analogous as are (6.10) and (6.19). Equations in
either pair are convolutions of the DFT filter shape and the input spectrum. In
(6.5) the DFT filter frequency response D(f/P) is periodic with period f; Hz
(periodic every N frequency bins). The input frequency response X,(f/P) is not
periodic. In (6.16) the DFT filter frequency response D'( f/P) is not periodic, but
the input frequency response is periodic with period f;.

6.2 Impact of the DFT Filter Response

Although the frequency response of a narrowband analog filter might
resemble the DFT filter response, it would not exhibit peaks at integer multiples
of N as does the DFT filter with Fourier transform D(f) given by (6.11) and
shown for N = 16 in Fig. 6.3. The periodic repetition of a frequency response at
intervals of N frequency bins is a characteristic of sampled-data spectra [T-12,
T-13, L-13]. In this section we first consider the impact of the periodic frequency
response of D(f) acting on a nonrepeated input spectrum. We shall then briefly
consider the nonrepeating DFT filter frequency response D'(f) acting on a
periodic input spectrum. In both cases we let N be a power of 2 for illustrative
purposes.

Figure 6.6 is a pictorial representation of the magnitude of a properly limited,
nonrepeated input spectrum X,(f) and of the ratio term of D(f) for DFT filters
centered at frequency bins 0, N/4, N/2, and 3N/4. The spectrum for X,(f) is
band-limited so that it is essentially zero except for a frequency band N Hz wide
(based on an analysis period of P = 1 ). The spectrum shown is continuous and
nonsymmetrical. Spectra for real inputs are always symmetrical. The non-
symmetrical spectrum in Fig. 6.6 could only be due to a complex valued input
which, for example, results from a complex demodulation.

The periodic DFT filter centered at f = 0 measures the energy about X,(0); the
filter centered at f = 1 Hz measures the energy about X,(1); in general the energy
in X,(f) is estimated by filter number k for 0 < k < N and is given by DFT
coefficients X(0), X(1),...,X(N — 1). Owing to proper limiting of the input
spectrum, the DFT filter number k measures energy about X(k).

Figure 6.7 is a pictorial representation of the magnitude of an improperly
limited input spectrum and of the periodic DFT ratio terms for (a) D(f) and (b)
D(f — NJ2). X,(f) is improperly limited in that it is not essentially zero outside
of a frequency band N Hz wide (based on an analysis period of P = 1 s). As a
consequence some DFT frequency bins have outputs caused by energy in X,(f)
for f both positive and negative. For example, consider Fig. 6.7b. DFT filter
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-D(0)

-N -N/2

D(N/4 - f)

-N -3N/4 N/2 0 N/4 N/2 N 5N/4 f
(b)

D(N/2 - f)

-N -N/2 0 N/2 N f
(c)

D(3N/4 - f)
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Fig. 6.6 Properly band-limited, nonrepeated input spectrum analyzed by periodic DFT filters
centered at frequency bins. (a) 0, (b) N/4, (c) N/2, and (d) 3N/4.

numbers — N/2 and N/2 measure energy about X,(— N/2) and X,(N/2),
respectively. Since DFT filter number — N/2 is just the periodic repetition of
filter N/2, DFT coefficient X(N/2) represents the energy in X,(f) for frequencies
near both f= — N/2 and f'= N/2. Therefore, DFT coefficient X(N/2) contains
aliased energy that may negate its value as a spectral estimate. Similar remarks
apply to DFT filters near k = — N/2.

Even though the nonrepeated spectrum |X,(f)| in Fig. 6.7 is improperly
limited, some of the DFT coefficients obtained with the periodic filter D( f) yield
a good spectral estimate. For example, Fig. 6.7a indicates that periodic
repetitions of filter number zero measure essentially zero energy. As a
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consequence, D(0) measures only energy about X,(0). Similar remarks apply to
DFT filters near k = 0.

-N ~N/2 0 N/2 N f

[Xa(f)l

-N -N/2 0 N/2 N f

[Xalf +N)|

Fig. 6.7 Improperly limited spectrum analyzed by DFT filters. (a), (b) Periodic filters centered at
frequency bins 0 and N/2, respectively. (c) Nonperiodic filter centered at N/8.

An analogous development applies to the nonrepetitive filter D’'(f) filtering
the periodic input spectrum rep.[X,(f)]. Figure 6.7c shows the periodic
spectrum for normalized frequency f; = N. Theratio term for D'( f — N/8)is also
shown. If X,(f) is essentially zero outside of a frequency band N bins wide, then
thereis no aliasing in the spectra of repy [ X,(f)]. Figure 6.7c shows the spectra of
X,(/) overlapping X,(f+ N) and X,(f — N). If the aliased power levels are
negligible at the crossover points and beyond, then spectral analysis with
nonrepeated DFT filter D'(f — k) gives an effective estimate of X,(f).
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6.3 Changing the DFT Filter Shape

The DFT filter gain as a function of frequency is determined by
sin(nf)/[N sin(nf/N)] or sin(nf)/nf, depending on whether one chooses not to
repeat or to repeat, respectively, the input spectrum. Either filter has peak gain
of 0 dB and nulls at all integer frequencies away from the peak (except for 0 dB
peaks at integer multiples of N in the periodic DFT filter shape).

Itis often desirable to change the basic DFT filter shape to meet the objectives
of a particular spectrum analysis [G-15, H-19, P-2, P-4, R-16, T-14, O-1, O-7,
A-38]. Some desirable modifications to the basic DFT filter include the
following:

(1) Reduce the peak amplitude of the filter sidelobes relative to the peak
amplitude of the mainlobe.

(2) Change the width of the mainlobe of the filter response.

(3) Increase the rate at which successive sidelobe peak amplitudes decay.

(4) Simultaneously, do (1)-(3).

These objectives may be accomplished by one of the following operations: (1)
Data sequence (time domain) weighting or (2) transform sequence (frequency
domain) windowing.

If the DFT filter shape is changed by time domain weighting, each point of the
input function is multiplied by the corresponding point of the weighting
function. If the DFT filter shape is changed by frequency domain windowing, a
number of DFT outputs are scaled and added to achieve a frequency domain
convolution equivalent to the time domain multiplication. The latter always has
a frequency domain equivalent that can be exactly or approximately represented

wlt)
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i > ngQE(t»nT)
X /\ /\ wlixit) pr winixinl
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Fig. 6.8 (a) Analog and (b) digital time domain weighting.
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by summing DFT outputs. Therefore, the frequency domain windowing
accomplishes the same objective as the time domain weighting. The terms
“weighting” and “windowing” establish whether the DFT filter shape is
changed by a time or frequency domain operation, respectively. We shall use
“window”’ to mean the frequency response of the shaped DFT filter.

Figure 6.8 shows a function x(), which is weighted by (a) an analog weighting
function «(¢f) and (b) a sampled-data weighting function .(n). If analog
weighting is used, a weighted product «(#)x(¢) is sampled to give the sampled-
data product «(n)x(n). If digital weighting is used, a sampled-data function x()
is multiplied by the sampled-data weighting function «(n).

z

&(t-nT)
wt) n=0 e '71""‘ N
nT +¢€ N-1 Xik)
#4(n)x(n)
@ xi X X / (-) X 13 '—'
nT -€ n=0
N-1
% S s(t-aT)
g12nhP w(t) n=0
‘ l Jj IP X(k)
(b) x(t) X X X () dt
L] o
gi2niiP windiv
l j o0 X(k)
) x(v X X [y a _— .

Fig. 6.9 Equivalent representations of DFT with time domain welghtmg (See the text for
explanation of parts (a)-(c).)

Figure 6.9 shows equivalent representations of the DFT with time domain
weighting [E-21]. In Fig. 6.9a x(¢) is weighted, sampled, and transformed to give
DFT coefficient X(k). The only difference between Figs. 6.9a and b is the
addition of the weighting function «(f) at the input. The weighting function
results in a shaped DFT filter response. The kth DFT coefficient with weighting
on the input is given by

1Nt .
Xky=—3 wn)x(n)e /2mnN (6.21)
Nn=0
Periobic SHAPED DFT Frter To develop this filter we note that the
operations in Fig. 6.9a may be rearranged as in Fig. 6.9b, which is equivalent to
Fig. 6.9c. The sequence of NV delta functions in Fig. 6.9a is nonzero only in the
interval 0 < ¢ < P, so the integration interval in the right block in Fig. 6.9b may
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be extended from between 0 and P to between — oo and co. This extension is
shown in Fig. 6.9c. Figures 6.9a—c are¢ equivalent representations of the DFT and
all give the same value for X(k). Let «(f) be nonzero fort < — P/Nand ¢ > Pas
well as for te (— P/N, P). (Otherwise see Problems 19 and 24.) Then (6.21) can
be expanded as

X(k) = J 4 (V)ew(D)x(t)e ™ 12™IP dy (6.22)
Again the frequency variable is f/P and the evaluation is at f = k, so that
X(k) = F[L()ew()x(®)]  (with frequency variable k/P)  (6.23)
This is equivalent to
X(k) = D(f/P) * X,(f/P) (evaluated at /= k) (6.24)

where D(f/P) and X,(f/P) are the Fourier transforms of [(?) «(#)] and x(f)
with respect to the scaled frequency f/P. The function D(f/P) is the shaped DFT
filter frequency response.

Equation (6.24) evaluated with P = 1 s is equivalent to

0

X(k) = J D(k — f)X.(f) df (6.25)

Equation (6.25) is the same as (6.12) if the shaped DFT filter response D(k — f)
is substituted for the normal DFT filter response D(k — ) in (6.12). A change of
variables in (6.25) leads to

e}

X(k) = J D(—-NX.(f + by df (6.26)

Equation (6.26) is the same as (6.13) if D(— f) is substituted for D(— f) in
(6.13). The operations accomplished by either (6.25) or (6.26) center the peak
shaped DFT filter frequency response D(0) over X(k). Multiplying X,(f + k) by
D(— f) and integrating the product then gives the shaped DFT filter output.
These operations are indicated pictorially in Fig. 6.10. The magnitude of the
input spectrum is in Fig. 6.10a and the normal periodic DFT ratio term in Fig.
6.10b. The normal DFT response has a narrower mainlobe and higher sidelobes
than the shaped DFT response shown in Fig. 6.10c. The shaped DFT filter
estimates the energy content of X,(f) over a broader band than does the normal
DFT filter. The stopband energy estimated by the shaped DFT filter is less than
that of the normal DFT filter because of the lower sidelobes. Spectral content
estimated by X(N/4) is given by integrating the product of the two spectra
illustrated in Fig. 6.10d.
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Fig. 6.10 Spectra involved in calculating X(N/4): (a) Nonperiodic input spectrum, (b) basic
periodic DFT filter response, (¢) windowed periodic filter response, and (d) spectra convolved to
determine X(N/4).

The shaped DFT filter response, D( f/P), is commonly referred to as a window
because it altows us to “view” a portion of the input signal spectrum X,(f). We
shall use “window”” only to mean the DFT filter frequency response, although
the term is also used in some of the literature to mean data sequence weighting.
To eliminate ambiguity we shall use the term “weighting’ to mean data sequence
scaling to obtain a shaped filter, while “window” will mean shaped DFT filter
frequency response. “Windowing” will designate the convolution operation at
the DFT output which can replace weighting of the data sequence. ‘

The window D(f/P) is the Fourier transform of «(¢)<(t). For weightings that
are nonzero for 1 < — P/N and ¢ > P it can be expanded as

D(f/P) = D(fIP)* W (fIP) (627)
where ¥ (f/P) is the Fourier transform of the weighting function with respect to
the scaled frequency variable f/P, and D(f/P) is the basic DFT periodic filter
given by (6.9). Convolving % (f/P) with the periodic DFT filter results in D( f/P)
being a periodic function. This periodic shaped DFT filter acts on a nonrepeated
input spectrum to determine the DFT output.
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Either & [&£(8)«(2)] or D(f) * #°(f) is used to determine the shaped DFT
filter frequency response, depending on whether or not () is nonzero only for
te(a, b), respectively, where — P/N < a < b < P. Use of #[£(2)«(2)] to derive
the shaped DFT filter frequency response will be illustrated with triangular
weighting. Use of D(f)* #°(f) will be illustrated with Hanning weighting.

This development has shown that the shaped DFT filter is periodic and is
convolved with a nonperiodic input. Intuitively, we feel that we should be able to
reverse the periodic and nonperiodic roles of the shaped DFT filter frequency
response D(f/P) and the input frequency response X,(f/P), respectively. This is
indeed true, as we show next.

Nonperiopic SHAPED DFT FiLter  To develop this filter we again recall that
each entry in the time domain sequence input to the DFT of dimension N is
represented by an integral (see (6.14)). Paralleling the development of the
nonperiodic DFT filter (see (6.15)),

X(k) = % J w(t) rect |:t_(P+T)/2:| combT x(t)e—jant/P dt
= D'(fIP)*1ep[X,(f/P)]  (evaluated at f= k) (6.28)
where rep [ X,(f/P)] is given by (6.18), comby is given by (2.90), and

0

D (i) _1 Jwa) rect [ﬂ]e—nwm 6.29)
P P p

— 00
The product of the weighting and rect functions in the preceding Fourier
transform integrand results in a frequency domain convolution:

D'(f]P) = W (f|P)+ [e~ ™~ M sin(nf)/nf] = W (f]P)+ D'(f/P) (6.30)

Equation (6.28) defines the spectral analysis output for a nonrepeating shaped
DFT filter and a periodic input spectra. If «(¢) is nonzero only for te(a,b),
— P/N < a < b < P, the rect function in (6.28) and (6.29) as well as D'(f/P) in
(6.30) may require modification as discussed in Problems 19 and 23.

Suapep DFT FiLters The remainder of this chapter is devoted to classical
shaped DFT filter responses (i.e., windows) and to proportional DFT filters.
Triangular and Hanning windows are analytically tractable filters that are used
to illustrate analysis procedures. Proportional filters are used to illustrate
empirical design of shaped DFT filters.

DFT FILTER SHAPING BY MEANs oF FIR FiLTERs Chapter 7 discusses finite
impulse response (FIR) digital filters. These filters are transversal (feedforward
only); furthermore, powerful computer aided design programs are available to
evaluate FIR filter coefficients. Digital demodulators are also discussed in
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Chapter 7. The tandem combination of a demodulator and low pass FIR filter is
equivalent to weighting plus a DFT. The bandwidth of the FIR filter permits a
reduction of sampling rate at the filter output. Correspondingly, overlapped
data is required at the DFT input. (See Problem 7.18 for further details.)

Whereas the classical DFT windows have fixed responses versus frequency
bin number (responses generally depend weakly on N), the FIR filter method of
designing DFT windows can provide a frequency response to satisfy a given
bandwidth requirement. For some filter length the passband ripple and
stopband rejection specifications are met. This length can be increased until the
filter length corresponds to a suitable FFT size. Then the equivalent DFT
weighting and demodulation are mechanized using the FFT.

The FIR filter method provides great flexibility in designing DFT windows.
For this reason the method has been used successfully in communication signal
dechannelization (see Problems 7.18-7.21).

6.4 Triangular Weighting

The weighting function «(n) illustrated in Fig. 6.8 is known as triangular
weighting [H-19, B-20]. In this section we derive both periodic and nonperiodic
weighted DFT filter outputs for triangular weighting on the DFT input sequence
[E-24]. Derivation of the periodic filter is more tedious than derivation of the
nonperiodic filter. The derivations are an interesting illustration of developing

\ rect(ﬁ)
1
-P/4 0 P/4 t
tep/2 I t
rect(575 )q 1 = = (53)
-3p/4 P12 _p/a 0 P/ P/2 t
At
il
P/2 (%)
P2 0 p/2 t

Fig. 6.11 Convolution of two rect functions to derive the triangular function.
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both the periodic and nonperiodic filters for a simple weighting function.
Triangular weighting can be defined from the triangle function tri(z/P) (Fig.
6.11) which results from the convolution of two rect(¢/(P/2)) functions:

(7)) (7)
tri| — | = rect| — ) *rect| —
P P2 P/2

B {P/Z —ltd, < P2

. (6.31)
0 otherwise

We shall describe triangular weighting that contains a normalization factor to
give the shaped DFT filter frequency response a peak value of unity. The
normalized analog triangular weightirig function «»(¢) delayed to start at time

zero is given by
() <4>t | L= P/ZJ (6.32)
=|—]n .
“ P P

The sampled-data triangular weighting function «(n) is defined by letting
P = NT where f; = 1/T Hz is the sampling frequency. One series of weighted
delta functions that approximate (6.31) and (6.32) is given by (see Problem 19)

{er — Guaa N2~ 1
— o(t —nT) = o(t — nT)} (6.33)
[N/21% - 12_: o ,Z‘o

where [( )] means the smallest integer containing ( ) (e.g., [3.5] = 4), #(¢) is the
sequence of N delta functions that accomplish the sampling, both sides of (6.33)
must be used in an integrand to give meaning to the convolution of delta
functions, and .., and 6,44 are defined by

2(t)eolt) =

5 1, if N is an even integer
o otherwise

(6.34)
1, if N is an odd integer
5odd =

0 otherwise

The function «(n) may also be derived by evaluating (6.33) for ¢ =0,
T,2T,...,(N — )T to give

o) = (#)2 {n +boaas  0<n< NP2 635
_ [N21) N —n, IN2) <n<N—1

where |[( )] denotes the largest integer contained in ( ); for example, |3.5] = 3.
The function «(¢) looks like an isosceles triangle whose base is along the time
axis and has a peak value of 2. The function «(n) has a peak value 2/N at N/2 for
N even and a peak value of 2/(N + 1) at (N — 1)/2 for N odd, where N is the
number of points in the DFT.

The convolution given by (6.33) is illustrated in Fig. 6.12for N = 8and N = 7.
Pictorial representations of the delta functions defined by «,,,(f) and
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Fig. 6.12 Sequences of delta functions: (a) «,2(2), (b) &1/2(t — T), (c) sequences convolved to
yield (d), (d) triangular weighting for N = 8, and (e) triangular weighting for N = 7.

A 1,(t — T) are in Fig. 6.12a and b. The notation «,,,(¢) means a sequence of
delta functions of length [N/2] given by

[Nj2] =1
— ot —n 6.36
[N/2] ngo =D (30
Figure 6.12c indicates the convolution that determines «»(n) for N = 8, as shown
in Fig. 6.12d. The convolution .« ,,(¢) * & ,,(¢) yields «(n), as shown in Fig.
6.12e for N = 7. Note that «(0) = 0 for N even. Note also that the number of
nonzero weightings is the same for N = 7 and 8; it is in fact the same for any
odd N and the next larger even N. This results in analytically tractable periodic
DFT filters for triangular weighting. Finally, note that in evaluating the
convolution integral we have interpreted the integrated product of two delta
functions as giving unity when they overlap; that is (see Problem 16),

9]

f ot —tg)0(t —to)dt =1 (6.37)

— 00

d1(8) =
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Solving (6.33) for N = 8, we get the output shown in F1g 6.12a. We conclude
that

d(O)eet) = d 112(0) % 12(t — Tdeyen) (6.38)
Periopic Winpow  The periodic window that results from triangular weighting

on the input is derived by taking the Fourier transform of (6.38) with respect to
the scaled frequency variable f/P, yielding

F [dOe()] = F [d1)2(0] F [ 1)2(t — Tdeyen)] (6.39)
Let & [&1,2(8)] = Dy,2(f/P), so that the shifting property in Table 2.1 gives

F [&1)2(t — Tdeyen)] = D1j2(f/P) €Xp(— j21f Tdeyen/ P) (6.40)

The shaped DFT filter response D(f/P) that results from the triangular
weighting at the input is given by

D(fIP) = F [d(t)ee(t)] = [D1o(f]P)1* exp(— j21f Toeven/P)  (6.41)

The response D;,,(f/P) is determined by following the steps that led to (6.9).
Taking the Fourier transform of the [ V/27 delta functions that define «,,,(¢) in
(6.36) gives

1 e MINPUN sin(nfTN/21/N)
[N/2] e im/IN sin(nf/N)
Using (6.42) in (6.41) gives the periodic shaped DFT filter frequency response
with triangular weighting:

(IN2] -1+ 5even)2} 1

[sin(ner/zw/N)T
X|—m -
sin(nf/N)
Note that the period P does not appear in (6.43). The independence from P

corresponds to the unweighted DFT filter. For a normalized period of P = 1's
we get the following shaped DFT filter frequency response for triangular

weighting:
5= e ot sin(x] ) fom (w2 ) (644

The magnitude of (6.44) has mainlobe peaks at f = 0 and integer multiples of
N. Between the mainlobe peaks at /= 0 and N there are sidelobe peaks near
f=3,57,...,N — 3. The magnitude is zero between the mainlobe peaks at
f=2,4,...,N—2.

Nodd:
D(f) = e Jm/=1M) [Ni ] sin (ng %)/Sin <n§ NL/2>:| (6.45)

Dl/z(f/P) =

(6.42)

(6.43)

N even:
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Fig. 6.13 Gain of periodic DFT filters for N = 32 for (a) unweighted input and (b) triangular
weighting on input.



6.4 TRIANGULAR WEIGHTING 201

The magnitude of (6.45) has mainlobe peaks at f = 0 and integer multiples of
N. Between the mainlobe peaks at f'= 0 and N there are sidelobe peaks near
f=3N/(N+1), 5N/(N +1),...,(N — 3)N/(N + 1). The magnitude is zero at
even multiples of N/(N + 1) between 0 and N.

The effect of the triangular window for N even is to double the width of the
filter mainlobes and to reduce the filter sidelobe levels. The first unweighted
DFT sidelobefor N = 32 has a peak value of — 13.43 dB, as Fig. 6.13a shows. In
the triangular window the squaring operation in (6.43) doubles this value so that
the first sidelobe peak has a value of — 26.87 dB, as Fig. 6.13b shows. The
shaped DFT filter given by (6.43) is periodic with period f; Hz. It is convolved
with a nonrepeated input spectrum to determme DFT coefficient X(k) as given
by (6.24).

NonperiobiC WiINDOw  The nonperiodic window that results from triangular
weighting on the input has a |sin(x)/x|?> gain term and is convolved with a
periodic input. For example, for N even, triangular weighting defines a sequence
at the DFT input given by (see Problem 19)

nT +e&

w(n)x(n) = J comby x(¢) % [rect (t ;/Z/4> xrect <t ;/}2)/4 >:| dt  (6.46)

nT—e¢
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Fig. 6.14 Nonperiodic shaped DFT filter that results from triangular weighting on input.
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so that the DFT output for frequency bin k is defined by
X(k) = D'(f]P) « rep, [ X,(f/P)] (evaluated at /= k) (6.47)

. ey sin(nf/2)}2
D'(f/P)=e l:inf/Z
The derivation for N odd is similar.
The gain term in square brackets in (6.48), shown in Fig. 6.14, is the
nonperiodic shaped DFT filter frequency response which results from triangular
weighting at the input. Comparing derivations of the periodic and nonperiodic
shaped DFT outputs for triangular weighting, we see that it is easier to derive the
analytical expression for the nonperiodic filter.

(6.48)

6.5 Hanning Weighting and Hanning Window

The basic DFT filter response was derived in Section 6.1. The basic DFT filter
response is due to a rectangular weighting of unity on the input time samples for
sample numbers 0, 1, 2,..., N — 1 and a weighting of zero on all other time
samples. Changing the DFT filter shape with a time domain weighting different
from the rectangular weighting or with frequency domain windowing was
discussed in Section 6.3. Section 6.4 illustrated time domain weighting with the
triangular function. In this section we discuss Hanning weighting and the
Hanning window, which are attributed to the Austrian meteorologist Julius von
Hann [B-20, H-18, H-19, O-7]. Hanning weighting is also called cosine squared
weighting. (See Problem 14 and compare cos*(nn/N) weighting in Section 6.7.)

The Hanning mechanization is interesting for several reasons. It has simple
implementations either in the time domain or in the frequency domain. It
significantly reduces sidelobe levels. The mainlobe of the DFT filter is twice as
wide between nulls with Hanning weighting as with rectangular weighting. Nulls
in the sidelobes occur every frequency bin with Hanning weighting as with
rectangular weighting. The weighting is tractable analytically.

wit)

1
% P/2 3

~Y

Fig. 6.15 Hanning analog weighting function.

As Fig. 6.15 shows, the Hanning analog weighting is the sum of unity and a
cosine waveform. The Hanning time-limited analog and the sampled-data
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weightings are given by

1 — cos(2nt/P), 0<t<P "

w(t) = ) (6.49)
0 otherwise
1 — cos(2nn/N), - =0,1,2,...,N—1

co(n) ={ (2mn/N) " . (6.50)
0 otherwise

The Fourier transform of 1 — cos(2n#/P) determines the weighted DFT filter
response. Using Table 2.1, we find that this transform for P =1 s is

W) =0(f) —30(/+ 1) —36(f- 1) (6.51)
The periodic weighted DFT filter response D(f) follows from (6.27):
D(f) = D(f)* W (f) (6.52)

where D(f) is the unweighted DFT filter response. (It is important to note that
what we commonly call unweighted is actually the DFT output with rectangular
weighting). Combining (6.52) and (6.11) gives

1 Mew‘nﬂl ~1/N)
N sin(nf/N)
12 sin[zn(f+ 1)]
N sin[zn(f+ 1)/N]
12 sl = D1 - va-um)
N sin[n(f— 1)/N]
Equation (6.53) is the sum of three terms. When used in (6.25) the first term
defines the unweighted DFT frequency response for bin & ; the second and third

terms are minus half the unweighted DFT responses for frequency bins & + 1
and k — 1, respectively. The periodic Hanning DFT filter response is therefore

D(f) =D(f) = 3D(f+ 1) =3D(f~ 1) (6.54)

With Hanning weighting, the DFT output for frequency bin £ is given by (6.25)
or (6.26) which is repeated below

D(f) =

—Jjn(f+1)(1 —1/N)

(6.53)

o)

X(k) = J D(= NX(f + k) df (6.55)
Using (6.54) and (6.55), we see that
X(k) « X(k) — 1Xx(k + 1) — 1Xx(k — 1) (6.56)

where the arrow indicates that the quantity on the right replaces that on the left.
Equation (6.56) means that Hanning weighting at the input is equivalent to
replacing each DFT output by the scaled sum of normal DFT outputs from the
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three frequency bins k, k + 1, and & — 1. This simple implementation resulted
from the convolution operation in (6.52). This frequency domain implemen-
tation is called the Hanning window. We see that either Hanning weighting at
the DFT input or Hanning windowing at the DFT output gives the same result.
The DFT filter response for either Hanning weighting or Hanning windowing
follows from (6.53), which can be approximated for a large value of N by

BN ~ {1 sin(rf) 172 sin[n(f+ 1)]
(f)‘~ N sin(nf/N) N sin[n(f+ 1)/N]

+g sin[n(f — D] }ejﬂf(l-l/N)
N sin[n(f— 1)/N]

The sum of the three terms in the curly brackets in (6.57) (see Fig. 6.16) gives a
mainlobe filter width twice that of the basic DFT. The Hanning window
sidelobes go to zero as often as the unweighted DFT, but the peak Hanning
sidelobe is down over 30dB (Fig. 6.17), as compared to less than 14 dB for the
basic DFT. The sidelobe reduction results from the sidelobes of the two filters
that peak at f= 4 1 canceling the sidelobes of the filter that peaks at f = 0.

(6.57)

Response

1 sin(nf)
N sin (rf/N)

12 sin [wif- 1]
172 sin [n(f+ 1)) N sin [m(f ~1)/N]

N sin [n(f +1)/N] 2"

, . x N
"\, S~ TN, ST 7 tapnn

Fig. 6.16 Frequency response of three scaled DFT filters whose sum response is the Hanning
window (N = 16).
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Fig. 6.17 Frequency response of the Hanning window.
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Derivation of the nonperiodic Hanning filter is similar to the derivation just
given for the periodic Hanning filter (see Problem 14).. Hanning weighting of the
input requires generation or storage of cosine functions used in N — 1
multiplications. One weighting generates all N filters. Hanning windowing
requires two shifts to accomplish the scaling by 2 in (6.56) and two additions for
each filter. Since in integer arithmetic division by 2 is accomplished by shifting
the binary representation to the right by one bit and discarding or rounding with
the rightmost bit, the Hanning window has become popular with hardware
engineers. The windowing must be accomplished for each of the N filters. Either
the input weighting or output windowing is a relatively simple operation.

6.6 Proportional Filters

Sections 6.3-6.5 showed how to change the DFT filter shape by time domain
weighting or frequency domain windowing. The filters were modified so that all
had the same shape. Krause [K-3] and Harris [H-21] have independently
described a windowing procedure for modifying the DFT filters so that the ratio
of the filter center frequency f, and the filter bandwidth Af, is a constant, which
we denote Q:

Q = 1/Af, (6.58)

The filters are sometimes called constant Q filters. Since the filter bandwidths
are proportional to the center frequencies, they are also called proportional
filters.

Proportional filters are formed in the frequency domain by scaling and adding
a number of adjacent DFT outputs (i.e., using a number of DFT filters as basis
filters in the formation of a new filter). These filters are used for such purposes as
acoustic or vibration analysis when closely spaced signal frequencies occur at
low frequencies but more widely spaced signal frequencies appear higher up the
frequency scale. The gain of the proportional filters is usually adjusted so that
each of the proportional filters will contain the same total noise power.
Proportional filters are an interesting example of how DFT filters are
constructed [H-21, K-12, B-23]. Several constructed filters are included in the
summary in Section 6.7.

DEesiGN PARAMETERS  Let the proportional filters be linearly spaced on a base 2
logarithmic scale. Let N, proportional filters cover the octave from f;, to 2f,.
Then the sth filter is centered at

So = fo2™ (6.59)

so that log, f, = log, fo + n/N,, wheren =0,1,2,...,N, — 1 are the tags of the
proportional filters. Let the crossover point of adjacent proportional filter gains
be as shown in Fig. 6.18, so that

Jo+34f0 = farr — 3 Asa (6.60)
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Af,/2
Filter Bn+1/72
gain
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Fig. 6.18 Proportional filter spacing.

Substituting (6.58) for Af, and using (6.59) gives 2" + 2"/2Q =2"*1 —2"*120),
from which

0 =32+ /2" -1 (6.61)

The number of proportional filters N, should be chosen so that the narrowest
proportional filter has bandwidth no less than those of the DFT basis filters.
Otherwise, too few DFT filters are used to form the proportional filters, which
experimentally are then found to result in higher sidelobes [K-13]. Stated
another way, frequency separation of the DFT basis filters must be small enough
to approximate the convolution integral with farily good accuracy (see Problem
9). Frequency separation can be stated in terms of bandwidth and therefore Q. If
Oper is the value of Q for the DFT filter at the low frequency end of the octave,
then

Oprr = Jfo/4f =N (6.62)

where Af'is the spacing of N DFT filters spanning the octave from f, to 2f.
The criterion that the DFT filter bandwidth Af be less than or equal to the
proportional filter bandwidth A4f, at f, gives

Oprr = Q (6.63)
If Ny>» 1, (6.61) gives

0~ 12" —1) (6.64)
Using (6.64) and (6.62) in (6.63) leads to
1)@ - 1)< N (6.65)
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Using 2" = ™™ ~ 1 + (In2)/N, for N, > 1 gives
N, < Nln2 ' (6.66)

Equation (6.66) says that the number of proportional filters should be less than
the number of DFT filters by In 2 to avoid undesirable sidelobe effects.

ForMATION OF PROPORTIONAL FiLTERS The filters are formed by a windowing
operation performed in the frequency domain. Let D,,(f) be the mth DFT filter
response to frequency f. Let D,(f) be a proportional filter resulting from
summing K DFT outputs. Then the convolution operation for proportional
filtering is

K
DN =Y GmDxorn(f) (6.67)
m=1

where g,,, is the mth gain constant for the nth proportional filter and K, + 1 is
the number of the first DFT filter used.

Equation (6.67) contains K gain terms g,,,, Which we must specify. These are
specified by designating K desired values for the proportional filter. For
example, at f = f, we may want unity gain, so that D,(f,) = 1. At f = f, + 34/,
we may want a crossover level /, giving D,(f; + 34f,) = I,. Specifying gains at a
total of K frequencies, f= f1,/5,...,/x gives K equations in K unknowns as
follows:

d, = D,g, (6.68)
where
d, = [Dy(/1), Du(f2) - -, Du(f)1" (6.69)
& = [91m Gan - - gxn) (6.70)
DK0+1(f1) DK0+2(f1) T DK0+K(f1)
D, = DK0+‘1(f2) D, +.2(f2) 0 Dk, +.K(f2) (6.71)
Deoir(fi) Dioralf)  Diyrx(fi)
Solving for the gain terms yields
g, =D 'd, (6.72)

Equation (6.72) effectively solves the theoretical approach to proportional filter
development. Two practical problems remain:

(1) The proportional filters may need normalization so that each has the
same broadband output power in response to x(rn), where n(n) is the sequence
that results from sampling #(¢), a white noise input with a mean value of zero.
White noise has a power spectral density (PSD) defined by |H(f)|* = 1 for allf,
which corresponds to an uncorrelated input: #(f)*n(— ) = 6(¢) (see, e.g.,
[P-24], Section 10.3). We shall tacitly assume that white noise has been band-
limited by appropriate analog filters to preclude aliasing. Normalization of the
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proportional filters is important if a human observer is simultaneously viewing
the output of all the filters. A human observer usually prefers to see filter outputs
that have a constant power output at all frequencies with a uniform power
spectral density noise input.

(2) A procedure for specifying the proportional filter gains in (6.70) is
required for the computation of the gains. The procedure permits automatic
computation of the gains using a digital computer.

Noise NorRMALIZATION Problem (1) requires that we normalize the pro-
portional filters so that each has the same noise bandwidth. Bandwidth is
defined in various ways, including

(a) the frequency range between the — 3 dB points on the frequency
response,

(b) thebandwidth of a rectangular filter passing the same white noise power,
and

(c) Af,, which is proportional to center frequency f, for constant Q filters.
This last definition of bandwidth will be used to define noise bandwidth for
proportional filters.

Let Af, be the bandwidth measure for proportional filters. Since Af, increases
with frequency, the peak filter gain must decrease with frequency to keep noise
power output a constant. Let the noise power spectral density (NPSD) input be
[n(/)|?. Then the NPSD at the output of the nth filter is (see Problems 19 and 20)

NPSD = |H(/)*Du(/)D}(f) (6.73)
Using (6.67) we see that the total noise power output NP, from the mth filter is

foe]

NP, = JIH(f)IZ 5 zgm,.DKﬁm(f)g*D*oﬂ(f)df (6.74)

Let H(f) be zero mean white noise with |H(f)|> = 1 W/Hz. Then we have
r ok K gTg*
NPO J z gmnDKo+m(f)|2 df= Z ,gmnlz |cm‘2 = —n]\]_n (675)

= m=1

where ¢,, = [ [Dk,+n(/)|* df. To obtain a noise power output of unity we
rescale each coefficient, obtaining a new coefficient vector

(8) </ N/g,gk g (6.76)

Use of the new scaled coefficients given by (6.76) results in the proportional
filters having unity noise power output with 1 W/Hz input.

Fitr Functions Problem (2) requires that we specify a procedure so that the
gain vector g, can be computed automatically using a digital computer. At this
point the entries in the vector d, are unspecified. These entries describe the



6.6 PROPORTIONAL FILTERS 209

proportional filter gains at K different frequencies. To specify these entries a fit
function may be used. The fit function should have a shape similar to that
desired for the proportional filters.

An example of a fit function is given by

_ fsinln(f— f)T.]
D(f)”{ o/ — )T,

where the (sin x)/x function determines the basic filter shape, «, is a constant
used to adjust the crossover level /,, w,(f — f,) is a weighting, ordinarily set
initially to unity and modified iteratively to meet design objectives, and

{(fn—"fnl)'l, f</
e =t >4

Let /, be the crossover level of adjacent filter gains, as shown by Fig. 6.18. With
w.(f— f) = 1, (6.77) yields

o, = logl,/log(2/n) (6.79)
The value of /, may be changed slightly to maintain crossover if T, is varied by

small amounts to vary the width of the filter mainlobe.
Another example of a fit function has a shape which is basically Gaussian, i.e.,

}"exp[—jn(f—fn)(l —UNTIw(f— 1) (677)

T =

n

(6.78)

B(f) = exp [( ff __’;> ln(ln)} exp[ — jr(f — (1 — UNT,1w,(f ~ £
" (6.80)
where
Ja(n), </
- 6.81
fe {fcu(n), I (6.81)

Jfua(n) and £, (n) are the lower and upper crossover frequencies, respectively, and
other parameters are as defined previously.

DesigN ExamMPLE A practical design problem [K-3] used 256 proportional
filters to span the octave from 160 to 320 Hz. Use of (6.64) gives Q = 369.33.

Filter center frequencies are f, = 2"¥160 for n =0,1,2,...,255. Crossover
levels are specified as [, = — 2dB, and upper and lower crossover frequencies
are

JeuM) =fu + £/2Q,  faln) = fu — /20

A total of 368 DFT filters spanned the frequency range 160 to 320 Hz, with the
first DFT filter centered at 160 Hz. Thus Q,;, = 368 ~ 369.33 = Q, which was
found to produce proportional filters meeting specification even though (6.63) is
not quite satisfied at the 160 Hz end of the frequency band. Let m be the number
of the DFT filter whose center frequency f,, is closest to f,, the center frequency
of the proportional filter, and let

[D(fm—Z)’D(fcl)a 5(fn)> D(f;:U)>D(fm+2)] = [D(fm—z)a lm 19lm D(.fm+2)]
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where (6.80) specifies D( ) on the right side of the above equation. Either the first
or last four entries of the vector above specify fit function gains to be used in d,,
given by (6.69), according to whether f, < f,, or f, = f,., respectively. The fit
functionis shownin Fig. 6.19. Figure 6.20 shows the relationship of the sequence
of proportional filters to the sequence of DFT filters (filter sidelobes are not
shown).

Gain

Fit function

T T T Y

fm-2 fel fo feu fva f

Fig. 6.19 Gaussian fit function.

Gain
1} DFT filters
v 2
f
fm
Proportional|filters
— % P ? — \ o
fo N 1 | 2 f
f -— f a
n (1 2 ) n (1 ‘35 ) 0

Fig. 6.20 Relationship of proportional and DFT filter banks. (Courtesy of Lloyd O. Krause.)

Note in Figs. 6.19 and 6.20 that the peak values of the proportional filters
decrease to keep the total noise power output a constant as the width of the filters
increases. Three filters resulting from the design are shown in Fig. 6.21. The filter
numbers are n=1, 126, and 255, where proportional filter numbers
0,1,2,...,255 cover the octave with Do(f) centered at 160 Hz. A typical
mechanization might have an additional 256 proportional filters cover the
octave from 320 to 640 Hz.
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RerLECTIONS ON PROPORTIONAL FiLterRs The proportional filters we have
described were constructed using a frequency domain convolution accomplished
by scaling and adding adjacent DFT coefticients. The scale factors were chosen
to meet specific filter shape criterion including bandwidth, that is, Af, in Fig.
6.18, and desired shape, for example Gaussian. Only four DFT outputs were
used to form each filter in the examples (see Fig. 6.21). Each proportional filter
has a different bandwidth so the scale factors are different for each.

Since the proportional filter frequency responses all have different shapes,
their inverse Fourier transforms are also different. These transforms determine
the data sequence weighting to get the desired window. Since all weightings are
different, practical application requires proportional filter formation in the
frequency domain.

Any window with an analytical definition is a candidate for the fit function.
Weighting functions have been constructed by many investigators as sections,
products, sums, or convolutions of other functions or of other weightings.
A number of additional weighting functions and their windows are defined
next.

6.7 Summary of Weightings and Windows

In this section we present Harris’s summary of a number of weighting
functions and the corresponding periodic shaped DFT filter frequency re-
sponses (windows) [H-19]. Since both the weightings and windows are
dependent on N, the weighting functions are defined and illustrated in the figures
as even sequences about the origin for N/2 = 25. They therefore have an odd
number of points.

The DFT weighting for n=0,1,..., N — 1 is used to derive the window
illustrated in the figures. For presentation purposes this weighting function is
formed by discarding the right end point so that the sequence has an even
number of points. The resulting sequence is then shifted so the left end point
coincides with the origin. The logarithm of the magnitude of the periodic shaped
DFT filter frequency response is given for this latter weighting. Harris
determined the filter shape by taking the Fourier transform of a sequence of
delta functions weighted according to the weighting function. This Fourier
transform is given by (6.27) and yields the periodic DFT shaped filters. The
Fourier transform was obtained by an approximation that used a 512-point FFT
of the sequence {w(0), «(l),...,2(49), 0,0,...,0} where (512 — 50) zeros
follow the weightings (see Problems 23 and 24). The frequency response is shown
in the following figures for origin centered windows up to the point of periodic
repetition of the filter.

Nuttall has derived analytical expressions for some of the windows.
Occasionally his frequency responses appear to give more accurate windows
than were obtained by the FFT method. For theses cases, Nuttall’s results will be
given [N-30]. Nuttall’s frequency responses all result from an origin centered
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weighting that can be written

1k 2nt
) =— cos— 6.82
e (1) 7 kgo @,C0s— (6.82)
where L is the integer (normalized) analysis period so that the weighting is used
only for |¢| < L/2. The nonperiodic shaped DFT filter for this origin centered
weighting is found using (6.29) and Table 2.1 to yield

. t|1 X 2nkt
D'(f) = ?{rect[z}z Y ajcos 3 }

k=0
C K k k
=sinc(fL)*{ Y a| 6| f—— |+ (f+ —
k=0 L L
Lf . K (= 1Day
== L —_ 6.83
LS L (6:83)
If i is an integer, then
" =0
lim D'(i/L) = {‘f" '
I=ilL 2au,  1#0

Note that whereas Harris’s windows are periodic, Nuttall’s are nonperiodic.

A peak amplitude of unity is shown for all the weighting functions, so the peak
gain of the shaped DFT filter is not in general zero. However, the filter outputs
have all been normalized to have a peak gain of 0dB. A normalized period of
P = 1 sisalso assumed so that the basic DFT frequency bin has a width of 1 Hz
and the abscissa of the window is in hertz.

Rectantular (Dirichlet) Weighting [R-44, H-19, G-3] See Section 6.1 and Figs.
6.3 and 6.5.

Triangular (Frejer or Bartlet) Weighting [B-20, H-19, G-3] See Section 6.4 and
Figs. 6.11-6.14.

cos*(n/N) Weighting [N-3, H-19, B-20, O-7, R-16, O-1, H-18, G-3] Hanning
weighting for the DFT results for « = 2, as mentioned in Section 6.6. Hanning
weighting may be generalized for the origin centered weighting as

w(n) = cos*[(n/N)r], n=—N/2,...,—1,0,1,...,N/2 (6.84)
and for the DFT as
w(n) = sin*[(n/N)n], n=0,1,2,...,N—1 (6.85)

The window for o = 2 is given by (6.53) and is approximated by (6.57). The
weighting and window for « = 2 are shown in Figs. 6.16, 6.17, and 6.22. As «
becomes larger, the mainlobe broadens and the sidelobe levels decrease. For
o = 4, the first sidelobe is below — 45dB, the second below — 60 dB, and the rest
(up to periodic repetition) are below — 70dB.
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Fig. 6.22 Cosine squared (a) weighting and (b) window magnitude (dB). (Courtesy of Fredric J.
Harris.)

Hamming WEiGHTING [H-19, B-20, O-7, O-1, R-16, H-18, G-3] Hamming
weighting is a generalization of Hanning weighting. The origin centered and
DFT weightings, respectively, have the forms

~ {H (1 — a)cosQmn/N), n=—N/2,...,—1,0,1,...,N/2
wln) = «— (1 —a)cos@m/N), n=0,1,....N—1
(6.86)

Observation of Fig. 6.16 shows that the three functions added to achieve the
Hanning window did not sum to cause perfect cancellation of the sidelobes at
f=2.5. Perfect cancellation of the sidelobe peaks may be achieved by selecting
the proper value of « in (6.86). This value of o depends on N (weakly) and is
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(a)
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Fig. 6.23 Hamming (a) weighting and (b) window magnitude (dB). (Courtesy of Fredric J.

Harris.)

approximately 0.54. If o = 0.54, the Hamming window results. The weighting
function and magnitude of the window (in dB) are in Figs. 6.23a and b,
respectively. The Hamming window is an example of a window constructed to

achieve a specific goal.

BrackMaN WEIGHTING [H-19, B-20, O-1, G-3, N-30] Generalizations of
Hanning and Hamming weightings for origin-centered and DFT sequences,

respectively, yield

K ;
Y. a,cos2mmn/N),

m=0

w(n) =

M =

m=0

n=—N/2,...,—1,0,1,...,N2 (6.87)

(— D™"a,, cos(Qmumn/N),

n=0,1,...,N—1 (6.88)
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Fig. 6.24 Blackman (a) weighting and (b) window magnitude (dB). (Courtesy of Fredric J.
Harris and Albert H. Nuttall, respectively.)

where the a,, coefficients are selected to produce desirable window characteris-
tics and K < N/2. Applying (6.27) to (6.88) yields

K
D(f) =}, (= D)"an[D(f+ m) + D(f — m)] (6-89)
m=0

when D(f) is the basic DFT window given by (6.11). Blackman used K = 2 to
null the shaped DFT filter gain at f= 3.5 and 4.5 by using

7938
ay = ——— = 0.42659071 ~ 0.42
18608

9240
a; = —— = 0.49656062 ~ 0.50
18608
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Fig. 6.25 Exact Blackman (a) weighting and (b) window magnitude (dB). (Courtesy of Fredric J.
Harris and Albert H. Nuttall, respectively.)

1430
a, = ——~ 0.07684867 ~ 0.08 (6.90)
18608
The weighting using the exact coefficients defined by the rational fractions in
(6.90) is called the exact Blackman weighting whereas the two place approxi-
mations in (6.90) define the Blackman weighting. Figures 6.24 and 6.25 show the
Blackman and exact Blackman weightings and shaped filter magnitudes.

BrackmMan-HARRIS [H-19, N-30] Harris used a gradient search technique
[R-19] to find three- and four-term expansions of (6.88) that either (1)
minimized the maximum sidelobe level for fixed mainlobe width or (2) traded
mainlobe width versus maximum sidelobe level. The parameters are listed in
Table 6.1 and the minimum three-term weighting and window (i.e., the
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Table 6.1
Parameters for Blackman—Harris Weighting Functions [H-19, N-30]

Parameter values

No. of terms in (6.88) 3 3 4 4

Maximum sidelobe (dB) — 70.83 — 62.05 —-92 — 74.39

Parameter a, ) 0.42323 0.44959 0.35875 0.40217
a; 0.49755 0.49364 0.48829 0.49703
a, 0.07922 0.05677 0.14128 0.09892
as - — 0.01168 0.00188

T+ 1.25

<l

-25 0 25

-40

" ol

-60 ‘

{\ n [\/\ NANADAANAA A A A

o L LU T Ty
W o

0 25

i — e

-100

Fig.6.26 Minimum three-term Blackman-Harris (a) weighting and (b) window magnitude (dB).
(Courtesy of Fredric J. Harris and Albert H. Nuttall, respectively.)
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maximum window sidelobe magnitude has been minimized) are displayed in Fig.
6.26. The four-term window mainlobe is very similat in appearance.

KAISER-BESSEL APPROXIMATION TO BLACKMAN-HARRIS WEIGHTING [H-19,
H-21] This weighting is defined by (6.88) using scaled samples of the Kaiser—
Bessel weighting (6.102) as follows:

b,, = sinh[ n\/a - mz]/(ﬂ:\/oz2 —m?),
m<a, 2<a<4, c=bo+2) by,

ao = be/c, a, =2b,/c, m=1,20r1,2,3 (6.91)

£ 1.00

(a)

I !llu n

-25 0 25

ﬂ\ 0dB

4. \ -20
2
(b) }
+ -40
£ -60
r T T T f
-25 0 25

Fig. 6.27 Four-sample Kaiser-Bessel (a) weighting and (b) window magnitude (dB). (Courtesy
of Fredric J. Harris.)
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The four coefficients for « = 3.0 are ay = 0.40243, a; = 0.49804, g, = 0.09831,
and a; = 0.00122. Note the closeness of these coefficients to the four-term
(— 74 dB) Blackman-Harris weighting. Figure 6.27 shows the weighting and
logarithm of the window magnitude. The mainlobe of the four-sample
Blackman-Harris window is virtually the same as that in Fig. 6.27b, but the
sidelobes for the former window are approximately 5 dB lower.

ParaBoLic (RiEsz, BOCHNER, OR PARZEN) WEIGHTING [H-19, P-21] The origin-

centered weighting is
2

N/2
As Fig. 6.28 shows, the first sidelobe is only — 22 dB down.

N
wm) =1.0 — . O0shs<T (6.92)

A,

—_—
|
————
—_
———
=
e

F————
————

'

1
o ——

il

-25 25

Fig. 6.28 Parabolic (Riesz) (a) weighting and (b) window magnitude (dB). (Courtesy of FredricJ.
Harris.)
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RieMANN WEIGHTING [H-19, B-22, G-3] The analog weighting is defined by
sinc(¢) and is optimum in the sense that it maximizes area under the mainlobe
over the interval |f] < 1 subject to the constraints that «(¢f) = 0, #(— f) =
W(f), W (f)isreal, and [ 22(t)dt = [*  # *(f)df = constant [G-3]. The
discrete time weighting is defined by

w(n) = sinc@n/N),  0< |n| < NJ2 | (6.93)

and its characteristics are displayed in Fig. 6.29.

1 .
L
FHHHI il H!Ih.;sn
fo o
i
Il
L L 7

Fig. 6.29 Riemann (a) weighting and (b) window magnitude (dB). (Courtesy of Fredric J.
Harris.)

CusiC (DE LA VALLE-PoussiN, JACKSON, orR PARzEN) WEIGHTING [H-19, P-21,
G-3] Thisis defined by convolving two triangular functions (see Problem 11).
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It is given by

n |n| N

w(n) = n P N v (6.94)
21 1.0 — —] R —<n< —
I: N/2 4 2

normalized for a peak value of unity and centered at the origin. Fig. 6.30 shows
the weighting and window magnitude.

(a) 1
.
z/:
|
(b) j—-
I
l T 1 T 1 I— T T T~ f
-25 0 25

Fig. 6.30 Cubic (a) weighting and (b) window magnitude (dB). (Courtesy of Fredric J. Harris.)

CosiNeE TAPERED (TUukEYy or RaIseD CosiNe) WEIGHTING [H-19, T-14, G-3]
Convolving a cosine lobe of width aN/2 with a rectangular function of width
(1 — Jo)N gives this function defined for the origin-centered weighting defined
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by
1.0, ' 0 < |n| < aNJ2

0 5[1 0 + cos <nwﬂ aN/2 < |[n] < NJ2
LT 21 — a)N/2) |” b \

Figure 6.31 shows results for o = 0.75.

wn) = (6.95)

H[” ”lll
(/’i
iU
I N

WL Tl“\mﬂ

-25 0 25

Fig. 6.31 Cosine taper of 759 (Tukey) (a) weighting and (b) window magnitude (dB). (Courtesy
of Fredric J. Harris.)

BoumAN WEIGHTING [H-19, B-24]  This weighting is the product of a triangular
weighting with a single cycle of a cosine function with the same period and with a
corrective term added to set the first derivative equal to zero at the boundary.
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The origin-centered weighting is

w(n) = [1.0 — ﬂ} cos [n—ﬂ] + lsin [nﬂil, 0| < ﬁ (6.96)
N/2 N/2 T Nj2 2

The results are shown in Fig. 6.32.

J_ 125

wml'” | I,

T
-25 25

Fig. 6.32 Bohman (a) weighting and (b) window magnitude (dB). (Courtesy of Fredric J. Harris.)

Poisson WEIGHTING [H-19,B-22]  Thisis a family of weightings parameterized
on o given by

(n) =ex (—aﬂ> 0<|n|<ﬁ (6.97)
W) = xR\ TN ) SIS '

The results are shown in Fig. 6.33.
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£ 1.00
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Fig. 6.33 Poisson (« = 3.0) (a) weighting and (b) window magnitude (dB). (Courtesy of Fredric
J. Harris.) .

HanNING-PoissoN WEIGHTING [H-19] This is constructed as the product of
Hanning and Poisson weightings and gives a family parameterized on « defined
by

N
wn) = 0.5[1‘0 + cos (n]—V’;—Zﬂ exp (— a%), 0<|n < > (6.98)

Figure 6.34 shows the results for o = 0.5.
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1.25

N H‘ | Hlllm.] }

-25 0 25

/\ 0dB
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(b)
f] i ;\\ a0
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+ -60
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-25 0 25

Fig. 6.34 Hanning-Poisson (x = 0.5) (a) weighting and (b) window magnitude (dB). (Courtesy
of Fredric J. Harris.)

CaucHy (ABEL orR PoissoN) WEIGHTING [H-19, A-46] The Cauchy weight-
ing is also a family parameterized on «. It is defined for the origin-centered

weighting by
n 2\ —1

The Fourier transform of this weighting is an exponential function, and when
the logarithm of the window magnitude is plotted, the mainlobe is essentially an
isosceles triangle, as shown in Fig. 6.35 for o = 4.

(6.99)

0| =
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£ 1.25

(0) 1 1.00

1 f
0 25
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Fig. 6.35 Cauchy (« = 4) (a) weighting and (b) window magnitude (dB). (Courtesy of Fredric J.
Harris.)

GAUssiAN (WEIERSTRASS) WEIGHTING [H-19, A-46] Gaussian weighting cen-
tered at the origin is parameterized on « as defined by

i) = exp| — L " ‘. o< <y (6.100)
2"\ 2

The Fourier transform of a Gaussian function is another Gaussian function,
which enters into the convolution in (6.27) to yield a result as shown in Fig. 6.36.
As o becomes larger the mainlobe becomes broader and the sidelobe peaks have
lower amplitude.
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4 1.25

il

-25 0 25
/ 0dB
/ \
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hh o

o I,iI f
Wt.afu}fmﬁﬂWd"'WNU W (i N

_25 0
Fig. 6.36 Gaussian (¢ = 3.0) (a) weighting and (b) window magnitude (dB). (Courtesy of Fredric
J. Harris.)

DoLrr-CHEBYSHEV WEIGHTING [N-3, H-19, H-21, H-18, N-13] This discrete
weighting results in the minimum window mainlobe width for a given sidelobe
level. It results from using the mapping 7,(x) = cos[ncos ™ !(x)] to relate the nth-
order Chebyshev polynomial and the nth-order trigonometric polynomial. The
Dolph—Chebyshev window is defined in terms of uniformly spaced samples of
the Fourier transform as follows:

cos(h)[N cos(h)~ [ B cos(nk/N)]]
cosh[Ncosh™}(B)] ’

D(k) = (— 1) 0<k<N-—-1 (6.101)
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(a)

Hl‘l\ml..;s :

M |

Fig. 6.37 Dolph-Chebyshev (o = 3) (a) weighting and (b) window magnitude dB. (Courtesy of
Fredric J. Harris.)

where cos(h) ™[] means cos ™! yif |y| < 1 orcosh™! yif [y| > 1, cos and cos ™!

or cosh and cosh™! are used together, and
1
= cosh| —cosh™1(10%
B [ A oosh™( )}

cos(h)~1(z) = {”/2 —tan"'[//10— 2’1, <10
* In[y + /% — 1.0], yl > 1.0

The weighting «(n) is derived as the IDFT of (6.101). The parameter o is the
logarithm of the ratio of peak mainlobe level to peak sidelobe level. For example,
Fig. 6.37 shows that for o = 3 the sidelobe peaks are at — 60 dB.
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Kaiser-BEesseL. WEIGHTING [H-19, K-12, G-3] Slepian, Pollak, and Landau
[L-14, S-17] showed that prolate-spheroidal wave functions of zero order
maximized the energy in a given frequency band. Kaiser found a simple
approximation to these functions in terms of the zero-order modified Bessel
function of the first kind. The Kaiser-Bessel weighting is defined by

—1[ /10 (")1/1 o< <y i
wm) =1y na [1.0 — N—/2 o[ma], \|”|\7 (6.102)

© X2k2
MD:ZFAW

where

HJH”H HH]_ -
i

Fig. 6.38 Kaiser-Bessel (x = 2.5) (a) weighting and (b) window magnitude (dB). (Courtesy of
Fredric J. Harris.)
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As the parameter o increases the sidelobe level drops and the mainlobe broadens.
Figure 6.38 shows the weighting and window for o = 2.5. For « = 3 the sidelobe
peaks are all below — 65 dB [N-30].

BarciLon-TEMES WEIGHTING [H-19, B-23] Whereas the Kaiser-Bessel win-
dow tends to maximize mainlobe energy, the Barcilon-Temes window tends to
minimize energy not in the mainlobe. A weighted minimum energy criterion
leads to a window defined in terms of its Fourier transform. The sampled
window is defined by

cAcos([y(k)] + Bly(k)/C] sin[y(k)])

(6.103)
(C + AB)([y(k)/C]* + 1.0)

wik) = (— 1)

1.25

(a) 1.00

Ll

-25 0 25

0dB

(b) -20

-40

—

Fig. 6.39 Barcilon-Temes (o = 3.5) (a) weighting and (b) window magnitude (dB). (Courtesy of
Fredric J. Harris.)

I T T
-25
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where

A = sinh(C) = . /10%* — 1

B = cosh(C) = 10*
C = cosh™}(10%
B = cosh[(1/N)C]
y(k) = Ncos™ '[Bcos(nk/N)]

As with the Dolph—Chebyshev window, the weighting is determined by the
IDFT. The shaped DFT filter response is shown in Fig. 6.39 for « = 3.5. The
window shape is similar to the Kaiser-Bessel window and performance is also
similar. As « increases the mainlobe broadens slightly and the sidelobe levels
decrease.

6.8 Shaped Filter Performance

This section gives a number of performance parameters [H-19, P-3, P-4, G-3]
summarized by Harris for the shaped DFT filters presented in the preceding
section. Figures of merit are given for each of the filters. Windows are compared
on the basis of sidelobe levels and worst case processing loss. A short discussion
is given for the problem of detecting a low amplitude signal in the presence of a
high amplitude signal.

Table 6.2 lists the windows and the figure of merit (FOM) for a number of
parameters which characterize the nonperiodic filter frequency response
[H-19]. The parameters in general depend on N, and a value of N = 50 was used
for computation. A short description of each of the parameters follows.

Hicuest SipELOBE LEVEL ~ An indication of the stopband rejection of a filter is
its highest sidelobe level. For example, the sidelobes of the basic DFT filter have
maxima when d[|sin(x)/sin(x/N)|]/dx = 0. The first sidelobe near x = 37/2
radians (depends on N) is the highest and is less than — 13 dB.

SibeLoBe FALL Ofr  This parameter describes the amplitude fall off of sidelobe
peaks. For example, the basic DFT sidelobe peaks occur every n radians. For the
nonperiodic DFT filter, these peak values are near x = (2k + 1)r/2, where k is
an integer, so that |sin x|/x = 1/x and the fall-off rate is 6 dB/octave. The
generalization of this result is that if the mth derivative of «(¢) is impulsive, then
the peaks of the sidelobes of D'(f) fall off asymptotically at 6m dB/octave (see
Problem 13).

CoHERENT GAIN  This is a measure of the shaped DFT filter gain that takes into
account data sequence weighting and assumes a sinusoid is centered in the filter.
In general, the weighting function is small (or zero) near n = 0 and » = N and
this reduces the filter output. To measure the reduction let the sinusoid prior to
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6.8 SHAPED FILTER PERFORMANCE 235

the weighting function be
x(n) = el2mnN ‘ (6.104)

The peak shaped DFT filter output due to this signal is the coherent gain G,
given by

l N-1 1 N-1
G, = N go ()W ~knpyin — N ngo w(n) (6.105)

n

where {«(n)} is the weighting sequence.

EquivaLENT NoisE BanpwiptH (ENBW) This is the width of a rectangular
filter with a gain equal to the peak signal power gain of the shaped DFT filter
and with a width that accumulates the same noise power as the shaped DFT filter
(see Fig. 6.40). Let the input noise be band-limited white noise with a mean value
of zero and a PSD defined by

o’/N,  If1<f/2

0 otherwise

o(f) = { (6.106)

where ¢(f) has the units of watts per hertz. Then the ENBW for a periodic
shaped DFT filter with frequency response D(f) is given by

No

ENBW = E[|X(k)|*]/|D(0)]>6*/N = BO)Po?/N

(6.107)

where the integral in the numerator of (6.107) is equal to N,. Applying Fourier
transform relationships to (6.27) for P =1 s gives

N A l ~ N-1 1 N-1
D) = fW(—f)D(f)df=N jw(z) y 5(:—%>dzzﬁ S wln)
n=0 n=0
- - (6.108)
A Gain
B(0)

(b}

Fig. 6.40 ENBW defined by (a) a shaped filter and (b) a rectangular filter accumulating the same
noise power.
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Using the DFT definition to evaluate N, yields

N-1 1 N-1 B
No=E |:N ,.go x(n)ye(m) W ngo xX(m)ee(m)W } (6.109)

The expectation of x(n)x(m) is 25, (see Problem 20), so (6.109) reduces
to

62

N-1
No=— 3 lem|? (6.110)
Aln:O
Combining (6.107), (6.108), and (6.110) yields

N-1 N—-1 2
ENBW = N ¥ %) / [ v w(n):| 6.111)

n=0 n=0

which is stated in Table 6.2 (see Problems 17 and 18 for examples of ENBW
calculation). Note that windows with a broad mainlobe in Section 6.7 have a
large ENBW in Table 6.2.

3.0dB Banpwintd The point at which the gain of the shaped filter is down 3.0
dB, measured in DFT frequency bin widths, is listed in Table 6.2. For example,
rectangular weighting defines the gain of the basic DFT filter, which at + (0.89)
bin widths is down 3.0 dB. The 6.0 dB bandwidth is also stated in this
table.

ScarLLorING Loss Signals not at the center of a filter suffer an attenuation
called scalloping loss (also called picket-fence effect). If shaped filters are
centered at every basic DFT output frequency, then the worst-case attenuation is
for a signal half a frequency bin removed from the center frequency. Scalloping
loss is defined as the ratio of gain for a pure tone (single frequency sinusoid)
located a fraction of a bin from a DFT transform sequence point to the gain for a
tone located at the point. Maximum scalloping loss occurs for a pure tone half a
bin from the transform sequence point and is defined by

D(f/2N)
D(0)

where f; is the sampling frequency. For a normalized period of P = 1 s we get
f. = N and scalloping loss = D(})/D(0). For example, rectangular weighting
gives sin(n/2)/{Nsin[n/2N ]} ~ sin(n/2)/(n/2) = 2/n, or — 3.92 dB. Maximum
scalloping loss is stated in Table 6.2.

maximum scalloping loss = (6.112)

WorsT-CASE PrROCESSING Loss A small worst-case processing loss favors
detection of a signal in broadband noise. Processing loss is the reduction of the
output signal-to-noise ratio as a result of windowing (weighting) and frequency
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location. Worst-case processing loss is defined as the sum (in decibels) of a
window’s maximum scalloping loss and ENBW. For example, for cosine cubed
weighting ENBW = 1.734 bins (see Problems 17 and 18). The maximum
scalloping loss is 1.08 dB and 10 log 1.734 + 1.08 = 3.47 dB.

OverLAP CorrRELATION The shaped DFT filters described in this chapter all
have mainlobes wider than the normal DFT filter. The wider filter passband
results in more noise power at the filter output. The effect is countered by
additional processing of the DFT output. Coherent processing uses both the
magnitude and phase information to produce additional filtering or gain (see
Problems 28-31). Noncoherent processing uses only the magnitude information
to reduce the variance of the power spectrum (see Problem 27). In either case,
overlapped data may be used at the DFT input [A-38, C-32, C-33, C-34, H-19,
H-42, N-3, R-237. If the fraction of overlap between successive weighting
functions is 1 ~ 1/R, where R > 1, then the quantity R is sometimes defined as
redundancy. Figure 6.41 illustrates overlapping weighting functions applied to
the input data for R = 4.

Let K values of | X(k)|? be averaged and let the random components be due to
band-limited zero mean white Gaussian noise, yielding a flat noise spectrum at
the DFT input. The overlap correlation coefficient for the degree of correlation
between random components in successive shaped DFT outputs as a function of
R is defined as C(/). Let R divide N. Then

(1—-1/R)N ZN N—-1
chy= Y w(n)w[n + 4:|/ o (m))? (6.113)
n=0 R n=0
C(/) is shown in Table 6.2 for redundancies of 2 (50% overlap) and 4 (75%
overlap). After averaging, the variance of | X(k)|* is reduced by a factor Ky given
by [W-36]

K —1[1 2K_1<1 l>Cl:| 6.114
R= 5 + 1121 % ) (6.114)

MaxiMUM SIDELOBE LEVEL VERSUS WORST-CASE PROCESSING L.oss  Shaped filter
sidelobes should have a small magnitude to minimize filter response to signals
outside the mainlobe. A small worst-case processing loss is desirable because it
indicates a small attenuation of desired signals whose frequency is near the
center of the filter’s mainlobe. Figure 6.42 shows maximum sidelobe level versus
worst-case processing loss. Shaped filters in the lower left of Fig. 6.42 perform
well in terms of rejecting out-of-band signals and noise while detecting in-band
signals.

It has also been found that the difference between the ENBW and 3.0 dB
bandwidth referenced to the 3.0 dB bandwidth is a sensitive performance
indicator [H-19]. For shaped DFT filters which perform well, this indicator
is in the range of 4.0-5.5%. This latter filters also fall in the lower left of Fig.
6.42.
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Fig. 6.42 Highest sidelobe level versus worst-case processing loss. Shaped DFT filters in the

lower left tend to perform well. (Courtesy of Fredric J. Harris.)

WEeaKk SiGNaL DETECTION A desirable feature of a sequence of shaped DFT
filters is that they detect both a high and a low level signal. For example, consider
two pure tones, one with a maximum amplitude of 1.0 and a frequency of 10.5
Hz and the other with a maximum amplitude of 0.01 and a frequency of 16.0 Hz
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[H-19]. The magnitudes of shaped DFT filter outputs are plotted versus DFT
bin number in Fig. 6.43 for a 100 point transform. The strong signal located half-
way between bins 10 and 11 is apparent. However, the weak signal centered in
bin 16 is not even visible in the output derived with rectangular weighting. It is
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Fig. 6.43 Signal level detected by various shaped DFT filters with two sinusoids as input.

(Courtesy of Fredric J. Harris.) Window: (a) Rectangle, (b) Triangle, (¢) cos*(nn/N), (d) four-term

Bl

ackman-Harris, (¢) Dolph~Chebyshev (¢ = 3.0), (f) Kaiser-Bessel.

Signal FFT bin Signal amplitude
1 10.5 1.00
2 16.0 0.01
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progressively more visible using triangular weighting, Hanning weighting, and
four-term Blackman-Harris weighting. The Dolph—Chebyshev window for
o = 4.0 and Kaiser-Bessel window for « = 2.5 are also shown to perform well in
this two-tone detection example. It is obvious that the DFT filter shape has a
significant impact on the detection of a low amplitude signal in the presence of a
much higher amplitude signal. Good detection capability results from filters
with low sidelobe levels. This in general means the use of shaped DFT filters
having mainlobes that are wider than the basic DFT mainlobe and that therefore
have poorer resolution than the basic DFT. We must trade off improved
detection capability against loss of frequency resolution in a given application.

6.9 Summary

We have shown that the magnitude of each DFT coefficient has a frequency
response analogous to the detected response of a narrowband analog filter.
Consequently, we use the term “DFT filters” when discussing an FFT spectral
analysis. We have also shown that we can vary the DFT filter shape in a manner
analogous to designing an analog filter. Time domain weighting or frequency
domain windowing are used to modify the basic DFT filter shape. In either case
the window (the shaped DFT frequency response) can be treated as periodic or
nonperiodic, depending on whether the input is treated as being nonperiodic or
periodic, respectively.

The basic DFT filter shape is determined by a time domain weighting of unity
for 0 < ¢t < P and zero elsewhere. This is called rectangular weighting (rect
function weighting), and the DFT output is said to be unweighted or basic. One
alternative is to view the basic DFT filter for a normalized period of P = 1 s as
having a sin(nf)/[Nsin(nf/N)] response repeating at intervals of N Hz and
acting on a nonrepeated input spectrum. The other alternative is to view the
DFT as having a nonrepetitive sin(nf)/(nf) response acting on an input
spectrum that repeats at intervals of N.

There is a fundamental difference between a DFT filter and an analog filter
used for spectral analysis. The analog filter output is characterized by the
transform domain product of the filter and input transfer functions. This
product is equivalent to a time domain convolution of the input time function
and filter impulse response. The DFT output is characterized by the frequency
domain convolution of the DFT filter and input frequency responses. This
convolution is the result of the product of a finite observation interval and the
input time function. Comparing the convolution and product operations of the
analog and DFT filters, we see that the DFT reverses the domain of convolution
and product operations with respect to the analog filter.

A number of time domain weightings can be expressed as convolutions of
simple time domain functions. In the frequency domain these convolutions
become products of Fourier transforms. The products of low amplitude sidelobe
frequency responses give even lower weighted sidelobe levels. The penalty is
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typically an increase in mainlobe filter width as exemplified by the weighting
functions we have presented.

Frequency domain windowing was illustrated by the Hanning window. This
window is the sum of three successive scaled basic DFT filters. Sidelobes of the
center filter are out of phase with the adjacent filters which reduces the sidelobe
level of the sum. Again the mainlobe width is increased. The Hanning window
can be replaced by a simple time domain weighting of unity minus a cosine
waveform.

Proportional filteis have bandwidths that are proportional to center frequen-
cies. They are formed by scaling and summing the order of four basic DFT
outputs. This scaling and summing of DFT filters to form a new filter is similar
to forming the Hanning window. Since the proportional filter shapes change
with frequency, Hanning and proportional filters differ in that one time domain
weighting suffices for all Hanning filters, whereas each proportional filter would
have a different time domain weighting for filter shaping in the time domain.

This chapter catalogs a number of weighting functions and windows. Table
6.2 summarizes some significant performance parameters for each of the shaped
DFT filters. Filters for detecting signals in broadband noise should have low
sidelobe levels and small worst-case processing losses. Such shaped DFT filters
are in the lower left of Fig. 6.42. Figure 6.43 demonstrates the importance of the
DFT filter shape when detecting the presence of a small-amplitude signal in the
presence of a large-amplitude signal.

All classical windows suffer from a lack of flexibility in meeting design
requirements. In contrast, DFT filter shaping by computer-aided FIR filter
programs provides a flexible approach to DFT window design. Further details
are elaborated in the next chapter (see in particular Problem 7.18).

PROBLEMS

1 Show that regardless of whether N is even or odd

) sin(m
D(f) = e~ in/1-1m ._—_( /) (P6.1-1)
Nsin(zf/N)
is equal to unity for f= kN, k=0,1,2,....
2 DFT Frequency Response Let the only input to the DFT be a single spectral line defined by
X.(f) = 6(f — fo)- Use (6.12) to show that the DFT outputs are given by

X(k) = e~ r=soxt —umm (P6.2-1)
Nsin[n(fo — k)/N]

fork =0,1,...,N — 1. Interpret (P6.2-1) as the DFT frequency response (see also Problem 3.14).
3 Alternative sin(x)/[ N sin(x/N)] Representation of the DFT Filter Show that the response of the
periodic DFT filter to a nonperiodic input as given by (6.12) for P = 1 s can be written

N/2

X(k) = J { i X.(f + kN)e™s ~htt = 1/N)

k=—-w

sin[n(f — k)] } dr

e (P6.3-1)
Nsin[n(f — k)/N]

—N/2
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Show that the operations in (P6.3-1) may be interpreted as finding the aliased spectrum of a periodic
input into a DFT filter extending only + N/2 frequency bins from DFT filter center frequency k.

4  Alternative sin(x)/x Representation of DFT Filter Show that an element in the time domain
sequence input to the DFT of dimension N can be represented as

nT +e

x(n) = J {combr rect [ﬂ]} x(t)dt

nT—¢

where P is the period and 0 < ¢ < T'is an arbitrarily small interval. Using the entries in Table 2.1
show for P =1 s that

DFT[x(n)] = X (k) = repy D'(f) * X.(f) (evaluated at f = k) (P6.4-1)
where )

o insti-1m S

D'(f) = o

(P6.4-2)

Show that the two preceding equations give

® ) 1\ Isin[zn(f — IN)]
X (k) = - M1 -—) | ~ 7
(9] [lgw eXP[ Jn(f )( Nﬂ o~ IN)

*Xa(f):l (P6.4-3)
(evaluated at f = k).

5 Equivalence of D(f) and D'(f) with Line Spectrum Input Let the input to the DFT be a line
spectrum defined by

X,(f) = e imfoll=UN §( £ £y (P6.5-1)
where |fo| < N/2. Show that using D(f) as defined by (P6.1-1) gives

X(k) = e~ Imk1=1M) S.m[n(k —fol (P6.5-2)
Nsin[n(k — f,)/N]
Evaluate (P6.5-2) for k = 0, f, = %, and N = 16 to show that X'(0) = 0.63764. Show that using D'(f)
and X,(f) as defined by (P6.4-2) and (P6.5-1), respectively, gives

X = 3 e-imte-ma-am Sk = o = N (P6.5-3)
1=~ n(k — fo — IN)
so that for f, = 1 and N even
X =2+ i -y (P6.5-4)
TS5 n[k — (IN)?]

Show again that X (0) = 0.63764 for N = 16.

6 Conclude from the previous problem that

ad 2IN 1 T 2
_pwen AN 1 (my 2 -
,;( b AE N NCC <2N> - (P6.6-1)
sin(nf) i sin[n(f — IN)] PR (662

Nsin(f/N) .=, =(f—IN)

Explain intuitively how the single term on the left side of (P6.6-2) can be equal to the infinite
summation on the right.
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7 Normalized Analysis Periodof 1 s Let x(t) and x'(¢) be defined by x(tP) = x'(¢). Let x(¢) have the
period P so that x'(¢) has a 1 s period. Use the scaling law (Table 2.1) to show that X,(f/P) =
PX'(f) where X,(f) and X (/) are the Fourier transforms of x(f) and x'(¢), respectively. Show that
the function X,(f) in (6.10) is the normalized function PX (/) and that a normalized analysis period
of 1 s requires that we multiply the DFT coefficients by P to get the DFT coefficients for data
spanning P s.

8 DFT Filter Acting on a Line Spectrum  Let x(1) be a periodic time function with period P = I s.
Let x(¢) be frequency band-limited with zero energy in lines for |f| > f;/2. Show that the Fourier
transform of x(r) yields spectral lines specified by

N-1
XN =Y Xko(f—k (P6.8-1)
k=0
where X(0), X(1),...,X(N ~ 1) are the Fourier series coefficients. Let these spectral lines be
measured by a DFT filter given by either (P6.1-1) or (P6.4-2). Show that in either case the DFT filter
centered at k£ measures only coefficient X (k), as Fig. 6.44 shows.

Spectral lines of
periodic time function

DFT filter
ratio term

| AL

J A4 T
k-4 k k+4

Fig. 6.44 Spectra of the DFT filter and periodic input.

9 Filter Shaping Approximation Show for P =1 s that the shaped DFT filter has outputs
X(k) = D(f)y= W (f)* X.(f) (evaluated at f'= k) (P6.9-1)

where D(f) is given by (P6.1-1) and X,(f) and #7(f) are the Fourier transforms of the input and
weighting functions, respectively. Show that (P6.9-1) is equivalent to

X(k) = J W(y) j Xk —y — 2)D(z)dydz

— — o

which may be approximated by

X(k) = YW DXk — 1) (P6.9-2)

where X, (k) is the unweighted DFT coefficient and #°(/) is the Fourier transform of the weighting
function for P = 1 s. Interpret (P6.9-2) as a filter shaping approximation to (P6.9-1).
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10 Alternative DFT Filter Shape for Triangular Weighting Note that the sampled-data triangular
weighting function for P = 1 s and N being an even integer can be written

4 t—1 t—%
w(t)d(t) = Fcomb, N | Tect T )* rect T
2 2

Use the entries in Table 2.1 to show that a periodic shaped DFT filter frequency response alternative
to (6.43) is given by

D(f). = repy[e ™™ sinc?(nf)2)]

- {sin[n(f— 1N)/2]}2
n(f - IN)/2

l==wo
Show that (P6.10-1) is convolved with a nonrepeated input spectrum to determine the DFT output.

(P6.10-1)

11 Cubic Weighting Cubic weighting results from convolving two triangle functions;
cube[t/P] = tri[t/(P/2)]* tri[¢/(P/2)] (P6.11-1)
The convolution is illustrated in Fig. 6.45 for a normalized period of P = 1 s. Show for P = 1 s that
LI - 42 4+ 1647, o<l <}
cube(t) = { [1/3(4)°] [1 - 241°, isl<3
0 otherwise

Using the fact that the Fourier transform of (P6.11-1) is the product of the Fourier transforms of
triangular functions, show for integer K and N = 4K that the windowed DFT response for cubic

t(i('%)

-1/4 0 1/4

12 -1/4 0 174 12 1

6(4)? cubel(t)

-12 /4 0 1/4 172 t

Fig. 6.45 Convolution of triangular functions to get a cubic function.
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weighting at the DFT input has magnitude

R NG AY AN AR T
D)= [W sin <?> / sin <nz N—/‘l)} (P6.11-2)

From (P6.11-2) conclude that the filter lobes are four times as wide as the unweighted DFT filter
lobes and that the first sidelobe is down four times as far, as shown in Fig. 6.30.

12 Generalized Hamming Window A more general form of (6.49) is the weighting function

wlt) = {1 — [B/(1 = Pl cos(2nt/P),  O<t<P

. (P6.12-1)
0 otherwise

Show that the shaped, periodic DFT filter response is

D) = e—jnfu—l/N)[L sin(zf) n b L{ sin[n(f+ 1)]
Bl N sin(f/N) 1+ B 2N Usin[n(f + 1)/N]

_sinfz(/— D1 jnmﬂ
T Snlag — N (P6.12-2)

Show thatif ¢/" ~ 1 and § = 0.46, the first three sidelobe peak magnitudes are approximately 1%, of
the mainlobe peak magnitude; that # = 0.5 defines the Hanning window; and that the first Hanning
sidelobe magnitude has approximately 2.5% of the mainlobe peak magnitude. Show that f = 0.46
defines the Hamming window.

—Jjn/N

13 Rate of Fall off of DFT Filter Sidelobe Peaks Usethe time domain integration property (Table
2.1) to show that if the mth derivative of «(7) is impulsive, then the sidelobe peaks of D'(f) fall off
asymptotically at 6m dB/octave. Show that this gives fall off rates of 6, 12, and 24 dB/octave for
rectangular, triangular, and cubic weightings, respectively.

14 Cosine Squared Weighting Hanning weighting is also called cosine squared weighting. Show
the following definition is equivalent to (6.49):

2cos?[n(t + P/2)/P], 0<t<P
w(t) = . (P6.14-1)
0 otherwise
Show that the shaped, nonperiodic Hanning window can be written
. sin(nf) 1 J )
D(f)y= e~ P6.14-2
) [ e (P6.14-2)
Verify that
sin(r 1 1
lim[ (/) 2} == (P6.14-3)
il wf 1—f 2

Use (P6.14-2) to show that the sidelobe peaks fall off asymptotically as 1/f> (i.., 18 dB/octave).
15 Cosine-Cubed Weighting Cosine-cubed weighting is defined by
Kcos*[n(t + P/2)/P], 0<t<P
w(t) =

) (P6.15-1)
0 otherwise

Show for P =1 s that using (P6.15-1) gives a shaped, nonperiodic DFT filter frequency response
(normalized to a peak amplitude of unity) defined by

K {Sin[n(f +39] | sinfa(f - )] 3 sin[z(f + 3)] 3 sin{n(f — %)]}

sU a0+ a3 | arid T ar—d

D= (P6.15-2)
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where K = — j3n/4. Show that (P6.15-2) is equivalent to

D(I)V—chos(nf)[le I}LZI } (P6.15-3)

16 Use (P6.15-3) to show that the sidelobe peaks fall off asymptotically at 24 dB/octave.

17 Let the analog input to a spectral analysis system be band-limited so that the noise power into
the ADC is given by

1, < N/2
¢<f)={0 1< N (P6.17-1)

otherwise

Let the ADC output go directly to the DFT. Show that the noise power into the nonperiodic DFT
filter is ¢(f) = 1 for all f. Show that for the nonperiodic basic DFT filter

1 sin x |?
ENBW = — | | 22| dx= (P6.17-2)
n

18 Assume that the DFT coefficients are orthogonal (i.e., E[X (/)X (k)] = 0 for [ 5 k). Show that
for cosine-squared weighting

ENBW = E{IX()? + 5X( - D + BX( + D}} = 1.5
whereas for cosine-cubed weighting ENBW = 1.73489.

19 Time-Limited Weighting Function Let «(tf) be nonzero if and only if te[a,b), where
— P/N<a<b< P. Letc>0. Since

t—(a+b)2
w(t) = e (1) rect [m:l

conclude that the nonperiodic DFT filter is given by D'(f) = #°(f)/N and that the periodic DFT
filter is given by
LbN/P|

D)= N?[ Yy - n/N)w(t)} = repy[#'(f)]

n=[aN/P]
Let «(f) be a delayed version of «(f) such that «w(f) = i (t — (@ + b)/2). Let d =b — a + 2c.

Conclude that [L-14, S-17]
" (2)- J (B
d) n(f—u)

Let N and ! be odd integers, [/ < (N — 1)/2, and let

—WN+ 1)/4N:| t|:t —(N— l)/4N:|
~N+DN 1T WS neN

w(t) = rect |:t
Show that D(f) is given by
4e=i"  sin[nf(N + )/2N]sin[nf(N — [)/2N]
N+DIN-=D sin?[nf/N]
. i 1y sin[n(f + IN)YN + I)/2N] sin[n(f — IN)(N — [)/2N]
e n(f+ IN)YN + 2N a(f— IN)YN — ))2N

Let/ = 1. Show that there are N — 2 nulls between mainlobes in the periodic DFT filter gain and that
the distance between nulls one and two, three and four, . .. isdmN/(N> — 1),m = 1,2,...,(N — })/4.
In addition, let N = 9 and show that there are nulls at /= 1.8, 2.25, 3.6, 4.5, 5.4, 6.75, and 7.2.
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20 Let the input to the DFT be sampled, band-limited, white noise with a mean value of zero and a
correlation defined by

E[x(m)x*(m)] = 6% Sy (P6.20-1)
where 6, is the Kronecker delta function. Use the DFT definition to show that
E[X(R)X*(D)] = (¢*/N) by (P6.20-2)

From (P6.20-2) conclude that the energy in N DFT coefficients is 2, which is the correlation of the
sampled-data as given by (P6.20-1).

21 Effective Noise Bandwidth Ratio (ENBR) ENBR s the ratio of equivalent noise bandwidth to
frequency interval between points where the filter gains crossover. Show that for proportional filters

ENBR = Q/[D(f)* £,
where (6.61), (6.77), and (6.59) define Q, D(f;), and f;, respectively.
22 Show that (6.68) can be reformulated as

,:Rea,,] [ReD,, —ImD,,:H:Reg,,:I
Imd, ] [ImD, ReD,|lImg,
23 M Time Samples into an N-Point Transform Let M data samples followed by N — M zeros be

the input to an N-point DFT. Show that under these conditions the DFT output for frequency bin
number & is given by

Xk) = J rect [#:l comby x(f)e 2P gy (P6.23-1)

where T is the sampling interval, Q = MT, and P = NT. Show for a normalized period of P = 1 s
that

. oM sin(frfM/N):l
_ Jf (M= 1)IN - ~
X(k) = [e ) N MIN xrepy[X,(f)] (evaluated at /= k) (P6.23-2)

Using (P6.23-2) show that the effect of using fewer time samples than the DFT dimension is to
broaden the DFT filter mainlobes, increase the gain at which adjacent filter mainlobes cross over,
and reduce the peak DFT filter gain from unity to M/N. Conclude that using “‘zero padding” and the
N-point DFT smooths the spectrum, reduces ambiguities in specifying spectral lines in the M-point
DFT spectrum, and reduces the error in the M-point DFT frequency estimate of a spectral line.

24 If M time samples followed by N — M zeros are input to an N-point FFT, M < N, show that for
P =15 (6.10) must be modified as follows:

sin(nfM/N)

— —inf(M—1)/N
k) = [e Nsin(n/N)

]* X.(f) (evaluated at f= k) (P6.24-1)

25 Vernier Analysis Show that the DFT can be computed for arbitrary values of k/P and in this
sense can be used to generate a spectrum as a function of the continuous variable k/P. Show that the
FFT can still be computed for k/P = 0,0, 20, . .., (N — 1)/or, where o < 1is an arbitrary real number,
by taking samples at Nt =0, 1/a, 2/a,...,(N — 1)/a. Show that as o« — 0 the bandwidth of the
spectral analysis goes to zero. Show that analysis to « Hz about frequency f, requires a single
sideband modulation which shifts the spectrum to the left by f, Hz.

26 Figure 6.46 shows a system in which an analog signal is provided by a hydrophone. A
broadband analysis of the signal is used to specify a frequency band centered at f,. This frequency
band contains low signal-to-noise ratio (SNR) signals. A vernier analysis is desired to provide 53 dB
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rejection of the out-of-band signals and finer resolution of the frequency band centered at f;,. The
vernier analysis uses triangular weighting and covers  of the broadband region. Show that the digital
filter passband should be essentially flat from 0 to N/16 and that a decimation of 2:1 can be used
provided the digital filter gain is — 50dB at N/8. Show that the analog filter gain should be — 50dB
at 15N/16 Hz with respect to the normalized sampling frequency of f; = 1 Hz.

ANALOG
f1LTen HYDROPHONE
. |
:- ADC \ Broadband
" I FFT > DETECTORS Analysis DISPLAY |«
| f !
c__%_ 2
Vernier
S32uf YN Analysis|
e 0 X w(n) l
DIGITAL |3 % FFT DETECTORS
FILTER fe/2

Fig. 6.46 System for providing broadband and vernier analysis.

27 Figure 6.47 is a system for detecting a weak sonar signal. Let the input sequence have
redundancy R, let the input contain uncorrelated noise samples #(n) with a mean value of zero, and
fork=0,1,2,...,N — 1let ELH?(k)] = 0%, wherei = 0, 1,...is the number of the DFT output and
H(k) = DFT[x(n)]. Let the signal be defined by E[S?(k)] = S. Show that the SNR at the display
after the Mth output is KS/o?, where R is an integer and K is the integrator gain given by

K= MZ/[M+ 2‘:;1 M — 1)(1 —%ﬂ

Input
Sequence Frequency Square
DFT Bin Law
Select Detector

Sy +Hy, S +Hy, ..., Sm + Hm

SNR .
Integrator Display

Fig. 6.47 System for detecting a weak sonar signal.

28 DFTof a DFT In general the output of a DFT frequency bin is time varying owing to signal
components not at the center frequency of the DFT filter. If N2 sequential time samples are input to a
DFT, N sequential outputs are obtained from frequency bin k. If these N complex samples are input
to a second DFT, N new complex coefficients are obtained, as shown in Fig. 6.48a. Use the filtering
interpretation of the DFT to show that the second DFT gives a vernier analysis using filters 1/N of
the width of the first DFT filters. Show that the composite system mechanization has a product filter
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amplitude response illustrated in Fig. 6.48b and approximated by
sin(nf)
NZsin(nf/N?)

where fis a continuous real variable in the second DFT.

D) =

(P6.28-1)

N coefficients

Nz Input Vernier
Sequence First Freggency Second Analysis
DFT

in
OFT Select

Response of
filters in

Frequency response
d 4 " second DFT

of one filter in
first DFT

Product
responses

(b)

Fig. 6.48 Vernier analysis by means of the DFT of a DFT: (a) system mechanization and (b)
composite filter response.

29 Filter Shaping for DFT of a DFT The DFT filter responses in Fig. 6.48 can be changed with
weighting as indicated by Fig. 6.49. Show that the output of the first DFT [N-3] is

) 1 Ny—1 . N
X(ky,ny) = e*ﬂ"kw“‘Nf Y (emizHNyamy (m 4 ny 71>wl(n,) (P6.29-1)

=0

where R is an integer valued redundancy; n, = 0,1,2,..., N, — 1 is the number of the first DFT
output; N,/R is the number of samples each weighting function is delayed from the preceding one at
the input to the first DFT; and ¢ ,(n;) is the first weighting function.

Wying)

0 1 !
Input . Frequency
— L Buffer [F)II;EI! 8in
Select
N Hz
I Wy (np)
k + Ny
Vernier
x Second Output Display
DFT
1
(15 )z

Fig. 6.49 Vernier analysis with weighting.
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Show that the output of the second DFT is
1 Nz=1 .
Xy ko) =— 3 (e72WNayakaX(hey, np) cosy(n;) (P6.29-2)
2 p=0
where «,(n,) is the second weighting function. Using (P6.29-1) show that for R = 2 and 4 the first
DFT outputs require no complex multipliers prior to weighting and the second DFT.

30 Frequency Response for DFT of a DFT [N-3] Show that the response of the second DF T output
in Problem 29 is .

X(fiv) = ["///1(— VY X, <f+ v—nN, >:|*A(v)*"ﬂf2(v) (P6.30-1)

where all convolutions are on v with 1 held fixed, X,(f)is the Fourier transform of the input function
with respect to frequency variable f, X(f, v) is the vernier spectrum for fixed f as a function of v,
W ,(v) and # ,(v) are the Fourier transforms of the first and second weighting functions,
respectively, and

A) = ?‘[ T s (1 - "—Zﬂ Ni (P6.30-2)
2

n2= —o

31 Zoom Transform [Y-7] Letn =n,N, + n, and k = k,N, + k,. Show that the N,N,-point
DFT can be written

1 Ni—-1
X(kl,n2)=—[ Y x(nl,nz)W"‘"‘NZ:| Wkam (P6.31-1)
Nl ny=0
1 N2-1
Xy k)= — 3 X(ky, ny)Whamn: (P6.31-2)
2 py=0

where W = exp(— j2n/N,N,). Show that (P6.31-2) gives a vernier analysis of a selected region of a
first DFT output (i.e., it zooms in on a part of the first DFT output). Show that this is implemented
by taking the N,-point DFT of [ W*2"x(n,, n,)], using N, sequential outputs of a specific frequency
bin of the first DFT and taking the DFT of these outputs. Discuss the computational disadvantages
associated with the factor W*2" in (P6.31-2). Compare this factor with the twiddle factor (Problem
5.17). Also compare (P6.29-1) and (P6.31-2) and show that they are the same if we set
exp(—j2mnkyny/R) = 1 in (P6.29-1) and W*™ = 1 in (P6.31-1) and if we let R = (1) = w2(n,)
=1 in Problem 29.

32 Nyquist Rate for Sampling the DFT Output [A-38] Let the bandwidth of a shaped DFT filter
be the frequency interval F across the mainlobe at a gain determined by the highest sidelobe level.
Interpret the DFT as a low pass filtering operation on a complex signal resulting from a single
sideband modulation and show that this signal must be sampled at a frequency > F to keep aliased
signal levels below that of the highest sidelobe level. Show that this requires a rate higher than the
DFT output rate and that this may be achieved by means of redundancy. Show that Fis the Nyquist
sampling rate and that the Nyquist rate requires R > FP, where R is the redundancy and P is the
DFT analysis period. Show that this criterion yields R ~ 2 and 4 for rectangular and Hamming
weightings, respectively.



CHAPTER 7

SPECTRAL ANALYSIS USING THE FFT

7.0 Introduction

Spectral analysis is the estimation of the Fourier transform X(f) of a signal
x(¢). Usually X(f) is of less interest than the power of the signal in narrow
frequency bands. In such cases the power spectral density (PSD) describes the
power per hertz in the signal. We shall use the term “‘spectral analysis’” to mean
either the estimation of X(f) or the PSD of x(¢).

Spectral analysis is an occasion for frequent application of FFT algorithms.
(For a discussion of some alternative spectral estimation procedures see
[K-37].) The values X(k) or |X(k)|* versus k/P estimate the spectrum or PSD,
respectively, of the signal that is being analyzed, where P = N/f is the analysis
period, f; is the sampling frequency, and N is the number of samples. The
spectrum may come from structural vibration, sonar, a voice signal, a control
system variable, or a communication signal. In all these applications, the first
step of spectral analysis is the use of a transducer to convert energy into an
electrical signal. Structural vibration contains mechanical energy, which may be
converted to electrical energy by a strain gauge. Sonar signals are due to water
pressure variations, which are converted to electrical energy by a hydrophone.
Air pressure variations caused by voice are detected by a microphone. The
control system or communication signal may already be in electrical form.

The electrical signal can be analyzed by either analog or sampled-data
techniques. An analog technique might well be cheapest if the order of 10-100
analog filters of fixed bandwidth will adequately analyze the signal. A digital
technique is probably cheapest if many filters are required or if many signals are
to be analyzed simultaneously. There are several types of digital mechanization.
One digital mechanization is to convert the analog filters to digital filters [O-1,
G-5, H-18, R-16, S-22, S-34, T-23, W-12, W-13]. A more efficient digital
mechanization is to implement the spectral analysis using the FFT.

This chapter discusses some basic systems for FFT spectral analysis. The next
section presents both analog and FFT spectral analysis systems. Because of
spectral folding of real signals about N/2, half of the FFT outputs in frequency

252
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bins above N/2 will be complex conjugates of those outputs below N/2 if the
input is real. If the inputs are complex, all FFT.outputs contain unique
information. A system for handling complex signals is discussed in Section 7.2.
DFT and continuous spectrum relationships are reviewed in Section 7.3.

Many digital spectral analysis systems use digital filters and single sideband
modulators to increase system efficiency, and this is discussed in Sections
7.4-7.6. Section 7.7 presents an octave spectral analysis system as an example of
a digital spectrum analyzer. FFT digital word lengths are an important
hardware consideration and addressed under the heading “Dynamic Range” in
Section 7.8.

7.1 Analog and Digital Systems for Spectral Analysis

In a typical analog or digital system for spectral analysis, the input goes
through a variable gain and is low pass filtered. The low pass filter (LPF)
restricts the spectrum to the frequency band of interest. The average power in the
low pass filter output is maintained near a fixed level by using a power
measurement to derive an automatic gain control (AGC) signal that adjusts the
variable gain. By maintaining a fixed average power level, we can ensure linear
operation (i.e., ensure both that the analog circuitry will not saturate and that
the digital circuitry will not overflow) with various inputs. These inputs include
noise, a pure tone, and combinations of pure tones and noise. A pure tone is a
sinusoid with a fixed frequency and a constant amplitude. (If the input is, e.g.,
zero mean independent noise samples with amplitudes described by a Gaussian
distribution, or merely contains such noise, we can only ensure linear operation
with a high probability.)

Figure 7.1 shows an analog system for spectral analysis. The system uses N
spectral analysis filters in parallel. The first narrowband filter in the bank of
analysis filters is a LPF whose bandwidth is 1/N times that of the input LPF. A
total of N — 1 bandpass filter (BPF) blocks are in parallel with the LPF, giving a

Analysis
filters
Low pass filter k=0

Input i i
P Variable \ \ L > Detector Amplitude

qgain . .

k=t

L f
Power measurement .

AGC > ,% ‘: (—>1 Detector 0 N

° k=N-
L Nt ° Display
/\ > Detector

Fig. 7.1 Analog system for spectral analysis.
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total of N filters, labeled with the filter numbers k=0, 1,2,..., N—1. A
detector following each filter squares the magnitude of the filter output, which is .
displayed along with other square law detected signals out of the bank of filters.
We shall use the simplified block diagram of Fig. 7.2 to represent Fig. 7.1. Many
mechanizations also use a LPF following each detector to smooth the displayed
signal.

Analysis filters

input | Variable Low pass /~\
qain filter f Detectors
—

0 N

AGC Disploy

Fig. 7.2 Simplified representation of Fig. 7.1.

Figure 7.3 presents a digital system for spectral analysis. The input is modified
by analog circuitry consisting of a gain, LPF, and AGC feedback. The analog
LPF band-limits the input so it can be sampled by the analog-to-digital
converter (ADC), which outputs samples at a rate of 2f;, or twice the rate of the
input to the spectral analysis filters. Figure 7.4 shows plots of the PSD at several
points in Fig. 7.3. The PSD plots in Fig. 7.4 may be regarded as the system
response to white noise. (White noise has a continuum of frequencies with the
same power spectral density at all frequencies.) The ADC sampling folds the
analog spectrum about f;, so the sampled-data spectrum repeats at intervals of

2f..

Decimation Analysis filters

- . ADC 2:1
npu Variable LPF o> LPF o>
gain 2fg fs f
0 N
AGC Detectors

Display 4——’

Fig. 7.3 Digital system for spectral analysis.

Attenuation of unwanted signals is increased by the digital LPF, as shown in
Fig. 7.3. The analog and digital LPFs both have essentially unit gain in the
passband, which is defined by the frequency interval 0 < f < f,, where f, is the
frequency above which the attenuation of the filters increases appreciably. The
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Fig. 7.4 Spectra in a digital system for spectral analysis.

series attenuation of the two filters past f, results in a much higher rate of
attenuation than that which the analog filter alone can provide. As a result of the
attenuation of the combined analog and digital filters past f,, the digital filter
output PSD before decimation (Fig. 7.4) displays a wide stopband, which is the
region of high attenuation from the lower stopband frequency fy, to the
frequency 2f; — fip- The digital filter output PSD before decimation displays a
ripple in the stopband that is characteristic of several types of filters. The
stopband attenuation makes it possible to reduce the sampling rate at the input
to the analysis filters, and therefore to reduce the digital computational load.

A sampling rate reduction is accomplished in Fig. 7.3 by using only a fraction
of the digital filter outputs. This operation is called a decimation in time (or
simply a decimation) since some of the digital filter outputs are discarded.
Figures 7.3 and 7.4 show a decimation of 2:1 where a K:1 decimation means
that there are K inputs for every output used. The decimated digital filter output
spectra repeats every f; Hz according to the periodic property (see Section 3.2),
where f; is the FFT input sampling frequency. If the input is real, the decimated
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spectrum folds about f;/2 (see Section 3.3), so that the spectral energy in

frequency bins N — 1, N — 2, ..., N/2 + lisindistinguishable from that in bins-
1,2,...,N/2 — 1,respectively. Aliased signalsindicated by the dotted lines in the

decimated digital filter output in Fig. 7.4 introduce error into the FFT output.

Typically, filters are designed so that aliased signals are at least — 40 dB below

desired signals in the spectral region from 0 to f,,. Such aliased error is usually

insignificant. If smaller aliased errors are required, greater filter attenuation can

be provided.

The DFT output for frequencies between 0 and f,, gives a spectral analysis of
the region of the input. Outputs of the DFT between f, and f, — f,, include the
effect of filter attenuation, so a high rate of attenuation minimizes the number of
DFT outputs between f, and f; — f,. These outputs are usually not used.

Figure 7.5 shows the DFT PSD versus frequency. The flat spectrum shown
could result from a white noise input and can be viewed as the cascade response
of the analog and digital filters shown in Fig. 7.3. We note from Fig. 7.5 that only
a fractional part of the information out of the FFT is useful. This fraction is
represented by y where y < 1. Another fraction y between (1 — y)£; and f; is the
complex conjugate of the useful information. The remaining fraction 1 — 2y of
the FFT output is attenuated by the filters and, as mentioned, is not generally
used for spectral analysis.

Power

spectral

density . . .
! Filter attenuation | H
! needed to reject ' i
1 aliased power 1 . '
Useful i ! Complex conjugate of |
information : i useful information !
] T ]
1 i !
i i !

1 1
0 ’ fs/2 i fs

yis fs=yfs Frequency (Hz)

Fig. 7.5 Spectral content of FFT output with real input.

Viewing Fig. 7.5, we intuitively feel that we should be able to get useful
information out of the FFT between (1 — y)f; and f; Hz. This can in fact be
accomplished by using a complex demodulation before the digital or analog
filter, and the result is a more efficient use of the FFT, as discussed in the next
section.

7.2 Complex Demodulation and More Efficient Use of the FFT

We shall refer to the single sideband modulators shown in Fig. 7.6 as complex
demodulators or simply as demodulators [B-42]. Analog complex demodu-
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Fig. 7.6 (a) Analog demodulator, (b) sampled-data demodulator, and (c) the relation between
analog and sampled-data demodulator frequencies.

lation results from multiplying x(¢) by the phase factor e ~/2%/¢', Table 2.1 shows
that the Fourier transform of this continuous time domain product gives

F [e7PMox(0)] = X(f + fo) (7.1)
where

Z [x(0] = X(f) (7.2)

Comparison of (7.1) and (7.2) shows that complex demodulation shifts the
frequency response of the input function to the left by f, Hz. Figure 7.7 shows the
power spectral densities |X(f)|> and |X(f+ fo)|* for functions x(f) and
exp(— j2nfot)x(1), respectively.

Figure 7.6b shows a complex demodulator for a sampled-data system. Let &,
be the transform sequence number corresponding to analog system frequency fj,.
To show the relation between k and f;, we follow the DFT development and let
t = nT at sampling times, where T = 1/f; is the sampling interval. Then at
sample number 7 the analog and digital complex demodulator multipliers are
related by

e~ i2nfot — pmi2nfonT _ o—Ji2nfonlfs _ o~ j2mkon/N (7.3)
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Fig. 7.7 PSD of (a) x(#) and (b) e~ /2%/oix(z).

which gives
ko = (fO/fs)N (7'4)

as Fig. 7.6c shows. A nonintegral value of k is permissible in the digital system.
The digital complex demodulator input is exp(— j2rkon/N). The DFT of a
sampled-data time domain function (see Problem 3) gives

DFT[e™2%oNx(n)] = X(k + ko) (1.5)

The DFT coefficients provide an estimate of the continuous spectrum between f
and f, Hzin Fig. 7.7. (See Problem 4 for an explanation of why the DFT gives an
estimate.) :

Figure 7.8 shows a digital implementation of an efficient spectral analysis
system. The sampled demodulator output

x(me ™ 12N = I(n) + jQ(n) (7.6)

has real (in-phase 7) and imaginary (quadrature-phase Q) components. Filtering
a complex-valued data sequence is accomplished by filtering the 7 and Q
components separately, as shown in Fig. 7.8.

Figure 7.9 shows the result of filtering the demodulated spectrum. The
demodulated spectrum is the same as that shown in Fig. 7.7. The digital filters
begin to attenuate sharply at f, and have essentially zero output at f;/2. The
digital filters in Fig. 7.8 are shown operating at a rate of 2f;, so the spectrum (see
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Fig. 7.9 Spectra in an efficient spectral analysis system.

Fig. 7.9) repeats at intervals of 2f;. The digital filter output spectrum also repeats
at intervals of 2f;.

The width of the spectrum at the output of the digital filters is considerably
reduced with respect to the bandwidth of the demodulated analog spectrum.
Therefore, the sampling frequency at the output can also be reduced. A
decimation of 2:1 at the digital filter output is shown in Figs. 7.8 and 7.9. The
FFT input spectrum after the 2:1 decimation repeats every f; Hz and has unique
spectral content between — f;/2 and f;/2 (or between 0 and f;). The N FFT filter
outputs give unique information all of which is useful except for that attenuated
by the digital filters. The digital filter transition band (the frequency band
between passband and stopband) uses a band of 2( f;/2 — f,) out of the 0-f, Hz
band (see Fig. 7.9). The transition band can be kept small by proper digital filter
design.
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Figure 7.10 shows two options for mechanizing the more general case of an
m : 1 decimation. The sampling frequency at the digital LPF inputs is f; Hz. Due-
to attenuation of frequencies above f, (Fig. 7.9) the LPF output can be sampled
at the lower frequency f;/m.
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f —e
s Q E
1
1
fg/m

Fig. 7.10 . Equivalent systems for efficient spectral analysis.

We have compared complex and real inputs to the FFT and have shown that a
complex input doubles the information out of the FFT as compared to a real
input. We have considered a complex FFT input that results from inphase and
quadrature components at a demodulator output. A complex FFT input also
results from two distinct input sequences to the FFT where one sequence is real
and the other imaginary (see Problems 3.18-3.20). Because of the factors W°,
Wt w2, ..., WN¥1 roughly half the outputs of the first set of butterflies of a
power-of-2 DIF FFT are complex even with real inputs (see, e.g., Fig. 4.4), and a
complex input introduces no special problems.

7.3 Spectral Relationships

We noted in Chapter 3 that the sampling period T does not appear in the
summation determining the Fourier coefficient X(k), so we can think of the N
time samples into the FFT as coming from a function sampled every 1/N s. The
normalized period of the input time function is 1 s. In Chapter 6 we showed that
the N DFT filter mainlobe peaks are at 0, 1, 2,..., N — 1 Hz for a normalized
period of P =1 s. Users of FFT information want the DFT frequency bin
outputs properly displayed as a function of the frequency of the analog input
spectrum. To obtain the proper frequency ordering, scrambled order FFT
outputs are first placed in proper numerical sequence. Then they are ordered to
represent the spectrum of the analog input. In this section we review DFT and
continuous spectrum frequency relationships for both real and complex
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inputs. We shall see that complex DFT outputs in general have to be reordered
for display. :

-fp 0 o f(Hz)

k (bin number)

L

f

l— of
p2 fg f (Hz)

(c)

Fig. 7.11 (a) Analog, (b) digital, and (c) displayed spectra for a real input.

Figure 7.11 shows analog and digital filter output spectra and the displayed
spectrum for a real input. The analog LPF passband ends at f,, whereas the
digital filter passband ends at f,,, and the spectrum is displayed up to f,,. The
FFT input sampling frequency is f; Hz and the resolution on the displayed
spectrum is Af = f,/N. Frequency bins are usually displayed up to the point
where the DFT spectrum is attenuated by the LPF. Minimizing attenuation of
the displayed spectrum requires that

fp2 Sfpl <fp (77)

The displayed spectrum for a real input is the numerically ordered DFT output
for frequency bins 0, 1, 2, 3, ..., / where

1Af< fis (7.8)

Frequency values (in hertz) are displayed along with the DFT spectrum. DFT
frequency bin 0 corresponds to 0 Hz in the spectrum of a real input signal, bin/
corresponds to I/f;/N Hz, etc.

Whereas / out of N frequency bins contain useful spectral information when
we take the DFT of a real input, 2/ out of N bins contain useful spectral
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information when we obtain the DFT of a complex input. Often we wish to
analyze a frequency band from f; to f, Hz, where 0 < f; < f,. If the band f, — f}
is small relative to f;, then transforming the real input wastes the frequency
region from 0 to f; Hz and may require a large value of N to give sufficient
resolution of the f;—f, Hz band. Complex demodulation, discussed in the
previous section, results in significant savings by making it possible to analyze
only the band from f; to f,. Figure 7.12 shows a spectrum from which we wish to
analyze only the frequency band f;—f; Hz. The demodulator translates frequency
fo Hz to zero, where

fo=3(1+ 1) (7.9)

The demodulated spectrum is filtered so that frequencies less than f; — f; or
greater than f, — f, are greatly attenuated. The spectrum originally between f;
and f, Hzis between 0 and f; Hz in the analyzed spectrum. Figure 7.12 shows that
the FFT input sampling rate f; for the demodulated spectrum must satisfy

fa—Jo < f/2 (7.10)
whereas the original spectrum requires a sampling rate f; > 2f,. If /;, » 0 and

fa — fi < f5, then £ > f..

The analyzed spectrum is shown in Fig. 7.12 versus both the demodulated and
original frequencies. DFT bin numbers are also shown. Bin numbers 0-/ contain
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