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PREFACE 
 
    Recurrent neural networks have been an interesting and important part of 
neural network research during the 1990's. They have already been applied to a 
wide variety of problems involving time sequences of events and ordered data 
such as characters in words. Novel current uses range from motion detection and 
music synthesis to financial forecasting. This book is a summary of work on 
recurrent neural networks and is exemplary of current research ideas and 
challenges in this subfield of artificial neural network research and development. 
By sharing these perspectives, we hope to illuminate opportunities and 
encourage further work in this promising area. 
    Two broad areas of importance in recurrent neural network research, the 
architectures and learning techniques, are addressed in every chapter. 
Architectures range from fully interconnected to partially connected networks, 
including recurrent multilayer feedforward.  Learning is a critical issue and one 
of the primary advantages of neural networks.  The added complexity of learning 
in recurrent networks has given rise to a variety of techniques and associated 
research projects. A goal is to design better algorithms that are both 
computationally efficient and simple to implement. 
    Another broad division of work in recurrent neural networks, on which this 
book is structured, is the design perspective and application issues. The first 
section concentrates on ideas for alternate designs and advances in theoretical 
aspects of recurrent neural networks.  Some authors discuss aspects of improving 
recurrent neural network performance and connections with Bayesian analysis 
and knowledge representation, including extended neuro-fuzzy systems.  Others 
address real-time solutions of optimization problems and a unified method for 
designing optimization neural network models with global convergence. 
    The second section of this book looks at recent applications of recurrent 
neural networks.  Problems dealing with trajectories, control systems, robotics, 
and language learning are included, along with an interesting use of recurrent 
neural networks in chaotic systems.  The latter work presents evidence for a 
computational paradigm that has higher potential for pattern capacity and 
boundary flexibility than a multilayer static feedforward network.  Other 
chapters examine natural language as a dynamic system appropriate for 
grammar induction and language learning using recurrent neural networks. 
Another chapter applies a recurrent neural network technique to problems in 
controls and signal processing, and other work addresses trajectory problems 
and robot behavior. 
    The next decade should produce significant improvements in theory and 
design of recurrent neural networks, as well as many more applications for the 
creative solution of important practical problems. The widespread application of 
recurrent neural networks should foster more interest in research and 
development and raise further theoretical and design questions.   
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Chapter 1 
 

INTRODUCTION 
 

Samir B. Unadkat, Mãlina M. Ciocoiu and Larry R. Medsker 
 

Department of Computer Science and Information Systems 
American University 

 
I. OVERVIEW 

 
    Recurrent neural networks have been an important focus of research and 
development during the 1990's.  They are designed to learn sequential or time-
varying patterns.  A recurrent net is a neural network with feedback (closed 
loop) connections [Fausett, 1994].  Examples include BAM, Hopfield, 
Boltzmann machine, and recurrent backpropagation nets [Hecht-Nielsen, 1990]. 
    Recurrent neural network techniques have been applied to a wide variety of 
problems. Simple partially recurrent neural networks were introduced in the late 
1980's by several researchers including Rumelhart, Hinton, and Williams 
[Rummelhart, 1986] to learn strings of characters.  Many other applications have 
addressed problems involving dynamical systems with time sequences of events.  
    Table 1 gives some other interesting examples to give the idea of the breadth 
of recent applications of recurrent neural networks.  For example, the dynamics 
of tracking the human head for virtual reality systems is being investigated. The  
     

Table 1.  Examples of recurrent neural network applications. 
 

Topic Authors Reference 
Predictive head tracking 
for virtual reality systems 

Saad, Caudell, and 
Wunsch, II 

[Saad, 1999] 

Wind turbine power 
estimation 

Li, Wunsch, O'Hair, and 
Giesselmann 

[Li, 1999] 

Financial prediction using 
recurrent neural networks 

Giles, Lawrence, Tsoi [Giles, 1997] 

Music synthesis method 
for Chinese plucked-
string instruments 

Liang, Su, and Lin [Liang, 1999] 

Electric load forecasting Costa, Pasero, Piglione, 
and Radasanu 

[Costa, 1999] 

Natural water inflows 
forecasting 

Coulibaly, Anctil, and 
Rousselle 

[Coulibaly, 1999] 

 
forecasting of financial data and of electric power demand are the objects of 
other studies.  Recurrent neural networks are being used to track water quality 



and minimize the additives needed for filtering water.  And, the time sequences 
of musical notes have been studied with recurrent neural networks. 
    Some chapters in this book focus on systems for language processing. Others 
look at real-time systems, trajectory problems, and robotic behavior.  
Optimization and neuro-fuzzy systems are presented, and recurrent neural 
network implementations of filtering and control are described. Finally, the 
application of recurrent neural networks to chaotic systems is explored. 
 
A. RECURRENT NEURAL NET ARCHITECTURES 
     The architectures range from fully interconnected (Figure 1) to partially 
connected nets (Figure 2), including multilayer feedforward networks with 
distinct input and output layers.  Fully connected networks do not have distinct 
input layers of nodes, and each node has input from all other nodes.  Feedback 
to the node itself is possible. 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1. An example of a fully connected recurrent neural network. 

 
    Simple partially recurrent neural networks (Figure 2) have been used to learn 
strings of characters. Athough some nodes are part of a feedforward structure, 
 

 
 
 
 
 
 
 
 
 
 
                              C1          C2 

 
 

Figure 2.  An example of a simple recurrent network. 
 
 

 



 

 
other nodes provide the sequential context and receive feedback from other 
nodes.  Weights from the context units (C1 and C2) are processed like those for 
the input units, for example, using backpropagation.  The context units receive 
time-delayed feedback from, in the case of Figure 2, the second layer units.  
Training data consists of inputs and their desired successor outputs.  The net can 
be trained to predict the next letter in a string of characters and to validate a 
string of characters. 
    Two fundamental ways can be used to add feedback into feedforward 
multilayer neural networks. Elman [Elman, 1990] introduced feedback from the 
hidden layer to the context portion of the input layer.  This approach pays more 
attention to the sequence of input values. Jordan recurrent neural networks 
[Jordan, 1989] use feedback from the output layer to the context nodes of the 
input layer and give more emphasis to the sequence of output values.  This book 
covers a range of variations on these fundamental concepts, presenting ideas for 
more efficient and effective recurrent neural networks designs and examples of 
interesting applications. 
 
B. LEARNING IN RECURRENT NEURAL NETS 
    Learning is a fundamental aspect of neural networks and a major feature that 
makes the neural approach so attractive for applications that have from the 
beginning been an elusive goal for artificial intelligence.  Learning algorithms 
have long been a focus of research (e.g., Nilsson [1965] and Mendel [1970]). 
    Hebbian learning and gradient descent learning are key concepts upon which 
neural network techniques have been based. A popular manifestation of gradient 
descent is back-error propagation  introduced by Rumelhart [1986] and Werbos 
[1993]. While backpropagation is relatively simple to implement, several 
problems can occur in its use in practical applications, including  the difficulty 
of avoiding entrapment in local minima. The added  complexity of the 
dynamical processing in recurrent neural networks from the time-delayed 
updating of the input data requires more complex algorithms for representing the 
learning. 
    To realize the advantage of the dynamical processing of recurrent neural 
networks, one approach is to build on the effectiveness of feedforward networks 
that process stationary patterns. Researchers have developed a variety of  
schemes by which gradient methods, and in particular backpropagation learning, 
can be extended to recurrent neural networks. Werbos introduced the 
backpropagation through time approach [Werbos, 1990], approximating the time 
evolution of a recurrent neural network as a sequence of static networks using 
gradient methods. Another approach deploys a second, master, neural network 
to perform the required computations in programming the attractors of the 
original dynamical slave network [Lapedes and Farber, 1986]. Other techniques 
that have been investigated can be found in Pineda [1987], Almeida [1987], 
Williams and Zipser [1989], Sato [1990], and Pearlmutter [1989]. The  various 
attempts to extend backpropagation learning to recurrent networks is 
summarized in Pearlmutter [1995]. 
     



II. DESIGN  ISSUES AND THEORY 
 
    The first section of the book concentrates on ideas for alternate designs and 
advances in theoretical aspects of recurrent neural networks.  The authors 
discuss aspects of improving recurrent neural network performance and 
connections with Bayesian analysis and knowledge representation. 
 
A. OPTIMIZATION  
    Real-time solutions of optimization problems are often needed in scientific 
and engineering problems, including signal processing, system identification, 
filter design, function approximation, and regression analysis, and neural 
networks have been widely investigated for this purpose. The numbers of 
decision variables and constraints are usually very large, and large-scale 
optimization procedures are even more challenging when they have to be done 
in real time to optimize  the performance  of a dynamical system. For such 
applications, classical optimization techniques may not be adequate due to the 
problem dimensionality and  stringent requirements on computational time. The 
neural network approach  can solve optimization problems in running times 
orders of magnitude faster than the most popular optimization algorithms 
executed on general-purpose digital computers. 
    The chapter by Xia and Wang describes the use of neural networks for these 
problems and introduces a unified method for designing optimization neural 
network models with global convergence.  They discuss continuous-time 
recurrent neural networks for solving linear and quadratic programming and for 
solving linear complementary problems and then focus on discrete-time neural  
networks. Assignment neural networks are discussed in detail, and some 
simulation examples are presented to demonstrate the operating characteristics 
of the neural networks. 
    The chapter first presents primal-dual neural networks for solving linear and 
quadratic programming problems (LP and QP) and develops the neural network 
for solving linear complementary problems (LCP). Following  a unified method 
for designing neural network models, the first part of the chapter describes in 
detail primal-dual  recurrent neural networks, with continuous time, for solving 
LP and QP. The second part of the chapter focuses on primal-dual discrete time 
neural  networks for QP and LCP. 
    Although great progress has been made in using neural networks for 
optimization, many theoretical and practical problems remain unsolved. This 
chapter identifies areas for future research on the dynamics of recurrent neural 
networks for optimization problems, further application of recurrent neural 
networks to practical problems, and the hardware prototyping of recurrent neural 
networks for optimization. 
 
B. DISCRETE-TIME SYSTEMS 
    Santos and Von Zuben discuss the practical requirement for efficient 
supervised learning algorithms, based on optimization procedures for adjusting 
the parameters. To improve performance, second order information is 



 

considered to minimize the error in the training. The first objective of their work 
is to describe systematic ways of obtaining exact second-order information for a 
range of recurrent neural network configurations, with a computational cost only 
two times higher than the cost to acquire first-order information. The second 
objective is to present an improved version of the conjugate gradient algorithm 
that can be used to effectively explore the available second-order information. 
    The dynamics of a recurrent neural network can be continuous or discrete in 
time. However, the simulation of a continuous-time recurrent neural network in 
digital computational devices requires the adoption of a discrete-time equivalent 
model.  In their chapter, they discuss discrete-time recurrent neural network 
architectures, implemented by the use of one-step delay operators in the 
feedback paths. In doing so, digital filters of a desired order can be used to 
design the network by the appropriate definition of connections. The resulting 
nonlinear models for spatio-temporal representation can be directly simulated on 
a digital computer by means of a system of nonlinear difference equations. The 
nature of the equations depends on the kind of recurrent architecture adopted but 
may lead to very complex behaviors, even with a reduced number of parameters 
and associated equations. 
    Analysis and synthesis of recurrent neural networks of practical importance is 
a very demanding task, and second-order information should be considered in 
the training process.  They present a low-cost procedure to obtain exact second-
order information for a wide range of recurrent neural network architectures. 
They also present a very efficient and generic learning algorithm, an improved 
version of a scaled conjugate gradient algorithm, that can effectively be used to 
explore the available second-order information. They introduce a set of adaptive 
coefficients in replacement to fixed ones, and the new parameters of the 
algorithm are automatically adjusted. They show and interpret some simulation 
results. 
    The innovative aspects of this work are the proposition of a systematic 
procedure to obtain exact second-order information for a range of different 
recurrent neural network architectures, at a low computational cost, and an 
improved version of a scaled conjugate gradient algorithm to make use of this 
high-quality information. An important aspect is that, given the exact second-
order information, the learning algorithm can be directly applied, without any 
kind of adaptation to the specific context. 
 
C. BAYESIAN BELIEF REVISION 
    The Hopfield neural network has been used for a large number of 
optimization problems, ranging from object recognition to graph planarization to 
concentrator assignment. However, the fact that the Hopfield energy function is 
of quadratic order limits the problems to which it can be applied. Sometimes, 
objective functions that cannot be reduced to Hopfield’s  quadratic energy 
function can still be reasonably approximated by a quadratic energy function. 
For other problems, the objective function must be modeled by a higher-order 
energy function. Examples of such problems include the angular-metric TSP and 
belief revision, which is Abdelbar’s subject in Chapter 4. 



    In his chapter, Abdelbar describes high-order recurrent neural networks and 
provides an efficient implementation data structure for sparse high-order 
networks. He also describes how such networks can be used for Bayesian belief 
revision and in important problems in diagnostic reasoning and commonsense 
reasoning under uncertainty. 
 
D. KNOWLEDGE REPRESENTATION 
    Giles, Omlin, and Thornber discuss in their chapter neuro-fuzzy systems -- 
the combination of artificial neural networks with fuzzy logic -- which have 
become useful in many application domains. They explain, however, that 
conventional neuro-fuzzy models usually need enhanced representational power 
for applications that require context and state (e.g., speech, time series 
prediction, and control). Some of these applications can be readily modeled as 
finite state automata. Previously, it was proved that deterministic finite state 
automata (DFA) can be synthesized by or mapped into recurrent neural 
networks by directly programming the DFA structure into the weights of the 
neural network.  Based on those results, they propose a synthesis method for 
mapping fuzzy finite state automata (FFA) into recurrent neural networks.  This  
mapping is suitable for direct implementation in VLSI, i.e.,  the encoding of 
FFA as a generalization of the encoding of DFA in VLSI systems.   
    The synthesis method requires FFA to undergo a transformation prior to being 
mapped into recurrent networks. The neurons are provided with an enriched 
functionality in order to accommodate a fuzzy representation of FFA states. This 
enriched neuron functionality also permits fuzzy parameters of FFA to be 
directly represented as parameters of the neural network. 
    They also prove the stability of fuzzy finite state dynamics of the constructed 
neural networks for finite values of network weight and, through simulations, 
give empirical validation of the proofs. This proves the various knowledge 
equivalence representations between neural and fuzzy systems and models of 
automata. 
 
E. LONG-TERM DEPENDENCIES 
    Gradient-descent learning algorithms for recurrent neural networks are known 
to perform poorly on tasks that involve long-term dependencies, i.e., those 
problems for which the desired output depends on inputs presented at times far 
in the past. Lin, Horne, Tino, and Giles discuss this  in their chapter and show 
that the long-term dependencies problem is lessened for a class of architectures 
called NARX recurrent neural networks, which have powerful representational 
capabilities.   
    They have previously reported that gradient-descent learning can be more 
effective in NARX networks than in recurrent neural networks that have "hidden 
states" on problems including grammatical inference and nonlinear system 
identification.  Typically the network converges much faster and generalizes 
better than other networks, and this chapter shows the same kinds of results. 
     They also present in this chapter some experimental results that show that 
NARX networks can often retain information for two to three times as long as 



 

conventional recurrent neural networks.  They show that although NARX 
networks do not circumvent the problem of long-term dependenices, they can 
greatly improve performance on long-term dependency problems.  They 
describe in detail some of the assumptions regarding what it means to latch 
information robustly and suggest possible ways to loosen these assumptions. 
 

III. APPLICATIONS 
 

    This section looks at interesting modifications and applications of recurrent 
neural networks.  Problems dealing with trajectories, control systems, robotics, 
and language learning are included, along with an interesting use of recurrent 
neural networks in chaotic systems. 
 
A. CHAOTIC RECURRENT NETWORKS 
    Dayhoff, Palmadesso, and Richards present in their chapter work on the use 
of recurrent neural networks for chaotic systems.  Dynamic neural networks are 
capable of a tremendous variety of oscillations, such as finite state oscillations, 
limit cycles, and chaotic behavior. The differing oscillations that are possible 
create an enormous repertoire of self-sustained activity patterns.  This repertoire 
is very interesting because oscillations and changing activity patterns can 
potentially be exploited for computational purposes and for modeling physical 
phenomena. 
    In this chapter, they explore trends observed in a chaotic network when an 
external pattern is used as a stimulus.  The pattern stimulus is a constant external 
input to all neurons in a single-layer recurrent network.  The strength of the 
stimulus is varied to produce changes and trends in the complexity of the evoked 
oscillations.  Stronger stimuli can evoke simpler and less varied oscillations.  
Resilience to noise occurs when noisy stimuli evoke the same or similar 
oscillations.  Stronger stimuli can be more resilient to noise.  They show 
examples of each of these observations. A pattern-to-oscillation map may 
eventually be exploited for pattern recognition and other computational 
purposes.  In such a paradigm, the external pattern stimulus evokes an 
oscillation that is read off the network as the answer to a pattern association 
problem. They present evidence that this type of computational paradigm has 
higher potential for pattern capacity and boundary flexibility than a multilayer 
static feedforward network. 
 
B. LANGUAGE LEARNING 
    The Kremer chapter examines the relationship between grammar induction or 
language learning and recurrent neural networks, asking how understanding 
formal language learning can help in designing and applying recurrent neural 
networks.  The answer to this question comes in the form of four lessons:  (1) 
training RNNs is difficult, (2) reducing the search space can accelerate or make 
learning possible, (3) ordering the search space can speed learning, and (4) 
ordering your training data helps. The chapter concerns dynamical recurrent 
neural networks, those that are presented with time-varying inputs and are 



designed to render outputs at various points in time. In this case, the operation of 
the network can be described by a function mapping an input sequence to an 
output value or sequence of values and is applied to the problem where inputs 
are selected from a discrete alphabet of valid values and output values fall into 
discrete categories. The problem of dealing with input sequences in which each 
item is selected from an input alphabet can also be cast as a formal language 
problem.  This work uses recurrent neural networks to categorize subsets of an 
input language and reveals effective techniques for language learning. 
 
C. SEQUENTIAL AUTOASSOCIATION 
    In spite of the growing research on connectionist Natural Language 
Processing (NLP), a number of problems need to be solved such as the 
development of proper linguistic representations. Natural language is a dynamic 
system with underlying hierarchical structure and sequential external appearance 
and needs an adequate hierarchical systematic way of linguistic representation. 
The development of global-memory recurrent neural networks, such as the 
Jordan Recurrent Networks [Jordan, 1986] and the Simple Recurrent Networks 
(SRN) by Elman [1990] stimulated the development of models that gradually 
build representations of their sequential input in this global memory 
    Stoianov in his chapter presents a novel connectionist architecture designed to 
build and process a hierarchical system of static distributed representations of 
complex sequential data. It follows upon the idea of building complex static 
representations of the input sequence but has been extended to reproduce these 
static representations in their original form by building unique representations 
for every input sequence. The model consists of sequential autoassociative 
modules called Recurrent Autoassociative Networks (RANs). Each of these 
modules learns to reproduce input sequences and as a side effect, develops static 
distributed representations of the sequences. If requested, these modules unpack 
static representations into their original sequential form. The complete 
architecture for processing sequentially represented hierarchical input data 
consists of a cascade of RANs. The input tokens of a RAN module from any but 
the lowest level in this cascade scheme are the static representations that the 
RAN module from the lower level has produced. The input data of the lowest 
level RAN module are percepts from the external world. The output of a module 
from the lowest level can be associated with an effector. Then, given a static 
representation set to the RAN hidden layer, this effector would receive 
commands sequentially during the unpacking process. 
    RAN is a recurrent neural network that conforms to the dynamics of natural 
languages, and RANs produce representations of sequences and interpret them 
by unpacking back to their sequential form. The more extended architecture, a 
cascade of RANs, resembles the hierarchy in natural languages. Furthermore, 
given a representative training environment, this architecture has the capacity to 
develop the distributed representations in a systematic way. He argues that 
RANs provide an account of systematicity, and therefore that the RAN and the 
RAN cascade can participate in a more global cognitive model, where the 
distributed representations they produce are extensively transformed and 
associated. 



 

    This chapter includes a discussion of hierarchy in dynamic data, and a small 
RAN example is presented for developing representations of syllables. Although 
the model solves the problem of developing representations of hierarchically 
structured sequences, some questions remain open, especially for developing an 
autonomous cognitive model. Nevertheless, the suggested model may be an 
important step in connectionist modeling. 
 
D. TRAJECTORY PROBLEMS 
    An important application of recurrent neural networks is the modeling of 
dynamic systems involving trajectories, which are good examples of events with 
specific required time relationships. Typical test cases are the famous nonlinear 
and autonomous dynamic systems of the circle and the figure-eight.  
    The difficulty in training recurrent networks often results in the use of 
approximations that may result in inefficient training.  Sundareshan, Wong, and 
Condarcure in their chapter describe two alternate learning procedures that do 
not require gradient evaluations. They demonstrate the performance of the two 
algorithms by use of a complex spatiotemporal learning task to produce 
continuous trajectories. They show significant advantages in implementation. 
    They describe two distinct approaches. One uses concepts from the theory of 
learning automata and the other is based on the classical simplex optimization 
approach. They demonstrate the training efficiency of these approaches with the 
task of spatiotemporal signal production by a trained neural network. The 
complexity of this task reveals the unique capability of recurrent neural 
networks for approximating temporal dynamics.  
    In their chapter, Hagner, Hassoun, and Watta compare different network 
architectures and learning rules, including single-layer fully recurrent networks 
and multilayer networks with external recurrence: incremental gradient descent, 
conjugate gradient descent, and three versions of the extended Kalman filter.  
The circle trajectory is shown to be relatively easily learned while the figure-
eight trajectory is difficult.  They give a qualitative and quantitative analysis of 
the neural net approximations of these internally and externally recurrent 
autonomous systems. 
 
E. FILTERING AND CONTROL 
    Recurrent networks are more powerful than nonrecurrent networks, 
particularly for uses in control and signal processing applications. The chapter 
by Hagan, De Jesús, and Schultz introduces Layered Digital Recurrent Networks 
(LDRN), develops a general training algorithm for this network, and 
demonstrates the application of the LDRN to problems in controls and signal 
processing. They present a notation necessary to represent the LDRN and 
discuss the dynamic backpropagaion algorithms that are required to compute 
training gradients for recurrent networks. The concepts underlying the 
backpropagation-through-time and forward perturbation algorithms are 
presented in a unified framework, and are demonstrated for a simple, single-loop 
recurrent network.  They also describe a general forward perturbation algorithm 
for computing training gradients for the LDRN.  



    Two application sections discuss dynamic backpropogation: implementation 
of the general dynamic backpropogation algorithm and the application of a 
neurocontrol architecture to the automatic equalization of an acoustic 
transmitter. A section on nonlinear filtering demonstrates the application of a 
recurrent filtering network to a noise-cancellation application. 
 
F. ADAPTIVE ROBOT BEHAVIOR 
    The chapter by Ziemke discusses the use of recurrent neural networks for 
robot control and learning and investigates its relevance to different fields of 
research, including cognitive science, AI, and the engineering of robot control 
systems. Second-order RNNs, which so far only rarely have been used in robots, 
are discussed in particular detail, and their capacities for the realization of 
adaptive robot behavior are demonstrated and analyzed experimentally. 

 
IV. FUTURE DIRECTIONS 

 
    This book represents the breadth and depth of interest in recurrent neural 
networks and points to several directions for ongoing research.  The chapters 
address both new and improved algorithms and design techniques and also new 
applications.  The topics are relevant to language processing, chaotic and real-
time systems, optimization, trajectory problems, filtering and control, and 
robotic behavior. 
    Research in recurrent neural networks has occurred primarily in the 1990's, 
building on important fundamental work in the late 1980's.  The next decade 
should produce significant improvements in theory and design as well as many 
more applications for the creative solution of important practical problems. The 
widespread application of recurrent neural networks should foster more interest 
in research and development and raise further theoretical and design questions.  
The ongoing interest in hybrid systems should also result in new and more 
powerful uses of recurrent neural networks. 
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Chapter 2

RECURRENT NEURAL NETWORKS
FOR OPTIMIZATION:

THE STATE OF THE ART

Youshen Xia and Jun Wang

Department of Mechanical & Automation Engineering
The Chinese University of Hong Kong
Shatin, New Territories, Hong Kong

I. INTRODUCTION

Optimization problems arise in a wide variety of scientific and engineering
applications including signal processing, system identification, filter design, func-
tion approximation, regression analysis, and so on. In many practical optimization
problems such as the planning of power systems and routing of telecommunica-
tion systems, the numbers of decision variables and constraints are usually very
large. It is even more challenging when a large-scale optimization procedure has
to be performed in real time to optimize the performance of a dynamical system.
For such applications, classical optimization techniques may not be competent due
to the problem dimensionality and stringent requirement on computational time.
One possible and very promising approach to real-time optimization is to apply
artificial neural networks. Neural networks are composed of many massively con-
nected neurons. Resembling more or less their biological counterparts in struc-
tures, artificial neural networks are representational and computational models
composed of interconnected simple processing elements called artificial neurons.
In processing information, the processing elements in an artificial neural network
operate concurrently and collectively in a parallel and distributed fashion. Be-
cause of the inherent nature of parallel and distributed information processing in
neural networks, the convergence rate of the solution process is not decreasing as
the size of the problem increases. Furthermore, unlike other parallel algorithms,
neural networks can be implemented physically in designated hardware such as
application-specific integrated circuits where optimization is carried out in a truly
parallel and distributed manner. This feature is particularly desirable for real-
time optimization in decentralized decision-making situations. Neural networks
are promising computational models for solving large-scale optimization prob-
lems in real time. Therefore, the neural network approach can solve optimization
problems in running times at the orders of magnitude much faster than the most
popular optimization algorithms executed on general-purpose digital computers.

Neural network research stemmed back from McCulloch and Pitts’ pioneering
work a half century ago. Since then, numerous neural network models have been
developed. One of the well-known classic neural network models is the Percep-
tron developed by Rosenblatt. The Perceptron is a single-layer adaptive feedfor-
ward network of threshold logic units, which possess some learning capability.



Another important early neural network model is the Adaline which is a one-layer
linear network using the delta learning rule for learning. The Perceptron and Ada-
line were designed primarily for the purpose of pattern classification. Given a set
of input-output training patterns, the Perceptron and Adaline could learn from the
exemplar patterns and adapt their parametric representations accordingly to match
the patterns. The limitation of the Perceptron and Adaline is that they could only
classify linearly separable patterns because, among others, they lacked an internal
representation of stimuli.

The first attempt to develop analog circuits for solving linear programming
problems was perhaps Pyne in 1956 [Pyne, 1956]. Soon after, some other circuits
were proposed for solving various optimization problems. In 1986, Tank and Hop-
field [Hopfield and Tank, 1985; Tank and Hopfield, 1986] introduced a linear pro-
gramming neural network implemented by using an analog circuit which is well
suited for applications that require on-line optimization. Their seminal work has
inspired many researchers to investigate alternative neural networks for solving
linear and nonlinear programming problems. Many optimization neural networks
have been developed. For example, Kennedy and Chua [Kennedy and Chua, 1988]
proposed a neural network for solving nonlinear programming problems. This
network inculde the Tank and Hopfield network as a special case. The disadvan-
tages of this network is that it contains penalty parameters and thus its equilibrium
points correspond to approximate optimal solutions only. To overcome the short-
coming, Rodríguez-Vázquez et al. [1990] proposed a switched-capacitor neural
network for solving a class of optimization problems. This network is suitable
when the optimal solution lies in the feasible region only. Otherwise, the network
may have no equilibrium point. Wang [Wang, 1994] proposed a deterministic
annealing neural network for solving convex programming. This network guaran-
tees an optimal solution can be obtained. Yet, the given sufficient condition is not
easy to be verfied sometimes. From the optimization point of view, most of the
methods employed by these existing neural networks belong to either the penalty
function method or Lagrangian method. For more discussion on the advantages
and disadvantages of these models and their modification, see Cichocki and Unbe-
hauen [1993]. More recently, using the gradient and projection methods Bouzer-
doum and Pattison [Bouzerdoum and Pattison, 1993] presented a neural network
for solving quadratic optimization problems with bounded variables only. The
network has the good performence in computation and implementation but can
not solve general linear and quadratic programming problems. By the dual and
projection methods Xia and Wang developed some neural networks for solving
general linear and quadratic programming problems. These new neural networks
have shown to be of good performence in computation and implementation.

Organized in two parts, this chapter is going to discuss the primal-dual neural
networks for solving linear and quadratic programming problems (LP and QP) and
develop the neural network for solving linear complementary problems (LCP).
Following a unified method for designing neural network models, the first part of
this chapter describes in detail primal-dual recurrent neural networks, with con-
tinuous time, for solving LP and QP. The second part of this chapter focuses on



primal -dual discrete time neural networks for QP and LCP. The discrete assign-
ment neural networks are described in detail.

II. CONTINUOUS-TIME NEURAL NETWORKS FOR QP
AND LCP

A. PROBLEMS AND DESIGN OF NEURAL NETWORKS

1. Problem Statement
We consider convex quadratic programming with bound contraints:

Minimize
1

2
x
T
Ax + c

T
x

subject to Dx = b; (1)

0 � x � d

where x 2 <n is the vector of decision variables, A 2 <n�n is a positive semidef-
inite matrix, b 2 <m

; c 2 <n; d 2 <n are constant column vectors, D 2 <m�n

is a coefficient matrix, m � n. When d = 1, (1) become a standard quadratic
programming:

Minimize
1

2
x
T
Ax + c

T
x

subject to Dx = b; x � 0 (2)

When A = 0, (1) becomes linear programming with bound contraints:

Minimize c
T
x

subject to Dx = b; (3)

0 � x � d

We consider also linear complementary problems below: Find a vector z 2 R
l

such that
z
T (Mz + q) = 0; (Mz + q) � 0; z � 0 (4)

where q 2 R
l
; and M 2 R

l�l is a positive semidefinite matrix but not necessarily
symmetric. LCP has been recognized as a unifying description of a wide class
of problems including LP and QP, fixed point problems and bimatrix equilibrium
points [Bazaraa, 1990]. In electrical engineering applications, it is used for the
analysis and modeling of piecewise linear resistive circuits [Vandenberghe, 1989].
2. Design of Neural Networks

A neural network can operate in either continuous-time or discrete-time form.
A continuous- time neural network described by a set of ordinary differential equa-
tions enables us to solve optimization problems in real time due to the massively
parallel operations of the computing units and due to its real-time convergence
rate. In comparison, discrete-time models can be considered as special cases
of discretization of continuous-time models. Thus, in this part, we first discuss
continuous-time neural networks.



The procedure of a continuous-time neural network design to optimization
usually begins with the formulation of an energy function based on the objec-
tive function and constraints of the optimization problem under study. Ideally,
the minimum of a formulated energy function corresponds to the optimal solution
(minimum or maximum, whatever applicable) of the original optimization prob-
lem. Clearly, a convex energy function should be used to eliminate local minima.
In nontrivial constrained optimization problems, the minimum of the energy func-
tion has to satisfy a set of prespecified constraints. The majority, if not all, of the
existing neural network approaches to optimization formulates an energy function
by incorporating objective function and constraints through functional transfor-
mation and numerical weighting. Functional transformation is usually used to
convert constraints to a penalty function to penalize the violation of constraints.
Numerical weighting is often used to balance constraint satisfaction and objective
minimization (or maximization). The way the energy function is formulated plays
an important role in the optimization problem-solving procedure based on neural
networks.

The second step in designing a neural network for optimization usually in-
volves the derivation of a dynamical equation (also known as state equation or
motion equation) of the neural network based on a formulated energy function.
The dynamical equation of a neural network prescribes the motion of the activa-
tion states of the neural network. The derivation of a dynamical equation is crucial
for success of the neural network approach to optimization. A properly derived
dynamical equation can ensure that the state of neural network reaches an equi-
librium and the equilibrium state of the neural network satisfies the constraints
and optimizes the objective function of the optimization problems under study.
Presently, the dynamical equations of most neural networks for optimization are
derived by letting the time derivative of a state vector to be directly proportional
to the negative gradient of an energy function.

The next step is to determine the architecture of the neural network in terms
of the neurons and connections based on the derived dynamical equation. An
activation function models important characteristics of a neuron. The range of
an activation function usually prescribes the domain of state variables (the state
space of the neural network). In the use of neural networks for optimization, the
activation function depends on the feasible region of decision variables delimited
by the constraints of the optimization problem under study. Specifically, it is nec-
essary for the state space to include the feasible region. Any explicit bound on
decision variables can be realized by properly selecting the range of activation
functions. The activation function is also related to the energy function. If the
gradient-based method is adopted in deriving the dynamical equation, then the
convex energy function requires an increasing activation function. Precisely, if
the steepest descent method is used, the activation function should be equal to
the derivative of the energy function. Figure 1 illustrates four examples of en-
ergy functions and corresponding activation functions, where the linear activation
function can be used for unbounded variables.

The last step in developing neural networks for optimization is usually devoted
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Figure 1. A block diagram of the neural network model in (5) (Xia, Y. and Wang, J.,
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to simulation to test the performance of the neural network. Simulations can be
performed numerically using commercial software packages or self-programmed
simulators. Simulation can also be implemented physically in hardware (e.g.,
using off-the-shelf electronic components).

In summary, to formulate a optimization problem in terms of a neural net-
work, there are two types of methods. One approach commonly used in develop-
ing an optimization neural network is to first convert the constrained optimization
problem into an associated unconstrained optimization problem, and then design
a neural network that solves the unconstrained problem with gradient methods.
Another approach is to construct a set of differential equations such that their
equilibrium points correspond to the desired solutions and then find an appropri-
ate Lyapunov function such that all trajectory of the systems converges to some
equilibrium points. Combining the above two types of methods, we give a de-
terministic procedure to be used directly to construct neural network models [Xia
and Wang, 1998].

Step 1. Find a continuous function � : 
 � R
n+l ! R such that its min-

ima correspond to the exact or approximate solutions to P, where 
 = fu =

(u1; :::; un+l)
T j ui satisfies some interval constraints and P denotes one of (1)-

(4).g
Step 2. Construct a continuous vector valued functionF : 
 � R

n+l ! R
n+l

such that the functions F (u) and �(u) satisfy
(I) if u� is a minimizer of �, then F (u�) = 0,
(II) (u� u

�)TF (u) � ��(�(u)� �(u�));8u 2 


where F (u) satisfies local Lipschitz conditions, � > 0 and fixed.
Step 3. Let the neural network model for solving P be represented by the

following dynamic systems

du

dt
= �F (u); u 2 
 (5)

where � = diag(�1; :::; �n+l); and �i > 0 which is to scale the convergence rate
of (5).

Step 4. Based on the systems in (5), design the neural network architecture for
solving P.

A block diagram of the neural network is shown in Fig. 1, where the
projection operator P
(u) enforces state vector u in 
, which is defined by
P
(u) = [P
(u1); :::; P
(un+l)]

T and for i 2 L� I , P
(ui) = ui; for i 2 I ,

P
(ui) =

8<
:

di ui < di

ui di � ui � hi

hi ui > hi

where L = f1; :::; n+ lg and I � L.

3. Theoretical Result of the Method
About the proposed method, we have the theoretical results below [Xia and

Wang, 1998].



Theorem 1. Any neural network derived from the proposed method is stable
in the sense of Lyapunov and globally convergent to an exact or approximate
solution to P.

Proof. Without loss of generality we assume that the set of minimizers of P is
unbounded, and thus the set of global minimizers of � is unbounded.

First, we know from the first step of the method that an exact or approxi-
mate solution to P corresponds to a minmizer of �, and from the second step that
F (u) = 0 if and only if u is a minimizer of �. Thus it follows that F (u) = 0 if
and only if u is an exact or an approximate solution to P. That is, the equilibrium
points of the system in (5) correspond to exact or approximate solutions to P.

Next, by the existence theory of ordinary differential equations [Miller and
Michel, 1982], we see that for any an initial point taken in 
 there exists a unique
and continuous solution u(t) � 
 for the systems in (5) over [t 0; T ) since the
function F (u) satisfies local Lipschitz conditions.

Now, we consider the positive definite function

V (u) =
1

2
k�1(u� u

�)k22; u 2 


where �1 = diag(�
� 1

2

1 ; :::; �
� 1

2

n+l) and u� is a fixed minimizer of �. From condi-
tion (II) we have

d

dt
V (u) =

dV

du

du

dt
= (u� u

�)T�2
1�F (u)

= (u� u
�)TF (u) � ��(�(u)� �(u�)) � 0: (6)

Thus
ku(t)� u

�k2 � �ku(t0)� u
�k2 8t 2 [t0; T )

where � is a positive constant. Then the solution u(t) is bounded on [t 0; T ), and
thus T = 1. Moreover, the system in (5) is Lyapunov stable at each equilibrium
point.

On the other hand, since limk!1 V (uk) = +1 whenever the sequence uk �

̂ and limk!1 kukk = +1, by Lemma 2 we see that all level sets of V are
bounded though all level sets of � are unbounded, thus 
̂ = fu 2 
jV (u) �

V (u0)g is bounded. Because V (u) is continuously differentiable on the compact
set 
̂ and fu(t)jt � t0g � 
̂ , it follows from the LaSalle’s invariance principle
that trajectories u(t) converge to �, the largest invariant subset of the following
set

E = fu 2 
̂ j
dV

dt
= 0g:

Note that if dV=dt = 0; then (u�u
�)TF (u) = 0. So��(�(u)��(u�)) � 0 by

condition (II). Thus �(u) = �(u�) and u is an equilibrium point of the system in
(7); i.e.,

du

dt
= �F (u) = 0:



Conversely, if du=dt = 0, then F (u) = 0, and dV=dt = (u� u
�)TF (u) = 0: So

du=dt = 0 if and only if dV=dt = 0: Hence

E = fu 2 
̂j
du

dt
= 0g

Finally, let limk!1 u(tk) = û, then û 2 
�. Therefore, for 8� > 0 there
exists q > 0 such that

k�1(u(tk)� û)k < � k � q

Note that (6) holds for each u� 2 
�, then k�1(u(t)�û)k is decreasing as t!1.
It follows that

k�1(u(t)� û)k2 � k�1(u(tkq )� û)k2 < � t � kq ;

then
lim
t!1

k�1(u(t)� û)k2 = 0:

So
lim
t!1

u(t) = û :

Remark: From Theorem 1 we see that any neural network designed by using
the proposed method is globally stable and convergent. Following the proposed
method we will derive two neural network models for QP and LCP, in which
equilibrium points give exact solutions and there is no need for penalty or variable
parameter in the models.

B. PRIMAL-DUAL NEURAL NETWORKS FOR LP AND
QP

1. Neural Network Models
From the dual theory we see that the dual problem of (1) is as follows

Maximize b
T
y �

1

2
x
T
Ax� d

T
v

subject to Ax�D
T
y + c+ v � 0; (7)

v � 0

where y 2 <m
; v 2 <n are the vectors of dual decision variables. By the com-

plementary slackness theorem [Bertsekas, 1982], x� and (y�; v�) are optimal so-
lutions respectively to the primal problem (1) and the dual problem (7) if and only
if x� and (y�; v�) satisfy Dx

� = b; 0 � x
� � d; v

� � 0, and the following
complementary conditions�

(v�)T (d� x
�) = 0

(x�)T (Ax� �D
T
y
� + c+ v

�) = 0
(8)



It is easy to see that (8) is equivalent to the equation of projection

x
� = P
(x

� �Ax
� +D

T
y
� � c)

where 
 = fx 2 <nj0 � x � dg; P
(x) = [P
(x1); P
(x2); : : : ; P
(xn)]
T
;

and for i = 1; 2; : : : ; n;

P
(xi) =

(
0; if xi < 0

xi; if 0 � xi � di

di; if xi > di

:

In Xia [1995], through improving the structure of the modifying extragradient
algorithm [Marcotte, 1991], we proposed the following primal-dual neural net-
work model for solving (2)

d

dt

�
x

y

�
= �

8<
:

D
T (Dx � b) + �0[2Ax�D

T
y + c

�A(x�Ax+D
T
y � c)+]

�0[D(x�Ax+D
T
y � c)+ � b]

9=
; (9)

and the following model for solving (3)

d

dt

�
x

y

�
= �

�
D
T (Dx� b)� �1(D

T
y + c)

�1[DP
(x+D
T
y � c)� b]

�
; (10)

respectively, where x 2 
; y 2 R
m, �1 = kx�P
(x+D

T
y� c)k22 , �0 = kx�

(x�Ax+D
T
y � c)+k22, (x)+ = f[x1]

+
; :::; [xl]

+gT , and [xi]
+ = maxf0; xig.

Here, directly extending the structure of the above two models we can obtain the
following neural network model for solving (1)

d

dt

�
x

y

�
= �

8<
:

D
T (Dx� b) + �[2Ax �D

T
y + c

�AP
(x �Ax+D
T
y � c)]

�[DP
(x�Ax +D
T
y � c)� b]

9=
; (11)

where x 2 
; y 2 R
m, and � = kx� P
(x�Ax+D

T
y� c)k22. For simplicity,

eqn. (11) can be written as follows:

d

dt

�
x

y

�
= �

�
Bx� q + �v(x; y)

�[Dg(x; y)� b]

�
(12)

whereB = D
T
D; q = D

T
b; v(x; y) = 2Ax�DT

y+c�Ag(x; y); and g(x; y) =
P
(x�Ax+D

T
y�c). The primal-dual neural network consists of a multivariable

system with an excitation function v(x; y) and a multivariable decaying system
g(x; y ) with a time-varying parameter � . Figure 2 illustrates the architecture of
the primal-dual network.
2. Global Convergence and Stability

First, we introduce two lemmas.
Lemma 1. Let u� 2 
; u 2 <n, then

[P
(u)� u
�]T [u� u

�] � ku� � P
(u)k
2
2:



Proof. See [Gafni and Bertsekas, 1984].
Lemma 2. Let �0(x; ; y) = kDx�bk22+kP
(x�Ax+D

T
y�c)�xk42. Then

�0(x; ; y) � 0 and �0(x; ; y) = 0 if and only if (x; y) is an optimal solution to
the original and dual problems, and if �0(x; ; y) = 0, then (x; y) is an equilibrium
point of the system (11).

Proof. From (4) and the structure of the system (11) it is easy to know the
conclusion of Lemma 2.

Theorem 2. Assume that the original problem has an optimal solution. Then
the primal-dual network (11) is stable in the sense of Lyapunov and globally con-
vergent to a point corresponding to the optimal solution of both (1) and (7).

g(x; y)

y

�

�

b

_x x

B

D

R

D
T

�

D

R

x

original
system

system
dual

_y

d � x � 0

�(x; y)

�

�

g(x; y)

v(x; y)

y

v(x; y)

g(x; y)

b

Figure 2. A block diagram of the neural network model in (12 )

Proof. Let (x0; y0) 2 
�<m be an any given initial point. Since the projec-
tion function P
(x�Ax +D

T
y � c) is Lipschitz continuous in <n+m,

F (x; y) =

8<
:

D
T (Dx� b) + �[A(x� P
(x�Ax +D

T
y � c))

+Ax�D
T
y � c]

�[DP
(x�Ax+D
T
y � c)� b]

9=
;

is also Lipschitz continuous. From the existence theory of ordinary differen-
tial equation we see that there exists a unique and continuous solution w(t) =

(x(t); y(t)) with w(0) = (x0; y0) for (11) on some interval [0;1). Let w� =



(x�; y�), where x� and y� is an optimal solution to (1) and (7), respectively. Then

� (w(t) � w
�)TF (x; y)

=

�
x� x

�

y � y
�

�T 0@D
T (Dx � b) + �[2Ax�D

T
y + c

�AP
(x�Ax +D
T
y � c)]

�[DP
(x�Ax+D
T
y � c)� b]

1
A

= kDx� bk22 + �(x � x
�)T fA[x� P
(x�Ax+D

T
y � c)]

+ (Ax �D
T
y + c)g+ �(y � y

�)TD[P
(x �Ax+D
T
y � c)� x]

+ �(y � y
�)T (Dx � b)

= kDx� bk22 + �[x � P
(x�Ax+D
T
y � c)]T [Ax�D

T
y + c]

+ �(x � x
�)TDT (y � y

�)

+ �[x� P
(x�Ax +D
T
y � c)]T [DT

y
� �Ax

� � c]

+ �(x � x
�)T (Ax�D

T
y + c)

On one hand, using the same optimal value of both (1) and (7) we obtain that

� (w(t) � w
�)TF (x; y)

� kDx� bk22 + �[x� P
(x�Ax+D
T
y � c)]T [Ax �D

T
y + c]

+ �(x � x
�)TAT (x� x

�)

On the other hand, from Lemma 1 we let u = x�Ax+D
T
y � c; u

� = x, then

[P
(x�Ax+D
T
y�c)�x]T [x�Ax+DT

y�c�x] � kx�P
(x�Ax+D
T
y�c)k22:

Therefore,

� (w(t) � w
�)TF (x; y)

� kDx� bk22 + �kx� P
(x�Ax +D
T
y � c)k22 + (x� x

�)TA(x� x
�)

� �0(x; y)

since � = kx�P
(x�Ax+D
T
y� c)k22 and A is a positive semidefinite matrix.

So

(w(t) � w
�)TF (x; y) � �(�0(x; y)��0(x

�
; y
�)): (13)

So �0(x; y) and F (x; y) satisfy the conditions (I) and (II). By Theorem 1 we can
obtain the proof of Theorem 2.

C. NEURAL NETWORKS FOR LCP

1. Neural Network Model
According to Kinderlehrer [1980], z � is a solution to (4) if and only if z�

satisfies the following equation

P
(z �Mz � q) = z (14)



where 
 = fz 2 R
ljz � 0g and P
(�) denotes the projection onto the set 
. In

Wang [1998] we proposed the following neural network model

dz

dt
= F (z) = (I +M

T )((z �Mz � q)+ � z) (15)

The system described by (15) can be easily realized by a recurrent neural net-
work with a two-layer structure shown in Fig. 3 where the vector z is the net-
work output, �q = (qi) is the network input vector, and (I + M

T ) = (mij)

and M = (wij) are weighted connections. We see from Fig. 3 that the pro-
posed neural network can be implemented only by using simple hardware without
analog multipliers for variables or penalty parameter. The circuit realizing the
recurrent neural network consists of 2l2 + 3l simple summers, l integrators, and
2l2 weighted connections. The projection operator (�)+ may be implemented by
using a piecewise activation function [Bouzerdoum and Pattison, 1993].

2. Global Convergence and Stability

Using Theorem 1 we can obtain the following result.

Theorem 3. Assume that 
� = fz 2 R
ljz satisfies (4)g is a nonempty set.

Then the neural network of (15) is stable in the sense of Lyapunov and globally
convergent to a solution to (4).

Proof. We see first that z� 2 
� if and only if �(z�) = 0 where �(z) =

z�(z�Mz�q)+. Therefore,�(u) andF (u) satisfy the first step and condition (I)
in the second step. By the fact that (u�Mu�q)+ is the projection of (x�Mx�q)

onto 
 and x� is in 
, using Lemma 2 we have

[z� � (u�Mu� q)+]T [Mz + q � z + (u�Mu� q)+] � 0;8z 2 R
l
:

Since z� is a solution to (4), then

f(u�Mu� q)+ � z
�gT fMz

� + qg � 0; 8z 2 R
l
:

Adding the two resulting inequalities yields

fz� � (u�Mu� q)+gT fMz �Mx
� + (u�Mu� q)+ � zg � 0;

then

(z� � z)TM(z� � z) � (z � z
�)T (I +M

T )(z � (u�Mu� q)+)

� kz � (u�Mu� q)+k22:

Noting that (z � z
�)TM(z � z

�) � 0, it follows that



(z � z
�)T (I +M

T )(z � (u�Mu� q)+g � �kz � (u�Mu� q)+k22;

thus
(z � z

�)TF (z) � �(�(z)��(z�)):

So �(z) and F (z) satisfy conditions (I) and (II). By Theorem 1 we can obtain the
proof of Theorem 3.

III. DISCRETE-TIME NEURAL NETWORKS FOR QP
AND LCP

In many operations, discrete-time neural networks are preferable to their
continuous-time counterparts because of the availability of design tools and the
compatibility with computers and other digital devices. In this section, we discuss
discrete-time neural networks. Generally speaking, a discrete-time neural net-
work model can be obtained from a continuous-time one by converting differential
equations into appropriate difference equations though discretization. However,
the resulting discrete-time model is usually not guaranteed to be globally conver-
gent to optimal solutions. In addition, difficulties may arise in selecting design
parameters since the parameters may not be bounded in a small range. Moreover,
it is not straightforward to realize variable parameters in hardware implementation
of neural networks.

In this section, we present discrete-time recurrent neural networks with fixed
design parameters. These networks are readily realized in digital circuits, and
the proposed recurrent neural networks are guaranteed to globally converge to an
optimal solution.

A. NEURAL NETWORKS FOR QP AND LCP

We first consider the relation between LCP and the following QP

minimize
1

2
x
T
Ax+ c

T
x

subject to Dx � b; x � 0: (16)

It is easy to see that its dual problem is

maximize b
T
y �

1

2
x
T
Ax

subject to D
T
y �Ax � c; y � 0 (17)

where y 2 R
m. From Lagrangian duality [Bertsekas, 1982], one can see that

x
�
; y
� is an optimal solution to (16),(17), respectively, if and only if (x �; y�) sat-

isfies

c+A
T
x�D

T
y � 0; x � 0; x

T (c+A
T
x�D

T
y) = 0;

Dx� b � 0; y � 0; y
T (Dx� b) = 0: (18)
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Figure 3. A block diagram of the neural network model in (15)
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Figure 4. A block diagram of the neural network model in (19)



Let

M =

�
A �DT

D 0

�
; q =

�
c

�b

�
:

Then the problem (16) and (17) may become an LCP problem. Therefore, we
discuss only discrete-time neural network for LCP.

Applying the Euler formula to the proposed neural network model

dz

dt
= (I +M

T )((z �Mz � q)+ � z);

we can get the following discrete-time neural network

z(k + 1) = z(k)� hF (z(k)) k = 1; 2; ::: (19)

where F (z) = (I + M
T )((z � Mz � q)+ � z) and h > 0 is a fixed design

parameter. Figure 4 shows its digital implementation.
For (19) we have the following theoretical result.
Theorem 4. If h <

2
kI+MT k2

, then sequence fz(k)g generated by the
discrete-time network of (19) is globally convergent to an optimal solution of the
problem (16) and (17).

Proof. From the proof of the paper [Solodov and Tseng, 1996] we see that
when h = 2kF (z(k))k�2kr(z(k))k2, where r(z) = ((z � Mz � q)+ � z),
the sequence fz(k)g generated by the discrete-time network of (19) is globally
convergent to an optimal solution of the problem (16) and (17). Since

k(I +M
T )rk2 � kI +M

T k2krk2;

2

kI +MT k2
� 2kF (z(k))k�2kr(z(k))k2:

Thus the conclusion of Theorem 4 holds.

B. PRIMAL-DUAL NEURAL NETWORK FOR LINEAR
ASSIGNMENT

1. Problem Formulation
The assignment problem can be formulated as the following zero-one integer

linear program:

minimize

nX
i=1

nX
j=1

cijxij ; (20)

subject to

nX
i=1

xij = 1; j = 1; 2; : : : ; n; (21)

nX
j=1

xij = 1; i = 1; 2; : : : ; n; (22)

xij 2 f0; 1g; i; j = 1; 2; : : : ; n: (23)



where cij and xij are respectively the cost coefficient and decision variable asso-
ciated with assigning entity i to position j. In general, a cost coefficient can be
positive representing a loss or negative representing a gain. The decision variable
is defined such that xij = 1 if and only if entity i is assigned to position j. The
objective function (20) to be minimized is the total cost for the assignment. Con-
straint (21) ensures that exactly one entity is assigned to each position; i.e., each
column of xij has only one decision variable being 1. Constraint (22) ensures that
each entity is assigned to exactly one position; i.e., each row of x ij has only one
decision variable being 1. Constraint (23) is the zero-one integrality constraint on
decision variables. The assignment problem has a unique solution for almost all
the cost coefficient matrix [cij ], and thus the uniqueness of the solution of (20)-
(23) is assumed throughout this paper. It is well known, from the optimal solution
point of view, that if the optimal solution is unique, then the assignment problem
is equivalent to a linear programming problem by replacing the zero-one integral-
ity constraints (23) with nonnegativity constraints, due to the total unimodularity
property [Bazaraa et al., 1990]:

xij � 0; i; j = 1; 2; : : : ; n: (24)

We can therefore obtain the solution of (20)-(23) by solving its equivalent lin-
ear program which has also a unique solution. Based on the primal assignment
problem, the dual assignment problem can be formulated as follows:

maximize

nX
i=1

(ui + vi) (25)

subject to ui + vj � cij ; i; j = 1; 2; : : : ; n; (26)

where ui and vi denote the dual decision variables. The number of decision vari-
ables and inequality constraints in the dual assignment problem is 2n and n

2,
respectively. According to the duality theorem in optimization theory [Bazaraa et
al., 1990], the value of the objective function at its maximum is equal to the total
cost of the primal assignment problem at its minimum; i.e., no duality gap.
2. Neural Network Models

In this section, we discuss the existing primal-dual assignment networks
[Wang and Xia, 1998] for solving the primal and dual assignment problems.

Consider the following energy function:

E(x; u; v) =
1

2

8<
:

nX
i=1

2
4 nX
j=1

cijxij � (ui + vi)

3
5
9=
;

2

+
1

2

nX
i=1

2
4 nX
j=1

xij � 1

3
5
2

+
1

2

nX
j=1

"
nX
i=1

xij � 1

#2
+

1

4

nX
i=1

nX
j=1

(x2ij � jxij jxij)

+
1

4

nX
i=1

nX
j=1

[cij � (ui + vj)] [cij � (ui + vj)� jcij � (ui + vj)j]

(27)



where x = (x11; � � � ; xij ; � � � ; xnn)
T 2 R

n2
; v = (v1; � � � ; vi; � � � ; vn)

T 2 R
n
;

and u = (u1; � � � ; ui; � � � ; un)
T 2 R

n
: The first term in eqn. (27) is the squared

duality gap, the second and third terms are respectively for the equality constraints
(21) and (22) and the fourth term is for the nonnegativity constraint (24) in the
primal assignment problem, the last term is for the inequality constraint (26) in
the dual assignment problem. Clearly, the function E(x; u; v) is continuously
differentiable, convex, and nonnegative on R

n2+2n
: By the duality theorem, x�

and (u�; v�) are optimal solutions respectively to the primal problem and the dual
problem if and only if E(x�; u�; v�) = 0:

The continuous-time version of the primal-dual assignment network is tailored
from the ones for general linear programming [Xia, 1996]. If we let the time
derivative of a state variable equal the partial derivative of the energy function
defined in eqn. (27) with respect to the state variable, the dynamic equation of
the continuous-time primal-dual assignment network is defined in the following
differential equations: for i; j = 1; 2; : : : ; n;

dxij

dt
= ��fcij

nX
p=1

(

nX
q=1

cpqxpq � up � vp) +
1

2
(xij � jxij j)

+

nX
l=1

(xil + xlj)� 2g (28)

dui

dt
= ��f�

nX
p=1

(

nX
q=1

cpqxpq � up � vp)�
1

2

nX
l=1

(cil � ui � vl

� jcil � ui � vlj)g (29)

dvi

dt
= ��f�

nX
p=1

(

nX
q=1

cpqxpq � up � vp)�
1

2

nX
l=1

(cli � ul � vi

� jcli � ul � vij)g (30)

where � > 0 is a design parameter which scales the convergence rate of the
continuous-time assignment network.

Since s � jsj = 2minf0; sg and maxf0; sg = �minf0;�sg, the above
equations can be rewritten as follows:

dxij

dt
= ��fcij

nX
p=1

(

nX
q=1

cpqxpq � up � vp) + (xij)
�

+

nX
l=1

(xil + xlj)� 2g (31)

dui

dt
= ��f�

nX
p=1

(

nX
q=1

cpqxpq � up � vp) +

nX
l=1

(ui + vl � cil)
+g (32)

dvi

dt
= ��f�

nX
p=1

(

nX
q=1

cpqxpq � up � vp) +

nX
l=1

(ul + vi � cli)
+g; (33)



where (s)+ = maxf0; sg and (s)� = minf0; sg.
Based also on the energy function (27), the discrete-time version of the primal-

dual assignment network is defined in the following difference equations: for
i; j = 1; 2; � � � ; n;

x
(k+1)

ij = x
(k)

ij � hfcij

nX
p=1

(

nX
q=1

cpqx
(k)
pq � u

(k)
p � v

(k)
p ) + (x

(k)

ij )�

+

nX
l=1

(x
(k)

il + x
(k)

lj )� 2g (34)

u
(k+1)

i = u
(k)

i + hf

nX
p=1

(

nX
q=1

cpqx
(k)
pq � u

(k)
p � v

(k)
p )

� h

nX
l=1

(u
(k)

i + v
(k)

l � cil)
+g (35)

v
(k+1)

i = v
(k)

i + hf

nX
p=1

(

nX
q=1

cpqx
(k)
pq � u

(k)
p � v

(k)
p )

� h

nX
l=1

(u
(k)

l + v
(k)

i � cli)
+g; (36)

where h > 0 is a design parameter to be given. For convenience, let

�
(k) =

nX
p=1

(

nX
q=1

cpqx
(k)
pq � u

(k)
p � v

(k)
p ); (37)

y
(k)

ij =

nX
l=1

(x
(k)

il + x
(k)

lj ); (38)



(k)

i =

nX
l=1

(u
(k)

i + v
(k)

l � cil)
+
; (39)

Æ
(k)

i =

nX
l=1

(u
(k)

l + v
(k)

i � cli)
+
: (40)

Then eqns. (34)-(36) can be rewritten as: for i; j = 1; 2; � � � ; n;

x
(k+1)

ij = x
(k)

ij � h

h
�
(k)
cij + (x

(k)

ij )� + y
(k)

ij � 2
i

(41)

u
(k+1)

i = u
(k)

i + h

h
�
(k) � 


(k)

i

i
(42)

v
(k+1)

i = v
(k)

i + h

h
�
(k) � Æ

(k)

i

i
(43)

Figure 5 illustrates the architectures of the primal-dual assignment networks
defined in auxiliary equations (37)-(40) (Figure 5(a)), differential equations (31-
(33) (Figure 5(b)), and difference equations (22)-(24) (Figure 5(c)). It shows that
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Figure 5. Architectures of the primal-dual assignment networks (Wang, J. and Xia, Y.,
Analysis and Design of Primal-Dual Assignment Networks, IEEE Transactions on Neural
Networks, c
1998 IEEE)

the primal-dual assignment networks are composed of a number of adders, lim-
iters, and time delays or integrators only.
3. Global Convergence

The global convergence property of the continuous-time counterpart is proven
in Xia [1996]. In this section, we shall show that the discrete-time assignment
network with a constant design parameter is globally convergent to an exact solu-
tion to the primal-dual assignment problem. First, some lemmas are needed to be
introduced.

Lemma 3. Let '(x) = 1
2
(x2 � jxjx); x 2 R: Then '0(x) = x � jxj. For any

x; y 2 R;

'(x) � '(y) + '
0(y)(x � y) + (x� y)2: (44)

Proof. Consider two cases as follows.
(i) For any y � 0; '(y) = 0 and '0(y) = 0: Thus,

a) if x � 0; '(x) � (x� y)2; so (44) holds;
b) if x < 0; '(x) = x

2 � (x� y)2; so (44) also holds.
(ii) For y < 0; y2 + 2y(x� y) + (x� y)2 = x

2
; so (44) holds.

Lemma 4. Let '(x) = 1
2
[(a0x + b0)

2 � ja0x + b0j(a0x + b0)]; x 2 R: For



any x; y 2 R;

'(x) � '(y) + '
0(y)(x� y) + a

2
0(x� y)2: (45)

Proof. Let z1 = a0x + b0; z2 = a0y + b0; then '(x) = '1(z1) = 1
2
(z21 �

jz1jz1) and '(y) = '1(z2) =
1
2
(z22 � jz2jz2): Thus, by Lemma 3 we have

'(x) = '1(z1) � '1(z2) + '
0
1(z2)(z1 � z2) + (z1 � z2)

2
:

Hence
'(x) � '(y) + '

0(y)(x� y) + a
2
0(x� y)2:

Lemma 5. Let �(x) = 1
2
x
T (x� jxj); x 2 R

n
: For any x; y 2 R

n
;

�(x) � �(y) +r�(y)T (x� y) + kx� yk22: (46)

where r�(y) is the gradient of �(y):
Proof. Note that

�(x) =
1

2

nX
i=1

xi(xi � jxij):

Then 8x; y 2 R
n
; by Lemma 1 we have

�(x) �

nX
i=1

�
1

2
yi(yi � jyij) + (yi � jyij)(xi � yi) + (xi � yi)

2

�
:

Thus we have (46).

Lemma 6. Let �(y) = 1
2
(c � A

T
y)T f(c � A

T
y) � jc � A

T
yj)g; where

A 2 R
n�m and y 2 R

m
: For any y; z 2 R

m
;

�(z) � �(y) +r�(y)T (z � y) + (z � y)TAAT (z � y): (47)

Proof. By Lemma 4 and Lemma 5, we have (47).

Lemma 7. Let w = (x; u; v)T ; w0 = (x0; u0; v0)T 2 R
n2+2n

; and E(x; u; v)

be defined in Section III. For any w;w 0

E(w) � E(w0) +rE(w0)T (w � w
0) + (w � w

0)TH(w � w
0); (48)

where

H =

�
A
T
A+ cc

T + I �cbT

�bcT AA
T + bb

T

�
;

c = [c11; c12; : : : ; c1n; c21; c22; : : : ; c2n; : : : ; cn1; cn2; : : : ; cnn)
T
; b =

(1; � � � ; 1)T 2 R
2n
; and A is the 2n � n

2 constraint matrix in the assignment
problem whose (i; j) column is ei + en+j , ep is a vector in R

2n with the p-th
element being 1 and others being 0, for i; j; p = 1; � � � ; n:



Proof. Let

E1(w) =
1

2

8<
:

nX
i=1

2
4 nX
j=1

cijxij � (ui + vi)

3
5
9=
;

2

+

1

2

8><
>:

nX
i=1

2
4 nX
j=1

xij � 1

3
5
2

+

nX
j=1

"
nX
i=1

xij � 1

#29>=
>;

and

E2(w) =
1

2

nX
i=1

nX
j=1

(x2ij � jxij jxij) +

1

2

nX
i=1

nX
j=1

[cij � (ui + vj)] [cij � (ui + vj)� jcij � (ui + vj)j] :

By using the second-order Taylor formula, we have

E1(w) = E1(w
0) +rE1(w

0)T (w � w
0) + (w � w

0)Tr2
E1(w

0)(w � w
0);

where

r2
E1(w

0) =

�
cc
T +A

T
A �cbT

�bcT bb
T

�
:

In addition, we see from Lemma 3 and Lemma 4 that

E2(w) � E2(w
0) +rE2(w

0)T (w � w
0) + (w � w

0)TH1(w � w
0):

where

H1 =

�
I 0

0 AA
T

�
;

Since E(w) = E1(w) +E2(w); we obtain (48).

Lemma 8. E(w) defined in Lemma 4 is continuously differentiable and con-
vex on Rn2+2n

; and for 8w;w0 2 R
n2+2n

(w � w
0)TrE(w0) � E(w) �E(w0):

Proof. See Ortega [1970].

Lemma 9. Let A be defined in Lemma 7. The maximum eigenvalue of AA T

is 2n.
Proof. Since A is a 2n � n

2 matrix whose (i; j) column is ei + ej+n for
i; j = 1; 2; : : : ; n, then

AA
T =

nX
i=1

nX
j=1

(ei + ej+n)(ei + ej+n)
T



=

nX
i=1

nX
j=1

(eie
T
i + ej+ne

T
j+n + eie

T
j+n + ej+ne

T
i )

=

nX
i=1

nX
j=1

(eie
T
i + ej+ne

T
j+n) +

nX
i=1

nX
j=1

(eie
T
j+n + ej+ne

T
i )

=

nX
i=1

nX
j=1

(eie
T
i + ej+ne

T
j+n) +

nX
i=1

nX
j=1

(eie
T
j+n + ej+ne

T
i ):

It is easy to see that

nX
i=1

nX
j=1

(eie
T
i + ej+ne

T
j+n) = n

nX
i=1

eie
T
i + n

2nX
i=n+1

ei+ne
T
i+n

= 2n

2nX
i=1

eie
T
i = 2nI2n�2n;

where I2n�2n is a 2n� 2n identity matrix. In addition, we have

nX
i=1

nX
j=1

(eie
T
j+n + ej+ne

T
i ) =

nX
i=1

ei

nX
j=1

e
T
j+n +

nX
j=1

ej+n

nX
i=1

e
T
i :

Let �1 =
Pn

i=1 ei and �2 =
Pn

j=1 ej+n, then �
T
1 �2 = �

T
2 �1 = 0 and �

T
1 �1 =

�
T
2 �2 = n. Thus (�1�T2 +�2�

T
1 )(�1+�2) = n(�1+�2): Hence n is an eigenvalue

of �1�T2 + �2�
T
1 .

Assuming that n is not the maximum eigenvalue of �1�T2 + �2�
T
1 , then there

exists � > 0 such that �
0 U

U 0

��
v1

v2

�
= (n+ �)

�
v1

v2

�

where v1; v2 2 R
n and

U =

0
BB@

1 1 : : : ; 1

1 1 : : : ; 1
...

...
. . . ;

...
1 1 : : : ; 1

1
CCA
n�n

:

Thus

Uv1 = (n+ �)v2

Uv2 = (n+ �)v1;

and U 2
v2 = (n + �)Uv1 = (n + �)2v2: Since the maximum eigenvalue of U 2 is

n
2,

n
2
< (n+ �)2 � n

2
;



which is contradictory. Therefore, the maximum eigenvalue of � 1�T2 + �2�
T
1 is n

and thus the maximum eigenvalue of AAT is 2n. The proof is complete.
Using the above lemmas, we shall establish the result of global convergence

for the discrete-time assignment network.

Theorem 5. If h <
1

2�H
where �H is a maximum eigenvalue of the ma-

trix H defined in Lemma 7, then sequence fx(k); u(k); v(k)g generated by the
discrete-time assignment network is globally convergent to an optimal solution of
the primal-dual assignment problem.

Proof. Let fw(k)g = fx(k); u(k); v(k)g. First, by Lemma 7 we
have E(w(k+1)) � E(w(k)) + rE(w(k))T (w(k+1) � w

(k)) + (w(k+1) �

w
(k))TH(w(k+1) � w

(k)): Since w(k+1) � w
(k) = �hrE(w(k)),

0 � E(w(k)) +rE(w(k))T (�hrE(w(k))) + h
2rE(w(k))THrE(w(k));

hence
�E(w(k)) � �hkrE(w(k))k22 + h

2
�HkrE(w(k))k22:

Therefore, from Lemma 8 we obtain

kw(k+1) � w
�k22 = kw(k) � w

�k22 � 2h(w(k) � w
�)TrE(w(k))

+ h
2krE(w(k))k22

� kw(k) � w
�k22 � 2h2E(w(k)) + h

2krE(w(k))k22
� kw(k) � w

�k22 � 2h2krE(w(k))k22
+ 2h3�HkrE(w(k))k22 + h

2kE(w(k))k22
� kw(k) � w

�k22 � h
2krE(w(k))k22(1� 2h�H)

where w� = (x�; u�; v�)T is an optimal solution to the primal and dual assign-
ment problem. Since

H =

�
A
T
A+ I 0

0 AA
T

�
+

�
c

�b

�
[cT ;�bT ];

and H is a symmetric positive semi-definite matrix, thus �H > 0: So, when
rE(w(k)) 6= 0 (i.e., w(k) is not an optimal solution), it follows that

kw(k+1) � w
�k2 < kw(k) � w

�k2: (49)

Thus, fw(k)g is bounded. On the other hand, using the above second inequality
we have

h
2krE(w(k))k22(1� 2h�H) � kw(k) � w

�k22 � kw
(k+1) � w

�k22;

so
1X
k=1

krE(w(k))k22 < +1:



Thus lim
k�!1

krE(w(k))k2 = 0: Since fw(k)g is bounded, there is a sequence

fkig such that
lim

i�!1
w
(ki) = ŵ:

Then
lim

i�!1
krE(w(ki))k2 = krE(ŵ)k2 = 0;

and thus E(ŵ) = 0: So ŵ = (x̂; û ;v̂)T is an optimal solution to the primal and
dual assignment problem. In view of (30), the sequence fw (k)g has only one limit
point, so

lim
k�!1

w
(k) = ŵ:

The above analytical result shows that the constant design parameter of the
discrete-time assignment network is bounded in a small range. The following
theorem will illustrate that for any fixed initial step h0 there is a number l > 0

such that 1
2l
h0 <

1
�H

; and hence the assignment network is definitely convergent
to optimal solution to the primal-dual assignment problem in finite steps.

Theorem 6. If h < 1=[2(4n+ kck22+1)], then sequence fw(k)g generated by
the discrete-time assignment network is globally convergent to an optimal solution
of the primal-dual assignment problem.

Proof. Since

H =

�
A
T
A+ I 0

0 AA
T

�
+

�
c

�b

�
[cT ;�bT ];

and H is the sum of two symmetric matrices, according to Courant Fischer Min-
max Theorem [Wang, 1995],

�H � �+ kck22 + 2n

where � is the maximum eigenvalue of�
A
T
A+ I 0

0 AA
T

�
:

In view that AT
A and AA

T have the same nonzero eigenvalues, according to
Lemma 9, we have � = 2n+ 1. Hence

�H � 4n+ kck22 + 1:

Then from Theorem 5, we can complete the proof.

IV. SIMULATION RESULTS

In order to demonstrate the effectiveness and efficiency of the proposed neural
networks, in this section, we discuss the simulation results through four examples.



The simulation is conducted on matlab, the ordinary differential equation solver
engaged is ode45s.

Example 1. Consider the following quadratic program (the equivalent to the
one in Kennedy and Chua [1988]) with the only optimal solution x � = (5:0; 5:0):

Minimize x
2
1 + x

2
2 + x1x2 � 30x1 � 30x2

subject to
5

12
x1 � x2 �

35

12
;

5

2
x1 + x2 �

35

2
;

�x1 � 5;

x2 � 5:

This problem is equivalent to

Minimize x
2
1 + x

2
2 + x1x2 � 30x1 � 30x2

subject to
5

12
x1 � x2 + x3 =

35

12
;

5

2
x1 + x2 + x4 =

35

2
;

�5 � x1 � 7;�5 � x2 � 5; 0 � x3 � 10; 0 � x4 � 35:

We use the system (11) to solve the above problem. Figure 6 shows the transient
behavior of the primal-dual network which globally converges to the optimal so-
lution.

Example 2. Consider the convex quadratic program (16) where

D =

2
664
�5=12 1

�5=2 �1

1 0

0 �1

3
775 ; A =

�
2 1

1 2

�
; b =

2
664
�35=12

�35=2

�5

�5

3
775 ; c =

�
�30

�30

�

Its exact solution is (5; 5)T . We use the systems (15) and (19) to solve the above
problem. All simulation results show that the solution trajectory always converges
to unique point z� = (5:000; 5:000; 0; 6:000; 0; 9:000 )T which corresponds to
the optimal solution (5; 5)T . For example, let B = 5I , and starting point is
(�10; 10; 0; 0; 0; 0)T . Figure 7 shows the transient behavior of the continuous-
time neural network for this starting point. In the discrete-time case, taking step
size h = 0:08, respective trajectories of the initial point (�10; 10; 0; 0; 0; 0)T are
shown in Figure 8.

Example 3. Consider the classical linear complementary problem which was
taken from Hertog [1994]. M is an 10� 10 upper triangular matrix

M =

2
666664

1 2 2 : : : 2

0 1 2 : : : 2

0 0 1 : : : 2
...

...
...

. . .
...

0 0 0 : : : 1

3
777775
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Figure 6. Transient behaviors of the primal-dual network of (14) in Example 1
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Figure 7. Transient behaviors of the primal-
dual network of (15) in Example 2
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dual network of (19) in Example 2
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Figure 10. Transient behaviors of the recur-
rent neural network of (19) in Example 3

and q = (�1; :::;�1)T 2 R
10. The solution of the problem is u

� =

(0; :::; 0; 1)T 2 R
10. We use the systems (15) and (19) to solve the above prob-

lem. The simulation results show that the trajectory of the system always glob-
ally converges to the solution (0; :::; 1)T . For example, let B = 5I , and the
initial point is (1;�1; :::; 1;�1)T 2 R

10, respectively. Figure 9 shows the tran-
sient behaviors of the continuous-time neural network for this initial point. In
the discrete-time case, taking n = 80 and step size h = 0:016, then the error
r(u) = kP
(u� �(Mu+ q))�uk along the trajectory of the zero initial point is
shown in Figure 10.

Example 4: Consider the sorting problem used in Wang [1995, 1997] (Ex-
ample 1): rank 10 items f-1.3, 1.7, 0.5, 2.2, -2.6, 1.5, -0.6, 0.9, -1.2, 1.1g in
ascending order. Let sj = 11 � j for j = 1; 2; : : : ; 10: Accordingly, the cost
coefficient matrix can be defined as follows.

[cij ] =

0
BBB@
�13:0 �11:7 �10:4 �9:1 �7:8 �6:5 �5:2 �3:9 �2:6 �1:3

17:0 15:3 13:6 11:9 10:2 8:5 6:8 5:1 3:4 1:7

5:0 4:5 4:0 3:5 3:0 2:5 2:0 1:5 1:0 0:5

22:0 19:8 17:6 15:4 13:2 11:0 8:8 6:6 4:4 2:2

�26:0 �23:4 �20:8 �18:2 �15:6 �13:0 �10:4 �7:8 �5:2 �2:6

15:0 13:5 12:0 10:5 9:0 7:5 6:0 4:5 3:0 1:5

�6:0 �5:4 �4:8 �4:2 �3:6 �3:0 �2:4 �1:8 �1:2 �0:6

9:0 8:1 7:2 6:3 5:4 4:5 3:6 2:7 1:8 0:9

�12:0 �10:8 �9:6 �8:4 �7:2 �6:0 �4:8 �3:6 �2:4 �1:2

11:0 9:9 8:8 7:7 6:6 5:5 4:4 3:3 2:2 1:1

1
CCCA :

The sorting problem can be formulated as the assignment problem [Wang, 1995].
The decision variable is defined as that xij = 1 if item i with numerical key ri is in
the j-th position of the sorted list. The cost coefficients of the assignment problem
for sorting are defined as cij = risj where ri and sj denote respectively the
numerical key of the i-th item to be sorted and the nonzero weighting parameter
for the j-th position in the desired list.

Simulations have been conducted with the initial values of all variables to be
zero for both continuous-time and discrete-time assignment networks. Figure 11
illustrates the transient behavior of the energy function of the continuous-time
assignment network with � = 108 and variable time-steps. Figure 12 depicts the
transient behaviors of the discrete-time assignment network with three different
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Figure 11. Transient behaviors of the
continuous-time network of (14) in Ex-
ample 4 (Wang, J. and Xia, Y., Analy-
sis and design of primal-dual assignment
networks, IEEE Transactions on Neural
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1998 IEEE)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4
x 10

−4

Time

E
ne

rg
y

Figure 12. Transient behaviors of
the discrete-time network of (14) in Ex-
ample 4 (Wang, J. and Xia, Y., Analy-
sis and design of primal-dual assignment
networks, IEEE Transactions on Neural
Networks, c
1998 IEEE)

step lengths h. Specifically, the line decreasing at the fastest rate corresponds to
h = 0:25, the slowest line h = 0:15, in-between h = 0:20. Note that every step
size h > 1=(2�H). All the values of the energy function converge to zero.

V. CONCLUDING REMARKS

Neural networks have been proposed for optimization in a variety of applica-
tion areas such as design and layout of very large scale integrated (VLSI) circuits.
The nature of parallel and distributed information processing makes recurrent neu-
ral networks viable for solving complex optimization problems in real time. One
of the salient features of neural networks is their suitability for hardware imple-
mentation, in which the convergence rate is not increasing statistically as the size
of the problem increases.

Although great progress has been made in using neural networks for optimiza-
tion, many theoretical and practical problems remain unsolved. Many avenues are
open for future work. For example, the existing neural networks have not yet
been shown to be capable of solving nonconvex optimization problems. Neither
could the existing neural networks be guaranteed to obtain the optimial solutions
to NP-hard combinatorial optimization problems. Further investigations should
aim at the indepth analysis of the dynamics of recurrent neural networks for solv-
ing nonconvex and discrete optimization problems, the wide applications of re-
current neural networks to practical problems for real-time design and planning,
and the hardware prototyping of recurrent neural networks for optimization.
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I. INTRODUCTION 

 
    Artificial neural networks can be described as computational structures built 
up from weighted connections among simple and functionally similar nonlinear 
processing units or nodes, denoted artificial neurons. A class of neural network 
architectures that has been receiving a great deal of attention in the last few 
years is that of recurrent neural networks. They can be classified as being 
globally or partially recurrent. 
    Globally recurrent neural networks have arbitrary feedback connections, 
including neurons with self-feedback. On the other hand, partially recurrent 
neural networks have their main structure non-recurrent, or recurrent but with 
restrictive properties associated with the feedback connections, like fixed 
weights or local nature. The presence of feedback allows the generation of 
internal representations and memory devices, both essential to process spatio-
temporal information. 
    The dynamics presented by a recurrent neural network can be continuous or 
discrete in time. The analysis of dynamic behavior using already stated 
theoretical results for continuous dynamic systems and the generation of new 
results regarding stability of continuos-time recurrent neural networks seem to 
be the most important appeals to the use of continuous dynamics [Jin, 1995]. 
However, the simulation of a continuous-time recurrent neural network in digital 
computational devices requires the adoption of a discrete-time equivalent model. 
    In this chapter, we will study discrete-time recurrent neural network 
architectures, implemented by the use of one-step delay operators in the 
feedback paths. In doing so, digital filters of a desired order can be used to 
design the network, by a proper definition of connections [Back, 1991]. The 
resulting nonlinear models for spatio-temporal representation can be directly 
simulated on a digital computer, by means of a system of nonlinear difference 
equations. The nature of the equations depends on the kind of recurrent 
architecture adopted. As a well-known result from signal processing theory, 
recurrent connections may lead to very complex behaviors, even with a reduced 
number of parameters and associated equations [Oppenheim, 1999]. 



 

    Globally and partially recurrent neural networks were shown to perform well 
in a wide range of applications that involve dynamic and sequential processing 
[Haykin, 1999]. However, analysis [Kolen, 1994] and synthesis [Cohen, 1992] 
of recurrent neural networks of practical importance is a very demanding task. 
As a consequence, the process of weight adjustment in supervised learning is 
much more demanding in the recurrent case [Williams, 1989], and the 
availability of recurrent neural networks of practical importance has to be 
associated with the existence of efficient training algorithms, based on 
optimization procedures for adjusting the parameters. To improve performance, 
second-order information should be considered in the training process 
[Campolucci, 1998, Chang, 1999, Von Zuben, 1995]. 
    So, in what follows, after a brief motivation for using recurrent neural 
networks and second-order learning algorithms, a low-cost procedure to obtain 
exact second-order information for a wide range of recurrent neural network 
architectures will be presented. After that, a very efficient and generic learning 
algorithm will be described. We will propose an improved version of a scaled 
conjugate gradient algorithm [Narenda, 1990], that can effectively be used to 
explore the available second-order information. The original algorithm will be 
improved based on the detection of important limitations. Basically, we 
introduce a set of adaptive coefficients to replace fixed ones. These new 
parameters of the algorithm are automatically adjusted and do not represent 
additional items to be arbitrarily determined by the user. Finally, some 
simulation results will be obtained and interpreted. 
 

II. SPATIAL ××××  SPATIO-TEMPORAL PROCESSING 
 
    Supervised learning in the context of artificial neural networks can be 
associated with the use of optimization-based techniques to adjust the network 
parameters [Poggio, 1990]. The objective is to minimize a cost function, i.e., a 
function of the input-output data available for learning, that somehow defines 
the desired behavior to be achieved. 
    At first glance, neural networks can be divided into two classes: static (non-
recurrent) and dynamic (recurrent) networks. Static neural networks are those 
whose outputs are linear or nonlinear functions of its inputs, and for a given 
input vector, the network always generates the same output vector. These nets 
are suitable for processing of spatial patterns. In this case, the relevant 
information is distributed throughout the spatial coordinates associated with the 
variables that compose the set of input learning patterns. Typical problems with 
remarkable spatial dependencies can be found in the areas of pattern recognition 
and function approximation [Bishop, 1995]. 
    In contrast, dynamic neural networks are capable of implementing memories 
which gives them the possibility of retaining information to be used later. Now, 
the network can generate diverse output vectors in response to the same input 
vector, because the response may also depend on the actual state of the existing 
memories. By their inherent characteristic of memorizing past information, for 
long or short-term periods, dynamic networks are good candidates to process 
patterns with spatio-temporal dependencies, for example, signal processing with 



emphasis on identification and control of nonlinear dynamic systems [Jin, 1995, 
Kim,  1997], and nonlinear prediction of time series [Connor, 1994, Von Zuben, 
1997]. 
 

III. COMPUTATIONAL CAPABILITY 
 
    Multilayer perceptron [Haykin, 1999] is a widespread example of a static 
(non-recurrent) neural network architecture. The main reason it is so effective in 
worldwide spatial processing applications is the existence of two 
complementary existential results, with immediate practical effects: a proof of 
its universal approximation capability [Hornik, 1989] and an effective way to 
use first- and second-order information, once available, for adjusting the 
parameters (generally based on the backpropagation algorithm) [Battiti, 1992, 
van der Smagt, 1994]. 
    However, in the case of recurrent neural network architectures, there are no 
equivalent practical results concerning universal approximation capability with 
respect to spatio-temporal patterns. A great number of the recurrent neural 
network architectures, particularly the ones convertible to NARX architectures, 
share the existential property of being capable of simulating Turing machines 
[Siegelmann, 1997, Siegelmann, 1991], where a Turing machine is an 
abstraction defined to be functionally as powerful as any computer. However, 
this very important existential result does not provide any insight about how to 
achieve the desired behavior, which is why we are faced with so many different 
architectures to deal with spatio-temporal problems, each one devoted to the 
specific nature of the problem at hand [Frasconi, 1992, Haykin, 1999]. 
    In spite of some attempts to discover unifying aspects in various architectures 
[Nerrand, 1993, Tsoi, 1997], the diversity of available architectures that can 
potentially be applied to solve a given spatio-temporal problem is still 
commonplace. 
    In this chapter, we will not try to overcome this troublesome aspect of design. 
Instead, we will concentrate efforts on developing a generic procedure to obtain 
first- and second-order information for adjusting the parameters, directly 
applicable to a wide range of recurrent neural network architectures. Once the 
first- and second-order information is available, it is important to point out that 
the same optimization algorithm can be applied, without any kind of 
modification, to any kind of recurrent (or non-recurrent) neural network 
architecture. 
 
IV. RECURRENT NEURAL NETWORKS AS NONLINEAR 

DYNAMIC SYSTEMS 
 
    A dynamic system is composed of two parts: the state and the dynamic. The 
state is formally defined as a multivariate vector of variables, parameterized 
with respect to time, such that the current value of the state vector summarizes 
all the information about the past behavior of the system considered necessary to 
uniquely describe its future behavior, except for the possibly existing external 



 

effects produced by inputs applied to the system. The set of possible states is 
denoted the state space of the system. The dynamic, assumed here to be 
deterministic, describes how the state evolves through time, and the sequence of 
states is known as the trajectory in the state space. It is possible to define four 
classes of dynamic systems [Kolen, 1994], according to the scheme presented in 
Figure 1. 
    In essence, the class of recurrent neural networks to be discussed in this 
chapter is the one characterized by the discrete dynamic and continuous state. 
The resulting system of difference equations corresponds to a complex nonlinear 
parametric dynamic system that can exhibit a wide range of behaviors, not 
produced by static systems. 
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Figure 1. Classes of dynamic systems 

For recurrent neural network with these properties, there are two functional uses 
[Haykin, 1999]: 

• associative memory and 
• input-output mapping network. 

For example, when globally recurrent neural networks are constrained to have 
symmetric connections (or some equivalent restrictive property), their 
asymptotic behaviors are dominated by fixed-point attractors, with guaranteed 
convergence to stable states from any initial condition. This property can be 
explored to produce associative memories, as is the case in Hopfield-type neural 
networks [Li, 1988]. 
    Without such a constraint, the connective structure may assume a wide range 
of configurations, so that the corresponding recurrent neural network is able to 
present more complex behaviors than fixed points. The trajectory in the state 
space will be influenced by a set of attractors and repellers, with arbitrary 
multiplicity and properly distributed across the state space, each one belonging 
to one of the following types: fixed point, limit cycle, quasi-periodic, or chaotic 
[Ott, 1993]. 
    The analysis of computational simulations often considers only the attractors, 
because the repellers can not be observed. Once the state has reached one 
attractor, it will stay there indefinitely, unless an external force pushes the state 



away. When the trajectory of an autonomous system reaches an attractor, we say 
that the system is in a stationary state. Both continuous and discrete dynamics 
are able to present the four types of stationary behavior mentioned above. 
    So, the dynamical complexity of a recurrent neural network can be measured 
in terms of the number, type, and relative position of attractors and repellers in 
the state space. Some preliminary results are already available to synthesize, in a 
closed form, recurrent neural networks in terms of specific position and 
extension of a reduced number of attractors and repellers in the state space 
[Cohen, 1992]. However, in the case of complex configurations of attractors and 
repellers, and when the description of the dynamic system to be synthesized can 
not be done in terms of attractors and repellers, the only available way of 
performing the task is by means of supervised learning. 
    The formalism of attractors and repellers plays an important role in the study 
of recurrent neural network stability [Haykin, 1999]. In the analysis of dynamic 
system theory, in addition to stability, controllability and observability are 
fundamental aspects. If we can control the dynamic behavior of the recurrent 
neural network, using external inputs if necessary, then we say that the dynamic 
is controllable. If we can observe the result of the control applied to the network, 
then we say that the dynamic is observable. Levin and Narendra [Levin, 1993] 
have presented important results associated with local controllability and local 
observability of recurrent neural networks. 
 

V. RECURRENT NEURAL NETWORKS AND SECOND-
ORDER LEARNING ALGORITHMS 

 
    As stated in the previous section, this chapter will treat recurrent neural 
networks as input-output mapping networks, giving rise to the necessity of 
establishing an association between the desired input-output behavior and a 
specific configuration for the neural network parameters (connective 
configuration). Unfortunately, this association can not be determined a priori or 
in a closed form. Then, a desired dynamic behavior should be produced by 
means of an effective learning process (this procedure is also known as dynamic 
reconstruction [Haykin, 1999]) responsible for discovering this association, 
which may not be unique. 
    As supervised learning should be applied to achieve the desired behavior, the 
success of the task will depend on two conditions: 
• the desired behavior must belong to the range of dynamic behaviors that can 

be produced by the recurrent neural network and 
• the supervised learning process must be capable of finding a desired set of 

parameter values that will give the final connective configuration to the 
neural network. 

    Certainly, the most widespread supervised learning mechanisms for neural 
networks are those using first-order (gradient) information. In this case, the first-
order partial derivatives, or sensitivities, associated with some error measure 
(based on the difference between the network outputs and some target 
sequences), are computed with respect to the parameters of the network. Later, 



 

this available local information related to the error surface is then used to 
minimize the error. 
    As widely reported in the literature, despite their widespread use, the 
gradient-descent method and its variants are characterized by their slow rate of 
convergence and in some cases, require the arbitrary setting of learning 
parameters, such as learning rates, before the beginning of the optimization task 
[Battiti, 1992]. An inadequate choice may raise difficulties or even prevent the 
success of the adjustment. 
    Moreover, specifically in the case of recurrent neural networks, there can be 
at least one hard additional problem that may trap the gradient-based 
optimization process: the existence of feedback along the processing makes the 
error surface present highly nonlinear spots [Pearlmutter, 1995]. This 
characteristic of the error surface is motivated by the possibility of migrating 
between two qualitatively distinct nonlinear behaviors merely by means of 
tuning the feedback gain. For example, even small changes in the network 
parameters, dictated by the learning algorithm itself, may guide the dynamics of 
the network to change from stable fixed points to unstable ones, which causes a 
sudden jump in the error measure. Of course, here we are considering an 
implicit hypothesis that first-order optimization methods do not work properly 
out of smooth areas in continuous error surfaces. 
    In general, these undesirable aspects are the main reasons for the poor average 
performance of first-order learning algorithms. These problems become even 
more evident in the case of very demanding tasks, where the network behavior 
must consider simultaneously a great number of correlated specifications (for 
example, many attractors and repellers). Examples of these kinds of problems 
are becoming more frequent in system identification and time series prediction 
tasks. 
    To improve performance, second-order information should be considered in 
the training process. One of the most elaborated second-order algorithms for 
search in multidimensional nonlinear surfaces is the conjugate gradient method, 
which was proved to be remarkably effective in dealing with general objective 
functions and is considered among the best general purpose optimization 
methods presently available. 
    Given a procedure to obtain second-order information for any kind of 
recurrent neural network architecture, the learning procedure can be directly 
applied without any adaptation to the specific context. That is why the first 
objective of this work is to describe systematic ways of obtaining exact second-
order information for a range of recurrent neural network architectures. 
    In addition to that, the algorithms to be proposed in a coming section present 
a computational cost (memory usage and processing time) only two times higher 
than the cost to acquire first-order information. 
 
 
 
 
 
 



VI. RECURRENT NEURAL NETWORK ARCHITECTURES 
 
    As already stated, the natural way of investigating the dynamic behavior of 
recurrent neural networks is to consider them as nonlinear dynamic systems. Let 
a nonlinear discrete-time stationary dynamic system be represented by the state 
space equations: 
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where k is the discrete instant of time, n
p ℜ∈x , mℜ∈u , and r

p ℜ∈y are the 

state, input, and output vectors, respectively; nmn
p ℜ→ℜ×ℜ:f  and 

rmn
p ℜ→ℜ×ℜ:h  are continuous vector-valued functions representing the 

state transition mapping and output mapping, respectively. This state space 
representation is very general and can describe a large range of important 
nonlinear dynamic systems. Notice that the output equation is a static mapping. 
    System identification is a fundamental and challenging research area 
involving nonlinear dynamic systems, and a common approach to identify 
systems represented by equation (1) is to adopt parameterized models for the 
unknown maps fp and hp. In this case, there is a growing amount of research 
about the use of neural networks to model some important subclasses of 
nonlinear dynamic systems, subsumed within the class of models represented by 
equation (1). In the literature, attention has been paid to the analysis and 
synthesis of neural networks models structured in the form of nonlinear auto-
regressive moving average (NARMA) models. In this context, there are two 
main approaches to synthesize NARMA models. The first one assumes that the 
dynamic behavior of the system output is governed by a finite set of available 
input-output measurements. Then, an obvious route to modeling is to choose the 
NARMA model as a feedforward neural network of the form: 

 ( ) ( ) ( ) ( ) ( )( )mkknkkk ppmm −−−= uuyygy ,,,,,1ˆ !!    (2) 

where mĝ  represents the input-output map performed by the static neural 

network and my  is the output of the model. This is a kind of series-parallel 

model and presumes a fairly good knowledge of the actual system structure. 
This scheme of adaptation has been denoted as equation-error approach by the 
system identification community and is designated as teacher forcing in the 
neural network parlance. More recently, in view of its peculiar characteristics, 
Williams [Williams, 1990] coined it as the conservative approach, when related 
to neural control.  
    The second approach to construct neural network NARMA models is argued 
to be used in situations where the use of past input-output information together 
with a feedforward nonlinear mapping is not able to satisfactorily represent the 
actual dynamic system. A typical situation is the use of these static neural 



 

network NARMA models when the map hp in equation (1) has no inverse. In 
this case, the representation capability of the model can be improved by the use 
of a recurrent neural network. If the recurrent paths include the outputs, we have 
a parallel model. As an example, consider the parallel NARMA model given by 
the following equation: 

 ( ) ( ) ( ) ( ) ( )( )mkknkkk mmmm −−−= uuyygy ,,,,,1ˆ !!  (3) 

Again, mĝ  represents the feedforward input-output mapping performed by the 

neural network, but now the outputs always depend on past values of 
themselves. In this case, the adaptation of the neural network parameters should 
be realized by a dynamic learning algorithm. When adjusting the model 
parameters in this way, we are using the output error approach, raised in the 
system identification area. Some results in the literature have pointed out that 
parallel models may give improved performance when compared to their series-
parallel counterparts, particularly in the case of noisy systems [Shink, 1989]. 
This improvement occurs because the parallel model prevents the presence of 
noisy outputs in the composition of the input vector. 
    In spite of the more powerful representation capabilities associated with 
parallel models, few results are available in terms of stability analysis, and more 
effective learning algorithms are required. Because of the aforementioned 
characteristics, the use of parallel models in tasks related to neural network 
identification and control is called liberal approach [Williams, 1990]. 
    Figures 2 to 4 show the three most popular recurrent neural network 
architectures for spatio-temporal processing, where the neural network 
parameters are left implicit. In Figure 2 we have the globally recurrent neural 
network architecture (GRNN). In this architecture, the output of each hidden 
neuron is used to generate the feedback information. If the feedback paths, 
indicated by the bold arrows, are removed, then a simpler architecture is 
produced, called local recurrent neural network (LRNN). When the network 
outputs are the signals used in the feedback loops, as in Figure 3, we have the 
output-feedback recurrent neural network (OFRNN) or Jordan network. If all the 
outputs of the existing neurons are used for feedback, the resulting architecture 
is the most general and is called a fully recurrent neural network (FRNN), as 
shown in Figure 4. 
    With different degrees of extension, all these recurrent neural network 
architectures have attracted the interest of researches [Tsoi, 1994]. A brief look 
at Figures 3 and 4 can indicate that OFRNN and FRNN are networks that have 
to be trained following the liberal approach. There are few results concerning 
the FRNN architecture, because the high flexibility of its dynamic behavior is 
not so easy to be accessed [Williams, 1990]. 
    On the other hand, the generality of the GRNN architecture and its universal 
approximation property have been proved [Jin, 1995]. Another important result 
obtained is that GRNN and OFRNN are equivalent architectures, if their output 
neurons are linear [Tsoi, 1997]. 
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Figure 2. Globally recurrent neural network architecture (GRNN) 
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Figure 3. Output-feedback recurrent neural network (OFRNN) 
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Figure 4. Fully recurrent neural network (FRNN) 

 
VII. STATE SPACE REPRESENTATION FOR 

RECURRENT NEURAL NETWORKS 
 
    The formulations adopted in this work for the learning algorithms are strongly 
based on matrix manipulations. Hence, in this section a state space 
representation, valid for each of the three architectures described above, is 
briefly presented. In the sequel, we take Figures 2 to 4 as guidelines, and we 
consider that in each architecture there is one hidden layer containing N neurons, 
M external inputs, and O linear output units. Also, the nonlinear activation 
function is supposed to be the same for all hidden neurons. 
    The state variables for any architecture in Figures 2 to 4 can be immediately 
selected as the set of variables responsible for the memory storage in the 
recurrent neural network. They are just the past signals available from the 
tapped delay lines of length L. To make the exposure clear, we can first write 
the following scalar equations at a particular discrete time instant k: 
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where the signals )(ksi , )(kzi , and )(kyr  are hidden neurons weighted sums, 

hidden neurons outputs, and network outputs, respectively. The sa j
il '  are the 

weights in the feedback loops, the sbim '  are the external inputs gains, and  the 

scrp '  are the weights between the hidden and the output layer. In these 

equations, )(0 kz  and )(0 ku  are the bias inputs. The actual values for the state 

variables sx j ' , and the total number of signals to be used to feed the tapped 

delay lines, D, depends on the recurrent network architecture. We have 
( ) ( )tztx jj = , with D = N for the GRNN and LRNN architectures. Following the 

same idea, we have ( ) ( )tytx jj = , with D = O for the OFRNN. For the FRNN, 

we also have ( ) ( )tztx jj = , with D = N. The FRNN network has all its units in a 

unique layer, and the output neurons (visible neurons) correspond to a subset of 
these units. Then, the parameters rpc  in equation (6) are constants (not 

adjustable parameters), taking the value 1 if p=r and the value 0 otherwise. In 
this architecture, the bias inputs for all neurons are removed from the set of 
output weights and accounted for in the set of input weights. 
    A matrix formulation for equations (4) to (6) can be obtained as done in what 
follows: 
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where 
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The entries with value 1 in the vectors appearing in equations (9) and (11) 
correspond to the bias input. If the network of interest is a FRNN, the bias input 



 

must be removed from equation (9). Matrices A, B, and C are formed from the 

weights sa j
il ' , sbim ' , and scrp ' , respectively, that appear in equations (4) and 

(6). These matrices have dimensions (N,D.L), (N,M+1), and (O,N+1), 
respectively. 

 
VIII. SECOND-ORDER INFORMATION IN 

OPTIMIZATION-BASED LEARNING ALGORITHMS 
 
    Supervised learning in an artificial neural network can be formulated as an 
unconstrained nonlinear optimization problem, where the network parameters 
are the free independent variables to be adjusted, and an error measure is the 
dependent variable. The error measure or cost function depends on the network 
parameters and on the error between the neural network outputs and the desired 
behaviors dictated by the training examples. 
    In general, the training examples are in the form of input-output pairs that can 
be the samples obtained from trajectories generated from some dynamic system, 
possibly with a nonlinear behavior. 
    The goal of the supervised learning is to adjust the network parameter so that 
the trajectories generated by the neural network match the given desired 
trajectories. Additionally, the trained neural network is required to perform 
properly when subjected to patterns not seen in the training phase. 

    Let NPR∈w  be the column vector containing all the neural network weights 
or adjustable parameters. Also, consider the vectors y (k) and yd (k), as the neural 
network output and desired output, respectively. Formally the optimization 
based learning process is defined by the following equations: 
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where P is the horizon of time to be considered.      
     In classical optimization methods, the search for the vector w that solves the 
minimization problem (13) is conducted in an iterative set of steps. In each step, 
given the actual vector w, the optimization procedure can use only information 
extracted from the cost function to generate a new vector that is a better 
estimation of the optimal solution.                        
    To see which information is of practical concern, consider the following 
Taylor series expansion for the error measure around a point w in the error 
surface: 
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where ( )wET∇  is the gradient vector with components 
iw∂

∂ TE , H(w) is the 

Hessian matrix with components 
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terms with order higher than two in w∆ . 
    Optimization methods that use only objective function evaluation to solve 
problem (13) form the family of direct search methods. In these methods, some 
mechanism is used to generate new candidate points and the objective function 
is used to select the best one. If, at each step, the method uses function 
evaluations and the first-order information contained in the gradient vector to 
generate a new point in the search space, it is in the family of steepest descent 
methods. These methods are characterized by their relative simplicity but slow 
rate of convergence to a local minimum. 
    Methods that depend on the information present in the Hessian matrix are 
second-order methods. These methods work on the hypotheses that a quadratic 
model is a good local approximation to the objective function. The most 
representative method in this family is the Newton’s method, where, at each 
step, the inverse of the Hessian matrix is used to generate a new point. 
    Certainly, the use of higher order information about the error surface can be 
an effective way of generating improved solutions at each step of the 
optimization process. It is well known that a second-order method has rate of 
convergence superior to the one produced by a first-order method [Luenberger, 
1989]. But, when dealing with highly nonlinear large-scale optimization 
problems, practical aspects related with excessive computational burden, 
numerical errors in matrix operations, and the need for large matrix storage can 
make such a kind of second-order methods unfeasible to be implemented. In 
such a situation, even a first-order method is a better choice. 
    In general, these aspects are frequently present in the supervised neural 
network learning, where the search space is highly nonlinear and of large 
dimension. Maybe these are the main reasons for the widespread use of the 
backpropagation algorithm, in spite of its slowness and oscillatory behavior 
associated with the use of a fixed learning rate [Jacobs, 1988]. 
 

IX. THE CONJUGATE GRADIENT ALGORITHM 
 
    Fortunately, all the disadvantages of second-order methods, discussed in the 
previous section, can be adequately eliminated. To do that, we will employ one 
of the most effective second-order methods for search in multidimensional 
nonlinear surface: the conjugate gradient method (CGM). The CGM can be 
regarded as being somewhat intermediate between the method of steepest 
descent and Newton’s method. It is motivated by the desire to accelerate the 
typically slow convergence associated with steepest descent, while maintaining 
simplicity by avoiding the requirements associated with the evaluation, storage, 



 

and inversion of the Hessian matrix (or at least the solution of the corresponding 
system of equations), as required by Newton’s method. The storage 
requirements for the original CGM are for the actual weights, the actual and the 
immediately previous gradient vector, and two successive search direction 
vectors. 
    Originally, the CGM was designed to minimize a quadratic objective 
function. As an example, consider the quadratic function obtained if the term 




 ∆ 2
wO  in equation (16) is neglected. Adopting the hypothesis of a quadratic 

model, the CGM works as follows: 
• given two distinct directions 1d  and 2d , they are said to be H-orthogonal, 

or conjugate with respect to a symmetric matrix H, if 0121 == HddHdd 2
TT . 

• the CGM is obtained by selecting the successive directions as conjugate with 
respect to the Hessian matrix. The first direction is set to the current negative 
gradient vector, and subsequent directions are not specified beforehand but 
determined sequentially at each step of the iteration. 

• the new gradient vector is computed, and linearly combined with previous 
direction vectors, to obtain a new conjugate direction along which to move. 

 
A. THE ALGORITHM 
    Initialization: Set random initial values to wo and an arbitrarily small value to ε . 

Step 1: Starting at wo, compute )( o
T wEgo ∇=  and set oo gd −= . 

Step 2:   For 1,,0 −Λ= NPk ! : 
a) Compute H(wj); 

b) Set jjj1j dww α+=+ , with  
jjj

jj
j

dwHd

dg

)()(

)(
T

T−=α ;           (17) 

c) Compute )(T
1j1j wEg ++ ∇= ; 

d) Unless k = NP-1, set jj1j1j dgd β+−= ++ ,            (18) 

where 
jjj

jj1j
j

dwHd

dwHg

)()(

)()(
T

T+
=β .  (19) 

Step 3: If ε>)(T
NPwE , replace wo by wNP and go back to step 1. 

 
    For problems where the cost function is exactly quadratic, the Hessian H is a 
constant matrix. It can be proved that in this situation, if H is positive definite, 
the CGM described above converges to the solution in at most NP iterations. In 
the everyday practice, this analytical result may, in some sense, be different due 
to inevitable numerical errors that are carried over in successive iterations of the 
method. 
 
 



 
B. THE CASE OF NON-QUADRATIC FUNCTIONS 
    Adopting the already mentioned hypothesis of local quadratic model, the 
CGM can be extended to general nonlinear objective functions. A nice 
justification for this assumption is that, near any local optimum, a great variety 
of nonlinear functions can be well approximated by quadratic functions. This 
property can be inferred from the Taylor series expansion in equation (16). 
However, in dealing with general nonlinear functions, the computation of the 

scalars jα  and jβ , in equations (17) and (19), requires the calculation of the 

Hessian matrix at each new point generated by the algorithm. Further, a problem 
of major concern is that the definiteness property of the Hessian matrix may 
change from one point to another. It is important to stress the occurrence of the 

Hessian matrix in the denominator of the expression for the step-length jα . If, 

at a given point of the search process, the matrix ( )jwH  is negative definite, 

then it is likely that jα  will be negative, resulting in a step along a direction that 
increases the cost function, instead of decreasing it as expected. 
    In general, the need for the evaluation of the full Hessian matrix at each new 
point generated by the CGM is a computational demanding process. This 
dependence can be suppressed by adopting the following alternatives for the 

calculation of jα  and jβ . 

    The step-length jα  can be obtained by solving the following one-dimensional 
minimization problem 

 ( )jj dwE αα
α

+= T
j minarg  (20) 

Thus, the value of α used at step j is just the one obtained by minimizing the 

cost function along the line defined by jj dw α+ . 

    Two particular alternative expressions for jβ , that do not use the Hessian 

matrix, are of special concern in this work. First, using the definition for jα  and 
jβ  given in equations (17) and (19) and the orthogonality property between the 

gradient at step j and all the previous conjugate directions, the following 
expression can be obtained: 

 ( ) ( )
( ) jj

j1j1j
j
PR

gg

ggg
T

T
−=

++
β  (21) 

This is known as the Polak-Ribiere expression, and can be further simplified 
using the orthogonality property between the gradient at step j and all the 
previous gradients, resulting in the Fletcher-Reeves expression: 



 

 ( )
( ) jj

1j1j
j
FR

gg

gg
T

T ++
=β  (22) 

    If the cost function is exactly quadratic, the two expressions for jβ , in 

equations (21) and (22), are equivalent. In the case of more general nonlinear 
objective functions, the Polak-Ribiere expression is argued to give better results, 
when compared with the Fletcher-Reeves expression [Johansson, 1992]. This is 
explained by the fact that, in situations where the algorithm is producing 
successive points with very little reduction in the objective function, the 
successive gradient vectors gj+1 and gj are approximately equal in module. Thus, 
the orthogonality property between gradients is lost, and the Polak-Ribiere 

expression gives a nearly zero value to jβ . A small jβ  has the effect of ruling 

out the previous search direction and forces a major contribution of the new 
gradient in the generation of the next search direction, as indicated by the 
expression in equation (18). 
    The two alternative expressions described above lead to a CGM that uses only 
function evaluations and gradient calculations, eliminating the need of the 
Hessian matrix. But there are some drawbacks associated with the line-search 
phase necessary to solve problem (20): it is known that the performance of the 
CGM is sensitive to the accuracy used in the solution of this line-search 
problem. If the line-search is carried out with great accuracy, the overall 
performance of the main algorithm will depend on the computations spent on 
function evaluations used in the line-search phase. On the other hand, a coarse 

line-search process will produce wrong values for the step-length jα , affecting 
the orthogonality property between gradients and conjugate directions. Some 
criteria have been proposed to stop the line-search process when a sufficiently 
accurate solution for the step-length has been obtained. But these criteria, 
together with a line-search procedure, introduce problem-dependent parameters 
that must be specified by the user. 
    Regardless of the full calculation of the Hessian matrix or the use of line-
search procedures, as the algorithm takes its course, the search directions are no 
longer H-conjugate. To alleviate this problem, it is a common practice to 
reinitialize the direction of search to the negative of the current gradient, after 
the completion of NP iterations. This restart strategy is the simplest one, but 
more sophisticated strategies can be found in the literature [Bazaraa, 1992]. 
 
C. SCALED CONJUGATE GRADIENT ALGORITHM 
    Moller [Moller, 1993] proposed an effective CGM, called scaled conjugate 
gradient method (SCGM). In the SCGM, no line search is required and it is 
considered a procedure to handle the occurrence of negative definite Hessian 
matrices, at any point in the search space. 
    The SCGM uses the fact that the Hessian matrix appears in the expression for 

jα  multiplied by a vector jd  (see equation (17)). The product of the Hessian 



( )kwH  by an arbitrary vector v can be calculated efficiently with the aid of the 
following finite difference approximation 
 

 ( ) ( )
.10   ,)( <<<∇−+∇≈ k

k

kkk
k wEvwE

vwH σ
σ

σ TT  (23) 

In the limit, this approximation tends to the true value of the product ( )kwH v. 

Here, the trick is to avoid the line-search phase, firstly calculating the 

approximation to the product ( )kwH v by equation (23), and then using equation 

(17) to obtain jα . 

    If in some point wk, the Hessian matrix is negative definite, the use of a 

possibly negative step-length jα is avoided by adding a positive scale parameter 

λ to the diagonal of ( )kwH . If λ is sufficiently large, the Hessian matrix is 

guaranteed to be positive definite, yielding a positive jα . Taking a large value 

for λ implies a small step size in the direction of search jd , that is, the first-
order information will predominate over the second-order information. In a 
similar way, if the scale parameter λ has a small value, the second-order 
information will have a major influence than the first-order one in the final value 

of jα . To allow the adaptation of λ during the optimization process, the SCGM 
includes steps inherited from trust region methods that decrease λ in regions 
where the quadratic model is a good local approximation and increase λ in 
regions where the quadratic approximation is poor. Detailed description of all 
the steps in the SCGM can be founded in Moller [Moller, 1993]. 
 

X. AN IMPROVED SCGM METHOD 
 
    As reported in Moller [Moller, 1993], the SCGM has superior performance 
when compared with the conventional CGM. In using the original SCGM on 
highly complex nonlinear surfaces, as those associated with recurrent neural 
networks, we have observed some problems in the method, regarding the 

production of negative values for the parameters jα  and jβ . The use of a 

negative value of jα , as already stated, indicates that the algorithm is taking a 
step in a direction that leads to an increase in the objective function. This is a 
contradictory situation, since we want to minimize the cost function. Also it is 
known that the convergence of any CGM using the Polak-Ribiere expression for  

jβ  (see equation (21)) is not guaranteed. To alleviate these problems we 

propose the adoption of a hybridization in the choice of the value to be used for 
jβ . Another important improvement that can be introduced into the SCGM is 



 

the exact evaluation of the product ( )jwH v. At least theoretically, the use of 

equation (23) is subject to numerical and roundoff problems. In this equation, 
there are conflicting requirements, as for example the need of small values for 

jσ  in order to obtain a good approximation to the product ( )jwH v, confronted 

with precision lost when v is multiplied by a small value of jσ  and used in the 

sum vw jj σ+ . Fortunately, the problem related to the exact computation of the 
product involving the Hessian matrix and an arbitrary vector was entirely solved 
by Pearlmutter [Pearlmutter, 1994]. Using a differential operator it is possible to 
compute the product of ( )⋅H  with any desired vector without approximations, 

and also to avoid the calculation and storage of the Hessian itself. 
    In the context of recurrent neural networks of practical importance, the 
application of the SCGM [Moller, 1993], together with the result of Pearlmutter 
[Pearlmutter, 1994], was firstly considered in Von Zuben and Netto [Von 
Zuben, 1995] and posteriorly in Campolucci et al. [Campolucci, 1998]. 
 

A. HYBRIDIZATION IN THE CHOICE OF ββββj  
    It is known that any conjugate gradient method using the Fletcher-Reeves 
expression (see equation (22)) is globally convergent. The same property can not 
be guaranteed when using the Polak-Ribiere expression (see equation (21)) 
[Shewchuk, 1994]. But, as largely reported in the literature, the use of the Polak-
Ribiere expression generally leads to superior results [Touati-Ahmed, 1990]. In 
this chapter, we adopt an idea in some sense similar to one proposed in Touati-

Ahmed and Storey [Touati-Ahmed, 1990]. Consider the expressions for j
PRβ  

and j
FRβ  given in equations (21) and (22), respectively. Our choice for jβ  is 

computed as follows: 
 
If j = NP-1, 

  0;j  ;  ; =−== ++ 1j1jj gd0β  

else 

If ( j
PRβ >0) and ( j

PRβ < j
FRβ ), 

jβ = j
PRβ ; 

jj1j1j dgd β+−= ++ ; 

If ( ) 0<− ++ T1j1j dg , 

  0;j  ;  ; =−== ++ 1j1jj gd0β  
else 

j = j+1; 
end 

else if j
PRβ > j

FRβ , 



jβ = j
FRβ ; 

jj1j1j dgd β+−= ++ ; 

If ( ) 0<− ++ T1j1j dg , 

  0;j  ;  ; =−== ++ 1j1jj gd0β  
else 

j = j+1; 
end 

else 
jβ = 0; 1j1j gd ++ −= ; j =0; 

end 
end 
 
B. EXACT MULTIPLICATION BY THE HESSIAN   
    [PEARLMUTTER, 1994] 
    Expanding ( )⋅∇ TE  around a point NPR∈w yields: 

 ( ) ( ) ( ) 


 ∆+∆⋅+∇=∆+∇ 2
TT wOwwHwEwwE  (24) 

where w∆ is a small perturbation. Choosing vw α=∆ , where α is a small real 

number and NPR∈v  is an arbitrary vector, we can compute H(w)v as follows; 

 
( ) ( ) ( ) ( )[ ]

( ) ( ) ( ).

1

TT

TT

2

2

O
wEvwE

OwEvwEvwH

α
α

α

αα
α

+∇−+∇

=+∇−+∇=
 (25) 

Taking the limit as 0→α , 

 ( ) ( ) ( ) ( ) 0T
TT

0
lim =
→

+∇
∂
∂=∇−+∇= α

α
α

αα
α

vwE
wEvwE

vwH  (26) 

Now, it is necessary to introduce a transformation to convert an algorithm that 
computes the gradient of the system into one that computes the expression in 
equation (26). Defining the operator 

 ( ){ } ( ) 0=+
∂
∂≡Ψ αα
α

vwwv ff  (27) 



 

we have ( ){ } ( )vwHwEv =∇Ψ T  and { } vwv =Ψ . Because {}⋅Ψv  is a differential 

operator, it obeys the usual rules of differentiation. 

 
XI. THE LEARNING ALGORITHM FOR RECURRENT 

NEURAL NETWORKS 
 
    To apply the improved SCGM to recurrent neural network learning, we need 
to compute ( )wET∇  and the product H(w)v for each step j.  Consider again the 

recurrent neural network architectures presented in section 6. Let a, b, and c be 
the column vectors obtained from piling the lines of the matrices A, B, and C, 
respectively. The ordering in which the lines are taken to form the piles may be 
arbitrary, as long as the favored order is always adopted from then on. Thus, 
following the dimensions adopted for the architectures, we can write 

)..( LDNRa ∈ , )).(( 1MNRb +∈ , and )).(( 1NORc +∈ . Remember that, if the 
architecture is a FRNN, matrix C and its corresponding vector c do not have 
adjustable parameters. 

    Now, the vector NPRw ∈ , that contains all the weights of a particular 

architecture, can be expressed as [ ]TTTT cbaw   = and has a total number of 
parameters given by NP=(N.D.L) + (N.(M+1)) + O.(N+1). 
 
Given the gradient vector ( )wET∇  of the error measure defined in equation 

(14), its decomposition to produce the partial gradient vectors with respect to a, 

b, and c, are columns vectors denoted by ( )wET
a∇ , ( )wEb

T∇ , and ( )wEc
T∇ , 

respectively. Following the same notation adopted in the formation of w, the 
vector ( )wET∇  can now be expressed as 

( ) ( ) ( ) ( ) T

T     



 ∇∇∇=∇

Tc
T

Tb
T

Ta
T EEEwE . 

 
The vector v, considered in the calculus of the product H(w)v, has the same 
dimension of w. Actually, v will always be taken as the search direction dj, to be 
defined at each iteration of the improved SCGM. Thus, v can be used to 
generate three matrices, Va, Vb, and Vc, with the same dimensions as the 
matrices A, B, and C, respectively. The process used to distribute the elements 
of v into the matrices Va, Vb, and Vc must be the inverse of the one adopted to 
form w. 
    To help in further developments, in what follows we will define generic 

vectors and matrices. Considering the column vectors [ ]THφφ ,,1 !=Φ  and 

( ) ( )[ ]Tg ΦΦ= Pgg ,,1 ! , we define the following matrices: 
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( )gJΦ  = Jacobian matrix of g with respect to Φ : 
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C , cV : matrices obtained from C, and Vc, respectively, by removing the last 

column. In C, this column contains the bias of the output units. 
    In the following development the equations for the derivative of the error, 
measured with respect to the network parameters, will be presented through 
matrix manipulations. 
 

A. COMPUTATION OF ( )wET∇  
    The operator ∇ is a linear differential operator, and its application to equation 
(14) results in the following equation: 

 ( ) ( )∑
=

∇=∇
P

k

k

1

wEwET  (28) 

Since we are adopting batch learning, the network parameters are updated only 
after the presentation of all the training patterns. In this case, the total gradient is 
the sum of the partial gradients calculated at each time step k. In the sequel, we 
will present the equations for the calculation of partial gradients. Each partial 
gradient can also be broken into its components, corresponding to vectors a, b, 
and c. Thus, we can write: 



 

 ( ) ( ) ( ) ( ) T

    



 ∇∇∇=∇

Tk
c

Tk
b

Tk
a

k EEEwE  (29) 

Using the definition for ( )wEk , given in equation (15), and the state space 

representation, given in equations (7) to (12), the following equations can be 
written: 

 ( )( ) ( )( )( ) ( )( )kkk xAJsFzJ cc
#Λ=  (30) 

 ( )( ) ( )( ) ( )














Π+=

1

k
kk

z
zJCyJ cc  (31) 

 [ ] ( ) ( )[ ] ( )( )kkk d yJyyE c
TTk

c −=∇  (32) 

 ( )( ) ( )( )( ) ( )( ) ( )( ){ }kkkk xxAJsFzJ aa Π+Λ= #  (33) 

 ( )( ) ( )( )kk zJCyJ aa =  (34) 

 [ ] ( ) ( )[ ] ( )( )kkk d yJyyE a
TTk

a −=∇  (35) 

 ( )( ) ( )( )( ) ( )( ) ( )
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

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






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

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








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k
kkk

u
xAJsFzJ bb

#  (36) 

 ( )( ) ( )( )kk zJCyJ bb =  (37) 

 [ ] ( ) ( )[ ] ( )( )kkk d yJyyE b
TTk

b −=∇  (38) 

 
B. COMPUTATION OF H(w)v 
    Given a vector v, with the properties already mentioned, the computation of 

( ) ( ){ }wEvwH Tv ∇Ψ=  requires the application of the derivative operator {}⋅Ψv  

to every calculation done to obtain ( )wET∇ . Applying {}⋅Ψv  to equations (7) 

to (9), we get 

 ( ){ } ( ){ } ( ) ( ){ } ( )kkkkk uVuBxVxAs bvavv +Ψ++Ψ=Ψ  (39) 

 ( ){ } ( )( )( ) ( ){ }kkk ssFz vv ΨΛ=Ψ #  (40) 
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v
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Now, applying the operator {}⋅Ψv  to equation (28) results in the following 

equation: 

 ( ){ } ( ){ }∑
=

∇Ψ=∇Ψ
P

k

k

1

wEwE vTv  (42) 

This equation leads to the conclusion that the total product H(w)v can be 
computed by adding the results of applying the operator {}⋅Ψv  to each partial 

gradient computed at time step k. Following these guidelines, we obtain: 
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 ( )( ){ } ( )( ){ } ( )( )kkk zJVzJCyJ acavav +Ψ=Ψ  (47) 
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 (49) 

 ( )( ){ } ( )( ){ } ( )( )kkk zJVzJCyJ bcbvbv +Ψ=Ψ  (50) 



 

 

 [ ] ( ) ( )[ ] ( )( ){ } ( ){ } ( )( )kkkkk d yJyyJyyE bvbv
TTk
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
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XII. SIMULATION RESULTS 

 
    To show the gain in performance obtained with the proposed hybrid SCGM, 
we establish a comparison with the original SCGM with exact second-order 
information, considered to be the best second-order algorithm already proposed 
in the literature. We take two examples: one concerning nonlinear system 
identification, and the other a time series prediction. In simulations involving 
recurrent neural networks with the same architectures, the competing algorithms 
were initialized with the same set of weights. In all situations, the weights were 
generated from a symmetric uniform distribution in the range [-0.2,0.2]. 
    The error criterion used in all the simulations is that indicated in equation 
(14). The network parameters were adapted by presenting the patterns in a batch 
(epoch-wise) mode. As the main objective is to access the convergence aspects 
of both versions of the SCGM, major attention is given to the error curves in the 
learning process. 
    Nonlinear System Identification: The nonlinear plant used in the generation 
of the training patterns is the same used in Example 3 of Narendra and 
Parthasarathy [Narenda, 1990]. The training set consists of 1000 samples of 
input-output pairs, generated according to the guidelines adopted there. The 
neural network identifiers receive u(k) as input and have yp(k+1) as desired 
output. We carried out simulations with the three recurrent architectures. To 
exemplify, Figure 5 shows the errors curves obtained in the training of a neural 
net with the OFRNN architecture. We adopted 5 (five) hidden neurons and 
tapped delay lines of length L = 5. The curve with solid line corresponds to the 
hybrid SCGM, and the curve with dotted line corresponds to the conventional 
one. This figure shows that the hybrid SCGM reached the local minimum of the 
error surface in a reduced number of epochs when compared with the original 
SCGM. 
    Time Series Prediction: In this task, we take as training patterns 1000 points 
of a time series generated from the Lorentz equations, with the same conditions 
described in Ergezinger and Thomsen [Ergezinger, 1995]. In Figure 6, we show 
the curves of the error measure for the same recurrent network with the FRNN 
architecture. The net has 10 (ten) hidden neurons and tapped delay lines of 
length L = 1. Again the hybrid SCGM (solid line) takes advantage over the 
original SCGM (doted line). 
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Figure 5. Performance in a system identification task 

 
 

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8

9

10

 
Figure 6. Performance in a time series prediction task 

 
XIII. CONCLUDING REMARKS 

 
    Based on the results presented above, we state that globally and partially 
recurrent neural networks can be applied to represent complex dynamic 
behaviors. This chapter investigated input-output mapping networks, so that the 
desired dynamic behavior has to be produced by means of an effective 
supervised learning process. 
    The innovative aspects of this work are the proposition of a systematic 
procedure to obtain exact second-order information for a range of different 
recurrent neural network architectures, at a low computational cost, and an 
improved version of a scaled conjugate gradient algorithm to make use of this 
high-quality information. An important aspect is that, given the exact second-
order information, the learning algorithm can be directly applied, without any 
kind of adaptation to the specific context. 
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I. INTRODUCTION

The Hopfield neural network has been used for a large number of optimization
problems, ranging from object recognition [Lin et al., 1991] to graph planarization
[Takefuji and Lee, 1989] to concentrator assignment [Tagliarini and Page, 1987].
However, the fact that the Hopfield energy function is of quadratic order limits the
problems to which it can be applied. Sometimes, objective functions which cannot
be reduced to Hopfield’s quadratic energy function can still be reasonably approx-
imated by a quadratic energy function. For other problems, the objective function
must be modeled by a higher-order energy function. Examples of such problems
include the angular-metric TSP [Aggarwal et al., 1997] and belief revision, which
is our subject here.

In this chapter, we describe high-order recurrent neural networks and provide an
efficient implementation data structure for sparse high-order networks. We then
describe how such networks can be used for Bayesian belief revision, an important
problem in diagnostic reasoning and in commonsense reasoning. We begin by
introducing belief revision and reasoning under uncertainty.

II. BELIEF REVISION AND REASONING UNDER 
UNCERTAINTY

A. REASONING UNDER UNCERTAINTY
Humans exhibit the ability to assimilate and reason with information that is

incomplete, contradictory, or subject to change. For example, most men have no
trouble comprehending that, when their wives ask their opinion on a new hairstyle,
they are expected to both “be honest” and “say that they love it.” Similarly, if a
man is driving his car, believing the car to be in fourth gear, and finds the car
unable to accelerate, he is able to consider the possibility that the car is in fact



                                                                                                            
in second gear. Reasoning with uncertainty is the branch of artificial intelligence
that is concerned with modeling this facet of human cognition.

Conventional first-order logic is inadequate for this task. Statements are either
known to be true, known to be false, or not known to be one way or the other. Fur-
ther, once a statement is known to be true (or false), it stays true (or false) forever.
One approach to reasoning with uncertainty is to use higher-order nonmonotonic
logic [Ginsberg, 1987; Marek and Truszczynski, 1993; Reiter, 1987; Shoham,
1987]. For example, modal logic [Konyndyk, 1986; Popkorn, 1994] augments
predicate logic with modal operators which take whole sentences as arguments.
With modal logic, it is possible, for example, to distinguish between a statement
which is false but has the potential of being true (such as Johnny is a straight-A
student) and a statement which is by necessity false (such as Johnny has three eyes
and six legs).

Another approach is to use numerical representations of uncertainty which may
or may not be based on the probability calculus. Methods in this school can fre-
quently be formalized in terms of belief functions. A belief function, BEL (A),
measures the degree to which all the evidence we have supports the hypothesis A.
For this reason, numerical approaches to uncertainty are sometimes also referred
to as the theory of evidence [Yager et al., 1994]. Belief functions are usually
defined to have a value within the interval [0, 1]. In addition, a plausibility function
is defined as

PLAU S(A) = 1 − BEL , (1)

and measures the degree to which our belief in  leaves room for belief in A.
Note that unlike probability functions,

BEL(A) + PLAU S(A) � 1. (2)

The only requirement is that

BEL(A) + PLAU S(A) ≤ 1. (3)

If for a particular hypothesis A, BEL(A) = 0 and PLAUS(A) = 1, this indicates
complete ignorance. While if BEL(A) = 1 and PLAUS(A) = 1, or BEL(A) = 0 and
PLAU S(A) = 0, this indicates with absolute certainty that A is true, or that A is
false, respectively. The most popular non-probabilistic approach to belief func-
tions is the Dempster-Shafer theory [Dempster, 1967; Kofler and Leondes, 1994;
Shafer, 1976; Shafer, 1986; Shafer and Logan, 1987]. It is also possible to define
belief functions in terms of fuzzy sets [Zadeh, 1979; Zadeh, 1994, Zadeh and
Kacprzyk, 1992; Zimmerman, 1991] or in terms of rough sets [Pawlak, 1991;
Pawlak, 1992; Pawlak et al., 1995].

Belief functions which are defined probabilistically are called Bayesian belief
functions. A Bayesian belief function BEL(A) is defined as

BEL(A) = P(A|E), (4)

A¬( )

A¬



                                                                                  
where E denotes the available evidence. Pearl [1988] gives examples of how
Dempster-Shafer belief functions can lead to counterintuitive reasoning. He
argues convincingly that probability can be considered a “faithful guardian of
common sense.” Lindley [1987] contends that the probability calculus is “the only
satisfactory description of uncertainty. ” However, there have been two primary
criticisms of probabilistic approaches to representing uncertainty. The first is that
there is no way to distinguish between complete ignorance and complete uncer-
tainty. With Dempster-Shafer belief functions,

BEL(A) = 0
PLAUS(A) = 1 (5)

indicate total ignorance; the evidence we have gives us no reason to believe A nor
to disbelieve A. However,

BEL(A) = PLAUS(A) = 0.5 (6)

indicate total uncertainty; the evidence we have provides equal support to A and
. However, in the Bayesian formalism,

(7)

indicates that A and  are equally likely given E; this could be because E sup-
ports both hypotheses equally or because it provides support to neither. The other
criticism of the Bayesian formalism has historically been that the need to consider
probabilistic dependencies makes probability calculations unfeasible. However,
this has largely changed with the advent of Bayesian belief networks, which pro-
vide a natural and concise graphical representation of probabilistic dependencies.

B. BAYESIAN BELIEF NETWORKS
Incarnations of Bayesian belief networks seem to have been around for some

time. They have been called influence diagrams, knowledge maps, and causal dia-
grams. However, Judea Pearl had been largely credited with standardizing and
popularizing Bayesian belief networks with his 1988 book [Pearl, 1988]. Given
a set of random variables representing events or hypotheses in a given problem
domain, a Bayesian belief network is a triple (V, E, P), where V is a set of nodes
such that each node is identified with a domain variable, (V, E) specify a directed
acyclic graph (DAG), and P is a set of probability distributions which specify
for each node υ ∈V the probability of each possible instantiation of υ given each
possible instantiation of υ′s parents π(υ), and such that (V, E) is a minimal inde-
pendency map of the domain variables. This requirement that a Bayesian belief
network’s underlying DAG be a minimal independency map of the problem
domain is what allows computations on belief networks to be greatly simplified.

The definition of an independency map, or I-map, is based on the notion of
conditional independence. If X, Y, and Z are disjoint sets of random variables,

A¬

P A|E( ) P A|E¬( ) 0.5,= =

A¬



                             
X and Y are conditionally independent given Z, written I(X, Z, Y) if for any possible
instantiations of x, y, and z, of X, Y, and Z, respectively,

(8)

whenever

(9)

Furthermore, if D is a DAG and X, Y, and Z are three disjoint sets of nodes of
D, Z is said to d-separate X and Y, denoted < X, Z, Y >, if every path from a
member of X to a member of Y is blocked by a member of Z. If D is a DAG
where each node of D represents a random variable, then D is an independency
map if I(X, Z, Y) is implied by <X|Z|Y>. Finally, a DAG is a minimal 1-map if
the removal of any edge from the DAG renders the DAG no longer an I-map.

Based on the requirement that a Bayesian belief network be an I-map, the joint
probability of any instantiation A of the nodes of a belief network (V, E, P) can be
computed according to

(10)

The correctness of this equation relies on the network being an I-map; while the
minimality requirement enforces conciseness.

For a belief network (V, Ε, P), the set of probability distributions P specifies
for each node υ the probability of every possible instantiation of υ given every
possible instantiation of π (υ). Thus, if υ is a binary-valued node and has two par-
ents, x and y, which are also binary-valued, then υ’s probability distribution would

Figure 1. Example of a local probability distribution with redundancies.

P x y z∧( ) P x z( ),=

P y z∧( ) 0.>

P A( ) P A υ( )|A π υ( )( )( ).
υ∈V
∏=



be similar to Figure 1. However, Figure 1 contains some redundant information
since for any given fixed instantiation I of π (υ),

(11)

Therefore, it is sufficient for binary-valued nodes to specify the probability of one
truth assignment for each possible instantiation of the parents, as shown in Figure 2.
In general, for a discrete node with k possible instantiations, it is necessary and suf-
ficient to specify k − 1 probabilities for each possible instantiation of the parents.

C. BELIEF REVISION
Suppose a grocery store clerk sees a man come into his store carrying a gun.

Based on the observed evidence (“man in store with gun”), the clerk may develop
the belief that he is about to be the victim of a robbery. If the evidence set is aug-
mented with the observation that the “gunman” is carrying a policeman’s badge,
the clerk may then revise his belief.

Formally, belief revision is the problem of finding the most plausible explana-
tion for the current evidence at hand. This has applications in many areas of AI.
For example, in natural language understanding, the evidence would be the natural
language text and the possible explanations would be the possible meanings of
the text [Charniak and Shimony, 1994; Hobbs et al., 1993]; in medical diagnosis, the
evidence would be the symptoms and lab results and the explanations would be
the possible diagnoses [Shachter, 1986]. For Bayesian belief networks, belief revi-
sion is the problem of finding the most probable explanation for a given set of evi-
dence. In other words, given a set of observances, represented as a partial
assignment E to a subset of the network variables, the objective is to find the net-
work assignment A which maximizes the conditional probability P(A|E). Because
it maximizes the posterior probability, A is called the maximum a posteriori
assignment and the belief revision problem on Bayesian belief networks is often
called the MAP assignment problem, or simply the MAP problem.

From Bayes’ theorem we know that

(12)

Figure 2. Example of a local probability distribution without redundancies.

P(υ T= |I π υ( )( ) 1 P(υ = F|I π υ( )( )–=

P A|E( ) P A( )P E|A( )
P E( )
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and since P(E) is constant, maximizing P(A|E) is equivalent to maximizing P(A)
subject to the constraint that . If E is empty, then we are simply interested
in finding the network assignment with highest unconditional probability P(A).

D. APPROACHES TO FINDING MAP ASSIGNMENTS
An important indicator of complexity for a belief network is whether it is singly-

connected or multiply-connected. A singly-connected network is a network in
which, for any pair of nodes, there is only one directed path connecting them. An
alternative definition is that it is a network in which the underlying undirected graph
is also acyclic. A multiply-connected network is a network in which there is more
than one directed path connecting at least one pair of nodes.

For singly-connected networks, Pearl [Pearl, 1986; Pearl, 1988] has developed
an algorithm, based on message passing, for finding the optimal MAP in linear
time. The problem of finding MAPs on multiply-connected networks is NP-hard
[Shimony, 1994] and even approximating the optimal MAP within a constant fac-
tor is NP-hard [Abdelbar and Hedetniemi, 1998]. Existing methods for finding
exact MAPs on multiply-connected networks all have exponential complexity in
the worst case. Simulated annealing [Abdelbar and Hedetniemi, 1997; Abdelbar
and Attia, 1999; Geman and Geman, 1984], genetic algorithm [Abdelbar and
Hedetniemi, 1997; Abdelbar and Attia, 1999; Rojas-Guzman and Kramer, 1993;
Rojas-Guzman and Kramer, 1994], and integer programming approaches [Abdelbar,
1998; Abdelbar, 1999; Santos, 1994; Santos and Santos, 1996] for the problem are
currently being investigated.

III. HOPFIELD NETWORKS AND MEAN FIELD 
ANNEALING

A. OPTIMIZATION AND THE HOPFIELD NETWORK
A recurrent neural network is one whose underlying topology of inter-neuronal

connections contains at least one cycle. The Hopfield network [Hopfield, 1982;
Hopfield, 1984] is perhaps the best known network of this class. The underlying
topology of a Hopfield network is a graph: each weighted connection is either a
binary connection Tij between two neurons i and j or a unary connection Ιι involv-
ing a single neuron i. A neuron in the Hopfield network is governed by

(13)

and

Vi = g(ui), (14)

where g is a (typically sigmoidal) activation function. The Hopfield network is a
member of the Cohen-Grossberg [Cohen and Grossberg, 1983] family of dynam-
ical systems. Under the requirements that the Tij matrix be symmetric and with a

E A⊆

dui

dt
------- T ijV j I i,+

j�i
∑=



zero-diagonal, and that the activation function g be monotonically non-decreasing
and with a sufficiently high slope, the neurons of a Hopfield network will tend
towards a collective state which minimizes the energy function

(15)

The Hopfield network is used for optimization by constructing the Tij and Ii con-
nections such that the minimum points of the energy function correspond to the
optimal solutions of the problem at hand. Many optimization problems can be
described by an objective function that is to be minimized or maximized and a set
of constraints that must be satisfied. These two components of the energy function
can be constructed separately and then superimposed to form the overall energy
function:

(16)

where  and  represent the energy functions corresponding to the con-
straints and objectives, respectively, and β is a manually-tuned scaling constant.

Certain types of constraints are encountered so frequently in the context of dif-
ferent problems that special design rules have been developed for their handling.
Tagliarini et al.’s [Tagliarini et al., 1991] k-out-of-n rule deals with the case where
it is desired to select exactly k out of an ensemble of n neurons.

In the energy function

(17)

the first term is minimized when the sum of the Vi’s is k and the second term when
all the Vi’s have digital values. With some algebraic manipulation, it is easy to see
that equation (17) has the same minimum points as

(18)

Correspondingly, the k-out-of-n rule prescribes that we assign Tij to (−2) for every
pair of neurons and assign Ii to (2k − 1) for every neuron in the ensemble. This
design rule can be applied to simultaneous constraints and the energy functions
produced by each application of the rule can be superimposed to produce the over-
all  [Page and Tagharini, 1988].
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 B. BOLTZMANN MACHINE
Like the Hopfield network, the Boltzmann machine [Hinton and Sejnowski,

1986] can be used for optimization. The energy function of the Boltzmann
machine is the same as that of the Hopfield network but, unlike the deterministic
Hopfield network, the Boltzmann machine employs stochastic neurons. The acti-
vation level ui of a neuron i in the Boltzmann machine is computed according to
equation (13) as in the Hopfield network, but the output Vi of a neuron i is a binary-
valued random variable with distribution:

(19)

where T is a parameter known as the temperature. Initially, the temperature is set
to a relatively high value and then, over time, it is gradually decreased according
to some annealing schedule.

Note that when T is close to infinity, the probability is close to 0.5 regardless of
the value of ui; this corresponds to a random walk through weight space. On the
other hand, when T is very low, network behavior becomes very similar to the dis-
crete version of the Hopfield network.

The choice of annealing schedule for a Boltzmann machine is central to network
performance. A well-known theoretical result by Geman and Geman [ 1984] holds
that if the rate of decay of the temperature is no faster than logarithmic, the net-
work is guaranteed to eventually converge to a global optimum. However, this
schedule is very slow in practice and is rarely used. A commonly used schedule,
first proposed by Kirkpatrick et al. [ 1983], is to reduce the temperature by a fixed
fraction f after every iteration,

(20)

C. MEAN FIELD ANNEALING
Mean field theory [Peterson and Hartman, 1989] can be used to obtain a deter-

ministic approximation to the Boltzmann machine. In this variation, the output Vi

of a neuron i is deterministically approximated to be

(21)

where T is the annealing temperature. This mean field approximation, often called
the deterministic Boltzmann machine, has been observed to produce faster conver-
gence than the stochastic Boltzmann machine [Peterson and Anderson, 1987].

IV. HIGH ORDER RECURRENT NETWORKS

A High Order Recurrent Network (HORN) is a recurrent network whose un-
derlying topology is a hypergraph, i.e., it allows weighted hyperedges which con-
nect more than two neurons. The degree of a hyperedge is the number of neurons

P V i 1=( ) 1

1 e
−

ui
T
----

+
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V i tanh
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it connects; the order of a HORN is the largest hyperedge degree in the topology.
We will use the notation  to denote the weight of the dth-degree edge connect-
ing neurons i1 … id. A HORN is symmetric if

(22)

for any permutation h of the integers 1 … d. By default, a HORN is assumed to be
symmetric unless otherwise specified.

A kth-order HORN minimizes a kth-order energy function [Pinkas, 1995]:

(23)

where n is the number of neurons. For example, the energy function of a
fourthorder HORN has the form:

(24)

If Sd denotes the set of all sequences j1, …, jd, such that 1 ≤ ja ≤ n, for a = 1, …,
d, and ja � jb if a � b, then, each neuron is governed by

(25)

In the new notation of this section, equation (13) would be expressed as:

(26)

The relationship between the output Vi and the activation level ui of a neuron i
can follow the form either of the Hopfield network, of the stochastic Boltzmann
machine, or of the mean field theory Boltzmann machine.

In a 1995 paper, Gadi Pinkas [Pinkas, 1995] shows that it is possible to trans-
form a kth-order network to a strongly equivalent quadratic-order network with an
increase in the number of neurons. Although it is often more efficient in practice
to simulate the high-order networks directly, Pinkas’ transformation provides an
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important theoretical foundation for HORNs because of the Hopfield network’s
relationship to the Cohen-Grossberg family.

We will now briefly review the Pinkas transformation. Given a kth-order net-
work, each kth-order connection  is replaced by a number of lower-order con-
nections in a manner that depends on the sign of the weight of .

If the weight of  is positive, then it is replaced by (k + 1) second- and first-
order connections and a new hidden neuron is added. If we let h denote the new
hidden neuron, then the (k + 1) connections are created as follows:

1. For every j = 1, …, k, a connection  is added and its weight is set
according to

(27)

2. A connection  is added and its weight is set according to

(28)

If, on the other hand, the weight of  is negative, then (k − 2) new hidden
neurons are needed. If we let h3 … hk denote the (k − 2) new hidden neurons, then
the low-order connections are created as follows:

1. For every j = k, …, 3, perform the following steps:

(a) For � = 1, …, j − 1, a new connection  is added and its
weight is set according to

(29)

(b) A new connection  is created and its weight is set according to

(30)

(c) A connection  is created and its weight is set according to

(31)

2. A connection  is created and its weight is set according to

(32)

In this manner, an arbitrary kth-order network can always be converted to a
strongly equivalent second-order network.
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 V. EFFICIENT DATA STRUCTURES FOR IMPLEMENTING 
HORNS

The most common implementation of a Hopfield network stores the Tij and 1i

connections in two-dimensional and one-dimensional arrays, respectively. To fire
a neuron, say neuron i, we can use

1. delta_u = I [i];
2. for j = 1 to n do
3. if j � i then
4. delta_u += T [i,j] * V [j];
5. od ;

For a HORN with dense connections, a similar approach can be adopted, using
a d-dimensional array for each T(d). To fire a neuron, we would then have k − 1
nested loops, which means a computational complexity of O(nk) to fire all n neu-
rons once.

However, for some applications such as belief revision, the HORN’s of interest
are sparsely-connected, that is, the majority or even the vast majority of possible
connections have a connection weight of 0. For such HORNs, we propose the fol-
lowing data structure, which is meant to be very fast at the expense of redundance
in storage.

We use an array of records, where each record holds three fields:

degree : integer ;
neurons: array [1..k] of integer; 
weight : real ;

The size of the array of records is set to the maximum number of non-zero con-
nections in the entire network, which we will denote as m. We then duplicate
this array n times. This gives us the following declaration, which is illustrated in
Figure 3:

Conn : array [1..n,1..m] ;

For each neuron i, the one-dimensional array Conn [i] holds the connections
in which i participates. Each record Conn [i,j] stores the specifications of one
connection in which i participates. The array Conn [i,j]. neurons holds
the neurons which participate in the connection not including neuron i itself.
Since the entire Conn [i] deals with connections which involve i, there is no
need to include i in the neurons array of each record; in addition the exclusion
of i makes it possible to avoid including an if-statement between lines 4 and 5 in
the pseudo-code below.

To fire neuron i, we can use

1. delta_u = 0 ;



2. for j = 1 to m [i] do

3. factor = Conn [i,j].weight ;

4. for a = 1 to Conn [i,j].degree - 1 do

5. factor *= V [Conn [i,j].neurons[a]];

6. od ;

7. delta_u += factor ;

8. od ;

We can now fire a neuron in O(mr), where r is the average connection degree of
the HORN, and all neurons can be fired in O(nmr).

VI. DESIGNING HORNS FOR BELIEF REVISION

Bayesian belief networks are themselves essentially connectionist structures
(and interestingly they meet most generic definitions of a neural network). Let
us go back for a moment to the example probability distribution table shown in
Figure 1. Consider for example the sixth line of this table. This line associates a
probability of 0.77 with the combination of four hypotheses: that x is true, that y

Figure 3. Each record Conn [i][j] describes the jth connection in which neuron i
participates.



is false, that z is true, and that v is false. Each line in the probability table of a
belief network node with in-degree d connects d + 1 hypotheses. For this reason,
a Bayesian belief network with a maximum in-degree of k will require a HORN
of order (k + 1).

Here, we present an algorithm for constructing a HORN for a given Bayesian
belief network with discrete-valued (not necessarily binary) variables and a given
evidence set.

Let B = (U, E, P) and E be a Bayesian belief network and associated evidence
set, respectively. For U = υ1, …, υn, let D(υi) be the finite domain from which vari-
able υ can be instantiated. We will assume that, for each υ ∈ U, each distribution
Pυ is in the form of a table, where each line � in the table is in the form of a set of
assignments {(x → r)|x ∈ {υ} � π (υ), r ∈ D(x)}, and we will let P(�) denote the
probability associated with line �.

We construct a neural network with Συ∈U|D(υ)|) neurons: a neuron υr is associ-
ated with every r ∈ D(υ) for every υ ∈ U. For each υ ∈ U and for each � ∈ Pυ,
we create a connection

(33)

where d = |�|, and ia = xr where (x → r) ∈ �, for a = 1, …, d.
Let the evidence be represented as a set of assignments. For each assignment

(x → r) ∈ E where r ∈D(x):

1. Let xr be the neuron corresponding to the instantiation r of x. Since the
evidence requires x to take the value r, we can consider  to be clamped
to 1. Therefore, we can replace every connection  such that ia = xr

for some a ∈ 1,…, d, with the connection  letting the
new connection retain the weight of the removed connection.

2. We can now remove neuron xr (which now corresponds to a fact
rather than a hypothesis) from the network and permanently
assign  to 1.

3. For each S ∈(D(x) − {r}), let xs, be the neuron corresponding to
the instantiation s of x. Since the evidence requires x to take on a
value different from s, we can consider  to be clamped to 0.
Therefore, we can prune every connection  such that ib = xs

for some b ∈ 1, …, d.
4. We can now remove neuron xs, and permanently assign  to 0.

In this manner, we construct a connection corresponding to every line in every
probability table in the belief network. Let these connections constitute Eobj.We
illustrate the Eobj connections with a small numerical example. Consider the
binary-valued belief network shown in Figure 4. Figure 5 shows the Conn [i]
arrays that would be constructed for the evidence {(x → T)} assuming the neuron
associations (V1 : wT, V2 : wF, V3 : xT, V4 : xF, V5 : yT, V6 : yF, V7 : zT, V8 : zF).
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An assignment V to the HORNs V vector will induce a belief network assign-
ment A,

A = {(υ → r)|υ ∈ U,  = 1}, (34)

under the two constraints that all Vi’s have digital values and that exactly one of
{ | r ∈ D(υ)} is equal to 1 for every υ ∈ U. An assignment V is said to be fea-
sible if it induces a belief network assignment A.

Theorem: Let V1 and V2 be two feasible neural network assignments such that
V1 yields a lower value for Eobj than V2. Then, if A1 and A2 are the two belief net-
work assignments induced by V1 and V2, respectively, then P(Al |E) > P (A2|E).

Proof: Maximizing P(A|E) is equivalent to maximizing P(A) under the con-
straint ; the containment of E in A is guaranteed by the clamping of  to
1 for every (x → r) ∈ E. Every connection in the HORN corresponds to a line in
the probability table of some node. Let Pυ be the probability distribution for an
arbitrary υ ∈ U. For any assignment A, there is exactly one � ∈ Pυ such that � ∈
A. Therefore, Eobj consists of exactly U non-zero terms. Each non-zero connection
has a weight

(35)

for some � ∈ Pυ for some υ ∈ U and such that � ∈ A. This means

Figure 4. A small belief network
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Figure 5. The Conn arrays that result from applying the algorithm to the belief network
shown in Figure 4 with E = {(x → T)}



(36)

Therefore, minimizing Eobj is equivalent to maximizing P(A).
What remains is to construct connections, which we will call Econs, to enforce

the feasibility constraints. This can be achieved using the standard k-out-of-n
design rule. The two components, Econs and Eobj, are then combined according to
equation (16) with an appropriate choice of weighting constant β.

Using mean field annealing, with the schedule of (20), this technique has found
the optimal assignments for a collection of twenty belief networks and evidence
sets with the characteristics shown in Figure 6. For each belief network and evi-
dence set, extensive experimentation, however, is required to obtain good values
for the three parameters: β, initial temperature T0, and temperature cooling factor
f. Performance is especially sensitive to β and f. It is hoped that heuristics can be
developed for automatically setting β according to the probability values of the
network. Alternatively, techniques such as genetic optimization could be used to
automate the parameter selection problem.

VII. CONCLUSION

Belief revision is the problem of finding the most plausible explanation for a
given set of observances. In the context of Bayesian belief networks, belief revi-
sion becomes the problem of finding the network assignment A with maximum
posterior probability P(A|E), where E is a partial network assignment correspond-
ing to the observed evidence. Exact techniques for multiply-connected belief net-
works run in time exponential in the size of the network graph’s minimum loop-
cutset: the smallest set of vertices whose removal renders the network graph acyclic.
For multiply-connected networks in which the loop-cutset is small, traditional
methods can be used. However, for large heavily-connected networks, other meth-
ods are needed.

Figure 6. Summary of experimentation

P A υ( )|A π υ( )( )( )
υ ∈U
∏– logP A( ).–= =



In this chapter, we began by describing High Order Recurrent Networks
(HORNs) and reviewing a transformation which allows HORNs to be transformed
to quadratic-order networks with equivalent energy functions. This was followed
by the description of an efficient data structure for the software implementation of
HORNs. We then showed how HORNs could be used for belief revision on belief
networks.

Using the Pinkas transformation described in Section 4, the high order networks
produced by our method can be converted to equivalent Hopfield networks and
Boltzmann machines; this is of significance because of the potential for the hard-
ware implementation of these networks [Schneider and Card, 1993; Schneider and
Card, 1998].
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I. INTRODUCTION

A. MOTIVATION
As our applications for intelligent systems become more ambitious, our pro-

cessing models become more powerful. One approach to increasing this power
is through hybrid systems - systems that include several different models’ intelli-
gent processing [Giles, 1998a]. There has also been an increased interest in hybrid
systems as more applications with hybrid models emerge [Bookman, 1993]. How-
ever, there are many definitions of hybrid systems [Hendler, 1991, Honavar, 1994,
Sun, 1997].

One example of hybrid systems is in combining artificial neural networks
and fuzzy systems (see Bezdek [1992], Herrmann [1995], Palaniswami [1995],
Kasabov [1996]). Fuzzy logic [Zadeh, 1965] provides a mathematical foundation
for approximate reasoning; fuzzy logic has proven very successful in a variety
of applications [Berenji, 1992, Bonissone, 1995, Chiu 1991, Corbin, 1994, Fran-
quelo, 1996, Hardy, 1994, Kickert, 1976, Lee, 1990, Pappis, 1977, Yang, 1995].
The parameters of adaptive fuzzy systems have clear physical meanings that fa-
cilitate the choice of their initial values. Furthermore, rule-based information can
be incorporated into fuzzy systems in a systematic way.

Artificial neural networks propose to simulate on a small scale the information
processing mechanisms found in biological systems that are based on the coop-
eration and computation of artificial neurons that perform simple operations, and
on their ability to learn from examples. Artificial neural networks have become



valuable computational tools in their own right for tasks such as pattern recogni-
tion, control, and forecasting (for more information on neural networks, please see
various textbooks [Bishop, 1995, Cichocki, 1993, Haykin, 1998]). Recurrent neu-
ral networks (RNNs) are dynamical systems with temporal state representations;
they are computationally quite powerful [Siegelmann, 1995, Siegelmann, 1999]
and can be used in many different temporal processing models and applications
[Giles, 1998].

Fuzzy finite state automata (FFA), fuzzy generalizations of deterministic finite
state automata,1 have a long history [Santos, 1968, Zadeh, 1971]. The fundamen-
tals of FFA have been discussed in Gaines [1976] without presenting a systematic
machine synthesis method. Their potential as design tools for modeling a variety
of systems is beginning to be exploited in various applications [Kosmatopoulso,
1996, Mensch, 1990]. Such systems have two major characteristics: (1) the cur-
rent state of the system depends on past states and current inputs, and (2) the
knowledge about the system’s current state is vague or uncertain.

Finally, the proofs of representational properties of artificial intelligence, ma-
chine learning, and computational intelligence models are important for a number
of reasons. Many users of a model want guarantees about what it can do theo-
retically, i.e., its performance and capabilities; others need this for justification of
use and acceptance of the approach. The capability ofrepresenting a model, say
a fuzzy finite automata (FFA), in an intelligent system can be viewed as a foun-
dation for the problem oflearning that model from examples (if a system cannot
represent a FFA, then it certainly will have difficulty learning a FFA).

Since recurrent neural networks are nonlinear dynamical systems, the proof of
their capability to represent FFA amounts to proving that a neural network rep-
resentation of fuzzy states and transitions remains stable for input sequences of
arbitrary length and is robust to noise. Neural networks that have beentrained
to behave like FFA do not necessarily share this property, i.e., their internal rep-
resentation of states and transitions may become unstable for sufficiently long
input sequences Omlin [1996a]. Finally, with the extraction of knowledge from
trained neural networks, the methods discussed here could potentially be applied
to incorporating and refining [Maclin, 1993] fuzzy knowledge previously encoded
into recurrent neural networks.

B. BACKGROUND
A variety of implementations of FFA have been proposed, some in digital sys-

tems [Grantner, 1994, Khan, 1995]. However, here we give a proof that such im-
plementations in sigmoid activation RNNs are stable, i.e. guaranteed to converge
to the correct prespecified membership. This proof is based on previous work of
stably mapping deterministic finite state automata (DFA) in recurrent neural net-
works reported in Omlin [1996]. In contrast to DFA, aset of FFA states can be
occupied tovarying degrees at any point in time; this fuzzification of states gener-

1Finite state automata also have a long history as theoretical [Hopcroft, 1979] and practical [Ashar,
1992] models of computation and were some of the earliest implementations of neural networks
[Klenne, 1956, Minsky, 1967]. Besides automata, other symbolic computational structures can be
used with neural networks [Fu, 1994, Giles 1998].



ally reduces the size of the model, and the dynamics of the system being modeled
is often more accessible to a direct interpretation.

From a control perspective, fuzzy finite state automata have been shown to be
useful for modeling fuzzy dynamical systems, often in conjunction with recurrent
neural networks [Cellier, 1995, Kosmatopoulso, 1995, Kosmatopoulso, 1995a,
Kosmatopoulso, 1996, Kosmatopoulso, 1996a]. There has been much work on
the learning, synthesis, and extraction of finite state automata in recurrent neural
networks, see for example Casey [1996], Cleeremans [1989], Elman [1990], Fras-
coni [1996], Giles [1992], Pollack [1991], Watrous [1992], and Zeng [1993]. A
variety of neural network implementations of FFA have been proposed [Grantner,
1994, Grantner, 1993, Khan, 1995, Unal, 1994]. We have previously shown how
fuzzy finite state automata can be mapped into recurrent neural networks with
second-order weights using acrisp representation2 of FFA states [Omlin, 1998].
That encoding required a transformation of a FFA into a deterministic finite state
automaton that computes the membership functions for strings; it is only appli-
cable to a restricted class of FFA that havefinal states. The transformation of a
fuzzy automaton into an equivalent deterministic acceptor generally increases the
size of the automaton and thus the network size. Furthermore, the fuzzy transition
memberships of the original FFA undergo modifications in the transformation of
the original FFA into an equivalent DFA that is suitable for implementation in a
second-order recurrent neural network. Thus, the direct correspondence between
system and network parameters is lost which may obscure the natural fuzzy de-
scription of systems being modeled.

The existence of a crisp recurrent network encoding for all FFA raises the
question of whether recurrent networks can also betrained to compute the fuzzy
membership function, and how they represent FFA states internally. Based on
our theoretical analysis, we know that they have the ability to represent FFA in
the form of equivalent deterministic acceptors. Recent work reported in [Blanco,
1997] addresses these issues. Instead of augmenting a second-order network with
a linear output layer for computing the fuzzy string membership as suggested in
Omlin [1998], they chose to assign a distinct output neuron to each fuzzy string
memberships�i occurring in the training set. Thus, the number of output neurons
became equal to the number of distinct membership values� i. The fuzzy mem-
bership of an input string was then determined by identifying the output neuron
whose activation was highest after the entire string had been processed by a net-
work. Thus, they transformed the fuzzy inference problem into a classification
problem with multiple classes or classifications. This approach lessens the burden
on the training and improves the accuracy and robustness of string membership
computation.

Apart from the use of multiple classes, training networks to compute the fuzzy
string membership is identical to training networks to behave like DFA. This was
verified empirically through information extraction methods [Casey, 1996, Omlin,
1996a] where recurrent networks trained on fuzzy strings develop a crisp internal

2A crisp mapping is one from a fuzzy to a nonfuzzy variable.



representation of FFA, i.e., they represent FFA in the form of equivalent determin-
istic acceptors.3 Thus, our theoretical analysiscorrectly predicted the knowledge
representation for such trained networks.

C. OVERVIEW
In this chapter, we present a method for encoding FFA using afuzzy repre-

sentation of states.4 The objectives of the FFA encoding algorithm are (1) ease of
encoding FFA into recurrent networks, (2) the direct representation of “fuzziness,”
i.e., the fuzzy memberships of individual transitions in FFA are also parameters in
the recurrent networks, and (3) achieving a fuzzy representation by making only
minimal changes to the underlying architecture used for encoding DFA (and crisp
FFA representations).

Representation of FFA in recurrent networks requires that the internal repre-
sentation of FFA states and state transitions be stable for indefinite periods of time.
We will demonstrate how the stability analysis for neural DFA encodings carries
over to and generalizes the analysis of stable neural FFA representations.

In high-level VLSI design a DFA (actually finite state machines) is often used
as the first implementation of a design and is mapped into sequential machines and
logic [Ashar, 1992]. Previous work has shown how a DFA can be readily imple-
mented in recurrent neural networks and how neural networks have been directly
implemented in VLSI chips [Akers, 1990, Sheu, 1995, Mead, 1989]. Thus, with
this approach FFA could be readily mapped into electronics and could be use-
ful for applications, such as real-time control (see, e.g., Chiu [1991])5 and could
potentially be applied to incorporate a priori knowledge into recurrent neural net-
works for knowledge refinement [Giles, 1993].

The remainder of this chapter is organized as follows: Fuzzy finite state au-
tomata are introduced in Section 2. The fuzzy representation of FFA states and
transitions in recurrent networks are discussed in Section 3. The mapping “fuzzy
automata! recurrent network” proposed in this paper requires that FFA be trans-
formed into a special form before they can be encoded in a recurrent network. The
transformation algorithm can be applied to arbitrary FFA; it is described in Section
4. The recurrent network architecture for representing FFA is described in Section
5. The stability of the encoding is derived in Section 6. A discussion of simulation
results in Section 7 and a summary of the results and possible directions for future
research in Section 8 conclude this chapter.

3The equivalence of FFA and deterministic acceptors was first discussed in Thomason [1974] and
first used for encoding FFA in Omlin [1998].

4For reasons of completeness, we have included the main results from Omlin [1996] which laid the
foundations for this and other papers [Omlin, 1996c, Omlin, 1998] Thus, by necessity, there is some
overlap.

5Alternative implementations of FFA have been proposed (see, e.g., Grantner [1993]). The method
proposed uses recurrent neurons with sigmoidal discriminant functions and a fuzzy internal represen-
tation of FFA states.
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Figure 1.Example of a Fuzzy Finite State Automaton: A fuzzy finite state automaton is
shown with weighted state transitions. State 1 is the automaton’s start state. A transition
from stateqj to qi on input symbolak with weight� is represented as a directed arc from
qj to qi labeledak=�. Note that transitions from states 1 and 4 on input symbols ‘0’ are
fuzzy (Æ(1; 0; :) = f2; 3g andÆ(4; 0; :) = f2; 3g).

II. FUZZY FINITE STATE AUTOMATA

In this section, we give a formal definition of FFA [Dubois, 1980] and illustrate
the definition with an example.

Definition 2.1 A fuzzy finite state automaton (FFA) M is a 6-tuple M = < �, Q,
R, Z, Æ, ! > where � = fa1; : : : ; amg is the alphabet, Q = fq1; : : : ; qng is a set
of states, R 2 Q is the automaton’s fuzzy start state,6 Z is a finite output alphabet,
Æ : ��Q� [0; 1]! Q is the fuzzy transition map, and ! : Q! Z is the output
map.7

Weights�ijk 2 [0; 1] define the ‘fuzziness’ of state transitions, i.e., a FFA
can simultaneously be in different states with a different degree of certainty. The
particular output mapping depends on the nature of the application. Since our
goal is to construct a fuzzy representation of FFA states and their stability over
time, we will ignore the output mapping! for the remainder of this discussion,
and not concern ourselveswith the languageL(M) defined by M . For a possible
definition, see Dubois [1980]. An example of a FFA over the input alphabetf0; 1g

is shown in Figure1.

6In general, the start state of a FFA is fuzzy, i.e., it consists of a set of states that are occupied
with varying memberships. It has been shown that a restricted class of FFA whose initial state is a
single crisp state is equivalent with the class of FFA described in Definition 2.1 [Dubois, 1980]. The
distinction between the two classes of FFA is irrelevant in the context of this paper.

7This is in contrast to stochastic finite state automata where there exists no ambiguity about which
is an automaton’s current state. The automaton can only be in exactly one state at any given time and
the choice of a successor state is determined by some probability distribution. For a discussion of the
relationship between probability and fuzziness, see for instance Thomas [1995].



III. REPRESENTATION OF FUZZY STATES

A. PRELIMINARIES
The current fuzzy state of a FFAM is a collection of statesfqig of M that

are occupied with different degrees of fuzzy membership. A fuzzy representation
of the states in a FFA thus requires knowledge about the membership of each
stateqi. This requirement then dictates the representation of the current fuzzy
state in a recurrent neural network. Because the method for encoding FFA in
recurrent neural networks is a generalization of the method for encoding DFA, we
will briefly discuss the DFA encoding algorithm.

B. DFA ENCODING ALGORITHM
We make use of an algorithm used for encoding deterministic finite state au-

tomata (DFA) [Omlin, 1996, Omlin, 1996c]. For encoding DFA, we use discrete-
time, second-order recurrent neural networks with sigmoidal discriminant func-
tions that update their current state according to the following equations:

S
(t+1)

i = g(�i(t)) =
1

1 + e��i(t)
; �i(t) = bi +

X
j;k

WijkS
(t)
j I

(t)

k ; (1)

wherebi is the bias associated with hidden recurrent state neuronsS i, Wijk is a
second-order weight, andIk denotes the input neuron for symbolak. The indices
i; j, andk run over all state and input neurons, respectively. The productS

(t)
j I

(t)

k

corresponds directly to the state transitionÆ(qj ; ak) = qi. The architecture is
illustrated in Figure2.

DFA can be encoded in discrete-time, second-order recurrent neural networks
with sigmoidal discriminant functions such that the DFA and constructed network
accept the same regular language [Omlin, 1996]. The desired finite state dynam-
ics are encoded into a network by programming a small subset of all available
weights to values+H and�H ; this leads to a nearly orthonormal internal DFA
state representation for sufficiently large values ofH , i.e., a one-to-one correspon-
dence between current DFA states and recurrent neurons with a high output. Since
the magnitude of all weights in a constructed network is equal toH , the equation
governing the dynamics of a constructed network is of the special form

S
(t+1)
i = g(x;H) =

1

1 + eH(1�2x)=2
(2)

wherex is the input to neuronSi.
The objective of mapping DFA into recurrent networks is to assign DFA states

to neurons and to program the weights such that the assignment remains stable
for input sequence of arbitrary length, i.e., exactly one neuron corresponding to
the current DFA state has a high output at any given time. Such stability is trivial
for recurrent networks whose neurons have hard-limiting (or “step function”) dis-
criminant functions. However, this is not obvious for networks with continuous,
sigmoidal discriminant functions. The nonlinear dynamical nature of recurrent
networks makes it possible for intended internal DFA state representations to be-
come unstable, i.e., the requirement of a one-to-one correspondence between DFA
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Figure 2. Recurrent Network Architecture for Deterministic Finite State Automata:
The recurrent state neurons are connected and implement the stable finite state dynamics.
One of the recurrent neurons also is the dedicated network output neuron (i.e., the neuron
which by its output value classifies whether or not a given string is a member of a regular
language).

states and recurrent neurons may be violated for sufficiently long input sequences.
We have previously demonstrated that it is possible to achieve a stable internal
DFA state representation that isindependent of the string length: In constructed
networks, the recurrent state neurons always operate near their saturation regions
for sufficiently large values ofH ; as a consequence, the internal DFA state rep-
resentation remains stable indefinitely. The internal representation of fuzzy states
proposed in this paper is a generalization of the method used to encode DFA states
since FFA may be in several states at the same time. We will apply the same tools
and techniques to prove stability of the internal representation of fuzzy states in
recurrent neural networks.

C. RECURRENT STATE NEURONS WITH VARIABLE OUT-
PUT RANGE

We extend the functionality of recurrent state neurons in order to represent
fuzzy states as illustrated in Figure 3. The main difference between the neuron
discriminant function for DFA and FFA is that the neuron now receives as inputs
the weight strengthH , the signalx that represents the collective input from all
other neurons, and the transition weight� ijk , whereÆ(qj ; ak; �ijk) = qi; we will
denote this triple with(x;H; �ijk). The value of�ijk is different for each of the
states that collectively make up the current fuzzy network state. This is consistent
with the definition of FFA.

The following generalized form of the sigmoidal discriminant functiong(:)

will be useful for representing FFA states:
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Figure 3. Neuron Discriminant Function for Fuzzy States: A neuron is represented
figuratively by the box and receives as input the collective signalx from all other neurons,
the weight strengthH, and the fuzzy transition membership� to compute the function
~g(x;H; �) = �

1+eH(��2x)=2� : Thus, the sigmoidal discriminant function used to represent
FFA states has a variable output range.

S
(t+1)
i = ~g(x;H; �ijk) =

�ijk

1 + eH(�ijk�2x)=2�ijk
(3)

Compared to the discriminant functiong(:) for the encoding of DFA, the weight
H that programs the network state transitions is strengthened by a factor 1/� ijk

(0 < �ijk � 1); the range of the function~g(:) is squashed to the interval[0; � ijk],
and it has been shifted towards the origin. Setting� ijk = 1 reduces the function
(3) to the sigmoidal discriminant function (2) used for DFA encoding.

More formally, the function~g(x;H; �) has the following important invariant
property that will later simplify the analysis:

Lemma 3.1~g(�x;H; �) = � ~g(x;H; 1) = � g(x;H).

Proof. ~g(�x;H; �) =
�

1 + eH(��2�x)=2�
=

�

1 + eH(1�2x)=2
= � ~g(x;H; 1) =

� g(x;H):

Thus, g(x;H) can be obtained by scaling~g(x;H; 1) uniformly in thex� and
y�directions by a factor�.

The above property of~g allows a stability analysis of the internal FFA state
representation similar to the analysis of the stability of the internal DFA state
representation.



D. PROGRAMMING FUZZY STATE TRANSITIONS
Consider stateqj of FFA M and the fuzzy state transitionÆ(qj ; ak; f�ijkg =

fqi1 : : : qirg). We assign recurrent state neuronSj to FFA stateqj and neurons
Si1 : : : Sir to FFA statesqi1 : : : qir . The basic idea is as follows: The activation
of recurrent state neuronSi represents the certainty�ijk with which some state
transitionÆ(qj ; ak; �ijk) = qi is carried out, i.e.,S t+1

i ' �ijk . If qi is not reached
at timet+ 1, then we haveS t+1

i ' 0.
We program the second-order weightsW ijk as follows:

Wijk =

�
+H if qi 2 Æ(qj ; ak; �ijk)

0 otherwise
(4)

Wjjk =

�
+H if qj 2 Æ(qj ; ak; �jjk)

�H otherwise
(5)

bi = �H=2 if qi 2M: (6)

SettingWijk to a large positive value will ensure thatS t+1
i will be arbitrarily

close to�ijk and settingWjjk to a large negative value will guarantee that the
outputSt+1

j will be arbitrarily close to 0. This is the same technique used for
programming DFA state transitions in recurrent networks [Omlin, 1996] and for
encoding partial prior knowledge of a DFA for rule refinement [Omlin, 1996b].

IV. AUTOMATA TRANSFORMATION

A. PRELIMINARIES
The above encoding algorithm leaves open the possibility for ambiguities

when a FFA is encoded in a recurrent network as follows: Consider two FFA
statesqj andql with transitionsÆ(qj ; ak; �ijk) = Æ(ql; ak; �ilk) = qi whereqi is
one of all successor states reached fromqj andql, respectively, on input symbol
ak. Further assume thatqj andql are members of the set of current FFA states (i.e.,
these states are occupied with some fuzzy membership). Then, the state transition
Æ(qj ; ak; �ijk) = qi requires that recurrent state neuronSi have dynamic range
[0; �ijk ] while state transitionÆ(ql; ak; �ilk) = qi requires that state neuronSi
asymptotically approach�ilk. For�ijk 6= �ilk , we have ambiguity for the output
range of neuronSi.

Definition 4.1 We say an ambiguity occurs at state qi if there exist two states qj
and ql with Æ(qj ; ak; �ijk) = Æ(ql; ak; �ilk) = qi and �ijk 6= �ilk . A FFA M is
called ambiguous if an ambiguity occurs for any state q i 2M .

B. TRANSFORMATION ALGORITHM
That ambiguity could be resolved by testing all possible paths through the FFA

and identifying those states for which the above described ambiguity can occur.
However, such an endeavor is computationally expensive. Instead, we propose to
resolve that ambiguity by transforming any FFAM .



Input: FFAM =< �; Q;R;Z; Æ; ! > with � = fa1; : : : ; aMg andQ = fq1; : : : ; qNg.
Output: FFAM 0 =< �; Q0

; R
0
; Z; Æ

0
; ! > with � = fa1; : : : ; aMg andQ0 = fq1; : : : ;

qN ; qN+1; : : : ; qXg with the properties
(1)M �M

0 and
(2) there exist no two statesqj andql in M

0 with Æ(qj ; ak; �ijk) = Æ(ql; ak,
�ilk) = qi with �ijk 6= �ilk.

Algorithm:
1. X  N ; list Q;

while list 6= ; do
2. list list n fqig;

for k = 1 : : :M do
3. visit ;;

for j = 1 : : : N do
4. if Æ(qj ; ak; �) = qi then visit visit [ fqjg;

end
5. class fql 2 visit j Æ(ql; ak; �ilk) = qi with �ilk = �ikg;
6. visit visit n fclassg;

while class6= ; do
7. class fql 2 visit j Æ(ql; ak; �ilk) = qi with �ilk = �ikg;
8. visit visit n fclassg;
9. X  X + 1;
10. Q Q [ fqXg; /* create new FFA stateqX */

for each qj in classdo
11. Æ(qj ; ak; �ijk) qX ; /* change transition */

for l = 1 : : : N do
for k = 1 : : :M do

12. Æ(qX ; ak; �lXk) Æ(qi; ak; �lik);
/* implies �lXk  �lik) */

end
end

end
end

end
end

Figure 4.Algorithm for FFA Transformation.



Before we state the transformation theorem, and give the algorithm, it will be
useful to define the concept of equivalent FFA.

Definition 4.2 Consider a FFA M that is processing some string s = �1�2 : : : �L

with �i 2 �. As M reads each symbol �i, it makes simultaneous weighted state
transitions��Q�[0; 1]according to the fuzzy transition map Æ(qj ; ak; �ijk) = qi.
The set of distinct weights f�ijkg of the fuzzy transition map at time t is called the
active weight set.

Note that the active weight set can change with each symbol� i processed byM .
We will define what it means for two FFA to be equivalent:

Definition 4.3 Two FFA M and M 0 with alphabet � are called equivalent if their
active weight sets are at all times identical for any string s 2 ��.

We will prove the following theorem:

Theorem 4.1Any FFA M can be transformed into an equivalent, unambiguous
FFA M

0.

The trade-off for making the resolution of ambiguities computationally feasi-
ble is an increase in the number of FFA states. The algorithm that transforms a
FFA M into a FFAM 0 such thatL(M) = L(M 0) is shown in Figure 4. Before
we prove the above theorem, we will discuss an example of FFA transformation.

C. EXAMPLE
Consider the FFA shown in Figure 5a with four states and input alphabet

� = f0; 1g; stateq1 is the start state.8 The algorithm initializes the variable
‘list’ with all FFA states, i.e., list=fq1; q2; q3; q4g. First, we notice that no am-
biguity exists for input symbol ‘0’ at stateq1 since there are no state transitions
Æ(:; 0; :) = q1. There exist two state transitions that have stateq1 as their target,
i.e. Æ(q2; 1; 0:2) = Æ(q3; 1; 0:7) = q1. Thus, we set the variablevisit = fq2; q3g.
According to Definition 4.1, an ambiguity exists since�121 6= �131. We resolve
that ambiguity by introducing a new stateq5 and settingÆ(q3; 1; 0:7) = q5. Since
Æ(q3; 1; 0:7) no longer leads to stateq1, we need to introduce new state transi-
tions leading from stateq5 to the target statesfqg of all possible state transitions:
Æ(q1; :; :) = fq2; q3g. Thus, we setÆ(q5; 0; �250) = q2 andÆ(q5; 1; �351) = q3

with �250 = �210 and�351 = �311. One iteration through the outer loop thus
results in the FFA shown in Figure 5b. Consider Figure 5d which shows the
FFA after 3 iterations. Stateq4 is the only state left that has incoming transitions
Æ(:; ak; �4:k) = q4 where not all values�4:k are identical. We haveÆ(q2; 0; 0:9) =
Æ(q6; 0; 0:9) = q4; since these two state transition do not cause an ambiguity

8The FFA shown in Figure 5a is a special case in that it does not contain any fuzzy transi-
tions. Since the objective of the transformation algorithm is to resolve ambiguities for statesqi with
Æ(fqj1 ; : : : ; qjrg; ak; f; �ij1k; : : : ; �ijrkg) = qi, fuzziness is of no relevance; therefore, we omitted
it for reasons of simplicity.



for input symbol ‘0’, we leave these state transitions as they are. However, we
also haveÆ(q2; 0; �420) = Æ(q3; 0; �430) = Æ(q7; 0; �470) = q4 with �430 =

�470 6= �420 = 0:9. Instead of creating new states for both state transitions
Æ(q3; 0; �430) andÆ(q7; 0; �470), it suffices to create one new stateq8 and to set
Æ(q3; 0; 0:1) = Æ(q7; 0; 0:1) = q8. Statesq6 andq7 are the only possible successor
states on input symbols ‘0’ and ‘1’, respectively. Thus, we setÆ(q 8; 0; 0:6) = q6

andÆ(q8; 1; 0:4) = q7. There exist no more ambiguities and the algorithm termi-
nates (Figure5e).

D. PROPERTIES OF THE TRANSFORMATION
ALGORITHM

We have shown with an example how the algorithm transforms any FFAM

into a FFAM
0 without ambiguities. We now need to show that the algorithm

correctly transformsM intoM 0, i.e., we need to show thatM andM 0 are equiv-
alent. In addition, we also need to demonstrate that the algorithm terminates for
any inputM .

First, we prove the following property of the transformation algorithm:

Lemma 4.1Resolution of an ambiguity does not result in a new ambiguity.

Proof. Consider the situation illustrated in Figure 6a. Let q i; qj ; ql; qm be four
FFA states and let there be an ambiguity at stateqi on input symbolak, i.e.
Æ(qj ; ak; �ijk) = Æ(ql; ak; �ilk) = qi with �ijk 6= �ilk . Furthermore, letÆ(qi; ak0 ;
�mik0 ) = qm. The ambiguity is resolved by creating a new stateqX . We arbitrarily
choose the state transitionÆ(ql; ak; �ilk) = qi and setÆ(ql; ak; �Xlk) = qX with
�Xlk = �ilk. This removes the ambiguity at stateqi. We now need to introduce
a new state transitionÆ(qX ; a0k; �mXk0) = qm. By observing that�mXk0 = �mik

we conclude that no new ambiguity has been created at stateqm following the
resolution of the ambiguity at stateqi.

We observe thatM 0 is not unique, i.e. the order in which states are visited
and the order in which state transition ambiguities are resolved determine the final
FFA M

0. Consider the FFA in Figure 5a. In our example, if we had chosen
to change transitionÆ(q2; 1; 0:2) = q1 instead of state transitionÆ(q3; 1; 0:7) =

q1, then the resulting FFAM 0 would have been different. However, all possible
transformationsM 0 share a common invariant property.

Lemma 4.2 The number of states in M
0 is constant regardless of the order in

which states are visited and state transition ambiguities are resolved.

Proof. To see that the lemma’s claim holds true, we observe that resolving an
ambiguity consists of creating a new state for each set of statesfqjg with Æ(qj ,
ak, �ijk) = qi with 8j 6= j

0 : �ijk 6= �ij0k. Since resolving the ambiguity for
any stateqi does not introduce new ambiguities (see Lemma 4.1), the number of
newly created states depends only on the number FFA states with ambiguities.
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Figure 5.Example of FFA Transformation: Transition weight ambiguities are resolved
in a sequence of steps: (a) the original FFA; there exist ambiguities for all four states; (b)
the ambiguity of transition from state 3 to state 1 on input symbol 1 is removed by adding
a new state 5; (c) the ambiguity of transition from state 4 to state 2 on input symbol 0 is
removed by adding a new state 6; (d) the ambiguity of transition from state 4 to state 3 on
input symbol 1 is removed by adding a new state 7; (e) the ambiguity of transition from
states 3 and 7 - both transition have the same fuzzy membership - to state 4 is removed by
adding a new state 8.
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Figure 6. Resolution of Ambiguities: The transition ambiguity from statesql andqj to
stateqi on input symbolak is resolved by adding a new stateqX and adjusting the transition
as shown.

The following definitions will be convenient:

Definition 4.4 The outdegree dout(qi) of a state qi in FFA M is the maximum
number of states qj for which we have Æ(qi; ak; �ijk) = fqjg for fixed ak with
�jik > 0 where the maximum is taken over all symbols ak. The maximum
outdegree Dout(M) of some FFA M is the maximum over all dout(qi) with qi 2

M .

Definition 4.5 The indegree din(qi) of a state qi in FFA M is the maximum num-
ber of states qj for which we have Æ(fqjg; ak; �ijk) = qi for fixed ak with �ijk > 0

where the maximum is taken over all symbols ak. The maximum indegreeDin(M)

of some FFA M is the maximum over all din(qi) with qi 2M .

We can give a very loose upper bound for the number of states inM
0 as follows:

Lemma 4.3For a FFA M with N states and K input symbols, the transformed
FFA has at most DinKN(N � 1) states.

Proof. Consider some arbitrary stateqi ofM . It can have at mostDinN incoming
transitions for input symbolak. The resolution of ambiguity for stateq i requires
that all but one transitionÆ(:; ak; �i:k) lead to a new state. In the case where the
fuzzy transition memberships�i:k are all different,N � 1 new states are created
per ambiguous state. Thus, forK input symbols, at the most,D inKN(N � 1)

new states are created.



Theresults in Table1 show thesizeof randomly generated FFAM with input
alphabetf0; 1g, the maximum outdegreeDout(M), the upper bound on the size
of transformed FFAM 0, and average and standard deviation of actual sizes for
transformed FFAM 0 taken over 100 experiments. The random FFAM were
generated by connecting each state ofM to at mostDout other states for given
input symbol. We observe that the average actual size of transformed FFA depends
on the maximum outdegreeDout(M) and appears to be linear inN andDout.
Lemma 4.3 has the following corollary:

Corollary 4.1 The FFA transformation algorithm terminates for all possible FFA.

Proof. The size of the setlist in the algorithm decreases monotonically with each
iteration. Thus, the outer while loop terminates when list= ;. Likewise, the inner
while loop terminates since there is only a finite number of statesq l in the set
‘class’ and the size of that set monotonically decreases with each iteration. Thus,
the algorithm terminates.

We now return to the proof of Theorem 4.1. We have already proven that
applying the FFA transformation algorithm results in a FFA where no ambiguities
exist. It is easy to see that the transformed FFAM

0 is equivalent with the original
FFA M , since no new fuzzy transition memberships have been added, and the
algorithm leaves unchanged the order in which FFA transitions are executed. This
completes the proof of Theorem 4.1.

The above transformation algorithm removes all ambiguities for incoming
transitions. However, a minor adjustment for the neural FFA encoding is needed.
Given a FFA stateqi with Æ(qj ; ak; �ijk) = qi andÆ(qj ; ak; :) 6= qi, the corre-
sponding weightWiik is set to�H . We also need to specify an implicit value
�iik > 0 for the neural FFA encoding even though we have� iik = 0 in the FFA.
In order to be consistent with regard to neurons with variable output range, we set
�iik = �ijk .

V. NETWORK ARCHITECTURE

Thearchitecturefor representingFFA isshown inFigure7. A layer of sparsely
connected recurrent neurons implements the finite state dynamics. Each neuron
Si of the state transition module has a dynamical output range[0; � ijk] where�ijk
is the rule weight in the FFA state transitionÆ(qj ; ak; �ijk) = qi. Notice that
each neuronSi is only connected to pairs(Si; Ik) for which �ijk = �ij0k since
we assume thatM is transformed into an equivalent, unambiguous FFAM

0 prior
to the network construction. The weightsW ijk are programmed as described in
Section 3.D. Each recurrent state neuron receives as inputs the valueS

t
j and an

output range value�ijk ; it computes its output according to Equation (3).



size of Dout(M) upper limit on average size standard deviation
M size ofM 0 of M 0

10 1 180 12 2
2 360 16 5
3 540 19 15
4 720 25 29
5 900 28 84

20 1 760 25 6
2 1520 32 19
3 2280 40 40
4 3040 50 191
5 3800 68 278

30 1 1740 38 7
2 3480 49 27
3 5220 61 64
4 6960 84 266
5 8700 111 578

40 1 2400 51 6
2 4800 65 29
3 7200 85 104
4 9600 117 342
5 12000 154 1057

50 1 4900 65 14
2 9800 84 41
3 14700 107 217
4 19600 154 704
5 24500 198 1478

100 1 19800 129 26
2 39600 161 64
3 59400 215 285
4 78800 309 1845
5 98600 401 3916

Table 1.Scaling of Transformed FFA: The results show the increase of the size of FFA
M due to its transformation into a FFAM 0 without ambiguities as a function of the size
of M and the maximum outdegreeDout(M). The FFA were randomly generated and the
average was computed over 100 transformations. The average size of transformed FFA
appears to be linear inN andDout.
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Figure 7. Network Architecture for FFA Representation: The architecture for repre-
senting FFA differs from that for DFA in that (1) the recurrent state neurons have variable
output range, (2) the resolution of ambiguities causes a sparser interconnection topology,
and (3) there is no dedicated output neuron.

VI. NETWORK STABILITY ANALYSIS

A. PRELIMINARIES
In order to demonstrate how the FFA encoding algorithm achieves stability

of the internal FFA state representation for indefinite periods of time, we need to
understand the dynamics of signals in a constructed recurrent neural network.

We define stability of an internal FFA state representation as follows:

Definition 6.1 A fuzzy encoding of FFA states with transition weights f�ijkg in a
second-order recurrent neural network is called stable if only state neurons corre-
sponding to the set of current FFA states have an output greater than � ijk=2 where
�ijk is the dynamic range of recurrent state neurons, and all remaining recurrent
neurons have low output signals less than �ijk=2 for all possible input sequences.

It follows from this definition that there exists an upper bound0 < �
�

< �ijk=2

for low signals and a lower bound�ijk=2 < �
+
< �ijk for high signals in net-

works that represent stable FFA encodings. The ideal values for low and high
signals are 0 and�ijk , respectively.

A detailed analysis of all possible network state changes in Omlin [1996] re-
vealed that, for the purpose of demonstrating stability of internal finite state repre-
sentations, it is sufficient to consider the following two worst cases: (1) A neuron



that does not correspond to a current fuzzy automaton state receives the same
residual low input from all other neurons that it is connected to, and that value is
identical for all neurons. (2) A neuron that changes its output from low to high
at the next time step receives input only from one other neuron (i.e., the neuron
which corresponds to the current fuzzy automaton state), and it may inhibit it-
self. In the case of FFA, a neuronSi undergoing a state change fromS t

i � 0 to
S
t+1
I � �ijk may receive principal inputs from more than one other neuron. How-

ever, any additional input only serves to strengthen high signals. Thus, the case
of a neuron receiving principal input from exactly one other neuron represents a
worst case.

B. FIXED POINT ANALYSIS FOR SIGMOIDAL DISCRIM-
INANT FUNCTION

Here, we summarize without proofs some of the results that we used to demon-
strate stability of neural DFA encodings; details of the proofs can be found in
[Omlin, 1996].

In order to guarantee low signals to remain low, we have to give a tight upper
bound for low signals that remains valid for an arbitrary number of time steps:

Lemma 6.1 The low signals are bounded from above by the fixed point [��f ]� of
the function f

�
f
0 = 0

f
t+1 = ~g(r � f t)

(7)

where[��f ]� represents the fixed point of the discriminant function~g() with
variable output range�, andr denotes the maximum number of neurons that con-
tribute to a neuron’s input. For reasons of simplicity, we will write��f for [��f ]�
with the implicit understanding that the location of fixed points depends on the
particular choice of�. This lemma can easily be proven by induction ont.

It is easy to see that the function to be iterated in Equation (7) isf(x;H; �; r) =
�

1 + eH(��2rx)=2�
. The graphs of the function for � = 1:0 are shown in Figure

9 for different values of the parameterr. It is obvious that the location of fixed
points depends on the particular values of�. We will show later in this section
that the conditions that guarantee the existence of one or three fixed points are
independent of the parameter�.

The functionf(x;H; �; r) has some desirable properties:

Lemma 6.2 For any H > 0, the function f(x;H; �; r) has at least one fixed point
�
0
f .

Lemma 6.3 There exists a value H�

0 (r) such that for any H > H
�

0 (r), f(x, H ,
�, r) has three fixed points 0 < �

�

f < �
0
f < �

+
f < �.



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

y

x

r=1

r=2

r=4

r=10

u=0.0

u=0.1
u=0.4

u=0.9

Figure 8. Fixed Points of the Sigmoidal Discriminant Function: Shown are the
graphs of the functionf(x;H; 1; r) = 1

1+eH(1�2rx)=2 (dashed graphs) forH = 8 and

r = f1; 2; 4; 10g and the functionp(x; u) = 1

1+eH(1�2(x�u))=2 (dotted graphs) forH = 8

andu = f0:0; 0:1; 0:4; 0:9g. Their intersection with the functiony = x shows the ex-
istence and location of fixed points. In this example,f(x; r) has three fixed points for
r = f1; 2g, but only one fixed point forr = f4; 10g andp(x; u) has three fixed points for
u = f0:0; 0:1g, but only one fixed point foru = f0:4; 0:9g.

Lemma 6.4 If f(x;H; �; r) has three fixed points ��f ; �
0
f , and �+f , then

lim
t!1

f
t =

8<
:

�
�

f x0 < �
0
f

�
0
f x0 = �

0
f

�
+
f x0 > �

0
f

(8)

where x0 is an initial value for the iteration of f(:).

The above lemma can be proven by defining an appropriate Lyapunov function
P and showing thatP has minima at��f and�+f .9

The basic idea behind the network stability analysis is to show that neuron
outputs never exceed or fall below some fixed points�

� and�+, respectively.
The fixed points��f and�+f are only valid upper and lower bounds on low and
high signals, respectively, if convergence toward these fixed points is monotone.
The following corollary establishes monotone convergence off

t towards fixed
points:

9Lyapunov functions can be used to prove the stability of dynamical systems [Khalil, 1992]. For a
given dynamical systemS, if there exists a functionP - we can think ofP as an energy function - such
thatP has at least one minimum, thenS has a stable state. Here, we can chooseP (xi) = (xi��)f )

2

wherexi is the value off(:) after i iterations and� is one of the fixed points. It can be shown
algebraically that, forx0 6= �

0
f

, P (xi) decreases with every step of the iteration off(:) until a stable
fixed point is reached.



Corollary 6.1 Let f 0
; f

1
; f

2
; : : : denote the finite sequence computed by succes-

sive iteration of the function f . Then we have f 0
< f

1
< : : : < �f where �f is

one of the stable fixed points of f(x;H; �; r).

With these properties, we can quantify the valueH
�

0 (r) such that for anyH >

H
�

0 (r), f(x;H; �; r) has three fixed points. The low and high fixed points�
�

f

and�+f are the bounds for low and high signals, respectively. The largerr, the
largerH must be chosen in order to guarantee the existence of three fixed points.
If H is not chosen sufficiently large, thenf t converges to a unique fixed point
�=2 < �f < �. The following lemma expresses a quantitative condition that
guarantees the existence of three fixed points:

Lemma 6.5 The function f(x;H; �; r) = �
1+eH(��2rx)=2� has three fixed points

0 < �
�

f < �
0
f < �

+
f < � if H is chosen such that

H > H
�

0 (r) =
2(� + (� � x) log( ��x

x
))

� � x
where x satisfies the equation

r =
�
2

2x(� + (� � x) log( ��x
x

))
.

Proof. We only present a sketch of the proof; for a complete proof, see Omlin
[1996]. Fixed points of the functionf(x;H; �; r) satisfy the equation

�
1+eH(��2rx)=2� = x. Given the parameterr, we must find a minimum value

H
�

0 (r) such thatf(x;H; �; r) has three fixed points. We can think ofx; r, andH
as coordinates in a three-dimensional Euclidean space. Then the locus of points
(x; r;H) satisfying relation the above equation is a curved surface. What we are
interested in is the number of points where a line parallel to thex-axis intersects
this surface.

Unfortunately, the fixed point equation cannot be solved explicitly forx as a
function ofr andH . However, it can be solved for either of the other parameters,
giving the intersections with lines parallel to ther-axis or theH-axis:

r = r(x; �;H) =
�

2x
�
� log( ��x

x
)

Hx
(9)

H = H(r; �; x) =
2� log( ��x

x
)

� � 2rx
(10)

The contours of these functions show the relationship betweenH andx when
r is fixed (Figure9). We need to find thepoint on each contour wherethe tangent
is parallel to the x-axis, which will indicate where the transition occurs between
one and three solutions forf(x;H; �; r) = x. Solving @r(x;�;H)

@x
= 0, we obtain

the conditions of the lemma.
Even though the location of fixed points of the functionf depends onH , r,

and�, we will use[�f ]� as a generic name for any fixed point of a functionf .
Similarly, we can quantify high signals in a constructed network:
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Lemma 6.6 The high signals are bounded from below by the fixed point [�+
h ]� of

the function

�
h
0 = 1

h
t+1 = ~g(ht � f

t)
(11)

Notice that the above recurrence relation couplesf
t andht which makes it dif-

ficult, if not impossible, to find a functionh(x; �; r) which when iterated gives
the same values asht. However, we can bound the sequenceh

0
; h

1
; h

2
; : : : from

below by a recursively defined functionp t - i.e. 8t : pt � h
t - which decouples

h
t from f

t.
Lemma 6.7 Let [�f ]� denote the fixed point of the recursive function f , i.e.,
lim
t!1

f
t = [�f ]�. Then the recursively defined function p

�
p
0 = 1

p
t+1 = ~g(gt � [�f ]�)

(12)

has the property that 8t : pt � h
t.



Then, we have the following sufficient condition for the existence of two stable
fixed points of the function defined in Equation (11):

Lemma 6.8 Let the iterative function pt have two stable fixed points and 8t : pt �
h
t. Then the function ht also has two stable fixed points.

The above lemma has the following corollary:

Corollary 6.2 A constructed network’s high signals remain stable if the sequence
p
0
; p

1
; p

2
; : : : converges towards the fixed point �=2 < [�+

p ]� < �.

Since we have decoupled the iterated functionh
t from the iterated functionf t by

introducing the iterated functionpt, we can apply the same technique topt for
finding conditions for the existence of fixed points as in the case off

t. In fact, the
function that when iterated generates the sequencep

0
; p

1
; p

2
; : : : is defined by

p(r; �; x) =
�

1 + e
H(��2(x�[�

�

f
]�))=2�

=
�

1 + eH
0(��2r0x))=2�

(13)

with

H
0 = H(1 + 2[��f ]�); r

0 =
1

1 + 2[��f ]�
: (14)

We can iteratively compute the value of[�p]� for given parametersH andr. Thus,
we can repeat the original argument withH 0 andr0 in place ofH andr to find the
conditions under whichp(r; x) and thusg(r; x) have three fixed points.

Lemma 6.9 The function p(x; [��f ]�) =
1

1 + e
H(��2(x�[��

f
]�))=2�

has three fixed

points 0 < [��p ]� < [�0p]� < [�+p ]� < 1 if H is chosen such that

H > H
+
0 (r) =

2(� + (� � x) log( ��x
x

))

(1 + 2[��f ]�)(� � x)

where x satisfies the equation
1

1 + 2[��f ]�
=

�
2

2x(� + (� � x) log( ��x
x

))
.

Since there is a collection of fuzzy transition memberships� ijk involved in
the algorithm for constructing fuzzy representations of FFA, we need to deter-
mine whether the conditions of Lemmas 6.5 and 6.9 hold true for all rule weights
�ijk . The following corollary establishes a useful invariant property of the func-
tionH0(x; r; �):

Corollary 6.3 The value of the minima H(x; r; �) depends only on the value of r
and is independent of the particular values of �:

infH(x; r; �) = inf
2 � log( ��x

x
)

� � 2rx
= H0(r) (15)
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Figure 10. Invariant Fixed Points: The contour plots illustrating the existence and lo-
cation of fixed points of the function~g(x;H; �; r) = �

1+eH(��2rx)=2� are shown for (a)
� = 1:0, (b) � = 0:7, (c) � = 0:5, and (d)� = 0:3. The location of fixed points depends
on the value of�, but the condition onH andr for the existence of one vs. two stable fixed
points is independent of�. The scaling of the graphs illustrates that invariant property.

Proof. The termlog( ��x
x

) scales the functionH(x; r; �) along the x-axis. We
introduce a scaling factor� and set� 0 = � � andx0 = � x. Then, Equation (10)
becomes

H�(x
0

; r; �
0) =

2 � � log( � ��� x
� x

)

� � � 2r � x
=

2 � � log( ��x
x

)

�(� � 2rx)
=

2 � log( ��x
x

)

� � 2rx
= H(x; r; �)

(16)
for fixed r. Thus the values ofH(x; r; �) are identical for fixed values ofr, and
their local minima have the same values independent of�.

The relevance of the above corollary is that there is no need to test conditions
for all possible values of� in order to guarantee the existence of fixed points. The
graphsin Figure10 illustrate that invariant property of thesigmoidal discriminant
function.

We can now proceed to prove stability of low and high signals, and thus sta-
bility of the fuzzy representation of FFA states, in a constructed recurrent neural
network.



C. NETWORK STABILITY
The existence of two stable fixed points of the discriminant function is

only a necessary condition for network stability. We also need to establish condi-
tions under which these fixed points are upper and lower bounds of stable low and
high signals, respectively.

Before we define and derive the conditions for network stability, it is con-
venient to apply the result of Lemma 3.1 to the fixed points of the sigmoidal
discriminant function (Section 3.C):

Corollary 6.4 For any value � with 0 < � � 1, the fixed points [�]� of the dis-
criminant function

�

1 + eH(��2rx)=2�

have the following invariant relationship:
[�]� = � [�]1

Proof. By definition, fixed points� of ~g(:) have the property that[�] � = ~g[(�)]�.
According to Lemma 3.1, we also have

[�]� = ~g([�]�) = ~g([�]�; H; �) = � ~g(�[�]1; H; 1) = � ~g([�]1) = � [�]1
because the invariant scaling property applies to all points of the function~g, in-
cluding its fixed points. Thus, we do not have to consider the conditions separately
for all values of� that occur in a given FFA.

We now redefine stability of recurrent networks constructed from DFA in
terms of fixed points:

Definition 6.2 An encoding of DFA states in a second-order recurrent neural net-
work is called stable if all the low signals are less than [�0

f ]�i , and all the high
signals are greater than [�0

h]�i for all �i of all state neurons Si.

We have simplified�i:: to �i because the output of each neuronS i has a fixed
upper limit � for a given input symbol, regardless which neuronsS j contribute
residual inputs. We note that this new definition is stricter than what we gave in
Definition 6.1. In order for the low signal to remain stable, the following condition
has to be satisfied:

�
H

2
+Hr[��f ]�j < [�0f ]�j (17)

Similarly, the following inequality must be satisfied for stable high signals:

�
H

2
+H [�+h ]�j �H [��f ]�i > [�0h]�i (18)

The above two inequalities must be satisfied for all neurons at all times. Instead
of testing for all values�ijk separately, we can simplify the set of inequalities as
follows:



Lemma 6.10 Let �min and �max denote the minimum and maximum, respectively,
of all fuzzy transition memberships �ijk of a given FFAM . Then, inequalities (17)
and (18) are satisfied for all transition weights �ijk if the inequalities

�
H

2
+Hr[��f ]�max

< [�0f ]�min
(19)

�
H

2
+H [�+h ]�min

�H [��f ]�max
> [�0h]�max

(20)

are satisfied.

Proof. Consider the two fixed points[��f ]�min
and[��h ]�max

. According to Corol-
lary 6.4, we have

[��f ]�min
= �min[�

�

f ]1 < �ijk [�
�

f ]1 < �max[�
�

f ]1 = [��f ]�max

Thus, if inequalities (19) and (20) are not violated for[��f ]�min
and [��f ]�max

,
then they will not be violated for�min � �ijk � �max either. We can rewrite
inequalities (19) and (20) as

�
H

2
+Hr �max[�

�

f ]1 < �min[�
0
f ]1 (21)

and

�
H

2
+H�min[�

+
h ]1 �H�max[�

�

f ]1 > �max[�
0
h]1 (22)

Solving inequalities (21) and (22) for[��f ]1 and [�+h ]1, respectively, we obtain
conditions under which a constructed recurrent network implements a given FFA.
These conditions are expressed in the following theorem:

Theorem 6.1 For some given unambiguous FFA M with n states and m input
symbols, let r denote the maximum number of transitions to any state over all
input symbols of M . Furthermore, let �min and �max denote the minimum and
maximum, respectively, of all transitions weights �ijk in M . Then, a sparse recur-
rent neural network with n state and m input neurons can be constructed from M

such that the internal state representation remains stable if

(1) [��f ]1 <
1

r �max

(
1

2
+ �min

[�0f ]1

H
),

(2) [�+h ]1 >
1

�min

(
1

2
+ �max[�

�

f ]1 +
[�0h]1

H
),

(3) H > max(H�

0 (r); H+
0 (r)) .

Furthermore, the constructed network has at most 3mn second-order weights
with alphabet �w = f�H; 0;+Hg, n + 1 biases with alphabet �b = f�H=2g,
and maximum fan-out 3m.



For �min = �max = 1, conditions (1)-(3) of the above theorem reduce to those
found for stable DFA encodings [Omlin, 1996]. This is consistent with a crisp
representation of DFA states.

VII. SIMULATIONS

In order to test our theory, we constructed a fuzzy encoding of a randomly
generated FFA with 100 states (after the execution of the FFA transformation al-
gorithm) over the input alphabetf0; 1g. We randomly assigned weights in the
range[0; 1] to all transitions in increments of 0.1. The maximum indegree was
Din(M) = r = 5. We then tested the stability of the fuzzy internal state repre-
sentation on 100 randomly generated strings of length 100 by comparing, at each
time step, the output signal of each recurrent state neuron with its ideal output sig-
nal (since each recurrent state neuronSi corresponds to a FFA stateqi, we know
the degree to whichqi is occupied after input symbolak has been read: either0 or
�ijk). A histogram of the differences between the ideal and the observed signal of
state neurons for selected values of the weight strengthH over all state neurons
and all tested strings is shown in Figure 11. As expected, the error decreases for
increasing values ofH . We observe that the number of discrepancies between the
desired and the actual neuron output decreases ‘smoothly’ for the shown values
of H (almost no change can be observed for values up toH = 6). The most
significant change can be observed by comparing the histograms forH = 9:7

andH = 9:75: The existence of significant neuron output errors forH = 9:7

suggests that the internal FFA representation is highly unstable. ForH � 9:75,
the internal FFA state representation becomes stable. This discontinuous change
can be explained by observing that there exists a critical valueH 0(r) such that the
number of stable fixed points also changes discontinuously from one to two for
H < H0(r)) andH > H0(r)), respectively (seeFigure11). The ‘smooth’ transi-
tion from large output errors to very small errors for most recurrent state neurons
(Figure 11a-e) can be explained by observing that not all recurrent state neurons
receive the same number of residual inputs; some neurons may not receive any
residual input for some given input symbolak at time stept; in that case, the low
signals of those neurons are strengthened to~g(0; H; � i:k) ' 0 (note that strong
low signals imply strong high signals by Lemma 6.7).

VIII. CONCLUSIONS

Theoretical work that proves representational relationships between differ-
ent computational paradigms is important because it establishes the equivalences
of those models. Previously it has been shown that it is possible to determin-
istically encode fuzzy finite state automata (FFA) in recurrent neural networks
by transforming any given FFA into a deterministic acceptor which assign string
membership [Omlin, 1998]. In such a deterministic encoding, only the network’s
classification of strings is fuzzy, whereas the representation of states iscrisp. The
correspondence between FFA and network parameters - i.e., fuzzy transition mem-
berships and network weights, respectively - is lost in the transformation.
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Figure 11.Stability of FFA State Encoding: The histograms shows the absolute neuron
output error of a network with 100 neurons that implements a randomly generated FFA
and reads 100 randomly generated strings of length 100 for different values of the weight
strengthH. The error was computed by comparing, at each time step, the actual with the
desired output of each state neuron. The distribution of neuron output signal errors are
for weight strengths (a)H = 6:0, (b) H = 9:0, (c) H = 9:60, (d) H = 9:65, and (e)
H = 9:70, and (f)H = 9:75.



Here, we have demonstrated analytically and empirically that it is possible to
encode FFA in recurrent networkswithout transforming them into deterministic
acceptors. The constructed network directly represents FFA states with the de-
sired fuzziness. That representation requires (1) a slightly increased functionality
of sigmoidal discriminant functions (it only requires the discriminants to accom-
modate variable output range), and (2) a transformation of a given FFA into an
equivalent FFA with a larger number of states. (We have found empirically that
the increase in automaton size is roughly proportional toN �K whereN andK
are the automaton and alphabet size, respectively.) In the proposed mapping FFA
! recurrent network, the correspondence between FFA and network parameters
remains intact; this can be significant if the physical properties of some unknown
dynamic, nonlinear system are to be derived from a trained network modeling that
system. Furthermore, the analysis tools and methods used to demonstrate the sta-
bility of the crisp internal representation of DFA carried over and generalized to
show stability of the internal FFA representation.

We speculate that other encoding methods are possible and that it is an open
question as to which encoding methods are better. One could argue that, from a
engineering point of view, it may seem more natural to use radial basis functions
to represent fuzzy state membership (they are often used along with triangular
and trapezoidal membership functions in the design of fuzzy systems) instead
of sigmoidal discriminant functions (DFA can be mapped into recurrent neural
networks with radialbasis functions [Frasconi, 1996]). It is an open question how
mappings of FFA into recurrent neural networks with radial basis discriminant
functions would be implemented and how such mappings would compare to the
encoding algorithm described in this work.

The usefulness of training recurrent neural networks with fuzzy state repre-
sentation from examples to behave like a FFA - the variable output range� can
be treated as a variable parameter and an update rule similar to that for network
weights can be derived - and whether useful information can be extracted from
trained networks has yet to be determined. In particular, it would be interesting to
compare training and knowledge representation of networks whose discriminant
functions have fixed and variable output ranges, respectively. Discriminant func-
tions with variable neuron output range may open the door to novel methods for
the extraction of symbolic knowledge from recurrent neural networks.
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I. INTRODUCTION

Recurrent Neural Networks (RNNs) are capable of representing arbitrary non-
linear dynamical systems [Seidl, 1991, Siegelmann, 1995, Sontag, 1992]. How-
ever, learning simple behavior can be quite difficult using gradient descent. For
example, even though these systems are Turing equivalent, it has been difficult
to get them to successfully learn small finite state machines from example strings
encoded as temporal sequences. Recently, it has been demonstrated that at least
part of this difficulty can be attributed to long–term dependencies, i.e., when the
desired output of a system at time T depends on inputs presented at times t� T .
This was noted by Mozer who reported that RNNs were able to learn short term
musical structure using gradient based methods [Mozer, 1992], but had difficulty
capturing global behavior. These ideas were recently formalized by Bengio et al.
[Bengio, 1994], who showed that if a system is to latch information robustly, then
the fraction of the gradient due to information n time steps in the past approaches
zero as n becomes large.

Several approaches have been suggested to circumvent the problem of van-
ishing gradients. For example, gradient–based methods can be abandoned com-



pletely in favor of alternative optimization methods [Bengio, 1994, Puskorius,
1994]. However, the algorithms investigated so far either perform just as poorly
on problems involving long–term dependencies, or, when they are better, require
far more computational resources [Bengio, 1994]. Another possibility is to mod-
ify conventional gradient-descent by more heavily weighing the fraction of the
gradient due to information far in the past, but there is no guarantee that such
a modified algorithm would converge to a minimum of the error surface being
searched [Bengio, 1994]. As an alternative to using different learning algorithms,
one suggestion has been to alter the input data so that it represents a reduced
description that makes global features more explicit and more readily detectable
[Mozer, 1992, Schmidhuber, 1992a, Schmidhuber, 1992]. However, this approach
may fail if short term dependencies are equally as important. Hochreiter also pro-
poses a specific architectural approach which utilizes high order units [Hochreiter,
1995]. Finally, it has been suggested that a network architecture that operates on
multiple time scales might be useful for tackling this problem [Gori, 1994, Hihi,
1996].

In this paper, we also propose an architectural approach to deal with long–
term dependencies. We focus on a class of architectures based upon Nonlin-
ear AutoRegressive models with eXogenous inputs (NARX models), which are
therefore called NARX recurrent neural networks[Chen, 1990, Narendra, 1990].
(However, there is no reason that this method cannot be extended to other recur-
rent architectures.) This is a powerful class of models which has recently been
shown to be computationally equivalent to Turing machines [Siegelmann, 1996].
It has been demonstrated that they are well suited for modeling nonlinear systems
such as heat exchangers [Chen, 1990], waste water treatment plants [Su, 1991,
Su, 1992], catalytic reforming systems in a petroleum refinery [Su, 1992], non-
linear oscillations associated with multi–legged locomotion in biological systems
[Venkataraman, 1994], time series [Connor, 1992a], and various artificial non-
linear systems [Chen, 1990, Narendra, 1990, Qin, 1992]. Furthermore, we have
previously reported that gradient-descent learning is more effective in NARX net-
works than in recurrent neural network architectures with “hidden states” when
applied to problems including grammatical inference and nonlinear system iden-
tification [Giles, 1994, Horne, 1995]. Typically, these networks converge much
faster and generalize better than other networks. The results in this paper show
the reason why gradient-descent learning is better in NARX networks.

II. VANISHING GRADIENTS AND LONG-TERM
DEPENDENCIES

Bengio et al.[Bengio, 1994] have analytically explained why learning prob-
lems with long–term dependencies is difficult. They argue that for many practical
applications the goal of the network must be to robustly latch information, i.e.,
the network must be able to store information for a long period of time in the
presence of noise. More specifically, they argue that latching of information is ac-
complished when the states of the network stay within the vicinity of a hyperbolic



attractor, and robustness to noise is accomplished if the states of the network are
contained in the reduced attracting setthat attractor, i.e., if the eigenvalues of the
Jacobian are contained within the unit circle. In the Appendix to this chapter, we
discuss this definition of robustness in more detail and describe how some of the
assumptions associated with it might be loosened.

In this section we briefly describe some of the key aspects of the results in
Bengio [1994]. A recurrent neural network can be described in the form

x(t+ 1) = f(x(t);u(t);w) (1)

y(t) = g(x(t)); (2)

where x, u, y and w are column vectors representing the states, inputs, outputs,
and weights of the network, respectively. Almost any recurrent neural network
architecture can be expressed in this form [Nerrand, 1993], where f and g depend
on the specific architecture. For example, in simple first–order recurrent neural
networks, f would be a sigmoid of a weighted sum of the values x(t) and u(t)
and g would simply select one of the states as output.

We define up(t), t = 1:::T to be an input sequence of length T for the network
(for simplicity, we shall assume that all sequences are of the same length), and
yp(T ) to be the output of the network for that input sequence.

In what follows we derive the gradient-descent learning algorithm in a matrix–
vector format, which is slightly more compact than deriving it expressly in terms
of partial derivatives, and highlight the role of the Jacobian in the derivation.

Gradient-descent learning is typically based on minimizing the sum–of–squared
error cost function

C =
1

2

X
p

(yp(T )� dp)
0

(yp(T )� dp) ; (3)

where dp is the desired (or target) output for the pth pattern 1 and y0 denotes trans-
position of a vector y. Gradient-descent is an algorithm which iteratively updates
the weights in proportion to the gradient

�w = �rwC ; (4)

where � is a learning rate, and rw is the row vector operator

rw =
�

@

@w1

@

@w2
: : : @

@wn

�
: (5)

By using the Chain Rule, the gradient can be expanded

rwC =
X
p

(yp(T )� dp)
0

r
x(T )yp(T )rwx(T ) : (6)

We can expand this further by assuming that the weights at different time indices
are independent and computing the partial gradient with respect to these weights,

1We deal only with problems in which the target output is presented at the endof the sequence.



which is the methodology used to derive algorithms such as Backpropagation
Through Time (BPTT) [Rumelhart, 1986, Williams, 1995]. The total gradient
is then equal to the sum of these partial gradients. Specifically,

rwC =
X
p

(yp(T )� dp)
0

r
x(T )yp(T )

"
TX
�=1

r
w(�)x(T )

#
: (7)

Another application of the Chain Rule to Equation 7 gives

rwC =
X
p

(yp(T )� dp)
0

r
x(T )yp(T )

"
TX
�=1

Jx(T; T � �)r
w(�)x(�)

#
; (8)

where Jx(T; T � �) = r
x(�)x(T ) denotes the Jacobian of (1) expanded over

T � � time steps.
Bengio et al. [Bengio, 1994] showed that if the network satisfies their defini-

tion of robustly latching information, i.e., if the Jacobian at each time step has all
of its eigenvalues inside the unit circle, then Jx(T; n) is an exponentially decreas-
ing function of n, so that limn!1 Jx(T; n) = 0 : This implies that the portion
of rwC due to information at times � � T is insignificant compared to the
portion at times near T . This effect is called the problem of vanishing gradient,
or forgetting behavior[Frasconi, 1992]. Bengio m et al. claim that the problem
of vanishing gradients is the essential reason why gradient-descent methods are
not sufficiently powerful to discover a relationship between target outputs and in-
puts that occur at a much earlier time, which they term the problem of long–term
dependencies.

III. NARX NETWORKS

An important class of discrete–time nonlinear systems is the Nonlinear Au-
toRegressive with eXogenous inputs (NARX) model2 [Chen, 1990, Leontaritis,
1985, Ljunkg, 1987, Su, 1991, Su, 1992]:

y(t) = f
�
u(t�Du); : : : ; u(t� 1); u(t); y(t�Dy); : : : ; y(t� 1)

�
; (9)

where u(t) and y(t) represent input and output of the network at time t, D u and
Dy are the input and output order, and the function f is a nonlinear function.
When the function f can be approximated by a Multilayer Perceptron, the result-
ing system is called a NARX recurrent neural network[Chen, 1990, Narendra,
1990].

In this chapter we shall consider NARX networks with zero input order and a
one-dimensional output, i.e., those networks which have feedback from the out-
put only. However there is no reason why our results could not be extended to

2The terminology on how to properly describe this architecture in the literature is conflicting. We
chose the term NARX based on previous references.
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Figure 1. A NARX network with four output delays.

networks with higher input orders. Thus, the operation of NARX networks with
zero input order is defined by

y(t) = 	
�
u(t); y(t� 1); : : : ; y(t�D)

�
; (10)

where the function 	 is the mapping performed by the MLP, as shown in Fig-
ure 1. The weight links in the figure can be adjusted or fixed; it depends on the
application.

From a system perspective, it is preferrable to put equations into a state space
form [Kailath, 1980]. In this form the Jacobian can be examined and derived
[Khalil, 1992]. Since the states of a discrete–time dynamical system can always
be associated with the unit–delay elements in the realization of the system, we can
then describe such a network in the following state space form

xi(t+ 1) =

(
	
�
u(t);x(t)

�
i = 1

xi�1(t) i = 2; : : : ; D
(11)

and

y(t) = x1(t+ 1) : (12)



NARX networks are not immune to the problem of long–term dependencies.
The Jacobian of the state space map (11) is given by

Jx(t+ 1; 1) = r
x(t)x(t + 1) =

2
666664

@	(t)
@x1(t)

@	(t)
@x2(t)

� � �
@	(t)

@xD�1(t)
@	(t)
@xD(t)

1 0 � � � 0 0
0 1 � � � 0 0
...

...
. . .

...
...

0 0 � � � 1 0

3
777775

(13)

If the Jacobian at each time step has all of its eigenvalues inside the unit circle,
then the states of the network will be in the reduced attracting set of some hyper-
bolic attractor, and thus the system will be robustly latched at that time. As with
any other recurrent neural network, this implies that limn!1 Jx(t; n) = 0. Thus,
NARX networks will also suffer from vanishing gradients and the long–term de-
pendencies problem.

IV. AN INTUITIVE EXPLANATION OF NARX NETWORK
BEHAVIOR

In the previous section we saw that NARX networks also suffer from the prob-
lem of vanishing gradients, and thus are also prone to the problem of long-term
dependencies. However, we find in the simulation results that follow that NARX
networks are often much better at discovering long-term dependencies than con-
ventional recurrent neural networks.

An intuitive reason why output delays can help long-term dependencies can
be found by considering how gradients are calculated using the backpropagation-
through-time (BPTT) algorithm. BPTT involves two phases: unfolding the net-
work in time and backpropagating the error through the unfolded network. When
a NARX network is unfolded in time, the output delays will appear as jump-ahead
connections in the unfolded network. Intuitively, these jump-ahead connections
provide a shorter path for propagating gradient information, thus reducing the
sensitivity of the network to long-term dependencies. However, one must keep in
mind that this intuitive reasoning is only valid if the total gradient through these
jump-ahead pathways is greater than the gradient through the layer-to-layer path-
ways.

Another intuitive explanation is that since the delays are cascaded together,
the propagation of information does not necessarily have to pass through a non-
linearity at each time step, and thus the gradient is not modified by the derivative
of the nonlinearity, which is often less than one in magnitude.

It is possible to derive analytical results for some simple toy problems to show
that NARX networks are indeed less sensitive to long-term dependencies. Here
we give one such example, which is based upon the latching problem described in
[Bengio, 1994].



Consider the simple one node autonomous recurrent network described by,

x(t) = tanh(wx(t � 1)); (14)

where w = 1:25, which has two stable fixed points at �0:710 and one unstable
fixed point at zero. The following one node, autonomous NARX network (no
internal inputs)

x(t) = tanh (w1x(t� 1) + w2x(t� 2) + : : :+ wDx(t�D)) (15)

with D output delays has the same fixed points as long as
P

D

i=1 wi = w.
Assume the state of the network has reached equilibrium at the positive stable

fixed point. In this case we can derive the exact gradient. For simplicity, we
consider only the Jacobian J(t; n) = @x(t)

@x(t�n) , which will be a component of the
gradient rwC . Figure 2 shows plots of J(t; n) with respect to n for D = 1 ,
D = 3, and D = 6 with wi = w=D. These plots show that the effect of output
delays is to flatten out the curves and place more emphasis on the gradient due
to terms farther in the past. Note that the gradient contribution due to short term
dependencies is deemphasized. In Figure 3 we show plots of the ratio

J(t; n)P
n

�=1 J(t; �)
; (16)

which illustrates the percentage of the total gradient that can be attributed to in-
formation n time steps in the past. These plots show that this percentage is larger
for the network with output delays, and thus one would expect that these networks
would be able to more effectively deal with long–term dependencies.

V. EXPERIMENTAL RESULTS

Simulations were performed to compare the performance of learning long–
term dependencies on networks with different number of feedback delays. We
tried two different problems: the latching problem and a grammatical inference
problem.

A. THE LATCHING PROBLEM
We explored a slight modification on the latching problem described in [Ben-

gio, 1994]. This problem is a minimal task designed as a test that must necessarily
be passed in order for a network to latch information robustly. Bengio et al. de-
scribe the task as one in which “the input values are to be learned.” Here we
give an alternative description of the problem, which allows us to reexpress the
problem as one in which only weights are to be learned.

In this task there are three inputs u1(t), u2(t), and a noise input e(t), and a
single output y(t). Both u1(t) and u2(t)are zero for all times t > 1. At time
t = 1, u1(1) = 1 and u2(1) = 0 for samples from class 1, and u1(1) = 0 and
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Figure 2: Plots of J(t; n) (the Jacobian expanded over n time steps) as a function of n
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Figure 4. The network used for the latching problem.

u2(1) = 1 for samples from class 2. The noise input e(t) is given by

e(t) =

(
0 t � L

U(�b; b) L < t � T
(17)

where U(�b; b) are samples drawn uniformly from [�b; b].
This network used to solve this problem is a NARX network consisting of a

single neuron,

s(t) =

tanh
�
wx(t � 1) + h11u1(t) + : : :+ h1

L
u1(t) + h21u2(t) + : : :+ h2

L
u2(t) + e(t)

�
(18)

where the parameters hj
i

are adjustable and the recurrent weight w is fixed. In our
simulations, we used L = 3 . The network is shown in Figure 4.

Note that the problem as stated is identical to the problem stated by Bengio
et al. except that here we are using uniform instead of Gaussian random noise.
In our formulation the values hj

i
are weights which are connected to tapped delay

lines on the input of the network, while Bengio m et al. describe them as learnable
input values.

In our simulation, we fixed the recurrent feedback weight to w = 1:25, which
gives the autonomous network two stable fixed points at�0:710 and one unstable
fixed point at zero, as described in Section 4. It can be shown [Frasconi, 1995]
that the network is robust to perturbations in the range [�0:155; 0:155]. Thus, the
uniform noise in e(t) was restricted to this range. Note that if Gaussian random
noise is used, then there is some non–zero probability that the error would be
outside of this range regardless of the variance, and thus it is possible for the
network to fail to correctly classify all training values due to Gaussian noise. We
felt that such effects should be avoided in order to exclusively test the sensitivity
of the network to long–term dependencies, and so we chose to use uniform noise
instead.
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Figure 5: Plots of percentage of successful simulations as a function of T , the length of
the input strings, for different numbers of output delays (D = 1, D = 3, and D = 6).

For each simulation, we generated 30 strings from each class, each with a
different e(t). The initial values of hj

i
for each simulation were also chosen from

the same distribution that defines e(t). For strings from class one, a target value
of 0:8 was chosen, for class two �0:8 was chosen.

The network was run using a simple BPTT algorithm with a learning rate of
0:1 for a maximum of 100 epochs. (We found that the network converged to some
solution consistently within a few dozen epochs.) If the absolute error between
the output of the network and the target value was less than 0:6 on all strings, the
simulation was terminated and determined successful. If the simulation exceeded
100 epochs and did not correctly classify all strings then the simulation was ruled
a failure.

We varied T from 20 to 200 in increments of 2. For each value of T , we ran 50
simulations. We then modified the architecture to include output delays of order
D = 3 and D = 6, with all of the recurrent weights wi = w=D . Figure 5 shows a
plot of the percentage of those runs that were successful for each case. It is clear
from these plots that the NARX networks become increasingly less sensitive to
long–term dependencies as the output order is increased.

B. AN AUTOMATON PROBLEM
In the previous problem, the inputs to the network consisted of a noise term

whose magnitude was restricted in such a way that the network was guaranteed to
remain within the basin of attraction of the fixed points for a single node. Here we
explore two extensions to that problem. First, we consider larger networks and,
second, we consider inputs which are not as restrictive. In particular, we consider



learning an automata problem in which the inputs are boolean valued. In contrast
to the previous problem, all signals are fed into the same single input channel.

In this example, the class of a string is completely determined by its input
symbol at some prespecified time t. For example, Figure 6 shows a five-state au-
tomaton, in which the class of each string is determined by the third input symbol.
When that symbol is “1,” the string is accepted; otherwise, it is rejected. By in-
creasing the length of the strings to be learned, we will be able to create a problem
with long term dependencies, in which the output will depend on input values far
in the past.

0,1

0,1 0,1
1

0

0,1

Figure 6. A five-state tree automaton.

In this experiment we compared Elman’s Simple Recurrent Network [Elman,
1990a] against NARX networks. Each network had six hidden nodes. Since the
output of each hidden node in an Elman network is fed back, there were six delay
elements (states) in the network. The NARX network had six feedback delays
from the output node. Thus, the two architectures have the exact same number of
weights, hidden nodes, and states. The initial weights were randomly distributed
in the range [�0:5; 0:5].

For each simulation, we randomly generated a training set and an independent
testing set, each consisting of 500 strings of length T such that there were an
equal number of positive and negative strings. We varied T from 10 to 30. For the
accepted strings, a target value of 0:8 was chosen, for the rejected strings �0:8
was chosen.

The network was trained using a simple BPTT algorithm with a learning rate
0:01 for a maximum of 200 epochs. If the simulation exceeded 200 epochs and
did not correctly classify all strings in the training set, then the simulation was
ruled a failure. We found that when the network learned the training set perfectly,
then it consistently performed perfectly on the testing set as well. For each value
of T , we ran 80 simulations.

Figure 7 shows a plot of the percentage of the runs that were successful in each
case. It is clear from this plot that the NARX network performs far better than the
Elman network at learning long-term dependencies.

We also wanted to see how the performance varied due to different numbers of
output delays. We chose three different networks in which the size of the output
tapped delay line was chosen to be either 2, 4, or 6. To make the total number
of trainable weights comparable, the networks had 11, 8, and 6 hidden nodes
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Figure 7: Plots of percentage of successful simulations as a function of T , the length of
input strings, for the Elman networks vs. NARX networks.
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Figure 8: Plots of percentage of successful simulations as a function of T , the length of
the input strings, for NARX networks with different numbers of output delays (D = 2,
D = 4, D = 6).



respectively, giving 56 , 57 , and 55 weights.

Figure 8 shows the result of the experiment. It is clear that the sensitivity to
the long-term dependencies decreases as the number of output delays increases.

VI. CONCLUSION

In this paper we considered an architectural approach to dealing with the prob-
lem of learning long–term dependencies, i.e., when the desired output depends on
inputs presented at times far in the past, which has been shown to be a difficult
problem to learn for gradient-based algorithms. We explored the ability of a class
of architectures called NARX recurrent neural networks to solve such problems.
We found that although NARX networks do not circumvent this problem, it is
easier to discover long–term dependencies with gradient-descent in these archi-
tectures than in architectures without output delays. This has been observed pre-
viously, in the sense that gradient-descent learning appeared to be more effective
in NARX networks than in recurrent neural network architectures that have “hid-
den states” on problems including grammatical inference and nonlinear system
identification [Giles, 1994, Horne, 1995].

The intuitive explanation for this behavior is that the output delays are man-
ifested as jump–ahead connections in the unfolded network that is often used to
describe algorithms like backpropagation through time. Another explanation is
that the states do not necessarily need to propagate through nonlinearities at every
time step, which may avoid a degradation in gradient due to the partial derivative
of the nonlinearity.

We presented an analytical example that showed that the gradients do not van-
ish as quickly in NARX networks as they do in networks without multiple delays
when the network is contained in a fixed point. We also presented two experi-
mental problems which show that NARX networks can outperform networks with
single delays on some simple problems involving long–term dependencies.

We speculate that similar results could be obtained for other networks. In par-
ticular we hypothesize that any network that uses tapped delay feedback [Back,
1991, Leighton, 1991] would demonstrate improved performance on problems in-
volving long–term dependencies. It may also be possible to obtain similar results
for the architectures proposed in de Vries [1992], Frasconi [1992], Poddar [1991],
and Wan [1994].
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APPENDIX: A CLOSER LOOK AT ROBUST
INFORMATION LATCHING

In this section we make a critical examination of the definition of robust latch-
ing given by Bengio et al.[Bengio, 1994]. Specifically, they assume that if a net-
work is to be robust to noise, then the states must always be in the reduced attract-
ing set of the hyperbolic attractor. While such a condition is sufficient to latch
information robustly, it is not necessary. In this section we show how robustness
may be redefined to be both necessary and sufficient.

First, Bengio et al. assume the existence of a “class–determining” subsystem
that computes information about the class of an input sequence v. If, say, only the
first L values in the input sequence (to be classified) are relevant for determining
the class of v, the output of the subsystem is some valuable signal of length L,
coding the class, whereas the outputs at times greater than L are unimportant and
can be considered minor fluctuations. In their experiments, the fluctuations are
modeled as a zero–mean Gaussian noise with a small variance.

The outputs u(t) of the class–determining subsystem feed a latching subsys-
tem,

S : ~x(t) = M(~x(t� 1)) + u(t) : (19)

It will be useful to consider the corresponding autonomous dynamical system

SA : x(t) = M(x(t� 1)) : (20)

The key role in latching the class information of f ~x(t)g in S is played by the
hyperbolic attractors of fx(t)g in SA. It is assumed that the important class in-
formation is coded in the first L time steps of u(t); inputs at times t > L are
unimportant and can be considered as noise. Note that this is the key reason why
Bengio et al. needed to assume the existence of a class–determining subsystem,
which will somehow “highlight” the important information at times t � L, but
suppress the information in the succeeding times steps.

The important inputs at times t � L, cause the states ~x(t) to move to the
“vicinity” of a hyperbolic attractor X of SA. If the values of u(t) for t > L are
sufficiently small, then the states of S will not move away from X , thus latching
the information coded in u(1); : : : ; u(L) for an arbitrary long time.

Having established this scenario for latching information of possibly long in-
put sequences, Bengio et al. discuss what it means for the system to be robust.
Specifically, they allow the input to be noisy but bounded, i.e., ku(t)k < b(t) such
that the latching system S initiated in a state from �(X), receiving additive inputs
bounded by b(t), will stay in a vicinity of X .

They conclude that �(X) is a subset of the basin of attraction �(X) of X
(in SA), such that for all x 2 �(X) and l � 1, the eigenvalues of Jx(t; l) are
contained within the unit circle. Such a set is called “the reduced attracting set of
X .” Specific bounds of b(t) are given so that ~x(t) is asymptotically guaranteed to
stay within a prescribed neighborhood of X .



They point out that if the network is to latch information robustly, then it must
necessarily suffer from the problem of vanishing gradients, i.e., x(t) 2 �(X)
implies kJx(�; 1)k = kr

x(�)x(� + 1)k < 1, for t � � < T and therefore when
t� T , we have kr

x(t)x(T )k ! 0.

While their analysis is valuable for pointing out problems associated with
learning long–term dependencies using gradient-descent methods, their definition
of robustness is too strong. In the remainder of this section we discuss conditions
that are both necessary and sufficient for the network to be robust to noise.

Bengio et al. require that �(X) be the reduced attracting set of X , but it is
sufficient to find a set of possible states in the basin of attraction of X such that
the system S, fed with sufficiently small inputs u(t), does not diverge from X .

A useful formalization of this idea in dynamical systems’ theory is stated
in terms of the shadowing lemma[Coven, 1988, Garzon, 1994]. Given a num-
ber b > 0, a b–pseudo–orbit of the system SA is a sequence f~x(t)g such that
kM(~x(t)) � ~x(t + 1)k < b, for all t � 0. Pseudo–orbits arise as trajecto-
ries of the autonomous system SA contaminated by a noise bounded by b. One
may ask to what extent such “corrupted” state trajectories f~x(t)g are informative
about the “real” trajectories fx(t)g of the autonomous system SA. It turns out
that in systems having the so-called shadowing property, corrupted state trajecto-
ries are “shadowed” by real trajectories within a distance depending on the level
of the input noise. Bigger noise implies looser shadowing of the corrupted tra-
jectory by an uncorrupted one. Formally, system SA has a shadowing property
if for every � > 0, there exists a b > 0, such that any b–pseudo–orbit f ~x(t)g
is �–approximated by an actual orbit of SA initiated in some state x(0), i.e.,
k~x(t) �M t(x(0))k < �, where M t means the composition of M with itself t
times, and M 0 is the identity map.

It is proved in Garzon [1994] that, except possibly for small exceptional sets,
discrete–time analog neural networks do have the shadowing property. In particu-
lar, they show that that the shadowing property holds for networks with sigmoidal
(i.e., strictly increasing, bounded form above and below, and continuously differ-
entiable) activation functions.

As long as SA has the shadowing property, it is sufficient to pick arbitrary
small � > 0 and start in a point ~x(0) 2 �(X) whose distance from the border of
�(X) is at least �. Then there exists a bound b on additive noise u(t) such that a
“corrupted” trajectory f~x(t)g of SA (i.e., a trajectory of S) will be “shadowed” by
a real trajectory fx(t)g of SA originating in some x(0) from the �–neighborhood
of ~x(0). Since x(0) 2 �(X), fx(t)g converges to X and so ~x(t) will not move
away from X . Smaller � results in tighter bounds b.

Hence, to achieve a “robust” latch of an information to an attractor X , it is
not strictly necessary for the states to be in the reduced attracting set of X . In
fact, for every state ~x(0) from the basin of attraction �(X) of X , there exists
a bound on additive inputs u(t) such that f~x(t)g will asymptotically stay in an
�–neighborhood of X .
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I. INTRODUCTION 

 
    Dynamic neural networks are capable of prolonged self-sustained activity 
patterns, in which each neuron has an activation level that can change over time, 
and different neurons can be at different levels, with different changes over time. 
An enormous repertoire of self-sustained activity patterns is possible, due to the 
wide variety of oscillations that networks can engage in.  Oscillations include n-
state oscillations (repeating finite sequences of states), limit cycles 
(quasiperiodic), and chaos.   An infinitude of different oscillations is possible for 
each type.  The resulting set of possible oscillations and activity patterns has 
potential for increasing the capacity and capability of neural networks for 
computational purposes.  Whereas feedforward neural networks have extensive 
applications in recognition and control, with many highly successful 
performances in applications, their output is a fixed vector.  Single-layer 
networks, such as those studied by Hopfield, have fixed vectors (stable states) as 
output. In contrast, dynamic networks can produce a wide variety of oscillations 
as output, and enhanced computational properties are expected to be realized by 
dynamic neural networks that oscillate. 
 
 



    Recently, neurobiological investigators have suggested that the brain may use 
chaotic behavior and oscillatory states to store and recognize patterns, and that 
chaotic states are "waiting" states, whereas simpler oscillators are recognition 
and response states [Yao and Freeman, 1990, Yao et al, 1991, Freeman et al., 
1988]. Theoretical investigations have shown a tremendous variety of oscillatory 
states possible, and systematic ways to produce chaos in a network, along with a 
progression of oscillatory states moving a network from a fixed point to chaos 
[Sompolinsky et al., 1988, Doyon et al., 1993, Palmadesso and Dayhoff, 1994]. 
Some investigators have researched computations that use limit cycles, strange 
attractors, chaos, or transient behaviors in associative memory or information 
processing models [Kumagai et al. , 1996, Yao, 1991, Chapeau-Blondeau, 1993, 
Moreira and Auto, 1993, Dmitriev et al., 1993, Dmitriev and Kuminov, 1994, 
Hjelmfelt and Ross, 1994, Wang, 1996, Lin et al., 1995, Dayhoff et al., 1998]. 
These studies make it natural to suggest that new paradigms using oscillations as 
final states are likely to enhance the development of powerful methods for 
information processing with artificial neural networks. This prospect has 
received increasing research interest recently and requires more characterization 
of dynamic network activities. 
    Here we study chaotic neural networks that can be used to produce pattern-to-
oscillation maps.  First, chaotic behavior is developed in a sparsely connected 
neural network with random weights, as described by Doyon [Doyon et al., 
1993], [Doyon et al., 1994].  To the chaotic network, an external pattern is 
applied and the network usually locks into a simpler dynamic attractor, 
consisting of a limit cycle or simple n-state oscillator.  A range of intensity for 
the applied pattern has been considered, and the resulting attractor changes as 
the intensity is increased.  An increase in intensity eventually results in a stable 
fixed-point attractor. When different patterns are applied with the same 
intensity, they evoke different oscillations and differing dynamic activities.  
Adjusting the pattern intensity helps to produce a pattern-to-oscillation map.  
This approach has promise for developing paradigms in which the evoked 
attractor represents a memory, pattern class, or optimization result.  The neural 
network model used in this chapter differs from that of other investigators cited 
above, except for previous work by Samuelides and coworkers [Cessac, 1994, 
Cessac et al., 1994, Cessac, 1995, Cessac and Quoy, 1995, Doyon et al., 1993, 
Quoy et al., 1995], who have presented a variety of theoretical results for the 
network's dynamics without an applied external pattern, and have found positive 
results on Hebbian weight adjustment in the presence of applied external 
patterns.  Here we present results on the effects of variations in pattern strengths, 
the adaptation of the pattern strength variable, and the responses of the network 
to noisy patterns. 
    In Section 2, we illustrate a progression to chaos in a network with no 
stimulus patterns [Doyon et al., 1993].  A series of different attractors is 
obtained. Different initial states usually do not evoke different attractors.  The 
application of external patterns to the network is addressed in Section 3. Effects 
of increasing pattern strengths are shown, and capacity and uniqueness of 
evoked oscillations is illustrated. Some resilience to pattern noise is attained.  
Dynamic adjustment of pattern strength is described in Section 4, which results 



 

in a pattern-to-oscillation map that is unique and results in a low complexity 
oscillator in response to each pattern.  Further characteristics of the pattern-to-
oscillation map, including resilience to pattern noise, are discussed in Section 5. 
The impact of this type of approach is discussed in Section 6. 
 

 
II. PROGRESSION TO CHAOS 

 
    Dynamic attractors can be developed in a random neural network, and a 
progression from a single fixed-point stable state to a chaotic oscillation can be 
obtained.  The construction of the network is as follows.  A random network 
with full or sparse interconnections is configured as a single layer of neurons, 
where closed-loop connections are allowed and weights are set at random.  A 
multiplier g can be applied to all of the weights at the same time, and, when g is 
increased sufficiently, chaotic behavior occurs [Sompolinsky et al., 1988, 
Doyon et al., 1993].  Thus the network can be modulated into a chaotic state. 
The neural units are simple biologically inspired units, performing a weighted 
sum. 
 
 
 
where aj(t) = activation of unit j at time t, wji = weight to unit j from unit i, N = 
the number of processing units, g a multiplier, and f a nonlinear squashing 
function.  The squashing function used in our experiments was   
 
 
 
    Reciprocal connections did not have to be the same (e.g., wij ≠wji), and self-
loops were suppressed in our experiments as a simplification. The activation 
values could vary from -1.0 to 1.0, and the parameter g is a multiplier for all 
weights and can be set at any value greater than zero.  The interconnections and 
weights were chosen at random.  Networks were denoted as (N, K), where N 
was the total number of processing units, and K the number of incoming 
interconnections for each unit.  The K units that sent interconnections to each 
unit were selected at random, and the values of the weights were selected from a 
uniform random distribution [-1,1], with the random variable divided by K, as 
specified in Doyon et al., [1993].  With this model, we have examined a variety 
of paths from single fixed-point attractors to chaos. 
    The parameter g is a multiplier for all weights.  Thus, the original set of 
weights becomes amplified or de-amplified depending on whether g>1 or g<1. 
A stronger set of driving forces is then presented to each neuron as g increases 
above 1.The incoming sum for neuron j is  
 
 
 
and the modulated weight is gwji.  The neuron then performs the squashing 
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function to determine its next activation value: 
 
 
 
    The parameter g can also be considered as a scaling of the x-axis in the 
squashing function.  Organizing equation (1) differently, we get 
 
 
 
 
where Rj is now the incoming sum for unit j, and  
 
 
 
where fg = f (gx), a sigmoid squashing function with a re-scaled horizontal axis. 
Here the weight is not modulated by g, but the horizontal scale of the sigmoid is 
modulated by g. In both contexts, g is key to producing chaos. 
    Figure 1 shows the symmetric sigmoid function, with the x=y line.  Figure 2 
shows the function f10, which compresses the horizontal direction of the 
squashing function so that two pockets form, bounded in part by the x=y line.  
This curvature in turn causes there to be two absorbing states, at the upper and 
lower intersections, for the single neuron case [Dayhoff, 1998].  It is thus not 
surprising that dynamic attractors - oscillations and chaos - develop at increased 
values of g. 
 

 
 

Figure 1. Symetric sigmoid function, with the 
x=y line 

Figure 2. Modified sigmoid function with g=10 

 
    A network with 64 units, each with 16 incoming connections, was constructed 
with random initial weights.  Transitions from fixed-point attractors to chaotic 
attractors were observed as g was increased starting from numbers below 1.0.  
Figure 3 illustrates such a progression, from a fixed point attractor to a chaotic 
attractor, with average activation a(t+1) graphed as a function of a(t), to form a 
map of the dynamics.  Use of the average activation in the plot was chosen to 
project the many dimensions (64 activation levels) to a single measured 
observation over time.  
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    For low values of g (e.g., g=0.9), a single fixed-point attractor was observed, 
shown in Figure 3(a), which has a single point at (0,0).  When g was increased 
to 1.0, a limit cycle appeared (Figure 3(b)),  consisting of a dense set of points 
along a closed loop.  When g was increased to 1.1, the four corners of the closed 
loop became pointed, and the span of the graph increased from +/- 0.025 to +/- 
0.04 (Figure 3(c)).  When g was increased to 1.2, the limit cycle took on a new 
shape along the x=y diagonal, with an expansion in range to within +/- 0.08 
(Figure 3(d)).  In Figure 3(e), g was increased to 1.3, and the limit cycle 
developed several wiggles, and expanded in range to +/- 0.1.   When g=1.4 
(Figure3 (f)), the wiggles appear deeper, and the span increases to within +/- 
0.15.  When g was increased to 1.5, the previously observed closed loop appears 
to have changed to a figure that roughly outlines the previous loop several times, 
with different variations each time, and gives the appearance of scribbling 
(Figure 3(g)).  When g=1.6, a locking occurs into a finite-state oscillator (Figure 
3(h)).  When g=1.7 (Figure 3(i)), chaotic or irregular behavior occurs.  This type 
of progression shows the tremendous range and complexity of dynamic 
attractors and the ability to exert some control over their appearance, through 
varying the single parameter g. Figure 3 illustrates a progression for one 
network of 64 neurons; Doyon and colleagues [Doyon et al., 1993] have 
characterized four types of paths to chaos in networks of 128 neurons. In some 
cases, increasing the number of iterations calculated allowed activity that 
appeared chaotic to resolve into a limit cycle. Sometimes the number of 
transients in these cases would be too large to be practical to implement in a 
computational application. Thus, for practical use to be made of dynamic neural 
networks, a "chaotic" response would be considered to be behavior that 
appeared to be chaotic in a limited predefined time frame 
 
A. ACTIVITY MEASUREMENTS 
    We have experimented with measurements that reflect the type of activity 
observed in the maps drawn in Figure 3. An activity measurement was 
computed by an algorithm that uses the average activation over the entire 
network over a period of time, usually 1000 iterations of Equation (1). The 
range of the graph of a(t) versus a(t+1), as in Figure 3, is defined to cover the 
points generated by the n iterations used.  The graph is then divided into a 10 by 
10 grid, with evenly spaced lines.  The percentage of non-empty grid squares is 
the grid coverage.  Grid coverage tends to reflect the types of activity shown in 
Figure 3, and thus can be used as an appropriate measurement or reflection of 
the network’s activity. 
    Chaotic behavior such as in Figure 3(i) tends to have coverage values in the 
range >73.  Limit cycles tend to be in the range 43-57, and n-state oscillations, 
such as Figure 3(h) are in a range >2, usually small.  The coverage measurement 
can be used in the method shown next for adjusting the pattern strengths in the 
pattern-to-oscillation map.  Other measurements of activity could be substituted 
for grid coverage.  Ideally, the best activity measurement would be always high 
when chaotic, irregular behavior occurs and progressively lower as the network 
dynamics progresses to a fixed point. Although the grid coverage usually 
adheres to this pattern, there are exceptions. 
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Figure 3. Progession from fixed point to chaos in a random (64, 16) network. The horizontal axis is 
average activation at time t+1, a(t-1) and the vertical axis is average activation at time t, a(t). (a) 
g=0.9,  (b) g= 1.0, (c) g=1.1, (d) g=1.2, (e) g=1.3, (f) g=1.4, (g) g =1.5, (h) g=1.6, (i) g=1.7 
 
   Figure 4 shows the coverage measurement graphed versus the value of the 
multiplier g, for two different networks.  The coverage measurement is 1 for 
small values of g, and then increases until the coverage value is consistently at a 
high level, generally above about 70.  Usually, once a high level of coverage is 
attained, reflecting irregular activity or chaos, higher values of g continue to 
evoke high coverage levels.  The lowest value of g for which a high coverage 
level is attained is an indicator that the network is at the "edge of chaos". 
 
B. DIFFERENT INITIAL STATES 
    It is computationally interesting to find a paradigm whereby a pattern-to-
oscillation map can be produced, because then the initial state of the network 
could be set from a pattern vector, and the evoked oscillation could represent a 
pattern class or other computational answer evoked by the initial pattern.   We 
first explored whether different initial states of the network would produce 
different attractors in the random networks described above, but were not 
satisfied with the potential of this approach, as described next. 
      We generated a series of random networks with a (64,16) configuration, as 



 

described in Section 2.  A series of random pattern vectors were used as initial 
states to the network.  The resulting attractor was then observed.  In most cases, 
only one attractor was observed, which was reached from a wide variety of 
initial states.  The initial states in this experiment were generated at random 
from a [-1,1] uniform distribution.  Sometimes there were two attractors (limit 
cycles or n-state oscillations), reached from different initial states, but they were 
symmetric with one another, having a 180 degree rotational symmetry about the 
origin.  Figure 5 illustrates such an example. About half of the initial states 
(taken at random) evoked each attractor.  Although different initial conditions 
could evoke different (but symmetric) limit cycles in this case, this scenario 
does not offer enough flexibility to discriminate patterns by the limit cycles they 
evoke.  
    Occasionally, different attractors were observed from different initial states 
during our simulations of networks with random weights. This circumstance was 
very rare among our observations, and in these cases the parameter g was first 
tuned to be very near a bifurcation point.  Figure 6 shows such an example.  
Figure 6(a) shows an 8-state oscillator.  This occurs at g=1.72 in a (64,16) 
random network.  Figure 6(b) shows the same network except that a different 
initial state was selected at random.  The 8 points appear to have bifurcated into 
8 rings, which are asymmetric about the origin.  A third random initial state 
evoked the limit cycle in 6 (c), which is symmetric to that in 6 (b).  It was also 
possible to evoke an oscillator symmetric to that of 6(a) with other initial states.  
Although different initial conditions evoke different attractors in this case, this 
scenario also does not offer enough flexibility to discriminate many patterns by 
the limit cycles they evoke.   However, this does not rule out the possibility of 
creating intricate and desired distinctions between different types of initial states 
according to which attractor is evoked if suitable weight adjustments are made. 
 
 

  
(a) (b) 

 
Figure 4. Activity level – in this case, coverage level – as a function of g, for two different networks. 
(a) For this network, a bifurcation was exhibited when g = 0.9, to generate an oscillation instead of a 
fixed point. The map appeared chaotic when g reached 1.7, and for higher values of g. (b) For this 
network, a rapid set of bifurcations occurred to generate oscillations at g = 1.26 and the coverage of 
the map was above 60 until g = 1.6, where chaotic behavior occurred. Both networks were (64,16) 
with randomly assigned weights as described in Section A. 
 
 



  
(a) (b) 

 
Figure 5. Symmetric attractors evoked by different initial states in the same network. The initial state 
of the network was set so that neuron activation levels matched a random pattern vector  
E (ai(0)← ei). 
 
 
 

   
(a) (b) (c) 

 
Figure 6. A case where different initial states lead to different attractors, from a random (64,16) 
network. (a) An 8-state oscillator (b) A limit cycle with 8 closed loops (c) A limit cycle symmetric to 
part (a). 
 

III. EXTERNAL PATTERNS 
 
    Next, we treat a pattern vector as an external stimulus, to overcome the 
limitations in flexibility encountered when patterns are applied as initial states.  
To include an external stimulus, the updating equation for the neurons (1) can be 
modified as follows: 
 
 
 
 
where E=(e1,e2,...,en) is the external input pattern.  The input E is then applied at 
every time step, and its strength is modulated by the multiplier α. The vector E 
can then be assigned as a pattern to be classified, and a pattern-to-oscillation 
map can be generated. 
    The network is initially put in a chaotic oscillation.  The chaotic net does not 
have an external stimulus, and updates by (1).  To produce the chaotic network, 
the parameter g is increased until the network reaches chaotic behavior.  
Typically, we do not increase g more than is necessary to produce chaotic 
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behavior, so the network can be said to be at the "edge of chaos".  An external 
input E is then applied to the chaotic net, and the network uses (7) to update.  
The externally applied input usually  "locks" the chaotic network into a simpler 
attractor, often a limit cycle.  This scenario can thus be called "attractor 
locking".  
    The attractor that results depends on the characteristics of the externally 
applied pattern (for the same network) and the weights and configuration of the 
network.  A chaotic network was updated for varying amounts of time without 
an external input, and regardless of when E was applied, the same dynamic 
attractor was observed. Figure 7 shows the results when a chaotic behaving 
network receives an external stimulus pattern.  The graph of Figure 7(a) shows 
activity of the chaotic network, without any applied pattern. The other graphs 
show the results of applying different external patterns. The patterns were 
generated at random from a uniform distribution [-1,1].   
 
A. PROGRESSION FROM CHAOS TO A FIXED POINT  
    Each pattern has a strength, α, as shown in equation (7).  As the pattern 
strength α is increased, the dynamics of the network's activity moves through a 
progression to a fixed point.  In all cases examined, a sufficiently high α 
produced a fixed point. Figure 8 shows the progression of a network's dynamics 
as a function of α ((a)-(i)), from chaos (a) to a fixed point (i).  One external 
pattern, at increasing strengths, was applied to the same chaotic network. 
    Figure 9(a) shows activity measurements as a function of α for the same 
network.  Figure 9(b) is based on another random network, with a different 
random pattern.  The activity measurement always starts high (generally >73), 
which is indicative of chaotic oscillation.  When α is increased, there is a point 
at which the activity measurement enters a mode that has limit cycles or finite 
state oscillations (usually activity values of about 2-57).  At sufficiently high α, 
the activity becomes a fixed point.  These transitions happen at different values 
for α for the two examples shown in Figure 9. 
 
B. QUICK RESPONSE 
    Figure 10 shows the results of applying an external pattern to a network, 
including transients before a limit cycle is obtained.  All points were plotted 
after application of the external pattern.  The transients were included in the 
figure to illustrate that sometimes very few transients occur after the external 
pattern is applied and before the limit cycle is attained.  The possibility for fast 
classification to occur when a network is initially in a chaotic state has been 
suggested by Freeman  [Yao and Freeman, 1990], in reference to olfactory 
neural models that wait for stimuli in a chaotic state and lock into a simpler 
oscillation after a stimulus is received.  Because such fast classification of 
patterns with chaotic networks is of interest, we explored the relationship 
between the number of transients and the value of the pattern strength, using the 
(64,16) networks described in Section 2. 
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Figure 7. A chaotic network has 18 different patterns applied, with different results on the dynamics. 
(a) Activity of the chaotic network, before an external pattern is applied. Multiple g is set just above 
the value where chaotic activity occurs. (b-s) Activity of the network after 18 different patterns were 
applied. Evoked dynamics is highly unique. Most graphs show recognizable low-order dynamics – 
limit cycles and n-state oscillations – but some show chaotic (irregular) behavior and others show 
fixed points only. Graphs have the horizontal axis as average activation at time t + 1, a(t – 1), and 
the vertical axis as average activation at time t, a(t). The patterns were generated from a uniform 
random distribution [-1, 1]. 
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Figure 8. Progression of maps for the same pattern applied to the same chaotic network, at increasing 
pattern strengths. 
 
 
 

  
(a) (b) 

 
Figure 9. Activity measurement (grid coverage) as a function of pattern strength for two different 
patterns, applied to two different chaotic networks. 

 
    Figure 11 shows results on a random (64,16) network, where the number of 
observed transients is graphed as a function of pattern strength.  The decrease in 
the number of transients above α=1.4 correlates with a limit cycle (ring) that 



shrinks into a fixed point as the pattern strength increases further.  In the region 
where α < 1.4, there is a path from the first limit cycle, obtained at high 
strength, to chaos, which undergoes several transitions.  Figure 11 shows a 
graph of number of transients as a function of α.  In Figure 11, there is a peak at 
α=1.4 and a decrease to α=1.2.  This observation leads to the hypothesis that 
there are specific conditions under which the number of transients before an 
attractor is reached is low, leading to fast responses and/or fast recognition. 

 
 

  
Figure 10. Results of applying an external 
pattern to the network 

Figure 11. Observed transients as function of 
pattern strengths 

 
 
IV. DYNAMIC ADJUSTMENT OF PATTERN STRENGTH 
 
    Our goal was to produce a pattern-to-oscillation map in which the evoked 
oscillation satisfies a criterion that indicated it is a relatively simple oscillation.  
We define a Criterion A as follows. 
 
Criterion A: 
    -- A repeating sequence of states, e.g., a finite n-state oscillation (n>1). 
OR 
   -- A limit cycle (quasi-periodic).  
 
    In Figure 7, most of the evoked attractors satisfied this criterion.  Several did 
not, and remained chaotic in appearance (Figures 7(l)(m)(o)(p)(q)(r)).  It is also 
possible to evoke a fixed point (Figure 7(n)). Here there is no a priori 
knowledge of the best choice for α. To produce the map, a chaotic network is 
used.  Thus, the initial parameters are (1) the network weights, randomly 
assigned, and (2) the connection configuration.  A value of gc for the multiplier 
in (1) was set just above the transition to chaotic behavior. A set of external 
patterns is then applied to the network, one at a time.  Initially, a value for the 
pattern strength αb is chosen. External patterns are then applied, each with 
strength αb, as in Equation (3), with results similar to Figure 7. 
    The value of αb can be chosen so that a set of random test patterns usually 
evokes oscillations that meet Criterion A above.  Any evoked oscillation that fits 



 

criterion A is considered to be the result of the pattern-to-oscillation map. 
    For patterns that evoke oscillations that do not fit Criterion A, we do not yet 
have a suitable oscillation for the pattern-to-oscillation map.  So, a procedure is 
used to adjust the pattern strength until an oscillation that fits Criterion A is 
evoked.  In the end, each pattern has its own strength parameter, and each 
oscillation evoked fits criterion A.  
    The adjustment procedure is constructed based on the following observations 
about an activity value as a function of α. 
    Values a, b, c, d can be set so that 
 
1. If activity ≤ d then α is too high. 
2. If activity ≥ c (chaotic), then α is too low. 
3. If activity is between a and b, then a limit cycle or n-state oscillation is 

assumed present. 
 
    If the activity of the network is represented by the coverage value, then good 
cutoff values are at d=1, and approximately c=73, a=42, and b=53.  If coverage 
value is used for the activity measurement, then Observation 3 is usually correct, 
and the limit cycle or n=state oscillation is assumed present.  
 

1. Choose αinit. Try to choose a value so that most typical patterns evoke limit 
cycles or n-state oscillations. 

2. Set δ to a small value > 0 and << αinit 
3. Set a and b so that [a,b] is the desired window for activity measurements. 
 
For each pattern i, do the following 
 
4. Set αi(1) ← αinit 
5. Set ihi = ilow = 0 
6. Set k=0, iteration number 
7. Increment k:= k+1 
8. Measure the activity m(k) when the pattern i is applied at strength αi(k). If a 

≤ m(k) ≤ b, then done with pattern i 
9. If m(k) < a then ilow = k 
10. If m(k) > b then ihi = k 
11. If ilow > 0 and ihi > 0 then 

 
12. If m(k) > b and ilow = 0 then 

        αi(k+1) ←  αi(k) + δ 
13. If m(k) < a and Ihi = 0 then 

         αi(k+1) ← αi(k) - δ 
14. Go to 7 for next iteration 
 

Figure 12. Strength Adjustment Algorithm 
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    An algorithm for pattern strength adjustment is given in Figure 12.  This 
algorithm only uses parameters a and b, and targets [a,b] as the window for 
desired activity.  If the activity measurement is initially too large or too small, 
the pattern strength is changed and a new activity measurement is taken.  If this 
does not fall into the desired range [a,b], then the amount of change is adjusted 
appropriately to eventually reach the desired range. 

 
V. CHARACTERISTICS OF THE PATTERN-TO-

OSCILLATION MAP 
 
    Resilience to pattern noise has been observed in oscillations evoked by 
external patterns. A set of specific patterns was simulated and used as base 
patterns.  To each base pattern, ten noisy patterns were generated by adding 
small random numbers to each entry. The resulting oscillation was then 
observed, to see how the evoked oscillations compared among the noisy 
versions of the same base pattern.   
    Figure 13 shows the result for one base pattern. The base pattern was 
simulated at random and applied with a strength of 1.6. The same α was used for 
the noisy versions of the base pattern. Figure 14 shows the same results but with 
a different form of display, in which successive points generated by the network 
are connected.  Figure 14 thus reflects more of the dynamic action of the 
network over a progression of times.  These plots were generated to see whether 
the building of each figure was with the same type of sequence of points, and in 
all cases show that the figure, roughly triangular, was constructed by sampling 
three points over each 360 degree traversed.  Figure 14(f) in which a triangular-
shaped limit cycle has split into two triangles, has the same sampling pattern of 
three points per 360 degrees. 
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Figure 13. A chaotic network has different external patterns applied, each at strength α = 1.6. (a) The 
base pattern, with 64 entries, each from a uniform random distribution (-1:1). (b-k) The base pattern 
with 5% noise added, to make 10 different variations of the pattern. 
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Figure 14. A chaotic network has different external patterns applied. The map is drawn with 
successively generated points interconnected. (a) The base pattern, with 64 entries, each from a 
uniform random distribution (-1:1). (b-k) The base pattern with 5% noise added, ten times to 
generate ten variations of the base pattern. The pattern strength α = 1.6, and the attractors are the 
same as in Figure 13. 



 

    Figure 15 shows the base pattern and its ten variations, plotted together.  
Successive entries of the pattern vector are marked on the horizontal axis, with 
values in the vertical axis.  The pattern entries were generated at random from a 
[-1,1] distribution, and the added noise was generated from a uniform random 
distribution [-0.05,0.05], adding  5% noise.  
 

 
 

Figure 15. The base pattern and its ten variations, plotted together. 
 
     Figures 16, 17, and 18 show applications of the same base pattern as in 
Figures 13 and 14, with the same ten variations, to the same network, with 
varied pattern strengths. In Figure 16, a pattern strength of 1.4 was used, which 
is weaker than that in Figure 13. There is an increase in the variation among the 
evoked attractors in Figure 16 compared with Figure 13. 
    In Figure 17, a pattern strength of 1.8 was used, which is stronger than that in 
Figure 13.  The variation in the evoked attractors was less.  In Figure 18, a 
considerably weaker strength (1.2) was used, resulting in large amounts of 
variation.  These preliminary results suggest that different values for the pattern 
strength change the map's resilience to noise, and that the oscillations show less 
variation at a stronger pattern strength than at weaker pattern strengths.  For 
these figures (Figures 13-14, 16-18), the pattern strength evoked a limit cycle 
which was the result of the last bifurcation from the final fixed point, as in 
Figure 8(h).   
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Figure 16. The base pattern (a) and its ten variations (b-k). Here the pattern strength α was 1.4, a 
decrease compared with Figure 13. 
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Figure 17. The base pattern (a) and its ten variations (b-k). Here the patterns strength α was 1.8, an 
increase compared with Figure 14. The variations between the evoked attractors is less compared 
with Figure 14, where α was 1.6. 
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Figure 18. The base pattern (a) and its ten variations (b-k). Here the pattern strength α was 1.2, a 
large decrease compared with Figure 14. The variations between the evoked attractors is 
considerably higher compared with Figure 14, where α was 1.6. 
 

 



 

VI. DISCUSSION 
 
    The use of an evoked oscillation when an external pattern is applied to a 
chaotic network forms the groundwork for a potentially powerful approach to 
associative memory, recognition, and other potential computational applications.  
A wide range of different pattern inputs can evoke unique dynamic attractors, 
and the entry into the attractor often occurs quite rapidly. Thus there is the 
potential for performing useful computations, such as pattern classification, 
where the attractor that is evoked would represent the pattern class, associated 
memory, or other computational result. 
    Capacity is high with the model shown here, in the sense that many different 
patterns can each evoke a different attractor. Whereas the Hopfield network 
showed a capacity of about 0.15n attractors (memories) for n neurons, the 
number of oscillation attractors that could be used in our approach far exceeds n. 
    A previous study has applied a Hebbian-like learning approach to reduce the 
dynamics from chaos to quasi-periodic attractors in the presence of an external 
pattern.  The network's chaos is reduced during the learning of a pattern to gain a 
specific response of a limit cycle to the pattern [Quoy et al., 1995]. Capacity, 
however, was found to be seriously limited in this study, although changes in 
neural architecture are hoped to increase capacity.  We propose here that the 
adjustment of α, along with Hebbian-like training, could possibly increase the 
capacity of such a training paradigm.  Higher pattern strength α tends to evoke 
simpler periodic or quasi-periodic attractors.  Noise resilience is demonstrated 
through Figures 13-18. The same pattern, with added noise, evokes similar 
attractors.  Higher values of pattern strength α can cause the attractors to be 
even more similar, whereas lower values of pattern strength tend to disperse the 
similarities.  Quantitative analysis of attractor similarity has been introduced, but 
the graphical presentation shown here (Figures 13-14, 16-18) was chosen to 
show a more complete comparison of the attractors that are evoked. 
     Recognition of attractors is a problem for which feedforward time-delay 
networks would be naturally appropriate. Previous study has shown that 
different closed trajectories can be learned, recognized and generated by TDNNs 
and ATNNs [Lin et al., 1995]. Generalization capabilities would reflect the 
ability of the network to recognize the boundary between one class of applied 
pattern and another, when new external patterns are applied.  This could be 
tested in a combined system with a TDNN or ATNN recognizer as a post-
processor. 
    Previous investigations have addressed the activity of the chaotic networks 
with a mean theory approach  [Sompolinsky et al., 1988].  The result of using a 
fixed external pattern (a "bias") with a fixed strength, and varying the multiplier 
g, has been analyzed [Cessac, 1994a,b].  It is found that the distance from the 
highest g that evokes a fixed point to the lowest g that evokes chaos is 
surprisingly small, and diminishes as the number of neurons n grows, with fully 
connected random networks. The evolution of the neurons is a white noise in the 
thermodynamic limit [Cessac, 1995]. 
    Cessac [Cessac, 1994a] shows an absolute stability criterion for discrete time 
neural networks. In the thermodynamic limit, critical lines were found to divide 



planar graphs of the average bias of the external pattern versus g into areas with 
one fixed point, two stable points, one fixed and one strange attractor, and one 
strange attractor.  In finite size systems, the line of destabilization and the 
appearance of chaos are not identical: there is an intermediate periodic and 
quasi-periodic regime corresponding to the quasi-periodic route to chaos 
observed in finite neural networks.  Doyon and colleagues [Doyon et al., 1993] 
show a quasi-periodic route to chaos in a class of finite random networks.  We 
have illustrated one route for a 64-neuron network in this chapter (Figure 3). 
    Research on dynamic neural networks is highly motivated because there is 
potential for gaining superior generalization and pattern classification. 
Dynamical systems can have complex basin boundaries, including fractal 
boundaries [Ott, 1993], and the dynamic neural networks presented here are 
examples of such dynamic systems.  Fractal basin boundaries and other 
complicated boundaries could enable a recognition scheme to place arbitrarily 
complex boundaries between different pattern classes, with a tremendous 
amount of fine structure.  The tailoring of basin boundaries to fit the solution of 
a recognition problem has so far been considered only for limited cases with a 
different neural network paradigm [Hao et al., 1994, Venkatesh et al., 1990, 
Dayhoff and Palmadesso, 1998] and fractal boundaries were not taken into 
account.  
    Dynamic neural networks have an extensive armamentarium of behaviors, 
including dynamic attractors - finite-state oscillations, limit cycles, and chaos - 
as well as fixed-point attractors (stable states) and the transients that arise 
between attractor states. In our experiments, this tremendous spectrum of 
differing activities develops naturally as a result of the network's processing 
units, asymmetric weights, and closed-loop interconnections. Components that 
could oscillate or individually produce chaos did not have to be built into the 
network to insure the presence of dynamics. The resulting networks are 
enormously flexible, capable of prolonged self-sustained activity, and able to 
undergo progressions of oscillations that are controlled by modulating 
parameters and applied patterns. 
    Although the neural architectures studied here are artificial, they are inspired 
by biological structures. Furthermore, the ability for self-sustained activity is 
clear in biology, as neurons in the brain have recorded "spontaneous” activity, 
and animals can maintain ongoing awareness, consciousness, and mental 
activity.  The extent to which a capability for self-sustained activity and 
changing oscillations contributes to these biological and behavioral abilities is as 
yet unknown. We propose that underlying oscillations, changes in oscillation 
complexity, and modulated progressions of oscillations may contribute to 
biological activities such as awareness, mental transitions, mental 
representations, consciousness, and high-level tasks.  If so, this chapter shows a 
simplified and abstracted model that represents such neural oscillations, their 
modulation by externally applied patterns, and progressions between simple 
fixed states, more complex oscillations, and chaos. 
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I. INTRODUCTION

Recurrent networks can be categorized into two classes, those that are pre-
sented with a constant or one-time input signal and are designed to enter an in-
teresting stable state, and those that are presented with time-varying inputs and
are designed to render outputs at various points in time. This chapter concerns
the latter which are called dynamical recurrent networks [Kolen]. In this case,
the operation of the network can be described by a function mapping an input se-
quence to an output value, or a sequence of output values. The input and output
values are continuous and multi-dimensional, resulting in vector representations.
Specifically, we define the behaviour of a network by

f : Xt
! Y t; (1)

where X = <n and Y = <m and n and m represent the dimensionalities of
the input and output vectors, respectively. t represents the length of the sequence
which is usually given a temporal interpretation.

A. LANGUAGE LEARNING
A special case of this type of operation which is often used in many recurrent

networks is the assumption that

� X = f0; 1gn and Y = f0; 1gm for a logistic transfer function

or

� X = f�1; 1gn and Y = f�1; 1gm for a logistic transfer function

In this situation, the input and output values are discrete. This approach is used
in any problem where inputs are selected from a discrete alphabet of valid values
and output values fall into discrete categories.

The problem of dealing with input sequences in which each item is selected
from an input alphabet can also be cast as a formal language problem. A formal
language is defined:

Definition 1 Formal Language: a set of strings of symbols from some alphabet.



Typically � is used to represent the alphabet, and the input language L is the
power-set of �:

L = 2
�: (2)

One of the most simple functions that has a language as its domain is that
of identifying a particular subset of this input language. That is, we consider a
language

L1 � L (3)

and we define fL1
: L! faccept; rejectg as:

fL1
(s) =

�
accept if s 2 L1
reject otherwise

(4)

This is the classical problem solved by a formal computing machine (such as
a finite state automaton, pushdown automaton, or Turing machine) which is said
to accept the language L1.

A recurrent network can be applied to this type of problem as well, and many
have studied these networks in this context (see this Chapter’s references for de-
tailed list). With a recurrent network, one typically would like the system to learn
to make this type of categorization (though there have been numerous papers on
the representational powers of these networks independent of their ability to learn
to identify member strings; e.g., Horne [1994], Siegelmann [1995].

B. CLASSICAL GRAMMAR INDUCTION
Now, when one talks of learning to make this categorization, one could equiv-

alently talk about learning the language L1. Yet, if the language L1 is infinite in
size, then to learn L1 one has to represent it in some finite form. We define this
finite form as a grammar:

Definition 2 Formal Grammar: a finite characterization of a potentially infinite
language.

The classical approach to representing grammars is to use a 4-tuple, G =

(V; T; P; S). Here, V represents a set of symbols, known as variables, which
are used as intermediate results in the derivation of member strings. Similarly,
T represents a set of symbols, called terminals, which defines the alphabet of the
language represented by the grammar (i.e., T = �). P is a finite set of rules, called
productions, defining how strings of variables and terminals can be rewritten as
other strings of variables and terminals in the process of deriving a member string.
Specifically, productions take the form � ! �, where � and � are strings of
symbols from the Kleene closure of the union of variables and terminals: (V [T ) �.
Lastly, S is a special variable called the start symbol.

The process of deriving a legal string for a given grammar can be formalized
as follows: First, the current string is initialized to be the start symbol. Second,
strings of symbols within the current string that match the left-hand side of one of
the productions are replaced by the right-hand side of the production. The second



step is repeated until only terminal symbols remain in the current string, at which
point, the current string represents a legal string. Formally, we define the rewrite
operator,), by asserting that 
�Æ ) 
�Æ if and only if the production�! � is a
member of P . This operator represents one application of step two in the process
above. Multiple applications can then be represented by the reflexive-transitive
rewrite operator,

�

), which is defined as the reflexive and transitive closure of ).
Applying the latter operator to the start symbol, S, the language described by the
grammar, G, is defined as

LG = fsjs 2 T �andS
�

) wg (5)

C. GRAMMATICAL INDUCTION
This representation of a language by a grammar has lead the field of language

learning to be known as grammatical induction. This field has been studied exten-
sively in the purely symbolic paradigm for over 30 years. In those 30 years, much
knowledge has been acquired and some of this knowledge can be parlayed into
techniques for improvement of learning in recurrent networks. This is the focus
of this chapter.

D. GRAMMARS IN RECURRENT NETWORKS
Another finite representation of potentially infinite languages is in the form of

a weight matrix W in a recurrent network. In this scenario, string acceptance is
determined by presenting vector encodings of the input symbols to the network,
one at a time. Activations are propagated through the network for multiple cycles,
until all input symbols have been presented. At that time, the output units are ex-
amined and a decision on membership is made. Because recurrent networks can
store information about previous input symbols in the activation values transmit-
ted through their recurrent connections, these networks can render decisions on
strings presented one symbol at a time. The decisions made for the input strings
will be defined by the weight matrix of the network. Thus, the weights define
the set of strings that will be accepted and hence the language. In this sense, the
weight matrix is a grammar according to our definition.

Although the representations in the connectionist paradigm are very different
from those used in the classical symbolic approach, the problem faced by the two
approaches is exactly the same. This means that it may be possible to transfer
some insights on the problem of grammar induction from symbolic techniques to
recurrent networks.

Clearly, the problem of language learning defined above is only one special
case of the kinds of problems that recurrent networks can address. It does not
cover situations in which input sequences consist of continuous real-values, nor
on problems involving more sophisticated outputs beyond simple accept/reject
decisions. Nonetheless, we will discover in what follows that it is an informa-
tive case that offers insights into approaching the problem of training recurrent
networks in general.



E. OUTLINE
The chapter is organized along the lines of four lessons based on results from

the work in symbolic grammar induction. After this introductory section, Les-
son 1 shows that the problem of language learning is a surprisingly difficult one.
This motivates the remaining sections which focus on how one can simplify the
problem of language learning and also other types of recurrent network problems.
Lesson 2 focuses on restricting the kinds of languages and other problems which
can be learned. Lesson 3 describes techniques for ordering the search for prob-
lem solutions to speed the learning time. Lesson 4 explains how ordering training
data during the training process helps narrow down the solution possibilities. A
conclusions section at the end of the chapter summarizes our results.

II. LESSON 1: LANGUAGE LEARNING IS HARD

We begin by considering two variations on grammar learning. Gold [Gold,
1967] has identified two basic methods of presenting strings to a language learner:
“text” and “informant.” A text is a sequence of legal strings containing every
string of the language at least once. Typically, texts are presented one symbol
after another, one string after another. Since most interesting languages have an
infinite number of strings, the process of string presentation never terminates.

An informant is a device which can tell the learner whether any particular
string is in the language. Typically the informant presents one symbol at a time,
and upon a string’s termination supplies a grammaticality judgment.

Gold [Gold, 1967] investigated the problem of language identification in the
limit. He asked the question: Which classes of languages are learnable with re-
spect to a particular method of information presentation? A class of languages
is learnable if there exists an algorithm which repeatedly guesses languages from
the class in response to example strings, and “Given any language of the class,
there is some finite time after which the guesses will all be the same and will all
be correct” [Gold, 1967]. The algorithm does not keep guessing forever or, more
precisely, it settles on a particular language and that language is correct.

Gold showed that this is a surprisingly difficult task. For example, if the
method of information presentation is a text, then only finite cardinality languages
can be learned. Finite cardinality languages consist of a finite number of legal
strings, and are a small subset of the regular sets (the smallest set in the Chom-
sky hierarchy). In other words, none of the language classes typically studied in
language theory are text learnable.

The situation is only slightly more promising if both positive and negative
examples from the language are available. Under informant learning, only two
kinds of language are identifiable in the limit. These are regular sets (which are
those languages having only transition rules of the form A ! wB, where A and
B are variables and w is a (possibly empty) string of terminals), and context-free
languages (which are those languages having only transition rules of the form
A ! �, where A is a single variable). Other languages, however, like the recur-
sively enumerable languages (those having transition rules, � ! �, where � and



� are arbitrary strings of terminals and non-terminals) remain unlearnable.
The fact that regular sets and context-free languages are learnable under the

informant learning paradigm by no means implies that such learning is practi-
cal. Pinker points out that “in considering all the finite state grammars that use
seven terminal symbols and seven auxiliary symbols (states), which the learner
must do before going on to more complex grammars, he must test over a googol
(10100) candidates” [Pinker, 1979]. This reveals that even for tiny computational
machines (seven states) the language learning problem is often intractable if no a
priori knowledge is available to remove some of the machines from consideration.

The conclusion which must be drawn from Gold’s and Pinker’s observations is
that grammatical induction is an exceptionally complex task. So complex, in fact,
that it cannot be solved as originally posed by Gold. In the following sections, we
shall present a number of modifications to the original problem which overcome
the inherent difficulties implied by Gold’s and Pinker’s conclusions and thus allow
the problem to be solved.

Even though Gold and Pinker worked in a symbolic paradigm for language
learning, they made no assumptions particular to this approach. The same con-
clusions can be applied to the problem of learning languages by connectionist
networks. This means that if recurrent networks are to solve language learning
problems or even more complicated problems, we must modify our approach to
learning in order to overcome the intractability and extreme slowness inherent in
language learning tasks.

III. LESSON 2: WHEN POSSIBLE, SEARCH A SMALLER
SPACE

The difficulty of any search depends on the number of candidate solutions that
must be considered, called the hypothesis space.

A. AN EXAMPLE: WHERE DID I LEAVE MY KEYS?
We begin by considering a simple example: Suppose you are unable to find

your car keys. We shall assume that the keys are somewhere in the house. A
simple search algorithm might involve searching the house from top to bottom
starting on the upper floor and moving down to the basement. This represents
an exhaustive brute-force search like the scenario suggested by Pinker when he
described considering all grammars with seven terminal and seven non-terminal
symbols.

Now suppose you know for a fact that you have not been upstairs or downstairs
since you last used the keys. In this case, it would be sensible to reduce the search
space from the entire house to just the ground floor. This would no doubt lead
to a more efficient search and you would expect to find your keys sooner. Thus,
reducing the search space increases search efficiency.

Of course, there is a drawback to a reduced search space. Suppose you had
forgotten that you had in fact traveled upstairs and left the keys there. Now your
search of only the ground floor would be guaranteed to fail. A reduced hypothesis
space is useful only if it does not exclude the goal.



B. REDUCING AND ORDERING IN GRAMMATICAL IN-
DUCTION

Naturally, the techniques of hypothesis space reduction and ordering described
in the previous example are applicable to search in general-not just car key searches.
As such, they can be used to make the task of grammatical induction solvable or
tractable. The notion of hypothesis space reduction in the context of grammatical
induction refers to searching for a grammar consistent with the training data in a
class which is smaller than the class of unrestricted (Chomsky type-0) grammars.

Symbolic grammar induction systems have used the class of context-free gram-
mars (Chomsky type-2) and the class of regular grammars (Chomsky type-3) as
reduced hypothesis spaces. However, the fact that Gold showed that even the
smallest of these classes is not learnable based solely on text training data, com-
bined with the fact that most interesting grammars belong to the larger classes,
have made these restrictions unpopular techniques for hypothesis space reduction.

A more useful technique is to devise a class of grammars which lies tangential
to Chomsky’s hierarchy. Such a tangential class contains some grammars which
are not regular and some grammars which are not context-free but contains only
a subset of the unrestricted grammars. By using a class tangential to the Chom-
sky hierarchy as one’s hypothesis space it will be possible to represent some of
the grammars which only fall into the unrestricted class, while at the same time
reducing the size of the hypothesis space so as to identify members of the space
based on input data more rapidly. Of course, as with the car key example, it is
critical to choose a hypothesis space that contains those grammars which are to be
learnable.

This type of hypothesis restriction was first suggested by Chomsky [Chomsky,
1965]. While working on the problem of human language acquisition, he proposed
that only those grammars possessing the basic properties of natural languages
should be considered as candidates for grammatical induction. By weighting the
naturalness of languages based on a specific set of properties, he proposed an
induction algorithm which considered only those languages which were consistent
with the training sample and had a sufficiently high weight.

Another popular technique for restricting the space is to employ the univer-
sal base hypothesis. Under this hypothesis, different grammars are defined by
means of a two-step process. First, a universal base grammar which all different
grammars use is defined. Then, a restricted class of rewrite rules are employed to
translate from the symbols of the universal base grammar to a variety of derived
grammars. The grammars derived in this fashion form a reduced hypothesis space
which can then be used to define a grammatical induction algorithm. This ap-
proach is fundamental to Wexler and Culicover’s [Wexler, 1980] model of human
language learning.

C. RESTRICTED HYPOTHESIS SPACES IN
CONNECTIONIST NETWORKS

Restricted hypothesis spaces in symbolic grammatical induction systems are
typically described in terms of restrictions on the type of grammar rules they em-



ploy. In recurrent networks, the languages that the network recognizes are deter-
mined by three factors: (1) the network topology (sometimes called architecture),
(2) the number of hidden units, and (3) the connection weights in the network.
Thus, we can restrict the kinds of languages (or equivalently grammars) that can be
learned by adjusting network topologies, number of hidden units and/or weights.

D. LESSON 2.1: CHOOSE AN APPROPRIATE NETWORK
TOPOLOGY

The computational power of a number of topologies, given appropriate weights,
has been studied. While some topologies are potentially as powerful as Turing
machines, others are much more restricted in their computational power. Initially,
one might be tempted to select the most powerful network for all applications, but
the arguments above reveal that it may be wiser to select a more restricted archi-
tecture in order to make the learning algorithm tractable, especially if one knows
that a solution to the current problem can be found by the computationally weaker
architecture.

One of the first architectures suggested for processing time-sequence data was
the window in time network used in the classic NETtalk [Sejnowski, 1986]. It has
also been used by a variety of other authors including Lang et al. [Lang, 1990], La-
pedes and Farber [Lapedes, 1987], and Waibel et al. [Waibel, 1989]. The topology
of this network consists of a feedforward network which is presented with a finite
history of input patterns called an input window (Figure 1). Since this window is
of finite length, there will always be inputs which fall outside of this window (i.e.,
are too old). This means that there will always be certain kinds of strings that this
network cannot correctly classify, namely strings who’s categorization depends
on symbols that fall outside the window. More specifically, Giles, Horne, and Lin
[Giles, 1995] were first to recognize that Kohavi [Kohavi, 1978] had previously
called this subclass of finite state automata ”definite machines.” Kremer [Kremer,
1995a] also developed a grammatical formulation in the form of a 4-tuple for this
language.

The preceding architecture is not a recurrent network though it can be used in
applications where recurrent networks are used (which explains why we discussed
it here). A variation on the Window-in-Time topology is to use two temporal win-
dows: One window on the input symbols (as in WIT memories) and a second on
the output symbols produced by the network (Figure 2). In this network, output
values are fed back into the network as inputs. Because of its similarity to infi-
nite impulse response filters (IIRs), this type of topology has been called neural
network IIR. Narendra and Parthasarathy [Narendra, 1990] have used this type of
short-term memory.

Locally recurrent [Frasconi, 1995] networks use a different kind of recurrence.
In these networks the activation values of hidden nodes are computed according
to the formula

aj(t) = f(netj(t)); (6)
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Figure 1. Window-in-time Network.

where

netj(t) =
X
i

wji � ai(t) + wjjaj(t� 1): (7)

Here, wjj represents a recurrent, time-delay connection from the unit to itself
(Figure 3). A potential advantage of this type of network over the previous net-
works discussed is that it can adapt its internal representation. Whereas the previ-
ous networks had their memory fixed by the network’s inputs or target outputs, this
type of network can adapt their internal representations to the given task and it is
these internal representations that are fed through the recurrent connections. De-
spite this, these networks are still limited in their representational capacity [Fras-
coni, 96]. In Kremer [1999], some specific problems that these networks cannot
represent are identified.

Another approach, which has been widely used, is based on computing the net-
work’s internal state using a single-layer first-order feedforward network [Rumel-
hart, 1986] which uses the previous state (also called context) and the current in-
put symbol as input (Figure 4). This approach is used in Elman’s [Elman, 1991a,
Elman, 1990] Simple Recurrent Networks (SRN), Pollack’s [Pollack, 1989, Pol-
lack, 1990] Recurrent Auto-Associative Memory (RAAM), Maskara and Noet-
zel’s [Maskara, 1992] Auto-Associative Recurrent Network (AARN), and Williams
and Zipser’s [Williams, 1989] Real Time Recurrent Learning (RTRL) networks.
Unlike locally recurrent networks, where the only time-delayed connection that a
unit receives is from itself, in these networks time-delayed connections can come
from any of the network’s internal units. This gives this topology the computa-
tional power of finite state automata [Kremer, 1995], or if infinite precision units
are used, the computational power of Turing machines [Siegelmann, 1991, Siegel-
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mann, 1992]. A variation on this approach has also been developed that uses sec-
ond order connections between input and previous hidden and current hidden unit
activations [Giles, 1990].

These four different network topologies have different representational capac-
ities. It is important when selecting a topology to choose one which has the rep-
resentational power to solve the task at hand, but not more representational power
than necessary, because this will extend the search space of potential solutions
which can make learning take much longer or make it intractable altogether.

E. LESSON 2.2: CHOOSE A LIMITED NUMBER OF HID-
DEN UNITS

Another way, to limit the power of recurrent networks, is to limit the number
of hidden units, which obviously constrains the kinds of computations the net-
work can perform. It is fairly obvious that the types of constraints imposed by
limiting hidden units in recurrent networks will not fall along the lines of the clas-
sical Chomsky hierarchy of languages. Instead, in recurrent networks, a hierarchy
based on decision regions in the geometry of the input and internal representation
spaces will form. These types of network-based hierarchies may even fall along
lines which more closely resemble the distinctions between natural and artificial
languages since the network-hierarchies are a consequence of a parallel process-
ing architecture which may be considered more brain-like than the grammatical
rules which distinguish symbolic language hierarchies.
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F. LESSON 2.3: FIX SOME WEIGHTS
Choosing a limited number of hidden units also effectively reduces the number

of weights in the network. Since it is the weights which determine the computa-
tion performed, this will naturally constrain these computations. An alternative to
limiting the number of weights is to fix the values of some of the weights in the
network. This effectively reduces the degrees of freedom in the system, reducing
the search space for the learning algorithm and thus offering a potential speed-
up to learning. Of course, in order to be of use in solving a given problem, the
fixed weights in the network should incorporate some a priori knowledge about
the problem to be solved.

Fixing weights, however, cannot guarantee that the supplied a priori knowl-
edge will actually be incorporated in the grammar induced by a recurrent network,
because the trained weights in the network can overpower or nullify the contribu-
tions of the fixed weights. Suppose that the trained weights of the connections
leading into node i in some recurrent network are much larger than the fixed
weights leading into the same node. Since the signals transmitted through each
connection are multiplied by the connection’s weight and then summed together
by node i, the effect of the fixed weights will be negligible compared to the effects
of the larger trained weights. In this situation, the trained weights overpower the
fixed weights.

Now suppose that all the connections leading out of node j are trained and
have a very small weight after the training process. In this case any fixed weights
leading into node j will affect the activation value of the node, but this activation



value will be ignored by the rest of the network due to the small outgoing weights.
In this sense, the trained weights nullify the effect of the fixed weights.

Of course, a network which ignores a priori knowledge in either of these two
ways will further limit its representational capacity. That is, a recurrent network
with n nodes will be able to represent a large class of languages. A recurrent net-
work of the same size which has some fixed weights and uses those fixed weights
to compute its behaviour will be able to represent a smaller class of languages.
Finally, a recurrent network with n nodes which has some fixed weights but does
not use these weights in its computation (either because they are overpowered or
because they are nullified) will be able to represent the smallest class of languages.

Frasconi, Gori, Maggini, and Soda [Frasconi, 1995] have explored fixing net-
work weights based on a priori knowledge about an isolated word recognition
task to be solved. Specifically, they develop a network consisting of two sep-
arate networks with a common 1-Layer output function. One of the networks
(called “K”) consists entirely of fixed weights whose values are assigned based
on the available knowledge. The other network (called “L”) has adaptive weights
whose values are learned based on training data. By using this modular approach,
these authors are able to prevent the trained weights from overpowering the fixed
weights. However, the output layer can still ignore the values of the state nodes in
K by setting all weights originating from the K-memory to small values. We defer
the discussion of the type of a priori knowledge used by the authors and how this
knowledge is encoded into connection weights to the original papers [Frasconi,
1991, Frasconi, 1995].

Frasconi et. al.’s networks are able to achieve a recognition rate as high as
92.3% in empirical performance tests. The authors indicate that this is a signif-
icant achievement due to the fact that the task of isolated word recognition is
complicated by the fact that the words used are composed only of vowel and nasal
sounds. They further argue that their approach is more efficient than ones which
do not use a priori knowledge. Unfortunately, the authors do not provide any em-
pirical data comparing networks with a priori data to networks without a priori
data.

From these considerations and empirical results, we can conclude that it is
advisable to consider incorporation any knowledge of the kinds of solutions that
we want our network to find into the connection weights of the network. A number
of such encoding techniques have been developed for different kinds of networks,
and the reader is referred to [Frasconi, 1991, Frasconi, 1995, Giles, 1992b, Giles,
1993] for detailed discussions of encoding.

G. LESSON 2.4: SET INITIAL WEIGHTS
While it is obvious that fixing weights in a recurrent network restricts the

hypothesis space, it is less apparent that initial weights can also restrict the space.
To recognize the latter fact, we must realize that the search of the hypothesis space
in recurrent networks is usually governed by a gradient-descent algorithm. This
implies that each candidate grammar considered during the search must have a
smaller error value than the previous. But, since the initial weights of a network



define a grammar and since that grammar is assigned an error value, it must be
the case that all grammars with higher error values than the initial grammar are
omitted from the search. Thus, the initialization of weights can serve to restrict the
hypothesis space by causing all grammars with higher error values to be rejected
outright. Figure 5 illustrates an initial set of weights (i.e., a point in weight space),
a fictional error function, and those grammars which are not explored during the
search algorithm (shaded grey).

Error

Initial Weights

Weights

Figure 5. Initializing Weights to Limit Space.

It is interesting to note that “good” a priori knowledge will tend to signif-
icantly reduce the hypothesis space, while “bad” knowledge tends not to reduce
the hypothesis space as much, because good a priori knowledge will tend to result
in a network having a small error value. Since only those networks and grammars
with even smaller error values are explored, the hypothesis space will tend to be
greatly reduced. Conversely, bad a priori knowledge will tend to result in a net-
work with a large error value. In this case there will be many recurrent networks
and grammars having smaller error values and hence the hypothesis space will
tend to remain large. This is an extremely useful property since it implies that
good information will tend to have a large (positive) effect while bad information
will tend to have very little effect.

There is, however, one serious drawback in choosing initial weights to restrict
the hypothesis space: local minima in the error function. If the function map-
ping weight values to network error is non-monotonic, then it may be the case
that to get to a smaller error value one must first travel though a region (in weight
space) of larger error. Since the gradient descent algorithm travels only down the



error gradient, such smaller error values can never be achieved. That is, the ini-
tial weights do not limit the hypothesis space to all networks with smaller error
values, but rather only to those recurrent networks lying within the current basin
of attraction. If the attractor at the bottom of this basin represents a local mini-
mum (as opposed to a global minimum), then the hypothesis space will be unduly
restricted to exclude the best solutions. This is illustrated in Figure 6.

Error
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MinimumLocal
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Figure 6. How initial weights can reduce the hypothesis space to exclude optimal solutions.

We can conclude that setting initial weights to an approximation of the so-
lution is almost always desirable and one approach to overcoming the learning
difficulties suggested by Gold and Pinker.

IV. LESSON 3: SEARCH THE MOST LIKELY PLACES
FIRST

Another way to speed search (in general) is to order or bias the hypothesis
space based on some heuristic. Suppose you are a habitual car key loser and
that you keep track of where your keys turn up after each search. The results of
such record keeping might be something like: coat pocket: 53%, hallway shelf:
27%, kitchen table: 16%, beside telephone: 3%, in refrigerator: 1%. If you know
that most of the time the missing key has been located in your coat pocket, then
it makes sense to begin your search there. That is, it is logical to order your
hypothesis space and bias it in favour of the coat pocket. But just like a bad
hypothesis space reduction can hinder search, a bad ordering can also impede an



effective search. For example, using the hypothesis ordering designed for your car
keys to find a pitcher of orange juice would clearly be very inefficient.

Just as hypothesis space restriction can be used to simplify the search for a
grammar, hypothesis space ordering has also been applied to grammatical induc-
tion within the symbolic paradigm. In this case, a working hypothesis about the
grammar (from the hypothesis space) is used as a starting point. Then, as new
evidence about the grammar is presented in the form of training data, a change to
the hypothesis is made. The nature of this change is defined by some heuristic.
That is, certain types of hypothesis changes will be favored over other changes
even if both are consistent with the training data. The chosen hypothesis change
results in a new working hypothesis, and the process is repeated. Typically all
of the possible hypothesis changes are evaluated and the resulting hypotheses are
evaluated according to some weighting scheme. Then only the highest valued
new hypothesis is selected as the new working hypothesis. This is analogous to a
best-first search algorithm.

A weighting scheme could be based on complexity, for example, by assigning
a weight inversely proportional to the number of auxiliary symbols (states) used by
each grammar. This weighted selection process effectively orders the grammars
of the hypothesis space. While searching for a grammar which is consistent with
the training data, this ordering favors certain solutions over others. Ideally, good
solutions to the problem to which the grammatical induction system is applied
would be considered first and, thus, learning would be speeded.

While we have seen in the previous section that setting initial weights can re-
strict a hypothesis space, it is perhaps even more natural to think of setting initial
weights as a technique for ordering the exploration of that remaining space. Ob-
viously the initial weights define the first potential grammar which is explored by
the induction algorithm. The exploration of subsequent grammars is governed by
the learning algorithm. When the learning rate used by the gradient-descent algo-
rithm is small, each grammar considered will lie close to the previous candidate
grammar in the recurrent networks weight space. Since the output and state of a
recurrent network are governed by functions continuous in the connection weights
of the network, a small change in a connection weight will tend to result in a small
change in output and state. This means that the exploration of the hypothesis space
will proceed via similar grammars.

One advantage of using an ordering technique as opposed to a hypothesis
space restriction technique is that there is often some uncertainty associated with a
priori knowledge about a task. This implies that an irreversible decision, like elim-
inating certain grammars from consideration, is less desirable than an approach
which can eventually ignore incorrect information. Setting the initial weights of
a network can operate in this fashion, since even if the first weights are wrong
and the network updates weights in small steps, the network will still be able to
eventually explore other regions of the hypothesis space. This conclusion has
been empirically verified by Giles and Omlin [Giles, 1993]. They initialized the
weights of recurrent networks to implement one automaton, A, and then trained
the recurrent networks to represent another (different) automaton, B. Despite the



fact that this imposed an ordering on the hypothesis space which caused the net-
work to explore automaton A first, the network was still able to eventually find
and learn automaton B.

Specifically, Giles and Omlin [Giles, 1993] trained a recurrent network to im-
plement a randomly generated 10-state finite-state automaton. Then, they ini-
tialized the weights of the automaton to encode a different randomly generated
10-state automaton. The authors discovered that, so long as the assigned weight
values assigned were not too large (> 2), the networks were able to learn the
correct automaton in spite of the “malicious” information provided by weight ini-
tialization. Of course, the authors also found that learning times were signifi-
cantly longer for “malicious” information than for correct information. Giles and
Omlin’s results indicate that even if a priori knowledge is incorrect, an ordering
scheme such as initializing weights can sometimes still find the correct solution.

V. LESSON 4: ORDER YOUR TRAINING DATA

The previous two sections discussed methods that could be used to speed the
learning process before network training begins. This section describes a tech-
nique to provide information to the network during training. In the traditional
grammar induction paradigm, the learner is required to identify a grammar based
on a set of positive (and optionally a set of negative) example strings. Under input
ordering, the data available to the learner consists not of a set of strings, but of
a sequence of strings. That is, there is an order associated with the input data.
If input strings are presented in a non-random order, then the position of a string
within the sequence can represent an additional source of information about the
grammar to be induced.

For an input ordering to be advantageous, two criteria must be met: (1) The
presentation of a string s at time t must encode some information other than the
mere fact that the string is a member (or not a member) of the language. (2) The
learning system must be informed of the import of this encoded information and
use it to limit or order the exploration of the remaining search space. Only when
both of these criteria are met can a computational advantage be realized.

A. CLASSICAL RESULTS
We begin our discussion of input ordering by examining how input ordering

works and what it can achieve. Gold [Gold, 1967] proposed a type of input string
orderings which can improve the classes of grammars that can be induced using
only positive input strings (text learning). This ordering scheme uses indirect
negative information to learn languages which cannot be learned from positive
information alone. This is done by using the absence of a string at a particular
point in a sequence to infer that the string is illegal.

Suppose an order on all possible strings (grammatical and ungrammatical) is
known to the learning system and this order defines how the environment provides
the input data (e.g., alphabetical order). Note that there is an important distinction
between knowing the order in which a sequence of strings is presented and the
actual sequence of strings. An ordering defines a relation between all possible



strings for a given alphabet, i.e., ��, and thus defines where each string should
belong (if it were legal), whereas the input sequence generally consists of only a
subset of �� and defines the actual set of legal strings.

Now assume that the induction environment presents all the grammatical strings
to the learner according to the given order. Then, by omitting a string at the appro-
priate time, the environment essentially informs the learning mechanism that the
given string is ungrammatical. Since this implies that the training set effectively
contains both grammatical and ungrammatical strings, it is equivalent to informant
learning as defined by Gold. Since Gold has already shown that primitive recur-
sive languages are identifiable in the limit under informant learning, this class of
languages must also be learnable under ordered text learning. While this strict
sense of ordering is obviously an unrealistic idealization for practical grammar
induction systems, Gold’s work does point out the power that an ordering scheme
can provide.

A less stringent ordering scheme has been proposed by Feldman [Feldman,
1972]. He showed that even an effective approximate ordering of the input strings
could be used to convey indirect negative information. If there exists a point in
time by which every grammatical sentence of a given length or less has appeared
in the sample, then a learner capable of computing this point in time can also
compute which sentences are not in the language (this could be the case in human
language learning if children were spoken to in short sentences). Once again
this is equivalent to a learner’s being provided with both grammatical and non-
grammatical strings, appropriately labeled.

The common thread to both of these techniques is the fact that the learner
reacts differently to the same set of strings presented in differing orders. More
specifically, strings which are presented early cause the learner to make certain
assumptions about remaining strings which affects the order in which potential
grammars are considered, or the size of the hypothesis space which is explored.
More efficient and tractable learning can be accomplished by tailoring the learning
algorithm and the input sequence to each other.

B. INPUT ORDERING USED IN RECURRENT
NETWORKS

A simple ordering scheme which can be placed on strings is to sort them in
order of increasing length. Das et al. [Das, 1993] have used a recurrent network
training scheme whereby short simple strings are presented first, and progressively
longer strings are presented as learning proceeds. They contend that “incremental
learning is very useful when (a) the data presented contains structure, and (b)
the strings learned earlier embody simpler versions of the task being learned”
[Das, 1993], a well-known concept in machine learning theory. In this situation,
the fact that short strings are presented early, together with the fact that these
strings embody simple versions of later strings, implies that it is possible to use
the strings which have already been presented to make certain implicit logical
inferences about strings which have not yet been presented. A grammar induction
system can be designed to use these inferences to dynamically reduce or re-order



the space grammars it can induce.
For example, when a string of length n is presented as input to Das et al.’s

system, it is possible to conclude that all strings which are shorter than n and have
not yet been presented must be ungrammatical. This implies that these shorter
strings will not be presented at a later point in time. In this sense, additional in-
formation about future strings (i.e., that they will not contain certain short strings)
is transmitted by the ordered data. We will see shortly how a network learning
system could function in this fashion.

Giles et al. [Giles, 1991, Giles, 1992, Giles, 1992a] and Miller and Giles
[Miller, 1993] have used another simple ordering scheme: alphabetical ordering.
If input strings are presented in strict lexicographic order, then the presentation
of a string, s, implies that all lexicographically preceding strings which have not
been presented must be ungrammatical, in the case of text learning, and must be
of irrelevant (don’t care) grammaticality, in the case of information learning. In
this sense, an alphabetical presentation order can convey additional information
(regarding the grammaticality of unpresented strings). Once again, a learning
system which is tuned to this type of ordering in the sense that it restricts or orders
the space of inducible grammars dynamically could perform better than a system
in which input is not ordered. (Empirical data describing Giles et al.’s and Miller
and Giles’ results is described in the papers listed above.)

Both lengthening and alphabetical input orderings are very restrictive in the
sense that they precisely prescribe the order of presented strings. For practical
applications, it is often more desirable to use a less stringent ordering. Consider
a case where input strings are presented in phases. In the first phase, all short
strings, and only short strings, are presented. In later phases other strings are
presented. We shall refer to this type of partial ordering as multi-phase uniform
complete since the strings presented in the first phase are uniformly short and
completely represented. A multi-phase uniform complete input ordering can pro-
vide additional information in the same sense that a lengthening input ordering
does, with the exception that assumptions about strings which have not been pre-
sented can only be made at the end of a phase, as opposed to after each string.
Giles et al. [Giles, 1990] have used a multi-phase uniform complete ordering to
train recurrent networks. A similar ordering technique has been used by Elman
[Elman, 1991a, Elman, 1991] who used a form of ordering to train his networks.

C. HOW RECURRENT NETWORKS PAY ATTENTION TO
ORDER

We have now seen that the training environments used for recurrent networks
sometimes contain additional implicit information (beyond the grammaticality of
individual strings) in the form of string ordering. This represents one of the two
components required for a more efficient learning system. The second component
is a learner that uses the additional information. In this section we examine how
input ordering affects the solutions explored and found by recurrent networks,
thereby addressing this second component. Specifically, we examine two types of
order sensitivity: engineered sensitivity and natural sensitivity.



One way of ensuring that a learning system makes use of input ordering is
to specifically design an induction algorithm around an ordering scheme. Since
every symbolic algorithm “is equivalent to and can be ‘simulated’ by some neural
net” [Minsky, 1967], it is not at all surprising that it is possible to realize such a
hand-crafted algorithm in the form of a connectionist network. As an example,
Porat and Feldman [Porat, 1991] have designed a connectionist network which
implements an algorithm which induces FSA based on alphabetically-presented
input strings. In order to implement the algorithm, however, the connectionist
network requires an extremely complex control structure (compared to typical
connectionist networks) and has both hardwired and mutable connections. Thus,
the resulting learning system seems more like a connectionist-iterative learning
hybrid than a purely connectionist architecture.

An alternative to designing the learning system to accommodate a particular
input order is to design the input order to accommodate the learning system. This
is typically done in recurrent networks, where network design is based on princi-
ples such as simplicity, homogeneity, and local processing. Having designed the
network according to these principles, the researcher can only ensure cooperation
between input order and learner by adjusting the input order to suit the network’s
own natural sensitivities to this order. In a sense, the researcher has assumed part
of the burden of learning the language. It turns out that the order of pattern pre-
sentation affects recurrent network (and other network) learning greatly, because
initial weight changes in a network can draw solutions toward a certain local min-
imum from which the recurrent cannot later escape. This occurs because recurrent
networks do not perform true gradient descent.

Recall that, in order to efficiently approximate the gradient, weight adjust-
ments, �wji(t), are made piecewise over time. This implies that the component
of the gradient caused by a pattern presented at time t is computed after the weight
adjustment caused by the pattern at time t�1 has been made. This, in turn, means
that successive weight adjustments are not commutative. To better understand the
implications of this fact, we consider a simple example. Suppose we have a lan-
guage consisting of only two training strings. Suppose also that the network error,
for each of these two strings is given in Figure 7a and b, and the total error for both
strings is given in Figure 7c). Now suppose that the network’s initial weights and
corresponding errors are represented by the point labeled “B” in all three graphs.
Clearly if the network is first trained only on the string whose error function is
depicted in (a), then the network’s weights will move to the point labeled “C.”
Subsequent training with the second string will keep the network’s weights at “C”
since it represents a local minimum in the second string’s error space. By contrast,
if the network is first trained using only the second string, (b), then the network
will converge to point “A.” Again, subsequent training will not change the weights
in the network. Thus, it is clear that the order of string presentation during training
limits the hypothesis space (range of weights) which is considered in searching for
an error minimizing solution during later string presentations.

While it is easy to see that input ordering affects hypothesis space search dur-
ing learning, it is much more difficult to identify the ideal ordering scheme for a
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recurrent network. In the example above, presenting the string (a) before string
(b) will restrict the range of weights to include the global minimum of the error
space. By contrast, presenting string (b) prior to string (a) also restricts the range
of weights, but the restricted range does not include the global minimum of the
error space. Thus, in this simple example, it is important to present string (a) first.

In more general terms, it is always best to present strings whose error func-
tions have local minima at the same points in weights space as the total error
function has global minima. Since the presentation of a string adjusts the weights
of the network so that the string’s error is reduced, the network’s weights will
approach a local minimum in the presented string’s error function. Ideally, this
local minimum in the string’s error function will correspond (or lie close to) a
global minimum in the total error. Since the specific strings satisfying this condi-
tion depend entirely on the language to be learned by the recurrent network, we
cannot identify a general ideal ordering scheme. Instead we turn to the empirical
evidence to show that the ordering schemes described above do in fact correspond
to the natural sensitivities to input order in recurrent networks.

Das et al. [Das, 1993] compared training recurrent networks with a lengthen-
ing input ordering to training the same recurrent networks with a random ordering
of strings. They observed a 50% reduction in training time for the lengthening
ordering scheme. Giles et al. [Giles, 1992a] also observed an improvement in
training times when they presented strings in alphabetical order and concluded
that “the sequence of strings presented during training is very important and cer-
tainly gives a bias in learning” [Giles, 1992a] and that “training with alphabetical
order . . . is much faster and converges more often than random order presenta-
tion” [Giles, 1992a].

While the performance improvements realized by the ordering schemes of Das
et al. [Das, 1993] and Giles et al. [Giles, 1992a] took the form of accelerated
learning, Elman [Elman, 1991a, Elman, 1991] used ordering to learn an other-
wise unlearnable grammar. In two learning experiments, Elman’s multi-phase
consistent complete ordering approach was used after previous attempts to train
the network on the entire data set (complex and simple sentences) failed. In both
cases, Elman found that, “when the network was permitted to focus on the simpler
data first, it was able to learn the task quickly and then move on successfully to
more complex patterns” [Elman, 1991a]. This evidence clearly shows that input
ordering can be used in the connectionist domain (just as it has in the symbolic
paradigm) to improve learning efficiency and tractability.

VI. SUMMARY

In this chapter, we have examined the problem of language learning as a spe-
cial case of training recurrent networks. By examining results from the field of
grammatical induction from the past 30 years, we have discovered 4 useful lessons
that can be applied to training recurrent networks. The first lesson is that learning
languages is hard regardless of paradigm used. Since language learning is one of
the simplest cases of the kinds of learning that recurrent networks are tasked with,



we must infer that learning in recurrent networks is difficult in general. From this
first lesson, we turn our attention to making learning easier.

The second lesson revealed that, while it is tempting to select the most rep-
resentationally powerful computational tool possible for language learning tasks,
this is a dangerous choice since the representational power is inversely related to
the effectiveness of learning. Thus, we will often want to select a smaller search
space. There are 4 ways of accomplishing this in recurrent networks: (1) selecting
an appropriate network topology, (2) selecting an appropriate number of internal
units, (3) fixing some weights with appropriate values, and (4) setting the initial
weights to restrict the search space.

The third lesson showed that ordering the exploration of the hypothesis space
can also be very advantageous. This can be accomplished by setting initial weights.
Empirical evidence revealed that this is a very effective technique to speed learn-
ing which does not doom the training process even if malicious incorrect data is
used.

The fourth lesson focussed on the effect of ordering training data. This tech-
nique represents a method for indirectly providing information about which strings
are not in the language. A simple example revealed that recurrent network based
language learners are capable of using string ordering to effect the learning pro-
cess.

While language learning is only one potential application of recurrent net-
works, it is an informative one. These examinations have revealed effective tech-
niques for language learning derived from previous research. In most cases, these
techniques have already been implemented as heuristics for improving the train-
ing of recurrent networks with significant success. This chapter serves to ground
these techniques in a formal theory, thereby giving insights into why they work
and why, how, and when they should be applied. An extended version of this work
can be found in Kremer [1996a].
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I. INTRODUCTION 
 
    In spite of the growing research on connectionist Natural Language 
Processing (NLP), there are still a number of challenges to be solved, for 
example, the development of proper linguistic representations. Natural language 
is a dynamic system with underlying hierarchical structure and sequential 
external appearance. Therefore, NLP systems need an adequate hierarchical 
system of linguistic representations. What we roughly distinguish as letters, 
words, sentences, etc., needs to be encoded in a proper and systematic manner, 
permitting direct, “holistic” operations over the resultant abstract representations 
rather than over external sequential forms [Chalmers, 1990, Blank, 1992, 
Hammerton, 1998]. Those representations should be static, unique 
characterizations of the original objects, which is necessary for reproducing 
them back into their sequential form. They should allow holistic transformations 
and associations to representations from other modalities – visual, effectual, etc. 
Natural language is not the only structured process where static representations 
at different levels are necessary for modeling: consider composite actions, 
dynamic visual processes and so on. We find other examples also outside of 
cognitive modeling, such as modeling economic processes and physical 
phenomena. 
    A widely used practice in connectionist natural language modeling is 
localistic and handcrafted feature based encoding [Seidenberg, 1989, Elman 
1990, Plaut, 1996, Henderson, 1998], which restricts the capacity of the 
processing system. It would be preferable that those representations evolve in 
the course of experiencing the language in its external sequential form, which is 
in accordance with our capacity to learn any language without any prior 
knowledge of it. A first attempt to build such representations was suggested by  
Pollack, [1990]. He extended the static Multilayered Perceptron [Rumelhart, 



1986] to the Recursive Auto Associative Memory (RAAM) model, which 
develops compact distributed representations of the static input patterns through 
an autoassociation. RAAM was further extended to a Sequential RAAM 
(SRAAM) for sequential processing. Different implementations of the latter 
model had variable success even when applied to trivial data [Chalmers, 1990, 
Blank, 1992, Blair, 1997, Kwasny, 1995, Hammerton, 1998]. 
    The development of global-memory recurrent neural networks, such as the 
Jordan Recurrent Networks [Jordan, 1986] and the Simple Recurrent Networks 
(SRN) by Elman [Elman, 1990] stimulated the development of models that 
gradually build representations of their sequential input in this global memory. 
The Sentence Gestalt Model [St. John, 1990] gradually encodes the input words 
into a gestalt and questions it further for roles with another static network. 
Similar architecture under the name “Movie Description Network” was 
presented by Cottrell, Bartell, and Haupt [Cottrell, 1990] which was trained to 
gather representations of the sequential visual input (a movie) and describe it 
with some simple language. A more recent implementation of SRAAM by 
Kwasny and Kalman [Kwasny, 1995] employs SRNs in order to build 
representations of the sequential input. 
    In this chapter, I propose a novel connectionist architecture designed to build 
and process a hierarchical system of static distributed representations of 
complex sequential data. It follows upon the idea of building complex static 
representations of the input sequence, but has been extended with the ability to 
reproduce these static representations in their original form, by building unique 
representations for every input sequence. The model consists of sequential 
autoassociative modules – Recurrent Autoassociative Networks (RANs). Each 
of these modules learns to reproduce input sequences and, as a side effect, 
develops static distributed representations of the sequences. If requested, these 
modules unpack static representations into their original sequential form. The 
complete architecture for processing sequentially represented hierarchical input 
data consists of a cascade of RANs. The input tokens of a RAN module from 
any but the lowest level in this cascade scheme are the static representations that 
the RAN module from the lower level has produced. The input data of the 
lowest level RAN module are percepts from the external world. The output of a 
module from the lowest level can be associated with an effector. Then, given a 
static representation set to the RAN hidden layer, this effector would receive 
commands sequentially during the unpacking process. 
    RAN is a recurrent neural network which conforms to the dynamics of natural 
languages. Also, RANs produce representations of sequences and interpret them 
by unpacking back to their sequential form. The more extended architecture – a 
cascade of RANs – resembles the hierarchy in natural languages. Furthermore, 
given representative training environment, this architecture has the capacity to 
develop the distributed representations in a systematic way. The question 
whether connectionist models can develop systematic representations has been 
discussed ever since the challenge put by Fodor and Pylyshin [Fodor, 1988] that 
only classical symbolic systems can guarantee systematicity (see Aydede [1997] 
for review). Connectionist systems claimed to meet this challenge are the 



 

RAAM and SRAAMs, and the Smolensky’s tensor products [Smolensky, 1990] 
among others. Later in this chapter I will argue that RANs provide an account of 
systematicity, too. Therefore, I believe that the RAN and the RAN cascade can 
participate in a more global cognitive model, where the distributed 
representations they produce are extensively transformed and associated. 
    This chapter continues with a discussion of the hierarchy in dynamic data in 
the next section. A review of connectionist sequential processing is given, after 
which the RAN model is presented in detail in section four. In the same section 
a small RAN example is presented for developing representations of syllables. 
The cascade model is given in section five, where a two-level representation of 
words is presented too. Next, I discuss some cognitive aspects related to RAN 
and how this architecture might provide some answers for cognitive modeling. 
After a discussion of RAN capacities and the representations it develops in 
section seven, the chapter will finish with a conclusion. 
 

II. SEQUENCES,  HIERARCHY, AND 
REPRESENTATIONS 

 
    Static objects and dynamic processes are mutually interconnected. On one 
hand, dynamic processes are ultimately composed of sequences of static objects 
but, on another hand, the same dynamic processes are generated by single 
objects and might be represented by these objects. This is more explicit in 
discrete dynamic objects, such as sequences composed of discrete data. The 
sequences are entities by themselves and consist of strings of tokens, but these 
sequences might build even more complex sequences. Therefore, sequential data 
might have some underlying structure more complex than linear: that is, there 
might be some hierarchy within a long sequence composed of basic tokens. For 
example, in natural languages, there are basic tokens – phonemes or letters; 
next, there are words consisting of sequences of letters or phonemes, sentences 
consisting of sequences of words, and so on (1). That is, in natural language, 
dynamic objects are part of other, more complex dynamic objects. Hierarchical 
objects naturally evolved during evolution are better suited to represent, process, 
and transmit information, than linear objects. Another advantage of this 
hierarchy is the redundancy among the linguistic objects, which makes the 
transmission of the information content in this sequence more reliable. 
 
  ( ( J o h n ) ( l o v e s ) ( M a - r y ) )                                      (1) 
 
    Sequential data that have such composite structure might have very long 
external representations, that is, representations consisting of rows of lowest 
level tokens. For example, in natural languages average sentences have some 50 
characters and the current chapter has more than 15,000 characters. This data is 
difficult to represent and process in this external form. It has structure and I 
believe we organize and remember the language we experience in accordance 
with this structure. In the natural languages, for example, there are mechanisms 
for referring to some substructures – e.g., definite markers and pronouns. When 



it comes to processing those structures as single entities, we prefer to use 
internal representations of those structures rather than their external forms. 
Definite noun phrases and pronouns are just the external expressions of those 
internal representations and we use them very often. Single internal 
representations are much more economical to use when associating linguistic 
expressions to visual objects, actions, etc. Those associations are made between 
the internal representations of those complex objects rather than between their 
external representations. Therefore, if we want to model a cognitive system 
dealing with such a variety of data, it should properly organize a system of such 
representations.  
    Similar systems of representations naturally occur in symbolic approaches 
when modeling cognition: the external terminal tokens are organized by a 
system of rules with the help of internal non-terminal nodes, which in turn are 
similar to the internal static representations discussed. People still argue that 
because of this organization of the symbolic approach and its unlimited 
representational capacity, cognitive modeling should be based on the classical 
“language of thoughts” [Fodor, 1988], meaning the use of syntactically 
structured representations and rules defined over those representations. 
Connectionists object to this approach, mainly because of the so-called symbol 
grounding problem – the problem of explaining the relations between 
representations (symbols) and objects in the environment where a cognitive 
agent exists [Searle, 1984, Dorffner, 1991]. Connectionist  architectures are 
particularly good at associating low level data – percepts or effectors – to higher 
level processing systems. Another problem concerning the symbolic approach is 
related to the "hardness" of its rule-based logical computations [Smolensky,  
1991]. Models should accommodate the "softness" of cognition, as 
connectionism does, by processing data in a more fuzzy, stochastic manner. 
    Nevertheless, connectionism is still looking for an answer to the question of 
how to organize the information coming from the external sensors. Some of the 
available connectionist solutions are still not satisfactory. Although the 
implementation of the sequential RAAM proposed by Kwasny and Kalman 
[Kwasny, 1995] was promised to provide a better solution than the standard 
sequential RAAM, Hammerton [Hammerton, 1998] found that in practice this 
model did not learn even trivial data well. Therefore, the door is still open for 
other more optimal solutions and, in section four of this chapter, I propose 
another model: a cascade of Recurrent Autoassociation Neural Network to build 
a system of such representations. 
    In the next section I will present some details about a few connectionist 
architectures for sequence processing, but before that, I will outline more 
explicitly some features that connectionist systems and distributed 
representations must meet. 
    First, these representations should develop emergently, in the course of 
experiencing the external training data. Different levels of representations 
should develop consequently, one after another, possibly refining the 
representations from the lower levels. The lowest level of representations should 
be perceptual in case of dealing with sensors or effectual when producing 



 

actions. This gradual representation development, together with latter 
associations to representations from other modalities, solves the symbol 
grounding problem. Multi-modal associations should develop in simultaneously 
processing different modalities, for example, linguistic and visual. 
    Next, in order to meet the cognitive modeling requirements [Fodor, 1988], 
these representations should have a kind of structure allowing a combinatorial 
syntax, not necessarily explicit as in the classical symbolic systems, but 
understandable for other connectionist modules. This requirement is necessary 
for emergence of systematicity among those representations and for holistic 
computations [Hammerton, 1998, Smolensky, 1991]. The latter are structural 
operators acting upon the whole complex static representations, rather than on 
the token parts of the structure (sequence). Systematicity is the key to higher-
order cognitive processes. 
    A failure to accommodate these features, when modeling language, results in 
models with limited capacities and no lasting implications, which is typical for 
many of the experiments reported that feature, for example, static language 
processing and hand-coded data encoding. Neither of those two popular 
approaches is in accordance with the spirit of natural language. We acquire 
language sequentially, hearing sounds and building or recognizing gradually a 
number of objects or temporal structures, such as, words, phrases and sentences. 
Similarly, when thinking, we produce and articulate language sequentially 
(possibly silently) by translating those structures back into temporal events, 
finishing this process by executing motor commands. The number of those 
structures is enormous and a designer's hardwired encoding does not seem 
plausible at all. Also, the number of existing languages and our competence to 
learn any of them implies that those objects should develop constantly during 
the communication process, from the early childhood. 
 

III. NEURAL NETWORKS AND SEQUENTIAL 
PROCESSING 

 
A. ARCHITECTURES 
    For more that a decade, neural network research has been considered 
important not only because it makes efforts toward explaining our intelligence, 
but also because it provides effective working models for solving a wide range 
of practical problems. Numerous researchers (e.g., [Rumelhart, 1986, Grossberg, 
1982, Kohonen, 1984, and Hopfield, 1982]) established the theoretical 
background in this field. The models they have developed – the Multilayer 
Perceptron trained with supervised Backpropagation learning algorithm, the 
ART & ART-Map, the self-organizing Kohonen Maps and the Hopfield 
Networks, correspondingly – were theoretically [Hornik, 1989] and 
experimentally [Lawrence, 1995] proven to be capable of solving many static 
tasks. Although the response of some of these models to the input pattern 
depends on their internal dynamics (Hopfield and Grossberg Neural Network 
models), they are not endowed with the capacity to process dynamic or 
sequential patterns. Hopfield NNs are designed to search iteratively for one of 



the encoded attractors. ART models develop localistically represented 
categories, which restricts their capacity when processing large variety of 
sequences, even with some special encoding schemes. 
    Problems such as language processing and robot control, which are essentially 
dynamic, pushed the connectionist investigations toward searching for NN 
models capable of handling such dynamic data. The first NN models were still 
static, encoding limited dynamics by means of a window, shifting over 
sequential data. The NETtalk model [Sejnowski, 1987] was trained to produce 
phonetic representations of words, where the context required to map the current 
letter was encoded within a shifting window of size seven – three letters on the 
left and three letters on the right side of the letter to be pronounced. This is an 
example of the so-called Finite Input Response filter, where the system response 
to a given input is limited to a predefined number of steps. 

 
Figure 1.  Simple Recurrent Network that "reads" words, that is, maps orthographic to phonologic 
lexical representations. 
 
    The first real recurrent models were extensions of the Multilayer Perceptron 
with recurrent connections. They implement another type of dynamics – Infinite 
Input Response – where the input at a certain time influences the system 
response until the dynamics are externally reset. Several recurrent versions of 
the MLP were developed. In one of them [Jordan, 1986], the network state at 
any point at a time is a function of the input at the current time step, plus the 
state of the output units at the previous step. In another recurrent model 
proposed by Elman [Elman, 1990] – Simple Recurrent Networks (SRNs) – the 
network's current state depends on the current input and its own internal state, 
which is represented by the activation of the hidden units in the previous 
moment – see Fig.1. This internal state is considered as a context that provides 
information for the past. The SRNs were successfully employed for many 
linguistic and other tasks where the objects have sequential nature [Reilly, 1995, 
Wilson, 1996, Cairns, 1997, Stoianov, 1998, Stoianov, 1999]. Simple Recurrent 
Networks were initially trained by Elman with the standard backpropagation 
(BP) learning algorithm, in which errors are computed and weights are updated 
at each time step. While more biologically motivated because of the local-in-
time weight adjustments, the BP is not as effective as the backpropagation 
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through time (BPTT) learning algorithm, in which error signal is propagated 
back through time and temporal dependencies are learned better. A detailed 
technical description of the SRNs and the BPTT algorithm is presented in 
section four. 
    The static self-organizing Kohonen Map neural network was extended with 
recurrent connections too, which made the network responses dependent on both 
the current input and the last neural map activations. Models following this idea 
are the Temporal Kohonen Map (TKM) by Chappell and Taylor [Chappell, 
1993] and the Self-Organizing Feature Map for Sequences (SARDNET) by 
James and Miikkulainen [James, 1995], among others. There are still other 
connectionist architectures able to process dynamic data, usually by inducing 
dynamics in existing static models with recurrent connections among neurons 
(global memory) or implementing dynamics in neurons (local memory). The 
latter types of architectures vary with regard to the place of the dynamics – in 
the weights, in the activation function, or both [Lawrence, 1995, Tsoi, 1994]. 
    A common restriction on most of the recurrent models is that the input data 
they process has to be linear in the temporal dimension. These networks are able 
to recognize and classify the temporal sequences they have been trained on 
(SRNs and Jordan Networks) or they have clustered during the self-organization 
process (TKM and SARDNET), but they can not extract more complex temporal 
features or substructures. In addition, as the length of the sequences becomes 
greater, the performance worsens. This problem has been recognized by a 
number of authors. Bengio, Simard, and Frasconi [Bengio, 1994] showed that 
earning long-distance dependencies is difficult even for very simple tasks (long 
strings of a few basic symbols). Miikkulainen and Dyer [Miikkulainen, 1991] 
emphasized that the required network size, the number of training examples, and 
the training time become intractable as the sequence temporal complexity 
grows. 
 
B. REPRESENTING NATURAL LANGUAGE 
    As I discussed earlier in the previous section, an important moment when 
dealing with sequences is the ability to develop a hierarchical structure of 
representations of the processed sequences. This question is especially apparent 
in natural language modeling. In earlier connectionist models, the lexemes were 
represented in a static manner with some artificial and not always effective 
encoding schemes (e.g., in Seidenberg [1989] and Plaut [1996]), and sentences 
consisted of some artificial and very limited in number words [Elman, 1990, 
Miikkulainen, 1991, Tabor, 1997]. When modeling some other problems, for 
example learning lexical phonotactics [Stoianov, 1998, Stoianov, 1999] or 
learning the mapping from orthographic to phonetic representations for certain 
language [Stoianov, 1999], one does not really need static representations of 
words, but in other cases, such as holistic computations or static associations, 
this is obligatory. To my knowledge, there are no approaches that model 
people’s full capacity to deal with structured dynamic data using 



connectionism.1 People associate the sounds they hear with visual patterns or 
actions. Similarly, they associate actions with words and sentences. All of these 
objects are realized as sequences of small parts, spanning time. In order to treat 
them as single entities, we shall enclose them and represent them statically. This 
naturally leads to a search for methods packing sequences into static 
representations and unfolding them back into their sequential form. 
    High-level connectionist language modeling has focused on small illustrative 
problems: as the learning is restricted to simple grammars and a very limited 
number of words [Elman, 1990, Tabor, 1997] or word TAGs [Henderson, 1998]. 
I attribute this not to the connectionist models’ inability to learn complex 
dependencies, but rather to the absence of adequate concepts of how to develop 
high-level distributed representations. Thus far, representations have been 
designed mostly by hand, either feature based or even simpler – localistically. 
This works well at the bottom stages of language processing, where a very 
limited number of characters and phonemes constitute words, but not at higher 
linguistic levels, where large number of words, phrases, sentences build more 
complex structures. The variety at those levels is enormous. How can 
representations be developed for such objects? Hand-crafting here simply does 
not work. Some cognitive scientists suggest “tensor products” [Smolensky, 
1990], which expand with the increase of the data complexity. Others suggest 
syntactic structures to be represented both in time and space (Temporal 
Synchrony Variable Binding [Henderson, 1998], but these solutions do not 
produce fixed-sized static representations for input objects of variable 
complexity. Therefore, others support the more plausible idea of static, fixed-
size, emergently developed connectionist “symbols.” But how can such 
representations be developed? 
    A significant attempt toward a more systematic way of representing structures 
and sequences was the development of the Recursive Auto-Associative Memory 
(RAAM) by Jordan Pollack [Pollack, 1990]. This architecture is another simple 
extension of MLP. The RAAMs auto-associate the input data, which is a 
concatenation of two patterns, and use the activations of the hidden layer 
neurons to represent this concatenation (Fig. 2a). This is equivalent to the 
learning of a simple symbolic rule. When applied recursively, that is, when 
using the developed representations as an input for another compression, RAAM 
can learn a grammar and develop representations for the non-terminal symbols 
in this grammar. This makes RAAM a connectionist implementation of a 
symbolic processor. However, theoretical problems arise from connectionist 
point of view, due to the need for an external symbolic mechanism to store 
representations. Also, the training process is immensely difficult due to the 
recursive reuse of the ever changing representations in the course of the training 
[Kwasny, 1995]. 
    RAAMs were theoretically extended to model a stack, which made the model 
capable of learning and representing sequences – Sequential RAAM (SRAAM). 
However, this model needs an external stack during  the training, which is a step 

                                                           
1 See the following discussion on the (S)RAAM connectionist models. 



 

back from connectionism, as commented earlier. It is difficult for SRAAM to 
learn even trivial structures and sequences, which makes it an impractical 
model. Also, RAAM produces representations at every time step, to be reused as 
inputs, while dynamic objects with uniform structure need single static 
representations. In that respect, producing single representations of a whole 
object is more economical – representations at certain level should be produced 
only if there is a necessity of using them. In natural language, producing static 
representations of items such as syllables, words and sentences is more useful 
than producing representations of arbitrary combinations of letters, words, etc. 
Syllables are involved in morphological transformations. Words are associated 
with visual patterns and actions; sentences have more concrete semantic 
meanings. We know that those linguistic objects are distinguished because they 
have certain functions, and we make use of them. On the contrary, producing 
representations of arbitrary combination of mixed items is not so useful. 
 
 

 
 
 
 
 
 
 
 

 
 
  (a) (b) 

 
Figure 2.  (a) RAAM: left and right input tokens are autoassociated, which results in a single 
compact representation of the input tokens at the hidden layer. (b) SRAAM: based on RAAM and 
SRN. (I) Compression: tokens apply one at a time to the input and they are autoassociated, together 
with the previous state of the context. This results in ever more compact representation of the input 
sequence at the hidden layer. (II) Decompression: a compact representation applies to the hidden 
layer and produces the last token from the encoded sequence and the previous state of the stack, 
which in turn is applied again to the hidden layer. 
 
    Another implementation of the sequential RAAM was presented by Kwasny 
and Kalman [Kwasny, 1995]. Their SRAAM combines the architecture of the 
Simple Recurrent Networks and the RAAM idea for autoassociation (Fig. 2b). 
The stack that the RAAM requires during the learning is encoded in the 
contextual memory of the SRN. This makes the training faster and easier. 
Further, Kwasny and Kalman suggested a variation of the mean square error 
function that boosts small differences between the targeted and resulted neuron 
activations. When combined with a modified conjugate gradient training 
algorithm, this reportedly improved the learning. And still another important 
contribution in this work was a method for representing recursive structures – by 
means of symbolic transformation of any tree structure into a binary tree, which 
can easily be transformed to a sequence. Those two operations are reversible, 
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which allows reconstructing the original structures from their sequential 
representations. 
    Exploring holistic computations, Hammerton [Hammerton, 1998] attempted 
to recreate the Chalmers [Chalmers, 1990] experiments using the Kwasny and 
Kalman SRAAMs, which was promised to learn faster and more reliably. For 
this purpose, he used the corpus from Chalmers, [1990] –  a small corpus 
containing 250 sequences built out of 13 distinct items. Standard 
backpropagation  learning algorithm and two variations of the Kwasny and 
Kalman training algorithm were utilized. Hammerton reported that, with the best 
learning algorithm (the noted earlier modified error function and the conjugate 
gradient training), the network encoded and decoded up to 85% of the 130 
training and 87.5% of the remaining 120 unseen testing sequences (Hammerton, 
p. 43), which departs from the reported perfect learning by Kwasny and Kalman 
(with SRAAM on a more complex task) and Chalmers (with RAAM on the 
same task). Therefore, Hammerton concluded that “the SRAAM is not as 
effective a vehicle for holistic symbol processing as it initially appeared.” 
    Also, there are two other problems when those models are used to develop 
sequential representations. First, as I said earlier, they produce static 
representations at every time step, which is more useful for representing 
recursive structures than sequential data. Next, due to the stack-based memory 
organization, the input sequences are reproduced inversely. Therefore, one 
would need another external mechanism to reverse those sequences. The 
solution I propose in the next section is based on an autoassociation and SRN, 
too, but it implements a queue rather than a stack mechanism, which leads to 
reproducing the sequences in the right order. 
    The first attempt to employ recurrent architectures for producing a 'gestalt' or 
a single static representation of a sequence of words (statically represented) was 
made by St. John and McClelland [St. John, 1990] – the Story Gestalt Model. 
This model comprises two networks – a Jordan Recurrent Network which 
gradually processes the input sentence and uses the activations of the output 
layer to represent the sequence presented as input thus far. This compact 
representation was called gestalt. The second NN is a static MLP, trained to 
extract some information of interest for a sequence represented with its gestalt as 
input to the MLP (Fig. 3). Another similar model, the Movie Description 
Network by Cottrell, Bartell, and Haupt [Cottrell, 1990] uses the Simple 
Recurrent Networks to develop representations of simple movies presented as 
input to the SRN. A second SRN produces a verbal description of the input 
movie. These are specific, rather than universal, models; they produce 
representations which are not necessarily unique and can not be involved in a 
hierarchical system of representations of composite data. 
    The capacity of SRN to process sequential data was exploited in another 
approach, aimed at obtaining static representations of syllables [Gasser, 1992]. 
In this model, one recurrent network was trained on a sequential mapping – an 
input train of phones to an output train of patterns, which are concatenations of  
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.   Story Gestalt Model by St. John. In this architecture, a Jordan recurrent network (1) 
gradually produces representations of the input sequence. Next, a MLP (2) extracts from these 
representations some of the constituents of the sentence. 
 
the same phones and a static lexical representation of the word the phones 
belong to. The recurrent layer activations at the end of each syllable were 
recorded and used by a second  network that was trained to unpack these 
representations to their original sequential form. Having originally the task of 
word recognition, this scheme requires that both phones and lexical 
representations be offered during training. Static syllable representations are 
resulted as a side effect. This approach takes a direction which is opposite to the 
gradual building of language representations. Instead of building word 
representation, it does the opposite – it produces syllable representations in the 
course of word recognition.  
    The approach presented here takes another direction, consistent with the 
principle of gradual language evolution and learning, by processing and 
evolving language items of increasing complexity. Another problem with the 
solution presented by Gasser is that because the packing and unpacking 
processes are split, this method requires the training sequences during both 
learning tasks, which is less plausible and increases the learning time. The 
sequential autoassociative task in my approach requires only a short-term 
memory to keep the sequence to be presented for a second time at the output 
layer and the system only has to perceive the input the environment provides 
throughout the learning (which may last indefinitely: we can keep the learning 
going non-stop). 
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IV. RECURRENT AUTOASSOCIATIVE NETWORKS 
 
    In this section I will present an architecture designed to develop and make use 
of static, implicitly structured, interpretable representations of sequences. The 
proposed model is an extension of the Simple Recurrent Networks [Elman, 
1990]. Recall that SRN is a recurrent neural network architecture based on the 
feedforward Multi Layered Perceptron with a global context memory storing the 
recent activation of the SRN hidden layer,2 which is fed back as an additional 
input to the hidden layer itself (Fig. 1). The context layer has the capacity to 
encode all the information for the input provided to the network, since the 
beginning of the sequence. Hence, if we reset the context layer and apply a 
sequence, at every moment the hidden layer and the context layer (after a short 
delay) will contain static distributed information for this sequence, which as we 
will see later is not necessarily a representation of the input sequence, but rather 
depends on the learning task.  
    There are different possibilities to obtain static representations of the input 
sequence. One of them is just to use the context layer activation after the whole 
sequence has been processed in an item prediction task – similarly to the gestalt 
models by St. John and McClelland [St. John, 1990] and Cottrell, Bartell, and 
Haupt [Cottrell, 1990]. The networks there were trained to predict the next input 
token, which forces the networks to learn information specific to this particular 
task, but is insufficient for developing complete representations of the input 
sequences. We need an organization or a learning task that guarantees that the 
distributed representations developed by the network (1) contain all information 
about the sequence, (2) are unique for each sequence, and (3) contain enough 
information to reproduce the sequence, which is a consequence of (1) and (2). 
    Representations satisfying the above requirements evolve naturally, if we 
train the network on an autoassociation task, that is, to reproduce the input 
sequence. But then, there is another problem – the timing, when to present the 
input and the output patterns. One can try to reproduce the current input pattern 
immediately, but this will not produce any useful hidden layer representations – 
there will be no need of a context for this task. A delay of one step, or two, or 
some other fixed number of steps would train the network to develop 
information specific for the prediction task, but the representations would still 
not necessarily satisfy the conditions 1 – 3. In order to produce such 
representations, the network has to be trained on an autoassociative task in 
which the input sequence starts to be reproduced after the whole input sequence 
has been represented to the input, followed by a unique pattern, a trigger, 
indicating the end of the sequence. This way, if the training set contains 
sequences, which in turn contain another sequence in the training corpus as an 
initial sub-sequence, then the network will still produce distinct representations 
for both sequences. The static representation of the sequence will be just the 

                                                           
2 The term “layer activation” denotes a numerical vector with the activations of 
all neurons in that layer. 



 

hidden layer activations at the moment when the trigger has been applied and 
processed by the network (Fig. 4). 
 
 
 
 
 
 
 
 
(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
Figure 4. Recurrent Autoassociative Network: (a) architecture and (b) functional temporal unfolding.  
Operations: (I) input sequence packing (time steps 0–3), (II) obtaining or setting a static 
representation (time step 3), and (III) unpacking the static representation to its sequential form (time 
steps 3-6). 
 
    There are some other details to be specified, namely the input pattern after the 
trigger has been applied to the input layer, the target output pattern before that 
and the target output pattern after the sequence has been reproduced. The target 
output pattern after the reproduction of the whole input sequence is another 
special pattern, labeled end-of-sequence, which will signal that the whole 
sequence has been produced. The input patterns after the trigger might be either 
the same trigger, repeatedly provided until the network produces the end-of-
sequence pattern, or, what I found more helpful to the network in learning this 
difficult task, the last ouput pattern provided to the inner larger. The latter 
approach provides guiding information about how far the network has 
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progressed in reproducing the sequences, and experiments have demonstrated 
that, indeed, it is easier for the network to learn the task with this approach. 
    With regard to the output target patterns at the time when the sequence is still 
being provided to the input, the learning algorithm used – backpropagation 
through time [Haykin, 1994] – does not necessarily need target patterns at the 
earlier moments, provided that an error signal is being propagated back through 
time. Indeed, the sequential autoassociative task provides such an error, which 
originates in the second phase of the autoassociation (Fig. 4, step III).  
    Another possibility is to train the network at the same time on a prediction 
task. First the network produces its anticipations about the coming patterns. 
Next, it reproduces the whole sequence using no external input, but only what 
the network has encoded at the context layer, perhaps reusing the produced 
output pattern as input. The latter approach is more plausible considering what 
each of us has observed when listening to a speech in a noisy environment, that 
we use anticipations in interpreting that speech. In such a noisy environment, 
having received some initial context, the network can produce the most probable 
sequence for this left context and next to produce the static representation for 
this sequence by presenting the triggering pattern. Both approaches were tested, 
but in the latter case the performance was worse, which I attribute to the higher 
computational complexity of this joint task. The network in the second approach 
has to learn two tasks, which makes the learning harder. When using the first 
approach, the network learns the autoassociative task faster and with fewer 
errors. The first approach satisfies the above outlined requirements, concerning 
the representations produced, and therefore it was used in the experiments 
reported on here. 
    In summary, by training a recurrent neural network on an autoassociation task 
as described above with a training corpus containing a set of sequences, the 
network learns to produce static distributed representations of these sequences. 
The hidden layer activations, at the moment the triggering pattern is applied to 
the input and processed by the network, are used for this purpose. The static 
representations for each input sequence are unique due to the specific setting of 
the autoassociative task. After successful training, a RAN network has two 
functions: firstly, to generate the static representation of a given input sequence 
(Fig. 4: steps I and II) and  secondly, to reproduce the original sequential form 
of a static representation, when the hidden layer is set to the static 
representations (Fig. 4: steps II, III). 
 
A. TRAINING RAN WITH THE BACKPROPOGATION 
     THROUGH TIME LEARNING ALGORITHM 
    The RAN (Fig. 4) and the SRN (Fig. 1) models have the same architecture 
and share similar feedforward processing steps and learning algorithms. 
However, when SRNs are trained on prediction task they can also be trained 
with the standard error backpropagation algorithm, while RANs can only be 
trained with backpropagation through time learning algorithm (Haykin 1994), 
because in the first feedforward processing phase (Fig. 4, phase I), there is no 
error signal originating at the output layer and backpropagated through the 



 

network, but only error signal computed in the second phase (Fig.4, phase III) 
and backpropagated through time. With regard to this, any other learning 
algorithm that backpropagates error signal through time can be used, too. What 
is important, when using BPTT to train RANs, is to set properly the sequence of 
input-output training data, according to the scheme outlined earlier in this 
section. The BPTT learning algorithm is generally known to the potential 
readership, but for completeness, it will be described in this subsection. 
    SRNs have two working regimens – a utilization of a trained network and 
network training. The first one is simply applying a forward pass, where the 
current input signal is propagated forward throughout the network and the 
current context layer activation is used. After each forward step, the hidden layer 
activation is copied to the context layer, to be used later. The network utilization 
is the same as the forward step in the BPTT, which in turn is described in the 
next section. The BPTT learning algorithm itself is more complicated. It 
includes: firstly, a forward pass (2-5) for all input tokens, keeping the network 
activations in a stack; secondly, a backward through time pass (6-9), where the 
errors are computed at the output layer and backpropagated through the network 
layers and through time, and thirdly, updating the weights with the accumulated 
weight-updating values (10). During the second step, at each time moment but 
the last one, a future error is used, processed and backpropagated further 
through time. 
 
1. Forward Pass 
    In the following description, |IL|, |HL|, |CL|, |OL| stand for the size of the 
input, hidden, context and output layers, correspondingly. The input signals 
provided to the hidden layer neurons and output layer neurons are noted as 
netH

i(t) and netO
l(t). Next, inj(t), cnk(t), hni(t) and onl(t) stand for the activations 

of the j-th input, k-th context, i-th hidden and l-th output  neurons at time t. And 
finally, wH

ij , w
H

ik , and wO
li are the weights of the connections between j-th input 

neuron and i-th hidden neuron, k-th context neuron and i-th hidden neuron, and 
i-th hidden neuron and l-th output neuron, respectively. For convenience, the 
bias for all layers is encoded as an extra input neuron (j=0; i=0) with constant 
activation 1. The activation function f(.) is of sigmoidal type – the logistic 
function or the hyperbolic tangent function.  
    The items of the training/testing sequence S=[c1c2…c|S|] are referenced with 
an index t, set to zero in the beginning of the sequence processing. Also, before 
applying a new sequence, the context layer is reset by setting all context neurons 
cnk(t=0) to zero (k=1…|CL|). The sequences are presented to the network one 
token ct at a time. For each token, a forward pass is processed. Firstly, the 
hidden layer is activated in accordance with (2) and (3): 
 

netH
i (t) = Σ j= 0…|IL| w

H
ij inj(t)  + Σ k= 1…|CL|  w

H
ik cnk(t)                    (2) 

                      hni (t) = f (netH
i(t))                                                                         (3) 

 



After the activation of the hidden neurons, their activation values are copied to 
the context neurons. Next, the signal is propagated further to the output layer, by 
activating all neurons at the output layer: (4,5). 
 
 netO

l (t) = Σ i= 0…|HL| w
O

li hni (t)                                                              (4) 
 onl (t) = f (netO

l (t))                                                                               (5) 
 
    Specifically for the RANs, if the forward pass is a part of the BPTT learning 
algorithm, a training sequence S of input/output patterns according the scheme 
in Fig. 4b is built. On another hand, if the network is used for packing only, the 
static distributed representation of a sequence being applied to the input layer is 
the activation of the hidden layer at the moment when the delimiter pattern has 
been processed. In turn, in order to unpack (decode) the static representation of a 
sequence, it is applied to the hidden layer and propagated forward; the resulted 
output pattern is the first element of the sequence. Next, this output pattern is 
provided as an input to the network and propagated forward, by using the last 
hidden layer activation as a context. This process is repeated until a pattern 
recognized as a delimiter pattern is produced at the output layer. 
 
2. Backward Through Time Pass 
    The second step of the BPTT learning algorithm for a given training sequence 
is propagating the error signal back through the network and time. We suppose 
that the forward steps for each token in the sequence are already done, keeping 
the activations and the target patterns in a stack. Next, error and weight updating 
values are computed in an earlier time cycle, that is, starting from the last token. 
Firstly, error deltas at the output layer and the updates of the weights connecting 
the hidden layer to output layer are computed with (6) and (7). Note, that S 
stands for the whole training sequence (the original sequence presented at the 
input layer and targeted later at the output layer). Also, τ denotes a global time 
index and ∆w(τ) stands for the accumulated ∆w(t) for all items from the current 
sequence. 
 
 δO

l (t)  = f ′ (netO
l (t)) ( Cl (t) – onl (t)  )                                                 (6) 

 ∆wO
li(τ) = η. Σt=1 … |S| δO

l (t) hni(t)                                                         (7) 
 
In (6), Cl(t) denotes the desired activation of the l-th output neuron (l=1…|OL|) 
at time t. Provided that the activation function f(x) is the logistic function f(x) = 
(1+e(-x))-1, the derivative of f(x) is f ′(x) = x(1-x). Next, deltas and updating 
values of the weights connecting the hidden layer to the input and the context 
layers are computed in accordance to (8) and (9): 
 
 δH

i(t) = f ′(netH
i(t)) [ Σl=1…|OL|w

O
liδO

l (t) + Σk=1…|CL|w
H

ikδH
k (t+1) ]        (8) 

 ∆wH
ij(τ) = η  Σt=1…|S| δH

i (t) nj(t-1)                                                        (9) 
 
where i = 1 … |HL|,  j = 0 … (|IL| + |CL|) and n(t) is a joined vector containing 
both in(t) and cn(t). The second sum in (8) represents the  context layer delta-



 

term δk
C(t), computed by backpropagating the delta δH

i(t+1) through the weights 
connecting the context neurons to the hidden neurons. And finally, all weights 
are updated according to (10) with the accumulated weight-updating values, 
computed with (7) and (9). 
 
 w(τ) = w(τ-1) + ∆w(τ)                                                                        (10) 
 
Error Back propagation learning algorithms are known for the possibility of 
getting stocked in a local minima on the error surface. There are number of 
techniques designed to overcome this problem. The most useful technique is to 
apply a momentum term α to (10), as is done in (11). The momentum term 
keeps the movement over the weight error space for some time, even if the 
network has fallen into a local minimum. Usually, α = 0.7.  
 
 ∆w'(τ) =  α ∆w(τ-1) + (1- α) ∆w(τ)                                                    (11) 
 
Another technique that has similar effect is to apply initially a higher learning 
coefficient η and, next, to decrease it gradually. This implements a quicker 
rough search for the region where the global minimum is located. Later, the 
exact location of the error minimum is searched with smaller steps. Usually, the 
initial η = 0.2 and the decrease might be exponential with a very small step (e.g., 
0.9995). For further reading about SRN, BP, and BPTT and other recurrent 
learning algorithms, one can refer to Haykin [1994]. 
 
B. EXPERIMENTING WITH RANs: LEARNING  
     SYLLABLES 
    The idea of using RAN to develop static representations of sequences was 
tested on natural language data. A set of 140 distinct syllables was collected 
from a list of 100 polysyllabic Dutch words. The syllables were represented as 
sequences of Latin characters. The mean length of the syllables was 4.1 ± 1.12 
σσσσ. The characters were represented orthogonally, in a vector of length 27, that is, 
for every symbol there was a correspondent neuron which was set active any 
time this symbol was encoded. The 27th position was activated when the special 
triggering pattern for the input layer and the end-of-sequence pattern for the 
output layer were presented or targeted. In order to speed up the training, the 
non-active and active neuron states were set to 0.1 and 0.9 respectively, which 
set the working regimen of the neuron activation functions within an almost 
linear range rather than around the extremes zero and one, where the sigmoid 
derivatives approach zero. The size of the hidden layer was set to 30. The 
learning algorithm was backpropagation through time. The training was 
organized in epochs, in which all patterns were presented randomly, according 
to their frequency of occurrence in the corpus. The words were taken from the 



CELEX3 lexical data base. The network error was measured after each training 
epoch as percent character and syllable misprediction. During the training 
process, the network error followed the standard pattern of quick initial error 
drop and subsequent slow rate of decrease. After approximately 50 epochs, the 
network error was reduced to 1%. Further training would reduce the error even 
more, but it would take much more time. 
    From an implemental point of view, it was interesting to test different 
strategies for representing the trigger and end-of-sequence patterns, for instance, 
whether it is possible to use only the neurons used for encoding the standard 
input and output patterns, or whether an extra neuron is necessary. Tests were 
conducted with patterns such as all neurons active, non-active, or taking a value 
of 0.5. In all three cases, the performance was worse than the approach with an 
extra, switching neuron. Therefore, the later approach was used in the following 
experiments. It has the additional advantage of always allowing the encoding of 
a distinct switching pattern, even if the above patterns are used to represent data. 
    This first experiment suggests that SRNs can learn such a task. Now, it is 
interesting to see what kind of static representations the network has developed 
after the training. A simple observation of those vectors does not say much (Fig. 
5, top), because the network has organized those representations just to 
accomplish its task, not to make them readable by humans, which is the case in 
the high-level symbolic systems. It is more important that the network itself can 
‘read’ those representations, that is, it can reproduce the original sequential 
form. Yet, some analysis might be useful in order to persuade the reader that 
those representations are worth something. For this purpose, a Kohonen Map 
neural network was trained to organize those representations. The Kohonen Map 
is known as very useful for clustering such a data. The resultant map and a 
minimal spanning tree are given in Figure 5, at the bottom. 
    As expected, syllables with same front parts are located at similar positions 
(e.g., ant, ann, aus, am, aan, a), but also, syllables with similar ends are placed 
at close positions (e.g., pol - rol; tra - dra). The RAN very clearly has captured 
the common external features among the training sequences: similar sequences 
are mapped into close positions; that is, their distributed representations are 
close. This raised expectations that the network would generalize, that is, 
reproduce unseen input sequences (and produce their static representations). 
This hypothesis was tested and the results demonstrated that RAN did 
generalize, although very modestly. Among the tested sequences, unseen during 
the training, only 15 syllables were successfully reproduced at the output, that is, 
about 10% generalization. But the network was trained on a very small number 
of sequences, therefore, I predicted that if the network were trained on a larger 
data set, the percent of the generalization would be even larger. The second 
experiment in section five confirmed this hypothesis. 

                                                           
3 The CELEX  lexical database contains lexical data for Dutch, German, and 
English languages. Address: Center for Lexical Information, POBox 310, 6500 
AH Hijmegen, The Netherlands, http://www.kun.nl/celex/ Email: celex@mpi.nl 



 

 
 
Figure 5. (top): Representations developed by the RAN. Each line stands for one vector. Each circle 
represents one value in the representation. The larger the circles, the greater the correspondent 
values. (bottom): A Kohonen Map neural network trained to cluster those representations (see text). 
The network maps similar syllables into close positions, meaning that those representations are close 
to each other. The lines connecting cells represent a minimal spanning tree. 



V. A CASCADE OF RANs 
 
    The main goal of this work, as stated earlier in the chapter, is to build a 
connectionist model that develops static  distributed representations of a set of 
hierarchically structured sequences. Single Recurrent Autoassociative Networks 
produce single-level static representations only. A natural development of RANs 
to cope with hierarchically structured sequential data is to build a cascade of 
RANs, in which each RAN deals with subsequences of the external patterns at 
certain level. That is, the RANs from each level are fed with sequences of 
patterns developed at lower-level RAN, produce static representations of those 
sequences, and provide them as input patterns to the following-level RANs. 
Also, whenever they are requested, those RAN modules will decode (unpack) 
representations, for example, if the following-level RAN module needs to 
decode some object into its sequential representation (Fig. 6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.  RANs and the mechanism of multi-level sequence processing. Stream of  chars is 
presented to the input of the syllable-RAN (1a), which builds syllable-representations and provides 
them to the word-RAN (1b), which, in turn, builds word-representations and exports them further 
(1c). Similarly, if word-RAN is presented with a word-representation (2c), it will unpack it to train 
of syllable-representations and will provide them to the syllable-RAN (2b), which in turn will 
unpack them to train of chars (2a). 
 
    Following the representations developed from the lowest to the higher level 
RAN, note that this cascade model gradually transforms the temporal-dimension 
complexity into a spatial-dimension complexity, that is, long sequences of 
patterns of simple elements will be transformed into shorter sequences of 
complex static representations, distributed among an increasing number of 
neurons. This way, trains of percepts that implicitly contain high-level, 
sequentially represented concepts will be transformed into static representations 
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of those concepts and these representations will also be reconstructed back to 
their external sequential form. This is important, as we will see in the next 
section, for solving the symbol grounding problem. RANs also provide an 
account of another important property – systematicity among the representations 
built. The more sequences learned at a certain level, the larger the network 
generalization will be; that is, after exploring many combinatorial possibilities 
among the input data, the RAN modules will build static representations in a 
systematic manner. 
    Still, there are some questions to be answered. For instance, why do we need 
such hierarchical structure, when a single RAN can be trained to produce the 
same highest-level static distributed representations and to output sequential 
associations? There are two points which speak in favor of the cascade structure. 
First, it is difficult for one homogeneous network to learn long-distance 
relationships [Miikkulainen, 1991] for discussion [Christiansen, 1999]. BPTT 
learning algorithm propagates back error, but the more steps it propagates back, 
the smaller the influence of those errors is to the earlier steps. Studying different 
patterns of recursion, Christiansen and Chater found that the depth of embedding 
(or recursion) SRNs can handle well is in the range 3 – 5 steps. Hence, learning 
sequences longer than 5 tokens would be more difficult. Even if one uses some 
techniques to improve the learning, the general tendency to perform worse on 
longer sequences remains.  
    Another advantage of the hierarchical system of representations is the 
possibility to access intermediate representations of the input train of simple 
elements (e.g., words), if we need to apply holistic operations or to interpret 
them. In natural languages, when we hear a sentence, we have an access to its 
constituents, each of which has some relations with other objects. Only a 
hierarchical system can handle such intermediate representations and a RAN 
cascade automatically develops such static representations. 
    This cascade structure has one important limitation – that the cascade should 
be designed in advance and remain fixed throughout its life. This raises two 
design questions – how to determine the data structure and how to determine the 
size of the RAN hidden layers, that is, the size of the representations at each 
level. Also, there should be a segmentation mechanism that signals the end of 
the sub-sequences for every cascade level. 
    Different levels may be selected according to the natural hierarchy in the 
input data. For example, when learning natural language, one might favor 
learning representations of syllables, words, sentences and so on. The input 
sequence might be split into sub-sequences either by use of some external 
markers – syllabic delimiter, space between words, full-stop (or even larger 
pause) – or by learning phonotactics and word order and segmenting at proper 
points, where low-frequency combinations are about to be formed. Cairns, 
Shillcock, Chater, and Levy [Cairns, 1997] have connectionist experiments on 
this matter. Likewise, if we use the approach in which RAN both predicts the 
following pattern and reproduces the sequence (see the previous section), then 
RAN itself could be used to segment the input sequences. 
 



    With regard to the structures that such a cascade architecture can represent, 
this model imposes a few restrictions. First, one cascade may develop 
representations of fixed-depth trees, where RANs at each cascade-level process 
one tree-level. As a consequence, true recursive structures can not be fully 
represented. Still, recursive structures can be approximated up to a certain depth. 
Next, leaves (terminal patterns) may occur only at the bottom level of these 
trees. For example, sequence (12a) with internal structure (12b) is illegal in a 
two-level cascade because the token ‘d’ is at the second level rather than at the 
bottom level. The allowed structures of this sequence are given in (12c). This 
limitation corresponds to the gradual way of information entrance and 
processing in the cognitive systems, starting from the bottom, perceptual level.  
 
   a b c d                                                                                             (12a) 
 ( (abc) d )                                                                                          (12b) 
 ( (a) (bcd) )  ( (ab) (cd) )   ( (abc) (d) ) (abcd)         (12c) 
 
In case we need to develop representations of any tree structures, such as (12b), 
those tree structures can be transformed into plain sequences as in Kwasny, 
[1995]. However, this method needs an external symbolic device that transforms 
structures in both directions. Another solution might involve marking the 
distributed representations with level-labels and providing them to the 
correspondent RANs. This solution needs a supervisor that distributes the 
patterns, and it is biologically more plausible than the first solution.  
    Sequences with complex structure, such as sentences in natural language, may 
be processed with one RAN-level, too. The sentence structure that is known as 
syntax may simply evolve among the distributed representations, instead of 
being taught explicitly. Similarly, Elman [Elman, 1990] trained the SRNs on a 
prediction task and later found that the developed context layer representations 
correspond at each time step to the syntactic category of the sequence processed 
thus far. 
    The size h of the hidden layers at each level should be based on the 
informational content of the sequences the correspondent RAN is going to pack. 
Parameters in this measure are the number of distinct tokens |C|, the number of 
possible sequences |S|, the maximal length of the sequences to be represented k, 
and the number of neuron states b.  
    First, let us enumerate the maximal number of distinct patterns Pmax that the 
RAN should encode in the hidden layer. The maximal number of strings 
composed of up to k tokens is [(|C|k+1 – 1) / (|C| – 1) – 1], which is the total 
number of permutations with repetition of 1, 2, 3, … k items selected from |C| 
items. In the same way, the actual number of training strings is |S|. We should 
count the maximal number of strings, because the network is expected to 
generalize after the training, that is, to reproduce combinations of items, unseen 
during training. Next, the number of distinct patterns that RANs need to 
reproduce a sequence of k items is 2k+1, which is the number of context states 
when autoassociating the input sequence (see section 4). Therefore, the maximal 
number Pmax of distinct patterns necessary to produce unique representations of 



 

strings composed of up to k tokens is [(|C| k+1 – 1) / (|C| – 1) – 1](2k + 1). The 
actual number of necessary distinct patterns P satisfies condition (13). 
 
 |S| (2k+1) ≤ P ≤ [ (|C| k+1 – 1) /(|C| – 1) – 1 ] (2k+1)                           (13) 
 
Next, the number N of patterns that h neurons can represent, each of which 
having b distinct states is N=bh. That is, the number of neurons necessary to 
represent N patterns is h=logb(N). Therefore, the number of hidden neurons 
necessary to encode P distinct patterns is  
 
 logb(|S| (2k+1)) ≤ h ≤ logb([ (|C| k+1 – 1) /(|C| – 1) – 1 ] (2k+1) )         (14) 
 
from which we derive : 
 
    logb(|S|)+logb (2k+1) ≤ h < (k+1)logb(|C|) – logb(|C|–1)+logb (2k+1)           (15) 
 
Formula (15) estimates the minimal number of neurons that is necessary to 
represent a certain number of sequences with RAN. As mentioned earlier, the 
right-hand side number should be used in order to achieve better generalization. 
However, formula (15) does not guarantee that this number of hidden neurons is 
enough for the network to perform the autoassociation task for all strings and 
develop their distributed representations. In a recurrent neural network, hidden 
layer neurons also have other functions, related to the network processing. In 
addition, given the enormous complexity of the learning problem, it is very 
difficult for the learning algorithm to find proper weights producing these 
particular representations. Usually more neurons are necessary to learn a 
particular task than the theoretical estimations. Therefore, a scaling coefficient   
γ >1 will be applied to (15) that will account for these and other factors related 
to the network processing mechanisms. This will give to the learning algorithm 
more freedom to find a proper weight set solving the training problem. 
    Now, let us find an estimation of the necessary RAN hidden layer size in the 
previous example by using (15). The base b will be set to 2 states and the 
coefficient γ  to 5.0. The experiment was learning 140 syllables (|S|=140) built 
out of 26 distinct letters (|C|=26). The maximal string length was 4 (k=4). Then 
according to (15), 50 < hsyll_RAN < 110. In the reported experiments, 30 hidden 
neurons were enough to encode almost all training sequences. 
    Finally, let me discuss the strategy of the order in which the networks should 
be trained at the different levels, and what training regime to select. This 
includes the question of whether to train the different RAN levels gradually and 
then keep them fixed, or to keep training them, while training the higher-level 
networks simultaneously. We can also refine them in a later stage of the training 
of the higher-level network, because initially the current network will generate 
too large an error, which might destroy the developed representations. Another 
completely different strategy for training the whole cascade is to train all RANs 
simultaneously. However, this is a very complicated learning task and it is 
doubtful whether the network cascade would get to the solution in reasonable 



time. Instead, building the lower levels first and leaving a small amount of 
freedom for later change is preferred. A behavior close to this strategy appears 
to work with humans –  initially people learn to produce simple syllables, next 
more complex syllables, then words, small phrases, and so on. Which strategy is 
better is a question of a lot of experiments. In the rest of the experiments, the 
gradual development strategy was chosen – training the networks gradually, 
starting from the lowest level and keeping them fixed later. 
 
A. SIMULATION WITH A CASCADE OF RANs:  
    REPRESENTING POLYSYLLABIC WORDS. 
    A step toward building a hierarchical model of natural language according to 
the hierarchical design presented earlier is a cascade model producing 
representations of natural language polysyllabic words. This model involves two 
RAN modules: a syllable-RAN, which builds static representations of syllables, 
and a word-RAN, which builds static representations of words. In this 
subsection I will present an experiment which is a natural extension of the 
experiment described in the previous section. The syllable-RAN is be the same 
as before –  with 27 input and output neurons and 30 hidden neurons. This 
means that the word-RAN input and output layers have to have 31 neurons, the 
last one standing for representing the trigger and end-of-word patterns. The size 
of the hidden layer is again 30, which is determined by the complexity of the 
concrete learning task – there are only 100 sequences to be learned, consisting of 
some 140 possible syllables, with average length of the input sequence 4 
syllables. In a more complicated case, we would need many more hidden 
neurons (see the previous subsection). 
    The network training (BPTT) is organized as follows: First, a training word is 
selected from the training corpus, containing pre-syllabified words. Next, for 
each syllable in the selected word, the syllable-RAN produces the correspondent 
static representation, which in turn is provided to the word-RAN input layer. 
The static representations of the syllables belonging to the current word are kept 
in a buffer until the learning procedure for  the current word is finished. When 
all the syllabic patterns are presented to the input of the second RAN, a 
triggering pattern is provided to the word-RAN and the processed syllabic 
patterns are presented as target patterns to the output layer, one at a time, and 
error is calculated. The same targeting patterns, with one step delay, are 
presented to the input layer again (see the previous section and Fig. 4 for 
details). Next, during the second phase of BPTT learning algorithm, the 
accumulated error is propagated back through time, till the beginning of the 
sequence. Finally, the weights are updated with the accumulated weight-
updating values. 
    The cascade is tested by encoding the training or testing words and decoding 
(unfolding) the developed static representations of those words back to 
sequential forms (string of letters), and comparing the resulting strings with the 
expected strings. The RAN error is measured as the percent of erroneous 
predictions of letters, syllables, and words. Syllables are considered to be 
predicted correctly if all the correspondent letters are reproduced correctly. 



 

Similarly, words are learned if all corresponded syllables are reproduced 
correctly. The performance of the word-RAN after 100 training epochs was as 
follows: 1.8% character error, 4% syllable error, and 6% word error. 
 
B. A MORE REALISTIC EXPERIMENT: LOOKING FOR  
     SYSTEMATICITY 
    In this subsection a more realistic experiment will be presented – building the 
representations of some 850 polysyllabic Dutch words, consisting of about 600 
distinct syllables. The reason less complex examples were presented in the 
earlier sections was, firstly for the reader to get an idea of the developed static 
representations (Fig. 5) and, more importantly, to show that generalization 
increases by increasing the number of combinations learned by the networks. 
    We will use again (15) to estimate the necessary hidden layer size. For the 
syllable-RAN, |C|=26, |S|=600, k=5. Then 70 < hsyll_RAN < 150. Similarly, for the 
word-RAN, |C|=600, |S|=850, k=5. Then, 100 < hword_RAN < 300. 
    The cascade consists again of two RANs – a syllable RAN and a word RAN. 
The syllable-RAN has 100 hidden neurons. The word-RAN is set to 350 hidden 
neurons. All other conditions are the same as in the first experiment. The 
training of the syllable-RAN resulted in 0.6% erroneous letter prediction and 
2.5% erroneous syllable prediction, that is, some 15 syllables were not entirely 
learned. Further error analysis showed that there was one mispredicted letter 
among those syllables, which means that those syllables were produced almost 
correctly (3/4). The word-RAN did not reach the success of the syllable-RAN, 
with 2.7% letter misprediction, 5.0% syllable misprediction and 14.1% word 
misprediction.  
    In order to examine the influence of the hidden layer size to the performance, 
similar experiments were conducted with smaller hidden layers. The syllable-
RAN was tested with 50 and 30 hidden neurons. Word-RANs were tested with 
300 and 250 hidden neurons, using the earlier reported syllable-RAN with 100 
hidden neurons as syllabic pattern builder.  With decreasing the hidden layer 
size, the performance of both networks gradually dropped. The syllable-RANs 
learned 70% and 28% training syllables, correspondingly (Table 1). The word-
RAN performance decreased too: 80.8% and 76.9% of the words were entirely 
learned (Table 2). The performance measured at item-level decreased more 
gradually. For the word-RAN, fewer syllables were erroneously reproduced and 
even less letters were mistaken. 
 
Table 1. The performance of the Syllable-RAN trained on 600 distinct syllables, when varying the 
hidden layer size. 
 

Hidden layer size Syllable 
RAN 

Error 
 (%) 30 50 100 

Syllables 72 30 2.9 

M
is

pr
e-

di
ct

ed
 

Chars 18 7.2 1.1 

 



    Those experiments support to some extent formula (15) that is based on the 
information content of the hidden layer and number of data to be encoded. With 
decreasing the number of hidden neurons below the suggested size, the 
performance deteriorates. Nevertheless, there is another reason for this. The 
error backpropagation learning algorithm more easily finds escape routes from 
local minima when there are more weights – if some set of the weights are 
trapped into a valley on the multi-dimensional error surface, other weights 
would let the network drive out of this point. Therefore, the more complex the 
task, the more neurons are necessary. If the number of the neurons seems very 
large, consider the brain, where billions of neurons participate in different 
cognitive tasks. Practically, with the ever increasing computational power, this 
will not be a question in a few more years. 
 
Table 2.  Performance of the word-RAN trained on 850 polysyllabic words with input vector size 
100, when varying the hidden layer size. 
 

Hidden layer size Word 
RAN 

Error 
 (%) 250 300 350 

Words 23.1 19.2 14.1 
Syllables 7.8 6.8 5.0 

M
is

pr
e-

di
ct

ed
 

Chars 4.2 3.6 2.7 

 
    The more interesting question now concerns the generalization of the syllable-
RAN and the word-RANs. Tested on a larger corpus with 9,000 words and 
2,320 distinct syllables, the syllable-RAN successfully reproduced, that is, 
generated unique representations of another 1150 syllables, which is more than 
190% generalization as opposed to the first example with only 10% 
generalization. This result shows that a network trained with more combinatorial 
possibilities generalizes better. In turn, this shows the RAN capacity to produce 
static distributed representations systematically (see section 7 for discussion). 
    The word-RAN generalized well too, with successful reproduction of 1,500 
words unseen during the training, which is about 180% generalization. It is 
interesting to note that the word-RAN generalized as well as the syllable-RAN 
after learning fewer combinatorial possibilities than the syllable-RAN did (850 
words made out of 600 distinct syllables, while the 600 syllables are made out of 
26 distinct letters). I attribute this to the nature of the input data of those two 
RANs. On one hand, the syllable-RAN is provided with localistically encoded 
letters, which gives no prior information about the similarity among the classes 
they represent. On the other hand, the word-RAN is supplied with much more 
“meaningful” distributed representations, systematically produced by the 
syllable-RAN. This also suggests that if the letters were represented with 
features (consonant/vowel, voiced, place, manner, etc.), perhaps the syllable-
RAN would learn the task even more easily, with fewer hidden neurons, and 
would generalize better. 
 



 

VI. GOING FURTHER TO A COGNITIVE MODEL 
 
    Once we have a method to represent the complex structured data that we 
experience externally in some dynamic (sequential) form, we can go further and 
learn some relations between representations coming from different modalities. 
For example, the auditory modality would produce representations of linguistic 
objects, just as we discussed earlier in the chapter; visual modality is a source 
for even more complex objects. In addition to those sensory modalities, there are 
effector modalities – muscles, glands, and so on. Having representations of 
objects of those modalities, we can make associations between them. And those 
associations are the sources for representation grounding – multi-modal 
associations. 
    Complex multi-modal mappings can be effected with any static connectionist 
model – self-organizing or trained by a teacher. And both would be biologically 
motivated, because those associations can be made whenever two 
representations occur in the same time and there is a will or attention to learn 
those coincidences. Neural Network models that might be used for this purpose 
are the supervised Multilayered Perceptron, the ART-Map network by Carpenter 
and Grossberg [Carpenter, 1992] or the autoassociative memory by John 
Hopfield [Hopfield, 1982], among other connectionist models. 
    In the framework of RAN cascades, sequential patterns from each modality 
have to be divided into different conceptual levels and correspondent RANs 
have to be trained to produce static representations. Next, static associations 
(mappings) between patterns from different modalities have to be learned with 
static neural networks (Fig. 7). Then, when a sequence is applied as input to a 
learned modality, that is, to its corresponding lowest-level RANs, higher level 
representations will be produced. This in turn will activate corresponding 
patterns in other modalities, which might be expanded to lower level sequences. 
Activation of a high-level representation might also cause expansion to the 
corresponding lowest-level sequence, as well as producing sequences of other 
modalities. 
    Yet another possible extension toward a more global cognitive model would 
be a composite input pattern for certain RANs in the cascade. This composite 
pattern might be the concatenation of representations from different modalities 
(Fig. 8). The reason for such a concatenation will be presented with an example 
from natural language. Word representations developed on the basis of the 
external form of the words which would capture systematic dependencies related 
to combinations of letters (phonemes) into words, but not categorical or 
semantic information, which might be necessary when processing sentences. 
Therefore, the input to a sentence-RAN might consist of the developed lexical 
static representations and the associated patterns from visual modalities. This 
would let the sentence-RAN develop sentence representations that properly 
reflect the meanings of the words, not only their external auditory or visual 
form. This makes the picture more difficult to implement, but the brain we are 
trying to model is not less complex. 



Figure 7.  Cognitive model based on a network of RAN cascades. Each RAN-cascade (a column) 
stands for different modality. The RANs in each cascade represent different conceptual levels. The 
horizontal and diagonal bi-directional arrows represent static associations between different 
modalities. In addition to this picture, there should be a central attentive system that directs the flow 
of activations. 
 
 
 
 
 
 
 
 
 
 
Figure 8.  RAN developing static representations of multi-modal sequential data (auditory and 

visual). The distributed representations developed would feature multi-modal systematicity. 
 
    Using these complex schema, we can model complex associations we 
encounter in our life. Still, there are a lot of other questions to be answered – 
synchronization, more optimal learning, etc. This huge net of associations needs 
some central supervisor directing the spread of activations. Modeling cognitive 
processes such as attention, awareness, etc. maybe would resolve some of those 
questions. 
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VII.  DISCUSSION 
 
    The basic question addressed in this chapter is how to build static 
representations of complex sequential data with connectionist models, 
concerning primarily natural language. Dynamic data exist in any cognitive 
modality, and it is important to have a mechanism that compresses (and 
uncompresses) dynamic objects into the more convenient static representations. 
Also, it would be useful if those representations were produced in a systematic 
way. This would allow further complex processing (holistic computations), e.g., 
asking questions, change of tense, or even mathematical operations. 
    Association is one of the basic forms of learning. Repetition, or auto-
association, provides a powerful mechanism for cognitive development, too. We 
can observe this mechanism throughout the animal species. Baby animals 
develop initial behavior without being taught, but just by attempting to imitate 
their parents. Humans develop language in a similar way: infants initially start to 
repeat sounds (babbling), next they repeat simple words, small phrases and so 
on, until they develop full-scale language capacity [Jusczyk,  1997]. Infants left 
out of language environment simply can not develop language or have great 
difficulties developing language later. Similar motivations drove me to use 
autoassociation in a connectionist model for developing representations of the 
external world. 
    Regarding the connectionist models that can process dynamic data, recurrent 
neural networks are such connectionist models that allow us to process 
sequential data. The more specific simple recurrent network is a powerful 
universal model which I have exploited for this purpose, by setting an 
autoassociation task and arranging the data to develop the desired static 
representations. The suggested architecture is called recurrent autoassociative 
network. The model was extended further to a cascade of RANs, aiming at 
developing static representations of hierarchically structured sequential data. In 
this cascade, RAN modules at each level are designated to develop static 
representations of different level of complexity (or different conceptual levels) – 
words, sentences, and so on. 
    What is the importance of this model? To what extent does it increase the 
capacity of connectionist modeling? The discussion in section two on the 
representations of sequences that one needs when modeling natural languages 
and the capacities of the connectionist models presented in section three clearly 
demonstrate that the question of how to develop distributed representations of 
composite dynamic data is still open. Local encoding is restricted, random 
representations lack systematicity, and the feature-based representations are 
limited and rather artificial. All those representations keep NNs away from real 
data. In order to get closer to our cognitive capacity, we need a mechanism that 
builds representations, starting from the bottom and gradually building ever 
more complex representations. 
    The idea of building a gestalt representing input data was promising, but it 
was not elaborated further. The RAN model has something in common with the 
earlier works on gestalt: they all develop representations of the sequential input 



data in the network global memory. They differ in the learning task they set to 
the SRN and in the way they use this context. The gestalt models use the context 
developed for information retrieval at every moment, which causes 
uncertainties, while the RANs develop unique static representations of the input 
sequences by a special attack on the learning task, which makes the same RANs 
able to reproduce the input sequence and which is not the case with the gestalt 
models. The gestalt model needs a second network trained to extract information 
from the context of the first network. 
    The other similar and important architectures: RAAM and SRAAM were 
initially reported to work well on sequential and recursive data, but other 
experiments did not confirms the expected performance (Hammerton 1998). 
Also, the RAAMs need an external stack and boot RAAM and SRAAM 
reproduce the sequences in inverse order. This might cause interpretational 
problem when processing longer sequences – it would require an external stack 
to invert them back to the normal order.  Still, the idea of RAN clearly owes the 
idea of autoassociation as a source of developing compact representations to the 
RAAM models. 
    The experiments in section five on modeling sequences with a cascade of 
RAN modules demonstrate that RANs handle reasonably well both locally 
encoded low-level data (we can assume that this is a kind of perceptual data) and 
continuous distributed data. The network learned to autoassociate in both cases, 
although there were more difficulties in learning the latter types of patterns. I 
attribute this to insufficient computational resources, because the larger the 
hidden layer is, the better the performance is (see Table 2). On the other hand, 
word-RAN generalized very well given the small number of training syllabic 
combinations, which is due to the truly distributed syllabic patterns, as opposed 
to the localistically encoding input for the syllable-RAN.  
    With regard to the hidden layer size that is required for a RAN to learn a 
particular task, it is difficult to find a theoretical measure because the 
representations are continuous and, theoretically speaking, even one real value 
number can encode any sequence. However, limitations from the limited 
effective working range of the sigmoidal activation functions apply and by 
enumerating the maximal number of distinct patterns to be encoded in the 
hidden layer, an estimation of the required hidden layer size was derived (15). 
Still, more theoretical and systematic experimental research is necessary in order 
to determine other factors related to the hidden layer size, such as factors related 
to the way the data is processed and encoded in the neural networks, especially 
in recurrent models. 
    Neural Networks were reproached by Fodor and Pylyshyn [1988] for not 
being able to produce systematic representations. The ongoing debate on this 
challenge inspired the development of a number of architectures that more or 
less meet the requirements characterizing systematicity [Smolensky, 1990, 
Smolensky, 1991, Aydede, 1997]. In this subsection I will explain how the 
distributed representations developed by RAN account for systematicity. The 
debate on this human cognitive property is important because it explains our 
capacity to think. A classical example for systematicity is that if we can think of 



 

"Mary loves John," then we can think of "John loves Mary" too. With this 
simple example, one can distinguish a few descriptive characteristics of 
systematicity: compositionality (atoms constitute thoughts), generalization (the 
atoms "John" and "Mary" are semantically similar and therefore 
interchangeable) and exploration of combinatorial possibilities (similar atoms 
might apply at same position). 
    The Fodor's classical "Language of Thoughts" respects fully the first and the 
third characteristics and partially the second. The hard logic rules, which 
underlie symbolism – the background of the classical cognitive explanation – 
can not account for similarities across all items because they do not make use of 
continuous metrics to compute such similarities. Therefore, in the symbolic 
systems, similarities across items do not give rise to generalization unless a 
system of artificially developed features characterizing the items is applied. 
    On the contrary, an important property of connectionism is generalization, but 
some connectionist representations do not feature the other characteristics, with 
the localistic representations being such a very strong example. Feature-based 
encoding comprises compositionality and allows combinatorial possibilities, but 
it is rather artificial and symbolic in spirit. Other distributed representations, 
such as those produced by the RAAM and the SRAAM models, show that 
neural networks can produce distributed representations that have compositional 
structure, although in an implicit manner [Chalmers, 1990, Blank,1992, 
Hammerton, 1998]. 
    Similarly to the RAAM and symbolic models, RAN models produce 
composite representations too. Of course, RANs are not aimed at producing 
distributed representations understandable by humans. This is reserved for 
symbolism. The representations that RANs produce are designed to be 
understandable, firstly, by the RANs themselves and, secondly, by other 
computational models able numerically to analyze data and eventually extract 
useful features from this data. RANs can unpack representations to the original 
row of tokens – this is part of the autoassociative task. With regard to the other 
models, the Kohonen Map that was trained in section 4.2 to cluster the 
distributed representations of syllables clearly demonstrates that other models 
can "understand" those representations, too (Fig. 5). In this case, the Kohonen 
Map was just an instrument to persuade the reader that those representations are 
organized in a systematic way. In addition, similarly to the ability of RAN to 
decode the distributed representations, other connectionist models should also be 
able to extract information for the encoded items, that is, to do holistic 
computations. Experiments with distributed representations produced by RAAM 
and SRAAM show that this is possible [Chalmers, 1990, Hammerton, 1998] and 
RANs produce distributed representations following the same principles as 
SRAAM; only the order of reproducing the sequences is different. The 
(S)RAAM models implement a stack, while the RANs implement a queue. 
Therefore, I expect holistic computations will be able to apply on the distributed 
representations developed by the RAN, too. 
    With regard to the explorations of combinatorial possibilities, the models 
should not only have the capacity to explore different combinations, but the 



training environment should provide them to the networks, too. Similarly, 
symbolic learning algorithms can extract rules only if the learning data provide 
different examples. This is the same with humans, too. We start to combine 
words properly after having had enough experience in a language environment. 
Another example is related to algebra. Students learn to add and subtract first by 
example, and then they realize the nature of the operators "add" and "subtract." 
With regard to the capacity to explore such combinations, RANs have this 
capacity, by allowing tokens to take any position in the input sequence. 
Similarly to Deacon, [1997] I hypothesize that a systematic organization 
emerges in RANs after exploring a great number of possible combinations of 
patterns and starting to use and rely on some common features among the 
representations rather than on particular patterns, which Deacon characterizes 
also as example "forgetting." 
 

VIII. CONCLUSIONS 
 
    Sequential processing is recognized as a difficult problem, especially when 
sequential complexity, in terms of length and internal structure, increases. In the 
present chapter I proposed a framework for processing structured sequential 
data, as found in natural languages, movies, actions, and so on. The approach is 
based on the idea that by sequential autoassociation, a single recurrent NN – 
recurrent autoassociative network – can develop static representations of 
sequences composed of uniform items. A hierarchical set, or cascade of such 
networks, develops static distributed representations of ever more complex 
sequences, where each structural level in the data is processed by one RAN 
module, and the input sequences for the upper levels are developed by the lower 
level RAN. For this purpose, recurrent networks are trained on autoassociative 
tasks (RAN modules), and they develop unique static representations of the 
input sequences at their hidden layers (Fig. 4). Those static representations are 
used as interface patterns for the next level RAN (Fig. 6). The static 
representations at the highest level RAN are the distributed representations of 
the most complex data or whole input sequence, e.g., sentences or stories. In 
section five, an example was given of how this model might work for 
developing representations of Dutch polysyllabic words. Further, in section six, 
it was suggested how the cascade model might be extended to a more global 
cognitive model, where the static representations at each level were suggested to 
be associated with other static representations (of sequence of other modalities) 
via static mappings. Such a net of multi-modal associations, I believe, would be 
an implementation of natural language grounding and a base for semantics. 
    Although I claim that this model will be able to solve the problem of 
developing representations of hierarchically structured sequences, there are still 
some questions that remain open, especially if we want to develop an 
autonomous cognitive model. For instance, the learning processes and flow of 
activations should be driven by a supervisor, similar to the attentive system. 
Also, the learning algorithm can be replaced with a more effective one. Next, 
instead of using SRN-based autoassociators, one might use other, more effective 



 

or more neurobiologically motivated learning algorithms and neural network 
models, for example, recurrent self-organization networks and the other models 
presented in this book. Nevertheless, I believe the suggested model is an 
important step in connectionist modeling, and I strongly encourage the reader to 
experiment with the RAN cascade on different problems, especially to 
investigate holistic computations with the distributed representations developed 
by RANs. 
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I. INTRODUCTION

Recurrent neural networks are universal approximators of dynamic systems
and hence can be used to model the behavior of a wide range of practical systems
which can be described by ordinary differential equations [Funashi and
Nakamura, 1993]. The ability to model such systems is an important task for
nonlinear control systems design, system identification, and testing.

An interesting feature of recurrent neural networks is their ability to “learn” a
trajectory from training data. Under certain conditions, these networks can also
generalize [Hassoun, 1995; Hagner, 1999] from the training data to produce
smooth and consistent dynamic behavior for entirely new inputs or new regions
of state space (i.e., inputs or regions of state space not encountered during
training).

In this chapter, we discuss the use of single-and multilayer recurrent neural
networks for the approximation of two famous 2-dimensional limit cycles: the
circle and the figure-eight. We will give a qualitative and quantitative analysis of
the neural net approximations of these autonomous systems for various network
architectures (internally and externally recurrent), learning rules (incremental and
conjugate gradient descent, and three variations of the extended Kalman filter),
and initial conditions (previous states on the trajectory and previous states set
near the origin).

A variety of approaches and architectures has been proposed in the literature
for approximating such trajectories, including discrete-time, feedforward



networks with tapped delay line external recurrence [Tsung and Cottrell, 1995];
discrete-time, feedforward networks with adaptable time delays [Lin, Dayhoff,
and Ligomenides, 1995]; discrete-time, single-layer, recurrent networks with
adaptable time constants [Sundareshan and Condarcure, 1998]; continuous time,
single-layer recurrent networks with adaptable time constants [Toomarian and
Barhen, 1992; Pearlmutter, 1995]; and continuous time, single-layer recurrent
networks with adaptable time constants and adaptable time delays [Cohen, Saad,
and Marom, 1997].

Previous studies of two-dimensional limit cycle trajectories have involved
simulations of one architecture and one learning algorithm, and used only one set
of initial conditions. Several studies also investigated only the circle trajectory,
which proved to be relatively easy for any architecture/algorithm combination to
learn, and thus does not provide a test able to delineate the differences in
performance. Recurrent network architectures have been experimentally
compared [Horne and Giles, 1995], though not on autonomous network
applications like those considered here. Additionally, recurrent network learning
algorithms have been compared [Logar, Corwin, and Oldham, 1993; Williams
and Zipser, 1995], though with a focus on algorithm speed, and not on
architecture and performance (defined here as the ability of the network to
accurately match the desired training data).

The remainder of this chapter is organized as follows. Section 2 reviews the
structure of recurrent neural network architectures and gives definitions of
internal and external recurrence. Section 3 discusses how the training sets for the
circle and the figure-eight are generated. Section 4 presents the quantitative error
measures and performance metrics which are used to assess the quality of the
network dynamics during the playback phase. Section 5 briefly reviews the five
training algorithms which are simulated. Section 6 describes the simulations
performed in this work and the results of these simulations, and provides
comparative analyses of network architecture and training algorithm
performances and properties. Section 7 presents the conclusions reached
concerning the capabilities and limitations of the network architectures and
training algorithms when applied to learning the limit cycle trajectories, and a
discussion of possible future extensions of this work.

II. ARCHITECTURE

Feedforward neural networks can model static mappings, but do not have the
capability to generate dynamic behavior. By adding recurrent connections,
though, a feedforward network can be transformed into a recurrent network
which can be used to model dynamic systems. For the recurrent networks
described here, we will start with a multilayer feedforward neural net, where
neurons are grouped into layers and layers are cascaded one after the next. We
will assume full interconnectivity between layers, but each layer will be
connected to the layer which immediately follows. For example, in a 3-layer



network, layer 1 will be fully connected to layer 2, and layer 2 fully connected to
layer 3, but no direct feedforward connections will be present between layer 1
and layer 3.

Once the feedforward structure of the network is fixed, recurrent connections
can be added by using two main types of recurrence: internal and external.
Internal recurrence is defined here as the connection of outputs of units of a given
layer to the inputs of units in that same layer. External recurrence is defined as
the connection of outputs of the final (output) layer of a network to the inputs of
units in the first (input) layer. This type of network that has both feedforward and
recurrent layers has been termed a recurrent multilayer perceptron (RMLP)
network [Puskorius and Feldkamp, 1994], and combines the instantaneous
mapping capabilities of multilayer feedforward networks (often referred to as
multilayer perceptron, or MLP, networks) with the system state memory, or
dynamics, of recurrent networks.

Each unit in the recurrent network has inputs from other units, as well as a
single output to other units (and possibly the external environment). The output y
of a unit at time step n+1 is given by its describing function

Here, x1(n), x2(n), . . ., xJ(n) are the inputs to the neuron at (discrete) time step n.
Note that in general, the total input vector x is composed of outputs of other units,
bias inputs, and external inputs, though for the autonomous networks considered
here, there will be no external inputs. Associated with each input is a weight
w1(n), w2(n), . . ., wJ(n), which, during the training phase, also evolves in time. In
this chapter, the discussion will focus on activation functions which are either lin-
ear: f(x) = x, or sigmoidal: f(x) = tanh(x).

An example of a 3-layer recurrent network is shown in Figure 1. This
network has three feedforward units in layer 1, two recurrent units in layer 2, and
two feedforward units in layer 3. In addition, this network has external recurrence
with two unit time delays. We will use the notation to represent

this structure. The subscript R indicates that the layer has recurrent connections
(output of the layer is fed back into the input of that layer). The 2 in parenthesis at
the end indicates that the network has external recurrence with two delays.

Various architectures were tested initially to determine the advantages and
disadvantages of the different architecture types, and to determine which subset
of the many possible architectures would be used for the final comparison
analysis with the different training algorithms. The variations studied were 1)
linear vs. sigmoidal unit activation functions, 2) single recurrent layer vs. hidden
recurrent layers with a two-unit feedforward output layer, 3) single vs. multiple
hidden feedforward layers with a two-unit feedforward output layer, 4) recurrent
layer networks with and without external recurrence, and 5) up to five unit delays
used for external recurrence.

y n 1+( ) f x j n( )w j n( )
j 1=

J

∑=

3 2R 2 2( )××



During initial network simulation analysis, it was found that if a network
contained a single layer, the units required sigmoidal activation functions to learn
the trajectories, and if the network employed an output layer with feedforward
linear units, the hidden layer (recurrent or feedforward) similarly required
sigmoidal units. This is as expected for this application of learning nonlinear
trajectories where a linear combination of unit values is not sufficient.

Figure 1. A 3-layer network with three units in layer 1, two recurrent
units in layer 2, and 2 units in layer 3. This network has external feedback with 2 unit
delays.

For a feedforward output layer with or without external recurrence, only two
units are required, as any additional units’ outputs would not be connected. For a
feedforward output layer, linear units provided faster convergence, but the
solutions exhibited inferior off-trajectory performance compared to feedforward
output layers with sigmoidal units. These trajectories were similar to the center,
or vortex trajectories generated by two-dimensional linear systems with a purely
imaginary conjugate pair of eigenvalues (for a description of phase-plane
analysis of linear and non-linear systems, see Van De Vegte [1986] and
Dickinson [1991], indicating that the network was not exploiting the
nonlinearities of the hidden units). Additionally, feedforward output layers with
sigmoidal units were more robust during training, whereas linear unit learning
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often diverged during training. Thus sigmoidal activation functions were used for
all units in both hidden and output layers.

It was found that single recurrent layer networks performed well, and the
addition of hidden recurrent layers did not provide any noticeable benefits.
Coupling these findings with the fact that the addition of external recurrence to a
single layer recurrent network would be redundant, the only recurrent unit
architecture to be tested in the final analysis was a single layer of recurrent units
with sigmoidal activation functions.

Externally recurrent networks with one hidden layer generally performed as
well as networks with multiple hidden layers. Additionally, externally recurrent
networks with a recurrent hidden layer provided no noticeable benefit over
networks with a single recurrent layer, or compared to externally recurrent
networks with a single feedforward hidden layer.

As indicated above, the only two architectures that both provided good
performance and were also different enough to warrant further comparison were
the single layer recurrent nR and single hidden layer feedforward with external

recurrence .
Initial experimentation with the number of units and the number of delays

determined that the minimum network sizes for the circle trajectory were 2R and

for internal and external recurrence, respectively. One larger network
(for each architecture) was then chosen to provide a significant increase in the
number of parameters (weights), without increasing the network size such that it
became computationally prohibitive. These network sizes were 4R and .
Thus the total number of architecture/algorithm combinations to be compared for
the circle trajectory was 4 networks x 5 algorithms =20.

Similar experimentation for the figure-eight trajectory led to the
determination that the minimum network sizes were 4R and for internal
and external recurrence, respectively. Two additional, larger networks (for each
architecture) were chosen for the figure-eight trajectory to be 6R, 8R, ,

and . Thus the total number of architecture/algorithm combinations to
be compared for the figure-eight trajectory was 6 networks x 5 algorithms = 30.

III. TRAINING SET

The training set for the circle and the figure-eight consists of 2-dimensional
samples of the trajectory, as shown in Figures 2a and b.

For both trajectories, M = 100 samples are used because this value offered a
balance between a smaller M that provided more distinction between data points
(beneficial because incremental training algorithms tend to optimize for the
current region if that region presents little new information) and a larger M that
provided a smoother, more accurate representation of the continuous-time
trajectory.

n L D( )×

2 2 1( )×

4 2 1( )×

4 2 4( )×

6 2 4( )×
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Figure 2. (a) The circle and (b) figure-eight training sets; both contain M = 100 samples.

In the case of the circle, the target vector d at time step n is given by

and for the figure-eight trajectory, the target vector is given by

To train the network to learn the limit cycle trajectories, the target values,
d(n), were taken as the coordinates of the subsequent point on the trajectory, and
the target value for the final, Mth point was the first point, to train the network to
oscillate around the trajectory.

IV. ERROR FUNCTION AND PERFORMANCE METRIC

One way to assess network performance is by formulating an error function
which measures the difference between the neural net approximation and the
desired trajectory. A common measure is the standard sum of squared errors
defined by

(1)
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where dl(n) is the target value and yl(n) is the actual output of output unit l at time
step n. The error function given here is called the batch error, because it contains
the sum of the errors over the entire training set; that is, the error over all M time
steps. Some training algorithms make use of this error function, and others make
use of the instantaneous error,

(2)

where the errors are summed only over the L output units, and not over time, and
thus may be written as E(w, n). Both definitions of the error function will be used
in the discussion of training algorithms in the next section, as this work considers
both incremental and batch training algorithms.

In training mode, as the network output is computed for each step and the
error vector calculated, a technique called teacher forcing may be employed,
which substitutes the previous target values for the past network output values
after the computation of the error and prior to computing the next step. This has
been shown to be an effective technique for maintaining training algorithm
stability [Puskorius and Feldkamp, 1994; Williams, 1992; Hagner, 1999]. In full
teacher forcing, the previous target value is substituted; for partial teacher
forcing, a weighted sum of the previous target value and the network output value
is used [Hagner, 1999].

Besides the use of error functions, network performance may also be
qualitatively assessed by visual comparison of the network trajectory to the target
trajectory. The network trajectory is generated in the recall, or playback mode,
after the training mode is finished. In playback mode, a set of initial conditions is
provided, and the network output is computed for the first time step. These results
are then used to generate the network output for the second time step, etc., until
the desired number of steps is taken. Because it is desired that the trajectory be a
limit cycle trajectory (i.e., once the network output approaches the target
trajectory, it remains on that trajectory) and there may be transient effects due to
initial conditions, the network will be run through 10M steps, with all steps
plotted, providing both the transient and steady-state portions of the trajectory.

A network's performance may be measured quantitatively by the error
function and qualitatively by visual inspection of the network trajectory. These
two measures often do not correlate well, as the error function calculated using
teacher forcing may be quite different from the error function calculated during
playback (which represents a network’s true performance), when teacher forcing
is not used. Additionally, the trajectory generated during playback may become
unstable after a certain number of steps, indicating that the network has not
generated a true limit cycle, and thus a measurement of trajectory stability is also
desirable.

A network's performance generally improves as the error decreases during
training, but the relationship is often not smooth, as shown in Figure 3, and may

E w n,( ) 1
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vary by large amounts in only a few training cycles. For example, during a
training run on the figure-eight trajectory, the value of the training error
(calculated with teacher forcing) might decrease rapidly while the network
trajectory is confined near a single point, and thus the trajectory error (calculated
without teacher forcing) is large. As training continues and the training error
decreases more slowly as a minimum is approached, a sudden improvement in
performance may be seen as the network begins oscillation, or the trajectory
changes abruptly from an elliptical oscillation to a figure-eight. Sometimes the
error decreases quickly during these performance improvements, as the
algorithm leaves a local minimum or a long, flat valley, and sometimes it changes
little. At other points in training, a network's performance may be fairly good for
a period of time (the algorithm may be in a plateau), and then may deteriorate
rapidly as the algorithm enters a new region of weight space, even though the
training error decreases continuously.

Figure 3. Performance and error vs. training cycles for an network trained
with incremental gradient descent to learn the figure-eight trajectory.

Figure 3 shows the dependence of training error, trajectory error (with initial
conditions on the trajectory), and performance (quantitatively given below in
Equation 3) for one simulation of the incremental gradient descent algorithm on
the figure-eight trajectory. Note the large variation in the performance metric for
smoothly decreasing training and trajectory errors after 100,000 cycles, and also
the variation in the trajectory error for smoothly decreasing training error around
25,000 cycles.
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The trajectory without teacher forcing, made during playback, may be
quantitatively measured. The straightforward method of calculating the value of
the error function during playback provides a measure of the performance, but it
is calculated over the first “ loop” of M steps, and thus may contain transient
characteristics of the playback, and may not represent the quality of the steady-
state trajectory. Thus a measure of the error function is needed for the steady-state
trajectory (as stated previously, 10 “ loops” were sufficient for the networks to
reach steady-state conditions, and thus the performance metric is defined over the
last loop, or last M steps of the playback trajectory). The errors during the
transients typically cause the trajectory to “ fall behind” the target trajectory,
because the network trajectory typically starts at a point off the target trajectory
and eventually is attracted to it, though when this happens the points are not
synchronized. A network trajectory that is on the target trajectory but
unsynchronized, or out of phase with respect to the target trajectory, is defined
here to be perfectly good; the network has learned the limit cycle trajectory, and
because there is no external input to serve as a clock signal, the fact that the
trajectories overlap is sufficient.

A measure of the amount of trajectory “overlap” is thus required; the
standard error function will not provide a relevant result, because it relies on the
synchronization of the trajectory points and would provide a poor result for an
exact trajectory match that is out of phase. The measure of trajectory overlap is
accomplished by performing a convolution of the last M steps of the network
trajectory and the target trajectory. The value of the error function is calculated
for the target trajectory and the network trajectory M times, where for each
instance the starting point of the network trajectory is shifted 1 step. The minimal
value of the convolution occurs for the shifted trajectory that provides the
minimum error; this value is used as the measure of overlap. The error minimum
obtained from the convolution is then used to calculate a performance measure,
on the scale from 0 to 100, where 100 indicates an almost perfect overlap of
trajectories.

The steady-state performance measure is given by

(3)

where is a constant chosen for the specific figure or trajectory such that visu-

ally “ fair” steady-state trajectories achieved performance measures between 80
and 90, “very good” trajectories achieved performance measures between 90 and
95, and “excellent” trajectories achieved performance measures between 95 and
100, Ess1(w) is the value of the error function that provided the minimum during
the convolution procedure for the first set of initial conditions (on-trajectory), and
Ess2(w) is the value of the error function that provided the minimum during the
convolution procedure for the second set of initial conditions (off-trajectory). The
network’s overall performance measure was thus the average of the individual
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performance measures for the two steady-state trajectories resulting from the two
sets of initial conditions. For a network to achieve an “excellent” overall perfor-
mance measure of 95 to 100, both steady-state trajectories must achieve “excel-
lent” performance measures (e.g., if the on-trajectory performance measure was
95 and the off-trajectory performance measure was 11, the resulting overall per-
formance measure would be 53, indicating “poor”  performance).

V. TRAINING ALGORITHMS

There are several training algorithms that have been developed and applied
to training recurrent neural networks, the principal ones being the real-time
recurrent learning (RTRL) algorithm [Williams and Zipser, 1989a],
backpropagation-through-time (BPTT) [Rumelhart, Hinton, and Williams, 1986;
Werbos, 1990], and the extended Kalman filter [Williams, 1992; Puskorius and
Feldkamp, 1994]. These algorithms all make use of the gradient of the error
function with respect to the weights to perform the weight updates (the specific
method in which gradient is incorporated into the weight updates distinguishes
the different methods). RTRL computes the gradient information by integrating
forward in time as the network runs, while BPTT integrates backwards in time
after the network takes a single step forward (other variations of the BPPT
algorithm use various quantities for the number of forward steps and the number
of backward integration steps [Williams and Zipser, 1995]). BPTT and RTRL are
considered gradient-descent algorithms. The extended Kalman filter algorithm
uses the gradient in the linearization of the system, such that the method of
Kalman filtering may be applied, and is not a gradient-descent algorithm. All
three algorithms have been implemented as incremental algorithms, though
BPTT has also been modified for use in batch mode [Williams and Zipser, 1995].

The incremental versions of BPTT and RTRL are relatively slow, due
primarily to the fact that small learning rates are typically used in order to keep
the algorithms stable during training. The batch version of BPTT is faster, as it
performs the backwards error integration every M steps, and it can provide the
same gradient information as RTRL in a more efficient manner [Williams and
Zipser, 1995]. Batch versions also have the attractive quality that they may be
used with second-order gradient techniques which generally converge to a
minimum in fewer cycles than first-order, incremental algorithms. The extended
Kalman filter algorithm has also been shown to converge to a solution in
relatively fewer steps [Singhal and Wu, 1989; Shah and Palmieri, 1990;
Puskorius and Feldkamp, 1994], and may be implemented with gradient
information obtained similarly to RTRL. Therefore, to commonize the
development of the algorithms for this analysis, the RTRL method of obtaining
gradient information was used and applied to all the algorithms tested here:
incremental gradient descent, conjugate gradient descent, and the extended
Kalman filter. Note that a faster conjugate gradient algorithm would have used
the batch version of BPTT, but RTRL provided the same gradient information



and was also applicable in its incremental form for all the other algorithms.
The following sections briefly review gradient-descent-based and Kalman

filter-based training algorithms. A more complete discussion can be found in
Hagner [1999].

A. GRADIENT DESCENT AND CONJUGATE GRADIENT
DESCENT

In gradient descent, the parameters (in this case the weights) of the system
are adjusted at each step in the direction of steepest descent, or in the direction of
the negative of the gradient vector of the error function. For batch mode, the
weights are thus updated according to

where is a positive learning rate parameter, and is the gradient of the
error function with respect to the weight vector.

If the instantaneous, or incremental, error function is used instead of the
batch error function, the resulting algorithm will not follow the true gradient, but
rather an approximation to it. The weights generated by this algorithm will thus
have a component of randomness, and therefore this incremental algorithm is
termed stochastic gradient descent. It is also referred to as the least mean squares
(LMS) algorithm [Haykin, 1994; Hassoun, 1995] or incremental gradient
descent. The weight updates are made every step, based on the incremental error
of Equation 2.

Gradient descent methods that use second-order information about the error
surface to determine (and thus vary) during training offer improved
performance, especially if the error function is a quadratic function of the weights
(or close to quadratic). Newton's method [Haykin, 1994; Hassoun, 1995] uses the

Hessian matrix along with the current gradient to generate

the weight updates according to

This method has the serious drawback that the inverse of the Hessian matrix
of the error function (with respect to the weights) is prohibitively time-consuming
to calculate for most networks with more than a few weights (the size of the
Hessian is the square of the number of weights), and is thus impractical.
Additionally, and possibly more importantly, the inverse of the Hessian is
required, and there is no guarantee that this matrix is nonsingular at each step.

A more useful method that also employs the Hessian matrix is the conjugate
gradient algorithm [Press et al., 1992; Haykin, 1994; Hassoun, 1995], which uses
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the Hessian matrix implicitly in its calculation of weight updates. It uses the
previous gradient and the last step direction to compute a new direction that is
conjugate to both, and it does so iteratively without requiring the calculation of
either the Hessian or its inverse. The direction vector is calculated in terms of the
previous direction vector as

where the scalar is here taken from the Polak-Ribiere conjugate gradient
formulation [Press et al., 1992; Haykin, 1994] given by

Here all the weights of the network have been collected in a single vector w,
and the gradient components have also been arranged in a vector. A line-
minimization routine is employed to search in the direction v to find where the
error function takes on its smallest value (along the vector v). The step size which
results in this minimal value is for this update. The update to the weight

vector is then

The conjugate gradient method provides determination of , as well as a

greatly increased convergence rate compared to incremental or batch gradient
descent. A reduction in the number of training cycles required for convergence of
one to two orders of magnitude was typical for simulations conducted here. The
conjugate gradient algorithm has been applied to the training of feedforward
neural networks [Makram-Ebeid, Sirat, and Viala, 1989; van der Smagt, 1994].
The conjugate gradient algorithm applied here to the RTRL dynamic derivatives
has exhibited very large learning rates at times during the training process, but
this does not seem to hamper its performance (it has been reported in Williams
and Zipser [1989a] that small learning rates are required for stable algorithm
performance).

The conjugate gradient algorithm is by definition a batch algorithm, and as
such is not suited for on-line training, where the size of the training data set is not
known a priori. However, for the application of trajectory learning here, this was
not an issue.

v k 1+( ) E w( )w∇– α k( )v k( )+=

α k( )

α k( ) E w k,( )w∇ E w k 1–,( )w∇–[ ] E w k,( )w∇⋅
E w k 1–,( ) E w k 1–,( )w∇⋅w∇

-------------------------------------------------------------------------------------------------------=

ηopt

w k 1+( ) w k( ) ηoptv k 1+( )+=

ηopt



B. RECURSIVE LEAST SQUARES AND THE KALMAN
FILTER

The formulation of the least squares algorithm that computes parameter
updates based on past parameter estimates is termed the recursive least squares
(RLS) filter and is a special case of the more general Kalman filter. For a
complete derivation of both, see Haykin [1996]. Both algorithms generate an
estimate of an optimal parameter vector that minimizes an error measure
(typically the sum of squared error) for a linear system and therefore are
applicable to the training of neural networks.

In the case of a single unit, and taking the activation function to be linear

such that the unit response is given by y = wTx, the method of linear least squares
filtering may be employed to find a set of weights that minimizes the weighted
sum of squared error given by

where e(i) = d(i) - y(i), d(i) is the target value at time i, and is an exponential

forgetting factor, , used to decrease the effect of past data and permit
the algorithm to track variations in data.

The RLS algorithm may be adapted for the case of a network that contains
hidden units as well as visible output units, and for the case of units that have
nonlinear activation functions (the least squares method and the Kalman filter are
methods directly applicable to linear systems). This algorithm is called the
extended RLS, the extended Kalman filter (EKF), or equivalently the global
extended Kalman filter (GEKF); global because the algorithm is applied to the
network as a whole, extended because the linear RLS has been extended to the
nonlinear case, and Kalman filter because RLS is a special case of the Kalman
filter.

The learning equations [Haykin, 1996] which result from the Kalman filter
approach are given below in Equations (4) - (7). Further discussion and analysis
of these equations can be found in Hagner [1999].

(4)

(5)

(6)

(7)

Here, H(n) is a matrix of derivatives of the network unit outputs with respect to
the network weights, K(n) is the Kalman gain matrix, P(n) is the conditional error
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covariance matrix, and Q(n) is a diagonal covariance matrix which introduces
artificial process noise.

It should be noted that the GEKF algorithm formulation given in Equations
(4) - (7) has been derived from the RLS algorithm with exponential forgetting.
The forgetting factor is not employed (or, equivalently, set to unity) in the EKF
formulation of Singhal and Wu [1989] and the GEKF formulations of Puskorious
and Feldkamp [1994], and thus the GEKF algorithm presented here is slightly
different. A variable scalar learning rate, , is used in Puskorious and
Feldkamp [1994] which results in a formula for the Kalman gain, K(n), different
from (4), given by

where is typically set to a value less than unity at the start of training and
increases to unity as training progresses.

The GEKF algorithm is computationally intensive due primarily to the
update calculations for the approximate (due to the linear system approximation)
conditional error covariance matrix P(n), which scales as the square of the
number of weights in the network. A modification to the GEKF algorithm that
assumes certain interactions between weights are negligible is the decoupled
extended Kalman filter (DEKF) algorithm [Puskorius and Feldkamp, 1994]. The
negligible weight interactions are accounted for as zeros in the P(n) matrix, and if
the weights are grouped such that there are assumed to be no interactions
between weights in different groups, the P(n) matrix can be arranged in block-
diagonal form. If the groups are chosen such that weights feeding a unit make up
a group, then the decoupling is termed node-decoupled, and the algorithm is
called node-decoupled EKF, or NDEKF [Puskorius and Feldkamp, 1994].

The derivation of the DEKF (or NDEKF) algorithm proceeds similarly to
that for the GEKF algorithm, except that the block-diagonal form of P(n) is
exploited to reduce the computational complexity. For the case of g groups of
weights, there will now be g weight vectors w(n), as well as g H(n), P(n), and
K(n) matrices, which are subsets of their full, GEKF counterparts.

A variation of the single-unit RLS algorithm that employs linearization of
the nonlinear unit activation function (similarly to the EKF algorithms described
above), and an approximation to the estimation error, e(n), has been developed
and termed the multiple extended Kalman algorithm (MEKA) [Shah and
Palmieri, 1990], and is applicable to multi-layered networks. This algorithm in
effect applies an RLS optimization separately to the individual units of the
network, whereas the NDEKF algorithm, which includes only weight
interactions in a unit’s weight group, carries out a global filtering (estimation)
operation.

Various EKF algorithms have been successfully applied to the training of
both feedforward (MLP) [Shah and Palmieri, 1990] and recurrent [Singhal and
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Wu, 1989; Williams, 1992; Puskorius and Feldkamp, 1994] networks. GEKF is
computationally intensive, and the modifications (DEKF and MEKA) to the
standard algorithm have provided substantial reduction in the computations
required, resulting in faster algorithms that retain much of the power of GEKF.
These applications of EKF algorithms have been shown to provide convergence
in relatively few training iterations, offset partially by an increase in
computations over gradient-based algorithms.

VI. SIMULATIONS

A. ALGORITHM SPEED
Comparisons have been made among the speeds of training algorithms for

recurrent networks [Logar, Corwin, and Oldham, 1993; Williams and Zipser,
1995]. The focus of this work is on the effects of recurrence on network
performance and the efficacy of various training algorithms for architectures with
recurrence, and thus the analysis here has been limited to only five training
algorithms in a primary effort to find the common effects of recurrence, and
secondarily to compare the algorithms' performances on the applications
considered here (the ability of the algorithm to converge to a good solution was
analyzed in more detail than its pure computational complexity).

All of the algorithms obtained the gradient information from the identical

RTRL calculation, which has a computational complexity of O(n2), where n is the
number of weights. The optimization algorithms had complexities of O(n) for the

incremental and conjugate gradient descent algorithms; where ni is

the number of weights for a given unit, and g is the total number of units in the

network for the MEKA and NDEKF algorithms; and O(n2) for the GEKF
algorithm. Therefore, the overall training algorithm speed was dominated by the
common RTRL calculation.

The RTRL type of calculation for obtaining the gradient, , that

includes dependence on past values of the gradient, is required for internally
recurrent networks and for externally recurrent networks that use less than full
teacher forcing. If an externally recurrent network uses full teacher forcing, then
the current gradient does not depend on past values, because the output units had
their values set to the target values before each step, and these target values are
constants and have no dependence on the weights. This permits a straightforward
backpropogation of the error to obtain the gradient, with only partial derivatives
and no total derivatives used, which has a computational complexity of O(n). This
would have been applicable to all the externally recurrent networks using full
teacher forcing, resulting in increased training speed for all the algorithms, but
especially for the incremental and conjugate gradient-descent algorithms, which
would have had a total computational complexity of O(n). RLS algorithms’ speed

O ni
2

i 1=

g

∑

E w( )w∇



would have then been dominated by the RLS complexity of for the

for the MEKA and NDEKF algorithms, and O(n2) for the GEKF algorithm.
The resulting algorithm computational complexities were measured for a

fixed number of iterations, and calculated in units of seconds/cycle, where each
cycle involved one pass through the M data points. These values were then
plotted versus the square of the number of weights, as shown in Figure 4, to

check the overall O(n2) dependence expected.

Figure 4. Training algorithm computation time (for internally recurrent networks) in
seconds per training cycle vs. the square of the number of network weights (using a 200
MHz Pentium CPU). Approximate slopes of linear trend lines are shown.

The approximately linear dependence on n2 is evident for all the algorithms,
and the slopes of the linear trend lines may be compared to give the relative
speeds of the training algorithms. Normalizing the speed of the slowest algorithm
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(GEKF) to 1, the relative speeds of the other algorithms are approximately 3.3 for
the MEKA and NDEKF algorithms, 6.0 for the conjugate gradient, and 7.5 for
the incremental gradient-descent algorithm. This gives approximate confirmation
to the speed-up expected for the MEKA and NDEKF algorithms over the GEKF

algorithm (e.g., for a network with 6 units, n = 42, n2 = 1764, and ,

the expected order of speed-up is 1764/294 = 6, which is relatively close to the
3.3 obtained experimentally). Additionally, both the incremental and conjugate
gradient algorithms are faster than the RLS algorithms, as expected, with the
conjugate gradient algorithm being somewhat slower than the incremental
gradient algorithm, due to the computational burden of performing the conjugate
direction calculation, minimum bracketing, and line minimization routines.

Algorithm computation times for externally recurrent networks are not
shown in Figure 4, due to the lack of validity of comparison with internally
recurrent networks. In fact, because of the use of the RTRL algorithm to obtain
gradient information instead of using standard backpropogation for the externally
recurrent networks with full teacher forcing, all the algorithms ran more slowly
on these networks than on the internally recurrent networks, due to the additional
computations for multiple layers and delays (standard backpropogation would
have enabled externally recurrent networks to train more quickly than internally
recurrent networks). So, while the externally recurrent networks could have been
faster, they were approximately twice as slow in experimental computation time
measurements.

B. CIRCLE RESULTS
To learn the circle trajectory, all algorithms used full teacher forcing, as it

generally provided the fastest and most robust learning. Partial teacher forcing
sometimes resulted in very fast convergence, but was not a robust technique;
learning often diverged as the algorithms became unstable.

The network weights for all the architectures and algorithms were obtained
from a uniform random distribution from -0.1 to +0.1.

The incremental gradient descent algorithm for the circle trajectory
employed learning rates for the feedforward weights and recurrent weights of
0.002. Larger learning rates decreased the number of cycles required for
convergence, but resulted in solutions with lower performance due to the
algorithm taking relatively large steps around the vicinity of the minimum. The
value used here provided a good trade-off between performance and convergence
speed. The figure-eight trajectory simulations used learning rates for the
feedforward weights of between 0.1 and 0.2 for the externally recurrent
architectures, and a feedforward weight learning rate of .01 and recurrent weight
learning rate of 0.2 for the internally recurrent architectures. The learning rates
for the figure-eight trajectory were larger than those for the circle trajectory
because of the large number of iterations needed to approach convergence; the
largest rates possible that permitted stable algorithm performance were used. It
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was found that for the internally recurrent architectures, a feedforward weight
learning rate that was smaller than the recurrent weight learning rate by at least a
factor of ten ensured algorithm stability.

The RLS algorithms (GEKF, NDEKF, MEKA) were “ tuned” for the
different algorithm/architecture combinations, though the parameters that were
varied were within the following typical ranges. The process noise matrix, Q, was

diagonal with elements typically set to 10-4. The forgetting factor, , was

typically set to the schedule of 0.999 - 0.9999, increasing by each
step.

Two sets of initial conditions were tested for the results presented here, the
first providing the output units with initial condition values on the trajectory, and
the second with values off the trajectory. Note that for externally recurrent
networks it is possible to obtain initial conditions that place the network exactly
on the desired trajectory, because the initial unit output values have no effect (the
network output is a function of only the input and the weights). However, for the
internally recurrent networks this exact placement is not possible, because the
initial unit output values do contribute to the network output, and these unit
values are not known. In these simulations, a “best” estimate for the internally
recurrent network initial unit output values was used, which was the actual unit
output values at the last or Mth step during training. Thus as the internally
recurrent network training error was reduced, the initial conditions of the hidden
unit outputs more closely matched those required to be on the target trajectory.

A typical simulation result is shown in Figure 5, which shows a network’s
output for 10 “ loops” (one loop is defined as taking M steps, where M is the
number of training points, 100 in these simulations) starting from the two
different initial conditions on and off the desired trajectory. The result shown is
for an internally recurrent network with 2R architecture, trained with the
conjugate gradient algorithm for 7 cycles.

The first step that the network takes from these initial conditions is indicated
on the plots by the small circle indicating the first trajectory point. The trajectory
with initial conditions off-trajectory provides some measure of a solution's basin
of attraction, and the degree to which the limit cycle trajectory is an attractor. The
trajectory shown in Figure 5 is a stable attractor, with the off-trajectory initial
condition resulting in a trajectory that spirals outward from the origin in a few
loops to converge to the limit cycle oscillation of the desired trajectory. Note that
all 10 loops are shown in both plots, indicating both the degree to which the
trajectory is stable, and the closeness to which it follows the desired trajectory
(the target trajectory is indicated by the dotted line).

A limit cycle will exhibit convergence from both sides of the trajectory, and
this characteristic is able to be seen in Figure 6. The results are for the same
network as in Figure 5, though with two different initial conditions, one inside
and one outside of the trajectory, obtained by setting the initial unit values to 0.07
and 0.27, respectively.
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Figure 5. Circle trajectory generated by 2R network trained with the conjugate gradient
algorithm for 7 cycles (performance measurement: 99.7).

Figure 6. Two convergence regions for the same 2R network as in Figure 5.

Figure 7 shows the resulting trajectories for the larger, network,
trained with the GEKF algorithm for 300 cycles. In general, the faster trajectory
convergence shown here, compared to that for the smaller, 2R network (shown in
Figure 5), was typical for the larger networks, possibly because the smaller
networks required the units to operate further in their nonlinear regions to achieve
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the nonlinear trajectories, and possibly due simply to the convergence dynamics
resulting from a larger number of units.

Figure 7. Circle trajectory generated by network trained with the GEKF
algorithm for 300 cycles (performance measurement: 100).

All 20 architecture/algorithm combinations learned the circle trajectory and
provided excellent performance for the 100 simulations, as shown in Table 1.
Each architecture/algorithm was trained 5 times with different initial weight
values to provide some measure of the learning performance repeatability, and
the initial weight values were identical for all algorithms and a given architecture.

A performance was counted as successful if it provided stable, limit cycle
oscillation for both on- and off-trajectory initial conditions (this stability was
determined by visual inspection). The table row labeled “Success” gives the
number of stable solutions out of 5 runs total. The row labeled “Ave
Performance” gives the average performance value of those solutions that were
stable. The row labeled “Ave Cycles” gives the average number of cycles
required during learning to achieve the given performance for the stable
solutions. The row labeled “Training Time” is an estimate of the total training
time, in minutes, for the algorithm to iterate through the “Ave Cycles” given,
calculated from the algorithms’ computation times given by the linear trend lines
in Figure 4.

As expected, the conjugate gradient, GEKF, NDEKF, and MEKA algorithms
in general converged to solutions in far fewer cycles than the incremental
gradient algorithm (on the order of 100 times fewer cycles for the internally
recurrent architecture, and approximately 5 times fewer cycles, on average, for
the externally recurrent architecture). The one notable exception was the
performance of the NDEKF algorithm on the architecture: this
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algorithm required a relatively large number (14400 on average) of cycles and
time to converge, possibly due to the effect of neglecting the coupling of weights
in the conditional error covariance matrix, P(n).

Training
Algorithm

Metric

Architecture

Single Layer Tap Delay Net

2R 4R 2x2(1) 4x2(1)

Incremental
Gradient
Descent

Success 5 5 5 5

Ave Performance 99.7 99.6 99.1 99.1

Ave Cycles 3000 3000 6400 4000

Training Time (min) 0.1 0.8 12.3 2.6

Conjugate
Gradient
Descent

Success 5 5 5 5

Ave Performance 99.7 99.5 99.8 99.9

Ave Cycles 7 11 1100 1440

Training Time (min) 0.0002 0.004 0.3 1.2

GEKF

Success 5 5 5 5

Ave Performance 99.4 99.6 100 100

Ave Cycles 19 31 680 720

Training Time (min) 0.003 0.1 1.0 3.5

NDEFK

Success 5 5 5 5

Ave Performance 99.4 99.4 97.4 98.6

Ave Cycles 17 34 144000 1200

Training Time (min) 0.001 0.02 6.2 1.7

MEKA

Success 5 5 5 5

Ave Performance 99.4 99.3 99.5 99.5

Ave Cycles 20 22 360 340

Training Time (min) 0.001 0.01 0.2 0.5

Table 1. Circle trajectory simulation results.



There was no performance improvement for the larger networks compared to
their smaller counterpart [4R vs. 2R and vs. ], indicating that
the smaller networks were adequate to learn the circle trajectory and were not
affecting network or algorithm performances (except for convergence dynamics,
as noted earlier).

The primary conclusion drawn from the above experimental analysis is that
the speed of convergence of the conjugate gradient, GEKF, NDEKF, and MEKA
algorithms for the internally recurrent architectures was much greater than for the
externally recurrent architectures. The internally recurrent networks converged in
at least 10 times fewer (and often 100 times fewer) cycles, and in at least 50 times
less (and often 200 times less) time.

It is also notable that for this trajectory, the very simple algorithm of
incremental gradient descent provided solutions with performances comparable
to those for the more complex algorithms, indicating that for certain trajectories,
incremental gradient descent is adequate. And though incremental gradient
descent required many more training cycles, it had the smallest cycle
computation time, resulting in total training times comparable to the other
algorithms.

C. FIGURE-EIGHT RESULTS
The initial weights, teacher forcing, and algorithm parameters were set to

values similar to those used for the circle trajectory. It was found that full teacher
forcing again provided the best learning performance.

The resulting figure-eight trajectories for the different successful (stable
attractor) solutions were dissimilar for the different simulations, unlike the circle
results, which were almost identical. The trajectories shown in Figures 8 and 9
show the results of solutions for the 4R architecture trained with GEKF for 2000
cycles, and the 8R architecture trained with GEKF for 500 cycles, respectively.
Both trajectories are stable attractors and the basins of attraction exhibit quite
different dynamics prior to convergence to the final trajectory. As for the circle
trajectory, it was found that, in general, the larger the network, the smoother the
convergence from the off-trajectory starting point to the final trajectory,
consistent with the results shown in Figures 8 and 9.

The results for the 150 simulations of the single layer architectures are given
in Table 2, and the results for the tap delay networks are given in Table 3. Again,
the numbers in the tables represent the results of 5 different runs.

The figure-eight was, in general, far more difficult to learn for all the
networks and training algorithms than the circle. This is most likely because the
trajectory crosses itself in output-unit (phase-plane) space, so that the network
must store not only the past state of the trajectory, but also information about
multiple previous states (e.g., storing the direction, or derivative of the
trajectory).

4 2 1( )× 2 2 1( )×



Figure 8. Figure-eight trajectory generated by 4R network trained with the GEKF
algorithm for 2000 cycles (performance measurement: 100).

Figure 9. Figure-eight trajectory generated by 8R network trained with the GEKF
algorithm for 500 cycles (performance measurement: 99.9).

As with the circle trajectory, the conjugate gradient, GEKF, NDEKF, and
MEKA algorithms converged to solutions in far fewer cycles than the incremental
gradient algorithm (on the order of 15 times fewer cycles for the internally
recurrent architecture and approximately 150 times fewer cycles, on average, for
the externally recurrent architecture).

The incremental gradient descent and MEKA algorithms exhibited some
performance improvement for the larger internally recurrent networks compared
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to their smaller counterparts, as did the conjugate gradient algorithm for the
externally recurrent architecture. This does not, however, indicate that the smaller
networks were inadequate to learn the figure-eight trajectory, because the
excellent performances of the networks trained by the GEKF algorithm show that
all the networks contained ample representational capability.

Training
Algorithm

Metric

Single Layer

Architecture

4R 6R 8R

Incremental
Gradient
Descent

Success 1 1 2

Ave Performance 91.7 95.5 97.1

Ave Cycles 48000 14000 29000

Training Time (min) 12.8 16.5 100.2

Conjugate
Gradient
Descent

Success 0 0 0

Ave Performance - - -

Ave Cycles - - -

Training Time (min) - - -

GEKF

Success 3 3 3

Ave Performance 99.3 99.6 99.8

Ave Cycles 1470 900 770

Training Time (min) 2.94 7.9 20.0

NDEFK

Success 2 2 4

Ave Performance 98.1 98.6 98.6

Ave Cycles 2900 2050 475

Training Time (min) 1.74 5.4 3.7

MEKA

Success 1 2 4

Ave Performance 85.1 98.4 97.9

Ave Cycles 1200 2100 2050

Training Time (min) 0.72 5.6 15.9

Table 2. Figure-eight trajectory simulation results.



The primary conclusion drawn from the figure-eight trajectory simulations is
that 4 out of the 5 training algorithms were able to converge to good solutions for
the internally recurrent network, and only 2 out of the 5 were able to do so for the
externally recurrent architectures, indicating that for this limit cycle trajectory,
the internally recurrent architecture is the better choice.

Training
Algorithm

Metric

Tap Delay Net

Architecture

4x2(4) 6x2(4) 8x2(4)

Incremental
Gradient
Descent

Success 0 0 0

Ave Performance - - -

Ave Cycles - - -

Training Time (min) - - -

Conjugate
Gradient
Descent

Success 2 1 2

Ave Performance 95.3 97.6 99.4

Ave Cycles 4500 9000 10000

Training Time (min) 15.9 69.4 135.0

GEKF

Success 1 4 3

Ave Performance 98.6 99.6 99.2

Ave Cycles 800 730 600

Training Time (min) 16.9 33.8 48.6

NDEFK

Success 0 0 0

Ave Performance - - -

Ave Cycles - - -

Training Time (min) - - -

MEKA

Success 0 0 1

Ave Performance - - 89.5

Ave Cycles - - 450

Training Time (min) - - 10.9

Table 3. Figure-eight trajectory simulation results.



The internally recurrent architecture did, however, pose difficulty for the
conjugate gradient algorithm, which became quickly trapped in poor local
minima for all of the 15 simulations. This may indicate that internal recurrence
results in more local minima than external recurrence, and that the 4 incremental
algorithms are robust enough to escape these minima but the conjugate gradient
algorithm is not.

The other notable conclusion is that the GEKF learning algorithm was far
superior to the other 4 algorithms for this trajectory. The GEKF algorithm
reached good solutions 57% of the time (17 out of 30 simulations), and
converged to good solutions for all 6 of the architectures. None of the other
algorithms was able to reach good solutions for all the architectures or both types
of recurrence, as indicated by the blank entries in Tables 2 and 3. Of course, it is
possible that the other algorithms might have reached good solutions for these
architectures if additional simulations had been run. Additionally, the
performances of the solutions obtained with the GEKF algorithm were in all
simulations superior to those obtained by the other algorithms. This excellent
performance indicates that the capability of the algorithm more than made up for
its relatively high computational complexity, with the result that it is the preferred
algorithm for learning this figure-eight trajectory.

D. ALGORITHM ANALYSIS
Incremental gradient descent. This algorithm was relatively slow, as

expected, compared to the other, second-order algorithms. This was not a large
problem for networks learning the circle trajectory, as this algorithm found
minima that provided excellent performance results very similar to the other
algorithms. This was most likely due to the shape of the error cost function in
weight space, which appeared to contain very few, if any, local minima. This
shape of the error surface permitted all the algorithms to find minima with good
solutions (in fact, very often the different algorithms running with different initial
weight values converged to the same minimum, identified by the nearly identical
final weight vector).

When this algorithm was applied to the figure-eight trajectory, however, it
performed poorly. The algorithm converged very slowly, requiring tens of
thousands of training cycles to approach a minimum, which was often one that
provided poor performance. Gradient descent was so slow that it was impractical
for use with the figure-eight trajectory, compared to the superior convergence
properties of the second-order algorithms. (Gradient descent required almost 2
hours to reach a good (though poorer than the other 4 algorithms) solution for the
8R network, and almost 24 hours for the network; note that the

solutions for the network were not counted as stable, as the
performance metric never became consistent). An advantage of this algorithm is
that it was very robust (given small enough learning rates), requiring no
heuristics to keep the algorithm from diverging or to optimize performance.
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Conjugate gradient descent. This algorithm converged in relatively few
iterations, compared to the incremental gradient-descent algorithm, as expected.
It performed very well on the circle trajectory, but less well on the figure-eight.
This algorithm, due to its inherent line minimization routine, was susceptible to
becoming trapped in local minima, which was evident for the internally recurrent
architecture learning the figure-eight trajectory. It performed better with the
externally recurrent architecture on the figure-eight, though its convergence rate
was inferior to those of the RLS algorithms. As was the case for the incremental
gradient-descent algorithm, this method was very robust, requiring no heuristic
adjustments to algorithm parameters to ensure stable convergence characteristics.

Recursive least squares. These algorithms also converged in far fewer
iterations than did the incremental gradient-descent algorithm. In addition, as a
group they performed better than the incremental and conjugate gradient-descent
methods. They did, however, require the appropriate setting of algorithm
parameters to optimize performance, which required additional “ set-up” time not
necessary for the gradient-descent algorithms. It was necessary to set two primary
parameters, the process noise matrix Q and the forgetting factor , to values
appropriate for the application.

Values for Q in the range of 10-2 to 10-6 were best, and typically 10-4 was
used in the simulations. While the inclusion of the process noise matrix is not
included in the standard RLS algorithm derivation, it is a standard part of the
Kalman filter algorithm. Because of the similarity of these algorithms, the
process noise matrix was tested with the RLS algorithms, found to be very
beneficial in increasing the convergence rate, and was thus used in all the
simulations.

The use of forgetting factor , (a positive number less than unity called the
exponential forgetting factor [Åström and Wittenmark, 1989]), provides an
ability for the estimator to track variation in the input or, equivalently, to discount
old data by weighting it less. Values less than unity also had the effect of
increasing the rate of convergence quite substantially, most likely due to the fact
that the forgetting of old information when the actual trajectory was far from the
desired trajectory was beneficial. Initial values smaller than final values
provided even faster convergence, and the typical schedule was 0.999 - 0.9999,

increasing by 4.5x10-6 each step (this implied reaching the final value in 200
steps, or 2 training cycles, for the 100-point data sets used here). Forgetting factor
values less than unity did, however, cause the RLS algorithms to become unstable
during periods when the updates to the weights were small, as will be discussed
in the following section.

E. ALGORITHM STABILITY
The conjugate gradient-descent algorithm was the most stable of the five

tested here. It never diverged during training, and required no tuning of
parameters to ensure this stability. However, this stability sometimes came at the
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cost of the algorithm becoming trapped in local minima. The incremental
gradient descent algorithm was also very stable. The algorithm diverged only
when too large a learning rate was chosen. This was easily remedied by
decreasing the learning rate through trial-and-error to find the largest value that
was stable.

The RLS algorithms were not as stable as the other two algorithms just
discussed. There were two sources of instability: the process noise matrix Q and
the forgetting factor .

If Q was too large, the algorithm would not converge, in effect attempting to
estimate the noise rather than learning the trajectory. This problem was addressed
by the trial-and-error method to choose the largest element values for Q that
permitted smooth error reduction during training.

The forgetting factor was typically chosen, as previously indicated, to

vary over the range of 0.999 to 0.9999, incrementing by 4.5 x 10-6 each step. If
values much smaller than 0.999 were used for the initial value, the algorithm was
unstable during the period in which was small. If values much smaller than
0.9995 were used for the final value, the algorithm reduced error rapidly but
sometimes became unstable before reaching a minimum. A final value of 1.0 was
stable, but resulted in very slow reduction of error.

As indicated above, the use of exponential forgetting provides an ability for
the RLS estimator to track variation in the input and discount old data. When the
algorithm enters a region where the updates to the weights are very small, then
the inputs to the estimator are fairly constant, and there is little new information
provided by each step. P(n) increases exponentially, leading to what is termed
estimator windup [Åström and Wittenmark, 1989].

Exponential forgetting is thus sensitive to the degree to which the system is
persistently excited, or the amount of new information that is provided at each
step. Unfortunately in the problems considered here, where there is no external
input (excitation), the input will not be (sufficiently) persistently excited during
all phases of training, and methods to ensure sufficient excitation that are useful
on certain system identification problems, such as injecting extra perturbation
signals, are not applicable here, as perturbation would cause the system to learn a
response different from the desired limit cycle oscillation.

Other methods to avoid estimator windup are to keep P(n) bounded, to stop
weight updates when the estimator error is small, and to adjust the forgetting
factor automatically [Haykin, 1996] or by a schedule such as setting to 1.0
after a predetermined number of cycles or at a certain level of estimator error.
Methods for ensuring P(n) remains bounded, such as by keeping the trace of the
P(n) matrix constant at each iteration or selectively forgetting information only in
the direction generating new information, are given in [Haykin, 1996].

The problem of estimator windup was evident in all three RLS algorithms
after they had reached points at which the weight updates were very small, but
had a more deleterious effect on both the MEKA and NDEKF algorithms, as
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indicated in Tables 2 and 3 by their relatively poor performances on the figure-
eight trajectory for internally recurrent architectures and the lack of stable
solutions found for the externally recurrent architectures. These algorithms often
diverged before the error had been reduced to values small enough to result in
good performances. In this respect, these versions of the RLS algorithm were
more susceptible to estimator windup than the GEKF algorithm, which did
exhibit divergence, though after the algorithm had advanced sufficiently close to
minima providing good performance. It is unknown if these algorithms could
have efficiently reduced the error further, and if this would have resulted in
solutions with better performance, though the ability of the conjugate gradient
descent algorithm to do so for the externally recurrent networks suggests that this
is the case. It is thus likely that the MEKA and NDEKF algorithms could benefit
significantly from the use of the stabilizing heuristics mentioned above for
avoiding estimator windup, or from the use of different variations of the RLS
algorithm such as the square-root adaptive filter [Söderström and Stoica, 1989;
Haykin, 1996].

It should be noted that the instability caused by estimator windup is due to
the exponential forgetting employed in the RLS derivation. It is not a problem for
the slightly different EKF algorithms that are derived using Kalman filter
methods [Singhal and Wu, 1989; Puskorius and Feldkamp, 1994], and thus these
formulations may provide more stable operation than those derived here using
RLS methods. It is not known, however, how the benefits of the learning rate
heuristic used in Puskorius and Feldkamp [1994] for the GEKF and NDEKF
algorithms compare to those exhibited by the exponential forgetting in the RLS-
derived GEKF and NDEKF algorithms given here.

F. CONVERGENCE CRITERIA
The learning algorithms occasionally generated network weights that

provided good results prior to convergence, and poor results once convergence
was attained. These good solutions were not due to weights that constituted a
minimum in the error surface, and thus the algorithms passed through these
regions of weight space on the way to a minimum.

Training was stopped for the simulations in this work if convergence was
reached (for the conjugate gradient and RLS algorithms, this was fairly evident
by the fact that the reduction of training error at successive iterations became
negligible), or if the reduction in training error was small and the performance
value for successive iterations remained within a band, typically units of the
performance metric used here, given in Equation 3.

The good solutions obtained in the middle of training did not usually meet
these convergence criteria, and thus were not accepted as valid. This did not
greatly affect the number of good solutions found by the architecture/algorithm
combinations because algorithms tended to converge later to minima with
solutions of equal or higher performance. However, for some simulations,
especially for incremental gradient descent, convergence resulted in poor results,

2±



indicating that the algorithm was beginning to overfit the data and had passed the
point where the network generalizes well. In these instances, it would have been
possible to employ a form of early stopping [Hassoun, 1995] to stop training in a
region of weight space that provided good performance, though prior to
convergence. For example, the early stopping technique could have been used
during the simulation depicted in Figure 3, where the training had relatively short
periods where the performance was good, prior to and after convergence.

G. TRAJECTORY STABILITY AND CONVERGENCE
DYNAMICS

The basin of attraction that a trained network exhibits is one measure of the
stability of the network, or its robustness with respect to initial conditions. To
study this property, the networks were tested with starting points far from the
trajectory. As stated above, for the circle trajectory the initial condition values
were 0.0001 and for the figure-eight 0.01.

All 100 of the circle simulations resulted in a similar basin of attraction for
the initial condition off the trajectory, as shown in Figure 5. The trajectory
spiraled out from the origin, taking several “ loops” to converge to the desired
circle trajectory. Ten loops of network trajectory are shown in the plot, indicating
that the remaining loops were coincident, and therefore had converged to a stable
trajectory. Thus the trajectory was a stable attractor.

As seen in Tables 2 and 3, only 38 out of 150 (or 25%) of the simulations for
the figure-eight resulted in networks that produced stable attractors. Many of the
simulations did produce sustained oscillators (the on-trajectory initial conditions
resulted in a trajectory following the target trajectory), but not attractors (the off-
trajectory initial conditions resulted in a trajectory that failed to converge to the
desired trajectory within 10M steps). In some simulations this may have been due
to the trajectories being similar to the center, or vortex, trajectories generated by
two-dimensional linear systems with a purely imaginary conjugate pair of
eigenvalues, indicating that the network was not exploiting the nonlinearities of
the hidden units. The statistics were not kept for this subset of results, as the
interest was is generating stable attractor trajectories.

In some of the figure-eight simulations, when the algorithms were near
convergence to a minimum, the performance would sometimes switch between
excellent (values in the high 90's) and poor (values in the high 40's) as the off-
trajectory result changed from converging to the desired trajectory to not
converging (not an attractor), as shown in Figure 3. Because the on-trajectory
result was still good (the trajectory was stable) and the contribution of the off-
trajectory result was zero, the total performance measure was reduced by a factor
of two. This indicated that the off-trajectory performance was very sensitive to
the initial conditions. If only small changes in the weights could cause the
trajectory to switch between converging and not converging, it is most likely that
changes to the values of the off-trajectory initial conditions would also have a
dramatic effect on the trajectory convergence characteristics.



Note that in the simulations presented above, the neural nets were trained
only with data on the trajectory itself, and not with noisy data, or data from a
basin of attraction around the trajectory. Although not explicitly trained to learn
an attractor limit cycle, the simulation results show that the networks do, in fact,
produce such asymptotically stable attractors. This inherent stability was evident
for both the internally and externally recurrent networks and has been previously
reported [Williams and Zipser, 1989b; Pearlmutter, 1995; Tsung and Cottrell,
1995; Cohen, Saad, and Marom, 1997]. The basins of attraction for these types of
figures were studied in Tsung and Cottrell [1995] and Sundareshan and
Condarcure [1998], but in Tsung and Cottrell [1995] the training data were
chosen specifically to produce desired basins of attraction, and in Sundareshan
and Condarcure [1998] the desired trajectory data included the initial, transient
trajectory from the origin out to the final circle trajectory and thus was explicitly
trained.

Why recurrent neural nets, trained only with data on the trajectory, are able
to produce stable attractor limit cycles is not clear. Further, the use of full teacher
forcing in effect trains the network to step to a point close to the trajectory,
starting from a point on the trajectory, as discussed in Tsung and Cottrell [1995].
This is the opposite of what is required for a limit cycle, for which the network
needs to step to a point on the trajectory, starting from a point off the trajectory
(as is done when no teacher forcing is used). Thus the limit cycle properties
observed in these simulations are inherent characteristics of the resultant network
dynamics.

VII. CONCLUSIONS

Internally recurrent hidden layers did not increase network performance over
single-layer internally recurrent networks, and multiple feedforward hidden
layers did not improve the performance of feedforward, externally recurrent
networks, for the limit cycle trajectories considered in this work.

All the architecture/algorithm combinations were able to learn the circle
trajectory, with the internally recurrent architectures providing convergence in far
fewer cycles than the externally recurrent architectures, especially for the
conjugate gradient and RLS algorithms.

The figure-eight trajectory proved to be much more difficult to learn than the
circle, presumably due to the trajectory’s crossing itself. In this case, two
different points on the trajectory require the network to produce identical output
values. The internally recurrent architectures permitted convergence to good
solutions more often than did the externally recurrent architectures (28 vs. 14
good solutions out of 75 simulations each for the internally and externally
recurrent networks, respectively). The GEKF algorithm proved to be the superior
training algorithm for this trajectory, providing the most good solutions and the
solutions with the best performances. The GEKF algorithm found limit cycle
solutions for 17 of the 30 possible (compared to 8, 8, 5, and 4 for the NDEKF,
MEKA, conjugate gradient, and incremental gradient algorithms, respectively).



GEKF was able to repeatedly find good solutions for both the internally and
externally recurrent network architectures, an ability that was not achieved by
any of the other algorithms. It appears that the excellent performance of the
GEKF algorithm was due to its ability to converge to minima with very low
values of error, and it did so in relatively few training cycles. While initial
experimentation on nonlinear single input-single output system identification
shows agreement with the above findings, further analysis is needed to determine
if these results are applicable to problems of nonlinear dynamic system
modeling.

The incremental and conjugate gradient-descent algorithms are quite stable,
while the RLS algorithms suffer from instability due to estimator windup near
convergence, though this was less of a problem for the GEKF algorithm.

The networks were, in general, able to learn to generate limit cycle
trajectories, with basins of attraction in which trajectories converged to final,
steady-state trajectories. This convergence property was inherent in the resulting
network dynamics, and not explicitly part of the training method.

In retrospect, it would have been beneficial to separate the performances for
the two initial conditions tested, and thus have distinct metrics for the network’s
performance as a sustained oscillator and as an oscillator that was an attractor.
Also, testing trained networks with multiple off-trajectory initial conditions
(rather than only one) would have provided more information about the basin of
attraction for the trajectories. Cursory testing of the figure-eight trajectories with
multiple initial conditions indicates that these trajectories had complex attractor
characteristics, where some initial conditions resulted in convergence to limit
cycles, some converged to fixed points, and some produced chaotic trajectories
that did not appear to either converge or diverge.

A possibility for future work would be to continue the initial analysis on
identification of nonlinear systems, and extend this by studying the performances
of the recurrent network architectures and training algorithms for identification of
real physical systems with experimentally collected data sets. This would
indicate if the findings here were applicable to a broader class of systems, and
facilitate analysis of the capabilities of the networks and learning algorithms to
model systems when presented with noisy, real data.
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I. INTRODUCTION 
 
 

    The most fundamental characteristic that enables a neural network to serve as 
a useful computational device is its learning capability. The implementation of 
an appropriately tailored learning algorithm, i.e., a rule for adaptive adjustment 
of the network parameters such as the interconnection weights and gains of 
nonlinear characteristics, can endow the network with the capability for evolving 
into a structure that performs a desired computation. Designing a 
computationally efficient and yet simply implemented learning algorithm is 
hence at the core of successful neural network implementations for practical 
problems. Although interest in general learning theory and development of 
systematic training schemes has enjoyed a resurgence in recent times in the 
context of neural networks applications, they have a much longer history, tracing 
their origins to machine learning [Nilsson, 1965] and to adaptive learning control 
systems [Mendel, 1970]. 
    When one narrows the discussion down to the specific context of neural 
network training, there are two general guiding principles on which many 
popular algorithms are based. These are Hebbian learning and gradient-descent 
learning. While Hebbian learning derived its following from the parallels that 
exist in biological systems, gradient-descent methods have attained a greater 
importance more recently in spite of the lack of conclusive evidence of whether 
biological systems employ such a mechanism for global learning of complex 
behaviors. The reason why gradient-descent methods have become popular is the 
optimization framework they facilitate not only to tailor specific training 
algorithms but also to provide estimates of the convergence behavior under these 
algorithms. A specific approach that has attained a considerable degree of 
popularity in recent times is the backpropagation rule [Rumelhart, 1986], which 
employs a gradient descent scheme to adjust the interconnection weights of a 



 

multilayer neural net in order to minimize a measure of the deviation between 
the actual network output and a reference entity. Alternate ways of specifying 
this measure, or the “error norm,” can be used to develop different algorithms 
that perform supervised training. 
    Gradient descent-learning is conceptually very simple. However, in practical 
implementations it may lead to several problems related to the need for precise 
computation of gradients of the error function with respect to the network 
parameters being adjusted for the algorithm to succeed, and the possibility of 
being trapped at local minima of the error function that prevents the training 
error to be minimized to its global minimum value. The problems are further 
exacerbated when recurrent neural networks are attempted to be trained by this 
approach due to the complexity of implementing the needed updating equations. 
    Neural networks with recurrent connections and dynamical processing 
elements are finding increasing applications in diverse areas. While feedforward 
networks have been recognized to perform excellent pattern recognition even 
with very complex nonlinear decision surfaces, they are limited to processing 
stationary patterns (i.e., patterns that are invariant with time). It requires the 
power of dynamical networks, such as networks with recurrent and feedback 
connections, to handle the challenges posed in the storage of spatiotemporal 
patterns and sequences. 
    The recognition of the importance of training recurrent neural networks has 
prompted a host of researchers to investigate devising schemes by which 
gradient methods, and in particular backpropagation learning, could be extended 
to these networks.  Several notable schemes have been developed with some 
early contributions made by numerous researchers. The backpropagation-
through-time approach of Werbos [Werbos, 1990] attempts to approximate the 
time evolution of a recurrent net in terms of a sequence of static networks to 
which gradient methods are applied. Lapedes and Farber [Lapedes, 1986] 
propose a master slave formulation where deployment of a second neural 
network (master net) is made to perform the required computations in 
programming the attractors of the original dynamical network (slave net) to be 
trained. Similarly, Pineda [Pineda, 1987] and Almeida [Almeida, 1987] propose 
a second neural network, of the same dimension as the original one, for 
implementing the backward propagation equation in order to avoid a more 
complex matrix inversion in the weight adjustment process. A direct 
differentiation of the neural activation dynamics to calculate the error gradients 
is proposed by Williams and Zipser [Williams, 1989], which, although it 
provides some benefits of reducing the storage capacity needed, is still 
computationally very cumbersome and scales poorly to large networks 
(i.e.,networks with large numbers of dynamical processing elements and a large 
set of adjustable parameters). The algorithm proposed by Sato [Sato, 1990] is 
based on Lagrange multipliers, while Pearlmutter [Pearlmutter, 1989]  gives a 
variational method that involves solving a set of “adjoint equations”. A detailed 
survey of the various attempts to extend backpropagation learning to recurrent 
networks is also given by Pearlmutter [Pearlmutter, 1995]. 



 

    A major problem with the backpropagation approach used for recurrent 
network training is the computational intensity. For illustration, in the specific 
formulation given by Pearlmutter [Pearlmutter, 1989] that utilizes variational 
arguments, the complexity arises in the form of the need to solve a set of 
differential equations backwards in time and the need to store variables for recall 
later when the forward solution is implemented.  Although this is not a drawback 
unique to backpropagation methods and is shared by many optimal control 
methods (such as dynamic programming [Bertsekas, 1987]), it certainly limits 
the attractiveness of the training scheme. Also limiting the usefulness for 
practical implementations is the fact that such gradient-based approaches do not 
scale well for large-sized networks. For a typical trajectory learning problem that 
involves training a continuous trajectory, defined over a time interval divided 
into L time steps, to a network with N neurons, some estimates [Toomarian, 
1992] indicate that the total number of multiplications and additions required for 

the implementation of the required updating scales as O N L( )4 .  This clearly 

imposes a significant computational burden and is practically infeasible even for 
medium-sized networks. For overcoming the computational demands and 
ensuring a relatively manageable implementation, one is usually forced to 
making simplifying approximations, such as coarser gradient evaluations and 
heuristic selections of high gains in the activation functions (instead of allowing 
the network to find the optimized parameter values) [Sudharsanan, 1991, 
Sudharsanan, 1994], which in turn lead to reduced training efficiency. In several 
precision applications, as for instance those encountered in multijointed robot 
control [Karakasoglu, 1993] and reliable tracking of target maneuvers in severe 
clutter and noise environments [Wong, 1998], for which neural network-based 
solutions are becoming very attractive, making such approximations could pose 
serious limitations and alternate training procedures that bypass the need for 
computation of gradients of the error function are clearly useful. 
    The primary focus in this chapter is the design of supervised training schemes 
for recurrent neural networks that do not require gradient evaluations. In 
particular, we describe two distinct approaches, one that employs concepts from 
the theory of learning automata and the other based on the classical simplex 
optimization approach. Besides the elimination of the need for evaluation of 
error gradients, these approaches result in simple training algorithms suitable for 
implementation on low-end platforms such as personal computers. They also 
offer the flexibility of tailoring a number of specific training schemes based on 
the selection of linear and nonlinear reinforcement rules for updating automaton 
action probabilities and specification of different error norms. For demonstrating 
the training efficiency with these approaches, the illustrative task of 
spatiotemporal signal production by a trained neural network will be considered. 
To underscore the complexity involved in this task compared to learning of 
isolated fixed points, one may note that while a variety of networks, both static 
and dynamic, can be used for the fixed point learning problem even on 
arbitrarily high dimensional spaces, the trajectory learning problem requires 
exploiting the unique capability of recurrent neural networks for approximating 



 

the temporal dynamics. The practical usefulness of this problem can also be 
appreciated by noting that the ability of a recurrent neural net to be trained to 
produce desired trajectories and to converge to attractor trajectories from 
arbitrary starting points can be used effectively in several control applications, 
particularly where precise repetitive actions are desired to be performed, such as 
those arising in process control and robotic manipulator control. 
    The structure of the chapter is as follows. In Section 2, we shall provide a 
mathematical description of the learning problem in general dynamical systems 
and specialize this to spatiotemporal training of recurrent neural networks.  
Some important concepts such as incremental training and teacher forcing that 
contribute to the efficiency of training are also discussed.  In Section 3, some 
basics on learning automata will be introduced and specific training policies that 
can be developed utilizing a penalty-reward structure for reinforcement learning 
will be discussed.  Performance of these methods in training a recurrent neural 
network to produce prespecified periodic trajectory patterns is also established.  
The use of a nonlinear simplex optimization approach for neural network 
training will be discussed in Section 4.  Some basics on simplex optimization are 
briefly introduced and a systematic training scheme for recurrent networks is 
developed.  For comparison with the earlier approach, the trajectory production 
performance resulting from this approach is also established by considering 
specific benchmark trajectory patterns. 

 
II. DESCRIPTION OF THE LEARNING PROBLEM AND 

SOME ISSUES IN SPATIOTEMPORAL TRAINING 

A. GENERAL FRAMEWORK AND TRAINING GOALS 
    For a precise description of the learning problem and the training objectives 
considered in this article, it is useful to adopt the general framework afforded by 
considering the problem of modifying the behavior of a general nonlinear 
dynamical system to meet specified objectives. Consider the problem of training 
an N-dimensional system whose dynamics are described by the nonlinear 
differential equation 
 

!( ) ( , , )x t x u= ℑ ℘                                           (1) 

 
where x N(.):ℜ → ℜ  is the N-dimensional vector that describes the evolution 

of the system state, u m(.):ℜ → ℜ  is a vector of external inputs (fixed or time-

varying), ℘ ∈ℜ M  is a set of adjustable parameters and ℑ  is a nonlinear 

function whose properties can be specified to include different types of 
dynamical behavior of interest. For instance, one may require ℑ  to satisfy 
Lipschitz conditions in all of its arguments to ensure continuity of system 
trajectories, or to meet appropriate limiting conditions such as saturation limits 
and limits on the rise time of the trajectories in order to ensure boundedness and 



 

stability properties [Sudharsanan, 1991a]. The problem of interest is to develop 
an organized procedure for adjusting the parameters in the set ℘such that the 

dynamical system exhibits desired time-behavior when started at an initial state 
x t x( )0 0= . The system behavior desired may be specified in different ways 

depending on the particular application to which the system may be employed, 
such as: (i) requiring the system to exhibit an “asymptotically stable behavior”, 

i.e., x t( )  bounded for all time t t≥ 0  and extxt =∞→ )(lim , where xe  is a 

specified equilibrium state of system (1), or (ii) requiring the system to exhibit 

an acceptable “tracking behavior”, i.e., x t x t( ) ( )− ≤∗ ε   for all t t≥ 0 , and 

a specified 0>ε  and a trajectory to be tracked x t∗ ( ) . 

    The specific problem cited above of training the network to ensure stability of 
the equilibrium points is of importance for fixed point learning, and a variety of 
applications such as associative memory designs and synthesis of nonlinear 
input-output mappers can be based on this property. For illustration, in the case 
of a network which is designed to serve as a reliable associative memory, the 
information stored corresponds to its stable equilibria. It has been established 
that by a careful selection of the nonlinear activation functions and of the 
interconnection weights, the network can be endowed with a number of stable 
equilibria, each of which corresponds to a to-be-stored memory vector. 
Furthermore, the size of the basins of attraction for each of these stable equilibria 
can be tailored in order to ensure desired levels of reliability in the memory 
recall process. As shown in Sudharsanan [1994], there exists intricate 
interrelations between the stability properties of the network equilibria and the 
convergence properties of the training algorithms that can be synthesized for 
these networks. In particular, one can attempt to utilize analytical stability results 
for these networks [Sudharsanan, 1991a, Sudharsanan, 1991b] in order to pre-
select the shapes of the nonlinear activation functions (selection of the dc gain, 
for instance), which in turn enables one to develop learning rules that 
approximate gradient schemes but offer simple implementation possibilities. It 
must however be appreciated that the a priori selection of the nonlinear gains 
almost always leads to a suboptimal solution to the overall training of the 
recurrent neural network. 
    The second problem cited above of training the network to track a specified 

trajectory x t∗ ( ) is a more complex one. It is well known in the literature on 

nonlinear dynamical systems [Khalil, 1992] that under certain conditions the 
tracking problem can be reduced through an appropriate transformation to a 
corresponding problem of ensuring the stability of an equilibrium point of a 
transformed system. In particular, by defining the vector y t( )  as 

 

y t x t x t( ) ( ) ( )*= −                                 (2)  

 



 

one can transform the nonlinear system described by (1) into an equivalent 
system  
 

!( ) ( , )y t g y u=                                           (3) 

 

such that the tracking problem of forcing x t( )  to follow x t∗ ( ) in system (1) 

can be reduced to the problem of ensuring the stability of the equilibrium point 
y t( ) = 0  in system (2). However, when the desired objective is one of training 

system (1) to perform a desired task, i.e., explicitly adjust the parameters in the 
set ℘ , such a reformulation of the problem may not be very useful in practice 

since the transformation given by (2) makes an explicit handling of these 
parameters almost always impossible. Consequently, any attempts at simplifying 
training by approximations such as those discussed above for the fixed point 
learning problem are more difficult to obtain in this case. 
    It is evident from the above discussion that training a dynamical system to 
produce state-space trajectories of specified forms constitutes a highly 
challenging learning problem due to the diversity in the possible spatiotemporal 
features that may need to be learned. A problem of particular interest is to train 
the system to exhibit desired limit cycles, which focuses only on the asymptotic 
behavior of the state-space trajectory to converge to a prespecified periodic 
temporal behavior. In the context of neural network training, an aspect of 
particular significance is ensuring the learning of the true spatiotemporal features 
as opposed to a point-by-point memorization of the terminal trajectory. This 
capability is provided by training the network to have the desired attractor 
dynamics such that arbitrary starting motions are forced to converge to the 
desired terminal periodic behavior. The complexity of implementing gradient-
based training methods for these problems makes the development of alternate 
learning schemes that do not require the evaluation of gradients particularly 
attractive. 

B. RECURRENT NEURAL NETWORK ARCHITECTURES 
    The training problems described in the previous section are quite general. For 
the establishment of specific simple rules for parameter adjustment and also to 
illustrate how well the training objectives are met in practice by different 
algorithms, it is useful to consider specialized architectures for the nonlinear 
dynamical system that is being trained. One such model that has been popular 
with neural network researchers is the continuous-time recurrent network model 
described by the set of coupled nonlinear differential equations      
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where ℜ→ℜ⋅ :)(iv  denotes the state of the ith neuron, ℜ∈iτ  is a time 

constant referred to as the relaxation time, ℜ∈ig  is a parameter that controls 

the slope of the sigmoidal activation function, and ℜ∈ijω  denotes the 

interconnection weight from the jth neuron to the ith neuron.  The inputs to this 

network come from the initial conditions )( 0tvi  and the outputs are the 

observations of the behavior of the state trajectories )(tvi , for 0tt ≥ .  The task 

of training this network to serve as a useful computational device involves the 
implementation of an algorithm for progressively updating the N2 + 2N 

parameters }and,{ iiij gτω  such that when the training is completed, the 

network trajectories )(tvi  starting from any initial states )( 0tvi  behave in a 

prescribed manner to perform the desired computation. 
    In several practical problems, observing only a subset of the state variables 
may be of particular importance for checking whether the goals of the desired 
computation are met, and consequently designation of a set ϑ of output neurons 
(which is a subset of the total set of neurons) may be appropriate.  Also, in 
certain problems where the input-output mapping behavior of the neural network 
is of interest, the use of externally applied time-dependent forcing signals to alter 
the activation dynamics of one or more neurons may be necessary.  In order to be 
able to handle such problems, the dynamical framework can be expanded to 

permit the introduction of external inputs mitIi ...,,2,1),( = , by modifying 

the dynamical equation (4) into 
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The weights ijω~ , some of which could be zero, serve to fan-out the m input 

signals Ii into the individual nodes of the network.1  The number of weight 
parameters that need to be trained increases in this case to N2 +(m+2)N.   
    Evidently, for Ij(t) = 0, (5) reduces to (4).  In this chapter, we will exclusively 
consider the specialized network architecture described by the dynamical 
equation (4), since for trajectory learning problems that will be considered for 
illustration here no external inputs are needed.  A schematic of the general 
recurrent network architecture described by (5) is shown in Fig. 1. 

                                                           
1   To conform this architecture to the more familiar multilayer configurations, the input 
signals Ii can be considered as the input nodes of the network.  These nodes, however, are 
different from the N dynamical nodes in that they do not have recurrent or feedback 
connections, but connect to the N dynamical nodes only in the feedforward direction 
through the weights 

ijω~ . 



 

C. SOME ISSUES OF INTEREST IN NEURAL NETWORK  
      TRAINING 

1. AN OPTIMIZATION FRAMEWORK FOR  
      SPATIOTEMPORAL LEARNING 
    As noted earlier, a particularly challenging learning problem is that of training 
a recurrent network to produce a continuous trajectory of a specified form or to 
ultimately relax to a desired limit cycle behavior. In fact, this is also one of the 
tasks where the greater capabilities of dynamical networks are brought into a 
sharp focus. Recurrent network training to learn such trajectories has received 
some attention in the recent past with the investigation of schemes which use 
various forms of gradient descent algorithms. These include the real-time 
recurrent learning (RTRL) scheme of Williams and Zipser [Williams, 1989], the 
method of directed derivatives of Pearlmutter [Pearlmutter, 1989], and the 
method of adjoint operators of Toomarian and Barhen [Toomarian, 1992]. These 
works have shown that a dynamical network can indeed be trained to exhibit 
desired limit cycle behavior (it may be noted that this behavior is not possible to 
emulate in a static feedforward network) and have demonstrated the success of 
their training algorithms by application to the problem of learning certain 
benchmark trajectories. Some additional refinements to the use of gradient 
methods for training to produce continuous trajectories have also been made 
very recently by Lin et. al. [Lin, 1995] and by Ruiz et. al. [Ruiz, 1998]. While 
the closeness with which the desired trajectory could be generated varies from 
one algorithm to another, the required computation of gradients and other 
implementation considerations for error backpropagation impose considerable 
burden (in fact, the methods cited above differ from one another mainly in the 
specific procedure employed for implementing the required gradient 
computations). The application of alternate training procedures that eliminate the 
need for gradient computations as will be described in this chapter are of 
particular interest in the context of this problem. 
    Two specific benchmark trajectories that have received wide attention in 
performance evaluations are the “circle trajectory” and the “figure-eight 
trajectory”. A recurrent network can be set up to produce these trajectories by 
requiring two output nodes in the architecture shown in Fig. 1 to generate 
oscillatory response of a sinusoidal form with a specified frequency. It is easy to  
see that requiring the two outputs to oscillate according to the relation 

o t A t1 ( ) sin= ω  and   o t A t2 ( ) cos= ω  



 

Figure 1. General architecture of an N-node recurrent neural network with m external inputs 
 

with an arbitrary frequency ω  would generate a circle with center at the origin 

and radius A  on a two-dimensional plane with o t1 ( ) and o t2 ( ) as coordinates, 

while requiring the two outputs to oscillate according to the relation 
 

o t A t1 ( ) sin= ω  and   o t A t2 2( ) sin= ω  

 
would generate a figure-eight pattern passing through the origin of the 
( o t1 ( ) , o t2 ( ) ) plane. It is also easy to see that since the latter trajectory 

intersects on itself, the training problem is more challenging in this case 
compared to one of training a non-intersecting trajectory pattern. While these 
patterns are the ones that have been considered by earlier researchers to 
demonstrate the training efficiency, more general trajectories can also be formed 
by specifying the neural network outputs in appropriate forms. 
    An optimization framework can be developed for such a spatiotemporal 

learning task extending over a time horizon [ ]t t f0 ,  by specifying an error 

functional  
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where ϑ denotes the set of designated output nodes of the network and )(tvd
i , 

i∈ϑ, denote the desired output signals. The function f (.,.)  can be specified in 

various ways in terms of the L1 -norm or the L2 -norm of the deviation 

v t v ti i
d( ) ( )−  or any other appropriate measure. The training problem then 

reduces to minimizing this error functional with respect to the set of adjustable 
network parameters. An issue of some significance for practical applications is 
the flexibility available in tailoring an appropriate error functional. It may be 
noted that conventional gradient-based training procedures typically require an 

L2 -norm of the error, i.e., selection of f v v v vi i
d

i i
d( , ) ( )= − 2 , mainly for 

simplicity in gradient evaluations. However, when an evaluation of error 
gradients is not needed, as is the case with the training procedures discussed in 
this article, we have a greater flexibility in formulating the error functional to be 
minimized.   

2. INCREMENTAL LEARNING 
    When neural networks are trained in a supervised manner, there is a tendency 
for the training to proceed rapidly reducing the value of the specified error for 
some time, until a point is reached where no further training becomes possible.  
This corresponds to the case when the training has proceeded to a local 
minimum.  In the present context, this condition may be visualized by 
considering the error surface in an N2+2N+1 space (where the N2+2N axes 
correspond to the adjustable parameters of the network and the final dimension 
corresponds to the error function), which indicates that the error has been 
reduced with respect to these parameters but has fallen into an energy well, from 
which a recovery with the type of parameter changes already used is not 
possible.  In the specific application to the trajectory learning problem, which is 
of particular interest in this chapter, this situation corresponds to the neural 
network learning to generate a trajectory that reduces the error, but the generated 
trajectory not having the same shape as the desired trajectory. 
    In order to reduce the occurrence of becoming trapped in a local minimum, 
some method of controlling the evolution of trajectories during learning could be 
used.  A simple way of overcoming the problem is by a process of incremental 
learning, which generates a set of intermediate learning goals.  Let ξo(t) denote 
the trajectory generated by the neural network at the start of training and ξf(t) 
denote the final trajectory.  It is desired to establish M learning goals, where the 
absolute error between one goal and the next is small.  This can be accomplished 
by defining a sequence of learning goals as 

 

Mntnttn ...,,1,0,)()()( 0 =∆⋅+= ξξξ   (6) 

 

where Mttt f /)]()([)( 0ξξξ −=∆ . 



 

    For illustration, suppose it is desired to train a dynamic recurrent neural 
network of the form (1) to output the trajectory  
 

0.10,)sin()( ≤≤= tttv π .                        (7) 

 
Let v to ( ) denote the initial trajectory output of the network for some initial set 

of parameters and initial states of neurons.  An arbitrary number, say 100, of 
learning targets can be selected as  
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When v0(t) ≈ ξi(t) within some predetermined error bound, the next learning 
target becomes ξi+1(t).  Learning progresses through these increments until the 
final desired target is reached.  Fig. 2 shows a succession of these desired 
trajectories which represent incremental targets. 
 

Figure 2. Target trajectories for increment learning 
 
    It may be noted that since the neural network being trained is characterized by 
nonlinear dynamics, the effort in moving from one incremental learning goal to 
another may not be uniform even when a uniform distance between these 
learning goals is implicit.  This however is of no major consequence insofar as 
the overall learning performance is concerned since the motivation for modifying 
the learning goal is to provide a mechanism for perturbation of the error function 



 

during the training process, and the objectives of incremental learning are 
achieved when an appropriately large number of learning goals M is selected for 
implementation. 

3. TEACHER FORCING 
    In training problems such as trajectory learning, where the desired output is 
available at every instance of time during the training process, using an 
appropriate mechanism to directly feed this information to alter the activation 
dynamics of the neural network provides several benefits.  This formalism, 
referred to as Teacher Forcing, has been used by several previous researchers 
[Williams, 1989, Toomarian, 1992] in one form or another.  The idea of 
including a teaching forcing signal in general supervised learning problems 
comes from the desire to supply additional instantaneous information from the 
teacher directly to the activation dynamics during the learning stage.  The role of 
including this signal on the training performance can be understood from the 
analogy with the use of continuous feedback in reducing the error in closed-loop 
control systems.  A temporal modulation of this signal as learning proceeds is 
often desirable so that the activation dynamics during learning progressively 
reduce to the activation dynamics during the recall stage. 
    In the present work, for improving the trajectory learning performance, a 
method of teacher forcing similar to the one suggested originally by Williams 
and Zipser [Williams, 1989] can be employed.  In this scheme, the desired 
network output signals are used in place of the actual network outputs when fed 
back into the network via the recurrent connections.  The actual outputs are still 
used for computing the error in order to determine whether the parameter 
updating action at any stage is favorable or not.  The teacher forcing drives the 
network outputs closer to the desired signals as training progresses and the 
network is trained at each stage as if it were already generating the correct 
signal.  This seems to significantly speed up learning, particularly at the 
beginning stages. 
    Upon completion of successful training, i.e., when the error functional 
becomes zero, the teacher forcing will no longer exist and the network dynamics 
will revert to the usual dynamics described by (4).  As pointed out by Toomarian 
and Barhen [Toomarian, 1992], there exist training scenarios (particularly 
arising in trajectory learning problems) where the error functional cannot be 
reduced to zero and consequently the activation dynamics of the neural network 
after training is completed, i.e., during the recall phase, will be different from 
that specified by (4).  To avoid this discrepancy, at some point in the training 
process, when confidence in the shape of generated trajectories is developed, the 
teacher forcing is disabled and the learning is progressed with the actual outputs 
of the network.  Alternately, a temporally modulated teacher forcing scheme 
[Toomarian, 1992] that progressively reduces the amount of teacher intervention 
during the training phase can be employed; a simple mechanism for 
implementing such modulation is by multiplying the signal by a time-varying 

gain ρελ /)(1)( tet −= , where ε(t) is the measured error and ρ is an 



 

appropriately selected number sufficiently large (a large value of ρ relative to the 
expected values of error is recommended to prevent λ(t) from becoming 
negative). 
 

III. TRAINING BY METHODS OF LEARNING 
AUTOMATA 

A. SOME BASICS ON LEARNING AUTOMATA 
    A learning automaton interacts adaptively with the environment it is 
operating in and updates its actions at each stage based on the response of the 
environment to these actions [Lakshmivarahan, 1981, Narendra, 1989].  Hence 
an automaton can be defined by the triple (α, β, T) where α denotes the set of 
actions α = {α1, α2, ..., αr} available to the automaton at any stage, β = {β1, β2, 
..., βm} is the set of observed responses from the environment, which are used by 
the automaton as inputs, and T is an updating algorithm which the automaton 
uses for selecting a particular action from the set α at any stage.  In the present 
context of neural network training, a specific action at any stage corresponds to 
the updating of the values of one or more parameters of the network. 
    For a stochastic learning automaton, the updating algorithm specifies a rule 
for adjusting the probability pi(n) of choosing a particular action αi at stage n.  
Such a rule may be generally described by a functional relation of the form 
 

))(),(),(()1( nnnpFnp ii βα=+ .                 (9) 

 
The learning procedure at each stage hence consists of two sequential steps.  In 
the first step the automaton chooses a specific action α(n) = αi from the finite set 
of actions available, and in the second step, the probabilities of choosing the 
actions are updated depending on the response of the environment to the action 
in the first step, which influences the choice of future actions. 
    An alternative way of specifying the updating algorithm is to define a state 
vector for the automaton and consider the transition of the state due to a certain 
action, which enables one to state the updating rule in terms of state transition 
probabilities.  This approach has been quite popular in the development of 
learning automaton theory [Varshavskii, 1963].  For our application to neural 
network training, however, the action probability updating approach, with the 
updating algorithms specified in the form of equation (9), provides a simpler and 
more convenient framework. 
    For execution of training, the feedback signal from the environment, which 
triggers the updating of the action probabilities by the automaton, can be given 
by specifying an appropriate "error" function.  The environmental response set 
β(n) at any stage n can then be selected as the binary set β(n) = {0,1}, with β = 1 
indicating that the selected action αi is not considered satisfactory by the 
environment and β = 0 indicating that the action selected is considered 



 

satisfactory.2  For a stochastic automaton with r available actions (i.e., α = {α1, 
..., αr}), the updating rules can then be specified in a general form as follows: 
    For the selected action at the nth stage α(n) = α1, if β(n) = 0 then 
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whereas if β(n) = 1, then 
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The functions γj(⋅) and δi(⋅) are appropriately selected continuous-valued 
nonnegative functions.  The summation Σγj in (10) and the division by (r-1) in 
(11) are to ensure preservation of probability measure (i.e., sum of probabilities 
at (n+1) equals one). 
    The two sets of equations (10) and (11) specify a reinforcement learning 
algorithm.  By tailoring the functions γj(⋅) and δi(⋅) an appropriate degree of 
reinforcement in the selection of a particular action can be introduced.  A 
scheme where both sets of equations are employed together is termed a reward-
penalty reinforcement scheme.  It is evident that in this scheme an action that is 
judged favorable is rewarded by having its probability of selection increased 
while an unfavorable action is penalized by having its probability of selection 
decreased.  Another reinforcement scheme, termed reward-inaction scheme, 
employs the updating only for β(n)=0, whereas for β(n)=1 the action 
probabilities are maintained at the same values as before.  These schemes and 
several other variations of them have been discussed in the literature 
[Lakshmivarahan, 1981, Narendra 1989].  Due to the stochastic nature of the 
framework, however, very few analytical results can be developed for these 
schemes and studies directed to the evaluation of performance (such as 
convergence, asymptotic behavior) typically employ simulation experiments. 
    It should be emphasized that (10) and (11) describe a general framework for 
tailoring a variety of specific training algorithms useful in particular applications 
by selecting γj(⋅) and δi(⋅) appropriately as linear or nonlinear functions.  In fact, 

                                                           
2   In the literature on learning automata [Lakshmivarahan, 1981, Narendra, 1989], this 
case of β allowed to take two distinct values only is referred to as the P-model.  More 
general models where β can take a number of values within an interval have also been 
discussed. 



 

a number of heuristic algorithms where γj(⋅) and δi(⋅) may not have an analytical 
form can also be considered for realizing improved speed and accuracy in 
training.  In certain applications of neural network training such constructions 
motivated by intuitive reasoning may indeed prove to be more efficient.  An 
illustrative example of this will be demonstrated in a later section for application 
to the trajectory learning problem. 

B. APPLICATION TO TRAINING RECURRENT  
      NETWORKS 
    A principal advantage of the learning automaton approach is its ability to 
determine optimal actions among a set of possible actions and this is particularly 
useful in neural network training where a number of possible actions exist.  For 
training the neural network described by (4), we will employ the learning 
configuration schematically shown in Fig. 3.  The automaton actions are defined 
as either an increment or a decrement to any of the network parameters ωij, τi and 
gi.  For an N-neuron network, this corresponds to a set of 2(N2 + 2N) single 
parameter updating actions.  Multiple parameter actions can also be considered, 
with the number of possible actions in this case increasing to 2(N2 + 2N)! 
    The environment for this learning configuration comprises the neural network 
itself together with an appropriately specified error functional ε defined over the 
time interval [t0, tf] as discussed earlier.  The feedback signal to the automaton 
can be defined as  
 

β = 0 for action that reduces the error   
  (12) 

β = 1 for action that does not reduce error. 
 

As noted earlier, function f(⋅,⋅) for computing the training error can be specified 
in various ways; for the examples that will be discussed later, we employed 
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determination that an action has reduced the error, the corresponding changes to 
the neural network parameters are retained.  However, if the action increases the 
error, the corresponding parameter changes are not kept.  Thus, the only 
modifications to the neural network structure come from those actions that 
reduce the value of the specified error. 



 

 

Figure 3. Learning configuration 

 
    A probability of selection is initially assigned to each action.  Since no a 
priori knowledge generally exists as to which of the network parameters has the 
greatest influence in reducing the specified error, the entropy in learning is 
maximum at the beginning of training.  Hence, a uniform distribution is used at 
the beginning for the action probabilities.  As learning progresses, the 
probability associated with each action is changed. This probability determines 
the relative frequency with which a particular action will be selected.  Thus, the 
more successful a particular action is at reducing the error, the more likely its 
selection will be in the future stages. 
    Any available prior knowledge on the qualitative behavior of the network 
being trained can be utilized in the process of initializing the training algorithm.  
The network described by (4) is one whose dynamics and equilibrium behavior 
have been extensively studied in the past [Sudharsanan, 1994, Sudharsanan, 
1991a, Sudharsanan, 1991b] and the correlations of these results with the 
training performance can be exploited for the initial setting of parameter values.  
For illustration, some past results that underscore the role of high gain sigmoidal 
nonlinearities in ensuring desirable stability properties for the network equilibria 
[Sudharsanan, 1991a] and the observed correlation between selection of high 
gains and improvement in learning rates [Sudharsanan, 1991, Behrens 1991] 
could be usefully employed in the initial selection of gi parameters for improving 
the efficiency of the training process. 
    In discussing the time-behavior of the training process, two types of 
convergence come into the picture: convergence of the training error and 
convergence of the automaton to some optimal action. Convergence of the error 
is assured by the nature of the learning algorithm.  Since changes to the neural 



 

network structure come only from those actions that result in a reduction of the 
error, starting from any finite positive initial error, a monotonic decreasing 
sequence of positive real numbers is generated.  This sequence is bounded and, 
from the monotone convergence theorem [Bartle, 1992, Condarcure, 1991], is 
convergent. 
    Under certain conditions, the learning automaton will converge toward some 
optimal action depending on the type of reinforcement rule used.  By associating 
with each action a penalty probability, it has been shown in the literature 
[Narendra, 1989] that if the penalty probabilities are stationary, then the action 
probabilities will converge to an optimal action.  In particular, for the linear 
reward-inaction scheme (i.e., for γj(⋅) a linear function of the argument and δi(⋅) = 
0 in the updating rules (10) and (11)), convergence is assured in this sense.  It 
should however be noted that convergence of this type may not be desirable in 
the present context of neural network training.  The penalty probabilities are not 
known at the start of training and their distribution may not be stationary since 
the structure of the neural network is constantly changing during the training 
process.  An action that may produce a favorable response at some point in the 
training process may not yield a favorable response at a later time.  Furthermore, 
the gains gi and the time constants τj are constrained to be nonnegative and hence 
cannot be continually decremented to take on negative values.  Therefore, 
convergence of the learning automaton to an optimal action is not desirable and 
will not occur when the reward-penalty reinforcement rules are used (since the 
probability of any action approaching 1 is not possible with this reinforcement 
scheme for a nonstationary environment [Narendra, 1989]). 

C. TRAJECTORY GENERATION PERFORMANCE 
    The performance of the training approach described in the last section has 
been tested in the task of learning continuous trajectories.  We shall give the 
results for a circle trajectory of specified radius 0.5. 
    Simulation experiments were conducted using a fourth-order Runge-Kutta 
algorithm for studying the temporal dynamical behavior of the neural network.  
A time increment of 0.02T was selected as the integration time constant, where T 
is approximately the period of the trajectory to be generated.  For implementing 
the actions of the learning automaton, it is necessary to generate an output 
function α(n), which maps the stage number n into a selection of the appropriate 
action to take in a probabilistic fashion.  Since these action probabilities are 
unknown at the start of the experiment, they are initialized to a uniform 
distribution.  Then, as the experiment progresses and successful actions are 
found, a discrete probability density function is built up, with the probability for 
a particular action αi(n) being increased or decreased according to the specific 
reinforcement in the form of (10) or (11).  As the density function is being 
generated, it is used for the selection of actions by an inverse distribution 
method.  This is done by generating uniformly distributed random numbers (by a 
standard procedure such as the Lewis-Payne method [Lewis, 1973]) and then 
summing the numbers in the density function to create a distribution function 



 

until the generated random number is greater than the sum.  The action is then 
selected at the point where the sum of the densities is greater than the uniform 
random number. 
    A six-node network (i.e. N = 6) with two nodes designated as the output nodes 
{o1, o2} and with no externally applied inputs was trained to generate the 
desired circle trajectory.  In order to attempt to better control the trajectory rise 
time, rather than try to force the network to generate the circle with an unknown 
rise time, a parameter η was introduced to modify the desired outputs in the form 
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For initializing the network, the weights wij were set to 0.0, the gains gi were set 
to 10.0, and the time constants τi were set to numbers randomly distributed 
around 6.0.  The initial states of the neurons vi(0) were chosen to be small 
random numbers centered around zero.  Incremental learning was used with 100 
intermediate learning targets established as discussed in Section 2.C. 
    A brief explanation on the role of parameter η seems useful.  Observe that 

with the selection of )(1 tvd
o  and )(2 tvd

o  as in (13), we have 
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and hence as t becomes progressively larger, )(1 tvd
o  and )(2 tvd

o  approach the 

desired signals 0.5sin(ω t) and 0.5cos(ω t) respectively for any selection of η > 
0.  However, by selection of a sufficiently large η, a scaling of time can be 
achieved thus accelerating the convergence to desired final values.  It may also 

be noted that the use of )(1 tvd
o  and )(2 tvd

o  as in (10) is motivated by our desire 

to generate the desired circle trajectory from the starting values of )(1 tvd
o = 0 

and )(2 tvd
o = 0, which corresponds to a more challenging learning task than the 

case when the initial point is selected to lie on the desired circle.  Selection of η 
hence offers a mechanism for controlling the trajectory rise time which is a 
highly desirable feature.  In the experiments that will be reported later, a 
representative value of η = 10 was used. 
    To test the effects of selecting alternate reinforcement rules and parameter 
updating actions on the training performance, several experiments [Condarcure, 
1991] were conducted.  For the sake of brevity, only two illustrative cases will 
be described in the following. 



 

1. EXPERIMENT 1  
    In this experiment, a simple linear reward-penalty reinforcement scheme 
obtained by defining γj(⋅) and δi(⋅) in (10) and (11) as linear functions was used.  
The reinforcement rules in this case will take the following form: 
    For an automaton with r available actions, with the selected action at the nth 
stage α(n) = αi, if β(n) = 0, then 
 

ijnpnp jj ≠−=+ ,)()1()1( γ  

and 

)()1()1( npnp ii γγ −+=+                 (14) 

 
whereas if β(n) = 1, then 

)()1()1( npnp ii δ−=+  
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In (14) and (15), γ and δ are constants that may be selected appropriately in the 
ranges 0 < γ < 1 and 0 < δ < 1.  Also, from (14) it is evident that an action αi 
considered favorable will result in a reduction of the probabilities pj (for j ≠ i) by 
a percentage γ  while increasing the probability pi by an amount such that the 
sum of the probabilities at stage (n+1) is 1.  Similarly, when action αi is 
unfavorable, the probability pi is reduced by a percentage δ while the remaining 
probabilities pj (for j≠i) are correspondingly increased such that the sum of the 
probabilities remains at 1, as reflected by the form of the updating rules in (15). 
    For the numerical simulations we used the values γ  = 0.02 (corresponding to 
2% change in the case of a favorable action) and δ = 0.01 (corresponding to 1% 
change in the case of an unfavorable action); these values were determined from 
experimentation to give good results.3  A single parameter action (increment or 
decrement), defined as an incremental change to one network parameter that is 
continued until it is no longer successful for a given trial, was employed.  The 
error functional discussed earlier (viz. Eq. (5) with f(vi , vi

d) = |vi - vi
d|) was used 

and it was required that the value of the error be reduced to 0.06 before moving 
from one learning goal to the next.  Teacher forcing was used to help accelerate 
the learning process at the start and was disabled at the 50th learning increment 
when the shape of the actual output trajectory was sufficiently close to the 
desired trajectory. 
                                                           
3   In earlier work on learning automata [Lakshmivarahan, 1981, Narendra, 1989], it is 
observed that a certain degree of asymmetry between the reward and the penalty 
parameter results in general in a desirable training behavior, i.e. rewarding a favorable 
response more than penalizing an unfavorable response is generally preferable. 



 

    Fig. 4a depicts the parameter changes or actions that were attempted by the 
automaton for each learning increment.  It may be noted that learning was very 
easy when teacher forcing was active, which agrees well with intuition.  After the 
50th step, when teacher forcing was disabled, learning became more difficult, as 
the network must meet the learning goals on its own.  This continued until about 
step 82, when the automaton developed enough experience in making better 
selections. The results of this experiment with the network trained for 4 cycles 
(each cycle corresponding to one period of the sinusoidal waveforms) and then 
continued to run for another 8 cycles is shown in Fig. 4b, which clearly indicates 
the stability of the generated limit cycle. It may be noted that only the first three 
cycles during which the trajectory evolves into the limit cycle are distinguishable 
while the rest overlap. 

2. EXPERIMENT 2 
    In this experiment the primary goal was to study the effects of allowing 
multiple parameter actions, i.e., sets of parameters to be updated simultaneously.  
It is to be noted that since the neural network is nonlinear, the effect of changing 
more than one parameter at a time is not the same as the combined effect 
resulting from changing them one after another.  For a 6-node network (N = 6), 
the number of possible actions now increases to 48! (i.e., (N2+2N)!).  
Consequently, to reduce the memory requirements, two options were exercised.  
The first is to limit the actions to those that update 10 parameters or less at a 
time.  The second is to store the successful actions in a repertoire for a 
preferential selection at the later stages.  An action is added to the repertoire if it 
is used successfully to reduce the error, which is the reward. If an action in the 
repertoire does not successfully reduce the error, it is penalized by being 
removed from the repertoire.  Once all actions existing in the repertoire are used 
at any stage, new actions are selected randomly from the remaining set of 
available actions based on a uniform distribution.  The following learning 
reinforcement is also used.  When rewarded, the probability for an action in the 
repertoire stays at its previous value, whereas for a successful action not in the 
repertoire it is increased from its value in the uniform distribution to a higher 
value.  When penalized, the action probability is reduced to its value in the 
uniform distribution. 
    In the framework of the reinforcement rules discussed earlier, the present 
updating mechanism corresponds to a nonlinear reinforcement scheme, more 
general than the linear reinforcement rules used in Experiment 1.  An analytical 
modeling of the updating rules is however more difficult to obtain in this case. 



 

Figure 4a.  Automaton actions per learning increment 

 

Figure 4b. Neural net output trajectory in Experiment 1 

 

Figure 4c. Trajectory generated in Experiment 2 
 



 

    To provide a greater ease of implementation, in this experiment the activation 
gains gi were permanently set to the value 10.0 and learning was restricted to 
changes in the other parameters (wij and τi).  Incremental learning was used as 
before with 100 learning steps.  The result of this experiment is shown in Fig. 4c, 
which indicates a substantial improvement in the achieved performance over the 
linear reinforcement-single parameter action case considered in Experiment 1.  
As can be observed, the trajectory rise time is also significantly reduced in this 
case (to about 0.2 sec) and the evolution into the final orbit is almost complete 
within half a cycle.  Fig. 4 shows the results of the experiment with the network 
trained for 4 cycles and then continued to run for another 8 cycles.  The 
remarkable accuracy with which the recall cycles overlap is worthy of emphasis 
and this represents a level of performance significantly better than that provided 
by any of the existing training procedures.  
    As a further note, in the two experiments described above, the training took 
approximately 2500 attempted actions to reach the final learning goal. It must be 
emphasized that the computations required at each step are extremely simple 
(involving updating of probability vectors) and are almost negligible compared 
to the evaluation of gradients required by existing methods, which makes the 
present scheme more attractive to implement.  Also, comparing the performance 
depicted in Figs. 4b and 4c with the other available results for the trajectory 
learning problem, it may be noted that this level of accuracy in generating the 
circle trajectory could only be achieved in Toomarian [1992] when the learning 
was started with the initial values of the neuron states adjusted such that the 
initial point is already on the desired circle (specifically, case 3 in Toomarian 
[1992]).  In contrast, in our case the learning was started with the initial states set 
at arbitrary small random values.  It must also be noted that this level of 
performance was achieved even when the learning was restricted to only the 
weights wij and the time constants τi.  It is conceivable that even better 
performance levels can be realized by permitting the activation gains also to be 
updated, although at the cost of increased memory requirements.  What is 
particularly noteworthy, however, is the significant reduction in computational 
requirements compared to the conventional gradient-based algorithms. 
 

IV. TRAINING BY SIMPLEX OPTIMIZATION METHOD 

A. SOME BASICS ON SIMPLEX OPTIMIZATION 
    In order to facilitate some understanding on the basics and motivation for the 
Simplex algorithm, consider the following simple example.  Suppose a simple 
guessing game is being played between a player and a computer.  Suppose that 
the computer has selected an arbitrary nonlinear function, for example 

)(xfy = , and that the player has to guess the value of the variable x that when 

substituted into the above nonlinear equation (unknown to him) would result in 
the global minimum of the function.   The player can guess the variable value by 
keying into the computer a number and observing the corresponding function 
output provided by the computer (if the player somehow manages to guess the 



 

correct value of the parameter, the computer would inform him that he has 
achieved minimality). 
    There are several ways by which the player can obtain the parameter that 
would result in the minimum value of the function.  First, he can keep guessing 
the parameter randomly until he found the correct one.  This method, however, 
could take an infinitely long period of time, especially when presented with a 
highly nonlinear and complex multivariable function (i.e., x becomes a vector 
variable).  Second, he can try to compute the gradient of the function and use it 
to guide him to the correct parameter.  However, with this method if the function 
is nonlinear, complex, and multivariate, its gradient may be difficult and 
expensive to compute.  Third, he can make use of the knowledge given to him by 
the computer, i.e., use the returned value of y to strategically locate the desired 
value of x.  Consider the following simplified example.  Suppose that the 
function selected by the computer is as shown in Fig. 5.  
 

Figure 5. Illustration of the structured search approach of the Simplex optimization algorithm 

 

Also suppose that the first two guesses are 1x  and 2x , and the corresponding 

results are 1y  and 2y respectively (see Fig. 5).  Further suppose that with the 

knowledge obtained, i.e., the values of 1y  and 2y , an estimate of the variable 

3x  resulting in a lower functional value than those given by 1x  and 2x  can be 

obtained and that this process can be repeated until some degree of optimality is 



 

reached.  It is easy to see that if such a structured iterative optimization method 

can be implemented and applied to this example, the parameter 4x  whose 

corresponding functional value is the lowest among the four guesses can be 
obtained.  Indeed, the described process is that offered by the Simplex 
optimization algorithm.  Hence the Simplex algorithm may be viewed as a 
method that strategically searches for the optimal solution based on the 
information obtained, without needing to know the mathematical expression for 
the function itself or calculate its gradient at every iteration.  The fact that 
function gradients need not be computed with this method makes it an attractive 
optimization method especially when applied to complex multivariate functions 
or to systems such as a recurrent net.  Another characteristic of this method that 
is of significance is its ability to escape the local minima of a function even 
though it is a simple downhill direct search method.  This characteristic is also 
illustrated in Fig. 5. Before describing the series of steps involved in the simplex 
iteration, it is appropriate at this point to give a brief discussion on the 
development of the present algorithm. 
    A simplex is a geometrical figure consisting of N+1 points (or vertices) in an 
N-dimensional space.  In a two-dimensional space, a simplex is a triangle and in 
a three-dimensional space, it is a tetrahedron.  The Simplex algorithm described 
here is due to Nelder and Mead [Nelder, 1965] and is not to be confused with the 
Simplex method associated with linear programming.  It is a direct downhill 
search method applicable to any multidimensional problem that requires only 
function evaluations and not the derivatives. This method, though extremely 
robust, can be slow in converging especially for problems of high 
dimensionality.  However, in regard to neural network training, the inefficiency 
of this method, i.e., its slow convergence in high dimensional spaces, can be 
reduced significantly as will be discussed in a later section. The storage 
requirement of this method is approximately N2. 
    The reason for requiring N+1 simplex vertices for an N-dimensional 
optimization problem can be readily shown.  Consider for illustration the one-
dimensional function, )(xfy = .  In order to search a region for x, some sort of 

boundary must be defined.  In the one-dimensional case where the region is 
bounded by lines or curves, only two points are needed to enclose a region as 
illustrated in Fig. 6.  With these two points the entire region of the function can 
be searched, if necessary, using the basic operations of expansion and 
contraction associated with the Simplex algorithm.  These are implemented by 
keeping the better of the two points fixed, and by either expanding or contracting 
the other point (worse point) with respect to the fixed point the entire region 
bounded by the lines or curves can be searched if necessary.  Similarly, for a 
two-dimensional function, such as yxz 35 += , a region (within a plane) can 

be uniquely defined, enclosed, and searched by three points following the same 
expansion and contraction operations.  Extending the argument to an N-
dimensional function, it is clear that N+1 vertices are required to bound and 
search a N-dimensional region. 



 

Figure 6. Searching in the N-dimensional space with N+1 simplex points 

 
    The simplex algorithm starts with N+1 points that can be either arbitrarily 
chosen or strategically obtained.  The algorithm then moves the set of simplex 
points downhill in the function space, however complex it may be, through a 
series of steps. Most of the steps executed involve moving the point 
corresponding to the highest functional value (or lowest functional value in a 
maximization problem) through the opposite face of the simplex to a point with a 
lower functional value.  This process is illustrated in Fig. 7, which shows 4 
simplex points in a 3-dimensional space.  In Fig. 7, it can be seen that the 
simplex point with the highest functional value is moved across the face of the 
simplex formed by the remaining 3 simplex points, the face being a plane 
defined by the 3 points in this case, to a location with a lower functional value.  
This step is generally called a reflection operation.  If allowed to do so, the 
method expands the simplex in steps in one direction or another (a precise 

 



 

mathematical description of the expansion operation will be given in the next 
section).  Contraction of a simplex point occurs when neither the reflection 
operation nor the expansion operations yield a better simplex point.  In the event 
that neither the contraction, expansion, nor reflection operation yields a lower 
functional value, the method shrinks itself around the best point. 

 
Figure 7. Illustration of reflexion point 

 
    The series of steps mentioned above can be mathematically represented by 
two basic expressions.  Let us first define the various parameters that will be 

needed.  Let spH  denote the simplex point with the highest functional value, 

spN  denote the new simplex point that will replace spH  (that needs to be 

computed), spR  denote the remaining simplex points (all points excluding 

spH ), spL  denote the simplex point with the lowest functional value, and spS  

denote the simplex point to be shrunk.  Also, let α denote the parameter that 
controls the amount of expansion or contraction, and ϕ denote the parameter that 

controls the amount of shrinking.  Let DN  denote the dimensionality of the 

problem (i.e.,  number of points in the simplex). 



 

    The two equations that summarize the various steps encountered in the 
Simplex algorithm are 
 

( ) αα sp
D

sp
sp H

N

R
N +−= 1            (16) 

ϕϕ spspsp SLN +−= )1(           (17) 

 
Eq. (16) is used for reflecting, expanding, or contracting a simplex point with the 
parameter α controlling the amount of expansion or contraction.  Note that the 
reflection operation is similar to the expansion operation.  The difference 
between them is the amount by which they are moved across the simplex face.  
More specifically, in the reflection operation the simplex point is moved to a 
location across the simplex face that is exactly the same distance away from the 
face before it is moved; hence the term reflection (see Fig. 7 for clearer 
illustration).  The expansion operation on the other hand moves the simplex 
point across the face of the simplex to a distance farther away as illustrated in 
Fig. 8.  Since α controls the amount of expansion and contraction, it is clear that 
α must take on specific values for executing the three operations.  Specifically, 
reflection across the simplex face is achieved with α = -1, expansion across the 
simplex face is achieved by a value of α < -1, while contraction is achieved with 
a value of α satisfying 0 < α < 1. 
    The flow of the Simplex algorithm, i.e., the order in which the 
abovementioned operations are performed, will be discussed in a later section.  
Although (16) is used for reflecting, expanding, and contracting a simplex point 
depending on the value of α, the three different operations will be differentiated 
for clarity from here on.  In particular, for reflection operation, (16) is kept 
unchanged with the parameter α, whereas for the expansion and contraction 
operations, the parameter α in (16) will be replaced by β and γ, respectively.  

Note that the fraction 
D

sp

N
R  in (16) is a point on the simplex face.  In fact, it 

can be readily shown that 
D

sp

N
R  is the center-of-mass of the simplex face and 

hence is termed the centroid in the later discussion.  Eq. (17) is used when 
neither reflection, expansion, nor contraction of the simplex point yields a lower 
functional value point.  Eq. (17) is in fact a contraction operation around the 

simplex point with the lowest functional value spL .  The parameter ϕ in (17) 

controls the amount of shrinking and can only take on values between 0 and 1.  
The detailed implementation strategy for neural network training is discussed in 
the next section. 



 

Figure 8. Illustration of expansion point 

B. APPLICATION TO TRAINING RECURRENT 
NETWORKS 
    The simplex approach is a powerful optimization tool and has been used quite 
successfully in handling a variety of optimization problems [Wong, 1998,   
Duan, 1992] with nonlinear objective functions.  The motivation for employing 
this approach in the present work of training a neural network, particularly in 
preference to the error backpropagation methods (and also to the more general 
steepest descent optimization approaches), can be explained from the following 
simple analogy.  
    The backpropagation approach can be regarded as similar to physically 
placing a person in a mountainous terrain with his objective being to move to the 
lowest elevation in that particular terrain (the mountainous terrain symbolizes, in 
the context of optimization, the peaks and valleys of the object function to be 
minimized).  Having no additional information, other than the knowledge of his 
own initial elevation, his wisest option is to go down the steepest slope he can 
find and hope that it will lead him to the lowest elevation.  Obviously his ending 
point will depend on where he starts.  If he had been placed right above the 



 

global minimum elevation, then he will easily fulfill his objective with the 
selected strategy.  However such a situation could indeed be very rare.  
Furthermore, how will he know that he has reached the lowest elevation if at all 
he does?  It is more likely that he will stop at the first valley he reaches (a local 
minimum) and assume that he has found the global lowest elevation when clearly 
he has not (this illustrates the reason why backpropagation almost always ends 
up with a sub-optimal solution).  Of course if he has enough energy left after the 
descent, he can always climb out of the valley he has found and try to find a 
lower elevation (similar to the operations of some modified backpropagation 
algorithms with a momentum term).  However the question still remains 
unanswered - How will he know that he has indeed reached the global minimum?   
    With the simplex approach however, it is like randomly placing a group of 
people, instead of one person, at various selected initial points on the 
mountainous terrain.  Now each person within this group knows his own 
elevation and spatial position but not the elevations and positions of the others.  
What would they do to meet the combined objective of finding the lowest 
elevation point?  The wisest thing is to share their information, which is their 
elevation and spatial position, and have the person with the highest elevation 
move to a new position calculated from the rest of the group’s elevations and 
positions on the terrain.  Once this person has reached his new calculated 
position he would then report back his new elevation and spatial position to the 
group and the whole process starts again.  With enough iterations, the group 
must finally converge to a point that will be close to the lowest elevation.  One 
can see that the Simplex algorithm logically and efficiently overcomes settling 
into a sub-optimal solution as in the backpropagation algorithm.  By a repetitive 
implementation with different sets of initial starting locations, the outcome of the 
simplex search can be made even more efficient in seeking out the true global 
minimum elevation.  Observe that if the group of people were to record the 
spatial position and elevation of the point at which they converge, randomly re-
position themselves around the terrain, and start the process all over again, they 
may eventually converge to an elevation that is closer to the true minimum.  By 
repeating this process an arbitrarily large number of times, the group is bound to 
find the global lowest elevation with probability approaching 1.  However the 
only drawback of this implementation is that if there are too many people in the 
group, the amount of computation needed to find the new position will increase 
correspondingly since there is now more information to process. 
    An implementation of this strategy for a supervised training of the neural 
network in order to minimize the training error  
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will now be described.  In the error criterion formulated above )(ˆ koi , 

i=1,2,…,n, denotes the neural network outputs which are the estimates of the 



 

desired outputs denoted by )(koi , i=1, 2, …, n,  where n denotes the total 

number of neural network outputs and K is the total number of training vectors 
used.  The simplex is initialized by selecting an arbitrary set of N+1 points in the 
N-dimensional weight space, where each point corresponds to a selection of 
weight values (i.e. a vector of dimension N).  This selection is made by randomly 
assigning all weight values within certain chosen bounds Wmax and Wmin.  With 
respect to a neural network, the dimension of the weight space, N in this case, is 
determined by the size of the neural network (i.e. N is the total number of 
interconnections). Fig. 9 shows an illustrative case of 4 simplex points (for a 
problem with 3-dimensional weight vectors).  The simplex evolution strategy 
[Nelder, 1965] is then executed, which involves determining the point where ε 
has the largest value and computing the centroid of the remaining simplex points.  

ε is a function of the neural network's output )(ˆ koi  and the desired output 

)(koi  (for i=1, 2, …, n).  For a recurrent neural network, such as that shown in 

Fig. 4, the neural network output is given by  
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where )(nwji  is the synaptic weight connecting the output of neuron i (in the 

hidden layer in this case) to the input of neuron j (in the output layer in this case) 

at iteration n, and )(ny ji  - is the output signal of neuron i going into the input of 

neuron j at iteration n.  
    Note that there are p+1 neurons in the hidden layer as formulated in (19).  The 
centroid of the simplex points, excluding the highest ε, is calculated by 
averaging the sum of the corresponding elements of each of the simplex points.  
For example, to illustrate the calculation the centroid of the remaining three 
simplex points, s1, s2, and s3, in Fig. 9, let the weight values associated with them 
be 
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Figure 9. Convergence of Simplex algorithm to a global solution 
 
The centroid, c, is  
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In general, for an N-dimensional weight space, the centroid may be calculated as 
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After the centroid is calculated, a new simplex point is then created by a 
reflection, expansion, or contraction which involves an operation that consists of 
joining the centroid computed to the simplex point with the highest ε by an 
invisible line and locating an expansion point or a contraction point on this line 
as shown in Fig. 10.  The highest ε point is then replaced by the newly generated 



 

point to form the new simplex on which the set of operations is repeated.  The 
reflection, expansion, and contraction points are new points obtained using the 
centroid and the highest ε point via operations similar to extrapolation and 
interpolation between these two points.  First the ε value corresponding to the 
centroid is found with (18) and (19).   

 
Figure 10. Illustration of reflection, expansion, and contraction operations in the Simplex algorithm 

 
Next, the reflection point along with its ε is calculated.  The reflection point is 
calculated by 
 

( ) αα sp
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where spRf  is the reflection point, spH  is the simplex point with the highest ε, 

N is the dimension of the weight space (in this case the total number of 

interconnections in the recurrent network), spR  denotes the remaining simplex 

points excluding spH , and α, a parameter that controls the scale of reflection, is 

selected to be –1 as discussed earlier.  If the ε associated with this reflection 
point is less than the highest ε point, the reflection point is further expanded via 
the following equation 
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where spEx  is the expanded simplex point and β, a parameter that controls the 

amount of expansion, is selected to be less than -1 (all other parameters in (24) 
are those defined in (23)).  The specific value of β to be selected needs 
determination through conducting simulation experiments.  In the present work, 
a value of β = -3 was found to yield the best results.  In general β can take other 
values for different applications.  If the expanded point of (24) is still less than 
the highest ε point, it becomes the new simplex point, else the reflected point 
found in (23) becomes the new simplex point. 
     If however ε for the extrapolated point is greater than the highest ε value 

(i.e., spH ), the centroid becomes the new simplex point.  If the ε value 

corresponding to the centroid is greater than the highest ε value, the contraction 
point, along with its ε, is calculated via an operation similar to interpolation.  
That is, the contraction point is calculated by 
 

( ) γγ sp
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sp H
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where spCn  is the contracted simplex point and γ, a parameter that controls the 

amount of contraction, is selected to be less than 1 (all other parameters in (25) 
are, again, those defined in (23)).  Once again, an appropriate value of γ needs to 
be determined from experimentation, and it was determined for the present 
application that 0.5 yielded the best results.  If the ε of the contraction point is 
less than the highest ε point, the contraction point then becomes the new simplex 
point.  If however the ε of the contraction point is higher than the highest ε point, 
another action would have to be taken.  At this point, it is apparent that the set of 
simplex points is located in an adverse situation.  In such scenarios, the simplex 
points are contracted relative to the best simplex point in all directions thereby 
shrinking the size of the simplex.  Consequently the new set of simplex points is 
obtained with 
 

ϕϕ spspsp SLN +−= )1(          (26) 

 

where spN  is the shrunk simplex point, spL  denotes the simplex point with the 

lowest ε, spS  denotes the simplex point to be shrunk, and ϕ, a parameter that 

controls the amount of shrinkage, is selected to be 0.75 (once again after several 
simulation exercises). 
    For implementation in the present context, the algorithm can be designed with 
two distinct stopping criteria.  The search for the weights of a specified network 
structure can be terminated when either the maximum spread of the simplex 
points is smaller than a prespecified threshold (with the centroid being selected 
as the optimal one in this case), or the number of iterations performed exceeds a 



 

preset threshold.  Other criteria can be used to terminate the evolution of the 
simplex, one such criterion being when the difference in error falls below a 
preset threshold.  
    As noted earlier, the only undesirable feature of this training scheme is that as 
the size of the simplex (number of simplex points) increases, the computational 
burden correspondingly increases.  This however is not unique to the present 
training scheme since the size of the simplex, viz. (N+1), depends on the size of 
the weight vector, which in turn is a function of the total number of 
interconnections in the neural net, and it is rather well known that the training 
complexity increases with the size of the neural network.  In an attempt to reduce 
the training complexity, one may place arbitrary limits on the number of 
interconnections, which however is not attractive.  Some reduction in the overall 
training complexity without arbitrarily limiting the network size can be achieved 
by partitioning the neural network into a linear and a nonlinear portion, with the 
nonlinear portion comprising  the connections between the input nodes and the 
hidden nodes while the linear portion consists of the connections between the 
hidden nodes and the output nodes (an example of which is to have the network 
outputs formed as a weighted sum of the outputs of the hidden nodes).  The 
simplex optimization is then performed to find the optimal weights in the 
nonlinear portion, while a linear least squares minimization is used to determine 
the optimal weights in the linear portion of the network. 
    A factor of particular significance in the use of the simplex optimization 
approach to neural network training is the possibility of approaching the true 
global minimum by a reinitialization of the simplex, as outlined earlier in the 
discussion of the analogy.  It is well known that implementing the simplex 
algorithm with multiple restart operation (i.e., reinitializing the simplex and 
executing the algorithm on the new simplex points) has global search property 
and hence prevents the training procedure from being  trapped by local minima 
of the error function.  Furthermore, it is argued in the literature that multiple 
restarts of the simplex search each time a convergence to a small cluster is 
attained, has the effect of moving the procedure towards finding a globally 
optimal solution with probability approaching 1.0.  An aspect that deserves some 
emphasis in regard to practical implementation is that these multiple restarts can 
be executed in parallel, thus reducing the training time considerably.  The 
flowchart shown in Fig. 11 summarizes the above discussion on the evolution of 
the simplex points. 
 
 
 
 



 

Figure 11. The evolution of the Simplex algorithm 

 



 

C. TRAJECTORY GENERATION PERFORMANCE 

1. EXPERIMENT 1 
    In this experiment, the recurrent network was trained to generate a circular 
trajectory centered at (0.5, 0.5) in the Cartesian coordinate space.  The x and y 
components of the trajectory can be mathematically represented as 
 

btAtx += )cos()( ω      (27a) 

btAty += )sin()( ω      (27b) 

 
where b is introduced to shift the center of the trajectory.  In this experiment b in 
both (27a) and (27b) is set to 0.5 so as to shift trajectory to center at the point 
(0.5, 0.5).  As discussed earlier, parameter A in Eqs. (27a) and (27b) specifies 
the radius of the circular trajectory and the parameter ω denotes the angular 
frequency.  For this experiment, and also for all the other experiments in this 
section, A is selected to be 0.2 and ω is selected to be 0.02π.   
    A recurrent network with the architecture shown in Fig. 4 with five neurons 
was trained with the Simplex optimization algorithm to produce the desired 
trajectory.  Two of the five neurons were arbitrarily chosen to be the outputs of 
the recurrent net (giving the x and y components).  As with the experiments in 
the previous section, the recurrent network was driven only by the initial state of 
its neurons and hence no external input into the system is required.  In this 
experiment, the initial states of the two output neurons were selected to be on the 
trajectory while the initial states of the other neurons were randomly chosen 
about zero according to the following distribution, N(0, 0.00001) (i.e., a normal 
or gaussian distribution with zero mean and a variance of 0.00001).   
    The training was conducted with teacher forcing, which was maintained until 
the average absolute errors of the estimates, in both the x and y components, 
were less than a preset value, δ (δ was chosen to be 0.06 in all of the experiments 
performed in this section).  That is 
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where xε  and yε  are the average errors of the x and y components respectively, 

xo and yo  are the desired outputs, xô and yô  are the network estimated 

outputs, and K is the length of the training vector presented to the recurrent net.  
Recall that teacher forcing learning is the process of feeding back, through the 
output recurrent connections, the desired outputs instead of the actual network 
outputs.  In this manner, the network was trained for one complete cycle of the 
trajectory.  After the training was completed, the network was tested for its 
ability to produce a stable circular trajectory, given any initial states, when the 
actual network outputs were fed back.   
    Interestingly enough, even without removing the teacher forcing during 
training, the network was able to produce a very stable and roughly circular 
trajectory.  In fact, the recurrent net was run continuously for about 100 cycles 
and it was found that after some brief period of transient response, the network 
converged to a single trajectory with only very slight deviations.  With this 
satisfying result, the network was retrained, this time with the teacher forcing 
slowly removed according to the following equation 
 

)()1()()( iDiAiR ojojoj χχ −+=     (29) 

 

where j = x, y and i = 1, 2, …, K with ojA  and ojD  denoting the actual output 

and desired output, respectively.  The parameter χ was incremented from 0 to 1 
with a step size of 0.1 each time the average absolute error for each of the 
components for a specific value of χ reduced to less than 0.06, thus 
progressively reducing the teacher forcing term.   
    Figs. 12a-c show the results of one retraining experiment.  One may observe 
that the network converges to a single trajectory that is approximately circular.  
The generated trajectory can be made more accurate by enforcing a more 
stringent requirement on the absolute errors before terminating the training (for 
instance, by requiring the average absolute errors to be less than 0.01). 
    Of particular interest in this experiment is the sensitivity of the trained neural 
network to the initial state of neurons.  To test this feature, several different 
simulations were conducted.  First, the initial states of the output neurons were 
set to a point on the trajectory, while the remaining neurons were started at an 
initial state that is normally distributed around zero according to N(0, 0.00001) 
(i.e., similar to the initial state conditions of the recurrent net used during 
training).  In all of the simulations conducted with this setup, the network 
converged to a single circular trajectory after a brief transient period.  This is to 
be expected since this is the manner in which the network was trained.  A more 
challenging scenario would be to set the initial states of all the neurons, 
including the output neurons, to a value normally distributed around zero with 
variance 0.00001.  The results of several simulations conducted with this set-up 
also demonstrate that the network converges to a single circular trajectory in all 
the cases.  To further challenge the stability of the recurrent net, several  



 

Figure 12a. Desired trajectory of Experiment 

 
 

Figure 12b. Generated trajectory of a simplex trained recurrent network (Experiment 1) 

 
 

Figure 12c. Overlaid trajectories – desired and generated trajectory (Experiment 1) 

 
simulations with the initial state of all the neurons set randomly according to 
N(100,5) were conducted.  Again, all the results obtained demonstrate 
convergence of the network to a single circular trajectory.  One example of the 
various simulations is shown in Figs. 12a-c and 13a-b.  Figs. 13a and b show the 
outputs of the two output neurons which demonstrate that the recurrent network 
has indeed captured the oscillating behavior required to generate the desired 
circular trajectory.  Figs. 12a-c show the desired trajectory, the trajectory 
produced by the network, and both trajectories overlaid, which confirm that the 



 

network has indeed been trained by the Simplex optimization algorithm.  The 
convergence of the recurrent network to produce the same attractor trajectory in 
all the simulations regardless of the initial states of the neurons illustrates the 
robustness of the trained network. 
 

Figure 13a. Desired and generated x-coordinate output of a trained recurrent network  
(Experiment 1) 

 

Figure 13b. Desired and generated y-coordinate output of a trained recurrent network  
(Experiment 1) 

2. EXPERIMENT 2 
    Although convergence of the recurrent net to the desired trajectory was 
obtained in all of simulations conducted in Experiment 1, the transient response 
of the network does not appear to be as smooth and as controllable as desired.  A 
more desirable response of the network is shown in Fig. 14a.  As noted, the 
trajectory of the desired response starts at the center of the trajectory. The 
trajectory then slowly and smoothly diverges from the center and converges onto 
the circular attractor pattern.  This smoother, more controllable and predictable 
response is particularly important in control applications where a smooth and 
predictable transient response is critical to the operation of the control system. 
    For this experiment, the same five-neuron recurrent net was utilized.  The 
recurrent net was again trained for one complete cycle of the trajectory. The  

 



 

 
 

Figure 14b. Generated trajectory of a simplex trained recurrent network (Experiment 2) 

 

Figure 14c. Overlaid trajectories – desired and generated trajectory (Experiment 2) 

 
equations governing the trajectory were modified slightly to accommodate the 
smoother and more predictable transient response given by 

 

btAetx t +−= −∂ )cos()1()( ω            (30a) 

             btAety t +−= −∂ )sin()1()( ω          (30b) 

(as in Experiment 1, b is set to 0.5).  Note that Eqs. (30a) and (30b) differ from 

(27a) and (27b) with the introduction of the exponential term, )1( te−∂− .  The 

exponential term is introduced to control the growth of the trajectory from its 
initial point.  The parameter ∂  is preset to achieve the desired trajectory growth. 



 

    The training was commenced with teacher forcing learning.  The initial states 
of the output neurons were normally distributed according to N(0.5, 0.00001), 
while the initial states of the rest of the neurons were selected according to N(0, 
0.00001).  The training was stopped when the same error criterion as used in 
Experiment 1 was met (i.e., the average absolute errors in (28a) and (28b) were 
satisfied with δ chosen to be 0.06).  After the training was completed in this 
manner, several validating simulations were conducted to investigate the 
response of the network for arbitrary initial states.  In the various experiments 
conducted with the initial states of the network selected according to the specific 
distributions used in the training process, the network converged to a single 
circular trajectory in all instances with a much smoother and more predictable 
transient response.  A representative trajectory generated by the network is 
shown in Fig. 14b.  Clearly the transient response of the generated trajectory is 
similar to the desired transient response illustrated in Fig. 14a (Fig. 14c shows an 
overlay of the desired trajectory and the trajectory generated by the network).  
Figs. 15a and b indicate that the network has indeed captured the oscillating 
behavior required for trajectory generation.  An important outcome from this set 
of experiments is the demonstration that the network can be trained to produce a 
desired trajectory with specific transient response.  As noted before, this 
characteristic can be exploited in designing control systems with specified 
trajectory paths.   
    Also of interest in this experiment was the investigation of how the network 
would respond when the network was started at initial states different from the 
one used during training.  To test this feature, several simulations were 
conducted with the initial states of the network selected randomly outside the 
area enclosed by the trajectory.  It is interesting to note that the network failed to 
converge to the desired trajectory in all instances.  Hence it seems that in training 
the network to produce a smoother and more predictable transient response, the 
robustness of the network demonstrated in Experiment 1 is lost.  In other words, 
the network trained in this manner is sensitive to the initial states of its neurons. 
It may be noted, in conclusion, that a more desirable result, i.e., a smoother and 
more circular trajectory, can be achieved by retraining the network with the 
teacher forcing term slowly removed according to (29), and enforcing a more 
stringent stopping requirement (i.e., by requiring the average absolute errors to 
be less than 0.01 for example). 
 
 
 
 

 
 
 
 



 

Figure 15a. Desired and generated x-coordinate output of a trained recurrent network  
(Experiment 2) 

 

Figure 15b. Desired and generated y-coordinate output of a trained recurrent network 
(Experiment 2) 

3. EXPERIMENT 3 
    To further examine the optimization prowess of the Simplex algorithm, an 
attempt is made to train a recurrent network to generate an even more complex 
trajectory - the figure-eight pattern.  As noted earlier, the figure eight trajectory 
can be produced by requiring the neural network outputs to converge to the 
periodic signals 
 

btAtx += )sin()( ω       (31a) 

btAty += )2sin()( ω .       (31b) 

 
The parameters A, b, and ω were selected to be the same as in the earlier 
experiments.  All the training conditions, including the selection of the initial 
states, were maintained similar to Experiment 1.  Initially a five-neuron network 
was utilized for this purpose.  However, with the selected structure, the network 
training, with teacher forcing learning implemented, failed to converge to the 
desired trajectory.  Hence, the network size was increased from five neurons to 
ten neurons.  The training was repeated and this time, after a longer period of 
training than that required for the simpler trajectory - circular pattern, the 



 

network converged to the desired trajectory.  The results of this experiment are 
shown in Figs. 16a-b and 17a-d.  These results indicate that the network has 
indeed been trained to generate autonomously the desired trajectory.  It should 
however be mentioned that unlike in the earlier experiments, the network does 
not demonstrate convergence to a single trajectory.  Instead it converges to a 
series of trajectories. 

 

Figure 16a. Desired trajectory of Experiment 3 
 

Figure 16b. Generated trajectory of a simplex trained recurrent network (Experiment 3) 
 
 
 



 

 
Figure 17a. Desired x-coordinate output of Experiment 3 

 
 

Figure 17b. Generated x-coordinate output of a trained recurrent network (Experiment 3) 
 
 

Figure 17c. Desired y-coordinate output of Experiment 3 
 
 

Figure 17d. Generated y-coordinate output of a trained recurrent network (Experiment 3) 

 



 

V. CONCLUSIONS 
 

Two distinct methods for training recurrent neural networks that eliminate 
the need for the computation of error gradients were presented in this article.  
Since gradient computation constitutes the major part of the overall training 
complexity in the use of gradient-based methods such as backpropagation 
learning, the methods discussed in this article provide attractive alternatives to 
the training of neural networks in general and recurrent networks in particular.  
One of these methods based on the theory of learning automata utilizes the 
concepts of reinforcement learning and employs use of penalty-reward methods 
for tailoring specific training policies.  The other method utilizes the nonlinear 
simplex optimization approach and provides a systematic procedure for the 
adjustment of neural network parameters.  The training performance resulting 
from the two approaches was demonstrated by application to a complex 
spatiotemporal learning problem of designing a dynamical neural network that 
outputs a prescribed attractor trajectory pattern.  Simulation experiments 
conducted here with specific benchmark trajectory patterns confirm the efficacy 
of the learning automata approach and the simplex optimization approach for a 
simple and efficient training of recurrent nets. 
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TRAINING RECURRENT NETWORKS
FOR FILTERING AND CONTROL
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I. INTRODUCTION

Neural networks can be classified into recurrent and nonrecurrent catego
Nonrecurrent (feedforward) networks have no feedback elements; the outp
calculated directly from the input through feedforward connections. In recur
networks the output depends not only on the current input to the network, bu
on the current or previous outputs or states of the network. For this rea
recurrent networks are more powerful than nonrecurrent networks and 
important uses in control and signal processing applications.

This chapter introduces the Layered Digital Recurrent Network (LDR
develops a general training algorithm for this network, and demonstrates
application of the LDRN to problems in controls and signal processing. In Sec
II we present the notation necessary to represent the LDRN. Section III con
a discussion of the dynamic backpropagation algorithms that are require
compute training gradients for recurrent networks. The concepts underlying
backpropagation-through-time and forward perturbation algorithms are prese
in a unified framework and are demonstrated for a simple, single-loop recu
network. In Section IV we describe a general forward perturbation algorithm
computing training gradients for the LDRN. Two application sections follow 
discussion of dynamic backpropagation: neurocontrol and nonlinear filter
These sections demonstrate the implementation of the general dyn
backpropagation algorithm. The control section (Section V) applies
neurocontrol architecture to the automatic equalization of an acoustic transm
The nonlinear filtering section (Section VI) demonstrates the application 
recurrent filtering network to a noise-cancellation application.

II. PRELIMINARIES

In this section we want to introduce the types of neural networks that
discussed in the remainder of this chapter. We also present the notation th
use to represent these networks. The networks we use are Layered D
Recurrent Networks (LDRN). They are a generalization of the Laye
Feedforward Network (LFFN), which has been modified to include feedb
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connections and delays. We begin here with a description of the LFFN and
show how it can be generalized to obtain the LDRN.

A.  LAYERED FEEDFORWARD NETWORK
Figure 1 is an example of a layered feedforward network (two layers in this

case). (See Demuth et al. [1998] for a full description of the notation used here
The input vector to the network is represented by , which has elements. The
superscript represents the input number, since it is possible to have more tha
input vector. The input is connected to Layer 1 through the input weight 
where the first superscript represents the layer number and the second supe
represents the input number. The bias for the first layer is represented by 
net input to Layer 1 is denoted by , and is computed as

(1)

The output of Layer 1, , is computed by passing the net input through a tra
function, according to . The output has  elements. The output of
first layer is input to the second layer through the layer weight . T
overall output of the network is labeled . This is typically chosen to be the ou
of the last layer in the network, as it is in Figure 1, although it could be the output
of any layer in the network.

Figure 1.  Example of a Layered Feedforward Network

Each layer in the LFFN is made up of 1) a set of weight matrices that c
into that layer (which may connect from other layers or from external inputs
a bias vector, 3) a summing junction, and 4) a transfer function. (In the LDR
set of tapped delay lines may also be included in a layer, as we will see late
the example given in Figure 1, there is only one weight matrix associated with
each layer, but it is possible to have weight matrices that are connected 
several different input vectors and layer outputs. This will become clear when we
introduce the LDRN network. Also, the example in Figure 1 has only two layers;
our general LFFN can have an arbitrary number of layers. The layers do not have
to be connected in sequence from Layer 1 to Layer M. For example, Layer 1 c
be connected to both Layer 3 and Layer 4, by weights  and 
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respectively. Although the layers do not have to be connected in a linear seq
by layer number, it must be possible to compute the output of the network 
simple sequence of calculations. There cannot be any feedback loops i
network. The order in which the individual layer outputs must be compute
order to obtain the correct network output is called the simulation order.

B.  LAYERED DIGITAL RECURRENT NETWORK
We now introduce a class of recurrent networks that are based on the L

The LFFN is a static network, in the sense that the network output ca
computed directly from the network input, without the knowledge of init
network states. A Layered Digital Recurrent Network (LDRN) can cont
feedback loops and time delays. The network response is a function of net
inputs, as well as initial network states. 

The components of the LDRN are the same as those of the LFFN, with
addition of the tapped delay line (TDL), which is shown in Figure 2. The output
of the TDL is a vector containing current and previous values of the TDL in
In Figure 2 we show two abbreviated representations for the TDL. In the case on
the left, the undelayed value of the input variable is included in the output ve
In the case on the right, only delayed values of the input are included in the ou

Figure 2.  Tapped Delay Line

Figure 3 is an example of an LDRN. Like the LFFN, the LDRN is made up
of layers. In addition to the weight matrices, bias, summing junction, and tran
function, which make up the layers of the LFFN, the layers of the LDRN a
include any tapped delay lines that appear at the input of a weight matrix. 
weight matrix in an LDRN can be proceeded by a tapped delay line.) For exam
Layer 1 of Figure 3 contains the weight and the TDL at its input. Note that
all of the layer outputs and net inputs in the LDRN are explicit functions of tim

The output of the TDL in Figure 3 is labeled . This indicates that it is
a composite vector made up of delayed values of the output of Subnet 2 (indi
by the second superscript) and is an input to Subnet 2 (indicated by the
superscript). (A subnet is a series of layers which have no internal tapped 
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lines. The number of the subnet is the same as the number of its output 
These concepts are defined more carefully in a later section.) These TDL ou
are important variables in our training algorithm for the LDRN. 

Figure 3.  Layered Digital Recurrent Network Example

In the LDRN, feedback is added to an LFFN. Therefore, unlike the LFFN,
output of the network is a function not only of the weights, biases, and netw
input, but also of the outputs of some of the network layers at previous poin
time. For this reason, it is not a simple matter to calculate the gradient o
network output with respect to the weights and biases (which is needed to tra
network). This is because the weights and biases have two different effects o
network output. The first is the direct effect, which can be calculated using
standard backpropagation algorithm [Hagan et al., 1996]. The second is an
indirect effect, since some of the inputs to the network, such as , are
functions of the weights and biases. In the next section we briefly describe
gradient calculations for the LFFN and show how they must be modified for
LDRN. The main development of the next two sections is a general grad
calculation for arbitrary LDRN’s.

III. PRINCIPLES OF DYNAMIC LEARNING

Consider again the multilayer network of Figure 1. The basic simulation
equation of such a network is

, (2)

where k is incremented through the simulation order. 
The task of the network is to learn associations between a specified s

input/output pairs: {(p1, t1), (p2, t2), ... , (pQ, tQ)}. The performance index for the
network is
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(3)

where  is the output of the network when the qth input, , is presented, and 
is a vector containing all of the weights and biases in the network. (Later we

 to represent the weights and biases in Layer i.) The network should learn the 
vector that minimizes . 

For the standard backpropagation algorithm [Hagan et al., 1996] we use a
steepest descent learning rule. The performance index is approximated by:

, (4)

where the total sum of squares is replaced by the squared errors for a single
output pair. The approximate steepest (gradient) descent algorithm is then:

, (5)

where α is the learning rate. Define

(6)

as the sensitivity of the performance index to changes in the net input of uni in
layer k. Using the chain rule, we can show that

, , 

(7)

It can also be shown that the sensitivities satisfy the following recurrence rela
in which m is incremented through the backpropagation order, which is the
reverse of the simulation order:

(8)
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This recurrence relation is initialized at the output layer:

. (11)

The overall learning algorithm now proceeds as follows: first, propagate
input forward using Eq. (2); next, propagate the sensitivities back using Eq.
and Eq. (8); and finally, update the weights and biases using Eq. (5) and Eq

Now consider an LDRN, such as the one shown in Figure 3. Suppose that we
use the same gradient descent algorithm, Eq. (5), that is used in the sta
backpropagation algorithm. The problem in this case is that when we try to
the equivalent of Eq. (7) we note that the weights and biases have two diff
effects on the network output. The first is the direct effect, which is accounte
by Eq. (7). The second is an indirect effect, since some of the inputs to
network, such as , are also functions of the weights and biases. To ac
for this indirect effect we must use dynamic backpropagation.

To illustrate dynamic backpropagation [Yang et al., 1993, Yang, 1994],
consider Figure 4, which is a simple recurrent network. It consists of an LFFN
with a single feedback loop added from the output of the network, whic
connected to the input of the network through a single delay. In this figure
vector  represents all of the network parameters (weights and biases) an
vector  represents the output of the LFFN at time step t.

Figure 4.  Simple Recurrent Network
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 Now suppose that we want to minimize

(12)

In order to use gradient descent, we need to find the gradient of F with respect to
the network parameters. There are two different approaches to this problem.
both use the chain rule, but are implemented in different ways:

(13)

or

(14)

where the superscript e indicates an explicit derivative, not accounting for indire
effects through time. The explicit derivatives can be obtained with the stan
backpropagation algorithm, as in Eq. (8). To find the complete derivatives tha
required in Eq. (13) and Eq. (14), we need the additional equations:

(15)

and

(16)

Eq. (13) and Eq. (15) make up the forward perturbation (FP) algorithm. Note
the key term is

(17)

which must be propagated forward through time.
Eq. (14) and Eq. (16) make up the backpropagation-through-time (B

algorithm. Here the key term is

(18)
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which must be propagated backward through time.
In general, the FP algorithm requires somewhat more computation than

BTT algorithm. However, the BTT algorithm cannot be implemented in real ti
since the outputs must be computed for all time steps, and then the deriv
must be backpropagated back to the initial time point. The FP algorithm is 
suited for real time implementation, since the derivatives can be calculated a
time step.

IV. DYNAMIC BACKPROP FOR THE LDRN

In this section, we generalize the FP algorithm, so that it can be applie
arbitrary LDRN’s. This is followed by applications of the LDRN and dynam
backpropagation to problems in filtering and control.

A.  PRELIMINARIES
To explain this algorithm, we must create certain definitions related to

LDRN. We do that in the following paragraphs.
First, as we stated earlier, a layer consists of a set of weights, associated

tapped delay lines, a summing function, and a transfer function. The network has
inputs that are connected to special weights, called input weights, and denoted by

, where  denotes the number of the input vector that enters the weight
 denotes the number of the layer to which the weight is connected. The we

connecting one layer to another are called layer weights and are denoted by
, where  denotes the number of the layer coming into the weight an

denotes the number of the layer at the output of weight. In order to calculat
network response in stages, layer by layer, we need to proceed in the prope
order, so that the necessary inputs at each layer will be available. This order
layers is called the simulation order. In order to backpropagate the derivatives f
the gradient calculations, we must proceed in the opposite order, which is c
the backpropagation order.

In order to simplify the description of the training algorithm, the LDRN 
divided into subnets. A subnet is a section of a network that has no tapped de
lines, except at the subnet input. Every LDRN can be organized as a collecti
subnets. We define the subnets by proceeding backwards from the last sub
the first subnet. To locate the last subnet, start at the first layer in 
backpropagation order and proceed through the backpropagation order unt
find a layer containing delays, which becomes the first layer in the last subnet
last subnet is then defined as containing all of the layers beginning at the 
containing delays and continuing through the simulation order to the first lay
the backpropagation order (or the last layer in the simulation order). This de
the last subnet. To find the preceding subnet, start with the next layer in
backpropagation order and proceed in the same way until you find the next 
with delays. This process continues until you reach the last layer in 
backpropagation order, at which time the first subnet is defined. As with the layer

IW i j, j
i

LW i j, j i
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simulation order, we can also define a subnet simulation order that starts at the
first subnet and continues until the last subnet.

For example, the LDRN shown in Figure 5 has thee layers and two subnets.
To simplify the algorithm, the subnet is denoted by the number of its output la
For this network the simulation order is 1-2-3, the backpropagation order is 3
and the subnet simulation order is 1-3.

Figure 5.  Three-layer LDRN with Two Subnets

B.  EXPLICIT DERIVATIVES
We want to generalize the forward perturbation (FP) algorithm of Eq. (

and Eq. (15) so that it can be applied to an arbitrary LDRN. Notice that we h
two terms on the right-hand side of Eq. (15). We have an explicit derivative o
performance with respect to the weights, which accounts for the direct effe
the weights on the performance and can be computed through the sta
backpropagation algorithm, as in Eq. (8). We also have a second term, w
accounts for the fact that the weights have a secondary effect through the pre
network output. In the general LDRN, we may have many different feedb
loops, and therefore there could be many different terms on the right of Eq. 
and each of those terms would have a separate equation like Eq. (15) to upd
total derivative through time. For our development of the FP algorithm, we h
one term (and an additional equation) for every place where one subnet is in
another subnet. Recall that the subnet boundaries are determined by the loc
of the tapped delay lines. Within a subnet, standard backpropagation, as in E
can be used to propagate the explicit derivatives, but at the subnet boundar
equation like Eq. (15) must be used to calculate the total derivative, w
includes both direct and indirect effects. In this subsection we describe
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computation of the explicit derivatives, and then in the following subsection
explain the total derivative computation.

A backpropagation process to calculate the explicit derivatives is neede
each subnet. These equations involve calculating the derivative of the su
output with respect to each layer output in the subnet. The basic equation is

(19)

where  represents a subnet output,  is the output of a layer in subnjz,
 is the net input of layer k, which has a connection from layer i. The index i

is incremented through the backpropagation order. If we define

, and note that , (20)

then we can write Eq. (19) as

. (21)

This recursion, where i is incremented along the backpropagation ord
begins at the last layer in the subnet:

, (22)

where  is an identity matrix whose dimension is the size of layer .

C.  COMPLETE FP ALGORITHM FOR THE LDRN
We are now ready to describe a generalized FP algorithm for the arbi

LDRN. There are two parts to the FP algorithm: Eq. (13) and Eq. (15). Eq. 
remains the same for the LDRN as for the simple network in Figure 4. Eq. (15),
however, must be modified. For the general case we have one equation lik
(15) for each subnet output. Each of these equations has a term for the e
derivative and one additional term for each subnet output.

The complete FP algorithm for the LDRN network is given in the followi
flowchart. It contains three major sections. The first section computes the ex
(static) derivatives, as in Eq. (21), which are needed as part of the dyn
equations. The second section computes the dynamic derivatives of the s
outputs with respect to the weights, as in Eq. (15). The final section compute
dynamic derivatives of performance with respect to the weights, as in Eq. (1
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V. NEUROCONTROL APPLICATION

In this section we illustrate the application of the LDRN and dynam
backpropagation to a control problem. We wish to control the output of
acoustic transmitter, whose schematic diagram is shown in Figure 6. 

Binary data is transmitted via acoustic signals from one pipeline locatio
another. Acoustic stress waves are imparted into the pipeline by the aco
transmitter. The stress waves propagate through the pipeline to the aco
receiver, which receives the transmitted signal. Tone bursts of diffe
frequencies are used to represent either a 1 or a 0. The acoustic channel pr
by the pipeline causes heavy distortion in the transmitted signal. There are 
extraneous unwanted acoustic stress waves created by external sources, s
engines, geartrains, and pumps, that are imparted into the pipeline. The inh
channel distortion and the unwanted external noise can degrade the trans
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signal such that signal detection and interpretation at the receiver are unrelia
impossible. One method of enhancing communication performance is to equ
the effects of the transmission channel by adjusting the transmitter output so
the measured signal imparted to the pipeline at a short distance from
transmitter is the desired signal. Ideally, the feedback measurement of this s
is taken at the receiver. Of course, in practice, the feedback signal is mea
near the transmitter. To alleviate the effects of unwanted disturbance noise
transmitter can actively cancel the disturbance noise by way of destru
interference. The transmitter creates stress waves that are out of phase wit
of equal magnitude to, the undesired signals. In this example, a neural ne
controller is used as both a channel equalizer and an active noise canceller.

Figure 6.  Schematic of Acoustic Transmitter/Receiver System.

In addition to illustrating dynamic backpropagation on the neurocontroller
the acoustic transmitter, this section also demonstrates the effect of training
approximations to true dynamic derivatives. The evaluation is based on squ
error performance and floating point operations. When approximations are u
the computational burden can be reduced, but the errors generally increase

Figure 7 is a schematic of the control system. In this system, model reference
adaptive control (MRAC) [Narendra, 1990] is applied to the control of 
acoustic transmitter. The plant model is used only as a backpropagation pa
the derivatives needed to adjust the controller weights; the plant model weigh
not adjusted. The plant model is a 2-layer LDRN, with 10 input taps, 50 feed
taps, and 15 hidden neurons. The controller weights are adjusted such th
error ec(t), between a delayed reference input r (t) and the actual plant output c(t),
is minimized. The controller structure consists of 40 input taps, 50 contro
feedback taps, 75 plant output feedback taps, and 15 hidden neurons.

Neurocontroller +
-

Transmitter Receiver

Amplifier

Pipeline

Accelerometer

Acoustic Acoustic
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Figure 7.  Self-Equalizing Acoustic Transmitter
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If we apply the concepts described in the previous sections to the sy
shown in Figure 7, we notice that the total system is an LDRN that can be divided
into two subnets. The last subnet (number 4) corresponds to the Neural Ne
Plant Model (with  as the subnet output). The first subnet (numbe
corresponds to the Neural Controller (with  as the subnet output). 
subnets are fully connected, so we have two sets of training equations:

(23)

and

(24)

We now show how these equations can be developed using our gener
algorithm, which was described in the flowchart in the previous section. We 
in the last layer in the backpropagation order (layer 4), obtaining:

;       

;       

Layer 3 is not the output of a subnet, so we apply:
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Layer 3 has two inputs with delays, therefore it is the beginning of the last su
and we calculate:

      

      

Layer 2 in the neural controller is the end of the first subnet. So we apply
equations:

;       

;       

Layer 1 is not the output of a subnet, so we apply:
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Layer 1 has two inputs with delays, so it is the end of the first subnet, an
calculate

      

      

Now that we have finished with the backpropagation step, we have
explicit derivatives for all of the weights and biases in the system. We are 
ready to calculate the dynamic derivatives. We initialize

      

and calculate

      

and

.       

This gives us Eq. (24) for all weights and biases. A similar process is perfor
for subnet 4 to obtain Eq. (23).

We have now computed all of the dynamic derivatives of the outputs of
subnets with respect to the weights. The next step is to compute the derivativ
the performance function with respect to the weights. We must first calculate

,       

to obtain
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for all the weights and biases in the neural controller. The process is repeat
each sample time in the training set.

The LDRN was trained using the preceding equations. Now we demons
the performance of the closed-loop acoustic transmitter system. The refe
input used in the simulation consisted of a random sequence of tone burst p
as shown in Figure 8. The tone bursts are evenly spaced and appear randomly at
one of two frequencies. In order to investigate the robustness of the contro
periodic disturbance noise was added to the plant input, representing extra
acoustic stress waves created by external sources. The open-loop plant res
with no controller, is shown in Figure 9. The closed-loop response, after the
controller was trained to convergence, is shown in Figure 10. 

Figure 8.  Tone Burst Reference Input

In the next test, dynamic backpropagation was used in plant model, but
not used in backpropagating derivatives in the controller. Only st
backpropagation was used in the controller. (In Eq. (24) only the exp
derivative terms are calculated.) This procedure requires less computation th
full dynamic backpropagation but may not be as accurate. The results are s
in Figure 11.

For the last test, dynamic backpropagation was only used to compu
dynamic derivative across the first delay in the tapped-delay line between the
model and the controller. All other derivatives were computed using only exp
(static) derivatives. The controller weights never converged in this case, so a
of the results is not shown. The results are summarized in Table 1.
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Figure 9.  Open-loop Plant Response

Figure 10.  Closed-Loop System Response (Full Dynamic Training)

Figure 11.  Response without Dynamic Controller Training
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Table 1 provides a summary of the performance results for all three tests.
These results highlight the increased computational burden when calcul
dynamic derivatives instead of simply static derivatives. In this exam
reasonable performance was possible even when dynamic derivatives were
only in the plant model. This derivative approximation decreased 
computational burden by approximately 65%. Using essentially no dyna
derivatives in training reduced the computational burden by approximately 9
However, performance in this case was unacceptable.

VI. RECURRENT FILTER

This section provides a second example of the application of the LDRN
dynamic backpropagation. We use a multi-loop recurrent network to predic
experimental acoustic signal. The prediction of acoustic signals is crucial in a
sound cancellation systems. Acoustic environments are often very complex
to the complexity of typical sound sources and the presence of reflected s
waves. The dynamic nature of acoustical systems makes the use of recurren
structures of great interest for prediction and control of this type of system. 

Figure 12.  Active Noise Control System

Figure 12 depicts a typical Active Noise Control (ANC) system. An acoustic
noise source creates undesirable noise in a surrounding area. The goal of the
noise suppression system is to reduce the undesirable noise at a particular lo

Derivative 
Method

Flops/Sample
Sum Squared 

Error

Full Dynamic 9.83 x 105 43.44

Plant Only 
Dynamic 3.48 x 105 55.53

No Dynamic 1.85 x 104 127.88

Table 1.   Simulation Results for the Neural Controller
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by using a loudspeaker to produce “anti-noise” that attenuates the unwanted
by destructive interference. In order for a system of this type to work effectiv
it is critical that the ANC system be able to predict (and then cancel) unwa
sound in the noise control zone. 

In the first part of this section we develop the dynamic training equations
the ANC system. Then we present experimental results showing the predi
performance.

Figure 13 shows the structure of the LDRN used for predicting the acoustic
data. In this network there are 3 cascaded recurrent structures. If we follow
methods described in Section IV, we see that the system is composed of
subnets. Therefore, we have three sets of training equations:

(25)

(26)

(27)

Notice that in Eq. (27) there is only one dynamic term. This is because the
only one tapped-delay input that comes from a subnet.

We now show how these equations can be developed using our gener
procedure, which was described in the flowchart of Section IV. We start in the
layer in the backpropagation order (Layer 6) to get the following equations:
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Figure 13.  Cascaded Recurrent Neural Network
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Layer 5 is not the output of a subnet, so the resulting equations are:

      

      

      

      

      

      

Layer 5 has two tapped-delay inputs from subnets, so we must calculat
explicit derivatives of the subnet output with respect to these inputs to yield:

      

      

Layer 4 is the end of the second subnet, so we now calculate the ex
derivatives with respect to the second subnet output.
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Layer 3 is not the output of a subnet, so the resulting equations are:

      

      

      

      

      

      

Layer 3 has two delayed inputs from other subnets, so we must comput
following explicit derivatives:

      

      

Layer 2 is the end of the first subnet, so we apply the equations
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Layer 1 is not the output of a subnet, so we apply

      

      

      

      

      

Layer 1 has one delayed input from another subnet, so we calculate

      

At this point, we have the explicit derivatives for all the weights and biase
the system. These explicit derivatives are used with Eq. (25) – Eq. (27) to com
the dynamic derivatives we need for training the network. Notice that the solu
to Eq. (27) is an input to Eq. (26) and Eq. (27) on the following time step. 
solution to Eq. (26) is an input to Eq. (25) and Eq. (26) on the following time s
Finally, the solution to Eq. (25) is an input to Eq. (25) on the following time st

After all the dynamic derivatives of the output of the system with respec
the weights and biases have been computed, we must calculate

      

We can then compute the derivative of the cost function with respect to al
weights and biases using
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The process is repeated for each sample time in the training set.
After the network was trained, it was used to predict experimentally reco

noise. The result is shown in Figure 14. The data was collected in an acoustically
“live” environment that was conducive to sound reflection. The prediction res
for the LDRN, trained with full dynamic backpropagation, is compared to t
other systems. The first comparison system is an LDRN that is trained only
static derivatives. The second comparison system is a non-recurrent LFFN s
with a tapped-delay line at the input. Figure 14 shows the actual and predicted
signals when full dynamic backpropagation is used to train the LDRN. Figure 15
is a plot of the errors between actual and predicted signals.

Figure 14.  Prediction Results for LDRN with Full Dynamic Training 

Figure 15.  Errors for LDRN with Full Dynamic Training

The next experiment uses the same data, but only explicit (static) deriva
were used. The errors between actual and predicted signals are shown in Figure
16.
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Figure 16.  Prediction Errors for Static Training

The results shown in Figure 16 are reasonably good. We can see some
degradation in performance, which might be critical in certain situations. In so
cancellation applications, for example, the differences would certainly 
detectable by the human ear. 

As a final experiment, the data was processed using an LFFN, with T
input. The network size was adjusted so that the number of weights 
comparable to the LDRN used in the previous experiment. The prediction e
for the LFFN are shown in Figure 17.

Figure 17.  LFFN Prediction Results

The LFFN prediction performance is not too bad, but is significantly wo
than the LDRN performance, when trained with full dynamic backpropagation
summary of the simulation results is provided in Table 2. Notice the dramatic
increase in floating point operations required to process each sample 
dynamic training is used.
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VII. SUMMARY

This chapter has discussed the training of recurrent neural networks
control and signal processing. When computing training gradients in recu
networks, there are two different effects that we must account for. The first
direct effect, which explains the immediate impact of a change in the weigh
the output of the network at the current time. The second is an indirect e
which accounts for the fact that some of the inputs to the network are prev
network outputs, which are also functions of the weights. To account for 
indirect effect we must use dynamic backpropagation. 

This chapter has introduced the Layered Digital Recurrent Network (LDR
which is a general class of recurrent network. A universal dynamic train
algorithm for the LDRN was also developed. The LDRN was then applied
problems in control and signal processing. A number of practical issues mu
addressed when applying dynamic training. Computational requirements
dynamic training can be much higher than those for static training, but s
training is not as accurate and may not converge. The appropriate form of tra
to use (dynamic, static, or some combination) varies from problem to proble

REFERENCES

Demuth, H. B. and Beale, M., Users’ Guide for the Neural Network Toolbox for

MATLAB, The Mathworks, Natick, MA, 1998.

Hagan, M.T., Demuth, H. B., Beale, M.,  Neural Network Design,  PWS 

Publishing Company, Boston, 1996.

Prediction
Method

Flops/Sample
Mean Squared 

Prediction Error

LDRN 
Full Dynamic

Training
4.32 x 104 .0050

LDRN
Static 

Training
5.19 x 103 .0087

LFFN 1.85 x 103 .0120

Table 2.    Simulation Results



ic 
Narendra, K. S. and Parthasrathy, A. M., Identification and control for dynam

systems using neural networks, IEEE Transactions on Neural Networks, 1(1), 4, 

1990.

Yang, W., Neurocontrol Using Dynamic Learning, Doctoral Thesis, Oklahoma 

State University, Stillwater, 1994.

Yang, W. and Hagan, M.T., Training recurrent networks, Proceedings of the 7th 

Oklahoma Symposium on Artificial Intelligence, Stillwater, 226, 1993. 



Chapter 13
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NEURAL NETWORKS FOR ADAPTIVE ROBOT

BEHAVIOR

T. Ziemke

Department of Computer Science
University of Skövde, 54128 Skövde, Sweden

I. INTRODUCTION

    The use of artificial neural networks (ANNs) in robots and autonomous
agents has during the 1990s become the subject of research in various
disciplines, and a number of collections on different aspects of this topic have
appeared [Bekey, 1993, Brooks, 1998, Omidvar, 1997, Sharkey, 1997, Ziemke,
1998, Ziemke, 1999]. Roboticists and ANN researchers naturally have an
interest in neural robot control and learning, but furthermore this type of system
has attracted much attention in embodied AI and cognitive science, as well as
artificial life and adaptive behavior research. In particular recurrent neural nets
(RNNs) have become the focus of much research, due to their capacity for dealing
with temporal and sequential information - a capacity essential to any agent
continually interacting with its environment.
    Different theoretical perspectives on RNN-controlled agents and examples of
recent experimental research are discussed in the following section. Section III
will then investigate and compare the suitability of both first- and higher-order
recurrent control architectures for the realization of adaptive robot behavior.  Two
experiments, in which the weights in recurrent control networks are evolved to
solve tasks requiring the robot to exhibit state- or context-dependent behavior,
are used to demonstrate and analyze different recurrent robot control architectures.
The final section will summarize the discussion, present some conclusions, and
point out directions for future research on RNNs for adaptive robot behavior.

II. BACKGROUND

    As mentioned above, RNN-controlled robots have become the subject of
interest in a number of fields of research. From an engineering perspective,
ANNs in general have a number of properties that make them well suited to deal
with the problems of robot control. They are typically considered to be robust to
noise and capable to handle incomplete data, which allows them, to a higher
degree than conventional algorithms, to deal with, for example, the uncertainties
of a dynamic environment and the limitations of sensor measurements.
Moreover, the capacity for continual adaptation allows ANN robot controllers to



adapt to, for example, changing environments or failing hardware. Furthermore,
ANNs are model-free techniques, i.e., they allow robots to learn from the
interaction with their environment, and thus they do not require a designer to
provide them with an explicit model of the world a priori. As Meeden has
pointed out, the capacity for adaptation allows for “bottom-up construction” of
robot control systems, i.e., it “allows the task demands rather than the
designer’s biases to be the primary force in the shaping of the system’s
development” [Meeden, 1996]. Thus, the flexibility of ANN controllers in many
cases reduces the task of the designer to the choice of an appropriate control
architecture.
    These advantages of ANNs are exemplified well by the ALVINN project
[Pomerleau, 1993], in which a vehicle is guided by an ANN. The controller, a
feedforward ANN trained with the backpropagation algorithm [Rumelhart, 1986],
receives as input the 30x32 pixels of the image obtained from a camera mounted
on top of the vehicle and directed at the road ahead (see Figure 1). The
network’s output determines the steering direction. The network initially
‘observes’ a human driver and is trained on the data (visual input and steering
direction) collected during this phase. After training, the network takes over the
role of the human driver and steers the vehicle so as to keep it on the road.
ALVINN has been shown to work in the real world, including two- and four-
lane roads, crossings, dirt roads, and highway traffic at speeds of up to 55 miles
per hour.   

Input:
30x32 pixels
from camera

Output:
Steering direction

Hard left

Hard right

CRX 492

Figure 1. A schematic illustration1 of the ALVINN vehicle and its control network.

    The ALVINN example illustrates the power of standard feedforward networks
as well as their limitations. The control network solves a difficult pattern
recognition task which certainly would have required complex image
preprocessing, the use of line extraction algorithms, etc., if programmed by a
human designer. However, due to its use of a feedforward network ALVINN
remains a purely reactive system. This means that it has no notion of the
temporal aspects of its task and will always react to its visual input in the same
fashion, independent of the current context. It neither knows where it came from,
nor can it predict what will happen in the future or navigate toward a goal. The
reason the systems nevertheless solves a clearly non-trivial task is that the world

                                                
1 In reality ALVINN’s control network contains about 1000 units.



it is situated in provides it with the necessary continuity: The road is always
‘out there’ and functions as a scaffold ‘guiding’ ALVINN such that the
‘navigation’ task can be solved in a purely reactive fashion.
    For most mobile robots, however, the environment is not that benevolent in
the sense that the ‘solution’ is already built into it. Often they have to solve
tasks like homing or finding a goal location, but are faced with the problem of
perceptual aliasing. That means, many locations in the environment look the
same from the robot’s current point of view, such that they cannot be
distinguished without knowledge/memory of where the robot came from.
Moreover, as Meeden [Meeden, 1996] has pointed out, robot/agent problems are
often defined in terms of abstract goals rather than specific input-output pairs.
Thus, moment-to-moment guidance, as provided in ALVINN’s case, is
typically not available for a learning robot since for a given situation there is not
necessarily only one right or wrong action, and even if there were, it would
typically not be known a priori [Meeden, 1996].
    Furthermore, robots often have to exhibit adaptive behavior to deal with
requirements changing over time. Meeden [Meeden, 1993, Meeden, 1996], for
example, discusses the case of Carbot, a toy-car-like robotic vehicle placed in a
rectangular environment approximately 20 times its own size. Apart from the
‘low-level’ goal of avoiding bumping into the walls surrounding the
environment, Carbot’s ‘high-level’ goal periodically changes between having to
approach a light source placed in one corner of the environment and having to
avoid it. This means that it should, depending on the current goal, maximize or
minimize the readings of two light sensors directed towards the front of the
vehicle. Apart from that, Carbot is equipped only with digital touch sensors at
the front and the back of the vehicle which detect collisions when they occur, but
do not give any advance warning. The task is further complicated by the fact that
the smallest dimension of the environment is smaller than Carbot’s turning
radius. The vehicle can therefore only execute a 180-degree turn in a series of
backward and forward movements.
    Meeden et al. [Meeden, 1993] have carried out extensive experimental
comparisons of different feedforward and recurrent control architectures for varying
Carbot tasks. The basic recurrent control architecture (Figure 2) was similar to
Elman’s Simple Recurrent Network [Elman, 1990]. The network’s inputs came
from light and touch sensors (plus in some experiments an extra input indicating
the current goal), its outputs controlled the motor settings, and the hidden unit
activation values were copied back and used as extra inputs in the next time
step. Not surprisingly, the experimental results show that RNNs consistently
outperformed feedforward networks.



context unitssensor inputs

(touch, light, goal)

motor outputs

(hidden units (t-1))

hidden units

Figure 2. Meeden’s recurrent robot control architecture. Solid arrows represent fully connected
layer of weights between two layers of units (indicated by surrounding dotted lines). Hidden unit
values are fed back via a 1:1 copy connection (dashed arrow) and used as extra inputs in the next
time step.  Adapted from Meeden [1996].

    Meeden et al. have analyzed the recurrent control networks and shown that
they utilize their internal state (i.e., the hidden unit activation values) to carry
out behavioral sequences corresponding to particular motion strategies instead of
merely reacting to the current input. For example, to avoid the light the robot
would (starting from a position facing the light) first move backwards for a
couple of time steps (into the center of the environment) and then carry out a
series of alternating forward right and backward left movements until it faces
away from the light. Thus, it executes a multi-turn strategy in the center of the
environment, which overcomes the problem that the environment’s smallest
dimension is smaller than its own turning radius.  Meeden et al. therefore argue
that Carbot’s behavior is plan-like in the sense that (a) it associates abstract
goals with sequences of primitive actions, (b) the behavior can be described in
hierarchical terms (cf. above), and (c) the robot maintains its overall strategy
even when flexibly reacting to the environmental conditions. For example, when
encountering a wall while carrying out the above light avoidance strategy, it will
react to the wall first and then return to its high-level strategy. On the other
hand, the behavior is not plan-like in the traditional sense that the robot
explicitly anticipates the future, and the number and complexity of Carbot’s
strategies are admittedly limited. Meeden has further discussed the relation to
planning in subsequent work [Meeden, 1994, Meeden, 1996].
    For artificial intelligence (AI) research the use of ANN-controlled robots, due
to their capacity for bottom-up construction of control systems, has received
much attention as a methodology for the study of intelligent behavior in
artifacts. Traditional AI research, beginning in the mid-1950s, largely ignored
earlier work on robotic/cybernetic creatures, such as the work of Grey Walter
[Grey Walter, 1950, Grey Walter, 1953]. Instead, AI turned to the computer as a
model of mind. In the functionalist framework of cognitivism and the computer
metaphor for mind, having a body, living or artificial, is regarded as a low-level
implementational issue. Thus the study of intelligence was largely separated
from the interaction between agent and environment, and until the mid-1980s
there was relatively little interest in robots in AI research. Instead research
focused on internal representations corresponding to external objects
(‘knowledge’), in particular symbolic representations, and the computational,



i.e., formally defined and implementation-independent, processes operating on
these representations (‘thought’). Problems with this disembodied view of
intelligence, which separated internal representations in AI programs from the
world they were supposed to represent,  were not widely recognized until the
1980s. Searle [Searle, 1980] and Harnad [Harnad, 1990] pointed out that,
because there are no causal connections between the internal symbols and the
external world, purely computational AI systems lack intentionality, i.e., the
capacity to relate their internal processes and representations to the external
world. During the 1980s many AI researchers therefore (re-) turned to the study
of the interaction between agents and their environments. Researchers like
Brooks [Brooks 1986, Brooks, 1991] and Wilson [Wilson, 1985, Wilson,
1991] suggested a bottom-up approach to AI, also referred to as New AI or
behavior-based AI, as an alternative to the representationalist/computationalist
framework of cognitivism. In particular, it was argued that AI should be
approached first and foremost through the study of the interaction between
autonomous agents and their environments by means of perception and action.
For a more detailed review of the bottom-up approach to AI see Ziemke [1998].
    Brooks therefore approached the study of intelligence through the construction
of physical robots, which were embedded in and interacting with their
environment by means of a number of behavioral modules working in parallel in
a so-called subsumption architecture. Each of these behavioral modules was
implemented as a finite state machine receiving sensory input from some of the
robot’s receptors and controlling some of its effectors. While the general idea of
a parallel and distributed control architecture was generally accepted, a major
criticism of Brooks' original subsumption architecture is that it does not allow
for learning. Hence, this type of robot, although autonomous in the sense that
during run-time it interacts with the environment on its own, i.e., independent
of an observer, still remains heteronomous in the sense that its control
mechanism is predetermined by the designer. A number of researchers have
therefore pointed out that a necessary element of an artificial agent's autonomy
would be the capacity to determine and adapt, at least partly, the mechanisms
underlying its behavior [Boden, 1996, Steels, 1995, Ziemke, 1997, Ziemke,
1998]. Much research effort during the 1990s has therefore been invested into
making robots ‘more autonomous’ by providing them with the capacity for self-
organization. Typically these approaches are based on the use of computational
learning techniques to allow agents to adapt the internal parameters of their
control mechanisms. Thus, the use of ANN-controlled robots using learning
and/or evolutionary adaptation techniques has become a standard methodology
in bottom-up AI research.  
    From a cognitive science point of view, adaptive ANN-controlled robots do
not only have the practical advantages described above from an engineering and
AI perspective, but they also offer a novel approach to the study of the embodied
and situated nature of cognitive processes [Clark, 1997, Sharkey, 1998]. In
particular the parallel and distributed nature of weight and unit representations in
ANNs, and the fact that these representations can be formed in interaction with
an environment, make ANN-controlled robots an interesting approach to the
study of cognitive representation. Unlike traditional AI, connectionists do not
promote symbolic representations that mirror a pre-given external reality.
Rather, they stress self-organization of an adaptive flow of signals between



simple processing units in interaction with an environment, which is compatible
with an interactivist [Bickhard, 1995] or experiential [Sharkey, 1997] view of
representation, and thus offers an alternative approach to the study of cognitive
representation.
    However, in most connectionist work the ‘environment’ is still reduced to
input and output values. That means, ANNs, unlike real nervous systems, are
typically not embedded in the context of an agent and its environment. Thus,
although in a technically different fashion, connectionists were, like cognitivists,
mainly concerned with explaining cognitive phenomena as separated from agent-
world interaction. Hence, they initially focused on modeling of isolated
cognitive capacities, such as the transformation of English verbs from the present
to the past tense [Rumelhart, 1986] or the prediction of letters or words in
sequences [Elman, 1990]. Thus, early connectionism was mostly concerned
with the self-organization of weights to match given input-output pairs, whereas
making the connection between inputs, outputs, and internal representations and
the actual world they were supposed to represent was still left to the observer.
The situation, however, changes fundamentally as soon as ANNs are used as
robot controllers, i.e., ‘artificial nervous systems’ mapping a robot's sensory
inputs to motor outputs. Then the network can actually, by means of the robot
body (sensors and effectors), interact with the physical objects in its
environment, independent of an observer's interpretation or mediation. Dorffner
[Dorffner, 1997] has therefore suggested the approach of Radical Connectionism,
i.e., the use of ANNs for control of and learning in robotic agents, as a natural
testbed and a step forward from a connectionist point of view.
    RNNs play a central role in such approaches to the study of cognitive
representation. This is because they account for the (long-term) representation of
learning experience in connection weights as well as the (short-term)
representation of the controlled agent’s current context or immediate past in the
form of internal feedback. Peschl [Peschl, 1996] has pointed out that RNNs, like
real nervous systems, are “structure determined” (also see Maturana [1980]),
which means that, unlike ALVINN, their reaction to environmental stimuli
always depends on the system’s current state (or structure) and thus is never
determined by the input alone. Peschl refers to this as the “autonomy of a
representational system.”

III. RECURRENT NEURAL NETWORKS FOR ADAPTIVE
ROBOT BEHAVIOR

A. MOTIVATION
    The vast majority of recurrent neural architectures for learning and control of
robots and autonomous agents (e.g., [Beer, 1990, Biro, 1998, Meeden, 1996,
Nolfi, 1999, Tani, 1996, Tani, 1998, Ulbricht, 1996]) make use of first-order
feedback. That means, certain neuron activation values are, as in Meeden’s
architecture (see Figure 2), fed back and used as extra inputs to some of the
neurons (typically at the input layer) in a later time step (typically the next one).
Higher-order feedback, on the other hand, typically modulates/adapts
connection weights and/or biases (see, e.g., Figure 3). Unlike in other areas,
such as (formal) language recognition, there are only very few cases where
higher-order networks have been used as robot control architectures. This section



will therefore demonstrate and analyze both first- and higher-order recurrent
neural robot control architectures experimentally. It should be noted in advance
that first- and higher-order networks are computationally equivalent
[Siegelmann, 1995, Siegelmann, 1998]. That means, every task solved by a
higher-order RNN could also be solved by some first-order net. Hence, in the
experiments discussed in the following, higher-order RNN-controlled robots will
not do anything that could not, at least in theory, be done by first-order RNN-
controlled ones. Computational equivalence of network architectures in theory,
however, does not say much about their suitability to solve particular tasks in
practice. The latter will therefore be investigated here experimentally.
    Some of the author’s own work [Ziemke, 1996a, Ziemke, 1996b, Ziemke,
1996c, Ziemke, 1997, Ziemke 1998] has been concerned with recurrent robot
control architectures inspired by Pollack’s Sequential Cascaded Networks
(SCNs), also referred to as dynamical recognizers, which were originally used
for formal language recognition [Pollack, 1987, Pollack, 1991]. This architecture
(Figure 3) consists of (a) a function network mapping input to output and an
internal state, and (b) a context network mapping the internal state to the next
time step’s function network weights (including biases). Thus, this type of
network utilizes a second-order, multiplicative type of feedback, with the effect
that the function network’s input-output mapping can change from time step to
time step in a context- or state-dependent fashion. The experiments documented
in the following subsections will illustrate how this mechanism can be used to
realize adaptive behavioral dispositions in robots.

B. ROBOT AND SIMULATOR
    The experiments discussed here have been carried out using a simulation of a
Khepera miniature mobile robot. The Khepera [Mondada, 1993] has a circular
body with a diameter of 55 mm and is equipped with eight infrared proximity
sensors with a range of approximately 50 mm, six of them at the front
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Figure 3. Sequential Cascaded Network (SCN), a second-order recurrent architecture consisting
of (a) a function network mapping input to output and internal state, and (b) a context network
mapping the internal state to the next time step’s function network weights. The solid arrows
represent a fully connected layer of weights between two layers of units (indicated by surrounding
dotted lines).

and two at the back. It has two motors, which independently control two
wheels;



one to the right and one to the left. The wheels can spin forward and  backward
independently, such that the robot can turn on the spot if they spin in opposite
directions.
    The robot simulator used here is a slightly adapted version of the one
presented by Miglino [1995]. The simulation is based on sensor measurements
obtained from a real Khepera robot. It has been shown in a number of papers,
(e.g., Nolfi, [1997]), that the simulation of infrared sensors and motors is
sufficiently realistic to allow the transfer of controllers trained in simulation to
the real robot. An additional ground sensor (see details below) has been used
here which is not present on the physical robot, such that the experiments
presented here could not be validated on the real robot. Random noise,
uniformly distributed in the range of +/- 10% of the maximum sensor readings,
has been added to all sensor measurements.

C. ROBOT CONTROL ARCHITECTURES
    In the experiments documented here the five different ANN architectures
shown in Figure 4 have been used to control the Khepera robot. All of the
networks receive five inputs from the robot’s sensors (normalized to values
between 0 and 1; see details below), and they produce two motor outputs
directly controlling the robot’s wheels. The output units use the logistic
activation function, i.e., the outputs are between 0 and 1, with 0 corresponding
to full speed backward rotation, 0.5 corresponding to no motion, and 1
corresponding to full speed forward rotation.
    Architecture A is a standard feedforward multilayer perceptron with three
hidden units. B is a recurrent network with two memory units, which are used
as extra inputs in the next time step (first-order feedback). C is similar to B, but
uses an additional layer of three hidden units. The hidden units in A and C use
the logistic activation function, such that activation values lie between 0 and 1.
D is a Sequential Cascaded Network with two state units, like the one shown in
Figure 3. E is a novel variation of the SCN (D), here also referred to as Extended
Sequential Cascaded Network (ESCN). It has an additional decision unit, which
in every time step determines whether to use feedback. The idea behind this
extension is that the robot should be able to decide selectively when to change
its sensorimotor mapping, instead of (re-) setting the function network weights
in each and every time step.  Thus, the context network is only used to adapt
the function network when the decision unit activation exceeds a certain
threshold (here 0.5; the decision unit uses the logistic activation function),
otherwise the weights and biases in the function network remain unchanged. The
state units in D and E also use the logistic activation function. The output units
of the context networks in D and E (cf., Figure 3), however, use a linear
activation function such that the function network weights and biases (which are
the outputs of the context network) are not limited to values between 0 and 1.

D. EXPERIMENT 1
1. Environment and task
    Figure 5 shows the simulated robot in the environment used in experiment 1.
The robot is placed in a rectangular environment of 1000 mm x 600 mm,
surrounded by walls (the straight lines), which contains a zone (the large circle)
outside of which it should keep moving while avoiding collisions, whereas once



it has entered the zone it should simply not leave it anymore. The robot is
initially placed with a random orientation in a random position outside the
zone, and during learning it is punished for collisions and rewarded strongly for
every time step it spends in the zone (for details see below). Moreover, while
outside the zone, it is rewarded for moving as quickly and straight as possible
and keeping away from walls. It uses four infrared proximity sensors at the front2
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Figure 4. ANN robot control architectures used in the experiments. All networks receive input
from the four proximity sensors and the ground sensor and produce two outputs directly controlling
the left and right wheels’ motors (see text for details). In all cases the solid arrows represent fully
connected layer of weights between two layers of units (indicated by surrounding dotted lines).
The dashed arrows represent 1:1 copy connections (without weights). A: Feedforward network
with three hidden units. B: Recurrent network with two memory units, which are used as extra
inputs in the next time step. C: Like B, but with three hidden units. D: Sequential Cascaded Network
with two state units (for details see Figure 3). E: Extended Sequential Cascaded Network: like D,
but extended with a decision unit, which determines in each time step whether to use feedback.

and a ground sensor,3 which is only fully active in the time step when the robot
passes the black line marking the zone border. As mentioned above, these five
sensors provide input to the controller networks (see Figure 4), and the
network’s two output units directly control the speeds of the two wheels.
    The experimental setup is intentionally kept very simple in order to illustrate
as clearly as possible the basic mechanisms of behavioral adaptation in recurrent

                                                
2 The left and the right pairs of the six front sensors are averaged and used as if they were one
sensor.
3 As mentioned above, the ground sensor is not actually available on the real robot. A possible
physical implementation would be a light sensor directed at the ground below the robot, capable of
distinguishing white and black ground.



robot controllers. A significantly more complex scenario will be used in
experiment 2 below. However, although this task is fairly simple, it clearly
requires some form of memory. Since the ground sensor does not tell the robot
whether it is inside or outside the zone, but only when it passes the borderline,
the robot needs to ‘remember’ on which side of the border it currently is. This
is necessary, for example, in order to be able to react to the absence of significant
sensory stimuli in two completely different ways inside and outside the zone
(standstill or circling vs. searching forward motion). Hence, the feedforward
networks (architecture A), in both experiments, cannot be expected to achieve
the same level of performance as the recurrent networks. They are nevertheless
included in the comparisons to illustrate the difference that the use of feedback
makes.

Figure 5. Simulated Khepera robot in environment 1. The large circle indicates the zone the robot
should enter and stay in. The small circle represents the robot, and the lines inside the robot
indicate position and direction of the infrared proximity sensors used in experiments 1 and 2.

2. Network training
    Recurrent networks are known to be difficult to train with, e.g., gradient-
descent methods such as standard backpropagation [Rumelhart, 1986] or even
backpropagation through time [Werbos, 1990]. They are often sensitive to the
fine details of the training algorithm, e.g. the number of time steps unrolled in
the case of backpropagation through time (e.g., [Mozer, 1989]). For example, in
an autonomous agent context, Rylatt [1998] showed, for one particular task, that
with some enhancements Simple Recurrent Networks [Elman, 1990] could be
trained to handle long-term dependencies in a continuous domain, thus
contradicting the results of Ulbricht [1996] who had argued the opposite. In an
extension of the work discussed in the previous section, Meeden [1996]
experimentally compared the training of recurrent control networks with (a) a
local search method, a version of backpropagation adapted for reinforcement
learning, and (b) a global method, an evolutionary algorithm. The results
showed that the evolutionary algorithm in several cases found strategies, which
the local method did not find.  In particular, when only delayed reinforcement
was available to the learning robot, the evolutionary method performed
significantly better due to the fact that it did not at all rely on moment-to-
moment guidance [Meeden, 1996].
    In the experiments documented here, all control networks have therefore been
trained using an evolutionary algorithm very similar to the one used by Nolfi
[1997], a genetic algorithm [Holland, 1975] evolving an initially randomized



population of 100 individuals over 5000 generations. For architectures A, B,
and C the artificial genotype of each individual encodes all the connection
weights (including biases) of a complete control network as a single bitstring.
Each real-valued weight (between –10.0 and +10.0) is represented by a string of
8 bits. For architectures D and E, in which function network weights change
dynamically, the genotype encodes the connection weights in the context
network plus initial state unit activation values, such that the initial function
network weights can be derived by propagating the initial state through the
context network.
    To evaluate their fitness each individual of every generation is used to control
the robot during a trial period of 400 time steps, starting from a random position
outside the zone and with a random orientation. While outside the zone
individuals score between 0.0 and 1.0 fitness points per time step, being
rewarded for moving as fast and as straight as possible while minimizing
encounters with walls. While inside the zone, they simply receive 100 fitness
points for every time step they remain inside. To encourage the selective use of
feedback in networks of architecture E, they only score fitness points during
those time steps when they are not using feedback, i.e., when they are not using
the context network to re-set function network weights and biases.  For all
networks, the points collected during the 400 time steps are summed up at the
end of the evaluation period to determine the individual’s overall fitness. Of the
100 individuals the 20 ‘fittest’ ones of each generation are selected, and each of
them produces five ‘offspring’ which will be part of the next generation, which
thus again consists of 100 individuals. ‘Reproduction’ is carried out by creating
a copy of the artificial genotype with a mutation probability of 1% for each of the
bits.  The reason that only mutation, but no crossover, is used here is that
several researchers, e.g., Meeden [1996], have shown/argued that the use of
crossover does not improve performance when evolving ANN robot controllers.
This was also the case in the experiments of Nolfi [1997], from whom also the
other evolutionary algorithm parameter settings used here (population size,
mutation rate, bitstring representation) have been adopted.  Initial experiments
were carried out with a variety of alternative parameter settings; none of which,
however, resulted in significantly better results.  For both experiments 1 and 2,
ten evolutionary runs, starting from different random initial populations, were
carried out for each of the five architectures.

3. Results
    Networks of architectures B, C, D, and E quickly evolved to robustly solve
the task. The evolutionary process was nevertheless continued for 5000
generations to ensure that evolution had converged. Networks of architecture E
exhibit best overall performance, although they are not able/allowed to score
points while using feedback (cf. previous subsection). For each of the 5000
generations Figure 6 shows, averaged over all ten evolutionary runs for
architecture E, the fitness of the best individual, the mean fitness of the 20 best
individuals selected for reproduction, and the mean fitness of all individuals in
the population. As the figure shows, the best individuals achieve a fitness score
around 30000, corresponding to approximately 300 time steps (out of 400) spent
in the zone.
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Figure 6. Fitness values for networks of architecture E in experiment 1. For each generation the
figure shows the fitness of the best individual (‘best’), the mean fitness of the 20 best individuals
selected for reproduction (‘mean (sel.)’), and the mean fitness of all individuals in the population
(‘mean (pop.)’). The values shown are rolling averages over three generations, averaged over all
ten evolutionary runs.  

    Table 1 illustrates the performance differences between architecture E and the
other architectures using the three fitness measures illustrated in Figure 6. The
values shown are the average differences between the architectures during all
5000 generations (and in parentheses the differences during the last 500
generations, which allows the comparison of already trained networks, relatively
independent of possible differences in learning speed).  Thus, for example, the
best individuals in the populations of architecture A have a fitness that is on
average 40.8% lower than that of networks of architecture E during all 5000
generations, and 40.1% lower during the last 500 generations.

Best individuals mean fitness
[20 selected]

Mean fitness
[whole population]

A -40.8% (-40.1%) -51.2% (-49.5%) -44.5% (-42.0%)
B -5.5% (-6.6%) -1.6% (-2.7%) +6.6% (+3.8%)
C -7.0% (-10.4%) -4.4% (-8.9%) -10.1% (-14.4%)
D -2.2% (-3.4%) -2.1% (-4.7%) -0.7% (-3.2%)

Table 1. Performance differences between architecture E and other architectures in experiment 1.
All differences are stated in percent of the performance of architecture E (as illustrated in Figure
7). Values are averaged over all 5000 generations (in parentheses over the last 500 generations)
of all ten evolutionary runs.

    Table 1 shows that architectures A, B, C and D perform worse than E
according to basically all of the three performance measures. The only exception
is that networks of architecture B actually achieve a higher mean fitness when
looking at the whole population; they do however achieve lower values when
compared to the best networks. Not surprisingly, the feedforward networks (A)



perform significantly worse than all recurrent architectures. Because of their lack
of feedback they cannot ‘remember’ whether they have passed the circle border or
not. Recurrent architectures B, C, and D, on the other hand, in experiment 1
come relatively close to the performance of E.

4. Analysis
    This subsection will present some analysis of different recurrent networks
successfully solving the task. All networks analyzed here are taken from the final
generations, and they are representative of how networks of the respective
architecture evolved to solve the task, although there are of course differences
between individuals in a population as well as between populations in different
evolutionary runs. Figure 7 illustrates the performance of a successful robot
controller of architecture B. The robot’s position at each time step is indicated
by a circle. The robot in this case starts off facing the wall to the left, moves
forward at maximum speed, correctly avoids the walls twice by turning right,
finally enters the zone after about 120 time steps, and keeps spinning in place
there for the remaining time steps, thus maximizing its fitness.

start

end

Figure 7. Example trajectory for a robot controller (architecture B) in experiment 1. The robot’s
position in each time step is indicated by a circle, and its heading by the line inside that circle. The
robot correctly avoids the walls twice by turning right, enters the zone, and keeps spinning in
place.

    Figure 8 further illustrates the robot controller’s performance, showing the
unit activation values, and the fitness points collected during the 400 time steps.
Figure 9 shows the controller network’s connection weights (including biases).
Together Figures 8 and 9 allow some analysis of how the robot controller solves
the task. Initially the robot receives no sensory input, apart from noise, as there
are no objects nearby.  Due to the strongly positive biases for both left and right
motor output unit (see Figure 9), the robot moves forward at maximum speed as
long as possible. Twice it quickly avoids walls appearing at the front/left (see
Figures 8 and 7), by temporarily inhibiting the right motor using the large
negative weights between the sensors and the right motor output unit (see
Figure 9). This makes the right wheel spin backwards, which in combination
with the left wheel’s continued full speed forward motion makes the robot turn
away from the wall. So far both memory units have been inactive due to their
negative biases. But, when entering the zone, the ground sensor activates
memory unit 1 through the large positive weight between the two, and during
the remaining time steps (when the ground sensor no longer detects the



borderline) memory unit 1 keeps (re-)activating itself using a large positive
weight (see Figure 9). Memory unit 1 also inhibits the right motor through a
large negative weight (see Figure 9). Thus, the robot in the absence of
significant sensory stimuli keeps spinning in place, such that maximum fitness
points can be collected for the rest of the evaluation period.

Figure 8. Activation and fitness values during the 400 time steps of the evaluation trial for the robot
controller (architecture B) illustrated in Figure 8 (experiment 1). Activation values are illustrated
as vertical black lines whose height corresponds to the represented value. All unit activation values
lie between 0 and 1 (full height black line) (NB. In the case of the motors 0 corresponds to full
speed backward rotation, 0.5 to no motion, and 1 to full speed forward rotation). The fitness value
is either 0 (no line), between 0 and 1 (short line), or 100 (full height black line).
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Figure 9. Connection weights (including biases) for the robot controller (architecture B) illustrated
in Figures 7 and 8. Positive weights are shown as white rectangles and negative ones in black, with
the rectangles’ areas corresponding to the weight values.

    Networks of architecture C (B plus an additional hidden layer) typically
evolved to solve the task in a way very similar the one described above. Since
architecture C in experiment 1 actually achieved slightly worse performance than
the theoretically less powerful B (see Table 1), it is not discussed in further
detail here. Figure 10 instead illustrates the performance of a successful robot
controller of architecture D (Sequential Cascaded Network). The robot uses a



similar behavioral strategy as the one above, although internally realized
differently as we will see. The robot starts off in the same position, moves
forward at maximum speed, correctly avoids the walls twice, this time by
turning left, finally enters the zone after about 110 time steps, and, as before,
keeps spinning in place there.
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Figure 10. Example trajectory for a robot controller (architecture D) in experiment 1. The robot
correctly avoids the walls twice by turning left, then enters the zone and stays there, spinning in
place.

    Figure 11 further illustrates the robot controller’s performance, showing as
before the unit activations and fitness values during the evaluation period, but
now also the motor units’ biases, which in architecture D can be adapted
dynamically by the context network. Figures 12 and 13 show the weights in the
function network, both outside and inside the zone.

Figure 11. Activation values, motor biases, and fitness points during the 400 time steps of the
evaluation trial for the robot controller (architecture D) illustrated in Figure 10 (experiment 1).
Biases are shown in the range of –10 (no line) to +10 (full height black line).

     Together these figures provide some insight into how the second-order
network (D) solves the task.  Initially, outside the zone, state unit 1 is inactive,
due to a negative bias, while state unit 2 is active, due to a positive bias. The
function network, which results from propagating the state unit values through
the context network, has strongly positive biases for both left and right motor
(see Figure 12). This makes the robot move forward fast in the absence of
significant sensory stimuli. When encountering a wall at the front/right the left



motor output unit is inhibited by the sensors, such that the robot avoids the
wall by turning left. Outside the zone state unit 1 is inactive (see Figure 11), but
it is activated by the ground sensor through a large positive weight (see Figure
12) when passing the borderline. The change in state unit activation leads to a
different weight configuration (see Figure 13) in the function network from the
next time step. Now both state units have positive biases, and the left motor has
a negative bias while the bias for the right motor remains strongly positive.
Accordingly, the robot now keeps spinning in place inside the zone and thus
collects maximum fitness points during the rest of the evaluation period.
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Figure 12. Function network weights as they are used outside the zone by the robot controller
(architecture D) illustrated in Figures 11 and 12.

    Since the Sequential Cascaded Network (architecture D) makes use of its
context network in every time step, the state units have to reflect the current
requirements on the function network. In the above case, for example, there have
to be two different internal states corresponding to different weight configurations
in the function network, embodying appropriate sensorimotor
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Figure 13. Function network weights as they are used inside the zone by the robot controller
(architecture D) illustrated in Figures 10 and 11.

mappings for ‘outside’ and ‘inside.’ In the Extended Sequential Cascaded
Network (architecture E), on the other hand, where the extra decision unit
selectively determines whether to use the context network or not, there is not
necessarily a 1-1 mapping between current state unit activations and current
function network weight configuration. This is illustrated in the following
example of a successful robot controller of architecture E. The trajectory taken by
the robot is very similar to the one shown in Figure 7, and therefore not shown
here again. Activation and fitness values are shown in Figure 14. It can be seen
that state unit 2 is active during both forward motion outside the zone and
spinning inside the zone, whereas it is less active during turning/spinning
outside the zone. State unit 1, on the other hand, is only fully active while
passing the borderline. The decision unit is apparently only active while turning
away from walls and while passing the borderline, i.e., feedback through the
context network is actually only used in these situations.
    Figures 15 and 16 show the function network weight configurations as they
are used outside (during forward motion) and inside the zone, respectively.
Again, it can be seen that both motors have strongly positive biases during
forward motion outside the zone, whereas one of them is negative inside the
zone, leading to spinning in place, as in the previous examples. The state units,
on the other hand, do not change their biases significantly. State unit 1 is
activated slightly by sensory stimuli at the left/front, but only activated fully by
the ground sensor through the large positive weight between them (see Figure
15). 



Figure 14. Activation values, motor biases, and fitness points during the 400 time steps of the
evaluation trial for a robot controller of architecture E (experiment 1).  The decision unit is
illustrated as rounded to a binary value, with a black line corresponding to an active decision unit
(activation exceeds 0.5, in which case the context network will be used) and white corresponding
to an inactive decision unit (resulting in no use of feedback).
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Figure 15. Function network weights as they are used during forward motion outside the zone by
the robot controller (architecture E) illustrated in Figure 14.

E. EXPERIMENT 2
1. Environment, task and training
    Having illustrated the general workings of first- and higher-order RNN control
of adaptive robot behavior with a simple example above, we can now turn to a
more complex task. The setup for experiment 2 is illustrated in Figure 18.
Again, the robot, using the same sensors and control architectures as in
experiment 1, is placed in an environment of 1000 mm x 600 mm, which now
contains 11 identical round objects, five of them inside a zone and six of them



function network weights inside the zone

left motor

right motor

state unit 1

state unit 2

fr. leftbias left fr. right right ground

sensor inputs

Figure 16. Function network weights as they are used inside the zone by the robot controller
(architecture E) illustrated in Figure 15.

outside.  As in experiment 1, the robot is initially given a random orientation
and placed in a random position outside the zone. The robot’s task is to avoid
collisions with the objects outside the zone (those are solid objects), but to
‘collect’ those inside the zone by ‘hitting’ them, which makes them disappear
immediately. In this experiment the robot receives –500 fitness points for
collisions outside the zone (possibly multiple times if persisting to bump into
the obstacle) and +500 points for ‘collisions’ inside, but in this case always
only once per ‘collected’ object since it disappears immediately. The robot is
not punished for leaving the zone, but inside it receives 0.0 to 4.0 fitness points
per time step for moving as fast and as straight as possible and approaching
objects. Outside the zone, as in experiment 1, the only positive reward the robot
can get is 0.0 to 1.0 fitness points per time step for moving as fast and as
straight as possible and staying away from objects.
    Apart from the different fitness function/reward scheme, training of the control
networks is carried out exactly as described for experiment 1, with the exception
that every individual now in each generation is given two evaluation trials of
400 time steps each, starting from different random positions outside the zone.

2. Results
    As for experiment 1, the evolutionary process was carried out for 5000
generations, although highly fit and robust control networks evolved far more
quickly than that. Again, the Extended Sequential Cascaded Networks
(architecture E) exhibited best overall performance. For each of the 5000



Figure 17. Simulated Khepera robot in environment 2. The black circles represent objects, which
are to be avoided outside the zone (indicated by the large circle), but to be ‘collected’ inside.

generations, Figure 18 shows, averaged over all ten evolutionary runs for
architecture E, the fitness of the best individual and the mean fitness of the 20
best individuals selected for reproduction. It turned out that the better an
architecture did on these two performance measures, the lower was actually its
mean fitness over the whole population. The latter values were strongly
negative, due to the fact that some of the controllers in each generation persisted
to bump into an object outside the zone, thus collecting –500 points in every
time step. This indicates that there is a thin line between highly fit and highly
unfit robot controllers, in the sense that a slight mutation of an individual,
which achieved high fitness in generation t, can easily result in an individual,
which performs very badly in generation t+1. Given the large difference in reward
for hitting identical objects inside and outside the zone respectively, this is
perhaps not too surprising. The mean fitness of the population was therefore not
used as a performance measure in experiment 2. Instead, Figure 19 illustrates the
increase in the number of correctly collected objects during the 5000 generations,
averaged over the whole population in all ten evolutionary runs for architecture
E.  It can be seen that the average evolved robot controller collects only about
three objects (out of a maximum of ten; five in each of the two evaluation trials).
It should, however, be remembered that each generation consists of 100 mutants,
i.e., random mutations of (relatively) successful networks, of which only the best
20 are selected. As Figure 18 shows, the 20 best individuals in the end achieve,
on average, a fitness score around 3700, corresponding to approximately seven
collected objects, and the very best ones often manage to collect all ten objects.
Table 2 illustrates the performance differences between architecture E and the
other architectures using the three fitness measures illustrated in Figures 18 and
20. As in Table 1, the values shown are the average differences between the
architectures during all 5000 generations (and in parentheses the differences
during the last 500 generations, which allows the comparison of already trained
networks, relatively independent of possible differences in learning speed).
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Figure 18. Fitness values for networks of architecture E in experiment 1.  For each generation the
figure shows the fitness of the best individual (best) and the mean fitness of the 20 best individuals
selected for reproduction (mean (sel.)). The values shown are rolling averages over three
generations, averaged over all ten evolutionary runs.
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Figure 19. Number of correctly collected objects for networks of architecture E in experiment 2.
The values shown are rolling averages over three generations, averaged over all ten evolutionary
runs.

Again, architectures A, B, C, and D exhibit worse performance than E according
to the three performance measures. The only exception is that, on average, the
best networks of architecture C achieve a 1.1% higher fitness during the final 500
generations. However, according to the other performance measures, architecture
C, like B and D, performs significantly worse than E. Moreover, architecture B
this time outperforms D, but it is no longer clearly better than C. The differences
between E and the other recurrent architecture are larger here than in experiment



1, which might be due to the increased complexity of the task. Again, however,
all recurrent architectures clearly outperform A due to its lack of feedback.

best individuals mean fitness
[20 selected]

objects collected
[whole population]

A -68.6% (-69.2%) -57.2% (-48.1%) -90.7% (-90.1%)
B -9.5% (-3.9%) -10.7% (-11.9%) -14.6% (-13.8%)
C -9.6% (+1.1%) -16.0% (-8.9%) -32.1% (-26.4%)
D -23.8% (-20.3%) -13.8% (-14.7%) -32.2% (-31.8%)

Table 2. Performance differences between architecture E and other architectures in experiment 2.
All differences are stated in percent of the performance of architecture E (as illustrated in Figures
19 and 20). Values are averaged over all 5000 generations (in parentheses over the last 500
generations) of all ten evolutionary runs.

3. Analysis
    As for experiment 1, this subsection will present some analysis of successful
robot controllers in experiment 2. The analysis will here be limited to networks
of architectures E, which exhibited best performance, and B, which evolved
similar solutions as C, and is to some degree representative of first-order
recurrent networks. Figure 20 illustrates the performance of a successful robot
controller of architecture B. To allow better understanding of the robot’s
behavior during this trajectory the collected objects are shown in their original
positions; it should however be noted that for the robot, as discussed above,
they disappear upon first contact. The robot starts off facing the upper left
obstacle. It turns away from it, faces the wall, and turns away from that also
(keeping safe distances in both cases). It enters the zone, collects the left object,
and leaves the zone again.  When facing the lower wall it starts moving in a
curve to the right, which takes it back into the zone. When detecting the upper
object on its right it performs a sharp turn to the right to be able to collect that
object, and performs another right turn to collect the center object as well.  It
continues to move straight ahead which allows it to collect the lower object. It
leaves the zone, and as before, when detecting the wall ahead starts moving in a
curve to the right, which takes it back into the zone. It leaves and enters the
zone once more, and eventually the evaluation period ends after 400 time steps.  
    Figure 21 shows the activation values and fitness points for the robot
controller network during this trajectory, and its weights are shown in Figure
22.  It can be seen that the network has evolved a strong positive bias for the left
motor and a weaker positive bias for the right motor. This gives the robot a
tendency to move forward turning slightly to the right in the absence of
significant sensory stimuli, at least as long as it outside the zone (see Figure
20). Moreover, the proximity sensors (when active) have a stronger inhibitory
effect
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Figure 20. Example trajectory for a robot controller (architecture B) in experiment 2. The robot
successfully collects four objects in the zone and correctly avoids objects and walls outside the
zone.

on the right motor than on the left. Thus, the robot outside the zone avoids
objects by sharp turns to the right.  When entering the zone the ground sensor
fully activates memory unit 1, but it only slightly activates memory unit 2,
which has a larger negative bias and a smaller positive weight.  Memory unit 1
keeps (re-)activating itself as long as the robot remains in the zone and it also
has a positive influence on the right motor, with the result that inside the zone
the robot tends to move forward in a straighter line than outside. As Figure 20
illustrates, inside the zone the robot turns to the right towards objects in order
to collect them instead of turning away from them. This is achieved through the
combination of the right proximity sensors’ strong inhibitory effect on the right
motor, memory unit 1’s positive influence on the right motor and its slightly
negative influence on the left motor (see Figure 22). The latter makes the left
wheel slow down slightly too, with the effect that the robot does not turn away
from the object before reaching it. When passing the borderline on the way out
of the zone, the combination of active ground sensor and active memory unit 1
finally activates memory unit 2. The activity of memory unit 2 during a single
time step suffices to trigger a gradual decrease in activity in memory unit 1 over
2-3 steps (see Figure 21), whose self-activation does not suffice to keep itself
activated once it is no longer fully active.
    For architecture E, roughly speaking, two types of internal organizations
evolved in experiment 2. In the one type ‘inside’ and ‘outside’ are reflected by
distinct state unit activations, whereas in the other type they are only reflected
by different function network weight configurations, as demonstrated earlier for a
controller network of architecture E in experiment 1. Since the latter type has
already been discussed in this paper, a network of the former type will be
analyzed in the following. Figure 23 shows a characteristic trajectory of a
upper left obstacle. It turns away from it to the left, enters the zone, and collects



Figure 21. Activation and fitness values during the 400 time steps of an evaluation trial for the
robot controller (architecture B) illustrated in Figure 21(experiment 2). The fitness value is either 0
(no line), between 0 and 1 (short line) outside the zone, between 0 and 4 (slightly longer line)
inside the zone, or 100 (full height black line) when correctly ‘collecting’ an object.
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Figure 22. Connection weights for the robot controller network (architecture B) illustrated in
Figures 20 and 21.

three objects on its first pass through the zone, turning slightly to the left
towards each of them. As soon as it has left the zone it starts moving in a semi-
circle to the left, which takes it back into the zone.  In the zone it starts moving
straight ahead again, takes a slight turn to the right to collect the upper object,
and continues straight ahead out of the zone. The same pattern is repeated: as
soon as it leaves the zone, it moves in a semi-circle to the left, which takes it
back into the zone, where it starts moving straight forward again. Once more it
performs a slight turn to the right to collect an object it would otherwise have
missed. It continues to move straight ahead, leaves the zone, returns in another



semi-circle, enters once more, and moves straight ahead until the evaluation
period ends.

start

Figure 23. Example trajectory for a robot controller (architecture E) in experiment 2. The robot
successfully collects all the objects in the zone, and outside it moves in semi-circles taking it back
into the zone.

    A look at Figure 24, which illustrates the unit activation and fitness values
during the above trajectory, shows that this controller network is slightly
smarter than that of architecture B discussed above. Instead of bouncing off
obstacles back into the zone as that robot did (see Figures 20 and 21), the one
illustrated in Figures 23 and 24 carries out its semi-circle strategy4 even in the
absence of significant sensory stimuli to which it could react.

Figure 24. Activation values, motor biases, and fitness values during the 400 time steps of an
evaluation trial for the robot controller (architecture E) illustrated in Figure 24 (experiment 2).

That means, in a sense, it ‘knows’ how to return back into the zone on its own,
instead of doing so by merely reacting appropriately to obstacles. Figures 25 and

                                                
4 This type of strategy also evolved in networks of architecture B, C, and D in some cases, but not
as often as for architecture E.



26 illustrate how this is realized internally, showing the function networks
weights as they are used inside the zone and outside in a semi-circle,
respectively.
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Figure 25. Function network weights as they are used outside the zone (during a semi-circle) by
the robot controller (architecture E) illustrated in Figures 23 and 24.

    As shown in Figures 25 and 26, the network has again evolved substantially
different biases for use inside and outside the zone respectively. In the former
case (see Figure 25) the robot has a strong positive bias for its right motor
output unit and a weak positive bias for the left one.  As a result the robot
moves in a semi-circle to the left in the absence of sensory stimuli, which, as
illustrated in Figure 23, is a good strategy for getting back into the zone once
the robot has
left it. The beginning of the trajectory, however, also shows that the control
network does of course not ignore sensory stimuli. The obstacle it faces in the
beginning is correctly avoided by a sharp left turn (see Figures 23 and 24),
which is caused by the proximity sensors’ influence which inhibits the left
motor more strongly than the right one (see Figure 25). Outside the zone both
state units are active due to their positive biases; the activation of state unit 2,
however, varies slightly between 0.8 and 1.0, and with it the speed of the left
motor (see Figure 24). Furthermore, the decision unit is actually active all the
collect any fitness points during this time. When the ground sensor gets
activated it inhibits state unit 1, but activates state unit 2, which results in the
function network configuration shown in Figure 26. State unit 2 now has a time
while the robot is outside the zone, as a result of which the robot does not
negative bias and can only be activated again by a high ground sensor reading.
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Figure 26. Function network weights as they are used inside the zone by the robot controller
(architecture E) illustrated in Figures 24 and 25.

    Left and right motors now both have strong positive biases, which results in
relatively straight forward motion inside the zone. The connection weights
between the proximity sensors are now set such that different sensors inhibit the
two motor output units. The left motor is inhibited by the left sensor, which
enables the robot to perform (slight) left turns towards objects, as it does during
its first pass through the zone when collecting three objects (see Figure 24). The
right motor, on the other hand, is inhibited by the sensor on the right. This
allows the robot to perform turns to the right in order to collect objects it would
have missed otherwise, as it does during its second and third passes through the
zone (see Figure 23 and 24).
    It should be noted that the robot controller here correctly ‘switches’ back and
forth between different function network configurations several times, and each
time the appropriate weights and biases are set or restored. Thus, again the
Extended Sequential Cascaded Network (architecture E) realizes the required
behavioral adaptation in an interesting way. In this case it switches between two
radically different sensorimotor mappings, and thus behavioral dispositions, i.e.,
at any point in time the robot ‘knows’ where (on which side of the zone border)
it currently is and behaves accordingly. Thus these controllers realize a form of
virtual modularity through feedback, i.e., they dynamically adapt their
behavioral dispositions, such that they act as if they were using different
modules for different situations/contexts. It is worth noting that this allows the
controlled robot to exhibit adaptive, context-dependent responses to otherwise
identical stimuli of two types. Firstly, the round objects, which look identical
inside and outside the zone, assume different functional tones (see von Uexküll
[1928], Ziemke [2000]) for the robot. They are therefore correctly attributed
completely different meanings, leading to opposite responses. Secondly,
although containing no information about direction whatsoever, the zone border



stimulus triggers two opposite responses, switching from an inside behavioral
disposition to one for outside, and the other way round. Thus, the robot in this
case, unlike ALVINN not able to rely on an external scaffold/structure to guide
its behavior, has formed an internal structure that allows it to reliably interact
with its environment.  This behavioral structure, and the mechanisms realizing
it, can be considered interactive representations (see Bickhard [1995], Dorffner
[1997]), formed by the agent in interaction with its environment, not as an
abstract model of the world, but for the purpose of guiding its own behavior.

IV. SUMMARY AND DISCUSSION

    This chapter started off with a discussion of the relevance of RNNs for robot
learning and control to various lines of research in cognitive science,
connectionism, AI, and engineering of robot control systems. In particular it was
argued that RNN-controlled robots receive much attention due to their capacity
to form internal control structures and representations in interaction with an
environment. These issues were then illustrated and analyzed in quite some
detail, comparing four different first- and higher-order recurrent robot control
architectures in two experiments that required the controlled robot to exhibit
context-dependent behavior. The quantitative results showed that best
performance in both experiments was achieved by architecture E, the Extended
Sequential Cascaded Network (ESCN), a novel variation of Pollack’s SCN.
However, whether this architecture is actually better suited for robot control or
the results are really due to the details of the experimental setups or the
evolutionary training procedure (the latter was slightly different for the ESCN),
can only be determined by further extensive experimentation.
    Further analysis of the experiments showed that the way this type of RNN
constructs and utilizes internal structures for adaptive robot behavior closely
corresponds to what Peschl in his discussion of RNNs referred to as
“representation without representations”:

The internal structures do not map the environmental structures; they are
rather responsible for generating functionally fitting behavior which is
triggered and modulated by the environment and determined by the
internal structure (. . . of the synaptic weights). It is the result of adaptive
phylo- and ontogenetic processes which have changed the architecture
over generations and/or via learning in an individual organism in such a
way that its physical structure embodies the dynamics for maintaining a
state of equilibrium/homeostasis. [Peschl, 1996]

    Thus, RNNs in a sense offer a ‘middle way’ between (a) the explicit world
models of traditional AI, lacking grounding in and interaction with the world
they are supposed to represent, and (b) the world-dependence of purely reactive
systems, like ALVINN, which rely on the world to ‘puppeteer’ their behavior.
The internal structures and representations formed in RNNs, in the self-
organization of adaptive behavior in interaction between a robot and its
environment, are the result of a structural coupling between the two, which
ensures their structural congruence (see Maturana [1987], Varela [1991]). Thus,
they are the result of a constructive process (see Peschl [1996], Ziemke [1999],
Ziemke [2000]), and they reflect an agent’s subjective embedding in the world,



allowing it to attribute varying meaning to stimuli according to its own current
behavioral disposition.
    Apart from the investigation of higher-order RNNs for more complex robot
tasks, the author’s current work includes further investigations of (a) the practical
suitability of first- and higher-order RNNs for different tasks, in particular their
amenability to training through backpropagation and evolutionary algorithms,
and (b) cognitive and semiotic aspects of representation formation and sign usage
in RNN-controlled robots and their implications for the possibilities and
limitations of robot autonomy and subjectivity [Ziemke, 2000].  
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