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Preface

The IEEE ICDM 2004 workshop on the Foundation of Data Mining and
the IEEE ICDM 2005 workshop on the Foundation of Semantic Oriented
Data and Web Mining focused on topics ranging from the foundations of
data mining to new data mining paradigms. The workshops brought together
both data mining researchers and practitioners to discuss these two topics
while seeking solutions to long standing data mining problems and stimulat-
ing new data mining research directions. We feel that the papers presented at
these workshops may encourage the study of data mining as a scientific field
and spark new communications and collaborations between researchers and
practitioners.

To express the visions forged in the workshops to a wide range of data min-
ing researchers and practitioners and foster active participation in the study
of foundations of data mining, we edited this volume by involving extended
and updated versions of selected papers presented at those workshops as well
as some other relevant contributions. The content of this book includes stud-
ies of foundations of data mining from theoretical, practical, algorithmical,
and managerial perspectives. The following is a brief summary of the papers
contained in this book.

The first paper “Compact Representations of Sequential Classification
Rules,” by Elena Baralis, Silvia Chiusano, Riccardo Dutto, and Luigi
Mantellini, proposes two compact representations to encode the knowledge
available in a sequential classification rule set by extending the concept of
closed itemset and generator itemset to the context of sequential rules. The
first type of compact representation is called classification rule cover (CRC),
which is defined by the means of the concept of generator sequence and is
equivalent to the complete rule set for classification purpose. The second
type of compact representation, which is called compact classification rule set
(CCRS), contains compact rules characterized by a more complex structure
based on closed sequence and their associated generator sequences. The entire
set of frequent sequential classification rules can be re-generated from the
compact classification rules set.
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A new subspace clustering algorithm for high dimensional binary val-
ued dataset is proposed in the paper “An Algorithm for Mining Weighted
Dense Maximal 1-Complete Regions” by Haiyun Bian and Raj Bhatnagar.
To discover patterns in all subspace including sparse ones, a weighted den-
sity measure is used by the algorithm to adjust density thresholds for clusters
according to different density values of different subspaces. The proposed clus-
tering algorithm is able to find all patterns satisfying a minimum weighted
density threshold in all subspaces in a time and memory efficient way. Al-
though presented in the context of the subspace clustering problem, the al-
gorithm can be applied to other closed set mining problems such as frequent
closed itemsets and maximal biclique.

In the paper “Mining Linguistic Trends from Time Series” by Chun-Hao
Chen, Tzung-Pei Hong, and Vincent S. Tseng, a mining algorithm dedicated
to extract human understandable linguistic trend from time series is proposed.
This algorithm first transforms data series to an angular series based on an-
gles of adjacent points in the time series. Then predefined linguistic concepts
are used to fuzzify each angle value. Finally, the Aprori-like fuzzy mining
algorithm is used to extract linguistic trends.

In the paper “Latent Semantic Space for Web Clustering” by I-Jen Chiang,
T.Y. Lin, Hsiang-Chun Tsai, Jau-Min Wong, and Xiaohua Hu, latent semantic
space in the form of some geometric structure in combinatorial topology and
hypergraph view, has been proposed for unstructured document clustering.
Their clustering work is based on a novel view that term associations of a given
collection of documents form a simplicial complex, which can be decomposed
into connected components at various levels. An agglomerative method for
finding geometric maximal connected components for document clustering is
proposed. Experimental results show that the proposed method can effectively
solve polysemy and term dependency problems in the field of information
retrieval.

The paper “A Logical Framework for Template Creation and Information
Extraction” by David Corney, Emma Byrne, Bernard Buxton, and David
Jones proposes a theoretical framework for information extraction, which al-
lows different information extraction systems to be described, compared, and
developed. This framework develops a formal characterization of templates,
which are textual patterns used to identify information of interest, and pro-
poses approaches based on AI search algorithms to create and optimize tem-
plates in an automated way. Demonstration of a successful implementation of
the proposed framework and its application on biological information extrac-
tion are also presented as a proof of concepts.

Both probability theory and Zadeh fuzzy system have been proposed by
various researchers as foundations for data mining. The paper “A Probability
Theory Perspective on the Zadeh Fuzzy System” by Q.S. Gao, X.Y. Gao, and
L. Xu conducts a detailed analysis on these two theories to reveal their re-
lationship. The authors prove that the probability theory and Zadeh fuzzy
system perform equivalently in computer reasoning that does not involve
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complement operation. They also present a deep analysis on where the fuzzy
system works and fails. Finally, the paper points out that the controversy on
“complement” concept can be avoided by either following the additive prin-
ciple or renaming the complement set as the conjugate set.

In the paper “Three Approaches to Missing Attribute Values: A Rough
Set Perspective” by Jerzy W. Grzymala-Busse, three approaches to missing
attribute values are studied using rough set methodology, including attribute-
value blocks, characteristic sets, and characteristic relations. It is shown
that the entire data mining process, from computing characteristic relations
through rule induction, can be implemented based on attribute-value blocks.
Furthermore, attribute-value blocks can be combined with different strategies
to handle missing attribute values.

The paper “MLEM2 Rule Induction Algorithms: With and Without Merg-
ing Intervals” by Jerzy W. Grzymala-Busse compares the performance of three
versions of the learning from example module of a data mining system called
LERS (learning from examples based on rough sets) for rule induction from
numerical data. The experimental results show that the newly introduced ver-
sion, MLEM2 with merging intervals, produces the smallest total number of
conditions in rule sets.

To overcome several common pitfalls in a business intelligence project, the
paper “Towards a Methodology for Data Mining Project Development: the
Importance of Abstraction” by P. González-Aranda, E. Menasalves, S. Millán,
Carlos Ruiz, and J. Segovia proposes a data mining lifecycle as the basis for
proper data mining project management. Concentration is put on the project
conception phase of the lifecycle for determining a feasible project plan.

The paper “Finding Active Membership Functions in Fuzzy Data Mining”
by Tzung-Pei Hong, Chun-Hao Chen, Yu-Lung Wu, and Vincent S. Tseng
proposes a novel GA-based fuzzy data mining algorithm to dynamically de-
termine fuzzy membership functions for each item and extract linguistic as-
sociation rules from quantitative transaction data. The fitness of each set of
membership functions from an itemset is evaluated by both the fuzzy supports
of the linguistic terms in the large 1-itemsets and the suitability of the derived
membership functions, including overlap, coverage, and usage factors.

Improving the efficiency of mining frequent patterns from very large
datasets is an important research topic in data mining. The way in which
the dataset and intermediary results are represented and stored plays a cru-
cial role in both time and space efficiency. The paper “A Compressed Vertical
Binary Algorithm for Mining Frequent Patterns” by J. Hdez. Palancar, R.
Hdez. León, J. Medina Pagola, and A. Hechavarŕia proposes a compressed
vertical binary representation of the dataset and presents approach to mine
frequent patterns based on this representation. Experimental results show
that the compressed vertical binary approach outperforms Apriori, optimized
Apriori, and Mafia on several typical test datasets.

Causal reasoning plays a significant role in decision-making, both formally
and informally. However, in many cases, knowledge of at least some causal
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effects is inherently inexact and imprecise. The chapter “Näıve Rules Do Not
Consider Underlying Causality” by Lawrence J. Mazlack argues that it is
important to understand when association rules have causal foundations in
order to avoid näıve decisions and increases the perceived utility of rules with
causal underpinnings. In his second chapter “Inexact Multiple-Grained Causal
Complexes”, the author further suggests using nested granularity to describe
causal complexes and applying rough sets and/or fuzzy sets to soften the
need for preciseness. Various aspects of causality are discussed in these two
chapters.

Seeing the needs for more fruitful exchanges between data mining practice
and data mining research, the paper “Does Relevance Matter to Data Min-
ing Research” by Mykola Pechenizkiy, Seppo Puuronen, and Alexcy Tsymbal
addresses the balance issue between the rigor and relevance constituents of
data mining research. The authors suggest the study of the foundation of data
mining within a new proposed research framework that is similar to the ones
applied in the IS discipline, which emphasizes the knowledge transfer from
practice to research.

The ability to discover actionable knowledge is a significant topic in the
field of data mining. The paper “E-Action Rules” by Li-Shiang Tsay and
Zbigniew W. Ras proposes a new class of rules called “E-action rules” to
enhance the traditional action rules by introducing its supporting class of
objects in a more accurate way. Compared with traditional action rules or
extended action rules, e-action rule is easier to interpret, understand, and
apply by users. In their second paper “Mining e-Action Rules, System DEAR,”
a new algorithm for generating e-action rules, called Action-tree algorithm
is presented in detail. The action tree algorithm, which is implemented in
the system DEAR2.2, is simpler and more efficient than the action-forest
algorithm presented in the previous paper.

In his first paper “Definability of Association Rules and Tables of Critical
Frequencies,” Jan Ranch presents a new intuitive criterion of definability of
association rules based on tables of critical frequencies, which are introduced
as a tool for avoiding complex computation related to the association rules
corresponding to statistical hypotheses tests. In his second paper “Classes
of Association Rules: An Overview,” the author provides an overview of im-
portant classes of association rules and their properties, including logical as-
pects of calculi of association rules, evaluation of association rules in data
with missing information, and association rules corresponding to statistical
hypotheses tests.

In the paper “Knowledge Extraction from Microarray Datasets Using
Combined Multiple Models to Predict Leukemia Types” by Gregor Stiglic,
Nawaz Khan, and Peter Kokol, a new algorithm for feature extraction and
classification on microarray datasets with the combination of the high accu-
racy of ensemble-based algorithms and the comprehensibility of a single de-
cision tree is proposed. Experimental results show that this algorithm is able
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to extract rules by describing gene expression differences among significantly
expressed genes in leukemia.

In the paper “Using Association Rules for Classification from Databases
Having Class Label Ambiguities: A Belief Theoretic Method” by S.P. Sub-
asinghua, J. Zhang, K. Premaratae, M.L. Shyu, M. Kubat, and K.K.R.G.K.
Hewawasam, a classification algorithm that combines belief theoretic tech-
nique and portioned association mining strategy is proposed, to address both
the presence of class label ambiguities and unbalanced distribution of classes
in the training data. Experimental results show that the proposed approach
obtains better accuracy and efficiency when the above situations exist in the
training data. The proposed classifier would be very useful in security moni-
toring and threat classification environments where conflicting expert opinions
about the threat category are common and only a few training data instances
available for a heightened threat category.

Privacy preserving data mining has received ever-increasing attention dur-
ing the recent years. The paper “On the Complexity of the Privacy Problem”
explores the foundations of the privacy problem in databases. With the ulti-
mate goal to obtain a complete characterization of the privacy problem, this
paper develops a theory of the privacy problem based on recursive functions
and computability theory.

In the paper “Ensembles of Least Squares Classifiers with Randomized
Kernels,” the authors, Kari Torkkola and Eugene Tuv, demonstrate that sto-
chastic ensembles of simple least square classifiers with randomized kernel
widths and OOB-past-processing achieved at least the same accuracy as the
best single RLSC or an ensemble of LSCs with fixed tuned kernel width, but
require no parameter tuning. The proposed approach to create ensembles uti-
lizes fast exploratory random forests for variable filtering as a preprocessing
step; therefore, it can process various types of data even with missing values.

Shusahu Tsumoto contributes two papers that study contigency table from
the perspective of information granularity. In the first paper “On Pseudo-
statistical Independence in a Contingency Table,” Shusuhu shows that a con-
tingency table may be composed of statistical independent and dependent
parts and its rank and the structure of linear dependence as Diophatine equa-
tions play very important roles in determining the nature of the table. The
second paper “Role of Sample Size and Determinants in Granularity of Con-
tingency Matrix” examines the nature of the dependence of a contingency
matrix and the statistical nature of the determinant. The author shows that
as the sample size N of a contingency table increases, the number of 2 × 2
matrix with statistical dependence will increase with the order of N3, and the
average of absolute value of the determinant will increase with the order ofN2.

The paper “Generating Concept Hierarchy from User Queries” by Bob
Wall, Neal Richter, and Rafal Angryk develops a mechanism that builds con-
cept hierarchy from phrases used in historical queries to facilitate users’ nav-
igation of the repository. First, a feature vector of each selected query is
generated by extracting phrases from the repository documents matching the
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query. Then the Hierarchical Agglomarative Clustering algorithm and subse-
quent portioning and feature selection and reduction processes are applied to
generate a natural representation of the hierarchy of concepts inherent in the
system. Although the proposed mechanism is applied to an FAQ system as
proof of concept, it can be easily extended to any IR system.

Classification Association Rule Mining (CARM) is the technique that uti-
lizes association mining to derive classification rules. A typical problem with
CARM is the overwhelming number of classification association rules that may
be generated. The paper “Mining Efficiently Significant Classification Asso-
ciate Rules” by Yanbo J. Wang, Qin Xin, and Frans Coenen addresses the
issues of how to efficiently identify significant classification association rules
for each predefined class. Both theoretical and experimental results show that
the proposed rule mining approach, which is based on a novel rule scoring and
ranking strategy, is able to identify significant classification association rules
in a time efficient manner.

Data mining is widely accepted as a process of information generalization.
Nevertheless, the questions like what in fact is a generalization and how one
kind of generalization differs from another remain open. In the paper “Data
Preprocessing and Data Mining as Generalization” by Anita Wasilewska and
Ernestina Menasalvas, an abstract generalization framework in which data
preprocessing and data mining proper stages are formalized as two specific
types of generalization is proposed. By using this framework, the authors show
that only three data mining operators are needed to express all data mining
algorithms; and the generalization that occurs in the preprocessing stage is
different from the generalization inherent to the data mining proper stage.

Unbounded, ever-evolving and high-dimensional data streams, which are
generated by various sources such as scientific experiments, real-time produc-
tion systems, e-transactions, sensor networks, and online equipments, add fur-
ther layers of complexity to the already challenging “drown in data, starving
for knowledge” problem. To tackle this challenge, the paper “Capturing Con-
cepts and Detecting Concept-Drift from Potential Unbounded, Ever-Evolving
and High-Dimensional Data Streams” by Ying Xie, Ajay Ravichandran,
Hisham Haddad, and Katukuri Jayasimha proposes a novel integrated archi-
tecture that encapsulates a suit of interrelated data structures and algorithms
which support (1) real-time capturing and compressing dynamics of stream
data into space-efficient synopses and (2) online mining and visualizing both
dynamics and historical snapshots of multiple types of patterns from stored
synopses. The proposed work lays a foundation for building a data stream
warehousing system as a comprehensive platform for discovering and retriev-
ing knowledge from ever-evolving data streams.

In the paper “A Conceptual Framework of Data Mining,” the authors,
Yiyu Yao, Ning Zhong, and Yan Zhao emphasize the need for studying the
nature of data mining as a scientific field. Based on Chen’s three-dimension
view, a threelayered conceptual framework of data mining, consisting of the
philosophy layer, the technique layer, and the application layer, is discussed
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in their paper. The layered framework focuses on the data mining questions
and issues at different abstract levels with the aim of understanding data
mining as a field of study, instead of a collection of theories, algorithms, and
software tools.

The papers “How to Prevent Private Data from Being Disclosed to a
Malicious Attacker” and “Privacy-Preserving Naive Bayesian Classification
over Horizontally Partitioned Data” by Justin Zhan, LiWu Chang, and Stan
Matwin, address the issue of privacy preserved collaborative data mining. In
these two papers, secure collaborative protocols based on the semantically se-
cure homomorphic encryption scheme are developed for both learning Support
Vector Machines and Nave Bayesian Classifier on horizontally partitioned pri-
vate data. Analyses of both correctness and complexity of these two protocols
are also given in these papers.

We thank all the contributors for their excellent work. We are also grateful
to all the referees for their efforts in reviewing the papers and providing valu-
able comments and suggestions to the authors. It is our desire that this book
will benefit both researchers and practitioners in the filed of data mining.

Tsau Young Lin
Ying Xie

Anita Wasilewska
Churn-Jung Liau
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Näıve Rules Do Not Consider Underlying Causality
Lawrence J. Mazlack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Inexact Multiple-Grained Causal Complexes
Lawrence J. Mazlack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Does Relevance Matter to Data Mining Research?
Mykola Pechenizkiy, Seppo Puuronen, and Alexey Tsymbal . . . . . . . . . . . . 251

E-Action Rules
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Summary. In this chapter we address the problem of mining sequential classifica-
tion rules. Unfortunately, while high support thresholds may yield an excessively
small rule set, the solution set becomes rapidly huge for decreasing support thresh-
olds. In this case, the extraction process becomes time consuming (or is unfeasible),
and the generated model is too complex for human analysis.

We propose two compact forms to encode the knowledge available in a sequential
classification rule set. These forms are based on the abstractions of general rule,
specialistic rule, and complete compact rule. The compact forms are obtained by
extending the concept of closed itemset and generator itemset to the context of
sequential rules. Experimental results show that a significant compression ratio is
achieved by means of both proposed forms.

1 Introduction

Association rules [3] describe the co-occurrence among data items in a large
amount of collected data. They have been profitably exploited for classification
purposes [8, 11, 19]. In this case, rules are called classification rules and their
consequent contains the class label. Classification rule mining is the discovery
of a rule set in the training dataset to form a model of data, also called
classifier. The classifier is then used to classify new data for which the class
label is unknown.

Data items in an association rule are unordered. However, in many ap-
plication domains (e.g., web log mining, DNA and proteome analysis) the
order among items is an important feature. Sequential patterns have been
first introduced in [4] as a sequential generalization of the itemset concept. In
[20,24,27,35] efficient algorithms to extract sequences from sequential datasets
are proposed. When sequences are labeled by a class label, classes can be mod-
eled by means of sequential classification rules. These rules are implications
where the antecedent is a sequence and the consequent is a class label [17].

E. Baralis et al.: Compact Representations of Sequential Classification Rules, Studies in

Computational Intelligence (SCI) 118, 1–30 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



2 E. Baralis et al.

In large or highly correlated datasets, rule extraction algorithms have to
deal with the combinatorial explosion of the solution space. To cope with this
problem, pruning of the generated rule set based on some quality indexes (e.g.,
confidence, support, and χ2) is usually performed. In this way rules which are
redundant from a functional point of view [11, 19] are discarded. A different
approach consists in generating equivalent representations [7] that are more
compact, without information loss.

In this chapter we propose two compact forms to represent sets of sequen-
tial classification rules. The first compact form is based on the concept of
generator sequence, which is an extension to sequential patterns of the con-
cept of generator itemset [23]. Based on generator sequences, we define general
sequential rules. The collection of all general sequential rules extracted from a
dataset represents a sequential classification rule cover. A rule cover encodes
all useful classification information in a sequential rule set (i.e., is equivalent
to it for classification purposes). However, it does not allow the regeneration
of the complete rule set.

The second proposed compact form exploits jointly the concepts of closed
sequence and generator sequence. While the notion of generator sequence, to
our knowledge, is new, closed sequences have been introduced in [29,31]. Based
on closed sequences, we define closed sequential rules. A closed sequential rule
is the most specialistic (i.e., characterized by the longest sequence) rule into
a set of equivalent rules. To allow regeneration of the complete rule set, in the
compact form each closed sequential rule is associated to the complete set of
its generator sequences.

To characterize our compact representations, we first define a general
framework for sequential rule mining under different types of constraints. Con-
strained sequence mining addresses the extraction of sequences which satisfy
some user defined-constraints. Example of constraints are minimum or maxi-
mum gap between events [5,17,18,21,25], sequence length or regular expression
constraints over a sequence [16, 25]. We characterize the two compact forms
within this general framework.

We then define a specialization of the proposed framework which addresses
the maximum gap constraint between consecutive events in a sequence. This
constraint is particularly interesting in domains where there is high correlation
between neighboring elements, but correlation rapidly decreases with distance.
Examples are the biological application domain (e.g., the analysis of DNA
sequences), text analysis, web mining. In this context, we present an algorithm
for mining our compact representations.

The chapter is organized as follows. Section 2 introduces the basic con-
cepts and notation for the sequential rule mining task, while Sect. 3 presents
our framework for sequential rule mining. Sections 4 and 5 describe the com-
pact forms for sequences and for sequential rules, respectively. In Sect. 6 the
algorithm for mining our compact representations is presented, while Sect. 7
reports experimental result on the compression effectiveness of the proposed
techniques. Section 8 discusses previous related work. Finally, Sect. 9 draws
some conclusions and outlines future work.
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2 Definitions and Notation

Let I be a set of items. A sequence S on I is an ordered list of events, denoted
S = (e1, e2, . . . , en), where each event ei ∈ S is an item in I. In a sequence,
each item can appear multiple times, in different events. The overall number
of items in S is the length of S, denoted |S|. A sequence of length n is called
n-sequence.

A dataset D for sequence mining consists of a set of input-sequences. Each
input-sequence in D is characterized by a unique identifier, named Sequence
Identifier (SID). Each event within an input-sequence SID is characterized
by its position within the sequence. This position, named event identifier (eid),
is the number of events which precede the event itself in the input-sequence.

Our definition of input-sequence is a restriction of the definition proposed
in [4, 35]. In [4, 35] each event in an input-sequence contains more items and
the eid identifier associated to the event corresponds to a temporal timestamp.
Our definition considers instead domains where each event is a single symbol
and is characterized by its position within the input-sequence. Applicative
examples are the biological domain for proteome or DNA analysis, or the
text mining domain. In these contexts each event corresponds to either an
aminoacid or a single word.

When dataset D is used for classification purposes, each input-sequence
is labeled by a class label c. Hence, dataset D is a set of tuples (SID, S, c),
where S is an input-sequence identified by the SID value and c is a class
label belonging to the set C of class labels in D. Table 1 reports a very simple
sequence dataset, used as a running example in this chapter.

The notion of containment between two sequences is a key concept to
characterize the sequential classification rule framework. In this section we
introduce the general notion of sequence containment. In the next section, we
explore the concept of containment between two sequences and we formalize
the concept of sequence containment with constraints.

Given two arbitrary sequences X and Y , sequence Y “contains” X when it
includes the events in X in the same order in which they appear in X [5,35].
Hence, sequence X is a subsequence of sequence Y . For example for sequence
Y = ADCBA, some possible subsequences are ADB, DBA, and CA.

An arbitrary sequence X is a sequence in dataset D when at least one
input-sequence in D “contains” X (i.e., X is the subsequence of some input-
sequences in D).

Table 1. Example sequence dataset D
SID Sequence Class

1 ADCA c1

2 ADCBA c2

3 ABE c1
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A sequential rule [4] in D is an implication in the form X → Y , where X
and Y are sequences in D (i.e., both are subsequences of some input-sequences
in D). X and Y are respectively the antecedent and the consequent of the rule.
Classification rules (i.e., rules in a classification model) are characterized by a
consequent containing a class label. Hence, we define sequential classification
rules as follows.

Definition 1 (Sequential Classification Rule). A sequential classification
rule r : X → c is a rule for D when there is at least one input-sequence S in
D such that (i) X is a subsequence of S, (ii) and S is labeled by class label c.

Differently from general sequential rules, the consequent of a sequential
classification rule belongs to set C, which is disjoint from I. We say that a
rule r : X → c covers (or classifies) a data object d if d “contains” X. In this
case, r classifies d by assigning to it class label c.

3 Sequential Classification Rule Mining

In this section, we characterize our framework for sequential classification rule
mining. Sequence containment is a key concept in our framework. It plays a
fundamental role both in the rule extraction phase and in the classification
phase. Containment can be defined between:

• Two arbitrary sequences. This containment relationship allows us to de-
fine generalization relationships between sequential classification rules. It
is exploited to define the concepts of closed and generator sequence. These
concepts are then used to define two concise representations of a classifi-
cation rule set.

• A sequence and an input-sequence. This containment relationship allows
us to define the concept of support for both a sequence and a sequential
classification rule.

Various types of constraints, discussed later in the section, can be enforced
to restrict the general notion of containment. In our framework, sequence
mining is constrained by two sets of functions (Ψ,Φ). Set Ψ describes contain-
ment between two arbitrary sequences. Set Φ describes containment between
a sequence and an input-sequence, and allows the computation of sequence
(and rule) support. Sets Ψ and Φ are characterized in Sects. 3.1 and 3.2, re-
spectively. The concise representations for sequential classification rules we
propose in this work require pair (Ψ,Φ) to satisfy some properties, which are
discussed in Sect. 3.3. Our definitions are a generalization of previous defini-
tions [5, 17], which can be seen as particular instances of our framework. In
Sect. 3.4 we discuss some specializations of our (Ψ,Φ)-constrained framework
for sequential classification rule mining.
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3.1 Sequence Containment

A sequence X is a subsequence of a sequence Y when Y contains the events
in X in the same order in which they appear in X [5, 35].

Sequence containment can be ruled by introducing constraints. Constraints
define how to select events in Y that match events in X. For example, in [5]
the concept of contiguity constraint was introduced. In this case, events in
sequence Y should match events in sequence X without any other inter-
leaved event. Hence, X is a contiguous subsequence of Y . In the example
sequence Y = ADCBA, some possible contiguous subsequence are ADC,
DCB, and BA.

Before formally introducing constraints, we define the concept of matching
function between two arbitrary sequences. The matching function defines how
to select events in Y that match events in X.

Definition 2 (Matching Function). Let X = (x1, . . . , xm) and Y =
(y1, . . . , yl) be two arbitrary sequences, with arbitrary length l and m ≤ l.
A function ψ : {1, . . . ,m} −→ {1, . . . , l} is a matching function between X
and Y if ψ is strictly monotonically increasing and ∀j ∈ {1, . . . ,m} it is
xj = yψ(j).

The definition of constrained subsequence is based on the concept of
matching function. Consider for example sequences Y = ADCBA, X =
DCB, and Z = BA. Sequence X matches Y with respect to function
ψ(j) = 1 + j (with 1 ≤ j ≤ 3), and sequence Z matches Y according to func-
tion ψ(j) = 3 + j (with 1 ≤ j ≤ 2). Hence, sequences X and Z match Y with
respect to the class of possible matching functions in the form ψ(j) = offset+j.

Definition 3 (Constrained Subsequence). Let Ψ be a set of matching
functions between two arbitrary sequences. Let X = (x1, . . . , xm) and Y =
(y1, . . . , yl) be two arbitrary sequences, with arbitrary length l and m ≤ l. X
is a constrained subsequence of Y with respect to Ψ , written as X �Ψ Y , if
there is a function ψ ∈ Ψ such that X matches Y according to ψ.

Definition 3 yields two particular cases of sequence containment based on
the length of sequences X and Y . When X is shorter than Y (i.e., m < l),
then X is a strict constrained subsequence of Y , written as X �Ψ Y . Instead,
when X and Y have the same length (i.e., m = l), the subsequence relation
corresponds to the identity relation between X and Y .

Definition 3 can support several different types of constraints on subse-
quence matching. Both unconstrained matching and contiguous subsequence
are particular instances of Definition 3. In particular, in the case of contiguous
subsequence, set Ψ includes the complete set of matching function in the form
ψ(j) = offset + j. When set Ψ is the universe of all the possible matching
functions, sequence X is an unconstrained subsequence (or simply a subse-
quence) of sequence Y , denoted as X � Y . This case corresponds to the usual
definition of subsequence [5, 35].
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3.2 Sequence Support

The concept of support is bound to dataset D. In particular, for a sequence
X the support in a dataset D is the number of input-sequences in D which
contain X [4]. Hence, we need to define when an input-sequence contains a
sequence. Analogously to the concept of sequence containment introduced
in Definition 3, an input-sequence S contains a sequence X when the events
in X match the events in S based on a given matching function. However,
in an input-sequence S events are characterized by their position within S.
This information can be exploited to constrain the occurrence of an arbitrary
sequence X in the input-sequence S.

Commonly considered constraints are maximum and minimum gap con-
straints and windows constraints [17, 25]. Maximum and minimum gap con-
straints specify the maximum and minimum number of events in S which
may occur between two consecutive events in X. The window constraint spec-
ifies the maximum number of events in S which may occur between the first
and last event in X. For example sequence ADA occurs in the input-sequence
S = ADCBA, and satisfies a minimum gap constraint equal to 1, a maximum
gap constraint equal to 3 and a window constraint equal to 4.

In the following we formalize the concept of gap constrained occurrence
of a sequence into an input-sequence. Similarly to Definition 3, we introduce
a set of possible matching function to check when an input-sequence S in D
contains an arbitrary sequenceX. With respect to Definition 3, these matching
functions may incorporate gap constraints. Formally, a gap constraint on a
sequenceX and an input-sequence S can be formalized asGap θ K, whereGap
is the number of events in S between either two consecutive elements ofX (i.e.,
maximum and minimum gap constraints), or the first and last elements of X
(i.e., window constraint), θ is a relational operator (i.e., θ ∈ {>,≥,=,≤, <}),
and K is the maximum/minimum acceptable gap.

Definition 4 (Gap Constrained Subsequence). Let X = (x1, . . . , xm) be
an arbitrary sequence and S = (s1, . . . , sl) an arbitrary input-sequence in D,
with arbitrary length m ≤ l. Let Φ be a set of matching functions between two
arbitrary sequences, and Gap θ K be a gap constraint. Sequence X occurs in
S under the constraint Gap θ K, written as X �Φ S, if there is a function
ϕ ∈ Φ such that (a) X �Φ S and (b) depending on the constraint type, ϕ
satisfies one of the following conditions

• ∀j ∈ {1, . . . ,m− 1}, (ϕ(j + 1) − ϕ(j)) ≤ K, for maximum gap constraint
• ∀j ∈ {1, . . . ,m− 1}, (ϕ(j + 1) − ϕ(j)) ≥ K, for minimum gap constraint
• (ϕ(m) − ϕ(1)) ≤ K, for window constraint

When no gap constraint is enforced, the definition above corresponds to
Definition 3. When consecutive events in X are adjacent in input-sequence S,
then X is a string sequence in S [32]. This case is given when the maximum
gap constraint is enforced with maximum gapK = 1. Finally, when set Φ is the
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universe of all possible matching functions, relation X �Φ S can be formalized
as (a) X � S and (b) X satisfies Gap θ K in S. This case corresponds to
the usual definition of gap constrained sequence as introduced for example
in [17,25].

Based on the notion of containment between a sequence and an input-
sequence, we can now formalize the definition of support of a sequence. In par-
ticular, supΦ(X) = |{(SID, S, c) ∈ D | X �Φ S}|. A sequence X is frequent
with respect to a given support threshold minsup when supΦ(X) ≥ minsup.

The quality of a (sequential) classification rule r : X → ci may be mea-
sured by means of two quality indexes [19], rule support and rule confi-
dence. These indexes estimate the accuracy of r in predicting the correct
class for a data object d. Rule support is the number of input-sequences
in D which contain X and are labeled by class label ci. Hence, supΦ(r) =
|{(SID, S, c) ∈ D | X �Φ S ∧ c = ci}|. Rule confidence is given by
the ratio conf Φ(r) = supΦ(r)/supΦ(X). A sequential rule r is frequent if
supΦ(r) ≥ minsup.

3.3 Framework Properties

The concise representations for sequential classification rules we propose in
this work require the pair (Ψ,Φ) to satisfy the following two properties.

Property 1 (Transitivity). Let (Ψ,Φ) define a constrained framework for
mining sequential classification rules. Let X, Y , and Z be arbitrary sequences
in D. If X �Ψ Y and Y �Ψ Z, then it follows that X �Ψ Z, i.e., the
subsequence relation defined by Ψ satisfies the transitive property.

Property 2 (Containment). Let (Ψ,Φ) define a constrained framework for
mining sequential classification rules. Let X,Y be two arbitrary sequences
in D. If X �Ψ Y , then it follows that {(SID, S, c) ∈ D | X �Φ S} ⊇
{(SID, S, c) ∈ D | Y �Φ S}.

Property 2 states the anti-monotone property of support both for se-
quences and classification rules. In particular, for an arbitrary class label c
it is supΦ(X → c) ≥ supΦ(Y → c).

Albeit in a different form, several specializations of the above framework
have already been proposed previously [5, 17, 25]. In the remainder of the
chapter, we assume a framework for sequential classification rule mining where
Properties 1 and 2 hold.

The concepts proposed in the following sections rely on both properties of
our framework. In particular, the concepts of closed and generator itemsets
in the sequence domain are based on Property 2. These concepts are then ex-
ploited in Sect. 5 to define two concise forms for a sequential rule set. By means
of Property 1 we define the equivalence between two classification rules. We
exploit this property to define a compact form which allows the classification of
unlabeled data without information loss with respect to the complete rule set.
Both properties are exploited in the extraction algorithm described in Sect. 6.
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3.4 Specializations of the Sequential Classification Framework

In the following we discuss some specializations of our (Ψ,Φ)-constrained
framework for sequential classification rule mining. They correspond to partic-
ular cases of constrained framework for sequence mining proposed in previous
works [5, 17, 25]. Each specialization is obtained from particular instances of
function sets Ψ and Φ.

Containment between two arbitrary sequences is commonly defined by
means of either the unconstrained subsequence relation or the contiguous
subsequence relation. In the former, set Ψ is the complete set of all possible
matching functions. In the latter, set Ψ includes all matching functions in the
form ψ(j) = offset+j. It can be easily seen that both notions of sequence
containment satisfy Property 1.

Commonly considered constraints to define the containment between an
input-sequence S and a sequence X are maximum and minimum gap con-
straints and window constraint. The gap constrained occurrence of X within
S is usually formalized as X � S and X satisfies the gap constraint in S.
Hence, in relation X �Φ S, set Φ is the universe of all possible matching
functions and X satisfies Gap θ K in S.

• Window constraint. Between the first and last events in X the gap is
lower than (or equal to) a given window-size. It can be easily seen that an
arbitrary subsequence of X is contained in S within the same window-size.
Thus, Property 2 is verified. In particular, Property 2 is verified both for
unconstrained and contiguous subsequence relations.

• Minimum gap constraint. Between two consecutive events in X the gap is
greater than (or equal to) a given size. It directly follows that any pair of
non-consecutive events inX also satisfy the constraint. Hence, an arbitrary
subsequence of X is contained in S within the minimum gap constraint.
Thus, Property 2 is verified. In particular, Property 2 is verified both for
unconstrained and contiguous subsequence relations.

• Maximum gap constraint. Between two consecutive events in X the gap is
lower than (or equal to) a given gap-size. Differently from the two cases
above, for an arbitrary pair of non-consecutive events in X the constraint
may not hold. Hence, not all subsequences of X are contained in input-
sequence S. Instead, Property 2 is verified when considering contiguous
subsequences of X.

The above instances of our framework find application in different con-
texts. In the biological application domains, some works address finding DNA
sequences where two consecutive DNA symbols are separated by gaps of more
or less than a given size [36]. In the web mining area, approaches have been
proposed to predict the next web page requested by the user. These works
analyze web logs to find sequences of visited URLs where consecutive URLs
are separated by gaps of less than a given size or are adjacent in the web log
(i.e., maxgap = 1) [32]. In the context of text mining, gap constraints can be
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used to analyze word sequences which occur within a given window size, or
where the gap between two consecutive words is less than a certain size [6].

The concise forms presented in this chapter can be defined for any frame-
work specialization satisfying Properties 1 and 2. Among the different gap
constraints, the maximum gap constraint is particularly interesting, since it
finds applications in different contexts. For this reason, in Sect. 6 we address
this particular case, for which we present an algorithm to extract the proposed
concise representations.

4 Compact Sequence Representations

To tackle with the generation of a large number of association rules, several al-
ternative forms have been proposed for the compact representation of frequent
itemsets. These forms include maximal itemsets [10], closed itemsets [23, 34],
free sets [12], disjunction-free generators [13], and deduction rules [14]. Re-
cently, in [29] the concept of closed itemset has been extended to represent
frequent sequences.

Within the framework presented in Sect. 3, we define the concept of con-
strained closed sequence and constrained generator sequence. Properties of
closed and generator itemsets in the itemset domain are based on the anti-
monotone property of support, which is preserved in our framework by Prop-
erty 2. The definition of closed sequence was previously proposed in the case
of unconstrained matching in [29]. This definition corresponds to a special
case of our constrained closed sequence. To completely characterize closed se-
quences, we also propose the concept of generator itemset [9,23] in the domain
of sequences.

Definition 5 (Closed Sequence). An arbitrary sequence X in D is a closed
sequence iff there is not a sequence Y in D such that (i) X �ψ Y and (ii)
supΦ(X) = supΦ(Y ).

Intuitively, a closed sequence is the maximal subsequence common to a set
of input-sequences in D. A closed sequence X is a concise representation of all
sequences Y that are subsequences of it, and have its same support. Hence,
an arbitrary sequence Y is represented in a closed sequence X when Y is a
subsequence of X and X and Y have equal support.

Similarly to the frequent itemset context, we can define the concept of
closure in the domain of sequences. A closed sequence X which represents a
sequence Y is the sequential closure of Y and provides a concise representa-
tion of Y .

Definition 6 (Sequential Closure). Let X, Y be two arbitrary sequences
in D, such that X is a closed sequence. X is a sequential closure of Y iff (i)
Y �Ψ X and (ii) supΦ(X) = supΦ(Y ).
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The next definition extends the concept of generator itemset to the do-
main of sequences. Different sequences can have the same sequential closure,
i.e., they are represented in the same closed sequence. Among the sequences
with the same sequential closure, the shortest sequences are called generator
sequences.

Definition 7 (Generator Sequence). An arbitrary sequence X in D is a
generator sequence iff there is not a sequence Y in D such that (i) Y �Ψ X
and (ii)supΦ(X) = supΦ(Y ).

Special cases of the above definitions are the contiguous closed sequence
and the contiguous generator sequence, where the matching functions in set Ψ
define a contiguous subsequence relation. Instead, we have an unconstrained
closed sequence and an unconstrained generator sequence when Ψ defines an
unconstrained subsequence relation.

Knowledge about generators associated to a closed sequence X allow
generating all sequences having X as sequential closure. For example, let
closed sequence X be associated to a generator sequence Z. Consider an
arbitrary sequence Y with Z �Ψ Y and Y �Ψ X. Then, X is the sequen-
tial closure of Y . From Property 2, it follows that supΦ(Z) ≥ supΦ(Y ) and
supΦ(Y ) ≥ supΦ(X). Being X the sequential closure of Z, Z and X have
equal support. Hence, Y has the same support as X. It follows that sequence
X is the sequential closure of Y according to Definition 6.

In the example dataset, ADBA is a contiguous closed sequence with sup-
port 33.33% under the maximum gap constraint 2. ADBA represents con-
tiguous sequences BA, DB, DBA, ADB, ADBA which satisfy the same gap
constraint. BA and DB are contiguous generator sequence for ADBA.

In the context of association rules, an arbitrary itemset has a unique clo-
sure. The property of uniqueness is lost in the sequential pattern domain.
Hence, for an arbitrary sequence X the sequential closure can include sev-
eral closed sequences. We call this set the closure sequence set of X, denoted
CS(X). According to Definition 6, the sequential closure for a sequence X is
defined based on the pair of matching functions (Ψ,Φ). Being a collection of
sequential closures, the closure sequence set of X is defined with respect to
the same pair (Ψ,Φ).

Property 3. Let X be an arbitrary sequence in D and CS(X) the set of
sequences in D which are the sequential closure of X. The following properties
are verified. (i) If X is a closed sequence, then CS(X) includes only sequence
X. (ii) Otherwise, CS(X) may include more than one sequence.

In Property 3, case (i) trivially follows from Definition 5. We prove case (ii)
by means of an example. Consider the contiguous closed sequences ADCA and
ACA, which satisfy maximum gap 2 in the example dataset. The generator
sequence C is associated to both closed sequences. Instead, D is a generator
only for ADCA. From Property 3 it follows that a generator sequence can
generate different closed sequences.
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5 Compact Representations of Sequential
Classification Rules

We propose two compact representations to encode the knowledge available
in a sequential classification rule set. These representations are based on the
concepts of closed and generator sequence. One concise form is a lossless rep-
resentation of the complete rule set and allows regenerating all encoded rules.
This form is based on the concepts of both closed and generator sequences.
Instead, the other representation captures the most general information in
the rule set. This form is based on the concept of generator sequence and it
does not allow the regeneration of the original rule set. Both representations
provide a smaller and more easily understandable class model than traditional
sequential rule representations.

In Sect. 5.1, we introduce the concepts of general and specialistic classi-
fication rule. These rules characterize the more general (shorter) and more
specific (longer) classification rules in a given classification rule set. We then
exploit the concepts of general and specialistic rule to define the two compact
forms, which are presented in Sects. 5.2 and 5.3, respectively.

5.1 General and Specialistic Rules

In associative classification [11,19,30], a shorter rule (i.e., a rule with less ele-
ments in the antecedent) is often preferred to longer rules with same confidence
and support with the intent of both avoiding the risk of overfitting, and re-
ducing the size of the classifier. However, in some applications (e.g., modeling
surfing paths in web log analysis [32]), longer sequences may be more accurate
since they contain more detailed information. In these cases, longest-matching
rules may be preferable to shorter ones. To characterize both kinds of rules,
we propose the definition of specialization of a sequential classification rule.

Definition 8 (Classification Rule Specialization). Let ri : X → ci and
rj : Y → cj be two arbitrary sequential classification rules for D. rj is a
specialization of ri iff (i) X �Ψ Y , (ii) ci = cj, (iii) supΦ(X) = supΦ(Y ),
and (iv) supΦ(ri) = supΦ(rj).

From Definition 8, a classification rule rj is a specialization of a rule ri if ri
is more general than rj , i.e., ri has fewer conditions than rj in the antecedent.
Both rules assign the same class label and have equal support and confidence.

The next lemma states that any new data object covered by rj is also
covered by ri. The lemma trivially follows from Property 1, the transitive
property of the set of matching functions Ψ .

Lemma 1. Let ri and rj be two arbitrary sequential classification rules for
D, and d an arbitrary data object covered by rj. If rj is a specialization of ri,
then ri covers d.
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With respect to the definition of specialistic rule proposed in [11, 19, 30],
our definition is more restrictive. In particular, both rules are required to have
the same confidence, support and class label, similarly to [7] in the context of
associative classification.

Based on Definition 8, we now introduce the concept of general rule. This
is the rule with the shortest antecedent, among all rules having same class
label, support and confidence.

Definition 9 (General Rule). Let R be the set of frequent sequential clas-
sification rules for D, and ri ∈ R an arbitrary rule. ri is a general rule in R
iff �rj ∈ R, such that ri is a specialization of rj.

In the example dataset, BA→ c2 is a contiguous general rule with respect
to the rules DBA → c2 and ADBA → c2. The next lemma formalizes the
concept of general rule by means of the concept of generator sequence.

Lemma 2 (General Rule). Let R be the set of frequent sequential classifi-
cation rules for D, and r ∈ R, r : X → c, an arbitrary rule. r is a general
rule in R iff X is a generator sequence in D.

Proof. We first prove the sufficient condition. Let ri : X → c be an arbitrary
rule in R, where X is a generator sequence. By Definition 7, if X is a generator
sequence then ∀rj : Y → c in R with Y �Ψ X it is supΦ(Y ) > supΦ(X). Thus,
ri is a general rule according to Definition 9. We now prove the necessary
condition. Let ri : X → c be an arbitrary general rule in R. For the sake of
contradiction, let X not be a generator sequence. It follows that ∃rj : Y →
c in R, with Y �Ψ X and supΦ(X) = supΦ(Y ). Hence, from Property 2,
{(SID, S, c) ∈ D | Y �Φ S} = {(SID, S, c) ∈ D | X �Φ S}, and thus
supΦ(ri) = supΦ(rj). It follows that ri is not a general rule according to
Definition 9, a contradiction. ��

By applying iteratively Definition 8 in set R, we can identify some par-
ticular rules which are not specializations of any other rules in R. These are
the rules with the longest antecedent, among all rules having same class label,
support and confidence. We name these rules specialistic rules.

Definition 10 (Specialistic Rule). Let R be an arbitrary set of frequent
sequential classification rules for D, and ri ∈ R an arbitrary rule. ri is a
specialistic rule in R iff �rj ∈ R such that rj is a specialization of ri.

For example, B → c2 is a contiguous specialistic rule in the example
dataset, with support 33.33% and confidence 50%. The contiguous rules
ACBA → c2 and ADCBA → c2 which include it have support equal to
33.33% and confidence 100%.

The next lemma formalizes the concept of specialistic rule by means of the
concept of closed sequence.
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Lemma 3 (Specialistic Rule). Let R be the set of frequent sequential classi-
fication rules for D, and r ∈ R, r : X → c, an arbitrary rule. r is a specialistic
rule in R iff X is a closed sequence in D.

Proof. We first prove the sufficient condition. Let ri : X → c be an arbitrary
rule in R, where X is a closed sequence. By Definition 5, if X is a closed
sequence then ∀rj : Y → c in R, with X �Ψ Y it is supΦ(X) > supΦ(Y ).
Thus, ri is a specialistic rule according to Definition 10. We now prove the
necessary condition. Let ri : X → c be an arbitrary specialistic rule in R.
For the sake of contradiction, let X not be a closed sequence. It follows that
∃rj : Y → c in R, with X �Ψ Y and supΦ(X) = supΦ(Y ). Hence, from
Property 2, {(SID, S, c) ∈ D | Y �Φ S} = {(SID, S, c) ∈ D | X �Φ S}, and
thus supΦ(ri) = supΦ(rj). It follows that ri is not a specialistic rule according
to Definition 10, a contradiction. ��

5.2 Sequential Classification Rule Cover

In this section we present a compact form which is based on the general rules
in a given set R. This form allows the classification of unlabeled data without
information loss with respect to the complete rule set R. Hence, it is equivalent
to R for classification purposes.

Intuitively, we say that two rule sets are equivalent if they contain the
same knowledge. When referring to a classification rule set, its knowledge is
represented by its capability in classifying an arbitrary data object d. Note
that d can be matched by different rules in R. Each rule r labels d with a
class c. The estimated accuracy of r in predicting the correct class is usually
given by r’s support and confidence.

The equivalence between two rule sets can be formalized in terms of rule
cover.

Definition 11 (Sequential Classification Rule Cover). Let R1 and R2 ⊆
R1 be two arbitrary sequential classification rule sets extracted from D. R2 is
a sequential classification rule cover of R1 if (i) ∀ri ∈ R1, ∃rj ∈ R2, such that
ri is a specialization of rj according to Definition 8 and (ii) R2 is minimal.

When R2 ⊆ R1 is a classification cover of R1, the two sets classify in the
same way an arbitrary data object d. If a rule ri ∈ R1 labels d with class c,
then in R2 there is a rule rj , where ri is a specialization of rj , and rj labels
d with the same class c (see Lemma 1). ri and rj have the same support
and confidence. It follows that R1 and R2 are equivalent for classification
purposes.

We propose a compact representation of rule set R which includes all
general rules in R. This compact representation, named classification rule
cover, encodes all necessary information to perform classification, but it does
not allow the regeneration of the complete rule set R.
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Definition 12 (Classification Rule Cover). Let R be the set of frequent
sequential classification rules for D. The classification rule cover of R is the set

CRC = {r ∈ R|r : G→ c∧G ∈ G}, G is the set of generator sequences in D.
(1)

The next theorem proves that the CRC rule set is a sequential classifica-
tion rule cover of R. Hence, it is a compact representation of R, equivalent to
it for classification purposes.

Theorem 1. Let R be the set of frequent sequential classification rules for D.
The rule set CRC ⊆ R is a sequential classification rule cover of R.

Proof. Consider an arbitrary rule ri ∈ R. By Definition 12 and Lemma 2,
there exists at least a rule rj ∈ CRC, rj not necessarily identical to ri,
such that rj is a general rule and ri is a specialization of rj according to
Definition 8. Hence, it follows that the CRC rule set satisfies point (i) in
Definition 11. Consider now an arbitrary rule rj ∈ CRC. By removing rj , (at
least) rj itself is no longer represented in CRC by Definition 9. Thus, CRC
is a minimal representation of R (point (ii) in Definition 11). ��

5.3 Compact Classification Rule Set

In this section we present a compact form to encode a classification rule set,
which, differently from the classification rule cover presented in the previ-
ous section, allows the regeneration of the original rule set R. The proposed
representation relies on the notions of both closed and generator sequences.

In the compact form, both general and specialistic rules are explicitly rep-
resented. All the remaining rules are summarized by means of an appropriate
encoding. The compact form consists of a set of elements named compact
rules. Each compact rule includes a specialistic rule, a set of general rules,
and encodes a set of rules that are specializations of them.

Definition 13 (Compact Rule). Let M be an arbitrary closed sequence in
D, and G(M) the set of its generator sequences. Let c ∈ C be an arbitrary
class label. F : (G(M),M) → c is a compact rule for D. F represents all rules
r : X → ci for D with (i) ci = c and (ii) M ∈ CS(X), i.e., M belongs to the
sequential closure set of X.

By Definition 13, the rule set represented in a compact rule F :
(G(M),M) → c includes (i) the rule r : M → c, which is a specialistic
rule since M is a closed sequence; (ii) the set of rules r : G → c that are
general rules since G is a generator sequence for M (i.e., G ∈ G(M)); and
(iii) a set of rules r : X → c that are a specialization of rules in (ii). For rules
in case (iii), the antecedent X is a subsequence of M (i.e., X �Ψ M) and
it completely includes at least one of the generator sequences in G(M) (i.e.,
∃G ∈ G(M)|G �Ψ X).



Compact Representations of Sequential Classification Rules 15

In the example dataset, the contiguous classification rules BA → c2,
DB → c2, DBA → c2, ADB → c2, and ADBA → c2 are represented in
the compact rule ({BA,DB}, ADBA) → c2.

The next lemma proves that the rules represented in a compact rule are
characterized by the same values of support and confidence.

Lemma 4. Let F : (G(M),M) → c be an arbitrary compact rule for D. For
each rule r : X → c represented in F it is (i) supΦ(X) = supΦ(M) and (ii)
supΦ(r) = supΦ(M → c).

Proof. Let r : X → c be an arbitrary rule, and F : (G(M),M) → c an
arbitrary compact rule for D. If r is represented in F , then by Definition 13
it is M ∈ CS(X). Thus, by Definition 6, X �Ψ M and supΦ(X) = supΦ(M).
Hence, from Property 2 (containment property) it follows supΦ(X → c) =
supΦ(M → c). ��

We use the concept of compact rule to encode the set R of frequent se-
quential classification rules. We propose a compact representation of R named
compact classification rule set (CCRS). This compact form includes one com-
pact rule for each specialistic rule in R. Each compact rule includes the spe-
cialistic rule itself and all general rules associated to it.

Definition 14 (Compact Classification Rule Set). Let R be the set of
frequent sequential classification rules for D. Let M be the set of closed se-
quences, and G the set of generator sequences in D. The compact classification
rule set (CCRS) is defined as follows

CCRS = {F : (G(M),M) → c}, G(M) ⊆ G ∧ M ∈ M (2)

where ∀r : M → c in R such that M ∈ M, then ∃F : (G(M),M) → c and
G(M) contains all generator sequences for M .

The following theorem proves that CCRS is a minimal and complete rep-
resentation of R.

Theorem 2. Let R be the set of frequent sequential classification rules for D,
and CCRS the compact classification rule cover of R. CCRS is a complete
and minimal representation of R.

Proof. We first prove that CCRS is a complete representation of R. By De-
finition 14, set CCRS includes one compact rule for each specialistic rule in
R. Hence, ∀ri : X → c in R, there is a compact rule F : (G(M),M) → c in
CCRS, with M ∈ CS(X). This compact rule encodes ri. Hence CCRS com-
pletely represents R. We then prove that CCRS is a minimal representation of
R. Consider an arbitrary compact rule F : (G(M),M) → c in CCRS. F (also)
encodes specialistic rule ri : M → c in R. From Property 3 it follows that
the sequential closure set of M includes only sequence M (i.e., CS(M) = M).
Hence, F is the unique compact rule in CCRS encoding ri. By removing
this rule, ri is no longer represented in CCRS. Thus, CCRS is a minimal
representation of R. ��
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From the properties of closed itemsets, it follows that a rule set contain-
ing only specialistic rules is a compact and lossless representation of R only
when anti-monotonic constraints (e.g., support constraint) are applied. This
property is lost in case of non anti-monotonic constraints (e.g., confidence
constraint). In the CCRS representation, each compact rule contains all in-
formation needed to generate all the rules encoded in it independently from
the other rules in the set. Hence, it is always possible to regenerate set R
starting from the CCRS rule set.

6 Mining Compact Representations

In this section we present an algorithm to extract the compact rule set and
the classification rule cover representations from a sequence dataset. The al-
gorithm works in a specific instance of our framework for sequential rule min-
ing. Recall that in our framework sequence mining is constrained by the pair
(Ψ,Φ). The set of matching functions Ψ defines the containment between a
sequence and an input-sequence. In the considered framework instance, func-
tions in Ψ yield a contiguous subsequence relation. Hence, the mined compact
representations yield contiguous closed sequences and contiguous generator
sequences. In this section, we will denote the mined sequences simply as gen-
erator or closed sequences since the contiguity constraint is assumed. Set Φ
contains all matching functions which satisfy the maximum gap constraint.
Hence, the gap constrained subsequence relation X �Φ S (where X is a se-
quence and S an input-sequence) can be formalized as X � S and X satisfies
the maximum gap constraint in S. Furthermore, for an easier readability we
denote sequence support, rule support, and rule confidence by omitting set Φ.

The proposed algorithm is levelwise [5] and computes the set of closed
and generator sequences by increasing length. At each iteration, say itera-
tion k, the algorithm performs the following operations. (1) Starting from set
Mk of k-sequences, it generates set Mk+1 of (k+1)-sequences. Then, (2) it
prunes from Mk+1 sequences encoding only unfrequent classification rules.
This pruning method limits the number of iterations and avoids the genera-
tion of uninteresting (i.e., unfrequent) rules. (3) The algorithm checks Mk+1

against Mk to identify the subset of closed sequences in Mk and the subset
of generator sequences in Mk+1. (4) Based on this knowledge, the algorithm
updates the CRC and CCRS sets.

Each sequence is provided of the necessary information to support the next
iteration of the algorithm and to compute the compact representations poten-
tially encoded by it. The following information is associated to a sequence X.
(a) A sequence identifier list (denoted id-list) recording the input-sequences
including X. The id-list is a set of triplets (SID, eid, Class), where SID is
the input-sequence identifier, eid is the event identifier for the first1 item of
1As discussed afterwards, knowledge about the event identifiers for the other items
in X is not necessary.
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X within sequence SID, and Class is the class label associated to sequence
SID. (b) Two flags, isClosed and isGenerator, stating when sequence X
is a candidate closed or generator sequence, respectively. (c) The set G(X)
including the sequences which are generators of X.

The proposed algorithm has a structure similar to GSP [5], where sequence
mining is performed by means of a levelwise search. To increase the efficiency
of our approach, we associate to each sequence an id-list similar to the one
in [17].

A sequenceX generates a set of classification rules havingX as antecedent,
and the class labels in the id-list of X as consequent. The support of X
(sup(X)) is the number of different SIDs in the id-list of X. For a rule r :
X → c, the support (sup(r)) is the number of different SIDs in the id-list
labeled by the class label c. The confidence is given by conf(r)=sup(r)/sup(X).

The algorithm, whose pseudocode is shown in Fig. 1, is described in the
following. As a preliminary step, we compute the set M1 of 1-sequences which
encodes at least one frequent classification rule (line 3). All sequences in M1

are generator sequences by Definition 7. For each sequence X ∈ M1, the
set G(X) of its generator sequences is initialized with the sequence itself. All
sequences in M1 are also candidate closed sequences by Definition 5. Hence,
both flags isClosed and isGenerator are set to true.

Generating Mk+1. At iteration k+1 we generate set Mk+1 by joining Mk with
Mk. Function generate cand closed (line 10) generates a new (k+1)-sequence
Z ∈ Mk+1 by combining two k-sequences X,Y ∈ Mk.

Our generation method is based on the contiguous subsequence concept
(similar to GSP [5]). Sequence Z ∈ Mk+1 is generated from two sequences

1. CompactForm Miner(D,minsup,minconf,maxgap)
2. {CRC = CCRS = ∅;
3. k=1;
4. M1 = compute M1(D, minsup);
5. for all X ∈ M1

6. CRC = CRC ∪ {extract general rules(X,minsup,minconf )};
7. while(Mk �= ∅)
8. {Mk+1 = ∅;
9. for all (X, Y ) ∈ Mk �� Mk

10. {Z=generate cand closed(X,Y ,maxgap);
11. if (support pruning(Z,minsup)==false) then
12. {Mk+1 = Mk+1 ∪ {Z};
13. evaluate closure(Z,X,Y );}}
14. for all X ∈ Mk with X.isClosed == true
15. CCRS = CCRS ∪ {extract compact rules(X,minsup,minconf )};
16. for all X ∈ Mk+1 with X.isGenerator == true
17. CRC = CRC ∪ {extract general rules(X,minsup,minconf )};
18. k= k+1;}

Fig. 1. Compact form mining algorithm
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X,Y ∈ Mk which are contiguous subsequences of Z, i.e., they share with Z
either the k-prefix or the k-suffix. In particular, sequences X and Y generate
a new sequence Z if (k-1)suffix(X)=(k-1)prefix(Y). Sequence Z thus contains
the first item in X, the k − 1 items common to both X and Y , and the last
item in Y . Z should also satisfy the maximum gap constraint.

Based on Property 2, we compute the id-list for sequence Z. SinceX and Y
are subsequences of Z, sequence Z is contained in the input-sequences common
to both X and Y , where Z satisfies the maximum gap constraint. Function
generate cand closed computes the id-list for sequence Z by joining the id-lists
of X and Y . This operation corresponds to a temporal join operation [17]. We
observe that sequence Z is obtained by extending Y on the left, with the first
item of X (or equivalently by extending X on the right, with the last item of
Y ). By construction, Y (and X) satisfies the maximum gap constraint. Hence,
the new sequence Z satisfies the constraint if the gap between the first items
of X and Y is lower or equal to maxgap. It follows that the only information
needed to perform the temporal join operation between X and Y are the
SIDs of the input-sequences which include X and Y , and the event identifiers
associated to the first items of X and Y .

Pruning Mk+1 based on support. Function support pruning (line 11) evaluates
the support for the sequential classification rules with Z as antecedent and
the class labels in the id-list of Z as consequent. Sequence Z is discarded
when none of its associated classification rules has support above minsup.
Otherwise Z is added to Mk+1. This pruning criterion exploits the well known
anti-monotone property of support [3], which is guaranteed by Property 2 in
our framework. If a classification rule Z → ci does not satisfy the support
constraint, then no classification rule K → cj , with Z subsequence of K and
ci = cj can satisfy the support constraint.

Checking closed sequences in Mk and generator sequences in Mk+1. Consider
an arbitrary sequence Z ∈ Mk+1, generated from sequences X,Y ∈ Mk as
described above. Function evaluate closure (line 13) checks if Z is a candidate
sequential closure according to Definition 6 for either X or Y , or both of them.
Function evaluate closure compares the support of Z with the supports of X
and Y . Three cases are given:

1. sup(Z) < sup(X) and sup(Z) < sup(Y), i.e., Z is not a candidate sequen-
tial closure for either X or Y .

2. sup(Z) = sup(X), i.e., Z is a candidate sequential closure for X.
3. sup(Z) = sup(Y ), i.e., Z is a candidate sequential closure for Y .

In case (1), sequence Z is a generator sequence according to Definition 7,
since it has lower support than any of its contiguous subsequences. The only
two contiguous subsequences of Z in Mk are X and Y . By Property 1, any
subsequence of X or Y is also a subsequence of Z. Hence, all possible con-
tiguous subsequences of Z are X, Y , and the contiguous subsequences of X



Compact Representations of Sequential Classification Rules 19

and Y . Both X and Y have support higher than Z. By Property 2, any sub-
sequence of X (or Y ) has support higher than or equal to X (or Y ). Hence,
Z is a generator sequence by Definition 7. At this step, sequence Z is also a
candidate closed itemset. The set of its generator sequences is initialized with
the sequence Z itself (G(Z) = Z).

In case (2), sequence X is not a closed sequence according to Definition 5.
Instead, Z is a candidate sequential closure for X. Furthermore, Z is a candi-
date sequential closure for all sequences represented in X. In fact, sequences
represented in X are contiguous subsequences of X that have its same sup-
port. They are generated from X by means of the sequences in G(X). By
Property 1, all subsequences of X are also subsequences of Z. Hence, all gen-
erator sequences associated to X are inherited by Z. Analogously to case (2),
in case (3) Y is not a closed sequence. All generator sequences associated to
Y are inherited by Z.

Function evaluate closure updates the flag isClosed for sequences X, Y ,
and Z, and flag isGenerator for sequence Z. The flag isGenerator is true for
a generator sequence, and is false otherwise. The flag isClosed is true for a
candidate closed sequence and is false for a non closed sequence.

Updating sets CRC and CCRS. Once the generation of set Mk+1 is com-
pleted, all sequences in Mk+1 have been marked as actual generator or non
generator sequences. In addition, all candidate closed sequences in Mk have
been marked as actual closed or non closed sequences.

For each closed sequenceX ∈ Mk, function extract compact rules (line 15)
extracts the compact rules with {G(X), X} as antecedent and that satisfy both
support and confidence constraints. These rules are included in the CCRS
rule set.

For each generator sequence Z ∈ Mk+1, function extract general rules
(line 17) extracts the general rules with Z as antecedent that satisfy both
support and confidence constraints. These rules are added to the CRC rule set.

6.1 Example

By means of the example dataset in Table 1, we describe how the proposed
algorithm performs the extraction of the CRC and CCRS rule sets. Due to
the small size of the example, we do not enforce any support and confidence
constraint, and as gap constraint we consider maxgap = 1.

The first step is the generation of set M1 (function compute M1 in line 4).
Since no support constraint is enforced, M1 includes all sequences with length
equal to 1. Set M1 is shown in Fig. 2a. By Definition 7, all sequences in M1 are
contiguous generator sequences. For each of them, the set G of its generator
sequences is initialized with the sequence itself. Furthermore, all sequences in
M1 contribute to the CRC set. This set is shown in Fig. 2b.

By joining M1 with itself, we generate set M2 which includes all sequences
with length equal to 2 (function generate cand closed in line 10) and is re-
ported in Fig. 3a. For example, sequence DA is obtained from sequences D
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M1

Sequence sup G
c1 c2

A 2 1 {A}
B 1 1 {B}
C 1 1 {C}
D 1 1 {D}
E 1 0 {E}

(a)

General rules in M1

rule sup% conf%

A → c1 66.66 66.66

A → c2 33.33 33.33

B → c1 33.33 50.00

B → c2 33.33 50.00

C → c1 33.33 50.00

C → c2 33.33 50.00

D → c1 33.33 50.00

D → c2 33.33 50.00

E → c1 33.33 100.00

(b)

Fig. 2. M1 set and general rules in M1

M2

Sequence sup G
c1 c2

AB 1 0 {AB}
AC 1 1 {C}
AD 1 1 {D}
AE 1 0 {E}
BA 0 1 {BA}
BE 1 0 {E}
CA 1 1 {C}
CB 0 1 {CB}
DA 1 0 {DA}
DB 0 1 {DB}
DC 1 1 {C, D}

(a)

General rules in M2

rule sup% conf%

AB → c1 33.33 100.00

BA → c2 33.33 100.00

CB → c2 33.33 100.00

DA → c1 33.33 100.00

DB → c2 33.33 100.00

(b)

Compact rules in M1

rule sup% conf%

({A}, A) → c1 66.66 66.66

({A}, A) → c2 33.33 33.33

({B}, B) → c1 50.00 50.00

({B}, B) → c2 50.00 50.00

(c)

Fig. 3. M2 set, general rules in M2, and compact rules in M1

and A by joining their id-lists. The id-list of DA contains the input-sequences
where the gap between D and A is lower than maxgap. In particular it con-
tains only the input-sequence with SID = 1.

By checking M1 against M2, we identify the subset of closed sequences in
M1 and the subset of generator sequences in M2 (function evaluate closure
in line 13). In set M1, sequences A and B are closed sequences. For example,
sequence B is a closed sequence since both sequences in M2 including B (i.e.,
AB and BE) have lower support than it. Hence, we generate the compact rules
for sequences A and B (see Fig. 3c). In set M2, five sequences are generators
(i.e., AB, BA, CB, DA and DB). For example, sequence AB is a generator
sequence since all its subsequences in M1 (i.e., A and B) have higher support
than it. The set of its generators G(AB) is initialized with the sequence itself.
Figure 3b shows the general rules in M2.
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Compact rules

rule sup% conf%

({A}, A) → c1 66.66 66.66

({A}, A) → c2 33.33 33.33

({B}, B) → c1 33.33 50.00

({B}, B) → c2 33.33 50.00

({E}, AE) → c1 33.33 100.00

({AB, E}, ABE) → c1 33.33 100.00

({C}, ACA) → c1 33.33 50.00

({C}, ACA) → c2 33.33 50.00

({DA}, ADA) → c1 33.33 100.00

({CB, BA}, ACBA) → c2 33.33 100.00

({DB, BA}, ADBA) → c2 33.33 100.00

({D, C}, ADCA) → c1 33.33 50.00

({D, C}, ADCA) → c2 33.33 50.00

({CB}, ADCBA) → c2 33.33 100.00

(a) CCRS set

General rules

rule sup% conf%

A → c1 66.66 66.66

A → c2 33.33 33.33

B → c1 33.33 50.00

B → c2 33.33 50.00

C → c1 33.33 50.00

C → c2 33.33 50.00

D → c1 33.33 50.00

D → c2 33.33 50.00

E → c1 33.33 100.00

AB → c1 33.33 100.00

BA → c2 33.33 100.00

CB → c2 33.33 100.00

DA → c1 33.33 100.00

DB → c2 33.33 100.00

(b) CRC set

Fig. 4. Compact representations

Sequences in set M2 which are not generators inherit generators from
their subsequences with the same support. For example, sequence BE contains
sequence E, and BE and E have equal support. Hence, we add to G(BE) all
sequences in set G(E) (i.e., E).

By iteratively applying the algorithm, we generate set M3, which includes
all sequences with length=3, by joining M2 with itself . For instance, we gen-
erate sequence DCA from sequences DC and CA. DCA has the same support
as both CA and DC. Hence, DCA is not a generator sequence. Instead, it
inherits generators from both CA and DC. Hence G(DCA) = {D,C}.

Set M3 does not contribute to the CRC set, since none of its elements
is a generator sequence. For set M2, only sequence AE is a closed sequence.
Hence, it generates the compact rule ({E}, AE) → c1.

Figure 4 reports the CRC and CCRS sets for our example dataset.

7 Experimental Results

Experiments have been run to evaluate both the compression achievable
by means of the proposed compact representations and the performance of
the proposed algorithm. To run experiments we considered three datasets.
Reuters-21578 news and NewsGroups datasets [2] include textual data. DNA
dataset includes collections of DNA sequences [2]. Table 2 reports the number
of items, sequences, and class labels for each dataset. For Reuters and News-
Grousp datasets items correspond to words in a text. For DNA dataset items
correspond to four aminoacid symbols. Table 2 also shows the maximum,
minimum and average length of sequences in the datasets.
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Table 2. Datasets

Dataset Sequences Sequence length Items Classes

Min Max Avg

Reuters-21578 6,454 4 371 52.03 27,600 10
NewsGroup 2,000 83 21,691 303.97 41,420 20
DNA 2,000 60 60 60 4 3

We ran experiments with different support threshold values (denoted
minsup) and for different maximum gap values (denoted maxgap). Exper-
iments were run on an Intel P4 with 2.8 GHz CPU clock rate and 2 GB RAM.
The CompactForm Miner algorithm has been implemented in ANSI C.

7.1 Compression Factor

Let R be the set of all rules which satisfy both minsup and maxgap con-
straints and CRC and CCRS the set of general rules and compact rules
satisfying the same constraints. To measure the compression factor achieved
by our compact representations, we compare their size with the size of the
complete rule set. The compression factor (CF%) for the two representations
is respectively (1 − |CRC|

|R| )% and (1 − |CCRS|
|R| )%.

For the CRC representation, a high compression factor indicates that rules
whose antecedent is a generator sequence are a small fraction of R. Instead,
for the CCRS representation, a high compression factor indicates that rules
whose antecedent is a closed sequence are a small fraction of R. In both cases,
a small subset of R encodes all useful information to model classes.

Different data distributions yield a different behavior when varying
minsup and maxgap values. In the following we summarize some com-
mon behaviors. Then, we analyze each dataset separately and discuss it in
detail.

For moderately high minsup values, the two representations have a very
close size (or even exactly the same size). In this case, the subsets of rules in
R having as antecedent a closed sequence or a generator sequence are almost
the same.

When lowering the support threshold or increasing the maxgap value, the
number of rules in set R and in sets CCRS and CRC increases significantly.
In this case, the CRC representation often achieves a higher compression than
the CCRS representation. This effect occurs for maxgap > 1 and low minsup
values. In this case, the set of rules with a generator sequence as antecedent is
smaller than the set of rules with a closed sequence as antecedent. This occurs
because when increasing maxgap or decreasing minsup, mined sequences are
characterized by increasing length. Hence, the number of closed sequences,
which are the sequences with the longest antecedent, increases significantly.
Instead, the increase in the number of generator sequences, which have shorter
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length, is less remarkable. Few generator sequences (in most cases only one)
are associated to each closed sequence. In addition, as stated by Property 3,
each generator sequence can be common to different closed sequences.2

In some cases, the CRC representation achieves a slightly lower compres-
sion than the CCRS representation. It occurs formaxgap = 1 and lowminsup
values. With respect to the case above, for this minsup and maxgap values
there are a few more generator sequences than closed sequences. On the av-
erage more than one generator sequence is associated to each closed sequence
(about 2 in the DNA dataset, and 1.2 in the Reuters and Newsgroup datasets).
Generator sequences are still common to more closed sequence as stated in
Property 3.

Reuters Dataset

Figure 5 reports the total number of rules in set R for different minsup
and maxgap values. Results show that the rule set becomes very large for
minsup = 0.1% and maxgap ≥ 3 (e.g., 1,306,929 rules for maxgap = 5).

Figure 6a, b show the compression achieved by the two compact repre-
sentations. For both of them, for a given maxgap value, the compression
factor increases when minsup decreases. Furthermore, for a given minsup
value, the compression factor increases when the maxgap value increases. For
both representations, the compression factor is significant when set R includes
many rules. When minsup = 0.1% and 3 ≤ maxgap ≤ 5, R includes from
184,715 to 1,291,696 rules. Compression ranges from 52.57 to 58.61% for the
CCRS representation and from 60.18 to 80.54% for the CRC representation.
A lower compression (less than 10%) is obtained when maxgap = 1. However,
in this case the complete rule set is rather small, since it only includes about
12,000 rules when minsup = 0.1% and less than 2,000 rules for higher support
thresholds.

Fig. 5. Number of rules for Reuters dataset

2Recall that this behavior is peculiar of the sequential pattern domain. In the
context of itemset mining, the number of generator itemsets is always greater
than or equal to the number of closed itemsets. Furthermore, the sets of generator
itemsets associated to different closed itemsets are disjoint.
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(a) CRC Set (b) CCRS Set

Fig. 6. Compression factor for Reuters dataset

(a) CRC Set (b) CCRS Set

Fig. 7. Rule length for CRC and CCRS sets for Reuters dataset (maxgap = 2)

For low support thresholds and high maxgap values, the CRC representa-
tion always achieves a higher compression. In particular, whenminsup = 0.1%
and 3 ≤ maxgap ≤ 5, the compression factor is more than 10% higher than
in the CCRS representation (about 20% when maxgap = 5). The two rep-
resentations provide a comparable compression for higher minsup and lower
maxgap values. To analyze this behavior, Fig. 7 plots the number of general
and compact rules for different rule lengths, for maxgap = 2 and different
minsup values. As discussed above, when decreasing minsup, the number of
compact rules increases more significantly. Figure 7 shows that this is due to
an increment in the number of compact rules with longer size.

As showed in Fig. 7a, b, for a givenminsup value compression increases for
increasing maxgap values. Figure 8 focuses on this issue and plots the com-
pression factor for both compact forms for a large set ofmaxgap values and for
thresholdsminsup = 0.5% andminsup = 1%. For both forms the compression
factor increases until maxgap = 5 and then decreases again. The compression
factors are very close until maxgap = 5 and then the difference between the
two representations becomes more significant. This difference is more relevant
when minsup = 0.5%. The CRC form always achieves higher compression.
An analogous behavior has been obtained for other minsup values.
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Fig. 8. Compression factor when varying maxgap for Reuters dataset

(a) Number of rules (b) Compression factor for CRC set

Fig. 9. Newsgroup dataset

Newsgroup Dataset

Figure 9a reports the total number of rules in set R for different minsup and
maxgap values. The compression factor shows a similar behavior for the two
compact forms. In the following we discuss the compression factor for the
CRC set, taken as a representative example (see Fig. 9b). When maxgap �= 1,
the compression factor is only slightly sensitive to the variation of the support
threshold. Hence, the fraction of rules with a closed or a generator sequence
as antecedent does not vary significantly when vaying support. Similarly to
the case of the Reuters dataset, the CRC representation always achieves a
higher compression than the CCRS representation, with an improvement of
about 20%.

The case maxgap = 1 yields a different behavior. For both representa-
tions, the compression factor increases for increasing support thresholds. From
Fig. 9b, the cardinality of the complete rule set is rather stable for growing
support values. Instead, both the number of closed and generator sequences
decreases. This effect yields growing compression when increasing the support
threshold.

When varying maxgap, both compact forms show a compression factor
behavior similar to the Reuters dataset. For a given a minsup value, the
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(a) Number of rules (b) Compression factor

Fig. 10. DNA dataset

compression factor first increases when increasing maxgap. After a given
maxgap value, it decreases again. This behavior is less evident than in the
Reuters dataset. Furthermore, the maxgap value where the maximum com-
pression is achieved varies with the support threshold.

DNA Dataset

For the DNA dataset, we only consider the case maxgap = 1. This constraint
is particularly interesting in the biological application domain since sequences
of adjacent items in the DNA input sequences are mined. Figure 10a reports
the number of rules in sets R, CCRS, and CRC for different minsup values.
Even if the alphabet only includes four symbols, a large number of rules is
generated when decreasing the support threshold.

Figure 10b shows the compression factor for the two compact representa-
tions. Both compact forms yield significant benefits for low support thresh-
olds. In this case R contains a large number of rules (2,672,408 rules when
minsup=0.05%), while both compact forms have a significantly smaller size
(CF=95.85% for the CRC representation and CF=93.74% for the CCRS
representation). The CRC representation provides a slightly lower compres-
sion than the CCRS representation for low support thresholds. Instead, the
compression factor is comparable for high minsup values.

7.2 Running Time

For high support thresholds and low mingap values, rule mining is performed
in less than 60 s for all considered datasets. The CPU time increases when
low minsup and high mingap values are considered. For these values, a larger
solution space has to be explored and thus the amount of required memory is
large. Our algorithm adopts a levelwise approach which requires a large mem-
ory space because of its nature. On the other hand, this approach allows us to
explore the solution set and identify both closed and generator sequences, in
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order to associate each generator sequence to the appropriate closed sequence.
For example, in the Reuters dataset when minsup = 0.1% and maxgap goes
from 3 to 5, CPU times range from 22 min up to 1.80 h. In the Newsgroup
dataset, CPU time is always lower than 1 min. However, when we consider
maxgap > 4 and supports lower than 2.5% more than 10 h are required.

We compared our time performance with the algorithm proposed in [17], an
efficient state-of-the-art algorithm for constrained sequence mining. Zaki [17]
does not address the extraction of closed and generator sequences. The code
was downloaded from [1]. To optimize memory usage, [17] partitions the search
space and analyzes each partition independently. The same approach can not
be applied in our context due to the type of search we want to perform. When
the required memory is not very large, the two algorithms provide comparable
performance. Otherwise, [17] yields better performance. For example, when
large amounts of memory are required, [17] runs up to five times faster for the
Reuters dataset.

8 Related Work

Sequential pattern mining is a relevant research area with applications in a va-
riety of different contexts. Examples of sequential data include text data, DNA
sequence, web log files, and customer purchase transactions. The problem of
mining sequential patterns has been introduced in [4]. It has been further
studied in [20,24,27,35], where different sequence extraction algorithms have
been proposed.

Several types of user-defined constraints on sequential pattern have also
been considered. For example, minimum or maximum gap constraint between
consecutive events or between the first and the last event in the sequence
have been addressed in [5, 17, 18, 21, 25]. Alternative constraints for sequence
mining are relative to sequence length, occurrence of a set of items within the
sequence, or regular expression constraints over a sequence [16,25].

For classification datasets, where each input sequence is characterized by a
class label, sequential classification rules have been introduced in [17]. These
rules allow modeling class properties and have been exploited for instance in
the web context to predict users’ next requests and behavior (e.g., to predict
the next request for a web document) [32], or in the biological domain for
example to predict protein properties [26].

When low support thresholds are considered or the dataset is highly cor-
related, a huge set of sequences may be generated, until the problem becomes
intractable. To deal with the generation of a large solution set, in the context
of association rule mining a significant effort has been devoted to define con-
cise representations for frequent itemsets and association rules. For frequent
itemsets these forms are based on the concepts of maximal itemsets [10], closed
itemsets [23,34], free sets [12], disjunction-free generators [13], and deduction
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rules [14]. For association rules, concise representations have been proposed
based on closed and generator itemsets [22, 23, 33]. In the context of associa-
tive classification, compact representations for associative classification rules
have been proposed based on generator itemsets [7] and free-sets [15].

In the sequence domain less effort has been so far devoted to mine concise
representations. Recently in [29, 31] the concept of closed itemset has been
extended to represent frequent sequences, and in [28] an algorithm to mine
top-k closed sequential patterns has been presented. As far as we know, no
concise representations have been proposed for sequential classification rules.

Our work addresses the definition of concise representations for a sequen-
tial classification rule set. We define a general framework for sequential clas-
sification rule mining. In the framework, the notions of containment between
two arbitrary sequences, and a sequence and an input sequence are a gen-
eralization of previous definitions of constrained containment [5, 17, 25]. In
this general context, we define the concept of sequence generator, which, to
our knowledge, has never been proposed before in the sequence domain. Fur-
thermore, we introduce the concepts of constrained closed sequence and con-
strained generator sequence. We exploit both concepts to define two compact
representations of a classification rule set.

9 Conclusions and Future Work

In this chapter we propose two compact representations to encode the knowl-
edge available in a sequential classification rule set. The classification rule
cover (CRC) is defined by means of the concept of generator sequence and
yields a simple rule set, which is equivalent to the complete rule set for classifi-
cation purposes. Compact rules, which are the building blocks of the compact
classification rule set (CCRS), are characterized by a more complex structure,
based on closed sequences and their associated generator sequences. Compact
rules allow us to regenerate the entire set of frequent sequential classification
rules from the compact form.

Experiments on textual and biological datasets show that the compression
ratio is significant for low support thresholds and correlated datasets. In this
case, traditional techniques would generate a huge amount of classification
rules.

As future work, we plan to exploit our compact representations to design
an effective classifier. A promising direction is the integration of both sequen-
tial and associative classification rules, to exploit both the specific character-
ization provided by sequential rules and the general representation given by
associative classification rules.
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Summary. We propose a new search algorithm for a special type of subspace
clusters, called maximal 1-complete regions, from high dimensional binary valued
datasets. Our algorithm is suitable for dense datasets, where the number of maximal
1-complete regions is much larger than the number of objects in the datasets. Unlike
other algorithms that find clusters only in relatively dense subspaces, our algorithm
finds clusters in all subspaces. We introduce the concept of weighted density in or-
der to find interesting clusters in relatively sparse subspaces. Experimental results
show that our algorithm is very efficient, and uses much less memory than other
algorithms.

1 Introduction

Frequency has been used for finding interesting patterns in various data min-
ing problems, such as the minimum support threshold used in mining frequent
itemsets [2,3] and the minimum density defined in mining subspace clusters [1].
A priori-like algorithms [1] perform levelwise searches for all patterns having
enough frequencies (either support or density) starting from single dimen-
sions, and prune the search space based on the rationale that in order for a
k−dimensional pattern to be frequent, all its (k−1)−dimensional sub-patterns
must also be frequent. A large frequency threshold is usually set in most of the
algorithms to control the exponential growth of the search space as a function
of the highest dimensionality of the frequent patterns.

Closed patterns was proposed [7] to reduce the number of frequent patterns
being returned by the algorithm without losing any information. Mining closed
patterns is lossless in the sense that all frequent patterns can be inferred
from the set of closed patterns. Most algorithms proposed for mining closed
patterns require all candidates found so far to be kept in memory to avoid
duplicates [9, 11, 12]. These algorithms also require the minimum frequency
threshold value to be specified before the algorithms are run, and the same
value is used to prune off candidates for patterns in all subspaces.
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Table 1. Subspaces with varied density

a b c d e f

1 0 0 0 0 0 1
2 0 0 0 0 0 1
3 0 0 0 0 1 1
4 0 0 0 1 1 1
5 0 0 0 1 1 1
6 0 0 0 1 1 1
7 0 0 0 1 1 0
8 0 0 0 1 0 0
9 1 1 1 0 0 0
10 1 1 1 0 0 0

However, patterns with higher dimensionality tend to have less frequencies,
so using the same threshold value for all patterns risks losing patterns in higher
dimensional spaces. Furthermore, patterns with the same dimensionality may
need different frequency threshold values for various reasons. For example,
a pattern with higher frequency in very dense dimensions may not be as
informative and interesting as a pattern with lower frequency in very sparse
dimensions. Setting a relatively high frequency threshold tends to bias the
search algorithm to favor patterns in dense subspaces only, while patterns in
less dense subspaces are neglected. Consider the example shown in Table 1.
Each column denotes one of the six attributes (a, b, c, d, e, f), and each row
denotes one object (data point). An entry ‘1’ in row i and column j denotes
that object i has attribute j. There is a pattern in subspace {abc} that contains
two instances {9, 10}, and subspace {def} has another pattern containing
three instances {4, 5, 6}. If we set the minimum frequency threshold to be
3, we lose the pattern in {abc}. However, this pattern in {abc} maybe more
interesting than the one in {def}, considering the fact that the number of
‘1’s in attributes a, b, c is much smaller than in attributes d, e, f . Actually,
all instances that have entry ‘1’ in a also have entry ‘1’ in b and c, and this
may suggest a strong correlation between a, b, c, and also a strong correlation
between instances 9 and 10. On the other hand, although the pattern in {def}
has a larger frequency, it does not suggest such strong correlations either
between attributes d, e, f or between instances 4–6. So we suggest that smaller
frequency threshold should be chosen for subspaces with lower densities, that
is, subspaces with less number of ‘1’ entries.

We propose a weighted density measure in this chapter, which captures
the requirement to use a smaller density threshold for less dense subspaces.
And we present an efficient search algorithm to find all patterns satisfying a
minimum weighted density threshold.

Most algorithms for finding closed patters report only the dimensions in
which the patterns occur, without explicitly listing all the objects that are
contained in the patterns. However, the object space of the patterns is crucial
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in interpreting the relationships between two possibly overlapping patterns.
Our algorithm treats the objects and dimensions (attributes) equally, and all
patterns are reported with their associated dimensions and subsets of objects.

Another advantage of our algorithm lies in its step-wise characteristic, that
is, the computation of the next pattern depends only on the current pattern.
Our algorithm is memory efficient due to this property, since there is no need
to keep all previously generated patterns in the memory.

In the rest of the chapter, we present our algorithm in the context of the
subspace clustering problem, but the algorithm and the theorem can also be
applied to other closed set mining problems such as frequent closed item-
sets [7] and maximal biclique [8]. We first present in Sect. 2 the definition of
maximal 1-complete region, where we also introduce the terms and notations
used in this chapter. Section 3 presents our algorithm. Section 4 presents the
experimental results. Finally, we make the conclusion.

2 Problem Statement

A data space DS is characterized by a set of attributes A (attribute space)
and a population of objects O (object space). Each object oi ∈ O has a
value assigned for each attributes aj ∈ A, denoted as dij . We consider only
binary valued datasets in this chapter, that is, di,j ∈ [0, 1]. However, real
valued datasets can be quantized into binary values, and different quantization
methods lead to clusters of different semantics [6]. A subspace S is a subset
of A. A subspace cluster C is defined as <O,A>, where O ⊆ O and A ⊆ A.
We call O and A the object set and the attribute set of the subspace cluster
respectively. Subspace clustering is a search for subsets of P(A) (the power
set of A) where interesting clusters exist.

2.1 The Prefix Tree of Subspaces

Let “<L” be a lexicographic order on the attributes in A, and we use ai <L

aj to indicate that attribute ai is lexicographically smaller than attribute
aj . Each subspace is represented as the set of attributes contained in it in
the lexicographically increasing order. For example, a subspace containing
attribute a1, a2, a3 (a1 <L a2 <L a3) is labeled as {a1a2a3}. And we arrange
all subspaces into a prefix-based tree structure TDS as follows:

1. Each node in the tree corresponds to one subspace, and the tree is rooted
at the node corresponding to the empty subspace that contains no at-
tributes.

2. For a node with label S = {a1, . . . , ak−1, ak}, its parent is the node whose
label is S′ = {a1, . . . , ak−1}.
Table 2 shows an example dataset, and Fig. 1 shows its prefix tree of sub-

spaces.
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Table 2. An example data table

a b c d

1 0 0 1 1
2 1 0 1 1
3 1 1 1 0
4 0 0 1 1
5 1 1 0 0
6 0 0 1 1
7 0 0 1 1
8 0 1 0 0

Fig. 1. Prefix-based subspaces search tree

2.2 Maximal 1-complete Regions and Closed Subspaces

We are interested in finding subspace clusters that contain largest regions of
‘1’ entries, formally defined as follows:

Definition 1. A subspace cluster C = <O,A> of binary valued data space
DS is a 1-complete region if it contains only ‘1’ entries.

Definition 2. A complete dense region C = <O,A> is a maximal 1-complete
region if all regions that are proper super-regions of C are not 1-complete.

For the example shown in Table 2, <{1, 2, 4, 6, 7}, {d}> is a 1-complete
region but it is not maximal, because its super-region <{1, 2, 4, 6, 7}, {cd}>
is 1-complete. <{1, 2, 4, 6, 7}, {cd}> is a maximal 1-complete region, while
<{1, 2, 3, 4, 6, 7}, {cd}> is not 1-complete since it contains zero entries. If we
consider each attribute (column) in Table 2 as a bit vector, all 1-complete
regions can be found by intersecting all possible subsets of attributes. How-
ever, not all of them are maximal, so the problem is to find those subsets of
attributes whose intersection produce maximal 1-complete regions.

Definition 3. If a subspace is the attribute set of a maximal 1-complete re-
gion, we call this subspace a closed subspace.
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According on Definition 3, each maximal 1-complete region corresponds to
one unique closed subspace. In order to find all maximal 1-complete regions,
we can traverse the prefix tree of subspaces and check each node to see whether
it is a closed subspace. In the following, we present several methods to test
whether a subspace is closed. We first introduce two functions that perform
mapping between the object space and the attribute space.

We define ψ(S) to be {oi|∀aj ∈ S, dij = 1}, that is, ψ(S) returns the set
of objects that have entry ‘1’ for all the attributes in S. Similarly, ϕ(O) is
defined to be {aj |∀oi ∈ O, dij = 1}, that is, ϕ(O) returns the set of attributes
that are shared by all objects in O. Then ϕ ◦ ψ is a closure operator, and we
have the following lemma.

Lemma 1. The following statements are equivalent:

1. C = <ψ(S), S> is maximal 1-complete
2. S is a closed subspace
3. � ∃a ∈ A/S, for which ψ(a) ⊇ ψ(S)
4. ϕ ◦ ψ(S) = S

Proof. 1 ↔ 2: True by Definition 3.
1 → 3: C = <ψ(S), S> is maximal 1-complete means that we cannot add

any attribute a to S to get an enlarged region, and at the same time maintain
the 1-complete property. If there exists a for which ψ(a) ⊇ ψ(S), then adding
a to S will produce a region that has 1-complete property, which contradicts
the fact that C is maximal 1-complete.

3 → 4 and 4 → 1 can be proved similarly. ��

From Lemma 1, we can see that ϕ◦ψ(S) is a superset of S if S is not closed,
or equal to S if S is closed. Figure 2 shows a modified prefix tree from Fig. 1,
where each node in Fig. 2 has two labels, including the corresponding subspace
S and the object set ψ(S). For example, node “b, 358” (Fig. 2) represents that
this node corresponds to subspace {b}, for which ψ({b}) = {3, 5, 8}. Under-
lined nodes are those 1-complete regions that are not maximal. Furthermore,
nodes corresponding to subspaces with equal closure are grouped together into
one equivalence class in Fig. 2. For example, ϕ ◦ψ{bc} = {abc}, so nodes “bc”
and “abc” are grouped together. Notice that all equivalent subspaces have
the same object set, so each equivalence class generates only one maximal
1-complete region. Therefore, we need only find one subspace for every such
equivalence class in order to find all 1-complete regions.

2.3 The Lectical Order Between Subspaces

From Fig. 2, we can see that within each equivalence class, the closed subspace
is always to the left of those non-closed ones. Based on this observation, we
define a total order, called the lectical order, on the set of all subspaces. A sim-
ilar definition can be found in [5]. A subspace S1 is called lectically smaller
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Fig. 2. Prefix tree of equivalence classes

than subspace S2, denoted as S1 � S2, if the lexicographically smallest at-
tribute ai that distinguishes S1 from S2 belongs to S2. That is, there exists
ai ∈ S2 ∧ ai �∈ S1, and all attributes lexicographically smaller than ai are
shared by S1 and S2. Formally,
S1 � S2 :⇔ ∃ai∈S2\S1 S1 ∩ {a1, a2, . . . , ai−1} = S2 ∩ {a1, a2, . . . , ai−1}.
If we know the attribute ai that distinguishes S1 and S2, we say S1 is

i-smaller than S2, denoted as S1 �i S2.
For example, {ad} �c {acd} because the lexicographically smallest at-

tribute that distinguishes them is c, and it belong to {acd}.
We define Si to be a subset of S which includes all the attributes in S

that are lexicographically smaller than ai, that is, Si := S ∩ {a1, . . . , ai−1}.
Starting from an arbitrary subspace S, the next lectically smallest subspace
that is larger than S can be computed based on Lemma 2.

Lemma 2. The lectically smallest subspace that is lectically larger than S is
Si∪{ai}, where ai is the lexicographically largest attribute that is not contained
in S.

Proof. Let S1 = Si∪{ai}, with ai being the lexicographically largest attribute
that is not contained in S. Suppose the lemma is not true, then there must
exist S2, such that S � S2 � S1. Since S � S2, there must exist an attribute
aj(i �= j), which satisfies aj ∈ S2, aj �∈ S and Sj−1 = Sj−1

2 . We also know
that ai is the smallest attribute that differentiates S and S1, so Si−1 = Si−1

1 .
We consider the following two possible relationships between ai and aj .

ai<Laj : Since i<j, S �j S2 implies aj is not contained in S, which
contradicts the fact that ai is the largest attribute not contained in S.
ai>Laj : Since i>j, Si−1 = Si−1

1 implies Sj−1 = Sj−1
1 . And we also have

Sj−1 = Sj−1
2 , so Sj−1

1 = Sj−1
2 . Since the smallest attribute that differenti-

ates S and S1 is ai, which is larger than aj , so aj �∈ S1. Since Sj−1
1 = Sj−1

2 ,
aj ∈ S2 and aj �∈ S1, we have S1 � S2, which contradicts the assumption
S � S2 � S1. ��

Starting from the empty subspace, if we keep looking for the next lectically
smallest subspace, we actually perform a right-to-left pre-order depth-first
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traversal of the prefix tree. For the example shown in Fig. 1, the total lectical
order is: {φ} �d {d} �c {c} �d {cd} �b {b} �d {bd} �c {bc} �d {bcd} �a

{a} �d {ad} �c {ac} �d {acd} �b {ab} �d {abd} �c {abc} �d {abcd}.
The next question is how to find the next closed subspace after S. Let

ai be the lexicographically largest attribute that is not contained in S. If
S ∪{ai} is a closed subspace, then it is trivial that S ∪{ai} is the next closed
subspace. If S ∪ {ai} is not closed, then its closure ϕ ◦ ψ(Si ∪ {ai}) must
contain an attribute aj<Lai and aj �∈ S. To simplify the notation, we define
S ⊕ ai := ϕ ◦ ψ(Si ∪ {ai}). Lemma 3 shows the method to find the next closed
subspace after S.

Lemma 3. The lectically smallest closed subspace that is lectically larger than
S is ϕ ◦ψ(Si ∪ {ai}), where ai is the lexicographically largest attribute that is
not contained in S for which S �i S ⊕ ai holds.

A detailed proof for Lemma 3 can be found in [5]. Let ai be the lexico-
graphically largest attribute that is not contained in S for which S �i S ⊕ ai

holds. Let ak be an attribute ak �∈ S and ak>Lai. Since S ��k S ⊕ ak, S ⊕ ak

must contains at least one attribute that is lexicographically smaller than ak.
Let S �j S ⊕ ak, that is, aj is the lexicographically smallest attribute that
differentiates S and S ⊕ ak. If aj<Lai, then S ⊕ ak is lectically larger than
S⊕ai. If aj = ai, then S⊕ai = S⊕ak. If aj>Lai, this contradicts the assump-
tion that ai is the lexicographically largest attribute that is not contained in
S for which S �i S ⊕ ai holds. So in conclusion, Lemma 3 is true.

2.4 Density and Weighted Density

Notice that many nodes in Fig. 2 contain empty object set, which do not con-
tribute to the clustering process. Furthermore, simply enumerating all maxi-
mal 1-complete regions is very time consuming. So we focus on finding those
maximal 1-complete regions that contain at least a certain number of objects.
Formally, we define the density of a single attribute ai to be the ratio between
the number of ‘1’ entries in ai and the total number of objects in the data,
denoted as dens(ai). For the example shown in Table 2, dens(d) is 5

7 and
dens(a) is 3

7 . Similarly, the density of a subspace cluster is the ratio between
the number of objects contained in it and the total number of objects in the
data space. For example, the density of <{1, 2, 4, 6, 7}, {cd}> is 5

7 .
The weighted density of a subspace cluster C = <O,A>, denoted as

densw(C), is defined as the ratio between dens(C) and the average density
over all attributes contained in A, that is, densw(C) = dens(C)

1
|A| (

∑
ai∈A dens(ai))

,

where |A| is the number of attributes contained in S. We call the denomina-
tor, 1

|A| (
∑

ai∈A dens(ai)), the weight.
Since each subspace S has a unique closure ϕ◦ψ(S), which corresponds to

exactly one maximal 1-complete region C = <ψ(S), ϕ ◦ψ(S)>, we define the
density of subspace S (dens(S)) to be dens(C), where C is the cluster having
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the closure of S (ϕ ◦ ψ(S)) as its attribute set. Similarly, densw(S) is equal
to densw(C).

The next section presents the algorithm for finding all maximal 1-complete
regions that have a weighted density larger than δ, where δ is a real number
between 0 and 1.

3 Mining Weighted Dense Maximal 1-complete Regions

In this section, we present the underlying idea of our algorithm and the proof
of correctness. Then we present some methods to speed up the algorithm.

3.1 Non-Decreasing Property

As shown in Fig. 2, density is non-increasing along any branches in the tree.
This is because that the set of objects that are contained in a child node
S ∪{ai} is the intersection of ψ({ai}) and the object set of its parent node S.
Consequently, ψ(S ∪ {ai}) must be a subset of ψ(S).

However, weighted density does not have this property. Although the den-
sity is non-increasing (numerator), the weights (denominator) may decrease
when less dense attributes are added. If the decrease of the weights is faster
than the decrease of density, weighted density of a child node may become
larger than its parent node. One way to guarantee that weighted density
is non-increasing along any branches is to enforce a constraint on the lexico-
graphical order. More specifically, we sort all the attributes into the increasing
density order, such that the lexicographically largest attribute is the one that
has the largest density. By doing this, we can make sure that when we go
deeper into the tree, the weights never decrease. Therefore, weighted density
along any branches of the tree must also be non-increasing. This property
facilitates the search algorithm that is introduced later.

In the remaining of the chapter, we assume that the data has been sorted
this way. For the data shown in Table 2, the sorted dataset is shown in Table 3.

Table 3. Sorted example

a b c d

1 0 0 1 1
2 1 0 1 1
3 1 1 0 1
4 0 0 1 1
5 1 1 0 0
6 0 0 1 1
7 0 0 1 1
8 0 1 0 0
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Fig. 3. 1-complete regions for sorted data

Figure 3 is a tree containing all and only the maximal 1-complete regions in
this sorted dataset. Ideally, we only need to check all and only the nodes
in Fig. 3, which is much smaller than the number of nodes contained in the
complete tree as shown in Fig. 1.

3.2 Mining Weighted Dense 1-complete Regions

To better explain the algorithm, we first show the underlying idea and the cor-
rectness proof of our approach. Lemma 4 states that under certain condition,
applying the “⊕ai” operator multiple times has the same effect as applying
only once.

Lemma 4. S �i S ⊕ ai → S ⊕ ai ⊕ ai = S ⊕ ai.

Rationale. By definition, S �i S ⊕ i means that S ∩ {a1, a2, . . . , ai−1} ∪
{ai} = S ⊕ ai ∩ {a1, a2, . . . , ai−1} ∪ {ai}. Since S ⊕ ai ⊕ ai = ϕ ◦ ψ(S ⊕ ai ∩
{a1, a2, . . . , ai−1} ∪ {ai}), and ϕ ◦ ψ(S ∩ {a1, a2, . . . , ai−1} ∪ {ai}) = S ⊕ ai,
we have S ⊕ ai ⊕ ai = S ⊕ ai.

Lemma 5. S �i S ⊕ ai and aj>Lai → S ⊕ ai ⊕ aj ⊃ S ⊕ ai.

Rationale. S⊕ai⊕aj = ϕ◦ψ(S⊕ai∩{a1, a2, . . . , aj−1}∪{aj}). Since ai ∈ S⊕ai

and aj>Lai, S ⊕ ai ∩ {a1, a2, . . . , aj−1} ∪ {aj} ⊃ S ⊕ ai ∩ {a1, a2, . . . , ai−1} ∪
{ai}. This implies ϕ ◦ ψ(S ⊕ ai ∩ {a1, a2, . . . , aj−1} ∪ {aj}) ⊃ ϕ ◦ ψ(S ⊕ ai ∩
{a1, a2, . . . , ai−1} ∪ {ai}), which is equivalent to S ⊕ ai ⊕ aj ⊃ S ⊕ ai.

The implication of Lemma 5 is that if a 1-complete region C1 in subspace
S ⊕ ai does not have enough density, then there is no need to check any
attribute aj>Lai. This is because Lemma 5 proves that S ⊕ ai ⊕ aj is a
superset of S ⊕ ai, thus the cluster C2 in S ⊕ ai ⊕ aj must have a density less
than dens(C1). Furthermore, since the weights is non-decreasing along any
branches after we sort the attributes into increasing density, densw(C2) must
also be less than densw(C1). Thus if we know that densw(C1)<δ, S⊕ai⊕aj can
be safely pruned. Similarly, we can prove the following Lemma 6 by induction.

Lemma 6. S �i S⊕ai and akm
>L . . . >Lak2>Lak1>Lai → S⊕ai⊕ak1 . . .⊕

akm
⊃ S ⊕ ai.
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Lemma 6 tells us that if a 1-complete region C1 in subspace S ⊕ ai does
not have enough weighted density, we can directly jump to test S ⊕ aj for
aj<Lai because anything in between must not meet the minimum weighted
density threshold, which leads to Theorem 1.

Theorem 1. The lectical smallest closed subspace larger than a given subspace
S ⊂ A and having weighted density larger than δ is S ⊕ ai, where ai is the
lexicographically largest attribute which satisfies densw(S ⊕ ai)>δ and S �i

S ⊕ ai.

Rationale. Let S ⊕ aj be the lectically smallest closed subspace that is larger
than S. If densw(S⊕aj)>δ, the theorem is true since it is the same case as in
Lemma 3. If densw(S⊕aj)<δ, let ai be the largest attribute for which ai<Laj

and S �i S ⊕ ai hold. So we need to show that S ⊕ aj ⊕ ai is the lectically
smallest closed subspace that is larger than S ⊕ aj , and potentially could
have enough weighted density. Since densw(S ⊕ aj)<δ, Lemma 6 guarantees
the search to start with aj−1 for the smallest weighted dense cluster. Since
S �j S ⊕ aj , S ∩ {a1, . . . , aj−1} = S ⊕ aj ∩ {a1, . . . , aj−1}. So the search for
the next ai performs the same on S and S ⊕ aj , that is, S ⊕ ai = S ⊕ aj ⊕ ai.
So S ⊕ ai is the lectically smallest closed subspace that is larger than S and
could have enough weighted density. If dens(S ⊕ ai)>δ, this theorem is true.
Otherwise, find the next ak<Lai for which S �k S ⊕ ak, and the proof can
be completed inductively.

3.3 Lectical Weighted Dense Region Mining Algorithm

Theorem 1 states that if we find that a subspace S⊕ai is not weighted dense,
we can prune the search space by skipping all aj>Lai, and check directly on
ai−1 in the next iteration of the algorithm. Algorithm 1 is a straightforward
implementation of this idea. Based on the correctness of Theorem 1, we can
conclude the correctness of Theorem 2.

Algorithm 1 Lectical weighted dense region mining algorithm
1. C = <O, S> ← <ψ(φ), ϕ ◦ ψ(φ)>
2. IF (densw(C)>δ)
3. Add C = <O, S> to Tree
4. found ← true
5. END IF
6. REPEAT
7. (C, found) ← findnext(C)
8. UNTIL found = false

Theorem 2. Algorithm 1 finds all maximal 1-complete regions that satisfy
the minimum weighted density threshold δ.
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FUNCTION: findnext(C)
1. found ← FALSE
2. o ← lexicographlly − largest({i|ai �∈ S})
3. WHILE (!found) AND (o ≥ 0)
4. IF (ao �∈ S)
5. C = <O, S> ← <ψ(S ⊕ ao), S ⊕ ao>
6. IF (densw(C)>δ) AND (S �o S)
7. found ← TRUE
8. Add C = <(O), S> to Tree
9. END IF
10. END IF
11. o ← o − 1
12. END WHILE
13. RETURN (C, found)

Fig. 4. Search tree of sorted data

The search starts out by finding the closure of the empty subspace (line 1),
and adding that to the tree of closed subspace if it has enough weighted density
(line 2–3). Then the algorithm keeps looking for the next lectically larger
closed subspace satisfying the weighted density constraint until no more such
subspaces can be found (line 6–8).

Function findnextbasic accepts a 1-complete region C as parameter, and
returns the next lectically smallest closed and weighted dense subspace and
its corresponding maximal 1-complete region. First the flag found is set to
be false. Starting from the lexicographically largest attribute not contained
in the current subspace S, it looks for an attribute ao that meets the two
conditions at line 6. The loop terminates either with a successful candidate
or when all the possibilities have been tried (line 3).

Figure 4 traces the algorithm on the dataset shown in Table 3 with δ =
0 (no weighted density pruning). Nodes in the tree are those being visited.
Underlined nodes are non-maximal ones. The arrows indicate the sequence of
visiting. Suppose we start from node S = φ. Since the current subspace is
empty, the largest attribute not contained in S is d. Then we compute the
S ⊕ {d} = {d}. Since S �d S ⊕ {d}, we output cluster <{123467}, {d}> and
keep looking for the next one.
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3.4 Optimizing Techniques

In this section, we present several methods to optimize the time complexity of
the basic algorithm. The data is stored as bit strings, that is, each attribute
is represented as a string of 0 and 1. The major operation of our algorithm
is bit intersection. When the percentage of 1 entries in the dataset is larger
than 10%, using bit strings not only saves memory space, it also makes the
computations more efficient.

Reuse Previous Results in Computing O

The most expensive operation in Function findnext is at line 5, where we
need to compute the S = S ⊕ ao and its object set O = ψ(S ⊕ ao). Notice
that for any node in the prefix tree as shown in Fig. 2, its object set can be
computed incrementally from the object set of its parent. That is, the object
of the child node is the intersection of the object set of the parent node and
ψ(ao), where ao is the newly added attribute. For example, the object set of
cd can be computed by taking the intersection of the object set of its parent
node c({123467}) and ψ(d) ({12467}). So we can maintain the object sets
of all the nodes on the current branch of the search tree on a stack called
curPath to avoid duplicated intersection operations.

However, when the search moves from one branch to the other, the stack
curpath needs to be updated to maintain the correctness of the object set
computation. For example, after we visited node ad, the next node to be
visited is ac. But the object set of ac can not be incrementally computed
based on the object set of ad, while it can be computed incrementally based
on the object set of a. So we maintain another stack of attribute id called
istack, which keeps track of all the attribute id for which S �o S ⊕ ao is
true. For example, after we find that the next closed subspace after ϕ ◦ ψ(φ)
is <{123467}, c>, we push the object set into curPath and we push c into
stack istack. When we try to find the next closed subspace after c, we check
if o is larger than the top of istack. If yes, that means that we are still on
the same branch of the search tree, so there is no need to change the stack; if
no, that means that we are jumping to a different branch, so pop up all the
elements in iStack that is larger than o. When popping out the elements in
iStack, curPath is also updated in the similar fashion. That is, whenever pop
out an element from iStack, we also pop out an element from curPath.

Stack of Unpromising Nodes

Observe the search tree in Fig. 2. Starting from node φ, we first check if
φ�d φ⊕d. Since φ⊕d = {cd}, we know that any closed subspaces that contain
d must also contain c. So, after we reach node {a}, there is no need to check
{ad}, since we know for sure that it can not be closed. For this type of pruning,
we maintain a stack called prelistStack. This stack contains elements called
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prelist, and for each attribute i, prelist[i] is the id of the lexicographically
smallest attribute j for which ψ(j) ⊇ ψ(i). Initially set all prelist[i] = i.
During the search algorithm, set the elements accordingly. Similar to curPath
and iStack, prelist needs to be updated when we jump between branches.

4 Experimental Results

We tested our algorithm on three datasets as listed in Table 4, which includes
the name of the dataset, number of objects, number of attributes, minimum
density of the attributes, and maximal density of the attributes. Mushroom
and Chess are from [4], and Cog is from [10].1 The objective of the experiments
is to show that our algorithm can indeed find clusters both from dense sub-
spaces and relatively sparse subspaces. All our experiments were performed
on 2.4 GHz Pentium PC with 512 MB memory running Windows 2000.

All test data are very dense in the sense that the number of maximal
1-complete regions contained in the datasets is much larger than the number
of objects in the datasets. Another feature of these data is that their at-
tributes have quite different densities. Mushroom contains 129 attributes and
8,124 objects, while the most dense attribute contains all ‘1’s and the least
dense attribute contains only four ‘1’s. The other two datasets have similar
characteristics. Figure 5 shows the density distribution of the attributes for all
the three datasets. For the Chess dataset, around 30% of the attributes have
density less than 20%. If we set the minimum density to be 20%, we will not be
able to find any patterns in almost one thirds of the subspaces. One possible so-
lution to find patterns in these less dense subspaces is to reduce the minimum
density threshold to less than 20%. However, reducing the minimum density
threshold leads to an exponential growth in the total number of clusters being
found, most of which belong to the more dense subspaces. So we perform the
following experiments to show that our algorithm can find weighted dense
1-complete regions in both dense subspaces and sparse subspaces.

We compared our algorithm with CLOSET+ [11], which is an enhanced
version of CLOSET [9]. For CLOSET+, a very small minimum density
threshold value is needed in order to find those weighted dense clusters in the
less dense subspaces. We set the minimum density threshold for CLOSET+
to be a value such that it can find all weighted dense regions larger than a

Table 4. Datasets characteristics

# Of objs # Of attrs Minimum density Maximum density

Mushroom 8,124 129 0.01 1
Chess 3,196 75 0.03 1
COG 3,307 43 0.11 0.60

1Cog stands for clusters of orthologous genes.
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Fig. 5. Density distribution for all attributes

certain threshold value. For example, the least dense attribute in COG has
density 0.11. If we want to find weighted dense clusters that have this least
dense attribute, the minimum density threshold must be set to be no larger
than 0.11. However, our tests show that for Chess and COG, CLOSET+ runs
out of memory for these low threshold values. For Mushroom, CLOSET+ can
finish the mining task for all threshold values.

Our algorithm uses almost the same amount of memory for all weighted
density threshold values, since the computation of the next cluster depends
only on the current cluster and not on any other previously found ones.
As shown in Fig. 6, our algorithm uses almost the same amount of mem-
ory for all weighted density threshold values for all datasets. Compared with
CLOSET+, our algorithms uses much less memory on Mushroom. For Chess
and COG, the difference is more significant as CLOSET+ cannot finish the
task due to insufficient memory.

We also compared the running time of our algorithm with CLOSET+ on
the Mushroom data. Since CLOSET+ runs out of memory on Chess and Cog,
we only report the running time for our algorithm. In order to find weighted
dense clusters in the least dense subspaces, CLOSET+ needs to find almost
all dense regions, which explains why its running time is almost constant for all
threshold values. Even if we want to find all the maximal 1-complete regions
in the data, our algorithm is still faster than CLOSET+.

Figure 9 shows the total number of clusters being found for various
weighted density threshold values. For all three datasets, the running time
curves as shown in Figs. 7 and 8 fit very well with the curves in Fig. 9. This
suggests that our algorithm has a linear time complexity with the number of
clusters being found.
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We also want to show through experiments that using weighted density
can find more clusters in less dense subspaces. So we compared the results
from density pruning with the results from weighted density pruning. For fair
comparison, we only compare when the minimum density threshold and the
minimum weighted density threshold are equally selective, that is, there are
equal number of clusters that satisfy each of the constraint. Figure 10 shows
the percentage of the clusters being found after each attribute id on COG
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when there are 10,000 clusters being found. Attributes are numbered such
that more dense larger attributes have larger ids. The search starts from the
attribute that has the largest id (45 in this case), and ends when it finishes
attribute 0. From the figure we can see that when using weighted density, more
clusters in the less dense subspaces are returned. Close examination reveals
that using minimum density threshold, seven attributes are not included in
any clusters. On the other hand, using weighted density, all attributes belong
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to at least one cluster. We tested a set of different selective threshold values
on all three datasets, and all of them confirms that using the weighted density
constraint finds more clusters in less dense subspaces.

5 Conclusion

We have presented a new subspace clustering mining algorithm to find
weighted dense maximal 1-complete regions in high dimensional datasets. Our
algorithm is very memory efficient, since it does not need to keep all the clus-
ters found so far in the memory. Unlike other density mining algorithms which
tend to find only patterns in the dense subspaces while ignore patterns in less
dense subspaces, our algorithm finds clusters in subspaces of all densities. Our
experiments showed that our algorithm is more efficient than CLOSET+ from
both time complexity and memory consumption perspectives.
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Summary. In this chapter, we propose a mining algorithm based on angles of ad-
jacent points in a time series to find linguistic trends. The proposed approach first
transforms data values into angles, and then uses a sliding window to generate con-
tinues subsequences from angular series. Several fuzzy sets for angles are predefined
to represent semantic concepts understandable to human being. The a priori-like
fuzzy mining algorithm is then used to generate linguistic trends. Appropriate post-
processing is also performed to remove redundant patterns. Finally, experiments are
made for different parameter settings, with experimental results showing that the
proposed algorithm can actually work.

1 Introduction

Time-series data are commonly seen around our daily life. They are the data
recorded at each time interval. For example, the stock prices evolving over
a period of time are an example of a time series. Many sets of data in the
fields like telecommunication, bioinformatics and medical treatment, are time
series data.

Finding useful patterns from time-series data has recently become an im-
portant issue for researchers in the data-mining fields. Indyk et al. focused on
the problem of identifying representative trends, such as relaxed periods and
average trends over a period of observations in time series [8]. They first gen-
erated a template set of sketches by using polynomial convolution, where each
sketch is a low dimensional vector. The sketches were then used to replace each
interval to find representative trends. Patel et al. proposed a method based on
Euclidean distance to find k-motifs, which mean frequently occurring patterns
in time series [11]. They first normalized time series data, and then used ap-
proximated piecewise aggregation to reduce data dimension [9, 15]. After the
C.-H. Chen et al.: Mining Linguistic Trends from Time Series, Studies in Computational

Intelligence (SCI) 118, 49–60 (2008)
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data dimension was reduced, they further transformed the data into a discrete
representation and mined k-motifs from the transformed time series. Agrawal
et al. proposed an algorithm to capture the shapes from historical time-series
database by using a simple translation [2]. They first transformed the differ-
ence value of every two adjacent data points into a predefined category, such
as increase, steep increase, steep decrease, decrease, no-change, and zero. The
same time series may be labeled more than one category. In other words, the
intervals among these categories have overlapped a little. The transformed
symbolic series were then used for querying desired results.

Most of the above approaches, however, usually require predefined crisp
intervals for each category. It thus needs domain knowledge and depends on
applications. Udechukwu et al. thus proposed a domain-independent trend-
encoding method to mine frequent trends [13]. They transformed the difference
value between two adjacent data points into an angle, instead of the difference
value itself. The angles lay within the range −900 to 900, and were partitioned
into 52 predefined angular categories, represented by letters. They then used
the data structure of suffix trees to find the maximally repeated patterns as
frequent trends. In this way, the effect of the domain knowledge could be
reduced. Their approach, however, had too many angular categories, which
might cause users hard to understand the meaning of the patterns easily.

As to fuzzy data mining, Hong et al. proposed several fuzzy mining al-
gorithms to mine linguistic association rules from quantitative data [6, 7, 10].
They transformed each quantitative item into a fuzzy set and used fuzzy oper-
ations to find fuzzy rules. Their approaches, however, focused on transaction
data. For time-series data, Song et al. proposed a fuzzy stochastic time series
and built a model by assuming the values are fuzzy sets [12]. Chen et al. pro-
posed a two-factor time-variant fuzzy time-series model to deal with forecast-
ing problems [4]. Au and Chan proposed a fuzzy mining approach to find fuzzy
rules for classifying time-series [1]. Watanabe exploited the Takagi–Sugeno
model to build a time-series model [14].

In this chapter, we thus propose a mining algorithm based on angles of
adjacent points in a time series to find linguistic trends. Several fuzzy sets
for angles are predefined to represent semantic concepts understandable to
human being. The a priori-like fuzzy mining algorithm is then used to generate
linguistic trends. Appropriate post-processing is also performed to remove
redundant patterns. Since the final results are represented by linguistic terms,
they will be friendlier to human than quantitative representation.

2 Mining Linguistic Trends for Time Series

The proposed fuzzy mining algorithm integrates the fuzzy sets, the a pri-
ori mining algorithm and the time-series concepts to find out appropriate
linguistic trends from a time series. The proposed approach first transforms
data values into angles, and then uses a sliding window to generate continuous
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subsequences from the transformed angular series. Several fuzzy sets for angles
are predefined to represent semantic concepts understandable to human be-
ing. Finally, an a priori-like fuzzy mining algorithm is proposed to generate
linguistic trends. Appropriate post-processing is also performed to remove re-
dundant patterns. Details of the proposed mining algorithm are described
below.

The proposed mining algorithm for linguistic trends:

INPUT: A time series S with k data points, a set of h membership functions
for angles, a predefined minimum support α, and a sliding-window
size w.

OUTPUT: A set of linguistic trends.

STEP 1: Transform every two adjacent data points in the time series S into
an angle. Assume S = (d1, d2, d3, . . . , dk). Then the resulting
angular series S’ is formed as:

S′ = (a1, a2, a3, . . . , ak−1),

where ai is the angle from data point di to di+1.
STEP 2: Transform S’ into a set of subsequences W (S) according to the

sliding-window size w. That is,

W (S′) = {sp|sp = (ap, ap+1, . . . , ap+w−1), p = 1 to k − w},

where ap is the value of the p-th angle in S’.
STEP 3: Transform the j-th (j = 1 to w) quantitative value (angle) vpj in

each subsequence sp (p = 1 to k-w) into a fuzzy set fpj , repre-
sented as: (

fpj1

Rj1
,
fpj2

Rj2
, · · · , fpjh

Rpjh

)
,

using the given membership functions, where Rjl is the l-th fuzzy
region of the j-th data point in each subsequence, h is the number
of fuzzy memberships, and fpjl is vpj ’s fuzzy membership value in
region Rjl. Each Rjl is called a fuzzy term.

STEP 4: Calculate the scalar cardinality of each fuzzy term Rjl as:

countjl =
k−w∑
p=1

fpjl.

STEP 5: Collect each fuzzy term to form the candidate 1-patternsets C1.
STEP 6: Check whether the support (=countjl/(k − w)) of each Rjl in

C1 is larger than or equal to the predefined minimum support
value. If Rjl satisfies the above condition, put it in the set of large
1-pattern-sets (L1). That is:

L1 = {Rjl|countjl ≥ α, 1 ≤ j ≤ p+ w − 1 and 1 ≤ l ≤ h}.
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STEP 7: If L1 is not null, then do the next step; otherwise, exit the algo-
rithm.

STEP 8: Set r = 1, where r is used to represent the number of fuzzy terms
in the current pattern-sets to be processed.

STEP 9: Join the large r-pattern-sets Lr to generate the candidate (r+1)-
pattern-set Cr+1 in a way similar to that in the a priori algorithm
[3] except that two items generated from the same order of data
points in subsequences cannot simultaneously exist in a pattern in
Cr+1. Besides, the first (r-1)-subpattern in a large r-pattern must
be the same with the last (r-1)-subpattern in another r-pattern to
form a candidate (r+1)-pattern in Cr+1.

STEP 10: Do the following substeps for each newly formed (r+1)-pattern I
with fuzzy terms (I1, I2, . . . , Ir+1) in Cr+1:

STEP 10.1 Calculate the fuzzy value of I in each subsequence sp as f (sp)
I

= f
(sp)
I1

∧ f (sp)
I2

∧, . . . ,∧f (sp)
Ir+1

, where f (sp)
Ij

is the membership
value of fuzzy pattern Ij in sp. If the minimum operator is
used for the intersection, then:

f
(sp)
I = Minr+1

j=1f
(sp)
Ij

STEP 10.2 Calculate the count of I in all subsequences as:

countI =
k−w∑
p=1

f
(Sp)
I .

STEP 10.3 If the support of I is larger than or equal to the predefined
minimum support value α, put it in Lr+1.

STEP 11: IF Lr+1 is null, then do the next step; otherwise, set r = r + 1 and
repeat Steps 8–10.

STEP 12: Shift each large pattern (I1, I2, . . . , Iq), q≥2, into (I ′1, I
′
2, . . . , I

′
q),

such that the fuzzy region Rjl in I1 will become R1l in I ′1 and a
fuzzy region Rit in the other items will become R(i−j+1)t, where Rjl

is the l-th fuzzy region of the j-th data point in each subsequence.
STEP 13: Remove redundant large patterns from the results after Step 12.
STEP 14: Output the maximally large patterns generated from Step 13 as

the linguistic trends.

3 An Example

In this section, a simple example is given to show how the proposed algorithm
can generate fuzzy linguistic trends from the given time series. Assume the
data points in a time series are shown in Table 1. The time series in Table 1
contains 13 data points. Each data point represents a value at a certain time.
For example, the second data point in the time series means the value obtained
at time 2 is 4.
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Table 1. The time series used in this example

Time series

3, 4, 7, 9, 8, 3, 2, 4, 8, 10, 8, 4, 2

Low
1

0 20 40 45 50 70

Membership value

LowMiddle Middle MiddleHigh High

Angle

Fig. 1. The membership functions for angles

Table 2. The transformed angular series from Table 1

Angular sequence

45, 71.56, 63.43, −45, −78.96, −45, 63.43, 75.96, 63.43, −63.43, −75.96, −63.43

The range of the angles is between −900 and 900. Assume the member-
ship functions for the angular values are defined as shown in Fig. 1. There
are five fuzzy membership functions, represented as linguistic terms, Low,
LowMiddle, Middle, MiddleHigh and High, for positive angles. There are
another five membership functions, represented as low, lowmiddle, middle,
middlehigh and high, for negative angles. Thus, the uppercase initial letter
means the angle is positive, and the lowercase initial letter means the angle
is negative.

For the time series given in Table 1, the proposed fuzzy mining algorithm
proceeds as follows.

STEP 1: Every two adjacent data points in Table 1 are transformed into
an angle. The results are shown in Table 2.

STEP 2: The angular series is then used to generate a set of subsequences
according to the predefined window size. Assume the given window size is 6.
There are totally 7 (=13 − 6) subsequences to be obtained. The results are
shown in Table 3.

STEP 3: The angular values in each subsequence are then transformed
into fuzzy sets according to the membership functions given in Fig. 1. Take
the first value v11 (=45) in the subsequence s1 as an example. The value “45”
is converted into the fuzzy set (1.0/P1.m), where Pi.term is a fuzzy region of
the i-th data in the subsequences and is called a fuzzy term. For example, P1.m
represents the fuzzy region middle of the first data point in each subsequence.
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Table 3. The transformed angular series from Table 1

Sp Subsequence

S1 (45, 71.56, 63.43, −45, −78.96, −45)
S2 (71.56, 63.43, −45, −78.96, −45, 63.43)
S3 (63.43, −45, −78.96, −45, 63.43, 75.96)
S4 (−45, −78.96, −45, 63.43, 75.96, 63.43)
S5 (−78.96, −45, 63.43, 75.96, 63.43, −63.43)
S6 (−45, 63.43, 75.96, 63.43, −63.43, −75.96)
S7 (63.43, 75.96, 63.43, −63.43, −75.96, −63.43)

Table 4. The fuzzy sets transformed from the data in Table 3

Sp P1 P2 P3 P4 P5 P6

S1 P1.m(1) P2.h(.92) P3.mh(.32) P4.M(1) P5.H(.56) P6.M(1)
P3.h(.67)

S2 P1.h(.92) P2.mh(.32) P3.M(1) P4.H(.56) P5.M(1) P6.mh(.32)
P2.h(.67) P6.h(.67)

S3 P1.mh(.32) P2.M(1) P3.H(.56) P4.M(1) P5.mh(.32) P6.h(.70)
P1.h(.67) P5.h(.67)

S4 P1.M(1) P2.H(.56) P3.M(1) P4.mh(.32) P5.h(.70) P6.mh(.32)
P4.h(.67) P6.h(.67)

S5 P1.H(.56) P2.M(1) P3.mh(.32) P4.h(.70) P5.mh(.32) P6.MH(.32)
P3.h(.67) P5.h(.67) P6.H(.67)

S6 P1.M(1) P2.mh(.32) P3.h(.70) P4.mh(.32) P5.MH(.32) P6.H(.70)
P2.h(.67) P4.h(.67) P5.H(.67)

S7 P1.mh(.32) P2.h(.70) P3.mh(.32) P4.MH(.32) P5.H(.70) P6.MH(.32)
P1.h(.67) P3.h(.67) P4.H(.67) P6.H(.67)

This step is repeated for the other angles and subsequences, with the results
shown in Table 4.

STEP 4: The scalar cardinality of each fuzzy term is calculated as its count
value. Take the fuzzy term P1.h as an example. Its scalar cardinality = (0 +
0.92 + 0.67 + 0 + 0 + 0 + 0.67) = 2.26. This step is repeated for the other
fuzzy terms.

STEP 5: All the fuzzy items are collected as the candidate 1-pattern-sets.
STEP 6: For each fuzzy candidate 1-pattern, its support is checked against

the predefined minimum support value α. Assume in this example, α is set at
0.075. Since the support values of all the candidate 1-patterns are larger than
0.075, these patterns are thus put in L1 (Table 5).

STEP 7: Since L1 is not null, the next step is done.
STEP 8: Set r = 1, where r is the number of fuzzy terms in the current

pattern-sets to be processed.
STEP 9: In this step, the candidate set Cr+1 is generated from Lr.

C2 is thus first generated from L1. In this example, totally 19 candidate
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Table 5. The set of large 1-pattern-sets L1 for this example

Itemset Count Itemset Count Itemset Count

P1.h 2.26 P3.M 2.00 P5.h 2.04
P1.M 2.00 P3.mh 0.96 P5.M 1.00
P1.m 1.00 P4.M 2.00 P6.H 2.04
P2.h 2.96 P4.H 1.23 P6.h 2.04
P2.M 2.00 P4.h 2.04 P6.M 1.00
P3.h 2.71 P5.H 1.93

Table 6. The membership values for P1.H ∩ P2.H

sp P1.h P2.h P1.h ∩ P2.h

1 0 0.92 0.0
2 0.92 0.67 0.67
3 0.67 0 0.0
4 0 0 0.0
5 0 0 0.0
6 0 0.67 0.0
7 0.67 0.70 0.67

2-pattern-sets are generated. Note that no two fuzzy terms with the same
Pi are put in a candidate 2-pattern-set.

STEP 10: The following substeps are done for each newly formed candidate
pattern-set.

STEP 10.1: The fuzzy membership value of each candidate pattern-set in
each subsequence is calculated. Here, assume the minimum operator is used
for the intersection. Take (P1.h, P2.h) as an example. The derived membership
value for this candidate 2-pattern-set in s2 is calculated as: min(0.92, 0.67) =
0.58. The results for the other subsequences are shown in Table 6.

STEP 10.2: The scalar cardinality (count) of each candidate 2-pattern-set
in the subsequences is then calculated.

STEP 10.3: The supports of the above candidate pattern-sets are then
calculated and compared with the predefined minimum support 0.075. In
this example, 18 pattern-sets satisfy this condition. They are thus kept in
L2 (Table 7).

STEP 11: Since L2 is not null in the example, r = r + 1 = 2. Steps 8–10
are then repeated to find L3 and others. In this example, the other fuzzy large
pattern-sets found are shown in Table 8.

STEP 12: The large patterns are shifted to the ones with the first data-
point subscript. For example, the three patterns (P2.h, P3.h, P4.h), (P3.h,
P4.h, P5.h) and (P4.h, P5.h, P6.h) in L3 are shifted into (P1.h, P2.h, P3.h).
The other patterns are also checked for shifting in the same way.

STEP 13: Redundant patterns are removed. For example, the four large
patterns, (P1.h, P2.h, P3.h), (P1.h, P2.h, P3.h), (P1.h, P2.h, P3.h) and (P1.h,
P2.h, P3.h), are the same and only one of them is kept. The final results are
shown in Table 9.
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Table 7. The pattern-sets and their counts in L2

Itemset Count Itemset Count

(P1.h, P2.h) 1.34 (P3.M, P4.h) 0.67
(P1.h, P2.M) 0.67 (P4.M, P5.h) 0.67
(P1.M, P2.h) 0.67 (P4.H, P5.H) 0.67
(P1.m, P2.h) 0.92 (P4.h, P5.H) 0.67
(P2.h, P3.h) 2.01 (P4.h, P5.h) 1.34
(P2.h, P3.M) 0.67 (P5.H, P6.H) 1.34
(P2.M, P3.h) 0.67 (P5.h, P6.H) 0.67
(P3.h, P4.M) 0.67 (P5.h, P6.h) 1.34
(P3.h, P4.H) 0.67 (P5.M, P6.h) 0.67
(P3.h, P4.h) 1.34
(P3.h, P4.h) 1.34

Table 8. The other fuzzy large pattern-sets

Li Pattern-set

L3 (P1.h, P2.h, P3.h), (P1.h, P2.h, P3.M), (P1.M, P2.h, P3.h), (P1.m, P2.h, P3.h),
(P2.h, P3.h, P4.M), (P2.h, P3.h, P4.H), (P2.h, P3.h, P4.h), (P2.M, P3.h, P4.h),
(P3.h, P4.H, P5.H), (P3.h, P4.h, P5.H), (P3.h, P4.h, P5.h), (P3.M, P4.h, P5.h),

(P4.M, P5.h, P6.h), (P4.H, P5.H, P6.H), (P4.h, P5.H, P6.H), (P4.h, P5.h, P6.H),
(P4.h, P5.h, P6.h)

L4 (P1.h, P2.h, P3.h, P4.H), (P1.M, P2.h, P3.h, P4.h), (P1.m, P2.h, P3.h, P4.M),
(P2.h, P3.h, P4.H, P5.H), (P2.h, P3.h, P4.h, P5.H), (P2.M, P3.h, P4.h, P5.h),
(P3.h, P4.H, P5.H, P6.H), (P3.h, P4.h, P5.H, P6.H), (P3.h, P4.h, P5.h, P6.H),

(P3.M, P4.h, P5.h, P6.h)

L5 (P1.h, P2.h, P3.h, P4.H, P5.H), (P1.M, P2.h, P3.h, P4.h, P5.H),
(P2.h, P3.h, P4.H, P5.H, P6.H), (P2.h, P3.h, P4.h, P5.H, P6.H),

(P2.M, P3.h, P4.h, P5.h, P6.H)

L6 (P1.h, P2.h, P3.h, P4.H, P5.H, P6.H),
(P1.M, P2.h, P3.h, P4.h, P5.H, P6.H)

Table 9. The final large patterns after Step 13

Li Pattern-set

L1 (H), (h), (mh), (M), (m)
L2 (h, H), (h, h), (H, H), (h, M), (m, h), (M, h)
L3 (H, H, H), (m, h, h), (h, h, H), (h, h, h),

(h, H, H), (h, h, M), (M, h, h)
L4 (M, h, h, h), (m, h, h, M), (h, H, H, H)

(h, h, h, H), (h, h, H, H)
L5 (h, h, h, H, H), (M, h, h, h, H), (h, h, H, H, H)
L6 (h, h, h, H, H, H), (M, h, h, h, H, H)
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STEP 14: The maximally fuzzy patterns generated from Step 13 are output
as fuzzy linguistic trends that are (mh), (m,h, h,M), (h, h, h,H,H,H) and
(M,h, h, h,H,H).

4 Experimental Results

In this section, the experiments made to show the performance of the pro-
posed method are described. They were implemented in Java at a personal
computer with Intel Pentium IV 3.20 GHz and 512 MB RAM. The dataset
used in the experiments is a set of synthetic control-chart time series from
The UCI KDD Archive [5]. The dataset contains 600 examples of control
charts synthetically generated. The six classes are normal, cyclic, increasing
trend, decreasing trend, upward shift, and downward shift. Each time se-
ries has sixty data points. One time series of each class was selected to make
the following experiments.

Experiments were first made to show the relationship between numbers of
linguistic trends and minimum support values. The sliding-window size was
set at ten and the number of membership functions for angles is ten, with
five for both positive and negative angles. Results for the class of decreasing
trend are shown in Fig. 2.

From Fig. 2, it is easily seen that the number of linguistic trends decreased
along with the increase of the length of large patterns except for L2 and L3.
Finding L2 and L3 was the main effort in the mining process, which was
consistent with previous study [6, 7, 10].
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Fig. 2. The relationship between numbers of linguistic trends and min. sup
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Table 10. The final large patterns aster Step 13

Li Fuzzy linguistic trends

L1 (MH), (M), (LM), (h), (mh), (m), (lm), (a), (H)
L2 (H, MH), (MH, H), (h, h), (lm, h), (H, h), (H, mh), (H, lm), (h, H), (H, H)
L3 (MH, h, h), (H, h, h), (H, lm, h), (h, H, h), (H, H, h),

(h, h, H), (H, h, H), (h, H, H), (h, H, MH)
L4 (h, H, h, H), (MH, H, h, H), (h, H, h, h), (h, H, H, h), (H, h, H, H), (H, h, H, h)
L5 (H, h, H, H, h)
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Fig. 3. The numbers of linguistic trends with and without Step 13

All the linguistic trends found for the class of decreasing trend with sliding-
window size set at 10 and the minimum support set at 0.015 are listed in
Table 10.

In Table 10, the pattern (H, h, H, H, h) is a linguistic trend with five
fuzzy items in L5. Lowercase and uppercase letters represent the positive and
negative angular degrees upward and downward directions respectively. Most
of the derived linguistic trends in Table 10 have the decreasing property, which
is consistent with the class of decreasing trend.

The experiments were then made to compare the numbers of linguistic
trends generated with and without Step 13 of removing redundant large pat-
terns. The results are shown in Fig. 3.

From Fig. 3, it can be easily observed that removing redundant fuzzy large
patterns during the mining process has its efficacy. Without this step, too
many redundant linguistic trends may be generated and may make users
confused.
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Fig. 4. The relationship between number of frequent trends and minimum supports
along with different sliding-window sizes

At last, experiments were made to show the relationship between numbers
of frequent trends and minimum supports along with different sliding-window
sizes. The results were shown in Fig. 4.

As expected, when the sliding-window size increased, the numbers of fre-
quent trends also increased.

5 Conclusion and Future Works

In this chapter, we have proposed a mining algorithm based on angles of ad-
jacent points in a time series to find linguistic trends. The proposed approach
first transforms data values into angles, and then uses a sliding window to
generate continues subsequences from angular series. Several fuzzy sets for
angles are predefined to represent semantic concepts understandable to hu-
man being. The a priori-like fuzzy mining algorithm is then used to generate
linguistic trends. Appropriate post-processing is also performed to remove
redundant patterns. Finally, experiments have been made for different para-
meter settings and experimental results shows that the proposed algorithm
actually works.

Although the proposed method works for time series, it is just a beginning.
There is still much work to be done in this field. In the future, we will contin-
uously attempt to enhance the proposed algorithm for other applications, like
telecommunication, bioinformatics, medical treatment and mobile computing.
Besides, we will also continuously enhance the proposed algorithm for mining
different kinds of knowledge.
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Summary. To organize a huge amount of Web pages into topics, according to
their relevance, is the efficient and effective method for information retrieval. Latent
Semantic Space (LSS) naturally in the form on some geometric structure in Com-
binatorial Topology has been proposed for unstructured document clustering. Given
a set of Web pages, the set of associations among frequently co-occurring terms
in them forms naturally a CONCEPT, which is represented as a set of connected
components of the simplicial complexes. Based on these concepts, Web pages can be
clustered into meaningful categories.

1 Introduction

To adequately handle documents, a methodology to represent or to reveal
their latent semantics are needed. To date, no universally accepted effective
methodology has been discovered. In previous paper [15], we have pictured the
latent semantics geometrically and call it the Latent Semantic Space (LSS) of
the given set of documents. We take the key terms as vertices and visualize the
term-associations(frequent co-occurring terms) as simplicial complex in LSS.
Our thesis has been: a maximal connected component represents a CONCEPT
in LSS of a collection of documents. However, in [15], we have not explored
the full thesis, we consider only the PIMITIVE COMCEPTs of the highest
dimension. Technically, we consider only the maximal connect components
of the skeleton of the highest layer. In this paper, we explore the full notion

I-J. Chiang et al.: Latent Semantic Space for Web Clustering, Studies in Computational

Intelligence (SCI) 118, 61–77 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



62 I-J. Chiang et al.

of PRINITIVE CONCEPTs and the results are very encouraging.1 These
results can directly obtained from search engines. All the returned results are
automatically clustered into different topics. The authoritative web pages in
each topic are ranked based on how similar web pages belong to the topic.
The experimental results indicate that we have an effective way to organize
the large amount of return from a web query.

Internet is an information ocean. How to marshal large amount of returned
web pages, paragraphs or sentences is the key issue. Roughly speaking, we de-
compose (triangulate, partition, granulate) LSS of documents (e.g., returned
web pages or sentences) into simplicial complex in combinatorial topology [23],
which could be viewed a special form of hypergraphs. However, we should
note that the notion of simplicial complexes is actually predated that of hy-
pergraphs about half a century, even though the latter notion is more familiar
to modern computer scientists.

Let us recall some examples to illustrate the main intuition. The associa-
tion that consists of “wall” and “street” denotes some financial notions that
have meaning beyond the two nodes, “wall” and “street”. This is similar to
the notion of open segment (v0, v1)) that represents one dimensional geo-
metric object, 1-simplex, that carries information beyond the two end points.
In general, an r-association represents some semantic generated by a set of
r keywords, may have more semantics or even have nothing to do with the
individual keywords. A mathematical structure that reflects such phenomena
is the notion of simplicial complex in combinatorial topology; see Sect. 3.

The thesis of this paper is that the simplicial complex of term-associations
reflects the structure of the concepts in LSS of the documents. Based on such
conceptual structure, the documents (returned pages, paragraph, or sentences)
can be effectively clustered.

2 Key Terms and TDITF

The notion of association rules was introduced by Agrawal et al. [1] and has
been demonstrated to be useful in several domains [4, 5], such as retail sales
transaction database. In the theory two standard measures, called support and
confidence, are often used. For documents the orders of keywords or directions
of rules are not essential. Our focus will be on the support; a set of items that
meets the support is often referred to as frequent itemsets; we will call them
associations (undirected association rules) as to indicate the emphasis on their
meaning more than the phenomena of frequency.

The frequency distribution of a word or phrase in a document collection is
quite different from the item frequency distribution in a retail sales transaction
database. In [14], we have shown that isomorphic relations have isomorphic

1The search engine’s web site is at “http://ginni.bme.ntu.edu.tw/”, which is a
pentium IV personal computer.



Latent Semantic Space for Web Clustering 63

associations. Documents are amorphous. An isomorphism essentially implies
identity. So finding associations in a collection of textual documents is an
important information and a challenging problem.

Traditional text mining generally consists of the analysis of a text docu-
ment by extracting key words, phrases, concepts, etc. and representing in an
intermediate form refined from the original text in that manner for further
analysis with data mining techniques (e.g., to determine associations of con-
cepts, key phrases, names, addresses, product names, etc.). Feldman and his
colleagues [6,7,9] proposed the KDT and FACT system to discover association
rules based on keywords labeling the documents, the background knowledge of
keywords and relationships between them. This is not an effective approach,
because a substantially large amount of background knowledge is required.
Therefore, an automated approach that documents are labeled by the rules
learned from labeled documents are adopted [13]. However, several associa-
tion rules are constructed by a compound word (such as “Wall” and “Street”
often co-occur) [19]. Feldman et al. [6, 8] further proposed term extraction
modules to generate association rules by selected key words. Nevertheless, a
system without the needs of human labeling is desirable. Holt and Chung [11]
addressed Multipass-a priori and Multipass-DHP algorithms to efficiently find
association rules in text by modified the a priori algorithm [2] and the DHP
algorithm [18] respectively. However, these methods did not consider about
the word distribution in a document, that is, identify the importance of a
word in a document.

According to the trivial definition of distance measure in this space, no
matter what kind of a method is, some common words are more frequent in
a document than other words. Simple frequency of the occurrence of words is
not adequate, as some documents are larger than others. Furthermore, some
words may occur frequently across documents. In most cases, words appeared
in a few documents tend to most “important.” Techniques such as TFIDF [21]
have been proposed directly to deal with some of these problems. The TFIDF
value is the weight of term in each document. While considering relevant
documents to a search query, if the TFIDF value of a term is large, then it
will pull more weight than terms with lesser TFIDF values.

A general framework for text mining consists of two phases. The first phase,
feature extraction, is to extract key terms from a collection of “indexed” doc-
uments; as a second step various methods such as association rules algorithms
may be applied to determine relations between features.

While performing association analyses on a collection of documents, all
documents should be indexed and stored in an intermediate form. Docu-
ment indexing is originated from the task of assigning terms to documents
for retrieval or extraction purposes. In early approach, an indexing model was
developed based on the assumption that a document should be assigned those
terms that are used by queries to retrieve the relevant document [10, 16].
The weighted indexing is the weighting of the index terms with respect
to the document with this model given a theoretical justification in terms
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of probabilities. The most simple and sophisticated weighted schema which
is most common used in information retrieval or information extraction is
TFIDF indexing, i.e., tf × idf indexing [20, 21], where tf denotes term fre-
quency that appears in the document and idf denotes inverse document fre-
quency where document frequency is the number of documents which contain
the term. It takes effect on the commonly used word a relatively small tf × idf
value. Moffat and Zobel [17] pointed out that tf × idf function demonstrates:
(1) rare terms are no less important than frequent terms in according to their
idf values; (2) multiple appearances of a term in a document are no less im-
portant than single appearances in according to their tf values. The tf × idf
implies the significance of a term in a document, which can be defined as
follows.

We observed that the direction of key terms (including compound words)
is irrelevant information for the purpose of document clustering. So we ignore
the confidence and consider only the support. In other words, we consider the
structure of the undirected associations of key terms; we believe the set of key
terms that co-occur reflects the essential information, the rule directions of
the key terms are inessential, at least in the present stage of investigation. Let
tA and tB be two terms. The support is defined for a collection of documents
as follows.

Definition 1. The significance of undirected associations of term tA and term
tB in a collection is:

significance(tA, tB,Tr) =
1

|Tr|

|Tr|∑
i=0

significance(tA, tB,di)

where

significance(tA, tB,di) = tf(tA, tB,di) log
|Tr|

|Tr(tA, tB)| ,

|Tr(tA, tB)| defines number of documents contained both term tA and term tB,
and |Tr| denotes the number of Web pages in a collection.

The term frequency tf(tA, tB,di) of both term tA and tB can be calculated as
follows.

Definition 2.

tf(tA, tB,dj) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 + log(min{N(tA, dj), N(tB , dj)})
if N(tA, dj) > 0 and N(tB , dj) > 0

0
otherwise.

A minimal threshold θ is imposed to filter out the terms that their signif-
icance values are small. It helps us to eliminate the most common terms in a
collection and the nonspecific terms in a document.
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Let tA and tB be two terms. The support defined in the document collection
is as follows.

Definition 3. Support denotes to be the significance of associations of term
tA and term tB in a collection, that is,

Support(tA, tB) = significance(tA, tB,Tr)

It is obvious that the support evaluated by tfidf satisfies the a priori
condition.

3 Geometric Theory of Latten Semantic Space

The goal of this section is to model the internal semantic of a collection of
documents using a set of geometric and topologic notions, called simplicial
complex that is a special form of hypergraphs [15].

3.1 Simplicial Complex

Let us introduce and define some basic notions in combinatorial topology. The
central notion is n-simplex.

Definition 4. A n-simplex is a set of independent abstract vertices [v0, . . . ,
vn+1]. A r-face of a n-simplex [v0, . . . , vn+1] is a r-simplex [vj0 , . . . , vjr+1 ]
whose vertices are a subset of { v0, . . . , vn+1 } with cardinality r + 1.

Geometrically 0-simplex is a vertex; 1-simplex is an open segment (v0, v1)
that does not include its end points; 2-simplex is an open triangle (v0, v1, v2)
that does not include its edges and vertices; 3-simplex is an open tetrahedron
(v0, v1, v2, v3) that does not includes all the boundaries. For each simplex,
all its proper faces (boundaries) are not included. An n-simplex is the high
dimensional analogy of those low dimensional simplexes (segment, triangle,
and tetrahedron)in n-space. Geometrically, an n-simplex uniquely determines
a set of n + 1 linearly independent vertices, and vice versa. An n-simplex is
the smallest convex set in a Euclidean space Rn that contains n+ 1 points v0
. . ., vn that do not lie in a hyperplane of dimension less than n. For example,
there is the standard n-simplex

δn = {(t0, t1, . . . , tn+1) ∈ Rn+1 |
∑

i

ti = 1, ti ≥ 0}

The convex hull of any m vertices of the n-simplex is called an m-face. The
0-faces are the vertices, the 1-faces are the edges, 2-faces are the triangles,
and the single n-face is the whole n-simplex itself. Formally,
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Definition 5. A simplicial complex C is a finite set of simplexes that satisfies
the following two conditions:

• Any set consisting of one vertex is a simplex.
• Any face of a simplex from a complex is also in this complex.

The vertices of the complex v0, v1, . . . , vn is the union of all vertices of those
simplexes ([23], pp. 108).

If the maximal dimension of the constituting simplexes is n then the complex
is called n-complex.

Note that, any set of n+ 1 objects can be viewed as a set of abstract ver-
tices, to stress this abstractness, some times we refer to such a simplex a com-
binatorial n-simplex. The corresponding notion of combinatorial n-complex
can be defined by (combinatorial) r-simplexes. Now, by regarding the key
terms, as defined by high TFIDT values, as abstract vertices, an association
of n + 1 key terms, called n + 1-association, is a combinatorial n-simplex:
A 2-association is an open 1-simplex. An open 1-simplex (“wall”, “street”)
represents a financial notion that includes some semantics that is well beyond
the two vertices, “wall” and “street.” A (n+1)-association is a combinatorial
n-simplex of keywords that often carries some deep semantics that are well
beyond the “union” of its vertices, or faces individually.

We need much more precise notions. A (n, r)-skeleton (denoted by Sn
r )

of n-complex is a n-complex, in which all k-simplexes(k ≤ r) have been re-
moved. Two simplexes in a complex are said to be directly connected if the
intersection of them is a nonempty face. Two simplexes in a complex are
said to be connected if there is a finite sequence of directly connected sim-
plexes connecting them. For any nonempty two simplexes A, B are said to be
r-connected if there exits a sequence of k-simplexes A = S0, S1, . . . , Sm = B
such that Sj and Sj+1 has an h-common face for j = 0, 1, 2, . . . ,m− 1; where
r ≤ h ≤ k ≤ n.

The maximal r-connected subcomplex is called a r-connected compo-
nent. Note that a r-connected component implies there does not exist any
r-connected component that is the superset of it. A maximal r-connected
sub-complexes of n-complex is called r-connected component. A maximal
r-connected component of n-complex is called connected component, if r = 0.

3.2 The Geometric Structure of Latent Semantic Space

From a collection of documents, a complex of term-associations can be gen-
erated. In this section, we will first examine the intuitive meaning of such a
complex. First let us recall the notion of hypergraph:

Definition 6. A hypergraph G = (V,E) contains two distinct sets where V
is a finite set of abstract vertices, and E = {e1, e2, . . . , em} is a nonempty
family of subsets from V , in which each subset is called a hyperedge.
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It is obvious that a simplicial complex is a hypergraph: the set of vertices is
V , and the set of simplexes is E. From the definition a simplicial complex is
a very special kind of hypergraphs. However, there intrinsic and fundamental
differences; Hypergraph is a combinatorial subject, while simplicial complex
is a geometric concept. We will use the geometry to represent the concepts or
thoughts in the collection of documents.

Note that the a priori conditions on term-associations meet the conditions
of the simplicial complex: an 1-association is the 0-simplex, and a “subset” of
an association is an association of shorter lengths. So the notion of simplicial
complex is a natural view of term-associations. We will take this view.

In our application each simplex represents a certain concept. The 0-simplex
(Network) might represents a CONCEPT. But it can be combined into many
different concepts. For example, the following 1-simplexes (Computer, Net-
work), (Traffic, Network), (Neural, Network), (Communication, Network),
and etc., express further and richer semantic than their individual 0-simplexes.
Of course, the 1-simplex (Neural, Network) is not conspicuous than the
2-simplexes (Artificial Neural Network) and (Biology, Neural, Network).

A collection of documents may carry a set of distinct CONCEPTS. Each
concept, we believe, is carried by a connected component of the complex of
term-associations. Here is our belief and our thesis:

• An IDEA (in the forms of complex of term-associations) may consist
many CONCEPTS (in the form of connected components) that consists of
PRIMITIVE CONCEPTS (in the form of simplexes). The maximal sim-
plexes of highest dimension is called MAXMIAL PRIMITIVE CONCEPT.
A simplex is said to be a maximal if no other simplex in the complex is
a superset of it. Intuitively the geometric dimension represents the degree
of preciseness or depth of the latent semantics that are represented by
term-associations.

Example 1 In Fig. 1, we have an idea that consist of 12 terms that or-
ganized in the forms of 3-complex, denoted by S3. Simplex(a, b, c, d) and
Simplex(w, x, y, z) are two maximal simplexes of 3, the highest dimension. Let
us consider S3

1 . It is the leftover from the removal of all 0-simplexes from S3:

f
g

y

w

z

x

e

c

h

a

b

d

Fig. 1. A complex with 12 vertexes
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• Simplex(a,b, c,d) and its ten faces:
– Simplex(a,b, c)
– Simplex(a,b,d)
– Simplex(a, c,d)
– Simplex(b, c,d)
– Simplex(a,b)
– Simplex(a, c)
– Simplex(b, c)
– Simplex(a,d)
– Simplex(b,d)
– Simplex(c,d)

• Simplex(a, c,h) and its three faces:
– Simplex(a, c)
– Simplex(a,h)
– Simplex(c,h)

• Simplex(c,h, e) and its three faces:
– Simplex(c,h)
– Simplex(h, e)
– Simplex(c, e)

• Simplex(e,h, f) and its three faces:
– Simplex(e,h)
– Simplex(h, f)
– Simplex(e, f)

• Simplex(e, f, x) and its three faces:
– Simplex(e, f)
– Simplex(e, x)
– Simplex(f, x)

• Simplex(f, g, x) and its three faces:
– Simplex(f, g)
– Simplex(g, x)
– Simplex(f, x)

• Simplex(g, x, y) and its three faces:
– Simplex(g, x)
– Simplex(g, y)
– Simplex(x, y)

• Simplex(w, x, y, z) and its ten faces:
– Simplex(w, x, y)
– Simplex(w, x, z)
– Simplex(w, y, z)
– Simplex(x, y, z)
– Simplex(w, x)
– Simplex(w, y)
– Simplex(w, z)
– Simplex(x, y)
– Simplex(x, z)
– Simplex(y, z)
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Note that Simplex(a, c), Simplex(c,h), Simplex(h, e), Simplex(e, f), Simplex
(f, x), Simplex(g, x), and Simplex(x, y) all have common faces. So they gen-
erate a connected path from Simplex(a,b, c,d) to Simplex(w, x, y, z), and sub-
paths. Therefore the S3

1 complex is connected. This assertion also implies that
S3 is connected. Hence the IDEA consists of a single CONCEPT(please note
the technical meaning of the IDEA and CONCEPT given above). Next, let us
consider the (3, 2)-skeleton S3

2 , by removing all 0-simplexes and 1-simplexes
from S3:

• Simplex(a,b, c,d) and its four faces:
– Simplex(a,b, c)
– Simplex(a,b,d)
– Simplex(a, c,d)
– Simplex(b, c,d)

• Simplex(a, c,h)
• Simplex(c,h, e)
• Simplex(e,h, f)
• Simplex(e, f, x)
• Simplex(f, g, x)
• Simplex(g, x, y)
• Simplex(w, x, y, z) and its four faces:

– Simplex(w, x, y)
– Simplex(w, x, z)
– Simplex(w, y, z)
– Simplex(x, y, z)

There are no common faces between any two simplexes, so S3
2 has eight con-

nected components, or eight CONCEPTS. For S3
3 , it consists of two noncon-

nected 3-simplexes or two MAXIMAL PRIMITIVE CONCEPTS.

A complex, connected component or simplex of a skeleton represent a
more technically refined IDEA, CONCEPT or PRIMITVE CONCEPT. If a
maximal connected component of a skeleton contains only one simplex, this
component is said to organize a primitive concept.

3.3 Layered Views

Based on the dimension hierarchies of primitive CONCEPTS, we can define
the notion of layered clustering As seen in Example 1, connected components
in Sn

k are contained in that of Sn
r , where k ≥ r.

Example 2 Figure 2 is 2-complex composed of the term set V = {tA, tB, tC}
in a collection of documents. It is a close 2-simplex; we recall here that a
closed simplex is a complex that consists of one simplex and all its faces. In
the skeleton S2

1 , all 0-simplexes are ignored, i.e., the terms depicted in dash
lines. The simplex set S= {Simplex2

1, Simplex1
2, Simplex1

3, Simplex1
4} is the
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Simplex4
W(C,A)

W(A,B,C)
tA

tC

tB

W(B,C )

Simplex2

Simplex1

Simplex3

Fig. 2. This figure illustrates the skeleton S3
1 of Example 2. It is composed from

three key terms {tA, tB , tC} of a collection of documents, where each simplex is
identified by its tfidf value and all 0-simplexes have been removed (the nodes are
drawn by using dash circles). Note that Simplex1 has dimension 2, we draw its
incidences with three vertices, but skip the incidences with three 1-simplexes

Fig. 3. This figure illustrates the layer structures of Example 1. The top layer is
skeleton (3, 3)-Skeleton that has two distinct CONCEPTS Simplex(a, b, c, d) and
Simplex(w, x, y, z). The middle layer (3, 2)-Skeleton has 8 CONCEPTS; it is not
illustrate here. The layer (3, 1)-Skeleton is skipped. The bottom layer (3, 0-Skeleton)
contains only one connected component; it is shown in the figure

closed 2-simplex that consists of one 2-simplex and three 1-faces, Simplex1
2,

Simplex1
3 and Simplex1

4 (0-faces are ignored). These r-simplexes (0 ≤ r ≤ 2)
represents frequent itemsets (term-associations) from V , where W={wA,B,
wC,A, wB,C , wA,B,C} denote their corresponding supports. The lines con-
necting Simplex1 and three vertices represent the incidences of 2-simplex and
0-simplex; the incidences with 1-simplexes are not shown to avoid overcrowd-
ing the figure.

According to Example 1, it is obvious that simplexes within the higher
level skeleton Sn

r is contained in the lower level skeleton Sn
k within the same

n-complex, r ≥ k. Figure 3 shows the hierarchy, each skeleton is represented
as a layer. For the purpose of simplicity, we skip the middle layer, namely, Sn

r ,
0 ≤ r < 3, are not shown.
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By considering different skeletons, we can draw distinct layer of
CONCEPTS:

1. In full complex S = Sn
0 , this example only has one CONCEPT (one

connected component).
2. In Sn

1 , this complex still has only one CONCEPT.
3. In Sn

2 , this complex has eight CONCEPTS.
4. in Sn

3 , this complex has two CONCEPTS; they are two MAXIMAL
PRIMITVE CONCEPTS.

For each choice, say Sn
2 , we have, in this case, eight CONCEPTS to label the

documents (or clustered the documents). A document is labeled CONCEPTk,
if the document has high TFITD values on the term-associations that defines
CONCEPTk. By consider different cases, we have layered clusters. In fact,
we even could consider a very coarse clustering that is, we consider only the
MAXIMAL PRIMITVE CONCEPTS; this is the case of Sn

3 . For the purpose
of illustrating the methodology, we have focused on this “oversimplified” one.

In general, the simplexes at the lower layers could have common faces
between them. Therefore, to use all layers of CONCEPTS at the same time
will produce vague discrimination as shown in Fig. 4, in which an overlapped
CONCEPTS induced by (lower dimensional) common faces could exist. As
seen in the skeleton S3

1 , the maximal connected components generated from
simplex Simplex(a,b, c,d) and simplex Simplex(a, c,h) have a common face
Simplex(a, c) that makes some documents not able to properly discriminated
in accordance with the generated association rules from term a and term c,
so are the other maximal connected components in the skeleton. Because of
the intersection produced by such faces, a proper way is to ignore the lower
the skeleton as much as application can tolerate.

Fig. 4. Each cluster of documents is identified by a maximal connected component.
Some clusters may overlap with other cluster because of the common face between
them; this phenomenon is illustrated here. To handle such a situation properly, we
need to ignore the lower dimensional simplexes. By so doing the overlapping will
disappear (not shown)
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4 Finding Connected Components

We can visualize that the latent semantic of a collection of documents is a
space triangulated/partitioned/granulated by term-associations (simplexes).
The space contains CONCEPTS, PRIMITIVE CONCEPTS. The algorithms
for finding all CONCEPTS, i.e., maximal connected components will be in-
troduced below.

4.1 Incidence Matrices

First, we need some geometric notations.

Definition 7. Let V be the set of vertices of a simplicial complex i.e.,
0-simplices, and let E be the set of all r-simplices, where r ≥ 0. If SimplexA is
in E, its support, denoted by w(SimplexA), is defined to be the tfidf of SimplexA.

The incident matrix and the weighted incident matrix of a complex can be
defined as follows:

Definition 8. The n ×m incident matrix A = (aij) associated to a complex
is defined as

aij =
{

1 if Simplexi is a face of Simplexj

0 otherwise.

The corresponding weight incident matrix A′ = (a′ij) is

a′ij =
{
wij if Simplexi is a face of Simplexj

0 otherwise

where the weight wij denotes the support of a term-association.

Example 3 In Example 2, the 2-simplex is the set {tA, tB , tC}, which is also
the connected component that represents a CONCEPT. The incident matrix I
and the weighted incident matrix IW of the simplexes can be constructed. For
clarity, we only illustrate the incidences between the key terms (0-simplexes)
and term-associations (r-simplexes, r=1,2) as follows.

I =

⎛⎝ 1 0 1 1
1 1 1 0
1 1 0 1

⎞⎠ .

IW =

⎛⎝wA,B,C 0 wA,B wC,A

wA,B,C wB,C wA,B 0
wA,B,C wB,C 0 wC,A

⎞⎠ .
Each row represents the incidence of a vertex with all r-simplexes. Each col-
umn corresponds to the incidence of a fixed simplex and all vertices.
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4.2 Algorithm

As we already known, a r-simplex is a (r+1)-term-association (frequent (r+1)-
itemset). Web pages can be clustered based on maximal simplexes of any
dimension (CONCEPTS), i.e., associations. Note that Web pages clustered by
CONCEPTS contains common lower dimensional faces (shorter associations,
in particular 0-simplexes); this is consequence of a priori property. In this
sense, the methodology provides a soft approach; we allow lower dimensional
overlapped CONCEPTS exist within different clusters.

Since the intersection of connected components has lower dimensions. It is
convenient for us to design an efficient algorithm for documents clustering in a
skeleton by skeleton fashion. The algorithm for finding all maximal connected
components based on a user query in a skeleton is listed as follows.
Require: V = {t1, t2, . . . , tn} be the vertex set of all reserved terms in a

collection of documents.
Ensure: H is the hierarchy of connected components.

Let t0 be the user query.
Let θ be a given minimal support.
Let S0 = {t0} be the root of the hierarchy.
Let Support(S0) be the support of associations of the terms in S0.
H ⇐ S0

i ⇐ 0
while Si �= ∅ do

while for all vertex tj ∈ V and /∈ Si do
Let S(i+1) ⇐ Si

⋃
tj if Support(S(i+1)) is bigger than θ.

Add S(i+1) to be the child of Si

end while
i⇐ (i+ 1)

end while
Use our notation Si is a skeleton of Si

0. It is clear, one can get Sn
m for any

n and m. A simplex will be constructed by including all those co-occurring
terms whose support is bigger than or equal to a given minimal support θ.
An external vertex will be added into a simplex if the produced support is no
less than θ.

According to our algorithm, the simplex will be constructed through one
term, that is, a user query. All the noun phrases in a Web pages returned from
remote search engines will be selected for document clustering. Web pages can
be decomposed into several categories based on the PRIMITIVE CONCEPTS.
If a Web page contains a PRIMITIVE CONCEPT, it means that Web page
highly equates to such concept, thereby, by the a priori property, all the sub-
associations in the concept is also contained in this Web page. The Web page
can be classified into the category identified with such a concept. A document
often consists of more than one PRIMITIVE CONCEPTS context, in this
case it can be classified into multicategories.
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5 Experimental Results

LSS clustering organizes the returned Web pages hierarchically from a user
query on-the-fly over two remote search engines (PubMed and GOOGLE).
As we already known, GOOGLE provides a flat list of search result snippets
and PubMed returns a summarized list of the abstracts of medical literatures
associated with MeSH terms. In our experiments, all the PRIMITIVE CON-
CEPTs are bound a threshold, since the simplexes in the lower dimension is
highly overlapped with several IDEA. In our system, the lower dimension the
PRIMITIVE CONCEPTs are near to the root of hierarchy, and versus visa.

5.1 LSS System

The system is depicted in Fig. 5 that demonstrates the search results from
PubMed for a search query “pain”. A hierarchy of clusters is built on the
return results. The abstract (unstructure) and MeSH terms (semi-structure)
are in use to cluster them. The same term “pain” has been taken to retrieve
information from GOOGLE. The returned result snippets are grouped into
several clusters as shown in Fig. 6.

5.2 Results

The experimental evaluation of document clustering approaches usually mea-
sures their effectiveness rather than their efficiency [22], in the other word,
the ability of an approach to make a right categorization. Entropy is involved

Fig. 5. LSS System oversearch engine PubMed
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Fig. 6. LSS System oversearch engine Google

to evaluate the clustering performance [3] based on the human expert’s de-
cisions. More than one hundred queries related to medicine have been sub-
mitted from our system to clustering the returned results from PubMed and
GOOGLE spectively. More than two hundred thousand Web pages or snip-
pets have been returned. In general, the average entropy is around 0.14±0.06
for PubMed and 0.27±0.08 or so for GOOGLE. Because PubMed has defined
meta-date for each medical literature by human experts. If without using these
meta-data, the average entropy will become 0.21 ± 0.09. According to it, we
can conclude courageously that the CONCEPTs organized by LSS can nearly
make a precisely semantic concept clustering for Web pages.

6 Conclusion

Polysemy, phrases and term dependency are the limitations of search tech-
nology [12]. A single term is not able to identify a latent concept in a
document, for instance, the term “Network” associated with the term “Com-
puter”, “Traffic”, or “Neural” denotes different concepts. To discriminate term
associations no doubt is concrete way to distinguish one category from the
others. A group of solid term associations can clearly identify a concept. The
term-associations (frequently co-occurring terms) of a given collection of Web
pages, form a simplicial complex. The complex can be decomposed into con-
nected components at various levels (in various level of skeletons). We believe
each such a connected component properly identify a concept in a collection
of Web pages.
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We can effectively discover such a maximal simplexes and use them to
cluster the collection of Web pages. Based on our web site and our experi-
ments, we find that LSS is a very good way to organize the unstructured and
semi-structure data into several semantic topics. It illustrates that geometric
complexes are effective models for automatic Web pages clustering.
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Summary. Information extraction is the process of automatically identifying facts
of interest from pieces of text, and so transforming free text into a structured data-
base. Past work has often been successful but ad hoc, and in this paper we propose
a more formal basis from which to discuss information extraction. We introduce a
framework which will allow researchers to compare their methods as well as their
results, and will help to reveal new insights into information extraction and text
mining practices.

One problem in many information extraction applications is the creation of
templates, which are textual patterns used to identify information of interest. Our
framework describes formally what a template is and covers other typical information
extraction tasks. We show how common search algorithms can be used to create and
optimise templates automatically, using sequences of overlapping templates, and we
develop heuristics that make this search feasible. Finally we demonstrate a success-
ful implementation of the framework and apply it to a typical biological information
extraction task.

1 Introduction

Information extraction (IE) [7] has developed over recent decades with appli-
cations analysing text from news sources [8], financial sources [6], and biologi-
cal research papers [1,5,12]. Competitions such as MUC and TREC have been
promoted as using real text sources to highlight problems in the real world,
and more recently TREC has included a genomics track [11], again highlight-
ing biology and medicine as growing areas of IE research. It has long been
recognised that there is a need to share resources between research groups
in order to allow a fair comparison of their different systems and to moti-
vate and direct further research. We strongly feel that there is also a need
to provide a theoretical framework within which these information extraction
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systems can be described, compared and developed, by identifying key issues
explicitly. The framework we present here will allow researchers to compare
their methods as well as their results, and also provides new methods for tem-
plate creation. This will aid the identification of important issues within the
field, allowing us to identify the questions to ask as well as to formulate some
answers.

The terms information extraction and text mining are often used inter-
changeably. Some authors use the term text mining to suggest the detection
of novelty, such as combining information from several sources to generate
and test new hypotheses [25]. In contrast, IE extracts only that which is ex-
plicitly stated. This framework focuses on IE and template creation, but it
also applies to text mining.

Information extraction is a large and diverse research area. One approach
widely used is to develop modular systems such as GATE [9], so that each
component can be optimised individually. One of the most challenging of
these is the template component. A template is a textual pattern designed
to identify “interesting” information to be extracted from documents, where
“interesting” is relative to the user’s intentions. An ideal template can be used
to extract a large proportion of the interesting information available with only
a little uninteresting information.

Different types of templates exist, but in general, they can be thought of as
regular expressions over words and the features of those words. Standard regu-
lar expressions match sequences of characters, but IE templates can also match
features of words. To guide our discussion, consider the sentence “The cat sat
on the mat”. Informally, one template that would match that sentence is
“The ANIMAL VERB on the FLOOR COVERING”, where “ANIMAL” and
“FLOOR COVERING” are pre-defined semantic categories, and “VERB” is a
part-of-speech label. A different template that would match the same sentence
is “DETERMINER * * PREPOSITION DETERMINER *”, where each “*”
is a wildcard, matching any single word, and the other symbols are part-of-
speech labels. Any sentence can be matched with a large number of templates,
and many templates match a large number of sentences. This makes template
creation a challenging problem.

Although it covers several key areas, this paper focuses on template cre-
ation. Currently, templates are typically designed by hand, which can be labo-
rious and limits the rapid application of IE to new domains. There have been
several attempts at automatic template creation [2,13,19], and there are likely
to be more in the future. To the best of our knowledge, no such system has
demonstrated widespread applicability, but tend to be successful only within
narrow domains. Some systems are effective, but require extensive annotation
of a training set [22], which is also laborious.

One way to view the automatic creation of useful templates is as a
search problem of a kind familiar to the artificial intelligence community
[24, chs. 3, 4]. To formulate it this way, we need to define the space of can-

didate solutions (i.e. templates); a means of evaluating and comparing these
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candidate solutions; a means of generating new candidate solutions; and an
algorithm for guiding the search (including starting and stopping). Any useful
framework describing IE must provide a way to define and create templates,
and our framework proposes using these AI search methods, an idea we expand
in Sect. 6.2, where we “grow” useful templates from given seed phrases.

One alternative to using templates is co-occurrence analysis [16]. This
identifies pieces of text (typically sentences, abstracts or entire documents)
that mention two entities, and assumes that this implies that the two entities
are in some way related. Within our framework, this can be seen as a special
case of a template, albeit a very simple one, as we show in Sect. 2.3.

The framework itself is presented in Sects. 2–5, with the subsequent sec-
tions discussing various implementation issues.

Section 2 defines various concepts formally, moving from words and docu-
ments to templates and information extraction. Section 3 describes how tem-
plates can be ordered according to how specific or general they are, as a
precursor to template creation and optimisation. Section 4 discusses how to
modify a template to make it more general. Section 5 gives formal definitions
of recall and precision within our framework and discusses how they might
be estimated in practice. Section 6 discusses heuristic search algorithms and
their implementation and includes a detailed example, before a concluding
discussion.

A shorter form of this work is published in [4].

2 Basic Definitions

In this section, we define several terms culminating in a formal definition of
information extraction templates.

Definition 1. A literal λ is a word in the form of an ordered list of characters.
We assume implicitly a fixed alphabet of characters.

Examples: “cat”, “jumped”, “2,5-dihydroxybenzoic”.

Definition 2. A document d is a tuple (ordered list) of literals: d =
<λ1, λ2, . . . , λ|d|>.

Examples: d1 = <the, cat, sat, on, the, mat>, d2 = <a, mouse, ran, up, the,
clock>.

Definition 3. A corpus D is a set of documents: D = {d1, d2, . . . , d|D|}.

Example: D1 = {d1, d2}.

Definition 4. A lexicon Λ is the set of all literals found in all documents in
a corpus: ΛD = {λ|λ ∈ d and d ∈ D}.

Example: ΛD1 = {the, cat, sat, on, mat, a, mouse, ran, up, clock}.
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Every word has a set of attributes, such as its part-of-speech or its member-
ship of a semantic class, which we now discuss. Although particular attributes
are not a formal part of the framework, they are used in various illustrative
examples throughout this paper.

Words that share a common stem, or root, typically share a common mean-
ing, such as the words “sit”, “sitting” and “sits”. It is therefore common prac-
tice in information retrieval to index words according to their stem to improve
the performance [21]. Similarly in information extraction, it is often helpful to
identify words that share a common stem. The most common approach is to
remove suffixes to produce a single stem for each word [21], although in prin-
ciple, each word could have multiple stems, such as if prefixes were removed
independently of suffixes.

Words may also belong to pre-defined semantic categories, such as “busi-
ness”, “country” or “protein”. One common way to define these semantic
categories is by using gazetteers. A gazetteer is a named list of words and
phrases that belong to the same category. Rather than simple lists, some on-
tologies are based on hierarchies or directed acyclic graphs, such as MeSH1

and GO2 respectively. In this framework, we are not concerned with the na-
ture of such categories, but assume only that there exists some method for
assigning such attributes to individual words.

The role of each word in a sentence is defined by its part of speech, or lexical
category. Common examples are noun, verb and adjective, although these
are often subdivided into more precise categories such as “singular common
noun”, “plural common noun”, “past tense verb” and so on. The part of
speech can usually only be ascertained for a word in a given context. For
example, compare “He cut the bread” to “The cut was deep”. In practice,
an implementation may limit this to exactly one label per word, based on
the context of that word. Following the Penn Treebank tags [17], in some
examples we use the symbol “DT” to represent determiners such as “the”,
“a” and “this”; “VB” to represent verbs in their base form, such as “sit”
and “walk”; “VBD” to represent past-tense verbs, such as “sat” and “walked”;
“NN” to represent common singular nouns, such as “cat” and “shed” and
so on.

We also introduce wildcards as an extension to the idea of word attributes.
In regular expressions, a wildcard can “stand in” for a range of characters,
and we use the same notion here to represent ranges of words. For example,
we use the symbol “*” as the universal wildcard which can be replaced by
any word in the lexicon. Then every word has the attribute “*”. We also use
the symbol “?” to represent any word or no word at all. We discuss these
wildcards further in Sect. 4.3.

1MeSH, Medical Subject Headings, http://www.nlm.nih.gov/mesh
2Gene Ontology, http://www.geneontology.org
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Other categories may be introduced to capture other attributes, such as or-
thography (e.g. upper case, lower case or mixed case), word length, language
and so on. A parser could be used to label words as belonging to different
types of phrases, such as verb phrases and noun phrases. We could also treat
punctuation symbols as literals if required, or as a separate category. How-
ever, the categories described above are sufficient to allow us to develop and
demonstrate the framework.

Definition 5. A category κ is set of attributes of words of the same type.
Common categories include “parts of speech” and “stems”.

For convenience, we will label certain categories in these and subsequent ex-
amples. This is not part of the framework but reflects categories likely to be
used in a practical implementation. In particular, we use Λ to label the cat-
egory “literals”; Π for “parts of speech”; Γ for “gazetteers”; Σ for “stems”;
and Ω for “wildcards”.

Example:
κΛ = {the, cat, sat, on, mat, mouse, . . . }
κΣ = {the stem, cat stem, sit stem, on stem, mat stem, mouse stem, . . . }
κΠ = {DT, NN, VBD, IN, . . . }
κΓ = {FELINE, RODENT, ANIMAL, FLOOR COVERING, . . . }
κΩ = {∗, ?}
We use the suffix “ stem” in stem labels to avoid confusing them with the

corresponding literal.

Definition 6. Let K be a set of categories of attributes. Each element κ of
K is a single category of word attributes.

Example: K1 = {κΛ, κΣ , κΠ , κΓ , κΩ}.

Definition 7. A term t is a value that an attribute may take, i.e. an element
of a category of word attributes.

Examples: t1 = cat, t2 = NN, t3 = FELINE, where t1 ∈ κΛ, t2 ∈ κΠ , t3 ∈ κΓ .

Definition 8. We define a template element T to be a set of terms belonging
to a single category. Let T = {t1, t2, . . . , tn}, such that ti ∈ T . Then ti ∈
κ ⇐⇒ tj ∈ κ, ∀tj ∈ T .

Examples:
T1 = {NN, VBD}
T2 = {FELINE, RODENT, FLOOR COVERING}
The set {NN, FELINE } is not a template element because “NN” and

“FELINE” belong to different categories, namely κΠ and κΓ respectively.
The name “template element” refers to templates as defined in Definition

13 below.
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Definition 9. The attributes of a literal are the set of template elements
defining the values of the literal in each category. We first define the set of
attributes of a literal λ for a particular category κ as α(λ, κ) = {T |∀t ∈ T, t ∈
κ and λ has attribute t}. The set of all attributes of a literal is the union of
the attributes in each category: α(λ) =

⋃
κ∈K α(λ, κ). If a literal has no value

for a particular category, then the category is omitted from the set α.

When we say “λ has attribute t”, we assume that this relationship is defined
outside of the framework. For example, there maybe functions to assign a
stem attribute to a word, or to assign a particular semantic category to any
of a given list of words.

For convenience, we label the attributes using the category label as a
subscript in these examples.

Examples:
αΛ(cat) = {cat}
αΓ (cat) = {FELINE, ANIMAL}
αΠ(cat) = {NN}
αΣ(cat) = {cat stem}
α(cat) = {{cat}, {NN}, {FELINE, ANIMAL}, {cat stem}}
In the case of α(the), the word “the” has a part-of-speech tag “DT”

(determiner) and the obvious literal, but no gazetteer or stem entries. So
αΠ(the) = {DT}, and αΓ (the) is undefined, and so α(the) = {{the}, {DT}}.

The set of literal attributes Λ has the special property that every word has
exactly one literal. Other categories in K may contain terms such that one
literal may correspond to one or more terms, or to no term at all. For example,
one literal may belong to more than one gazetteer, while another literal may
belong to none. Therefore for any λ, |αΛ(λ)| = 1. As a consequence, |α(λ)| ≥ 1.

2.1 Membership of Terms

We now define the concept of membership to refer to the set of literals that
share a particular attribute.

Definition 10. We define the members µ of a term t as being the set of all
literals that share the attribute value defined by that term. µ(t) = {λ|t ∈ α(λ)}.
Also, we define the members of a set of terms (such as a template element)
as the union of the members of each term in the set: µ({t1, t2, . . . , tn}) =⋃n

i=1 µ(ti)

Examples:
µ(sit stem) = {sit, sits, sat, sitting }.
µ(FELINE) = {cat, lion, tiger, . . . }.
µ(RODENT) = {mouse, rat, hamster, . . . }.
µ({FELINE,RODENT}) = {cat, lion, tiger, mouse, rat, hamster, . . . }.
µ(αΛ(cat)) = {cat}. I.e. the membership of the literal category of a literal

is the set containing only the literal itself.
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Definition 11. We also define membership for a term limited to a particular
document or set of documents: µ(t, d) = {λ|λ ∈ d, λ ∈ µ(t)}, and µ(t,D) =⋃

d∈D µ(t, d)

Examples:
µ(NN, d1) = {cat, mat}.
µ(ANIMAL, D1) = {cat, mouse}.

2.2 Templates and Document Fragments

Definition 12. We define a fragment of a document as being a tuple of suc-
cessive literals taken from some document d. If

d = <λ1, λ2, . . . , λa, λa+1, . . . , λa+b−1, . . . , λ|d|>,

then
f(d, a, b) = <λa, λa+1, . . . , λa+b−1>.

I.e. the function f(d, a, b) returns a tuple of b words in order, from d, starting
with the ath word. f1 is the first word of the fragment, i.e. λa, f2 is the second
word, λa+1, and so on. Note that |f | = b.

Example: If d1 = <the, cat, sat, on, the, mat>, then f(d1, 4, 3) = <on, the,
mat>.

Definition 13. A template τ is a tuple of one or more template elements,
<T1, T2, . . . , Tn>, where T1 = {t1,1, t1,2, . . . , }, T2 = {t2,1, t2,2, . . .} and so on.
|τ | is the number of template elements in template τ , and is always greater
than zero. Each template element Ti within a template consists of one or more
terms of the same type.

Example:
τ1 = <{the}, {FELINE, RODENT}, {VB, VBN}>.

Definition 14. A template matches a fragment of a document d if each suc-
cessive template element in the template contains a term whose membership
includes each successive word in the fragment. Let f = <f1, . . . , fn> be a
fragment. Given a template τ = <T1, T2, . . . , Tn>, we extend the membership
function thus:

µ(τ, d) = {f |f ∈ d and ∀i ∈ 1 . . . |τ |, fi ∈ µ(Ti)}

For a corpus D, the template matches the union of the template membership
for each document: µ(τ,D) =

⋃
d∈D µ(τ, d).

This function returns a set of fragments, each of which consists of a tuple of
literals that matches each successive element of the template τ , and each of
which is found in a document in the corpus. Matching terms in this way is
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the core of information extraction. The words that are matched define the
information that is to be extracted.
Example: Given a template τ1 = <{DT}, {ANIMAL}, {VBD}> and a cor-
pus D1 (as defined after Definition 3), then µ(τ1, D1) = {<the, cat, sat>,
<a, mouse, ran>}.

2.3 Co-occurrence Analysis

Co-occurrence analysis assumes that two entities in the same piece of text
are related, without attempting a more sophisticated linguistic analysis of
the text. In our framework, this can be represented by a template (or set of
templates) that defines the two entities with a series of wildcards between
them.

For example, suppose we use co-occurrence analysis to discover every sen-
tence in a corpus that mentions two entities, as matched by template ele-
ments Ti and Tj . Let us assume that all sentences to be considered are finite
with a maximum length of Q words. Then we could define two template
τ1 = <T1, . . . , Ti, . . . , Tj , . . . , TQ> and τ2 = <T1, . . . , Tj , . . . , Ti, . . . , TQ>.
Two templates are required if we wish to allow for sentences with the two
entities in different orders. We replace every template element except for Ti

and Tj with the wildcard element “?” so as to match any sentence contain-
ing words that match our terms. With three or more entities, larger sets of
templates may be required.

3 Template Ordering

One motivation for creating this framework is to enable the use of common
search algorithms for template creation. To do this effectively, we must define
an ordering over the templates, which we can then use to develop practical
search heuristics.

For any given document, each template matches a certain number of frag-
ments. A template that matches every possible fragment is useless, as is one
that matches no fragments at all. Somewhere between these two extremes of
generic templates and specific templates, lie useful templates that match the
interesting fragments only, so the aim of template creation is to find a suit-
able trade-off between the generic and the specific. We therefore suggest that
a useful ordering is one based on the number of fragments that a template is
likely to match. We can use such an order to search across a range of tem-
plates and explore the trade-off. For unseen text, it is impossible to predict
the amount of information to be extracted in advance, so instead, we develop
a heuristic ordering that approximates it.

In this section, we define possible orderings of terms and templates. In
the next section, we define algorithms that use these orderings to modify



A Logical Framework for Template Creation and Information Extraction 87

templates. In Sect. 6 we discuss some search algorithms that might be used to
locate optimal templates.

Before we consider an ordering over templates, we consider ordering over
the terms that make up a template. We want to define the relations t1 >s t2
to mean that term t1 is a more specific attribute than term t2, and t1 ≥s t2
to mean that t1 is at least as specific as t2. Similarly, t1 <s t2 and t1 ≤s t2
mean “less specific than” and “no more specific than” respectively. We now
define these by introducing “superset ordering”.

3.1 Superset Ordering of Terms and Template Elements

We start by defining a specificity ordering over terms such that each term
matches every word that its antecedent matches, along with zero or more
extra words. We call this superset ordering.

Definition 15. Let ≥s be the ordering over superset specificity. Let t1, t2 be
terms. If µ(t1) ⊆ µ(t2) then t1 ≥s t2, and we say that t1 is at least as specific
as t2. If µ(t1) ⊂ µ(t2) then t1 >s t2, and we say that t1 is more specific
than t2.

Examples:
Let FELINE and ANIMAL be two terms (specifically, gazetteers), such

that µ(FELINE) = {cat, lion, tiger, . . . } and µ(ANIMAL) = {antelope,dog,
cat, . . . , lion, . . . , tiger, . . . , zebra}. Then µ(FELINE) ⊂ µ(ANIMAL) and so
FELINE >s ANIMAL.
µ(αΛ(cat)) = {cat}.
αΓ (cat) = {FELINE, ANIMAL}
µ({FELINE,ANIMAL}) = {cat, lion, tiger, antelope, dog, . . . }
Therefore µ(αΛ(cat)) ⊂ µ(αΓ (cat)).
Some specificity orderings are dependent on the categories of the two

terms. For example, by definitions 9 and 10, it is clear that each literal
is a member of all the terms that are attributes of the literal. Therefore
µ(λ) ⊆ µ(αλ)∀κ ∈ K and therefore if t1 ∈ κΛ, then ∀t2 ∈ K, t1 ≥s t2.
In other words, terms that represent literals are at least as specific as any
other terms. At the other extreme, the wildcards “*” and “?” match every
word, so we can say that wildcard terms are no more specific than any other
term. I.e. if t1 ∈ κΩ, then ∀ t2 ∈ K, t2 ≥s t1.

Having defined an ordering over terms, we now consider sets of terms, and
template elements in particular. Let T1 and T2 be two template elements. We
say that T1 is at least as specific as T2 if and only if every literal matched by
any term in T1 is also matched by some term in T2:

T1 ≥s T2 ⇐⇒ ∀λ ∈ µ(T1), λ ∈ µ(T2)

Similarly, T1 >s T2 ⇐⇒ ∀λ ∈ µ(T1), λ ∈ µ(T2) and ∃λ ∈ µ(T2) such
that λ /∈ µ(T1). I.e. T1 is more specific than T2 if every literal matched by a
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term in T1 is also matched by a term in T2, and at least one literal is matched
by a term in T2 and not by a term in T1.

We can trivially extend these “more specific than” relations to define “less
specific than” and “equally specific as” relations:

t1 >s t2 ⇐⇒ t2 <s t1

t1 ≥s t2 ⇐⇒ t2 ≤s t1

t1 =s t2 ⇐⇒ t1 ≥s t2 and t1 ≤s t2

In this last case, t1 =s t2 ⇐⇒ µ(t1) = µ(t2). Note that this is a narrower
definition than requiring that |µ(t1)| = |µ(t2)|.

3.2 Ordering of Templates

Above, we have discussed ordering of terms and of template elements. Here we
generalise this to discuss entire templates. We want to be able to compare two
templates, τ1 and τ2, and say which is more specific, i.e. which one matches
fewer fragments. If τ1 and τ2 are related through superset generalisation, then
for a given set of documents D, this is testing whether µ(τ1, D) ⊃ µ(τ2, D)
and therefore whether |µ(τ1, D)| > |µ(τ2, D)|, or vice versa, or they are equal.
E.g. τ1 >s τ2 ⇐⇒ µ(τ1, D) ⊂ µ(τ2, D). This depends on the corpus D
and is potentially slow to evaluate, especially if D contains a large number of
documents. We would rather have an estimate of the relative specificity which
is independent of D, which will be useful when developing search heuristics.

Suppose τ1 and τ2 are almost identical, and differ only in one template
element:

τ1 = <T1, T2, . . . , Ti, . . . , Tn>

τ2 = <T1, T2, . . . , T
′
i , . . . , Tn>

where Ti �= T ′
i . Then we can say that τ1 >s τ2 ⇐⇒ Ti >s T

′
i .

More generally, if τ1 and τ2 contain the same number of sets of terms, then

τ1 ≥s τ2 ⇐⇒ T1,i ≥s T2,i i = 1 . . . |τ1| , and

τ1 >s τ2 ⇐⇒ T1,i ≥s T2,i i = 1 . . . |τ1| and T1,j >s T2,j for some j.
In a slight extension to previous notation, we use Tn,i to refer to the ith

element of template τn.
Also, if two templates are identical except that one is “missing” the first

or last template element of the other, then the shorter of the two is less
specific. I.e. if τ1 = <T1, T2, . . . , Tn−1, Tn>, τ2 = <T1, T2, . . . , Tn−1> and
τ3 = <T2, . . . , Tn−1, Tn> then τ1 ≥s τ2 and τ1 ≥s τ3.

Although these relationships do not provide a complete ordering over all
templates, they do allow us to compare similar templates, and this is sufficient
to allow us to create and modify templates, and to develop useful search
heuristics. We use this ordering to develop functions that create and modify
templates in Sect. 4, and to develop methods to search efficiently for good
templates in Sect. 6.
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4 Template Generalisation

Whether created manually or automatically, templates are usually based on
examples of “interesting” phrases. These phrases may be identified by hand
(e.g. by a domain expert) or automatically (e.g. by information retrieval meth-
ods). These phrases are then used as “seeds” to help define more general
templates. In this framework we will follow this “seed phrase” approach, and
assume that we have some suitable phrases. We show how a wide range of
templates can be created from each seed phrase. We first discuss how terms
can be created and generalised, and then expand this to template creation
and generalisation (Sect. 4.2).

4.1 Creating and Modifying Single Template Elements

We now bring together several concepts discussed above, and define functions
that create and generalise template elements. This leads onto a discussion of
creating and modifying entire templates.

Definition 16. Given a literal, we want to create a new template element,
which is simply a set containing the literal. We define the trivial function
initialise for this purpose: initialise(λ) = {λ}.

Have created a template element, we can then modify it. We now define
a function that modifies any given template element to produce a new set
of template elements that is at least as general as the element given. This is
based on the notion of superset ordering (Sect. 3.1) in that the new template
elements match a superset of the literals matched by the original template
element. Furthermore, the new set of elements belongs to a specified category
which is different from the category of the source element.

Definition 17. We define a function to create a more general set of template
elements from a given template element, such that all of the terms in each
new template element are members of a specified category. Given a template
element T = {t1, t2, . . . , t|T |} of category κ and given a target category κ′ �= κ,
we create a set of template elements {T ′

1, T
′
2, . . . , T

′
n}:

generalise(T, κ′) =

{
T ′|T ′ = {t′1, t′2, . . . , t′m}, and t′1, t

′
2, . . . , t

′
m ∈ κ′, and

∀t′i ∈ T ′, |µ(t′i) ∩
⋃
t∈T

µ(t)| ≥ 1 , and⋃
t∈T

µ(t) ⊆
⋃

t′∈T ′
µ(t′), and there is no set {t′p . . . t′q}

such that {t′p . . . t′q} ⊂ T ′ and
⋃
t∈T

µ(t) ⊆
q⋃

j=p

µ(t′j)

}
.
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I.e. For each template element produced by generalise(T, κ′), each term
within that element belongs to category κ′; and each term within that element
matches at least one literal matched by a term in T ; and every literal matched
by a term or terms in T is matched by at least one term in the template
element; and that no subset of terms exists that meets these two requirements.
Note that

⋃
t∈T µ(t) is the set of all literals that are members of terms in the

original template element T , and that
⋃

t′∈T ′ µ(t′) is the set of all literals that
are members of terms in the new template elements T ′. Each new template
element has to be different from the original template element, as they belong
to different categories. This ensures that the new element is more general than
the original, and not just as general.

Example: Let category κΓ = {FELINE, CANINE, ANIMAL} contain
three sets of literals:
µ(FELINE) = {cat},
µ(CANINE) = {dog}, and
µ(ANIMAL) = {cat, dog, mouse, horse}.
Let T = {t1, . . . , tn} such that

⋃m
i=1 µ(ti) = {cat, dog}. Then

|µ(FELINE)∩
⋃m

i=1 µ(ti)| = 1, therefore the set FELINE can be considered
for inclusion in the sets in generalise(T, κΓ ). |µ(CANINE)∩

⋃m
i=1 µ(ti)| = 1,

therefore the set CANINE can be considered for inclusion in the sets
in generalise(T, κΓ ). |µ(ANIMAL) ∩

⋃m
i=1 µ(ti)| = 2, therefore the set

ANIMAL can be considered for inclusion in the sets in generalise(T, κΓ ).
The sets {FELINE} and {CANINE} are individually insufficient to rep-
resent all the literal members of generalise(T, κΓ ) and so will not be in
generalise(T, κΓ ). The remaining candidate sets are

{{ANIMAL},
{FELINE, CANINE}, {FELINE, ANIMAL}, {CANINE, ANIMAL},
{FELINE, CANINE, ANIMAL}}.

Note that {ANIMAL} ⊂ {FELINE, ANIMAL}, {ANIMAL} ⊂ {CANINE,
ANIMAL}, and {ANIMAL} ⊂ {FELINE, CANINE, ANIMAL}. Likewise
{FELINE, CANINE} ⊂ {FELINE, CANINE, ANIMAL}. As a result,
{FELINE, ANIMAL}, {CANINE, ANIMAL} and {FELINE, CANINE,
ANIMAL} are excluded from generalise(T, κΓ ), because there are sub-
sets of these sets that meet the conditions of generalise. Therefore
generalise(T, κΓ ) = {{FELINE, CANINE}, {ANIMAL}}. This is a set of
two template elements, the first consisting of two terms and the second
consisting of one term.

Note that the cardinality of the sets returned by generalise(T, κΓ ) is not
necessarily an indication of their specificity. For example, the set {ANIMAL}
matches more literals but represents a single semantic category, while the
set {FELINE, CANINE} matches fewer literals but combines two semantic
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categories. In an implementation we may decide to use the set {FELINE,
CANINE} which is a more cumbersome, but more specific set of terms than
{ANIMAL}, depending on our requirements. The decision made regarding
which set to use in a template would depend on the application and on the
details of the heuristic searches, as we discuss in Sect. 6.

Note also that generalise will return an empty set if no generalisation
exists that matches all the required literals. Thus if the input set contains a
literal that is not contained in any member of κx, then generalise(T, κx) = ∅.

Example: generalise({the}, κΓ ) = ∅, because the literal “the” is not in
any gazetteer.

4.2 Creating and Modifying Entire Templates

In the previous section, we defined the creation and generalisation of template
elements. Templates are ordered lists of template elements (Definition 13), and
we now apply the above concepts to create and modify templates. Given a
seed phrase, in the form of a tuple of literals (i.e. a fragment), we can easily
define a very specialised template that matches only that fragment. We can
then modify this to increase its generality.

Definition 18. We extend the initialise function to create a specialised tem-
plate from a fragment.

initialise(<λ1, λ2, . . . , λn>) = <{λ1}, {λ2}, . . . , {λn}>.

This can also be written as: initialise(f) = f , where f is a text fragment.

We define a new function that generalises any given template to create
a new set of templates by modifying a single element of the template using
the element generalisation function defined in Sect. 4.1. One template will be
created for each possible generalisation of the specified template element.

Definition 19. Given the template, τ = <T1, T2, . . . , Ti, . . . , Tn>. Then

generalise(τ, κ, i) = {τ ′|T ′
i ∈ generalise(Ti, κ) and

τ ′ = <T1, T2, . . . , T
′
i , . . . , Tn>}

I.e. we replace the ith template element with the result of its own
generalisation.

Example: Let τ1 = <the, cat, sat>. Then generalise(τ1, κΓ , 2) = {<the,
FELINE, sat>,<the, ANIMAL, sat>}. In this case, generalise(τ1, κΓ , 2) re-
turns two templates because the second literal “cat” belongs to two gazetteers.
In contrast, generalise(τ1, κΓ , 1) = ∅, because the first literal “the” does not
belong to any gazetteer in the category κΓ .
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4.3 Matching Fragments of Differing Lengths

So far, we have assumed that all templates are generated from a seed phrase
by replacing literals in that phrase with other attributes. This restricts the
templates created to be the same length as the seed phrase, and so will only
match fragments of this fixed length. This is clearly undesirable, so we will
now extend the framework to allow for templates that match fragments of
various lengths, firstly to shorter fragments and then to longer ones.

Suppose we want to be able to define a template that can match a par-
ticular class of noun phrase, in the form of a determiner, zero or more words
(e.g. adjectives), and an animal. To do this, we use the wildcard attribute “?”
which matches any single word or no word at all. This can be used to define
templates such as τ = <DT, ?, ?, ANIMAL>.

To use the “?” wildcard in our examples, we assume that “?” is in the
wildcard category κΩ and use the existing generalise(T, κΩ) function. So for
example, we take a fragment and apply a series of generalise functions after
initialisation like this:

τ1 = <the, quick, brown, fox>= initialise(the, quick, brown, fox)

τ2 = <the, ?, brown, fox> ∈generalise(τ1, κΩ , 2)

τ3 = <the, ?, ?, fox> ∈generalise(τ2, κΩ , 3)

τ4 = <DT, ?, ?, fox> ∈generalise(τ3, κΠ , 1)

τ5 = <DT, ?, ?, ANIMAL> ∈generalise(τ4, κΓ , 4)

Consider a document containing these fragments:

f1 = <the, cat>
f2 = <the, lazy, dog>
f3 = <the, quick, brown, fox>

Of the above list of templates, τ5 matches all three fragments, whereas τ ′ =
<DT, *, *, ANIMAL> would not match f1 or f2.

Although this approach allows templates to match fragments of varying
length as desired, it is restricted to matching fragments that are no longer
than the original seed. The seed phrase must therefore be chosen with this in
mind, or else modified before the search begins by inserting wildcards.

One solution is to extend the generalise function so that it inserts a
wildcard into the template, making the template longer and allowing it to
match phrases longer than the seed phrase. For example, we could define
generalise(τ, κΩ′ , i) as a function that creates new templates from template
τ by inserting wildcards from κΩ′ between template elements i and i+1. The
category κΩ′ contains the same wildcards as κΩ, with the distinction that
they are inserted after existing template elements, rather than used to re-
place template elements. Introducing extra wildcards in this way complicates
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the search algorithms substantially, so restrictions would have to be intro-
duced, either limiting how many wildcards could be added to a template, or
limiting the maximum length of a template. These heuristics could be chosen
for a particular implementation after experimentation.

Note that there can be no gain from inserting “?” wildcards before the
first non-wildcard template element, or after the last non-wildcard element,
as the resulting template would match exactly the same fragments with or
without these optional “external” wildcards.

5 Measuring Template Quality

In this section, we define recall, precision and related terms formally within
our framework. We then discuss how these can be estimated in practice. These
measures are needed to guide the automatic search for templates discussed in
the next section.

5.1 Defining Recall and Precision

We have already defined a function µ(τ,D) that retrieves the set of doc-
ument fragments that are matched by template τ from document set D
(Definition 14).

Definition 20. We define I(D) as the set of interesting, relevant fragments
contained in corpus D.

The ideal template would match these, and only these, fragments. This set is
generally not known3, but allows us to define concepts such as “true positive”
and the precision rate. Figure 1 shows the relationships diagrammatically. We
use the notation ℘f (D) to show the set of all fragments in D, independent of
any template. This is the set of all tuples of all lengths obtainable as fragments
using f(d, a, b) (Definition 12).

We now define a series of sets with respect to a template τ and a corpus D.

Definition 21. True-positives TP(τ,D) = µ(τ,D) ∩ I(D)

Definition 22. False-positives FP(τ,D) = µ(τ,D) \ I(D)

Definition 23. False-negatives FN(τ,D) = I(D) \ µ(τ,D)

Definition 24. True-negatives TN(τ,D) = D \ {I(D) ∪ µ(τ,D)}

Definition 25. Recall r(τ,D) = |µ(τ,D)∩I(D)|
|I(D)| = |TP |

|I(D)|

3This set is task-dependent and user-dependent, as different people will pick dif-
ferent fragments as being interesting, even if attempting the same task [3].
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Fig. 1. Venn diagram showing the relationship between: the set of all possible
fragments ℘f (D); the results of applying template τ to it – match(τ, D); the ideal
set of results I(D); and the false negative (FN), true positive (TP), false positive
(FP) and true negative (TN) regions

Definition 26. Precision p(τ,D) = |µ(τ,D)∩I(D)|
|µ(τ,D)| = |TP |

|µ(τ,D)|

We can conceive of a “perfect” template, τ∗, which matches all the positive
fragments, and nothing else. I.e. µ(τ∗, D) = I(D). This has a recall and a
precision of one. Although such a perfect template may not be known in
general, we can use these definitions of true positive and false positive counts
to guide a search for templates.

An ideal template would have |TP (τ,D)| = |I(D)| and |FP (τ,D)| = 0.
We therefore wish to maximise |TP (τ,D)| while minimising |FP (τ,D)|, but
there is typically a trade off between the two. This is an example of multi-
objective optimisation. If we knew the relative value of true positives and the
cost of false positives, then we could combine these into a single objective
function, such as maximising |TP (τ,D)| − k · |FP (τ,D)| . In practice, such a
weighting is not usually available, but a number of evolutionary approaches
have been successfully applied to similar problems [10], as we discuss further
in Sect. 7.

6 Searching for Good Templates

In 6.2 we will discuss the development of search algorithms, but first we need
a practical way to estimate recall and precision.

6.1 Estimating Recall and Precision

As noted earlier, we do not know which fragments are interesting a priori,
and so the above definitions cannot be used directly in calculating the recall
or precision of a template. Instead, we need something that we can measure
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in practice, and which should approximate the “ideal” values above. We now
consider several options.

Suppose that we had a set of documents such that every fragment was
labelled as either “interesting” or “not interesting”. Then we could use stan-
dard supervised learning algorithms to construct useful templates and directly
measure the number of true positives, false positives and so on, to find an op-
timal template. This could then be used to find further information in the
same field. However, while a small number of such labelled corpora do exist
(e.g. [14]), they are for a few very precisely defined application areas, and
so of little general use, as they cannot be used to aid IE in other application
areas. Annotating documents in this way is very time consuming for a domain
expert, and one aim of information extraction is to reduce the time and effort
required to find relevant information.

Suppose instead that we have one set of documents where for each sen-
tence, the probability that it contains a relevant piece of information is above
some threshold, and a second set of documents, where the probability is below
a threshold. We could then treat this as a classification problem, albeit with
noisy labels on the data. However, such a set of irrelevant documents is hard
to define, and furthermore, even interesting documents are likely to contain
irrelevant facts such as background information, although this approach has
been used successfully [23].

Suppose that instead of having irrelevant (negative) documents, we have
a set of “neutral” documents, each of which may or may not contain relevant
information. I.e. we have no prior knowledge about relevant information in
neutral documents. We can then compare the proportion of information re-
trieved from neutral and from positive documents to evaluate a template. We
assume that a “good” template will retrieve more information from positive
documents than from neutral documents, even if we don’t know in advance
which pieces of information are useful, or how much useful information exists
in any particular document.

Let D be a corpus containing |D| documents. We define the set of positive
documents as D+ and neutral documents as DN , such that D = D+ ∪ DN

and D+ ∩ DN = ∅. A “positive” document is one that the user believes is
likely to contain information of interest. A “neutral” document is one where
the user has no reason to believe that the document does or does not contain
information of interest.

We now use these two sets of documents to define estimates of the num-
bers of true-positive fragments and false-positive fragments matched by a
template τ .

Definition 27. We define an estimated true-positive set T̂P (τ,D) =
µ(τ,D+), for a template τ and a set of positive documents, D+ ⊆ D.

Definition 28. We define an estimated false-positive set F̂P (τ,D) =
µ(τ,DN ), for a template τ and a set of neutral documents, DN ⊆ D.
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These are very crude estimates, as they assume that every fragment matched
by τ in D+ contains information of interest, and that every fragment matched
by τ in DN contains no information of interest. Thus they cannot be used
to estimate the precision or recall scores4, but they are sufficient to guide
the search of useful templates. In fact, as a successful search progresses and
the quality of the template improves, then these estimates will become more
accurate, although they are unreliable, especially at the start of the search
process.

Let us consider some other properties of templates generated using su-
perset generalisation. Suppose we have two templates, τ1 and τ2, and that
τ1 >s τ2. Then by definition, |µ(τ1, D)| < |µ(τ2, D)|. If τ2 is a generalisation
of τ1 derived using superset generalisation, then µ(τ1, D) ⊂ µ(τ2, D). This
relative specificity relation holds for any set of documents, so if one template
matches fewer fragments than another in one corpus, then it will in any other
corpus as well. Thus given two corpora Da and Db:

|µ(τ1, Da)| < |µ(τ2, Da)| ⇐⇒ |µ(τ1, Db)| < |µ(τ2, Db)|.

This property will be useful in developing heuristic search methods, because
it allows us to rationally prune search graphs, as we discuss in Sect. 6.2.

We defined terms such as “true positive” and “false positive” above. Now
we can say that if template τ1 is at least as specific as template τ2, then the
number of true positives returned by τ1 is no more than the number returned
by τ2, and equivalently for other scores. I.e. if τ1 ≥s τ2 then:

|TP(τ1, D)| ≤ |TP(τ2, D)|.
|FP(τ1, D)| ≤ |FP(τ2, D)|.
|TN(τ1, D)| ≥ |TN(τ2, D)|.
|FN(τ1, D)| ≥ |FN(τ2, D)|.

The equivalent inequalities also hold for the estimates defined above:

|T̂P(τ1, D)| ≤ |T̂P(τ2, D)|.
|F̂P(τ1, D)| ≤ |F̂P(τ2, D)|.

As these relationships hold for any set of documents D, we can predict some
properties of templates without fully evaluating them. We can use these prop-
erties to guide heuristic searches.

If our assumptions here are correct, then the probability of finding
an interesting fragment is higher in positive documents than in neutral
documents. We can write this assumption as p (f ∈ I(D)|f ∈ µ(τ,D+)) >
p
(
f ∈ I(D)|f ∈ µ(τ,DN )

)
.

4Substitution into definitions 25 and 26 gives recall ≡ precision ≡ 1 for every
template, which is clearly optimistic.
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When comparing two templates, we can say that one is certainly better
than the other if either: a) it matches more true positive fragments and no
more false positives; or b) it matches fewer false positive fragments and no
fewer true positives. Unfortunately, we cannot be certain of whether it is
better when c) it matches more true positives and more false positives. We
need some way of exploring this trade-off, an issue we return to later.

We can now generate a series of templates of varying generality and com-
pare them with each other in order to guide our search for useful templates.
We discuss this further in the following section.

6.2 Search Algorithms

As stated in the introduction, heuristic searching requires: definitions of can-
didate solutions; a means to generate and evaluate candidate solutions; and a
suitable search algorithm. We have now defined the candidate solutions (i.e.
templates, Definition 13) and means to generate (Sect. 4) and evaluate them
(using estimates of true positive and false positive scores given in Sect. 5,
Definitions 27–28). We now turn to the search algorithms themselves. First,
we define an exhaustive search over all possible templates, given a particular
seed phrase. We will then show that in general, this is computationally infea-
sible, owing to the combinatorial growth of the search space with respect to
the length of the template. We then introduce heuristics to make the search
feasible while still (we hope) producing good templates, and define and dis-
cuss a simple best-first search algorithm. We also discuss possible merits of
evolutionary algorithms.

In all cases, we assume that we are given a seed fragment f . The root
node of the search corresponds to a template consisting of a tuple of template
elements, each containing a single literal: τroot = initialise(f) (Definition 18).
From this, we can modify each element in the template by a single application
of the generalise(τ, κ, x) function (Definition 19). We can estimate the num-
ber of true positives and false positives for each of these new templates, and
then decide which template to explore and modify next. The exact number
of templates produced at each stage depends on the words themselves, be-
cause each generalise(τ, κ, x) function will return 0, 1 or more templates (see
Definition 17 and the accompanying discussion). We must also decide when
to terminate the search, as we do not know a priori the quality of the best
possible template, as we are assuming that we do not have a fully labelled
corpus.

A simple exhaustive search method would be to start with a literal tem-
plate created from the seed phrase using the initialise function. For each ele-
ment in this template, we then apply the generalisation function, using each
category in turn, so that each application generates a new template. We need
some fixed order over the categories, but the actual order is not critical here5.
5One example would be to use the order: literals, stems, gazetteers, parts-of-speech
and wildcards. This order reflects the typical size of the membership functions.
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For simplicity, let us assume that we have an implementation with five cat-
egories, where every word has one literal, one stem, one gazetteer, one part
of speech, and one wildcard. We can then list all possible templates derived
from a two-term phrase, starting with two sets of literals, and ending with
two sets of wildcards:
< λ, λ > < σ, λ > < γ, λ > < π, λ > < ω, λ >
< λ, σ > < σ, σ > < γ, σ > < π, σ > < ω, σ >
< λ, γ > < σ, γ > < γ, γ > < π, γ > < ω, γ >
< λ, π > < σ, π > < γ, π > < π, π > < ω, π >
< λ, ω > < σ, ω > < γ, ω > < π, ω > < ω, ω >

If every literal has exactly |α| attributes, then a seed phrase of |f | literals
has |α||f | possible templates. Thus a 20-word seed phrase consisting of literals
having 5 attributes will be matched by 520 ≈ 1014 templates. In practice,
some words will have fewer attributes (e.g. words that don’t appear in any
gazetteers), some will have more, and all may have more than one wildcard.
We therefore need to introduce heuristics to make the search feasible, unless
the seed fragment is very short.

6.3 Feeding Knowledge Forward

After estimating the numbers of true positives and false positives for any
template, we can place a lower bound on those values for all templates that
are derived using the generalise function. This is because we know that the
derived templates will match a superset of the fragments matched by the
ancestor template (Sect. 6.1).

For example, suppose we have a template τ1 and we evaluate this and find it
matches 20 positive fragments and 50 neutral fragments, i.e. |µ(τ1, D+)| = 20
and |µ(τ1, DN )| = 50. If we then modify τ1 using superset generalisation
to create τ2, then we know that µ(τ1, D) ⊆ µ(τ2, D) for any corpus D. We
therefore know that τ2 matches at least 20 positive fragments and at least
50 neutral fragments, from D+ and DN respectively. Furthermore, any other
templates derived using superset generalisation from τ1 or from τ2 will also
match at least those numbers.

Therefore, as we carry out a search, we can calculate lower bounds on the
estimates of true positives and false positives for a wide range of templates
without the computational expense of evaluating each template. Instead, we
can just choose the best template from the range available, if we use a best-first
search. By “best” here, we might mean the template with the (estimated) most
true positives, which will tend to produce templates with a high recall, though
possibly with a low precision. If instead we choose the template that matches
the least false-positive fragments then we will tend to produce templates with

E.g. each stem has only a few members; gazetteers often contain hundreds or
thousands; parts-of-speech such as verb or noun contain millions of members and
so on.
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Fig. 2. Part of a search tree. Each node is a template with the number of true
positives (x+) and false positives (yN ) shown, with a “?” for unknown values. Each
child node can be created by superset generalisation from any of its parents

a high precision, though possibly with a low recall. Which of these options is
more appropriate depends on the task at hand.

Every template has at least one parent (except for the single root tem-
plate), because they are created using superset generalisation; but most tem-
plates can be created in more than one way, from several parent templates.
Therefore, many templates will have more than one parent. The whole space
may be considered as a lattice. Consider the partial search graph shown in
Fig. 2. Here, templates τ0 – τ4 have been evaluated, and the number of true
positives and false positives are shown for each. For example, τ1 matches 20
fragments from D+ and 50 from DN , and is therefore assumed to match 20
true positives and 50 false positives. At this stage of the search, the decision
to be made is which node to evaluate next: τ5 or τ6? We can feed forward the
facts that the two parent templates of τ5, τ1 and τ2 have 20 and 15 true pos-
itives respectively, and that therefore τ5 must have at least 20 true positives.
Similarly, it must have at least 60 false positives. On the other hand, τ6 must
have at least 40 true positives, and at least 55 false positives. We would there-
fore decide to evaluate τ6 in preference to τ5 at this point, because it has a
higher lower-bound on the number of true positives, and a lower lower-bound
on the number of false positives.

6.4 A Best-First Algorithm

We now present a formal definition of a best-first algorithm suitable for iden-
tifying good templates, followed by an example. We start by defining two
sets of templates. Set O (“open”) contains templates that have been created
(via initialise or generalise), but not yet evaluated. Set C (“closed”) contains
templates that have been evaluated, i.e. had values of TP and FP calculated.
Note that O ∩ C ≡ ∅.
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1. begin
2. C ← ∅, O ← ∅
3. initialise(f) = τroot → O
4. while not finished do

a) find estimated best template τ in O
b) evaluate τ
c) delete τ from O
d) add τ to C
e) expand τ by adding to O all templates that can be created by superset

generalisation of τ
f) update lower bounds on TP and FP for all templates in O

5. return best template from C.
6. end

Fig. 3. A best-first algorithm. C is the “closed” set of evaluated templates and O
is the “open” set of unevaluated templates. See Sect. 6.4 for further details

Figure 3 gives the algorithm. After initialisation, we take the best template
that has not yet been evaluated, and evaluate it, i.e. calculate its true posi-
tive and false positive scores. We then generalise it in every way possible to
create child templates, and update the lower bounds on the true and false
positive scores for these children. Because there are several ways that each
template could be created, some children will have more than one parent. In
these cases, the lower bounds are the maximum of the lower bounds of all
the parents.

By “best template” (Fig. 3, Steps 4a and 5), we mean select the template
with the highest lower-bound on the number of true positives, as inherited
from each template’s ancestors. If more than one template has the same max-
imum true positive lower-bound, then we choose between them by selecting
the template with the smallest lower-bound on false positives. If this still se-
lects more than one template, we can either pick one randomly; use them all
successively; or use all the selected templates together in the subsequent steps
(i.e. evaluate and generalise more than one template in one pass through the
main loop).

In Step 4f we could choose to either update the bounds of just the descen-
dents of τ in O, or else update the bounds of the descendents of every template
in C. The latter would be more computationally expensive, but would lead to
better estimates of the lower bounds. For each new template created, it would
require a search through C to find all the other possible ancestors, besides τ ,
in order to calculate the new lower bounds.

Finally, we terminate the search when some pre-specified criterion is sat-
isfied. Possible criteria include terminating: when O is empty (in which case
every possible template has been evaluated); or when a limit on the number of
evaluations is reached (e.g. stop after 1,000 templates have been evaluated);
or when a certain number of true positives (or false positives) are matched by
the current best template. It would be quite possible for the user to stop the
search and consider the current best template, before re-starting the search if
necessary.
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D+ DN

{the cat sat} {the mouse ran}
{the lion roared} {a cow jumped}
{a tiger slept} {the cat plays}

Fig. 4. Part of a search graph for a three-term template. Each rectangle shows
a template, starting with three sets of literals at the top initialised from the frag-
ment “the cat sat”. Various generalisation functions are then applied to it. For
example, gen(Γ, 2) means apply the generalise(τ, κΓ , 2) function to the upper tem-
plate, τ , to produce the lower template(s). The graph includes part-of-speech labels
“VBD” meaning past-tense verb and “DT” meaning determiner. The numbers in
each box below the template represent the estimated numbers of true-positive and
false-positive matches for each template, with respect to the positive and neutral
document sets D+ and DN shown. Note that not every node or edge is shown

As a more concrete example, Fig. 4 shows part of a search graph containing
various templates created from the seed fragment “the cat sat”, and evaluated
with respect to the two small corpora shown.

Consider the right-hand portion of the graph. Near the top are two
templates: <the, ∗, sat> and <the, cat, ∗>, both created using the
generalise(τ, κΩ , x) function. The first matches one true positive and no
false positives (shown as 1+0N in the figure). The second matches one true
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positive and one false positive. By the definition of superset generalisation,
we know that every template derived from this second template will have at
least one true positive and one false positive. So if, at one stage of a search,
we only want to consider templates with no false positives, then we need not
consider any descendent of this template. The two descendents shown (<the,
∗, ∗> and <∗, ∗, ∗>) need not be evaluated explicitly therefore; they can be
annotated as having at least one false positive, although in the figure, the
fully evaluated scores are shown.

Now consider the third row of templates in Fig. 4, i.e. those created after
two generalisation functions. From the left of the graph, three of these have
two true positives (<the, FELINE, VBD>, <the, FELINE, ∗> and <the,
ANIMAL, VBD>) and one has only one true positive, so we focus the search
on the first three. These have zero, one and one false positives respectively,
making the first one look most promising: <the, FELINE, VBD>. This is the
best unevaluated template so far. Several further generalisations are possible
from this template, including applying generalise(τ, κΩ , 3) to form <the, FE-
LINE, ∗>. But this has already been evaluated, so need not be considered
again. Applying generalise(τ, κΠ , 1) forms <DT, FELINE, VBD> which has
three true positives, and still no false positives. Given the two very small doc-
ument sets, this is an optimal template, so we stop the search here. In a more
realistic application, the search would continue until a stopping criterion was
reached, but would not find any superior template.

One modification to the algorithm would require more memory but should
lead to a faster convergence to a (possibly) superior solution. This is to expand
the unevaluated template set O by repeated applications of the generalise
function until it contains every template that could possibly be derived from
the seed phrase, or as many as is practically possible. We would then proceed
with a best-first search, but with the advantage that after each evaluation,
a large number of unevaluated templates will have the lower bounds of their
true- and false-positive estimates updated, because their ancestry would be
explicitly represented on the search graph. This should improve the selection
of the best template at each stage.

The algorithm above does not prune any part of the search graph, but
merely tends to search promising areas first. In practice, this is likely to lead
to very large memory requirements, which can be avoided through pruning.
Pruning search graphs is a lot more difficult than pruning trees because each
node can have multiple parents, and so after a node is pruned, it may reappear
as part of a different path. Although algorithms such as A* are inappropriate
here,6 recent variations may provide useful pruning methods, such as SMA*
[24, p. 104] and Sweep A* [27].

6We have no notion of a path cost, and are only interested in the final solution
rather than the path to it.
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6.5 Sample Results

The algorithm outlined in Fig. 3 has been implemented as an extension to the
BioRAT tool [5]. As a proof of principle of the methods described here, we
used the implementation to derive a template which could be used to identify
protein–protein interactions from biological literature.

We start with the seed phrase “Rad53p protein binds to Dbf4p”, where
“Rad53p” and “Dbf4p” are proteins, and “binds to” suggests a direct physical
interaction. We create a positive corpus by extracting 500 abstracts that are
listed in the Database of Interacting Proteins (DIP [26]). We assume that most
of these abstracts mention at least one protein–protein interaction, although
the information will be expressed in many different ways. We also create a
neutral corpus by selecting the first 500 abstracts dated September 2005 re-
trieved from PubMed. This is essentially a random set of biomedical texts. It
may contain some references to particular protein–protein interactions, but
we assume that most of these abstracts will not.

To select the “best template” during the search (Fig. 3, Steps 4a and 5),
we define a quality score thus:

score = (number of positive matches) – w× (number of neutral matches)
The weight w is used to control the trade-off between true- and false-positives
and hence balance the search for high recall and high precision templates. (As
explained in Sect. 6.1, we are assuming that each match in the neutral corpus
is a false-positive result.) We start with a small value of w = 0.5 and slowly
increase this as the search progresses. This encourages early exploration of the
search space while later penalising false positive matches heavily. We select
the unevaluated template with the highest score at each step. In cases where
two or more templates have the same score, candidate templates are selected
if they contain more gazetteer elements and fewer literal elements than the
others. This deliberately introduces a slight bias favouring templates that
contain references to gazetteers, as these represent useful domain knowledge.
Table 1 summarises the search as it progresses for the first 50 iterations.

On looking at Table 1, we see that the template evaluated on the 30th
iteration matches 286 fragments from the positive corpus, and four from the
neutral corpus. The template pattern is: [Γ : protein] [Ω: ?????] [Γ : binding]
[Ω: ???] [Γ : protein, sp]. This matches a protein followed by between 0 and 5
words, followed by a protein-binding term, followed by between 0 and 3 other
words, followed by another protein (of sub-type “sp”; this refers to terms in
a gazetteer derived from the SwissProt database). The five sentences listed
below were among those found in the positive corpus. The italicised portions
show the fragments matched by the template; the rest is given for context
only:

• Protein kinase C delta associates with and phosphorylates Stat3 in an
interleukin-6-dependent manner.

• Furthermore, Stat3 was phosphorylated by PKC delta in vivo on Ser-727. . .
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Table 1. Each row shows the template evaluated at one iteration, starting with the
literal template derived from the given seed phrase at iteration zero.

Iteration Measured Inherited Template pattern
matches matches

|TP | |FP | |TP | |FP |
0 1 0 – – [Λ: Rad53p] [Λ: protein] [Λ: binds] [Λ: to]

[Λ: Dbf4p]
10 2 0 1 0 [Γ : protein, sp] [Λ: protein] [Γ : binding]

[Ω: *] [Γ : protein, sp]
20 86 1 25 1 [Γ : protein] [Ω: ?] [Γ : binding] [Ω: *] [Γ :

protein, sp]
30 286 4 247 4 [Γ : protein] [Ω: ?????] [Γ : binding] [Ω:

???] [Γ : protein, sp]
40 1,202 34 1,202 34 [Ω: ??] [Ω: ?????] [Γ : binding] [Ω: ?????]

[Γ : protein]
50 2,621 151 2,621 151 [Ω: ???] [Ω: ?????] [Γ : binding] [Ω: ?????]

[Ω: *]

The number of matches in the positive (TP) and neutral (FP) corpora are shown for
the current template (“measured matches”) and for its parent (“inherited matches”).
Each template element is shown delimited by square brackets in the form [CATE-
GORY: value], with categories literal (Λ), gazetteer (Γ ) and wildcard (Ω). A wild-
card element with n query symbols matches between 0 and n words. The sequence of
templates generated tends to generalise from literals through gazetteers to wildcards

• We report here that Grb2 also interacts with tyrosine-phosphorylated IRS-
1 in response to gastrin.

• . . . RII alpha fused to endonexin II formed dimers but did not bind MAP2.
• A protein interaction map for cell polarity development.

While the first three results correctly show protein–protein interactions,
the last two highlight imperfections in this particular template. The phrase
“did not bind” indicates that no interaction was observed, but the template
still treats this as a positive statement. In the last example shown, the word
“map” is not a protein, although the same word is used to refer to a protein
in other contexts and so it is in the protein gazetteer.

Table 1 also shows that the template evaluated in the 50th iteration
matches 2,621 fragments in the positive corpus, and 151 in the neutral, with
the template pattern: [Ω: ???] [Ω: ?????] [Γ : binding] [Ω: ?????] [Ω: *]

This might be seen as an example of over-generalisation, in that the tem-
plate consists almost entirely of wildcards. However, the quality of any tem-
plate depends on the requirements of the user, and for some tasks, even this
very general template may still be useful. Note that the total runtime on a
stand-alone PC was 20 min for these 50 iterations.
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7 Discussion and Extensions

We now briefly discuss a few of the possible extensions to the framework and
its implementation.

We could introduce other wildcards, such as a wildcard which matches an
entire phrase, which could itself be defined as a series of terms, much like a
template. This would allow optional subclauses, such as subordinate clauses,
to be matched. Let ?τ1 designate an optional wildcard that matches a sequence
of literals defined by template τ1 or matches nothing at all. Then if τ1 =
<{which}, {*}, {*}>, the template τ2 = <{DT}, {ANIMAL}, {?τ1}, {sat}>
would match the fragment <the, cat, which, was, black, sat> as well as <the,
cat, sat>.

An additional approach to finding good templates is to repeatedly merge
useful templates to produce more general templates [18]. Our framework could
easily be extended to allow this, by ensuring that the product of merging two
templates matches every fragment that either template matches. This could
be achieved by considering each pair of template elements in turn, and either
performing a simple set union if they belong to the same category, or else
generalising them both to the same category before such a union. In either
case, the new template would match the union of the true-positives matched
by the two parents, and the union of the false-positives, allowing the lower-
bounds on each to be calculated.

So far, we have considered template that exist in isolation, whereas in
practical systems, it is more common to apply a set of templates together.
Our framework can be extended to include this by using a sequential covering
algorithm. Suppose we have a template τ that matches some true positives
and some false positives. We could reduce the number of false positives by
creating a second template τ ′ that is optimised to match just the false positive
fragments matched by τ . This could be achieved by defining two new versions
of D+ and DN based on the fragments matched by τ , and using these to
guide the search for τ ′. We could then apply τ and τ ′ together, predicting
interesting fragments as µ(τ,D) \ µ(τ ′, D) (i.e. fragments matched by τ but
not by τ ′.). In many practical applications, more than one template will be
applied to a set of documents, each designed to match a different piece of
information, or a different way of expressing that information.

We have assumed that we do not have a set of annotated examples, i.e.
fragments known in advance to be positive or negative. Creating and anno-
tating large sets of examples is extremely time consuming for a user, although
giving a yes/no response to automatic annotations is simpler [20]. One en-
hancement to our system therefore would be to start with the estimates of
true positive and false positive as outlined above, and search for a good tem-
plate, and then use this template to annotate a number of fragments and to
present these to the user. The user then marks each fragment as interest-
ing or not interesting, and this could then be used to improve the quality of
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the function used to estimate the numbers of true and false positives. This
improved function could be used to guide a new template search.

The best-first search described above may miss out on good templates be-
cause of its greedy decision making. This would be true even if the estimates of
the numbers of true and false positives were perfect, owing to the structure of
the graph: we can’t guarantee that the best parents will have the best children.
One likely improvement therefore would be a population based search, such as
a simple beam search or an evolutionary algorithm. Evolutionary algorithms
have been successfully used to solve a wide range of multi-objective optimi-
sation problems [10], including problems where evaluations must be limited
due to time or financial constraints [15]. Extracting information from a large
corpus takes considerable computing effort, so this is an aspect worth consid-
ering. Multi-objective evolutionary algorithms can efficiently generate a range
of Pareto-optimal solutions, and so explore the trade-off between the different
objectives. In our case, this means that for each number of true positives, we
find the template with the fewest false positives, and for each number of false
positives, we find the template with the most true positives. This produces a
range of solutions from which the user can then select whichever template or
templates are most suitable for their particular problem. This is more flexible
than the simple weighting suggested in Sect. 6.5.

Finally, rather than starting with a seed fragment and a template consist-
ing solely of literals, we could start the search using a hand-written template.
This would not have to be optimised in advance, and in some cases, would
be easy to create. The search could then start from a point chosen to be use-
ful and optimised further through similar search processes to those outlined
above.

8 Conclusion

We have presented a formal framework to describe information extraction,
focusing on the definition of the template patterns used to convert free text
into a structured database. The framework has allowed us to explicitly iden-
tify some of the fundamental issues underlying information extraction and to
formulate possible solutions. We have shown that the framework allows com-
putationally feasible heuristic search methods to be developed for automatic
template creation. We have shown that a practical implementation of this
framework is feasible and allows automatic template creation. We also hope
that the framework will allow other researchers to gain further insights into
the theory and practice of information extraction and text mining.

Acknowledgements

This work is partly funded by the BBSRC grant BB/C507253/1, “Biological
Information Extraction for Genome and Superfamily Annotation.”



A Logical Framework for Template Creation and Information Extraction 107

References

1. Blaschke, C., Valencia, A.: The Frame-Based Module of the SUISEKI Informa-
tion Extraction System, IEEE Intelligent Systems, 17(2), March 2002, 14–20

2. Collier, R.: Automatic Template Creation for Information Extraction, Ph.D.
Thesis, Department of Computer Science, University of Sheffield, 1998

3. Colosimo, M. E., Morgan, A. A., Yeh, A. S., Colombe, J. B., Hirschman, L.: Data
Preparation and Interannotator Agreement, BMC Bioinformatics, 6(Suppl 1),
2005

4. Corney, D., Byrne, E., Buxton, B., Jones, D.: A Logical Framework for Template
Creation and Information Extraction, Foundations of Semantic Oriented Data
and Web Mining workshop, part of ICDM2005 (the Fifth IEEE International
Conference on Data Mining), 2005

5. Corney, D. P. A., Buxton, B. F., Langdon, W. B., Jones, D. T.: BioRAT:
Extracting Biological Information from Full-Length Papers, Bioinformatics,
20(17), 2004, 3206–3213

6. Costantino, M.: Financial Information Extraction Using Pre-Defined and User-
Definable Templates in the LOLITA System, Ph.D. Thesis, University of
Durham, Department of Computer Science, 1997

7. Cowie, J., Lehnert, W.: Information Extraction, Communications of the ACM,
39(1), 1996, 80–91

8. Cowie, J., Wilks, Y.: Information Extraction, in: Handbook of Natural Language
Processing (Dale R., Moisl H., Somers H., Eds.), Marcel Dekker, New York, 2000

9. Cunningham, H.: GATE, a General Architecture for Text Engineering, Com-
puters and the Humanities, 36(2), May 2002, 223–254

10. Fonseca, C. M., Fleming, P. J.: An Overview of Evolutionary Algorithms in
Multiobjective Optimization, Evolutionary Computation, 3(1), 1995, 1–16

11. Hersh, W., Bhuptiraju, R., Ross, L., Cohen, A., Kraemer, D.: TREC 2004
Genomics Track Overview, The Thirteenth Text Retrieval Conference (TREC
2004) NIST Special Publication SP 500–261, 2004

12. Hirschman, L., Yeh, A., Blaschke, C., Valencia, A.: Overview of BioCreAtIvE:
Critical Assessment of Information Extraction for Biology, BMC Bioinformatics,
6(Suppl 1), 2005

13. Huang, M., Zhu, X., Hao, Y., Payan, D. G., Qu, K., Li, M.: Discovering Pat-
terns to Extract Protein–Protein Interactions from Full Texts, Bioinformatics,
20(18), 2005, 3604–3612

14. Kim, J., Ohta, T., Tateisi, Y., Tsujii, J.: GENIA Corpus – Semantically Anno-
tated Corpus for Bio-Textmining, Bioinformatics, 19(Suppl 1), 2003, 180–182

15. Knowles, J., Hughes, E. J.: Multiobjective Optimization on a Budget of 250
Evaluations, Evolutionary Multi-Criterion Optimization (EMO 2005), LNCS
3410, Springer, Berlin Heidelberg New York, 2005, 176–190

16. Koike, A., Niwa, Y., Takagi, T.: Automatic Extraction of Gene/Protein Bi-
ological Functions from Biomedical Text, Bioinformatics, 21(7), April 2005,
1227–1236

17. Marcus, M., Santorini, B., Marcinkiewicz, M. A.: Building a Large Annotated
Corpus in English: the Penn Treebank, Computational Linguistics, 19, 1993,
313–330

18. Nobata, C., Sekine, S.: Towards Automatic Acquisition of Patterns for Informa-
tion Extraction, International Conference of Computer Processing of Oriental
Languages, 1999



108 D. Corney et al.

19. Pierce, D., Cardie, C.: Limitations of Co-Training for Natural Language Learn-
ing from Large Datasets, Proceedings of the 2001 Conference on Empirical Meth-
ods in Natural Language Processing, Association for Computational Linguistics
Research, 2001

20. Pierce, D., Cardie, C.: User-Oriented Machine Learning Strategies for Informa-
tion Extraction: Putting the Human Back in the Loop, Working Notes of the
IJCAI-2001 Workshop on Adaptive Text Extraction and Mining, 2001, 80–81

21. Porter, M. F.: An Algorithm for Suffix Stripping, Program, 14(3), 1980, 130–137
22. Riloff, E.: Automatically Constructing a Dictionary for Information Extraction

Tasks, National Conference on Artificial Intelligence, 1993, 811–816
23. Riloff, E.: Automatically Generating Extraction Patterns from Untagged Text,

Proceedings of the Thirteenth National Conference on Artificial Intelligence
(AAAI-96), 1996, 1044–1049

24. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2 edition,
Prentice-Hall, Englewood Cliffs, NJ, 2003

25. Sehgal, A.: Text Mining: The Search for Novelty in Text, Ph.D Comprehensive
Examination Report, Department of Computer Science, The University of Iowa,
April 2004

26. Xenarios, I., Salwinski, L., Duan, X., Higney, P., Kim, S., Eisenberg, D.: DIP:
The Database of Interacting Proteins. A Research Tool for Studying Cellular
Networks of Protein Interactions, Nucleic Acids Research, 30(1), January 2002,
303–305

27. Zhou, R., Hansen, E.: Sweep A: Space-Efficient Heuristic Search in Partially-
ordered Graphs, Fifteenth IEEE International Conference on Tools with Artifi-
cial Intelligence, Sacremento, CA, November 2003



A Bipolar Interpretation of Fuzzy Decision
Trees∗

Tuan-Fang Fan1, Churn-Jung Liau2, and Duen-Ren Liu1

1 Institute of Information Management, National Chiao-Tung University,
Hsinchu 300, Taiwan
tffan.iim92g@nctu.edu.tw, dliu@iim.nctu.edu.tw

2 Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
liaucj@iis.sinica.edu.tw

Summary. Decision tree construction is a popular approach in data mining and
machine learning, and some variants of decision tree algorithms have been proposed
to deal with different types of data. In this paper, we present a bipolar interpretation
of fuzzy decision trees. With the interpretation, various types of decision trees can
be represented in a unified form. The edges of a fuzzy decision tree are labeled by
fuzzy decision logic formulas and the nodes are split according to the satisfaction of
these formulas in the data records. We present a construction algorithm for general
fuzzy decision trees and show its application to different types of training data.

1 Introduction

Decision trees play an important role in machine learning and data mining
[11, 13–15], and classifiers based on decision trees work well for precise data.
However, imprecision, uncertainty, and incompleteness prevail in real-world
data. To deal with different kinds of uncertainty, a variety of modifications
and generalizations of decision trees, such as the fuzzy decision tree [6] and
the multi-valued decision tree [2], have been proposed.

As these variants of decision trees were proposed independently, there has
not been a comparative study using a common framework. In this paper, we
try to address this situation by proposing a bipolar interpretation of fuzzy
decision trees. The interpretation makes it possible to represent various types
of decision trees in a uniform framework. Our framework can deal with very
general forms of fuzzy data and fuzzy rules. When specialized for specific
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instances, it provides interesting alternatives to the variety of decision trees
proposed in the literature.

The rest of this paper is organized as follows. In Sects. 2 and 3, we present
the data format and rule form of the classification problem respectively. In
particular, we propose fuzzy data table for data representation, and use fuzzy
decision logic as the rule representation language. In Sect. 4, we introduce a
uniform framework, called general fuzzy decision trees. The edges of a general
fuzzy decision tree are labeled by fuzzy decision logic formulas and the nodes
are split according to the satisfaction of these formulas in the data records (or
objects). We also present a construction algorithm for general fuzzy decision
trees. In Sect. 5, we show the application of our framework to different types
of training data by instantiating it to some specific cases. In particular, the
bipolar interpretation of general fuzzy decision trees results in ordinary fuzzy
decision trees [6] and multi-valued decision trees [2]. Finally, in Sect. 6, we
briefly conclude this paper and indicate some further research directions.

2 Data Representation

A data table is normally used as means of storing data. A formal definition
of a data table is given in [12].

Definition 1. A data table1 is a pair S = (U,A) such that

• U = {x1, x2, · · · , xn} is a nonempty finite set, called the universe
• A = {f1, f2, · · · , fm} is a nonempty finite set of primitive attributes
• For 1 ≤ i ≤ m, fi : U → Vi is a total function, where Vi is the set of

values for fi, called the domain of values of fi.

To distinguish data tables from fuzzy data tables, we call them precise data
tables. Hereafter, when we mention a data table S = (U,A), we assume that
the cardinalities of U and A are respectively n and m, fi denotes the ith
attribute in A, and Vi is its domain of values. Each element in U represents a
data record. Since each data record describes the attributes of an object, we
identify a data record with the object described by the data record. Thus, the
elements of U are also called objects. In the following presentation, we treat
the terms “data records” and “objects” interchangeably.

In a precise data table, it is assumed that fi(x) is exactly known for each
object x and attribute fi. However, in some practical situations, we have only
incomplete information about fi(x) for some fi and x. To accommodate such
situations, incomplete information systems have been proposed [8–10,16,17].
Furthermore, many practical data mining problems need to deal with multi-
valued data [2].

1Also called knowledge representation system, information system, or attribute-
value system.
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To represent incomplete information or multi-valued data, we can use fuzzy
data tables (FDT). An FDT is a pair S = (U,A), where U is a finite set of
objects, A = {fi : U → P̃(Vi) | 1 ≤ i ≤ m}, and P̃(Vi) denotes the class of
fuzzy sets of domain Vi.

3 Rule Representation

In [12], decision logic (DL) is proposed as a means to represent knowledge
discovered from data tables. This logic is called decision logic because it is
particularly useful for a decision table, which is a data table S = (U,A),
where A can be partitioned into two sets, C (condition attributes) and D (de-
cision attributes). Through data analysis, decision rules relating condition and
decision attributes can be derived from the table. A rule is then represented
as an implication between two formulas of DL.

Since DL can represent knowledge discovered from precise data tables, we
generalize it to fuzzy decision logic (FDL) for rule representation in FDT.
The basic alphabet of FDL consists of a finite set of attribute symbols A =
{a1, a2, . . . , am} and, for 1 ≤ i ≤ m, a finite set of linguistic terms Li. The
atomic formula of an FDL is a descriptor (ai, li), where ai ∈ A and li ∈ Li.
The set of well-formed formulas (wff) of FDL is the smallest set containing
the atomic formulas and closed under the Boolean connectives ¬,∧, and ∨.
If ϕ and ψ are wffs of FDL, then ϕ −→ ψ is a rule in FDL, where ϕ is the
antecedent of the rule and ψ is the consequent.

Each element in the universe of an FDT corresponds to an object and
an atomic formula (i.e., an attribute-value pair) describes the value of an
individual attribute of an object. Thus, atomic formulas (and wffs) can be
verified or falsified in each object. This gives rise to a satisfaction relation
between the universe and the set of wffs.

Many natural language terms are highly context-dependent. For example,
the word “tall” in “a tall basketball player” has a quite different meaning than
it has in “a tall child”. To model context-dependency, we associate a context
with each FDL. The context determines the domain of values of each attribute
and assigns an appropriate meaning to each linguistic term. Formally, given
an FDT (U,A), a context associated with an FDL is a function, ct, that maps
each linguistic term li ∈ Li to ct(li) ∈ P̃(Vi) for 1 ≤ i ≤ m, where Vi is the
domain of values of attribute fi. We assume each FDT has a fixed context.

Each linguistic term is interpreted as a fuzzy subset of attribute values, so
an object may satisfy an atomic formula in FDL to some degree. Thus, the
satisfaction between data records and wffs is a quantitative relation.

The semantics of FDL depend on how the fuzzy sets in the FDT and
FDL contexts are interpreted. A fuzzy set can be interpreted disjunctively or
conjunctively, and the difference between disjunctive and conjunctive inter-
pretations corresponds to the bipolar representation of possibilistic logic [1].
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3.1 Disjunctive Interpretation

In disjunctive interpretation, a fuzzy set is considered as constraints imposed
by a linguistic term over the domain. Let V be the domain of possible values
and X be a fuzzy set in P̃(V ); then, the membership degree of an element,
v, in X stipulates the possibility that the actual value is v. The disjunctive
interpretation of fuzzy sets is appropriate for incomplete information systems.
When we do not know the exact value of an attribute, we can encode the
incomplete information by a fuzzy set. This is the interpretation adopted in
the ordinary possibility theory by Zadeh [19].

Given a domain V , a possibility distribution on V is a function π : V →
[0, 1]. A possibility distribution π is called normalized if supv∈V π(v) = 1. Two
measures on V can be derived from π. They are called the possibility and the
necessity measures and are denoted by Π and N respectively. Formally, Π
and N : 2V → [0, 1] are defined as

Π(A) = sup
v∈A

π(v),

N(A) = 1 −Π(A),

where A is the complement of A with respect to V .
These two measures correspond to our uncertainty about the crisp event

A when a piece of vague information π is available. They can be extended
to measure the uncertainty of fuzzy events [4]. The extended measures, still
denoted by Π and N , are defined as Π and N : P̃(V ) → [0, 1],

Π(X) = sup
v∈V

µX(v) ⊗ π(v),

N(X) = inf
v∈V

π(v) →⊗ µX(v),

where µX is the membership function of a fuzzy event X, ⊗ : [0, 1] × [0, 1] →
[0, 1] is a t-norm,2 and →⊗: [0, 1]× [0, 1] → [0, 1] is the residuated implication
function for ⊗ defined as a→⊗ b = sup{x | x⊗ a ≤ b}.

If an FDT S = (U,A) represents an incomplete information system, for
each x ∈ U and fi ∈ A, fi(x) is considered as a possibility distribution over
Vi. Thus, its membership function is equivalent to a possibility distribution
πi,x over the domain Vi. The wffs of FDL can then be evaluated in each data
record of U according to the following evaluation function, E:

1. E(x, (ai, li)) = Ni,x(ct(li)), where Ni,x is the necessity measure corre-
sponding to πi,x

2. E(x,¬ϕ) = 1 − E(x, ϕ)

2A binary operation ⊗ is a t-norm iff it is associative, commutative, and increasing
in both places, and 1 ⊗ a = a and 0 ⊗ a = 0 for all a ∈ [0, 1].
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3. E(x, ϕ ∧ ψ) = E(x, ϕ) ⊗ E(x, ψ)
4. E(x, ϕ ∨ ψ) = E(x, ϕ) ⊕ E(x, ψ)

where ⊕ is a t-conorm defined by a⊕ b = 1 − (1 − a) ⊗ (1 − b).
In the disjunctive interpretation, fi(x) indicates the incomplete informa-

tion about the value of the attribute fi of the object x. To measure the extent
to which x satisfies the atomic formula (ai, li), we have to evaluate the truth
degree of the statement “for every possible value v in the domain of attribute
fi, if x has the value v, then v satisfies the linguistic label li”. In fuzzy logic,
the truth degree of such a formula is defined by

inf
v∈Vi

µfi(x)(v) →⊗ µct(li)(v) = inf
v∈Vi

πi,x(v) →⊗ µct(li)(v),

which is equal to Ni,x(ct(li)). In other words, E(x, (ai, li)) is the necessity
degree of the fuzzy event ct(li) in accordance with the incomplete information
fi(x). This explains the intuition behind the definition of the evaluation func-
tion E for the atomic formulas in the disjunctive case. The definition of the
evaluation function for other wffs follows the standard approach in fuzzy logic.

3.2 Conjunctive Interpretation

In conjunctive interpretation, a fuzzy set represents positive knowledge in the
domain, which is appropriate for the representation of multi-valued data. For
example, in an FDT, the attribute “programming skills” may have a fuzzy
set value (C + + : 1, Java : 0.8, Pascal : 0.6). By using conjunctive interpre-
tation, the object with this attribute value has the programming ability of
all three languages. If the fuzzy set were interpreted disjunctively, the object
would only have the programming skills of one of these languages.

Mathematically, we can consider each linguistic label li as a possibility
distribution over domain Vi. Thus, the membership function of ct(li) is equiv-
alent to a possibility distribution πli and its corresponding necessity measure
is denoted by Nli .

If an FDT S = (U,A) represents multi-valued data, then the atomic wffs
of FDL are evaluated in each x ∈ U by

E(x, (ai, li)) = Nli(fi(x)),

and the evaluation function can be extended to any wffs in the same manner
as in disjunctive interpretation.

In conjunctive interpretation, the fuzzy set fi(x) indicates all properties
that x has with respect to its attribute fi. Therefore, x satisfies the atomic
formula (ai, li) if it possesses all properties stipulated by the linguistic label
li. In fuzzy logic, to evaluate if x possesses all properties stipulated by the
linguistic label li, we have to evaluate the truth degree of the statement “for
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every possible value v in the domain of attribute fi, if v is stipulated by li,
then v belongs to fi(x)”. The truth degree of such a formula is defined by

inf
v∈Vi

µct(li)(v) →⊗ µfi(x)(v),

which is equal to Nli(fi(x)). This explains the intuition behind the definition
of the evaluation function, E, for the atomic formulas in the conjunctive case.

4 General Fuzzy Decision Trees

In this paper, we assume that training data is stored in an FDT S = (U,A),
where A is partitioned into a set of condition attributes A′ = {f1, . . . , fm−1}
and the decision attribute fm. In the terminology of the classification problem,
any fuzzy subset of Vm is called a class label .

4.1 The Construction Phase

The construction algorithm for general fuzzy decision trees is presented in
Fig. 1. It follows the standard framework of classical decision trees [13].

Below, we describe in detail the following three aspects of the algorithm:

1. How to label each node s with a fuzzy subset of Vm in the last step.
2. What is the stopping condition?
3. How to choose the best attribute in As for next split each time.

/*Initialization/

Let r denote the root of tree T

Ur ← U /*The fuzzy subset of objects at the root is U/

Ar ← A′ /*The set of un-split attributes at the root is A′/

/*Main loop/

for each unlabeled leaf node s of T

if the stopping condition is not satisfied by s and As �= ∅ /*See Sect. 4.1/

then choose the best attribute fi in As for the next split. /*See Sect. 4.1/

for each linguistic label l ∈ Li

Add a child node, s′, to s and let the edge between s and s′ be labeled (ai, l)

As′ = As − {fi} /*Delete fi from the set of un-split attributes/

µU
s′ (x) = µUs (x) ⊗ E(x, (ai, l)) /*Update the fuzzy subset of objects left at node s′/

endfor

endthen

else label s with a fuzzy subset of Vm /*See Sect. 4.1/

endfor

Fig. 1. The construction algorithm
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Labeling the Nodes

The first step is to assign a class label to a leaf node of the tree. The class
label of a node corresponds to a value of the decision attribute in the FDT,
so it should be a fuzzy subset of Vm. The membership function of the class
label for a node s, denoted by µs : Vm → [0, 1], is determined by fm and Us,
where Us denotes the fuzzy subset of objects left at s.

There are several approaches for computing µs. First, by the qualitative
approach:

µs(v) = min
x∈U

(µUs
(x) →⊗ µfm(x)(v)). (1)

The value µs(v) indicates the degree of appropriateness of v to serve as a
decision label for all objects left at s. Intuitively, a value v is appropriate
for such a purpose if every object, x, left at s has the value v in its decision
attribute value fm(x). This intuition is translated into (1) in fuzzy logic sense.

Second, an alternative approach is to use average supports:

µs(v) =
∑
x∈U

µUs
(x)

SC
· µfm(x)(v), (2)

where
SC =

∑
x∈U

µUs
(x)

is the sigma count [7] of objects appearing in s. In this equation, µfm(x)(v) is
considered as the support that x should be classified to the decision class v.
Thus, (2) calculates the weighted sum of the supports that objects left at s
should be classified to class v, where the weight of an object is determined by
its proportion in the fuzzy subset Us.

Third, another approach is to use normalized supports:

µs(v) =
∑

x∈U (µUs
(x) · µfm(x)(v))
M

(3)

where

M = max
v∈Vm

(∑
x∈U

(µUs
(x) · µfm(x)(v))

)
is the maximum support among the values of Vm. The calculation of (3) is
similar to that of (2). However, unlike in (2), the weights of the objects are not
normalized in advance. Thus, the weight of each object is simply its degree
of membership in the set Us. To keep the final value µs(v) within [0,1], we
normalize it by the maximal degree of support for all possible decision classes.

Finally, if a precise class label is required, then the standard center-of-
gravity approach can be applied to defuzzify µs into a precise value in Vm.
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The Stopping Condition

Regarding the stopping condition and the choice of the best attribute for the
split, we must measure the diversity of decision values for objects appearing in
a node. This can be achieved through global or local approaches. The global
approach depends on how similar the decision value of an object is to the class
label of the node. The class label of the node can be seen as the average of
decision values for objects appearing in that node. Therefore, we must measure
the similarity between two fuzzy subsets of Vm. There are many proposals for
measuring the similarity of two fuzzy sets, so we do not specify what the
similarity function is. We simply assume that sim is a similarity function
mapping two membership functions, µ1 and µ2, into a number sim(µ1, µ2) ∈
[0, 1]. Several proposals of similarity functions are reviewed in the Appendix.
Let x, y ∈ U be objects and s be a node in the tree T . We also write sim(x, s)
for sim(µfm(x), µs) and sim(x, y) for sim(µfm(x), µfm(y)).

The diversity of decision values for objects appearing in a node, s, can be
measured by aggregating sim(x, s) for all x left at s. The aggregated result is
called the global degree of concentration, and we denote the global degree of
concentration of a node s by gdcs. There are at least two ways to define gdcs.
First, by qualitative means:

gdcs = min
x∈U

(µUs
(x) →⊗ sim(x, s)), (4)

and, second, by quantitative means,

gdcs =
∑
x∈U

µUs
(x)

SC
· sim(x, s), (5)

where SC is the sigma count of Us as defined above. A smaller gdcs value
indicates a more diverse decision value of objects appearing in s. The quali-
tative gdcs measures the degree of truth of the statement “the decision class
of every object left at s is similar to the label of s” in a fuzzy logic sense.
The quantitative gdcs measures the average similarity of the decision class of
every object left at s to the label of s. Note that to calculate the global degree
of concentration, we have to assign labels not only to leaf nodes, but also to
internal nodes. The label assignment procedure for internal nodes is exactly
the same as that introduced in Sect. 4.1.

As suggested in [2], we can also measure the diversity of decision values
of objects appearing in a node, s, by using the (average) mutual similarity
between the decision values. This is called the local degree of concentration,
denoted by ldcs, and can also be defined in two ways, i.e., by qualitative
means:

ldcs = min
1≤i<j≤n

(µUs
(xi) ⊗ µUs

(xj) →⊗ sim(xi, xj)); (6)
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or by quantitative means:

ldcs =
∑

1≤i<j≤n

µUs
(xi) · µUs

(xi) · sim(xi, xj)∑
1≤i<j≤n µUs

(xi) · µUs
(xi)

(7)

recalling that U = {x1, · · · , xn}. The qualitative ldcs measures the degree of
truth of the statement “decision classes of all objects left at s are pairwisely
similar” in a fuzzy logic sense, whereas the quantitative ldcs measures the
average similarity of the decision values. Unlike in the global case, we do
not have to assign decision labels to the internal nodes of the decision tree.
However, in the local case, the similarity of decision classes of each pair of
objects has to be calculated.

If we let dcs denote either gdcs or ldcs, then the stopping condition is
satisfied by a node s if dcs ≥ θ for some preset threshold value θ. The choice
of an appropriate definition of dcs depends on the problem context and the
complexity consideration.

Choice of the Best Attribute

To choose the best attribute for split each time, we simply split a node s with
each attribute in As to find which attribute results in the maximum average
concentration degree. Let fi be an attribute in As and for each l ∈ Li, sl

be the child node of s corresponding to (ai, l), provided that s is split with
attribute fi. We denote the sigma count of Usl as SCsl for any l ∈ Li. The
resultant average degree of concentration after splitting s with attribute fi is

dci,s =
∑
l∈Li

SCsl∑
l∈Li

SCsl

· dcsl . (8)

Therefore, the attribute chosen for next split should be the attribute fi ∈ As

that maximizes dci,s, i.e.,
arg max

fi∈As

dci,s.

4.2 The Decision Phase

Once a general fuzzy decision tree has been constructed, we can use it to
classify new data. Let x be an object with attributes f1, . . . , fm−1 such that
fi(x) ∈ P̃(Vi) for 1 ≤ i ≤ m− 1. Since labels on the edges of the decision tree
are atomic formulas based on attributes f1, . . . , fm−1, the evaluation function
E can be applied to the object x and the atomic formulas for assignment of
a decision value fm(x) to x.

We associate an FDL wff, ϕs, with each leaf node s of the decision tree.
The wff ϕs is the conjunction of all atomic formulas appearing on the edges
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of the path from the root to s. The decision value fm(x) is then defined by
the membership function

µfm(x) =
⊕

s∈LN

E(x, ϕs) ⊗ µs, (9)

where LN is the set of all leaf nodes, and the t-norm and t-conorm operations
are extended to membership functions pointwisely.

The decision tree can be used as a set of decision rules. Each leaf node s is
roughly equivalent to a decision rule whose antecedent is ϕs and consequent is
µs. Strictly speaking, µs is a membership function, instead of a wff of FDL, so
it is not really a decision rule. However, we can consider µs as the membership
function of a fuzzy subset corresponding to a linguistic term in domain Vm.
Therefore, the definition of fm(x) results from the approximate reasoning
scheme in fuzzy logic [19]. This is also the approach to decision inference in
fuzzy decision trees in [6]. However, if a precise decision is required, then the
standard center-of-gravity approach can be employed to defuzzify fm(x) into
a precise value in Vm.

5 Variants of Decision Trees

General fuzzy decision trees provide a common framework for expressing dif-
ferent types od decision trees. An instance of general fuzzy decision trees is
characterized by the following parameters:

1. data format in the FDT,
2. rule form in the FDL,
3. bipolar interpretation of data and wffs (disjunctive or conjunctive),
4. assignment of class labels to decision tree nodes,
5. computation of degrees of concentration.

In this section, we consider instances related to the classical decision tree
[13], fuzzy decision tree [6], and multi-valued decision tree [2].

5.1 Classical Decision Trees Revisited

One classical instance of general fuzzy decision trees is characterized by the
following parameters:

1. data format in the FDT: fi(x) is a singleton subset of Vi for all fi ∈ A
and x ∈ U .

2. rule form: in the FDL, we restrict Li = Vi for all fi ∈ A.
3. interpretation of wffs: with the restrictions on FDT and FDL, conjunctive

and disjunctive interpretations collapse. We choose the t-norm ⊗ = min,
so ⊗,⊕, and →⊗ correspond respectively to the classical Boolean opera-
tions ∧,∨, and →. Therefore, E(x, ϕ) ∈ {0, 1} holds for each x ∈ U and
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wff ϕ. In particular, E(x, (ai, v)) = 1 iff fi(x) = v. Consequently, Us is a
crisp subset of U for each node s of the decision tree.

4. assignment of class labels to decision tree nodes: we use the average sup-
port. Let |Us| = ns and Vm = {v1, · · · , vk} and assume that the number
of objects in Us with decision value vi is ni. Then, according to (2), the
class label of s is a fuzzy subset of Vm with the membership function

µs(vi) =
ni

ns

�
= pi, 1 ≤ i ≤ k.

Note that
∑k

i=1 pi = 1 holds in this case.
5. computation of degrees of concentration: we use the sim defined in (10)

and compute the gdc according to (5), then

gdcs =
k∑

i=1

pi ·
pi

1 +
∑

j 	=i pj
=

k∑
i=1

p2i
2 − pi

.

This kind of classical decision tree uses different stopping conditions and
selection criteria than those based on information gains derived from entropy
[13] or the Gini index [11].

5.2 Multi-Valued Decision Trees

An instance of multi-valued decision trees is characterized as follows:

1. data format in the FDT: fi(x) is a crisp non-empty subset of Vi for all
fi ∈ A and x ∈ U .

2. rule form in the FDL: we restrict Li = Vi for all fi ∈ A.
3. interpretation of wffs: we use conjunctive interpretation, and still choose

the t-norm ⊗ = min. Again, E(x, ϕ) ∈ {0, 1} holds for each x ∈ U and
wff ϕ. In particular, E(x, (ai, v)) = 1 iff v ∈ fi(x). Therefore, Us is also a
crisp subset of U for each node s of the decision tree.

4. assignment of class labels to decision tree nodes: we use average support.
Let |Us| = ns and Vm = {v1, · · · , vk} and assume that the number of
objects in Us whose decision values contain vi is ni. Then, according to
(2), the class label of s is a fuzzy subset of Vm with the membership
function

µs(vi) =
ni

ns

�
= pi, 1 ≤ i ≤ k.

Note that
∑k

i=1 pi = 1 no longer holds in this case.
5. computation of degrees of concentration: we use the sim defined in (10)

and compute the ldc according to (7). Then ldcs is equal to the set-
similarity function defined in [2].

This kind of multi-valued decision tree is very similar to that in [2]. There
are, however, two subtle differences. One is the assignment of class labels. In



120 T.-F. Fan et al.

our approach, we assign a fuzzy subset of Vm as the class label of a node,
whereas in [2] this subset is further defuzzified into a crisp subset of Vm.
The other difference is the stopping condition. In our approach, the stopping
condition is based on ldcs, whereas in [2] a criterion based purely on µs is
given. In [2], with a user-specified parameter σ, the set Vm is partitioned into
larges and smalls in a node s, where larges = {v ∈ Vm | µs(v) ≥ σ} and
smalls = Vm − larges. A node s is called clear if min{µs(v) | v ∈ larges} −
max{µs(v) | v ∈ smalls} > δ, where δ is again a user-specified parameter.
Roughly speaking, if a node s is clear, then no further expansion is needed
and the class label assigned to the node is larges.

5.3 Fuzzy Decision Trees

For an instance of fuzzy decision trees, we use the following parameter setting:

1. data format in the FDT: fi(x) is a singleton subset of Vi for all fi ∈ A
and x ∈ U .

2. rule form in the FDL: we only restrict that Li is finite for all fi ∈ A.
3. interpretation of wffs: we use disjunctive interpretation, and still choose

the t-norm ⊗ = min. However, E(x, (ai, l)) = µct(l)(fi(x)) is now a real
number in [0, 1]. Therefore, Us is a fuzzy subset of U for each node s of
the decision tree.

4. assignment of class labels to decision tree nodes: we use average support,
and still assume Vm = {v1, . . . , vk}. Let SC denote the sigma count of Us

and ri denote
∑

x:fm(x)=vi
µUs

(x) for 1 ≤ i ≤ k. Then, the class label of s
is a fuzzy subset of Vm with the membership function

µs(vi) =
ri
SC

�
= pi, 1 ≤ i ≤ k.

Note that
∑k

i=1 pi = 1 holds in this case.
5. computation of degrees of concentration: we use the sim defined in (10)

and compute the gdc according to (5). Then, analogous to the case of
classical decision trees,

gdcs =
k∑

i=1

p2i
2 − pi

.

6 Conclusion

Decision tree approach is important since decision trees provide solutions to
classification problems and extract rules effectively. To deal with different
kinds of data, decision trees have been generalized along different directions in
the past. In this paper, we propose a quite general framework for fuzzy decision
trees. Some particular instances of this framework prove to be interesting
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alternatives to previous proposals. Detailed comparison of our approach with
these related works is ongoing. Implementation and experimental testing of
our approach will be covered by future research.

A Definitions of Similarity Functions

Here, we review some basic definitions of the similarities between fuzzy sets
over finite domains [3]. Given two membership functions, µ1 and µ2, for fuzzy
subsets F1 and F2, respectively, of a finite domain V , sim(µ1, µ2) can be
defined in several ways.

One way is based on the cardinality of the intersection and union of two
sets. This is a generalization of the Jaccard index (also called the coefficient of
similarity or index of commonality) between crisp sets [5]. For the crisp case,
the Jaccard index between two crisp sets F and G is defined as |F∩G|

|F∪G| , where
| · | denotes the cardinality of a set. Analogously, for fuzzy sets,

sim(µ1, µ2) =
∑

v∈V µ1(v) ⊗ µ2(v)∑
v∈V µ1(v) ⊕ µ2(v)

=
|F1 ∩ F2|
|F1 ∪ F2|

, (10)

where | · | denotes the sigma count of a fuzzy set.
Another definition of similarity based on cardinality is called the simple

matching coefficient [18], defined as

|F1 ∩ F2| + |F1 ∩ F2|
|V | , (11)

where Fi is the complement set of Fi in V , for i = 1, 2.
Yet another definition measures the degree of mutual inclusion of two fuzzy

sets.

sim(µ1, µ2) =
∑

v∈V µ1(v) ↔⊗ µ2(v)
|V | , (12)

where a↔⊗ b = (a→⊗ b)⊗(b→⊗ a) is the equivalence function with respect
to a t-norm ⊗.

As |V | = k, µ1 and µ2 can be seen as two k-dimensional vectors, then the
similarity can be measured with the cosine of the angle between two vectors:

sim(µ1, µ2) =
µ1 ◦ µ2

‖µ1‖ · ‖µ2‖
, (13)

where µ1 ◦ µ2 is the inner product of µ1 and µ2, and ‖µi‖ is the length of µi,
for i = 1, 2.
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Other approaches based on the Hamming distance, Euclidean distance, or
more general Minkowski distance metrics are also possible. The Minkowski
distance of the pth order between µ1 and µ2 is defined as

disp(µ1, µ2) =

(∑
v∈V

(|µ1(v) − µ2(v)|)p

) 1
p

.

The similarity based on this distance metric is then defined as

sim(µ1, µ2) = 1 − disp(µ1, µ2)

|V | 1p
. (14)
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Summary. Probability theory (P-theory) and Zadeh fuzzy system (Z-system) have
both been used as foundations for mining structures or relations among data. The
goal of this paper is to study the links and differences between the two systems.
We start by considering the Z−-system, derived by discarding the complement set
definition in the Z-system. A theorem is proved to state that P-theory and the
Z−-system perform equivalently when one set is a subset of the other (i.e., A ⊆ B
or B ⊆ A) either in a sense of almost surely or in a sense of the Zadeh fuzzy set.
Furthermore by jointly considering the B-system that modifies the Z-system with
the “MIN–MAX” operations replaced by so-called Bold operations, another theorem
is proved to state that the Z−-system and the B-system attempt to approximate the
P-theory in two opposite ways, with success in some cases and failure in others. The
failures come from either or both of an incapability of capturing additive structures
and an inadequate handling of the dependence relation across two sets. Finally, we
examine the controversial definition of a complement set in the Z-system and clarify
that it arises from confusion about the “complement” concept and the “conjugate”
concept. The confusion and thus the controversy can be avoided by honoring the
additive principle, as in the B-system, or by renaming the complement set as the
conjugate set.

1 Introduction

Probability theory (P-theory) and the Zadeh fuzzy system (Z-system) are two
most widely explored tools for implementing computer reasoning in various
fields, and each has got a large population of supporters. In recent years,
efforts have also been made in the data mining field on adopting each of two
as a foundation for mining dependence or relations among data.

The key feature of the Z-system is that it is easy to understand and simple
to implement; thus, it attracted a lot of practitioners, especially in some con-
trol system applications in 1970s and 1980s. Even so, its roughness in nature
has generated a great deal of controversy in the literatures [3, 8].

In a classic sense, a probability is interpreted as the frequency or chance
that an event will occurs. This is often used in the fuzzy literature as an
Q.S. Gao et al.: A Probability Theory Perspective on the Zadeh Fuzzy System, Studies in
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evidence to argue how the Z-system is capable to handle a reasoning task that
is very different from tasks by Probability theory (P-theory) [2]. However, this
classic interpretation is not intrinsic to the P-theory. Starting with Bayes more
than 200 years ago, non-frequency interpretation has also been often adopted
in the literature of so-called Bayesian formalism. For further details, readers
are referred to a well written overview in 1988 Pearl’s famous book [7]. Some
preliminary investigations were also been made in [9]. In the past two decades,
studies of P-theory have increased dramatically in the AI field under the name
of Bayesian networks, Belief networks, or graphical probabilistic model [6, 7],
resulting in effective algorithms and a large number of practical successes.

There has been a long lasting argument between those “pro-probabilistic”
people, who simply refuse to accept the Z-system with certain type of igno-
rance, and those “pro-fuzzy” peoples, who worship the Z-system with another
type of ignorance. This paper aims at studying their links and differences.
In Sect. 2, we introduce certain fundamentals of set theory, the Z-system and
P-theory, through which we show that probability is not only a model of
uncertainty, as argued in the fuzzy literature, but also applicable to partial
membership to handle the same tasks handled by the Z-system. In Sect. 3, we
present a detailed analysis and two theorems to elucidate where the Z-system
works and fails. In Sect. 4, we examine the controversy over a definition of the
complement set in the Z-system. Finally, some concluding remarks are given
in Sect. 5.

2 Set Theory, Fuzzy Set System, and Probability Theory

2.1 Set Theory

A set A ⊆ U describes a collection of elements a, b, c, · · · in a universe U ,
ranging from one extreme case A = ∅, where A is empty, to the other extreme
where A = U . Given two sets A ⊆ U and B ⊆ U , there are three types of
mutual relation:

(a) One is a subset of the other, i.e.,

either A ⊆ B, i.e., we have x ∈ B if x ∈ A,
or B ⊆ A, i.e., we have x ∈ A if x ∈ B. (1)

(b)A and B are disjoint, i.e., they do not share a common element.
(c) A and B share some common elements, but neither A ⊆ B nor B ⊆ A.

The following two basis operations are introduced to describe the above
scenarios and the corresponding new concepts:

A ∩B = {x : x ∈ B and x ∈ A}, A ∪B = {x : x ∈ B or x ∈ A}. (2)
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The intersect A ∩B describes the common part of A and B, while the union
A∪B describes the total coverage of A and B. For case (b), we have A∩B = ∅,
while for case (c) we have A ∩B �= ∅, where neither A ⊆ B nor B ⊆ A.

Based on the concepts of ∅, U,∪,∩ jointly, for any set A we can uniquely
find a set X that satisfies

(a) A ∪X = U, (b) A ∩X = ∅. (3)

Such a unique X is called the complement set of A, denoted by ¬A. We can
write it equivalently as follows

¬A = {x | every x in U but not in A}. (4)

Alternatively, a set A can also be represented by the following character-
istic function :

µA(a) =

{
1, a ∈ A,
0, otherwise,

(5)

which is a binary valued function that characterizes the set A.
It further follows that the subset A ⊆ B means “µA(a) = 0 = µB(a)

for every a outside B, µA(a) < µB(a) for every a in B but not in A, and
µA(a) = 1 = µB(a) for every a in both A and B”. In a compact representation,
the subset concept by (1) can be expressed as follows

either µA(a) ≤ µB(a),∀a ∈ U, or µB(a) ≤ µA(a),∀a ∈ U. (6)

Also, the operations A ∩B and A ∪B in (2) can be expressed as

(a) µA∪B(a) = max{µA(a), µB(a)},
(b) µA∩B(a) = min{µA(a), µB(a)}, respectively (7)

Moreover, the complement set by (3) can be expressed by µ¬A(a), which
is the unique solution of

(a) 1 = max{µA(a), µ¬A(a)}, (b) 0 = min{µA(a), µ¬A(a)}. (8)

In term of (5), it can also be explicitly expressed as

µ¬A(a) = 1 − µA(a). (9)

2.2 Fuzzy Set System

The Zadeh Fuzzy set system (Z-system) is a straightforward extension of the
above set theory with (7) and (9) being extended from the binary valued
membership by (5) to the following real value membership:

0 ≤ µA(a) ≤ 1. (10)
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That is, a belongs to A as a partial membership or so-called fuzzy membership.
Under this extension, the subset concept of (6) and many other natures owned
under the binary valued membership of (5) remain true. The “MIN–MAX”
operations are simple in implementation and easy to understand, which makes
the Z-system adopted widely in past decades, especially in control systems [8].

However, use of the Z-system is very controversial due to many reported
failures and certain conflicts in the system. One example is the rejection of
the excluded middle law A∪¬A. That is, we get µ¬A(a) = 0.5 from (9) when
µA(a) = 0.5. It follows from (9) that µA∪¬A(a) = 0.5 = µA∩¬A(a), which is
difficult to be accepted in a traditional logic sense. For example, it has been
shown that requiring µA∪¬A(a) = 1 and certain known logical equivalences
will cause the system consisting of (7), (9) and (10) collapse into a binary
valued logic [3, 8].

Some “pro-fuzzy” people do not see these conflicts as problems, arguing
that they are inevitable and understandable due to missing information. Some
even insist that this is the main attraction of the Z system, while others
attempt to resolve the controversy by modifying (7)as follows [1, 5]:

(a) µA∪B(a) = min{1, µA(a) + µB(a)},
(b) µA∩B(a) = max{0, µA(a) + µB(a) − 1}. (11)

These are called bold operations (or the B-system). It is easy to see that
µA∪¬A(a) = 1 and µA∩¬A(a) = 0. That is, the above-mentioned conflicts are
resolved.

2.3 Probability Theory

In the Bayesian formalism, Probability theory (P-theory) consists of the fol-
lowing three basic axioms (see (2.1)–(2.3) in [7]):

(a) 0 ≤ P (A) ≤ 1,
(b) P (T ) = 1,
(c) P (A ∨B) = P (A) + P (B), if A,B are mutually exclusive, (12)

where A,B denote propositions and T denotes the true proposition.
Set theory and the Z-system are both expressed in terms of the relation

between an element a and a set A. To facilitate a comparison, whether a propo-
sition A is true is written as whether a ∈ A is true, and the true proposition
T is written as a ∈ U . Thus, it follows from (12a) that P (a ∈ A) = PA(a)
with

0 ≤ PA(a) ≤ 1 (13)

in a same format as (10). In terms of classic probability theory, we can inter-
pret PA(a) as the probability that a belongs to a set A, that is, a probabilistic
interpretation of the membership in set theory. For the subset by (1), we can
also have
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either PA(a) ≤ PB(a),∀a ∈ U, or PA(a) ≤ PB(a),∀a ∈ U. (14)

Limited to the above probabilistic interpretation of PA(a), it is argued
in the fuzzy literature that probability is a model of uncertainty, whereas
fuzzy set is for partial membership. In other words, µA(a) in (10) describes a
partial membership that a belongs to A, whereas PA(a) describes an actual
or believed degree of uncertainty on the fact “a is in A”. However, this is only
one type of interpretations, which is intrinsic to neither the algebraic system
by (5), (7) and (9) or the algebraic system by (12).

Forgetting additional interpretations, (10) and (13) have no difference on
describing the relation between a and A. The difference between the P-theory
and the Z-system lays in the differences between the operations by (7) and
(9) and the operation by (12b) and (12c). We can also explain (13) from the
perspective that A is regarded as a “soft” or “fuzzy” set with PA(a) as a
membership function. Also, (14) can be explained from the same perspective
as (6). In other words, PA(a) can be interpreted from a perspective that can
handle a partial truth or a multi-valued truth in the same format as (10).

Compared to the MIN–MAX operations in (8), the operations by P (A ∨
B) = P (a ∈ A ∨ b ∈ B) and P (A ∧B) = P (a ∈ A ∧ b ∈ B) are not only more
general in their coverage but also more accurate in describing the underlying
relations.

First, it follows from P (A ∨ B) = P (a ∈ A ∨ b ∈ B) = P (a ∈ A ∨ a ∈
B)P (a = b) that we reduce our coverage to consider special cases with A ⊆ U
and B ⊆ U as well as a = b. We have P (a ∈ A ∨ a ∈ B) = P (a ∈ A ∪ B) =
PA∪B(a) and P (a ∈ A ∧ a ∈ B) = P (a ∈ A ∩ B) = PA∩B(a), from which we
get the counterpart of (7) as follows:

(a) PA∪B(a) = PA(a) + PB(a) − PA∩B(a),
(b) PA∩B(a) = PA(a)PB|A(a) or PA∩B(a) = PB(a)PA|B(a), (15)

which leads to (12c) when PA∩B(a) = 0. On the other hand, (15) can also be
obtained from (12a) and (12c).

Second, we compare (15) with (7) and find out where the P-theory dif-
fers from the Z-system. For a union connection, the composition by (15) is
made additively with the effect from the corresponding intersect connection
in consideration, while the composition by (7) is made non-additively with-
out considering the intersect connection. To get the intersect connection, (7)
simply takes the shared portion of the membership, while (15) computes a
Bayesian product in help of the following concept that does not exist in the
Z-system:

PB|A(a) = PA∩B(a)/PA(a), PA|B(a) = PA∩B(a)/PB(a). (16)

In terms of classic probability theory, (16) represents the conditional proba-
bility, e.g., PA|B(a) for the probability that a ∈ A under the condition x ∈ B.
However, PA|B(a) can also be interpreted as the ratio of the partial truth
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where a ∈ A∩B over the partial truth where a more relaxed proposition a ∈ A.
Alternatively, it can also be explained as the believed truth on a ∈ A∩B under
the assumption that a ∈ A is completely true.

Furthermore, it follows from (12b) that P (a ∈ U) = PU (a) = 1. Similar to
(8), the extension of the complement set by (3) can be defined by the unique
solution of

(a) 1 = PA∪¬A(a) = PA(a) + P¬A(a) − PA∩¬A(a), (b) 0 = PA∩¬A(a),

which leads to the following definition for the complement set ¬A:

P¬A(a) = 1 − PA(a), PA∪¬A(a) = 0. (17)

3 Cases Where the Z-System Works or Fails

3.1 Cases Where a Reduced Z-System Works Well

We consider a reduced Z-system (denoted by Z−-system) by ignoring its def-
inition of the complement set.

Theorem 1. When either PB|A(a) = 1 or PA|B(a) = 1, we have

(a) PA∪B(a) = max{PA(a), PB(a)},
(b) PA∩B(a) = min{PA(a), PB(a)}. (18)

Proof. When PB|A(a) = 1, it follows from (15b) that we have PA∩B(a) =
PA(a) ≤ PB(a) or equivalently PA∩B(a) = min{PA(a), PB(a)}. It further
follows from (15a) that PA∪B(a) = PB(a) + PA(a) − PA(a) = PB(a) =
max{PA(a), PB(a)}. When PA|B(a) = 1, we can also prove similarly. ��

Note that (18) is same as (7). That is, when we have A ⊆ B almost surely
(i.e., 1 = PB|A(a) = P (a ∈ B|a ∈ A) = P (A ⊆ B)), or when we have
B ⊆ A almost surely, reasoning by the Z−-system in these cases is equivalent
to that by the P-theory, if the complement operator in (9) is not involved.
The following lemma states that this equivalence is also true when A ⊆ B or
B ⊆ A even in a sense of the Zadeh fuzzy set (i.e., in terms of (6) or (14)).

Lemma 1. (1)PB|A(a) = 1 if A ⊆ B
(2)PB|A(a) = 1, PA∩B(a) = PA(a), and PA(a) ≤ PB(a),∀a ∈ U for are

equivalent

Proof. (1) It is straightforward.
(2) It follows from (16) that PA∩B(a) = PA(a) from PB|A(a) = 1. Moreover,

it follows from PA∩B(a) = PA(a) and (15a) that PA∪B(a) = PB(a).
Thus PA(a) = PA∩B(a) ≤ PA∪B(a) = PB(a),∀a ∈ U . Furthermore,
it follows from (15)(b) and PB|A(a) ≤ 1 that PA∩B(a) ≤ PA(a),
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∀a ∈ U , and that PB∩A(a) ≤ PB(a),∀a ∈ U . Thus, PA∩B(a) =
min{PA(a), PB(a)}. It further follows from (16) that PB|A(a) =
PA∩B(a)/PA(a) = min{PA(a), PB(a)}/PA. Since PA(a) ≤ PB(a), we
have min{PA(a), PB(a)} = PA(a) and PB|A(a) = 1. ��

It is straightforward that the above Lemma still holds by exchanging A
and B.

The Z−-system may still work approximately even when the condition
of Theorem 1 does not hold exactly. This analysis explains some successful
applications of the Z-system, e.g., those in control systems.

3.2 Examples: Z-System and B-System Fail to Work Well

In addition to the above cases, the “MIN–MAX” operations may not yield
reasonable results. Let us to observe the following examples.

Example 1. Consider a set for youth B and a set for juvenile A. It is partially
true to regard a person a = 17-year-old who is 17 years old as a youth (e.g., a
degree of 0.7), but it is also partially true to regard this person as a juvenile
(e.g., a degree 0.4). On the other hand, based on common sense, we can
be 100% sure that this person belongs to the union set C of youths and
juveniles. However, according to the Z−-system by (7), we have µB(17) =
0.7, µA(17) = 0.4, and µC(17) = max{0.7, 0.4} = 0.7. In a contrast, according
to the P-theory, by (15) we have PB(17) = 0.7, PA(17) = 0.4, and PC(17) =
0.7 + 0.4−PA∩B(17) ≤ 1, which becomes 1 if we have additional information
that PA∩B(17) = 0.1. In other words, the P-theory can give a result that is
consistent with our common sense, but the Z−-system does not.

For the B-system given by (11), we also get µC(17) = min{0.7+0.4, 1} = 1
correctly. However, for the cases where A ⊆ B or B ⊆ A, the B-system can
not give a reasonable result, while the Z−-system works well, as illustrated
by the following example:

Example 2. Again, based on common sense, saying B={a person a = 30 −
years − old is a youth} is only partially true with a degree of 0.2 and say-
ing C={ a person who is either a youth or a juvenile} is also partially true
with a degree of 0.2. Obviously, C ∨ B = C still represents a 0.2 degree
of truth. Based on the Z−-system, we can correctly calculate µC∨B(30) =
max{0.2, 0.2} = 0.2, µC∧B(30) = min{0.2, 0.2} = 0.2. According to the P-
theory, by (15) we can also correctly calculate PC∨B(30) = 0.2+0.2−0.2 = 0.2
and PC∧B(30) = 0.2. However, according to the B-system, we get µC∨B(30) =
min{0.2 + 0.2, 1} = 0.4 and µC∧B(30) = max{0.2 + 0.2 − 1, 0} = 0, both of
which are incorrect.

There are also cases where both the B-system by (11) and the Z−-system
by (7) fail to produce a reasonable result. The following is an example.
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Example 3. Consider a set B for persons of medium height. Based on common
sense, it is partially true that a 1.7 m person is of medium height with a degree
of 0.7. Also, consider a union set E of tall and medium height people, and a
union set F of medium height and short people. We can believe that a 1.7 m
person belongs to E and F with an increased degree of 0.8 and 0.8, respec-
tively. We observe that E ∩ F = B. According to the P-theory, by (15) we
correctly get PE∩F (1.7m) = PB(1.7m) = 0.7. However, the Z−-system incor-
rectly gives µE∩F (1.7m) = min{0.8, 0.8} = 0.8, while the B-system incorrectly
gives µE∩F (1.7m) = max{0.8 + 0.8 − 1, 0} = 0.6.

3.3 A Theorem: Where the Z-System and the B-System Work
or Fail

Theorem 2. For A ⊆ U and B ⊆ U with PA∩B(a) �= 0, PA∪B(a) �= 1,
PB|A(a) �= 1 and PA|B(a) �= 1, we have

(i) min{PA(a) + PB(a), 1} > PA∪B(a) > max{PA(a), PB(a)},
(ii) max{PA(a) + PB(a) − 1, 0} < PA∩B(a) < min{PA(a), PB(a)}. (19)

Proof. (i) With PA∩B(a) �= 0 or equivalently PA∩B(a) > 0, it follows from
(15)(a) that PA(a) + PB(a) > PA∪B(a). Together with PA∪B(a) �= 1
or PA∪B(a) < 1, we get min{PA(a) + PB(a), 1} > PA∪B(a). More-
over, it follows from (15)(a) and (15)(b) that PA∪B(a) = PB(a) +
PA(a) − PA(a)PB|A(a) = PB(a) + PA(a)[1 − PB|A(a)] > PB(a), when
PB|A(a) �= 1. Similarly we also get PA∪B(a) > PA(a). That is, PA∪B(a) >
max{PA(a), PB(a)}.

(ii) It follows from PA∪B(a) < 1 and (15)(a) that PA∪B(a) = PA(a)+PB(a)−
PA∩B(a) < 1 or PA∩B(a) > PA(a) + PB(a) − 1, that is, max{PA(a) +
PB(a) − 1, 0} < PA∩B(a). Moreover, it follows directly from (15)(b) that
PA∩B(a) < PA(a) when PB|A(a) < 1. Similarly we also get PA∩B(a) <
PB(a). That is, PA∩B(a) < min{PA(a), PB(a)}. ��

The condition PA∩B(a) �= 0 or PA∩B(a) > 0 means that an over-
lap between A and B is measurable, while the condition PA∪B(a) �= 1 or
PA∪B(a) < 1 means that the difference between U and A ∪B is measurable.
In the special case where PA∩B(a) = 0 and PA∪B(a) = 1, the B-system is
equivalent to the P-theory. This equivalence happens for the ∪ operation only
if PA∪B(a) = 1, and for the ∩ operation only if PA∩B(a) = 0.

Moreover, when either PB|A(a) = 1 or PA|B(a) = 1, the B-system is
equivalent to the P-theory, as stated in Theorem 1.

To gain further insight, we rewrite (19) as

BA∪B(a) > PA∪B(a) > ZA∪B(a) ≥ ZA∩B(a) > PA∩B(a) > BA∩B(a), (20)
BA∪B(a) = min{PA(a) + PB(a), 1}, ZA∪B(a) = max{PA(a), PB(a)},
ZA∩B(a) = min{PA(a), PB(a)}, BA∩B(a) = max{PA(a) + PB(a) − 1, 0}.
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PA∪B(a) > ZA∪B(a) means that the confidence in a disjunctive propo-
sition is discounted by the Z−-system, as in Example 1; while ZA∩B(a) >
PA∩B(a) means that the confidence in a conjunctive proposition is exaggerated
by the Z−-system, as in Example 3. The difference edis = PA∪B(a)−ZA∪B(a)
and the difference econ = ZA∩B(a) − PA∩B(a) vary from case to case. When
econ and edis are below a given threshold, the approximation is acceptable,
but if they are above a threshold, the approximation becomes unacceptable.
This explains why the Z-system works in some cases and fails in others.

Interestingly, the nature of approximation with the B-system complements
approximation with the Z−-system. The confidence in a disjunctive proposi-
tion is exaggerated because edis = PA∪B(a) − BA∪B(a) < 0, as in Exam-
ple 2; while the confidence in a conjunctive proposition is discounted because
econ = PA∩B(a)−BA∩B(a) > 0, as in Examples 2 and 3. Again, edis and econ

vary from case to case.
Examining (20) further, we observe that the B-system and the Z−-system

respectively compute BA∪B(a), BA∩B(a) and ZA∪B(a), ZA∩B from PA(a)
and PB(a) only. In a contrast, it follows from (15) that the P-theory com-
putes PA∪B(a) and PA∩B(a) not only from PA(a), PB(a), but also from
PB|A(a), PA|B(a). This explains the superiority of the P-theory. In fact, how
to handle PB|A(a), PA|B(a) is the core part of making the P-theory based
reasoning. For further details, readers are referred to [7], especially Chap 2.

Of course, handling PB|A(a), PA|B(a) incurs higher computation costs
and more information. The advantage of the easy implementation of the
Z−-system comes from ignoring PB|A(a), PA|B(a), but with a deterioration
on performance. It should be noted that many effective implementing algo-
rithms have been developed for the P-theory based reasoning in the past two
decades [6, 7]. Thus, there is no need to use the Z−-system with its poor
performance, if we have no difficulty using the P-theory.

4 Avoiding the Controversial Definition
of the Complement Set

4.1 Complement Concept and Complement Set

For an entity E comprised of two parts, A and B, part A is commonly referred
as the complement of part B. In other words, the “complement” concept is
associated with two points. One is its way of composition

⊕
, and the other

is that two parts via
⊕

becomes one entity, i.e., E = A
⊕
B. More precisely,

A is said to be the complement of B with respect to E under
⊕

.
The “complement” concept has been widely adopted in mathematical sys-

tems. A simple example is that 6 is a complement number of 4 with respect
to 10 under the addition +. Generally, we say a number 0 ≤ n ≤ b is a com-
plement number of 0 ≤ m ≤ b with respect to b under the addition + if there
is a unique number n satisfying n +m = b. For simplicity, one usually says
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that 6 is a complement number of 4, without explicitly mentioning 10 and +.
Such simplification, however, may cause some confusion about the “comple-
ment” concept. Choosing (9) as the complement set of A in the Z-system is
an example of such confusion.

For two sets, A and B, we have ∪ as
⊕

and U as E; that is, U = A ∪B.
However, we are still unable to say that A is the complement set of B with
respect to U under ∪, because there are many A that satisfy U = A ∪ B for
a given B. To make a unique A, we need to add A ∩ B = ∅. This leads to
the complement set definition given by (3). For a characteristic function by
(5), the complement set definition is given by (8). It says that µ¬A(a) is the
complement of µA(a) with respect to the constant function µU (a) = 1 under
the operation in (7), subject to 0 = min{µA(a), µ¬A(a)} for its uniqueness. For
the binary valued function by (5), the complement µ¬A(a) by (8) is equivalent
to the direct expression given by (9). Therefore, in such a case, either (8) or
(9) can be used as the definition of the complement µ¬A(a).

For a real valued case by (10), the complement µ¬A(a) by (8) is no longer
equivalent to that given by (9). In this case, the correct way is to choose
(8) to define the complement µ¬A(a). However, except for those µA(a) in the
degenerated case by (5), there is no solution for µ¬A(a) by (8) for a real-valued
µA(a) by (10), i.e., the complement set does not exist.

4.2 Avoiding a Controversial Definition in Zadeh’s
Complement Set

Unfortunately, Zadeh mistakenly selected (9) as the definition of the comple-
ment µ¬A(a) in the Z-system, though the µ¬A(a) given by (9) is the comple-
ment of µA(a) with respect to µT (a) = 1 under +. In fact, the operation +
has been excluded from (7).

More precisely, 1− µA(a) can be regarded as the “mirror” or “conjugate”
function with respect to µT (a) = 1. To distinguish it from µ¬A(a), we denote
this conjugate function as

µΞA(a) = 1 − µA(a). (21)

The confusion of this concept with the commonly adopted complement con-
cept discussed in Sect. 4.1 has caused bad consequences at least in two aspects.

First, it produces unnecessary mistakes in applications of the Z-system.
Though it maybe clear to certain senior fuzzy researchers that the “comple-
ment” concept is different from the commonly adopted complement concept,
it may be not clear to many new comers or those who simply apply the
Z-system for practical uses. In their applications, a classical logical reasoning
problem is extended into a fuzzy logic problem via simply turning a binary
valued characteristic function into a fuzzy membership. This type of practice
may cause mistakes and lead to unsuccessful applications, unless the original
logical problem does not involve logical negation either directly or indirectly



Probability Theory Perspective on the Zadeh Fuzzy System 135

(e.g., via the logical implication A→ B). This type of failures can be avoided
by renaming the Zadeh’s “complement” definition. Also, it is a well adopted
convention in the scientific community that one should not use duplicately
a name or terminology, that has already been well adopted, on a different
concept for unnecessary confusions.

Second, it contradicts classical logic as well as our common sense. If we
follow our common sense to define the truth µT (a) by 1 or even a constant
c, it follows the MAX operation by (7)(a) that c = µT (a) = µA∪¬A(a) =
max{µA(a), 1 − µA(a)}, which is only possible when µA(a) takes a binary
value of 0 or 1. Thus, the Z-system collapses back to classical logic. To be
consistent, we can only let µT (a) = max{µA(a), 1− µA(a)}, which is actually
a variable that varies between 0.5 and 1 as a varies. Similarly, it follows from
(7)(b) that µF (a) = µA∩¬A(a) = min{µA(a), 1−µA(a)}, which forces us either
revert to classical logic or to accept a false membership function µF (a) =
min{µA(a), 1 − µA(a)} that varies between 0 and 0.5 as a varies. In other
words, a truth in the Z-system is no different to any fuzzy membership function
0.5 ≤ µA(a) ≤ 1, while a false in the Z-system is no different to any fuzzy
membership function 0 ≤ µA(a) ≤ 0.5.

The above confusion and conflicts incur a long-running debate in the liter-
ature [3, 8]. Facing the challenges raised by critics, various kinds of reactions
have arisen from the “pro-fuzzy” community. There are some “pro-fuzzy”
people who worship the Z-system and simply ignore any controversy or over-
react to challenges, which will not be further discussed here. There are also
some researchers who attempt to resolve the controversy [1, 5]. To avoid the
awkwardness, one remedy without explicitly discarding away (9) is the bold
operations in (11) that modifies (7) such that 1 − µA(a) becomes equivalent
to the complement set in a similar way to (8). As a result, µA∪¬A(a) = 1
and µA∩¬A(a) = 0 still hold, and the above mentioned confusion and conflicts
have been removed.

Moreover, there are also “pro-fuzzy” researchers who choose to defense
the Z-system. One key argument is that the above so-called conflict repre-
sents naturally a feature for handling partial membership or a multi-valued
truth due to missing information. For example, one argument maybe illus-
trated via a scenario that an agent knows exactly “John is 55 years old”, and
is asked the question “Is John old?”. Considering partial membership, the
agent’s answer may be “Well, John is a little old, but not quite so”. That
is, it is not necessary to assign 1 to old(55) ∨ ¬old(55). It appears naturally
from (7) that µold∪¬old(55) = max{µold(55), 1 − µold(55)} < 1 has no prob-
lem. However, there is also a hidden confusion. We fell acceptable that the
value of old(55) ∨ ¬old(55) is smaller than 1 does not mean that we can ac-
cept µold∪¬old(55) = max{µold(55), 1 − µold(55)} < 1. For 0 < µold(a) < 1,
the value of old(55) ∨ ¬old(55) is not equal to µold∪¬old(55) = 1 with
old∪¬old = U . That is, there is a confusion between the membership µp∨q(a)
and the value of p(a) ∨ q(a). The latter already involves a predicate logic.
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The definition µp∨q(a) = max{µp(a), µq(a)} can not automatically lead to
that the value of p(a) ∨ q(a) is given by max{µp(a), µq(a)}.

Also, missing information can not be a real excuse too. It would be one
if the conflicts and confusion could not be avoided by any other operation
based on the same information. Actually, the bold operations in (11) refute
this argument. The success of (11) on resolving the above discussed conflicts
and confusion actually comes from honoring the additive principle behind
both the set theory and the P-theory. Still, one may further argue that (11)
brings other problems, e.g., making the idempotent law (i.e. A ∪ A = A and
A∩A = A) invalid. Actually, the reason behind this problem is just what has
been discussed at the end of Sect. 3.3, and can be solved if the dependence
type of PB|A(a), PA|B(a) in (16) are also considered [4]. Further ahead along
this line, we are finally lead to the P-theory.

If one wants all the axioms of Boolean algebra to remain hold, the P-theory
is a best choice for the development of models of uncertainty or partial truth.
If one does not want to use the P-theory due to higher computation costs and
requiring extra information for handling PB|A(a), PA|B(a), one has to abandon
some axioms of Boolean algebra. Of course, depending on applications, one
may choose to abandon the idempotent law or the exclude-middle law or
other. However, one can not introduce a conceptual confusion by duplicately
using a terminology with a well known meaning to name a new and different
concept. If one abandons the complement definition 1− µA(a) or just simply
renaming 1− µA(a) by (21), everything is fine with the min–max operations,
which may be worth some further study, especially on the joint role of µA(a)
and µΞA(a) in the Z-system.

5 Conclusions

We have elucidated the links and differences between probability theory and
Zadeh’s fuzzy system. When one set is included in the other (i.e., A ⊆ B or
B ⊆ A either in a almost surely sense or in a Zadeh fuzzy set sense), we have
proved that the P-theory and the Z−-system perform equivalently in com-
puter reasoning that does not involve complement operation. Moreover, we
have proved that both the Z−-system and the B-system attempt to approx-
imate the P-theory. In some cases, these approximations are acceptable, and
they have the advantage of easy implementation. In other cases, however we
get bad approximations that are incapable of producing reasonable results.
The failures arise from either its incapability of capturing additive structures
or inadequate handling of the dependence relation across two sets, or both.
It seems that many efforts are needed to investigate some error bounds of
approximation and to control the bounds. Furthermore, we show that the
controversy about the definition of the complement set arises from confusion
over the “complement” concept.



Probability Theory Perspective on the Zadeh Fuzzy System 137

References

1. Dubois, D. and Prade, H. (1980) Fuzzy Sets and Systems: Theory and Applica-
tions, Academic, New York

2. Dubois, D. and Prade, H. (1994) Partial Truth is not Uncertainty, IEEE Expert,
pp 15–19

3. Elkan, C. (1994) The Paradoxical Success of Fuzzy Logic, IEEE Expert, pp 3–8.
Also obtained a honorable mention in a best-written paper competition on Pro-
ceedings of AAAI’93, July 1993, pp 698–703

4. Gao, Q.S. (2005) The errors and shortcomings of Zadeh’s fuzzy set theory and
its overcoming – C-fuzzy set theory, Journal of Dalian University of Technology,
45(5)

5. Giles, R. (1976) Lukasiewicz logic and fuzzy theory, International Journal of
Man–Machine Studies, 8, pp 313–327

6. Jensen, F.V. (1996) An Introduction to Bayesian Networks, University of College
London Press, London, UK

7. Pearl, J. (1988) Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference, Morgan Kaufman, San Fransisco, CA

8. Special Issue, (1994) Responses on the Paradoxical Success of Fuzzy Logic, IEEE
Expert, pp 9–46

9. Xu, L. and Yan, P.F. (1985) Some Investigations on Subjective Probability
Distribution, Proceedings of 5th National Conference on Pattern Recognition
and Machine Intelligence, May 27–30, 1986. Xian, China



Three Approaches to Missing Attribute Values:
A Rough Set Perspective

Jerzy W. Grzymala-Busse

Department of Electrical Engineering and Computer Science, University of Kansas,
Lawrence, KS 66045, USA
and
Institute of Computer Science, Polish Academy of Sciences, 01-237 Warsaw, Poland
Jerzy@ku.edu

http://lightning.eecs.ku.edu/index.html

Summary. A new approach to missing attribute values, based on the idea of an
attribute-concept value, is studied in the paper. This approach, together with two
other approaches to missing attribute values, based on “do not care” conditions
and lost values are discussed using rough set methodology, including attribute-value
pair blocks, characteristic sets, and characteristic relations. Characteristic sets are
generalization of elementary sets while characteristic relations are generalization
of the indiscernibility relation. Additionally, three definitions of lower and upper
approximations are discussed and used for induction of certain and possible rules.

1 Introduction

In this chapter data sets are presented in the form of decision tables, where
columns are labeled by variables and rows by case (or example) names. Vari-
ables are categorized into independent variables, also called attributes, and
dependent variables, also called decisions. Usually decision tables have only
one decision. The set of all cases that correspond to the same decision value
is called a concept (or a class).

In most papers on rough set theory it is assumed that values, for all vari-
ables and all cases, are specified. For such tables the indiscernibility relation,
one of the most fundamental ideas of rough set theory, describes cases that
can be distinguished from each other.

However, in many real-life applications, data sets have missing attribute
values, or, in different words, the corresponding decision tables are incom-
pletely specified. For simplicity, incompletely specified decision tables will be
called incomplete decision tables.

In data mining two main strategies are used to deal with missing attribute
values. The former strategy is based on conversion of incomplete data sets
(i.e., data sets with missing attribute values) into complete data sets and then
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acquiring knowledge, e.g., by rule induction or tree generation from complete
data sets. In this strategy conversion of incomplete data sets to complete data
sets is a preprocessing to the main process of data mining. In the later strategy,
knowledge is acquired from incomplete data sets taking into account that
some attribute values are missing. The original data sets are not converted
into complete data sets.

Typical examples of the former strategy include [4, 11]:

• Replacing missing attribute values by the most common (most frequent)
value of the attribute.

• Replacing missing attribute values restricted to the concept. For each con-
cept missing attribute values are replaced by the most common attribute
value restricted to that concept.

• For numerical attributes, missing attribute value may be replaced by the
attribute average value.

• For numerical attributes, missing attribute value may be replaced by the
attribute average value restricted to the concept.

• Assigning all possible values of the attribute. A case with a missing
attribute value is replaced by a set of new cases, in which the missing
attribute value is replaced by all possible values of the attribute.

• Assigning all possible values of the attribute restricted to the concept.
• Ignoring cases with missing attribute values. An original data set, with

missing attribute values, is replaced by a new data set with deleted cases
containing missing attribute values.

• Considering missing attribute values as special values.

The later strategy is exemplified by the C4.5 approach to missing attribute
values [21] or by a modified LEM2 algorithm [9,13]. In both algorithms original
data sets with missing attribute values are not preprocessed, i.e., data sets are
not preliminarily converted into complete data sets.

Note that from the view point of rough set theory, in the former strat-
egy the conventional indiscernibility relation may be applied to describe the
process of data mining since, after preprocessing, the data set is complete (has
no missing attribute values). Furthermore, lower and upper approximations,
other basic ideas of rough set theory, are also conventional.

In this chapter we will concentrate on the later strategy used for rule
induction, i.e., we will assume that the rule sets are induced from the original
data sets, with missing attribute values, not preprocessed as in the former
strategy.

We will assume that there are three reasons for decision tables to be in-
complete. The first reason is that an attribute value, for a specific case, is
lost. For example, originally the attribute value was known, however, due to a
variety of reasons, currently the value is not available. Maybe it was recorded
but later it was erased. The second possibility is that an attribute value was
not relevant – the case was decided to be a member of some concept, i.e., was
classified, or diagnosed, in spite of the fact that some attribute values were not
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known. For example, it was feasible to diagnose a patient in spite of the fact
that some test results were not taken (here attributes correspond to tests,
so attribute values are test results). Since such missing attribute values do
not matter for the final outcome, we will call them “do not care” conditions.
The third possibility is a partial “do not care” condition: we assume that the
missing attribute value belongs to the set of typical attribute values for all
cases from the same concept. Such a missing attribute value will be called an
attribute-concept value. Calling it concept “do not care” condition would be
perhaps better, but this name is too long.

The main objective of this chapter is to study incomplete decision tables,
assuming that in the same decision table some attribute values may be lost,
some may be “do not care” conditions, and some may be attribute-concept
values. Decision tables with lost values and “do not care” conditions were
studied in [7–9,12].

For such incomplete decision tables there are three special cases: in the
first case all missing attribute values are lost, in the second case all missing
attribute values are “do not care” conditions, and in the third case all miss-
ing attribute vales are attribute-concept values. Incomplete decision tables
in which all attribute values are lost, from the viewpoint of rough set theory,
were studied for the first time in [13], where two algorithms for rule induction,
modified to handle lost attribute values, were presented. This approach was
studied later in [23–25], where the indiscernibility relation was generalized to
describe such incomplete decision tables.

On the other hand, incomplete decision tables in which all missing at-
tribute values are “do not care” conditions, again from the view point of rough
set theory, were studied for the first time in [4], where a method for rule induc-
tion was introduced in which each missing attribute value was replaced by all
values from the domain of the attribute. Originally such values were replaced
by all values from the entire domain of the attribute, later by attribute values
restricted to the same concept to which a case with a missing attribute value
belongs. Such incomplete decision tables, with all missing attribute values be-
ing “do not care conditions”, were extensively studied in [14, 15], including
extending the idea of the indiscernibility relation to describe such incomplete
decision tables.

Rough set methodology for incomplete decision tables with missing at-
tribute values of the type attribute-concept values is presented in this chapter
for the first time, though it was briefly mentioned in [9].

In general, incomplete decision tables are described by characteristic rela-
tions, in a similar way as complete decision tables are described by indiscerni-
bility relations [7].

For complete decision tables, once the indiscernibility relation is fixed and
the concept (a set of cases) is given, the lower and upper approximations are
unique.

For incomplete decision tables, for a given characteristic relation and the
concept, there are three different possible ways to define lower and upper
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approximations, called singleton, subset, and concept approximations [7]. The
singleton lower and upper approximations were studied in [14,15,23–25]. Sim-
ilar ideas were studied in [2, 22, 26–28]. In this chapter we further discuss
applications to data mining of all three kinds of approximations: singleton,
subset and concept. As it was observed in [7], singleton lower and upper ap-
proximations are not applicable in data mining.

The next topic of this chapter is demonstrating how certain and possible
rules may be computed from incomplete decision tables. An extension of the
well-known LEM2 (Learning from Examples Module, version 2) rule induction
algorithm [1,5], called MLEM2, was introduced in [6]. LEM2 is a component
of the LERS (Learning from Examples based on Rough Sets) data mining
system. Originally, MLEM2 induced certain rules from incomplete decision
tables with numerical attributes and with missing attribute values interpreted
as lost. Using the idea of lower and upper approximations for incomplete
decision tables, MLEM2 was further extended to induce both certain and
possible rules from a decision table with some numerical attributes and with
some attribute values being lost and some attribute values being “do not care”
conditions.

A preliminary version of this chapter was presented at the Workshop on
Foundation of Data Mining, associated with the Fourth IEEE International
Conference on Data Mining, Brighton, UK, November 1–4, 2004 [10].

2 Complete Data: Elementary Sets and Indiscernibility
Relation

An example of a decision table, taken from [9], is presented in Table 1.
Rows of the decision table represent cases, while columns are labeled by

variables. The set of all cases will be denoted byU . In Table 1,U = {1, 2, . . . , 8}.

Table 1. A complete decision table

Attributes Decision

Case Temperature Headache Nausea Flu

1 High Yes No Yes

2 Very high Yes Yes Yes

3 High No No No

4 High Yes Yes Yes

5 High Yes Yes No

6 Normal Yes No No

7 Normal No Yes No

8 Normal Yes No Yes
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Independent variables are called attributes and a dependent variable is called
a decision and is denoted by d. The set of all attributes will be denoted by
A. In Table 1, A = {Temperature,Headache,Nausea}. Any decision table
defines a function ρ that maps the direct product of U and A into the set
of all values. For example, in Table 1, ρ(1,Temperature) = high. Function
ρ describing Table 1 is completely specified (total). A decision table with
completely specified function ρ will be called completely specified, or, for the
sake of simplicity, complete.

Rough set theory [19,20] is based on the idea of an indiscernibility relation,
defined for complete decision tables. Let B be a nonempty subset of the set
A of all attributes. The indiscernibility relation IND(B) is a relation on U
defined for x, y ∈ U as follows

(x , y) ∈ IND(B) if and only if ρ(x , a) = ρ(y , a) for all a ∈ B .

The indiscernibility relation IND(B) is an equivalence relation. Equiva-
lence classes of IND(B) are called elementary sets of B and are denoted by
[x]B . For example, for Table 1, elementary sets of IND(A) are {1}, {2}, {3},
{4, 5}, {6, 8}, {7}. The indiscernibility relation IND(B) may be computed
using the idea of blocks of attribute-value pairs. Let a be an attribute, i.e.,
a ∈ A and let v be a value of a for some case. For complete decision tables if
t = (a, v) is an attribute-value pair then a block of t, denoted [t], is a set of
all cases from U that for attribute a have value v. For Table 1,

[(Temperature, high)] = {1, 3, 4, 5},
[(Temperature, very high)] = {2},
[(Temperature, normal)] = {6, 7, 8},
[(Headache, yes)] = {1, 2, 4, 5, 6, 8},
[(Headache, no)] = {3, 7},
[(Nausea, no)] = {1, 3, 6, 8},
[(Nausea, yes)] = {2, 4, 5, 7}.

The indiscernibility relation IND(B) is known when known are all ele-
mentary sets of IND(B). Such elementary sets of B are intersections of the
corresponding attribute-value pair blocks, i.e., for any case x ∈ U ,

[x]B = ∩{[(a, ρ(a, v))] | a ∈ B}

We will illustrate the idea how to compute elementary sets of B for Table 1
and B = A.

[1]A = [(Temperature, high)] ∩ [(Headache, yes)] ∩ [(Nausea, no)] = {1},
[2]A = [(Temperature, very high)]∩[(Headache, yes)]∩[(Nausea, yes)] =

{2},
[3]A = [(Temperature, high)] ∩ [(Headache, no)] ∩ [(Nausea, no)] = {3},
[4]A = [5]A = [(Temperature, high)] ∩ [(Headache, yes)] ∩ [(Nausea,

yes)] = {4, 5},
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[6]A = [8]A = [(Temperature, normal)] ∩ [(Headache, yes)] ∩ [(Nausea,
no] = {6, 8},

[7]A = [(Temperature, normal)]∩[(Headache, no]∩[(Nausea, yes)] = {7}.

3 Incomplete Data: Characteristic Sets
and Characteristic Relations

For data sets with missing attribute values, the corresponding function ρ is
incompletely specified (partial). A decision table with incompletely specified
function? will be called incompletely specified, or incomplete.

In the sequel we will assume that all decision values are specified, i.e.,
they are not missing. Also, we will assume that all missing attribute values
are denoted by “?”, by “*” or by “–”, lost values will be denoted by “?”, “do
not care” conditions will be denoted by “*”, and attribute-concept values by
“–”. Additionally, we will assume that for each case at least one attribute
value is specified.

Incomplete decision tables are described by characteristic relations instead
of indiscernibility relations. Also, elementary sets are replaced by characteris-
tic sets. The characteristic set was called a (binary) neighborhood in [16–18].
An example of an incomplete table is presented in Table 2.

For incomplete decision tables the definition of a block of an attribute-
value pair must be modified.

• If an attribute a there exists a case x such that ρ(x, a) = ?, i.e., the corre-
sponding value is lost, then the case x should not be included in any block
[(a, v)] for all values v of attribute a.

• If for an attribute a there exists a case x such that the corresponding value
is a “do not care” condition, i.e., ρ(x, a) = ∗, then the corresponding case x
should be included in blocks [(a, v)] for all specified values v of attribute a.

Table 2. An incomplete decision table

Attributes Decision

Case Temperature Headache Nausea Flu

1 High – No Yes

2 Very high Yes Yes Yes

3 ? No No No

4 High Yes Yes Yes

5 High ? Yes No

6 Normal Yes No No

7 Normal No Yes No

8 – Yes * Yes
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• If for an attribute a there exists a case x such that the corresponding value
is a attribute-concept value, i.e., ρ(x, a) = −, then the corresponding case
x should be included in blocks [(a, v)] for all specified values v of attribute
a that are members of the set V (x, a), where

V (x , a) = {ρ(y , a) | ρ(y , a) is specified , y ∈ U , ρ(y , d) = ρ(x , d)},

and d is the decision.

These modifications of the definition of the block of attribute-value pair
are consistent with the interpretation of missing attribute values, lost, “do not
care” conditions, and attribute-concept values. Also, note that the attribute-
concept value is the most universal, since if V (x, a) = ∅, the definition of the
attribute-concept value is reduced to the lost value, and if V (x, a) is the set
of all values of an attribute a, the attribute-concept value becomes a “do not
care” condition.

For Table 2, for case 1, ρ(1,Headache) = −, and V(1, Headache) = {yes},
so we add the case 1 to [(Headache, yes)]. For case 3, ρ(3, T emperature) = ?,
hence case 3 is not included in either of the following sets: [(Temperature,
high)], [(Temperature, very high)], and [(Temperature, normal)]. Similarly,
ρ(5,Headache) = ?, so the case 5 is not included in [(Headache, yes)] and
[(Headache, no)]. Also, ρ(8, T emperature) = −, and V (8, T emperature) =
{high, very high}, so the case 8 is a member of both [(Temperature, high)]
and [(Temperature, very high)]. Finally, ρ(8, Nausea) = ∗, so the case 8 is
included in both [(Nausea, no)] and [(Nausea, yes)]. Thus,

[(Temperature, high)] = {1, 4, 5, 8},
[(Temperature, very high)] = {2, 8},
[(Temperature, normal)] = {6, 7},
[(Headache, yes)] = {1, 2, 4, 6, 8},
[(Headache, no)] = {3, 7},
[(Nausea, no)] = {1, 3, 6, 8},
[(Nausea, yes)] = {2, 4, 5, 7, 8}.
For a case x ∈ U , the characteristic set KB(x) is defined as the intersection

of the sets K(x, a), for all a ∈ B.
If ρ(x, a) is specified, then K(x, a) is the block [(a, ρ(x, a)] of attribute a

and its value ρ(x, a). If ρ(x, a) = ∗ or ρ(x, a) = ? then the set K(x, a) = U .
If ρ(x, a) = − and V (x, a) is nonempty, then the corresponding set K(x, a)
is equal to the union of all blocks of attribute-value pairs (a, v), where v ∈
V (x, a). If V (x, a) is empty, then K(x, a) = {x}.

The way of computing characteristic sets needs a comment. For both “do
not care” conditions and lost values the corresponding set K(x, a) is equal to
U because the corresponding attribute a does not restrict the set KB(x): if
ρ(x, a) = ∗, the value of the attribute a is irrelevant; if ρ(x, a) = ?, only existing
values need to be checked. However, the case when ρ(x, a) = − is different,
since the attribute a restricts the set KB(x). Furthermore, the description of
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KB(x) should be consistent with other (but similar) possible approaches to
missing attribute values, e.g., an approach in which each missing attribute
value is replaced by the most common attribute value restricted to a concept.
Here the set V (x, a) contains a single element and the characteristic relation
is an equivalence relation. Our definition is consistent with this special case
in the sense that if we compute a characteristic relation for such a decision
table using our definition or if we compute the indiscernibility relation as for
complete decision tables using definitions from Sect. 2, the result will be the
same. For Table 2 and B = A,

KA(1) = {1, 4, 5, 8} ∩ {1, 2, 4, 6, 8} ∩ {1, 3, 6, 8} = {1, 8},
KA(2) = {2, 8} ∩ {1, 2, 4, 6, 8} ∩ {2, 4, 5, 7, 8} = {2, 8},
KA(3) = U ∩ {3, 7} ∩ {1, 3, 6, 8} = {3},
KA(4) = {1, 4, 5, 8} ∩ {1, 2, 4, 6, 8} ∩ {2, 4, 5, 7, 8} = {4, 8},
KA(5) = {1, 4, 5, 8} ∩ U ∩ {2, 4, 5, 7, 8} = {4, 5, 8},
KA(6) = {6, 7} ∩ {1, 2, 4, 6, 8} ∩ {1, 3, 6, 8} = {6},
KA(7) = {6, 7} ∩ {3, 7} ∩ {2, 4, 5, 7, 8} = {7}, and
KA(8) = ({1, 4, 5, 8} ∪ {2, 8}) ∩ {1, 2, 4, 6, 8} ∩ U = {1, 2, 4, 8}.
The characteristic set KB(x) may be interpreted as the smallest set of

cases that are indistinguishable from x using all attributes from B, and using
given interpretation of missing attribute values. Thus, KA(x) is the set of all
cases that cannot be distinguished from x using all attributes. Also, note that
the previous definition is an extension of a definition of KB(x) from [7–9]:
for decision tables with only lost values and “do not care” conditions, both
definitions are identical.

The characteristic relation R(B) is a relation on U defined for x, y ∈ U as
follows

(x , y) ∈ R(B) if and only if y ∈ KB (x ).

The characteristic relation R(B) is reflexive but – in general – it does not
need to be symmetric or transitive. Also, the characteristic relation R(B) is
known if we know characteristic sets KB(x) for all x ∈ U . In our example,

R(A) = {(1, 1), (1, 8), (2, 2), (2, 8), (3, 3), (4, 4), (4, 8), (5, 4),
(5, 5), (5, 8), (6, 6), (7, 7), (8, 1), (8, 2), (8, 4), (8, 8)}

For decision tables, in which all missing attribute values are lost, a special
characteristic relation LV (B) was defined by Stefanowski and Tsoukias in [24],
see also [23,25]. Characteristic relation LV (B) is reflexive, but – in general –
it does not need to be symmetric or transitive.

For decision tables where all missing attribute values are “do not care” con-
ditions a special characteristic relation DCC(B) was defined by Kryszkiewicz
in [14], see also, e.g., [15]. Relation DCC(B) is reflexive and symmetric but –
in general – is not transitive.

Obviously, characteristic relations LV (B) and DCC(B) are special cases
of the characteristic relation R(B). For a completely specified decision table,
the characteristic relation R(B) is reduced to IND(B).
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4 Lower and Upper Approximations

For completely specified decision tables lower and upper approximations are
defined using the indiscernibility relation. Any finite union of elementary sets
of B is called a B-definable set. Let X be any subset of the set U of all cases.
The set X is called concept and is usually defined as the set of all cases
defined by a specific value of the decision. In general, X is not a B-definable
set. However, set X may be approximated by two B-definable sets, the first
one is called a B-lower approximation of X, denoted by BX and defined as
follows

{x ∈ U | [x]B ⊆ X}.
The second set is called an B-upper approximation of X, denoted by BX

and defined as follows

{x ∈ U | [x]B ∩X �= ∅}.

The above way of computing lower and upper approximations, by con-
structing them from singletons x, will be called the first method. The B-lower
approximation of X is the greatest B-definable set, contained in X. The
B-upper approximation of X is the least B-definable set containing X.

As it was observed in [19], for complete decision tables we may use a second
method to define the B-lower approximation of X, by the following formula

BX = ∪{[x]B | x ∈ U, [x]B ⊆ X},

and the B-upper approximation of X may de defined, using the second
method, by

BX = ∪{[x]B | x ∈ U, [x]B ∩X �= ∅).
For Table 1 and B = A, A-lower and A-upper approximations are:

A{1, 2, 4, 8} = {1, 2},
A{3, 5, 6, 7} = {3, 7},
A{1, 2, 4, 8} = {1, 2, 4, 5, 6, 8},
A{3, 5, 6, 7} = {3, 4, 5, 6, 7, 8}.

For incompletely specified decision tables lower and upper approximations
may be defined in a few different ways. To begin with, the definition of de-
finability should be modified. Any finite union of characteristic sets of B is
called a B-definable set. Following [7], we suggest three different definitions
of approximations. Again, let X be a concept, let B be a subset of the set A
of all attributes, and let R(B) be the characteristic relation of the incomplete
decision table with characteristic setsKB(x), where x ∈ U . Our first definition
uses a similar idea as in the previous articles on incompletely specified decision
tables [14, 15, 23–25], i.e., lower and upper approximations are sets of single-
tons from the universe U satisfying some properties. Thus we are defining
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lower and upper approximations by analogy with the above first method, by
constructing both sets from singletons. We will call these definitions singleton.
A singleton B-lower approximation of X is defined as follows:

BX = {x ∈ U | KB(x) ⊆ X},

A singleton B-upper approximation of X is

BX = {x ∈ U | KB(x) ∩X �= ∅}.

In our example presented in Table 2 let us say that B = A. Then the
singleton A-lower and A-upper approximations of the two concepts: {1, 2, 4,
8} and {3, 5, 6, 7} are:

A{1, 2, 4, 8} = {1, 2, 4, 8},
A{3, 5, 6, 7} = {3, 6, 7},
A{1, 2, 4, 8} = {1, 2, 4, 5, 8},
A{3, 5, 6, 7} = {3, 5, 6, 7}.

Note that A{3, 5, 6, 7} = {3, 5, 6, 7}. However, the set {3, 5, 6, 7} is not
A-definable, so a set of rules, induced from {3, 5, 6, 7}, cannot cover precisely
this set. In general, singleton approximations should not be used for data
mining.

The second method of defining lower and upper approximations for com-
plete decision tables uses another idea: lower and upper approximations are
unions of elementary sets, subsets of U . Therefore we may define lower and
upper approximations for incomplete decision tables by analogy with the sec-
ond method, using characteristic sets instead of elementary sets. There are
two ways to do this. Using the first way, a subset B-lower approximation of
X is defined as follows:

BX = ∪{KB(x) | x ∈ U,KB(x) ⊆ X},

A subset B-upper approximation of X is

BX = ∪{KB(x) | x ∈ U,KB(x) ∩X �= ∅}.

Since any characteristic relation R(B) is reflexive, for any concept X,
singleton B-lower and B-upper approximations of X are subsets of subset B-
lower and B-upper approximations of X, respectively. For the same the deci-
sion presented in Table 2, the subset A-lower and A-upper approximations are:

A{1, 2, 4, 8} = {1, 2, 4, 8},
A{3, 5, 6, 7} = {3, 6, 7},
A{1, 2, 4, 8} = {1, 2, 4, 5, 8},
A{3, 5, 6, 7} = {3, 4, 5, 6, 7, 8}.
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The second possibility is to modify the subset definition of lower and upper
approximation by replacing the universe U from the subset definition by a
concept X. A concept B-lower approximation of the concept X is defined as
follows:

BX = ∪{KB(x) | x ∈ X,KB(x) ⊆ X},
Obviously, the subset B-lower approximation of X is the same set as the

concept B-lower approximation of X. A concept B-upper approximation of
the concept X is defined as follows:

BX = ∪{KB(x) | x ∈ X,KB(x) ∩X �= ∅} = ∪{KB(x) | x ∈ X}.

The concept B-upper approximation of X are subsets of the subset B-
upper approximations of X. For the decision presented in Table 2, the concept
A-lower and A-upper approximations are:

A{1, 2, 4, 8} = {1, 2, 4, 8},
A{3, 5, 6, 7} = {3, 6, 7},
A{1, 2, 4, 8} = {1, 2, 4, 8},
A{3, 5, 6, 7} = {3, 4, 5, 6, 7, 8}.

For complete decision tables, all three definitions of lower approximations,
singleton, subset and concept, coalesce to the same definition. Also, for com-
plete decision tables, all three definitions of upper approximations coalesce
to the same definition. This is not true for incomplete decision tables, as our
example shows.

5 Rule Induction

The same idea of blocks of attribute-value pairs is used in the rule induction
algorithm LEM2. LEM2 explores the search space of attribute-value pairs. Its
input data file is a lower or upper approximation of a concept, so its input
data file is always consistent. Rules induced from the lower approximation
of the concept certainly describe the concept, so they are called certain. On
the other hand, rules induced from the upper approximation of the concept
describe the concept only possibly (or plausibly), so they are called possible [3].

Rules in LERS format (every rule is equipped with three numbers, the
total number of attribute-value pairs on the left-hand side of the rule, the total
number of cases correctly classified by the rule during training, and the total
number of training cases matching the left-hand side of the rule) induced from
Table 2 using concept approximations are:
the certain rule set:

2, 3, 3
(Temperature, high) & (Headache, yes) —> (Flu, yes)
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1, 2, 2
(Temperature, very high) —> (Flu, yes)
1, 2, 2
(Temperature, normal) —> (Flu, no)
1, 2, 2
(Headache, no) —> (Flu, no)

and the possible rule set:

2, 3, 3
(Temperature, high) & (Headache, yes) —> (Flu, yes)
1, 2, 2
(Temperature, very high) —> (Flu, yes)
2, 1, 3
(Temperature, high) & (Nausea, yes) —> (Flu, no)
1, 2, 2
(Temperature, normal) —> (Flu, no)
1, 2, 2
(Headache, no) —> (Flu, no)

6 Conclusions

Three approaches to missing attribute values are presented in a unified way.
The main applied tool is a characteristic relation, a generalization of the indis-
cernibility relation. It is shown that all three approaches to missing attribute
values may be described using the same idea of attribute-value blocks. More-
over, attribute-value blocks are useful not only for computing characteristic
sets but also for computing characteristic relations, lower and upper approx-
imations, and, finally for rule induction. Additionally, using attribute-value
blocks, it is quite easy to combine a few strategies to handle missing attribute
values within the same data set. Thus, the entire data mining process, starting
from computing characteristic relations and ending with rule induction, may
be implemented using the same simple tool: attribute-value blocks.
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Summary. The MLEM2 algorithm is a rule induction algorithm in which rule
induction, discretization, and handling missing attribute values are all conducted
simultaneously. In this paper two versions of the MLEM2 algorithm are compared:
the first version of MLEM2 induces rules that may contain two conditions with
the same numerical attribute and different intervals. The second version of MLEM2
induces rules with merged conditions associated with numerical attributes, i.e., all
conditions are related to different attributes. For completeness, experiments on the
original LEM algorithm with discretization as a preprocessing are also included. The
performance, in terms of accuracy, for all three algorithms is approximately the same
(for any two of them the difference in performance is not statistically significant).

1 Introduction

The algorithm MLEM2 (Modified Learning from Examples Module, version 2)
[7] is a component of the LERS (Learning from Examples based on Rough
Sets) data mining system. Rough set theory was introduced in [13], see
also [14]. MLEM2 is based on LEM2 (Learning from Examples Module, ver-
sion 2). LEM2 requires a preprocessing called discretization, a conversion of
numerical values into intervals. Additionally, LEM2 requires preprocessing to
handling missing attribute values before the main process of rule induction.
On the other hand, in MLEM2 all three processes: rule induction, discretiza-
tion and handling missing attribute values are conducted at the same time,
i.e., the MLEM2 module induces rule sets directly from data with numerical
attributes and missing attribute values. Recently, a new version of MLEM2
was implemented, with merging conditions with intervals (for simplicity, we
will call it MLEM2 with merging intervals).

The data mining system LERS uses a number of discretization algorithms.
The simplest method to discretize a numerical attribute is partitioning its
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domain into equal width intervals is called Equal Interval Width Method. An-
other method of discretization, called Equal Frequency per Interval Method,
is based on dividing the domain of a numerical attribute into subsets with
approximately equal relative frequencies of attribute values. In this method
the discretized attribute entropy is maximum. In our experiments we used
another discretization method, based on minimum entropy as a criterion to
evaluate a list of best cutpoints. This method was used together with the
original LEM2 algorithm as one of our three approaches for rule induction
from numerical data. The two other approaches were two different versions of
MLEM2: with and without merging intervals.

Our main objective was to compare performance of these three approaches
for rule induction from numerical data. As was expected, the newest version
of MLEM2 produces the smallest total number of conditions in rule sets.
However, performance in terms of accuracy is approximately the same for
all three approaches. Using different data sets than reported in this paper,
MLEM2 with merging intervals was compared with two other approaches to
rule induction from numerical data: discretization based on agglomerative and
divisive cluster analysis and then LEM2 in [8].

Note that results of experiments comparing the quality of rule sets, induced
by ID3, in terms of accuracy, with and without dropping conditions, were
published in [10]. A preliminary version of this chapter was presented at the
Workshop on Foundations of Semantic Oriented Data and WEB Mining, in
conjunction with the ICDM’05, Fifth IEEE International Conference on Data
Mining, Houston, TX, November 27–30, 2005.

2 Discretization Algorithm Based on Minimum Entropy

The discretization method, based on minimum entropy, was suggested in [3],
and is also called Minimal Class Entropy Method. A similar process of dis-
cretization is used in C4.5 [15].

We will present our own discretization algorithm, introduced in [2]. Dis-
cretization is a conversion of domains of numerical attributes into intervals [6].
Such intervals are defined by cutpoints, numbers limiting the intervals. Let us
say the set of all cases of a data set will be denoted by U . A single cutpoint q,
a number from the domain of a numerical attribute a, defines two intervals,
containing two subsets S1 and S2 of U . For an attribute a, the conditional
entropy of a cutpoint q is

E(a, U, q) =
|S1|
|U | E(S1) +

|S2|
|U | E(S2),

where E(S) is the entropy of a subset S of U . The entropy E(S) is computed
in the standard way as

−
n∑

j=1

pj log pj ,
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where pj is defined as a relative frequency of a concept Cj , equal to

|S ∩ Cj |
|S| .

For given attribute a, the cutpoint q for which E(a, U, q) is minimal is the
best cutpoint. In order to induce k intervals the above procedure is applied
recursively k − 1 times. After determining the first cutpoint q that defines a
partition of U into two sets S1 and S2, we compute E(a, S1, q1) and E(a, S2, q2)
for two candidate cutpoints q1 and q2 for S1 and S2), respectively. Among q1
and q2, we select the cutpoint with the larger entropy. Thus, the worse of sets
S1 and S2 is partitioned.

The discretization methods presented here can be classified as either local
or global [2]. Local methods are characterized by operating on only one at-
tribute, while global methods are characterized by considering all attributes
(rather than one) before making a decision where to induce interval cutpoints.

In global discretization, first we select the best attribute and then, for the
selected attribute, we select the best cutpoint. In our approach, see [2], the
best attribute was selected on the basis of the following measure

M{AD}∗ =

∑
S∈{AD}∗

|S|
|U |E(S)

|{AD}∗|

where {AD}∗ is the partition induced by the discretized attribute AD. A
candidate attribute for which M{AD}∗ is maximum is selected as for re-
discretization. Obviously, we need only to re-compute this measure for an
attribute which was last picked for re-discretization.

3 MLEM2

In general, LERS uses two different approaches to rule induction: one is used in
machine learning, the other in knowledge acquisition. In machine learning, or
more specifically, in learning from cases (examples), the usual task is to learn
the smallest set of minimal rules, describing the concept. To accomplish this
goal, LERS uses two algorithms: LEM1 and LEM2 (LEM1 and LEM2 stand
for Learning from Examples Module, version 1 and 2, respectively) [4, 5].

Let B be a nonempty lower or upper approximation of a concept repre-
sented by a decision-value pair (d,w). Set B depends on a set T of attribute-
value pairs t = (a, v) if and only if

∅ �= [T ] =
⋂
t∈T

[t] ⊆ B.

where [(a, v)] denotes the set of all examples such that for attribute a its
values are v.
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Set T is a minimal complex of B if and only if B depends on T and no
proper subset T ′ of T exists such that B depends on T ′. Let T be a nonempty
collection of nonempty sets of attribute-value pairs. Then T is a local covering
of B if and only if the following conditions are satisfied:

• Each member T of T is a minimal complex of B
•
⋃

t∈T [T ] = B
• T is minimal, i.e., T has the smallest possible number of members

The user may select an option of LEM2 with or without taking into account
attribute priorities. The procedure LEM2 with attribute priorities is presented
below. The option without taking into account priorities differs from the one
presented below in the selection of a pair t ∈ T (G) in the inner loop WHILE.
When LEM2 is not to take attribute priorities into account, the first criterion
is ignored. In our experiments all attribute priorities were equal to each other.

Procedure LEM2
(input: a set B,
output: a single local covering T of set B);
begin

G := B;
T := ∅;
while G �= ∅

begin
T := ∅;
T (G) := {t|[t] ∩G �= ∅} ;
while T = ∅ or [T ] �⊆ B

begin
select a pair t ∈ T (G) with
the highest attribute priority;
select a pair t ∈ T (G) such that
|[t] ∩G| is maximum;
if a tie occurs, select a pair
t ∈ T (G) with the smallest
cardinality of [t];
if another tie occurs,
select first pair;
T := T ∪ {t} ;
G := [t] ∩G ;
T (G) := {t|[t] ∩G �= ∅};
T (G) := T (G) − T ;

end {while}
for each t ∈ T do

if [T − {t}] ⊆ B
then T := T − {t};

T := T ∪ {T};
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G := B − ∪T∈T [T ];
end {while};

for each T ∈ T do
if
⋃

S∈T −{T}[S] = B then T := T − {T};
end {procedure}.

For a set X, |X| denotes the cardinality of X.
MLEM2, a modified version of LEM2, processes numerical attributes dif-

ferently than symbolic attributes. For numerical attributes MLEM2 sorts all
values of a numerical attribute. Then it computes cutpoints as averages for
any two consecutive values of the sorted list. For each cutpoint q MLEM2
creates two blocks, the first block contains all cases for which values of the
numerical attribute are smaller than q, the second block contains remaining
cases, i.e., all cases for which values of the numerical attribute are larger than
q. The search space of MLEM2 is the set of all blocks computed this way,
together with blocks defined by symbolic attributes. Starting from that point,
rule induction in MLEM2 is conducted the same way as in LEM2.

Additionally, the newest version of MLEM2, with merging intervals, at
the very end simplifies rules by, as its name indicates, merging intervals for
numerical attributes.

4 Classification System

Rules induced from raw, training data are used for classification of unseen,
testing data. The classification system of LERS is a modification of the bucket
brigade algorithm [1, 12]. The decision to which concept a case belongs to is
made on the basis of three factors: strength, specificity, and support. They are
defined as follows: Strength is the total number of cases correctly classified by
the rule during training. Specificity is the total number of attribute-value pairs
on the left-hand side of the rule. The matching rules with a larger number of
attribute-value pairs are considered more specific. The third factor, support,
is defined as follows∑

matching rules R describing C

Strength factor(R) ∗ Specificity factor(R).

The concept C for which the support is the largest is a winner and the
case is classified as being a member of C.

In the classification system of LERS, if complete matching is impossible,
all partially matching rules are identified. These are rules with at least one
attribute-value pair matching the corresponding attribute-value pair of a case.
For any partially matching rule R, the additional factor, called Matching
factor (R), is computed. Matching factor (R) is defined as the ratio of the
number of matched attribute-value pairs of R with a case to the total number
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Table 1. An example of the data set

Attributes Decision
hobbyCase Age Gender

1 32 Female Shooting
2 27 Male Fishing
3 45 Male Shooting
4 63 Female Shooting
5 35 Male Fishing

of attribute-value pairs of R. In partial matching, the concept C for which the
following expression is the largest∑

partially matching
rules R describing C

Matching factor(R) ∗ Strength factor(R)

∗ Specificity factor(R)

is the winner and the case is classified as being a member of C.
Every rule induced by LERS is preceded by three numbers: specificity,

strength, and the rule domain size (the total number of training cases match-
ing the left-hand side of the rule).

We will illustrate the MLEM2 algorithm with rule set induction from
Table 1. The data set from Table 1 contains one numerical attribute Age and
one symbolic attribute Gender. Additionally, there are two concepts: [(Hobby,
shooting)] = {1, 3, 4,} and [(Hobby, fishing)] = {2, 5}.

First we need to sort the numerical attribute Age. The sorted list is: 27,
32, 35, 45, 63. The corresponding cutpoints determined by MLEM2 are: 29.5,
33.5, 40 and 54. Thus the set of all attribute-value pair blocks (the search
space for MLEM2) is:

[(Age, 27..29.5)] = {2}
[(Age, 29.5..63)] = {1, 3, 4, 5}
[(Age, 27..33.5)] = {1, 2}
[(Age, 33.5..63)] = {3, 4, 5}
[(Age, 27..40)] = {1, 2, 5}
[(Age, 40..63)] = {3, 4}
[(Age, 27..54)] = {1, 2, 3, 5}
[(Age, 54..63)] = {4}
[(Gender, female)] = {1, 4}
[(Gender, male)] = {2, 3, 5}

Let us start from the set B equal to the concept [(Hobby, shooting)].
Thus B = G = {1, 3, 4}. The set T (G) of all attribute-value pairs relevant
to G consists of (Age, 29.5..63), (Age 27..33.5), (Age, 33.5..63), (Age, 27..40),
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(Age, 40..63), (Age, 27..54), (Age, 54..63), (Gender, female) and (Gender,
male). The most relevant attribute-value pair is (Age, 29.5..63), since among
all attribute-value pairs from T (G) the value of

|[(Attribute, value)] ∩G|

is the largest for (Age, 29.5..63). However,

[(Age, 29.5..63)] �⊆ (Hobby, shooting)].

Thus we have to start the second iteration of the inner while loop of
the MLEM2 algorithm. This time T (G) is equal to the set T (G) that was
initially computed except (Age, 29.5..63). Four attribute-value pairs: (Age,
33.5..63), (Age, 40..63), (Age, 27..54) and (Gender, female) are the most rel-
evant. Since there is a tie, we have to use the second criterion to break the
tie: the attribute-value pair with the smallest block cardinality. There are two
candidates: (Age, 40..63) and (Gender, female). We have to use the third crite-
rion: the first candidate, i.e., (Age, 40..63). Moreover, for the set T consisting
of two attribute-value pairs computed so far: (Age, 29.5..63) and (Age, 40..63)

[T ] ⊆ [(Hobby, shooting)].

The next step is to go through the loop for that follows the inner loop
while. In different words, we will try to minimize set T . The first test is whether

[(Age, 40..63)] ⊆ [(Hobby, shooting)]

Since this is true, our final minimal complex is (Age, 40..63). Note that
we used rule minimization, a part of the LEM2 algorithm that is common
for both versions of MLEM2, with and without merging intervals, so both
versions of the MLEM2 algorithm will induce the same rule. However,

[(Age, 40..63)] �= [(Hobby, shooting)],

or, G = B − [T ] �= ∅, so we have to run the MLEM2 algorithm through
the next iteration of its outer while loop. This time G = {1} and T (G) =
{(Age, 29.5..63), (Age, 27..33.5), (Age, 27..40), (Age, 27..54), and (Gender,
female)}. Obviously, every member of T (G) is the most relevant. The second
criterion, the minimum of |[(Attribute, value)]| returns two candidates: (Age,
27..33.5) and (Gender, female). The third criterion returns (Age, 27..33.5).
Additionally,

[(Age, 27..33.5)] �⊆ (Hobby, fishing)],

so we have to go through the second iteration of the inner while loop of the
MLEM2 algorithm. T(G) is equal to {(Age, 29.5..63), (Age, 27..40), (Age,



160 J.W. Grzymala-Busse

27..54), and (Gender, female)}. The second criterion will indicate that (Gen-
der, female) is the best candidate. Thus T = {(Age, 27..33.5), (Gender,
female)}. Furthermore,

[T ] ⊆ [(Hobby, shooting)].

We will execute the loop for to minimize T . After the first attempt we
have

[(Gender, female)] ⊆ [(Hobby, shooting)]

hence (Gender, female) is our second minimal complex. Additionally, for T =
{{(Age, 40..63)}, {(Gender, female)}}, we have

[(Age, 40..63)] ∪ [(Gender, female)] = [(Hobby, shooting)],

so T is a local covering of [(Hobby, shooting)].
Our new input set to the algorithm MLEM2 is the other concept, i.e.,

the set {2, 5}. The set T (G) of all attribute-value pairs relevant to G is
{(Age, 27..29.5), (Age, 29.5..63), (Age 27..33.5), (Age, 33.5..63), (Age, 27..40),
(Age, 27..54), (Gender, male)}. The most relevant attribute-value pairs are
(Age, 27..40), (Age, 27..54), and (Gender, male). The second criterion, the
minimum of |[(Attribute, value)]| does not break the tie since |[(Age, 27..40)]|
= |[(Gender, male)]| = 3. The last resort is to select the first pair, i.e., (Age,
27..40). However,

[(Age, 27..40)] �⊆ [(Hobby, fishing)],

therefore we have to run the MLEM2 algorithm through the second iteration
of the inner while loop. This time from T (G) the attribute-value pair (Age,
27..40) is excluded, and the most relevant attribute-value pair is (Gender,
male). Moreover, for T = {(Age, 27..40), (Gender,male)} we have

T ⊆ [(Hobby, fishing)].

Furthermore, this set is already minimal and

[T ] = [(Hobby, fishing)],

so our local covering for [(Hobby, fishing)] is the set containing as the only
element T = {(Age, 27..40), (Gender, male)}. The rule set, determined by the
MLEM2 algorithm, in the LERS format, is

1, 2, 2
(Age, 40..63) –> (Hobby, shooting)
1, 2, 2
(Gender, female) –> (Hobby, shooting)
2, 2, 2
(Age, 27..40) & (Gender, male) –> (Hobby, fishing)
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5 Experiments

In our research we used the same data sets that were used for experiments
in [9]. All of these data set have numerical attributes and are completely spec-
ified (i.e., for every attribute and every case the corresponding attribute value
is specified). These ten data sets are presented in Table 2. For experiments
we used three different approaches: the original LEM2 algorithm with dis-
cretization based on entropy as preprocessing, and two versions of MLEM2
algorithms. The first version of MLEM2 was not equipped with a mechanism
for merging intervals within the same rule. For example, from pima data set,
a typical induced rule was:

6, 38, 38
(Diabetes, 0.078..0.2995) & (Pressure, 57..122) &
(Diabetes, 0.1655..2.42) & (Age, 21..38.5) &
(Pressure, 0..83) & (Glucose, 0..99.5) –> (Class, 0)

It is clear that two conditions, both associated with the same attribute
Diabetes, namely:

(Diabetes, 0.078..0.2995) and (Diabetes, 0.1655..2.42)

can be merged into one condition:

(Diabetes, 0.1655..0.2995).
Similarly, for attribute Pressure, the following two conditions

(Pressure, 57..122) and (Pressure, 0..83)

can be also merged into one condition:

Pressure, 57..83).

The third way to induce rules was the newest version of the MLEM2 al-
gorithm that is able to merge conditions with intervals. We used results of

Table 2. Data sets

Data set Number of

Cases Attributes Concepts

Bank 66 5 2
Bricks 216 10 2
Bupa 345 6 2
Buses 76 8 2
German 1, 000 24 2
Glass 214 9 6
HSV 122 11 2
Iris 150 4 3
Pima 768 8 2
Segmentation 210 19 7
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Table 3. Number of rules

Data set Discretization MLEM2 without MLEM2 with
based on entropy merging merging

and LEM2 conditions conditions

Bank 10 3 3
Bricks 25 12 12
Bupa 169 73 71
Buses 3 2 2
German 290 160 159
Glass 111 33 30
HSV 62 23 23
Iris 14 9 8
Pima 252 113 116
Segmentation 108 14 14

Table 4. Number of conditions

Data set Discretization MLEM2 without MLEM2 with
based on entropy merging merging

and LEM2 conditions conditions

Bank 13 5 6
Bricks 61 40 35
Bupa 501 345 241
Buses 4 4 5
German 1, 226 1, 044 814
Glass 262 137 87
HSV 206 101 80
Iris 33 23 17
Pima 895 599 428
Segmentation 322 48 37

experiments for the first two approaches that were reported in [9]. The same
data sets were used for experiments with the newest version of the MLEM2
algorithm with merging of intervals. Results are presented in Tables 3–5.
Table 3 presents the total number of rules for all three approaches while
Table 4 shows the total number of conditions in those rule sets. Note that
both versions of MLEM2 were independently implemented, using different
heuristics, so the number of rules may differ. Furthermore, even the total
number of conditions may be – for some data sets – larger for the algorithm
that was supposed to induce rules with the smallest number of conditions.

Table 5 shows accuracy for all ten data sets and all three used approaches
for rule induction. Accuracy was computed using tenfold cross validation.
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Table 5. Accuracy

Data set Discretization MLEM2 without MLEM2 with
based on entropy merging merging

and LEM2 conditions conditions

Bank 97 95 95
Bricks 92 92 87
Bupa 66 65 64
Buses 99 96 93
German 74 70 69
Glass 67 72 69
HSV 56 60 65
Iris 97 95 94
Pima 74 71 70
Segmentation 64 89 84

6 Conclusions

To compare our three different approaches to rule induction from numerical
data the Wilcoxon matched-pairs signed rank test was used (with level of
significance 5%, two-tailed test) [11]. All three approaches were compared
pair wise. The total number of rules is the largest for discretization based
on entropy, used as preprocessing for original data sets, and then the LEM2
algorithm for rule induction. For both versions of MLEM2 the difference in
performance is – statistically – insignificant.

Similarly, for the total number of conditions in the induced rule sets, the
worst result – the largest number of conditions – was induced by the first ap-
proach: discretization based on entropy and then the LEM2 algorithm for rule
induction. The performance of the MLEM2 algorithm with merging intervals
was better than MLEM2 without merging intervals, as expected.

Surprisingly, all three approaches show no significant difference in perfor-
mance for the most important parameter: accuracy.
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Summary. Standards such as CRISP-DM, SEMMA, PMML, are making data min-
ing processes easier. Nevertheless, up to date, projects are being developed more as
an art than as a science making it difficult to understand, evaluate and compare
results as there is no standard methodology. In this chapter, we make a proposal for
such a methodology based on RUP and CRISP-DM and concentrate on the project
conception phase for determining a feasible project plan.

1 Introduction

The success of Business Intelligence is usually related to a Data Mining
Project. Several common pitfalls in a Business Intelligence project have been
identified in [21]: lack of understanding of the complexity of the project, lack
of recognizing Business Intelligence project as a cross-organizational business
initiative, no iterative development method, no business analysis and no stan-
dardization activities, inappropriate project team structure and dynamics and
too much reliance on disparate methods and tools. All of them being summa-
rized as a lack of methodology for project development.

The question that arises is which methodology should be used when devel-
oping data mining projects. Unfortunately, despite the years of data mining
experience in companies the answer to that question is that there is no stan-
dard methodology. In fact (see [25]) a 2004 report sets CRISP-DM as the most
frequently used in 42% of companies interviewed followed by companies using
their own methodology (28%).

However, defining a methodology requires first of all, knowing the activities
to be developed. These have been described in CRISP-DM the standard of
the Data Mining process model. But besides the activities, the lifecycle of the
P. González-Aranda et al.: Towards a Methodology for Data Mining Project Development: The
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project, and deliverables have to be defined. Although deliverables have been
considered in CRISP-DM, they have been informally defined and consequently
no comparison of output and nonformal evaluation are possible. Regarding the
lifecycle, in this chapter we propose a first approach to Data Mining project
phases and lifecycle based on the ones defined by RUP. We also propose a
first approach towards abstraction for the project conception step.

The rest of the chapter has been organized as follows. Section 2 presents
related work and review advances in Data Mining standardization and ap-
proaches to data mining methodology. We also review RUP as representative
of software development methodologies. In Sect. 3 we define a data mining
project. In particular we make a first approach to the definition of steps and
lifecycle. In Sect. 4 we focus on the first phase of a Data Mining project,
namely what we define as the project conception, to properly define a data
mining project plan. Section 5 presents preliminary conclusions and outlook.

2 Related Work

In the information age when data generated and stored by modern orga-
nizations increase in an extraordinary way, data mining tasks [9] become a
necessary and fundamental technology. A lot of data mining research has been
focusing on the development of algorithms for performing different tasks, i.e.
clustering, association and classification [1,2,5,13,15,16,19,20,24,28,30], and
on their applications to diverse domains. One major challenge in data mining,
according to [12], is getting researchers to agree on a common standard for pre-
processing tasks and standards related to applying the data mining process to
operational processes and systems. In this sense, the Predictive Model Markup
Language (PMML) [8] provides several components (Data Dictionary, Min-
ing Schema, Transformation Dictionary, Models) useful for producing data
mining models. The Data Dictionary includes only information about type of
data and range of values. Semantic information is not taken into account.

Several proposals have been developed in order to offer a guide for imple-
menting data mining projects [7, 22,27].

The Common Warehouse Model for Data Mining (CWM DM) [22] pro-
posed by the Object Management Group, introduces a CWM Data Mining
metamodel integrated by the following conceptual areas: a core Mining meta-
model and metamodels representing the data mining subdomains of Clus-
tering, Association Rules, Supervised, Classification, Approximation, and
Attribute Importance.

The Cross-Industry Standard Process for Data Mining (CRISP-DM), was
proposed in 1997 [7] in order to establish the standard data mining process.
CRISP-DM steps include several processes:

• Business Understanding focuses on understanding the project objectives
and requirements from the business perspective, then converting this
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knowledge into data mining problem definition and a preliminary plan
to achieve the objectives.

• Data Understanding starts with an initial data collection and proceeds
with activities in order to get familiar with the data, to identify data qual-
ity problems, to discover first insights into the data or to detect interesting
subsets to propose hypotheses for hidden information.

• Data Preparation constructs the final dataset from the initial raw data.
Data preparation tasks are likely to be performed multiple times and not
in any prescribed order. Tasks include table, record and attribute selection
as well as transformation and cleaning of data for modelling tools.

• Modelling techniques are selected and applied and their parameters are
calibrated to optimal values. There are several techniques for the same
data mining problem type that have some different data requirements.

• Evaluation evaluates the model and review the steps executed to construct
the model to be certain it properly achieves the business objectives.

• Deployment presents the knowledge in a way that the customer can use it.
It often involves applying models within an organization’s decision making
processes.

At 1999 SAS Institute proposed the SEMMA [27] methodology integrated
by five phases: Sample, Explore, Modify, Model and Assess. The data min-
ing process starts by taking a representative sample of the target population
to which a confidence level is associated. Then, this sample is explored and
analyzed using visualization and statistical tools in order to obtain a set of
significant variables that will become the input for a selected model. The se-
lected model is analyzed. The goal of this step is to determine relationships
among variables. In this phase, both statistical methods (e.g. discriminant
analysis, clustering, and regression analysis) and data-oriented methods (e.g.
neural networks, decision trees, association rules) can be used. The final phase
in this process consists of evaluating the model and comparing it with differ-
ent statistical methods and samples. On the other hand, Clementine proposes
CATs [29] (Clementine Application Templates) as application specific libraries
that follow the CRISP-DM standard, being each CAT stream assigned to a
CRISP-DM phase.

All of the above models depend heavily on the analysts (business, domain
experts, data miners) knowledge. There seems to exist a need for an interme-
diate level of conceptualization which can provide an interface between the
experts and the clients.

According to Grossman et al. [12] “although efforts have been done to ho-
mogenize terminology and concepts among standards more work is required”.
A framework to develop a unified model for data mining is proposed in [10].
The goal of the model is to provide a uniform data structure for all data
mining patterns and operators to manipulate them. The model is designed
under a three-view architecture (Process view, model view and data view)
that includes a process model and data views. The model view contains a set
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of mining models with information about mining results. All these approaches
and standards do not take the semantics of the data into account.

In [21] a very good approach of the advantages and disadvantages of tradi-
tional methodologies of software development when applied to Business Intel-
ligence solutions is found. Here the authors state how old practices are good
when every system had a beginning and an end and every system was designed
to solve only one isolated problem for one set of business people from one line
of business. However, this practices fail when integration of different depart-
ments is needed, because they do not include any cross-organizational activ-
ities necessary to sustain an enterprise-wide decision support environment.
For nonintegrated system development, conventional waterfall methodology
is sufficient. However, these traditional methodologies do not cover strategic
planning cross-organizational business analysis. Software methodologies such
as an iterative model had to be improve to deal with risks.

In RUP [17] an architecture centered model is presented in which an it-
erative and incremental way makes it possible to develop a software product
of any scale or size. Outputs of each iteration can be components, modules of
any software part that will be integrated into the next iteration in order to
fulfil the final product at the end. These features make it appropriate for Data
Mining projects in which requirements change as a consequence of already ob-
tained patterns and where the outputs (patterns) of each step integrate the
global solution.

3 Basis of a Data Mining Project Development
Methodology

The term business refer to any activity developed in a company in the most
general sense, no matter the nature and aim of such activity (commercial,
governmental, education, . . . ). Data mining is one of the technologies that
make Business Intelligence solutions [6] be implemented (“a fairly new term
that incorporates a broad variety of processes and technologies to harvest and
analyze specific information to help a business make sound decisions”). In
fact, any business intelligence solution should include a data mining project
to extract “the intelligence” of the business that will be accordingly deployed.

However, the truth is that data mining projects are being developed more
as an art than as an engineering process. It does not properly meet real busi-
ness needs when dealing with any kind of project. Companies really need to
manage projects in the most controlled way, always trying to reduce risks
without increasing costs. As there is no proper methodology to face data min-
ing projects, several different practices from different areas are applied. This
leads to failures when developing a project to getting poor results, or at least
not as good as they could be.

The need for a proper method to manage data mining projects is thus
clear. This method should allow managers to identify tasks and subtasks,
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roles, risks, milestones as well as estimating costs, benefits, taking into ac-
count the cross-dependant nature of all the elements. Efforts presented in
Sect. 2 towards a methodology have generated a “good manners” guide as
well as a definition of the technical activities to be developed in the process
of knowledge discovery. However, no clear result towards the management of
the global process have been obtained up to date. Higher risk levels, greater
efforts and higher associated costs with each task being developed is the result
of a lack of understanding of the project development process due mainly to a
lack of methodology. Methodologies make the development team concentrate
their efforts in tasks to be developed, clearly defining roles and assignment for
each participant making organization and project development a lot easier.
Consequently, prior to defining the methodology, the terms we are refereing
to have to be clearly understood and defined.

A project has been defined as any piece of work that is undertaken or
attempted. Consequently, project management involves “the application of
knowledge, skills, tools and techniques to a broad range of activities to meet
the requirements of the particular project” [3]. Project management is needed
to organize the process of development and to produce a project plan. The
way the process is going to be developed (life cycle) and how it will be split
into phases and tasks (process model), will be established. This project defin-
ition [23] exactly describes the common understanding, its extent and nature,
among the key people involved in a project. Thus, any data mining project
need to be defined to state the parties, goals, data and human resources,
tasks, schedules, expected results, that comply the foundation upon which a
successful project will be built. In general, any engineering project iterates
through the following stages between inception and implementation: Justifi-
cation and motivation of the project, Planning and Business Analysis, Design,
Construction, Deployment. In fact in software engineering this approach has
been successfully applied. Although a data mining project has components
similar to those found in IT, the nature is different even some that concepts
need to be modified in order to be integrated.

In fact the proposal that we make here is inspired on concepts from RUP,
taking as technical tasks the ones defined in the CRISP-DM process model.

For a proper definition of the methodology, phases that will lead the project
have to be defined. Phases will have iterations with intermediate products and
the end of a phase will lead a deliverable. The set of activities (in our case
from CRISP-DM) and the effort dedicated to them in each project phase will
have to be defined. Depending on the activities involved in each phase,the
roles of the team and the associated effort will have to be defined.

Figure 1 depicts development phases in the proposed methodology for
data mining projects. X axis represents phases while Y axis represents the
involved processes. For each phase, efforts dedicated to each activity of the
process model have been represented. In each phase more than one iteration
can occur and each of them may lead to an intermediate product. A phase
will end having as a result deliverables. Intermediate products and deliverables
will help to establish milestones in the project development plan.
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Fig. 1. Phases of a data mining methodology

Defining the proposed phases of the methodology, the different stages of
RUP methodology have been taken into account. One of the main goals of
the proposed methodology is to establish the activities to be carried out as
well as their timing for its successful ending while preserving flexibility in the
process.

The proposed phases are briefly described below:

• Project Conception establishes the main topics in the project. In order
to develop a proper project plan information about business goals, data
sources, risks and contingencies plans, costs and benefits, estimations and
schedules, resources and results need to be gathered. A complete project
plan is fundamental to achieve a proper and successful data mining project
because the information reflected will be used to complete project’s life cy-
cle. Figure 1 depicts main activities in this phase, Business Understanding,
Data Understanding and Data Preparation, that help data miners define
business goals and data sources. This definition is basic to develop a data
mining project and will be used in later phases.

• Data And Tasks Conception. The Data Model defines all the data sources
and extraction, transformation, loading and integration processes involved
in a data mining project. In order to define them in a formal way some
metamodel must be defined and used. The Task Model defines all the
data mining tasks to be done in the project. The approach here is that a
task model is first defined in terms of types of problems (e.g. clustering
instead of K-means, association instead of a priori, . . . ) and then refined
in some iterations by a data mining expert. The Task Model uses the Data
Model to establish the data involved in each data mining task. Considering
these models, the main activities involved are Data Understanding and
Preprocessing and Modelling.
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• Data Mining Modelling applies data mining techniques from tasks defined
in the task model and choose data sources from the data model. At this
point, the task model is refined from problem types to algorithms. Some
procedures to measure the satisfaction of possible algorithms is needed.

• Results establish visualization and evaluation in terms of business goals
and customer satisfaction. Thus, some mechanisms must be defined in
order to adequate the solution to customer needs. Sometimes this phase
supposes a software project to deploy the knowledge obtained. This is a
very important phase because our customer must validate the results of
the project.

4 Conception of a Data Mining project

Data mining experts have made the process of translating business goals into
data mining goals, automatic. When doing so, the expert does not only take
into account data mining techniques but also their constraints, inputs, out-
puts, the order in which algorithms will be applied and dependencies between
inputs and outputs. As part of the process, the expert automatically evalu-
ates different choices depending on the intermediate results and/or inputs.
The quality of the overall process will finally determine the quality of the
obtained results.

However, the main goal for a company should be to make this process
explicit: to generate a method to perform the required tasks in a systematic
way. Ensuring the automatic generation of feasibility plans for each business
goal being translated into data mining goals no matter who the person in
charge of the process may be. A first step towards this method will be the
definition of certain mechanisms of abstraction to obtain a model of the ob-
jectives of the project. Which is the method to be followed so that business
objectives can be translated into data mining objectives? Unluckily, there is
no such methodology but if we think on how to obtain it new questions will
arise: How is a business objective expressed? Do we have any standard to ex-
press business objectives in a uniform way? What is a data mining goal? How
are data mining goals achieved? Which are the requirements of data mining
functions? Do we have a standard to establish data mining goals?

4.1 Setting Objectives

The bottom line to business success is to increase the knowledge of decision
makers at every level of an organization. The process of knowledge creation
and enhancement comes from information which is nothing else than data
that have been collected, accessed, formatted and analyzed [18].

A data mining project arises when a given organization needs to solve a
set of problems that can be addressed by means of specific knowledge discov-
ery techniques. Independently of how good the data mining techniques can
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be, a project whose requirements are poorly specified will end up with a dis-
appointed end user [26]. In a data mining project the most critical factor is
related to the clear understanding of the business goals.

Both the client and the data miner play an important role when estab-
lishing business goals. The client has to formulate his problem while the data
miner tries to understand it in order to be able to translate it into data min-
ing functions. During this task, it is relevant to keep in mind the following
aspect (inspired from software engineering [26]): “Business domain as well as
functional domain of the problem has to be represented and understood”.

Deeply analyzing any activity of the organization (even external to it)
that generate data that will be potentially used as input in a data mining
project as well as the data themselves and the data mining functions will
highlight important concepts that are common in any data mining project
independently of the domain. However, eliciting, analyzing and graphically
depicting concepts is no easy task [11] and must be developed based on a
systematic method that provide all those elements that make this process less
risky but more controlled.

Hence, first of all it is necessary to set the basis for a definition of elements
that will make it possible to represent or abstract the business domain that
is the target of the project. The goal of this abstraction is to provide a data
mining project manager with a method to systematically describe the goals of
the project. Moreover, once the goals are understood, they can be translated
into data mining goals and then, into data mining problem types. However,
not only identifying the data mining problems to be solved is enough. We
should also be able to find out if the available data to be analyzed fulfil a
set of general requirements or conditions. Every problem type will require
different kinds of data. In the following, we will describe the different existing
issues as well as their requirements.

Data Requirements Assessment

Every data mining project can be collectively described as data analysis and
knowledge extraction to obtain the intelligence of the business. Data do not
only represent the activities or business processes that have generated them
but implicitly carry important hidden knowledge about the business. Extract-
ing this knowledge means making decisions in an intelligent and successful
way.

Though talking about intelligence, data mining does not involve deductive
processes. On the contrary, it is an inductive process that analyzes the data to
extract knowledge: it accepts data from different sources, manipulates them
and obtains an output and patterns of knowledge, that if of good quality, will
be deployed. This is the general setting of the process no matter the domain
or organization we are dealing with.

In the process of data analysis and knowledge extraction, different per-
spectives of the data being analyzed are taken into account: data sources,
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information content of the data (knowledge to explain the data), data struc-
ture and data flow. To fully understand the process, all of them must be
considered.

Related to the content, data have to be enriched so that goals can be
fulfilled. Data that are the source of a data mining project were never de-
signed, captured and stored thinking they would become the input of the
data mining process. Consequently, an effort is needed to transform them so
that knowledge can be extracted. Any element that can be determinant when
making a decision should be analyzed. In this sense, the major problem is
establishing these elements as it is as equally fatal to leave one element out
as it is to introduce erroneous elements. In any case, elements that can be
decisive when making decisions have to do with the operations developed in
the company, the internal organization of the company as well as business
rules, and finally the external conditions related to the business (competitors)
and general (political, social, . . . ,) events.

In order for the process to be data miner and client independent, this is
to say, to be able to obtain the same goals no matter who the experts leading
and developing the process are, a systematic abstract way to express this
content information is needed. The first näıve approach is to conceptualize
this information to discover the concepts and properties the available data
represent with respect to the business. Only this way, we should be able to
establish which are the business elements involved and consequently to asses
whether the data comply with the requirements of each function within the
data mining process.

Understanding the Data Mining Domain

As it was stated before, every data mining problem type will require different
kinds of data. Depending on the project objectives different techniques should
be applied and consequently, different kinds of data will be required. In order
to be able to systematically determine whether project goals are feasible or not
it will be necessary to automate the process of extracting data requirements
from data mining problem types. In the following, we will describe the existing
data mining problem types as well as their inner data requirements.

Several data mining problems classifications can be found in the litera-
ture. In [7] authors describe six kinds of problems: data description and sum-
marization, segmentation, concept description, classification, prediction and
dependency analysis. Usually the data mining project involves different prob-
lem types that together will achieve the goals of the project. In other words,
information extracted from different analysis tasks must be integrated into a
piece of knowledge that fits project goals.

In [4, 14] the various types of data mining algorithms such as memory-
based reasoning, link analysis, decision trees, neural networks, . . . are
explained. Data mining common tasks are identified: classification, estimation,
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prediction, affinity grouping, clustering and description. Moreover, they ex-
plain which data mining techniques are more appropriate for every type of
problem.

Although in [4] which data-mining techniques are best for what types of
business applications is stated, it starts with data mining objectives already
identified. A further description of the problem, so that a mapping could be
done between business objectives and data mining problems, is missing. This
mapping will help on the one hand to see if certain business objectives are
feasible or not, and, on the other, it would provide means to interpret the
patterns to be obtained.

Results cannot be interpreted depending only on the function or/and tech-
nique used to obtain it. After applying any data mining function, lets take
clustering as an example, a set of patterns is obtained but to evaluate their
quality and consequently the success of the process, not only measures related
to the patterns, clusters in this case, (number of elements, cohesion, . . . ) are
needed but also some values to measure the results according to user expecta-
tions. The latter are a mixture of understanding the meaning of each pattern,
cluster, together with the business requirements.

Hence, data mining problems cannot be analyzed to abstract common fea-
tures on their own. There is a need for deeply analyzing data mining problems
to fully understand its requirements at conceptual, technical and data levels.
Once this work is done, the conceptualization of the data mining problems
will serve the data mining project managers to define a project plan as well
as to provide a basis for understanding and evaluating the results.

4.2 Planning the Project

As explained before, the focus of the article is to face the issue of how to
ensure the systematic generation of rational, feasibility and controlled data
mining project plans no matter who the person in charge of the process may
be. The definition of certain abstraction mechanisms is a first step towards
it. The question arising now, when those domains that have to be abstracted
and engaged have been clearly stated, is: which are the goal elements (tools,
models, documents, . . . ) of the abstraction? Previous to the definition of such
a systematic method, there is a need to find a standard way to represent all
the elements identified as relevant in the business domain to be analyzed.

Figure 2 depicts the basic steps, tools and intermediate results that un-
derline the establishment of a systematic method to define data mining goals.

Mandatory elements that compose this information are: objectives and
motivations underlying the project, scope of application of the expected results
and structure, content and flow of the data to be analyzed. Besides, technical
elements related to the very nature of the data mining project will have to
be incorporated to the previous information. The blending and abstraction
of these two pieces of information, will result not only in a model of shared
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Fig. 2. Project plan definition process

understanding for client and data miner but will also be a tool to determine
potential data mining goals and consequently the basis to project plans.

In Fig. 2, DMMO (Data Mining Modelling Objects) denotes the set of the
compounding elements of the Modelling Language. Elements of the business
domain will be abstracted using DMMO, generating the Business Objective
Model. Together with this intermediate model, a document that we have called
Requirements Assessment will be produced. This is a first approach to project
goals in which special attention is given to critical factors (risks, constraints,
information required, . . . ) that will depend both on the goals themselves and
on the tools and techniques used to achieve them.

The requirement assessment document will be analyzed jointly with the
client to enrich and refine the previous business goals model. The resulting
model from this analysis is what has been called Feasible Business goals Model
in the figure. In this model, goals previously identified but analyzed as not
feasible have been not included, although not removed as these are conclusion
of the projet by themselves. From the refined model and making use once
again of DMMO the project plan will be produced almost in a automatic
way as the model will represent relevant aspects both of the domain and of
the tools themselves. Due to the assumed abstraction capability of DMMO,
the plan will contain detail information about: techniques, tools, kind of data
mining to be solved, inputs, outputs, flow of data and dependencies. Thus,
risk and contingencies, cost, milestones, will be identified.
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5 Discussion and Conclusion

The main reason for data mining to be developed more as and art than as a
science can be found in the lack of a methodology for data mining project de-
velopment. In this chapter, we have presented a first approach to such method-
ology and we have focused on the first phase, project conception, as the basis
for the methodology. A first step towards the systematization of data mining
project development is the definition of certain abstraction mechanisms to
capture the project goals as well as to define how to reach them. The objec-
tive of this abstraction is to provide the manager with a method to describe
goals in terms of data mining. This will help the later planning, managing
and developing processes involved in every project. Deeply analyzing the tar-
get domains of data mining tasks (structure, data generation processes and
data themselves) will help to identify shared concepts to every data mining
project no matter what the nature of the domain could be. This way it will
be possible to set the basis for defining elements to represent business goals
and therefore fully find answer, to questions such as: what is intended to do?,
which are the target elements to be analyzed?, what are the techniques to be
applied? or which requirements must fulfil the data?

In this chapter we have also presented a first approach to a global method-
ology for managing data mining projects based on RUP. Steps of the method-
ology have been established as well as deliverables to be obtained along the
process. Technical tasks of the methodology have been taken from CRISP-
DM. Nevertheless, to clearly define the methodology, deliverables have to be
precisely defined and an abstraction mechanism has to be found to express
deliverables in a standard way. On the other hand, activities related to the
management tasks have also to be defined.
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178 P. González-Aranda et al.

23. University of Washington. Project Definition in Project Management. http://
www.washington.edu/computing/pm/define/definition.html, last accessed
2005

24. Z. Pawlak. Information systems: theoretical foundations. Information Systems,
6(3):205–218, 1981

25. G. Piatesky-Shapiro. Data Mining, Web Mining, and Knowledge Discovery
Guide. http://www.kdnuggets.com, 2005

26. R.S. Pressman. Software Engineering: A Practioner’s Approach. McGraw-Hill,
New York, 1997

27. SAS. SEMMA – Sample, Explore, Modify, Model, Assess. http://www.sas.com/
technologies/analytics/datamining/miner/semma.html, last accessed 2005

28. D. Slezak, J. Wroblewski, and M.S. Szczuka. Constructing extensions of bayesian
classifiers with use of normalizing neural networks. In Foundations of Intelligent
Systems, 14th International Symposium, ISMIS 2003, Maebashi City, Japan,
October 28–31, 2003, Proceedings, volume 2871 of Lecture Notes in Computer
Science, 408–416. Springer, Berlin Heidelberg New York, 2003

29. SPSS Corporation. CAT (Clementine Application Templates). http://www.

spss.com/clementine/cats.htm, last accessed 2005
30. W. Ziarko. Variable precision Rough Set Model. Journal of Computer Systems

and Science, 46(1):39–59, 1993



Fining Active Membership Functions in Fuzzy
Data Mining

Tzung-Pei Hong1, Chun-Hao Chen2, Yu-Lung Wu3, and Vincent S. Tseng4

1 Department of Electrical Engineering, National University of Kaohsiung,
Kaohsiung, Taiwan, ROC
tphong@nuk.edu.tw

2 Department of Computer Science and Information Engineering,
National Cheng-Kung University, Tainan, Taiwan, ROC
chchen@idb.csie.edu.tw

3 Department of Information Management, I-Shou University, Kaohsiung,
Taiwan, ROC
wuyulung@isu.edu.tw

4 Department of Computer Science and Information Engineering,
National Cheng-Kung University, Tainan, Taiwan, ROC
vincent@idb.csie.ncku.edu.tw

Summary. This chapter proposes a fuzzy data-mining algorithm for extracting
both association rules and membership functions from quantitative transactions.
The number of membership functions for each item is not predefined, but can be
dynamically adjusted. A GA-based framework for finding membership functions
suitable for mining problems is proposed. The encoding of each individual is divided
into two parts. The control genes are encoded into bit strings and used to determine
whether membership functions are active or not. The parametric genes are encoded
into real-number strings to represent membership functions of linguistic terms. The
fitness of each set of membership functions is evaluated using the fuzzy-supports
of the linguistic terms in the large 1-itemsets and the suitability of the derived
membership functions. The suitability of membership functions considers overlap,
coverage and usage factors.

1 Introduction

Data mining is most commonly used in attempts to induce association rules
from transaction data. Transaction data in real-world applications, however,
usually consist of quantitative values. Designing a sophisticated data-mining
algorithm able to deal with various types of data presents a challenge to
workers in this research field.

Recently, fuzzy set theory has been used more and more frequently in in-
telligent systems because of its simplicity and similarity to human reasoning.
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In [4], we proposed a mining approach that integrated fuzzy-set concepts with
the a priori mining algorithm [1] to find interesting itemsets and fuzzy asso-
ciation rules in transaction data with quantitative values. In that paper, the
membership functions were assumed to be known in advance. The given mem-
bership functions may, however, have a critical influence on the final mining
results. This chapter thus modifies the previous algorithm and proposes a
new fuzzy data-mining algorithm for extracting both association rules and
membership functions from quantitative transactions.

In the past, Srikant and Agrawal proposed a mining method [7] to handle
quantitative transactions by partitioning the possible values of each attribute.
Hong et al. proposed a fuzzy mining algorithm to mine fuzzy rules from quan-
titative data [4]. They transformed each quantitative item into a fuzzy set and
used fuzzy operations to find fuzzy rules. Wang and Bridges used GAs to tune
membership functions for intrusion detection systems based on similarity of
association rules [11]. Kaya and Alhajj [6] proposed a GA-based clustering
method to derive a predefined number of membership functions for getting
a maximum profit within an interval of user specified minimum support val-
ues. In this chapter, we will try to derive an unknown number of membership
functions from quantitative transactions by using a divide-and-conquer ge-
netic strategy.

2 A GA-Based Mining Framework

In this section, the fuzzy and GA concepts are used to discover both useful
association rules and suitable membership functions from quantitative values.
A GA-based framework for achieving this purpose is proposed in Fig. 1.

The proposed framework is divided into two phases: mining membership
functions and mining fuzzy association rules. Assume the number of items
ism. In the phase of mining membership functions, it maintainsm populations
of membership functions, with each population for an item Ij(1 ≥ j ≥ m).
Each chromosome in a population represents a possible set of membership
functions for that item. Next, in the phase of mining fuzzy association rules,
the sets of membership function for all the items are gathered together and
used to mine the interesting rules from the given quantitative database. Our
fuzzy mining algorithm proposed in [5] is adopted to achieve this purpose.

3 Chromosome Representation

Several possible encoding approaches in GAs have been described in [2,8–10].
In this chapter, we adopt the encoding approach similar to that in [8]. Each
individual is divided into two parts, control genes and parametric genes. In
the first part, control genes are encoded into bit strings and used to determine
whether parametric genes are active or not. In the second part, each set of
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Fig. 2. The set of membership functions for item Ij

membership functions for an item is encoded as parametric genes with real-
number schema.

Assume the membership functions are triangular. Three parameters are
thus used to represent a membership function. Each parametric gene thus
consists of three real values. Figure 2 shows an example for item Ij , where
Rjk denotes the membership function of the k-th linguistic term and rjkp

indicates the p-th parameter of fuzzy region Rjk.
The parametric genes of item Ij can be represented as a string of rj11 rj12

rj13 rj21 rj22 rj23 · · · rjl1 rjl2 rjl3, where rjl3 = ∞ . The control genes of
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Fig. 4. The chromosome representation for the set of membership functions in Fig. 3

Item Ij can be represented as a bit string of bj1 bj2 · · · bjT , where T is the
maximum possible number of linguistic terms. The bit bji indicates whether
the i-th membership function is active or not. If bji = 1, the i-th membership
function is active, meaning it will be used in the later fuzzy mining process. If
bji = 0, it is inactive. All the individuals in the same population thus have the
same string length. Below, an example is given to demonstrate the process of
encoding membership functions.

Example 1. Assume there are four items in a transaction database: milk,
bread, cookies and beverage. Also assume a possible set of membership func-
tions for Item milk is given as shown in Fig. 3.

There are three active linguistic terms, Low, Middle, and High, for this
item. According to the proposed encoding scheme, the individual for repre-
senting the set of membership functions in Fig. 3 is encoded as shown in Fig. 4.

In Fig. 4, the three bits in the control genes have value 1, representing the
three membership functions are active. The membership function of Low for
milk is encoded as (3, 4, 5) according to Fig. 3. Similarly, the membership
functions for Middle and High are respectively encoded as (5, 9, 13) and
(9, 13, ∞). The parametric genes are then the catenation of the three tuples.
In another case, if the control genes of the chromosome become (1, 0, 1) during
the evolution, then only two active membership functions, Low and High, will
be used for the item. The proposed model can thus learn the number of labels
for a variable according to the coding scheme.
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4 Mining Membership Functions and Fuzzy Association
Rules

4.1 Initial Population

A genetic algorithm requires a population of feasible solutions to be initialized
and updated during the evolution process. As mentioned above, each individ-
ual within the population is a set of triangular membership functions for a
certain item. Each membership function corresponds to a linguistic term in
the item. The initial set of chromosomes is randomly generated with some
constraints of forming feasible membership functions.

4.2 Fitness and Selection

In order to develop a good set of membership functions from an initial popu-
lation, the genetic algorithm selects parent sets of membership functions with
high fitness values for mating. An evaluation function is defined to qualify the
derived sets of membership functions. Before the fitness of each set of member-
ship functions is formally described, several related terms are first explained
below. The overlap ratio of two membership functions Rjk and Rji(k < j)
is defined as the overlap length divided by the minimum of the right span of
Rjk and the left span of Rji. That is,

overlap ratio(Rjk, Rji) =
overlap(Rjk, Rji)

min(cjk3 − cjk2, cji2 − cji1)
,

where overlap(Rjk, Rji) is the overlap length of Rjk and Rji.
If the overlap length is larger than the minimum of the above two half

spans, then these two membership functions are thought of as a little redun-
dant. Appropriate punishment must then be considered in this case. Thus, the
overlap factor of the membership functions for an item Ij in the chromosome
Cq is defined as:∑

k �=i

Rjk,Rji are active

[max((
overlap(Rjk, Rji)

min(cjk3 − cjk2, cji2 − cji1)
, 1) − 1)],

The coverage ratio of membership functions for an item Ij is defined as
the coverage range of the functions divided by the maximum quantity of that
item in the transactions. The more the coverage ratio is, the better the de-
rived membership functions are. Thus, the coverage factor of the membership
functions for an item Ij in the chromosome Cq is defined as:

coverage factor(Cq) =
1

range(Rj1,··· ,Rjl)
max(Ij)

,



184 T.-P. Hong et al.

where range(Rj1, Rj2, · · · , Rjl) is the coverage range of the active membership
functions, l is the number of active membership functions for Ij , and max(Ij)
is the maximum quantity of Ij in the transactions.

The usage ratio of membership functions for an item Ij is defined as the
number of large-1 itemsets for Ij divided by the number of active linguistic
terms. Note that the maximum possible number of large-1 itemsets for an
item is the number of its active linguistic terms. The more the usage ratio is,
the better the derived membership functions are. Thus, the usage factor of
the membership functions for an item Ij in the chromosome Cq is defined as:

usage factor(Cq) =
lCq

max(
∣∣∣LCq

1

∣∣∣ , 1)
,

where lCq
is the active linguistic terms of chromosome Cq, and max(

∣∣∣LCq

1

∣∣∣ , 1)
is the maximum of the number of large-1 itemsets and 1.

The suitability of the set of membership functions in a chromosome Cq

is thus defined as k1 ∗ overlap factor(Cq)+ k2 ∗ coverage factor(Cq)+ k3 ∗
usage factor(Cq), where k1, k2, k3 are weighting factors.

The fitness value of a chromosome Cq is then defined as:

f(Cq) =

∑
X∈L

Cq
1
fuzzy support(X)

suitability(X)
,

where LCq

1 is the set of large 1-itemsets obtained by using the set of mem-
bership functions in Cq, and fuzzy support(X) is the fuzzy support of the
1-itemset X derived from Cq in the given transaction database.

The suitability factor used in the fitness function can reduce the occurrence
of the two bad kinds of membership functions shown in Fig. 5, where the first
one is too redundant, and the second one is too separate. It can also help
generate an appropriate number of membership functions for an item.

The overlap factor in suitable(Cq) is designed for avoiding the first bad
case, and the coverage factor is for the second one.

Using the fuzzy-supports of the linguistic terms in the large 1-itemsets can
achieve a trade-off between execution time and rule interestingness. Usually,

Low Middle High Low Middle High

Quantity Quantity0 0

 Redundant membership functions  Separate membership functions

5 5 20 258 9

(a) (b)

Fig. 5. Two bad sets of membership functions
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a linguistic term of an item with a larger fuzzy-support in a 1-itemset will
usually result in its appearance in itemsets of more items with a higher prob-
ability, which will thus usually imply more interesting association rules. The
evaluation by the fuzzy supports in 1-itemsets is, however, faster than that
by considering all itemsets or interesting association rules.

4.3 Genetic Operators

Genetic operators are important to the success of specific GA applications. In
our approach, different crossover operators are performed for control genes and
parametric genes. For control genes, the single-point crossover and the binary
one-point mutation operators are used. For parametric genes, the max–min-
arithmetical (MMA) crossover operator proposed in [3] and the one-point mu-
tation for real numbers are used. The max–min-arithmetical (MMA) crossover
operator proceeds as follows. Assume there are two parent chromosomes with
their parametric genes as:

Ct
u = (c1, · · · , ch, · · · , cz)

Ct
w = (c′1, · · · , c′h, · · · , c′z)

The max–min-arithmetical (MMA) crossover operator will generate the
following four candidate chromosomes from them.

1. Ct+1
1 = (ct+1

11 , · · · , ct+1
1h , · · · , c

t+1
1z ), where ct+1

1h = dch + (1 − d)′c′h,

2. Ct+1
2 = (ct+1

21 , · · · , ct+1
2h , · · · , c

t+1
2z ), where ct+1

2h = dc′h + (1 − d)ch,

3. Ct+1
3 = (ct+1

31 , · · · , ct+1
3h , · · · , c

t+1
3z ), where ct+1

3h = min(ch, c′h),

4. Ct+1
4 = (ct+1

41 , · · · , ct+1
4h , · · · , c

t+1
4z ), where ct+1

4h = max(ch, c′h),

where the parameter d is either a constant or a variable whose value depends
on the age of the population. The best two chromosomes of the four candidates
are then chosen as the offspring.

The one-point mutation operator for real numbers will create a new fuzzy
membership function by adding a random value ε (may be negative) to one
parameter of an existing linguistic term, say Rjk. Assume that rjkp represents
a parameter of Rjk. The parameter of the newly derived membership func-
tion may be changed to rjkp + ε by the mutation operation. Mutation at a
parameter of a fuzzy membership function may, however, disrupt the order of
the resulting fuzzy membership functions. These fuzzy membership functions
then need rearrangement according to their values. An example is given below
to demonstrate the mutation operation.

Example 2. Continuing from Example 1, assume the mutation point is set at
c122 and the random value ε is set at 3. The mutation process is shown in
Fig. 6.
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MFmilk

MFmilk

MFmilk

Mutation

Rearrange
out of sequence

3, 4, 5,

3, 4, 5,

3, 4, 5,

5, 9, 11,

5, 12, 11,

5, 11, 12,

 9, 13, ∞

 9, 13, ∞

 9, 13, ∞

C1

New

New

Low Middle High

Fig. 6. A mutation operation

5 The Proposed Mining Algorithm

According to the above description, the proposed algorithm for mining both
membership functions and fuzzy association rules is described below.

The proposed mining algorithm:

INPUT: A body of n quantitative transaction data, a set of m items, a max-
imum possible number T of linguistic terms, a support threshold α,
a confidence threshold λ, and a population size P .

OUTPUT: A set of fuzzy association rules with its associated set of member-
ship functions.

STEP 1: Randomly generate m populations, each for an item; Each individ-
ual in a population represents a possible set of membership functions
for that items.

STEP 2: Encode each set of membership functions into a string representa-
tion in the way mentioned above.

STEP 3: Calculate the fitness value of each chromosome in each population
by the following substeps:

STEP 3.1: For each transaction datum Di, i = 1 to n, and for each item
Ij , j = 1 to m, transfer the quantitative value v(i)j into a fuzzy

set f (i)
j represented as:(

f
(i)
j1

Rj1
,
f

(i)
j2

Rj2
, · · · ,

f
(i)
jl

Rjl

)
,

using the corresponding membership functions represented by
the chromosome, where Rjk is the k-th fuzzy region (term) of
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item Ij , f
(i)
jl is v(i)j ’s fuzzy membership value in region Rjk, and

l(= |Ij |) is the number of active linguistic terms for Ij .
STEP 3.2: For each item region Rjk, calculate its scalar cardinality on the

transactions as follows:

countjk =
n∑

i=1

f
(i)
jk .

STEP 3.3: For each Rjk, 1 ≤ j ≤ m and 1 ≤ k ≤ |Ij |, check whether its
countjk over n is larger than or equal to the minimum support
threshold α. If Rjk satisfies the above condition, put it in the
set of large 1-itemsets (L1). That is:

L1 = {Rjk|countjk/n ≥ α, 1 ≤ j ≤ m and 1 ≤ k ≤ |Ij |}.

STEP 3.4: Set the fitness value of the chromosome as the sum of the fuzzy
supports (the scalar cardinalities / n) of the fuzzy regions in L1

divided by suitability(Cq). That is:

f(Cq) =

∑
X∈L1

fuzzy support(X)
suitability(Cq)

.

STEP 4: Execute crossover operations on each population.
STEP 5: Execute mutation operations on each population.
STEP 6: Using the selection criteria to choose individuals in each population

for the next generation.
STEP 7: If the termination criterion is not satisfied, go to Step 3; otherwise,

do the next step.
STEP 8: Gather the sets of membership functions, each of which has the

highest fitness value in its population.

The sets of the best membership functions gathered from each population
are then used to mine fuzzy association rules from the given quantitative data-
base. Our fuzzy mining algorithm proposed in [5] is then adopted to achieve
this purpose. It first transforms each quantitative value into a fuzzy set of
linguistic terms using the derived membership functions. It then calculates
the scalar cardinality of each linguistic term on all the transaction data. The
mining process based on fuzzy counts is then performed to find fuzzy asso-
ciation rules. The details of the fuzzy mining algorithm [5] are described as
follows.
The algorithm for mining fuzzy association rules:

INPUT: A set of n quantitative transaction data, each with m item values, a
set of membership functions, a predefined minimum support thresh-
old α , a predefined confidence threshold λ , and the large 1-itemset
L1 from the phase of mining membership functions.



188 T.-P. Hong et al.

OUTPUT: A set of fuzzy association rules.

STEP 1: IF L1 is not null, then do the next step; otherwise, exit the algo-
rithm.

STEP 2: Set r = 1, where r is used to represent the number of items kept in
the current large itemsets.

STEP 3: Join the large itemsets Lr to generate the candidate set Cr+1 in
a way similar to that in the a priori algorithm except that two
regions (linguistic terms) belonging to the same attribute can not
simultaneously exist in an itemset in Cr+1. Restated, the algorithm
first joins Lr and Lr under the condition that r-1 items in the two
itemsets are the same and the other one is different. It then keeps
in Cr+1 the itemsets which have all their sub-itemsets of r items
existing in Lr and do not have any two items Rjp and Rjq (p �= q)
of the same attribute Rj .

STEP 4: Do the following substeps for each newly formed (r+1)-itemset s
with items (s1, s2, . . . , sr+1) in Cr+1:

STEP 4.1: Calculate the fuzzy value of each transaction data D(i) in s as
f

(i)
s = f

(i)
s1 ∧ f (i)

s2 ∧, . . . ,∧f (i)
sr+1 , where f (i)

sj is the membership
value of D(i) in region sj . If the minimum operator is used for
the intersection, then:

f (i)
s = Minr+1

j=1f
(i)
sj

STEP 4.2: Calculate the scalar cardinality counts of s in the transac-
tions as:

counts =
n∑

i=1

f (i)
s .

STEP 4.3: If counts is larger than or equal to the predefined minimum
support value α, put s in Lr+1.

STEP 5: IF Lr+1 is null, then do the next step; otherwise, set r = r + 1 and
repeat Steps 2–4.

STEP 6: Construct association rules for each large q-itemset s with items
(s1, s2, . . . , sq), q ≥ 2, using the following substeps:

STEP 6.1: Form each possible association rule as follows:

s1 ∧ . . . ∧ sk−1 ∧ sk+1 ∧ . . . ∧ sq → sk

where k=1 to q.
STEP 6.2: Calculate the confidence values of all association rules using:∑n

i=1 f
(i)
s∑n

i=1 f
(i)
s1 ∧ . . . ∧ f (i)

sk−1 , f
(i)
sk+1 ∧ . . . ∧ f

(i)
sq

STEP 7: Output the association rules with confidence values larger than or
equal to the predefined confidence threshold λ.
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6 An Example

In this section, an example is given to illustrate the proposed mining algo-
rithm. Assume there are four items in a transaction database: milk, bread,
cookies and beverage. The data set includes the six transactions shown in
Table 1.

Assume the maximum possible number (T ) of fuzzy regions for each item
is set at 4. The actual number of membership functions of each item will be
derived by the proposal mining algorithm. For the data shown in Table 1, the
proposed algorithm proceeds as follows.

STEP 1: Four populations are randomly generated, each for one item. As-
sume the population size is 10 in this example. Each population then includes
10 individuals. Each individual in the first population is a set of membership
functions for item milk. Similarly, an individual in the other populations is a
set of membership functions respectively for bread, cookies, and beverage.

STEP 2: Each set of membership functions for an item is encoded into
a chromosome according to the proposed representation. Assume the ten in-
dividuals in each of the four populations are randomly generated as show in
Table 2.

STEP 3: The fitness value of each chromosome is then calculated by the
following substeps. Take the chromosome C1 in Population3 as an example.
The membership functions in C1 for cookies are represented as (1 1 1 1, 0 3
5, 3 5 10, 6 13 16, 15 20 20).

STEP 3.1: The quantitative value of each item in each transaction datum
is transformed into a fuzzy set according to the active membership functions
represented by that chromosome. Take the first item in transaction T1 as
an example. The contents of T1 include (milk, 5), (bread, 10), (cookies, 7),
and (beverage, 7). The amount “7” of item cookies is then converted into the
fuzzy set:(

0
cookies.Low

+
0.6

cookies.LowMiddle
+

0.14
cookies.MiddleHigh

+
0

cookies.High

)
by using the membership functions in C1 in Population3. The results for
all the transactions by using chromosome C1 in Population3 are shown in
Table 3, where the notation item.term is called a fuzzy region.

Table 1. Six transactions in this example

TID Items

T1 (milk, 5); (bread, 10); (cookies, 7); (beverage, 7)
T2 (milk, 7); (bread, 14); (cookies, 12)
T3 (bread, 15); (cookies, 12); (beverage, 10)
T4 (milk, 2); (bread, 5); (cookies, 5)
T5 (bread, 9)
T6 (milk, 13); (beverage, 12)
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Table 2. The ten chromosomes in each of the four populations

Population1(milk) Population2(bread)

C1 0 1 1 1, C1 1 0 1 1,
0 3 4, 3 4 5, 5 9 11, 9 11 11 0 6 12, 8 12 16, 6 14 18, 12 18 18

C2 1 1 0 1, C2 1 1 0 1,
3 5 10, 6 13 16, 14 16 18, 15 20 20 0 4 6, 4 6 10, 6 10 14, 8 14 14

C3 0 1 1 1, C3 0 0 1 1,
0 3 6, 3 6 10, 6 13 16, 12 20 20 0 4 5, 4 5 9, 8 10 15, 9 16 16

C4 1 0 1 1, C4 1 1 1 1,
0 4 8, 4 8 12, 6 13 16, 12 20 20 0 3 8, 5 10 12, 10 15 16, 17 20 20

C5 0 1 1 1, C5 1 1 1 1,
0 4 6, 4 5 6, 8 12 16, 15 20 20 0 3 8, 5 10 12, 10 15 16, 17 20 20

C6 1 1 0 1, C6 0 0 1 1,
0 10 20, 8 12 18,12 18 20, 9 20 20 0 5 10, 3 8 13, 5 10 15, 10 15 15

C7 0 1 1 1, C7 1 0 1 1,
0 3 6, 3 6 10, 6 13 16, 12 15 15 0 5 10, 4 6 10, 8 10 15, 15 20 20

C8 0 0 1 1, C8 0 1 1 1,
0 5 10, 5 10 15, 7 15 18, 15 20 20 0 3 6, 3 6 9, 6 9 12, 9 12 12

C9 1 1 1 1, C9 1 1 1 1,
0 3 8, 3 8 12, 9 15 18, 16 20 20 0 8 10, 8 10 12, 10 15 20, 15 20 20

C10 0 0 1 1, C10 0 0 1 1,
0 5 8, 3 5 8, 6 13 16, 12 20 20 0 5 8, 2 10 16, 8 15 20, 10 20 20

Population3(cookies) Population4(beverage)

C1 1 1 1 1, C1 1 1 1 1,
0 3 5, 3 5 10, 6 13 16, 15 20 20 0 4 5, 4 5 6, 8 12 16, 15 20 20

C2 0 1 1 1, C2 0 0 1 1,
0 3 6, 3 6 10, 6 13 16, 12 20 20 0 10 15, 8 12 15, 6 9 15, 9 15 15

C3 0 0 1 1, C3 0 0 1 1,
0 4 8,4 8 12, 6 13 16, 12 20 20 0 3 6, 3 6 10, 6 13 16, 12 15 15

C4 1 0 1 1, C4 0 0 1 1,
0 5 10, 4 8 12, 8 12 16, 15 20 20 0 3 6, 3 6 9, 6 9 12, 9 12 12

C5 1 1 1 1, C5 0 1 1 1,
0 3 8, 5 8 12, 10 12 16, 12 16 16 0 8 10, 8 10 15, 10 15 20, 15 20 20

C6 0 1 1 1, C6 1 1 1 1,
0 5 10,4 8 10, 5 10 15, 10 15 15 0 2 4, 2 10 16, 8 15 20, 10 20 20

C7 1 1 1 1, C7 0 1 1 1,
0 4 6, 4 6 10, 8 10 15, 15 20 20 0 3 5, 3 5 10, 6 13 16, 15 20 20

C8 1 1 0 1, C8 0 0 1 1,
0 6 10, 6 10 15,10 12 14, 10 15 15 0 3 6, 3 6 10, 6 13 16, 12 20 20

C9 0 1 1 1, C9 1 1 0 1,
0 2 5, 2 5 7, 8 10 12, 14 16 16 0 4 8, 6 13 16,13 16 20, 12 20 20

C10 1 0 1 1, C10 1 0 1 1,
0 5 10, 8 10 14, 5 10 15, 10 15 15 0 5 10, 8 10 12, 5 10 15, 10 15 15
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Table 3. The fuzzy sets transformed by using chromosome C1 in Population3

TID Transformed Fuzzy set

T1
(

0.6
cookies.LM

+ 0.14
cookies.MH

)
T2

(
0.86

cookies.MH

)
T3

(
0.86

cookies.MH

)
T4

(
1

cookies.LM

)
T5 Null

T6 Null

Table 4. The counts of the fuzzy regions for item cookies when using C1

Population3 Count

cookies.Low 0.00
cookies.LowMiddle 1.60
cookies.MiddleHigh 1.86
cookies.High 0.00

STEP 3.2: The scalar cardinality of each fuzzy region in the transactions
is calculated as the count value. Take the fuzzy region cookies.LM as an
example. Its scalar cardinality = (0.6 + 0.0 + 0.0 + 1 + 0.0 + 0.0) = 1.6. The
counts of the fuzzy regions for item cookies using C1 are shown in Table 4.

STEP 3.3: The count of any fuzzy region is checked against the predefined
minimum support value α. Assume in this example, α is set at 0.25. Since
both the count value of cookies.LowMiddle and cookies.MiddleHigh is larger
than 0.25*6 (= 1.5), cookies.LowMiddle and cookies.MiddleHigh is then put
in L1.

STEP 3.4: Two large 1-itemset, cookies.LowMiddle and cookies.Middle
High, are derived from the membership functions of C1 in Population3.
The fuzzy support of cookies.LowMiddle and cookies.MiddleHigh are
1.6/6 (= 0.266) and 1.86/6 (= 0.31). The suitability of C1 is calculated
as overlapfactor(C1) + coveragefactor(C1) + usagefactor(C1) = 3 (= (0
+ 0 + 0) + 1 + 2). The fitness value of C1 is thus (0.266 + 0.31)/3 (=
0.192). The fitness values of all the chromosomes in the four populations are
calculated with their results shown in Table 5.

STEP 4: The crossover operator is executed on the populations. Take C1

and C5 in Population3 as an example. Assume for the control genes, the one-
point crossover operator selects the first number as the crossover point and for
the parametric genes, d is set at 0.35.The following four candidate offspring
chromosomes are generated:

C1: 1 1 1 1, 0 3 5, 3 5 10, 6 13 16, 15 20 20
C5: 1 1 1 1, 0 3 8, 5 8 12, 10 12 16, 12 16 16
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Table 5. The fitness values of all the chromosomes in the four initial populations

Population1 f Population2 f

C1 0 C1 0.286
C2 0.084 C2 0.104
C3 0 C3 0.177
C4 0.057 C4 0.200
C5 0 C5 0
C6 0.043 C6 0.253
C7 0 C7 0.070
C8 0 C8 0.242
C9 0 C9 0.183
C10 0 C10 0.074

Population3 f Population4 f

C1 0.192 C1 0.049
C2 0.073 C2 0.075
C3 0.077 C3 0.065
C4 0.240 C4 0
C5 0.066 C5 0.044
C6 0.044 C6 0.062
C7 0 C7 0.058
C8 0.065 C8 0.060
C9 0 C9 0.060
C10 0.214 C10 0.083

Table 6. The fitness value of the four candidate offspring chromosomes

chromosome f chromosome f

Ct+1
1 0.066 Ct+1

3 0.209
Ct+1

2 0 Ct+1
4 0

1) Ct+1
1 : 1 1 1 1, 0 3 6.95, 4.3 6.95 11.3, 8.6 12.35 16, 13.05 17.4 17.4

2) Ct+1
2 : 1 1 1 1, 0 1.95 3.25, 1.95 3.25 6.5, 3.9 8.45 10.4, 9.75 13 13

3) Ct+1
3 : 1 1 1 1, 0 3 5, 3 5 10, 6 12 16, 12 16 16

4) Ct+1
4 : 1 1 1 1, 0 3 8, 5 8 12, 10 13 16, 15 20 20

The fitness value of the above four candidates are then evaluated, with
results shown in Table 6.

In Table 6, the best two of the four candidate offspring chromosomes are
chosen. Thus Ct+1

1 and Ct+1
3 are chosen.

STEP 5: The mutation operator is executed to generate possible offspring.
The operation is the same as the traditional one except that rearrangement
may need to be done.

STEPs 6–8: The best ten chromosomes in each population are then se-
lected as the next generation. The same procedure is then executed until
the termination criterion is satisfied. The best chromosome (with the highest
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Fig. 7. The final set of membership functions

fitness value) is then output as the membership functions for deriving fuzzy
association rules.After the evolutionary process terminates, the final set of
membership functions for each item is shown in Fig. 7.

After the membership functions are derived, the fuzzy mining method pro-
posed in [5] is then used to mine fuzzy association rules from the quantitative
database.

7 Experimental Results

In this section, experiments made to show the performance of the proposed
approach are described. They were implemented in Java on a personal com-
puter with Intel Pentium 4 2.00 GHz and 256 MB RAM. 64 items and 10,000
transactions were used in the experiments. In each data set, the numbers of
purchased items in transactions were first randomly generated. The purchased
items and their quantities in each transaction were then generated. An item
could not be generated twice in a transaction. The initial population size P
is set at 50, the crossover rate pc is set at 0.8, and the mutation rate pm is
set at 0.01. The parameter d of the crossover operator is set at 0.35 according
to [3] and the minimum support α is set at 400.

After 500 generations, the final membership functions are apparently much
better than the original ones. For example, the initial membership functions
of some four items among the 64 items are shown in Fig. 8.

In Fig. 8, the membership functions have the bad types of shapes that are
defined in the previous section. After 500 generations, the final membership
functions for the same four items are shown in Fig. 9. It is easily seen that
the membership functions in Fig. 9 is better than those in Fig. 8. The two bad
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Item1 Item2

Item3 Item4

0

0

0
1 1 3 64 9 2

2 2 4 6 11 0
1 1 4

5 1 9

2 62 3 9

Fig. 8. The initial membership functions of some four items

Item1 Item2

Item3 Item4

0

0 3.0 6.0 8.0 10.0 11.0 0 3.0 4.0 6.0 9.0

2.0 4.0 5.0 8.0 11.0 0 1.05 2.09 3.24 4.00 10.0 10.16

Fig. 9. The final membership functions of some four items after 500 generations

kinds of membership functions don’t appear in the final results. The adopted
fitness function thus works.

The average fitness values of the chromosomes in population1 along with
different numbers of generations are shown in Fig. 10. As expected, the curve
gradually goes upward, finally converging to a certain value. The other pop-
ulations have similar behavior.
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Fig. 10. The average fitness values along with different numbers of generations in
population1

8 Conclusion and Future Works

In this chapter, we have proposed a GA-based fuzzy data-mining algorithm
for extracting both association rules and membership functions from quan-
titative transactions. The number of membership functions for each item is
not predefined, but can be dynamically adjusted. Since the fitness of each set
of membership functions is evaluated by the fuzzy-supports of the linguistic
terms in the large 1-itemsets and the suitability of the derived membership
functions, the derivation process can easily be done by the divide-and-conquer
strategy. The experimental results show that the proposed fitness function
works. Our approach can reduce human experts’ intervention during the
mining process, thus saving much acquisition time. In the future, we will
continuously attempt to enhance the GA-based mining framework for more
complex problems.
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Summary. A new algorithm named Compressed Binary Mine (CBMine) for mining
association rules and frequent patterns is presented in this chapter. Its efficiency is
based on a compressed vertical binary representation of the database. CBMine was
compared with several a priori implementations, like Bodon’s a priori algorithm, and
MAFIA, another vertical binary representation method. The experimental results
have shown that CBMine has significantly better performance, especially for sparse
databases.

1 Introduction

Mining association rules in transaction databases have been demonstrated to
be useful and technically feasible in several application areas [14,18,21] partic-
ularly in retail sales, and it becomes every day more important in applications
that use document databases [11, 16, 17]. Although research in this area has
been going on for more than one decade; today, mining such rules is still one
of the most popular methods in knowledge discovery and data mining.

Various algorithms have been proposed to discover large itemsets [2, 3, 6,
9, 11, 19]. Of all of them, a priori has had the biggest impact [3], since its
general conception has been the base for the development of new algorithms
to discover association rules.

Most of the previous algorithms adopt an a priori-like candidate set
generation-and-test approach. However, candidate set generation is still costly,
especially when there are many items, when the quantity of items by transac-
tion is high, or the minimum support threshold is quite low. These algorithms
need to scan the database several times to check the support of each can-
didate, and it is a time-consuming task for very sparse and huge databases.
The weak points of the a priori algorithm are these aspects: the candidate
generation and the count of each candidate support.

Performance of the algorithm could be significantly improved if we find a
way to reduce the computational cost of the tasks above mentioned.
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Although in [3] the way in which the transactions are represented is not
mentioned by the authors, this aspect influences decisively in the algorithm.
In fact, it has been one of the elements used by other authors, including us,
in the formulation of new algorithms [4, 6, 7, 9, 19].

We face the problem in the following way:

• Other authors represent the transaction database as sorted lists (or array-
based), BTree, Trie, etc., using items that appear in each transaction;
others use horizontal or vertical binary representations. We will use a com-
pressed vertical binary representation of the database.

• The efficiency count of each candidate’s support in this representation can
be improved using logical operations, which are much faster than working
with non-compact forms.

Anewalgorithmsuitable forminingassociationrules indatabases isproposed
in this chapter; this algorithm is named as CBMine (Compressed Binary Mine).

The discovery of large itemsets (the first step of the process) is computa-
tionally expensive. The generation of association rules (the second step) is the
easiest of both. The overall performance of mining association rules depends
on the first step; for this reason, the comparative effects of the results that we
present with our algorithm covers only the first step.

In the next section we give formal definitions about association rules and
frequent itemsets. Section 3 is dedicated to related work. Section 4 contains
the description of CBMine algorithm. The experimental results are discussed
in the Sect. 5.

The new algorithm shows significantly better performance than several
algorithms, like Bodon’s a priori algorithms, and in sparse databases than
MAFIA, and in a general way it is applicable to those algorithms with an a
priori-like approach.

2 Preliminaries

Let be I = {i1, i2, . . . , in} a set of elements, called items (we prefer to use the
term elements instead of literals [2,3]). Let D be a set of transactions, where
each transaction T is a set of items, so that T ⊆ I. An association rule is an
implication of the form X ⇒ Y , where X ⊂ I, Y ⊂ I, and X ∩ Y = ∅. The
association rule X ⇒ Y holds in the database D with certain quality and a
support s, where s is the proportion of transactions in D that contain X ∪Y .
Some quality measures have been proposed, although these are not considered
in this work.

Given a set of transactions D, the problem of mining association rules is
to find all association rules that have a support greater than or equal to the
user-specified minimum (called minsup) [3]. For example, beer and disposable
diapers are items so that beer ⇒ diaper is an association rule mined from the
database if the co-occurrence rate of beer and disposable diapers (in the same
transaction) is not less than minsup.
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The first step in the discovery of association rules is to find each set of
items (called itemset) that has co-occurrence rate above the minimum support.
An itemset with at least the minimum support is called a large itemset or a
frequent itemset. In this chapter, as in others, the term frequent itemset will
be used. The size of an itemset represents the number of items contained in the
itemset, and an itemset containing k items is called a k-itemset. For example,
beer, diaper can be a frequent 2-itemset. If an itemset is frequent and no proper
superset is frequent, we say that it is a maximally frequent itemset.

Finding all frequent itemsets has received a considerable amount of re-
search effort in all these years because it is a very resource-consuming task.
For example, if there is a frequent itemset with size l, then all 2l−1 non-empty
subsets of the itemset have to be generated.

The set of all subsets of I (the powerset of I) naturally forms a lattice,
called the itemset lattice [10, 22]. For example, consider the lattice of subsets
of I = {i1, i2, i3, i4}, shown in Fig. 1 (the empty set has been omitted). Each
maximal frequent itemset of the figure is in bold face and in an ellipse.

Due to the downward closure property of itemset support – meaning that
any subset of a frequent itemset is frequent – there is a border, so that all
frequent itemsets lie below the border, while all infrequent itemsets lie above
it. The border of frequent itemsets is shown with a bold line in Fig. 1.

An optimal association mining algorithm must only evaluate the frequent
itemsets traversing the lattice in some way. This one can be done considering
an equivalence class approach. The equivalence class of an itemset a, expressed
as E(a), is given as:

E(a) = {b : |a| = k, |b| = k, Prefixk−1(b) = Prefixk−1(a)}, (1)

where Prefixk(c) is the prefix of size k of c, i.e., its k first items in a lexico-
graphical order.

Fig. 1. Lattice of subsets of I = {i1, i2, i3, i4}
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Fig. 2. Search forest of subsets of I = {i1, i2, i3, i4}

Assuming equivalence classes, the itemset lattice of Fig. 1 can be structured
in a forest, shown in Fig. 2, clustering itemsets of same equivalence classes.

In order to traverse the itemset space, a convenient strategy should be cho-
sen. Today’s common approaches employ either breath-first search or depth-
first search. In a breadth strategy the support values of all (k -1)-itemsets
are determined before counting the support values of k-itemsets, and in a
depth one recursively descends following the forest structure defined through
equivalence classes [10].

The way itemsets are represented is decisive to compute their supports.
Conceptually, a database is a two-dimensional matrix where the rows represent
the transactions and the columns represent the items. This matrix can be
implemented in the following four different formats [20]:

• Horizontal item-list (HIL): The database is represented as a set of trans-
actions, storing each transaction as a list of item identifiers (item-list).

• Horizontal item-vector (HIV): The database is represented as a set of trans-
actions, but each transaction is stored as a bit-vector (item-vector) of 1’s
and 0’s to express the presence or absence of the items in the transaction.

• Vertical tid-list (VTL): The database is organized as a set of columns
with each column storing an ordered list (tid-list) of only the transaction
identifiers (TID) of the transactions in which the item exists.

• Vertical tid-vector (VTV): This is similar to VTL, except that each column
is stored as a bit-vector (tid-vector) of 1’s and 0’s to express the presence
or absence of the items in the transactions.

Many association rule mining algorithms have opted for a list-based (hor-
izontally or vertically) layout (see Fig. 3) since, in general, this format takes
less space than the bit-vector approach. In other way, it could be noticed that
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Fig. 3. Examples of database layouts

computing the supports of itemsets is simpler and faster with the vertical
layout (VTL or VTV) since it involves only the intersections of tid-lists or
tid-vectors.

In a general point of view, rule mining algorithms employ a combination
of a traverse strategy (breadth-first or depth-first) and a form of the database
layout. Examples of algorithms for horizontal mining with a breadth strategy
previously presented are a priori, a prioriTID, DIC [3] and with a depth strat-
egy are different version applying FP-Trees [1]. Other algorithms considering
a VTL layout are Partition, with a breadth strategy [10], and Eclat, with a
depth strategy [22].

In this chapter we evaluate a compressed form of the VTV layout, improv-
ing the performance of the itemset generation, applicable to those algorithms
with an a priori-like approach.

The problem of mining frequent itemsets was first introduced by Agrawal
et al. [2]. To achieve efficient mining frequent patterns, an antimonotonic
property of frequent itemsets, called the a priori heuristic, was formulated
in [3]. The a priori heuristic can dramatically prune candidate itemsets.

A priori is a breadth-first search algorithm, with a HIL organization, that
iteratively generates two kinds of sets: Ck and Lk. The set Lk contains the
large itemsets of size k (k-itemsets). Meanwhile, Ck is the set of candidate
k-itemsets, representing a superset of Lk. This process continues until a null
set Lk is generated.

The set Lk is obtained scanning the database and determining the support
for each candidate k-itemset in Ck. The set Ck is generated from Lk−1 with
the following procedure:

Ck = {c|Join(c, Lk−1) ∧ Prune(c, Lk−1)} (2)
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Fig. 4. Pseudocode of a priori Algorithm

where:
Join({i1, . . . , ik}, Lk−1) ≡ 〈{i1, .., ik−2, ik−1} ∈ Lk−1

∧{i1, .., ik−2, ik} ∈ Lk−1〉,
(3)

Prune(c, Lk−1) ≡ 〈∀s[s ⊂ c] ∧ |s| = k − 1 → s ∈ Lk−1〉. (4)

Observe that the Join step (3) takes two (k -1)-itemsets of a same equiva-
lence class to generate a k-itemsets.

The a priori algorithm is presented in Fig. 4.
The procedure a priori gen used in step 3 is described in (2).

3 Related Work

The vertical binary representations (VTV) and the corresponding support
counting method have been investigated by other researchers [7, 8, 10,12,22].

Zaki et al. proposed several algorithms using vertical binary representa-
tions in 1997 [22]. Their improvements are obtained clustering the database
and applying an a priori-like method with simple tid-vectors.

Gardarin et al. proposed two breadth-first search algorithms using vertical
binary representations named N-BM and H-BM in 1998 [8]. N-BM consid-
ers simple (uncompressed) vertical binary representations for itemsets. Mean-
while, H-BM uses, besides, an auxiliary bit-vector, where each bit represents
a group of bits of the original bit-vector. In order to save the memory, every
1-itemset has both, while every large itemset keeps only the auxiliary bit-
vector. H-BM first performs the AND between auxiliary bit-vectors and only
non-zero groups are considered to the final count. However, as in large itemsets
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only auxiliary bit-vectors are stored; the bit values of the items considered in
the itemset need to be checked.

Burdick et al. proposed a depth-first search algorithm using vertical binary
representation named MAFIA in 2001 [7]. They use bit-vectors, and it is
an efficient algorithm; but only for finding maximal frequent itemsets, and
especially in dense databases. Mining only maximal frequent itemsets has the
following deficiency: From them we know that all its subsets are frequent, but
we do not know the exact value of the supports of these subsets. Therefore,
we can not obtain all the possible association rules from them.

Shenoy et al. proposed another breath-first search algorithm, called
VIPER, using vertical representations. Although VIPER used a compressed
binary representation on disk, when these compressed vectors are processed
in memory they are converted right away into tid-lists, not considering
advantages of boolean operations over binary formats [20].

Many other researchers have proposed other vertical binary algorithms,
although the above mentioned are to the best of our knowledge the most
representatives.

The method we present in this chapter, CBMine, obtains all frequent item-
sets faster than these well-known a priori and vertical binary implementations,
outperforming them considerably, especially for sparse databases.

4 CBMine Algorithm

A new method applied to a priori-like algorithms, named CBMine (Com-
pressed Binary Mine), is analyzed in this section.

4.1 Storing the Transactions

Let us call the itemset that is obtained by removing infrequent items from
a transaction the filtered transaction. The size of the filtered transactions
is declared to be “substantially smaller than the size of database”. Besides,
all frequent itemsets can be determined even if only filtered transactions are
available.

The set of filtered transactions can be represented as an m x n matrix
where m is the number of transactions and n is the number of frequent items
(see Fig. 5 for an 8x5 matrix). We can denote the presence or absence of an
item in each transaction by a binary value (1 if it is present, else 0).

This representation has been considered as a logical view of the data.
Nevertheless, some researchers have employed it for counting the support for
an item and for generating the set of 1-frequent itemsets [15].

To reduce I/O cost and speed up the algorithm, the filtered transactions
could be stored in main memory instead of on disk. Although this is a reason-
able solution, any data structure could require a considerable – and probably
a prohibitive – memory space for large databases.
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Fig. 5. Horizontal layout of the database

1 2 3 4 5 Item Tid-vector Array
1 1 1 0 1 1 0 0 1 0 0 0 1 {0x91}1

1 1 0 1 0 1 1 1 {0xD7}2
1 1 1 1 0 1 0 0 {0xF4}3
0 1 1 1 1 1 1 1 {0x7F}4
1 1 1 1 1 0 1 1 {0xFB}5

0 1 1 1 1
0 0 1 1 1
1 1 1 1 1
0 0 0 1 1
0 1 1 1 0
0 1 0 1 1
1 1 0 1 1

Fig. 6. Vertical binary representation of a transaction database (word size = 8)

Considering the standard binary representation of the filtered transactions,
we propose to represent these transactions vertically and store them in main
memory as an array of integer numbers (a VTV organization). It should be
noticed that these numbers are not defined by row but by column (see Fig. 6).
The reasons for this orientation will be explained later on.

If the maximum number of transactions were not greater than a word size,
the database could be stored as a simple set of integers; however, a database is
normally much greater than a word size, and in many cases very much greater.
For that reason, we propose to use a list of words (or integers) to store each
filtered item.

Let T be the binary representation of a database, with n filtered items
and m transactions. Taking from T the columns associated to frequent items,
each item j can be represented as a list Ij of integers (integer-list) of word
size w, as follows:

Ij = {W1,j , . . . ,Wq,j}, q = $m/w%, (5)

where each integer of the list can be defined as:

Ws,j =
min(w,m−(q−1)∗w)∑

r=1

2(w−r) ∗ t((s−1)∗w+r),j . (6)

The upper expression min(w,m− (q − 1) ∗ w) is included to consider the
case in which the transaction number (s− 1) ∗w + r doesn’t exist due to the
fact that it is greater than m.
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This binary representation for items, as noted Burdick et al., naturally
extends to itemsets [7]. Suppose we have an integer-list AX for an itemset
X, the integer-list AX∪{j}is simply the bitwise AND of the integer-lists AX

and Ij . If an itemset has a single item then its integer-list is Ij .
The weakness of a the vertical binary representation is the memory spend-

ing, especially in sparse databases. An alternative representation is considering
only non-null integers. This compressed integer-lists could be represented as
an array CA of pairs <s,Bs> with 1 ≤ s ≤ q and Bs �= 0.

4.2 Algorithm

CBMine is a breadth-first search algorithm with a VTV organization, consid-
ering compressed integer-lists for itemset representation.

This algorithm iteratively generates a prefix list PLk. The elements of this
list have the format: <Prefixk−1, CAPrefixk−1 , SuffixesPrefixk−1>, where
Prefixk−1 is a (k-1)-itemset, CAPrefixk−1 is the corresponding compressed
integer-list, and SuffixesPrefixk−1 is the set of all suffix items j of k-itemsets
extended with the same Prefixk−1, where j is lexicographically greater than
every item in the prefix and the k-itemsets extended are frequent . This repre-
sentation not only reduces the required memory space to store the integer-lists
but also eliminates the Join step described in (3).

CBMine guarantees a significant memory reduction. Other algorithms with
VTV representation have an integer-list for each itemset, meanwhile CBMine
has an integer-list only for each equivalent class (see Fig. 7).

The Prune step (4) is optimized generating PLk as a sorted list by the
prefix field and, for each element, by the suffix field.

In order to determine the support of an itemset with a compressed integer-
list CA, the following expression is considered:

Support(CA) =
∑

<s,Bs>∈CA

BitCount(Bs), (7)

(a) (b)

{i1, i2, i3} {i1, i2, i4} {i1, i2, i5}

123
325

.

.

.

12

Prefix: {i1,i2} , 
Suffixes:{i3, i4, i5}

536
.
.
.

465
23
.
.
.

65
1287

.

.

.

Fig. 7. (a) Others algorithms with VTV representations, (b) CBMine
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where BitCount(Bs) represents a function that calculates the Hamming
Weight of each Bs.

Although this algorithm uses compressed integer-lists of non-null integers
(CA) for itemset representation, in order to improve the efficiency, we main-
tain the initial integer-lists (including the null integers) Ij = {W1,j , . . . ,Wq,j}
associated with each large 1-itemset j. This consideration allows directly ac-
cessing in Ij the integer position defined in CA.

The above consideration allows defining the formulae (8). Notice that this
function represents a significant difference and improvement respect other
methods.

CompAnd(CA, Ij) = {<s,B′
s>:<s,Bs>∈ CA,

B
′
s = BsandWs,j , B

′
s �= 0}. (8)

It could also be noticed that the cardinality of CA is reduced with the
increment of the size of the itemsets due to the downward closure property.
It allows the improvement of the above processes (7) and (8).

The CBMine algorithm is presented in Fig. 8.
The step 2 of the pseudocode shown in Fig. 8 (the process for k = 2) is

performed in a similar way to that for k ≥ 3, except the Prune procedure
because it is unnecessary in this case. This procedure Prune, used in step 9,
is similar to (4). Notice that this algorithm only scans the database once in
the first step.

Fig. 8. Pseudocode of CBMine algorithm
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5 Experimental Results

Here we present the experimental results of an implementation of the CBMine
algorithm. It was compared with the performance of two a priori implemen-
tations made by Ferenc Bodon (Simple and Optimized algorithms) [5], and
MAFIA [7].

Four known databases were used: T40I10D100K, T10I4D100K, generated
from the IBM Almaden Quest research group, Chess and Pumsb*, prepared
by Roberto Bayardo from the UCI datasets and PUMSB (see Table 1).

Our tests were performed on a PC with a 2.66 GHz Intel P4 processor and
512 MB of RAM. The operating system was Windows XP. Running times were
obtained using standard C functions. In this chapter, the runtime includes
both CPU time and I/O time.

Table 2 and the following graphics present the test results of the a priori
implementations, MAFIA and CBMine with these databases. Each test was

Table 1. Database characteristics

T10I4D100K T40I10D100K Pumsb* Chess

AvgTS 10.1 39.54 50 37
MaxItems 870 942 2.087 75
Transactions 100,000 100,000 49,046 3,196

Table 2. Performance results (in s)

Databases minsup CBMine Simple-a priori Optimized-a priori MAFIA

T10I4D100K 0.0004 17 32 20 52
0.0003 25 49 39 64
0.0002 51 198 86 104
0.0001 135 222 192 287

T40I10D100K 0.0500 3 3 3 8
0.0400 5 6 6 11
0.0300 6 7 7 16
0.0100 17 31 20 38
0.0090 28 95 57 56
0.0085 32 104 66 67

Pumsb* 0.7 2 2 1 2
0.6 2 5 1 2
0.5 2 11 5 2
0.4 2 28 24 2
0.3 23 106 47 11

Chess 0.9 0 3 2 0
0.8 0 8 2 0
0.7 1 45 3 1
0.6 2 92 22 2
0.5 16 163 53 7
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carried out three times; the tables and graphics show the averages of the
results. Bodon’s a priori implementations were versions on April 26th, 2006 [5].
MAFIA implementation was a version 1.4 on February 13th, 2005; it was run
with “-fi” option in order to obtain all the frequent itemsets [13].

CBMine beats the other implementations in almost all the times. It per-
forms best results independently of the support threshold in sparse databases
(T10I4D100K and T40I10D100K) (see Figs. 9 and 10 respectively). Neverthe-
less, we have verified that MAFIA beats CBMine for low thresholds in less
sparse databases (Pumsb* and Chess) (see Figs. 11 and 12 respectively).

Fig. 9. T10I4D100K database

Fig. 10. T40I10D100K database
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Fig. 11. Pumsb* database

Fig. 12. Chess database

6 Conclusions

The discovery of frequent objects (itemsets, episodes, or sequential patterns)
is one of the most important tasks in data mining. The ways databases and
its candidates are stored cause a crucial effect on running times and memory
requirements.

In this chapter we have presented a compressed vertical binary approach
for mining several kinds of databases. Our experimental results show that the
inclusion of this representation in a priori-like algorithms makes them more
efficient and scalable.
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We presented a method that obtains frequent itemset faster than other
well-known a priori implementations and vertical binary implementations,
outperforming them considerably, especially for sparse databases.

There are many other issues to be analyzed using a vertical compressed
binary approach. This is our goal, and these issues will be included in further
chapters.
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Summary. Näıve association rules may result if the underlying causality of the
rules is not considered. The greatest impact on the decision value quality of associ-
ation rules may come from treating association rules as causal statements without
understanding whether there is, in fact, underlying causality. A complete knowl-
edge of all possible factors (i.e., states, events, constraints) might lead to a crisp
description of whether an effect will occur. However, it is unlikely that all possible
factors can be known. Commonsense understanding and reasoning accepts impreci-
sion, uncertainty and imperfect knowledge. The events in an event/effect complex
may be incompletely known; as well as, what constraints and laws the complex is
subject to. Usually, commonsense reasoning is more successful in reasoning about
a few large-grain sized events than many fine-grained events. A satisficing solution
would be to develop large-grained solutions and only use the finer-grain when the
impreciseness of the large-grain is unsatisfactory.

1 Introduction

One of the cornerstones of data mining is the development of association rules.
Association rules greatest impact is in helping to make decisions. One measure
of the quality of an association rule is its relative decision value. Association
rules are often constructed using simplifying assumptions that lead to näıve
results and consequently näıve and often wrong decisions. Perhaps the great-
est area of concern about the decision value is treating association rules as
causal statements without understanding whether there is, in fact, underlying
causality.

Causal reasoning occupies a central position in human reasoning. It plays
an essential role in human decision-making. Considerable effort over thousands
of years has been spent examining causation. Whether causality exists at
all or can be recognized has long been a theoretical speculation of scientists
and philosophers. Serious questions have been asked whether commonsense
perceptions of the world match the underlying reality. They run from the
implications of Zeno’s paradox [42] and Plato’s cave [23] to Einstein’s relativity
L.J. Mazlack: Näıve Rules Do Not Consider Underlying Causality, Studies in Computational
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theory and modern string theory. An introduction to some of these issues may
be found in Mazlack [19].

At the same time, people operate on the commonsense belief that causality
exists. Causal relationships exist in the commonsense world; for example:

When a glass is pushed off a table and breaks on the floor

it might be said that

Being pushed from the table caused the glass to break.

Although,

Being pushed from a table is not a certain cause of breakage; some-
times the glass bounces and no break occurs; or, someone catches the
glass before it hits the floor.

Counterfactually, usually (but not always),

Not falling to the floor prevents breakage.

Sometimes,

A glass breaks when an errant object hits it, even though it does not
fall from the table.

Positive causal relationships can be described as: If α then β (or, α→ β).
For example:

When an automobile driver fails to stop at a red light and there is
an accident it can be said that the failure to stop was the accident’s
cause.

However, negating the causal factor does not mean that the effect does
not happen; sometimes effects can be overdetermined. For example:

An automobile that did not fail to stop at a red light can still be
involved in an accident; another car can hit it because the other car’s
brakes failed.

Similarly, simple negation does not work; both because an effect can be
overdetermined and because negative statements are weaker than positive
statements as the negative statements can become overextended. It cannot be
said that ¬α→ ¬β, for example:

Failing to stop at a red light is not a certain cause of no accident
occurring; sometimes no accident at all occurs.

Some describe events in terms of enablement and use counterfactual im-
plication whose negation is implicit; for example [21]:

Not picking up the ticket enabled him to miss the train.
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There is a multiplicity of definitions of enable and not-enable and how
they might be applied. To some degree, logic notation definitional disputes
are involved. These issues are possibly germane to general causality theory.
However, it is not profitable to the interests of this paper to consider notational
issues; this paper is concerned with the less subtle needs of data analysis.

Negative causal relationships are less sure; but often stated; for example,
it is often said that:

Not walking under a ladder prevents bad luck.

Or, usually (but not always),

Stopping for a red light avoids an accident.

In summary, it can be said that the knowledge of at least some causal
effects is imprecise for both positive and negative descriptions. Perhaps, com-
plete knowledge of all possible factors might lead to a crisp description of
whether an effect will occur. However, it is also unlikely that it may be possi-
ble to fully know, with certainty, all of the elements involved. Consequently,
the extent or actuality of missing elements may not be known. Additionally,
some well described physics as well as neuro-biological events appear to be
truly random [5]; and some mathematical descriptions randomly uncertain. If
they are, there is no way of avoiding causal imprecision.

Coming to a precise description of what is meant by causality is difficult.
There are multiple and sometimes conflicting definitions. For an introductory
discussion of these issues, see Mazlack [19]. Recognizing many things with ab-
solute certainty is problematic. As this is the case, our causal understanding
is based on a foundation of inherent uncertainty and incompleteness. Conse-
quently, causal reasoning models must accommodate inherent ambiguity. For
an introductory discussion of this, see Mazlack [17].

It may well be that a precise and complete knowledge of causal events is
not possible or at least uncertain. On the other hand, we have a commonsense
belief that causal effects exist in the real world. If we can develop models
tolerant of imprecision, it would be useful. Also, to some degree, the degree
of importance that some of these items have decreases as grain size increases.

2 Satisficing

People do things in the world by exploiting commonsense perceptions of cause
and effect. Manipulating perceptions has been explored [41] but is not the
focus of this paper. The interest here is how perceptions affect commonsense
causal reasoning, granularity, and the need for precision.

When trying to precisely reason about causality, complete knowledge of all
of the relevant events and circumstances is needed. In commonsense, every day
reasoning, approaches are used that do not require complete knowledge. Often,
approaches follow what is essentially a satisficing [37] paradigm. The use of
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non-optimal mechanisms does not necessarily result in ad hocism; Goodrich [7]
states:

“Zadeh [40] questions the feasibility (and wisdom) of seeking for opti-
mality given limited resources. However, in resisting näıve optimizing,
Zadeh does not abandon the quest for justifiability, but instead re-
sorts to modifications of conventional logic that are compatible with
linguistic and fuzzy understanding of nature and consequences.”

Commonsense understanding of the world tells us that we have to deal
with imprecision, uncertainty and imperfect knowledge. This is also the case
with scientific knowledge of the world. An algorithmic way of handling im-
precision is needed to computationally handle causality. Models are needed to
algorithmically consider causes and effects. These models may be symbolic or
graphic. A difficulty is striking a good balance between precise formalism and
commonsense imprecise reality.

3 Complexes

When events happen, there are usually other related events. The entire collec-
tion of events can be called a complex. The events can be called the elements
of the complex.

A “mechanism” [38] or a “causal complex” [11,12] is a collection of events
whose occurrence or non-occurrence results in a consequent event happening.
Hobbs’ causal complex is the complete set of events and conditions necessary
for the causal effect (consequent) to occur. Hobbs suggests that human ca-
sual reasoning that makes use of a causal complex does not require precise,
complete knowledge of the complex. (Different workers may use the terms
“mechanism” and “causal complex” differently; they are used here as these
author’s use them.)

Each complex, taken as a whole, can be considered to be a granule.
Larger complexes can be decomposed into smaller complexes; going from
large-grained to small-grained. For example, when describing starting an auto-
mobile, A large-grained to small-grained, nested causal view would start with

When an automobile’s ignition switch is turned on, this causes the
engine to start.

But, it would not happen if a large system of other nested conditions were
not in place.

There has to be available fuel. The battery has to be operational.
The switch has to be connected to the battery so electricity can flow
through it. The wiring has to connect the switch to the starter and ig-
nition system (spark plugs, etc.). The engine has to be in good working
order; and so forth.
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Turning the ignition switch on is one action in a complex of conditions
required to start the engine. One of the events might be used to represent
the collection of equal grain sized events; or, a higher level granule might
be specified with the understanding that it will invoke a set of finer-grained
events. In terms of nested granules, the largest grained view is: turning on the
switch is the sole causal element; the complex of other elements represents
the finer-grains. These elements in turn could be broken down into still finer-
grains; for example, “available fuel” could be broken down into:

fuel in tank, operating fuel pump, intact fuel lines, and so forth.

start car: turn on ignition switch

wires
connect:
battery to
ignition
switch

wires 
connect:
ignition 

switch to 
starter, 
spark 
plugs

battery
operational

available
fuel

fuel 
in 

tank

operating
fuel

pump

intact
fuel
lines

...turn on
ignition
switch

Fig. 1. Nested causal complex

Sometimes, it is enough to know what happens at a large-grained level; at
other times it is necessary to know the fined grained result. For example, if

Bill believes that turning the ignition key of his automobile causes the
automobile to start.

It is enough if

Bill engages an automobile mechanic when his automobile does not
start when he turns the key on.

However,

The automobile mechanic needs to know a finer-grained view of an
automobile’s causal complex than does Robin.

Instead of being concerned with all of the fined grained detail, a better
approach may be to incorporate granulation using rough sets and/or fuzzy
sets to soften the need for preciseness. And then accept impreciseness in the
description. Each complex can be considered to be a granule. Larger complexes
can be decomposed into smaller complexes. Thus, going from large-grained to
small-grained.
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Hobbs [11] uses first order logic to describe his causal complexes. Pearl [25]
develops probabilistic causal networks of directed graphs (DAGs).

The causal complexes explicitly considered by Hobbs and Pearl have a
required structure that may be overly restrictive for commonsense causal un-
derstanding, namely:

• If all of the events in the causal complex appropriately happen, then the
effect will occur

• There is nothing in the causal complex that is irrelevant to the effect

These requirements are probably too precise and extensive to be realized
in a commonsense world. Sometimes, only some of the events need to happen.
For example,

Someone may be able to save more money:
• If their taxes are lowered or
• If they earn more money.

Either even may lead to greater savings. However,

Neither may result in increased savings if they also have to pay a large
divorce settlement.

So, if all of the events happen, the effect may happen. If some of the events
happen, the effect may happen. In the commonsense world, we rarely whether
all of the events are in a complex are necessary. For eample,

A man may want to attract the attention of a woman. He may do
a large number of things (e.g., hair, clothes, learn to dance, etc.). If
he does attract the woman, he may never know which things were
relevant and which were not

An issue is how to distinguish between what is in a complex and what is
not. Another issue is how to distinguish between the things that deserve to be
called “causes” and those that do not. Hobbs suggests that a consideration of
causal complexes can be divided into:

• Distinguishing what events are in a causal complex from those outside of
it. [16, 22,25,35,38]

• Within a causal complex, recognizing the events that should be identified
as causes from those that are not [31].

Nested granularity may be applied to causal complexes. A complex may
be several larger grained elements. In turn, each of the larger grained elements
may be a complex of more fine grained elements. Recursively, in turn, these
elements may be made up still finer grained elements. In general, people are
more successful in applying commonsense reasoning to a few large grain sized
events than the many fine grained elements that might make up a complex.

A question concerning complexes is: To what extent can we increase the
causal grain size and still have useful causal information? Conversely, can
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we start with a large-grained causal event and then derive the finer-grained
structure? Can we measure and/or control the imprecision involved in chang-
ing grain size? If we start with a large-grained structure and resolve it, will
our computational complexity burdens be reduced?

Complexes often may be best handled on a black-box, large grained basis.
That is, it can be recognized that a complex exists; but we do not necessarily
need to deal with the details internal to the complex.

4 Recognizing Causality is of Interest in Many Domains

Recognizing causality is of interest in many areas. Of particular interest to this
paper are areas where the analysis is non-experimental. The world is taken
as it is and not subject to experimentation. In the computational sciences,
data mining is of concern. An area not well known to people working in the
computational sciences is economics.

Perhaps, the applied area that has the greatest history of attempting to
deal with causality and non-observational data is economics. Econometrics is
distinguished from statistics by econometrics interest in establishing causation
[13]. How and if causality can be recognized has been a significant area of
discussion. Some of this discussion mirrors discussion that has gone on in the
computational sciences. Hoover provides a good entry to the discussion of
causality in economics.

Hume [15, p. 165], as a philosopher, suggested that causal statements are
really about constant conjunction and time ordering. However, when speaking
as an economist, Hume [14, p. 304] was less insistent on causal ordering:
“it is of consequence to know the principle whence any phenomenon arises,
and to distinguish between a cause and a concomitant effect.” The issue of
causal ordering is also often of importance to those modeling causality in data
discovery.

Data mining analyzes data previously collected; it is non-experimental.
There are several different data mining products. The most common are con-
ditional rules or association rules. Conditional rules are most often drawn from
induced trees while association rules are most often learned from tabular data.

IF Age < 20
THEN vote frequency is: often

with {belief = high}

IFAge is old
THEN Income < $10,000

with {belief = 0.8}
Fig. 2. Conditional rules
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Customers who
buy beer and sausage

also tend to buy hamburger
with {confidence = 0.7}
in {support = 0.15}

Customers who
buy strawberries

also tend to buy whipped cream
with {confidence = 0.8}
in {support = 0.2}

Fig. 3. Association rules

At first glance, conditional and association rules seem to imply a causal
or cause-effect relationship. That is:

A customer’s purchase of both sausage and beer causes the customer
to also buy hamburger.

Unfortunately, all that is discovered is the existence of a statistical relationship
between the items. They have a degree of joint occurrence. The nature of the
relationship is not identified. Not known is whether the presence of an item
or sets of items causes the presence of another item or set of items; or the
converse, or some other phenomenon causes them to occur together.

Purely accidental relationships do not have the same decision value, as do
causal relationships. For example,

IF it is true that buying both beer and sausage somehow causes
someone to buy beer ,
• THEN: A merchant might profitably put beer (or the likewise

associated sausage) on sale
• AND at the same time: Increase the price of hamburger to com-

pensate for the sausages’ reduce sale price.

On the other hand, knowing that

Bread and milk are often purchased in the same store visit

may not be as useful decision making information as both products are com-
monly purchased on every store visit. A knowledge of frequent co-occurrences
of bread and milk purchases might lead us to placing the bread and milk at
opposite ends of the store to force shoppers to visit more of the store and
consequently make more impulse buying decisions. However, there is a limit
to how often when such a physical distance distribution can be reasonably
effected. What is most valuable is knowledge of true causal relationships.

Tangentially, what might be of interest is discovering if there is a causal
relationship between the purchase of bananas and something else. (It turns out
that bananas are the most frequently purchased food item at Wal-Mart [20]).
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When typically developed, rules do not necessarily describe causality. The
association rule’s confidence measure is simply an estimate of conditional
probability. The association rule’s support indicates how often the joint occur-
rence happens (the joint probability over the entire data set). The strength of
any causal dependency may be very different from that of a possibly related
association value. In all cases

confidence ≥ causal dependence

All that can be said is that associations describe the strength of joint
co-occurrences.

Sometimes, the association might be causal; for example, if

Someone eats salty peanuts and then drinks beer.

or

Someone drinks beer and then becomes inebriated.

there may be a causal relationship. On the other hand, if

A rooster grows and then the sun rises.

or

Someone wears a ‘lucky’ shirt and then wins a lottery.

there may not be a causal relationship. Recognizing true causal relationships
would greatly enhances the decision value of data mining results.

The most popular market basket association rule development method
identifies rules of particular interest by screening for joint probabilities (asso-
ciations) above a specified threshold.

4.1 Association Rules Without an Underlying Causal Basis
Can Lead to Näıve Decisions

Association rules are used is to aid in making retail decisions. However, simple
association rules may lead to errors. Errors might occur; either if causality is
recognized where there is no causality; or if the direction of the causal rela-
tionship is wrong [18,33]. Errors might occur; either if causality is recognized
where there is no causality; or if the direction of the causal relationship is
wrong. For example, if

A study of past customers shows that 94% are sick.

• Is it the following rule?
Our customers are sick, so they buy from us.

• Is it the following complementary rule?
If people use our products, they are likely to become sick.

• Is there no relationship between product purchase and illness?
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Consequently, from a decision making viewpoint, it is not enough to know that

People both buy our products and are sick.

What is needed is knowledge of what causes what, if anything at all.
If causality is not recognized, the näıve application of association rules can

result in bad decisions [33]. This can be seen in an example from Mazlack [18]:

Example:
At a particular store, a customer buys:
• hamburger 33% of the time
• hot dogs 33% of the time
• both hamburger and hot dogs 33% of the time
• sauerkraut only if hot dogs are also purchased

This would produce the binary transaction matrix:

hamburger hot dog sauerkraut

t1 1 1 1
t2 1 0 0
t3 0 1 1

Fig. 4. Binary transaction matrix for hamburger, hot dog, and sauerkraut purchases

This in turn would lead to the associations (confidence):
• (hamburger, hot dog) = 0.5
• (hamburger, sauerkraut) = 0.5
• (hot dog, sauerkraut) = 1.0
All of the support levels are adequately high for this application.

If the merchant:
• Reduced price of hamburger (as a sale item)
• Raised price of sauerkraut to compensate (as the rule hamburger

fi sauerkraut has a high confidence.
• The offset pricing compensation would not work, as the sales of

sauerkraut would not increase with the sales of hamburger. Most
likely, the sales of hot dogs (and consequently, sauerkraut) would
likely decrease as buyers would substitute hamburger for hot dogs.

4.2 Association Rules That Do Not Take into Account Quantities
Can Result in Misleading Causal Inferences

Association rules are often formed by reducing all values to binary zeros and
ones. This is an early technique that was and is used in data mining when
analyzing market basket data. However, it is essentially flawed. Quantities do
matter; some data co-occurrences are conditioned on there being a sufficiency
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Actual basket: Binary basket:
Beer Wine Beer Wine

6 0 1 0
0 1 0 1

12 0 1 0
0 3 0 1

24 4 1 1
24 5 1 1
48 2 1 1

Fig. 5. Beer, wine transactions: quantified and binary

of a co-occurring attribute. Also, some relationships may be non-linear based
on quantity [18]

Example:

Situation: Customers frequently buy either wine or beer for themselves
in varying amounts. However, when buying for a party, they often
purchase both beer and wine and they usually purchase in larger quan-
tities.

Missed rule: When at least 24 beers purchased, wine is also purchased;

Otherwise, there is no relationship between beer and wine.

Näıvely constructing an association rule on non-quantified, binary data, in
this example, would find a rule that misleadingly represents the situation; i.e.,

Misleading rule: When beer is purchased, wine is also purchased
{confidence = 0.6}
{support = 0.43}
This rule is misleading because it näıvely implies that purchase probabil-

ities are uniform; in fact, they are not. Under one set of conditions, beer and
wine are never purchased together under one set of conditions; and, under
another set of conditions they are always purchased together.

In neither case is there a direct causal relationship. In the quantified rule
case, the larger quantities of beer and wine are caused by a third factor
(a party).

5 Describing Causality

In some ways, someone may object to this paper, as it does not offer much in
the way of solutions. It mostly identifies needs. Part of a reply is that there is
limited space and time. Another is that recognizing a need is the first step to
finding a solution. Another is that both recognizing and defining causality is
still a very complex and difficult problem, even after over 3,000 years of effort.

Various causality descriptions and discovery tools have been suggested. It
may eventually turn out that different subject domains may have different
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βα

Fig. 6. Diagram indicating β that is causally dependent on α

methodological preferences. This section is intended to give a selective, non-
complete, taste.

5.1 Intuitive Graph Based Approaches

Different aspects of causality have been examined. As in Fig. 6,the idea of
“positive” causation (α→ β) is at the core of commonsense causal reasoning.
Often a positive causal relationship is represented as a network of nodes and
branches [17]. In part because of their intuitive appeal, there have been many
approaches to recognizing causality that use graphs.

There are a number of different books describing various aspects of causal
graphs. Among them are: Gammerman [6], Glymour [8], Hausman [9], Pearl
[25], Shafer [29], Spirtes [39].

5.2 Directed Graphs

Various graph based Bayesian based methods have been suggested to recognize
causality. Probably the best known is the class of methods based on Directed
Acyclic Graphs (DAGs). The most fully developed approach is Pearl [25].
Silverstein [33,34] followed a similar aproach.

Pearl [24] and Spirtes [39] claim that it is possible to infer causal relation-
ships between two variables from associations found in observational (nonex-
perimental) data without substantial domain knowledge. Spirtes claims that
directed acyclic graphs could be used if (a) the sample size is large and (b) the
distribution of random values is faithful to the causal graph. Robins [26] ar-
gues that their argument is incorrect. Lastly, Scheines [27] only claims that in
some situations will it be possible to determine causality. Their discussion is
tangential to the focus of this paper; going deeply into their discussion is out-
side this paper’s scope. It is enough to note that these methods are possibly
the most thoroughly developed methods of computational causal analysis.

From the commonsense causal reasoning view, the various directed graph
methods have similar liabilities, specifically. Mazlack [19] discusses and lists
and discusses some of the problems.

5.3 Negation and Counterfactuals

Negation or counterfactuals (¬α → ¬β) also have a place, although it may
result in reasoning errors. For example, the rule:

If a person drinks wine, they may become inebriated.
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cannot be simply negated to

If a person does not drink wine, they will not become inebriated.

One reason is that effects can be overdetermined; that is: more than one
item can cause an effect. If so, eliminating one cause does not necessarily
eliminate the effect. In this case:

A person may also drink beer or whiskey to excess and become inebri-
ated.

Events that do not happen can similarly be overdetermined. From a com-
monsense reasoning view, it is more likely that things do not happen than
they do. For example, Oritz [21] says that it is not true that

His closing the barn door caused the horse not to escape.

because the horse might not have attempted to escape even if the door was
open. Therefore, a false counterfactual is:

If he had not closed the barn door, the horse would have escaped.

Similarly, for example, the rule

If a person smokes, they will get cancer.

cannot be simply negated to

If a person does not smoke, they will not get cancer.

Again, effects can be overdetermined. In this case,

People who do not smoke may also get cancer.

Another idea that is sometimes involved in causal reasoning is causal un-
correlatedness [28] where if two variables have no common cause they are
causally uncorrelated. This occurs if there are no single events that cause
them to both change.

Similarly, Dawid [4] focuses on the negative; i.e., when α does not affect β.
Dawid speaks in terms of unresponsiveness and insensitivity. If βgs unrespon-
sive to α if whatever the value of α might be set to, the value of β will
be unchanged. In parallel, if β is insensitive to α if whatever the value α
may be set, the uncertainty about β will be unaffected. Along the same vein,
Shoham [31,32] distinguishes between causing, enabling, and preventing. The
enabling factor is often considered to be a causal factor. Shoham distinguished
between background (enabling) conditions and foreground conditions. The
background (enabling) conditions are inferred by default. For example [32]:

“If information is present that the key was turned and nothing is
mentioned about the stated about the state of the battery, then it is
inferred that the motor will start, because the battery is assumed, by
default to be alive.
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Given this distinction, causing is taken to refer to the foreground condi-
tions where enabling and preventing refer to the background conditions (in
this example, turning the key causes the motor to start, the live battery en-
ables it, the dead battery prevents it).”

Other ideas that are sometimes involved in causal reasoning are causal
uncorrelatedness [28] where if two variables share no common cause they are
causally uncorrelated. This occurs if there are no single events that cause them
to both change. Similarly, causal independence occurs when speaking about
probabilities.

5.4 Observational and Non-Observational Data

Statistics is the traditional tool used to discover causality when handling ex-
perimental data. The standard method in the experimental sciences of recog-
nizing causality is to perform randomized, controlled experiments. This pro-
duces experimental data. Depending on their design, randomized experiments
may remove reasons for uncertainty whether or not a relationship is casual.

However, the data of greatest interest in the computational sciences, par-
ticularly data mining, is non-experimental. This is because analysis is per-
formed on large quantities of warehoused data. In this domain, traditional
statistical methods are either not useful an/or are often too computationally
complex.

Even if some experimentation is possible, the amount of experimentation in
contrast to the amount of data to be mined will be small. This said; some work
has been done using chi-squared testing to reduce the search space [33,34].

Several areas can only wholly (economics, sociology) or partially develop
non-experimental data. In these areas, investigators can either abandon the
possibility of discovering causal relationships; or, claim that causality does
not exist. There continue to be efforts to discover causal relationships areas
where only non-observational data is available. Among the books consider-
ing causality in non-experimental data are: Asher [1], Blalock [2], Berry [3],
Hilborn [10], Shipley [30].

6 Epilogue

One of the corner stones of data mining is the development of association
rules. Association rules greatest impact is in helping to make decisions. One
measure of the quality of an association rule is its relative decision value. As-
sociation rules are often constructed using simplifying assumptions that lead
to näıve results and consequently näıve and often wrong decisions. Perhaps
the greatest area of concern is treating association rules as causal statements
without understanding whether there is, in fact, underlying causality.

Causal relationships exist in the commonsense world. Knowledge of at least
some causal effects is imprecise. Perhaps, complete knowledge of all possible
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factors might lead to a crisp description of whether an effect will occur. How-
ever, in our commonsense world, it is unlikely that all possible factors can be
known. In commonsense, every day reasoning, we use approaches that do not
require complete knowledge.

People recognize that a complex collection of elements causes a particular
effect, even if the precise elements of the complex are unknown. They may
not know what events are in the complex; or, what constraints and laws the
complex is subject to. Sometimes, the details underlying an event are known
to a fine level of detail, sometimes not. Generally, people are more successful in
reasoning about a few large-grain sized events than many fine-grained events.
Perhaps, this can transfer over to computational models of causality.

A lack of complete, precise knowledge should not be discouraging. People
do things in the world by exploiting our commonsense perceptions of cause
and effect. When trying to precisely reason about causality, we need complete
knowledge of all of the relevant events and circumstances. In commonsense,
every day reasoning, we use approaches that do not require complete knowl-
edge. Often, approaches follow what is essentially a satisficing paradigm.

Instead of being concerned with all of the fined grained detail, a better
approach may be to incorporate granulation using rough sets and/or fuzzy
sets to soften the need for preciseness. And then accept impreciseness in the
description. Each complex can be considered to be a granule. Larger complexes
can be decomposed into smaller complexes. Thus, going from large-grained to
small-grained.

Regardless of causal recognition and representation methodologies, it is
important to decision making to understand when association rules have a
causal foundation. This avoids näıve decisions and increases the perceived
utility of rules with causal underpinnings.
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Summary. Causality can be imprecise as well as granular. Complete knowledge of
all possible causal factors could lead to crisp causal understanding. However, knowl-
edge of at least some causal effects is inherently inexact and imprecise. It is unlikely
that complete knowledge of all possible factors can be known for many subjects. It
may not be known what events are in the complex; or, what constraints and laws the
complex is subject to. Consequently, causal knowledge is inherently incomplete and
inexact. Whether or not all of the elements are precisely known, people recognize
that a complex of elements usually causes an effect. Causal complexes are groupings
of finer-grained causal relations into a larger-grained causal object. Commonsense
world understanding deals with imprecision, uncertainty and imperfect knowledge.
Usually, commonsense reasoning is more successful in reasoning about a fewer large-
grained events than many fine-grained events. However, the larger-grained causal
objects are necessarily more imprecise than some of their components. A satisfic-
ing solution might be to develop large-grained solutions and then only go to the
finer-grain when the impreciseness of the large-grain is unsatisfactory.

1 Introduction

Causal reasoning plays an essential role in human decision-making, both
formal and informal (commonsense). For thousands of years, philosophers
and mathematicians formally explored questions of causation. As science be-
came more specialized, economists, physicians, cognitive scientists, physicists,
psychologists, and others joined as investigators. Computer scientists, with
notable exceptions, have only been sporadically interested; perhaps, the defi-
nitions are too imprecise and deeper inspection only increases the definitional
uncertainty; also, the computational tractability is unclear.

Whether causality exists at all or can be recognized if it exists has long
been a theoretical speculation of both scientists and philosophers. At the same
time, commonsense belief in causality is the foundation of human decision-
making.
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1.1 Granularity

Causality is often granular. This is true both with commonsense reasoning as
well as for more formal mathematical and scientific approaches. At a very fine-
grained level, the physical world itself may be granular [31]. Commonsense
perceptions of causality are often large-grained while the underlying causal
structures may be fine-grained.

Larger-grained causal objects are often more imprecise than some of the
components that are collected into the larger-grained object. Some compo-
nents of a larger-grained causal object may be precisely known, while others
maybe be somewhat imprecise, and others unknown. The larger the grain, the
greater is the likelihood that there might be missing or unknown components.
How to evaluate the impreciseness of a larger-grained causal object when the
impreciseness of the underlying cascade of components is not clear. Perhaps,
some form of type-II fuzzy [17] manipulation might be helpful.

1.2 Reasoning

Commonsense understanding of the world tells us that we have to deal with
imprecision, uncertainty and imperfect knowledge. This is also the case with
scientific knowledge of the world. A difficulty is striking a good balance be-
tween precise formalism and commonsense imprecise reality.

Causal relationships exist in the commonsense world; for example:

When a glass is pushed off a table and breaks on the floor

it might be said that

Being pushed from the table caused the glass to break.

Although,

Being pushed from a table is not a certain cause of breakage; some-
times the glass bounces and no break occurs; or, someone catches the
glass before it hits the floor.

Counterfactually, usually (but not always),

Not falling to the floor prevents breakage.

Sometimes,

A glass breaks when an errant object hits it, even though it does not
fall from the table.

Positive causal relationships can be described as: if α then β (or, α → β).
For example:
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When an automobile driver fails to stop at a red light and there is
an accident; it can be said that the failure to stop was the accident’s
cause.

However, negating the causal factor does not mean that the effect does not
happen; sometimes effects can be overdetermined. For example:

An automobile that did not fail to stop at a red light can still be
involved in an accident; another car can hit it because the other car
swerved and hit it while the car was stopped.

Similarly, negating a causal description often does not work. This is often
because an effect can be overdetermined. Also, negative statements are weaker
than positive statements as the negative statements can become overextended.
For example, it cannot be said that ¬α → ¬β, for example:

Failing to stop at a red light is not a certain cause of an accident
occurring; sometimes no accident at all occurs. (There may be no
other cars; the other cars brake in time; etc.)

Negative causal relationships are less sure as negative statements are easily
overextend; but often stated; for example, it is often said that:

Not walking under a ladder prevents bad luck.

Or, usually (but not always),

Stopping for a red light avoids an accident.

Some describe events in terms of enablement and use counterfactual implica-
tion whose negation is implicit; for example [18]:

Not picking up the ticket enabled him to miss the train.

There is a multiplicity of definitions of enable and not-enable and how they
might be applied. The focus of this chapter lies elsewhere.

1.3 Complexes of Elements

In causal reasoning, commonsense reasoning may recognize that a complex
collection of elements can be involved causally in a particular effect, even if
the precise elements of the complex are unknown. It may not be known what
events are in the complex; or, what constraints and laws the complex is subject
to. Sometimes, the details underlying an event are known, sometimes not. For
example:

A traffic jam might be observed in mid-town Manhattan. A reasonable
supposition might be made that the jam was caused by a complex
collection of elements. It might be possible to conjecture what were
some of the causes; but, it is unlikely to be able to precisely know
what were the complete set of actual causes.
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Causal complexes may be described using nested granularity. A complex may
have several larger-grained elements. In turn, each of the larger-grained ele-
ments may be made up of a complex of more fine-grained elements. Recur-
sively, in turn, these elements may be made up still finer-grained elements. In
general, people are more successful in applying commonsense reasoning to a
few large-grain sized events than to many fine-grained elements.

Somebody waiting for a dinner companion in mid-town Manhattan
who observed a traffic jam might presume that they might be late be-
cause their taxi would most likely be delayed. Only the large-grained
knowledge of the traffic jam would be needed; knowing the finer-
grained details of the jam would probably not be needed.

When using large-grained commonsense reasoning, people do not always need
to know the extent of the underling complexity. This is also true for situations
not involving commonsense reasoning; for example:

When designing an electric circuit, designers are rarely concerned with
the precise properties of the materials used; instead, they are con-
cerned with the devices functional capabilities and take the device as
a larger-grained object.

Complexes often may be best handled on a black box, large-grained basis. It
may be recognized that a fine-grained complex exists; but it is not necessary
to deal with the finer-grained details internal to the complex.

1.4 Satisficing

The knowledge of at least some causal effects is imprecise for both positive
and negative descriptions. Perhaps, complete knowledge of all possible factors
might lead to a crisp description of whether an effect will occur. However, it
is also unlikely that it may be possible to fully know, with certainty, all of the
elements involved.

People do things in the world by exploiting commonsense perceptions of
cause and effect. Manipulating perceptions has been explored [33] but is not
the focus of this chapter. The interest here is how perceptions affect common-
sense causal reasoning, granularity, and the need for precision.

When trying to precisely reason about causality, complete knowledge of
all of the relevant events and circumstances is needed. In commonsense, every
day reasoning, approaches are used that do not require complete knowledge.
Often, approaches follow what is essentially a satisficing [1955] paradigm.
The use of non-optimal mechanisms does not necessarily result in undesired
ad hocism; Goodrich [4] states:

Zadeh [32] questions the feasibility (and wisdom) of seeking for opti-
mality given limited resources. However, in resisting naive optimizing,
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Zadeh does not abandon the quest for justifiability, but instead re-
sorts to modifications of conventional logic that are compatible with
linguistic and fuzzy understanding of nature and consequences.

2 Complexes

When events happen, there are usually other related events. The entire col-
lection of events is called a complex. The events can be called the elements of
the complex.

A “mechanism” [30] or a “causal complex” [8] is a collection of events
whose occurrence or non-occurrence results in a consequent event happening.
Hobbs’ causal complex is the complete set of events and conditions necessary
for the causal effect (consequent) to occur. Hobbs suggests human casual rea-
soning that makes use of a causal complex does not require precise, complete
knowledge of the complex.

Each complex, taken as a whole, can be considered to be a granule.
Larger complexes can be decomposed into smaller complexes; going from
large-grained to small-grained. For example, when describing starting an au-
tomobile, A large-grained to small-grained, nested causal view (Fig. 1) would
start with

When an automobile’s ignition switch is turned on, this causes the
engine to start.

But, it would not happen if a large system of other nested conditions were
not in place.

There has to be available fuel. The battery has to be good. The switch
has to be connected to the battery so electricity can flow through it.
The wiring has to connect the switch to the starter and ignition system
(spark plugs, etc.). The engine has to be in good working order; and
so forth.

start car: turn on ignition switch

wires
connect: 
battery,
ignition
switch

wires
connect: 
ignition
switch,
starter,
spark
plugs

good
battery

available
fuel

fuel
in

tank

working
fuel
pump

intact
fuel
lines

...turn on 
ignition
switch

Fig. 1. Nested causal complex
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Turning the ignition switch on is one action in a complex of conditions required
to start the engine. One of the events might be used to represent the collection
of equal grain sized events; or, a higher-level granule might be specified with
the understanding that it will invoke a set of finer-grained events.

In terms of nested granules, the largest-grained event is the sole causal
element: Turn on the ignition switch. The complex of other elements repre-
sents the finer-grains. These elements in turn could be broken down into still
finer-grains; for example, “available fuel” can be broken down into:

fuel in tank, working fuel pump, intact fuel lines, . . .

Sometimes, it is enough to know what happens at a large-grained level; at
other times it is necessary to know the fined grained result. For example, if

Bill believes that turning the ignition key of his automobile causes the
automobile to start.

It is enough if

Bill engages an automobile mechanic when his automobile does not
start when he turns the key on.

However,

The automobile mechanic needs to know a finer-grained view of an
automobile’s causal complex than does Robin.

Instead of being concerned with all of the fined grained detail, a better ap-
proach may be to incorporate granulation using rough sets and/or fuzzy sets
to soften the need for preciseness. If needed, larger complexes can be decom-
posed into smaller complexes.

Hobbs [8] uses first order logic to describe his causal complexes. Pearl
[20] develops probabilistic causal networks of directed graphs (DAGs). The
causal complexes explicitly considered separately by Hobbs and Pearl have
a required structure that may be overly restrictive for commonsense causal
understanding, namely:

• If all of the events in the causal complex appropriately happen, then the
effect will occur

• There is nothing in the causal complex that is irrelevant to the effect

These requirements are probably too precise and extensive to be realized
in a commonsense world. Sometimes, only some of the events need to happen.
For example,

Someone may be able to save more money:
• If their taxes are lowered or
• If they earn more money.
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Either even may lead to greater savings. However,

Neither may result in increased savings if they also have to pay a large
divorce settlement.

If all of the events happen, the effect may happen. If some of the events
happen, the effect may happen. In the commonsense world, we rarely know
whether all of the events are in a complex are necessary. For example,

A man may want to attract the attention of a woman. He may do
a large number of things (e.g., hair, clothes, learn to dance, etc.). If
he does attract the woman, he may never know which things were
relevant and which were not

A way of restructuring a causal graph by increasing the grain size can be seen
in Fig. 2a, b. In Fig. 2a, the idea is that solid, middle-sized, spherical things
all roll are replaced with the concept class representation “ball” of Fig. 2b.
However, the price of collapsing the variables is a decrease in precision.

An issue is how to distinguish between what is in a complex and what is
not. Another issue is how to distinguish between the things that deserve to be
called “causes” and those that do not. Hobbs [8] suggests that a consideration
of causal complexes can be divided into:

• Distinguishing what events are in a causal complex from those outside of
it [12,18,20,27,30].

• Within a causal complex, recognizing the events that should be identified
as causes from those that are not [13,24].

A major question concerning complexes is: To what extent can we increase
the causal grain size and still have useful causal information? Conversely,
can we start with a large-grained causal event and then derive the finer-
grained structure? Can we measure and/or control the imprecision involved

push   solid   middle-sized   spherical 

           rolls 

Fig. 2a. Variables (solid, middle-sized, spherical) with common effect [5]

push       ball   

          rolls 

Fig. 2b. Variables with a common effect (solid, middle-sized, spherical) collapsed
into the concept “ball” [5]
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in changing grain size? If we start with a large-grained structure and resolve
it, will our computational complexity burdens be reduced?

3 Defining Causality

Coming to a precise description of what is meant by causality and causal rea-
soning is difficult. There are multiple and sometimes conflicting definitions.
Zadeh [34] suggested that a precise, formal definition might not be possible.
Pearl [21] replied: “For me, the adequacy of a definition lies not in abstract ar-
gumentation but in whether the definition leads to useful ways of solving con-
crete problems.” Regardless of arguments regarding the specificity of causality,
people have a commonsense belief that there are causal relationships. Satis-
factorily and explicitly specifying them is difficult, as is the description of the
associated impreciseness.

Friedman [3] argues that any cause that we isolate is never the whole cause
and that every direct cause itself has its own direct causes, so that networks of
causation spread synchronically across the economy and diachronically back
into the mists of time. If this is true, granules must necessarily be imprecise
as separation trough truncation from a network would be required.

Granger [6] defined causality depends on one-way, time ordered concep-
tion of causality. In contrast, Simon [27, 28] provides an analysis of causality
that does not rely on time order. Some believe [7, p 1] that causal relations
are mostly indicated by asymmetric relationships. An abbreviated list of the
relationships that Hausman’s [7] elements of causal relationships is:

• Time-order: Effects do not come before causes – This corresponds with
commonsense understanding. Unfortunately, it is at variance with Ein-
steinium space–time. This raises the question: If there is a commitment to
commonsense reasoning, what should be done when commonsense reason-
ing differs from scientific understanding?

• Probabilistic Independence
• Agency or manipulability: Causes can be used to manipulate their effects,

but effects cannot be used to manipulate their causes. Effects of a common
cause cannot be used to manipulate one another.

• Counterfactual dependence: Effects counterfactually depend on their
causes, while causes do not counterfactually depend on their effects

• Overdetermination: Effects over determine their causes, while causes rarely
overdetermine their effects

• Invariance: Dependent variables in an equation are effects of the indepen-
dent variables

• Screening-off: Causes screen off their effects
• Robustness: The relationship between cause and effect is invariant with

respect to the frequency of the cause
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• Connection dependence: If the connection between cause and effect were
broken, only the effect would be affected

Counterfactuals or negation (¬α → ¬β) have a place; although they
may result in less certainty in reasoning. For example:

If a person drinks wine, they may become inebriated.

cannot be simply negated to

If a person does not drink wine, they will not become inebriated.

One reason is that effects can be overdetermined; that is: more than one item
can cause an effect. Eliminating one cause does not necessarily eliminate the
effect. In this case:

A person may also drink beer or whiskey to excess and become inebri-
ated.

Events that do not happen can similarly be overdetermined. From a common-
sense reasoning view, it is more likely that things do not happen than they
do. For example, [19] states that it is not true that

His closing the barn door caused the horse not to escape.

because the horse might not have attempted to escape even if the door was
open. Therefore, a false counterfactual is:

If he had not closed the barn door, the horse would have escaped.

Similarly, for example, the rule

If a person smokes, they will get cancer.

cannot be simply negated to

If a person does not smoke, they will not get cancer.

Again, effects can be overdetermined. In this case,

People who do not smoke may also get cancer.

So far, this discussion has been on possible overdetermination; that is, the
potential causes do not co-occur (the occur independently of each other). The
other case is when potential causes happen at the same time. For example,
when two rocks shatter a window at the same time, what causes the win-
dow to shatter [23]? Is the throwing of each individual rock a cause of the
window shattering, or is it a collective cause (all the “throwings” combined).
Lewis [12] calls this redundant causation; that is, whenever there are multiple
actual distinct events, c1, c2, ...cn, event such that each cj without the other cs
would cause an event. Preemption (asymmetric redundancy) occurs whenever
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just one of the cs actually causes the event; overdetermination (symmetric
redundancy) occurs whenever both of thecs are causally on par with respect
to the event.

Other ideas that are sometimes involved in causal reasoning are causal
uncorrelatedness [22] where if two variables have no common cause they are
causally uncorrelated. This occurs if there are no single events that cause them
to both change.

Similarly, [1] focuses on the negative; i.e., when α does not affect β. Dawid
speaks in terms of unresponsiveness and insensitivity. If β is unresponsive to
α whatever the value of α might be set to, the value of β will be unchanged.
In parallel, if β is insensitive to α if whatever the value α may be set, the
uncertainty about β will be unaffected. Along the same vein, Shoham [24,25]
distinguishes between causing, enabling, and preventing. The enabling factor
is considered to be a causal factor. Shoham distinguished between background
(enabling) conditions and foreground conditions. The background (enabling)
conditions are inferred by default. Causing refers to foreground conditions
where enabling and preventing refer to the background conditions; in the
automobile example:

Turning the key causes the motor to start, the live battery enables it,
and the dead battery prevents it.

Another idea that is sometimes involved in causal reasoning is causal uncorre-
latedness [22] where if two variables share no common cause they are causally
uncorrelated. This occurs if there are no single events that cause them to both
changes. Similarly, causal independence occurs when speaking about proba-
bilities.

4 Many Areas Would Like to Recognize Causality

Recognizing causality is of interest in many areas, included are: computational
sciences, economics, philosophy, cognitive science, medicine. Of particular in-
terest to this chapter are areas where analysis is non-experimental. In the
computational sciences, data mining is of concern.

Perhaps, the applied area that has the greatest history of attempting to
deal with causality and non-observational data is economics. Econometrics is
distinguished from statistics by econometrics interest in establishing causa-
tion [9]. How and if causality can be recognized has been a significant area of
discussion. Some of this discussion mirrors discussion that has gone on in the
computational sciences. Hoover [9] provides a good entry to the discussion of
causality in economics.

Hume [11, p 165], as a philosopher, suggested that causal statements are
really about constant conjunction and time ordering. However, when speak-
ing as an economist, Hume [10, p 304] was less insistent on causal ordering:
“it is of consequence to know the principle whence any phenomenon arises,
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with {confidence = 0.7} 
in {support = 0.2} 

Customers who buy strawberries
also tend to buy whipped cream 

with {confidence = 0.8} 
in {support = 0.15} 

Customers who buy beer and sausage
also tend to buy hamburger 

Fig. 3. Association rules

and to distinguish between a cause and a concomitant effect.” The issue of
causal ordering is also often of importance to those modeling causality in data
discovery.

Data mining analyzes non-experimental data previously collected. There
are several different data mining products. The most common are conditional
rules or association rules. Conditional rules are most often drawn from induced
trees while association rules are most often learned from tabular data.

At first glance, association rules (Fig. 3) seem to imply a causal or cause-
effect relationship. That is:

A customer’s purchase of both sausage and beer causes the customer
to also buy hamburger.

But, all that is discovered is the existence of a statistical relationship between
the items. They have a degree of joint occurrence. The nature of the relation-
ship is not identified. Not known is whether the presence of an item or sets
of items causes the presence of another item or set of items, or if some other
phenomenon causes them to jointly occur.

The information does not have a good decision value unless the degree
of causality is known. Purely accidental relationships do not have the same
decision value, as do causal relationships. For example,

IF it is true that buying both beer and sausage somehow causes
someone to buy beer ,
• Then: A merchant might profitably put beer (or the likewise as-

sociated sausage) on sale
• And at the same time: Increase the price of hamburger to com-

pensate for the sale price.

On the other hand, knowing that

Bread and milk are often purchased together.

may not be useful information as both products are commonly purchased on
every store visit.
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When typically developed, rules do not necessarily describe causality.
Sometimes, the association might be causal; for example, if

Someone eats salty peanuts, then drinks beer.

or

Someone drinks beer, then becomes inebriated.

there may be a causal relationship. On the other hand, if

A rooster grows, then the sun rises.

or

Someone wears a ‘lucky’ shirt, then wins a lottery.

there may not be a causal relationship. Recognizing true causal relationships
would greatly enhances the decision value of data mining results.

4.1 Not Considering Causality Can Lead to Poor Decisions

Association rules are used is to aid in making retail decisions. However, simple
association rules may lead to errors. Errors might occur; either if causality is
recognized where there is no causality; or if the direction of the causal rela-
tionship is wrong [16,26]. Errors might occur; either if causality is recognized
where there is no causality; or if the direction of the causal relationship is
wrong. For example, if

A study of past customers shows that 94% are sick.
• Is it the following rule?

Our customers are sick, so they buy from us.
• Is it the following complementary rule?

If people use our products, they become sick.
From a decision-making viewpoint, it is not enough to know that
People both buy our products and are sick.
What is needed is knowledge of what causes what, if at all.

4.2 Inherently Uncertain Recognition

Recognizing many things with absolute certainty is problematic. As this is
the case, our causal understanding is based on a foundation of inherent un-
certainty and incompleteness. Consequently, causal reasoning models must
accommodate inherent ambiguity. Some possible factors are [15]:

• Quantum physics
• Chaos theory
• Observer interference
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• Space–time
• Gödel’s theorem
• Arithmetic indeterminism
• Turing halting problem

Additionally, some well-described physics as well as neuro-biological events
appear to be truly random [2]; as well as the mathematical descriptions that
are randomly uncertain. If they are, there is no way of avoiding causal impre-
cision.

It may well be that a precise and complete knowledge of causal events is
not possible or at least uncertain. On the other hand, we have a commonsense
belief that causal effects exist in the real world. If we can develop models
tolerant of imprecision, it would be useful. Also, to some degree, the degree
of importance that some of these items have decreases as grain size increases.

4.3 Granular Space–Time

One of the key principles of space–time is that of background independence.
This principle says that the geometry of space–time is not fixed. Instead,
the geometry is an evolving, dynamical quantity. A closely related principle is
diffeomorphism invariance. This principle implies that unlike theories prior to
general relativity, one is free to choose any set of coordinates to map space–
time and express the equations. A point in space–time is defined only by what
physically happens at it, not by its location according to some special set of
coordinates (no coordinates are special).

Modern physics has developed a theory that entails that space and time
are granular [31]. This is an extension of quantum theory. Quantum mechanics
require that certain quantities, such as the energy of an atom, can only come
in specific, discrete units. Over the last few years, theory has evolved con-
cerning quantum gravity and quantum space–time. This area of endeavor is
sometimes called loop quantum gravity. (The term loop arises from how some
computations in the theory involve small loops marked out in space–time.)
The work is concerned with quantum theory of the structure of space–time at
the smallest size scales.

What concerns us in this chapter is that there are apparently limits on
fine grain size. These limits apply to areas, volumes, and time [31]. There is
a non-zero minimum area (about one square Planck length, or 10−66 cm2)
and a discrete series of allowed quantum areas. Similarly, there is a non-zero
absolute minimum volume (about one cubic Planck length, or 10−99 cm2) and
it restricts the set of larger volumes to a discrete series of numbers. Time is
also discrete; it comes in “clicks” of approximately the Planck time. Time
does not exist between the clicks; there is no “in between,” in the same way
that there is no water between adjacent molecules of water.

This information should influence how we think about causality. If the
universe is fundamentally granular, causal descriptions need to somehow deal
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with granularity. How to do this is unclear. Rough sets might be the best way
of handling the granularity of causal complexes. Similarly, they seem to be a
good tool to initially approach the granularity of space–time.

5 Representation

Different aspects of causality have been examined. The idea of “positive”
causation of something somehow participating in the causation something
else (α→ β) (Fig. 4) is at the core of commonsense causal reasoning. Often a
positive causal relationship is represented as a network of nodes and branches
[14]. The states α, β are connected by edges that indicate that one state was
the cause for the other state to come into being. The edges may be conditioned
(probability, possibility, random, etc.)

Various causality descriptions and discovery tools have been suggested. It
may eventually turn out that different subject domains may have different
methodological preferences. This section is intended to give a selective, non-
complete, taste.

Various kinds of graphs and models can be used to represent causality.
Causal Bayes nets have recently received significant attention [18]. Sometimes,
they are referred to simply as “graphical causal models.” This is misleading,
as causal Bayes nets are a subset of all possible graphic causal models. A
significant difference is that a general graphic causal model allows feedback
and a causal Bayes net does not. There are other significant restrictions on
causal Bayes net models, included are independence conditions including var-
ious Markoff conditions. Elsewhere, the author has discussed Markoff causal
graphic representations as well as the some of the unhappy limitations of us-
ing causal Bayes nets models and other models meeting some of the Markoff
conditions [14]. In part, this is because “Causal Bayes nets and graphic causal
models more generally, are surely an incomplete representation of the vari-
ety and wealth of causal constructions we use in science and everyday life...”
Glymour [5, p 1–2]. This chapter introduces the more useful: commonsense,
general imprecise graphic causal models.

One class of causal models needed for commonsense causal relationships
are various kinds of cycles, including mutual causal dependencies. Often they
are particularly suitable for increases in granulation. (They are not well served
by causal Bayes nets.)

b a

Fig. 4. Diagram indicating that α is causally dependent on β
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Fig. 5. Mutual causal dependency

5.1 Mutual Causal Dependencies

Mutual dependencies occur when two nodes are directly or mutually depen-
dent on each other.

Figure 5 represents mutual dependencies; i.e., α → β as well as β → a.
It suggests that they might do so with different strengths. Si,j represents the
strength of the causal relationship from i to j. Often, it would seem that
the strengths would be best represented by an approximate belief function.
There would appear to be two variations:

• Case 1: Different causal strengths for the same activity, occurring simul-
taneously:
For example, α could be short men and β could be tall women. If Sα,β

meant the strength of desire for a social meeting that was caused in short
men by the sight of tall women, it might be that Sα,β > Sβ,s.

• Case 2: No cumulative effect: Different causal strengths for symmetric
activities, occurring at different times:
It would seem that if there were causal relationships in market basket data,
there would often be imbalanced dependencies. For example, if a customer
first buys strawberries, there may be a reasonably good chance that she will
then buy whipped cream. Conversely, if she first buys whipped cream, the
subsequent purchase of strawberries may be less likely. How to represent
time precedence is unclear.

• Case 3: Cumulative effect (feedback): Different causal strengths for sym-
metric activities, occurring at different times:
There are many cases of feedback where there is a cumulative effect; i.e.,
the strength of the relationships increase or decrease. For example, α could
be significant other’s lack of interest and β could be depression. Often (but
not always), How to represent the change in intensity in this simple model
is not clear.

5.2 General Cycles

General cycles can occur. Non-cyclic elements can influence cyclic elements.
Depending on the conditioning of the cyclic nodes, the causal path might
remain within the cycle, or it might branch out. As in Sect. 5.1, there may or
may not be a cumulative effect (feedback).
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 others lack
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                 drink too much
                     bad beer

Fig. 6a. Cyclic causal dependency

depression

 significant                        
 others lack                       
 of interest

Fig. 6b. Larger grained representation of Fig. 6a
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Fig. 6c. Linked cyclic causal complexes

Figure 6a represents a cycle that has external input. Possibly the cycle
might be collapsed to an imprecise larger grained single node labeled “depres-
sion” as in Fig. 6b. Reasonably, applying our common sense understanding
of human relationships, a return arrow could also go from “depression” to
“significant other’s lack of interest” as in Fig. 6c. This would create another
cumulative cycle. The two cycles affect each other. How to represent the in-
teraction of two cycles, let alone two cumulative linked cycles is unclear.

Two union of two large-grained complexes can be inconsistent. Shoham [24]
provides the following example:

• Taking the engine out of a car makes it lighter
• Making a car lighter makes it go faster
• So, taking the engine out of the car makes it go faster

The union of the first two causal complexes is inconsistent. It ignores the
presumption that the car has a working engine.
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6 Conclusions

Whether causality can be recognized at all has long been a theoretical specu-
lation of scientists and philosophers. At the same time, in our daily lives, we
operate on the commonsense belief that causality exists.

Causal relationships exist in the commonsense world. Knowledge of all the
possible causal factors of an event might lead to crisp causal understanding.
However, knowledge of at least some causal effects is inherently inexact and
imprecise. It is also unlikely that complete knowledge of all possible factors
can be known for many subjects. Consequently, causal knowledge is inherently
incomplete and inexact.

Commonsense world understanding deals with imprecision, uncertainty
and imperfect knowledge. Even if the precise elements are unknown, people
recognize that a complex of elements usually causes a particular effect. Causal
complexes are groupings of finer-grained causal relations into a larger-grained
causal object. It may not be known what events are in the complex; or, what
constraints and laws the complex is subject to. Potentially, commonsense rea-
soning can work with imprecise causal complexes.

The details underlying an event may or may not be precisely known. In-
stead of being concerned with all of the fined grained detail, a better approach
may be to incorporate granulation using rough sets and/or fuzzy sets to soften
the need for preciseness. And then accept impreciseness in the description.
Each complex can be considered to be a granule. Larger complexes can be
decomposed into smaller, finer-grained complexes.

Larger-grained causal objects are often more imprecise than some of the
components that are collected into the larger-grained object. Some compo-
nents of a larger-grained causal object may be precisely known, while others
maybe somewhat imprecise, and others unknown. The larger the grain, the
greater is the likelihood that there might be missing or unknown components.
How to evaluate the impreciseness of a larger-grained causal object when the
impreciseness of the underlying cascade of components is not clear.

Usually, commonsense reasoning is more successful in reasoning about a
fewer large-grained events than many fine-grained events. However, the larger-
grained causal objects are necessarily more imprecise than some of their com-
ponents. A satisficing solution might be to develop large-grained solutions and
then only go to the finer-grain when the impreciseness of the large-grain is
unsatisfactory.

Causality is often imprecise and granular. Methods and theories accom-
modating both imprecision and granularity need to be developed and refined.
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Summary. Data mining (DM) and knowledge discovery are intelligent tools that
help to accumulate and process data and make use of it. We review several existing
frameworks for DM research that originate from different paradigms. These DM
frameworks mainly address various DM algorithms for the different steps of the
DM process. Recent research has shown that many real-world problems require
integration of several DM algorithms from different paradigms in order to produce
a better solution elevating the importance of practice-oriented aspects also in DM
research. In this chapter we strongly emphasize that DM research should also take
into account the relevance of research, not only the rigor of it. Under relevance of
research in general, we understand how good this research is in terms of the utility
of its results. This chapter motivates development of such a new framework for DM
research that would explicitly include the concept of relevance. We introduce the
basic idea behind such framework and propose one sketch for the new framework
for DM research based on results achieved in the information systems area having
some tradition related to the relevance aspects of research.

1 Introduction

Data mining (DM) and knowledge discovery are intelligent tools that help
to accumulate and process data and make use of it [13]. DM bridges many
technical areas, including databases, statistics, machine learning, and human-
computer interaction. The set of DM processes used to extract and verify
patterns in data is the core of the knowledge discovery process [40]. These
processes include data cleaning, feature transformation, algorithm and para-
meter selection, and evaluation, interpretation and validation (Fig. 1).
M. Pechenizkiy et al.: Does Relevance Matter to Data Mining Research?, Studies in Computa-

tional Intelligence (SCI) 118, 251–275 (2008)
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interpretation &

validation

Fig. 1. Data mining process (adapted from [40])

The idea of learning from data is far from being new. However, likely
due to the developments in the database management field and due to the
great increase of data volumes being accumulated in databases the interest in
DM has become very intense. Numerous DM algorithms have recently been
developed to extract knowledge from large databases. Currently, most research
in DM focuses on the development of new algorithms or improvement in the
speed or the accuracy of the existing ones [30].

Relatively little has been published about theoretical frameworks of DM.
A few theoretical approaches to DM were considered in [30]. A motivation for
DM foundations development, and requirements for a theoretical DM frame-
work were also considered in [30]: a theoretical framework should be simple
and easy to apply; it should contribute to DM algorithms and DM systems
development; it should be able to model typical DM tasks like clustering, clas-
sification and rule discovery; and it should recognize that DM is an iterative
and interactive process, where a user has to be involved.

In this chapter (in Sect. 2) we consider (1) several existing foundations-
oriented frameworks for DM based on statistical, data compression, machine
learning, philosophy of science, and database paradigms and (2) the most well-
known process-oriented frameworks, including Fayyad’s [13], CRISP-DM [6],
and Reinartz’s [37] frameworks. We consider their advantages and limitations
analyzing what these approaches are able to explain in the DM process and
what they do not. We believe that a reader will notice that each one of the
considered foundations-oriented DM frameworks is limited mainly to address
one particular type of DM algorithms or describe certain view on the nature of
DM. Process-oriented frameworks try to emphasize the issues of integration,
iteration, and interactivity in DM. However, none of the frameworks stress
the importance of relevance in DM research, i.e. they do not emphasize that
relevant and applicable results from real world point of view will be achieved.
In empirical type of research, relevance usually appears to be associated with
utility in practical applications. The so-called “richness of worldly realism” [31]
associated with relevance is opposed to “tightness of control” [31] so that at
the same level of knowledge they form an iso-epistemic curve representing the
fundamental trade-off [23].

In design-science type of research relevance of research is often associated
with the consideration of some business need(s), and related environment [19].

In this chapter we try to analyze whether relevance matters to DM research
from both perspectives.
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We need to acknowledge that some work has been done with regard to the
study of interestingness of discovered patterns in the context of association
rules mining (for example [38]). Yet, even within this particular area, it has
been fairly noticed in [5] that there is no consensus on how the interestingness
of discovered patterns should be measured, and that most of DM research
avoids this thorny way reducing interestingness to accuracy and comprehen-
sibility.

Disregarding the relevance issues, DM frameworks ignore also the issues
of DM artifact development and DM artifact use. Here and in the following
text by DM artifact we mean either “hard/technical” artifacts like DM model,
DM technique or its instantiation, collection of DM techniques that are part
of DM system or DM embedded solution, or “soft/social” artifacts like some
organizational, operational, ethical and methodological rules that focus on
different considerations of risks, costs, etc.

In Sect. 3 we first refer to the traditional information system (IS) frame-
work presented in [9] that is widely known in the IS community and is a syn-
thesis of many other frameworks considered before it. This framework takes
into account both the use and development aspects beside the technical ones
in the IS area. Further we consider more detailed IS frameworks from the use
and development perspectives.

In Sect. 4 we introduce our sketch for the new framework for DM research
based on the material included in Sects. 2 and 3. We strongly emphasize the
relevance aspect of DM research, trying not to neglect the rigor. This means
that beside the technological aspects also the organizational and human as-
pects should be equally taken into account. Thus, our framework for DM
research suggests a new turning point for the whole DM research area.

We conclude briefly in Sect. 5 with a short summary and further research
topics.

Some materials presented in this chapter are the results of our earlier
work [34–36].

2 Review of Some Existing Theoretical Frameworks
for DM

It this section we review basic existing foundations-oriented frameworks
for DM based on different paradigms, originating from statistics, machine
learning, databases, philosophy of science, and granular computing and the
most well-known process-oriented frameworks, including Fayyad [13], CRISP-
DM [6], and Reinartz’s [37] frameworks. We present our conclusions for these
groups of DM frameworks and then analyze the state of art in DM research
in general.
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2.1 Foundations(Theory)-Oriented Frameworks

Frameworks of this type are based mainly on one of the following paradigms:
(1) the statistical paradigms; (2) the data compression paradigm – “compress
the dataset by finding some structure or knowledge for it”; (3) the machine
learning paradigm – “let the data suggest a model” that can be seen as a
practical alternative to the statistical paradigms “fit a model to the data”;
(4) the database paradigm – “there is no such thing as discovery, it is all
in the power of the query language” [21]; and also the inductive databases
paradigm – “locating interesting sentences from a given logic that are true in
the database” [3].

The Statistical Paradigms

Generally, it is possible to consider the task of DM from the statistical point of
view, emphasizing the fact that DM techniques are applied to larger datasets
than it is commonly done in applied statistics [17]. Thus the analysis of ap-
propriate statistical literature, where strong analytical background is accu-
mulated, would solve most DM problems. Many DM tasks naturally may be
formulated in the statistical terms, and many statistical contributions may be
used in DM in a quite straightforward manner [16].

According to [7] there exist two basic statistical paradigms that are used
in theoretical support for DM. The first paradigm is so-called “Statistical ex-
periment”. It can be seen from three perspectives: Fisher’s version that uses
the inductive principle of maximum likelihood, Neyman–E.S. Pearson–Wald’s
version that is based on the principle of inductive behavior, and the Bayesian
version that is based on the principle of maximum posterior probability. An
evolved version of the “Statistical experiment” paradigm is the “Statistical
learning from empirical process” paradigm [39]. Generally, many DM tasks
can be seen as the task of finding the underlying joint distribution of variables
in the data. Good examples of this approach would be a Bayesian network or
a hierarchical Bayesian model, which give a short and understandable repre-
sentation of the joint distribution. DM tasks dealing with clustering and/or
classification fit easily into this approach.

The second statistical paradigm is called “Structural data analysis” and
can be associated with singular value decomposition methods, which are
broadly used, for example, in text mining applications.

A deeper consideration of DM and statistics can be found in [14]. Here, we
only want to point out that the volume of the data being analyzed and the
different educational background of researchers are not the most important
issues that constitute the difference between the areas. DM is an applied area
of science and limitations in available computational resources is a big issue
when applying results from traditional statistics to DM. An important point
here is that the theoretical framework of statistics is not concerned much
about data analysis as an iterative process that generally includes several
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steps. However, there are people (mainly with strong statistical background)
who consider DM as a branch of statistics, because many DM tasks may be
perfectly represented in terms of statistics.

The Data Compression Paradigm

The data compression approach to DM can be stated in the following way:
compress the dataset by finding some structure or knowledge within it, where
knowledge is interpreted as a representation that allows coding the data using
a fewer amount of bits. For example, the minimum description length (MDL)
principle [32] can be used to select among different encodings accounting for
both the complexity of a model and its predictive accuracy.

Machine learning practitioners have used the MDL principle in different
interpretations to recommend that even when a hypothesis is not the most
empirically successful among those available, it may be the one to be chosen
if it is simple enough. The idea is in balancing between the consistency with
training examples and the empirical adequacy by predictive success as it is,
for example, with accurate decision tree construction. Bensusan [2] connects
this to another methodological issue, namely that theories should not be ad
hoc, that is they should not simply overfit all the examples used to build it.
Simplicity is the remedy for being ad hoc both in the recommendations of the
philosophy of science and in the practice of machine learning.

The data compression approach has also connections with the rather old
Occam’s razor principle that was introduced in the fourteenth century. The
most commonly used formulation of this principle in DM is “when you have
two competing models which make exactly the same predictions, the one that
is simpler is better”.

Many (if not all) DM techniques can be viewed in terms of the data com-
pression approach. For example, association rules and pruned decision trees
can be viewed as ways of providing compression of parts of the data. Clus-
tering can also be considered as a way of compressing the dataset. There is
a connection with the Bayesian theory for modeling the joint distribution –
any compression scheme can be viewed as providing a distribution on the set
of possible instances of the data.

The Machine Learning Paradigm

The machine learning (ML) paradigm, “let the data suggest a model”, can be
seen as a practical alternative to the statistical paradigm “fit a model to the
data”. It is certainly reasonable in many situations to fit a small dataset to a
parametric model based on a series of assumptions. However, for applications
with large volumes of data under analysis the ML paradigm may be beneficial
because of its flexibility with a nonparametric, assumption-free nature.

We would like to focus here on the constructive induction approach. Con-
structive induction is a learning process that consists of two intertwined
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phases, one of which is responsible for the construction of the “best” rep-
resentation space and the second concerns generating hypotheses in the found
space [33]. Constructive induction methods are classified into three categories:
data-driven (information from the training examples is used), hypothesis-
driven (information from the analysis of the form of intermediate hypothe-
sis is used) and knowledge-driven (domain knowledge provided by experts is
used) methods. Any kind of induction strategy (implying induction, abduc-
tion, analogies and other forms of non-truth preserving and non-monotonic
inferences) may potentially be used. However, the focus here is usually on
operating higher-level data-concepts and theoretical terms rather than pure
data.

Many DM techniques that apply wrapper/filter approaches to combine fea-
ture selection, feature extraction, or feature construction processes (as means
of dimensionality reduction and/or as means of search for better representa-
tion of the problem) and a classifier or other type of learning algorithm may
be considered as constructive induction approaches.

The Database Paradigm

A database perspective on DM and knowledge discovery was introduced
in [21]. The main postulate of their approach is: “there is no such thing as
discovery, it is all in the power of the query language”. That is, one can benefit
from viewing common DM tasks not as the dynamic operations constructing
the new pieces of information, but as operations finding unknown (i.e. not
found so far) but existing parts of knowledge.

In [3] an inductive databases framework for the DM and knowledge discov-
ery in databases (KDD) modeling was introduced. The basic idea here is that
the data-mining task can be formulated as locating interesting sentences from
a given logic that are true in the database. Then knowledge discovery from
data can be viewed as querying the set of interesting sentences. Therefore the
term “an inductive database” refers to such a type of databases that contains
not only data but a theory about the data as well [3].

This approach has some logical connection to the idea of deductive data-
bases, which contain normal database content and additionally a set of rules
for deriving new facts from the facts already present in the database. This is a
common inner data representation. For a database user, all the facts derivable
from the rules are presented, as they would have been actually stored there.
In a similar way, there is no need to have all the rules that are true about the
data stored in an inductive database. However, a user may imagine that all
these rules are there, although in reality, the rules are constructed on demand.
The description of an inductive database consists of a normal relational data-
base structure with an additional structure for performing generalizations. It
is possible to design a query language that works on inductive databases. Usu-
ally, the result of a query on an inductive database is an inductive database
as well. Certainly, there might be a need to find a solution about what should
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be presented to a user and when to stop the recursive rule generation while
querying. We refer an interested reader to [3] for details.

Granular-Computing Approach

Generally, granular computing is a broad term covering theories, methodolo-
gies, and techniques that operate with subsets, classes, and clusters (called
granules) of a universe. Granular computing concept is widely used in com-
puter science and mathematics. Recently, Zadeh [42] reviewed the concepts
of fuzzy information granulation and considered it in the context of human
reasoning and fuzzy logic. Lin [28] proposed to use the term “granular comput-
ing” to label the computational theory of information granulation. In the same
paper Lin introduces a view on DM as a “reverse” engineering of database
processing. While database processing organizes and stores data according
to the given structure, DM is aimed at discovering the structure of stored
data. Lin defines automated DM as “a process of deriving interesting (to hu-
man) properties from the underlying mathematical structure of the stored
bits and bytes” [28]. Assuming that the underlying mathematical structure
of a database relation is a set of binary relations or a granular structure, Lin
considers DM as a processing of the granules or structure-granular comput-
ing. And then if there is no additional semantics, then the binary relations
are equivalence relations and granular computing reduces to the rough set
theory [28]. However, since in the DM process the goal is to derive also the
properties of stored data, additional structures are imposed. To process these
additional semantics, Lin introduces the notion of granular computing in DM
context [27].

Yao and Yao [41] applied the granular computing approach to machine
learning tasks focusing on covering and partitioning in the process of data
mining and showed how the commonly used ID3 and PRISM algorithms can
be extended with the granular computing approach.

The Philosophy of Science Paradigm

The categorization of subjectivist and objectivist approaches [4] can be con-
sidered in the context of DM. The possibility to compare nominalistic and
realistic ontological believes gives us an opportunity to consider data that
is under analysis as descriptive facts or constitutive meanings. The analysis
of voluntaristic as opposed to deterministic assumptions about the nature of
every instance constituting the observed data directs our attitude and un-
derstanding of that data. One possibility is to view every instance and its
state as determined by the context and/or a law. Another position consists
in consideration of each instance as autonomous and independent. An episte-
mological assumption about how a criterion to validate knowledge discovered
(or a model that explains reality and allows making predictions) can be con-
structed may impact the selection of appropriate DM technique. From the
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positivistic point of view such a model-building process can be performed
by searching for regularities and causal relationships between the constitutive
constructs of a model. And anti-positivism suggests analyzing every individual
observation trying to understand it and making an interpretation. Probably
some of case-based reasoning approaches can be related to anti-positivism’s
vision of the reality.

An interesting difference in the views on reality can be found considering
ideographic as opposed to nomothetic methodological disputes. The nomo-
thetic school does not see the real world as a set of random happenings. And
if so, there must be rules that describe some regularities. Thus, nomothetic
sciences seek for establishing abstract (general) laws that describe indefinitely
repeatable events and processes. On the contrary, the ideographic sciences are
aimed to understand unique and non-recurrent events. They have connection
to the ancient doctrine that “all is flux”. If everything were always changing,
then any generalization intending to be applied for two or more presumably
comparable phenomena would never be true. And “averages” of some mea-
sures (from the nomothetic way of thinking) usually is not able to represent
the behaviour of a single event or entity.

Conclusion on the Theory-Oriented Frameworks

The reductionist approach of viewing DM in terms of one of the theory-
oriented frameworks has advantages in strong theoretical background, and
easy-formulated problems. The statistics, data compression and constructive
induction paradigms have relatively strong analytical background, as well as
connections to the philosophy of science. In addition to the above frameworks
there exists an interesting microeconomic view on DM [26], where a utility
function is constructed and it is tried to be maximized. The DM tasks concern-
ing processes like clustering, regression and classification fit easily into these
approaches. Other small-scale yet valuable study related to analysis of interest-
ingness measures of association rules is worth mentioning. Carvalho et al. [5],
recognizing the potential gap in estimates of interestingness obtained with
objective data-driven measures and true subjective evaluation performed by
human, investigated the effectiveness of several data-driven rule interestingness
measures by comparing them with the subjective real human interest.

One way or another, we can easily see the exploratory nature of the frame-
works for DM. Different frameworks account for different DM tasks and allow
preserving and presenting the background knowledge. However, what seems
to be lacking in most theory-oriented approaches, are the ways for taking the
iterative and interactive nature of the DM process into account [30], and a
focus on the utility of DM.

2.2 Process-Oriented Frameworks

Frameworks of this type are known mainly because of works [6,13]. They view
DM as a sequence of iterative processes that include data cleaning, feature
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transformation, algorithm and parameter selection, and evaluation, interpre-
tation and validation.

Fayyad’s View on the Knowledge Discovery Process

Fayyad [13] define KDD as “the nontrivial process of identifying valid, novel,
potentially useful, and ultimately understandable patterns in data”. Before
focusing on discussion of KDD as a process, we would like to make a note
that this definition given by Fayyad is very capacious, it gives an idea what
is the goal of KDD and in fact it is cited in many DM related papers in
introductory sections. However, in many cases those papers have nothing to
do with novelty, interestingness, potential usefulness and validity of patterns
which were discovered or could be discovered using proposed in the papers
DM techniques.

KDD process comprises many steps, which involve data selection, data pre-
processing, data transformation, DM (search for patterns), and interpretation
and evaluation of patterns (Fig. 2) [13]. The steps depicted start with the raw
data and finish with the extracted knowledge, which was acquired as a result
of the KDD process. The set of DM tasks used to extract and verify patterns
in data is the core of the process. DM consists of applying data analysis and
discovery algorithms for producing a particular enumeration of patterns (or
models) over the data. Most of current KDD research is dedicated to the DM
step. We would like to clarify that according to this scheme, and some other
research literature, DM is commonly referred to as a particular phase of the
entire process of turning raw data into valuable knowledge, and covers the
application of modeling and discovery algorithms. In industry, however, both
knowledge discovery and DM terms are often used as synonyms to the entire
process of getting valuable knowledge.

Nevertheless, this core process of search for potentially useful patterns
typically takes only a small part (estimated at 15–25%) of the effort of the
overall KDD process. The additional steps of the KDD process, such as data
preparation, data selection, data cleaning, incorporating appropriate prior
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Fig. 2. Basic steps of the KDD process [13]



260 M. Pechenizkiy et al.

knowledge, and proper interpretation of the results of mining, are also essential
to derive useful knowledge from data.

In our opinion the main problem of the framework presented in Fig. 2 is
that all KDD activities are seen from “inside” of DM having nothing to do
with the relevance of these activities to practice (business).

CRISP-DM: CRoss Industry Standard Process for Data Mining

The life cycle of a DM project according to the CRISP-DM model (Fig. 3) con-
sists of six phases (though the sequence of the phases is not strict and moving
back and forth between different phases normally happens) [6]. The arrows
indicate the most important and frequent dependencies between phases. And
the outer circle in the figure denotes the cyclic nature of DM – a DM process
continues after a solution has been deployed. If some lessons are learnt dur-
ing the process, some new and likely more focused business questions can be
recognized and subsequently new DM processes will be launched.

We will not stop at any phase of CRISP-DM here since it has much over-
lapping with Fayyad’s view and with the framework that is considered in the
next section and discussed in more details. However, we would like to notice
that the KDD process is put now in a way into some business environment
that is represented by the business understanding and deployment blocks.

Deployment

Evaluation

Modelling

Data
Preparation

Data
Understanding

Business
Understanding

Data

Fig. 3. CRoss industry standard process for data mining [6]
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Reunartz’s View

Reinartz’s framework [37] follows CRISP-DM with some modifications
(Fig. 4), introducing a data exploration phase and explicitly showing the
accumulation of the experience achieved during the DM/KDD processes. The
business-understanding phase is aimed to formulate business questions and
translate them into DM goals. The data-understanding phase aims at analyz-
ing and documenting the available data and knowledge sources in the business
according to the formulated DM goals and providing initial characterization
of data. The data preparation phase starts from target data selection that is
often related to the problem of building and maintaining useful data ware-
houses. After selection, the target data is preprocessed in order to reduce the
level of noise, preprocess the missing information, reduce data, and remove
obviously redundant features. The data exploration phase aims at providing
the first insight into the data, evaluate the initial hypotheses, usually, by
means of descriptive statistics and visualization techniques. The DM phase
covers selection and application of DM techniques, initialization and further
calibration of their parameters to optimal values. The discovered patterns
that may include a summary of a subset of the data, statistical or predictive
models of the data, and relationships among parts of the data are locally
evaluated. The evaluation and interpretation phase aims at analyzing the
discovered patterns, determining the patterns that can be considered as the
new knowledge, and drawing conclusions about the whole discovery process
as well. The deployment phase aims at transferring DM results that meet the
success criteria into the business [37].

We think that the main problem with CRISP-DM and Reinartz’s frame-
works is that they assume that the DM artifact is ready to be applied and easy
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Fig. 4. Knowledge discovery process: from problem understanding to deployment
(adapted from [37])
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to be deployed and used. Therefore, the development and use processes are
almost disregarded in these frameworks though being embedded in an implicit
way. Consequently, it is hard to see what the most crucial success factors of
a DM project are.

2.3 Conclusions on the Considered Frameworks

With respect to foundations-oriented frameworks, some DM researchers argue
for the lack of an accepted fundamental conceptual framework or a paradigm
for DM research and consequently for the need of some consensus on the
fundamental concepts. Therefore, they try to search for some mathematical
bricks for DM. And the approaches based on granular and rough computing
present good examples of such attempts. However, others may think that
the current diversity in theoretical foundations and research methods is a
good thing and also it might be more reasonable to search for an umbrella-
framework that would cover the existing variety.

Another direction of research could lie in addressing data to be mined,
DM models, and reality views through the prism of the philosophy of science
paradigm, that includes consideration of nominalistic vs. realistic ontologi-
cal beliefs, voluntaristic vs. deterministic assumptions about the nature of
every instance constituting the observed data, subjectivist vs. objectivist ap-
proaches to model construction, ideographic vs. nomothetic view at reality;
and epistemological assumptions about how a criterion to validate knowledge
discovered can be constructed.

SPSS whitepaper [6] states that “Unless there’s a method, there’s mad-
ness”. It is accepted that just by pushing a button someone should not expect
useful results to appear. An industry standard to DM projects CRISP-DM
is a good initiative and a starting point directed towards the development of
DM meta-artifact (methodology to produce DM artifacts). However, in our
opinion it is just one guideline, which is in too general-level, that every DM
developer follows with or without success to some extent. Process-oriented
frameworks try to address the iterativeness and interactiveness of the DM
process. However, the development process of DM artifact and use of that
artifact are poorly emphasized.

Lin in Wu et al. [40] notices that a new successful industry (as DM) can
follow consecutive phases (1) discovering a new idea, (2) ensuring its ap-
plicability, (3) producing small-scale systems to test the market, (4) better
understanding of the new technology and (5) producing a fully scaled system.
At the present moment there are several dozens of DM systems, none of which
can be compared to the scale of a DBMS system. This fact according to Lin
indicates that we are still at the third phase with the DM area.

Further Lin in Wu et al. [40] claims that the research and development
goals of DM are quite different, since research is knowledge-oriented while
development is profit-oriented. Thus, DM research is concentrated on the de-
velopment of new algorithms or their enhancements but the DM developers in



Does Relevance Matter to Data Mining Research? 263

domain areas are aware of cost considerations: investment in research, product
development, marketing, and product support. We agree that this clearly de-
scribes the current state of the DM field. However, we believe that the study of
the DM development and DM use processes is equally important as the tech-
nological aspects and therefore such research activities are likely to emerge
within the DM field. In fact, the study of development and use processes was
recognized to be of importance in the IS field many years ago, and it has
resulted in introduction of several interesting IS research frameworks, some of
which are discussed in the next section.

3 Information Systems Research Frameworks

Information Systems (IS) are powerful instruments for organizational prob-
lem solving through formal information processing [29]. It is very common,
especially in the US to use the term Management Information Systems (MIS)
as a synonym for IS. From the first definitions of MIS in the first half of 1970s
it has been developed as a discipline of its own having unique identity, core
journals and conferences, and an official association with thousands members
worldwide [1]. During the years different IS research frameworks have been
defined and used. We represent in this chapter first the very traditional ones
and then more resent ones for the subareas of IS use and development.

3.1 The Traditional Information Systems Perspective

The traditional framework presented by Ives et al. [22] is widely known in the
IS community. They used five earlier research models as a base when they
developed their own (Fig. 5). In their framework an IS is considered in an or-
ganizational environment that is further surrounded by an external environ-
ment. According to their framework an IS itself includes three environments:
a user environment, an IS development environment, and an IS operations
environment. There are accordingly three processes through which an IS has
interaction with its environments: the use process, the development process,
and the operation process.

The external environment [22] includes legal, social, political, cultural,
economic, educational, resource and industry/trade considerations and the
organizational environment [22] is marked by the organizational goals, tasks,
structure, volatility, and management philosophy/style. In their model the
user environment is including and surrounding the primary users of the IS,
the development environment consists of wide range of things from the tech-
nical (as IS development methods and techniques) to the organizational
(as organization and management of IS development and maintenance) and
human-oriented ones (as IS design personnel and their characteristics). The
IS operations environment [22] incorporates the resources necessary for IS op-
erations. The major components include software, hardware, database, pro-
cedures/documentation, organization and management of IS operations, and
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Fig. 5. A framework for IS research [22]

the operations personnel. However, in this chapter, we focus on the user and
IS development environments and the corresponding processes.

The research framework is thus very broad resulting in various different
research questions and settings. The most extensive ones relate to the effects
of IS onto its organizational and external environments. Many research par-
adigms have been suggested and used in the IS discipline. Currently, Hevner
et al. [19] suggest that two paradigms should be recognized within the re-
search in the IS discipline. These are the behavioural-science paradigm and
the design-science paradigm. According to the authors, the behavioural science
paradigm tries “to develop and verify theories that explain or predict human
or organizational behaviour”. This paradigm is naturally the most broadly
applied in the use process related topics. They continue that “The design-
science paradigm seeks to extend the boundaries of human and organizational
capabilities by creating new and innovative artifacts” [19]. This second para-
digm is the most natural in the IS development related topics where the new
user and development environments are planned and experimented with. Some
others as e.g. Iivari et al. [20] call the IS development process related research
as a constructive type of research because it is based on the philosophical belief
that development always involves creation of some new artifacts – conceptual
(models, frameworks) or more technical artifacts (software implementations).

3.2 The IS Success Model

As one of IS user environment related models we represent in this section
the IS success model developed by DeLone and McLean in 1992 [10]. They
report in their ten-year update paper [11] that it has gained wide popularity
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with nearly 300 articles published in refereed journals referencing their orig-
inal paper. Because this IS success model is so well known we picked it up
as an example of user environment related IS research models. An adapted
version of the model is presented in Fig. 6 (it is very similar to the one in
http://business.clemson. edu/ISE/).

The original model was developed to “aid in the understanding of the pos-
sible causal interrelationships among the dimensions of success and to provide
a more parsimonious exposition of the relationships”. The investments into
information systems are huge every year. Thus it is natural to try to evaluate
the effectiveness of those expenditures. The model raises information quality,
service quality, and systems quality as key ingredients behind the user satis-
faction and the use of IS. These have been found to have essential positive
effect to individual impact leading to the organizational impact of information
systems.

3.3 The IS Development Environment

The IS development environment is needed to develop and maintain the IS
in use. Beside organizing and managing the development and maintenance
processes these processes require several kinds of resources: not only the tech-
nical ones, as methods and techniques, but also human as motivated people
with good enough education for the job. It is natural that in this compound
human, organization, and technology complex there is a need to have diver-
sified research methods. One such proposal that has been referred to quite
often in the IS literature is the one represented below.

In [25] system development itself is considered as a central part of a multi-
methodological information systems research cycle (Fig. 7).

Theory building involves discovery of new knowledge in the field of study,
however it rarely contributes directly to practice. Nevertheless, the new theory
often (if not always) needs to be tested in the real world to show its valid-
ity, recognize its limitations and make refinements according to observations
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made during its application. According to reasoning research methods can be
subdivided into basic and applied research, as naturally both are common for
any large system development project. A proposed theory leads to the devel-
opment of a prototype system in order to illustrate the theoretical framework
on the one hand, and to test it through experimentation and observation with
subsequent refinement of the theory and the prototype in an iterative manner.
Such a view presents the framework of IS as a complete, comprehensive and
dynamic research process. It allows multiple perspectives and flexible choices
of methods to be applied during different stages of the research process.

In fact, although Dunkel et al. [12] concluded that there is a need and
opportunity for computing systems research and development in the context
of DMS development, almost 9 years later, to the best of our knowledge there
are no significant research papers published in this direction.

4 Our New Research Framework for DM Research

It was mentioned in Sect. 2 that a new successful industry can follow five
consecutive phases and that DM is presumably currently at the third phase.
The IS discipline on the other hand has during its 30+ year existence been
able to develop to the fifth level. One of the key aspects helping the IS area
development might have been that it has taken seriously into account human
and organizational aspects beside the technological ones. This has raised its
relevance and thus attracted more broad interests to support research in the
IS area. We see raising the relevance of DM research as an essential aspect
towards its more broad applicability, leading to new previously unknown re-
search topics in the DM area.
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In this section we suggest a new research framework which includes parts
having similarities with the research frameworks applied in the IS discipline.
Analogically with the IS research discussion in Sect. 3 we distinguish three
environments for a DM system (DMS): the user, development, and operation
environment but discuss in this chapter only the first two. We start from these
environments in Sects. 4.1 and 4.2 and finish with presenting our new research
framework for DM in Sect. 4.3.

4.1 The DMS User Environment

Piatetsky-Shapiro in Wu et al. [40] gives a good example that characterizes
the whole area of current DM research: “we see many papers proposing in-
cremental refinements in association rules algorithms, but very few papers
describing how the discovered association rules are used”. DM is fundamen-
tally application-oriented area motivated by business and scientific needs to
make sense of mountains of data [40]. A DMS is generally used to support
or do some task(s) by human beings in an organizational environment (see
Fig. 8) both having their desires related to DMS. Further, the organization has
its own environment that has its own interest related to DMS, for example
that privacy of people is not violated.

A similar approach to that with IS is needed with DMS to recognize the
key factors of successful use and impact of DMS both at the individual and
organizational levels. Questions like (1) how the system is used, and also sup-
ported and evolved, and (2) how the system impacts and is impacted by the
contexts in which it is embedded are important also in the DMS context. The
first efforts in that direction are the ones presented in the DM Review maga-
zine [8,18], referred below. We believe that such efforts should be encouraged
in DM research and followed by research-based reports.

Coppock [8] analyzed, in a way, the failure factors of DM-related projects.
In his opinion they have nothing to do with the skill of the modeler or the
quality of data. But those do include these four (1) persons in charge of the
project did not formulate actionable insights, (2) the sponsors of the work

Organization

DMS

DM Task(s)

Environment

Fig. 8. DMS in the kernel of an organization
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did not communicate the insights derived to key constituents, (3) the results
don’t agree with institutional truths, and (4) the project never had a sponsor
and champion. The main conclusion of Coppock’s analysis is that, similar to
an IS, the leadership, communication skills and understanding of the culture
of the organization are not less important than the traditionally emphasized
technological job of turning data into insights.

Hermiz [18] communicated his beliefs that there are four critical success
factors for DM projects (1) having a clearly articulated business problem that
needs to be solved and for which DM is a proper tool; (2) insuring that the
problem being pursued is supported by the right type of data of sufficient qual-
ity and in sufficient quantity for DM; (3) recognizing that DM is a process
with many components and dependencies – the entire project cannot be “man-
aged” in the traditional sense of the business word; (4) planning to learn from
the DM process regardless of the outcome, and clearly understanding, that
there is no guarantee that any given DM project will be successful. Thus it
seems possible that there are also some DMS specific questions that have not
maybe been considered from those viewpoints in the IS discipline.

Lin in Wu et al. [40] notices that in fact there have been no major impacts
of DM on the business world echoed. However, even reporting of existing
success stories is important. Giraud-Carrier [15] reported 136 success stories
of DM, covering nine business areas with 30 DM tools or DM vendors referred.
Unfortunately, there was no deep analysis provided that would summarize or
discover the main success factors and the research should be continued.

4.2 The DMS Artifact Development Environment

If a stated research problem includes a verb like introduce, improve, maintain,
cease, extend, correct, adjust, enhance and so on, the study likely belongs to
the area of constructive research. These are the kind of actions that researchers
in the area of DM perform, when they are developing new theories and their
applications as new artifacts to the use of persons and organizations. When a
researcher him/herself is acting also as a change agent developing the artifact
to an organization he is applying the action research approach.

But how to conceive, construct, and implement an artifact? It is obvious
that in order to construct a good artifact background knowledge is needed
both about the artifact’s components, that are the basic data mining tech-
niques in the DM context and about components’ cooperation, that are com-
monly selection and combination techniques in the DM context. Beside this
the developer needs to have enough background knowledge about the human
and organizational environment where the artifact is going to be applied. As
discussed in Sect. 3 the design science approach is the one concentrating on
this kind of research questions. Both these: the action research and design
science approach to artifact creation and the evaluation process [24] are pre-
sented in Fig. 9.
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As discussed in Sect. 3 with Nunamaker’s multimethodological approach it
is essential that artifacts developed are also experimented with and analyzed
using observation type of research. The evaluation process is a key part of any
constructive research. This is also true when the artifact developed during
research is a DMS (or its prototype). Usually, the experimental approach is
used to evaluate a DM artifact. The experimental approach, however, can be
beneficial for theory testing and can result in new pieces of knowledge thus
contributing to the theory-creating process, too.

A “goodness” criterion of a built theory or an artifact can be multidimen-
sional and it is sometimes difficult to be defined because of mutual dependen-
cies between the compromising variables. However, it is more or less easy to
construct a criterion based on such estimates as accuracy of a built model and
its performance. On the other hand, it is more difficult or even impossible to
include into a criterion such important aspects as interpretability of the ar-
tifact’s output because estimates of such kind are usually subjective and can
be evaluated only by the end-users of a system. This does not eliminate the
necessity to research also these topics which are important for users to see the
results having relevance.

4.3 New DM Research Framework

Heavner et al. [19] presented a conceptual framework for understanding, con-
ducting and evaluation of the IS research. We adapt their framework to the
context of DM research (see Fig. 10). The framework combines together the
behavioral-science and design-science paradigms and shows how research rigor
and research relevance can be explained, evaluated, and balanced.

We follow Hevner et al. [19] with the description of the figure, empha-
sizing issues important in DM. The environment defines not only the data
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that represents the problem to be mined but people, (business) organizations,
and their existing or desired technologies, infrastructures, and development
capabilities. Those include the (business) goals, tasks, problems, and oppor-
tunities that define (business) needs, which are assessed and evaluated within
the context of organizational strategies, structure, culture, and existing busi-
ness processes. Those research activities that are aimed at addressing business
needs contribute to the relevance of research.

Driven by the business needs, DM research can be conducted in two com-
plementary phases. Behavioral science would guide research through the de-
velopment and justification of theories that describe, explain or predict some
phenomena associated with the business need being addressed. Design science
enables the building and evaluation of artifacts being developed to address
the business need. It is generally accepted that the goal of behavioral science
research is truth and the goal of design science research is utility. However,
Hevner et al. [19] were likely the first who argued that truth and utility are in-
separable – “truth informs design and utility informs theory”. They conclude
that “an artifact may have utility because of some as yet undiscovered truth.
A theory may yet to be developed to the point where its truth can be incorpo-
rated into design. In both cases, research assessment via the justify/evaluate
activities can result in the identification of weaknesses in the theory or artifact
and the need to refine and reassess. The refinement and reassessment process
is typically described in future research directions.” [19]
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The knowledge base provides foundations and methodologies for research
(and development) activities. Prior DM research and development and re-
sults from reference disciplines (statistics, machine learning, AI, etc.) provide
foundational theories, frameworks, models, methods, techniques and their in-
stantiations used in the develop/build phase of research. Methodologies should
provide guidelines and techniques for the justify/evaluate phase. Rigor is
achieved by appropriately applying existing foundations and methodologies.

5 Discussion and Conclusions

In this chapter we first considered several existing frameworks for DM and
their advantages and limitations. Second, we considered a traditional IS frame-
work and two subframeworks: one for the IS user environment and another
for the IS development environment. Based on these two we suggested our
new research framework for DM. It imports research questions and topics
from the IS discipline into the DM area trying to take benefit of the fact that
the long developed IS discipline can help the maturing DM research area to
raise the relevance of its research and thus its practical importance for people,
organizations, and their surroundings.

Figure 11a presents our understanding of the current situation with DM
research. The left triangle presents the current DM practice situation where
almost merely the relevance aspects, i.e. utility are dominating. The right
triangle presents the current DM research situation that is heavily dominated
by rigor aspects and almost no attention is paid to DM research relevance. The
lower arrow between DM research and practice is solid because some amount of
rigor DM research results are flowing to the practice at least through software
applications. The upper arrow is dashed because our understanding of the
situation is that too seldom DM research takes practice related aspects into

Rigor

Relevance

Relevance

Rigor

Relevance

Rigor

R & R

DM Practice DM Research DM Research that does include
relevance issues

(a) Current disbalance in DM research (b) Balanced DM research

Fig. 11. Rigor and relevance aspects of DM research
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account and thus the exchange between DM practice and DM research is not
as fruitful as it might be.

Even those relevance issues that are recognized within community of DM
practitioners or let us say the (current or potential) users of DM systems, DM
solutions and DM services, are not studied appropriately from scientific point
of view and therefore we can rarely see the transfer of scientific knowledge (and
in many cases even valuable feedback) from DM practice to DM research.

Thus, our believe is that within DM research community there should be
DM research dealing purely with rigor issues, DM research dealing mostly with
relevance issues and, likely the most challenging part of DM research efforts
dealing with rigor/relevance aspects (Fig. 11b). With regard to this belief we
recognize two important aspects (1) those who practice DM should be well-
motivated to share their expertise and scientific insights into relevance issues
in DM, and that is not less important, (2) DM research community should be
interested in conducting and publishing academic research of relevance issues
in DM. However, our analysis show that currently DM research often does take
relevance into account only from empirical research point of view with regard
to possible variety of dataset characteristics, but in most of the cases does not
account for many important environment aspects (people, organization etc),
i.e. relevance concept originating from design science.

We considered DMSs as a special kind of ISs which have not yet been
considered closely enough, in our opinion, from the use and development per-
spectives. After discussing these two DMS environments, we presented our
new DM research framework, which aims at better balancing between the
rigor and relevance constituents of research also in the DM area.

In this work we have not provided any examples to demonstrate the ap-
plicability of the proposed framework. We have not tried also to describe all
the essential issues at the very detailed level, leaving this maturation for fur-
ther research. However, we believe that our work could be helpful in turning
the focus of DM research into a more balanced direction. We see this im-
portant from the point of view of raising DM first among those technologies
which are able to produce competitive advantage and later to be developed
to be one of everyday mainline technologies.

We hope that our work could raise a new wave of interest to the foundations
of DM and to the analysis of the DM field from different perspectives, maybe
similar to IS and ISD. This can be achieved by the building of knowledge
networks across the field boundaries (DM and IS), e.g. by organizing work-
shops that would include such important topics as DM success, DM costs, DM
risks, DM life cycles, methods for analyzing systems, organizing and codifying
knowledge about DM systems in organizations, and maximizing the value of
DM research. We hope also that meta-level research in DM, directed to the
study of current situation and trends and possibilities of further development
of the field (as our study does) will be recognized as important and valuable
type of research.
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Summary. The ability to discover useful knowledge hidden in large volumes of
data and to act on that knowledge is becoming increasingly important in today’s
competitive world. Action rules were proposed to help people analyze discovered
patterns and develop a workable strategy for actions [10]. A formal definition of an
action rule was independently proposed in [4]. These rules have been investigated
further in [11,12].

Action rules are constructed from certain pairs of classification rules extracted
earlier from the same decision table, each one defining different preferable classes.
Attributes in a database are divided into two groups: stable and flexible. Flexible
attributes provide a tool for making hints to a user what changes within some
values of flexible attributes are needed to re-classify group of objects, supporting
action rule, to another decision class.

Classical action rules only involve flexible attributes listed in both classification
rules from which an action rule is constructed. The values of the common stable
attributes listed in both rules are used to create an action rule but they are not listed
in the expression describing that rule. Because of that, there are many options in
actual real-life implementations of them. In this chapter, we propose a new class of
action rules, called E-Action rules, to solve this issue. Our experience shows that an
E-Action rule is more meaningful than a classical action rule or an extended action
rule [11] because it is easy to interpret, understand, and apply by users.

1 Introduction

The knowledge extracted from data can provide a competitive advantage in
support of decision-making. Finding useful rules is an important task of knowl-
edge discovery from data. People usually evaluate a pattern value based on
its interestingness. There are two types of interestingness measure: objective
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and subjective (see [1,6,13,14]). Subjective measure is when the judgment is
made by people and objective measure is basically when the judgment is made
by computer derived methods or strategies. Generally, they evaluate the rules
based on their quality and similarity between them.

A rule is deemed actionable, if users can take action to gain an advantage
based on that rule [6]. This definition, in spite of its importance, is too vague
and it leaves open door to a number of different interpretations of action-
ability. In order to narrow it down, a new class of rules (called action rules)
constructed from certain pairs of classification rules, has been proposed in [10].
A formal definition of an action rule was independently proposed in [4]. These
rules have been investigated further in [11].

Classical action rules involve only flexible attributes listed in both clas-
sification rules from which the action rule is constructed. Extended action
rule is a significant improvement of a classical action rule because of the con-
straints placed on values of attributes listed only in one of these rules. But,
still extended action rules do not include the values of common stable at-
tributes listed in rules from which they are constructed. This implies that the
domain of an action rule does not reflect correctly to what class of objects it
can be successfully applied. To solve this problem, a new class of rules, called
E-Action rules, is proposed. E-action rules extract actionability knowledge
among pairs of classification rules in a more accurate way.

E-action rules are useful is many fields, including medical diagnosis and
business. In medical diagnosis, classification rules can explain the relationships
between symptoms and type of sickness as well as predict the diagnosis of a
new patient. Extended action rules are useful in providing suggestions for
modifying some symptoms in order to recover from an illness. In business,
classification rules can distinguish the good customers from the bad ones.
E-action rules can provide specific actions that can be taken by decision-
makers to re-classify customers.

The strategy for generating action rules proposed in [11] is significantly
improved in the system DEAR-2 presented in this chapter. It consists of three
steps. The first step is to partition the rules into equivalence classes with
respect to the values of the decision attribute. In the second step, we use a
recursive algorithm to dynamically build a tree structure partitioning each
class of rules based on values of their stable attributes. When any two rules
have the same stable attribute values, they are placed in the same class. In the
final step, instead of comparing all pairs of rules, only pairs of rules belonging
to some of these equivalent classes have to be compared in order to construct
extended action rules. This strategy significantly reduces the number of steps
needed to generate action rules in comparison to the strategy (called DEAR)
proposed in [11].

In this chapter, we present a new definition of E-Action rules to enhance
the action rule and the extended action rules.
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2 Motivation for E-Action Rules

To give an example justifying the need of action rules, let us assume that
a number of customers decided to close their accounts at one of the banks.
To find the cause of their action, possibly the smallest and the simplest set
of rules describing all these customers is constructed. Let us assume that
{Nationality, AccountType} is a list of stable attributes, {InterestRate} is
a flexible attribute, and {Status} is a decision attribute. Additionally, we
assume that the extracted classification rule r1 is represented as

[Nationality, Asian] ∧ [InterestRate, 1%] −→ [Status, closedAccount].

Next,we search for a new set of rules, describing groups of customers who
did not leave the bank. A rule r2 is represented as

[Nationality, Asian] ∧ [AccountType, savings]∧
[InterestRate, 1.5%] −→ [Status, openAccount].

The classification parts of both rules are quite similar. Their common
stable attribute Nationality has the same value Asian. Now, by comparing
these two rules, we want to find out not only the cause why these accounts stay
closed for certain customers but also formulate an action that, if undertaken by
the bank, may influence these customers to re-open their accounts. A classical
extended action rule is constructed from these two rules and is represented
by the expression:

[AccountType, savings] ∧ [InterestRate, 1% −→ 0.5%]

=⇒ [Status, closedAccount −→ openAccount].

It says: if a customer has savings account and its current interest rate of
1% is increased to 1.5%, then he may move from a group of closed account
customers to a group that keeps their accounts open. However, if the Nation-
ality of a closed account customer is not an Asian then this customer will
not be supported by that rule. Therefore, even if the bank extends an offer of
1.5% interest rate to a closed account customer, then it may not be able to
persuade this customer to re-open his account and not move to another bank.
To solve this problem, we should list the values of common stable attributes
in that rule. The corresponding (r1, r2) E- action rule will be:

[(Nationality, Asian) ∧ (AccountType, savings)∧
(InterestRate, 1% −→ 0.5%) =⇒ ([Status, closedAccount−→openAccount)].

It should be read: If an Asian has a savings account and its current in-
terest rate of 1% is increased to 1.5%, then he may move from a group of
closed account customers to a group that keeps their accounts open. This rep-
resentation makes sense as action strategies are collected from a data set and
represent the changeable behaviors under different conditions. Such an action
is stimulated by an extended action rule and it is seen as a precise suggestion
for actionability of rules. This E-action rule may say that if the bank offers a
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1.5% interest rate to an Asian group of closed account customers, the offer
may entice these customers to re-open their accounts. Sending that offer by
regular mail or giving a call to all these customers are examples of an action
associated with that E-action rule.

3 Information System and Action Rules

An information system is used for representing knowledge. Its definition, pre-
sented here, is due to Pawlak [7].

By an information system we mean a pair S = (U,A), where:

• U is a nonempty, finite set of objects
• A is a nonempty, finite set of attributes i.e. a : U −→ Va is a function for

any a ∈ A, where Va is called the domain of a

Elements of U are called objects. In this chapter, for the purpose of clarity,
objects are interpreted as customers. Attributes are interpreted as features
such as, offers made by a bank, characteristic conditions etc.

We consider a special case of information systems called decision tables
[7–9]. In any decision table together with the set of attributes a partition
of that set into conditions and decisions is given. Additionally, we assume
that the set of conditions is partitioned into stable conditions and flexible
conditions. For simplicity reason, we assume that there is only one decision
attribute. Date of birth is an example of a stable attribute. The interest rate
on any customer account is an example of a flexible attribute as the bank can
adjust rates. We adopt the following definition of a decision table:

By a decision table we mean any information system S = (U,ASt ∪AFl ∪
{d}), where d �∈ ASt∪AFl is a distinguished attribute called the decision. The
elements of ASt are called stable conditions, whereas the elements of AFl are
called flexible conditions.

As an example of a decision table we take S=({x1, x2, x3, x4, x5, x6, x7, x8},
{a, c}∪{b}∪{d}) represented by Table 1. The set {a, c} lists stable attributes,

Table 1. Decision system

a b c d

x1 0 S 0 L
x2 0 R 1 L
x3 0 S 0 L
x4 0 R 1 L
x5 2 P 2 L
x6 2 P 2 L
x7 2 S 2 H
x8 2 S 2 H
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b is a flexible attribute and d is a decision attribute. Also, we assume that H
denotes a high profit and L denotes a low one.

In order to induce rules in which the THEN part consists of the decision
attribute d and the IF part consists of attributes belonging to ASt ∪AFl, for
instance LERS [5] can be used for rules extraction.

In order to efficiently extract rules when the number of attributes is large,
we can use sub-tables (U,B ∪ {d}) of S where B is a d-reduct (see [7]) in S.
The set B is called d-reduct in S if there is no proper subset C of B such
that d depends on C. The concept of d-reduct in S was introduced with a
purpose to induce rules from S describing values of the attribute d depending
on minimal subsets of ASt

⋃
AFl.

By L(r) we mean all attributes listed in the IF part of a rule r. For example,
if r1 = [(a1, 2) ∧ (a2, 1) ∧ (a3, 4) −→ (d, 8)] is a rule then L(r1) = {a1, a2, a3}.

By d(r1) we denote the decision value of that rule. In our example
d(r1) = 8. If r1, r2 are rules and B ⊆ ASt ∪ AFl is a set of attributes, then
r1/B = r2/B means that the conditional parts of rules r1, r2 restricted to
attributes B are the same. For example if r2 = [(a2, 1) ∗ (a3, 4) −→ (d, 1)],
then r1/{a2, a3} = r2/{a2, a3}.

In our example, we get the following optimal rules:

1. (a, 0) −→ (d, L), (c, 0) −→ (d, L)
2. (b,R) −→ (d, L), (c, 1) −→ (d, L)
3. (b, P ) −→ (d, L), (a, 2) ∗ (b, S) −→ (d,H)
4. (b, S) ∗ (c, 2) −→ (d,H)

Now, let us assume that (a, v −→ w) denotes the fact that the value of
attribute a has been changed from v to w. Similarly, the term (a, v −→ w)(x)
means that a(x) = v has been changed to a(x) = w. Saying another words,
the property (a, v) of object x has been changed to property (a,w).

Let S = (U,ASt ∪ AFl ∪ {d}) is a decision table and rules r1, r2 have
been extracted from S. The notion of action rule was introduced in [10]. Its
definition is given below. We assume here that:

• BSt is a maximal subset of ASt such that r1/BSt = r2/BSt

• d(r1) = k1, d(r2) = k2 and k1 ≤ k2
• (∀a ∈ [ASt ∩ L(r1) ∩ L(r2)])[a(r1) = a(r2)]
• (∀i ∈ p)(∀bi ∈ [AFl ∩ L(r1) ∩ L(r2)])[[bi(r1) = vi]&[bi(r2) = wi]]

By (r1, r2)-action rule on x ∈ U we mean the expression r:

[(b1, v1 −→ w1) ∧ (b2, v2 −→ w2) ∧ ... ∧ (bp, vp −→ wp)](x)
=⇒ [(d, k1 −→ k2)](x).

where (bj , vj → wj) means that the value of the jth flexible attribute b
has been changed from vj to wj .

The notion of an extended action rule was given in [11]. The following two
conditions have been added to the original definition of the action rule:
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• (∀i ≤ q)(∀ei ∈ [ASt ∩ [L(r2) − L(r1)]])[ei(r2) = ui]
• (∀i ≤ r)(∀ci ∈ [AFl ∩ [L(r2) − L(r1)]])[ci(r2) = ti]

By an extended (r1, r2)-action rule on x ∈ U we mean the expression:

[(e1 = u1) ∧ (e2 = u2) ∧ . . . ∧ (eq = uq) ∧ (b1, v1 −→ w1) ∧ (b2, v2 −→
w2) ∧ . . .∧

(bp, vp −→ wp) ∧ (c1,−→ t1) ∧ (c2,−→ t2) ∧ . . . ∧ (cr,−→ tr)](x)
=⇒ [(d, k1 −→ k2)](x).

where (ei = ui) denotes the value of the ith stable attribute which is
equal to ui. Additionally, (cl,→ tl) indicates that the value of the lth flexible
attribute has to be changed from an arbitrary value to tl.

The values of stable attributes which are listed in the second rule are also
required to be listed in the extended action rule. This property narrows down
the number of objects which have the highest chance to support the action
rule. In addition, for any flexible attribute listed in the second rule and not
listed in the first rule, its value should be changed to the value listed in the
second rule. So, if attributes are correlated, the change of one attribute value
will influence the change of another value. If the classification attributes are
not correlated then automatically this requirement is not needed at all.

Let ASt ∩L(r1)∩L(r2) = B. By (r1, r2) -E-action rule on x ∈ U we mean
the expression:

[
∏
{a = a(r1) : a ∈ B}(e1 = u1)∧ (e2 = u2)∧ . . . ∧ (eq = uq)∧ (b1, v1 −→

w1)∧ (b2, v2 −→ w2)∧ . . . ∧ (bp, vp −→ wp)∧ (c1,−→ t1)∧ (c2,−→ t2)∧ . . . ∧
(cr,−→ tr)](x) =⇒ [(d, k1 −→ k2)](x)

where a = a(r1) denotes that the values of the common stable attributes
for both rules are the same.

Common stable attributes used in rules from which an extended action
rule is created, are not listed. So, extended action rules do not contain enough
information about the condition requirements for domain objects in order to
select the specific target objects and to yield highly accurate results. In other
words, there are many possibilities,

∏
{2Va : a ∈ B}, in applying a single

action rule.
The idea behind the definition of E-action rule was to eliminate possibly

all these objects in S which have a high chance to fail in supporting action
rules. Therefore, the values of the common stable attributes listed in both
rules from which E-action rule is created are also required to be listed in it.
This requirement narrows down the number of objects supporting the rule to
the objects which have the highest chance to succeed. So, E-action rules are
more understandable and meaningful to the users than extended action rules.

Object x ∈ U supports (r1, r2)-action rule r in S = (U,ASt ∪ AFl ∪ {d}),
if the following conditions are satisfied:

• (∀i ≤ p)[bi ∈ L(r)][bi(x) = vi] ∧ d(x) = k1
• (∀i ≤ p)[bi ∈ L(r)][bi(y) = wi] ∧ d(y) = k2
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• (∀j ≤ p)[aj ∈ (ASt ∩ L(r2))][aj(x) = uj ]
• (∀j ≤ p)[aj ∈ (ASt ∩ L(r2))][aj(y) = uj ]
• Object x supports rule r1
• Object y supports rule r2

By the support of an extended action rule r in S, denoted by SupS(r), we
mean the set of all objects in S supporting R. In other words, the set of all
objects in S supporting r has the property

(a1 = u1) ∧ (a2 = u2) ∧ . . . ∧ (aq = uq) ∧ (b1 = v1) ∧ (b2 = v2) ∧ . . .∧
(bp = vp) ∧ (d = k1).

By the confidence of R in S, denoted by ConfS(r), we mean

[SupS(r)/SupS(L(r))][Conf(r2)].

In order to find the confidence of (r1, r2)-E-action rule in S, we divide
the number of objects supporting (r1, r2)-action rule in S by the number of
objects supporting left hand side of (r1, r2)-E-action rule times the confidence
of the second classification rule r2 in S.

4 Discovering E-Action Rules

In this section we present a new algorithm for discovering E-action rules.
Initially, we partition the set of rules discovered from an information system
S = (U,ASt ∪ AFl ∪ {d}), where ASt is the set of stable attributes, AFl is
the set of flexible attributes and, Vd = {d1, d2, . . . , dk} is the set of decision
values, into subsets of rules defining the same decision value. Saying another
words, the set of rules R discovered from S is partitioned into {Ri}i:1≤i≤k,
where Ri = {r ∈ R : d(r) = di} for any i = 1, 2, . . . , k. Clearly, the objects
supporting any rule from Ri form subsets of d−1({di}).

Let us take Table 1 as an example of a decision system S. We assume
that a, c are stable attributes and b, d are flexible. The set R of certain rules
extracted from S is given below:

1. (a, 0) −→ (d, L), (c, 0) −→ (d, L)
2. (b,R) −→ (d, L), (c, 1) −→ (d, L)
3. (b, P ) −→ (d, L), (a, 2) ∗ (b, S) −→ (d,H)
4. (b, S) ∗ (c, 2) −→ (d,H)

We partition this set into two subsets R1 = {[(a, 0) −→ (d, L)], [(c, 0) −→
(d, L)], [(b,R) −→ (d, L)], [(c, 1) −→ (d, L)], [(b, P ) −→ (d, L)]} and R2 =
{[(a, 2) ∗ (b, S) −→ (d,H)], [(b, S) ∗ (c, 2) −→ (d,H)]}.

Assume now that our goal is to re-classify some objects from the class
d−1({di}) into the class d−1({dj}). In our example, we assume that di = (d, L)
and dj = (d,H).

First, we represent the set R as a table (see Table 2). The first column of
this table shows objects in S supporting the rules from R (each row represents
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Table 2. Set of rules R with supporting objects

a b c d

{x1, x2, x3, x4} 0 L
{x2, x4} R L
{x1, x3} 0 L
{x2, x4} 1 L
{x5, x6} P L
{x7, x8} 2 S H
{x7, x8} S 2 H

a rule). The first five rows represent the set R1 and the last two rows repre-
sent the set R2. In the general case, assumed earlier, the number of different
decision classes is equal to k.

The next step of the algorithm is to build di-tree and dj-tree. First, from
the initial table similar to Table 2, we select all rules (rows) defining the
decision value di. Similarly, from the same table, we also select all rules (rows)
which define decision value dj .

By di-tree we mean a tree T (di) = (Ni, Ei), such that:

• Each interior node is labelled by a stable attribute from A1

• Each edge is labelled either by a question mark or by an attribute value
of the attribute that labels the initial node of the edge

• Along a path, all nodes (except a leaf) are labelled with different stable
attributes

• All edges leaving a node are labelled with different attribute values (in-
cluding the question mark) of the stable attribute that labels that node

• Each leaf represents a set of rules which do not contradict on stable at-
tributes and also define decision value di. The path from the root to that
leaf gives the description of objects supported by these rules

Now, taking (d, L) from our example as the value di, we show how to con-
struct (d, L)-tree for the set of rules represented by Table 2. The construction
of (d, L)-tree starts with a table corresponding to the root of that tree (Table 3
in Fig. 1). It represents the set of rules R1 defining L with supporting objects
from S. We use stable attribute c to split that table into three sub-tables de-
fined by values {0, 1, ?} of attribute c. The question mark means an unknown
value.

Following the path labelled by value c = 1, we get table T2. Following
the path labelled by value c = 0, we get table T3. When we follow the path
labelled by value [c =?][a = 0], we get table T4. Finally, by following the path
having the label [c =?][a =?], we get table T5.

Now, let us define (d,H)-tree using Table 4 as its root (see Fig. 2). Follow-
ing the path labelled by value [c =?], we get the table T6. When we follow
the path labelled by value [c = 2], we get the table T7. Both tables can be
easily constructed.
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Table 3. Time needed to extract rules and action rules by DEAR

DataSet Rules Action rules DEAR

Breast Cancer 20 s 27 min 51 s
Cleveland 1 min 09 s Over 8 h
Hepatitis 54 s Over 8 h

c = 0 

a = 0 

c = 1 

a b c
{x1,x2,x3,x4} 0   
{x2,x4}  R  
{x1,x3}   0 
{x2,x4}   1 
{x5,x6}  P  Table 3 

Table T1 

Table T2

Table T4 

Table T3
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Table T5 

a b 

R 
P 

a b 
{x1,x3}   

a b 
{x2,x4}   

b b 
{x1,x2,x3,x4}  

{x1,x2,x3,x4}  
{x2,x4}  
{x5,x6}  

R 
P 

{x2,x4}
{x5,x6}
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0

Fig. 1. (d, L)-tree

 a b c 
2 S

S 2

c = ? c = 2 
Table 4 

Table 6 Table T7 

 a b 
{x7,x8} S 

 a b 
{x7,x8} 

{x7,x8} 
{x7,x8} 

S

Fig. 2. (d, H)-tree

Now, it can be checked that only pairs of rules belonging to tables
{[T5, T7], [T5, T6], [T2, T6], [T3, T6], [T4, T7]} can be used in action rules
construction. For each pair of tables, we use the same algorithm as in [11] to
construct extended action rules.

This new algorithm (called DEAR-2) was implemented and tested on many
datasets using PC with 1.8 GHz CPU. The time complexity of this algorithm
was significantly lower than the time complexity of the algorithm DEAR pre-
sented in [11]. Both algorithms extract rules describing values of the decision
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Table 4. Time needed to extract action rules by DEAR-2

DataSet Action Rules DEAR 2

Breast Cancer 3 s
Cleveland 54 min 20 s
Hepatitis 51 min 53 s

Fig. 3. DEAR and DEAR2 interface

attribute before any action rule is constructed. The next two tables show the
time needed by DEAR and DEAR-2 to extract rules and next action rules
from three datasets: Breast Cancer, Cleveland, and Hepatitis. These three
UCI datasets are available at [http://www.sgi.com/tech/mlc/db/]. The first
one has 191 records described by ten attributes. Only Age is the stable at-
tribute. The second one has 303 records described by 15 attributes. Only two
attributes age and sex are stable. The last one has 155 records described by
19 attributes. Again, only two attributes age and sex are stable.

The interface to both systems, DEAR and DEAR-2, is written in Visual
Basic. The first picture in Fig. 3 shows part of the interface to both systems.
The user has an option to generate the coverings (see [7, 8]) for the decision
attribute and next use them in the process of action rules extraction or, if
he prefers, he can directly proceed to the rules extraction step. It is recom-
mended, by DEAR-2, to generate the coverings for the decision attribute if
the information system has many classification attributes. By doing this we
usually speed up the process of action rules extraction. The second picture in
Fig. 3 shows how the results are displayed by DEAR-2 system.

5 Conclusion

Generally speaking, actionable knowledge discovery based on action rule min-
ing can provide a coarse framework for users in applying the rules to objects.
We see that there is a clear need for an effective representation of actionable
knowledge by giving the users exactly the information they need. Hence, we
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propose E-action rules that enhance the extended action rules by adding to
its descriptions the values of common stable attributes listed in both clas-
sification rules, used to construct an action rule, in order to provide a more
sound and well-defined strategy. Any E-action rule provides a well defined hint
to a user of what changes within flexible attributes are needed to re-classify
some objects from a lower preferable class to a higher one. Hence, E-action
rules mining is a technique that intelligently and automatically forms precise
actions that can be adopted by decision-making users in achieving their goals.

System DEAR-2 initially generates a set of classification rules from S (sat-
isfying two thresholds, the first one for a minimum support and second for
a minimum confidence) defining values of a chosen attribute, called decision
attribute in S, in terms of the remaining attributes. DEAR-2 is giving pref-
erence to rules which classification part contains maximally small number of
stable attributes in S. These rules are partitioned by DEAR-2 into a number
of equivalence classes where each equivalence class contains only rules which
classification part has the same values of stable attributes. Each equivalence
class is used independently by DEAR-2 as a base for constructing action rules.
The current strategy requires the generation of classification rules from S to
form a base, before the process of action rules construction starts. We believe
that by following the process similar to LERS (see [2, 5]) or ERID (see [3])
which is initially centered on all stable attributes in S, we should be able to
construct action rules directly from S and without the necessity to generate
the base of classification rules.
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12. Raś Z, Gupta S (2002) Global action rules in distributed knowledge systems.
In: Fundamenta Informaticae Journal, IOS Press, Vol. 51, No. 1–2, 175–184

13. Silberschatz A, Tuzhilin A (1995) On subjective measures of interestingness in
knowledge discovery. In: Proceedings of KDD9́5 Conference, AAAI, Newport
Beach, CA

14. Silberschatz A, Tuzhilin A (1996) What makes patterns interesting in knowl-
edge discovery systems. In: IEEE Transactions on Knowledge and Data Engi-
neering, Vol. 8, No. 6, 970–974



Mining E-Action Rules, System DEAR
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Summary. The essential problem of Knowledge Discovery in Databases is to find
interesting relationships, those that are meaningful in a domain. This task may
be viewed as one of searching an immense space of possible actionable concepts
and relations. Because the classical knowledge discovery algorithms are not able
to determine if a pattern is truly actionable for a user, we focus on a new class
of action rules, called e-action rules that can be used not only for automatically
analyzing discovered patterns but also for reclassifying some objects in the data
from one state into another more desired state. For a quicker and more effective
process of e-action rules discovery, action tree algorithm is presented. Support and
confidence of the rules are proposed to prune a large number of irrelevant, spurious,
and insignificant generated candidates. The algorithm is implemented as DEAR 2.2
system and it is tested on several public domain databases. The results show that
actionability can be considered as a partially objective measure rather than a purely
subjective one. E-Action rules are useful in many fields such as medical diagnosis
and business.

1 Introduction

Finding useful rules is an important task of knowledge discovery in data. Most
of the researchers on knowledge discovery focus on techniques for generating
patterns, such as classification rules, association rules . . . etc, from a data set.
They assume that it is user’s responsibility to analyze the patterns in order
to infer solutions for specific problems within a given domain. The classical
knowledge discovery algorithms have the potential to identify enormous num-
ber of significant patterns from data. Therefore, people are overwhelmed by a
large number of uninteresting patterns, it is very difficult for a human being
to analyze them in order to form timely solutions. In other words, not all
Z.W. Raś and L.-S. Tsay: Mining E-Action Rules, System DEAR, Studies in Computational
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290 Z.W. Raś and L.-S. Tsay

discovered rules are interesting enough to be presented and used. Therefore,
a significant need exists for a new generation of techniques and tools with
the ability to assist people in analyzing a large number of rules for useful
knowledge. E-action rules mining is the technique that intelligently and auto-
matically assists humans acquiring useful information. This information can
be turned into action and this action can ultimately achieve a competitive
advantage and benefit users.

E-action rule [13] structure is a significant improvement of a classical action
rule [9] and an extended action rule [10] by providing well-defined definition.
E-action rules automatically assists humans acquiring actionable knowledge.
They are constructed from certain pairs of classification rules. These rules can
be used not only for evaluating discovered patterns but also for reclassifying
some objects in the data from one state into another more desired state.
Given a set of classification rules found from past and current data, they
can interpret regularities about past events and can be used for predicting
the class label of data objects. For example, classification rules found from a
bank’s data are very useful to describe who is a good client (whom to offer
some additional services) and who is a bad client (whom to watch carefully
to minimize the bank loses). However, if bank managers hope to improve
their understanding of customers and seek specific actions to improve services,
mere classification rules will not be convincing for them. Therefore, we can
use the classification rules to build a strategy of action based on condition
features in order to get a desired effect on a decision feature. Going back to
the bank example, the strategy of action would consist of modifying some
condition features in order to improve their understanding of customers and
then improve services. E-action rules can be useful in many other fields, like
medical diagnosis. In medical diagnosis, classification rules can explain the
relationships between symptoms and sickness and the same help doctors to
set up the proper treatment for a new patient.

There are two types of interestingness measure: objective and subjective
(see [1,5,11,12]). Subjective interestingness measures include unexpectedness
[11] and actionability [1, 3]. When the rule contradicts the user’s prior belief
about the domain, uncovers new knowledge or surprises them, it is classified
as unexpected. A rule is deemed actionable, if the user can take an action
to gain the advantage based on that rule. Domain experts basically look at
a rule and say that this rule can be converted into an appropriate action. In
this chapter, our main interest is to tackle actionability issue by analyzing
classification rules and effectively develop workable strategies.

Action Tree algorithm is presented for generating e-action rules and im-
plemented as System DEAR 2.2. The algorithm adopts a top-down strategy
that searches for a solution in a part of the search space. Seeking at each
stage for a stable attribute that has the least amount of values; the set of
rules is split using that attribute and then the subsets that result from the
split are recursively processed. When all stable attributes are processed, the
subsets are split further based on a decision attribute. This strategy generates
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an action tree which can be used to construct extended action rules from the
leaf nodes of the same parent.

2 Goal of E-Action Rules

The aim of an e-action rule is to look at the actionability in an objective
way because e-action rules evaluate discovered classification rules based on
statistics and structures of patterns. E-action rule is data driven and domain
independent because it is based on the strategy which does not depend on
domain knowledge. We claim that actionability does not have to be seen
as a purely subjective concept. The definition of e-action rules is objective.
However, we can not omit some degree of subjectivity in determining the
attribute class and what action to take. In order to do that, we divide all
attributes into two parts, stable and flexible. Obviously, this classification
has to be done by users to decide which attributes are stable and which are
flexible. This is a purely subjective decision. A stable attribute has no influence
on reclassification, but a flexible attribute does influence changes. Users have
to be careful judging which attributes are stable and which are flexible. If we
apply e-action rules on objects then their flexible attributes can be changed
but the stable attributes remain the same. Basically, an e-action rule shows
that some selected objects can be reclassified from an undesired decision state
to a desired one by changing some of the values of their flexible features. How
to take an action on those flexible attributes can be determined by following
either objective or subjective approach. It depends on the characteristic of
the corresponding flexible attributes. If the attribute is an interest rate on
the bank account then the bank can take an action as the rule states (i.e.,
lower the interest rate to 4.75%). So, in this case, it is a purely objective
decision. However, if the attribute is a fever then doctors may chose several
alternative treatments for decreasing patient′s temperature. The choice of a
treatment is a subjective decision. Basically, we cannot eliminate some amount
of subjectivity in that process.

3 Information System and E-Action Rules

An information system is used for representing knowledge. Its definition, pre-
sented here, is due to Pawlak [7].

By an information system we mean a pair S = (U,A), where:

• U is a nonempty, finite set of objects
• A is a nonempty, finite set of attributes i.e. a : U −→ Va is a function for

any a ∈ A, where Va is called the domain of a

Elements of U are called objects. In this chapter, for the purpose of clarity,
objects are interpreted as customers. Attributes are interpreted as features
such as, offers made by a bank, characteristic conditions, etc.
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Table 1. Decision system

a b c d

x1 2 1 2 L
x2 2 1 2 L
x3 1 1 0 H
x4 1 1 0 H
x5 2 3 2 H
x6 2 3 2 H
x7 2 1 1 L
x8 2 1 1 L
x9 2 2 1 L
x10 2 3 0 L
x11 1 1 2 H
x12 1 1 1 H

We consider a special case of information systems called decision tables
[7, 8]. In any decision table together with the set of attributes a partition
of that set into conditions and decisions is given. Additionally, we assume
that the set of conditions is partitioned into stable conditions and flexible
conditions. For simplicity reason, we assume that there is only one decision
attribute. Date of birth is an example of a stable attribute. The interest rate
on any customer account is an example of a flexible attribute as the bank can
adjust rates. We adopt the following definition of a decision table:

A decision table is an information system of the form S = (U,ASt ∪AFl ∪
{d}), where d �∈ ASt∪AFl is a distinguished attribute called the decision. The
elements of ASt are called stable conditions, whereas the elements of AFl are
called flexible conditions.

As an example of a decision table we take S = ({x1, x2, x3, x4, x5, x6, x7, x8,
x9, x10, x11, x12}, {a, c} ∪ {b} ∪ {d}) represented by Table 1. The set {a, c}
lists stable attributes, b is a flexible attribute and d is a decision attribute.
Also, we assume that H denotes a high profit and L denotes a low one.

In order to induce rules in which the THEN part consists of the decision
attribute d and the IF part consists of attributes belonging to ASt ∪ AFl,
LERS [2, 4] can be used for rules extraction.

In order to efficiently extract such rules, when the number of attributes is
large, we can use sub-tables (U,B ∪ {d}) of S where B is a d-reduct (see [6])
in S. The set B is called d-reduct in S if there is no proper subset C of B
such that d depends on C. The concept of d-reduct in S was introduced to
induce rules from S describing values of the attribute d depending on minimal
subsets of ASt ∪AFl.

By L(r) we mean all attributes listed in the IF part of a rule r. For example,
if r1 = [(a1, 2) ∧ (a2, 1) ∧ (a3, 4) −→ (d, 8)] is a rule then L(r1) = {a1, a2, a3}.

By d(r1) we denote the decision value of that rule. In our example
d(r1) = 8. If r1, r2 are rules and B ⊆ ASt ∪ AFl is a set of attributes, then
r1/B = r2/B means that the conditional parts of rules r1, r2 restricted to
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attributes B are the same. For example if r2 = [(a2, 1) ∗ (a3, 4) −→ (d, 1)],
then r1/{a2, a3} = r2/{a2, a3}.

In our example, we get the following optimal rules which support is greater
or equal to 2:

(b, 3) ∗ (c, 2) −→ (d,H), (a, 1) ∗ (b, 1) −→ (d, L),
(a, 1) ∗ (c, 1) −→ (d, L), (b, 1) ∗ (c, 0) −→ (d,H),
(a, 1) −→ (d,H)

Now, let us assume that (a, v −→ w) denotes the fact that the value of
attribute a has been changed from v to w. Similarly, the term (a, v −→ w)(x)
means that a(x) = v has been changed to a(x) = w. Saying another words,
the property (a, v) of object x has been changed to property (a,w).

Let S = (U,ASt ∪AFl ∪{d}) is a decision table and rules r1, r2 have been
extracted from S. The notion of e-action rule was given in [13]. Its definition
is given below. We assume here that:

• BSt is a maximal subset of ASt such that r1/BSt = r2/BSt

• d(r1) = k1, d(r2) = k2 and k1 ≤ k2
• (∀a ∈ [ASt ∩ L(r1) ∩ L(r2)])[a(r1) = a(r2)]
• (∀i ≤ q)(∀ei ∈ [ASt ∩ [L(r2) − L(r1)]])[ei(r2) = ui]
• (∀i ≤ r)(∀ci ∈ [AFl ∩ [L(r2) − L(r1)]])[ci(r2) = ti]
• (∀i ∈ p)(∀bi ∈ [AFl ∩ L(r1) ∩ L(r2)])[[bi(r1) = vi]&[bi(r2) = wi]]

Let ASt ∩L(r1) ∩L(r2) = B. By (r1, r2) -e-action rule on x ∈ U we mean
the expression r:

[
∏
{a = a(r1) : a ∈ B}(e1 = u1) ∧ (e2 = u2) ∧ ... ∧ (eq = uq) ∧ (b1, v1 −→

w1)∧(b2, v2 −→ w2)∧...∧(bp, vp −→ wp)∧(c1,−→ t1)∧(c2,−→ t2)∧...∧(cr,−→
tr)](x) =⇒ [(d, k1 −→ k2)](x)

Object x ∈ U supports (r1, r2)-e-action rule r in S = (U,ASt ∪AFl ∪{d}),
if the following conditions are satisfied:

• (∀i ≤ p)[∀bi ∈ L(r)][bi(x) = vi] ∧ d(x) = k1
• (∀i ≤ p)[∀bi ∈ L(r)][bi(y) = wi] ∧ d(y) = k2
• (∀j ≤ p)[∀aj ∈ (ASt ∩ L(r2))][aj(x) = uj ]
• (∀j ≤ p)[∀aj ∈ (ASt ∩ L(r2))][aj(y) = uj ]
• Object x supports rule r1
• Object y supports rule r2

By the support of e-action rule r in S, denoted by SupS(r), we mean the
set of all objects in S supporting R. In other words, the set of all objects in
S supporting r has the property

(a1 = u1) ∧ (a2 = u2) ∧ ... ∧ (aq = uq) ∧ (b1 = v1) ∧ (b2 = v2) ∧ ...∧
(bp = vp) ∧ (d = k1).

By the confidence of R in S, denoted by ConfS(r), we mean

[SupS(r)/SupS(L(r))][Conf(r2)]
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To find the confidence of (r1, r2)-e-action rule in S, we divide the number
of objects supporting (r1, r2)-action rule in S by the number of objects sup-
porting the left hand side of (r1, r2)-e-action rule times the confidence of the
second classification rule r2 in S.

4 Discovering E-Action Rules

In this section we present a new algorithm, Action-Tree algorithm, for discov-
ering e-action rules. Basically, we partition the set of rules discovered from an
information system S = (U,ASt ∪ AFl ∪ {d}), where ASt is the set of stable
attributes, AFl is the set of flexible attributes and, Vd = {d1, d2, . . . , dk} is
the set of decision values, into subsets of rules supporting the same values of
stable attributes and the same decision value.

Action-tree algorithm for extracting e-action rules from decision system S
is as follows:

i. Build Action-Tree
a. Divide the rule table, R, taking into consideration all stable attributes

1. Find the domain Dom(vSt
i ) of each stable attribute vSt

i from the
initial table.

2. Assuming that the number of values in Dom(vSt
i ) is the smallest,

partition the current table into sub-tables each of which contains
only rules supporting values of stable attributes in the correspond-
ing sub-table.

3. Determine if a new table contains minimum two different deci-
sion values and minimum two different values for each flexible
attribute. If it does, go to Step 2, otherwise there is no need to
split the table further and we place a mark.

b. Divide each lowest level sub-table into new sub-tables each of which
contains rules having the same decision value.

c. Represent each leaf as a set of rules which do not contradict on stable
attributes and also define decision value di. The path from the root to
that leaf gives the description of objects supported by these rules.

ii. Generate e-action rules
a. Form e-action rules by comparing all unmarked leaf nodes of the same

parent.
b. Calculate the support and the confidence of a new-formed rule. If its

support and confidence meet the requirements, print it.

The algorithm starts with all extracted classification rules at the root node
of the tree. A stable attribute is selected to partition theses rules. For each
value of the attribute a branch is created, and the corresponding subset of
rules that have the attribute value specified by the branch is moved to the
newly created child node. Now the process is repeated recursively for each
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child node. When we are done with stable attributes, the last split is based
on a decision attribute for each branch. If at any time all instances at a node
have the same decision value, then we stop developing that part of the tree.
The only thing left to build the tree is to decide how to determine which of
the stable attributes to split, given a set of rules with different classes. The
node selection is based on the stable attributes with the smallest number of
possible values among all the remaining stable attributes.

An e-action tree has two types of nodes: a leaf node and a nonleaf node.
At a nonleaf node in the tree, the set of rules is partitioned along the branches
and each child node gets its corresponding subset of rules. Every path to the
decision attribute node, one level above the leaf node, in the action tree repre-
sents a subset of the extracted classification rules when the stable attributers
have the same value. Each leaf represents a set of rules, which do not contra-
dict on stable attributes and also define decision value di. The path from the
root to that leaf gives the description of objects supported by these rules.

Let us take Table 1 as an example of a decision system S. We assume that
a, c are stable attributes and b, d are flexible. Assume now that our goal is to
re-classify some objects from the class d−1({di}) into the class d−1({dj}). In
our example, we assume that di = (d, L) and dj = (d,H).

First, we represent the set R of certain rules extracted from S as a table
(see Table 2). The first column of this table shows objects in S supporting the
rules from R (each row represents a rule). The construction of an action tree
starts with the set R as a table (see Table 2) at the root of the tree (T1 in
Fig. 1). The root node selection is based on a stable attribute with the smallest
number of states among all stable attributes. The same strategy is used for
the child node selection. After putting all stable attributes on the tree, the
tree is split based on the value of the decision attribute. Referring back to
the example in Table 1, we use stable attribute a to split that table into two
sub-tables defined by values {1, 2} of attribute a. The domain of attribute a is
{1, 2} and the domain of attribute c is {0, 1, 2}. Clearly, card[Va] is less than
card[Vc] so we divide the table into two: one table with rules containing a = 0
and another with rules containing a = 2. Each corresponding edge is labelled
by the value of attribute a. Next, all objects in the sub-table T2 have the same
decision value. We can not generate any e-action rules from this sub-table so
it is not divided any further. Because sub-table T3 contains different decision

Table 2. Set of rules R with supporting objects

Objects a b c d

{x3, x4, x11, x12} 1 H
{x1, x2, x7, x8} 2 1 L
{x7, x8, x9} 2 0 L
{x3, x4} 1 0 H
{x5, x6} 3 2 H
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Objects
x3,x4,x11,x12
x1,x2,x7,x8
x7,x8,x9
x3,x4
x5,x6

a
1
2
2 1

1

1 0 H
3 2 H T1

T3

T5

T7

T2

T4

a=2

c=0 c=0

d=Hd=L

c=0

a=1

L
L

H
b c d

Objects
x1,x2,x7,x8

a
2 1 L

x7,x8,x9 2 1 L
x3,x4 1 0 H

x3,x4 1 0 H

x5,x6 3 2 H

b c d

Objects
x1,x2,x7,x8

a
2 1 L

x5,x6 3 2 H
x1,x2,x7,x8 2 1 L

b c d

Objects
x1,x2,x7,x8

a
2 1 L

b c d
T8

Objects
x5,x6

a
3 2 H
b c d

Objects a b c d

T6x7,x8,x9 2 1 L
x1,x2,x7,x8 2 1 L
Objects a b c d

Objects
x3,x4,x11,x12

a
1 H

x3,x4 1 0 H
x5,x6 3 0 H

b c d

Fig. 1. Action tree

values and stable attribute, it is divided into three, one with rules containing
c = 0, one with rules containing c = 1, and one with rules containing c = 2.
At this step, each sub-table does not contain any stable attributes. Table T6

can not be split any further for the same reason as sub-table T2. All objects
in sub-table T4 have the same value of flexible attribute b, so the table is not
partitioned any further. The remaining table T5 is partitioned into two sub-
tables. Each leaf represents a set of rules which do not contradict on stable
attributes and also define decision value di.

The path from the root to that leaf gives the description of objects sup-
ported by these rules. Following the path labelled by value [a = 2], [c = 2],
and [d = L], we get table T7. Following the path labelled by value [a = 2],
[c = 2], and [d = H], we get table T8. Because T7 and T8 are sibling nodes, we
can directly compare pairs of rules belonging to these two tables and construct
one e-action rule such as:

[[(a, 2) ∧ (b, 1 → 3)] ⇒ (d, L→ H)].

After the rule is formed, we evaluate it by checking its support and its
confidence. We have discovered an extended action rule given below:

[[(a, 2) ∧ (b, 1 → 3)] ⇒ (d, L→ H)]; sup : 4conf : 100%.

This new algorithm (called DEAR 2.2) was implemented and tested on
many datasets using PC with 1.8 GHz CPU. The time complexity of the action
forest algorithm used in system DEAR 2 is (k ∗ n) + (2k ∗ n ∗ 1) + log(n) =
O(n+ log(n)), where n is the number of classification rules, k is the number
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of attributes in S. The time complexity of the action tree algorithm is (k ∗
n) + (2k ∗ n ∗ 1) = O(n), where n is the number of classification rules, k is
the number of attributes in S. The action tree algorithm is simpler and more
efficient then the action forest algorithm.

5 Conclusion

Discovering a set of rules is not the end of knowledge discovery process. A rule
is interesting, if it meets some user specified thresholds. As knowledge discov-
ery techniques are increasingly used to solve real life problems, a significant
need exists for a new generation of technique, e-action rules mining, with the
ability to facilitate human beings in evaluating and interpreting the discov-
ered patterns. Additionally, as the value of data is related to how quickly and
effectively the data can be reduced, explored, manipulated and managed, we
propose a new strategy, action-tree algorithm for discovering e-action rules.
Our results show that actionability can be considered as a partially objective
measure rather than a purely subjective one.

References

1. Adomavicius G, Tuzhilin A (1997) Discovery of actionable patterns in databases:
the action hierarchy approach. In: Proceedings of KDD97 Conference, AAAI,
Newport Beach, CA

2. Chmielewski M R, Grzymala-Busse J W, Peterson N W, Than S (1993) The
rule induction system LERS – a version for personal computers. In: Foundations
of Computing and Decision Sciences. Vol. 18, No. 3–4, Institute of Computing
Science, Technical University of Poznan, Poland: 181–212

3. Geffner H, Wainer J (1998) Modeling action, knowledge and control. In: ECAI
98, Proceedings of the 13th European Conference on AI, (Ed. H. Prade), Wiley,
New York, 532–536

4. Grzymala-Busse J (1997) A new version of the rule induction system LERS. In:
Fundamenta Informaticae, Vol. 31, No. 1, 27–39

5. Liu B, Hsu W, Chen S (1997) Using general impressions to analyze discov-
ered classification rules. In: Proceedings of KDD97 Conference, AAAI, Newport
Beach, CA

6. Pawlak Z (1991) Rough sets-theoretical aspects of reasoning about data. Kluwer,
Dordrecht

7. Pawlak Z (1981) Information systems – theoretical foundations. In: Information
Systems Journal, Vol. 6, 205–218

8. Polkowski L, Skowron A (1998) Rough sets in knowledge discovery. In: Studies
in Fuzziness and Soft Computing, Physica-Verlag/Springer, Berlin Heidelberg
New York
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Summary. Former results concerning definability of association rules in classical
predicate calculi are summarized. A new intuitive criteria of definability are pre-
sented. The presented criteria concern important classes of association rules. They
are based on tables of critical frequencies of association rules. These tables were in-
troduced as a tool for avoiding complex computation related to verification of rules
corresponding to statistical hypotheses tests.

1 Introduction

Goal of this chapter is to contribute to theoretical foundations of data mining.
We deal with association rules of the form ϕ ≈ ψ where ϕ and ψ are Boolean
attributes derived from columns of the analysed data matrix M. The asso-
ciation rule ϕ ≈ ψ says that ϕ and ψ are associated in a way given by the
symbol ≈. The symbol ≈ is called 4ft-quantifier . It corresponds to a condition
concerning a fourfold contingency table of ϕ and ψ in M. Association rules
of this form were introduced and studied in [2]. They were further studied
among others in [4, 8], the results were partly published in [5–7,9, 10].

This chapter concerns definability of the association rules in classical pred-
icate calculi. The association rules can be understood as formulae of monadic
predicate observational calculi defined in [2]. The monadic predicate obser-
vational calculus is a modification of classical predicate calculus: only finite
models are allowed and generalized quantifiers are added. 4ft-quantifier ≈ is
an example of the generalized quantifier.

There is a natural question of classical definability of the association rules
i.e. the question which association rules can be expressed by means of classical
predicate calculus (predicates, variables, classical quantifiers ∀ and ∃, Boolean
connectives and the predicate of equality). This question is solved by the
Tharp’s theorem proved in [2, 13].
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The Tharp’s theorem is but too general from the point of view of the asso-
ciation rules. A more intuitive criterion of classical definability of association
rules was proved in [4] see also [10].

The goal of this chapter is to show that this criterion can be further simpli-
fied for several important classes of association rules. The simplified criterion
is based on tables of critical frequencies (further we use only TCF instead
of table of critical frequencies). TCF’s were introduced as a tool for avoiding
complex computation [2, 4] related to the association rules corresponding to
statistical hypotheses tests.

The chapter uses notions of association rules and classes of association
rules described in [11] in this book. Tables of critical frequencies are introduced
in Sect. 2. Results concerning classical definability of the association rules are
presented in Sects. 3 and 4. Some concluding remarks are in Sect. 5.

2 Tables of Critical Frequencies

First we prove the theorem about partial tables of maximal b. Further we will
denote N+ = {0, 1, 2, . . . } ∪ {∞}.

Theorem 1. Let ≈ be an equivalency quantifier. Then there is a non-negative
function Tb≈ that assigns to each triple 〈a, c, d〉 of non-negative natural num-
bers a value Tb≈(a, c, d) ∈ N+ such that

1. For each b ≥ 0 it is ≈ (a, b, c, d) = 1 if and only if b < Tb≈(a, c, d).
2. If a′ > a then Tb≈(a′, c, d) ≥ Tb≈(a, c, d).

Proof. Let us define

Tb≈(a, c, d) = min{b| ≈ (a, b, c, d) = 0}.

Let us remember that ≈ is equivalency. It means that

≈ (a, b, c, d) = 1 ∧ a′ ≥ a ∧ b′ ≤ b ∧ c′ ≤ c ∧ d′ ≥ d

implies
≈ (a′, b′, c′, d′) = 1

It means among other

I: If ≈ (a, b, c, d) = 0 and v ≤ a then also ≈ (v, b, c, d) = 0.
II: If ≈ (a, b, c, d) = 0 and w ≥ b then also ≈ (a,w, c, d) = 0.

Point II means that it is ≈ (a, b, c, d) = 0 for all b ≥ min{b| ≈ (a, b, c, d) = 0}.
We prove that the function defined in the above given way has the properties
1. and 2.
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1. Let us suppose b ≥ 0 and ≈ (a, b, c, d) = 1. We have to prove that it is b <
Tb≈(a, c, d). Let us suppose b ≥ Tb≈(a, c, d). It however means according
to point II that ≈ (a, b, c, d) = 0. Thus it must be b < Tb≈(a, c, d).
Let us suppose b ≥ 0 and ≈ (a, b, c, d) = 0. We have to prove that it is
b ≥ Tb≈(a, c, d). But it follows from the definition of Tb≈(a, c, d).

2. Let us suppose a′ > a and also Tb≈(a′, c, d) < Tb≈(a, c, d). Let us denote
e = Tb≈(a, c, d), thus it is e > 0. It means Tb≈(a′, c, d) ≤ e− 1 and thus
according to the definition of Tb≈(a′, c, d) it is ≈ (a′, e − 1, c, d) = 0. Due
to point I it is also ≈ (a, e−1, c, d) = 0. It is but also e−1 < e = Tb≈(a,c,d)

and it means ≈ (a, e − 1, c, d) = 1 according to already proved point 1. It
is a contradiction thus it cannot be a′ > a and Tb≈(a′, c, d) < Tb≈(a, c, d).
It but means that it follows Tb≈(a′, c, d) ≥ Tb≈(a, c, d) from a′ > a.

This finishes the proof. ��

Remark 2.1 It is easy to prove for the implicational quantifier ⇒∗ that the
value ⇒∗ (a, b, c, d) depends neither on c nor on d. It means that we can write
only ⇒∗ (a, b) instead of ⇒∗ (a, b, c, d) for the implicational quantifier ⇒∗,
see also Remark 3.1 in [11].

The just proved theorem has a direct consequence for the implicational
quantifiers.

Theorem 2. Let ⇒∗ be an implicational quantifier. Then there is a non-
negative non-decreasing function Tb⇒∗ that assigns a value Tb⇒∗(a) ∈ N+

to each non-negative integer a such that for each b ≥ 0 it is ⇒∗ (a, b) = 1 if
and only if b < Tb⇒∗(a).

Proof. Due to Remark 2.1 we can only put Tb⇒∗(a) = Tb⇒∗(a, 0, 0) where
Tb⇒∗(a, c, d) is a function defined in the same way as in Theorem 1. ��

We define the notions of tables of maximal b on the basis of just proved
theorems.

Definition 1.

1. Let ≈ be an equivalency quantifier and let c ≥ 0 and d ≥ 0 be the natural
numbers. Then the partial table of maximal b for the quantifier ≈ and
for the couple 〈c, d〉 is the function Tbp≈,c,d defined such that

Tbp≈,c,d(a) = Tb≈(a, c, d)

where Tb≈(a, c, d) is the function from the Theorem 1.
2. Let ⇒∗ be an implicational quantifier. Then the function Tb⇒∗(a) from the

Theorem 2 is a table of maximal b for the implicational quantifier Tb⇒∗ .
3. Let T be a partial table of maximal b or a table of maximal b. Then a step

in the table T is each such a ≥ 0 for which it is T (a) < T (a+ 1).
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It is important that the function Tb⇒∗ makes it possible to use a simple
test of inequality instead of a rather complex computation. For example we
can use inequality b < Tb⇒!

p,α,s
(a) instead of the condition

a+b∑
i=a

(a+ b)!
i!(a+ b− i)!p

i(1 − p)a+b−i ≤ α ∧ a ≥ s

for quantifier ⇒!
p,α,s of lower critical implication, see [12]. An other form of

the table of critical frequencies for implicational quantifier is defined in [2].
Note that if we apply a corresponding data mining procedure then the

computation of the function Tb⇒!
p,α,s

usually requires much less effort than

the evaluation of all conditions
∑a+b

i=a
(a+b)!

i!(a+b−i)!p
i(1 − p)a+b−i ≤ α ∧ a ≥ s. It

depends on the cardinality of the set of relevant questions to be automatically
generated and verified, for more details see namely [12].

Let us remark that it can be Tb⇒∗(a) = ∞. A trivial example gives the
quantifier ⇒T defined such that ⇒T (a, b) = 1 for each couple 〈a, b〉. Then
it is Tb⇒T (a) = ∞ for each a.

The partial table of maximal b and table of maximal b are called tables of
critical frequencies. Further tables of critical frequencies for Σ-double impli-
cational quantifiers and for Σ-equivalence quantifiers are defined in [8].

3 Classical Definability and TCF

3.1 Association Rules and Observational Calculi

Monadic observational predicate calculi (MOPC for short) are defined and
studied in [2] as a special case of observational calculi. MOPC can be under-
stood as a modification of classical predicate calculus such that only finite
models (i.e. data structures in which the formulas are interpreted) are admit-
ted and more quantifiers than ∀ and ∃ are used. These new quantifiers are
called generalized quantifiers. The 4ft quantifiers are special case of generalized
quantifiers.

Classical monadic predicate calculus (CMOPC for short) is a MOPC with
only classical quantifiers. In other words it is a classical predicate calculus with
finite models. The formulas (∀x)P1(x) and (∃x)(∃y)((x �= y)∧P1(x)∧¬P2(y))
are examples of formulas of CMOPC.

If we add the 4ft-quantifiers to CMOPC we get MOPC the formulas of
which correspond to association rules. Formulas (⇒p,Base x)(P1(x), P2(x) and
(⇔p,Base x)(P1(x) ∨ P3(x), P2(x) ∧ P4(x)) are examples of such association
rules. Values of these formulas can be defined in Tarski style see [2]. We sup-
pose that the formulas are evaluated in {0,1} – data matrices (i.e. finite data
structures), see example in Fig. 1 where predicates P1, . . . , Pn are interpreted
by columns – functions f1, . . . , fn respectively.
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row P1 P2 . . . Pn P1 ∨ P3 P2 ∧ P4

of M f1 f2 . . . fn max(f1, f3) min(f2, f4)

o1 1 0 . . . 1 0 1
o2 0 1 . . . 1 1 0
...

...
...

. . .
...

...
...

on 1 0 . . . 0 0 1

Fig. 1. Example of {0,1} – data matrix

The rule (≈ x)(P1(x) ∨ P3(x), P2(x) ∧ P4(x)) can be written in various
forms, e.g. (≈)(P1 ∨ P3, P2 ∧ P4) or P1 ∨ P3 ≈ P2 ∧ P4. Its evaluation is in
any case based on the value ≈ (a, b, c, d) where 〈a, b, c, d〉 is the 4ft-table of
P1(x) ∨ P3(x) and P2(x) ∧ P4(x) in the data matrix in question. The same is
true for each association rule of the form (≈ x)(ϕ(x), ψ(x)).

Let us remark that the association rule of the form like A(1, 2, 3) ≈ B(4, 5)
can be understood (informally speaking) like the rule A1 ∨A2 ∨A3 ≈ B4 ∨B5

where A1 is a predicate corresponding to the basic Boolean attribute A(1) etc.

3.2 Definability and Associated Function

The natural question is what association rules are classically definable. We say
that the association rule (≈ x) (ϕ(x), ψ(x)) – formula of MOPC is classically
definable if there is a formula Φ of CMOPC with equality such that Φ is log-
ically equivalent to (≈ x)(ϕ(x), ψ(x)). It means e.g. that the association rule
(≈ x)(P1(x)∨P3(x), P2(x)∧P4(x)) is equivalent to the formula created from
the predicates P1(x), P2(x), P3(x), P4(x), propositional connectives ¬,∨,∧,
classical quantifiers ∃,∀, and from the binary predicate of equality =. The
precise formal definition is given in [2], see also [10]. If the association rule
(≈ x)(ϕ,ψ) is classically definable then we also say that the 4ft-quantifier ≈ x
is classically definable and vice-versa.

The question of classical definability of (not only) association rules is solved
by the Tharp’s theorem proved in [2]. The Tharp’s theorem is but too complex
and general from the point of view of association rules. A more intuitive
criterion of classical definability of association rules is proved in [4] see also
[10]. This criterion is based on the associated function ≈ (a, b, c, d) of the
4ft-quantifier ≈.

The criterion uses the notion of interval in N 4 where N is the set of all
natural numbers. The interval in N 4 is defined as the set

I = I1 × I2 × I3 × I4

such that it is Ij = 〈k, l) or Ij = 〈k,∞) for j = 1, 2, 3, 4 and 0 ≤ k < l are
natural numbers. The empty set ∅ is also the interval in N 4.

The criterion of classical definability of association rules is given by the
following theorem proved in [4], see also [10].
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Theorem 3. The 4ft-quantifier ≈ is classically definable if and only if there
are K intervals I1, . . . , IK in N 4, K ≥ 0 such that it is for each 4ft table
〈a, b, c, d〉

≈ (a, b, c, d) = 1 iff 〈a, b, c, d〉 ∈
K⋃

j=1

Ij.

3.3 Definability of Equivalency Quantifiers

We use the criterion of classical definability based on associated functions of
4ft-quantifiers to give a very intuitive necessary condition of classical definabil-
ity of equivalency rules. This condition says that if the equivalency quantifier
is definable then each partial table of maximal b of this quantifier has only
finite number of steps. It is proved in the next theorem.

Theorem 4. Let ≈ be an classically definable equivalency quantifier. Then
each partial table of maximal b for the quantifier ≈ has only finite number of
steps.

Proof. We suppose that ≈ is classically definable quantifier. Thus according to
the Theorem 3 there are K intervals I1, . . . , IK in N 4, K ≥ 0 such that it is
for each 4ft table 〈a, b, c, d〉

≈ (a, b, c, d) = 1 iff 〈a, b, c, d〉 ∈
K⋃

j=1

Ij.

If K = 0 then it is ≈ (a, b, c, d) = 0 for each 4ft table 〈a, b, c, d〉 and it
is Tbp≈,c,d(a) = 0 for each a and for each partial table Tbp≈,c,d of maximal b
of ≈. It but means that each such partial table of maximal b has no step.

Let us suppose that K > 0 and that it is

Ij = 〈aj , Aj) × 〈bj , Bj) × 〈cj , Cj) × 〈dj , Dj)

for j = 1, . . . ,K. Suppose that there are u and v such that the partial table
Tbp≈,u,v of maximal b has infinitely many steps. It means that for each natural
n > 0 there are a > n and b > n such that ≈ (a, b, u, v) = 1. Thus there must
be m ∈ 1, . . . ,K such that

Im = 〈am,∞) × 〈bm,∞) × 〈cm, Cm) × 〈dm, Dm)

and u ∈ 〈cm, Cm) and v ∈ 〈dm, Dm). The partial table Tbp≈,u,v of maxi-
mal b has infinitely many steps. It means that there is a > am such that
Tbp≈,u,v(a) < Tbp≈,u,v(a+ 1). Thus it is

≈ (a, T bp≈,u,v(a+ 1), u, v) = 0.

Let us denote b′ = max(bm, T bp≈,u,v(a + 1)), thus it is ≈ (a, b′, u, v) = 0
because of ≈ is equivalency (see also point II in the proof of the Theorem 1).

It is however 〈a, b′, u, v〉 ∈ Im and it means that ≈ (a, b′, u, v) = 1. It is a
contradiction that finishes the proof. ��
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3.4 Definability of Implicational Quantifiers

The next theorem shows that the necessary condition of definability of equiv-
alency rules proved in Theorem 4 is also the sufficient condition of definability
of implicational quantifiers.

Theorem 5. Let ⇒∗ be an implicational quantifier. Then ⇒∗ is classically
definable if and only if its table of maximal b has only finite number of steps.

Proof. Let Tb⇒∗ be a table of maximal b of ⇒∗.
If ⇒∗ is classically definable then we prove that Tb⇒∗ has only finite num-

ber of steps in a similar way like we proved in the Theorem 4 that the partial
table Tbp≈(a, c0, d0) of maximal b has finite number of steps.

Let us suppose that Tb⇒∗ has K steps where K ≥ 0 is a natural number.
We prove that Tb⇒∗ is classically definable.

First let us suppose that K = 0. We distinguish two cases: Tb⇒∗(1) = 0
and Tb⇒∗(1) > 0.

If it is Tb⇒∗(1) = 0 then it is also Tb⇒∗(0) = 0 (there is no step). It but
means that ⇒∗ (a, b, c, d) = 0 for each 4ft table 〈a, b, c, d〉 because of it cannot
be b < 0. Thus it is ⇒∗ (a, b, c, d) = 1 if and only if 〈a, b, c, d〉 ∈ ∅. The empty
set ∅ is but also the interval in N 4 and the quantifier ⇒∗ is according to the
Theorem 3 classically definable.

If it is K = 0 and Tb⇒∗(1) > 0 then it is ⇒∗ (a, b, c, d) = 1 if and only if

〈a, b, c, d〉 ∈ 〈0,∞) × 〈0, T b⇒∗(1)) × 〈0,∞) × 〈0,∞)

and thus the quantifier ⇒∗ (a, b, c, d) is definable according to the Theorem 3.
Let us suppose that S > 0 is a natural number and that

0 ≤ a1 < a2 < · · · < aS

are all the steps in Tb⇒∗ . We will define intervals I1, I2, . . . , IS+1 in the fol-
lowing way.

If Tb⇒∗(a1) = 0 then I1 = ∅ otherwise

I1 = 〈0, a1 + 1) × 〈0, T b⇒∗(a1)) × 〈0,∞) × 〈0,∞).

For j = 2, . . . , S we define

Ij = 〈aj−1, aj + 1) × 〈0, T b⇒∗(aj)) × 〈0,∞) × 〈0,∞).

The interval IS+1 is defined such that

IS+1 = 〈aS ,∞) × 〈0, T b⇒∗(aS)) × 〈0,∞) × 〈0,∞).

Remember that ⇒∗ is implicational. Thus it is clear that the intervals
I1, I2, . . . , IS+1 are defined such that

⇒∗ (a, b, c, d) = 1 iff 〈a, b, c, d〉 ∈
S+1⋃
j=1

Ij

and according to the Theorem 3 the quantifier ⇒∗ is definable. This finishes
the proof. ��
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4 Undefinability of Particular Quantifiers

There are the following examples of important 4ft-quantifiers:

• 4ft-quantifier ⇒p,Base of founded implication defined in [2] for 0 < p ≤ 1
and Base > 0 by the condition

a

a+ b
≥ p ∧ a ≥ Base

• 4ft-quantifier ⇒!
p,α,Base of lower critical implication defined in [2] for

0 < p ≤ 1, 0 < α < 0.5 and Base > 0 by the condition

a+b∑
i=a

(
a+ b
i

)
pi(1 − p)a+b−i ≤ α ∧ a ≥ Base

• 4ft-quantifier ⇔p,Base of founded double implication defined in [3] for
0 < p ≤ 1 and Base > 0 by the condition

a

a+ b+ c
≥ p ∧ a ≥ Base

• 4ft-quantifier ≡p,Base of founded equivalence defined in [3] for 0 < p ≤ 1
and Base > 0 by the condition

a+ d
n

≥ p ∧ a ≥ Base

• Fisher’s quantifier ∼α,Base defined in [2] for 0 < α < 0.5 and Base > 0 by
the condition

min(r,k)∑
i=a

(
k
i

)(
n−k
r−i

)(
r
n

) ≤ α ∧ ad > bc ∧ a ≥ Base

• 4ft-quantifier ∼+
p,Base of above average dependence defined in [11] for 0 < p

and Base > 0 by the condition

a

a+ b
≥ (1 + p)

a+ c
a+ b+ c+ d

∧ a ≥ Base

• The 4ft-quantifier →conf,sup corresponding to the “classical” association
rule with the confidence conf and the support sup [1] defined by the
condition

a

a+ b
≥ conf ∧ a

n
≥ sup

All these quantifiers are classically undefinable. We will prove it for 4ft-
quantifiers ⇒p,Base of founded implication, ⇒!

p,α,Base of lower critical impli-
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cation, and for Fisher’s quantifier ∼α,Base. The proof for the other listed
4ft-quantifiers is similar. The proof of classical undefinability of additional
4ft-quantifiers is given in [4].

First we prove that the 4ft-quantifiers ⇒p,Base of founded implication and
the 4ft-quantifier ⇒!

p,α,Base of lower critical implication are not classically
definable. We will use the following lemmas.

Lemma 1. Let ⇒∗ be an implicational quantifier that satisfies the conditions

(a) There is A ≥ 0 such that for each a ≥ A there is b satisfying ⇒∗ (a, b) = 0.
(b) For each a ≥ 0 and b ≥ 0 such that ⇒∗ (a, b) = 0 there is a′ ≥ a for which

it is ⇒∗ (a′, b) = 1.

Then the table Tb⇒∗ of maximal b of ⇒∗ has infinitely many steps.

Proof. If the quantifier ⇒∗ satisfies the condition (a) then it is Tb⇒∗(a) <∞
for each a ≥ 0. Remember that it is ⇒∗ (a, T b⇒∗(a)) = 0. If the quantifier
⇒∗ satisfies the condition (b) then there is for each a > A an a′ > a such
that it is ⇒∗ (a′, T b⇒∗(a)) = 1. Thus it is ⇒∗ (a, T b⇒∗(a)) = 0 and also it is
⇒∗ (a′, T b⇒∗(a)) = 1. It means that between a and a′ there must be a step s
of the table Tb⇒∗ .

We have proved that for each a > A there is a step s ≥ a of the table Tb⇒∗ .
It but means that the table Tb⇒∗ has infinitely many steps. This finishes the
proof. ��

Lemma 2. Let us suppose that ≈ is an equivalency quantifier and c0 and d0
are natural numbers such that the following conditions are satisfied.

(a) There is A ≥ 0 such that for each a ≥ A there is b for which it is satisfied
≈ (a, b, c0, d0) = 0.

(b) For each a ≥ 0 and b ≥ 0 such that ≈ (a, b, c0, d0) = 0 there is a′ ≥ a for
which it is ≈ (a′, b, c, d) = 1.

Then the partial table Tbp≈(a, c0, d0) of maximal b of ≈ has infinitely many
steps.

Proof. The proof is similar to the proof of the Lemma 1. ��

Lemma 3. Let us suppose that 0 < p < 1 and that i ≥ 0 is a natural number.
Then it is

lim
K→∞

(
K

i

)
pi(1 − p)K−i = 0·

Proof. It is: (
K

i

)
pi(1 − p)K−i ≤ Kipi(1 − p)K(1 − p)−i

= Ki(1 − p)K

(
p

1 − p

)i

.
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Thus it is enough to prove that for r ∈ (0, 1) and i ≥ 0 it is

lim
K→∞

KirK = 0.

To prove this it is enough to prove that for r ∈ (0, 1), real x and a natural
i ≥ 0 it is

lim
x→∞

xirx = 0.

It is limx→∞ xi = ∞, limx→∞ rx = 0 and thus according to the l’Hospital’s
rule it is

lim
x→∞

xirx = lim
x→∞

xi

r−x
= lim

x→∞

(xi)(i)

(r−x)(i)

= lim
x→∞

i!
(− ln r)ir−x

= lim
x→∞

rx = 0,

where (xi)(i) is an i-th derivation of xi and analogously for (r−x)(i). This
finishes the proof. ��

Lemma 4. Let us suppose a ≥ 0 and b ≥ 0 are natural numbers. Then it is
for each k ∈ 〈0, b〉 and 0 < p < 1

lim
a→∞

(
a+ b
a+ k

)
pa+k(1 − p)b−k = 0·

Proof. It is: (
a+ b
a+ k

)
pa+k(1 − p)b−k

=
(

a+ b
a+ b− (a+ k)

)
pa+k(1 − p)b−k

=
(
a+ b
b− k

)
pa+k(1 − p)b−k

≤ (a+ b)b−kpa+k(1 − p)b−k·

Thus it is enough to prove that it is

lim
a→∞

(a+ b)b−kpa = 0·

The proof of this assertion is similar to the proof of the assertion

lim
K→∞

KirK = 0·

in the Lemma 3. ��
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Lemma 5.

1. The 4ft-quantifier ⇒p,Base of founded implication satisfies the condition
a from the Lemma 1 for each 0 < p ≤ 1 and Base > 0.

2. The 4ft-quantifier ⇒!
p,α,Base of lower critical implication satisfies the con-

dition a from the Lemma 1 for each 0<p< 1, 0<α< 0.5 and Base > 0.

Proof.

1. We have to prove that there is A ≥ 0 such that for each a ≥ A there is
b such that ⇒p,Base (a, b) = 0 for each 0 < p ≤ 1 and Base > 0. Let
us remember that the 4ft-quantifier ⇒p,Base is defined by the condition

a
a+b ≥ p ∧ a ≥ Base·
Let be A > Base and a ≥ A. Then we choose b′ such that b′ > a−p∗a

p .
Then it is ⇒p,Base (a, b′) = 0.

2. We have to prove that there is A ≥ 0 such that for each a ≥ A there is
b such that ⇒!

p,α,Base (a, b) = 0 for each 0 < p < 1, 0 < α < 0.5 and
Base > 0. Let us remember that the 4ft-quantifier ⇒!

p,α,Base is defined by
the condition

a+b∑
i=a

(
a+ b
i

)
pi(1 − p)a+b−i ≤ α ∧ a ≥ Base.

Let be A > Base and a ≥ A. We show that there is a natural b such that

a+b∑
i=a

(
a+ b
i

)
pi(1 − p)a+b−i > α.

It is
∑a+b

i=a

(
a+b

i

)
pi(1 − p)a+b−i > α if and only if

a−1∑
i=0

(
a+ b
i

)
pi(1 − p)a+b−i ≤ 1 − α

because of
∑a+b

i=0

(
a+b

i

)
pi(1 − p)a+b−i = 1.

According to the lemma 3 there is a natural V > a such that it is(
V

i

)
pi(1 − p)V −i ≤ 1 − α

a

for i = 0, . . . , a− 1. Thus it is

a−1∑
i=0

(
V

i

)
pi(1 − p)V −i ≤ 1 − α

Let us choose b = V − a. It means
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a−1∑
i=0

(
a+ b
i

)
pi(1 − p)a+b−i ≤ 1 − α

and it finishes the proof.

��

Lemma 6.

1. The 4ft-quantifier ⇒p,Base of founded implication satisfies the condition
b from the lemma 1 for each 0 < p ≤ 1 and Base > 0.

2. The 4ft-quantifier ⇒!
p,α,Base of lower critical implication satisfies the con-

dition b from the lemma 1 for each 0 < p < 1, 0 < α < 0.5 and
Base > 0.

Proof.

1. We have to prove that for each a ≥ 0, b ≥ 0 such that ⇒p,Base (a, b) = 0
there is a′ ≥ a for that it is ⇒p,Base (a′, b) = 1. The proof is trivial, we
use the fact that lima→∞

a
a+b = 1.

2. We have to prove that for each a ≥ 0 and b ≥ 0 such that it is satisfied
⇒!

p,α,Base (a, b) = 0 there is a′ ≥ a for that it is ⇒!
p,α,Base (a′, b) = 1.

Let us suppose that ⇒!
p,α,Base (a, b) = 0. It means that a < Base or∑a+b

i=a

(
a+b

i

)
pi(1 − p)a+b−i > α.

According to the Lemma 4 there is natural n such that for each e, e > n
and k = 0, . . . , b it is(

e+ b
e+ k

)
pe+k(1 − p)b−k <

α

b+ 1
·

Let us choose a′ = max{a, n,Base}. Then it is a′ ≥ Base and also

a′+b∑
i=a′

(
a′ + b
i

)
pi(1 − p)a′+b−i

=
b∑

k=0

(
a′ + b
a′ + k

)
pa′+k(1 − p)b−k < α.

Thus it is ⇒!
p,α,Base (a′, b) = 1 and it finishes the proof.

��

Theorem 6. The 4ft-quantifier ⇒p,Base of founded implication is not classi-
cally definable for each 0 < p ≤ 1 and Base > 0.

The 4ft-quantifier ⇒!
p,α,Base of lower critical implication is not classically

definable for each 0 < p < 1, 0 < α < 0.5 and Base > 0.
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Proof. The table of maximal b of the 4ft-quantifier ⇒p,Base of founded impli-
cation has infinitely many steps according to the Lemmas 2, 5 and 6. Thus it
is not classically definable according to the Theorem 5.

The proof for the quantifier ⇒!
p,α,Base is analogous. ��

Now we prove that the the Fisher’s quantifier ∼α,Base, is not classically
definable. Let us remember that it is defined for 0 < α < 0.5 and Base > 0
by the condition

min(r,k)∑
i=a

(
k
i

)(
n−k
r−i

)(
r
n

) ≤ α ∧ ad > bc ∧ a ≥ Base·

We use the following results from [2].

Definition 2. (see [2]) The equivalency quantifier ≈ is saturable if it satisfies:

1. For each 4ft-table 〈a, b, c, d〉 with d �= 0 there is a′ ≥ a such that
≈ (a′, b, c, d) = 1.

2. For each 4ft-table 〈a, b, c, d〉 with a �= 0 there is d′ ≥ d such that
≈ (a, b, c, d′) = 1.

3. For each 4ft-table 〈a, b, c, d〉 there is a 4ft-table 〈a′, b′, c′, d′〉 such that it is
≈ (a′, b′, c′, d′) = 0.

Theorem 7. The Fisher’s quantifier ∼α,Base is saturable for 0 < α < 0.5
and Base > 0.

Proof. See [2]. ��

Lemma 7. There are natural numbers c0 and d0 such that the Fisher’s quan-
tifier ∼α,Base satisfies the conditions a and b from the Lemma 2.

Proof. We prove that the conditions a and b are satisfied for c0 = 1 and d0 = 1.
We have to prove

(a) There is A ≥ 0 such that for each a ≥ A there is b for which it is satisfied
∼α,Base (a, b, 1, 1) = 0.

(b) For each a ≥ 0 and b ≥ 0 such that ≈ (a, b, 1, 1) = 0 there is a′ ≥ a for
which it is ∼α,Base (a′, b, 1, 1) = 1.

Let us choose b = a+ 1 for each a ≥ Base, then it is ad < bc and thus it
is ∼α,Base (a, b, 1, 1) = 0. It means that the condition a is satisfied.

The condition b follows from the fact that the Fisher’s quantifier ∼α,Base

is saturable, see Theorem 7. ��

Theorem 8. The Fisher’s quantifier ∼α,Base is not classically definable for
each 0 < α < 0.5 and Base > 0.

Proof. The partial table Tbp∼α,Base
(a, 1, 1) of maximal b of ∼α,Base has infi-

nitely many steps according to the Lemmas 7 and 2. Thus the Fisher’s quan-
tifier is not classically definable according to the Theorem 4. ��
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Let us remark that according to the Theorem 5 the implicational quantifier
⇒∗ is classically definable if and only if its table Tb⇒∗ of maximal b has only
finite number of steps. Let us suppose that we analyze a data matrix with N
rows. We can define a new quantifier ⇒∗,N such that

Tb⇒∗,N (a) =

⎧⎨⎩Tb⇒
∗(a) if a ≤ N

Tb⇒∗(N + 1) if a > N

It is clear that the table Tb⇒∗,N of maximal b of 4ft-quantifier ⇒∗,N has
finite number of steps and thus the 4ft-quantifier ⇒∗,N is classically definable.
It is also clear that it is

⇒∗,N (a, b) = ⇒∗ (a, b)

for each a ≤ N and for each b ≥ 0.
In this way we can replace general implicational 4ft-quantifier by a clas-

sically definable 4ft-quantifier that is equivalent to the given quantifier what
concerns behavior on the given data matrix. This approach can be used also
for the additional 4ft-quantifiers. The construction of the corresponding for-
mula of the classical predicate calculus is described in [10].

5 Conclusions

We have presented a simple criterion of classical definability of important
types of association rules. This criterion is based on the table of critical fre-
quencies that is itself important tool for verification of association rules. The
presented criterion depends on the class of association rules (i.e. the class of
4ft-quantifiers) we deal with.

Let us remark that there are further interesting and practically useful
relations of tables of critical frequencies, classes of association rules, logical
properties of association rules and properties of association rules in the data
with missing information. They are partly published in [2, 5–7] and in more
details investigated in [4, 8]. An overview of related results is in [11].
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Classes of Association Rules: An Overview

Jan Rauch

University of Economics, Prague, nám. W. Churchilla 4 130 67 Prague,
Czech Republic
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Summary. Chapter concerns theoretical foundations of association rules. We deal
with more general rules than the classical association rules related to market baskets
are. Various theoretical aspects of association rules are introduced and several classes
of association rules are defined. Implicational and double implicational rules are
examples of such classes. It is shown that there are practically important theoretical
results related to particular classes. Results concern deduction rules in logical calculi
of association rules, fast evaluation of rules corresponding to statistical hypotheses
tests, missing information and definability of association rules in classical predicate
calculi.

1 Introduction

The goal of this chapter is to contribute to theoretical foundations of data
mining. We deal with association rules. We are however interested with more
general rules than the classical association rule [1] inspired by market basket
are. We understand the association rule as an expression ϕ ≈ ψ where ϕ and ψ
are Boolean attributes derived from columns of an analysed data matrix. The
intuitive meaning of the association rule ϕ ≈ ψ is that Boolean attributes ϕ
and ψ are associated in a way corresponding to the symbol ≈. The symbol ≈
is called 4ft-quantifier. It is associated to a condition related to the (fourfold)
contingency table of ϕ and ψ in the analysed data matrix.

Let us emphasize that there is an approach to mining association rules of
the form ϕ ≈ ψ that does not use the widely known a priori algorithm [1].
The association rules ϕ ≈ ψ can be very effectively mined by an algorithm
based on representation of analysed data by suitable strings of bits [15]. This
approach makes possible to compute very fast necessary contingency tables.
This way it is possible to efficiently mine also for additional patterns verified
on the basis of various contingency tables [16,17].

The association rules of the form ϕ ≈ ψ were defined and studied in [2]
where several classes of association rules were introduced. Additional classes

J. Rauch: Classes of Association Rules: An Overview, Studies in Computational Intelligence

(SCI) 118, 315–337 (2008)
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of association rules were defined and studied in [7] and [11]. The examples are
the classes of implicational [2] and of double implicational [11] rules. The class
of implicational rules is defined such that it comprises the association rules
ϕ ≈ ψ expressing in a reasonable way the fact that ϕ implies ψ. The class
of double implicational rules is defined such that it comprises the association
rules ϕ ≈ ψ that in a reasonable way express the fact that both ϕ implies ψ
and ψ implies ϕ i.e. that ϕ and ψ are somehow equivalent.

Various aspects of association rules of the form ϕ ≈ ψ were studied:

• Logical calculi formulae of which correspond to association rules were de-
fined. Some of these calculi are straightforward modification of classical
predicate calculi [2], the other are more simple [12].

• Logical aspects of calculi of association rules e.g. decidability, deduc-
tion rules definability in classical predicate calculus were investigated, see
namely [2, 12,13].

• Association rules that correspond to statistical hypotheses tests were de-
fined and studied [2].

• Several approaches to evaluation of association rules in data with missing
information were investigated [2, 7].

• Software tools for mining all kinds of such association rules were imple-
mented and applied [3, 5, 15].

This chapter concerns theoretical aspects of association rules. It was shown
that most of theoretically interesting and practically important results con-
cerning association rules are related to classes of association rules. Goal of
this chapter is to give an overview of important classes of association rules
and their properties. Both already published results are mentioned and new
results are introduced.

The association rules of the form ϕ ≈ ψ including rules corresponding to
statistical hypotheses tests are described in Sect. 2. An overview of classes of
association rules is in Sect. 3. Evaluation of association rules corresponding to
some hypotheses tests (e.g. to Fisher’s test) requires complex computation.
The complex computation can be avoided by tables of critical frequencies that
are again closely related to classes of rules, see Sect. 4. Logical calculi formulae
of which correspond to association rules are introduced in Sect. 5. Important
deduction rules concerning association rules and their relation to classes of
rules are introduced in Sect. 6. There are also interesting results concerning
possibilities of definition of association rules by means of the classical predicate
calculus see Sect. 7. Problem of evaluation of association rules in data with
missing information were investigated [2, 10]. Results are also closely related
to the classes of association rules see Sect. 8.

Let us emphasize that the goal of the chapter is to give an overview of
important results related to the classes of association rules. Thus the whole
chapter is written informally.
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2 Association Rules

The association rule is an expression ϕ ≈ ψ where ϕ and ψ are Boolean
attributes. The symbol ≈ is 4ft-quantifier. It denotes a condition concerning
a fourfold contingency table of ϕ and ψ. The rule ϕ ≈ ψ means that the
Boolean attributes ϕ and ψ are associated in the way given by 4ft-quantifier
≈. The Boolean attributes ϕ and ψ are created from basic Boolean attributes
and from propositional connectives ∨, ∧ and ¬. The basic Boolean attribute
is an expression of the form A(α) where α ⊂ {a1, . . . ak} and {a1, . . . ak} is
the set of all possible values (i.e. categories) of the attribute A.

The association rule concerns an analysed data matrix. Rows of the
data matrix correspond to observed objects, columns correspond to at-
tributes of objects. An example of the data matrix with columns – attributes
A,B,C,D, . . . , Z is data matrix M in Fig. 1.

There are also examples of basic Boolean attributes A(a1) and B(b3, b4)
in Fig. 1. The basic Boolean attribute A(α) is true in the row of the analysed
data matrix if it is a ∈ α where a is the value of the attribute A in this
row. The expression A(a1) ∧B(b3, b4) is an example of the Boolean attribute
derived from the attributes A and B. An example of the association rule is
the expression

A(a1) ∧B(b3, b4) ≈ C(c1, c11, c21) ∨D(d9, d10, d11).

The association rule ϕ ≈ ψ is true in the analysed data matrix M if
and only if the condition associated to the 4ft-quantifier ≈ is satisfied for the
fourfold table 4ft(ϕ,ψ, M) of ϕ and ψ in M, see Table 1.

Here a is the number of the objects (i.e. the rows of M) satisfying both ϕ
and ψ, b is the number of the objects satisfying ϕ and not satisfying ψ, c is
the number of objects not satisfying ϕ and satisfying ψ and d is the number
of objects satisfying neither ϕ nor ψ . We write

4ft(ϕ, ψ,M) = 〈a, b, c, d〉.

object A B C D . . . Z A(a1) B(b3, b4)

o1 a1 b8 c16 d9 . . . z14 1 0
o2 a5 b4 c7 d2 . . . z9 0 1
...

...
...

...
...

. . .
...

...
...

on a1 b3 c4 d1 . . . z6 1 1

Fig. 1. Data matrix M and basic Boolean attributes A(a1), B(b3, b4)

Table 1. 4ft table 4ft(ϕ, ψ, M)

M ψ ¬ψ

ϕ a b r

¬ϕ c d

k n
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In addition we sometimes use r = a+ b, k = a+ c and n = a+ b+ c+ d, see
also Table 1. We use the abbreviation “4ft” instead of the expression “fourfold
table”. The notion 4ft table is used for all possible tables 4ft(ϕ,ψ, M).

We write
≈ (a, b, c, d) = 1

if the condition corresponding to the 4ft-quantifier ≈ is satisfied for the
quadruple 〈a, b, c, d〉 of integer non-negative numbers, otherwise we write

≈ (a, b, c, d) = 0.

The {0, 1} – valued function ≈ (a, b, c, d) defined for all 4ft tables can be
informally called associated function of 4-ft quantifier ≈. The precise definition
of associated function of 4ft-quantifier is given in [2].

We write V al(ϕ ≈ ψ,M) = 1 if the association rule ϕ ≈ ψ is true in data
matrix M, otherwise we write V al(ϕ ≈ ψ,M) = 0.

Various kinds of dependencies of the Boolean attributes ϕ and ψ can be
expressed by suitable 4ft-quantifiers. Some examples follow (see also [9]).

The 4ft-quantifier ⇒p,Base of founded implication for 0 < p ≤ 1 and
Base > 0 [2] is defined by the condition

a

a+ b
≥ p ∧ a ≥ Base.

This means that at least 100p per cent of objects satisfying ϕ satisfy also ψ
and that there are at least Base objects of M satisfying both ϕ and ψ.

The 4ft-quantifier ⇒!
p,α,Base of lower critical implication for 0 < p ≤ 1,

0 < α < 0.5 and Base > 0 [2] is defined by the condition

a+b∑
i=a

(
a+ b
i

)
pi(1 − p)a+b−i ≤ α ∧ a ≥ Base.

This corresponds to the statistical test (on the level α) of the null hypothesis
H0 : P (ψ|ϕ) ≤ p against the alternative one H1 : P (ψ|ϕ) > p. Here P (ψ|ϕ) is
the conditional probability of the validity of ψ under the condition ϕ.

The 4ft-quantifier ⇔p,Base of founded double implication for 0 < p ≤ 1
and Base > 0 [4] is defined by the condition

a

a+ b+ c
≥ p ∧ a ≥ Base.

This means that at least 100p per cent of objects satisfying ϕ or ψ satisfy
both ϕ and ψ and that there are at least Base objects of M satisfying both
ϕ and ψ.

The 4ft-quantifier ⇔!
p,α,Base of lower critical double implication for 0 <

p ≤ 1, 0 < α < 0.5 and Base > 0 [4] is defined by the condition

a+b+c∑
i=a

(
a+ b+ c

i

)
pi(1 − p)a+b+c−i ≤ α ∧ a ≥ Base.
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The 4ft-quantifier ≡p,Base of founded equivalence for 0 < p ≤ 1 and
Base > 0 [4] is defined by the condition

a+ d
n

≥ p ∧ a ≥ Base.

This means that ϕ and ψ have the same value (either true or false) for at least
100p per cent of all objects of M and that there are at least Base objects
satisfying both ϕ and ψ.

The 4ft-quantifier ≡!
p,α,Base of lower critical equivalence for 0 < p < 1,

0 < α < 0.5 and Base > 0 [4] is defined by the condition

n∑
i=a+d

(
n

i

)
pi(1 − p)n ≤ α ∧ a ≥ Base.

The Fisher’s quantifier ∼α,Base (see Paragraph 4.4.20 in [2]) is defined for
0 < α < 0.5 and Base > 0 by the condition

min(r,k)∑
i=a

(
k
i

)(
n−k
r−i

)(
r
n

) ≤ α ∧ ad > bc ∧ a ≥ Base.

This corresponds to the statistical test (on the level α) of the null hypoth-
esis of independence of ϕ and ψ against the alternative one of the positive
dependence.

The 4ft-quantifier ∼+
p,Base of above average dependence for 0 < p and

Base > 0 is defined by the condition

a

a+ b
≥ (1 + p)

a+ c
a+ b+ c+ d

∧ a ≥ Base.

This means that the relative frequency of objects satisfying ψ among objects
satisfying ϕ is at least 100p per cent higher than the relative frequency of
objects satisfying ψ among all objects.

The 4ft-quantifier ∼E
δ,Base of E – equivalence [19] is defined by the condition

max

(
b

a+ b
,
c

d+ c

)
< δ.

The “classical” association rule with the confidence conf and the support sup
can be expressed by the 4ft-quantifier →conf,sup defined by the condition

a

a+ b
≥ conf ∧ a

n
≥ sup.

Let us emphasize that all these 4ft-quantifiers are implemented in the
procedure 4ft-Miner see [15].
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3 Classes of Association Rules

3.1 Truth Preservation Condition and Implicational Quantifiers

Classes of association rules are defined by classes of 4ft quantifiers. The as-
sociation rule ϕ ≈ ψ belongs to the class of implicational association rules if
the 4ft quantifier ≈ belongs to the class of implicational quantifiers. We also
say that the association rule ϕ ≈ ψ is an implicational rule and that the 4ft
quantifier ≈ is an implicational quantifier. This is the same for other classes
of association rules.

There are various important classes of 4ft quantifiers defined by truth
preservation conditions [12]. We say that class C of 4ft-quantifiers is de-
fined by truth preservation condition TPCC if there is a Boolean condi-
tion TPCC(a, b, c, d, a′, b′, c′, d′) concerning two fourfold contingency tables
〈a, b, c, d〉 and 〈a′, b′, c′, d′〉 such that the following is true:
4ft quantifier ≈ belongs to the class C if and only if

≈ (a, b, c, d) = 1 ∧ TPCC(a, b, c, d, a′, b′, c′, d′)

implies
≈ (a′, b′, c′, d′) = 1

for all 4ft tables 〈a, b, c, d〉 and 〈a′, b′, c′, d′〉.
The class of implicational quantifiers was defined in [2] by the truth preser-

vation condition TPC⇒ for implicational quantifiers. It is

TPC⇒ = a′ ≥ a ∧ b′ ≤ b.

It means that the 4ft quantifier ≈ is implicational if

≈ (a, b, c, d) = 1 ∧ a′ ≥ a ∧ b′ ≤ b

implies
≈ (a′, b′, c′, d′) = 1

for all 4ft tables 〈a, b, c, d〉 and 〈a′, b′, c′, d′〉.
The truth preservation condition TPC⇒ for implicational quantifiers (i.e.

a′ ≥ a ∧ b′ ≤ b) means that the fourfold table 〈a′, b′, c′, d′〉 is “better from
the point of view of implication” than the fourfold table 〈a, b, c, d〉 (i-better
according to [2]). If 〈a, b, c, d〉 is the fourfold table of ϕ and ψ in data matrix
M and if 〈a′, b′, c′, d′〉 is the fourfold table of ϕ and ψ in data matrix M′,
then the sentence “better from the point of view of implication” means: in data
matrix M′ there are more rows satisfying both ϕ and ψ than in data matrix M
and in M′ there are fewer rows satisfying ϕ and not satisfying ψ than in M.

Thus if it is a′ ≥ a ∧ b′ ≤ b then it is reasonable to expect that if the
implicational association rule ϕ ≈ ψ (i.e. the rule expressing the implication
by ≈) is true in the data matrix M then this rule is also true in data matrix
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Table 2. Classes of association rules defined by truth preservation conditions

Class Truth preservation condition Examples

Implicational TPC⇒ a′ ≥ a ∧ b′ ≤ b ⇒p,Base

⇒!
p,α,Base

Double implicational TPC⇔ a′ ≥ a ∧ b′ ≤ b ∧ c′ ≤ c ⇔∗
0.9,0.1

⇔p,Base

Σ-double implicational TPCΣ,⇔ a′ ≥ a ∧ b′ + c′ ≤ b + c ⇔p,Base

⇔!
p,α,Base

Equivalency TPC≡ a′ ≥ a ∧ b′ ≤ b ∧ c′ ≤ c ∧ d′ ≥ d ∼α,Base

≡p,Base

Σ-equivalency TPCΣ,≡ a′ + d′ ≥ a + d ∧ b′ + c′ ≤ b + c ≡p,Base

≡!
p,α,Base

M′ that is better from the point of view of implication. This expectation is
ensured for implicational quantifiers by the above given definition.

It is easy to prove that the 4ft-quantifier ⇒p,Base of founded implication
is implicational. It is proved in [2] that the 4ft-quantifier ⇒!

p,α,Base of lower
critical implication is also implicational.

There are several additional important classes of association rules defined
by truth preservation conditions, see [2, 4, 9, 11]. Overview of these classes
and some examples are given in Table 2. The quantifiers ⇒p,Base, ⇒!

p,α,Base,
⇔p,Base, ≡p,Base, and ∼α,Base used in Table 2 as examples are defined in
Sect. 2, the quantifier ⇔∗

0.9,0.1 is explained below.

3.2 Double Implicational Quantifiers

The class of double implicational quantifiers is defined in [11] by the truth
preservation condition TPC⇔ for double implicational quantifiers:

TPC⇔ = a′ ≥ a ∧ b′ ≤ b ∧ c′ ≤ c.

We can see a reason for the definition of double implicational quantifier in
an analogy to propositional calculus. If u and v are propositions and both
u→ v and v → u are true, then u is equivalent to v (the symbol “→” is here
a propositional connective of implication). Thus we can try to express the
relation of equivalence of attributes ϕ and ψ using a “double implicational”
4ft-quantifier ⇔∗ such that ϕ⇔∗ ψ if and only if both ϕ⇒∗ ψ and ψ ⇒∗ ϕ,
where ⇒∗ is a suitable implicational quantifier.

If we apply the truth preservation condition for implicational quantifier
TPC⇒ to ϕ⇒∗ ψ, we obtain a′ ≥ a ∧ b′ ≤ b. If we apply it to ψ ⇒∗ ϕ, we
obtain a′ ≥ a ∧ c′ ≤ c, (c is here instead of b, see Table 1). This leads to
the truth preservation condition for double implicational quantifiers TPC⇔
see Table 2.

The class of Σ-double implicational quantifiers is defined to contain useful
quantifiers ⇔p,Base and ⇔!

p,α,Base. They deal with the summa b + c in the
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same way as the quantifiers ⇒p,Base and ⇒!
p,α deal with the frequency c from

contingency table. Thus it is reasonable to use the TPCΣ,⇔:

TPCΣ,⇔ = a′ ≥ a ∧ b′ + c′ ≤ b+ c.

The proof that ⇔p,Base is Σ-double implicational is trivial. The proof that
⇔!

p,α,Base is Σ-double implicational is given in [12].
The condition TPCΣ,⇔ is weaker than the condition TPC⇔. Actually, if

the pair of the contingency tables 〈a, b, c, d〉 and 〈a′, b′, c′, d′〉 satisfies TPC⇔
it also satisfies TPCΣ,⇔. It means that the class of Σ-double implicational
quantifiers is a subclass of the class of double implicational quantifiers:

Let us suppose that ≈ is a Σ-double implicational quantifier, we prove
that ≈ is also double implicational. We have to prove that if ≈ (a, b, c, d) = 1
and contingency tables 〈a, b, c, d〉 and 〈a′, b′, c′, d′〉 satisfy TPC⇔ then it is
also ≈ (a′, b′, c′, d′) = 1. Tables 〈a, b, c, d〉 and 〈a′, b′, c′, d′〉 satisfy TPC⇔ thus
they satisfy also TPCΣ,⇔. We suppose that ≈ is a Σ-double implicational
quantifier, we have just shown that 〈a, b, c, d〉 and 〈a′, b′, c′, d′〉 satisfy TPCΣ,⇔
and thus it is ≈ (a, b, c, d) = 1. This means that each Σ-double implicational
quantifier is also double implicational.

The question is if there is a double implicational quantifier that is not
Σ-double implicational quantifier. It is proved in [11] that there are such
quantifiers. Let us define the quantifier ⇔∗

0.9,ω for 0 < ω such that

⇔∗
0.9,ω (a, b, c, d) =

⎧⎨⎩
1 iff a

a+b+ωc ≥ 0.9 ∧ a+ b+ c > 0

0 otherwise.

It is easy to prove that ⇔∗
0.9,ω is double implicational. Let us suppose a = 90,

b = 9, c = 2, d = 0, and 0 < ω < 0.5. It means b+ ωc < 10 and we have

a

a+ b+ ωc
=

90
90 + b+ ωc

>
90

90 + 10
= 0.9 thus ⇔∗

0.9,ω (90, 9, 2, 0) = 1.

Let us suppose that ⇔∗
0.9,ω is Σ-double implicational. Then it must be

also ⇔∗
0.9,ω (90, 9 + 2, 0, 0) = 1. It is but

90
90 + 9 + 2 + ω ∗ 0

=
90

90 + 11
< 0.9, thus ⇔∗

0.9,ω (90, 9, 2, 0) = 0.

This is a contradiction, we can conclude that ⇔∗
0.9,ω is not Σ-double implica-

tional for 0 < ω < 0.5.

Remark 3.1 It is easy to prove for the implicational quantifier ⇒∗ that the
value ⇒∗ (a, b, c, d) depends neither on c nor on d. It means that we can write
only ⇒∗ (a, b) instead of ⇒∗ (a, b, c, d) for the implicational quantifier ⇒∗.

Remark 3.2 It is also easy to prove for the double implicational quantifier
⇔∗ that the value ⇔∗ (a, b, c, d) does not depend on d. Thus we write only
⇔∗ (a, b, c) instead of ⇔∗ (a, b, c, d) for the double implicational quantifier ⇔∗.
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The natural question is if there are some “pure double implicational” quan-
tifiers. We say that the 4ft-quantifier ⇔∗ is pure double implicational if there
is an implicational quantifier ⇒∗ such that

⇔∗ (a, b, c, d) = 1 if and only if ⇒∗ (a, b) = 1 and ⇒∗ (a, c) = 1.

This and other related questions are solved in [11]. Summary of some related
results is given in Sect. 3.4.

3.3 Equivalency Quantifiers

The class of equivalency quantifiers was defined under the name of associa-
tional quantifiers in [2] by the truth preservation condition TPC≡:

TPC≡ = a′ ≥ a ∧ b′ ≤ b ∧ c′ ≤ c ∧ d′ ≥ d.

However the widely known “classical” association rules with confidence and
support concerning market baskets defined in [1] are not associational in the
sense of the TPC≡ truth preservation condition. The easy proof is given e.g.
in [11]. To avoid possible confusion we use the term equivalency quantifiers.

Again, we can find a reason for the term equivalency quantifiers in the
analogy to the propositional logic. If u and v are propositions and both u→ v
and ¬u→ ¬v are true, then u is equivalent to v. Thus we can try to express the
relation of equivalence of the attributes ϕ and ψ using an “equivalence” 4ft-
quantifier ≡∗ such that ϕ ≡∗ ψ if and only if ϕ⇒∗ ψ and ¬ϕ⇒∗ ¬ψ , where
⇒∗ is a suitable implicational quantifier. If we apply the truth preservation
condition for implicational quantifiers TPC⇒ to ϕ ⇒∗ ψ we obtain a′ ≥
a ∧ b′ ≤ b, if we apply it to ¬ϕ ⇒∗ ¬ψ, we obtain d′ ≥ d ∧ c′ ≤ c, (c is
here instead of b and d is instead of a, see Table 1). This leads to the truth
preservation condition TPC≡ for equivalency quantifiers.

The class of Σ-equivalency quantifiers is defined to contain useful quan-
tifiers ≡p,Base and ≡!

p,α,Base. Thus it is reasonable to use the preservation
condition TPCΣ,≡ for Σ-equivalency quantifiers:

TPCΣ,≡ = a′ + d′ ≥ a+ d ∧ b′ + c′ ≤ b+ c.

The proof that ≡p,Base is Σ-equivalency is trivial. The proof that ≡!
p,α,Base

is Σ-equivalency is given in [11] and it is similar to the proof that ⇔!
p,α,Base

is Σ-double implicational given in [12].
It is easy to see that the condition TPCΣ,≡ is weaker than the condition

TPC≡. It means that the class of Σ-equivalency quantifiers is a subclass of the
class of equivalency quantifiers. We can define the class of pure equivalency
quantifiers analogously to the class of pure double implicational quantifiers.
There are interesting properties of these classes see [12], their detailed descrip-
tion is however out of the scope of this chapter. Some related results are in
Sect. 3.4. It is proved in [2] that the Fisher’s quantifier ∼α,Base is equivalency
(i.e. associational in the terminology of [2]) It is also proved in [12] that the
Fisher’s quantifier ∼α,Base is not Σ-equivalency.
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3.4 Additional Classes of Quantifiers

There are some additional classes of 4ft-quantifiers with interesting theoretical
and practical properties that are not defined by truth preservation condition.
An example is the class of symmetrical quantifiers, see [2]. The 4ft-quantifier
≈ is symmetrical if and only if

≈ (a, b, c, d) = ≈ (a, c, b, d).

It means that the association rule ϕ ≈ ψ with symmetrical 4ft-quantifier ≈ is
true if and only if the association rule ψ ≈ ϕ is true.

It is easy to prove that 4ft-quantifier ⇔p,Base of founded double impli-
cation, 4ft-quantifier ≡p,Base of founded equivalence, the Fisher’s quantifier
∼α,Base and 4ft-quantifier ∼+

p,Base of above average dependence are symmet-
rical.

An other interesting class of 4ft quantifiers is the class of the 4ft quan-
tifiers with F-property. This class is defined such that the quantifiers with
F-property have the same important theoretical properties as the Fisher’s
quantifier ∼α,Base [10]: The 4ft quantifier has the F-property if it satisfies:

1. If ≈ (a, b, c, d) = 1 and b ≥ c− 1 ≥ 0 then ≈ (a, b+ 1, c− 1, d) = 1.
2. If ≈ (a, b, c, d) = 1 and c ≥ b− 1 ≥ 0 then ≈ (a, b− 1, c+ 1, d) = 1.

The proof that the Fisher’s quantifier has the F-property is based on con-
sideration published in [6] and it is given in [7].

There are also interesting results concerning pure double implicational,
strong double implicational, and typical Σ-double implicational quantifiers
defined in [11]:

• The 4ft quantifier ⇔∗ is pure double implicational if there is an implica-
tional 4ft quantifier ⇒∗ such that

⇔∗ (a, b, c) = 1 if and only if ⇒∗ (a, b) ∧ ⇒∗ (a, c)

• The 4ft quantifier ⇔∗ is strong double implicational if there are two impli-
cational 4ft quantifier ⇒∗

1 and ⇒∗
2 such that

⇔∗ (a, b, c) = 1 if and only if ⇒∗
1 (a, b) ∧ ⇒∗

2 (a, c)

• The Σ-double implicational 4ft quantifier ⇔∗ is typical Σ-double implica-
tional if there is an integer A such that 1 < Tb⇔∗(A) <∞

The following facts are among other proved in [11] (the proofs are not too
much complicated but they are out of the scope of this chapter):

• The 4ft quantifiers ⇒p,Base of founded implication and ⇒!
p,α,Base of lower

critical implication are typical Σ-double implicational for 0 < p < 1 and
for 0 < α ≤ 0.5.
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• The 4ft quantifiers ⇔∗ is pure double implicational if and only if there is a
non-negative non-decreasing unary function T⇔∗ assigning to each natural
n a value T⇔∗(a) ∈ N+ such that

⇔∗ (a, b, c) = 1 if and only if b < T⇔∗(a) ∧ c < T⇔∗(a).

• The Σ-double implicational quantifier ⇔∗ is pure double implicational if
and only if it is not typical Σ-double implicational.

There are analogous definitions of pure equivalency, strong double im-
plicational, and typical Σ-equivalency quantifiers in [11] and there are also
analogous results.

4 Tables of Critical Frequencies

Evaluation of association rules with some 4ft-quantifiers corresponding to sta-
tistical hypothesis tests is related to complex computation, e.g.:

• The 4ft-quantifier ⇒!
p,α,Base of lower critical implication is related to the

condition
∑a+b

i=a

(
a+b

i

)
pi(1 − p)a+b−i ≤ α ∧ a ≥ Base

• The 4ft-quantifier ⇔!
p,α,Base of lower critical double implication is related

to the condition
∑a+b+c

i=a

(
a+b+c

i

)
pi(1 − p)a+b+c−i ≤ α ∧ a ≥ Base

• The 4ft-quantifier ≡!
p,α,Base of lower critical equivalence is related to the

condition
∑n

i=a+d

(
n
i

)
pi(1 − p)n ≤ α ∧ a ≥ Base

• The Fisher’s quantifier ∼α,Base is related to the condition∑min(r,k)
i=a

(k
i)(n−k

r−i)
(r

n)
≤ α ∧ ad > bc ∧ a ≥ Base

Remark that there are additional 4ft quantifiers requiring complex com-
putation [2, 4]. We show that such computation can be avoided by tables of
critical frequencies. Moreover we show that the tables of critical frequencies
can be used in a reasonable way to study additional properties of association
rules.

We show tables of critical frequencies for three similarly defined classes of
association rules:

• Implicational defined by TPC⇒ : a′ ≥ a ∧ b′ ≤ b
• Σ-double implicational defined by TPCΣ,⇔ : a′ ≥ a ∧ b′ + c′ ≤ b+ c
• Σ-equivalency defined by TPCΣ,≡ : a′ + d′ ≥ a+ d ∧ b′ + c′ ≤ b+ c

Further we will denote N+ = {0, 1, 2, . . . } ∪ {∞}.
The table of critical frequencies for implicational quantifier ⇒∗ is defined

as a table of maximal b for ⇒∗. It is the function Tb⇒∗ that assigns a value
Tb⇒∗(a) ∈ N+ to each a ≥ 0 such that

Tb⇒∗(a) = min{e| ⇒∗ (a, e) = 0}.
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It is easy to prove that the function Tb⇒∗ is a non-negative and non-decreasing
function that satisfies

⇒∗ (a, b) = 1 if and only if b < Tb⇒∗(a)

for all integers a ≥ 0 and b ≥ 0. It means e.g. that
a+b∑
i=a

(
a+ b
i

)
pi(1 − p)a+b−i ≤ α ∧ a ≥ Base if and only if b < Tb⇒!

p,α,Base
(a)

where Tb⇒!
p,α,Base

is a table of maximal b for implicational quantifier

⇒!
p,α,Base of lower critical implication.
We define analogously tables of critical frequencies for Σ-double impli-

cational quantifiers and for Σ-equivalency quantifiers. The table of critical
frequencies for Σ-double implicational quantifier ⇔∗ is defined as a table of
maximal b+c for ⇔∗. It is the function Tb⇔∗ assigning a value Tb⇔∗(a) ∈ N+

to each a ≥ 0 such that

Tb⇔∗(a) = min{b+ c| ⇔∗ (a, b, c) = 0}.

It is easy to prove that the function Tb⇔∗ is a non-negative and non-decreasing
function that satisfies

⇔∗ (a, b, c) = 1 if and only if b+ c < Tb⇔∗(a)

for all integers a ≥ 0, b ≥ 0, and c ≥ 0.
The table of critical frequencies for Σ-equivalency quantifier ≡∗ is defined

as a table of maximal b+c for ≡∗. It is the function Tb≡∗ that assigns a value
Tb≡∗(E) ∈ N+ to each E ≥ 0 such that

Tb≡∗(E) = min{b+ c| ≡∗ (a, b, c, d) = 0 ∧ a+ d = E.

It is easy to prove that the function Tb≡∗ is a non-negative and non-decreasing
function that satisfies

≡∗ (a, b, c, d) = 1 if and only if b+ c < Tb≡∗(a+ d)

for all integers a ≥ 0, b ≥ 0, c ≥ 0, and d ≥ 0.
The tables of critical frequencies are practically useful, they can be used

to avoid complex computation in the above outlined way. However these ta-
bles also describe the behavior of 4ft quantifiers in a very close way. It means
that we can use the tables of critical frequencies to study the properties of 4ft
quantifiers. Simple property of the table of maximal b for implicational quan-
tifier can be used to decide if the corresponding association rule is definable
in the classical predicate calculus or not, see Sect. 7.

We have shown tables of critical frequencies for implicational, Σ-double
implicational and Σ-equivalency quantifiers. It is shown in [7] that it is pos-
sible to define also a reasonable table of critical frequencies for symmetrical
quantifiers with property F. This table can be used to avoid complex compu-
tation related to Fisher’s quantifier. We will not explain it here in details.
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5 Logical Calculi of Association Rules

Logical calculi formulae of which correspond to association rules are defined
in [12] according to the following principles:

• The association rule is the expression ϕ ≈ ψ where the Boolean attributes
ϕ and ψ are built from the basic Boolean attributes by usual Boolean
connectives.

• The basic Boolean attribute is the expression of the form A(α). Here α is
the subset of the set of all possible values of the attribute A, see Sect. 2.

• The expression

A(a1) ∧B(b3, b4) ≈ C(c1, c11, c21) ∨D(d9, d10, d11)

is an example of the association rule. Here A and B are the names of the
attributes and a1, b3, b4 are the names of its possible values, analogously
for C and D, see also Sect. 2. Each attribute has a finite number of possible
values called categories.

• The set of all association rules related to the given data matrix is given by:
– The set of attributes and by the sets of possible values for each attribute
– The set of all 4ft quantifiers
– Usual Boolean connectives

• The association rules are interpreted and evaluated in corresponding data
matrices. The corresponding data matrix has one column for each attribute
and only possible values of the attribute can occur in the corresponding
column.

• The evaluation function Val with values 1 (truth) and 0 (false) is defined.
The value

Val(ϕ ≈ ψ,M)

of the association rule ϕ ≈ ψ in the data matrix M is done by the four-fold
table 4ft(ϕ,ψ, M) of ϕ and ψ in M and by the condition associated to
the 4ft-quantifier ≈.

The above described calculi of association rules are special case of observa-
tional calculi defined and studied in [2] (main principles are summarized also
in [12]). Important observational calculi are defined in [2] by modifications of
predicate calculi. The modification consists in

1. Allowing only finite models that correspond to analysed data in the form
of {0,1} – data matrices.

2. Adding generalized quantifiers that make possible to express general re-
lations of two or more derived predicates.

The resulting calculi are called observational predicate calculi (OPC for short).
The 4ft-quantifier ≈ is a special case of the generalized quantifier. An example
of open formula of observational predicate calculus is the formula

(⇒p,B x)(P1(x) ∧ P4(y), P2(x) ∧ P3(y))
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and the expression

(⇒p,B x)(P1(x) ∧ P4(x), P2(x) ∧ P3(x))

is an example of a closed formula. The values of formulas of OPC are defined
in Tarski style, see [2].

The formula (⇒p,B x)(P1(x) ∧ P4(x), P2(x) ∧ P3(x)) corresponds to the
association rule

P1 ∧ P4 ⇒p,B P2 ∧ P3

defined on {0,1} – data matrix with Boolean columns (i.e. monadic predicates)
P1, P2, P3, P4, . . . . It means that the association rules with Boolean attributes
can be understood as formulas of observational predicates calculi. The asso-
ciation rule with categorial attributes defined in Sect. 2 can be also seen as
an association rule defined on {0,1} – data matrix with Boolean columns
corresponding to monadic predicates, see below.

The attribute A with categories {a1, . . . ak} can be represented by k
Boolean attributes A(a1), . . . A(ak). Remember that the Boolean attribute
A(a1) is true for the object o if and only if the value of A for the object o is
a1. Thus the basic Boolean attribute A(a1, a2) corresponds to the disjunction
A(a1) ∨A(a2) etc. It means that the rule

A(a1, a2) ∧B(b3) ⇒p,B C(c4, c5)

can be seen as

(A(a1) ∨A(a2)) ∧ B(b3) ⇒p,B C(c4) ∨ C(c5)

and also as

(⇒p,B x)((A(a1)(x) ∨A(a2)(x)) ∧B(b3)(x), C(c4)(x) ∨ C(c5)(x))

It means that the association rules we deal with are formulas we can get
from formulas of classical monadic predicate calculus by adding 4ft-quantifiers.
Thus a natural question arises what association rules can be expressed by
“classical” quantifiers ∀, ∃. It is shown that the answer is related to the classes
of association rules, see Sect. 7.

6 Deduction Rules

Deduction rules concerning association rules are not only theoretically inter-
esting but also practically important. The deduction rules of the form

ϕ ≈ ψ
ϕ′ ≈ ψ′
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where ϕ ≈ ψ and ϕ′ ≈ ψ′ are association rules can be used at least in the
following ways:

• To decrease the number of actually tested association rules: If the associ-
ation rule ϕ ≈ ψ is true in the analysed data matrix and if ϕ≈ψ

ϕ′≈ψ′ is the
correct deduction rule, then it is not necessary to test ϕ′ ≈ ψ′.

• To reduce output of a data mining procedure: If the rule ϕ ≈ ψ is included
in a data mining procedure output (thus it is true in an analysed data
matrix) and if ϕ≈ψ

ϕ′≈ψ′ is the correct deduction rule then it is not necessary
to put the association rule ϕ′ ≈ ψ′ into the output. The used deduction
rule must be transparent enough from the point of view of the user of the
data mining procedure. An example of a transparent deduction rule is a
dereduction deduction rule ϕ⇒∗ψ

ϕ⇒∗ψ∨χ , that is correct for each implicational
quantifier ⇒∗ [2].

Important examples of deduction rules of the form ϕ≈ψ
ϕ′≈ψ′ and their in-

teresting properties are presented in [2, 8, 12]. It is shown in [12] that there
are transparent criteria of correctness of such deduction rules. These criteria
depend on the class of 4ft-quantifier ≈. The criteria are informally introduced
in this section.

The criteria use the notion saying that the Boolean attribute ψ logically
follows from the Boolean attribute ϕ. Symbolically we write

ϕ ' ψ.

It is ϕ ' ψ if for each row o of each data matrix it is true: If ϕ is true in o
then also ψ is true in o. It is shown in [12] that there is a formula Ω(ϕ,ψ) of
propositional calculus such that ϕ ' ψ if and only if Ω(ϕ,ψ) is a tautology.
The formula Ω(ϕ,ψ) is derived from ϕ and ψ by a given way.

The criteria of correctness of deduction rules of the form ϕ≈ψ
ϕ′≈ψ′ for implica-

tion quantifiers concern interesting implication quantifiers. The implicational
quantifier ⇒∗ is interesting if it satisfies:

• ⇒∗ is a-dependent
• ⇒∗ is b-dependent
• ⇒∗ (0, 0) = 0

The 4ft quantifier ≈ is a-dependent if there are non-negative integers a, a′,
b, c, d such that

≈ (a, b, c, d) �= ≈ (a′, b, c, d)

and analogously for b-dependent 4ft-quantifier. The following theorem is
proved in [12]:

If ⇒∗ is the interesting implicational quantifier then the deduction rule

ϕ⇒∗ ψ

ϕ′ ⇒∗ ψ′

is correct if and only if at least one of the conditions 1 or 2 are satisfied:



330 J. Rauch

1. Both 1.a and 1.b are satisfied
1.a ϕ ∧ ψ ' ϕ′ ∧ ψ′.
1.b ϕ′ ∧ ¬ψ′ ' ϕ ∧ ¬ψ.

2. ϕ ' ¬ψ.

It is proved in [7] that the important implicational quantifiers (e.g ⇒p,Base

of founded implication and ⇒!
p,α,Base of lower critical implication) are inter-

esting implicational quantifiers. The similar theorems are proved for Σ-double
implicational quantifier and for Σ-equivalence quantifier in [11], they are pre-
sented also in [12].

If ⇔∗ is the interesting Σ-double implicational quantifier then the deduc-
tion rule ϕ⇔∗ ψ

ϕ′ ⇔∗ ψ′

is correct if and only if at least one of the conditions 1 or 2 are satisfied:

1. Both (ϕ∧ψ) ' (ϕ′∧ψ′) and (ϕ′∧¬ψ′)∨ (¬ϕ′∧ψ′) ' (ϕ∧¬ψ)∨ (¬ϕ∧ψ)
2. ϕ ' ¬ψ or ψ ' ¬ϕ

The Σ- double implicational quantifier ⇔∗ is interesting if it is a-
dependent, (b + c)-dependent and if it is also ⇔∗ (0, 0, 0) = 0. The 4ft-
quantifier ≈ is (b + c)-dependent if there are non-negative integers a, b, c, d,
b′, c′ such that

b+ c �= b′ + c′ and ≈ (a, b, c, d) �= ≈ (a, b′, c′, d).

It is proved in [11] that the important Σ- double implicational quantifiers
(e.g ⇔p,Base of founded double implication and ⇔!

p,α,Base of lower critical
double implication) are interesting Σ- double implicational quantifiers.

If ≡∗ is the interesting Σ-equivalence quantifier, then deduction rule

ϕ ≡∗ ψ

ϕ′ ≡∗ ψ′

is correct if and only if (ϕ ∧ ψ ∨ ¬ϕ ∧ ¬ψ) ' (ϕ′ ∧ ψ′ ∨ ¬ϕ′ ∧ ¬ψ′).
The Σ-equivalence quantifier ≡∗ is interesting if it is (a + d)-dependent

and if ≡∗ (0, b, c, 0) = 0 for b + c > 0. The definition of the fact that the
4ft-quantifier ≈ is (a + d)-dependent is analogous to the definition that it is
(b + c)-dependent. It is proved in [11] that the important Σ – equivalence
quantifiers (e.g ≡p,Base of founded equivalence and ≡!

p,α,Base of lower critical
equivalence are interesting Σ – equivalence quantifiers.

7 Definability in Classical Predicate Calculi

We have shown in Sect. 5 that the association rules we deal with are formulas
we can get from formulas of classical monadic predicate calculus by adding
4ft-quantifiers. Thus a natural question arises what association rules can be
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expressed by “classical” quantifiers ∀, ∃. The association rule that is possi-
ble to express equivalently by means of classical predicate calculus is called
classically definable.

The problem of definability in general monadic observational predicate
calculi with equality is solved by the Tharp’s theorem, see [2] (and [18] cited
in [2]). This theorem gives a criterion of definability of association rules in
classical monadic predicate calculus with equality. Tharp’s theorem is but too
general from the point of view of association rules and it is neither intuitive
nor transparent.

The goal of this section is to informally point out that there is an intuitive
and transparent criterion of definability that is related to classes of associa-
tion rules. Formal definitions and theorems are given in [13,14]. We are going
to present results concerning implicational quantifiers, there are similar re-
sults for equivalency quantifiers. We say that the association rule ϕ ≈ ψ is
classically definable if the 4ft quantifier ≈ is classically definable and vice
versa.

We need a notion of the step in the table of maximal b of introduced
in Sect. 4. Remember that the table of maximal b for implicational quantifier
⇒∗ is the non-negative and non-decreasing function Tb⇒∗ that assigns a value
Tb⇒∗(a) ∈ N+ to each a ≥ 0 such that Tb⇒∗(a) = min{e| ⇒∗ (a, e) = 0}.
It is ⇒∗ (a, b) = 1 if and only if b < Tb⇒∗(a) for all integers a ≥ 0 and
b ≥ 0. A step in the table Tb⇒∗ of maximal b is each such a ≥ 0 for which it
is Tb⇒∗(a) < Tb⇒∗(a+ 1).

The simple criterion of definability of association rules in classical monadic
predicate calculus with equality says that the implicational quantifier ⇒∗ is
classically definable if and only if its table of maximal b has only finite number
of steps [14].

To illustrate how it works we use the implicational quantifier →∗ defined
such that its table of maximal b is given by Table 3. It means: →∗ (0, 0) = 0,
→∗ (0, 1) = 0, . . . , →∗ (1, 0) = 0, . . . , →∗ (2, 0) = 0, . . . , →∗ (3, 0) =
1, →∗ (3, 1) = 1, →∗ (3, 2) = 0, . . . , . . . , →∗ (6, 0) = 1, →∗ (6, 1) = 1,
→∗ (6, 2) = 1, →∗ (6, 3) = 1, →∗ (6, 4) = 0, . . . , etc. In other words, it is
→∗ (a, b) = 1 if and only if

〈a, b〉 ∈ 〈3, 5〉 × 〈0, 1〉 or 〈a, b〉 ∈ 〈6,∞) × 〈0, 3〉 .

Remark that the table of maximal b Tb→∗ of the quantifier →∗ has two steps:
2 (because of Tb→∗(2) < Tb→∗(3)) and 5 (because of Tb→∗(5) < Tb→∗(6)).

Table 3. Table of maximal b Tb→∗ of the quantifier →∗

frequency a Value of Tb→∗(a)

0–2 0
3–5 2
≥ 6 4
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Table 4. 4ft table 4ft(P1,P2, M)

M P2 ¬P2

P1 a b r

¬P1 c d

k n

To study the definability of the quantifier →∗ we will observe the associ-
ation rule P1 →∗ P2 that we will understood as the formula

(→∗, x)(P1(x), P2(x))

of an observational predicate calculus (see Sect. 5).
To show that this formula is definable in classical predicate calculus

we have to find a formula Φ consisting of some of symbols: predicates P1,
P2, logical connectives ∧,∨,¬, classical quantifiers ∀, ∃, equality = (and of
course inequality �=) and variables x1, x2 . . . that is logically equivalent to
(→∗, x)(P1(x), P2(x).

The fact that the formula Φ is logically equivalent to (→∗, x)(P1(x), P2(x)
means that Φ is true in data matrix M if and only if

〈a, b〉 ∈ 〈3, 5〉 × 〈0, 1〉 or 〈a, b〉 ∈ 〈6,∞) × 〈0, 3〉

where frequencies a, b are given by 4ft table 4ft(P1,P2, M) see Table 4. We will
construct Φ such that Φ = Φ1 ∨ Φ2, Φ1 is equivalent to 〈a, b〉 ∈ 〈3, 5〉 × 〈0, 1〉
and Φ2 is equivalent to 〈a, b〉 ∈ 〈6,∞) × 〈0, 3〉. We will use the formulas

κa(x) = P1(x) ∧ P2(x) and κb(x) = P1(x) ∧ ¬P2(x)

and the quantifiers ∃k where k is a natural number. The quantifier ∃k says
“there are at least k mutually different objects”. It is defined using the classical
quantifier ∃ and the predicate of equality. An example of its application is the
formula ∃3κa(x) saying “there are at least three mutually different objects
satisfying” κa(x) that is defined this way:

(∃3x)κa(x) = (∃x1∃x2∃x3)κa(x) ∧ (x1 �= x2 ∧ x1 �= x3 ∧ x2 �= x3).

The formula Φ1 equivalent to 〈a, b〉 ∈ 〈3, 5〉 × 〈0, 1〉 can be defined as

Φ1 = (∃3x)κa(x) ∧ ¬((∃6x)κa(x)) ∧ ¬((∃2κb(x))

The formula Φ2 equivalent to 〈a, b〉 ∈ 〈6,∞) × 〈0, 3〉 can be defined as

Φ2 = (∃6x)κa(x) ∧ ¬((∃4κb(x)).

The formula Φ = Φ1 ∨ Φ2 defined this way consists of symbols: predicates
P1, P2, logical connectives ∧,∨,¬, classical quantifier ∃, inequality �= and
of suitable variables and it is logically equivalent to (→∗, x)(P1(x), P2(x). It
shows that the quantifier →∗ is classically definable. We have also seen that
the formula Φ is constructed on the basis of the table of maximal b Tb⇒∗ of
⇒∗. The table Tb⇒∗ has two steps that are used in the construction of Φ.
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8 Missing Information

Missing information is a common problem in data mining. One of possibilities
how to deal with missing information is secured X-extension introduced in [2].
It deals with data matrices with missing information. We assume that there
is a special symbol X that we interpret as the fact “the value of the corre-
sponding attribute is not known for the corresponding object”. An example
of data matrix MX with missing information is in Fig. 2.

The principle of secured X-extension is to extend the set {0, 1} of values
of Boolean attributes and values of association rules to the set {0, 1, X} such
that the below given conditions are satisfied.

We denote the value of Boolean attribute ϕ in row o of data matrix M as
ϕ(o,M). It can be ϕ(o,M) = 1 (i.e. ϕ is true in row o of M) or ϕ(o,M) = 0
(i.e. ϕ is false in row o of M). If we have data matrix MX with missing
information then it can be ϕ(o,MX) = 1, ϕ(o,MX) = 0 or ϕ(o,MX) = X.

The secured X-extension deals with completions of data matrix MX with
missing information. The completion of the data matrix MX with missing
information is each data matrix M with the same rows and columns such
that each symbol X is replaced by one of possible values of the corresponding
attribute (i.e. the column of M).

The principle of secured X-extension for Boolean attributes means that val-
ues of each Boolean attribute ϕ in data matrix MX with missing information
are defined such that

ϕ(o,MX) =

⎧⎨⎩ ξ ∈ {0, 1} if ϕ(o,M) = ξ in each completion M of MX

X otherwise.

The value A(α)(o,MX) of basic Boolean attribute A(α) in row o of data
matrix MX is according to the principle of secured X-extension defined such
that

• A(α)(o,MX) = 1 if A(o,MX) ∈ α
• A(α)(o,MX) = 0 if A(o,MX) �∈ α ∧A(o,MX) �= X
• A(α)(o,MX) = X otherwise

Here A(o,MX) is the value of attribute A in row o of data matrix MX . In
Fig. 2 there are some examples of values of basic Boolean attributes in data
matrix with missing information.

object A B C D . . . Z A(a1) B(b3, b4)

o1 a1 b8 c16 X . . . z14 1 0
o2 a5 X c7 d2 . . . X 0 X
...

...
...

...
...

. . .
...

...
...

on X b3 c4 d1 . . . z6 X 1

Fig. 2. An example of data matrix MX
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¬
1 0
X X
0 1

∧ 1 X 0

1 1 X 0
X X X 0
0 0 0 0

∨ 1 X 0

1 1 1 1
X 1 X X
0 1 X 0

Fig. 3. Extended truth tables of ∨, ∧ and ¬

Table 5. Ninefold table 9ft(ϕ, ψ,MX)

MX ψ ψX ¬ψ

ϕ f1,1 f1,X f1,0

ϕX fX,1 fX,X fX,0

¬ϕ f0,1 f0,X f0,0

The values of Boolean attributes derived from basic Boolean attributes
using propositional connectives ∨, ∧ and ¬ are defined by truth tables of
these connectives extended by the principle of secured X-extension [2] see
Fig. 3.

The principle of secured X-extension for association rules means that val-
ues of association rule ϕ ≈ ψ in data matrix MX with missing information
are defined such that

V al(ϕ ≈ ψ,MX) =

⎧⎪⎪⎨⎪⎪⎩
ξ ∈ {0, 1} if V al(ϕ ≈ ψ,M) = ξ

in each completion M of MX

X otherwise.

The evaluation of association rules in data matrices with missing informa-
tion was studied e.g. in [2, 6, 7, 10]. The results show that we can construct
secured fourfold table 〈as, bs, cs, ds〉 for a given data matrix MX with missing
information such that it is

V al(ϕ ≈ ψ,MX ) = 1 iff ≈ (as, bs, cs, ds) = 1.

The secured fourfold table depends on the class of evaluated association
rule. The results concerning implicational, Σ-double implicational and Σ-
equivalency classes are rather trivial, however the study of behavior of Fisher’s
quantifier in data with missing information led to the definition of the class
of 4ft quantifiers with F-property, see Sect. 3.4 and [7].

The secured fourfold table is constructed from a ninefold table of ϕ and ψ
in MX that is denoted 9ft(ϕ,ψ,MX), see Table 5.

Here f1,1 is the number of rows o of MX such that both ϕ(o,MX) = 1
and ψ(o,MX) = 1, f1,X is the number of rows o of MX such that both
ϕ(o,MX) = 1 and ψ(o,MX) = X, etc.

The problem is that we have to deal with 2f1,X+fX,1+fX,0+f0,X * 4fX,X 4ft
tables corresponding to all possible completions of data matrix MX . If M is
a completion of MX and if it is 〈a, b, c, d〉 = 4ft(ϕ,ψ,M) then it is also
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a = f1,1 + fa
1,X + fa

X,1 + fa
X,X

b = f1,0 + f b
1,X + f b

X,0 + f b
X,X

c = f0,1 + fc
X,1 + fc

0,X + fc
X,X

d = f0,0 + fd
0,X + fd

X,0 + fd
X,X .

Here fa
1,X is the number of rows of MX such that in MX it is ϕ(o,MX) = 1

and ψ(o,MX) = X and after completion it is ϕ(o,M) = 1 and ψ(o,M) = 1,
similarly for fa

X,1, f
a
X,X , f b

1,X etc.
The association rule ϕ ⇒∗ ψ with an implicational 4ft-quantifier ⇒∗ is

true in all completions of data matrix MX (i.e. ϕ ⇒∗ ψ is true in MX) if
and only if it is

⇒∗ (f1,1, f1,0 + f1,X + fX,0 + fX,X) = 1.

It follows from the truth preservation condition TPC⇒ for implicational quan-
tifiers a′ ≥ a ∧ b′ ≤ b and from the fact that for any completion 〈a, b, c, d〉 of
the ninefold table 9ft(ϕ,ψ,MX) it must be

a ≥ f1,1 ∧ b ≤ f0,1 + f1,X + fX,0 + fX,X

see [2]. It means that secured fourfold table 〈aI , bI , cI , dI〉 for data MX with
missing information and for an implicational 4ft quantifier ⇒∗ can be con-
structed e.g. as

〈aI , bI , cI , dI〉 = 〈f1,1, f1,0 + f1,X + fX,0 + fX,X , 0, 0〉.

The analogous results we can get for additional classes of association rules.
The association rule ϕ ⇔∗ ψ with a Σ-double implicational quantifier ⇔∗ is
true in all completions of data matrix MX if and only if it is

⇔∗ (f1,1, f1,0 + f1,X + fX,0 + fX,X , f0,1 + f0,X + fX,1) = 1.

The association rule ϕ ≡∗ ψ with a Σ-equivalency quantifier ≡∗ is true in
all completions of data matrix MX if and only if it is

≡∗ (f1,1, f1,0 + f1,X + fX,0 + fX,X , f0,1 + f0,X + fX,1, f0,0) = 1.

It is shown in [7] (see also [6]) that the secured 4ft table 〈aF , bF , cF , dF 〉
for the 4ft-quantifiers with the F-property (see Sect. 3) is defined such that

aF = f1,1,
bF = f1,0 + f1,X + fX,0 + F1,
cF = f0,1 + f0,X + fX,0 + F2,
dF = f0,0

where F1 + F2 = fX,X and |bF − cF | is minimal. Let us remark that it is
proved in [7] that the 4ft quantifier corresponding to Chi-squared test has the
F-property.
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Summary. Recent advances in microarray technology offer the ability to measure
expression levels of thousands of genes simultaneously. Analysis of such data helps
us identifying different clinical outcomes that are caused by expression of a few
predictive genes. This chapter not only aims to select key predictive features for
leukemia expression, but also demonstrates the rules that classify differentially ex-
pressed leukemia genes. The feature extraction and classification are carried out
with combination of the high accuracy of ensemble based algorithms, and compre-
hensibility of a single decision tree. These allow deriving exact rules by describing
gene expression differences among significantly expressed genes in leukemia. It is
evident from our results that it is possible to achieve better accuracy in classifying
leukemia without sacrificing the level of comprehensibility.

1 Introduction

Clinical diagnosis for disease prediction is one of the most important emerging
applications of microarray gene expression study. In the last decade, a new
technology, DNA microarrays, has allowed screening of biological samples for
a huge number of genes by measuring expression patterns. This technology
enables the monitoring of the expression levels of a large portion of a genome
on a single slide or “chip”, thus allowing the study of interactions among
thousands of genes simultaneously [1]. Usually microarray datasets are used
for identification of differentially expressed genes, which from data mining
point of view represents a feature selection problem. The objectives of this
research are to select important features from leukemia predictive genes and
to derive a set of rules that classify differentially expressed genes. The study
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follows the comprehensibility of a single decision tree. Although, there are
many research that have demonstrated a higher level of accuracy in classifying
cancer cells, for example [2, 3], the comprehensibility issue of decision trees
to gain best accuracy in the domain of microarray data analysis has been
ignored [4–7].

In this study, we attempt to combine the high accuracy of ensembles and
the interpretability of the single tree in order to derive exact rules that de-
scribe differences between significantly expressed genes that are responsible
for leukemia. To achieve this, Combined Multiple Models (CMM) method
has been applied, which was proposed originally by Domingos in [8]. In our
study the method is adapted for multidimensional and real valued microarray
datasets to eliminate the colinearity and multivariate problems. All datasets
from our experiment are publicly available from the Kent Ridge Repository
described in [20]. These microarray samples are the examples of human tis-
sue extracts that are related to a specific disease and have been used for
comprehensible interpretation in this study. The following sections explore
the datasets, methods of CMM adaptation and testing. It also presents the
results that are obtained by applying the adapted method on four publicly
available databases. Finally the chapter presents a validation study by pro-
viding an interpretation of the results in the context of rule sets and then by
comparing the proposed adaptations with the combined and simple decision
trees for leukemia grouping.

2 Combined Multiple Models for Gene Expression
Analysis

Data mining is the process of autonomously extracting useful information or
knowledge from large datasets. Many different models can be used in data min-
ing process. However, it is required for many applications not only to involve
model that produce accurate predictions, but also to incorporate comprehen-
sible model. In many applications it is not enough to have accurate model,
but we also want comprehensible model that can be easily interpreted to the
people not familiar with data mining. For example, Tibshirani and Knight [9]
proposed a method called Bumping that tries to use bagging and produce a
single classifier that best describes the decisions of bagged ensemble. It builds
models from bootstrapped samples and keeps the one with the lowest error
rate on the original data. Typically this is enough to get good results also on
test set. We should also mention papers that suggest different techniques of
extracting decision trees from neural networks or ensembles of neural networks
that can all be seen as a “black-box” method [10–12].
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Fig. 1. Building decision tree from ensemble using CMM

2.1 CMM Approach

One of the methods that are able to build comprehensible model from an
ensemble of models is called Combined Multiple Models (CMM) and was pre-
sented in [8]. CMM was later studied and improved by Estruch et al. in [13].
Basic idea of CMM is to build a single classifier that would retain most of the
accuracy gains of the ensemble models. This is done by adding additional “ar-
tificial data points” to the learning dataset. Those additional data points are
then classified (i.e. labeled) by applying the ensemble of classifiers that was
trained on the learning dataset. The next step is joining the original training
dataset with the new “artificial” dataset. This final dataset is used to build a
single comprehensible classifier. The whole process is shown in Fig. 1. The idea
of generating the “artificial data points” when building classifiers, was already
used in several papers. One of the first such methods is the active learning
method proposed by Cohn et al. in [14]. Another application of artificial ex-
amples was presented by Craven and Shavlik in [15] where they describe the
learning of decision trees from neural networks. This approach was later used
in several papers on neural networks knowledge extraction.

2.2 Proposed Modifications

This chapter presents the CMM based method that is specialized for micro-
array dataset classification problems. Optimization of the original method
was done on artificial data points creation due to specific structure of the
microarray datasets. Opposite to the original research [8], where most of the
best results were achieved on the datasets containing nominal values, mi-
croarray analysis presents pure continuous-valued data-sets. Therefore a new
method called Combined Multiple Models for Continuous values (CMMC) is
proposed. In this chapter three new artificial data points creation techniques
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for decision tree building are examined which will be referred to as CMMC-1,
CMMC-2 and CMMC-3. Both methods are based on multiplication of the orig-
inal training set instances. Data points are generated from original training
set by creating copies of original training set instances by slightly changing
the values of attributes. First method is based on the variance of the gene
expression values and each attribute can be changed by adding the random
value from one of the intervals

{
−σ,− 1

3σ
}

and
{

1
3σ, σ

}
to the original gene

expression value. Because of the large number of attributes we change only
50% randomly selected attributes. Result of such data point multiplication
is a wide dispersion of the points around their base data point, but original
training set distribution of the samples is still preserved. Second method tries
to maintain the original distribution on even tighter area than the first one,
especially when data points lie tightly together. This is done by generating
the random points in the interval x d, where x is the value of the attribute
and d is the distance to the nearest neighbour value of this attribute. Again
only 50% of attributes are randomly selected for modification. Another modi-
fication of the original approach was done in application of different ensemble
building method. Based on our own tests and also reports in some papers [16],
we decided to use Random Forest ensemble building method that is based on
one of the first ensemble building methods called bagging [17]. To compose
ensemble from base classifiers using bagging, each classifier is trained on a
set of n training examples, drawn randomly with replacement from the origi-
nal training set of size m. Such subset of examples is also called a bootstrap
replicate of the original set. Breiman upgraded the idea of bagging by com-
bining it with the random feature selection for decision trees. This way he
created Random Forests, where each member of the ensemble is trained on a
bootstrap replicate as in bagging. Decision trees are than grown by selecting
the feature to split on at each node from randomly selected number of nodes.
We set number of chosen features to log2(k + 1) as in [18], where k is the to-
tal number of features. Random Forests are the ensemble method that works
well even with noisy content in the training dataset and are considered as one
of the most competitive methods that can be compared to boosting [19]. To
get the most out of the proposed multiplication of data points another ver-
sion of CMMC algorithm was derived. This version (CMMC-3) is based upon
multiplication of data points in each of the leafs which are later extended
by additional subtree. Since our decision trees are pruned they achieve good
generalization and are less complex than unpruned decision trees. Therefore
we try to “upgrade” each leaf by attaching another subtree under the leaf.
These subtrees are built using CMMC technique described above (basically
the same as CMMC-2). Thereby existing data points that got to the leaf are
multiplied (again by adding 1,000 artificial data points labelled by Random
Forest) and the problem of a small number of samples in lower nodes of trees
is reduced but not solved as we cannot be certain about the correct labelling
of the artificial samples.
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3 Experiment and Results

3.1 Datasets

Four widely used publicly available gene expression datasets were used in our
experimental evaluation of the proposed method. They were obtained from
Kent Ridge Biomedical Data Set Repository which was described in [20].

Leukemia1 Dataset (amlall)

The original data comes from the research on acute leukemia by Golub
et al. [21]. Dataset consists of 38 bone marrow samples from which 27 be-
long to acute lymphoblastic leukemia (ALL) and 11 to acute myeloid leukemia
(AML). Each sample consists of probes for 6,817 human genes. Golub used this
dataset for training. Another 34 samples of testing data were used consisting of
20 ALL and 14 AML samples. Because we used leave-one-out cross-validation,
we were able to make tests on all samples together (72).

Breast Cancer Dataset (Breast)

This dataset was published in [22] and consists of extremely large number of
scanned gene expressions. It includes data on 24,481 genes for 78 patients,
34 of which are from patients who had developed distance metastases within
5 years, the rest 44 samples are from patients who remained healthy from the
disease after their initial diagnosis for interval of at least 5 years.

Lung Cancer Dataset (Lung)

Lung cancer dataset includes the largest number of samples in our experi-
ment. It includes 12,533 gene expression measurements for each of 181 tis-
sue samples. The initial research was done by Gordon et al. [23] where they
try to classify malignant pleural mesothelioma (MPM) and adenocarcinoma
(ADCA) of the lung.

Leukemia2 Dataset (mll)

This Leukemia dataset tries to discern between three types of leukemia (ALL,
MLL, AML). Dataset contains 72 patient samples, each of them containing
12,582 gene expression measurements. Data was collected by Armstrong et al.
and results published in [24].
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3.2 Gene Selection

It has been shown that selecting a small subset of informative genes can lead
to improved classification accuracy and greatly improves execution time of
data mining tools [25]. The most commonly used gene selection approaches
are based on gene ranking. In these gene ranking approaches, each gene is
evaluated individually and assigned a score representing its correlation with
the class. Genes are then ranked by their scores and the top ranked ones
are selected from the initial set of features (genes). To make our experiments
less dependent of the filtering method, we use three different filtering methods.
This way we get 12 different microarray datasets with a pre-defined number of
most relevant gene expressions. All used filtering methods are part of WEKA
toolkit [26] that we were using in our experiments. The following filtering
methods were used:

GainRatio filter. This is the heuristic that was originally used by Quinlan
in ID3 [27]. It is implemented in WEKA as a simple and fast feature selection
method. The idea of using this feature selection technique for gene ranking
was already presented by Ben-Dor et al. [28].

Relief-F filter. The basic idea of Relief-F algorithm [29] is to draw instances
at random, compute their nearest neighbors, and adjust a feature weighting
vector to give more weight to features that discriminate the instance from
neighbors of different classes. A study comparing Relief-F to other similar
methods in microarray classification domain was conducted by Wang and
Makedon [30] where they conclude that the performance of Relief-F is com-
parable with other methods.

SVM filter. Ranking is done using Support Vector Machines (SVM) classi-
fier. Similar approach using SVM classifier for gene selection was already used
in papers by Guyon et al. [31] and Fujarewicz et al. [32].

3.3 Experiment Setting

The experiments are designed to test the accuracy gain of all three CMMC
methods compared to accuracy of a single J48 tree (Java C4.5 tree imple-
mentation in WEKA toolkit). The study has followed n-fold cross-validation
process for testing. The n-fold cross-validation is typically implemented by
running the same learning system n times and each time on a different train-
ing set of size (n-1)/n times the size of the original data set. A specific vari-
ation of n-fold cross-validation, called leave-one-out cross-validation method
(LOOCV), is used in the experiment. In this approach, one sample in the
training set is withheld, the remaining samples of the training set are used
to build a classifier to predict the class of withheld sample, and the cumula-
tive error is then calculated. LOOCV was often criticized, because of higher
error variance in comparison to five or tenfold cross-validation [33], but a re-
cent study by Braga-Neto and Dougherty [34] shows that LOOCV can be
considered very useful for microarray datasets, because they have not been
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able to verify the substantial differences in performance among the mentioned
methods. Because of random nature in tested classifier building methods, this
research attempts to repeat LOOCV ten times for all random based meth-
ods (both CMMC and Random Forests) and then computes average accuracy
for all runs. As indicated in [8], 1,000 artificial data points are generated for
CMMC-1 and CMMC-2 methods, while CMMC-3 uses the same number of
artificial data points in every “upgraded” leaf.

3.4 Results

This section highlights the key findings that are obtained by applying the
adapted CMM method on four microarray datasets available in public domain.
Table 1 shows the accuracy comparison. The tests show that all three proposed
methods gained some accuracy comparing to a simple decision tree, but they
are still lacking a lot of accuracy compared to ensemble of classifiers.

To keep the complexity level low for built decision trees, we used pruning
in all decision trees that are used in the experiment. Average complexity (i.e.
number of rules) of decision trees is presented in Table 2. We do not present the
complexity of Random Forest Method as it can be simply estimated as approx-
imately 100 times larger than the simple decision tree and therefore completely
unacceptable for interpretation. The most significant fact revealed from the
Table 2 is low rule complexity of CMMC-2 generated decision trees, especially
when compared to CMMC-1 trees. Trees from our second proposed method

Table 1. Comparison of accuracy for decision tree (C4.5), proposed decision tree
building methods and Random Forests (RF)

Dataset C4.5 CMMC1 CMMC2 CMMC3 RF

amlall1 80.56 90.40 89.20 87.58 97.92
amlall2 79.17 91.29 88.70 88.44 98.30
amlall3 79.17 90.85 87.94 88.30 98.80
amlallAvg 79.63 90.85 88.61 88.11 98.34
breast1 66.67 73.89 67.19 72.85 85.84
breast2 61.54 64.74 65.62 65.66 81.00
breast3 71.79 66.49 66.78 65.04 90.21
breastavg 66.67 68.37 66.53 67.97 85.68
lung1 96.13 96.37 97.55 96.64 99.45
lung2 97.79 96.61 97.95 97.06 98.97
lung3 98.90 96.53 98.58 97.28 99.45
lungavg 97.61 96.50 98.03 96.99 99.29
mll1 79.17 88.89 89.48 87.08 97.62
mll2 88.89 88.29 88.89 91.96 94.64
mll3 84.72 88.29 88.89 87.62 96.03
mllAvg 84.26 88.49 89.09 88.87 96.10
Average 82.04 86.05 85.56 85.49 94.85
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Table 2. Comparison of tree complexity (number of leafs) for decision tree (C4.5)
and proposed decision tree building methods (CMMC-1, CMMC-2 and CMMC-3)

Dataset C4.5 CMMC1 CMMC2 CMMC3

amlall1 2.93 73.30 5.24 6.19
amlall2 2.93 75.57 5.38 5.45
amlall3 2.93 75.77 5.05 6.29
amlallAvg 2.93 74.88 5.22 5.98
breast1 6.26 46.35 18.78 11.22
breast2 7.12 11.37 15.65 14.53
breast3 6.76 11.92 14.68 23.05
breastAvg 6.71 23.21 16.37 16.27
lung1 3.99 75.32 5.05 4.35
lung2 4.00 64.05 9.21 4.31
lung3 4.00 72.71 5.52 4.21
lungAvg 4.00 70.69 6.59 4.29
mll1 3.00 115.94 6.39 4.88
mll2 3.00 118.31 8.68 5.24
mll3 3.92 121.76 7.60 5.00
mllAvg 3.31 118.67 7.56 5.04
Average 4.24 71.86 8.94 7.90

Table 3. Comparison of accuracy by feature selection method

Feature selection C4.5 CMMC1 CMMC2 CMMC3 RF

GainRatio 80.63 87.39 85.86 86.04 95.21
ReliefF 81.85 85.23 85.29 85.78 93.23
SVM-FS 83.65 85.54 85.55 84.56 96.12

generate only two times more rules than simple decision trees. Even better
results were obtained using CMMC-3 method. Low complexity at CMMC-3
based trees is a consequence of the decision tree building technique in which
trees are generated at the beginning using the initial training sets without
artificial data points. The artificial data points are added in later stages.

Table 3 presents the results based on average results on each dataset for
each gene selection method. The best results, with exception of CMMC-3
method, were achieved when SVM based feature selection method was used.
From this table it can also be seen that the majority of accuracy gain of the
CMMC-1 method compared to CMMC-2 was due to first method’s better
accuracy when used with the GainRatio based feature selection method.

3.5 Subgrouping Leukemia Type

To demonstrate the practical advantage of our proposed adaptation to CMM
method, two sample trees were constructed from the Leukemia (AML-ALL)
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ALL (48.0/1.0) AML (3.0)

> 234<= 234

<= 290 > 290

AML (21.0)

attribute2288

attribute461

Fig. 2. J48 decision tree generated from amlall3 dataset (98.61% accuracy)

attribute4847

attribute1779attribute6281

attribute4951

ALL (21.0) AML (4.0)

ALL (663.0) ALL (23.0) AML (361.0)

<= 1931

<= 290.352559

<= 1282.954546 > 1282.954546

> 290.352559 <= 186.96996 > 186.96996

> 1931

Fig. 3. CMMC-2 decision tree from amlall3 dataset (100% accuracy)

dataset. The first tree (Fig. 2) was constructed using J48 algorithm, while the
second tree (Fig. 3) used CMMC-2 algorithm.

The first tree was built from all 72 samples of the amlall3 dataset, where
SVM based filtering was used. J48 tree classified all but one sample correctly
using only two genes. On the other hand CMMC-2 tree classified all 72 and
additional 1,000 artificial samples correctly using only four genes. The decision
tree yields five rules.

The goal of the decision tree presented in Fig. 3 is to derive short rules
that explicitly clarify the types of leukemia and are convenient for expert
interpretation. The rules are summarized in Table 5 that is accompanied by
Table 4. The rule extraction process is based on the attribute to gene name
mappings that are presented in Table 4.

To demonstrate the difference between the two constructed trees (J48 and
CMM), a set of the strongest rules were chosen that were revealed by the
CMM tree but failed to be recognised by the J48 tree. The rules, presented
in Table 4, are directly extracted according to the corresponding branches of
the decision tree, presented in Fig. 3. An interpretation of the rules (Table 5)
is provided in Sect. 4.
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Table 4. Attributes for gene mapping used in both decision trees

Attribute no. Gene description

2,288 DF D component of complement (adipsin)
461 Liver mRNA for interferon-gamma inducing factor (IGIF)
4,847 Zyxin X95735 at
6,281 MYL1 Myosin light chain (alkali)
1,779 MPO Myeloperoxidase
4,951 Nucleoside-diphosphate kinase

Table 5. Rules for Leukemia classification derived from CMM decision tree

1. IF (zyxin X95735 NOT EXPRESSED) AND
(MYL1 Myosin Light Chain EXPRESSED) ⇒ ALL

2. IF (zyxin X95735 NOT EXPRESSED) AND
(MYL1 Myosin Light Chain (Alkali) NOT EXPRESSED) AND
(Nucleoside-diphosphate kinase EXPRESSED) ⇒ AML

3. IF (zyxin X95735 EXPRESSED) AND
(MPO Myeloperoxidase EXPRESSED) ⇒ AML

4 Discussion and Conclusion

Acute leukemia which is of lymphoid origin is called Acute Lymphocytic
Leukemia (ALL) and a malignant disorder where myeloid blast cells accu-
mulate in the marrow and bloodstream is called Acute Myelocytic Leukemia
(AML). A study conducted by Golub et al. [21] has revealed 50 predictive
genes that differentiate between ALL and AML. The report has shown that
over expression of myosin light chain (M31211) leads to the ALL. The re-
port also has indicated that zyxin 2 X95735, an adhesion plaque protein a
component of a signal transduction pathway that mediates adhesion stimu-
lated changes in gene expression, plays a significant role in AML. In a recent
study conducted by Umpai and Aitken [35] has demonstrated that the gene
X95735 zyxin significantly determines AML whereas myosin light chain over
expression frequency is higher in ALL patients. Some other studies also have
demonstrated the similar result. For example, Aris and Rece [36] has demon-
strated the differentiation technique of AML and ALL based on the fact that
zyxin is significant in AML, on the other hand, myosin light chain expression
is significant in ALL patients. The French–American–British (FAB) group [37]
has standardized the nature of ALL and AML on the basis of myeloperoxidase
(MPO) expression. According to the criteria, the AML group demonstrates
greater than 3% MPO and/or Sudan Black B (SBB) blast. The study has
also revealed that, 70–75% of AML cases show myeloid associated antigens
positive, for example, CD13, CD33, MPO etc., thus, it is evident that zyxin
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X95735 and myeloperoxidase overexpression determines the AML subgroup
of acute leukemia. Expression of nm23-H1/Neocleoside diphosphate kinase
(NDPK) correlates inversely with the metastasising potential of some human
tumours. The nucleoside diphosphate kinase enzymatic activity possessed by
several isomers, for example, Nm23 H1 and NM23 H2, is increased signifi-
cantly in AML cells and a higher level of nm23-H1 expression is correlated
with a poor prognosis in AML. A study, conducted by Yokoyama et al. re-
vealed that 110 AML patients have demonstrated the increased nm23-H1
mRNA level which showed a resistance in response to initial chemotherapy.
They also have demonstrated that nm23 H1 has an enormous prognostic af-
fect in AML, especially in AML-M5 (acute monocytic leukemia) [38]. From
the discussion above it is evident that proposed adaptation of CMM model
gives accurate trees that carry additional knowledge compared to classical de-
cision trees. The research shows that the proposed CMMC demonstrated 2%
higher accuracy compared to the classical decision trees. In addition to that,
it has been demonstrated that the best CMMC method even can manage to
keep the complexity level of the tree very low. Therefore, it is evident that
CMMC tree was only twice as large as an original tree. The proposed CMMC
model used a well known C4.5 algorithm for building the final decision tree.
One of the problems with classical decision tree algorithms is that splitting
in the lower lying nodes is based on fewer samples than splitting in the nodes
near the root of the tree. Therefore, splitting toward the leaves is less reliable.
The idea of using less artificial data points in the upper nodes by introducing
them at the lower nodes of a decision tree can be applied in future for better
accuracy. Although a part of this idea was already proposed in this chapter,
there are still a lot of possible variations to this idea left to be researched.
This study has also opened another important direction for further research.
A small ensembles comprising of only three or five classifiers that can still be
interpreted in the form of rules or some novel visualization techniques can be
introduced to demonstrate the comprehensibility of microarray data in order
to predict diseases.
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Summary. This paper explores the complexity of the privacy problem. In particu-
lar the recursion theoretic properties of the privacy problem are examined. We view
the privacy problem as a form of inference problem in databases. We develop a theory
for the privacy problem based on deductive databases and then prove some prop-
erties of the problem. Essentially while our previous papers describe strategies and
approaches to handle the privacy problem as well as designs of privacy controllers
and privacy preserving data mining tools, this paper explores the foundations of the
privacy problem.

1 Introduction

As we have stated in our previous papers (see [THUR03a], [THUR03b],
[THUR03c] and [THUR03d]), privacy is about protecting information about
individuals. Privacy has been discussed a great deal in the past especially when
it relates to protecting medical information about patients. Social scientists
as well as technologists have been working on privacy issues. However, pri-
vacy has received enormous attention during the recent years. This is mainly
because of counter-terrorism and national security. For example in order to
extract information about various individuals and perhaps prevent and/or
detect potential terrorist attacks data mining tools are being examined. We
have heard a lot about national security vs. privacy in newspapers, magazines
and television talk shows. This is mainly due to the fact that people are now
realizing that to handle terrorism, the government may need to collect infor-
mation about individuals and mine this information. This is causing a major
concern with various civil liberties unions [THUR03a], [THUT03b]. Conse-
quently there is now much research on privacy preserving data mining that
attempts to maintain some level of privacy while carrying out data mining
[THUR05a], [THUR05b].

Our previous papers (see [THUR05c]) attempt to provide solutions to han-
dle the privacy problem. In particular, we described a system that enforces
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privacy constraints during database query, update and design operations. We
have also examined the use of semantic data models for reasoning about pri-
vacy constraints [THUR06]. In our current paper we focus on developing a
theory of the privacy problem based on recursive functions and computabil-
ity theory. A formulation of the privacy problem is given and its recursion
theoretic properties are investigated.

Our ultimate goal is to obtain a complete characterization of the privacy
problem and investigate measures of complexity. Such an investigation could
usefully begin with aspects of recursive function theory. This is because re-
cursive function theory from which the notion of computability is derived
(see [ROGE67]) has provided the basis from which other abstract theories
such as computational complexity (see [BLUM67]) and Kolmograv complex-
ity theory (see [KOLM65]) have evolved (we refer to [BRAI74], [MATC78] and
[CALU88] for a discussion on this evolution). Moreover the work of Rosza Pe-
ters (see [PETE81]) has shown the practical significance of recursive function
theory in computer science and provided the basis for possible exploitation
of such results. Therefore the study of the foundations of the privacy prob-
lem could usefully begin with aspects of recursive function theory. We have
investigated the recursion theoretic properties of the privacy problem associ-
ated with database design. We give a formulation of the privacy problem as a
database design problem and investigate the recursion theoretic properties of
this problem. Our research is influenced by our work on privacy constraints
and privacy enhanced databases (see [THUR05c]) as well as our prior research
on the inference problem (see [THUR91]). For a background on the inference
problem we refer to [MORG87], [THUR87], and [HINK88]. For a discussion
of multilevel secure databases we refer to [AFSB83], [THUR05b].

The organization of this paper is as follows. In Sect. 2, which is the essence
of this paper, we define a set X(L) corresponding to each privacy level L. This
set consists of all databases D that are not privacy enhanced with respect to
privacy level L. The privacy problem with respect to private level L would then
be the membership problem for the set X(L). That is, given a database D, if
it can be effectively decided whether D belongs to X(L), then one can decide
whether the design of the database D is privacy enhanced with respect to
level L. By privacy enhanced at a level L we mean that all information that
should be labeled at privacy level L is correctly labeled at level L. We prove
properties of the set X(L). In Sect. 3 we discuss directions for future work on
the foundations and complexity of the privacy problem.

2 A Theory of the Privacy Problem

2.1 Overview

The theory developed in this section is based on privacy enhanced/non-privacy
enhanced database designs. Given a database and a set of privacy constraints,
if it can be effectively decided that the database is designed in such a way
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that privacy violations via inference cannot occur, the privacy problem can
be solved. The privacy controller, which is the device that handles the privacy
problem (see [THUR03c]) will implement the decision procedure for the set,
which consists of all the non-privacy enhanced database designs.

We use the notion of a deductive database in our formulation of the pri-
vacy problem. A deductive database consists of a database and a set of rules,
which enable new data to be deuced from the extensional data [GALL78].
We first define a deductive database and then define the privacy problem
with respect to a privacy level. This problem is the set of all multilevel data-
bases that are non-privacy enhanced at that privacy level. We state and prove
recursion theoretic properties of the set. In this way, a classification of the pri-
vacy problem can be obtained based on the classifications of the recursively
enumerable sets.

Much of the work described in this section is built on the work of Cleave
(see [CLEAV72], [CLEA73], [CLEAV75]) and Thuraisingham (see [THUR82],
[THUR83, [THUR86]) on deductive systems. Their work is derived from
Post’s celebrated work on the reduction of combinatorial decision problems
(see [POST43], [POST44]). The research is also influenced by Thuraising-
ham’s more recent work on the inference problem in secure databases (see
[THUR91]).

The organization of this section is as follows. In Sect. 2.2 we first define
a database. Associated with the notion of databases is a set of rules, which
enable new data to be deduced from the extensional data in the database. The
rules will be modeled by a function called a privacy function. In Sect. 2.3 some
recursion theoretic properties of the privacy problem are stated and proved.
While Sect. 2.3 assumes that the privacy functions are classified at the lowest
privacy level (which we will call system-low and is usually the level Public),
in Sect. 2.4 we discuss multilevel privacy functions where privacy constraints
are themselves are assigned different privacy levels.

2.2 The Privacy Problem

The definition of the privacy problem will be progressively given below. We
first define the notions of a database (as given in [CHAN82]), a deductive
database, a multilevel database, and a multilevel deductive database.

Database: Let U be some countable domain. A relational database (or data-
base) is a tuple B = (P,R1,R2, . . .Rk) where P is some finite subset of U and
for each i (1 ≤ i ≤ k) Ri is a subset of Dai for some ai >= 0. The integer ai
is called the rank of Ri and B is said to be of type a = (a1, a2, . . . ak).

Deductive Database: A deductive database is a pair 〈B, R〉 where B is a data-
base and R is a finite set of rules. These rules may be used to deduce new
data from the data in B.
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The following is an example of a deductive database:

B = {m1, m2, . . . . mn)
R = { (i) m1 → e

(ii) m3, m4 → f
(iii) m5, m2 → g
(iv) m6 → A*m6 (* is the concatenation operation)
(v) m7, e → p
(vi) m6, m8 → b, c
(vii) X → Y where Y is a subset of a set X
(viii) if Y = {y1, y2, . . . yt) is a subset of X = {x1, x2, . . . xk} and if

y1, y2, . . . . yt → z1, z2, . . . zj (1 ≤ i ≤ j) is a rule in R, then
X → X ∪ {z1,z2, . . . zj} is also a rule in R

Note that the symbol → is the “implies” relationship. The symbol ∪ is the
union relationship and the symbol ∈ is the membership relationship. While
we focus on relational databases, the discussion applies for any database.

A deductive database can be regarded to be a semi-thue system. For a
discussion of such systems we refer to [HOPC79]). The set of data that is
deduced from B is not necessarily finite. Furthermore, the set of rules R can
be regarded as a privacy function whose definition is given below.

Privacy Function: A function f: G → Pw(G) is a privacy function if there
exists recursive functions a and b such that for all x, f(x) = Da(x) and f-1(x)
= Db(x) where De is the eth finite set in some standard enumeration, G is
a countable set of entities (an entity could also be a database), Pw(G) is the
set of all finite subsets of G and

f-1(x) = {y: x ∈ f(y)}
Furthermore, for an X ∈ Pw(G)
f(X) = ∪x ∈ X {y: y ∈ f(x)}
Note that f-1 is the inverse of f.
The symbol → takes a function from domain to range.

The set of all privacy functions is denoted by PF.
A privacy function is deterministic if f(x) has atmost one member.

Consequences: Next we define Cnf(x), which is the set of all consequences of
x by a privacy function f. This set consists of all the information that can be
inferred from a set of axioms x by f.

Define y ∈ Cnf(x) if one of the following conditions holds:

(i) y = x
(ii) y ∈ f(x)
(iii) There exists a sequence of numbers y1, y2, . . . yn such that y1 = x,

yn = y and for all i (1 ≤ I ≤ n-1), yi+1 ∈ Cnf(yi).
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The following remarks are in order.

• Corresponding to a deductive database 〈B, R〉 there is a pair 〈n, F〉 where
n is the Gödel number of B in the effective enumeration of all databases
and F is the privacy function, which corresponds to R.

• There is no loss of generality in regarding a deductive database 〈B, R〉
as 〈B, F〉 or 〈n, F〉 where F is the privacy function which corresponds
to R and n is the Gödel number of B in the effective enumeration of all
databases.

Figure 1 illustrates a partial graphical representation of the privacy function,
which corresponds to the deductive database considered in this example. A
rule R is applied to a data set to obtain a new data set.

Multilevel Database: A multilevel database is a triple 〈B, T, A〉 where B is a
database, T is a recursive set of privacy constraints and A is an algorithm (i.e.
an effective procedure) which assigns privacy levels to the data based on T.
(Note that since T is recursive, one can effectively decide whether a privacy
constraint belongs to T.)

For example consider the database B = {m1, m2, . . . . mn}. If a subset
{m1, m4, m5} of the database is given as input to A, A terminates with the
privacy level of the subset of the output. The privacy level is computed based
on the privacy constraints in T. In this example, the privacy level is the
maximum privacy level of the sets {m1}, {m4}, {m5}, {m1, m4}, {m1, m5},

{m1, m2, ……mn}

{m1, m2, ……mn,e} {m1, m2, ……mn,f}

{m1, m2, ……mn,e,p}
Fig. 1. Graphical representation of a privacy function
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{m4, m5} and {m1, m4, m5}. If a privacy constraint does not explicitly classify
a piece of data then its privacy level is assumed to be system-low which we
assume to be the lowest privacy level (e.g., public) supported by the system.
This is usually the level Public. Since T is recursive, one can determine the
privacy level of any piece of data.

Multilevel deductive database: A multilevel deductive database is a quadruple
〈B, F, T, A〉 where B is a database, F is a privacy function, T is a recursive
set of privacy constraints and A is an algorithm that assigns privacy levels to
the data in the database as well as to the derived data.

For example, in the graph of Fig. 1, algorithm A assigns privacy levels
to each node based on the recursive set of privacy constraints. We assume
that there is a unique algorithm, which assigns privacy levels to all the data.
Therefore we do not include the algorithm A in the discussion. Some directions
toward algorithm A are given in [THUR05c].

Privacy problem: The privacy problem with respect to privacy level L is the
set of all triples 〈B, F, T〉 such that there is some x belongs to CnF(B)
and the privacy level of x dominates L. Note that we assume that the set of
privacy levels form a lattice (see also [THUR03c]). Formally stated the privacy
problem at level L is the set:

PP[L] = {〈B, F, T> | Level (B) ≤ L and ∃x (x ∈ CnF(B) and Level(x) 〉 L)}
where ∃ is the “there exists” symbol.

If the set PP[L] is decidable then given a database B, a privacy function F
and a set of privacy constraints T, the privacy controller can decide whether B
is privacy enhanced with respect to the privacy level L under the constraints
T and the inference rules F.

2.3 Properties of the Privacy Problem

As stated earlier if the privacy problem is solvable, then there is no problem.
That is, given a database B, a set of inference rules R and a set of privacy
constraints T, one can effectively decide whether the database is privacy en-
hanced with respect to a privacy level. Unfortunately, as we will see, the
privacy problem in general is not solvable. In this section we will state and
prove unsolvability results of the privacy problem. Once it is determined that
the problem is unsolvable. The next question that needs to be answered is: to
what extent is the privacy problem unsolvable? Is the problem creative? If so,
then it is of the highest degree of unsolvability. Our approach to showing that
an unsolvable problem is creative is to first show that it is nonsimple. This
is because no creative set can be simple. The next step is to show that the
nonsimple problem is a cylinder. This is because all creative sets are cylinders.
Finally we show that the cylindrical problem is creative.

In the discussion given in this section we assume that the privacy functions
as well as the privacy constraints are classified at the level Public (which is
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system-low). That is, they are visible to all users. By assuming that the privacy
functions are public, we mean that users at all privacy levels utilize the same
strategies to draw inferences.

In Theorem 1 we show that the privacy problem is recursively enumerable
with respect to all privacy levels. In addition, the privacy problem is either
recursive or nonsimple. If the privacy functions are deterministic, then we
show that the privacy problem is either recursive or a cylinder. We show that
if the privacy level L1 dominates the privacy level L2 (such as the Private
level dominates the Public level), then the privacy problem with respect to
L1 is a subset of the privacy problem with respect to L2.

Theorem 1.

(i) For each privacy level L, PP[L] is recursively enumerable.
(ii) For each privacy level L, PP[L] is either recursive or nonsimple.
(iii) If all privacy functions which model the rules in deductive databases are

deterministic, then for each privacy level L, PP[L] is either recursive or
a cylinder.

(iv) If the privacy level L1 dominates the privacy level L2, then PP[L1] ⊆
PP[L2], where ⊆ is the subset function.

Proof of Theorem 1

Proof of Theorem 1(i). Let 〈B1, F1, T1〉, 〈B2, F2, T2〉, . . . . be an effective
enumeration of all multilevel deductive databases where B1, B2, B3 . . . . . .
are all visible at level L.

The set PP[L] is enumerated as follows:

Step 1: Perform 1 step in the computation of CnF1(B1). If it converges, let
X be the result. Check whether the privacy constraints in T1 classify
X at a level which dominates L. If so, list 〈B1, F1, G1〉 as a member
of PP[L].

Step 2: If CnF1(B1) did not converge in step 1, perform two steps in the
computation of CnF1(B1). If it converges let X be the result. Check
whether the privacy constraints in T1 classify X at a level which
dominates L. If so, list 〈B1, F1, T1〉 as a member of PP[L].
Perform one step in the computation of CnF1(B2), CnF2(B1),
CnF2(B2). For each computation CnF(B) do the following: if it
converges let X be the result. Let T be the privacy constraints associ-
ated with 〈B, F〉, Check whether the privacy constraints in T classify
X at a level which dominates L. If so, list 〈B, F, T〉 as a member of
PP[L].

Step 3: The following computations are performed:
If CnF1(B1) did not converge in step 2, perform three steps in the
computation of CnF1(B1).
If CnF2(B1), CnF2(B2), CnF2(B2) did not converges in step 2, per-
form two steps in their computation



360 B. Thuraisingham

Perform one step in the computation of CnF1(B3), CnF2(B3),
CnF3(B3), CnF3(B1), CnF3(B2).
For each computation CnF(B) performed in step 3, if it converges,
then using the corresponding set T of privacy constraints check
whether the privacy level of the result dominates L. If so place
〈B, F, T〉 in the list.
Continue with steps 4, 5, 6, - - - -. The list that is generated is PP[L].

This proves Theorem 1(i).

Proof of Theorem 1(ii). If PP[L] is recursive, then it is nonsimple. Assume
that PP[L] is nonrecursive. We need to show that for every privacy level L,
the complement of PP[L] (denoted COMP-PP[L]) has an infinite recursively
enumerable subset. It suffices to prove the following result α.

Result α: There is an element 〈B, f, T〉 of the complement of PP[L] such that
Cnf(B) is infinite.
If result α does not hold, then a decision procedure can be given for PP[L]
as follows:

Given a triple 〈B, f, T〉 list the members of Cnf(B). As a member x is listed,
use the privacy constraints in T to compute the level of x. If the level is not
dominated by L, then 〈B, f, T〉 belongs to PP[L]. For those elements, which
do not belong to PP[L], by our assumption, Cnf(B) is finite. This means that
if Cnf(B) is not finite, then it will definitely be the case that there is an x
in Cnf(B) such that the privacy level of x is not dominated by L. This gives
a decision procedure for PP[L] which contradicts our assumption. Therefore
Result α holds.

The infinite recursively enumerable subset S of COMP-PP[L] can be enu-
merated as follows:

Let 〈B, f, T〉 be the element of PP[L] such that Cnf(B) is infinite. The
following is an enumeration of S:

〈B, f,T〉, 〈f(B), f,T〉, 〈f(f(B), f,T〉, - - - - - -

This proves Theorem 1(ii).

Proof of Theorem 1(iii). By Young’s Lemma [YOUN66], it suffices to prove
the following result β.

Result β: For every privacy level L, there is a recursive function g such that:

X ∈ PP[L] → Wg(X) ⊆ PP[L
X ∈ COMP-PP[L] → Wg(X) ⊆ PP[L]
And Wg(X) is infinite

Note that the privacy functions associated with PP[L] are assumed to be
deterministic and We is the eth recursively enumerable set in some standard
enumeration. COMP-Z is the complement of set Z.
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We now prove the result β.
Since PP[L] is recursively enumerable and nonsimple, its complement has

a recursively enumerable subset. Let this subset be Q.

Given a triple 〈B, f, T〉, compute the following procedure:

Step 0: List 〈B, f, T〉
Step r (r ≥ 0): Compute fr(B)
Note that f2(B) is f(f(B)) and f3(B is f(f(f(B)))

(i) If fr(B) is empty, then list the members of PP[L] and stop the procedure
(note that the procedure does not terminate as PP[L] is infinite. What
we actually mean is do not go to step (r+1).

(ii) If fr(B) is assigned a privacy level by T which is not dominated by L
then enumerate the members of set Q and stop. (Note again that this
procedure does not halt).

(iii) If neither (i) nor (ii) hold, list 〈fr(B), f, T〉) and go to step (r + 1).

It can be shown that for each privacy level L, there is a recursive g such
that given an element 〈B, f, T〉 the list enumerated is Wg(〈B, enumerated is
Wg(〈B, f, T〉).

This proves Theorem 1(iii).

Proof of Theorem 1(iv). Let the privacy level L1 dominate the 〈B, f, T〉 belongs
to PP[L1] then 〈B, f, T〉 also belongs to to PP[L1] then 〈B, f, T〉 also belongs
to PP[L2].

If 〈B, f, T〉 belongs to PP[L1] then there is an x which belongs to Cnf(B)
such that the privacy level of x is not dominated by L1. Then the privacy
level of x is also not dominated by L2. Therefore, x belongs to PP[L2]. That
is, PP[L1] ⊆ PP[L2].

(Note that we make the assumption that the same privacy function is used
for all privacy levels. Furthermore the constraints themselves are assumed to
be public. That is, the constraints are visible at all privacy levels.)

This proves Theorem 1(iv).

In Theorem 1 we have shown that the privacy problem is recursively enu-
merable with respect to all privacy levels. This does not mean that there is a
situation where the privacy problem is nonrecursive with respect to a privacy
level. By a situation we mean a particular scenario in the world. The privacy
functions and the privacy constraints used will be specific to a situation. As
the situation changes the privacy problem also changes. In Theorem 2 we
state some counter examples. A counter example depends on the particular
situation under consideration.

In Theorem 2 we assume that there are only two privacy levels: Private
and Public. This means at the private level there is no privacy problem. This
is because no constraint will assign a level that is higher than the private level
(e.g., highly private). Therefore the privacy problem at the private level will be
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the empty set. At the public level the privacy problem could be nonempty. We
show that there are situations in which the privacy problem at the public level
is (i) nonrecusive, (ii) not creative if the privacy functions are deterministic,
and (iii) neither recursive nor a cylinder.

Theorem 2.

(i) There is a situation where PP[Public] is not recursive.
(ii) Assuming that the privacy functions are deterministic, there is a situation

where PP[Public] is not creative.
(iii) There is a situation where PP[Public] is neither recursive nor a cylinder.

Proof of Theorem 2(i). We first show that given a recursively enumerable set
W, there is a situation S such that

W ≡ mPP[Public]. Note that ≡ m is the many-one equivalence relation-
ship. The result is then immediate from the following reasoning.

* It has been shown that there is set K which is creative. K is the set
{x: the xth partial recursive function halts on input x}

* The situation S that is constructed from the recursively enumerbale set
K will guarantee that PP[Public] is creative. This is because if the two
sets A and B are many one equivalent and A is creative, then so is B.
Therefore, if PP[Public] is creative then it cannot be recursive.

Given a recursively enumerable set W, we create a situation S by defining
a set of privacy constraints and a privacy function. Let the set of privacy
constraints be {(0,0)}. That is, the only element that is assigned the private
level is the pair (0,0). We consider pairs of natural numbers. This does not
cause any problem due to the existence of the pairing function from N × N
onto N where N is the set of all natural numbers. The set of privacy constraints
is recursive (note that in this case it is also finite) and does not depend on W.

We define a privacy function, which depends on W as follows. We assume
that e is the index of W. The privacy function f for a pair (u, v) is defined as
follows:

{(u, v + 1)} if u �= 0 AND NOT T(e,u, v)
{(0,u + v) if u �= 0 AND T(e,u, v)

f(u, v) = {(u, v − 1) if u = 0 AND v �= 0
φ (the empty set) if u = 0 AND v = 0
Note that T is the Kleene′s T Predicate

The graphical representation of f is shown in Fig. 2. Note that defining f on
pairs of natural numbers does not cause any problem. This is because one can
define a privacy function g on N such that g(x) = {y: x = j(u,v) and y = j(p,q)
for some x,y,p,q and (p,q) ∈ f(u,v)}
where j is the pairing function from NxN to N.
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(u,0)

(u,1)

(u,2)

(u,v)

(u,v+1)

(u,v+2)

T(e,u,v)

(0,0)

(0,1)

(0,2)

(0,u+v)

(0,u+v+1)

(0,u+v+2)

(0,u+v)

(0,u+v+1)

(0,u+v+2)

Fig. 2. Graphical representation of the privacy function f

PP[Public] = {(u, v) : there is a path via f from (u, v) to (0, 0)}

It remains to be shown that We ≡ m PP[Public] where We is the eth
recursively enumerable set. Note that ≡ m is many-one equivalence.

Let a ∈ We and b ∈ COMP-We. (COMP-We is the complement of We)
The function h defined below is a many-one reduction function from

PP[Public] to We.

h(u, v) = u if u �= 0 AND NOT∃w〈v T(e,u,w)
= b if u �= 0 and ∃w〈v T(e,u,w)
= a if u = 0

The function k defined below is a many-one reduction function from We to
PP[Public]. k(u) = (u, 0) for all u.

This proves Theorem 2(i).

Proof of Theorem 2(ii). The privacy function f constructed for the proof of
Theorem 2(i) was a deterministic function. Therefore we have shown that
given a recursively enumerable set W, there is a situation S with determin-
istic privacy functions such that W is many-one equivalent to PP[Public]. It
has been shown that there exist recursively enumerable sets, which are not
creative. An example is the existence of a simple set [ROGE67]. Any set that
is many-one equivalent to a non-creative set is also non-creative. Therefore,
there is a situation in which PP[Public] is non-creative.
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This proves Theorem 2(ii).

Proof of Theorem 2(iii). To prove that there is a situation in which PP[Public]
is neither recursive nor a cylinder, we show that no partial recursive function∑

e (e ≥ 0) is a semi-cylinder function for PP[Public]. Then by Young’s result
on semi-cylinders [YOUN63], it follows immediately that PP[Public] is neither
recursive nor a cylinder.

The following graph theory concepts are needed for the proof of the result.

Definitions

Let D be a digraph whose points (nodes) are in N and whose lines (edges) are
ordered pairs of natural numbers. By x ∈D we mean x is a point in D. If x ∈ D
and y ∈ D then by x → y (D) we mean that either x = y or (x, y) is a directed
line in D, or there exist distinct points y1, y2, .. . yn such that x = y1, y = yn
and for each i (1 ≤ i ≤ n-1) yi → yi+1. If x ∈ D, then D(x) is the connected
component of D containing x. The in-degree (out-degree) respectively of x is
the number of points y such that (y, z) ((x, y) respectively) is a directed line in
D. We assume that the in-degree as well as out-degree of each point is atmost
2. A point is a root (leaf respectively) if its in-degree (out-degree respectively)
is 0. We denote r(x) (t(x) respectively)) to be the least point y such that y is
a root (leaf respectively) and y → x (x→ y respectively) in D.

By x//y is meant x and y belong to different connected components. If x/y,
then x and y belong to the same connected component, but it is not the case
that x→ y or y → x. If (x,y) and (x,z) are lines, then z is denoted by y* with
respect to x (note that y is denoted by z* with respect to x).

A digraph is labeled if some of its points are distinguished from one another
by names drawn from some given infinite list. By the term introduce the labels
K1, K2, - - - - Kn (n ≥ 1) to the digraph D is mean the following: Find the least
n numbers x1, x2, . . . . xn which are not points in D. Adjoin these numbers as
points in D so that each point forms a new connected component. Label each
xi (1 ≤ i ≤ n) by Ki.

By the term extend the digraph D to digraph D* is meant the following:
Let r1, r2, . . . rn be the roots of D and let t1, t2, . . . . . tm be its leaves.
Find the least 4n+4m numbers x1 < x2 < x3 < . . . . .X4n < y1 < y2 <
y3 < . . . . y4m not in D. Adjoin these numbers as new points and include the
following lines:
(x1,r1), (x2,r1), (x1,x3), (x2,x4), (x5,r2), (x6,r2), (x5,x7), (x6,x8), - - - - - -
(x4n-3, rn), (x4n-2, rn), (x4n-3,x4n-1), (x4n-2, x4n), (t1,y1), (t1,y2), (y3,y1),
(y4,y2), (t2,y5), (t2,y6), (y7,y5), (y8,y6), ...., (tm,y4m-3), (tm,y4m-2), (y4m-
1, y4m-3), (y4m,y4m-2).
The resulting digraph is D*.

A point is private if a privacy constraint classified that point.

Figure 3 illustrates the concepts we have described above.
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Fig. 3. Extending digraphs

Continuation of Proof We now prove Theorem 2(iii). The proof is divided
into two parts. The first part consists of a program and the second part consists
of three lemmas.

The program to be constructed in Part 1 (see Fig. 4) of the proof is the
construction of labeled digraphs D0, D1, D2, . . . . with the following properties:

(i) There is a recursive function g such that for each m, g(m) is the Gödel
number of Dm.

(ii) For each m, m is a point of Dm.
(iii) For each m, Dm+ 1 is an extension of Dm, i.e. points of Dm are points

of Dm + 1 and if x, y are points of Dm, then there is a line x to y in D
if and only if there is a line from x to y in Dm + 1 where D = ∪{Di: i
∈ N}. Also Dm+ 1 has a point which is the least number not a point in
Dm.

(iv) If m ¡ p, then for any point x of Dm, all lines incident with x in Dm are
lines of Dm+ 1.

(v) For each m, a component Dm has atmost one label. These labels are
taken from a given set {Pe: e ≥ 0} of markers. Also in the program, the
dependence of a number on another number will be defined by induction.

(vi) The privacy constraints classify just the one point 0 at the Private level.

The second part of the proof consists of three lemmas by means of which
it will be proved that there is a privacy function f such that for no e is it true
that the eth partial recursive function

∑
e is a semi-cylinder for PP[Public].
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Fig. 4. Construction of a program

Program

Stage 0: D0 consist of the points 0 and 1 with 1 labeled P0.
Stage m (m ≥ n1):

Step 1: Introduce the label Pm to Dm-1 and extend the resulting graph
to Dm*.

Step 2: Find the smallest number e ≤ m such that there exist numbers
x, y, z all ≤ m satisfying the condition R(x, y, z, e, m) where R is the
conjunction of the following conditions R1, R2 and R3.

R1 ≡ T(e, x, z) and M(z) = y
R2 ≡ NOT (x = y)
R3 ≡ x is labeled Pe in Dm∗

Note that T is the Kleene’s T predicate and R1 implies that
∑

e(x) = y.
For a discussion of the functions T and M we refer to [MEND79].
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If there is no such an e, then set Dm = Dm* and go to stage m + 1.
Otherwise do the following:

Define em = (µe)(∃z, x, yall ≤ m) R(z, e, x, y, e,m)
xm = (µe)(∃z, yboth ≤ m) R(z, em, x, y, e,m)
ym = (µe)(∃z ≤ m) R(z, em, xm, y, e,m)

where µe is the least number e satisfying the condition.

For convenience let em, xm, ym be e, x, y, respectively. In step 3 of the
program it will be ensured that:

x ∈ PP[Public] NOT ≡ y ∈ PP[Public]

where NOT ≡ is the not equivalent symbol.
The application of step 3 on e is called an attack on e.

Step 3:
(a) Delete Pe;
(b) Reintroduce al labels Ps such that s depends on e. Let the resulting

graph be Dm+;
(c) Construct Dm from Dm+ a follows:

Case 1: y belongs to the connected component of 0 in Dm+.
1.1 It is not the case that y→0 in Dm+.

Set Dm = Dm ∪ (t(x), r(0)) (see Fig. 4a)
(That is, Dm results from Dm+ by joining the line (t(x), r(0)).

1.2 Case 1.1 does not hold
Set Dm = Dm+.

Case 2: y belongs to the connected component x in Dm+
2.1 x → y (Dm+)

Set Dm = Dm+ ∪ (t(y*), r(0)) (Fig. 4b)
2.2 y→ x (Dm+)

Set Dm = Dm+ ∪ (t(x*), r(0)) (Fig. 4c)
2.3 x/y (Dm+)

Set Dm = Dm+ ∪ (t(x), r(0)) (Fig. 4d)

Case 3: Case 1 and Case 2 do not hold.
3.1 The connected component of y does not have a label.

Set Dm = Dm+
3.2 The connected component of y has a label Pj.

(i) If j 〉 e, delete Pj and reintroduce it
Set Dm = Dm+ ∪ (t(x), r(0)) (Fig. 4e)

(ii) If j 〈 e, record that e depends on j.
Set Dm = Dm+ ∪ (t(x), r(0)) (Fig. 4e)
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This Ends the Program

Set D = ∪ {Dm: m ∈ N} where

Di ∪ Dj = Di if i > j
= Dj if i ≤ j

Clearly for any point x of Dm, all lines incident with X in D are lines of
Dm + 1.

Define f(x) = {y : (x, y) is a point of D}
= {y : (x, y) is a line of Dx + 1}

f − 1(x) = {y : (y, x) is a line of D}
= {y : (y, x) is a point of Dx + 1}

Clearly f belongs to PF. That is, f is a privacy function and

PP[Public] = {x : x is public and x→ 0 (D)}

This ends Part I of the proof.
We now state and prove three lemmas which constitute the second part of

the proof of Theorem 2(iii). We first need the following definition.

Definition

A label P is fixed at stage numbed H if either P remains assigned to the same
point at all stages numbered n ≥ H or P remains unassigned at all stages
numbered n ≥ H.

Lemma 1. For each e, there exists a stage H(e) at which all labels Pi where
i ≤ e are fixed.

Proof of Lemma 1. There are four ways in which a label Pe can be moved.
(M1) Introduction at stage e (step 1)
(M2) Deletion at stage e (step 3a)
(M3) Reintroduction via an attack on i where e depends on i (step 3b)
(M4) Reintroduction via an attack on i under step 3c, case 3.2 (i)

The proof of the lemma is by induction on e.
Basis e = 0: P0 is introduced at stage 0 (M1). As 0 does not depend

number and there is no i such that i < 0, P0 cannot be moved by M3 or M4.
Therefore, if 0 is never attacked then P0 is fixed at stage 0. If 0 is attacked at
stage m, then P0 is fixed and unassigned at stage m, i.e., H(0) = m.

Inductive step: As inductive hypothesis, assume that all labels Pi < e are
fixed at stage H(e-1). Pe is introduced at stage e (M1). It cannot stage e (M1).
It cannot be moved by M3 or M4 at a stage m ≥ H = MAX{H(e-1),e}. For,
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if not, then a number I 〈e will be attacked at a stage m. This is a contraction
as Pi is fixed at stage H(e-1). Suppose e is never attacked at a stage m ≥ H,
then Pe is fixed and unassigned at stage m, i.e. H(e) = m.

Then the inductive hypothesis implies that all labels Pi where i ≤ e are
fixed at some stage H(e). The statement of the lemma now follows by induction
on e.

Lemma 2. For each e, if Pe is fixed and unassigned at state H(e) then
∑

e
is not a semi-cylinder function for PP[Public].

Proof of Lemma 2. Pe is introduced at state e. If it is fixed and unassigned at
stage H(e), there is a stage m (e ≤ m ≤ H(e)) at which they were last deleted.
That is, e was attacked at stage m. Suppose at stage m Pe was assigned to the
point x. Then there exists a y ≤ m where NOT(x = y) such that

∑
e(x) = y.

Furthermore, in step 3c of stage m it would have been ensured that

x → 0 NOT ≡ y → 0 (Dm)

It now suffices to prove the following statement (V).

(V) : x → 0 NOT ≡ y → 0 (D)

For if (V) holds then

{x} ⊆ PP[Public] NOT ≡ y ∈ PP[Public]

Therefore, as
∑

e (x) = y,
∑

e is not a semi-cylinder function for PP[Public].

Proof of Statement (V): To prove (V), we need to examine each case of
the construction of the program and show that (V) holds. We only show this
for case 1-1. In case 1-1, it is ensured that x → 0 (Dm), and it is not the case
that y → 0 (Dm). We need to prove by induction on s (s ≥ 0) that:

(i) x → 0 (Dm+s); and
(ii) NOT y → 0 (Dm+s)

Now, (i) and (ii) are true for s = 0. It can be shown by examining the
various cases that if (i) and (ii) are true for s = k, then they are true for
s = k + 1.

This proves the statement (V) for case 1-1. Similarly we can show that
(V) holds for the other cases also, Hence the lemma 2.

Lemma 3. For each e,
∑

e is not a semi-cylinder function for PP[Public].

Proof of Lemma 3. Assume that
∑

e is total. If Pe is fixed and unassigned
at stage H(e) then by lemma 2,

∑
e cannot be a semi-cylinder function for

PP [Public]. Suppose Pe is fixed and assigned to the point x at stage H(e).
Then as

∑
e is total,

∑
e(x) is defined. Let

∑
e(x) = y. If x=y, then

x ∈ PP[Public] NOT ≡ y ∈ PP[Public] − {x}
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Therefore
∑

e cannot be a semi-cylinder function for PP[Public]. If x �= y,
then x and y satisfy the condition R2 of step 2 of the program. Then for some
stage m ≥ H(e), e will be attacked and Pe will be deleted via step 3a of the
program. This is a contradiction as Pe is fixed and assigned at stage H(e).
Hence the condition x = y holds. Therefore

∑
e cannot be a semi-cylinder

function for PP[Public]. This proves lemma 3 and hence Theorem 2(iii).

2.4 A Note on Multilevel Privacy Functions

In the previous section we assumed that all privacy functions as well as the
privacy constraints were at system-low. That is, the functions and constraints
were visible at the Public level. Note that if all inference rules are at system-
low then all users could use the same strategies to make inferences and deduce
information say at the private level. In reality it may be possible for certain
users to use some additional inference strategies in order to make inferences.
We assume that those who can view private information may possess some
additional strategies. In order to model these additional strategies, we need
to introduce the notion of a multilevel privacy function.

A multilevel privacy function is a privacy function, which has different
views at different privacy levels. That is, the result of a multilevel privacy
function applied to some data will give different values at different levels.
Figure 5 illustrates a multilevel privacy function, Inference that can be made
at the Public level is shown by unbold lines. At the private level it is possible to
make all the inferences that can be made at the public level. Some additional
inferences can be made at the private level. These inferences are shown by the
bold line.

(0,u+v)

(u,0)

(u,1)

(u,2)

(u,v)

(u,v+1)

(u,v+2)

(0,0)

(0,1)

(0,2)

(0,u+v+1)

(0,u+v+2)

(0,u+1)

Highly-Private point

Fig. 5. Multilevel privacy function
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If f is the privacy function that is represented by Fig. 5, then the version
of f at the public and private levels are denoted by f[Public] and f[Private]
respectively. These versions are defined as follows:

f[Public](u, v) ={(u, v + 1)}if u �= 0
{(u, v − 1)}if u = 0 AND v �= 0
φ (the empty set) if u = 0 AND v = 0

f[Private](u, v) ={(u, v + 1)} if u �= 0 AND v �= 1
{(u, v + 1), (0,u + 1)}if u �= 0 AND v = 1
{(u, v − 1)}if u = 0 AND v �= 0
φ (the empty set) if u = 0 AND v = 0

As a result those at the private level could infer information which the
public users cannot infer. For example, consider the privacy function illus-
trated in Fig. 5. We assume that there is only one privacy constraint, which
classifies the point (0, 0) at the Highly private level. It can be seen that:

PP[Public] = {(0, v) : v ≥ 1}
PP[Private] = {(0, v) : v ≥ 1} ∪ {(u, 0) : u〉1} ∪ {(u, 1) : u〉1}

Therefore it is no longer true that PP[Private] ⊆ PP[Public].
All other results obtained in Sect. 2.3 are valid even if we consider privacy

functions to be multilevel. This is because these results are with respect to
a single privacy level. (Note that Theorem 1(iv) is with respect to multiple
privacy levels).

If we assume that the privacy constraints are themselves assigned different
privacy levels, then Theorem 1(iv) cannot be valid. For example, consider the
privacy function shown in Fig. 6. In this example there is only one privacy
constraint which classifies the point (0, 0) at the highly-private level. Let us
assume that the constraint itself is at the private level. This means that the
constraint does not apply at the public level. It can be seen that:

PP[Public] = the Empty Set
PP[Private] = {(0, v) : v ≥ 1} ∪ {(u, 0) : u〉1} ∪ {(u, 1) : u〉1}

Therefore it is no longer true that

PP[Private] ⊆ PP[Public].



372 B. Thuraisingham

(0,u+v)

(u,0)

(u,1)

(u,2)

(u,v)

(u,v+1)

(u,v+2)

(0,0)

(0,1)

(0,2)

(0,u+v+1)

(0,u+v+2)

(0,u+1)

Highly-Private Point

Privacy constraint is 
assigned level 
Private

Fig. 6. Multilevel privacy constraints

3 Summary and Directions

In this paper we have defined the notion of privacy function and gave the
formulation of the privacy problem in terms of the privacy function. Our
formulation of the privacy problem defines it as a decision problem for the
set of all non-privacy enhanced database designs. Furthermore, we obtain a
different set for each privacy level. We then stated and proved several proper-
ties of these sets based on recursive functions and computability theory. Our
ideas on privacy enhanced database designs as well as privacy constraints and
the development of privacy controllers were discussed in an earlier paper (see
[THUR05c]). In this paper we formalize our notions.

Our discussion of complexity is based on recursion theoretic complexity.
The next step is to examine the computational complexity. For example while
the general privacy problem is unsolvable (as we have shown in this paper),
can we find classes of problems that are solvable? What is the computational
complexity of the various classes of problems. When we say computational
complexity, we mean the space and time complexity as discussed by Blum
and others (see [BLUM67]). Can we obtain a characterization of the privacy
problem in terms of the computational complexity?

The work in this paper is just the first step toward exploring the founda-
tions of the privacy problem. There is still a lot to be done even for recursion
theoretic complexity. The major challenge will also be to obtain a characteri-
zation of the privacy problem in terms of computational complexity.
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Summary. For the recent NIPS-2003 feature selection challenge we studied en-
sembles of regularized least squares classifiers (RLSC). We showed that stochastic
ensembles of simple least squares kernel classifiers give the same level of accuracy as
the best single RLSC. Results achieved were ranked among the best at the challenge.
We also showed that performance of a single RLSC is much more sensitive to the
choice of kernel width than that of an ensemble. As a continuation of this work we
demonstrate that stochastic ensembles of least squares classifiers with randomized
kernel widths and OOB-post-processing often outperform the best single RLSC,
and require practically no parameter tuning. We used the same set of very high di-
mensional classification problems presented at the NIPS challenge. Fast exploratory
Random Forests were applied for variable filtering first.

1 Introduction

Regularized least-squares regression and classification dates back to the work
of Tikhonov and Arsenin [17], and has been re-advocated and revived recently
by Poggio, Smale and others [6, 13–15]. Regularized Least Squares Classifier
(RLSC) is an old combination of quadratic loss function combined with regu-
larization in reproducing kernel Hilbert space, leading to a solution of a simple
linear system. In many cases in the work cited above, this simple RLSC ap-
pears to equal or exceed the performance of support vector machines and
other modern developments in machine learning.

The combination of RLSC with Gaussian kernels and the usual choice of
spherical covariances gives an equal weight to every component of the feature
vector. This poses a problem if a large proportion of the features consists of
noise. With the datasets of the challenge this is exactly the case. In order to
succeed in these circumstances, noise variables need to be removed or weighted
down. We apply ensemble-based variable filtering to remove noise variables. A
Random Forest (RF) is trained for the classification task, and an importance
measure for each variable is derived from the forest [4]. Only highest ranking
K. Torkkola and E. Tuv: Ensembles of Least Squares Classifiers with Randomized Kernels,
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variables are then passed to RLSC. We chose Random Forests (RF) for this
task for several reasons. RF can handle huge numbers of variables easily and
global relative variable importance score is derived as a by-product of the
forest construction with no extra computation involved.

In this chapter we study empirically how a stochastic ensemble of RLSCs
with random kernel widths compares to a single optimized RLSC. Our moti-
vation to do this is the well known fact that ensembles of simple weak learn-
ers are known to produce stable models that often significantly outperform
an optimally tuned single base learner [3, 4, 9]. Another motivating factor is
the elimination of the kernel width and regularization parameter selection
procedures altogether. A further advantage of ensembles is the possibility of
parallelization. Using much smaller sample sizes to train each expert of an
ensemble may be faster than training a single learner using a huge data set.

For an ensemble to be effective, the individual experts need to have low bias
and the errors they make should be uncorrelated [2,4]. Using no regularization
with LSC reduces the bias of the learner making it a good candidate for
ensemble methods. Diversity of the learners can be accomplished by training
base learners using independent random samples of the training data and by
using random kernel widths. The latter is the main topic of this chapter.

The structure of this chapter is as follows. We begin by briefly describing
the RLSC, the theory behind it, and its connections to support vector ma-
chines. We discuss ensembles, especially ensembles of LSCs and the interplay
of regularization and bias in ensembles. The scheme for variable filtering using
ensembles of trees is presented, after which we describe experimentation with
the NIPS2003 feature selection challenge data sets. We discuss our findings
regarding ensembles of random kernel width LSCs, and conclude by touching
upon some possible future directions.

2 Regularized Least-Squares Classification (RLSC)

In supervised learning the training data (xi, yi)m
i=1 is used to construct a

function f : X → Y that predicts or generalizes well. To measure goodness of
the learned function f(x) a loss function L(f(x), y) is needed. Some commonly
used loss functions for regression are as follows:

• Square loss or L2: L(f(x), y) = (f(x) − y)2 (the most common)
• Absolute value, or L1 loss: L(f(x), y) = |f(x) − y|
• Vapnik’s ε-insensitive loss: L(f(x), y) = (|f(x) − y| − ε)+
• Huber’s loss function :{

|y − f(x)|2, for |f(x) − y| ≤ δ
δ(|y − f(x)| − δ/2), otherwise

Examples of loss functions for classification are:

• Misclassification: L(f(x), y) = I(sign(f(x)) �= y)
• Exponential (Adaboost): L(f(x), y) = exp(−yf(x))
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• Hinge loss (implicitly introduced by Vapnik) in binary SVM classification:
L(f(x), y) = (1 − yf(x))+

• Binomial deviance: L(f(x), y) = log(1 + exp(−2yf(x)))
• Squared error: L(f(x), y) = (1 − yf(x))2

Given a loss function, the goal of learning is to find an approximation
function f(x) that minimizes the expected risk, or the generalization error

EP (x,y)L(f(x), y) (1)

where P(x,y) is the unknown joint distribution of future observations (x,y).
Given a finite sample from the (X,Y) domain this problem is ill-posed.

The regularization approach championed by Poggio and rooted in Tikhonov
regularization theory [17] restores well-posedness (existence, uniqueness, and
stability) by restricting the hypothesis space, the functional space of possible
solutions:

f̂ = argmin
f∈H

1
m

m∑
i=1

L(f(xi), yi) + γ ‖f‖2
K (2)

The hypothesis space H here is a Reproducing Kernel Hilbert Space (RKHS)
defined by kernel K, and γ is a positive regularization parameter.

The mathematical foundations for this framework as well as a key algo-
rithm to solve (2) are derived elegantly by Poggio and Smale [14] for the
quadratic loss function. The algorithm can be summarized as follows:

1. Start with the data (xi, yi)m
i=1.

2. Choose a symmetric , positive definite kernel, such as

K(x, x′) = exp(−||x− x′||2
2σ2

). (3)

3. Set

f(x) =
m∑

i=1

ciK(xi, x), (4)

where c is a solution to

(mγI + K)c = y, (5)

which represents well-posed ridge regression model [12].

The generalization ability of this solution, as well choosing the regulariza-
tion parameter γ were studied in [6, 7]. Thus, using the square loss function
with regularization leads to solving a simple well defined linear problem. This
is the core of RLSC. The solution is a linear kernel expansion of the same form
as the one given by support vector machines (SVM). Note also that the SVM
formulation naturally fits in the regularization framework (2). Inserting the
SVM hinge loss function L(f(x), y) = (1 − yf(x))+ to (2) leads to a solution
that is sparse in coefficients c, but it introduces the cost of having to solve a
quadratic optimization problem instead of the linear solution of the RLSC.

RLSC with the square loss function, which is more common for regression,
has also proven to be very effective in binary classification problems [15,16].



378 K. Torkkola and E. Tuv

3 Model Averaging and Regularization

We discuss now what properties are required for the base learners to make
an effective ensemble, and how those properties can be attained with least
squares classifiers (LSC).

3.1 Stability

Generalization ability of a learned function is closely related to its stability.
Stability of the solution could be loosely defined as a continuous dependence
on the data. A stable solution changes very little for small changes in the data.
A comprehensive treatment of this connection can be found in [2].

Furthermore, it is well known that bagging (bootstrap aggregation) can
dramatically reduce variance of unstable learners providing some regulariza-
tion effect [3]. Bagged ensembles do not overfit. The key to the performance
is a low bias of the base learner, and a low correlation between base learners.

Evgeniou experimented with ensembles of SVMs [8]. He used a few datasets
from UCI tuning all parameters separately for both a single SVM and for
an ensemble of SVMs to achieve the best performance. He found that both
perform similarly. However, he also found that generalization bounds for en-
sembles are tighter than for a single machine.

Poggio et al. studied the relationship between stability and bagging [13].
They showed that there is a bagging scheme, where each expert is trained
on a disjoint subset of the training data, providing strong stability to ensem-
bles of non-strongly stable experts, and therefore providing the same order
of convergence for the generalization error as Tikhonov regularization. Thus,
at least asymptotically, bagging strongly stable experts would not improve
generalization ability of the individual member.

3.2 Ensembles of RLSCs

An ensemble should thus have diverse experts with low bias. For RLSC, the
bias is controlled by the regularization parameter and by the σ in case of
a Gaussian kernel. Instead of bootstrap sampling from training data which
imposes a fixed sampling strategy, we found that often much smaller sample
sizes of the order of 30–50% of the data set size improve performance. A
further source of diversity is introduced by each expert having a different
random kernel width.

Combining the outputs of the experts in an ensemble can be done in sev-
eral ways. The simplest alternative is majority voting over the outputs of the
experts. In binary classification this is equivalent to averaging the discretized
(+1,−1) predictions of the experts. In our experiments this performed bet-
ter than averaging the actual numeric expert outputs before applying their
decision function (sign).
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A well known avenue to improve the accuracy of an ensemble is to replace
the simple averaging of individual experts by a weighting scheme. Instead
of giving equal weight to each expert, the outputs of more reliable experts
are weighted up (even for a classification problem). Linear regression can be
applied to learn these weights.

To avoid overfitting, the training material to learn this regression should
be produced by passing only such samples through an expert, that did not
participate in construction of the particular expert. Typically this is done by
using a separate validation data set. Since some of the datasets used were
very small in size, it was not useful to split the training sets further for this
purpose. Instead, since each expert is constructed only from a fraction of the
training data set, the rest of the data is available as “out-of-bag samples”
(OOB).

We experimented with two schemes to construct the training data matrix
in order to learn the weights. The matrix consists of outputs of each indi-
vidual member of the ensemble, Each row corresponds to a data sample in
the training set, and each column corresponds to one expert of the ensemble.
Since each expert populates the column only with OOB-samples, the empty
spaces corresponding to the training data of the expert can be filled in either
with zeroes, or with the expert outputs by passing the training data through
the expert. The latter is optimistically biased, and the former is biased toward
zero (the “don’t know” condition). In the latter case we also up-weighted the
entries by the reciprocal of the fraction of missing entries in order to com-
pensate for the inner product of the regression coefficients with the entries to
sum to either plus or minus one.

Since expert outputs are correlated (although the aim is to have uncorre-
lated experts), PCA regression can be applied to reduce the number of regres-
sion coefficients. Partial Least Squares regression could also be used instead of
PCA regression. We ended up using PCA regression in the final experiments.

4 Variable Filtering with Tree-Based Ensembles

Because the data sets contained unknown irrelevant variables (50–90% of the
variables were noise), we noticed significant improvement in accuracy when
only a small (but important) fraction of the original variables was used in the
kernel construction.

We used fast exploratory tree-based models for variable filtering. One of
many important properties of CART [5] is its embedded ability to select im-
portant variables during tree construction (greedy recursive partition, where
impurity reduction is maximized at every step), and therefore resistance to
noise. Variable importance then can be defined as

M(xm, T ) =
∑
t∈T

∆I(xm, t) (6)
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where ∆I(xm, t) is the decrease in impurity due to an actual or potential
split on variable xm at a node t of the optimally pruned tree T . The sum
in (6) is taken over all internal tree nodes where xm was a primary splitter
or a surrogate variable. Consequently, no additional effort is needed for its
calculation.

Two recent advances in tree ensembles – Multivariate Adaptive Regression
Trees (MART) [10, 11] and Random Forests (RF) [4] inherit all nice proper-
ties of a single tree, and provide more reliable estimate of this value, as the
importance measure is averaged over the trees in the ensemble

M(xi) =
1
M

M∑
m=0

M(xi, Tm). (7)

MART builds shallow trees using all variables, and hence, can handle large
datasets with moderate number of variables. RF builds maximal trees but
chooses a small random subset of variables at every split, and easily handles
thousands of variables in datasets of moderate size. For datasets massive in
both dimensions a hybrid scheme with shallow trees and dynamic variable
selection has been shown to have at least the same accuracy but to be much
faster than either MART or RF [1].

Note that the index of variable importance defined in the above measures
is the global contribution of a variable to the learned model. It is not just a
univariate response-predictor relationship.

For the NIPS2003 challenge data we used RF to select important variables.
A forest was grown using the training data until there was no improvement
in the generalization error. Typically, this limit was around 100 trees. As an
individual tree is grown, a random sample out of the N variables is drawn, out
of which the best split is chosen (instead of considering all of the variables).
The size of this sample was typically

√
N .

5 Experiments with the NIPS2003 Feature Selection
Challenge Data Sets

The purpose of the NIPS2003 challenge in feature selection was to find feature
selection algorithms that significantly outperform methods using all features,
on all five benchmark datasets. The datasets and their (diverse) characteristics
are listed in Table 1.

Of these data sets, only Dorothea was highly unbalanced with approxi-
mately 12% of samples in one class, and 88% in the other. The rest of the
sets had an approximately balanced class distribution. All tasks are two-class
classification problems.
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Table 1. NIPS2003 feature selection challenge data

Dataset Size (MB) Type Number of Training Validation
variables examples examples

Arcene 8.7 Dense 10, 000 100 100
Gisette 22.5 Dense 5, 000 6, 000 1, 000
Dexter 0.9 Sparse integer 20, 000 300 300
Dorothea 4.7 Sparse binary 100, 000 800 350
Madelon 2.9 Dense 500 2, 000 600

Table 2. Comparison of no variable selection to variable selection

Data set Variables Error rate using Selected Error rate using
all variables variables selected variables

Madelon 500 0.254 19 0.093
Dexter 20, 000 0.324 109 0.074
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Fig. 1. The importance of the top 33 out of 500 variables of Madelon derived from
a training set of 2,000 cases in 500 trees. Variable importance has a clear cut-off
point at 19 variables

5.1 Variable Selection Experiments

Initial experimentation was performed to determine whether variable selection
was necessary at all. We trained ensembles of LSCs (ELSC) for two of the data
sets. Results are given in Table 2 as the averages of tenfold cross validation.

These results clearly indicated that RLSC/ELSC is sensitive to noise vari-
ables in data, and that variable selection based on importances derived from
Random Forests works well.

For the rest of the experiments, we adopted the following variable selection
procedure. Variables are ranked by a random forest as described in Sect. 4. If
there are significant cut-off points in the ranked importance, the variable set
before the cut-off point is selected. Figure 1 shows a clear example of such a
cut-off point.
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Table 3. Variable selection, standardization, and variable weighting decisions

Data Original Selected Selection Standardize? Weighting?
set variables variables method

Madelon 500 19 RF Yes No
Dexter 20, 000 500 MI Yes By MI
Arcene 10, 000 10, 000 None No No
Gisette 5, 000 307 RF No No
Dorothea 100, 000 284 RF No No

For each data set, the smallest possible variable set as indicated by a cut-
off point was tried first. If the results were unsatisfactory, the next cut-off
point was searched, and so on, until satisfactory results were obtained. The
maximum number of variables considered was about 500. Full cross-validation
was thus not done over the whole possible range of the number of selected
variables.

Variable set was thereafter fixed to the one that produced the smallest
cross-validation error in the classification experiments, with two exceptions:
Contrary to other data sets, on arcene the error rate using the validation set
did not follow cross-validation error but was the smallest when all variables
were used. Arcene is evidently such a small data set that variable selection
and classifier training both using the 100 training samples, will overfit. The
second exception is dexter, which gave the best results using 500 variables
ranked by maximum mutual information (MI) with the class labels [18].

At this point we also experimented with variable standardization and
weighting variables. Weighting here denotes multiplying variables by their
importance scores given by the RF (or MI). Due to lack of space these exper-
iments are not tabulated, but the decisions are summarized in Table 3.

5.2 Classification Experiments with ELSCs using Random Kernels

An individual RLSC has two parameters that need to be determined by cross-
validation. These are the kernel width σ2 and the regularization parameter γ.
For a single RLSC, regularization is critical in order not to overfit. The choice
of the parameters needs to be made by cross-validation, and appears to be very
data dependent. This leads to optimization in a two-dimensional parameter
space using cross-validation. As an example, we present this optimization for
the Madelon data set in Fig. 2.

An ensemble of stochastic LSCs is less sensitive to kernel width, does
not require search for the regularization parameter, is not sensitive to the
ensemble size (once it is large enough), and is not very sensitive to the fraction
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Fig. 2. Single RLSC: Cross-validation experimentation in order to find the optimal
combination of kernel width and regularization parameter for madelon data set.
Vertical axis is the tenfold cross-validation error rate on training data, horizontal
axis is log10(γ), and each curve corresponds to a specific kernel width as wjd

2
av, where

wj are the numbers shown in the legend, and d2
av is the average squared distance

between data samples. The optimal combination for this data set is γ = 10−3 and
σ2 = 0.016667d2

av

of data sampled to train each LSC [19]. Our motivation in using random
kernels, or more precisely, random kernel widths, was to get rid of all these
tunable parameters in ensemble construction without sacrificing any of the
generalization performance.

Naturally, the kernel width cannot be completely random, but in a reason-
able range, which is determined by the data. We sampled the σ2 uniformly
in the range of [d2min/4, d

2
med], where dmed is the median distance between

samples, and dmin is the minimum distance between samples. This was found
to be a reasonable range for all the five diverse challenge datasets.

The ensemble size was fixed to 200, and the fraction of training data to
train each LSC was fixed to 0.5. These were near-optimal values for ELSCs
according to our earlier experiments [19].

Ensemble output combination was done using PCA-regression. We exper-
imented also with plain regression using a mixture of training/OOB samples
or just the OOB-samples, but the differences were insignificant.

We present the final classification error rates in Table 4. Even though
there is no significant difference in validation error rates between using a sin-
gle RLSC with optimized parameters, an ELSCs with optimized parameters,
or an ELSC with random kernel width, the fact that the latter can be trained
without any necessary parameter/model selection makes it a desirable alter-
native.
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Table 4. Error rates using the separate validation data set after optimizing σ2 and
γ for a single RLSC, and σ2 and the fraction of data sampled for each LSC in an
ensemble of 200 classifiers

Data Optimized Optimized Random kernel
set RLSC ELSC ELSC

Arcene 0.1331 0.1331 0.1130
Gisette 0.0210 0.0210 0.0200
Dorothea 0.1183 0.1183 0.1140
Madelon 0.0700 0.0667 0.0717
Dexter 0.0633 0.0633 0.0700

Random kernel ELSC required no parameter tuning

6 Future Directions

We describe an approach in this chapter that consists of two disjoint systems,
Random Forests for variable selection, and ELSC for the actual classification.
Even though the two systems complement each other nicely, RF providing fast
embedded variable selection and ELSC providing highly capable base learners
to compensate for the lack of smoothness of the trees of an RF, an integrated
approach would be desirable. We describe an idea towards such a system.

RF could act as a supervised kernel generator using the pairwise similari-
ties between cases. Breiman defined a coarse similarity measure between two
observations for a single tree as one if the observations end up in the same
terminal node in a tree, and zero otherwise [4]. For the whole forest, these
similarities added up. Similarity with a finer granularity could be defined as
the total number of common parent nodes, normalized by the level of the
deepest case, and summed up for the ensemble. Minimum number of common
parents to define non-zero similarity is another parameter that could be used
like width in Gaussian kernels.

Figure 3 illustrates the difference between a Gaussian kernel and the pro-
posed supervised kernel.1

An advantage of the method is that it works for any type of data, numeric,
categorical, or mixed, even for data with missing values. This is because the
base learners of the Random Forest can tolerate these. A further advantage
is that explicit variable selection is bypassed altogether. Important variables
will become used in the trees of the forest, and they thus participate implicitly
in the evaluation of the kernel. New data to be classified must be run through
all the trees of the forest in order to record the terminal nodes, but this is an
extremely fast operation.

1Colormap is the Matlab standard “Jet”: dark red to red to yellow to green to blue
to dark blue denotes decreasing similarity.
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Fig. 3. Gaussian kernel compared to a supervised kernel using the Arcene dataset.
Left side depicts the 100 × 100 Gaussian kernel matrix of the data set. The data
can be seen to consist of three clusters. Each cluster has samples from both classes.
Class identities of samples are depicted as the graphs below and between the kernel
matrix images. For ideal classification purposes, the kernel matrix should reflect
the similarity within a class and dissimilarity between classes. This can be seen on
the right side of the figure, where the proposed supervised kernel has split the first
cluster (top left corner) into the two classes nicely. Splits on the second and third
clusters are not that clean but still visible, and much more so than what can be seen
in the Gaussian kernel

7 Conclusion

We proposed a relatively straightforward approach to create powerful ensem-
bles of simple least square classifiers with random kernels. We used NIPS2003
feature selection challenge data to evaluate performance of such ensembles.
The binary classification data sets considered in the challenge originated in
different domains with number of variables ranging from moderate to ex-
tremely large and moderate to very small number of observations. We used
fast exploratory Random Forests for variable filtering as a preprocessing step.
The individual learners were trained on small random sample of data with
Gaussian kernel width randomly selected from relatively wide range of val-
ues determined only by basic properties of the corresponding dissimilarities
matrix. The random sample of data used to build individual learner was rela-
tively small. Modest ensemble size (less than 200) stabilized the generalization
error. We used consistent parameter settings for all datasets, and achieved at
least the same accuracy as the best single RLSC or an ensemble of LSCs with
fixed tuned kernel width. Individual learners were combined through simple
OOB post-processing PCA regression.
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Summary. A contingency table summarizes the conditional frequencies of two at-
tributes and shows how these two attributes are dependent on each other with the
information on a partition of universe generated by these attributes. Thus, this ta-
ble can be viewed as a relation between two attributes with respect to information
granularity. This chapter focuses on several characteristics of linear and statisti-
cal independence in a contingency table from the viewpoint of granular computing,
which shows that statistical independence in a contingency table is a special form
of linear dependence. The discussions also show that when a contingency table is
viewed as a matrix, called a contingency matrix, its rank is equal to 1.0. Thus, the
degree of independence, rank plays a very important role in extracting a probabilis-
tic model from a given contingency table. Furthermore, it is found that in some
cases, partial rows or columns will satisfy the condition of statistical independence,
which can be viewed as a solving process of Diophatine equations.

1 Introduction

Statistical independence between two attributes is a very important concept
in data mining and statistics. The definition P (A,B) = P (A)P (B) show that
the joint probability of A and B is the product of both probabilities. This
gives several useful formula, such as P (A|B) = P (A), P (B|A) = P (B). In a
data mining context, these formulae show that these two attributes may not
be correlated with each other. Thus, when A or B is a classification target,
the other attribute may not play an important role in its classification.

Although independence is a very important concept, it has not been fully
and formally investigated as a relation between two attributes.

In this chapter, a statistical independence in a contingency table is focused
on from the viewpoint of granular computing.

The first important observation is that a contingency table compares two
attributes with respect to information granularity. It is shown from the def-
inition that statistical independence in a contingency table is a special form
of linear dependence of two attributes. Especially, when the table is viewed
S. Tsumoto: On Pseudo-Statistical Independence in a Contingency Table, Studies in Compu-
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as a matrix, the above discussion shows that the rank of the matrix is equal
to 1.0. Also, the results also show that partial statistical independence can be
observed.

The second important observation is that matrix algebra is a key point
of analysis of this table. A contingency table can be viewed as a matrix and
several operations and ideas of matrix theory are introduced into the analysis
of the contingency table.

The chapter is organized as follows: Section 2 discusses the characteristics
of contingency tables. Section 3 shows the conditions on statistical indepen-
dence for a 2×2 table. Section 4 gives those for a 2×n table. Section 5 extends
these results into a multiway contingency table. Section 6 discusses statistical
independence from matrix theory. Sections 7 and 8 show pseudo-statistical
independence. Finally, Sect. 9 concludes this chapter.

2 Contingency Table from Rough Sets

2.1 Rough Sets Notations

In the subsequent sections, the following notations is adopted, which is intro-
duced in [2]. Let U denote a nonempty, finite set called the universe and A
denote a nonempty, finite set of attributes, i.e., a : U → Va for a ∈ A, where
Va is called the domain of a, respectively. Then, a decision table is defined as
an information system, A = (U,A∪{D}), where {D} is a set of given decision
attributes. The atomic formulas over B ⊆ A ∪ {D} and V are expressions of
the form [a = v], called descriptors over B, where a ∈ B and v ∈ Va. The
set F (B, V ) of formulas over B is the least set containing all atomic formulas
over B and closed with respect to disjunction, conjunction and negation. For
each f ∈ F (B, V ), fA denote the meaning of f in A, i.e., the set of all objects
in U with property f , defined inductively as follows:

1. If f is of the form [a = v] then, fA = {s ∈ U |a(s) = v}
2. (f ∧ g)A = fA ∩ gA; (f ∨ g)A = fA ∨ gA; (¬f)A = U − fa

By using this framework, classification accuracy and coverage, or true positive
rate is defined as follows.

Definition 1. Let R and D denote a formula in F (B, V ) and a set of objects
whose decision attribute is given as D, respectively. Classification accuracy
and coverage(true positive rate) for R→ D is defined as:

αR(D) =
|RA ∩D|
|RA|

(= P (D|R)), and

κR(D) =
|RA ∩D|

|D| (= P (R|D)),
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where |A| denotes the cardinality of a set A, αR(D) denotes a classification
accuracy of R as to classification of D, and κR(D) denotes a coverage, or a
true positive rate of R to D, respectively.

2.2 Contingency Table (2 × 2)

From the viewpoint of information systems, a contingency table summarizes
the relation between two attributes with respect to frequencies. This viewpoint
has already been discussed in [3, 4]. However, this study focuses on more
statistical interpretation of this table.

Definition 2. Let R1 and R2 denote binary attributes in an attribute space
A. A contingency table is a table of a set of the meaning of the following
formulas: |[R1 = 0]A|,|[R1 = 1]A|, |[R2 = 0]A|,|[R2 = 1]A|, |[R1 = 0 ∧ R2 =
0]A|,|[R1 = 0 ∧ R2 = 1]A|, |[R1 = 1 ∧ R2 = 0]A|,|[R1 = 1 ∧ R2 = 1]A|,
|[R1 = 0 ∨ R1 = 1]A|(= |U |). This table is arranged into the form shown in
Table 1, where: |[R1 = 0]A| = x11 + x21 = x·1, |[R1 = 1]A| = x12 + x22 = x·2,
|[R2 = 0]A| = x11 + x12 = x1·, |[R2 = 1]A| = x21 + x22 = x2·, |[R1 = 0∧R2 =
0]A| = x11, |[R1 = 0 ∧ R2 = 1]A| = x21, |[R1 = 1 ∧ R2 = 0]A| = x12,
|[R1 = 1 ∧R2 = 1]A| = x22, |[R1 = 0 ∨R1 = 1]A| = x·1 + x·2 = x··(= |U |).

From this table, accuracy and coverage for [R1 = 0] → [R2 = 0] are defined as:

α[R1=0] ([R2 = 0]) = |[R1 = 0 ∧R2 = 0]A|
|[R1 = 0]A| =

x11

x·1
,

and

κ[R1=0] ([R2 = 0]) = |[R1 = 0 ∧R2 = 0]A|
|[R2 = 0]A| =

x11

x1·
.

2.3 Contingency Table (m × n)

Two-way contingency table can be extended into a contingency table for
multinominal attributes (Table 2).

Definition 3. Let R1 and R2 denote multinominal attributes in an attribute
space A which have m and n values. A contingency tables is a table of a
set of the meaning of the following formulas: |[R1 = Aj ]A|, |[R2 = Bi]A|,
|[R1 = Aj ∧R2 = Bi]A|, |[R1 = A1 ∨R1 = A2 ∨ · · · ∨R1 = Am]A|, |[R2 = B1 ∨
R2 = A2 ∨ · · · ∨ R2 = An]A| = |U | (i = 1, 2, 3, · · · , n and j = 1, 2, 3, · · · ,m).
This table is arranged into the form shown in Table 1, where: |[R1 = Aj ]A| =∑m

i=1 x1i = x·j, |[R2 = Bi]A| =
∑n

j=1 xji = xi·, |[R1 = Aj∧R2 = Bi]A| = xij,
|U | = N = x·· (i = 1, 2, 3, · · · , n and j = 1, 2, 3, · · · ,m).
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Table 1. Two way contingency table

R1 = 0 R1 = 1

R2 = 0 x11 x12 x1·
R2 = 1 x21 x22 x2·

x·1 x·2 x··
(= |U | = N)

Table 2. Contingency table (m × n)

A1 A2 · · · An Sum

B1 x11 x12 · · · x1n x1·
B2 x21 x22 · · · x2n x2·
...

...
...

. . .
...

...
Bm xm1 xm2 · · · xmn xm·

Sum x·1 x·2 · · · x·n x·· = |U | = N

3 Statistical Independence in 2 × 2 Contingency Table

Let us consider a contingency table shown in Table 1. Statistical independence
between R1 and R2 gives:

P ([R1 = 0], [R2 = 0]) = P ([R1 = 0]) × P ([R2 = 0])
P ([R1 = 0], [R2 = 1]) = P ([R1 = 0]) × P ([R2 = 1])
P ([R1 = 1], [R2 = 0]) = P ([R1 = 1]) × P ([R2 = 0])
P ([R1 = 1], [R2 = 1]) = P ([R1 = 1]) × P ([R2 = 1])

Since each probability is given as a ratio of each cell to N , the above equations
are calculated as:

x11

N
=
x11 + x12

N
× x11 + x21

N
x12

N
=
x11 + x12

N
× x12 + x22

N
x21

N
=
x21 + x22

N
× x11 + x21

N
x22

N
=
x21 + x22

N
× x12 + x22

N

Since N =
∑

i,j xij , the following formula will be obtained from these four
formulae.

x11x22 = x12x21 or x11x22 − x12x21 = 0

Thus,
Theorem 1. If two attributes in a contingency table shown in Table 1 are
statistical indepedent, the following equation holds:

x11x22 − x12x21 = 0 (1)
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It is notable that the above equation corresponds to the fact that the deter-
minant of a matrix corresponding to this table is equal to 0. Also, when these
four values are not equal to 0, the (1) can be transformed into:

x11

x21
=
x12

x22
.

Let us assume that the above ratio is equal to C(constant). Then, since x11 =
Cx21 and x12 = Cx22, the following equation is obtained.

x11 + x12

x21 + x22
=
C(x21 + x22)
x21 + x22

= C =
x11

x21
=
x12

x22
. (2)

This equation also holds when we extend this discussion into a general case.
Before getting into it, let us consider a 2 × 3 contingency table.

4 Statistical Independence in 2 × 3 Contingency Table

Let us consider a 2 × 3 contingency table shown in Table 3. Statistical inde-
pendence between R1 and R2 gives:

P ([R1 = 0], [R2 = 0]) = P ([R1 = 0]) × P ([R2 = 0])
P ([R1 = 0], [R2 = 1]) = P ([R1 = 0]) × P ([R2 = 1])
P ([R1 = 0], [R2 = 2]) = P ([R1 = 0]) × P ([R2 = 2])
P ([R1 = 1], [R2 = 0]) = P ([R1 = 1]) × P ([R2 = 0])
P ([R1 = 1], [R2 = 1]) = P ([R1 = 1]) × P ([R2 = 1])
P ([R1 = 1], [R2 = 2]) = P ([R1 = 1]) × P ([R2 = 2])

Since each probability is given as a ratio of each cell to N , the above equations
are calculated as:

x11

N
=
x11 + x12 + x13

N
× x11 + x21

N
(3)

x12

N
=
x11 + x12 + x13

N
× x12 + x22

N
(4)

Table 3. Contingency table (2 × 3)

R1 = 0 R1 = 1 R1 = 2

R2 = 0 x11 x12 x13 x1·
R2 = 1 x21 x22 x23 x2·

x·1 x·2 x···3 x··
(= |U | = N)
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x13

N
=
x11 + x12 + x13

N
× x13 + x23

N
(5)

x21

N
=
x21 + x22 + x23

N
× x11 + x21

N
(6)

x22

N
=
x21 + x22 + x23

N
× x12 + x22

N
(7)

x23

N
=
x21 + x22 + x23

N
× x13 + x23

N
(8)

From (3) and (6),
x11

x21
=
x11 + x12 + x13

x21 + x22 + x23

In the same way, the following equation will be obtained:

x11

x21
=
x12

x22
=
x13

x23
=
x11 + x12 + x13

x21 + x22 + x23
(9)

Thus, we obtain the following theorem:

Theorem 2. If two attributes in a contingency table shown in Table 3 are
statistical indepedent, the following equations hold:

x11x22 − x12x21 = x12x23 − x13x22

= x13x21 − x11x23 = 0 (10)

It is notable that this discussion can be easily extended into a 2×n contingency
table where n > 3. The important (9) will be extended into

x11

x21
=
x12

x22
= · · · =

x1n

x2n

=
x11 + x12 + · · · + x1n

x21 + x22 + · · · + x2n
=
∑n

k=1 x1k∑n
k=1 x2k

(11)

Thus,

Theorem 3. If two attributes in a 2× k contingency table (k = 2, · · · , n) are
statistical indepedent, the following equations hold:

x11x22 − x12x21 = x12x23 − x13x22 = · · ·
= x1nx21 − x11xn3 = 0 (12)

It is also notable that this equation is the same as the equation on collinearity
of projective geometry [1].
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5 Statistical Independence in m × n Contingency Table

Let us consider a m× n contingency table shown in Table 2. Statistical inde-
pendence of R1 and R2 gives the following formulae:

P ([R1 = Ai, R2 = Bj ]) = P ([R1 = Ai])P ([R2 = Bj ])
(i = 1, · · · ,m, j = 1, · · · , n).

According to the definition of the table,

xij

N
=
∑n

k=1 xik

N
×
∑m

l=1 xlj

N
. (13)

Thus, we have obtained:

xij =
∑n

k=1 xik ×
∑m

l=1 xlj

N
. (14)

Thus, for a fixed j,
xiaj

xibj
=
∑n

k=1 xiak∑n
k=1 xibk

In the same way, for a fixed i,

xija

xijb

=
∑m

l=1 xlja∑m
l=1 xljb

Since this relation will hold for any j, the following equation is obtained:

xia1

xib1
=
xia2

xib2
· · · =

xian

xibn
=
∑n

k=1 xiak∑n
k=1 xibk

. (15)

Since the right hand side of the above equation will be constant, thus all the
ratios are constant. Thus,

Theorem 4. If two attributes in a contingency table shown in Table 2 are
statistical indepedent, the following equations hold:

xia1

xib1
=
xia2

xib2
· · · =

xian

xibn
= const. (16)

for all rows: ia and ib (ia, ib = 1, 2, · · · ,m).

6 Contingency Matrix

The meaning of the above discussions will become much clearer when we view
a contingency table as a matrix.
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Definition 4. A corresponding matrix CTa,b
is defined as a matrix the element

of which are equal to the value of the corresponding contingency table Ta,b of
two attributes a and b, except for marginal values.

Definition 5. The rank of a table is defined as the rank of its corresponding
matrix. The maximum value of the rank is equal to the size of (square) matrix,
denoted by r.

The contingency matrix of Table 2(T (R1, R2)) is defined as CTR1,R2
as below:⎛⎜⎜⎜⎝

x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

⎞⎟⎟⎟⎠
6.1 Independence of 2 × 2 Contingency Table

The results in Sect. 3 corresponds to the degree of independence in matrix
theory. Let us assume that a contingency table is given as Table 1. Then the
corresponding matrix (CTR1,R2

) is given as:(
x11 x12

x21 x22

)
,

Then,

Proposition 1. The determinant of det(CTR1,R2
) is equal to x11x22−x12x21.

Proposition 2. The rank will be:

rank =

{
2, if det(CTR1,R2

) �= 0
1, if det(CTR1,R2

) = 0

From Theorem 1,

Theorem 5. If the rank of the corresponding matrix of a 2 × 2 contingency
table is 1, then two attributes in a given contingency table are statistically
independent. Thus,

rank =

{
2, dependent

1, statistical independent

This discussion can be extended into 2 × n tables. According to Theorem 3,
the following theorem is obtained.

Theorem 6. If the rank of the corresponding matrix of a 2 × n contingency
table is 1, then two attributes in a given contingency table are statistically
independent. Thus,

rank =

{
2, dependent

1, statistical independent
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6.2 Independence of 3 × 3 Contingency Table

When the number of rows and columns are larger than 3, then the situation
is a little changed. It is easy to see that the rank for statistical independence
of a m× n contingency table is equal 1.0 as shown in Theorem 4. Also, when
the rank is equal to min(m,n), two attributes are dependent.

Then, what kind of structure will a contingency matrix have when the
rank is larger than 1,0 and smaller than min(m,n) − 1? For illustration, let
us consider the following 3 × 3 contingency table.

Example 1. Let us consider the following corresponding matrix:

A =

⎛⎝1 2 3
4 5 6
7 8 9

⎞⎠ .
The determinant of A is:

det(A) = 1 × (−1)1+1det

(
5 6
8 9

)
+2 × (−1)1+2det

(
4 6
7 9

)
+3 × (−1)1+3det

(
4 5
7 8

)
= 1 × (−3) + 2 × 6 + 3 × (−3) = 0

Thus, the rank of A is smaller than 2. On the other hand, since (123) �= k(456)
and (123) �= k(789), the rank of A is not equal to 1.0 Thus, the rank of A is
equal to 2.0. Actually, one of three rows can be represented by the other two
rows. For example,

(4 5 6) =
1
2
{(1 2 3) + (7 8 9)}.

Therefore, in this case, we can say that two of three pairs of one attribute
are dependent to the other attribute, but one pair is statistically independent
of the other attribute with respect to the linear combination of two pairs. It
is easy to see that this case includes the cases when two pairs are statisti-
cally independent of the other attribute, but the table becomes statistically
dependent with the other attribute.

In other words, the corresponding matrix is a mixture of statistical depen-
dence and independence. We call this case contextual independent. From this
illustration, the following theorem is obtained:

Theorem 7. If the rank of the corresponding matrix of a 3 × 3 contingency
table is 1, then two attributes in a given contingency table are statistically
independent. Thus,
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rank =

⎧⎪⎨⎪⎩
3, dependent

2, contextual independent

1, statistical independent

It is easy to see that this discussion can be extended into 3 × n contingency
tables.

6.3 Independence of m × n Contingency Table

Finally, the relation between rank and independence in a multiway contin-
gency table is obtained from Theorem 4.

Theorem 8. Let the corresponding matrix of a given contingency table be a
m×n matrix. If the rank of the corresponding matrix is 1, then two attributes
in a given contingency table are statistically independent. If the rank of the
corresponding matrix is min(m,n) , then two attributes in a given contingency
table are dependent. Otherwise, two attributes are contextual dependent, which
means that several conditional probabilities can be represented by a linear com-
bination of conditional probabilities. Thus,

rank =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min(m,n) dependent

2, · · · ,
min(m,n) − 1 contextual independent

1 statistical independent

7 Pseudo-Statistical Independence: Example

The next step is to investigate the characteristics of linear independence in a
contingency matrix. In other words, a m× n contingency table whose rank is
not equal to min(m,n). Since two-way matrix (2× 2) gives a simple equation
whose rank is equal to 1 or 2, let us start our discussion from 3 × 3-matrix,
whose rank is equal to 2, first.

7.1 Contingency Table (3 × 3, Rank: 2)

Let M(m,n) denote a contingency matrix whose row and column are equal
to m and n, respectively. Then, a three-way contingency table is defined as:

M(3, 3) =

⎛⎝x11 x12 x13

x21 x22 x23

x31 x32 x33

⎞⎠
When its rank is equal to 2, it can be assumed that the third row is represented
by the first and second row:
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(x31 x32 x33) = p(x11 x12 x13) + q(x21 x22 x23) (17)

Then, we can consider the similar process in Sect. 5 (13). In other words, we
can check the difference defined below.

∆(i, j) = N × xij −
n∑

k=1

xik ×
m∑

l=1

xlj . (18)

Then, the following three types of equations are obtained by simple calcula-
tion.

∆(1, j) = (1 + q)

{
x1j

3∑
k=1

x2k − x2j

3∑
k=1

x1k

}

∆(2, j) = (1 + p)

{
x2j

3∑
k=1

x1k − x1j

3∑
k=1

x2k

}

∆(3, j) = (p− q)
{
x1j

3∑
k=1

x2k − x2j

3∑
k=1

x1k

}

According to Theorem 4, if M(3, 3) is not statistically independent, the for-
mula: x1j

∑3
k=1 x2k − x2j

∑3
k=1 x1k is not equal to 1.0. Thus, the following

theorem is obtained.

Theorem 9. The third row represented by a linear combination of first and
second rows will satisfy the condition of statistical independence if and only if
p = q.

We call the above property pseudo-statistical independence. This means that
if the third column satisfies the following constraint:

(x31 x32 x33) = (x11 x12 x13) + (x21 x22 x23),

the third column will satisfy the condition of statistical independence. In
other words, when we merge the first and second row and construct a 2 × 3
contingency table, it will become statistical independent. For example,

D =

⎛⎝ 1 2 3
4 5 6
10 14 18

⎞⎠
can be transformed into

D′ =
(

5 7 9
10 14 18

)
,

where D′ is statistically independent. Conversely, if D′ is provided, it can be
decomposed into D. It is notable that the decomposition cannot be uniquely
determined. It is also notable that the above discussion does not use the
information about the columns of a contingency table. Thus, this discussion
can be extended into a 3 × n contingency matrix.
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7.2 Contingency Table (4 × 4, Rank: 3)

From four-way tables, the situation becomes more complicated. In the similar
way to Sect. 7.1, a four-way contingency table is defined as:

M(4, 4) =

⎛⎜⎜⎝
x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

⎞⎟⎟⎠
When its rank is equal to 3, it can be assumed that the fourth row is repre-
sented by the first to third row:

(x41 x42 x43 x44) = p(x11 x12 x13 x14)
+ q(x21 x22 x23 x24)
+ r(x31 x32 x33 x34) (19)

Then, the following three types of equations are obtained by simple calcu-
lation.

∆(1, j) = (1 + q)

{
x1j

4∑
k=1

x2k − x2j

4∑
k=1

x1k

}

+(1 + r)

{
x1j

4∑
k=1

x3k − x3j

4∑
k=1

x1k

}

∆(2, j) = (1 + p)

{
x2j

4∑
k=1

x1k − x1j

4∑
k=1

x2k

}

+(1 + r)

{
x2j

4∑
k=1

x3k − x3j

4∑
k=1

x2k

}

∆(3, j) = (1 + p)

{
x2j

4∑
k=1

x1k − x1j

4∑
k=1

x2k

}

+(1 + q)

{
x1j

4∑
k=1

x2k − x2j

4∑
k=1

x1k

}

∆(4, j) = (p− q)
{
x1j

4∑
k=1

x2k − x2j

4∑
k=1

x1k

}

+(r − p)
{
x3j

4∑
k=1

x1k − x1j

4∑
k=1

x3k

}

+(q − r)
{
x2j

4∑
k=1

x3k − x3j

4∑
k=1

x2k

}
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Thus, the following theorem is obtained.

Theorem 10. The fourth row represented by a linear combination of first to
third rows (basis) will satisfy the condition of statistical independence if and
only if ∆(4, j) = 0.

Unfortunately, the condition is not simpler than Theorem 9. It is notable
∆(4, j) = 0 is a diophatine equation whose trivial solution is p = q = r. That
is, the solution space includes not only p = q = r, but other solutions. Thus,

Corollary 1. If p = q = r, then the fourth row satisfies the condition of
statistical independence.

The converse is not true.

Example 2. Let us consider the following matrix:

E =

⎛⎜⎜⎝
1 1 2 2
2 2 3 3
4 4 5 5
x41 x42 x43 x44

⎞⎟⎟⎠ .
The question is when the fourth row represented by the other rows satisfies the
condition of statistical independence. Since x1j

∑4
k=1 x2k − x2j

∑4
k=1 x1k =

−2, x1j

∑4
k=1 x3k−x3j

∑4
k=1 x1k = 6 and x2j

∑4
k=1 x1k−x1j

∑4
k=1 x2k = −4,

∆(4, j) is equal to: −2(p− q) + 6(r − p) − 4(q − r) = −8p− 2q + 10r.
Thus, the set of solutions is {(p, q, r)|10r = 8p + 2q}, where p = q = r is

included.

It is notable that the characteristics of solutions will be characterized by a
diophantine equation 10r = 8p+2q and a contingency table given by a tripule
(p, q, r) may be represented by another tripule. For example, (3, 3, 3) gives the
same contingency table as (1, 6, 2):⎛⎜⎜⎝

1 1 2 2
2 2 3 3
4 4 5 5
21 21 30 30

⎞⎟⎟⎠ .
It will be our future work to investigate the general characteristics of the
solution space.

7.3 Contingency Table (4 × 4, Rank: 2)

When its rank is equal to 2, it can be assumed that the third and fourth rows
are represented by the first to third row:

(x41 x42 x43 x44) = p(x11 x12 x13 x14)
+ q(x21 x22 x23 x24) (20)

(x31 x32 x33 x34) = r(x11 x12 x13 x14)
+ s(x21 x22 x23 x24) (21)
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∆(1, j) = (1 + q + s)

{
x1j

4∑
k=1

x2k − x2j

4∑
k=1

x1k

}

∆(2, j) = (1 + p+ r)

{
x2j

4∑
k=1

x1k − x1j

4∑
k=1

x2k

}

∆(3, j) = (p− q + ps− qr)

×
{
x2j

4∑
k=1

x1k − x1j

4∑
k=1

x2k

}

∆(4, j) = (r − s+ qr − ps)

×
{
x1j

4∑
k=1

x2k − x2j

4∑
k=1

x2k

}

Since p − q + ps − qr = 0 and r − s + qr − ps = 0 gives the only reasonable
solution p = q and r = s, the following theorem is obtained.

Theorem 11. The third and fourth rows represented by a linear combination
of first and second rows (basis) will satisfy the condition of statistical inde-
pendence if and only if p = q and r = w.

8 Pseudo-Statistical Independence

Now, we will generalize the results shown in Sect. 7. Let us consider the
m × n contingency table whose r rows (columns) are described by n − s
rows (columns). Thus, we assume a corresponding matrix with the following
equations. ⎛⎜⎜⎜⎝

x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

⎞⎟⎟⎟⎠

(xm−s+p,1 xm−s+p,2 · · · xm−s+p,n) =
m−s∑
i=1

kpi(xi1 xi2 · · · xin)

× (1 ≤ s ≤ n− 1, 1 ≤ p ≤ s) (22)

Then, the following theorem about ∆(u, v) is obtained.
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Theorem 12. For a contingency table with size m× n:

∆(u, v) = ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m−s∑
i=1

(1 +
m−s∑
r=1

kri)

×

⎧⎨⎩xuv(
n∑

j=1

xij) − xiv(
n∑

j=1

xuj)

⎫⎬⎭
(1 ≤ u ≤ m− s, 1 ≤ v ≤ m)

m−s∑
i=1

n∑
j=1

m−s∑
r=1

xr1xij

×{(kur − kui)

+kur

m−s∑
r=1

kri − kui

m−s∑
r=1

krq

}
(n− s+ 1 ≤ u ≤ m, 1 ≤ v ≤ m)

(23)

Thus, from the above theorem, if and only if ∆(u, v) = 0 for all v, then the
u-th row will satisfy the condition of statistically independence. Especially,
the following theorem is obtained.

Theorem 13. If the following equation holds for all v(1 ≤ v ≤ n), then the
condition of statistical independence will hold for the u-th row in a contingency
table.

m−s∑
i=1

m−s∑
r=1

{(kur − kui) +kur

m−s∑
r=1

kri − kui

m−s∑
r=1

krq

}
= 0 (24)

It is notable that the above equations give diophatine equations which can
check whether each row (column) will satisfy the condition of statistical inde-
pendence. As a corollary,

Corollary 2. If kui is equal for all i = 1, · · · , n − s , then the u-th satisfies
the condition of statistical independence.

The converse is not true.

Example 3. Let us consider the following matrix:

F =

⎛⎜⎜⎜⎜⎝
1 1 2
2 2 3
4 4 5
x41 x42 x43

x51 x52 x53

⎞⎟⎟⎟⎟⎠ ,
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where the last two rows are represented by the first three columns. That is, the
rank of a matrix is equal to 3. Then, according to Theorem 13, the following
equations are obtained:

(5k53 − k52 − 4k51)
× {k41 − 2k43 + (k51 − 2k53 − 1)} = 0 (25)

(5k43 − k42 − 4k41)
× {k41 − 2k43 + (k51 − 2k53 − 1)} = 0 (26)

In case of k41 − 2k43 + (k51 − 2k53 − 1) = 0, simple calculations give several
equations for those coefficients.

k41 + k51 = 2(k43 + k53) + 1
k42 + k52 = −3(k43 + k53)

The solutions of these two equations give examples of pseudo-statistical inde-
pendence.

9 Conclusion

In this chapter, a contingency table is interpreted from the viewpoint of gran-
ular computing and statistical independence. From the definition of statistical
independence, statistical independence in a contingency table will holds when
the equations of collinearity (14) are satisfied. In other words, statistical in-
dependence can be viewed as linear dependence. Then, the correspondence
between contingency table and matrix, gives the theorem where the rank of
the contingency matrix of a given contingency table is equal to 1 if two at-
tributes are statistical independent. That is, all the rows of contingency table
can be described by one row with the coefficient given by a marginal distribu-
tion. If the rank is maximum, then two attributes are dependent. Otherwise,
some probabilistic structure can be found within attribute-value pairs in a
given attribute, which we call contextual independence. Moreover, from the
characteristics of statistical independence, a contingency table may be com-
posed of statistical independent and dependent parts, which we call pseudo-
statistical dependence. In such cases, if we merge several rows or columns,
then we will obtain a new contingency table with statistical independence,
whose rank of its corresponding matrix is equal to 1.0. Especially, we obtain
Diophatine equations for a pseudo-statistical dependence. Thus, matrix alge-
bra and elementary number theory are the key methods of the analysis of
a contingency table and the degree of independence, where its rank and the
structure of linear dependence as Diophatine equations play very important
roles in determining the nature of a given table.
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Summary. This paper gives a empirical analysis of determinant, which empirically
validates the trade-off between sample size and size of matrix. In the former studies,
relations between degree of granularity and dependence of contingency tables are
given from the viewpoint of determinantal divisors and sample size. The nature of
determinantal divisors shows that the increase of the degree of granularity may lead
to that of dependence. However, a constraint on the sample size of a contingency
table is very strong, which leads to the evaluation formula where the increase of
degree of granularity gives the decrease of dependency. This paper gives a further
study of the nature of sample size effect on the degree of dependency in a contingency
matrix. The results show that sample size will restrict the nature of matrix in a
combinatorial way, which suggests that the dependency is closely related with integer
programming.

1 Introduction

Although independence is a very important concept, it has not been fully and
formally investigated as a relation between two attributes. Tsumoto introduces
linear algebra into formal analysis of a contigency table [1]. The results give
the following interesting results. First, a contingency table can be viewed as
comparison between two attributes with respect to information granularity.
Second, algebra is a key point of analysis of this table. A contingency table can
be viewed as a matrix and several operations and ideas of matrix theory are
introduced into the analysis of the contingency table. Especially, The degree
of independence, rank plays a very important role in extracting a probabilistic
model from a given contingency table.

Then, thirdly, the results of determinantal divisors show that it seems
that the devisors provide information on the degree of dependencies between
the matrix of the whole elements and its submatrices and the increase of
the degree of granularity may lead to that of dependence [2]. This gives a
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contradictory view from the intuition that when two attributes has many
values, the dependence between these two attributes becomes low.

The key for understanding these conflicts is to consider the constraint on
the sample size.

In [3] we show that a constraint on the sample size of a contingency table
is very strong, which leads to the evaluation formula where the increase of
degree of granularity gives the decrease of dependency.

This paper confirms this constraint by using enumerative combinatorics.
The results show that sample size will restrict the nature of matrix in a

combinatorial way, which suggests that the dependency is closely related with
integer programming.

The paper is organized as follows: Section 2 shows preliminaries. Section
3 and 4 discusses the former results. Section 5 shows the effect of sample size
on a matrix (2× 2) theoretically. Section 6 introduces empirical validation of
the results obtained in Sect. 5. Finally, Sect. 7 concludes this paper.

2 Preliminary Work

2.1 Notations

From Rough Sets

In the subsequent sections, the following notations is adopted, which is intro-
duced in [4]. Let U denote a nonempty, finite set called the universe and A
denote a nonempty, finite set of attributes, i.e., a : U → Va for a ∈ A, where
Va is called the domain of a, respectively. Then, a decision table is defined as
an information system, A = (U,A∪{D}), where {D} is a set of given decision
attributes. The atomic formulas over B ⊆ A ∪ {D} and V are expressions of
the form [a = v], called descriptors over B, where a ∈ B and v ∈ Va. The
set F (B, V ) of formulas over B is the least set containing all atomic formulas
over B and closed with respect to disjunction, conjunction and negation. For
each f ∈ F (B, V ), fA denote the meaning of f in A, i.e., the set of all objects
in U with property f , defined inductively as follows.

1. If f is of the form [a = v] then, fA = {s ∈ U |a(s) = v}
2. (f ∧ g)A = fA ∩ gA; (f ∨ g)A = fA ∨ gA; (¬f)A = U − fa

Contingency Matrix

Definition 1. Let R1 and R2 denote multinominal attributes in an attribute
space A which have m and n values. A contingency tables is a table of a
set of the meaning of the following formulas: |[R1 = Aj ]A|, |[R2 = Bi]A|,
|[R1 = Aj ∧ R2 = Bi]A|, |U | (i = 1, 2, 3, · · · , n and j = 1, 2, 3, · · · ,m).
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Table 1. Contingency table (n × m)

A1 A2 · · · An Sum

B1 x11 x12 · · · x1n x1·
B2 x21 x22 · · · x2n x2·
· · · · · · · · · · · · · · · · · ·
Bm xm1 xm2 · · · xmn xm·

Sum x·1 x·2 · · · x·n x·· = |U | = N

This table is arranged into the form shown in Table 1, where: |[R1 = Aj ]A| =∑m
i=1 x1i = x·j, |[R2 = Bi]A| =

∑n
j=1 xji = xi·, |[R1 = Aj∧R2 = Bi]A| = xij,

|U | = N = x·· (i = 1, 2, 3, · · · , n and j = 1, 2, 3, · · · ,m).

Definition 2. A contigency matrix MR1,R2(m,n,N) is defined as a matrix,
which is composed of xij = |[R1 = Aj ∧ R2 = Bi]A|, extracted from a conti-
gency table defined in definition 1.

That is,

MR1,R2(m,n,N) =

⎛⎜⎜⎜⎝
x11 x12 · · · x1n x1·
x21 x22 · · · x2n x2·
...

...
...

...
...

xm1 xm2 · · · xmn xm·

⎞⎟⎟⎟⎠ .
For simplicity, if we do not need to specify R1 and R2, we use M(m,n,N) as
a contingency matrix with m rows, n columns and N samples.

One of the important observations from granular computing is that a con-
tingency table shows the relations between two attributes with respect to
intersection of their supporting sets. When two attributes have different num-
ber of equivalence classes, the situation may be a little complicated. But, in
this case, due to knowledge about linear algebra, we only have to consider the
attribute which has a smaller number of equivalence classes. and the surplus
number of equivalence classes of the attributes with larger number of equiv-
alnce classes can be projected into other partitions. In other words, a m× n
matrix or contingency table includes a projection from one attributes to the
other one.

2.2 Rank of Contingency Matrix (m × n)

In the former paper, Tsumoto obtained the following theorem [1].

Theorem 1. Let the contingency matrix of a given contingency table be a
m × n matrix. The rank of this matrix is less than min(m,n). If the rank
of the corresponding matrix is 1, then two attributes in a given contingency
table are statistically independent. If the rank of the corresponding matrix is
n, then two attributes in a given contingency table are dependent. Otherwise,
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two attributes are contextual dependent, which means that several conditional
probabilities can be represented by a linear combination of conditional proba-
bilities. Thus,

rank =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min(m,n) dependent

2, · · · ,
min(m,n) − 1 contextual independent

1 statistical independent

In the cases of m �= n, we need a discussion on submatrix and subderminant
in the next section.

2.3 Submatrix and Subdeterminant

The next interest is the structure of a corresponding matrix with 1 ≤ rank ≤
n− 1. First, let us define a submatrix (a subtable) and subdeterminant.

Definition 3. Let A denote a corresponding matrix of a given contigency table
(m× n). A corresponding submatrix Ai1i2···ir

j1j2···js
is defined as a matrix which is

given by an intersection of r rows and s columns of A (i1 < i2 < · · · < ir, j1 <
j2 < · · · < jr).

Definition 4. A subdeterminant of A is defined as a determinant of a sub-
matrix Ai1i2···ir

j1j2···js
, which is denoted by det(Ai1i2···ir

j1j2···js
).

Let us consider the contingency table given as Table 1. Then, a subtable
for Ai1i2···ir

j1j2···js
is given as Table 2.

Rank and Subdeterminant

Let δij denote a co-factor of aij in a square corresponding matrix of A. Then,

∆ij = (−1)i+jdet
(
A1,2, ··· ,i−1,i+1, ··· ,n

1,2, ··· ,j−1,j+1, ··· ,n

)
.

It is notable that a co-factor is a special type of submatrix, where only ith-row
and j-column are removed from a original matrix. By the use of co-factors,
the determinant of A is defined as:

Table 2. A subtable (r × s)

Aj1 Aj2 · · · Ajr Sum

Bi1 xi1j1 xi1j2 · · · xi1jr xi1·
Bi2 xi2j1 xi2j2 · · · xi2jr xi2·
· · · · · · · · · · · · · · · · · ·
Bir xirj1 xirj2 · · · xirjn xir·

Sum x·1 x·2 · · · x·n x·· = |U | = N
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det(A) =
n∑

j=1

aij∆ij ,

which is called Laplace expansion.
From this representation, if det(A) is not equal to 0, then ∆ij �= 0 for

{ai1, ai2, · · · , ain} which are not equal to 0. Thus, the following proposition
is obtained.

Proposition 1. If det(A) is not equal to 0 if at least one co-factor of aij(�= 0),
∆ij is not equal to 0.

It is notable that the above definition of a determinant gives the relation
between a original matrix A and submatrices (co-factors). Since cofactors gives
a square matrix of size n−1, the above proposition gives the relation between
a matrix of size n and submatrices of size n − 1. In the same way, we can
discuss the relation between a corresponding matrix of size n and submatrices
of size r(1 ≤ r < n− 1).

Rank and Submatrix

Let us assume that corresponding matrix and submatrix are square (n × n
and r × r, respectively).

Theorem 2. If the rank of a corresponding matrix of size n×n is equal to r,
at least the determinant of one submatrix of size r× r is not equal to 0. That
is, there exists a submatrix Ai1i2···ir

j1j2···jr
, which satisfies det(Ai1i2···ir

j1j2···jr
) �= 0

Corollary 1. If the rank of a corresponding matrix of size n×n is equal to r,
all the determinants of the submatrices whose number of columns and rows
are larger than r + 1(≤ n) are equal to 0.

3 Degree of Dependence

3.1 Determinantal Divisors

From the subdeterminants of all the submatrices of size 2, all the subdeter-
minants of a corresponding matrix has the greatest common divisor, equal
to 3.

From the recursive definition of the determinants, it is show that the sub-
determinants of size r + 1 will have the greatest common divisor of the sub-
determinants of size r as a divisor. Thus,

Theorem 3. Let dk(A) denote the greatest common divisor of all the
subdeterminants of size k, det(Ai1i2···ik

j1j2···jr
). d1(A), d2(A), · · · , dn(A) are called

determinantal divisors. From the definition of Laplace expansion,

dk(A)|dk+1(A).
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In the example of the above subsection, d1(A) = 1, d2(A) = 3 and d3(A) = 0.

Example 1. Let us consider the following corresponding matrix:

B =

⎛⎝1 2 3
4 5 6
7 11 9

⎞⎠ .
Calculation gives: d1(B) = 1, d2(B) = 3 and d3(B) = 18.

It is notable that a simple change of a corresponding matrix gives a sig-
nificant change to the determinant, which suggests a change of structure in
dependence/independence.

The relation between dk(A) gives a interesting constraint.

Proposition 2. Since dk(A)|dk+1(A), the sequence of the devisors is mono-
tonically increasing one:

d1(A) ≤ d2(A) · · · ≤ dr(A),

where r denotes the rank of A.

The sequence of B illustrates this: 1 < 3 < 18.
Let us define a ratio of dk(A) to dk−1(A), called elementary divisors, where

C denotes a corresponding matrix and k ≤ rankA:

ek(C) =
dk(C)
dk−1(C)

(d0(C) = 0).

The elementary divisors may give the increase of dependency between two
attributes. For example, e1(B) = 1, e2(B) = 3, and e3(B) = 6. Thus, a
transition from 2× 2 to 3× 3 have a higher impact on the dependency of two
attributes.

It is trivial to see that det(B) = e1e2e3, which can be viewed as a decom-
position of the determinant of a corresponding matrix.

3.2 Divisors and Degree of Dependence

Since the determinant can be viewed as the degree of dependence, this result
is very important. If values of all the subdeterminants (size r) are very small
(nearly equal to 0) and dr(A) ) 1, then the values of the subdeterminants
(size r + 1) are very small. This property may hold until the r reaches the
rank of the corresponding matrix. Thus, the sequence of the divisors of a
corresponding matrix gives a hidden structure of a contingency table.

Also, this results show that d1(A) and d2(A) are very important to estimate
the rank of a corresponding matrix. Since d1(A) is only given by the greatest
common divisor of all the elements of A, d2(A) are much more important
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components. This also intuitively suggests that the subdeterminants of A with
size 2 are principal components of a corresponding matrix from the viewpoint
of statistical dependence.

Recall that statistical independence of two attributes is equivalent to a
corresponding matrix with rank being 1. A matrix with rank being 2 gives a
context-dependent independence, which means three values of two attributes
are independent, but two values of two attributes are dependent.

3.3 Elementary Divisors and Elementary Transformation

Let us define the following three elementary (row/column)transformations of
a corresponding matrix:

1. Exchange two rows (columns), i0 and j0 (P (i0, j0)).
2. Multiply −1 to a row (column) i0 (T (i0;−1)).
3. Multiply t to a row (column) j0 (i0) and add it to a row i0 (j0).

(W (i0, j0, t)).

Then, three transformations have several interesting characteristics.

Proposition 3. Matrices corresponding to three elementary transformations
are regular.

Proposition 4. Three elementary transformations do not change the rank of
a corresponding matrix.

Proposition 5. Let Ã denote a matrix transformed by finite steps of three
operations. Then,

rankÃ = rankA, dr(Ã) = dr(A),

where r denotes the rank of matrix A.
Then, from the results of linear algebra, the following interesting result is

obtained.

Theorem 4. With the finite steps of elementary transformations, a given cor-
responding matrix is transformed into

Ã =

⎛⎜⎜⎜⎜⎜⎝
e1
e2

. . . O
er

O O

⎞⎟⎟⎟⎟⎟⎠ ,

where ej = dj(A)
dj−1(A) (d0(A) = 1) and r denotes the rank of a corresponding

matrix. Then, the determinant is decomposed into the product of ej.

dr(Ã) = dr(A) = e1e2 · · · er.
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4 Degree of Granularity and Dependence

From Theorem 4, it seems that the increase of the degree of granularity gives
that of the dependence between two attributes.

However, our empirical observations are different from the above intuitive
analysis. Thus, there should be a strong constraint which suppress the above
effects on the degree of granularity.

Let us assume that the determinant of a give contingency matrix gives
the degree of the dependence of the matrix. Then, from the results of linear
algebra, we obtain the following theorem.

Theorem 5. Let A denote a n × n contingency matrix, which includes N
samples. If the rank of A is equal to n, then there exists a matrix B (n × n)
which satisfies

BA =

⎛⎜⎜⎜⎝
ρ1
ρ2 O

. . .
O ρn

⎞⎟⎟⎟⎠ = P,

where ρ1 + ρ2 + · · · + ρn = N .
It is notable that the value of determinants of P is larger than A:

detA ≤ detP

Example 2. Let us consider B as an example (Example 1). Let C denote the
orthogonal matrix for transformation of B. Since the cardinality of B is equal
to 48, the diagonal matrix which gives the maximum determinant is equal to:⎛⎝16 0 0

0 16 0
0 0 16

⎞⎠ .
On the other hand, the determinant of B is equal to 18. Thus, detB =

18 < 163 = 4096. Then, C is obtained from the following equation.

C ×

⎛⎝1 2 3
4 5 6
7 11 9

⎞⎠ =

⎛⎝16 0 0
0 16 0
0 0 16

⎞⎠ .
Thus,

C =

⎛⎝−56/3 40/3 −8/3
16/3 −32/3 16/3

8 8/3 −8/3

⎞⎠
It is notable that the determinant of C is equal to 2048/9. Also, since
detB = 18, we do not have any diagonal matrix whose determinant is equal
to 18 and the sum of all the elements is equal to 48.
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It is easy to see that the transformed matrix P has a very nice property
to calculate the determinant.

Proposition 6. The determinant of the transformed matrix P is equal to the
multiplication of ρ1 to ρn. That is,

detP = ρ1ρ2 · · · ρn

Then, the following constraint will be have the special meaning:

ρ1 + ρ2 + · · · + ρn = N, (1)

because the following inequality holds in general:

ρ1 + ρ2 + · · · + ρn

n
≥ n

√
ρ1ρ2 · · · ρn, (2)

where the equality holds when ρ1 = ρ2 = · · · = ρn. Since the above inequality
can be transformed into:

ρ1ρ2 · · · ρn ≤
(
ρ1 + ρ2 + · · · + ρn

n

)n

,

the following inequality is obtained:

detP = ρ1ρ2 · · · ρn ≤
(
ρ1 + ρ2 + · · · + ρn

n

)n

, (3)

where the equality holds when ρ1 = ρ2 = · · · = ρn. From the theorem 5 and
equation 1, the following theorem is obtained.

Theorem 6. When a contingency matrix A holds AB = P , where P is a
diagonal matrix, the following inequality holds:

detA ≤
(
N

n

)n

,

Proof.

detA = det(PB−1)
≤ detP

= ρ1ρ2 · · · ρn

≤
(
ρ1 + ρ2 + · · · + ρn

n

)n

=
(
N

n

)n

, (4)

where the former equality holds when detB−1 = detB = 1 and the latter
equality holds when ρ1 = ρ2 = · · · = ρn = N

n . ��
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Example 3. Let us consider the following contingency matrices D and E:

D =

⎛⎜⎜⎝
1 2 3 0
4 5 6 0
7 11 9 0
0 0 0 1

⎞⎟⎟⎠

E =

⎛⎜⎜⎝
1 2 3 0
4 5 6 0
7 10 9 0
0 0 0 1

⎞⎟⎟⎠
The numbers of examples of D and E are 49 and 48, respectively, which

can be comparable to that of B. Then, from Theorem 6,

detD = 18 < (49/4)4 =
5764801

256
∼ 22518

detE = 12 < (48/4)4 = 20736

Thus, the maximum value of the determinant of A is at most
(

N
n

)n
. Since

N is constant for the given matrix A, the degree of dependence will decrease
very rapidly when n becomes very large. That is,

detA ∼ n−n.

Thus,

Corollary 2. The determinant of A will converge into 0 when n increases
into infinity.

lim
n→∞

detA = 0.

This results suggest that when the degree of granularity becomes higher, the
degree of dependence will become lower, due to the constraints on the sample
size.

However, it is notable that N/n is very important. If N is very large, the
rapid decrease will be observed N is close to n. Even N is 48 as shown in
Example 3, n = 3, 4 may give a strong dependency between two attributes.
For the behavior of (N/n)n, we can apply the technique of real analysis, which
will our future work.

5 Distribution of Determinant

As shown in the former section, the determinant of D and E is signifi-
cantly smaller than the maximum value of the determinant of a set of matrix
{M(4, 4, 49)} or {M(4, 4, 48)}. Then, the next interest is how is the statistical
nature of the determinant for M(m,n,N).
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First, since a 2 × 2 matrix is a basic one, let us examine the nature of
detM(2, 2, N).

5.1 Total Number of M(2, 2, N)

Let the four elements of M(2, 2, N) be denoted as a,b,c,d. That is, x11 = a,
x12 = b, x21 = c, and x22 = d. Then, a+ b+ c+ d = N .

Let us assume that a = 0. Then, b+c+d = N . Recursively, we can assume
that b = 0. Then, for this pair (a, b) = 0, we have (N +1) pairs which satisfies
c+ d = N . In this way, the total number of M(2, 2, N) is obtained as:

N∑
i=0

(N + 1 − i) × (N + 2 − i)
2

.

Simple calculation shows that the above formula is equal to:

1
6
(N + 1)(N + 2)(N + 3).

That is,

Theorem 7. The total number of a contingency matrix M(2,2,N) is equal to:

1
6
(N + 1)(N + 2)(N + 3).

(Proof Sketch)
The total combination of M(2, 2, N) is given as:

N∑
i=0

⎛⎝(N−i)+1∑
k=1

k

⎞⎠ =
N∑

i=0

(N + 1 − i) × (N + 2 − i)
2

=
N∑

i=0

{
1
2
(N + 1)(N + 2) − 1

2
(2N + 3)i+

1
2
i2
}

=
1
6
(N + 1)(N + 2)(N + 3)

(5)

Intuitively, this formula can be interpreted as follows. We have four para-
meters, a,b,c,d, which will take a value between 0 and N . Thus, the original
freedom is 4, and the order of total number can be N4. However, since a con-
straint a + b + c + d = N is given, we have only three free parameters, thus
the order of total number of M(2, 2, N) is approximately of N3:

# of M(2, 2, N) ≈ O(N3).
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5.2 Total Number of Det = 0

Enumeration of total number of det = 0 is very difficult. However, upper
bound can be calculated as follows. When a and d is fixed, we have obtained
two constraints:

b+ c = N − (a+ d)
bc = ad

Thus, (b, c) can be obtained as a solution for quadratic equations. If the pair
(b, c) is integer, we will have obtained two solutions (ad − bc = 0) for each
pair: (b,c) and (c,b).

Therefore, the upper bound of the number of solutions is equal to:

N∑
i=0

⎛⎝(N−i)+1∑
k=1

2

⎞⎠ = (N + 1)(N + 2)

Theorem 8. The upper bound of total number of a contingency matrix
M(2,2,N) with determinant being 0 is equal to:

(N + 1)(N + 2)

Thus, the probability that the determinant of a matrix M(2, 2, N) is equal to 0
is at most:

(N + 1)(N + 2)
1
6 (N + 1)(N + 2)(N + 3)

=
6

N + 3
.

Then, how is the lower bound ? This is the case when (b,c) does not have
any integer solution for a given quadratic equations except for trivial solutions.
The simple trivial solutions are: a = 0 or d = 0 with b = 0 or c = 0. Then, for
a = 0, b = 0, we may have a solution for c + d = N , N pairs (c �= 0, d �= 0).
Totally, 4N pairs. If we consider the cases when three values are equal to 0,
such as a = b = c = 0, we have four pairs. Thus, totally. we have 4(N+1)
pairs.

Theorem 9. The lower bound of total number of a contingency matrix
M(2,2,N) with determinant being 0 is equal to:

4(N + 1)

Thus, the probability that the determinant of a matrix M(2, 2, N) is equal to 0
is at least:

4(N + 1)
1
6 (N + 1)(N + 2)(N + 3)

=
24

(N + 2)(N + 3)
.
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Thus, it is expected that the number of matrices with 0 determinant vi-
brates between 4(N +1) and (N +1)(N +2). The variance will become larger
when N grows. In other words, the probability of det = 0 will vibrate between
O(1/N2) and O(1/N). The variance will become larger when N grows.

It is notable that the above discussion can be applied to a general case,
such as ad− bc = k, or other constraint. For example, if we have a constraint
such as a/(a+ b) or a/(a+ c), then we can analyze a constraint for accuracy
or coverage. It will be our future work to investigate such cases.

6 Empirical Validations

For empirical validations, we calculate the whole combination of a 2×2 matrix
with fixed sample size (0 ≤ N ≤ 100) M(2, 2, N).

6.1 Total Number of M(2, 2, N)

Figure 1 plots the relation between sample size N and the total number of
M(2, 2, N). This figure clearly shows that the relation is polynomial.

On the other hand, Fig. 2, which plots the relation between sample size
and the total number of matrices with zero determinant, gives an interesting
feature. As discussed in Sect. 5, the total number vibrates and the amplitude
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of the vibration becomes larger when N grows. Furthermore, the lower bound
of the total number can be approximately equal to a linear function, whereas
the upper bound is to a quadratic function.

Finally, the ratio of the number of matrices with zero determinant to the
total number of M(2, 2, N) is plotted as Fig. 3. This figure also confirms the
results obtained in Sect. 5.

6.2 Statistics of Determinant

Figures 4 and 5 show the distributions of the determinant of M(2, 2, 10) and
M(2, 2, 50). The distribution are symmetric, and the median and average are
exactly equal to 0. Furthermore, the number of matrices with 0 determinant
is very high, compared with other values.

Figure 6 plots the distribution of |detM(2, 2, 50)|, which suggests that the
distribution is like 1/N . However, it is notable that the vibration is observed
for a given determinant value.

It is also notable that since the ratio of det = 0 rapidly decreases as N
grows, the number of matrices with 0 determinant becomes smaller.

Tables 3 and 4 shows the statistics of those matrices.
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Table 3. Statistics of M(2, 2, 10)

det | det |
min −25 0
25% −6 2
50% 0 6
75% 6 11.75
max 25 25

Table 4. Statistics of M(2, 2, 50)

det | det |
min −625 0
25% −140 60
50% 0 140
75% 140 256
max 625 625

7 Conclusion

In this paper, the nature of the dependence of a contingency matrix and the
statistical nature of the determinant are examined.

Especially, the constraint on the sample size N of a contingency table will
determine the number of 2×2 matrices. As N grows, the ratio of matrices with
zero determinant rapidly decreases, which shows that the number of matrix
with statistical dependence will increase. However, due to the nature of the
determinant, the average of absolute value of the determinant also increase
with the order of N2, whereas the increase in the size of total number of
matrix is of N3.

This is a preliminary work on the statistical nature of the determinant,
and it will be our future work to investigate the nature of 3 × 3 or higher
dimensional contingency matrices.
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Summary. Most information retrieval (IR) systems are comprised of a focused set
of domain-specific documents located within a single logical repository. A mecha-
nism is developed by which user queries against a particular type of IR repository,
a frequently asked question (FAQ) system, are used to generate a concept hierar-
chy pertinent to the domain. First, an algorithm is described which selects a set
of user queries submitted to the system, extracts terms from the repository docu-
ments matching those queries, and then reduces this set of terms to a manageable
length. The resulting terms are used to generate a feature vector for each query,
and the queries are clustered using a hierarchical agglomerative clustering (HAC)
algorithm. The HAC algorithm generates a binary tree of clusters, which is not par-
ticularly amenable to use by humans and which is slow to search due to its depth,
so a subsequent processing step applies min–max partitioning to form a shallower,
bushier tree that is a more natural representation of the hierarchy of concepts in-
herent in the system. Two alternative versions of the partitioning algorithm are
compared to determine which produces a more usable concept hierarchy.

The goal is to generate a concept hierarchy that is built from phrases that users
actually enter when searching the repository, which should make the hierarchy more
usable for all users. While the algorithm presented here is applied to an FAQ system,
the techniques can easily be extended to any IR system that allows users to submit
natural language queries and that selects documents from the repository that match
those queries.

1 Introduction

As the World Wide Web is assimilated more completely into our culture, peo-
ple are increasingly willing and able to help themselves by finding answers
to questions and solutions to problems online. Companies are able to real-
ize considerable savings in their customer support costs by implementing an
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easy-to-use customer self-help system. The easier it is to navigate the system
and to find and extract information, the greater the benefit to the company.

An information retrieval (IR) system serving as a customer self-help (fre-
quently asked questions or FAQ) system is a key component of the customer
service product offered by RightNow Technologies, Inc., a leading provider of
on-demand software to help companies manage their customer interactions.
The RightNow self-help system and similar products from other vendors are
becoming ubiquitous on support sites throughout the Web. A diverse group of
manufacturers, retailers, and service providers, including the Social Security
Administration, Nikon, Dell, Qwest, and Florida State University, utilize FAQ
systems as integral components of their customer support offerings.

In addition to searching the FAQ repository for relevant documents us-
ing keyword searches or natural language queries (via a standard IR system),
product and category associations, and other filtering techniques, the Right-
Now FAQ system also includes an unsupervised machine learning algorithm
that clusters the documents in the system, grouping documents containing
similar sets of terms and phrases, so that users can browse the document col-
lection in an organized fashion without necessarily having an exact question
clearly specified.

RightNow Technologies’ research shows that a significant enhancement is
to cluster users’ search phrases, with a similar goal. The query taxonomy
created by this process can help demonstrate to users the types of queries
that can be effectively answered by the FAQ system and can illustrate the
progression of detail from general concepts to more specific information. The
hierarchy can also help the system’s user interface to adapt to typical use,
indicating not only the contents of the system but how users are attempting
to retrieve information. Members of the clusters can potentially serve as a
source of additional search terms to help focus user queries and retrieve smaller
sets of more relevant documents. Also, system administrators can examine
the topic or concept hierarchy to evaluate the quality and usefulness of the
documents contained in the system. If queries that are deemed too dissimilar
are clustered together, additional documents more specific to the questions
being asked should be added. (This process of analyzing the repository to
find content shortcomings is known as gap analysis [1].)

Note that this clustering of user queries is not intended to replace the
clustering of FAQs; the documents in the FAQ repository are still clustered
according to their content. The user query hierarchy should augment this
information, describing not what is contained within the repository but what
users are expecting to find there and how their questions get related by the
FAQ content and search process. Also, this technique is not limited to FAQ
systems. Any information retrieval system in which user queries are used to
return a subset of a document repository could benefit from this technique.

This paper describes the HAC+ P + FSR (for HAC clustering plus par-
titioning plus feature selection and reduction) algorithm, which is an exten-
sion to a previously designed algorithm, HAC+P. It also presents a similar
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algorithm, HAC+P2+FSR, that uses an alternative partitioning technique.
Our new algorithms take advantage of the controlled environment of the FAQ
repository and the direct, well-defined relationship between user queries and
the FAQ documents to cluster the user queries. Since the algorithms have ac-
cess to the internal details of the system, including accurate frequency counts
for terms within documents and computed relevance scores for searches, they
are able to utilize this information to accurately cluster queries. The output of
the clustering process serves as a hierarchy of the concepts contained within
the system.

The remainder of this paper is organized as follows: Section 2 reviews
related work in the field, and in particular the HAC+ P algorithm, Sect. 3 de-
scribes our HAC+P+FSR and HAC+ P2+ FSR algorithms in detail, Sect. 4
summarizes the results of experiments conducted on several RightNow FAQ
systems to evaluate the quality of the clustering, and Sect. 5 presents conclu-
sions and discusses related future work.

2 Background

A significant amount of research has been conducted into methods of cluster-
ing documents hierarchically. In [2], Sanderson and Croft describe a technique
of automatically generating the concept hierarchy by extracting terms and
phrases from a set of documents and generating the hierarchy. This technique
is called subsumption, where the parent of a set of clustered documents must
match a list of keywords that is a superset of the keywords that were matched
by the documents in the cluster.

However, this method and most others described in the literature are fo-
cused on clustering documents, not the user queries. Clustering queries is
inherently more complicated than clustering documents, because of the ab-
breviated nature of the source material. Individual queries do not include
enough context in and of themselves to provide sufficient input for a cluster-
ing algorithm. In order to cluster short text phrases, they must be associated
with some additional source of meaning. Cilibrasi and Vitanyi [3] propose
the idea of interpreting the search results returned by Google when a word
or phrase is submitted as a search query. They claim that the huge body of
text that is indexed by Google represents an amassing of human knowledge,
and that this technique can be used to automatically extract the meaning
of words.

The technique developed by Chuang and Chien [4, 5] is based on a sim-
ilar concept – a phrase is submitted to a search engine, and keywords are
extracted from the snippets of text returned in the search results and used to
form the context for the query. These keywords are weighted to form feature
vectors that are used to cluster the queries using a Hierarchical Agglomerative
Clustering (HAC) algorithm.
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A drawback of HAC is that the hierarchy of clusters formed, referred
to as a dendrogram, tends to be tall and narrow. In the extreme case, the
dendrogram can have n− 1 levels for n queries. Such a hierarchy is not well
suited to interpretation and understanding. Chuang and Chien augment the
HAC algorithm with a subsequent min–max partitioning algorithm to flatten
the hierarchy, producing a shallower multi-way tree that is much more readily
understandable.

This algorithm, which the authors refer to as HAC+ P [5], was shown to
produce fairly good results across several different data sets. The authors eval-
uated the algorithm using an analytic measure, the F-measure, that is com-
monly used to measure how well a classification algorithm matches a priori
classifications for its input data. The authors used a version of the F-measure
first introduced by Larsen and Aone that is particularly appropriate for text
classification [6]. They also included two subjective measures; the first was
a user survey in which the users were asked to assign numeric scores for six
different criteria to the results produced by the algorithm. The second was a
usability test that attempted to gauge how much the use of the concept hierar-
chy generated by the algorithm could assist human experts in reconstructing
an existing topic hierarchy.

The HAC+ P algorithm was shown to produce impressive scores compared
to an HK-Means clustering algorithm (a modification of standard k-means
clustering that uses a top-down approach to build a hierarchy of the clus-
ters) for the analytical tests. Subjective results were also good for the most
part; comparing the results to an existing topic hierarchy generated for one
of the data sets showed a reasonable approximation for five of the six crite-
ria evaluated, and the usability test showed that the automatically generated
concept hierarchy was of significant aid to people in constructing an accu-
rate topic hierarchy. This algorithm seems to be the best candidate for use in
query clustering and concept hierarchy generation within the RightNow sys-
tem, and we used it as a starting point for our research. Our new algorithms,
HAC+ P + FSR and HAC+ P2+ FSR, are described in detail, and their per-
formance on some actual production RightNow FAQ systems is evaluated.

3 The HAC + P + FSR Algorithms

This section describes the HAC+P+FSR algorithms in detail. The basic al-
gorithm (Fig. 1) is common to both HAC+ P + FSR and HAC+ P2+ FSR. It
is designed to interact with the RightNow Technologies system, but it should
be easy to adapt to the internals of a different FAQ system.

3.1 Feature Selection and Reduction (FSR)

The remainder of the section is separated into four sections: feature selection
and reduction (FSR) and feature vector generation, HAC, min–max partition-
ing, and an alternate technique for partitioning. Section 3.1 describes how the
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1. select queries to cluster
2. select keywords associated with queries
3. reduce set of keywords to manageable length
4. generate feature vector for each query
5. use HAC algorithm to cluster queries
6. apply min–max partitioning algorithm to flatten dendrogram

Fig. 1. HAC+P +FSR algorithm

database is used to retrieve the list of queries to cluster, the list of documents
that form the context for each query, and the list of keywords from those
documents that are used to form feature vectors for the queries (steps one
through four of Fig. 1). Section 3.2 describes HAC, which is a well known
clustering algorithm. The next section describes how min–max partitioning is
used to flatten the cluster hierarchy into a shallow multi-way tree. The last
section describes an alternative mechanism for partitioning the tree; it uses
the same partitioning algorithm but applies different metrics to the generated
clusters while partitioning.

The problems encountered extracting keywords from text snippets re-
turned by a search engine are all avoided by the HAC+ P + FSR algorithm. It
has access to the internal data of the RightNow system; one key advantage of
this is that the documents in the FAQ repository have already been processed
using stop word lists and stemming, and the resulting keyword phrases have
been extracted and stored in a document index. Each phrase includes a count
of the number of times it appeared in different sections of the document (the
FAQ documents are structured and contain sections such as the title, key-
words, question, and answer). Currently, the HAC+P+FSR algorithm only
uses single-word phrases in its feature vectors.

The user queries have also been filtered by the stop word list, stemmed,
and stored along with a count of the documents matching the queries and
a list of the most relevant documents’ IDs. The algorithm groups the search
queries by stemmed, filtered phrase and selects the most frequently occurring
queries. Queries are only included for which at least one matching document
was found; queries with no matches have no context and therefore cannot be
clustered.

The feature selection phase of the algorithm is shown in Fig. 2. On com-
pletion there are N unique queries to be clustered and at most K distinct
keywords. K will be the length of the feature vector for each query; it is desir-
able to limit K to a manageable value. This is essential for a FAQ repository;
even if the value of M, the number of documents per query, is 20, if the system
stores 500 keywords per document, there could potentially be 10,000 keywords
per query.

There are a number of available techniques for reducing the dimensionality
of a data set; see the analysis by Forman for a comparison of several methods
specifically for text classification problems [7]. However, these techniques all
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1. Select N most frequently occurring stemmed queries from list of user queries
2. For each query, select first M matching documents (processing each entry to

accumulate unique document IDs)
3. For list of n unique documents (1 < n < N ∗ M), find list of all k associ-

ated single-word keywords in the document phrase index. Accumulate frequency
count of each keyword in each document

4. Generate mapping from queries to distinct keywords and inverted mapping from
keywords to queries

5. If k > K (max # keywords), then
6. Sort keywords in ascending order by number of associated queries
7. Select and discard k − K keywords

Fig. 2. Feature selection algorithm

1. discard all keywords that are associated with only a single query
2. if there are still keywords to discard
3. C = ∅, D = ∅
4. while |C| < N and keywords remaining to examine
5. if next keyword’s queries ∩ C == next keyword’s queries
6. D = D ∪ keyword’s index
7. else
8. C = C ∪ indices of keyword’s queries
9. for each keyword from the end of the list to the last one added to C, while

still keywords to discard
10. discard keyword
11. while still keywords to discard
12. discard keyword with largest index in D

Fig. 3. Feature reduction algorithm

require that each document has a class label. Jain et al. suggest that in an
unsupervised clustering situation, where the documents are unlabeled, only
ad hoc feature selection methods are possible [8]. Feature extraction and di-
mension reduction methods such as Principle Component Analysis can be
used on unclassified data (see the survey by Fodor [9] for details), and there
are a number of other methods targeted specifically for use in text classi-
fication problems, including sequential search techniques such as sequential
forward selection and sequential backward elimination (see the survey by Liu
and Yu [10] for details). A promising approach based on expectation maxi-
mization is developed by Dy and Brodley [11].

However, these techniques are all computationally expensive. It is desir-
able to reduce the number of keywords via a method that can be evaluated
quickly. A simple feature reduction algorithm is shown in Fig. 3; this algorithm
comprises step 7 in Fig. 3. It is loosely similar to the feature selection method
of Forman [7]. Forman used a “prune rare and common words” method based
on the Zipf distribution.
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The algorithm prunes the size of the list of keywords to the desired value K.
The algorithm make use of the inverted mapping from keywords to queries
created in step 4 of Fig. 2 and the sorted list of keywords created in step
6. Here C is the set of covered queries, or queries that are associated with
a keyword that will be retained for the final feature vector. D is the set of
keywords that can potentially be discarded.

The first heuristic employed by the algorithm is to immediately discard
keywords that match only a single query. These rare keywords will have nearly
no impact during the clustering process, because they cannot increase similar-
ity with other queries. The second heuristic is to ensure that each query has at
least one associated keyword. The keywords are evaluated starting with those
associated with the fewest queries, and a covering set is accumulated. If any
keyword is associated with a set of queries already in the covering set, it is a
candidate for removal. The third heuristic is to discard additional keywords
after enough have been checked to include all the queries in the covering set.
These additional common keywords are discarded in descending order by their
count of associated queries. The rational behind discarding keywords that are
common across large number of queries is that these key-words will provide
little differentiation during the clustering process.

After the feature reduction phase is complete, there are at most K key-
words remaining. Once the set of keywords is known, a feature vector is cre-
ated for each query. The vector contains a weight for each keyword relative
to the query. There are a number of mechanisms for computing the weights;
HAC+ P + FSR uses a measure common to many other text clustering algo-
rithms, the tf-idf (term frequency/inverse document frequency) metric. It is
calculated using (1):

vi,j =
{

(1 + log2tfi,j)log2 N
nj
, tfi,j > 0

0, tfi,j = 0
(1)

where vi,j is the element corresponding to the jth keyword in the feature
vector for the ith query, tfi,j is the number of times that keyword j occurred
in the list of documents associated with query i, and nj is the number of
queries that are associated with keyword j. HAC+ P + FSR weights keywords
differently according to their position in the document; words in the title are
counted 25 times, words in the keyword section are counted ten times, and all
other words are counted once.

3.2 HAC Component

Once the feature vectors are computed, the HAC algorithm shown in Fig. 4 is
used to create the dendrogram. Here, N is the number of queries to cluster, vi

is the array of feature vectors, Ci is the list of clusters, f(i) is a flag indicating
whether cluster i can be merged, and Si,j is the upper-triangular similarity
matrix.
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1. for 1 ≤ i ≤ N
2. Ci = {vi}
3. f(i) = true
4. for 1 ≤ i ≤ N
5. for i ≤ j ≤ N
6. Si,j = simAL(vi, vj)
7. for 1 ≤ i ≤ N
8. choose most similar pair {Ca, Cb} with f(a) ∧ f(b) true
9. Cn+i = Ca ∪ Cb, left(Cn+i) = Ca, right(Cn+i) = Cb

10. f(n + i) = true, f(a) = false, f(b) = false
11. for 1 ≤ k ≤ N + i − 1
12. Sk,n+i = simAL(Ck, Cn+i)

Fig. 4. HAC clustering algorithm

The algorithm is simple: place each query into its own single-element clus-
ter, then recursively select the two most similar clusters, join them together
into a new cluster, and update the similarity matrix with the new cluster.
The clusters are treated as the nodes in a binary tree, where the children of
a cluster are the two clusters that were merged to form it.

There are a number of different mechanisms for computing the similarity
between two clusters; HAC+ P + FSR uses the average linkage inter-cluster
similarity, which is defined in (2):

simAL(Ci, Cj) =
1

|Ci||Cj |
∑

va∈Ci

∑
vb∈Cj

sim(va, vb) (2)

This similarity measure, also referred to in the literature as UPGMA, has
been experimentally shown by Steinbach et al. to be the best choice for HAC
clustering [12].

This calculation requires the computation of the similarity between two
feature vectors; HAC+P+FSR uses the cosine distance metric, defined in (3):

sim(va, vb) =

⎧⎨⎩
0,a = 0 or b = 0∑

tj∈T va,j ,vb,j√∑
tj∈T v2

a,j

√∑
tj∈T v2

b,j

, otherwise (3)

The values of this metric are in the range [0, 1], where 0 indicates no simi-
larity and 1 indicates an exact match. This distance measure has been exper-
imentally determined by Steinbach et al. [12] to be well suited for measuring
the similarity between text document feature vectors.

Note that, as suggested by Dhillon et al. [13], and by Jain et al. [8], it is only
necessary to evaluate the cosine similarity between each pair of documents
once; these can be stored in an upper triangular matrix and used for all
successive computations of the average link similarity.
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3.3 Min–Max Partitioning (P)

Once the HAC algorithm has formed the dendrogram, the min–max partition-
ing algorithm in Fig. 5 is applied to flatten the tree. ε and ρ are parameters
limiting the size of a cluster and the depth of the tree, respectively. These
parameters are selected to tune the usability of the results; for instance, a
depth between three and six levels is probably reasonable for most moder-
ately complicated knowledge bases, and for a fairly large knowledge base, a
minimum cluster size between three and ten queries might be reasonable.
LC(l) is the set of clusters produced after cutting the dendrogram at level

l, CH(Ci) is the cluster hierarchy rooted at cluster Ci, Q(C) is the cluster set
quality function, and N(C) is the cluster number preference function.

The set LC(l) can be easily computed if the clusters are manipulated
using their indices in the list C created by the HAC algorithm. In this list,
clusters with larger indices are created after clusters with lower indices, and
are therefore higher in the dendrogram tree. Starting with a set containing
only the index of the root node of a subtree, at each cut level l the set LC(l)
is generated by replacing the largest index from the set with the indices of its
left and right children.

Figure 6 shows a small dendrogram and illustrates how the tree would
be cut at each level. Clusters are numbered in order of their creation – the
root of the tree, C9, was created last, so the first cut level would produce
LC(1) = {C7, C8}. Similarly, LC(3) = {C1, C2, C3, C6}. For each of these
cut levels for a particular subtree, the q metric is computed, and after all
cuts have been evaluated, the one that yields the most usable grouping is
selected. The process is repeated recursively, with each cluster in the selected
cut serving as the root of a new subtree to be partitioned.

1. MinMaxPartition(d, C1, . . . , C2n−1)
2. if n < ε or d > ρ then
3. return C1, . . . , Cn

4. minq = ∞, bestcut = 0
5. LC = {C2n−1}
6. for all cut levels l, 1 ≤ l < n
7. top = i�{i} ∈ LC, i > j∀j, {j} ∈ LC ∧ j �= i
8. LC = LC − {top} + {left(top), right(top)}
9. q = Q(LC)

N(LC)

10. if q < minq then
11. minq = q, bestcut = l, bestLC = LC
12. for all Ci ∈ LC(bestcut)
13. children(Ci) = MinMaxPartition(d + 1, CH(Ci))
14. return bestLC

Fig. 5. Min–max partitioning algorithm
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Fig. 6. Cut levels in partitioning

The cluster set quality function, Q(C), is defined by (4):

Q(C) =
1
|C|

∑
Ci∈C

simAL(Ci, C̄i)
simAL(Ci, Ci)

, C̄i =
⋃
k 	=i

Ck (4)

The quality function in (4) is chosen to create cohesion between the clusters
that are grouped together. The expression simAL(Ci, C̄i) represents the inter-
cluster pairwise similarity, while simAL(Ci, Ci) represents the intra-cluster
pairwise similarity. The algorithm chooses a cut of the tree that minimizes
the inter-cluster similarity while maximizing the intra-cluster similarity, which
should result in the highest cohesion within clusters.

The cluster number preference function, N(C), is intended to help the
algorithm form clusters that are of a size easily digestible by humans using
the resulting hierarchy. It is defined by (5):

N(C) = f(|C|), f(x) =
1

α!βα
xα−1e−x/β (5)

This is just a simplified gamma distribution. The parameters α and β tune
the smoothness of the preference function; HAC+ P + FSR uses the values
suggested in [5], α = 3 and β = Nclus/2, where Nclus is the ideal number of
generated clusters per layer (empirically set to the square root of the number
of objects in each partitioning step).

Alternative Quality Function

Although the average similarity metric has been experimentally shown to be a
good choice for HAC clustering by Chuang and Chien [5], other similarity mea-
sures could potentially produce better results for partitioning the hierarchy.
Two common alternatives are the single-linkage (SL) and complete-linkage
(CL) functions, which are defined in (6) and (7), respectively.
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simSL(Ci, Cj) = max
va∈Ci,vb∈Cj

sim(va, vb) (6)

simCL(Ci, Cj) = min
va∈Ci,vb∈Cj

sim(va, vb) (7)

The single-linkage similarity between two clusters is the similarity between
the closest pair of points where one is in each cluster. The complete-linkage
similarity is the similarity between the most distant pair of points where one
is in each cluster.

The characteristic behavior of clustering using each of these similarity
measures has been analyzed by Yager in [14]. He notes that the complete-
linkage measure tends to generate larger clusters, with outlying elements
placed in isolated small clusters. The single-linkage measure tends to form
small, uniform-sized clusters and then join them together, potentially forming
long odd-shaped clusters.

Given that the goal of the partitioning algorithm is to minimize inter-
cluster similarity while maximizing intra-cluster similarity, an alternative
quality function can be formulated as defined in (8).

Q(C) =
∑

Ci∈C

1
|C|
∑

Ci∈C,Cj 	=Ci
simSL(Ci, Cj)

simCL(Ci, Ci)
(8)

This function finds the average minimum distance between each cluster
and each of the other clusters, divided by the average minimum pairwise
similarity within each cluster. The denominator is inversely proportional to
the average diameter of the clusters.

As with (4), this function has its minimum value when clusters are very
cohesive and are well-separated. It can thus be used interchangeably with
(4) in the min–max partitioning algorithm given in Fig. 5. In the following
analysis, if the algorithm is run with this alternate quality function, it is
referred to as HAC+ P2+ FSR.

4 Evaluation

The HAC (hierarchical agglomerative clustering) and P (min–max partition-
ing) components of HAC+P and HAC+P+FSR are very similar, although
the technique for determining LC(l) in our partitioning algorithm has been
clarified. The evaluation criteria are different, due to our goal of producing a
hierarchy from a real production data set with no pre-assigned classifications.

The key difference between HAC+ P and HAC+ P + FSR is the feature
selection and feature reduction mechanism, which is essential for our pro-
fessional implementation. HAC+ P + FSR takes advantage of the availability
of all necessary context information for each query in the FAQ repository,
rather than relying on the extraction of information from an external source
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as assumed in [5]. This generates clusters that are more domain-specific. The
repository contains all keywords extracted from each document, so the feature
vectors contain a much more complete context for each query. Furthermore,
HAC+P+FSR is not sensitive to the length of the text segments returned
by a search engine for each query, and it does not have to process each text
segment to extract keywords.

Also, HAC+ P does not include a method for feature reduction. Our ex-
perience indicates that in an FAQ system of even moderate size, this step is
essential for HAC+ P + FSR to maintain a reasonable length for the feature
vectors. The feature reduction algorithm takes advantage of some straight-
forward heuristics to reduce the feature set with very modest computational
requirements.

In [5], Chuang and Chien used a combination of techniques to evaluate
the performance of their algorithm. The performance of the algorithm was
analyzed using the F-measure, which is a common technique for computing
a performance measure for classification. However, computing this analytic
measure for the clusters generated by the HAC+ P + FSR algorithm from a
real production data set is difficult if not impossible; the F-measure requires
that the documents are pre-classified. This expert categorization is not avail-
able for a general RightNow FAQ system and in fact occurs rarely in real-word
data repositories, due to the size of the data sets and their dynamic nature.
This was the motivation for the development of clustering algorithms as an
alternative to classification methods for data sets that don’t include class
information.

In the absence of any external category information, such as class labels,
the cohesiveness of clusters can be used as a measure of cluster similarity.
One measure of cluster cohesiveness is the intra-cluster similarity or self-
similarity, simAL(C,C), as computed in the cluster set quality function. This
value for the cluster is equivalent to the squared length of the cluster centroid,
||C||2 [12].

In a production system, a subjective evaluation of the results produced
by the algorithm is a more important measure of performance. The goal of
the algorithm is to produce a concept hierarchy that users will find useful in
describing the contents of the FAQ repository. In order to generate a subjective
evaluation, HAC+ P + FSR was used to cluster queries submitted to several
RightNow systems. Table 1 includes some summary statistics on the analyzed
repositories.

The algorithm was executed on each repository using the following pa-
rameter values: N (number of queries) = 1,000, K (number of keywords) =
2,500, ε (minimum cluster size) = 5, ρ (maximum hierarchy depth) = 6, α
(smoothing parameter) = 3, β (smoothing parameter) = −1, which causes it
to be computed dynamically during clustering. The value of β at each level
of recursion is set to the square root of the number of queries included in the
leaves of the subtree being partitioned.
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Table 1. Analyzed system statistics

FAQ DB name Fed. Gov. Dept. Consumer Consumer
electronics software

Dates 3/18-6/07 5/08-6/07 3/28-6/15
# of Documents 657 2,418 368
# Words in docs 38,426 231,089 24,461
# Unique words in docs 4,008 7,231 3,951
# of searches 779,578 5,701 106,006
# Unique search words 83,105 2,545 15,946

Table 2. Clustering of 1,000 queries

Level # clusters Avg. self-similarity Min. self-similarity

Federal Government Department
1 17 0.777 0.057
2 33 0.355 0.117
3 128 0.542 0.173
4 207 0.642 0.246
5 165 0.720 0.343
6 60 0.770 0.463

Consumer Electronics Manufacturer
1 35 0.465 0.038
2 117 0.459 0.121
3 256 0.655 0.269
4 173 0.748 0.333
5 55 0.762 0.462
6 7 0.813 0.502

Consumer Software Producer
1 24 0.524 0.094
2 62 0.526 0.160
3 135 0.570 0.251
4 187 0.679 0.338
5 138 0.744 0.417
6 48 0.816 0.527

Table 2 includes statistics for the final concept hierarchies produced by the
algorithm. Note that when accumulating the maximum self-similarity, values
of 1.0 were ignored; these similarity values were produced for any single-query
clusters.

As expected, as depth in the tree increased, the cohesiveness of the clusters
also increased. The slight anomalies at the top level were due to the decreasing
number of clusters at that level and to the handling of single-query clusters;
the unity self-similarity values had an adverse effect on the results.

In addition to the statistics, the resulting hierarchies were subjectively
evaluated. The results were deemed very useful; the algorithm indeed clusters
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Fig. 7. Example showing one branch of hierarchy for federal government depart-
ment’s system

closely related queries at the deepest levels of the hierarchy, and shallower
levels become more general. Figure 7 shows portions of the hierarchy that was
generated from the first repository.

Two queries within one of the clusters, “Disability determination” and
“What is permanent disability”, were run against the knowledge base, and
of the 20 most relevant documents returned in each result set, 90% were the
same documents. Similarly, comparing the top 20 documents returned by a
search on “TPQY Form” and the 15 documents returned by a search on
“Reconsideration Form” shows that all 15 of the documents in the second set
are in the first set.
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4.1 Results Generated by Alternate Partitioning Algorithm

The HAC+ P2+ FSR algorithm was executed on the same data sets with the
same parameters to obtain a comparison of the two partitioning techniques.
The results are shown in Table 3.

Note that although different cluster similarity measures were used in the
partitioning process, the average and minimum self-similarities in the follow-
ing table were using the average similarity measure. This allows for direct
comparison with the results given for HAC+ P + FSR.

Note that although the maximum depth parameter for these runs was
set to six, just like the runs of the HAC+P+FSR algorithm, the use of the
alternate quality function naturally led the algorithm to produce a flatter,
bushier hierarchy without reaching the depth limit. As expected, the average
and minimum self-similarity for each cluster increased with depth in the tree.
However, comparison of Tables 2 and 3 show that the similarity measures
for the clusters produced by HAC+P2+FSR were better overall at each level
of the generated hierarchies, except for the first level. This is explained by
the anomalies introduced in the original runs with HAC+ P + FSR by single-
query clusters. HAC+ P2+ FSR generated more first-level clusters, so the
effect of single-query clusters was diluted in the average values.

HAC+ P2+ FSR tends to create a larger number of clusters at each level,
making the tree shallower and bushier than HAC+P+FSR. In addition, the
implementation of HAC+P2+FSR takes significantly less CPU time during
the partitioning step.

Table 3. Alternate clustering

Level # clusters Avg. self-similarity Min. self-similarity

Federal Government Department
1 48 0.511 0.117
2 184 0.583 0.204
3 292 0.742 0.331
4 100 0.863 0.557

Consumer Electronics Manufacturer
1 48 0.441 0.064
2 234 0.603 0.221
3 300 0.810 0.333
4 72 0.879 0.518

Consumer Software Producer
1 48 0.502 0.131
2 179 0.654 0.251
3 248 0.755 0.375
4 159 0.850 0.417
5 31 0.918 0.589
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Fig. 8. Alternate branch of hierarchy for federal government system

Subjective analysis of the clustering created by HAC+P2+FSR indicates
that it is as usable as the clustering produced by HAC+P+FSR. Figure 8
shows a portion of the hierarchy generated from the government agency data;
the top branch is the same as the branch produced by the HAC+P+FSR
algorithm, but there are some slight differences in the lower branch. Some
additional related queries were included in the clusters. Subjective review
suggests that the clustering is somewhat more inclusive.
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The power of using the documents returned by queries to cluster them is
well demonstrated by this portion of the hierarchy. For instance, queries on
“Lump sum death benefit” and “SSA 7004” produce result sets with only one
overlap in the twenty most relevant documents returned. The same is true for
the queries “Medical release form” and “Lump sum death benefit”. However,
the most relevant documents returned by each of these queries discuss the
forms required when a Social Security recipient has a status-changing event.

The differences between the last two clusters shown here are not readily
apparent, without actually retrieving the query documents and breaking them
into their associated feature vectors. However, they do get merged into the
same parent cluster, which adds other queries related to disability benefits. If
a user is drilling down through the hierarchy, this branch would definitely be
helpful in answering questions related to disabilities.

5 Conclusions and Future Work

Preliminary results show that the HAC+P+FSR algorithm performs well,
producing very usable concept hierarchies by clustering the user queries from
a RightNow FAQ system. The alternative partitioning technique used in
HAC+ P2+ FSR appears to produce a preferable clustering and requires less
processor resources, suggesting that it is clearly the better choice. There is still
work to do to fine-tune the algorithm, but this prototype definitely served as
a proof of concept and will be used as the starting point for a production
implementation.

There are a few interesting avenues for further exploration: one of the
primary needs for a production presentation is labeling or otherwise identi-
fying the clusters. Text summarization is a very complex problem, but the
usability of the generated concept hierarchy would be enhanced by concise
naming of the nodes in the hierarchy. Some method other than picking the
most frequently occurring terms in a cluster is desirable. In [15], Mandhani
et al. suggest a technique to co-cluster documents and words; it may be possi-
ble to maintain a similar keyword density matrix that could suggest the best
terms to use to label each cluster.

Another interesting research challenge, more theoretical in nature, is to
find a suitable objective measure to evaluate clustering performance in the
absence of pre-classified data. Also, alternative techniques for feature selection
and reduction would likely improve clustering. Finally, it would be interesting
to investigate adapting the work described by Frigui and Masraoui in [16]
to the query clustering algorithm. They discuss a technique for clustering
documents and simultaneously adjusting a set of keyword weights for the
cluster; upon completion, the associated weights indicate the relevance of each
keyword for the cluster, and may help to select terms to describe the cluster.
The algorithm can also be adjusted to perform fuzzy clustering; adapting this
technique would allow each query to be included in multiple clusters.
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Summary. Classification Rule Mining (CRM) is a well-known Data Mining tech-
nique for the extraction of hidden Classification Rules (CRs) from a given database
that is coupled with a set of pre-defined classes, the objective being to build a clas-
sifier to classify “unseen” data-records. One recent approach to CRM is to employ
Association Rule Mining (ARM) techniques to identify the desired CRs, i.e. Clas-
sification Association Rule Mining (CARM). Although the advantages of accuracy
and efficiency offered by CARM have been established in many papers, one major
drawback is the large number of Classification Association Rules (CARs) that may
be generated – up to a maximum of “2n − n − 1” in the worst case, where n repre-
sents the number of data-attributes in a database. However, there are only a limited
number, say at most k̂ in each class, of CARs that are required to distinguish be-
tween classes. The problem addressed in this chapter is how to efficiently identify
the k̂ such CARs. Having a CAR list that is generated from a given database, based
on the well-established “Support-Confidence” framework, a rule weighting scheme is
proposed in this chapter, which assigns a score to a CAR that evaluates how signifi-
cantly this CAR contributes to a single pre-defined class. Consequently a rule mining
approach is presented, that addresses the above, that operates in time O(k2n2) in its
deterministic fashion, and O(kn) in its randomised fashion, where k represents the
number of CARs in each class that are potentially significant to distinguish between
classes and k ≥ k̂; as opposed to exponential time O(2n) – the time required in
score computation to mine all k̂ CARs in a “one-by-one” manner. The experimental
results show good performance regarding the accuracy of classification when using
the proposed rule weighting scheme with a suggested rule ordering mechanism, and
evidence that the proposed rule mining approach performs well with respect to the
efficiency of computation.
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1 Introduction

Data Mining [29,30] is a promising area of current research and development
in Computer Science, which is attracting more and more attention from a wide
range of different groups of people. Data Mining aims to extract various types
of hidden and interesting knowledge (i.e., rules, patterns, regularities, customs,
trends, etc.) from databases, where the volume of a collected database can be
very large. In Data Mining, common types of mined knowledge include: Asso-
ciation Rules (ARs) [1], Classification Rules (CRs) [45], Classification Associ-
ation Rules (CARs) [3], Prediction Rules (PRs) [28], Clustering Rules (CTRs)
[42], Sequential Patterns (SPs) [52], Emerging Patterns (EPs) [21], etc.

An AR describes a co-occurring relationship between binary-valued data-
attributes, expressed in the form of an “antecedent ⇒ consequent” rule. Asso-
ciation Rule Mining (ARM) [2], with its wide range of applications, has been
well-established in Data Mining in the past decade. It aims to identify all ARs
in a given transaction-database DT . One application of ARM is to define CRs,
from a training-dataset DR that is coupled with a set of pre-defined classes
C = {c1, c2, . . . , c|C|−1, c|C|}, which can be used to classify the data-records
in a test-dataset DE . This kind of AR based CR is referred to as CAR. In
general the process to build a classifier using identified CRs is called Classi-
fication Rule Mining (CRM) [45], which is another well-known Data Mining
technique parallelling ARM. In CRM, a class-database DC is given as DR ∪
DE , where DR and DE share the same data-attributes but the class-attribute
(the last data-attribute in DR) is “unseen” in DE .

Classification Association Rule Mining (CARM) [3] is a recent CRM ap-
proach that builds an ARM based classifier using CARs, where these CARs
are generated from a given transaction-training-dataset DTR ⊂ DTC , and
DTC is a DC in a “transactional” manner. In [18], Coenen et al. suggest that
results presented in [36,38] show that CARM seems to offer greater accuracy,
in many cases, than other methods such as C4.5 [45]. However, one major
drawback of this approach is the large number of CARs that might be gener-
ated – up to a maximum of “2n −n−1” in the worst case, where n represents
the number of data-attributes in DTC . In [53], Yin and Han believe that there
are only a limited number, say at most k̂ in each class, of CARs that are re-
quired to distinguish between classes and should be thus used to make up a
classifier. They suggest a value of 5 as an appropriate value for k̂, and employ
the Laplace expected error estimate [10] to estimate the accuracy of CARs.
In [15] Coenen and Leng evaluated a number of alternative rule ordering and
case satisfaction strategies, and conclude that for lower confidence thresholds
(i.e., 50–75%) CSA (Confidence-Support-size of Antecedent) and Laplace or-
dering coupled with a “best first” case satisfaction mechanism can achieve
better accuracy than comparable alternatives.

1.1 Contribution

Given a CAR list R = {R1, R2, . . . , RN−1, RN} that is generated from a given
DTR based on the well-established “Support-Confidence” framework, where
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R is presented using CSA ordering, and N represents the size of R that can
be as large as “2n−n−1”, a rule weighting scheme is proposed in this chapter,
which assigns a score to a CAR Rj ∈ R that represents how significantly Rj

contributes to a single class ci ∈ C. An alternative rule ordering mechanism is
consequently introduced, based on the proposed rule weighting scheme, that
aims to improve the performance of the well-established CSA ordering regard-
ing the accuracy of classification. In [19] a general framework for selectors,
namely (k,m, n)-selectors, was proposed with applications in optimal group
testing. In this chapter, a similar concept of selectors is further considered in
a randomised setting. This randomised selector can be proved to exist with a
high probability. With regards to the concept of selectors, a novel rule mining
approach is presented that addresses the problem of mining the k̂ “significant
rules” (see Definition 9 in Sect. 3.2) in R. The rule mining approach operates
in time O(k2n2) in its deterministic fashion, and O(kn) in its randomised fash-
ion, where k represents the number of CARs in each class that can potentially
be used to distinguish between classes and k ≥ k̂; as opposed to exponential
time O(2n) – the time required in score computation to find all k̂ significant
(the “best k̂”) rules in R in a “one-by-one” manner. The experimental results
show that the proposed rule weighting and rule ordering approaches perform
well regarding the accuracy of classification, and evidence the fast computa-
tional efficiency of running the randomised rule mining approach. Note that
the deterministic rule mining approach is theoretical only.

1.2 Chapter Organisation

The following section describes some Data Mining work that relate to CARM.
In Sect. 3 we first introduce the rule weighting scheme together with a rule
ordering mechanism based on the rule weighting scheme; and sketch the con-
cept of deterministic selectors and give an introduction to the concept of
randomised selectors. In Sect. 4 we propose a rule mining approach to effi-
ciently mine the “best k̂” CARs in R. In Sect. 5 we present experimental
results obtained using the TFPC (Total From Partial Classification) CARM
algorithm [15, 18] coupled with a “best first” case satisfaction approach. Fi-
nally we discuss our conclusions in Sect. 6, and a number of open issues for
further research.

2 Related Work

2.1 Association Rule Mining

ARM extracts a set of ARs from DT , first introduced in [1]. Let I =
{a1, a2, . . . , an−1, an} be a set of items (data-attributes), and T = {T1, T2, . . . ,
Tm−1, Tm} be a set of transactions (data-records),DT is described by T , where
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each Ti ∈ T contains a set of items I ′ ⊆ I. In ARM, two threshold values are
usually used to determine the significance of an AR:

• Support: The frequency that the items occur or co-occur in T . A support
threshold σ, defined by the user, is used to distinguish frequent items from
the infrequent ones. A set of items S is called an itemset, where S ⊆ I,
and ∀ai ∈ S co-occur in T . If the occurrences of some S in T exceeds σ,
we say that S is a Frequent Itemset (FI).

• Confidence: Represents how “strongly” an itemset X implies another item-
set Y , where X,Y ⊆ I and X ∩ Y = {*}. A confidence threshold α,
supplied by the user, is used to distinguish high confidence ARs from low
confidence ARs.

An AR X ⇒ Y is valid when the support for the co-occurrence of X and
Y exceeds σ, and the confidence of this AR exceeds α. The computation of
support is X ∪ Y

|T | , where |T | is the size function of the set T . The computation

of confidence is Support(X ∪ Y )
Support(X) . Informally, X ⇒ Y can be interpreted as “if

X exists, it is likely that Y also exists”. With regards to the history of ARM
investigation, three major categories of serial (non-parallel) ARM algorithms
can be identified: (1) mining ARs from all possible FIs, (2) mining ARs from
Maximal Frequent Itemsets (MFIs), and (3) mining ARs from Frequent Closed
Itemsets (FCIs).

Mining ARs from FIs

In the past decade, many algorithms have been introduced that mine ARs
from identified FIs. These algorithms can be further grouped into different
“families”, such as Pure-apriori like, Semi-apriori like, Set Enumeration Tree
like, etc.

• Pure-apriori like where FIs are generated based on the generate-prune
level by level iteration that was first promulgated in the Apriori algo-
rithm [2]. In this “family” archetypal algorithms include: Apriori, Apriori-
Tid and AprioriHybrid [2], Partition [49], DHP [43], Sampling [50], DIC [7],
CARMA [31], etc.

• Semi-apriori like where FIs are generated by enumerating candidate item-
sets but do not apply the Apriori generate-prune iterative approach
founded on (1) the join procedure, and (2) the prune procedure that em-
ploys the closure property of itemsets – if an itemset is frequent then all
its subsets will also be frequent; if an itemset is infrequent then all its su-
persets will also be infrequent. In this “family” typical algorithms include:
AIS [1], SETM [33], OCD [40], etc.

• Set Enumeration Tree like where FIs are generated through constructing
a set enumeration tree structure [48] from DT , which avoids the need
to enumerate a large number of candidate itemsets. In this “family” a
number of approaches can be further divided into two main streams: (1)
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Apriori-TFP1 based (i.e., [11–13,16,17], etc.), and (2) FP-tree based (i.e.,
[9, 24,27,39], etc.).

Mining ARs from MFIs

It is apparent that the size of a complete set of FIs can be very large. The
concept of MFI [47] was proposed to find several “long” (super) FIs in DT ,
which avoids the redundant work required to identify “short” FI. The con-
cept of vertical mining has also been effectively promoted in this category [54].
Vertical mining, first mentioned in [32], deals with a vertical transaction data-
base DV

T , where each data-record represents an item that is associated with a
list of its relative transactions (the transactions in which it is present). Typ-
ical MFI algorithms include: MaxEclat/Eclat [54], MaxClique/Clique [54],
Max-Miner [47], Pincer-Search [37], MAFIA [8], GenMax [26], etc.

Mining ARs from FCIs

Algorithms belonging to this category extract ARs through generating a set
of FCIs from DT . In fact the support of some sub-itemsets of an MFI might
be hard to identified resulting in a further difficulty in the computation of
confidence. The concept of FCI [44] is proposed to improve this property
of MFI, which avoids the difficulty of identifying the support of any sub-
itemsets of a relatively “long” FI. A FCI f is an itemset S ∈ DT , where f
is frequent and ¬∃ itemset f ′ ⊃ f and f ′ shares a common support with
f . The relationship between FI, MFI and FCI is that MFI ⊆ FCI ⊆ FI [8].
In this category typical algorithms include: CLOSET [44], CLOSET+ [51],
CHARM [55], MAFIA [8], etc.

2.2 Classification Rule Mining

CRM deals with DC , where DC is founded as DR ∪DE . It discovers a set of
CRs in DR from which to build a classifier to classify “unseen” data records in
DE . ADR consists of n data-attributes andm data records. By convention the
last data-attribute in each data-record usually indicates its pre-defined class,
noted as the class attribute. CRM can thus be described as the process of
assigning a Boolean value to each pair (dj , ci) ∈ DE ×C, where each dj ∈ DE

is an “unseen” data-record, C as declared in Sect. 1 is a set of pre-defined
classes, and (dj , ci) is a data-record in DE to be labeled.

The Cover Algorithm

In CRM a number of approaches have been proposed to generate a classifier
from a set of training data-records. For example the Cover Algorithm [41]
takes DR as its input and aims to generate a complete set of minimal non-
redundant CRs. We define the Cover algorithm in Fig. 1 as follows.
1Apriori-TFP and its related softwares may be obtained from http://www.csc.liv.
ac.uk/˜frans/KDD/Software.
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Algorithm Cover;
input: DR (a training-dataset);
output: the set SCR (the complete set of minimal non-redundant CRs);
(1)begin
(2) SCR := {�};
(3) while DR �= {�} do
(4) find a CR cr from DR heuristically;
(5) remove all records identified by cr from DR;
(6) SCR ← SCR ∪ cr;
(7) end while
(8) return (SCR);
(9)end

Fig. 1. The cover algorithm

Existing CRM Approaches

With regards to the history of CRM investigation, various mechanisms on
which CRM algorithms have been based include: Decision Trees [45], Bayesian
Approach [20], K-Nearest Neighbour [34], Support Vector Machine [6], Asso-
ciation Rules [38], Emerging Patterns [22], Genetic Algorithm [25], Neural
Networks [28], Case-based Reasoning [28], Rough Set [28], Fuzzy Set [28],
Simple Approach [23], etc. In this section, we briefly describe four of the most
well-known mechanisms used in CR generation as follows.

• Decision Trees: Where CRs are mined based on a greedy algorithm. The
approach can be separated into two stages where a flow chart like tree
structure is constructed from DR first (stage 1) followed by a tree pruning
phase; the pruned tree is then used in CR generation (stage 2). C4.5 [45]
is the most famous Decision Tree based CRM method and operates by
recursively splitting DR on the attribute that produces the maximum gain
to generate the decision tree. This tree is then pruned according to an error
estimate. The result is used to classify “unseen” data.

• Bayesian Approach: The typical mechanism found in Byesian CRM ap-
proaches is naive bayes, which has been widely applied in Machine Learn-
ing. The general idea of naive bayes is to make use of knowledge of the
joint probabilities that exist between attributes in training-dataset so as to
produce a model of some machine learning application that can be applied
to “unseen” data. The term naive is used to refer to the assumption that
the conditional probability between data-attributes is independent of the
conditional probability between other data-attributes. A naive bayes clas-
sifier is built using DR, which comprises a set of conditional probabilities
for each data-attribute ah ∈ IR (the set of attributes in DR) and each class
ci ∈ C, so that there are |IR| × |C| probabilities. This set of conditional
probabilities is then used to classify “unseen” data-records in DE .

• K-Nearest Neighbour: K-Nearest Neighbour (K-NN) is a well-known sta-
tistical approach used in CRM, which classifies an “unseen” data-record
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dEi ∈ DE , by summarising a common pre-defined class from its K
most similar instances, identified in DR. To identify the K most sim-
ilar training-instances for dEi, calculating the Euclidean distance value
between each training data-record dRi ∈ DR and dEi has been commonly
used: Distance(dRi, dEi) =

√
(
∑n

j=1(dRij
− dEij

)2), where dRij
and dEij

are the values of the jth data-attribute in DC for dRi and dEi.
• Support Vector Machine: The objective of using Support Vector Machine

(SVM) [6] is to find a hypothesis h̃ which minimises the true error defined
as the probability that h̃ produces an erroneous result. SVM make use of
linear functions of the form: f(x) = w Tx + b, where w is the weight vector,
x is the input vector, and w Tx is the inner product between w and x. The
main concept of SVM is to select a hyperplane that separates the positive
and negative examples while maximising the smallest margin. Standard
SVM techniques produce binary classifiers. Two common approaches to
support the application of SVM techniques to the multi-class problem are
One Against All (OAA) and One Against One (OAO).

2.3 Classification Association Rule Mining

An overlap between ARM and CRM is CARM, which strategically solves
the traditional CRM problem by applying ARM techniques. It mines a set of
CARs fromDTR. A CAR is an AR of the formX ⇒ ci, whereX is an FI mined
from DTR, and ci is a pre-defined class in C to which data-records can be
assigned. The idea of CARM was first presented in [3]. Subsequently a number
of alternative approaches have been described. Broadly CARM algorithms
can be categorised into two groups according to the way that the CRs are
generated:

• Two stage algorithms where a set of CARs are produced first (stage 1),
which are then pruned and placed into a classifier (stage 2). Examples
of this approach include CBA [38] and CMAR [36]. CBA (Classification
Based on Associations), developed by Liu et al. in 1998, is an Apriori [2]
based CARM algorithm, which (1) applies its CBA-GR procedure for CAR
generation; and (2) applies its CBA-CB procedure to build a classifier
based on the generated CARs. CMAR (Classification based on Multiple
Association Rules), introduced by Han and Jan in 2001, is similar to CBA
but generates CARs through a FP-tree [27] based approach.

• Integrated algorithms where the classifier is produced in a single processing
step. Examples of this approach include TFPC2 [15,18], and induction sys-
tems such as FOIL [46], PRM and CPAR [53]. TFPC (Total From Partial
Classification), proposed by Coenen et al. in 2004, is a Apriori-TFP [16]
based CARM algorithm, which generates CARs through efficiently con-
structing both P-tree and T-tree set enumeration tree structures. FOIL

2TFPC may be obtained from http://www.csc.liv.ac.uk/˜frans/KDD/Software.
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(First Order Inductive Learner) is an inductive learning algorithm for
generating CARs developed by Quinlan and Cameron-Jones in 1993. This
algorithm was later developed by Yin and Han to produce the PRM (Pre-
dictive Rule Mining) CAR generation algorithm. PRM was then further
developed, by Yin and Han in 2003 to produce CPAR (Classification based
on Predictive Association Rules).

Case Satisfaction Approaches

Regardless of which particular methodology is used to build it, a classifier is
usually presented as an ordered CAR list R. In [15] Coenen and Leng sum-
marised three case satisfaction approaches that have been employed in differ-
ent CARM algorithms for utilising the resulting classifier to classify “unseen”
data. These three case satisfaction approaches are itemised as follows (given
a particular case):

• Best First Rule: Select the first “best” rule that satisfies the given case
according to some ordering imposed on R. The ordering can be de-
fined according to many different ordering schemes, including: (1) CSA
(Confidence-Support-size of Antecedent) – combinations of confidence,
support and size of antecedent, with confidence being the most significant
factor (used in CBA, TFPC and the early stages of processing of CMAR);
(2) WRA (Weighted Relative Accuracy) – which reflects a number of rule
“interestingness” measures as proposed in [35]; (3) Laplace Accuracy –
as used in PRM and CPAR; (4) χ2 Testing – χ2 values as used, in part,
in CMAR; (5) ACS (size of Antecedent-Confidence-Support) – an alter-
native to CSA that considers the size of the rule antecedent as the most
significant factor; etc.

• Best K Rules: Select the first “best K” rules (in this chapter we denote
K by k̂ as mentioned above) that satisfy the given case and then select a
rule according to some averaging process as used for example, in CPAR.
The term “best” in this case is defined according to an imposed ordering
of the form described in Best First Rule.

• All Rules: Collect all rules in the classifier that satisfy the given case and
then evaluate this collection to identify a class. One well-known evaluation
method in this category is WCS (Weighted χ2) testing as used in CMAR.

Rule Ordering Approaches

As noted in the previous section five existing rule ordering mechanisms are
identified to support the “best first rule” case satisfaction strategy. Each can
be further separated into two stages: (1) a rule weighting stage where each
Rj ∈ R is labeled with a weighting score that represents the significance of
Rj indicates a single class ci; and (2) a rule re-ordering stage, which sorts the
original R in a descending manner, based on the score assigned in stage (1), of
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each Rj . With regards to both stages of rule weighting and rule re-ordering,
each rule ordering mechanism can be described in more detail as follows:

• CSA: The CSA rule ordering mechanism is based on the well-established
“Support-Confidence” framework (see Sect. 2.1). It does not assign an ad-
ditional weighting score to each Rj ∈ R in its rule weighting stage, but
simply gathers the values of confidence and support, and the size of the
rule antecedent to “express” a weighting score for each Rj ∈ R. In the
rule re-ordering stage, CSA generally sorts the original R in a descending
order based on the value of confidence of each Rj . For these rules in R that
share a common value of confidence, CSA sorts them in a descending order
based on their support value. Furthermore for these rules in R that share
common values for both confidence and support, CSA sorts them in an
ascending order based on their size of the rule antecedent. In this chapter,
the “pure confidence” approach is applied as a simplified version of the
CSA rule ordering mechanism, which sorts the original R in a descending
order based on the value of confidence of each Rj only.

• WRA: The use of WRA can be found in [35], where this technique is
used to determine an expected accuracy for each generated CR. In its
rule weighting stage, WRA assigns a weighting score to each Rj ∈ R.
The calculation of the value of Rj , confirmed in [15], is: wra(Rj) =
support(Rj .antecedent) × (confidence(Rj) - support(Rj .consequent). In
the rule re-ordering stage the original R is simply sorted in a descending
order based on the assigned wra value of each Rj .

• Laplace Accuracy: The use of the Laplace expected error estimate [10]
can be found in [53]. The principle of applying this rule ordering mech-
anism is similar to WRA. The calculation of the Laplace value of Rj is:
Laplace(Rj) = support(Rj .antecedent ∪ Rj .consequent) + 1

support(Rj .antecedent + |C|) , where |C| is the
size function of the set C.

• χ2 Testing: χ2 Testing is a well known technique in statistics, which can be
used to determine whether two variables are independent of one another.
In χ2 Testing a set of observed values (O) is compared against a set of
expected values (E) – values that would be estimated if there were no
associative relationship between the variables. The value of χ2 is calculated
as:
∑n

i=1
(Oi − Ei)

2

Ei
, where n is the number of observed/expected values,

which is always 4 in CARM. If the χ2 value between two variables (the
antecedent and consequent of Rj ∈ R) above a given threshold value (for
CMAR the chosen threshold is 3.8415), thus it can be concluded that there
is a relation between the rule antecedent and consequent, otherwise there
is not a relation. After assigning a χ2 value to each Rj ∈ R, it can be used
to re-order the R in a descending basis.

• ACS: The ACS rule ordering mechanism is a variation of CSA. It takes the
size of the rule antecedent as its major factor (using a descending order)
followed by the rule confidence and support values respectively. This rule
ordering mechanism ensures that “specific rules have a higher precedence
than more general rules” [15].
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3 Preliminaries

As noted in Sect. 1.1, R = {R1, R2, . . . , R2n−n−2, R2n−n−1} represents a com-
plete set of possible CARs that are generated from DTR, and Rj represents a
rule in set R with label j.

3.1 Proposed Rule Weighting Scheme

Item Weighting Score

There are n items involved in DTR. For a particular pre-defined class A (as
ci ∈ C), a score is assigned to each item in DTR that distinguishes the signif-
icant items for class A from the insignificant ones.

Definition 1. Let çA(Itemh) denote the contribution of each itemh ∈ DTR

for class A, which represents how significantly itemh determines A, where 0 ≤
çA(Itemh) ≤ |C|, and |C| is the size function of the set C.

The calculation of çA(Itemh) is given as follows:

çA(Itemh) = (TransFreq(Itemh, A)) × (1 − TransFreq(Itemh, Ā))
× |C|

ClassCount(Itemh, C) ,

where

1. The TransFreq(Itemh, A or Ā) function computes how frequently that
Itemh appears in class A or the group of classes Ā (the complement of A).
The calculation of this function is:
number of transactions with Itemh in the class(es)

number of transactions in the class(es) .
2. The ClassCount(Itemh, C) function simply counts the number of classes

in C which contain Itemh.

The rationale of this item weighting score is demonstrated as follows:

1. The weighting score of Itemh for class A tends to be high if Itemh is
frequent in A.

2. The weighting score of Itemh for class A tends to be high if Itemh is
infrequent in Ā.

3. The weighting score of Itemh for any class tends to be high if Itemh is
involved in a small number of classes in C. In [5], a similar idea can be
found in feature selection for text categorisation.

Rule Weighting Score

Based on the item weighting score, a weighting score is assigned to the rule
antecedent of each Rj ∈ R.
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Definition 2. Let çA(Rj) denote the contribution of each CAR Rj ∈ R for
class A, which represents how significantly Rj determines A.

The calculation of çA(Rj) is given as follows:

çA(Rj) =
∑|Rj |

h=1 çA(Itemh ∈ Rj).

3.2 Some Definitions

Definition 3. If çA(Itemh) < ε, we recognise Itemh ∈ DTR as a light-
weighted item for class A, where ε is a user-defined constant and 0 ≤ ε ≤ 1.
We use I ′(A) = {Item′

1, Item
′
2, . . . , Item

′
|I′(A)|−1, Item

′
|I′(A)|} to denote the

sufficient set of light-weighted items for A, identified in DTR.

Definition 4. If a CAR Rj ∈ R significantly satisfies the following inequality,
çA(Rj) >

∑|I′(A)|
h=1 çA(Itemh ∈ I ′(A)), where the contribution of Rj for class

A is significantly greater than the sum of the contributions of all light-weighted
items for class A, we recognise Rj as a heavy-weighted rule for A. We use
R′(A) = {R′

1, R
′
2, . . . , R

′
t−1, R

′
t} to denote the set of selected heavy-weighted

rules for A, identified in R. In R, we always select the top-t heavy-weighted
rules to construct R′(A), where integer t is a user-defined constant.

Definition 5. We recognise an item Itemh ∈ DTR as a heavy-weighted rule-
item for class A if Itemh ∈ (∃R′

j ∈ R′(A)). We use I ′′(A) = {Item′′
1 , Item

′′
2 ,

. . . , Item′′
|I′′(A)|−1, Item

′′
|I′′(A)|} to denote the sufficient set of heavy-weighted

rule-items for A, identified in DTR.

Definition 6. If a CAR Rj ∈ R does not contain any item Item′′
h ∈

I ′′(A), we recognise Rj as a noisy rule for class A. We use R′′(A) =
{R′′

1 , R
′′
2 , . . . , R

′′
k′−1, R

′′
k′} to denote the sufficient set of noisy rules for A, iden-

tified in R.

Definition 7. We recognise an item Itemh ∈ DTR as a noisy rule-
item for class A if Itemh ∈ (∃R′′

j ∈ R′′(A)). We use I ′′′(A) =
{Item′′′

1 , Item
′′′
2 , . . . , Item

′′′
|I′′′(A)|−1, Item

′′′
|I′′′(A)|} to denote the sufficient set

of noisy rule-items for A, identified in DTR.

Definition 8. If a CAR (Rj ∈ R) /∈ R′′(A), we recognise Rj as a potential
significant rule for class A. We use R′′′(A) = {R′′′

1 , R
′′′
2 , . . . , R

′′′
k−1, R

′′′
k } to

denote the sufficient set of potential significant rules for class A, identified in
R as R−R′′(A), where integer k ≥ t (See Definition 4).

Definition 9. If a CAR (Rj ∈ R) ∈ R′′′(A) satisfies the following inequality,
çA(Rj) >

∑|I′′′(A)|
h=1 çA(Item′′′

h ∈ I ′′′(A)), where the contribution of Rj to class
A is greater than the sum of the contributions of all noisy rule-items for class
A, we recognise Rj as a significant rule for A. We say there are at most k̂
significant rules for A in R, where integer k̂ is a user-defined constant ≤ k.
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3.3 Proposed Rule Ordering Mechanism

In Sect. 2.3.2 five existing rule ordering strategies were presented. Each is
separated into both rule weighting and rule re-ordering stages. From the pre-
vious section, a list of CARs R� ⊂ R has been generated that only consists
of the “best k̂” rules for each class ci ∈ C, identified in R. A rule re-ordering
strategy is then required in the process of rule ordering. The rule re-ordering
mechanism proposed herein contains three steps as follows:

1. R� is ordered using the well-established CSA ordering strategy.
2. The original R is linked at back of R�, as R� + R.
3. Reassign: R ← (R� + R).

3.4 Deterministic Selectors

We say that a set P hits a set Q on element q, if P ∩Q = {q}, and a family
F of sets hits a set Q on element q, if P ∩ Q = {q} for at least one P ∈ F .
De Bonis et al. [19] introduced a definition of a family of subsets of set [N ] ≡
{0, 1, · · · , N − 2, N − 1} which hits each subset of [N ] of size at most k on at
least m distinct elements, where N, k and m are parameters, N ≥ k ≥ m ≥ 1.
They proved the existence of such a family of size O((k2/(k−m+ 1)) logN).
For convenience of our presentation, we prefer the following slight modification
of this definition, obtained by using the parameter r = k −m instead of the
parameter m. For integers N and k, and a real number r such that N ≥ k ≥
r ≥ 0, a family F of subsets of [N ] is a (N, k, r)-selector, if for any subset
Q ⊂ [N ] of size at most k, the number of all elements q of Q such that F does
not hit Q on q is at most r. That is,

|{q ∈ Q : ∀P ∈ F , P ∩Q �= {q}}| ≤ r.

In terms of this definition, De Bonis et al. [19] showed the existence of a
(N, k, r)-selector of size T (N, k, r) = O((k2/(r+1)) logN). In particular, there
exists a (N, k, 0)-selector of size O(k2 logN) such a “strong” selector hits each
set Q ⊂ [N ] of size at most k on each of its elements.

3.5 Proposed Randomised Selectors

A randomised k-selector F is a family of subsets of set [N ] ≡ {0, 1, . . . , N −2,
N − 1} which hits each element q of the subset Q ⊂ [N ] of size at most k

with a high probability.

Theorem 1. There exists a randomised k-selector F of size O(k) such that F
hits each set Q ⊂ [N ] of size at most k on each of its elements with a constant
probability p ≥ 1/8.
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Proof. Let each element v ∈ [N ] with a uniformed probability 1/k to be the
part of the element of F . Let H denote the number of different elements in
Q ⊂ [N ] that have been hit by F after repeating the same procedure k times.
The probability p that F hits each set Q of size at most k on each of its
elements could be bounded by

p = E(H)/E(k)
= {

∑k
i = 1 [(k − i+ 1)/k] × k × (1/k) × (1 − 1/k)k−1}/k

=
∑k

i = 1{[(k − i+ 1)/k2] × (1 − 1/k)k−1}
>
∑k

i = 1{[(k − i+ 1)/k2] × (1 − 1/k)k}
>
∑k

i = 1{[(k − i+ 1)/k2] × (1/4)} (�)
= (1/4) × [(1 + k) × (k/2)/k2]
= (1/4) × [(1 + k)/(2k)]
> (1/4) × [k/(2k)]
> 1/8 ,

where inequality (�) follows from the fact that the sequence (1 − 1/k)k is
monotonously increasing.

4 Proposed Rule Mining Approach

4.1 The Strategy of the Deterministic Approach

To identify the significant CARs for class A (as ci ∈ C) in R, we provide a de-
terministic approach that employs a single application of a “strong” (2n, k, 0)-
selector. This approach ensures that every potential significant rule for A
will be hit at least once. To apply a family F of subsets of [2n] means first
to arrange the sets of F into a sequence F1, F2, . . . , F|F|. In the ith step,
only the CARs in R with labels in Fi will be involved in the procedure
SIGNIFICANCE-TEST, while other CARs can be ignored. Thus, we have
an O(k2 log 2n)-complexity to hit each of the k potential significant rules in-
dependently at least once, due to the property of the “strong” selector. If the
current test for Fi contains only one potential significant rule Rj and Rj is
also a significant rule for A, then we call the function LOG-TEST, which is
based on a binary search and finally find Rj . With a “smaller” list of rules (all
significant rules and some insignificant rules), we then compute the weighting
score of each rule for class A, and finally catch the “best k̂” (top-k̂ score)
rules for A.

4.2 The Strategy of the Randomised Approach

In this section, we use the randomised k-selector to substitute the “strong”
selector in Sect. 4.1. This randomised approach ensures that every potential
significant rule for class A will be hit at least once with a high probability.
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To apply a family F of subsets of [2n] means first to arrange the sets of F
into a sequence F1, F2, · · · , F|F|. In the ith step, each element of [2n] will be
contained in Fi with a uniformed probability 1/k and only the CARs in R with
labels in Fi will be involved in the procedure SIGNIFICANCE-TEST, while
other CARs can be ignored. Thus, we have an O(k)-complexity to hit each of
the k potential significant rules independently once with a high probability,
due to the property of the randomised k-selector (see Theorem 1). With a list
of the extracted O(k) rules (all significant rules and some insignificant rules),
the weighting score of each rule for A is computed. The “best k̂” (top-k̂ score)
rules are the significant rules for class A identified in R.

4.3 Rule Mining Algorithm

The function (Fig. 2) identifies a rule with a possible large score for class A.

Lemma 1. If there exists only one potential significant rule Rj in the cur-
rent test Fi and Rj is also a significant rule, the function LOG-TEST will
return Rj.

Proof. According to Definition 9, we know that çA(Rj) >
∑|I′′′(A)|

h=1 çA(Item′′′
h

∈ I ′′′(A)). Thus, the subset of R which contains Rj is always chosen for further
binary test if Rj is the only potential significant rule including in the current
test Fi.

The procedure (Fig. 3) identifies all k̂ significant rules for class A in R.

Theorem 2. The procedure SIGNIFICANCE-TEST will catch all k̂ signif-
icant rules.

Function LOG-TEST(Fi, R);
input: Fi (the ith element in F) and set R;
output: Rw (a rule in R);
(1)begin
(2) Rw := null;
(3) Temp := Fi;
(4) while |Temp| > 1 do
(5) choose an arbitrary subset Temp0 with half CARs in Temp to test;
(6) if

∑
∀Itemh∈Temp0

çA(Itemh) ≥∑∀Itemh′∈Temp−Temp0
çA(Itemh′)

(7) then Temp ← Temp0;
(8) else Temp ← Temp − Temp0;
(9) end while
(10) Rw ← Temp;
(11) return (Rw);
(12)end

Fig. 2. The LOG-TEST function
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Procedure SIGNIFICANCE-TEST;
input: F ((2n, k, 0)-selector/randomised k-selector for [2n]), set R, and integer k̂;
output: the set SR (the set of significant rules);
(1)begin
(2) SR := {�};
(3) PSR := {�};
(4) for i = 1 to |F| do
(5) if the label of a CAR Rj in Fi

(6) then Rj will be involved in current test;
(7) else Rj will be ignored in current test;
(8) PSR ← PSR ∪ {LOG-TEST(Fi,R)};
(9) end for
(10) SR ← catch the top-k̂ rules Rj ∈ PSR (according to çA(Rj));
(11) return (SR);
(12)end

Fig. 3. The SIGNIFICANCE-TEST procedure

Proof. According to the properties of the “selectors” (both deterministic and
randomised selectors), we know that the selector F hits all k potential sig-
nificant rules at least once. Note that a significant rule is also a potential
significant rule. Lemma 1 states that if the current test Fi hits only one sig-
nificant rule Rj , the function LOG-TEST will figure out Rj , which completes
the proof of the theorem.

Lemma 2. A (2n, k, 0)-selector has size at most O(k2n).

Proof. It directly comes from the property of the selectors.

Theorem 3. The problem of mining k̂ significant rules in R can be solved in
time O(k2n2) in a deterministic manner, where k is the number of potential
significant rules in R.

Proof. The function LOG-TEST takes at most log 2n time to find a rule with
a possible large score from a subset of R. From Lemma 2, we know that a
(2n, k, 0)-selector has the size at most O(k2n). Consequently, the total time
spent to figure out at most k potential significant rules can be bounded by
O(k2n2). The problem of finding the top-k̂ significant rules in at most O(k2n)
rules can be solved in time O(k2n log(k2n) + k̂), which is O(k2n2) due to
k̂ ≤ k ≤ 2n.

Theorem 4. The problem of mining k̂ significant rules in R can be solved
in time O(kn) in a randomised manner, with a constant probability p ≥ 1/8,
where k is the number of potential significant rules in R.

Proof. The function LOG-TEST takes at most log 2n time to find a rule with
a possible large score from a subset of R. From Theorem 1, we know that a
randomised k-selector has the size O(k) with a high probability to succeed.
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Consequently, the total time spent to figure out at most k potential significant
rules can be bounded by O(kn) with a constant probability p ≥ 1/8. The
problem of finding the top-k̂ significant rules in at most O(k) rules can be
solved in time O(k log(k) + k̂), which is O(kn) due to k̂ ≤ k ≤ 2n.

5 Experimental Results

In this section, we aim to evaluate: (1) the proposed rule weighting and rule
ordering strategies with respect to the accuracy of classification, where signif-
icant rules are mined in both (i) “one-by-one” or deterministic manner and
(ii) randomised manner; and (2) the proposed rule mining approach (in its
randomised fashion) with respect to the efficiency of computation by compar-
ing it with the “one-by-one” mining approach. All evaluations were obtained
using the TFPC CARM algorithm coupled with the “best first” case satis-
faction strategy, although any other CARM classifier generator, founded on
the “best first” strategy, could equally well be used. Experiments were run
on a 1.20 GHz Intel Celeron CPU with 256 Mbyte of RAM running under
Windows Command Processor.

The experiments were conducted using a range of datasets taken from
the LUCS-KDD discretised/normalised ARM and CARM Data Library [14].
The chosen datasets are originally taken from the UCI Machine Learning
Repository [4]. These datasets have been discretised and normalised using
the LUCS-KDD DN software,3 so that data are then presented in a binary
format suitable for use with CARM applications. It should be noted that the
datasets were rearranged so that occurrences of classes were distributed evenly
throughout the datasets. This then allowed the datasets to be divided in half
with the first half used as the training-dataset and the second half as the
test-dataset. Although a “better” accuracy figure might have been obtained
using Ten-Cross Validation [25], it is the relative accuracy that is of interest
here and not the absolute accuracy.

The first set of evaluations undertaken used a confidence threshold value
of 50% and a support threshold value of 1% (as used in the published evalua-
tions of CMAR [28], CPAR [53], TFPC [15,18]). The results are presented in
Table 1 where 120 classification accuracy values are listed based on 24 chosen
datasets. The row labels describe the key characteristics of each dataset: for
example, the label adult.D97.N48842.C2 denotes the “adult” dataset, which
includes 48,842 records in two pre-defined classes, with attributes that for
the experiments described here have been discretised and normalised into 97
binary categories.

From Table 1 it can be seen that with a 50% confidence threshold and an
1% support threshold the proposed rule weighting and rule ordering mecha-
nisms worked reasonably well. When choosing a value of 1 as the value for k̂
3The LUCS-KDD DN is available at http://www.csc.liv.ac.uk/˜frans/KDD/
Software/LUCS-KDD-DN/.
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Table 1. Classification accuracy (α = 50%, σ = 1%)

Datasets CSA One-by-one approach Randomised selector

k̂ = 1 k̂ = 10 k̂ = 1 k̂ = 10
k = 5 k = 50

adult.D97.N48842.C2 80.83 83.87 76.88 81.95 81.85
anneal.D73.N898.C6 91.09 89.31 91.09 90.20 91.31
auto.D137.N205.C7 61.76 64.71 59.80 64.71 58.82
breast.D20.N699.C2 89.11 87.68 89.11 90.83 92.55
connect4.D129.N67557.C3 65.83 66.78 65.87 66.34 66.05
cylBands.D124.N540.C2 65.93 69.63 63.70 67.41 67.78
flare.D39.N1389.C9 84.44 84.01 84.29 84.44 84.29
glass.D48.N214.C7 58.88 64.49 52.34 64.49 64.49
heart.D52.N303.C5 58.28 58.28 56.29 60.26 59.60
hepatitis.D56.N155.C2 68.83 68.83 66.23 75.32 72.72
horseColic.D85.N368.C2 72.83 77.72 80.43 80.43 81.52
ionosphere.D157.N351.C2 85.14 84.00 90.29 88.57 93.14
iris.D19.N150.C3 97.33 97.33 97.33 97.33 97.33
led7.D24.N3200.C10 68.38 62.94 68.38 68.89 69.94
letRecog.D106.N20000.C26 30.29 29.41 31.19 29.36 30.92
mushroom.D90.N8124.C2 99.21 98.45 98.82 99.21 98.45
nursery.D32.N12960.C5 80.35 76.85 76.17 80.20 81.11
pageBlocks.D46.N5473.C5 90.97 91.74 90.97 91.74 90.97
pima.D38.N768.C2 73.18 73.18 73.18 73.44 73.44
soybean-large.D118.N683.C19 85.92 81.23 86.51 84.46 84.75
ticTacToe.D29.N958.C2 71.61 68.48 72.03 71.19 73.28
waveform.D101.N5000.C3 61.60 58.92 55.96 59.52 57.20
wine.D68.N178.C3 53.93 83.15 71.91 83.15 85.39
zoo.D42.N101.C7 76.00 86.00 78.00 90.00 86.00
Average 73.82 75.29 74.03 76.81 76.79

(only the most significantly CAR for each class is mined) and applying the
“one-by-one” rule mining approach, the average accuracy of classification
throughout the 24 datasets is 75.29%. When substituting the value of 1 by a
value of 10 (the best ten significant CARs for each class are identified), the av-
erage accuracy, using the “one-by-one” rule mining approach, is 74.03%. Note
that the average accuracies are higher than the average accuracy of classifica-
tion obtained by the well-established CSA ordering approach, which is 73.82%.
Furthermore when dealing with the randomised selector based rule mining ap-
proach, and choosing a value of 1 as the value for k̂ and a value of 5 as the
value for k (only the most significantly CAR for each class is mined, based on
the existence of five potential significant CARs for each class in R), the aver-
age accuracy throughout the 24 datasets can be obtained as 76.81%. Note that
in the randomised experiment process, we always run several tests (i.e., 8–10
tests) for each dataset, and catch the best result. When substituting the value
of 1 by a value of 10, and the value of 5 by a value of 50 (the best ten significant
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CARs for each class are mined, based on the existence of 50 potential signif-
icant CARs for each class in R), the average accuracy was found as 76.79%.

The second set of evaluations undertaken used a confidence threshold
value of 50%, a set of decreasing support threshold values from 1 to 0.03%,
and the letter recognition dataset. The “large” letter recognition dataset
(letRecog.D106.N20000.C26), comprises 20,000 records and 26 pre-defined
classes. For the experiment the dataset has been discretised and normalised
into 106 binary categories. From the experiment it can be seen that a re-
lationship exists between: the selected value of support threshold (σ or
min.support), the number of generated CARs (—R—), the accuracy of clas-
sification (Accy), and the time in seconds spent on computation (Time).
Clearly, ↓ σ ⇒ ↑ |R| ⇒ (↑ Accy ∧ ↑ Time).

Table 2 demonstrate that with a 50% confidence threshold and a value
of 1 as the value for k̂ (only the most significantly CAR for each class is
mined in |R|), the proposed rule mining approach (its randomised fashion)
performs well with respect to both accuracy of classification and efficiency
of computation. When applying the “one-by-one” rule mining approach, as σ
decreasing from 1 to 0.03%, |R| (before mining the “best k̂” rules) is increased
from 149 to 6,341; and |R| (after mining the “best k̂” rules and re-ordering
all rules) is increased from 167 to 6,367. Consequently accuracy has been
increased from 29.41 to 48.22%, and Time (the time spent on mining the
k̂ significant rules) has been increased from 0.08 to 12.339 s. In comparison
when applying the proposed randomised rule mining approach with a value of
50 as the value for k (there exist 50 potential significant rules for each class in
|R|), as σ decreasing from 1 to 0.03%, |R| (before mining the “best k̂” rules)
is increased from 149 to 6,341; and |R| (after mining the “best k̂” rules and

Table 2. Computational efficiency and classification accuracy (α = 50%)

Dataset One-by-one approach Randomised selector

letRecog k̂ = 1 k̂ = 1, k = 50

D106. Rule Rule Time Accuracy Rule Rule Time Accuracy
N20000. number number (s) (%) number number (s) (%)
C26 (before) (after) (before) (after)

1 149 167 0.080 29.41 149 166 0.160 29.60
0.75 194 212 0.110 29.94 194 211 0.160 29.92
0.50 391 415 0.200 35.67 391 411 0.251 35.78
0.25 1118 1143 1.052 40.36 1118 1139 0.641 41.26
0.10 2992 3018 4.186 44.95 2992 3016 0.722 45.18
0.09 3258 3284 4.617 45.21 3258 3282 1.913 45.42
0.08 3630 3656 6.330 45.88 3630 3655 2.183 45.43
0.07 3630 3656 6.360 45.88 3630 3656 2.163 46.02
0.06 4366 4392 5.669 46.70 4366 4391 2.754 46.45
0.05 4897 4923 7.461 47.28 4897 4922 3.235 47.65
0.04 5516 5542 9.745 47.67 5516 5542 3.526 47.53
0.03 6341 6367 12.339 48.22 6341 6365 4.296 48.79
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re-ordering all rules) is increased from 166 to 6,365. Consequently accuracy
has been increased from 29.60 to 48.79%, and Time (the time spent on mining
the k̂ significant rules) has been increased from 0.16 to 4.296 s.

Figures 4 and 5 demonstrate (respectively) that there is no significant
difference between accuracies of classification obtained by the “one-by-one”

Fig. 4. Randomised selector vs. one-by-one approach (accuracy)

1

Fig. 5. Randomised selector vs. one-by-one approach (efficiency)
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rule mining approach and the randomised selector based rule mining approach,
whereas a significant difference in times spent on mining significant rules can
be seen.

6 Conclusion

This chapter is concerned with an investigation of CARM. A overview of
existing CARM algorithms was provided in Sect. 2 where five existing rule
weighting schemes used in CARM algorithms were reviewed. A rule weighting
scheme was proposed in Sect. 3 that was used to distinguish the significant
CARs from the insignificant ones. Consequently a rule ordering strategy was
proposed, based on the “best first” case satisfaction approach, which can be
applied when classifying “unseen” data. The concept of selectors [19] was
summarised in Sect. 3 together with some discussion of the randomised se-
lectors. A novel rule mining approach was presented in Sect. 4 based on the
concepts of selectors (both deterministic and randomised). In theory, the pro-
posed rule mining approach identifies significant CARs in time O(k2n2) in
its deterministic fashion, and O(kn) in its randomised fashion. This mining
approach avoids computing CAR scores and finding significant CARs on a
“one-by-one” basis, which will require an exponential time O(2n). In Sect. 5,
two sets of evaluations were presented that evidence:

1. The proposed rule weighting and rule ordering approach’s perform well
with respect to the accuracy of classification.

2. The proposed randomised rule mining approach is comparable to the
“one-by-one” rule mining approach in significant CAR identification with
respect to both the accuracy of classification and the efficiency of compu-
tation.

From the experimental results, it can be seen that the accuracy of clas-
sification obtained by the proposed randomised rule mining approach can be
better than the accuracy obtained by the “one-by-one” approach. Further re-
search is suggested to identify improved rule weighting scheme to find more
significant rules in R. Other obvious direction for further research include:
finding other rule ordering mechanisms that give a better classification ac-
curacy; investigating other techniques to replace the proposed deterministic
and/or randomised selectors to give a better performance; etc.
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In: Barbará D, Kamath C (eds): Proceedings of the Third SIAM International
Conference on Data Mining (SDM-03, SIAM, Philadelphia, PA), San Francisco,
CA, United States, May 2003. (ISBN 0-89871-545-8, pages 331–335)

54. Zaki MJ, Parthasarathy S, Ogihara M, Li W (1997) New algorithms for fast
discovery of association rules. In: Heckerman D, Mannila H, Pregibon D (eds):
Proceedings of the Third International Conference on Knowledge Discovery and
Data Mining (KDD-97, AAAI, Menlo Park, CA), Beach, CA, United States,
August 1997. (ISBN 1-57735-027-8, pages 283–286)

55. Zaki MJ, Hsiao C-J (2002) CHARM: An efficient algorithm for closed itemset
mining. In: Grossman RL, Han J, Kumar V, Mannila H, Motwani R (eds):
Proceedings of the Second SIAM International Conference on Data Mining
(SDM-02, SIAM, Philadelphia, PA), Arlington, VA, United States, April 2002.
(ISBN 0-89871-517-2, Part IX No. 1)



Data Preprocessing and Data Mining
as Generalization

Anita Wasilewska1 and Ernestina Menasalvas2

1 Department of Computer Science, State University of New York, Stony Brook,
NY, USA
anita@cs.sunysb.edu

2 Departamento de Lenguajes y Sistemas Informaticos Facultad de Informatica,
U.P.M, Madrid, Spain
ernes@fi.upm.es

Summary. We present here an abstract model in which data preprocessing and
data mining proper stages of the Data Mining process are are described as two dif-
ferent types of generalization. In the model the data mining and data preprocessing
algorithms are defined as certain generalization operators. We use our framework to
show that only three Data Mining operators: classification, clustering, and associ-
ation operator are needed to express all Data Mining algorithms for classification,
clustering, and association, respectively. We also are able to show formally that the
generalization that occurs in the preprocessing stage is different from the general-
ization inherent to the data mining proper stage.

1 Introduction

We build models in order to be able to address formally intuitively expressed
notions, or answer intuitively formulated questions. We say for example, that
Data Mining generalizes the data by transforming them into a more general
information. But what in fact is a generalization? When a transformation of
data is, and when is not a generalization? How one kind of generalization
differs from the other? The model presented here addresses and answers, even
if partially these questions.

There are many data mining algorithms and thousands of implementa-
tions. A natural questions arise: why very different algorithms are all called,
for example, the classification algorithms? What do they have in common?
How do they differ from other algorithms?

We hence build our model in such a way as to be able to define character-
istics common to one type of algorithms, and not to the other types.

We present here three models: generalization model (Definition 1) and its
particular cases, data mining model (Definition 12), and preprocessing model
(Definition 26).
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In data mining model each class of data mining algorithms is represented
by an operator. Theses operators are also generalization operators of the gen-
eralization model, i.e. they capture formally the intuitive notion of information
generalization. Moreover, we show that (Theorem 4) all operators belonging
to one category are distinctive with other categories.

The generalization model presented here is an extension of the model pre-
sented in [16], preliminary version of the data mining model and preprocessing
models was presented in [13,14], respectively.

We usually view Data Mining results and present them to the user in
their descriptive form as it is the most natural form of communication. But
the Data Mining process is deeply semantical in its nature. The algorithms
process records (semantics) finding similarities which are then often presented
in a descriptive i.e. syntactic form. Our model is a semantical one. Nevertheless
it supports the extraction of syntactical information, at any level of general-
ization. We address the semantics-syntax duality in the case of classification
model in [?], and we develop a more general framework in [15].

2 Generalization Model

Data Mining, as it is commonly said, is a process of generalization. In order
to model this process we have to define what does it mean that one stage of
data mining process is more general then the other. The main idea behind our
definition of Generalization Model is that generalization consists in putting
objects (records) in sets of objects.

From syntactical point of view generalization consists also of building de-
scriptions of these sets of objects, with some extra parameters, if needed. We
build descriptions in terms of attribute and values of the attribute pairs in
particular, and they are expressions of some formal language in general.

Our Generalization Model is semantic in nature, but, as we mentioned
before, it also incorporates the syntactic information to be extracted, when
(and if) needed.

The model presented here generalizes many ideas developed during years
of investigations. First they appeared as a part of development of Rough
Sets Theory (to include only few recent publications) [3–5,10,11,17–19]; then
in building Rough Sets inspired foundations of information generalization in
[1, 6, 7], and foundations of Data Mining in [?, 8, 13–16].

Definition 1. A Generalization Model is a system

GM = (U, K, G, �)

where

U �= ∅ is the universe;
K �= ∅ is the set of knowledge generalization states;
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� ⊆ K ×K is a transitive relation, called a generalization relation;
G �= ∅ is the set of partial functions

G : K −→ K.

Elements of G are called generalizations operators .

We define all components of the model in the following Sects. 2.1–2.4.

2.1 Knowledge Generalization System

The knowledge generalization system is an extension of the notion of an infor-
mation system. The information system was introduced in [9] as a database
model. The information system represents the relational table with key at-
tribute acting as object attribute and is defined as follows.

Definition 2. Pawlak’s Information System is a system I = (U,A, VA, f),
where U �= ∅ is called a set of objects, A �= ∅, VA �= ∅ are called the set of
attributes and values of attributes, respectively, f is called an information
function and f : U ×A −→ VA

Any Data Mining process starts with a certain initial set of data. The
model of such a process depends on representation of this data, i.e. it starts
with an initial information system

I0 = (U0, A0, VA0 , f0)

and we adopt the set U0 as the universe of the model, i.e.

GM = (U0, K, G, �).

In preprocessing stage of data mining process we might perform the fol-
lowing standard operations:

1. Eliminate some attributes, apply concept hierarchy. etc.. obtaining as re-
sult the information system I with the set of attributes A ⊂ A0

2. Perform some operations on values of attributes: normalization, clustering,
etc . . . , obtaining some set VA of values of attributes that is similar, or
equivalent to V0. We denote it by

VA ∼ V0

Given an attribute value va ∈ VA and a corresponding attribute v0a ∈ V0 (for
example va being a normalized form of v0a or va being a more general form as
defined by concept hierarchy of v0a) we denote this correspondence by

va ∼ v0a.

We call any information system I obtained by any of the above operation
a subsystem of I0. We put it formally in the following definition.
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Definition 3. Given two information systems I0 = (U0, A0, VA0 , f0) and I =
(U,A, VA, f), we say that I is a subsystem of I0 and denote it as

I ⊆ I0

if and only if the following conditions are satisfied

(i) |U | = |U0|
(ii) A ⊆ A0, VA ∼ V0

(iii) The information functions f and f0 are such that

∀x ∈ U∀a ∈ A(f(x, a) = va ⇔ ∃v0a ∈ V0(f0(x, a) = v0a ∩ v0a ∼ va))

In the data analysis, preprocessing and data mining we start the process
with the input data. We assume here that they are represented in a format of
information system table. We hence define the lowest level of information gen-
eralization as the relational table. The meaning of the intermediate and final
results are considered to be of a higher level of generalization. We represent
those levels of generalization by a sets of objects of the given (data mining)
universe U , as in [1, 7].

This approach follows the granular view of the data mining and is formal-
ized within a notion of knowledge generalization system, defined as follows.

Definition 4. A knowledge generalization system based on the information
system I = (U,A, VA, f) is a system

KI = (P(U), A,E, VA, VE , g)

where

E is a finite set of knowledge attributes (k-attributes) such that A ∩ E = ∅.
VE is a finite set of values of k- attributes.
g is a partial function called knowledge information function(k-function)

g : P(U) × (A ∪ E) −→ (VA ∪ VE)

such that
(i) g | (

⋃
x∈U{x} ×A) = f

(ii) ∀S∈P(U)∀a∈A((S, a) ∈ dom(g) ⇒ g(S, a) ∈ VA)
(iii) ∀S∈P(U)∀e∈E((S, e) ∈ dom(g) ⇒ g(S, e) ∈ VE)

Any set S ∈ P(U) i.e. S ⊆ U is often called a granule or a group of objects.

Definition 5. The set

GrK = {S ∈ P(U) : ∃b ∈ (E ∪A)((S, b) ∈ dom(g))}

is called a granule universe of KI .

Observe that g is a total function on GrK .
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Definition 6. We call the system K = (GrK , E, VE , g) a granule knowledge
generalization system.

The condition (i) of Definition 4 says that when E = ∅ the k-function g is
total on the set {{x} : x ∈ U} ×A and

∀x ∈ U∀a ∈ A(g({x}, a) = f(x, a)).

Definition 7. The set

Pobj(U) = {{x} : x ∈ U}

is called an object universe. The knowledge generalization system

Kobj = (Pobj(U), A, ∅, VA, ∅, g) = (Pobj(U), A, VA, g)

is called an object knowledge generalization system.

Theorem 1. For any information system I = (U,A, VA, f), the object knowl-
edge generalization system Kobj

I = (Pobj(U), A, VA, g) is isomorphic with I.
We denote it by

I ) Kobj
I .

The function F : U −→ Pobj(U), F (x) = {x} establishes (by condition
(i) of Definition 4) the required isomorphism of Kobj

I and I.

2.2 Universe and Knowledge Generalization States

Any Data Mining process starts with a certain initial set of data. The model
of such a process depends on representation of this data and we represent it
in a form information system table.

We assume hence that the data mining process we model starts with an
initial information system

I0 = (U0, A0, VA0 , f0)

and we adopt the universe U0 as the universe of the model, i.e.

GM = (U0, K, G, �).

Data Mining process consists of transformations the initial I0 into an ini-
tial knowledge generalizations systems K0 that in turn is being transformed
into some knowledge generalizations systems KI , all of them based on some
subsystems I of the input system I0, what we denote by I ⊆ I0. The formal
definition of the notion of subsystem I of the input system I0 is presented
in [13]. These transformations of the initial input data (system I0) in practice
are defined by different Data Preprocessing and Data Mining algorithms, and
in our model by appropriate generalization operators. We hence adopt the
following definition.
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Definition 8. Let I0 the initial input data. We adopt the set

K = {KI : I ⊆ I0}

as the set of all knowledge generalization states

2.3 Generalization Relation

A generalization process starts with the input data I0 i.e. with the initial
knowledge generalization system KI0 with its universe U = {{x} : x ∈ U0},
called (Definition 7) an object knowledge generalizations system. It then pro-
duces systems which are more general, with universes S ⊆ P(U0) with more
then one element i.e. such that |S| > 1. We adopt hence the following defini-
tion of generalization relation.

Definition 9. Given set K of knowledge states based on the input data I0 and
K,K ′ ∈ K i.e.

K = (P(U0), A,E, VA, VE , g),

K ′ = (P(U0), A′, E′, VA′ , VE′ , g′).

Let GK , GK′ be granule universes (Definition 5) of K,K ′ respectively. We
define a generalization relation

� ⊆ K ×K

as follows:
K � K ′ if and only if the following conditions are satisfied.

(i) |GK′ | ≤ |GK |
(ii) A′ ⊆ A

If K � K ′ we say that the system K ′ is more or equally general as K.
Directly from the definitions we get the following theorem.

Theorem 2. Let � be a relation defined in the Definition 9. The following
conditions hold.

(i) The relation � is transitive, and hence is a generalization relation in a
sense of the definition 1 of the Generalization Model.

(ii) � is reflexive but is not antisymmetric, as systems K and K ′ such that
K � K ′ may have different sets of knowledge attributes and knowledge
functions.

Definition 10. Let � ⊆ K × K be relation defined in the Definition 9. A
relation ≺dm ⊆� such that it satisfies additional conditions:
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(iii) |GK′ | �= |GK |
(iv) ∃S ∈ GK′(|S| > 1)

is called a data mining generalization relation.

Directly from the above definition we get that the following theorem holds.

Theorem 3. Let ≺dm be a relation defined in the Definition 10. The following
conditions hold.

(i) The relation ≺dm is transitive, and hence is a generalization relation in a
sense of the definition 1 of the Generalization Model

(ii) ≺dm is not reflexive and is not antisymmetric

2.4 Generalization Operators

Generalization operators by Definition 1, operate on the knowledge states,
preserving their generality, as defined by the generalization relation. I.e. a
partial function G : K −→ K is called a generalization operator if for any
K,K ′ ∈ domainG

G(K) = K ′ if and only if K�K ′.

Generalization operators are designed to describe the action of different data
mining algorithms.

3 Data Mining Model

Data Mining process consists of two phases: preprocessing and data mining
proper. The Data Mining phase with its generalization operators is discussed
in detail in Sect. 4 and in its preliminary version in [14]. The preprocessing
operators and preprocessing phase as expressed within our Generalization
Model and are presented in Sect. 5 and in [13].

Data Mining Model defined below is a special case of the Generalization
Model, with generalization relation being data mining relation as defined in
Definition 10 and in which the generalization operators are defined as follows.

Definition 11. An operator G ∈ G is called a data mining generalization
operator if and only if for any K,K ′ ∈ domainG

G(K) = K ′ if and only if K≺dmK
′

for some data mining generalization relation ≺dm (Definition 10)

Definition 12. A Data Mining Model is a system

DM = (U, K, Gdm, ≺dm),

where the set Gdm is the set of data mining generalization operators.

The above Definition 11 defines a class of data mining operators. They are
discussed in detail in the next section.
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4 Data Mining Operators

The main idea behind the concept of generalization operator is to capture
not only the fact that data mining techniques generalize the data but also to
categorize existing methods. We want to do it in as exlusive/inclusive sense
as possible. We don’t include in our analysis purely statistical methods like
regression, etc... This gives us only three data mining generalization operators
to consider: classification, clustering, and association.

In the following sections we define the appropriate sets of operators:
Gclf ,Gclr and Gassoc (Definitions 17, 20, 21) and prove the following theorem.

Theorem 4 (Main Theorem). Let Gclf ,Gclr and Gassoc be the sets of all
classification, clustering, and association operators, respectively. The following
conditions hold.

(1) Gclf �= Gclr �= Gassoc

(2) Gassoc ∩ Gclf = ∅
(3) Gassoc ∩ Gclr = ∅

4.1 Classification Operator

In the classification process we are given a data set (set of records) with a
special attribute C, called a class attribute. The values c1, c2, . . . cn of the class
attribute C are called class labels. The classification process is both semantical
(grouping objects in sets that would fit the classes) and syntactical (finding
the descriptions of those sets in order to use them for testing and future
classification). In fact all data mining techniques share the same characteristics
of semantical-syntactical duality.

The formal definitions of classification data and classification operators
are as follows.

Definition 13. Any information system I = (U,A ∪ {C}, VA ∪ V{C}, f) with
a distinguished class attribute C and with the class attribute values V{C} =
{c1, c2, . . . cm},m ≥ 2 is called a classification information system, or shortly,
a classification system if and only if the sets

Cn = {x ∈ U0 : f(x,C) = cn}

form a partition of U0.

The classification information system is called in the Rough Set community
and literature [3,10,11,18,19] a decision information system with the decision
attribute C. We assume here, as it is the case in usual classification problems,
that we have only one classification attribute. It is possible, as the Rough Set
community does, to consider the decision information systems with any non
empty set C ⊂ A of decision attributes.
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Definition 14. Let I0 = (U0, A, VA ∪ V{C}, f) be the initial database with the
class attribute C. The sets

Cn,0 = {x ∈ U0 : f(x,C) = cn}

are called the initial classification classes.

Definition 15. The corresponding set K of knowledge systems based on any
subsystem I of the initial classification information system I0, as defined in
the Definition 8, is called the set of classification knowledge systems if and
only if for any K ∈ K the following additional condition holds.

∀S ∈ P(U)(∃a ∈ A((S, a) ∈ dom(g)) ⇒ (S,C) ∈ dom(g)).

We denote,
Kclf

the set of all classification knowledge systems based on a classification sys-
tem I0.

Definition 16. For any K ∈ Kclf we the sets

Cn,K = {X ∈ P(U0) : g(X,C) = cn}

are called group classes of K.

Let DM = (U0, Kclf , Gdm, ≺dm) be a Data Mining Model based on a
classification system I0.

Definition 17. A generalization operator G ∈ Gdm is called a classification
operator if and only if G is a partial function

G : Kclf −→ Kclf ,

such that for any K ′ ∈ domG, any K ∈ Kclf such that K = G(K ′) the
following classification condition holds

∀X(X ∈ Cn,K ⇒ X⊆K Cn,0),

where the sets Cn,0, Cn,K are the sets from Definitions 14 and 16, respectively
and ⊆K is an approximate set inclusion defined in terms of k-attributes of K.

We denote the set of classification operators based on the initial system
I0 by

Gclf .

Observe that our definition of the classification operators gives us freedom
of choosing the level of generality (granularity) with which we want to describe
our data mining technique, in this case the classification process.
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4.2 Clustering Operator

In intuitive sense the term clustering refers to the process of grouping physical
or abstract objets into classes of similar objects. It is also called unsupervised
learning or unsupervised classification. We say that a cluster is a collection
of data objects that are similar to one another within the collection and are
dissimilar to the objects in other clusters [2]. Clustering analysis constructs
hence meaningful partitioning of large sets of objects into smaller components.
One of the basic property we consider while building clusters is the measure of
similarity and dissimilarity. These measures must be present in our definition
of the knowledge generalization system applied to clustering analysis. We
define hence a notion of clustering knowledge system as follows.

Definition 18. A knowledge generalization system K ∈ K,

K = (P(U), A,E, VA, VE , g)

is called a clustering knowledge system if and only if E �= ∅ and there are two
knowledge attributes s, ds ∈ E such that for any S ∈ GrK (definition 5)

g(S, sm) is a measure of similarity of objects in S
g(S, ds) is a measure of dissimilarity of objects in S with other X ∈ GrK

We put
Kclr = {K ∈ K : K is a clustering system}.

Definition 19. We denote Kobj ⊂ K the set of all object knowledge general-
ization systems.

Definition 20. An operator G ∈ Gdm is called a clustering operator if and
only if G is a partial function

G : Kobj −→ Kclr

and for any K ′ ∈ domG such that G(K ′) = K the granule universe GrK
(Definition 5) of K is a partition of U satisfying the following condition:

∀X,Y ∈ GrK(g(X, sm) = g(Y, sm) ∩ g(X, ds) = g(Y, ds)).

Elements of the granule universe GrK of K are called clusters defined
(generated) by the operator G and we denote the set of all clustering operators
by Gclr.

It is possible to define within our framework clustering methods that return
not always disjoint clusters (with for example some measures of overlapping).

We can also allow the cluster knowledge system be a classification system.
It allows the cluster operator to return not only clusters it has generated, their
descriptions (with similarity measures) but their names, if needed.

Finally, our framework allows us to incorporate as well the notion of classi-
fication by clustering (for example k-nearest neighbor algorithm) by changing
the domain of the cluster operator to allow the use of training examples.
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4.3 Association Operator

The association analysis is yet another important subject and will be treated
in a separate paper. We can define a special knowledge generalization system
system AK, called an association system. All frequent k − associations are
represented in it (with the support count), as well as all information needed
to compute association rules that follow from them.

We put

Kassoc = {K ∈ K : K is an association system}.

Definition 21. An operator G ∈ Gdm is called an association operator if
and only if G is a partial function that maps the set of all object association
systems Kobjassoc into Kassoc, i.e.

G : Kobjassoc −→ Kassoc

and some specific association conditions hold.

We denote the set of all association operators by Gassoc.

5 Data Preprocessing Generalization

The preprocessing of data is the initial and often crucial step of the data
mining process. We show here that the Generalization Model (Definition 1)
presented here is strong enough to express not only the data mining stage of
data mining process but the preprocessing stage as well. Moreover, we show
that preprocessing stage and data mining stage generalize data in a different
way and that in fact, the generalization proper, i.e. defined by the strong gen-
eralization relation (Definition 23) occurs only at the data mining stage. The
preprocessing operations are expressed in the model as a weak generalization
defined by a weak generalization relation (Definition 22). We show that they
lead to the strong information generalization in the next, data mining proper
stage and improve the quality (granularity) of the generalization process.

5.1 Strong and Weak Generalization Models

It is natural that when building a model of the data mining process one has
to include data preprocessing methods and algorithms, i.e. one has to model
within it preprocessing stage as well as the data mining proper stage. In or-
der to achieve this task we introduce the preprocessing generalization relation
(Definition 25) and examine its relationship with the data mining generaliza-
tion relation (Definition 10). We show (Theorem 5)that they are particular
cases of the information generalization relation as defined in our generaliza-
tion model (Definition 1). We also prove (Theorem 8) that the preprocessing
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relation is a special case of the weak information generalization relation and
it is disjoint with our data mining generalization relation. This means that
within the framework of our general model we are able to distinguish (as we
should have) the preprocessing generalization from the generalization that
occurs in the data mining proper stage.

Definition 22. A Weak Generalization Model is the generalization model
(Definition 1) in which the generalization relation is reflexive. We denote the
generalization relation of the weak model by � and call it a weak generalization
relation.

Definition 23. A Strong Generalization Model is the generalization model
(Definition 1) in which the information generalization relation is not reflexive.
We denote the generalization relation of the strong model by ≺ and call it a
strong generalization relation.

The relationship between weak and strong generalization relations, gen-
eralization relation (Definition 9) and data mining generalization relation
(Definition 10) and hence between Data Mining Model, Generalization Model,
and Strong and Weak Generalization Models is express by the following
theorem.

Theorem 5. Let � and ≺dm be the generalization relation as defined by the
Definition 9 and the data mining generalization relation (Definition 10), re-
spectively. The following properties hold.

(i) ≺dm ⊂�
(ii) ≺ is a weak information generalization of the Definition 22
(iii) �dm is a strong information generalization of the Definition 23

The condition (i) is true by definition, condition (ii) follows from
Definition 22 and Theorem 2, and the condition (iii) follows from Definition 23
and Theorem 3.

Given initial information system I0 = (U0, A0, VA0 , f0), the object knowl-
edge generalization system (Definition 7)

Kobj
I0

= (Pobj(U0), A, VA, g)

is isomorphic with I0 i.e. Kobj
I0

) I0 by theorem 1 and is also called the initial
knowledge generalization system.

Data preprocessing process in the preprocessing stage consists of transfor-
mations the initial knowledge generalization system Kobj

I0
) I0 into a certain

Kobj
I ) I for I ⊆ I0. Any data mining stage of transformation starts, for uni-

fication purposes with corresponding initial knowledge generalization systems
Kobj

I ) I obtained by the preprocessing process.
Let K be the set of all knowledge generalization states of GM as defined

in the Definition 8. We define its special subset Kprep corresponding to the
preprocessing stage as follows.
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Definition 24. The set Kprep ⊆ K such that

Kprep = {Kobj
I : Kobj

I ) I ∩ I ⊆ I0 ∩ |UI | = |UI0 |}

is called a set of preprocessing knowledge states, and any K ∈ Kprep is called
a preprocessing knowledge systems of GM.

Observe that the condition I ⊆ I0 ∩ |UI | = |UI0 | means that we model
only the proper preprocessing stages, excluding data cleaning and records
elimination.

Definition 25. Let Kprep ⊆ K be a the set of preprocessing states
(Definition 24) and � be the generalization relation of the Definition 9.
A relation �prep ⊆� defined as follows:

�prep =� ∩(Kprep ×Kprep)

is called a preprocessing generalization relation.

Observe that by Theorem 1 and Definition 7, anyKI ∈ Kprep is isomorphic
with I. Let now consider any K,K ′ ∈ Kprep. By Definition 24, K = Kobj

I ) I,
for I ⊆ I0, K ′ = Kobj

I′ ) I ′, for I ′ ⊆ I0 and |UI | = |UI′ | = |UI0 |. By
Definition 5 and condition (i) of Definition 4 we get that the cardinality of
the granule universes of K and K ′ are equal. We hence proved the following
theorem.

Theorem 6. For any K,K ′ ∈ Kprep,

|GrK | = |GrK′ | = |UI0 |.

The Theorem 6 combined with the Definition 9, gives us the following
theorem.

Theorem 7. For any K,K ′ ∈ Kprep,

K�prepK
′ if and only if |GrK | = |GrK′ |.

The above theorem says that within our framework the systems K,K ′

such that K�prepK
′ are, in fact, equally general,

So why do we call some preprocessing operations a “generalization”? There
are two reasons. One is that traditionally some preprocessing operations have
been always called by this name. For example we usually state that we ”gen-
eralize” attributes by clustering, by introducing attributes hierarchy, by ag-
gregation, etc. as stated [2].

....“Data transformation (preprocessing stage) can involve the follow-
ing ..... Generalization of the data , where low-level or “primitive”
(raw) data are replaced by higher-level concepts through the use of
concept hierarchies. For example, categorical attributes ..... can be
generalized to higher level concepts. Similarly, values for numeric at-
tributes, like ... may be mapped to higher level concepts.” ....
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The second, more important reason follows directly from Theorems 6 and 7
and is expressed in the following.

Theorem 8. The preprocessing generalization relation �prepis a weak
generalization relation and is not a data mining generalization relation
(Definition 10) i.e.

�prep ∩ ≺dm = ∅.

This theorem states that preprocessing operations are a weak general-
ization, disjoint with a strong, data mining generalization. We nevertheless
perform the preprocessing weak generalization them because it leads to the
strong generalization in the next, data mining proper stage. We need the
preprocessing stage to improve the quality, i.e. the granularity of the data
mining proper generalization. This is the reason why we routinely call the
preprocessing transformations a generalization.

The Theorem 8 also says that within the framework of our generalization
model we are able to distinguish (as we should have) the generalization that
occurs during the preprocessing stage of the data mining process from the
generalization of the data mining proper stage.

6 Data Preprocessing Model

It is natural that when building a model of the data mining process one has
to include data preprocessing methods and algorithms, i.e. one has to model
within it preprocessing stage as well as the data mining proper stage. In order
to achieve this task we introduced the notion of weak information generaliza-
tion relation as a component of our weak generalization model (Definition 22).
We have then introduced the preprocessing and the data mining generalization
relations (Definitions 10 and 25, respectively) and proved (Theorem 8) that
the preprocessing relation is a special case of the weak information general-
ization relation and it is disjoint with our data mining generalization relation.

Consequently we define here a semantic model of data preprocessing, as a
particular cases of our generalization model (Definition 1) as follows.

Definition 26. When we adopt the preprocessing generalization relation
�prep (Definition 25) as the information generalization relation of the gen-
eralization model GM (Definition 1) we call the model thus obtained a
Preprocessing Model and denote it PM, i.e.

PM = (U, Kprep, Gprep, ≺prep)

where

Kprep is the set of preprocessing knowledge states (Definition 24),
Gprep ⊆ G called a set of preprocessing generalization operators defined on
Kprep. We assume that Gprep ∩ Gdm = ∅, where Gdm is the set of data
mining operators (Definition 12).
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The data mining proper stage is determined by the data mining general-
ization relation ≺dm (Definition 10).

We express the whole data mining process within our generalization model
as follows.

Definition 27. Data Mining Process Model is a system

DMP = (U, K, Gp, �process),

where

(i) �process = �prep ∪ ≺dm

(ii) Gprocess = Gprep ∪ Gdm

The set Gdm of data mining is defined in detail in Sect. 4, the detailed
definition of the set Gprep of data preprocessing operators will be a subject of
a separate paper.
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Summary. Envisioning the needs of a new platform that supports comprehensive
knowledge discovery and retrieval from potential unbounded, multi-dimensional and
ever evolving data streams, this paper proposes a novel integrated architecture that
encapsulates a suit of interrelated data structures and algorithms which support
(1) real-time capturing and compressing dynamics of stream data into space-efficient
synopses, (2) online mining and visualizing both dynamics and historical snapshots
of multiple types of patterns from stored synopses. Preliminary experimental results
are provided to illustrate the effectiveness of the provided architecture in capturing
concepts and detecting concept-drift from streaming data.

1 Introduction

Unbounded, ever-evolving and high-dimensional data streams, which are gen-
erated by various sources such as scientific experiments, real-time production
systems, e-transactions, sensor networks and online equipments, add further
layers of complexity to the already challenging drown in data, starving for
knowledge problem. While multiple stream mining algorithms have been pro-
posed, each of which is dedicated to extract particular predefined type of
patterns, there is an urgent need to investigate new integrated architectures
that supports comprehensive knowledge discovery from huge volume of tran-
sient data. The principle goal of this work is to develop a novel integrated
architecture that encapsulates a suit of interrelated data structures and al-
gorithms which support (1) real-time capturing and compressing dynamics
of stream data into space-efficient synopses, (2) online mining and visual-
izing both dynamics and historical snapshots of multiple types of patterns
from stored synopses. This is definitely a challenging task given that such
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comprehensive knowledge discovery architecture should be built solely upon
one-pass scan of potentially unbounded, ever evolving and high dimensional
data stream. In order to tackle this challenge, in this paper, we (1) proposes
a unique cube structure, where the time dimension is dynamically segmented
by concept drifts into concept cycles, the sub-cube at each concept cycle only
consists of cells that are active at that cycle, and the facts of each cell are
compressed time series of statistics summaries of the events occurred in that
cell over a concept cycle; (2) explores an efficient in-memory data structure to
organize the sub-cube for the current concept cycle, capture and compress sta-
tistics of events occurred in each active cell, and automatically detect concept
drifts; (3) investigates effectively compressed and efficiently indexed storage
structures to warehouse historical concepts; (4) develops online algorithms to
query and visualize the current or a historical concept from different perspec-
tives solely based on synopses stored in the disk. The rest of this paper is
organized as follows. A brief review of related works is presented in Sect. 2. In
Sect. 3, we define concept and concept drift, and describe the data structure
used to compress and store concepts. Then, in Sect. 4, we present the data
structures and algorithms for real-time capturing concept and detecting con-
cept drift. In Sect. 5, we discuses the learning algorithm for pre-determining a
couple of parameters. The online algorithms to query and visualize the current
or a historical concept from different perspectives are presented in Sect. 6. In
Sect. 7, preliminary experimental results are presented. Finally, we will reach
our conclusion in Sect. 8.

2 Related Work

A large number of works focus on building adaptive classification models to
deal with concept drifts occurred in data stream [1–8]. Two major types of
methodologies are adopted to serve this purpose. The first type is to build in-
cremental classification model that continuously incorporating new data and
fading the effects of old examples at certain rates [2,4,7,8]. The other type of
methods is to take advantage of classifier ensembles [3,5,6], where the weights
of classifiers are continuously modified in order to adapt to concept drift. Ob-
viously, this group of works process data streams that are mixed with labeled
and unlabeled data. But in many cases, class labels are not available in data
streams. Another problem is that these works can not detect evolving pattern
itself. The unsupervised learning (clustering algorithms) are thought to be a
challenging problem to data streams [9]. Some one-pass versions of clustering
algorithms have been proposed to tackle the scalability problem brought by
unbounded data streams [10–12]. Arguing that one-pass clustering algorithms
over an entire data stream suffer from the heavy effects of the outdated his-
torical data, Aggarwal et al. proposed an interesting method to explore clus-
tering patterns over different time windows [9]. This work stores statistical
snapshots of the data stream at different level of granularity depending upon
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the recency. Based on stored snapshots, the user can specify the time hori-
zon for which the clustering patterns can be obtained by running an offline
clustering component. This work can effectively get the clustering pattern
formed in the time horizon specified by the user, which is useful in applica-
tions where the user know exactly the time period he or she is interested in.
However, this work is still unable to automatically detect the concept drift
in a stream and discover the evolving patterns of the stream. There are few
works dedicated to mining changes from a data stream. Kifer et al. provides
a statistical definition of changes and proposes a change-detection algorithm
by comparing the data in some “reference window” to the data in the current
window [13]. While Aggarwal proposed a way to diagnose changes in evolving
data streams based on velocity density estimation [14]. However, this type of
works does not describe the pattern presented by the data stream in a stable
period or at a historical snapshot. The work closest to ours is the multidimen-
sional stream analysis [15]. This work applies a cube structure to organize
the streaming data. The granularity of the time dimension of the cube can
be second, minute, quarter, hour, and so on. Then each base cell of the cube
stores a compressed time series of data points arriving in the corresponding
time period. This work uses linear regression to compress the time series and
demonstrates how to aggregate the linear regression function along each di-
mension. Although the proposed architecture can facilitate OLAP queries over
stream data, it is not a suitable platform to automatically discover patterns
and pattern drifts across the section boundaries manually imposed on each
dimension. Unlike this work which differentiates numerical facts from other
dimensions, the approach proposed in this paper views both numerical and
categorical attributes as dimensions. The segmentations on the numerical at-
tributes are pre-learned from sample data extracted from the stream. More
importantly, rather than manually separating the time dimension into even
length units, our work automatically divide the time dimension into a series
of concept cycles by detected concept drift, so that each concept cycle reflects
a relatively stable concept. A base cell of our cube structure maintains the
compressed time series of statistics of the data points falling into that cell, in-
stead of the time series of numerical attribute values. In the following sections
we will show that our cube structure can facilitate not only the generation of
different types of patterns at any snapshot or within any concept cycle, but
also detecting the concept drift across multiple concept cycles, as well as the
micro-shift within a concept cycle. Furthermore, one can easily impose man-
ually determined hierarchical levels onto the natural segmentations of each
dimension in order to facilitate OLAP queries.

3 Concept and Concept Drift

Let’s assume we capture the n-dimensional data within only one concept cycle
marked as c1 from a data stream and plot the data in an n-dimensional space.
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Fig. 1. Descriptions of concept C1 and C2

All the dense areas in the n-dimension space can be viewed as the approximate
description for c1. When the data captured is streaming, it surely takes time
for the description of the concept to be identifiable. During this time period,
some dense areas may appear earlier, some may appear later. Let’s assume
we also capture the data within the concept cycle immediately following the
concept cycle c1 and mark it as c2. Again we can approximately describe
c2 by using its dense areas (see Fig. 1). Now, the question that needs to be
addressed is how to identify the boundary between c1 and c2? In other words,
when the data is streaming, how can we know whether it is still in the forming
period of cycle c1 or it has already entered into cycle c2? In order to address
this problem, we first view the dense area in a concept cycle as composed
of a group of adjacent dense cells. The size of the dense cell is learned from
static training data extracted from the corresponding data stream, which is
discussed in Sect. 4. When the data is streaming, data points keep falling into
the corresponding cells, making some of the cells hold the number of points
exceeding certain threshold θn (θn is learned from static training data as well)
and become dense. We stamp each time point when a cell becomes dense. In
this way, we maintain a time series of timestamps that mark the occurrences
of new dense cells. Whenever a new timestamp is added to this time series,
a linear regression is conducted to predict the next timestamp tpred. When
the real next timestamp tnext is marked, we calculate the difference between
tnext and tpred. If (tnext − tpred) > θt, we view the new dense cell formed at
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DETECTING CONCEPT DRIFT
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Fig. 2. Descriptions of concept C1 and C2

tnext as the first dense cell of the next concept cycle. Concept drift of a date
stream is illustrated in Fig. 2.

After solving the concept drift problem, the next question that needs to
be addressed is how to design a space-efficient synopsis for each concept cycle,
such that the user can easily query different patterns from this concept cycle,
or in other words, view this concept from multiple perspectives. We define
active cells of a concept cycle ci to be those cells that become dense within
the cycle. For the current concept cycle, each active cell is associated with
three time series. The first time series of a cell records timestamps at which
the number of points falling into that cell is dividable by the dense threshold θn
(i.e., time stamps at which the number of points falling into that cell becomes
1 × θn, 2 × θn, 3 × θn, and so on), while the second and third time series of
that cell record the cell’s mean and deviation at each timestamp captured by
the first time series. For example, the three time series maintained for active
cell cellj of the current concept cycle are shown as follows:

• Time series of timestamp: Cell − tj : {t1, t2, t3, t4, t5, · · · }.
• Time series of means: Cell −mj : {m1,m2,m3,m4,m5, · · · }.
• Time series of means: Cell − dj : {d1, d2, d3, d4, d5, · · · }.

From the first time series of timestamps, we can easily calculate the number
of data points falling into this cell at each time point. For example, at t5, the
number of points in cellj , denoted as nt5, is 5θn. Therefore, the time series of
timestamps for cellj can be converted into the time series of number of points:
cellj : {(t1, θn), (t2, 2θn), (t3, 3θn), (t4, 4θn), (t5, 5θn), · · · }
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Then, by applying linear regression, the number of points in cellj at time
t can be described as a linear function nt = ant + bn. In the same way, the
means of cellj at time t can be described as mt = amt+bm, and the deviation
of cellj at time t can be described as dt = adt + bd. Therefore, cellj can be
approximately represented by a triple ((an, bn), (am, bm), (ad, bd)). In this way,
the space size for storing each concept cycle is approximately the number of
the active cells in that cycle.

4 Capturing Concept and Detecting Concept Drift

The previous section deals with the definitions of concept and concept-drift,
as well as the description and storage of a concept. This section presents
the data structure called time-stamped partricia trie (TSP trie) for real-time
capturing concepts and detecting concept-drift. Like a general patricia trie,
the TSP trie stores all its data at the external nodes (or leaf node) and
keeps one integer, the bit-index, in each internal nodes as an indication of
which bit of a query is to be used for branching. This avoids empty sub-trie
and guarantees that every internal node will have non-null descendants. Each
external node of the TSP trie is a string that represents the coordinates of a
dense cell. The root of the TSP trie maintains a time series of timestamps.
Whenever there is a dense cell occur (or re-occur), that time point will be
stamped at the root of the trie. When the data begin streaming, each data
point ai = (ai1, ai2, · · · , aij , · · · , ain) is mapped to the corresponding cell in
the n-dimensional space by a hashing function. For each non empty cell, a
triple (n,m, d), where n is the number of points in the cell, m is the mean,
and d is the standard deviation, is organized in a hash table. When a cell
becomes dense at the first time, it is inserted into the TSP trie. The root of
the TSP trie stamps the time point when the new dense cell is inserted. The
new node sets up three time series Cell−tj , Cell−mj , Cell−dj as described in
the previous section. Simultaneously, the corresponding entry (triple (n,m, d))
in the hash table is flushed to empty. When a cell becomes dense again, the
root of the TSP trie stamps the time point again, and the corresponding node
update its three time series. When each time a new time point tk is added
to the time series associated with the root, a linear predication algorithm is
started to predict the time point tk+1 at which another cell would become
dense. Then, the predict value t̂k+1 will be compared with the real value tk+1.
If tk+1− t̂k+1 > θt, then tk becomes the last time point of the current concept
cycle. At the same time, the current TSP trie is stored into disk. A new TSP
trie which represents the new concept cycle is built in memory with tk+1 as
the timestamp for the first dense cell. A TSP trie that represents the previous
concept cycle is stored in disk in a compressed form, where each active cell is
represented by a triple ((an, bn), (am, bm), (ad, bd)) as described in the previous
section. A compressed TSP trie is indexed by a couple (tstart, tend), which
represents the first and last timestamp maintained by the root. As shown in
Sect. 6, we can easily retrieve multiple patterns from stored TSP trie.



Capturing Concepts and Detecting Concept-Drift 491

5 Pre-Learning Parameters

Obviously, the performance of our work largely depends on the resolution of
the grid on the n-dimensional space, as well as the dense threshold θn. In
order to set these parameters reasonably, one has to gain insights into the
particular streaming data. In this section, we present a learning mechanism
based on genetic algorithm to enable the system to learn these parameters
from a set of static sample data obtained from the data stream. Assume we
know the clustering pattern of the sample data, which can be obtained by
running clustering algorithms or by visualizing the data or by being assigned
by the experts. We encode this clustering pattern into a fitness function.
The chromosome encodes the resolution for each dimension and the dense
threshold θn. Once the fitness function and chromosome structure have been
designed, individuals are randomly generated to form the first population.
Based on each individual’s chromosome setting (resolution for each dimension
and starting dense threshold θn), cell-based clustering algorithm is conducted
to create the dense-based clusters, from which the fitness function is evaluated.
Then, the better genes are moved forth to the next generation. This process is
repeated for a certain number of iterations to get the final parameter values.

6 Retrieving Patterns from The Stored Concepts

The compressed TSP tries stored in disk support online mining and visualizing
both dynamics and historical snapshots of multiple types of patterns.

6.1 Retrieving and Visualizing a Historical Snapshot

Given any past time point tx, Algorithm 1 shows the steps of retrieving and
visualizing the historical snapshot of data at tx.

Algorithm 1 Retrieving and visualizing the historical snapshot at any time
point tx
1: Retrieve the compressed TSP trie indexed by (tstart, tend), where tstart ≤ tx ≤

tend.
2: Calculate the number of points, mean, and standard deviation for each active

cell at tx by using the following formulas

• nt = antx + bn

• mt = amtx + bm

• dt = adtx + bd

3: Use ni, mi, di to deploy data in each active cell at the n-dimensional space.
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6.2 Retrieving and Visualizing a Historical Concept

Given any past time point tx, Algorithm 2 shows the steps of retrieving and
visualizing the historical concept presented at tx. An effective way to present
a historical concept is to visualize the clustering pattern of this concept. In
this paper, a cluster is a continuous dense area with arbitrary shape. We can
easily use TSP trie to identify a continuous dense area composed by active
cells that are immediate neighbor of at least one another active cell in this
area.

Algorithm 2 Retrieve the compressed TSP trie indexed by (tstart, tend),
where tstart ≤ tx ≤ tend

1: Retrieve the compressed TSP trie indexed by (tstart, tend), where tstart ≤ tx ≤
tend.

2: numOfCluster = 0
3: while existing a cell in the TSP trie which is unmarked do
4: numOfCluster + +
5: Select an unmarked cell ci

6: Mark ci

7: Insert ci into list l
8: while l is not empty do
9: c = l.pop front()

10: cluster[numOfCluster].insert(c)
11: List neighbor = findImmediateUnmarkedNeighbour(c)
12: while neighbor is not empty do
13: d = neighbor.pop front()
14: Mark d
15: Cluster[numOfCluster].insert(d)
16: l.push back(d)
17: end while
18: end while
19: end while
20: for int i = 1 to numOfCluster do
21: visualize cluster[i]
22: end for

6.3 Retrieving and Visualizing Concept Drifts

Since the dense-based clustering pattern can be used to approximately repre-
sent the concept in a concept cycle, by visualizing the shift of clustering pat-
terns, we can detect the concept drift over a time period. Algorithm 3 shows
the steps of retrieving and visualizing all the concepts occurring between two
past time points.
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Algorithm 3 Visualizing concept drift from tm to tn
1: Retrieve the compressed TSP trie TSPi indexed by (tistart, tiend), where

tistart ≤ tm ≤ tiend

2: Listl.push back(TSPi)
3: t = tiend
4: while existing a compressed TSP trie TSPk indexed by (tkstart, tkend), where

t ≤ tkstart ≤ tn do
5: Listl.push back(TSPk)
6: t = tkend

7: end while
8: while l is not empty do
9: TSP tsp = l.pop front()

10: Retrieve and visualize clustering pattern from tsp
11: time-delay()
12: end while

6.4 Visualizing Micro-shift with a Concept Cycle

We can not only retrieval and visualize cluster pattern for each concept cycle,
but also zoom into each active cell to detect the micro-shift of that cell over
the concept cycle. Algorithm 4 shows the steps for this purpose.

Besides the above patterns, we can also retrieve attribute correlation pat-
terns, and clustering patterns in certain subspace for a concept cycle, as well
as the drifts of the above patterns over multiple cycles based on compressed
TSP tries. We will report these algorithms in a separate paper.

Algorithm 4 Visualizing the micro-shift of an active cell celli within a con-
cept cycle around tx
1: Retrieve the compressed TSP trie indexed by (tstart, tend), where tstart ≤ tx ≤

tend.
2: Specify the visualization resolution n, based on which generate a list of

timestamps lt = (tstart, t2, · · · , tn−2, tend)
3: while lt is not empty do
4: t = lt.pop front()
5: Calculate the number of points, mean, and standard deviation of celli at t by

using the following formulas

• nt = antx + bn

• mt = amtx + bm

• dt = adtx + bd

6: Then use ni, mi, di to deploy data in celli at the n-dimensional space
7: time-delay()
8: end while
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7 Prelimilary Experimental Results

We conducted experiments on several synthetic data streams. The main goals
of our experimentation include, (1) testing the effectiveness and efficiency of
our approach to capture concepts and detect concept drifts for continuously
multi-dimensional streaming data, and (2) testing the space-efficiency of our
storage structure. In order to simulate the functionality of the data stream,
we designed a data stream server that will constantly stream the chosen data
set to a receiving client.

7.1 Synthetic Datastreams

We created the streaming data in the way that it is steaming concepts one
by one along the time. Each concept is composed of several dense areas and
mixed with noise data. When streaming a concept, points involved in this
concept are randomly picked and send out one by one. Some characteristics
of the synthetic data we use are presented in Table 1.

7.2 Pre-Learning Parameters

For each synthetic data stream, the first concept is picked as the training data
based on which the dense threshold and the resolution of the grid are learned
through applying genetic algorithm. In Table 2, we list the learned parameter
values for each data stream.

7.3 Detecting Concepts and Concept Drift

For a data stream, at any given time, a TSP trie for the current concept cy-
cle is maintained in the memory. As described earlier, the root of the TSP

Table 1. Characteristics of the synthetic data streams

Stream no. Ave. number of Dimensions Average data size
clusters per concept per concept

1 3.33 8 0.43 MB
2 3.6 8 0.45 MB
3 3.42 8 0.42 MB
4 3.22 8 0.45 MB

Table 2. Pre-learned parameter values

No. Cell Resolution(Dimension 1-8) θn

1 2 3 4 5 6 7 8

1 0.06 0.28 0.73 0.35 0.39 0.76 0.59 0.58 66
2 0.93 0.02 0.11 0.4 0.91 0.80 0.83 0.62 77
3 0.65 0.60 0.81 0.24 0.24 0.06 0.34 0.38 90
4 0.01 0.48 0.129 0.08 0.15 0.25 0.14 0.13 98
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Fig. 3. Detected concepts and concept drifts for stream 1

trie maintains a time series of timestamps at each of which a new cell be-
come active (dense) within this concept cycle. A linear regression algorithm
is used to predict the time point when another new active cell is supposed to
appear for this concept. A concept drift is reported if there appears a sharp
jump of the timestamp. For each data stream, we deploy each recorded time
stamp vs. the corresponding total number of dense cells formed so far (see
Figs. 3–6 for the deployment results). Each s-circle-marked point in those fig-
ures represents the first active cell in a newly appearing concept cycle; and
each square-marked point represents the last formed active cell in the cur-
rent concept cycle. Those marked points are automatically detected by our
program. For each concept cycle detected by our program, we retrieve the cor-
responding TSP trie stored in the disk and based upon the retrieved TSP trie
generates the dense-based clusters by applying Algorithm 2. The dense-based
clusters we obtained for each concept cycle exactly match the dense areas we
designed for the corresponding concept. Therefore, the experimental results
show that our algorithm can correctly detect concepts and concept drifts for
those synthetic data streams.

7.4 Storage Efficiency of TSP Trie

As described earlier, each historical concept is stored in the disk as a TSP
trie indexed by the pair of beginning and ending timestamps. In Table 3,
we compare the size of the stored TSP trie and the size of the stream data
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Table 3. Average TSP trie size vs. average data size for each concept

Stream no. Ave. TSP Ave. data size Compression ratio
trie size per concept

1 160 Bytes 0.43 MB 1:2687
2 370 Bytes 0.45 MB 1:1216
3 335 Bytes 0.42 MB 1:1253
4 298 Bytes 0.45 MB 1:1510

involved in the concept represented by that TSP trie, in order to illustrate
the storage efficiency of the TSP trie as the synopsis structure for the data
stream.

8 Conclusion and Future Works

In this paper, we explored a novel integrated architecture that encapsulates a
suit of interrelated data structures and algorithms which support (1) real-time
capturing and compressing dynamics of stream data into space-efficient syn-
opses, (2) online mining and visualizing both dynamics and historical snap-
shots of multiple types of patterns from stored synopses. We also provide
preliminary experimental results to illustrate the effectiveness of this pro-
posed approach in capturing concepts and detecting concept drifts from sev-
eral synthetic data streams. Based on this work, we are aiming at designing
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a datastream warehousing system as a comprehensive platform for discover-
ing and retrieving knowledge from potential unbounded, ever-evolving, and
multi-dimensional data streams. In order to achieve this goal, we plan to con-
duct the following tasks: (1) Testing our architecture on various real-life data
streams. (2) Studying cross-cycle compression strategy. (3) Formalizing roll-
up and drill-down operations on time and other dimensions. (4) Exploring
ways to dynamically learning related parameters.
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Summary. The study of foundations of data mining may be viewed as a scientific
inquiry into the nature of data mining and the scope of data mining methods.
There is not enough attention paid to the study of the nature of data mining,
or its philosophical foundations. It is evident that the conceptual studies of data
mining as a scientific research field, instead of a collection of isolated algorithms, are
needed for a further development of the field. A three-layered conceptual framework
is thus proposed, consisting of the philosophy layer, the technique layer and the
application layer. Each layer focuses on different types of fundamental questions
regarding data mining, and they jointly form a complete characterization of the
field. The layered framework is demonstrated by applying it to three sub-fields of
data mining, classification, measurements, and explanation-oriented data mining.

1 Introduction

With the development and success of data mining, many researchers became
interested in the fundamental issues, namely, the foundations of data min-
ing [2, 7, 8, 22]. The study of foundations of data mining should be viewed as
a scientific inquiry into the nature of data mining and the scope of data min-
ing methods. This simple view separates two important issues. The study of
the nature of data mining concerns the philosophical, theoretical and mathe-
matical foundations of data mining; while the study of data mining methods
concerns its technological foundations by focusing on the algorithms and tools.

A review of the existing studies show that not enough attention has been
paid to the study of the nature of data mining, more specifically, to the philo-
sophical foundations of data mining [22]. Although three dedicated interna-
tional workshops have been held [6–8], there still do not exist well-accepted
and non-controversial answers to many basic questions, such as, what is data
mining? what makes data mining a distinctive study? what are the founda-
tions of data mining? What is the scope of the foundations of data mining?
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What are the differences, if any, between the existing researches and the re-
search on the foundations of data mining? The study of foundations of data
mining attempts to answer these questions.

The foundational study is sometimes ignored or underestimated. In the
context of data mining, one is more interested in algorithms for finding knowl-
edge, but not what is knowledge, and what is the knowledge structure. One is
often more interested in a more implementation-oriented view or framework
of data mining, rather than a conceptual framework for the understanding of
the nature of data mining. The following quote from Salthe [16] about studies
of ecosystem is equally applicable to the studies of data mining:

The question typically is not what is an ecosystem, but how do
we measure certain relationships between populations, how do some
variables correlate with other variables, and how can we use this
knowledge to extend our domain. The question is not what is mito-
chondrion, but what processes tend to be restricted to certain region
of a cell [page 3].

A lack of the study of its foundation may affect the future development of the
field.

There are many reasons accounting for such unbalanced research efforts.
The problems of data mining are first raised by very practical needs for find-
ing useful knowledge. One inevitably focuses on the detailed algorithms and
tools, without carefully considering the problem itself. A workable program
or software system is more easily acceptable by, and at the same time is more
concrete and more easily achievable by, many computer scientists than an
in-depth understanding of the problem itself. Furthermore, the fundamental
questions regarding the nature of the field, the inherent structure of the field
and its related fields, are normally not asked at its formation stage. This is
especially true when the initial studies produce useful results [16].

The study of foundations of data mining therefore needs to adjust the
current unbalanced research efforts. We need to focus more on the under-
standing of the nature of data mining as a field instead of a collection of
algorithms. We need to define precisely the basic notions, concepts, princi-
ples, and their interactions in an integrated whole. Many existing studies can
contribute to the foundational study of data mining. Here are two examples:
(a) Results from the studies of cognitive science and education are relevant
to such a purpose. Posner suggested that, according to the cognitive science
approach, to learn a new field is to build appropriate cognitive structures and
to learn to perform computations that will transform what is known into what
is not yet known [14]. (b) Reif and Heller showed that knowledge structure
of a domain is very relevant to problem solving [15]. In particular, knowledge
about a domain, such as mechanics, specifies descriptive concepts and rela-
tions described at various levels of abstraction, is organized hierarchically, and
is accompanied by explicit guidelines that specify when and how knowledge is
to be applied [15]. The knowledge hierarchy is used by Simpson for the study
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of foundations of mathematics [19]. It follows that the study of foundations
of data mining should focus on the basic concepts and knowledge of data
mining, as well as their inherent connections, at multi-level of abstractions.
Without such kind of understanding of data mining, one may fail to make
further progress.

In summary, in order to study the foundations of data mining, we need to
move beyond the existing studies. More specifically, we need to introduce a
conceptual framework, to be complementary to the existing implementation
and process-oriented views. The main objective of this chapter is therefore to
introduce such a framework.

The rest of the chapter is organized as follows. In Sect. 2, we re-examine
the existing studies of data mining. Based on the examination, we can ob-
serve several problems and see the needs for the study of foundations of data
mining. More specifically, there is a need for a framework, within which to
study the basic concepts and principles of data mining, and the conceptual
structures and characterization of data mining. For this purpose, in Sect. 3, a
three-layered conceptual framework of data mining is discussed, consisting of
the philosophy layer, the technique layer, and the application layer [22]. The
relationships among the three layers are discussed. The layered framework
is demonstrated in Sect. 4 by applying it to an example of function-oriented
view – classification, an example of theory-oriented view – measurement the-
ory, and an example of procedure-oriented view – explanation-oriented data
mining. Section 5 draws the conclusion.

2 Overview of the Existing Studies and the Problems

Data mining, as a relatively new branch of computer science, has received
much attention. It is motivated by our desire of obtaining knowledge from huge
databases. Many data mining methods, based on the extensions, combinations,
and adaptation of machine learning algorithms, statistical methods, relational
database concepts, and the other data analysis techniques, have been proposed
and studied for knowledge extraction and abstraction.

2.1 Three Views of Data Mining

The existing studies of data mining can be classified broadly under three
views.

The function-oriented view

The function-oriented view focuses on the goal or functionality of a data min-
ing system, namely, the discovery of knowledge from data. In a well-accepted
definition, data mining is defined as “the non-trivial process of identifying
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valid, novel, potentially useful, and ultimately understandable patterns from
data” [3]. The function-oriented approaches put forth efforts on searching,
mining and utilizing different patterns embedded in various databases. A pat-
tern is an expression in a language that describes data, and has a representa-
tion simpler than the data. For example, frequent itemsets, association rules
and correlations, as well as clusters of data points, are common classes of pat-
terns. Such goal-driven approaches establish a close link between data mining
research and real world applications.

Depending on the data and their properties, one may consider different
data mining systems with different functionalities and for different purposes,
such as text mining, Web mining, sequential mining, and temporal data min-
ing. Under the function-oriented view, the objectives of data mining can be
divided into prediction and description. Prediction involves the use of some
variables to predict the values of some other variables, and description focuses
on patterns that describe the data [3].

The Theory-Oriented View

The theory-oriented approaches concentrate on the theoretical studies of data
mining, and its relationship to the other disciplines. Many models of data
mining have been proposed, critically investigated and examined from the
theory-oriented point of view [3,11,21,26].

Conceptually, one can draw a correspondence between scientific research
by scientists and data mining by computers [25, 26]. More specifically, they
share the same goals and processes. It follows that any theory discovered
and used by scientists can be used by data mining systems. Thus, many fields
contribute to the theoretical study of data mining. They include statistics, ma-
chine learning, databases, pattern recognition, visualization, and many other.
There is also a need for the combination of existing theories. For example,
some efforts have been made to bring the rough sets theory, fuzzy logic, util-
ity and measurement theory, concept lattice and knowledge structure, and
other mathematical and logical models into the data mining models.

The Procedure/Process-Oriented View

From the procedure/process-oriented view, data mining deals with a “non-
trivial” process consisting of many steps, such as data selection, data pre-
processing, data transformation, pattern discovery, pattern evaluation, and
result explanations [3, 10, 26, 30]. Furthermore, it should be a dynamically
organized process.

Under the process-oriented view, data mining studies have been focused
on algorithms and methodologies for different processes, speeding up existing
algorithms, and evaluation of discovered knowledge.
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2.2 Problems and Potential Solutions

The three views jointly provide a good description of data mining research.
The function-oriented view states the goals of data mining, the theory-oriented
view studies the means with which one can carry out the desired tasks, and
the process-oriented view deals with how to achieve the goals based on the
theoretical means. However, the general conceptual framework is still not pro-
posed and examined.

Intuitively, the terms of technology and science have different meanings.
Science studies the nature of the world. On the other hand, technology stud-
ies the ways that people develop to control or manipulate the world. Science
deals with “understanding” while technology deals with “doing”. The sci-
entific study requires the study of foundations of data mining, so that the
fundamental questions of the field itself are asked, examined, explained and
formalized.

The foundations of data mining may not be solely mathematics or logic, or
any other individual fundamental disciplines. Considering the different types
of databases, the diversity of patterns, the ever changing techniques and al-
gorithms, and the different views, we require a multilevel (or multi-layer) un-
derstanding of data mining. By viewing data mining in many layers, one can
identify the inherent structure of the fields, and put fundamental questions
into their proper perspectives in the conceptual map of data mining.

3 A Three-Layered Conceptual Framework

A three-layered conceptual framework is recently proposed by Yao [22], which
consists of the philosophy layer, the technique layer, and the application layer.
The layered framework represents the understanding, discovery, and utiliza-
tion of knowledge, and is illustrated in Fig. 1.

3.1 The Philosophy Layer

The philosophy layer investigates the basic issues of knowledge. One attempts
to answer a fundamental question, namely, what is knowledge? There are
many related issues to this question, such as the representation of knowledge,
the expression and communication of knowledge in languages, the relationship
between knowledge in mind and in the external real world, and the classifica-
tion and organization of knowledge [20]. Philosophical study of data mining
serves as a precursor to technology and application, it generates knowledge
and the understanding of our world, with or without establishing the opera-
tional boundaries of knowledge. The philosophy layer study is primarily driven
by curiosity, and responds to a certain hypothesis.
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Fig. 1. The three-layered conceptual framework of data mining

3.2 The Technique Layer

The technique layer is the study of knowledge discovery in machine. One
attempts to answer the question, how to discover knowledge? In the context
of computer science, there are many issues related to this question, such as
the implementation of human knowledge discovery methods by programming
languages, which involves coding, storage and retrieval issues in a computer,
and the innovation and evolution of techniques and algorithms in intelligent
systems. The main streams of research in machine learning, data mining,
and knowledge discovery have concentrated on the technique layer. Logical
analysis and mathematical modeling are considered to be the foundations of
technique layer study of data mining.

3.3 The Application Layer

The ultimate goal of knowledge discovery is to effectively use discovered knowl-
edge. The question that needs to be answered is how to utilize the discovered
knowledge. The application layer therefore should focus on the notions of
“usefulness” and “meaningfulness” of discovered knowledge for the specific
domain, and aim at many attributes, such as efficiency, optimization, reliabil-
ity, cost-effectiveness, and appropriateness. These notions cannot be discussed
in total isolation with applications, as knowledge in general is domain specific.
The application layer therefore involves the design and development of a so-
lution to a target problem that serves a real need.
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3.4 The Relationships among the Three Layers

Two points need to be emphasized about the three-layered conceptual frame-
work.

First, the three layers are different, relatively independent, and self-
contained.

(1) The philosophical study does not depend on the availability of specific
techniques and applications. In other words, it does not matter whether
knowledge is discovered or not, utilized or not, and if the knowledge struc-
ture and expression are recognized or not. Furthermore, all human knowl-
edge is conceptual and forms an integrated whole [13]. The output of the
philosophical study can be expressed as theories, principles, concepts or
other knowledge structures. Knowledge structure is built by connecting
new bits of information to the old. The study of knowledge at the philoso-
phy layer has important implications for the human society, even if it is not
discovered or utilized yet, or it simply provides a general understanding of
the real world.

(2) The technical study can carry out part of the philosophic study results
but not all, and it is not constrained by applications. The philosophy layer
describes a very general conceptual scheme. The current techniques, in-
cluding hardware and software, may still be insufficient to bring all of it
into reality. On the other hand, the existence of a technique/algorithm
does not necessarily imply that discovered knowledge is meaningful and
useful. The output of the technical study can be expressed by algorithms,
mathematical models, and intelligent systems. The technology can be com-
mercialized. The benefits of technological implementation and innovation
tend to move the study of technical layer to be more and more profit-
driven.

(3) The applications of data mining is the utilization of knowledge in spe-
cific domains. They are related to the evaluation of discovered knowledge,
the explanation and interpretation of discovered knowledge in a partic-
ular domain. The discovered knowledge can be used in many ways. For
example, knowledge from transaction databases can be used for designing
new products, distributing, and marketing. Comparing to the philosoph-
ical and technological studies, the applications have more explicit targets
and schedules.

Second, the three layers mutually support each other and jointly form an
integrated whole.

(1) It is expected that the results from philosophy layer will provide guidelines
and set the stage for the technique and application layers. The technol-
ogy development and innovation can not go far without the conceptual
guidance.

(2) The philosophical study cannot be developed without the consideration
of reality. Technology development may raise new philosophical questions
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and promote the philosophical study. Technique layer is the bridge between
philosophical view of knowledge and the application of knowledge.

(3) The applications of philosophical and technical outcomes give an impe-
tus for the re-examination of philosophical and technical studies too. The
feedbacks from applications provide evidence for the confirmation, re-
examination, and modification of philosophical and technical results.

Three layers of the conceptual framework are tightly integrated, namely,
they are mutually connected, supported, promoted, facilitated, conditioned
and restricted. The division between the three layers is not a clear cut, and
may overlap and interweave with each other. Any of them is indispensable
in the study of intelligence and intelligent systems. They must be considered
together in a common framework through multi-disciplinary studies, rather
than in isolation.

4 Enriched Views on the Three-Layered Framework

We believe the three-layered conceptual framework establishes a proper foun-
dation of data mining. It can promote the progress of data mining; to advance
the science and technology related to data mining. By putting the three ex-
isting views that we have discussed in Sect. 2 into the conceptual framework,
we obtain a 3(view)-by-3(layer) Fig. 2 and more insights.

We study, from the function-oriented view, not only what data mining
programs can and cannot do in the technology and application layer, but
also in the abstract, what knowledge is possibly stored in the information
system, how programs should store and retrieve specific kinds of information
in their specific structure and representation. From the theory-oriented view,
the key thing is not only to pile up various theories, algorithms, to beat up
the efficiency, or even worse, to reinvent theories and methodologies that have
been well-studied in the other domains. It emphasizes the understanding and
human–computer interaction. From the procedure-oriented view, it should be
guided by the procedure of general scientific research too.

Layer
View

Philosophy layer Technique layer Application layer 

Function -
oriented view

What knowledge can be
discovered? What is the nature of
the knowledge to be discovered? 

How to discover this
type of knowledge?

How to use this type of
knowledge for the real
life? 

Theory - oriented 
view

Which theory is related to data
mining? How related is it? What
is the benefit? What is the 
expense?

How to implement this
theory for data
mining? 

How to implement this
theory for data mining
in real life? 

Procedure -
oriented view

What is the connection between 
the procedure of general scientific
research and the specific
procedure of data mining? 

How to implement 
each process, or a 
particular process, of
data mining? 

In real applications, 
some processes are 
focused on. 

Fig. 2. Three views and three layers
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In this section, we explain three examples with respect to the three-layered
framework. The classification is corresponding to the function-oriented view,
evaluation and measurement theory is corresponding to the theory-oriented
view, and the explanation-oriented data mining extends the procedure-
oriented view. We demonstrate how these three views are enriched by the
conceptual framework, especially the philosophy layer study.

4.1 Classification on the Three-Layered Framework

Classification is considered as one of the most important tasks of data mining.
It is therefore associated with the function-oriented view that we discussed in
Sect. 2. Partitions and coverings are two simple and commonly used knowledge
classifications of the universe. A partition of a finite universe is a collection of
non-empty, and pairwise disjoint subsets whose union is the universe. A cov-
ering of a finite universe is a collection of non-empty and possibly overlapped
subsets whose union is the universe. Partitions are a special case of coverings.

Knowledge is organized in a tower (hierarchy) or a partial ordering. Based
on the above discussion, we have partition-based hierarchy and covering-based
hierarchy. Hierarchy means that the base or minimal elements of the order-
ing are the most fundamental concepts and higher-level concepts depend on
lower-level concepts [19]. Partial ordering means that the concepts in the hi-
erarchy are reflexive, anti-symmetric and transitive. The first-level concept
is formed directly from the perceptual data [13]. The higher-level concepts,
representing a relatively advanced state of knowledge, are formed by a process
of abstracting from abstractions [13]. On the other hand, the series of lower-
level concepts, on whom the higher-level concept is formed, are not necessarily
unique in content. Within the requisite overall structure, there may be many
alternatives in detail [13].

The natural process of knowledge cognition follows the hierarchy from
lower-level concepts to higher-level according to the intellectual dependency.
The revise process does exist because of impatience, anti-effort, or simple
error. Peikoff analyzes that the attempt to function on the higher levels of
complex structure without having established the requisite base will build
confusion on confusion, instead of knowledge on knowledge. In such minds,
the chain relating higher-level content to perceptual reality is broken [13].

A virtual space that can hold knowledge as concepts is called a concept
space, namely, it refers to the set or class of the concepts. If we consider the
data mining process as searching for concepts in a particular concept space,
we need to study different kinds of concept spaces first. Inside the concept
space, the concept can be represented and discovered. Generally, a concept
space S can hold all the concepts, including the ones that can be defined
as a formula, and the ones that cannot. A definable concept space DS is a
sub-space of the concept space S. There are many definable concept spaces
in different forms. In most situations, one is only interested in the concepts
in a certain form. Consider the class of conjunctive concepts, that formula
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constructed from atomic formula by only logic connective ∧. A concept space
CDS is then referred to as the conjunctively definable space, which is a sub-
space of the definable space DS. Similarly, a concept space is referred to as
a disjunctively definable space if the atomic formulas are connected by logic
disjunctive ∨.

In [29], we discuss the complete concept space for classification tasks us-
ing granular network concepts. The immediate result is that a classification
task can be understood as a search of the distribution of classes in a granule
network defined by the descriptive attribute set. The analysis shows that the
complexity of the search space of a consistent classification task is not polyno-
mially bounded. This can be extremely complex especially when the number
of possible values of attributes are large, let alone continuous. This forces us
to use heuristic algorithms to quickly find solutions in a constrained space.
Indeed, the existing heuristic algorithms perform very well. Each of them can
be understood as a particular heuristic search within the granule network.

4.2 Rule Interestingness Evaluation on the Three-Layered
Framework

Traditionally, when we talk about evaluating the usefulness and interesting-
ness of discovered rules and patterns, we talk about many measures based on,
for example, information theory and measurement theory. Thus, the study of
interestingness evaluation is a theory-oriented study referring to the categories
in Sect. 2.

With respect to the framework, in the philosophical layer, quantitative
measures can be used to characterize and classify different types of rules. In
the technique layer, measures can be used to reduce search space. In the appli-
cation layer, measures can be used to quantify the utility, profit, effectiveness,
or actionability of discovered rules.

From the existing studies, one can observe that rule evaluation plays at
least three different types of roles:

i. In the data mining phase, quantitative measures can be used to reduce the
size of search space. An example is the use of well-known support measure,
which reduces the number of itemsets that need to be examined [1].

ii. In the phase of interpreting mined patterns, rule evaluation plays a role in
selecting the useful or interesting rules from the set of discovered rules [17,
18]. For example, the confidence measure of association rules is used to
select only strongly associated itemsets [1, 9].

iii. In the phase of consolidating and acting on discovered knowledge, rule
evaluation can be used to quantify the usefulness and effectiveness of dis-
covered rules. Many measures such as cost, classification error, and classi-
fication accuracy play such a role [4].

To carry out the above three roles, many measures have been proposed
and studied. We need to understand that measures can be classified into two
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categories consisting of objective measures and subjective measures [17]. Obj-
ective measures depend only on the structure of rules and the underlying
data used in the discovery process. Subjective measures also depend on the
user who examines the rules [17]. In comparison, there are limited studies on
subjective measures. For example, Silberschatz and Tuzhilin proposed a sub-
jective measure of rule interestingness based on the notion of unexpectedness
and in terms of a user belief system [17,18].

Yao et al. [23] suggest that, the rule interestingness measures have three
forms: statistical, structural and semantic. Many measures, such as support,
confidence, independence, classification error, etc., are defined based on sta-
tistical characteristics of rules. A systematic analysis of such measures is given
by Yao et al. using a 2 × 2 contingency table induced by a rule [24, 27]. The
structural characteristics of rules have been considered in many measures. For
example, information, such as the disjunct size, attribute interestingness, the
asymmetry of classification rules, etc., can be used [4]. These measures reflect
the simplicity, easiness of understanding, or applicability of rules. Although
statistical and structural information provides an effective indicator of the
potential effectiveness of a rule, its usefulness is limited. One needs to con-
sider the semantics aspects of rules or explanations of rules [25]. Semantics
centered approaches are application and user dependent. In addition to sta-
tistical information, one incorporates other domain specific knowledge such
as user interest, utility, value, profit, actionability, and so on.

Measures defined by statistical and structural information may be viewed
as objective measures. They are user, application and domain independent.
For example, a pattern is deemed interesting if it has certain statistical prop-
erties. These measures may be useful in philosophy layer of the three-layered
framework. Different classes of rules can be identified based on statistical
characteristics, such as peculiarity rules (low support and high confidence),
exception rules (low support and high confidence, but complement to other
high support and high confidence rules), and outlier patterns (far away from
the statistical mean) [28]. Semantic based measures involve the user interpre-
tation of domain specific notions such as profit and actionability. They may
be viewed as subjective measures. Such measures are useful in the application
layer of the three-layered framework. The usefulness of rules are measured
and interpreted based on domain specific notions.

4.3 Explanation-Oriented Data Mining on the Three-Layered
Framework

To complement the extensive studies of various tasks of data mining, the ex-
planation task of data mining, more specifically, the concept of explanation-
oriented data mining, was first proposed in [26]. Some technologies of data
mining cannot immediately create knowledge or guarantee knowledge genera-
tion, but only retrieve, sort, quantify, organize and report information out of
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data. Information can turn into knowledge if it can be rationalized, explained
and validated. Similarly, explanation-oriented data mining can be explored
with respect to the three-layered framework.

To add the explanation task into the existing data mining process is based
on an important observation, that scientific research and data mining have
much in common in terms of their goals, tasks, processes and methodologies.
Scientific research is affected by the perceptions and the purposes of science.
Martella et al. summarized the main purposes of science, namely, to describe
and predict, to improve or manipulate the world around us, and to explain our
world [12]. The results of the scientific research process provide a description
of an event or a phenomenon. The knowledge obtained from research helps us
to make predictions about what will happen in the future. Research findings
are a useful tool for making an improvement in the subject matter. Research
findings also can be used to determine the best or the most effective ways
of bringing about desirable changes. Finally, scientists develop models and
theories to explain why a phenomenon occurs.

Goals similar to those of scientific research have been discussed by many re-
searchers in data mining. Guergachi stated that the goal of data mining is what
science is and has been all about: discovering and identifying relationships
among the observations we gather, making sense out of these observations,
developing scientific principles, building universal laws from observations and
empirical data [5]. Fayyad et al. identified two high-level goals of data mining
as prediction and description [3]. Ling et al. studied the issue of manipula-
tion and action based on the discovered knowledge [8]. Yao et al. compared
the research process and data mining process [25, 26]. The comparison led to
the introduction of the notion of the explanation-oriented data mining, which
focuses on constructing models for the explanation of data mining results [26].

In the philosophy level, we need to understand what kind of pattern need
to be explained. A target pattern that arouses user’s interest, hooks up user’s
attention and needs to be deep explained resides in the set of discovered pat-
terns. In fact, the targets may differ among the views of individuals. One may
question the same target at different times based on different considerations, at
different cognitive levels. We also need to understand what knowledge can be
applied to explain the target pattern. Explanation-oriented data mining needs
background knowledge to infer features that can possibly explain a discovered
pattern. We need to note two facts: first, the explanation profiles may not sit-
uate in the original dataset. One needs to collect additional information that
is characteristically associated with the target pattern, and can be practically
transformed to be the explanation context. On the other hand, how one ex-
plains determines what one may learn. In general, the better one’s background
knowledge is, the more accurate the inferred explanations are likely to be.

The task of explanation construction and evaluation includes five separate
phases that need to be undertaken: explanation subject selection, explana-
tion profiles proposition, explanation construction, explanation evaluation,
and explanation refinement. That is, given a target discovered pattern to be
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explained, in order to result an explanatory account one needs to do the foll-
owing: First, propose the heuristic for some explanation profiles, transform
and associate them with the environment where the target pattern is located.
Then, construct some rules by a particular method in the explanation con-
text. After these, the learned results need to be evaluated. According to the
evaluation results and the user feedback, the explanation profiles can be sharp-
ened and refined, the same or different methods can be applied to the refined
context for another plausible explanation construction until it is satisfied.

5 Conclusion

A three-layered conceptual framework of data mining is discussed in this
chapter, consisting of the philosophy layer, the technique layer and the appli-
cation layer. The philosophy layer deals with the formation, representation,
evaluation, classification and organization, and explanation of knowledge; the
technique layer deals with the technique development and innovation; and
the application layer emphasizes on the application, utility and explanation
of mined knowledge. The layered framework focuses on the data mining ques-
tions and issues in different abstract levels, and thus, offers us opportunities
and challenges to reconsider the existing three views of data mining. The
framework is aimed at the understanding of the data mining as a field of
study, rather than a collection of theories, algorithms and tools.
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1 Introduction

In this paper,1 we address the following problem: multiple parties are coop-
erating on a data-rich task. Each of the parties owns data pertinent to the
aspect of the task addressed by this party. More specifically, the data consists
of instances, each party owns her instances but all parties have the same at-
tributes. The overall performance, or even solvability, of this task depends on
the ability of performing data mining using all the instances of all the parties.
The parties, however, may be unwilling to release their instances to other
parties, due to privacy or confidentiality of the data. How can we structure
information sharing between the parties so that the data will be shared for
the purpose of data mining, while at the same time specific instance values
will be kept confidential by the parties to whom they belong? This is the
task addressed in this paper. In the privacy-oriented data mining this task
is known as data mining with horizontally partitioned data (also known as
homogeneous collaboration [15]). Examples of such tasks abound in business,
homeland security, coalition building, medical research, etc.

The following scenarios illustrate situations in which this type of collabora-
tion is interesting: (i) Multiple competing supermarkets, each having an extra
large set of data records of its customers’ buying behaviors, want to conduct
data mining on their joint data set for mutual benefit. Since these companies
are competitors in the market, they do not want to disclose their customers’
information to each other, but they know the results obtained from this col-
laboration could bring them an advantage over other competitors. (ii) Success
of homeland security aiming to counter terrorism depends on combination of
strength across different mission areas, effective international collaboration

1The preliminary version of this paper has been published [32].
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and information sharing to support coalition in which different organizations
and nations must share some, but not all, information. Information privacy
thus becomes extremely important: all the parties of the collaboration promise
to provide their private data to the collaboration, but neither of them wants
each other or any other party to learn much about their private data.

Without privacy concerns, all parties can send their data to a trusted
central place to conduct the mining. However, in situations with privacy con-
cerns, the parties may not trust anyone. We call this type of problem the
Privacy-preserving Collaborative Data Mining problem. As stated above, in
this paper we are interested in homogeneous collaboration where each party
has the same sets of attributes [15] but has different sets of instances.

Data mining includes a number of different tasks, such as association rule
mining, classification, and clustering, etc. This paper studies how to learn sup-
port vector machines. In the last few years, there has been a surge of interest
in Support Vector Machines (SVM) [28, 29]. SVM is a powerful methodol-
ogy for solving problems in nonlinear classification, function estimation and
density estimation which has also led to many other recent developments in
kernel based learning methods in general [7, 24, 25]. SVMs have been intro-
duced within the context of statistical learning theory and structural risk
minimization. As part of the SVM algorithm, one solves convex optimization
problems, typically quadratic programs. It has been empirically shown that
SVMs have good generalization performance on many applications such as
text categorization [13], face detection [20], and handwritten character recog-
nition [16]. Based on the existing SVM learning technologies, we study the
problem of learning Support Vector Machines on private data. More precisely,
the problem is defined as follows: multiple parties want to build support vector
machines on a data set that consists of private data of all the parties, but none
of the parties is willing to disclose her raw data to each other or any other
parties. We develop a secure protocol, based on homomorphic cryptography
and random perturbation techniques, to tackle the problem. An important
feature of our approach is its distributed character, i.e. there is no single,
centralized authority that all parties need to trust. Instead, the computation
is distributed among parties, and its structure and the use of homomorphic
encryption ensures privacy of the data.

The paper is organized as follows: The related work is discussed in Sect. 2.
We describe the SVMs training procedure in Sect. 3. We then present our
proposed secure protocols in Sect. 4. We give our conclusion in Sect. 5.

2 Related Work

2.1 Secure Multi-Party Computation

A Secure Multi-party Computation (SMC) problem deals with computing any
function on any input, in a distributed network where each participant holds
one of the inputs, while ensuring that no more information is revealed to a
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participant in the computation than can be inferred from that participant’s
input and output. The SMC problem literature was introduced by Yao [31].
It has been proved that for any polynomial function, there is a secure multi-
party computation solution [12]. The approach used is as follows: the function
F to be computed is firstly represented as a combinatorial circuit, and then
the parties run a short protocol for every gate in the circuit. Every participant
gets corresponding shares of the input wires and the output wires for every
gate. This approach, though appealing in its generality and simplicity, is highly
impractical for large datasets.

2.2 Privacy-Preserving Data Mining

In early work on privacy-preserving data mining, Lindell and Pinkas [17] pro-
pose a solution to privacy-preserving classification problem using oblivious
transfer protocol, a powerful tool developed by secure multi-party computa-
tion (SMC) research. The techniques based on SMC for efficiently dealing with
large data sets have been addressed in [14], where a solution to the association
rule mining problem for the case of two parties was proposed.

Randomization approaches were firstly proposed by Agrawal and Srikant
in [3] to solve privacy-preserving data mining problem. In addition to pertur-
bation, aggregation of data values [26] provides another alternative to mask
the actual data values. In [1], authors studied the problem of computing the
kth-ranked element. Dwork and Nissim [9] showed how to learn certain types
of boolean functions from statistical databases in terms of a measure of prob-
ability difference with respect to probabilistic implication, where data are
perturbed with noise for the release of statistics. In this paper, we focus on
privacy-preserving among the inter-party computation.

Homomorphic encryption [21], which transforms multiplication of en-
crypted plaintexts into the encryption of the sum of the plaintexts, has re-
cently been used in secure multi-party computation. For instance, Freedmen,
Nissim and Pinkas [10] applied it for set intersection. For computing set inter-
section, unlike [2,10,27] proposed an approach based on commutative encryp-
tion. The work most related to ours is [30], where Wright and Yang applied
homomorphic encryption [21] to the Bayesian networks induction for the case
of two parties. The work that are closely related ours is [33], where Zhan et al.
present secure protocols for learning support vector machine over vertically
partitioned data. In this paper, we develop a secure protocol, based on homo-
morphic encryption and random perturbation techniques, for multiple parties
to build SVMs over horizontally partitioned data without compromising their
data privacy.

3 Learning SVMs on Private Data

Support vector machines were invented by Vapnik [29] in 1982. The idea con-
sists of mapping the space of input examples into a high-dimensional feature
space, so that the optimal separating hyperplane built on this space allow
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a good generalization capacity. The input examples become linearly or al-
most linearly separable in the high dimensional space through selecting an
adequate mapping [28]. Research on SVMs is extensive since it was invented.
However, to our best knowledge, there is no effort on learning SVMs on pri-
vate data. In this paper, our goal is to provide a privacy-preserving algorithm
for multi-parties to collaboratively learn SVMs without compromising their
data privacy.

3.1 Problem

We consider the scenario where multiple parties P1, P2, . . . , and Pn, each
having a private data set (denoted by D1, D2, . . . and Dn respectively), want
to collaboratively learn SVMs on the concatenation of their data sets. Be-
cause they are concerned about their data privacy, neither party is willing to
disclose its actual data set to others. Specially, we consider the homogeneous
collaboration where each data set contains the same number of attributes but
different set of instances. Let m be the total number of attributes in each data
set. Let N be the total number of instances, N1 is the number of instances
for P1, N2 is the number of instances for P2, . . ., and Nn is the number of
instances for Pn. We further assume that the class labels are shared but the
instance identifiers and actual attribute values are kept confidential.

3.2 Overview of Support Vector Machine

SVM is primarily a two-class classifier for which the optimization criterion is
the width of the margin between the different classes. In the linear form, the
formula for output of a SVM is

u = −→w · −→x + b, (1)

where −→w is the normal vector to the hyperplane and −→x is the input vector.
To maximize margin, we need minimize the following [5]:

min
w,b

1
2
||−→w ||2, (2)

subject to yi(−→w · −→xi + b) ≥ 1,∀i, where −→xi is the ith training example, and yi

is the correct output of the SVM for the ith training example. The value yi

is +1 (resp. −1) for the positive (resp. negative) examples in a class.
Through introducing Lagrangian multipliers, the above optimization can

be converted into a dual quadratic optimization problem.

min−→α
Ψ(−→α ) = min

αi,αj

1
2

N∑
i,j=1

αiαjyiyjK(−→xi ,
−→xj) −

N∑
i=1

αi, (3)



How to Prevent Private Data 521

where αi are the Lagrange multipliers, −→α = α1, α2, . . . , αN , subject to in-
equality constraints: αi ≥ 0,∀i, and linear equality constraint:

∑N
i=1 yiαi = 0.

By solving the dual optimization problem, one obtains the coefficients αi,
i = 1, . . . , N , from which the normal vector −→w and the threshold b can be
derived [22].

To deal with non-linearly separable data in feature space, Cortes and Vap-
nik [6] introduced slack-variables to relax the hard-margin constraints. The
modification is:

min
1
2
||−→w ||2 + C

N∑
i=1

ξi (4)

subject to yi(−→w ·−→xi+b) ≥ 1−ξi, ∀i, where ξi is slack variable that allows margin
failure and constant C > 0 determines the trade-off between the empirical
error and the complexity term. This leads to dual quadratic problem involving
[3] subject to the constraints C ≥ αi ≥ 0,∀i and

∑N
i=1 yiαi = 0.

To solve the dual quadratic problem, we apply sequential minimal opti-
mization [22] which is a very efficient algorithm for training SVMs.

3.3 Sequential Minimal Optimization

Sequential Minimal Optimization (SMO) [22] is a simple algorithm that can
efficiently solve the SVM quadratic optimization (QO) problem. Instead of di-
rectly tackle the QO problem, it decomposes the overall QO problem into QO
sub-problems based on Osunna’s convergence theorem [20]. At each step, SMO
chooses two Lagarange multipliers to jointly optimize, find the optimal values
for these multipliers, and updates the SVM to reflect the new optimal values.

In order to solve for the two Lagrange multipliers, SMO firstly computes
the constraints on these multipliers and then solves for the constrained mini-
mum. Normally, the objective function is positive definite, SMO computes the
minimum along the direction of the linear constraints

∑2
i=1 yiαi = 0 within

the boundary C ≥ αi ≥ 0, i = 1, 2.

αnew
2 = α2 + y2(E1 − E2) η, (5)

where Ei = yiαiK(−→xi ,
−→x ) − yi is the error on the ith training example, −→xi

is the stored training vector and −→x is the input vector, and η is the second
derivative of [3] along the direction of the above linear constraints:

η = K(−→x1,
−→x1) +K(−→x2,

−→x2) − 2K(−→x1,
−→x2). (6)

Next step, the constrained minimum is found by clipping the unconstrained
minimum to the ends of the line segment: αnew,clipped

2 is equal to H if αnew
2 ≥

H, is equal to αnew
2 if L < αnew

2 < H, and is equal to αnew,clipped
2 = L

if αnew
2 ≤ L. If the target y1 is not equal to the target y2, L = max(0, α2−α1),
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H = min(C,C + α2 − α1). If the target y1 is equal to the target y2, L =
max(0, α2 + α1 − C), H = min(C,α2 + α1).

The value of α1 is computed from the new, clipped, α2:

αnew
1 = α1 + s(α2 − αnew, clipped

2 ), (7)

where s = y1y2.
In the procedure of sequential minimal optimization, the only step access-

ing the actual attribute values is the computation of the kernel function K.
Kernel functions have various forms. Three types of kernel functions are con-
sidered: they are the linear kernel function K = (−→a · −→b ), the polynomial
kernel function K = ((−→a · −→b ) + θ)d, where d ∈ N, θ ∈ R are constants, and
the sigmoid kernel function K = tanh((κ(−→a · −→b )) + θ), where κ, θ ∈ R are
constants, for instances −→a and

−→
b .

To compute these types of kernel functions, one needs to compute the
inner product between two instances. If the two instances belong to the same
party, this party can compute the inner product by herself; if one instance
(e.g., −→x1) belongs to one party (e.g., P1), and the other instance (e.g., −→x2)
belongs to another party (e.g., P2), then P1 can compute (−→x1 · −→x1) and P2

can compute (−→x2 · −→x2). However, to compute (−→x1 · −→x2), different parties have
to collaborate. How to conduct this inner product computation across parties
without compromising each party’s data privacy presents a great challenge.
In next section, secure protocols are developed to tackle this challenge.

4 Protocols

To securely compute the inner product between two different parties, we
present secure protocols against both semi-honest and malicious party models
defined as follows.

Semi-honest Party Model: In this model, all the parties are assumed to
use their actual vectors as the inputs and exactly follow the predefined steps
in the protocol.

Malicious Party Model: In this model, we categorize the malicious
behaviors into two cases: (I) The malicious actions of one party does not intend
to gain any useful information from the other party; (II) The purpose of the
malicious actions of one party does intend to gain useful information from the
other party. The first category usually contains: (I1) refusing to participate
in the protocol; (I2) prematurely aborting the protocol; (I3) substituting an
input with an arbitrary value; (I4) providing more numbers or less numbers
than necessary. For example, assume P2 should receive m numbers for further
computation, but P1 sendsm1 numbers of encrypted terms withm1 �= m. The
second category contains: (II1) substituting an input vector with a purposely
chosen vector; for example, P1 wants to know the ith element, x2i, of P2’s
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instance −→x2, she changes her vector −→x1 to −→x1
′ by setting the jth element x1j = 0

for all j∈ [1,m], j �= i, and the ith element x1i be any value � except 0. As
we will discuss, after protocol 1, P1 obtains � × x2i. She can easily know x2i

by computing the following: (�×x2i)÷�. If she wants to know
∑m

i=1 x2i, she
may set x1j = 1 for all j ∈ [1,m]. Since −→x1 · −→x2 =

∑m
i=1 x2i, after Protocol 1,

she obtains
∑m

i=1 x2i.
In the following, we firstly discuss secure protocol against semi-honest

parties, and then provide a secure protocol against malicious parties.

4.1 Introducing Homomorphic Encryption

The concept of homomorphic encryption was originally proposed in [23]. Since
then, many such systems have been proposed [4, 18, 19, 21]. We observe that
some homomorphic encryption schemes, such as [8], are not robust against
chosen plaintext attacks. However, we base our secure protocols on [21], which
is semantically secure [11].

In our secure protocols, we use additive homomorphism offered by [21]. In
particular, we utilize the following characterizer of the homomorphic encryp-
tion functions: e(a1)×e(a2) = e(a1 +a2) where e is an encryption function; a1

and a2 are the data to be encrypted. Because of the property of associativity,
e(a1 + a2 + · · · + an) can be computed as e(a1) × e(a2) × · · · × e(an) where
e(ai) �= 0. That is

d(e(a1 + a2 + · · · + an)) = d(e(a1) × e(a2) × · · · × e(an)) (8)

d(e(a1)a2) = d(e(a1a2)) (9)

4.2 Secure Protocol Against Semi-Honest Parties

Let’s assume that P1 has an instance vector −→x1 and P2 has an instance vector
−→x2. Both vectors havem elements. We use x1i to denote the ith element in vec-
tor −→x1, and x2i to denote the ith element in vector −→x2. In order to compute the
K(−→x1,

−→x2), the key issue is how P1 and P2 compute the inner product between
−→x1 and −→x2 without disclosing them to each other. In our secure protocol, P1

adds a random number to each of her actual data values, encrypts the masked
values, and sends the encrypted masked terms to P2. By adding the random
numbers, P2 is prevented from guessing P1’s actual values based on encryp-
tion patterns. Firstly, one of parties is randomly chosen as a key generator.
For simplicity, let’s assume P1 is selected as the key generator. P1 generates a
cryptographic key pair (d, e) of a semantically-secure homomorphic encryp-
tion scheme and publishes its public key e. P1 applies the encryption key to
each element of x1 (e.g., e(x1i + ri)). P2 computes e(−→x1 · −→x2). He then sends
e(−→x1 · −→x2) to P1 who decrypts it and gets (−→x1 · −→x2).
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We describe this more formally as

Protocol 1. INPUT: P1’s input is a vector −→x1 = {x11, x12, . . . , x1m}, and
P2’s input is a vector −→x2 = {x21, x22, . . . , x2m}. The elements in the input
vectors are taken from the real number domain.

1. P1 performs the following operations:
a) She computes e(x1i +ri)s (i ∈ [1,m]) and sends them to P2. ri, known

only by P1, is a random number in real domain.
b) She computes e(−ri)s (i ∈ [1,m]) and sends them to P2.

2. P2 performs the following operations:
a) He computes t1 = e(x11 + r1)x21 = e(x11 . . . x21 + r1x21), t2 = e(x12 +
r2)x22 = e(x12 . . . x22 + r2x22), . . . , tm = e(x1m)x2m = e(x1m . . . x2m +
rmx2m).

b) He computes t1 × t2 × · · · × tm = e(x11 · x21 + x12 · x22 + · · · + x1m ·
x2m + r1x21 + r2x22 + · · · + rmx2m) = e(−→x1 · −→x2 +

∑m
i=1 rix2i).

c) He computes e(−ri)x2i = e(−rix2i) for i ∈ [1,m].
d) He computes e(−→x1 · −→x2 +

∑m
i=1 rix2i) × e(−r1x21) × e(−r2x22) × · · · ×

e(−rmx2m) = e(−→x1 · −→x2).

We need to show that the above protocol is correct, and that it preserves
the privacy of P1 and P2 as postulated in Sect. 3.1.

Lemma 1. (Correctness). Protocol 1 correctly computes the inner product
(−→x1 · −→x2) against semi-honest parties.

Proof. When P2 receives each encrypted element e(x1i + ri) and e(−ri), he
computes

∑m
i=1 e(x1i + ri)x2i which, according to (9), is equal to e(

∑m
i=1 x1i ·

x2i +
∑m

i=1 rix2i) for all i ∈ [1,m]. He then computes e(−→x1 ·−→x2 +
∑m

i=1 rix2i)×
e(−r1x21)× e(−r2x22)× · · · × e(−rmx2m) = e(−→x1 · −→x2) according to (8). After
that, he sends it to P1 who computes d(e(−→x1 · −→x2)) = (−→x1 · −→x2). Therefore,
(−→x1 · −→x2) is correctly computed.

Lemma 2. (Privacy-Preserving). Assuming the parties follow the protocol,
the private data are securely protected.

Proof. There are two points we need analyze. (1) Whether P1 can obtain P2’s
private data. There is no information that P2 sends to P1, thus, P2’s private
data cannot be disclosed to P1. (2) Whether P2 can obtain P1’s private data.
What P2 receives from P1 is encrypted and masked element of P1’s data. Since
P2 has no decryption key and doesn’t know the random number used by P1,
it is impossible that P2 can obtain P1’s private data.

Lemma 3. (Efficiency). Protocol 1 is efficient from both computation and
communication point of view.

Proof. To prove the efficiency, we need conduct complexity analysis of the
protocol. The bit-wise communication cost of this protocol is (2m+1)α where
α is the number of bits for each transmitted element. The following contributes
to the computational cost: (1) 2m encryptions; (2) 2m exponentiations; (2)
2m−1 multiplications. Therefore, the protocol is sufficient fast.
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4.3 Privacy Against Malicious Parties

In the last section, we provide the secure protocol for semi-honest parties.
In practice, providing a protocol against malicious parties is demanding. We
cannot hope to stop all the attacks I1, I2, and I3. I4 can be easily detected by
counting the number of terms received and comparing with the legal number
of terms. In this section, we will mainly deal with the second category. We also
think the attack in this category (i.e., II1) is critical from privacy protection
point of view. To deal with II1, the collaborative parties need to predefine
the malicious pattern for their input vectors,2 they then detect during the
protocol whether each other’s input is legal by the following protocol:

Protocol 2. (Oblivious K Computation)

1. P2 performs the following:
a) P2 generates a vector −→x2

′ with m elements. (Note that −→x2
′ cannot be a

malicious vector predefined by the collaborative parties.)
b) After P2 receives the encrypted terms from P1, i.e., e(x1i) for all i ∈

[1,m], he uses x2 to conduct Step 2 (protocol 1) except that he doesn’t
send e(−→x1 · −→x2) to P1; he then uses x′2 to conduct Step 2 (Protocol 1)
except that he doesn’t send e(−→x1 · −→x2

′) to P1.
c) P2 flips a fair coin to decide the order in which e(−→x1 ·−→x2) and e(−→x1 ·−→x2

′)
are to be sent to P1, e.g. if it is heads, he firstly sends e(−→x1 · −→x2), and
then e(−→x1 ·−→x2

′) to P1; if it is tails, he firstly sends e(−→x1 ·−→x2
′), and then

e(−→x1 · −→x2).

2. P1 performs the following:
a) P1 decrypts the e(−→x1 ·−→x2) and e(−→x1 ·−→x2

′) and obtains −→x1 ·−→x2 and −→x1 ·−→x2
′.

She checks whether P2 uses a malicious input vector (a vector from a
closed list of predefined, special vector values). If she detects that P2

uses a malicious input vector, she doesn’t send −→x1 · −→x2 and −→x1 · −→x2
′ to

P2 and halts the protocol. Otherwise, she sends P2
−→x1 · −→x2 and −→x1 · −→x2

′

in the same order P2 used.
3. P2 checks whether P1 uses a malicious input vector. If yes, he halts the

protocol without telling P1 which of the two vectors is −→x1 · −→x2, and which
one is −→x1 ·−→x2

′. Otherwise, he sends −→x1 ·−→x2 to P1 (he can distinguish between
−→x1 · −→x2 and −→x1 · −→x2

′ based on the order he received from P1.)

We now discuss that this protocol preserves the privacy in the presence of
the attack of type II1. Since P1 is the first to obtain the results, i.e. −→x1 ·−→x2 and
−→x1 · −→x2

′, she checks whether P2 is using a malicious input vector. If she finds
that he does, she keeps the final results and halts the protocol. Therefore, P1’s
privacy is preserved since P2 does not obtain the decrypted results. On the
other hand, since P2 has the other pseudo vector x′2, P1 can’t distinguish which
of the two vectors gives correct result; she has to send the two results e.g.,

2These patterns should be detectable through the targeted computation results.
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−→x1 · −→x2 and −→x1 · −→x2
′, back to P2 in order to get the right one. After he receives

−→x1 · −→x2 and −→x1 · −→x2
′ from P1, P2 checks whether P1 used a malicious input

vector. If he finds that she does, he will not let her know the correct result.
In this case, the probability that she correctly guesses P2’s information is 1

2 .
To decrease this probability, P2 can generate more pseudo-random vectors.
The computation overhead is O(ωm), and the communication overhead will
be 2β(m + 1 + ω) where ω is number of pseudo-random vectors generated.
Furthermore, we could let P1 and P2 take turns as the key generator. When
computing the first half of their vector inner product, P1 is selected as the
key generator; when computing the second half of the vector inner product,
P2 is selected as the key generator.

The two protocols presented in this section compute the real domain inner
product between two instances belonging to different parties, without reveal-
ing the actual data of one of the parties to the other party. Once the inner
product is obtained, the kernel function can be easily computed. After the nec-
essary kernel functions are computed, training SVMs can be done following
SMO procedure.

5 Conclusion

In this paper, we consider the problem of collaboratively learning Support
Vector Machines, by using linear, polynomial or sigmoid kernel functions, on
private data. We develop a secure collaborative protocol based on semanti-
cally secure homomorphic encryption scheme. In our protocol, the parties do
not need to send all their data to a central, trusted party. Instead, we use
the homomorphic encryption and random perturbation techniques to conduct
the computations across the parties without compromising their data privacy.
We develop two secure protocols to deal with semi-honest and malicious mod-
els respectively. Privacy analysis is provided. Correctness of our protocols is
shown and complexity of the protocols is addressed as well. As future work,
we will develop secure protocols for the cases where other kernel functions are
applied. We will also apply our technique to other data mining computations,
such as secure collaborative clustering.
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1 Introduction

Recent advances1 in computer networking and database technologies have re-
sulted in creation of large quantities of data which are located in different sites.
Data mining is a useful tool to extract valuable knowledge from this data. Well
known data mining algorithms include association rule mining, classification,
clustering, outlier detection, etc. However, extracting useful knowledge from
distributed sites is often challenging due to real world constraints such as
privacy, communication and computation overhead.

In this paper, we focus on privacy-preserving data mining in a distributed
setting where the different sites have diverse sets of records. Specially, we
consider the problem of privacy-preserving naive Bayesian classification that
is one of the most successful algorithms in many classification domains. A
Bayesian network is a high-level representation of a probability distribution
over a set of variables that are used for constructing a model of the problem
domain. It has been widely used in sales decision making, marketing systems,
risk analysis, cost benefit factor inference in E-services, and other business
applications. A Bayesian network have many applications. For instance it can
be used to compute the predictive distribution on effects of possible actions
since it is a model of the problem domain probability distribution.

A naive Bayesian classifier is one of Bayesian classifiers under conditional
independence assumption of different features. Over the last decade, the naive
Bayesian classification has been widely utilized. Although the techniques that
have been developed are effective, new techniques dealing with naive Bayesian
classification over private data are required. In other words, we need methods
1The preliminary version of this paper has been published [22].
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to learn a naive Bayesian classifier over distributed private data. In this pa-
per, we develop a new scheme based on homomorphic encryption without
compromising data privacy.

2 Related Work

In early work on privacy-preserving data mining, Lindell and Pinkas [13] pro-
pose a solution to privacy-preserving classification problem using oblivious
transfer protocol, a powerful tool developed by secure multi-party computa-
tion (SMC) research [10, 21]. The techniques based on SMC for efficiently
dealing with large data sets have been addressed in [20]. Randomization
approaches were firstly proposed by Agrawal and Srikant in [2] to solve
privacy-preserving data mining problem. Researchers proposed more random
perturbation-based techniques to tackle the problems (e.g., [5, 7, 18]). In ad-
dition to perturbation, aggregation of data values [19] provides another al-
ternative to mask the actual data values. In [1], authors studied the problem
of computing the kth-ranked element. Dwork and Nissim [6] showed how to
learn certain types of boolean functions from statistical databases in terms of
a measure of probability difference with respect to probabilistic implication,
where data are perturbed with noise for the release of statistics. The problem
we are studying is actually a special case of a more general problem, the Secure
Multi-party Computation (SMC) problem. Briefly, a SMC problem deals with
computing any function on any input, in a distributed network where each
participant holds one of the inputs, while ensuring that no more information
is revealed to a participant in the computation than can be inferred from that
participant’s input and output [12]. The SMC problem literature is extensive,
having been introduced by Yao [21] and expanded by Goldreich, Micali, and
Wigderson [11] and others [8]. It has been proved that for any function, there
is a secure multi-party computation solution [10]. The approach used is as
follows: the function F to be computed is first represented as a combinatorial
circuit, and then the parties run a short protocol for every gate in the circuit.
Every participant gets corresponding shares of the input wires and the output
wires for every gate. This approach, though appealing in its generality and
simplicity, means that the size of the protocol depends on the size of the cir-
cuit, which depends on the size of the input. This is highly inefficient for large
inputs, as in data mining. It has been well accepted that for special cases of
computations, special solutions should be developed for efficiency reasons.

3 Building Naive Bayesian Classifiers

3.1 Notations

• e: public key.
• d: private key.
• Pi: the ith party.
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• n: the total number of parties. Assuming n > 2.
• m: the total number of class.
• τ : the total number attribute.
• α is the number of bits for each transmitted element in the privacy-

preserving protocols.
• N: the total number of records.

3.2 Cryptography Tools

Our scheme is based on homomorphic encryption which was originally pro-
posed in [17]. Since then, many such systems have been proposed [3, 14–16].
We observe that some homomorphic encryption schemes, such as [4], are not
robust against chosen cleartext attacks. However, we base our secure protocols
on [16], which is semantically secure [9].

In our secure protocols, we use additive homomorphism offered by [16]. In
particular, we utilize the following characterizer of the homomorphic encryp-
tion functions: e(a1)×e(a2) = e(a1 +a2) where e is an encryption function; a1

and a2 are the data to be encrypted. Because of the property of associativity,
e(a1 + a2 + · · · + an) can be computed as e(a1) × e(a2) × · · · × e(an) where
e(ai) �= 0. That is

d(e(a1 + a2 + · · · + an)) = d(e(a1) × e(a2) × · · · × e(an)) (1)

d(e(a1)a2) = d(e(a1a2)) (2)

3.3 Introducing Naive Bayesian Classification

The naive Bayesian classification is one of the most successful algorithms
in many classification domains. Despite of its simplicity, it is shown to be
competitive with other complex approaches, especially in text categoriza-
tion and content based filtering. The naive Bayesian classifier applies to
learning tasks where each instance x is described by a conjunction of at-
tribute values and where the target function f(x) can take on any value
from some finite set V. A set of training examples of the target function
is provided, and a new instance is presented, described by the tuple of at-
tribute values <a1, a2, . . . , an>. The learner is asked to predict the target
value for this new instance. Under a conditional independence assumption,
i.e., Pr(a1, a2, . . . , an|vj) =

∏n
i=1 Pr(ai|vj), a naive Bayesian classifier can be

derived as follows:

VNB = argmaxvj∈V Pr(vj)
τ∏

i=1

Pr(ai|vj) (3)

In this paper, we will design a privacy-preserving system to show how
to compute a naive Bayesian classifier. The goal of our privacy-preserving
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classification system is to disclose no private data in every step. We firstly
select a key generator who produces the encryption and decryption key pairs.
The computation of the whole system is under encryption. For the purpose
of illustration, let’s assume that Pn is the key generator who generates a
homomorphic encryption key pair (e, d). To build a NB classifier, we need
conduct the following major steps: (1) To compute e(

∏n
i=1 Pr(ai|vj)); (2) To

compute e(Pr(vj)); (3) To compute argmaxvj∈V Pr(vj)
∏n

i=1 Pr(ai|vj). Next,
we will show how to conduct each step.

3.4 Privacy-Preserving Naive Bayesian Classification

To Compute e(
∏τ

i=1 Pr(ai|vj))

Protocol 1.

1. Pn computes e(
∏

ai∈Pn
Pr(ai|vj)) denoted by e(Gn) and sends it to P1.

2. P1 computes e(Gn)G1 = e(G1Gn) where G1 =
∏

ai∈P1
Pr(ai|vj), then

sends e(G1Gn) to P2.
3. P2 computes e(G1Gn)G2 = e(G1G2Gn) where G2 =

∏
ai∈P2

Pr(ai|vj),
then sends e(G1G2Gn) to P3.

4. Continue until Pn−1 obtains e(G1G2 · · ·Gn) = e(
∏τ

i=1 Pr(ai|vj)).

Theorem 1. (Correctness). Protocol 1 correctly computes e(
∏τ

i=1 Pr(ai|vj)).

Proof. When P1 receives e(Gn), he computes e(Gn)G1 which is equal to
e(G1Gn) according to (2). He sends it to P2 who computes e(G1Gn)G2 which
is equal to e(G1G2Gn) according to (2). Continuing to send the result to the
next party. Finally, Pn−1 obtains e(G1G2 · · ·Gn) = e(

∏τ
i=1 Pr(ai|vj)). There-

fore, Protocol 1 correctly computes e(
∏τ

i=1 Pr(ai|vj)).

Theorem 2. (Privacy-Preserving). Assuming the parties follow the protocol,
the private data are securely protected.

Proof. In Protocol 1, all the data transmission are hidden under encryption.
The parties who are not the key generator can’t see other parties’ private
data. On the other hand, the key generator doesn’t obtain the encryption of
other parties’ private data. Therefore, Protocol 1 discloses no private data.

Theorem 3. (Efficiency). Protocol 1 is efficient in terms of computation and
communication complexity.

Proof. To prove the efficiency, we need conduct complexity analysis of the
protocol. The bit-wise communication cost of this protocol is α(n − 1). The
computation cost is upper bounded by N + nt. Therefore, the protocol is
sufficient fast.
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To Compute e(Pr(vj))

Protocol 2.

1. Each party computes the share Pr(vj) for their own class label set. Let
assume that P1 has the share s1, P2 has the share s2, . . . , Pn has the share
sn. Our goal is to compute

∑n
i=1 si.

2. Pn computes e(sn) and sends it to P1.
3. P1 computes e(sn) × e(s1) = e(s1 + sn), then sends it to P2.
4. P2 computes e(s1 + sn) × e(s2) = e(s1 + s2 + sn).
5. Repeat until Pn−1 obtains e(

∑n
i=1 si) = e(Pr(vj)).

Theorem 4. (Correctness). Protocol 2 correctly computes e(Pr(vj)).

Proof. When P1 receives e(sn), he computes e(sn) × e(s1) which is equal to
e(s1 +sn) according to (2). He sends it to P2 who computes e(s1 +sn)× e(s2)
which is equal to e(s1 + s2 + sn) according to (2). Continuing to send the
result to the next party. Finally, Pn−1 obtains e(s1 + s2 · · · sn) = e(Pr(vj)).
Therefore, Protocol 2 correctly computes e(Pr(vj)).

Theorem 5. (Privacy-Preserving). Assuming the parties follow the protocol,
the private data are securely protected.

Proof. In Protocol 2, all the data transmission are hidden under encryption.
The parties who are not the key generator can’t see other parties’ private
data. On the other hand, the key generator doesn’t obtain the encryption of
other parties’ private data. Therefore, Protocol 2 discloses no private data.

Theorem 6. (Efficiency). Protocol 2 is efficient in terms of computation and
communication complexity.

Proof. To prove the efficiency, we need conduct complexity analysis of the
protocol. The bit-wise communication cost of this protocol is α(n − 1). The
computation cost is upper bounded by N + n. Therefore, the protocol is
sufficient fast.

To Compute e(Pr(vj)
∏τ

i=1 Pr(ai|vj))

Protocol 3.

1. Pn−1 generates a set of random numbers: r1, r2, . . . , rt. He then sends
e(Pr(vj)), e(r1), . . . , rt to Pn in a random order.

2. Pn decrypts each element in the sequence, then sends them to P1 in the
same order as Pn−1 did.

3. Pn−1 sends e(
∏τ

i=1 Pr(Pr(ai, vj))) to P1.
4. P1 computes e(

∏τ
i=1 Pr(Pr(ai, vj)))Pr(vj), e(

∏τ
i=1 Pr(Pr(ai, vj)))r1 , . . . ,

e(
∏τ

i=1 Pr(Pr(ai, vj)))rt . P1 then sends them to Pn−1.
5. Pn−1 obtains e(Pr(vj)

∏τ
i=1 Pr(ai|vj)).
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Theorem 7. (Correctness). Protocol 3 correctly computes e(Pr(vj)
∏τ

i=1 Pr
(ai|vj)).

Proof. In step 4, P1 computes e(
∏τ

i=1 Pr(Pr(ai, vj)))Pr(vj), e(
∏τ

i=1 Pr(Pr
(ai, vj)))r1 , . . . , e(

∏τ
i=1 Pr(Pr(ai, vj)))rt . They are equal to e(Pr(vj)

∏τ
i=1 Pr

(Pr(ai, vj))), e(r1
∏τ

i=1 Pr(Pr(ai, vj))), . . . , e(rt
∏τ

i=1 Pr(Pr(ai, vj))) respec-
tively according to (2). In step 5, Pn−1 gets e(Pr(vj)

∏τ
i=1 Pr(Pr(ai, vj)))

since he knows the permutations.

Theorem 8. (Privacy-Preserving). Assuming the parties follow the protocol,
the private data are securely protected.

Proof. In Protocol 3, all the data transmission, among the parties who have no
decryption key, are hidden under encryption. Therefore, these parties cannot
know the private data. In step 2, Pn obtains the sequence of Pr(vj), r1, . . . , rt.
Since it is in a random order, Pn cannot identify Pr(vj).

Theorem 9. (Efficiency). Protocol 3 is efficient in terms of computation and
communication complexity.

Proof. The bit-wise communication cost of this protocol is upper bounded
by α(3t + 4). The computation cost is upper bounded by 5t. Therefore, the
protocol is sufficient fast.

Through the above protocol, e(Pr(vj)
∏n

i=1 Pr(ai|vj)) can be com-
puted for each vj ∈ V . Without loss of generality, let’s assume P1 gets
e(VNB1), e(VNB2), . . . , e(VNBk

) The goal is to find the largest one.

To Compute VNB

Protocol 4.

1. P1 computes e(VNBi
) × e(VNBj

)−1 = e(VNBi
− VNBj

) for all i, j ∈
[1, k], i > j, and sends the sequence denoted by ϕ to Pn in a random
order.

2. Pn decrypts each element in the sequence ϕ. He assigns the element +1 if
the result of decryption is not less than 0, and −1, otherwise. Finally, he
obtains a +1/− 1 sequence denoted by ϕ′.

3. Pn sends +1/ − 1 sequence ϕ′ to P1 who computes the largest element.

Theorem 10. (Correctness). Protocol 4 correctly computes VNB.

Proof. P1 is able to remove permutation effects from ϕ′ (the resultant se-
quence is denoted by ϕ′′) since she has the permutation function that she
used to permute ϕ, so that the elements in ϕ and ϕ′′ have the same order. It
means that if the qth position in sequence ϕ denotes e(VNBi

−VNBj
), then the

qth position in sequence ϕ′′ denotes the evaluation results of VNBi
-VNBj

. We
encode it as +1 if VNBi

≥ VNBj
, and as −1 otherwise. P1 has two sequences:
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Table 1.

VNB1 VNB2 VNB3 · · · VNBk

VNB1 +1 +1 −1 · · · −1
VNB2 −1 +1 −1 · · · −1
VNB3 +1 +1 +1 · · · +1
· · · · · · · · · · · · · · · · · ·
VNBk +1 +1 −1 · · · +1

Table 2.

S1 S2 S3 S4 Weight

S1 +1 −1 −1 −1 −2
S2 +1 +1 −1 +1 +2
S3 +1 +1 +1 +1 +4
S4 +1 −1 −1 +1 0

one is the ϕ, the sequence of e(VNBi
− VNBj

), for i, j ∈ [1, k](i > j), and
the other is ϕ′′, the sequence of +1/ − 1. The two sequences have the same
number of elements. P1 knows whether or not VNBi

is larger than VNBj
by

checking the corresponding value in the ϕ′′ sequence. For example, if the first
element ϕ′′ is −1, P1 concludes VNBi

< VNBj
. P1 examines the two sequences

and constructs the index table (Table 1) to compute the largest element.
In Table 1, +1 in entry ij indicates that the information gain of the row

(e.g., VNBi
of the ith row) is not less than the information gain of a column

(e.g., VNBj
of the jth column); −1, otherwise. P1 sums the index values of

each row and uses this number as the weight of the information gain in that
row. She then selects the one that corresponds to the largest weight.

To make it clearer, let’s illustrate it by an example. Assume that: (1)
there are four information gains with VNB1 < VNB4 < VNB2 < VNB3 ; (2) the
sequence ϕ is [e(VNB1 − VNB2), e(VNB1 − VNB3), e(VNB1 − VNB4), e(VNB2 −
VNB3), e(VNB2 − VNB4), e(VNB3 − VNB4)]. The sequence ϕ′′ will be
[−1,−1,−1,−1,+1,+1]. According to ϕ and ϕ′′, P1 builds the Table 2.
From the table, P1 knows VNB3 is the largest element since its weight, which
is +4, is the largest.

Theorem 11. (Privacy-Preserving). Assuming the parties follow the protocol,
the private data are securely protected.

Proof. In Protocol 4, we need prove it from two aspects: (1) P1 doesn’t get
information gain (e.g.,VNBi

) for each attribute. What P1 gets are e(VNBi
−

VNBj
) for all i, j ∈ [1, k], i > j and +1/ − 1 sequence. By e(VNBi

− VNBj
),

P1 cannot know each information gain since it is encrypted. By +1/ − 1
sequence, P1 can only know whether or not VNBi

is greater than Pj . (2) Pn

doesn’t obtain information gain for each attribute either. Since the sequence
of e(VNBi

−VNBj
) is randomized before being send to Pn who can only know
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the sequence of VNBi
− VNBj

, he can’t get each individual information gain.
Thus private data are not revealed.

Theorem 12. (Efficiency). The computation of Protocol 4 is efficient from
both computation and communication point of view.

Proof. The total communication cost is upper bounded by αm2. The total
computation cost is upper bounded by m2 +m+ 1. Therefore, the protocols
are very fast.

4 Overall Discussion

Our privacy-preserving classification system contains several components. In
Sect. 3.4, we show how to correctly compute e(Pr(ai|vj))). In Sect. 3.4, we
discuss how to compute e(Pr(vj)). In Sect. 3.4, we present protocols to com-
pute e(Pr(vj)

∏n
i=1

Pr(ai,vj)
Pr(vj)

) for each vj ∈ V . In Sect. 3.4, we show how to
compute the final naive Bayesian classifier. We discussed the correctness of
the computation in each section. Overall correctness is also guaranteed.

As for the privacy protection, all the communications between the par-
ties are encrypted, therefore, the parties who has no decryption key cannot
gain anything out of the communication. On the other hand, there are some
communication between the key generator and other parties. Although the
communications are still encrypted, the key generator may gain some useful
information. However, we guarantee that the key generator cannot gain the
private data by adding random numbers in the original encrypted data so that
even if the key generator get the intermediate results, there is little possibility
that he can know the intermediate results. Therefore, the private data are
securely protected with overwhelming probability.

In conclusion, we provide a novel solution for naive Bayesian classification
over horizontally partitioned private data. Instead of using data transforma-
tion, we define a protocol using homomorphic encryption to exchange the data
while keeping it private. Our classification system is quite efficient that can
be envisioned by the communication and computation complexity. The total
communication complexity is upper bounded by α(m2 + 2n + 3t + 2). The
computation complexity is upper bounded by 2N +m2 +(5+n)t+n+m+1.
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Summary. This chapter introduces a belief theoretic method for classification from
databases having class label ambiguities. It uses a set of association rules extracted
from such a database. It is assumed that a training data set with an adequate num-
ber of pre-classified instances, where each instance is assigned with an integer class
label, is available. We use a modified association rule mining (ARM) technique to
extract the interesting rules from the training data set and use a belief theoretic
classifier based on the extracted rules to classify the incoming feature vectors. The
ambiguity modelling capability of belief theory enables our classifier to perform bet-
ter in the presence of class label ambiguities. It can also address the issue of the
training data set being unbalanced or highly skewed by ensuring that an approxi-
mately equal number of rules are generated for each class. All these capabilities make
our classifier ideally suited for those applications where (1) different experts may
have conflicting opinions about the class label to be assigned to a specific training
data instance; and (2) the majority of the training data instances are likely to rep-
resent a few classes giving rise to highly skewed databases. Therefore, the proposed
classifier would be extremely useful in security monitoring and threat classification
environments where conflicting expert opinions about the threat level are common
and only a few training data instances would be considered to pose a heightened
threat level. Several experiments are conducted to evaluate our proposed classifier.
These experiments use several databases from the UCI data repository and data
sets collected from the airport terminal simulation platform developed at the Dis-
tributed Decision Environments (DDE) Laboratory at the Department of Electrical
and Computer Engineering, University of Miami. The experimental results show
that, while the proposed classifier’s performance is comparable to some existing
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classifiers when the databases have no class label ambiguities, it provides superior
classification accuracy and better efficiency when class label ambiguities are present.

1 Introduction

Classification is one of the most widely addressed tasks in data mining and
machine learning. Numerous interesting approaches have been proposed to
handle this problem in the literature. However, in most of the classification
problems, the knowledge about the conditional probability density function on
each class label is usually unavailable and in such cases, several of the most
widely used classifiers, e.g., Bayesian classifiers [13], may not be suitable.
To address the issue when there is no evidence to support one form of the
density function or another, a good solution is to build up a training data
set of correctly classified feature vectors or samples and to classify each new
incoming feature vector using the evidence provided by the ‘nearby’ samples
from the training data set.

One important contribution along this approach was voting k nearest
neighbor classifier [9], which is commonly referred to as the KNN classifier.
The KNN classifier assigns a class to an unclassified feature vector based on the
majority class of the k nearest neighbors in the training data set. It implicitly
assumes that the neighbors for an incoming feature vector are concentrated
in a small ‘volume’ in the feature space, and thus ensures sufficiently good
resolution in the estimates of the different conditional densities. The KNN
approach is very popular in the data mining and pattern recognition commu-
nities, and achieves good performance for most applications. As mentioned
in [4], when the number of samples and the number of neighbors (N and k
respectively) both tend to infinity while k/N → 0, the error rate of the KNN
classifier approaches the optimal Bayes error rate. However, this algorithm is
only applicable for databases that do not possess any ambiguities.

Throughout the past decades, different modifications have been proposed
to improve the performance of the KNN classifier [5,6]. For example, the work
in [6] addresses one of the main drawbacks of its ‘crisp’ version cited in [4] by
adding the capability of using training data sets with class label ambiguities.
This classifier, which was based on the belief theory [16, 20, 21, 24, 28], not
only handles training data sets with class label ambiguities, but also offers
an improvement in classification accuracy. However, the classifier selects the
neighbors by searching through the whole training data set. Hence, it requires
a higher computational overhead, which is one of its main disadvantages.

With this background work in mind, consider a system that is used for
threat detection and assessment purposes. Such a system would necessarily
receive information from heterogeneous sensors (e.g., radiation sensors, ultra-
sound sensors, metal detectors, fume detectors, etc.). This information would
then have to be utilized to classify potential threat targets to different threat
classes. The training data set for such a system can be constructed with the
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help of several domain experts who would classify the feature vectors (of the
instances) into different threat level classes. In such a situation, it is likely
that the domain experts would arrive at conflicting threat levels, which es-
sentially introduces ambiguities into the class labels of the instances in the
training data set. In addition, although the number of training data instances
that are classified as having a heightened threat level would likely be very
small, identification of targets possessing a heightened threat level would be
of critical importance. For example, suppose the threat classes for an airport
terminal security monitoring system are the following:

{NotDangerous, OfConcern, Dangerous, ExtremelyDangerous}. (1)

In the training data set, one is likely to encounter a larger number of instances
labeled as NotDangerous and very few labeled as ExtremelyDangerous. The
classification results then may be biased toward the majority class.

In essence, a classifier for such a scenario needs to effectively address the
following characteristics:

(C1) The training data set may contain ambiguities in the class labels due
to the conflicting conclusions made by different domain experts.

(C2) The computational and storage requirements should be tolerable so
that classification can be carried out in real-time.

(C3) The threat class distribution in the training data set can be highly
skewed.

In this chapter, a classifier that can effectively take into consideration the
above characteristics typical of a threat detection and assessment scenario is
proposed [31]. To address (C1), several different and effective approaches are
available, for example, rough set theory [29,30] and belief theory. The relation-
ship between belief theory and other mechanisms can be found on [8,15,17,26].
In our proposed classifier, belief theoretic notions are adopted. This is mainly
motivated by the fact that belief theory provides an easy and convenient way
for handling ambiguities. A classifier facilitated with belief theoretic notions
can improve the overall classification accuracy while providing a quantitative
‘confidence interval’ on the classification results.

To address (C2), the classifier is developed to operate on a rule set ex-
tracted by an ARM algorithm that has been appropriately modified to han-
dle class label ambiguities. This rule set is significantly smaller than the size
of the original database. This is the main difference between our proposed
classifier and the KNN-BF classifier in [4]. ARM has demonstrated its ca-
pability of discovering interesting and useful co-occurring associations among
data in large databases [1,14,19,25]. In the classifier mentioned in [18], it uses
a modified ARM method to extract the association rules. However, it does
not effectively address (C2).

To address (C3), the proposed ARM algorithm is applied to different par-
titions of the database where the partitioning is based on the class labels. This
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simple modification results in an algorithm that generates an approximately
equal number of rules from each class irrespective of whether it is a majority
class or not.

The rest of this chapter is organized as follows. Our proposed classifier,
which we refer to as the ARM-KNN-BF classifier, is discussed in Sect. 2; a
primer on belief theory and the strategy we employ to accommodate highly
skewed databases are also discussed in Sect. 2. Section 3 presents the experi-
mental results. Conclusion, which includes several interesting research direc-
tions, appears in Sect. 4.

2 The Proposed ARM-KNN-BF Classifier

Although ARM in its original form can be deployed for extracting rules from
large databases based on minimum support and minimum confidence condi-
tions [1], it does not effectively address all the requirements (C1–C3) stated
in Sect. 1. For example, one may develop a classifier based on rules that are
generated by simply ignoring all the training data instances possessing class
label ambiguities. But this strategy can potentially exclude a large portion
of the training data instances that would have otherwise provided extremely
crucial information. Moreover, since the training data set is highly skewed,
a classifier built on it tends to favor the majority classes at the expense of
the minority classes. Avoidance of this scenario is of paramount importance
since this could result in devastating consequences in a threat classification
environment.

As mentioned previously, we use belief theoretic notions to address (C1).
One could alleviate the computational and storage burdens (C2) as well as
the problems due to skewness of the database (C3) significantly by using a
coherent set of rules in the classifier that effectively captures the re-occurring
patterns in the database [31]. An effective ARM mechanism, as demonstrated
in [18], can produce such a set of rules.

Each stage of the proposed algorithm can be summarized as follows: The
training phase consists of partitioned ARM, rule pruning and rule refinement.
The partitioned ARM mechanism generates an approximately equal number of
rules in each class. The rule pruning and refinement processes use the training
data set to select the important rules. The Dempster–Shafer belief theoretic
notions [24] are utilized in the classification stage where a classifier that is
capable of taking certain types of ambiguities into account when classifying
an unknown instance has been introduced.

2.1 Belief Theory: An Introduction

Let Θ = {θ1, θ2, . . . , θn} be a finite set of mutually exclusive and exhaustive
‘hypotheses’ about the problem domain. It signifies the corresponding ‘scope
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of expertise’ and is referred to as its frame of discernment (FoD) [24]. A hypo-
thesis θi represents the lowest level of discernible information in this FoD;
it is referred to as a singleton. Elements in 2Θ, the power set of Θ, form
all hypotheses of interest. A hypothesis that is not a singleton is referred
to as a composite hypothesis, e.g., (θ1, θ2). From now on, we use the term
‘proposition’ to denote both singleton and composite hypotheses. Cardinality
of Θ is denoted by |Θ|.

A mass function or a basic probability assignment (BPA) is a function
m : 2Θ /→ [0, 1] that satisfies

m(∅) = 0 and
∑
A⊆Θ

m(A) = 1. (2)

Thus m(A) can be interpreted as a measure that one is willing to commit ex-
plicitly to proposition A and not to any of its subsets. Committing support for
a proposition does not necessarily imply that the remaining support is com-
mitted to its negation, thus relaxing the additivity axiom in the probability
formalism. Propositions for which there is no information are not assigned an
a priori mass. Rather, the mass of a composite proposition is allowed to move
into its constituent singleton propositions only with the reception of further
evidence.

The set of propositions each of which receives a non-zero mass is referred
to as the focal elements; we denote it via FΘ. The triple {Θ,FΘ,m(�)} is
referred to as the corresponding body of evidence (BoE). The vacuous BPA
that enables one to characterize complete ignorance is

m(A) =

{
1, if A = Θ;
0, otherwise.

(3)

The belief of a proposition takes into account the support one has for all
its proper subsets and is defined as

Bel(A) =
∑
B⊆A

m(B). (4)

It is a measure of the unambiguous support one has for A.
The notion of plausibility is used as a measure of the extent one finds the

proposition A plausible and is defined as

Pl(A) = 1 −Bel(A) =
∑

B∩A 	=∅
m(B). (5)

This indicates how much one’s belief could be ‘swayed’ with further evidence.
A probability distribution Pr(�) that satisfies Bel(A) ≤ Pr(A) ≤ Pl(A),

∀A ⊆ Θ, is said to be compatible with the underlying BPA m(�). An example
of such a probability distribution is the pignistic probability distribution Bp
defined for each singleton θi ∈ Θ [27] as
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Bp(θi) =
∑
θi∈A

m(A)
|A| . (6)

When the information is provided by two independent BoEs {Θ,F1,m1(�)}
and {Θ,F2,m2(�)} that span the same FoD Θ, they can be combined or ‘fused’
to create a single BoE {Θ,F ,m(�)} by using Dempster’s rule of combination
(DRC) [24]:

m(C) =

⎧⎪⎪⎨⎪⎪⎩
0, for C = ∅;

∑
A∩B=C m1(A)m2(B)

K
, for C �= ∅,

(7)

where K ≡ 1 −
∑

A∩B=∅m1(A)m2(B) �= 0. DRC is one of the most widely
used belief theoretic evidence combination functions. This fusion operation is
denoted as m1⊕m2 and referred to as the orthogonal sum of m1(�) and m2(�).

2.2 Data Model

The training data set (database) is denoted by DTR = {Ti}, where Ti, i =
1, NTR, is a data instance in the training data set; NTR is the cardinality of
DTR. Assume that there are NF features in the database. An instance can
then be represented as follows:

Ti =<Fi, Ci>, where Fi =< f1i, f2i, . . . , fNF i > . (8)

The i-th feature vector is represented by Fi; its features are denoted by
fji, j = 1, NF . The class label assigned to the i-th data instance is denoted
by Ci.

With this notation in place, for all i = 1, NTR, the FoD of the class label
is taken to be identical, finite and equal to

ΘC = {θ(1)C , θ
(2)
C , . . . , θ

(NC)
C }, (9)

where NC is the number of discernible class labels. Taking the example
given in Sect. 1, we would have ΘC = {NotDangerous, OfConcern, Dangerous,
ExtremelyDangerous}. We refer to the class label Ci as a partially ambigu-
ous class label if it can be represented as a single composite proposition and
Ci �= ΘC ; if Ci = ΘC , we refer to it as a completely ambiguous class label.

For all i = 1, NTR, the FoD of each feature fji is also considered to be
identical, finite and equal to

Θfji
= {Θ(1)

fji
, Θ

(2)
fji
, . . . , Θ

(nfji
)

fji
}, (10)

where nfji
represents the number of possible values that the j-th feature may

take. Thus the possible values that each feature vector Fi may take is a subset
of the NF -fold cross product of 2Θfji , that is, 2Θf1i × 2Θf2i × · · · × 2

ΘfN
F i [7].
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2.3 Partitioning the Training Data Set

As we discussed in Sect. 1, special care has to be taken to account for the
skewness of the database. To this end, we propose to apply the ARM algorithm
to certain partitions of DTR. The partitions are constructed based on the class
labels of the training data instances that have been pre-classified. A separate
partition is created for each class label, irrespective of whether the class label
is a singleton or a composite proposition from ΘC . Thus, we enumerate the
‘newly created’ class labels as C(k), k = 1, NTC , where |ΘC | ≤ NTC ≤ 2|ΘC |.
Note that NTC attains its upper bound when the class labels of the training
data set span all possible subsets from ΘC .

Denoting each partition by P (k), k = 1, NTC , the training data set can be
represented as the union of the partitions, viz.,

DTR =
NT C⋃
k=1

P (k). (11)

It is clear that the partitions are mutually exclusive, i.e., P (k1) ∩ P (k2) = ∅,
whenever k1 �= k2.

Recall the example in Sect. 1. Suppose certain training data instances have
been classified as (OfConcern, Dangerous) due to the conflicting options of the
experts. Thus, the training data set could be subdivided into five partitions,
{P (1), P (2), P (3), P (4), P (5)}, where the first four partitions would contain the
training data instances with labels NotDangerous, OfConcern, Dangerous and
ExtremelyDangerous, respectively, and P (5) would correspond to the ambigu-
ous class label (OfConcern, Dangerous).

2.4 Partitioned-ARM

The ARM algorithm generates rules ri of the form X → Y , where the an-
tecedent is X ⊆ ΘF and consequence is Y ⊆ ΘC . The ‘quality’ of a rule is
characterized by the support and confidence measures. To achieve an approx-
imately equal number of rules inside each partition, we modify the support
measure as

support =
Count((X → Y ), P (k))

|P (k)| , (12)

i.e., we calculate the support for a rule based on the partition. This is in
contrast to the usual practice of calculating it based on the whole database.
Here, Count((X → Y ), P (k)) is the number of data instances <X,Y> inside
the partition P (k). We define the confidence of the rule using

confidence =
Count((X → Y ), P (k))∑

Z⊆ΘC
Count((X → Z), DTR)

(13)
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Note that the confidence is calculated based on the whole database. Then
we apply the Apriori algorithm [2] within each partition P (k) to generate the
class rule set R(k) = {r(k)

� }:

R(k) = Apriori
(
P (k),MinSupp(k)

)
, k = 1, NTC ; (14)

= {r(k)
� } : F (k)

� → C(k), ! = 1, NR(k) , (15)

where NR(k) denotes the number of rules in the rule set R(k) andMinSupp(k)
denotes the minimum support value that each rule in R(k) must satisfy.

The final rule set RARM is the union of the class rule sets, that is,

RARM =
NT C⋃
k=1

R(k). (16)

This procedure is what we refer to as partitioned-ARM.
An antecedent F (k)

� of a rule r(k)
� is of the form

F
(k)
� =<f (k)

1� , f
(k)
2� , . . . , f

(k)
NF �>, (17)

and we assume that each feature value f (k)
j� can assume either a singleton value

Θ
(i)
fj�
, i = 1, nfj�

, or the completely ambiguous value Θfj�
. In other words, the

only feature imperfection we allow is a missing value which is modeled as a
complete ambiguity. This is in contrast to the class label ambiguity where
both partial and complete ambiguities are allowed.

2.5 Rule Pruning

While the classification accuracy of the classifier is a function of the integrity of
the rule set, its efficiency and the computational burden it imposes depends on
the size of the rule set. Hence, to increase efficiency and reduce the associated
computational burden, we propose to prune the rules.

Consider the antecedent F (k)
� of the rule r(k)

� . Then, f (k)
j� = Θfj

indicates

complete ambiguity regarding the feature value f (k)
j� . In this case, the feature

value does not provide any valuable information. To formalize the relevant
notions, we introduce

Definition 1 (Level of Abstraction (LoA)). For a given rule r(k)
� : F (k)

� →
C(k), ! = 1, NR(k) , k = 1, NTC , define

LoA[r(k)
� ] =

∣∣∣∣∣∣
⋃
j

{
f

(k)
j� : f (k)

j� = Θfj

}∣∣∣∣∣∣ . (18)
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Then

1. Rule r(k)
�1

(and corresponding feature vector F (k)
�1

) is said to be more ab-

stract than rule r(k)
�2

(and corresponding feature vector F (k)
�2

) if LoA[r(k)
�1

] >

LoA[r(k)
�2

]; and

2. Rule r(k)
� is said to cover the training data instance Ti =<Fi, Ci>, i =

1, ND, if
fji = f

(k)
j� , ∀j = 1, NF , whenever f (k)

j� �= Θfj
. (19)

A rule r(k)
� having a higher LoA means that it contains more insignificant

features. In our pruning scheme, we assign a lower importance to such rules.
Furthermore, there may be more than one rule which may cover a certain data
instance. These redundant rules can be safely removed from the training data
set. To this end, once we have more than one rule that covers a certain training
data instance, we allocate a higher importance to the rules that possess higher
confidence and lower LoA. With this in mind, the rule set RARM is sorted
using the following criteria:

1. First, sort the rule set based on descending order of the confidence values.
2. Second, for those rules having the same confidence value, sort the rules by

ascending order of the LoA values.

This sorting scheme differs from that used in [18] where the second level of
sorting is determined by the support value. The reason for our choice lies in
our desire to accommodate class label ambiguities.

Then, starting from the first rule from the sorted rule set, the instances
that can be covered by each rule are removed from the training data set. If the
set of removed training data instances corresponding to a rule is not empty,
that particular rule will be added to the final rule set; otherwise it is pruned.
This process is continued until either all rules in RARM are exhausted or no
training data instances are left in the training data set. At termination, if the
training data set is not empty, all its remaining data instances are added to
the rule set with confidence 1.0 since they provide evidence that could not be
captured by the rules in RARM .

This process, which is referred to as RulePruning algorithm, can be de-
scribed as follows:

RulePruning(RARM , DTR){
while (¬ empty(RARM ) & ¬ empty(DTR)){

r=Top(RARM );
if (¬ empty(Dr = covered(r,DTR))){
RPruned = RPruned ∪ r;
RARM = RARM \ r;
DTR = DTR \Dr;}}

if (¬ empty(DTR)) {
RPruned = RPruned ∪DTR;}}
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Here, RPruned is the rule set eventually selected from the pruning algorithm.
The function covered(r,DTR) generates Dr, the set of all training data in-
stances covered by the rule r.

2.6 The Classifier

We now describe how our ARM-KNN-BF classifier is developed based on the
rule set developed above.

Let F � =<f �
1, f

�
2 , . . . , f

�
NF
> be an incoming feature vector that needs to

be classified into one of the classes from ΘC . We view each rule r(k)
� as a piece

of evidence that alters our belief about how well the unclassified feature vector
F � belongs to the class C(k) ⊆ ΘC . We would be able to make this claim with
a higher ‘confidence,’ if:

1. The confidence value c(k)
� of the rule r(k)

� is higher; and
2. The distance between F � and the antecedent F (k)

� of the rule r(k)
� is smaller.

With these observations in mind, we define the following BPA:

m
�,(k)
� (A) =

{
α

(k)
� , if A = C(k);

1 − α(k)
� , if A = ΘC ,

(20)

where
α

(k)
� = β ck� e

γ Dist[F �,F
(k)
� ]. (21)

Here, β ∈ [0, 1] and γ < 0 are parameters to be chosen; the distance function
Dist[F �, F

(k)
� ] is an appropriate measure that indicates the distance between

F � and the antecedent F (k)
� of the rule. We choose it as

Dist[F �, F
(k)
� ] =

∥∥∥[d1 d2 · · · dNF

]T ÷NF

∥∥∥ , (22)

where, for j = 1, NF ,

dj =

{
|f �

j − f (k)
j� | whenever f (k)

j� �= Θfj
;

0 otherwise.
(23)

Here [�]T denotes matrix transpose and NF denotes the number of non-
ambiguous feature values.

2.7 Fused BPAs and Rule Refinement

At this juncture, we have created a BPAm�,(k)
� (�) : 2ΘC → [0, 1] corresponding

to each rule r(k)
� , ! = 1, NR(k) , k = 1, NTC . Now, we may use DRC to combine

these BPAs to get a fused BPA m�. When the generated rule set is large, and
if the computational burden associated with the application of DRC is of
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concern, we may use a certain number of rules, say K, whose antecedents are
the closest to the new feature vector F �. Then, only K BPAs would need to
be fused using the DRC.

To ensure the integrity of the generated rule set, the classifier developed
as above was used to classify the feature vectors {F (k)

� }, ! = 1, NR(k) , k =
1, NTC , of the training data set itself. The classification error associated with
F

(k)
� can be considered to reveal that the rule set does not possess sufficient

information to correctly identify the training data set. With this observation
in mind, RPruned was supplemented by each training data instance whose
feature vector F (k)

� was not correctly classified; the confidence measure of such
a rule was allocated a value of 1.0. This refined rule set is what constitutes
our proposed ARM-KNN-BF classifier.

2.8 An Example of Rule Generation

In this section, we use a slightly modified variation of a data set from [22] to
clarify and illustrate the various steps involved in our proposed rule generation
algorithm. The data set being considered possesses three features and two
classes. See Table 1. The FoDs corresponding to the features are as follows:

Outlook : Θf1 = {sunny, overcast, rainy};
Humidity : Θf2 = {LOW,MEDIUM,HIGH};
Windy : Θf3 = {TRUE,FALSE};
Decision : ΘC = {Play,Don’t Play}. (24)

Table 1. The training data set under consideration

Outlook Humidity Windy Decision

sunny MEDIUM TRUE Play
sunny LOW FALSE Play
sunny MEDIUM FALSE Play
overcast HIGH FALSE Don’t play
rainy MEDIUM FALSE Don’t play
rainy HIGH TRUE ΘC

overcast LOW FALSE Play
sunny MEDIUM TRUE Play
rainy HIGH FALSE Don’t play
overcast MEDIUM FALSE Don’t play
overcast HIGH TRUE ΘC

sunny HIGH TRUE ΘC

sunny LOW TRUE Play
overcast LOW TRUE Play
sunny MEDIUM FALSE Play
overcast HIGH TRUE Don’t play
sunny LOW TRUE Play



550 S.P. Subasingha et al.

Table 2. Partitioned data set from Table 1

Outlook Humidity Windy Decision

sunny MEDIUM TRUE Play
sunny LOW FALSE Play
sunny MEDIUM FALSE Play
overcast LOW FALSE Play
sunny MEDIUM TRUE Play
sunny LOW TRUE Play
overcast LOW TRUE Play
sunny MEDIUM FALSE Play
sunny LOW TRUE Play

overcast HIGH TRUE Don’t play
rainy HIGH FALSE Don’t play
overcast MEDIUM FALSE Don’t play
overcast HIGH FALSE Don’t play
rainy MEDIUM FALSE Don’t play

rainy HIGH TRUE ΘC

overcast HIGH TRUE ΘC

sunny HIGH TRUE ΘC

The data sets, after being partitioned based on the class label, are given
in Table 2. To retain simplicity of this example, we set the support value at
0.25 which is greater than the values that were used in our simulations in
Sect. 3. Table 3 shows the rules generated. For this simple example, at this
stage, the number of rules generated were 10, 10 and 15 rules corresponding
to the classes ‘Play’, ‘Don’t Play’ and ΘC , respectively.

The pruning process (see Sect. 2.5) produces a reduced rule set. This
final rule set is shown in Table 4. The support value is not indicated in
this table since it does not play a critical role in the classification stage.
As can be seen from Table 4, the rules with lower levels of abstraction
appear to have had a better chance of being selected to the pruned rule
set.

Next, this pruned rule set is used in the rule refinement stage (see Sect. 2.7).
The rule set generated at the conclusion of the rule refinement stage is
given in Table 5. Note that the last rule in Table 5 was added into the fi-
nal rule set because its corresponding training instance was incorrectly clas-
sified at the rule refinement stage. When conflicting rules are present in
the final rule set, masses to those rules are assigned based on their confi-
dence values, and then the Dempster’s rule of combination (shown in (7))
takes this into account when making the final decision in the classification
stage.
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Table 3. The generated rule set

Outlook Humidity Windy Decision Support Confidence

LOW Play 0.5556 1.0000
sunny MEDIUM Play 0.4444 1.0000
sunny LOW Play 0.3333 1.0000
sunny FALSE Play 0.3333 1.0000

LOW TRUE Play 0.3333 1.0000
sunny Play 0.7778 0.8750
sunny TRUE Play 0.4444 0.8000

MEDIUM Play 0.4444 0.6667
TRUE Play 0.5556 0.5556
FALSE Play 0.4444 0.5000

rainy FALSE Don’t play 0.4000 1.0000
HIGH FALSE Don’t play 0.4000 1.0000

rainy Don’t play 0.4000 0.6667
overcast HIGH Don’t play 0.4000 0.6667
overcast FALSE Don’t play 0.4000 0.6667

FALSE Don’t play 0.8000 0.5000
overcast Don’t play 0.6000 0.5000

HIGH Don’t play 0.6000 0.5000
MEDIUM FALSE Don’t play 0.4000 0.5000
MEDIUM Don’t play 0.4000 0.3333

sunny HIGH ΘC 0.3333 1.0000
rainy TRUE ΘC 0.3333 1.0000
rainy HIGH TRUE ΘC 0.3333 1.0000
sunny HIGH TRUE ΘC 0.3333 1.0000

HIGH TRUE ΘC 1.0000 0.7500
HIGH ΘC 1.0000 0.5000

rainy HIGH ΘC 0.3333 0.5000
overcast HIGH TRUE ΘC 0.3333 0.5000

TRUE ΘC 1.0000 0.3333
rainy ΘC 0.3333 0.3333
overcast HIGH ΘC 0.3333 0.3333
overcast TRUE ΘC 0.3333 0.3333
sunny TRUE ΘC 0.3333 0.2000
overcast ΘC 0.3333 0.1667
sunny ΘC 0.3333 0.1250

3 Experimental Results

Several experiments on two different groups of databases (databases with
and without class label ambiguities) were conducted to compare the perfor-
mance of our proposed ARM-KNN-BF classifier with some existing classifica-
tion methods.
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Table 4. Pruned rule set

Outlook Humidity Windy Decision Confidence

sunny MEDIUM Play 1.0000
sunny FALSE Play 1.0000

LOW TRUE Play 1.0000
LOW Play 1.0000

rainy FALSE Don’t play 1.0000
HIGH FALSE Don’t play 1.0000

overcast HIGH Don’t play 0.6667
overcast FALSE Don’t play 0.6667

rainy HIGH TRUE ΘC 1.0000
sunny HIGH TRUE ΘC 1.0000
overcast HIGH TRUE ΘC 0.5000

Table 5. Final rule set generated at the conclusion of the rule refinement stage

Outlook Humidity Windy Decision Confidence

sunny MEDIUM Play 1.0000
sunny FALSE Play 1.0000

LOW TRUE Play 1.0000
LOW Play 1.0000

rainy FALSE Don’t play 1.0000
HIGH FALSE Don’t play 1.0000

overcast HIGH Don’t play 0.6667
overcast FALSE Don’t play 0.6667

rainy HIGH TRUE ΘC 1.0000
sunny HIGH TRUE ΘC 1.0000
overcast HIGH TRUE ΘC 0.5000

overcast HIGH TRUE Don’t play 1.0000

These experiments use several databases from the UCI data repository [3]
and data sets collected from the airport terminal simulation platform devel-
oped at the Distributed Decision Environments (DDE) Laboratory at the
Department of Electrical and Computer Engineering, University of Miami.
The databases contain both numerical and nominal attributes. All the classi-
fication accuracies are presented with 10-fold sub-sampling where the training
and testing data sets are constructed by taking 70% and 30% of the data
instances in the database respectively. The training data set was used to gen-
erate the classification rules and the testing data set was used to evaluate its
performance.
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3.1 UCI Databases Without Class Label Ambiguities

Several UCI databases [3] were used to compare the classification accuracy of
the proposed ARM-KNN-BF classifier with the KNN classifier [9], c4.5rules
[23], KNN-BF classifier [5] and ARM classifier [18]. The parameter values and
accuracy results for the ARM classifier were borrowed from [18]. Table 6 shows
the support and confidence parameters used by the ARM-KNN-BF classifier
for different databases.

The support and confidence parameters play a vital role in the performance
evaluation. For most of the databases, the support values are between 0.01
and 0.10; the exception is the Zoo database for which we use 0.5. The lower the
support value is, the larger the number of rules that can be captured and more
information can be found in the rule set. However, this may result in a rule set
with noise. Therefore, when the support value is too small, it may deteriorate
the integrity of the overall rule set. On the other hand, when the support value
is too large, some interesting rules may not be captured. Therefore, empirical
studies are needed to determine the best support value for each database.
For the confidence values, they were kept between 0.3 and 0.8, a relatively
higher value compared to the support. To keep the processing complexity at
a tolerable level, we wanted to keep the number of neighbors K limited to 10.
For these values, we observed no significant change in performance. Hence,
K = 7 was selected for all the experiments.

As the classifier is based on belief theoretic notions, it generally assigns a
‘soft’ class label. For purposes of comparison, a ‘hard’ decision (i.e., a singleton
class label) was desired. Different strategies have been proposed in the litera-
ture to achieve this [10]; we used the pignistic probability distribution [27].

The number of generated rules directly relates to the efficiency of the
algorithm. Table 7 compares the average number of rules generated per class
in the ARM-KNN-BF with three other classifiers.

Table 6. Non-ambiguous UCI databases – parameters (support and confidence
values) used by the ARM-KNN-BF classifier

Database Support Confidence

Breast cancer 0.05 0.3
Car 0.03 0.5
Diabetes 0.03 0.3
Iris 0.08 0.8
Monks 0.06 0.6
Post-operation patient 0.05 0.5
Scale 0.06 0.6
Solar flares 0.06 0.8
Tic-Tac-Toe 0.04 0.5
Voting 0.03 0.8
Wine 0.07 0.3
Zoo 0.50 0.5
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Table 7. Non-ambiguous UCI databases – average number of rules generated per
class

Database KNN & KNN-BF ARM ARM-KNN-BF

Breast cancer 242 49 76
Car 302 N/A 71
Diabetes 258 57 169
Iris 32 5 18
Monks 200 N/A 48
Post-operation patient 23 N/A 18
Scale 438 N/A 61
Solar flares 743 N/A 42
Tic-Tac-Toe 334 8 70
Voting 297 N/A 57
Wine 41 7 30
Zoo 63 7 5

Table 8. Non-ambiguous UCI databases – classification accuracy

Database KNN c4.5rules ARM KNN-BF ARM-KNN-BF

Breast cancer 0.97 0.95 0.93 0.96 0.97
Car 0.92 0.93 N/A 0.93 0.93
Diabetes 0.70 0.72 0.71 0.72 0.76
Iris 0.94 0.94 0.96 0.93 0.95
Monks 0.92 0.98 N/A 0.97 0.95
Post-operation patient 0.69 0.76 N/A 0.74 0.76
Scale 0.83 0.85 N/A 0.84 0.84
Solar flares 0.82 0.83 N/A 0.82 0.81
Tic-Tac-Toe 0.92 0.98 0.93 1.00 0.99
Voting 0.91 0.92 N/A 0.90 0.93
Wine 0.94 0.91 0.96 0.92 0.96
Zoo 0.90 0.92 0.95 0.96 0.98

Although the number of rules generated for the ARM classifier is signifi-
cantly less compared to others, it fails to handle class label ambiguities. Along
with the proposed ARM-KNN-BF classifier, the KNN and KNN-BF classifiers
are the only classifiers that are applicable in such a situation. Among these,
the ARM-KNN-BF classifier possesses a significantly fewer number of rules.

Tables 8 and 9 give the classification accuracy and the standard deviation
corresponding to these different UCI databases. For the ARM classifier, the
best average accuracy was used (i.e., CBA-CAR plus infrequent rules reported
in [18]). Table 8 shows that the ARM-KNN-BF classifier performs compar-
atively well with the other classifiers. Furthermore, it operates on a much
smaller rule set compared to the KNN and KNN-BF classifiers.
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Table 9. Non-ambiguous UCI databases – standard deviation of classification
accuracy

Database KNN c4.5rules KNN-BF ARM-KNN-BF

Breast cancer 1.08 0.81 3.03 1.16
Car 1.12 1.51 0.97 1.57
Diabetes 2.13 4.23 2.22 3.99
Iris 2.10 2.74 2.00 2.25
Monks 1.23 0.81 1.74 1.32
Post-operation patient 4.31 1.34 3.21 2.16
Scale 1.24 0.96 1.29 1.05
Solar flares 1.73 1.51 1.03 1.82
Tic-Tac-Toe 2.22 2.15 3.03 1.81
Voting 2.76 1.93 1.97 2.14
Wine 2.50 3.71 2.10 2.83
Zoo 3.98 1.47 2.15 1.03

Of course, the real strength of a belief theoretic classifier lies in its ability
of performing well even in the presence of ambiguities. The experiments in
the next section are conducted to demonstrate this claim.

3.2 UCI Databases with Class Label Ambiguities

Since the UCI databases do not possess ambiguities, to test the performance
of the proposed classifier, ambiguities were artificially introduced. Different
types of ambiguities one may encounter in databases are discussed in [28].
Although the most natural way is to introduce these ambiguities randomly, we
used a more reasonable strategy motivated by the fact that experts are likely
to assign ambiguous class labels whose constituents are ‘close’ to each other.
For example, while it is likely that an expert would allocate the ambiguous
label (OfConcern, Dangerous), the label (OfConcern, ExtremelyDangerous)
is highly unlikely.

With this in mind, we proceed as follows to introduce class label ambigu-
ities: Consider an instance Ti which has been allocated the class label Ci. Let
us refer to N of its closest neighbors as the N -neighborhood of Ti; here, N is a
pre-selected parameter. If the class label Cj occurs more than a pre-specified
percentage p% among the instances in this N -neighborhood of Ti, the class
label of Ti is made ambiguous by changing its class label to (Ci, Cj) from Ci.
For example, suppose Ti is labeled as C3. With N = 10, suppose the class
labels of the 10-neighborhood of Ti are distributed as follows: 3 belong to class
C2, 6 belong to class C3 and 1 belong to class C4. With p = 25%, both C2 and
C3 exceed the pre-specified percentage. Hence, Ti is assigned the ambiguous
class label (C2, C3). The level of ambiguity could be controlled by varying the
value of p. In our experiments, we used p = 25%.
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Table 10. Ambiguous UCI databases – parameters (support and confidence values)
used by the ARM-KNN-BF classifier

Database Support Confidence

Breast cancer 0.10 0.8
Car 0.02 0.5
Diabetes 0.10 0.6
Iris 0.06 0.8
Monks 0.06 0.6
Post-operation patient 0.05 0.8
Scale 0.05 0.5
Solar flares 0.06 0.8
Tic-Tac-Toe 0.04 0.5
Voting 0.30 0.8
Wine 0.07 0.3
Zoo 0.50 0.5

Table 11. Ambiguous UCI databases – average number of rules generated per class

Database KNN & KNN-BF ARM-KNN-BF % Reduction

Breast cancer 242 68 72%
Car 302 103 66%
Diabetes 258 120 53%
Iris 32 19 41%
Monks 341 62 82%
Post-operation patient 20 17 15%
Scale 162 60 67%
Solar flares 760 45 94%
Tic-Tac-Toe 333 65 80%
Voting 123 63 49%
Wine 53 40 25%
Zoo 10 5 50%

We first compared the proposed ARM-KNN-BF classifier with the KNN
and KNN-BF classifiers because they are capable of handling class label am-
biguities. Table 10 shows the support and confidence parameters used by the
ARM-KNN-BF classifier for different databases. Similar to the non-ambiguous
databases case (see Table 6), the support values were kept low (0.1 or less)
for most of the databases and the corresponding confidence values were kept
fairly high. As before, the number of neighbors K was chosen as 7 except for
the Zoo databases (for which K = 3) because it possesses a significantly fewer
number of rules per class.

As can be seen from Tables 11 and 12, the ARM-KNN-BF classifier re-
quires a significantly fewer number of rules and achieves a better classification
accuracy compared with the other two classifiers.
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Table 12. Ambiguous UCI databases – classification accuracy (score)

Database KNN KNN-BF ARM-KNN-BF

Breast cancer 0.92 0.82 0.94
Car 0.89 0.83 0.88
Diabetes 0.78 0.76 0.88
Iris 0.91 0.94 0.92
Monks 0.86 0.87 0.89
Post-operation patient 0.82 0.76 0.85
Scale 0.81 0.79 0.84
Solar flares 0.80 0.80 0.84
Tic-Tac-Toe 0.80 0.82 0.85
Voting 0.86 0.81 0.89
Wine 0.87 0.87 0.91
Zoo 0.89 0.91 0.93

The ‘% Reduction’ column in Table 11 shows the percentage reduction
in the number of rules used by the ARM-KNN-BF classifier when compared
with the others. In calculating the classification accuracy in Table 12, some
strategy needs to be developed to compare the ‘correctness’ of ambiguous
classifications. For example, suppose the actual class label is (C1, C2). How
does the accuracy calculation be done if the classified label is C1, (C1, C2)
or (C2, C3)? Clearly, the classification (C1, C2) must be considered ‘perfect’
and should be assigned the maximum score. How does one evaluate the clas-
sification accuracies corresponding to the classifications C1 and (C2, C3)? To
address this issue, the following measure, which we refer to as the score, is
employed:

score =
|True label ∩ Assigned label|
|True label ∪ Assigned label| (24)

With this measure, the scores of the class labels C1, (C1, C2) and (C2, C3)
would be 1/2, 1/1 and 1/3, respectively. Table 12 gives the score values for
the three classifiers.

3.3 Experiments on the Airport Terminal Simulation Platform

We have developed a simple simulation platform to mimic an airport terminal
in our Distributed Decision Environment (DDE) Laboratory at the Depart-
ment of Electrical and Computer Engineering, University of Miami, to test
the performance of the algorithms we have developed. The platform consists
of three areas; each area has two gates at its entrance and exit. The potential
threat carriers carry different combinations of features which we refer to as
property packs. Carriers entering and exiting each area are tracked using an
overhead camera. Each gate of the platform contains a stationary sensor mod-
ule that extracts the intensity of the features in the property pack. Based on
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Table 13. Airport terminal simulation experiment – class label distribution

Class label Number of instances

NotDangerous 154
Dangerous 66
(NotDangerous,Dangerous) 88

Total 308

Table 14. Airport terminal simulation experiment – classification accuracy (score)

Algorithm Score Rules/Class

KNN 0.89 68
KNN-BF 0.92 68
ARM-KNN-BF 0.94 31

these properties, each carrier is assigned a carrier type by a program module
that takes into account expert knowledge.

For our set of experiments, we concentrated on the potential threat car-
riers within only one area of the platform. This area was subdivided into
nine sub-areas. A data record possessing nine features, each corresponding to
one sub-area, was periodically (at 0.5 s intervals) generated for this region.
Each feature contains the carrier type located within its corresponding sub-
region. Endowing five carriers with different property packs, various scenarios
were created to represent NotDangerous and Dangerous environments. For
instance, carriers each having ‘weak’ or no property pack can be considered
to reflect NotDangerous conditions; on the other hand, even a single carrier
carries a ‘strong’ property pack can be considered a Dangerous condition.
Other combinations were allocated appropriate class labels. Clearly, alloca-
tion of a ‘crisp’ class label for certain combinations of number of carriers and
property packs would be difficult; such situations warrant the ambiguous class
label (NotDangerous,Dangerous).

The test database contains a total number of 308 instances whose class
labels are distributed as in Table 13.

The classification scores, again based on 10-fold sub-sampling, are shown
in Table 14. It is evident that the proposed ARM-KNN-BF classifier achieves
better performance with a much smaller set of rules than that of the KNN
and KNN-BF classifiers.

4 Conclusion

In this chapter, we have developed a novel belief theoretic ARM based classi-
fication algorithm that addresses the following concerns:
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• Class label ambiguities in training databases;
• Computational and storage constraints; and
• Skewness of the databases.

Class label ambiguities naturally arise in application scenarios especially
when domain expert knowledge is sought for classifying the training data
instances. We use a belief theoretic technique for addressing this issue. It en-
ables the proposed ARM-KNN-BF classifier to conveniently model the class
label ambiguities. Each generated rule is then treated as a BoE providing
another ‘piece of evidence’ for purposes of classifying an incoming data in-
stance. The final classification result is based upon the fused BoE generated
by DRC. Skewness of the training data set can also create significant diffi-
culties in ARM because the majority classes tend to overwhelm the minority
classes in such situations. The partitioned-ARM strategy we employ creates
an approximately equal number of rules for each class label thus solving this
problem. The use of rules generated from only the nearest neighbors (instead
of using the complete rule set) enables the use of a significantly fewer number
of rules in the BoE combination stage. This makes our classifier more compu-
tationally efficient. Applications where these issues are of critical importance
include threat detection and assessment scenarios.

As opposed to the other classifiers (such as c4.5 and KNN), belief theoretic
classifiers capture a much richer information content in the decision making
stage. Furthermore, how neighbors are defined in the ARM-KNN-BF classifier
is different than the strategy employed in the KNN-BF and KNN classifiers.
Due to the fact that the rules in the ARM-KNN-BF classifier are generated via
ARM, the rules capture the associations within the training data instances.
Thus, it is able to overcome ‘noise’ effects that could be induced by individual
data instances. This results in better decisions. Of course. a much smaller rule
set in the classification stage significantly reduces the storage and computa-
tional requirements, a factor that plays a major role when working with huge
databases.

The work described above opens up several interesting research issues that
warrant further study. In security monitoring and threat classification, it is
essential that one errs on the side of caution. In other words, it is always better
to overestimate the threat level than under-estimate it. So, development of
strategies that overestimate threat level at the expense of under-estimating it
is warranted.

Another important research problem involves the extension of this work
to accommodate more general types of imperfections in both class labels and
features. The work described herein handles ambiguities in class labels only;
ways to handle general belief theoretic class label imperfections [28] would be
extremely useful. Development of strategies that can address general belief
theoretic imperfections in features would further enhance the applicability of
this work. Some initial work along this line appears in [11,12].
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